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Abstract

The main goal of this thesis is to provide a systematic study of several integrable systems defined
on complex Poisson manifolds associated to extended cyclic quivers. These spaces are particular
examples of multiplicative quiver varieties of Crawley-Boevey and Shaw, for which Van den
Bergh observed that they can be equipped with a Poisson bracket obtained by quasi-Hamiltonian
reduction. In his approach, Van den Bergh introduced the notion of double brackets to translate
the geometric quasi-Hamiltonian structure associated to these varieties directly at the level of the
path algebra of the quivers. We pursue this line of thought and examine these double brackets
in order to find families of algebraic elements on the path algebra of extended cyclic quivers that
give rise to families of Poisson commuting functions on the corresponding multiplicative quiver
varieties. This provides a way to obtain candidates for Liouville integrability, and this can be
adapted to the case of degenerate integrability. For specific dimensions of these spaces, we can
compute the number of functionally independent elements in each family, and conclude that we
can form integrable systems. They can be written in terms of local coordinates, and be related
to the trigonometric spin Ruijsenaars-Schneider system or generalisations of the latter system.
As part of our construction, we also prove that their flows can be obtained by the projection
method from explicit integrations performed before the quasi-Hamiltonian reduction. Another
application of this work consists in describing the Poisson structure in terms of local coordinates.
In particular, this allows us to prove a conjecture of Arutyunov and Frolov regarding the form of

the Poisson bracket for the trigonometric spin Ruijsenaars-Schneider system.
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Chapter 1

Introduction

1.1 Hamiltonian systems and integrability

For centuries, there has been a persistent interest in trying to understand how a mechanical system
parametrised by a finite number of positions ¢ = (qi,...,¢g,) could evolve over time. Based
on the foundation of classical mechanics by Newton at the end of the 17™ century, the general
evolution of systems such as the two-body problem, or the problem of two fixed centres for
celestial bodies could be derived. However, determining the general solution of a system for
arbitrary initial positions was a harder task. To overcome this issue, two important tools were
developed in the 19" century in the newly formulated Hamiltonian mechanics : the separation of
variables by Jacobi, and the concept of integrability by Liouville. We focus on the latter notion

from now on, which we call Liouville integrability.

Assuming that the system is governed by some potential V' (¢), Hamilton suggested to consider
a phase space parametrised by the positions ¢ and their associated momenta p = (p1,...,pn),

together with the energy function (nowadays called the Hamiltonian)
1 n
H(q,p) =5 0} + V(). (1.1)
i=1

Then the problem could be reformulated as expressing the evolution from an initial condition

(go, po) in the phase space of the 2n-uple (g, p) governed by the ordinary differential equation

dgi _0H(q,p) dpi _ 0H(gqp)

=07 =——"" i=1,...,n. 1.2
dt 8pl Y dt aql I ? Y 7” ( )
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We can introduce an operation {—, —} on the functions defined on the phase space as
n
of 0g 9dg Of
{f,g}=2<a(9 —o5 ) (1.3)
i1 \04i Opi 4q; ODi

which is easily seen to be antisymmetric and a biderivation. This operation also satisfies an
additional property called Jacobi identity, which makes it a Poisson bracket. It is not difficult to
see that we can rewrite the equations of motion (1.2) simply using the derivation % ={-,H},
where {—, H} : f — {f, H}. In fact, what Liouville noticed is that given n such derivations
that pairwise commute under the Poisson bracket and are independent, in other words if we have
n functionally independent elements F' = (Fy, Fs, ..., F,) with F; = H, which also satisfy
{F;, F;} = 0 for all indices, then we can locally construct a solution to (1.2). This process,
called integration by quadrature, uses only algebraic manipulations and integrations, as well as
the inverse function theorem. Therefore, it does not only apply to smooth real functions as in
its original formulation, but also to complex analytic functions. We refer to the functions F' as a
(Liouville) integrable system, and we say that H is Liouville integrable. It is worth mentioning
that, to define an integrable system, H can be an arbitrary function of (g, p) not necessarily of
the form (1.1). Indeed, the integration by quadrature does not require any particular form for the

functions occurring in F'.

From a modern point of view, what we need to define an integrable system is a space endowed
locally with the operation {—, —} given by (1.3), i.e. a manifold with a non-degenerate Poisson
bracket. In fact, the definition can also be relaxed to the case of a degenerate Poisson bracket, to
the case of degenerate integrability which we will encounter in this text, or to both cases. While
these generalisations are almost straightforward, moving to the case of algebraic varieties is more

subtle. For more on these topics, we refer to [1, 12, 114, 169].

1.2 Calogero-Moser systems

Our presentation of Liouville integrability suggests that this notion should have played an
important role directly after its introduction. However, it quickly faded away at the end of the
19" century. At that time, Poincaré made the important observation that a small perturbation

can break integrability, so that Liouville integrable systems are rare among mechanical systems.



1.2. Calogero-Moser systems 3

As a consequence, the mathematical community lost its interest in Liouville integrability, which
condemned the subject to oblivion for several decades. Fortunately, at the end of the 1960s,
the introduction of the Toda lattice [158] was a first step to revive interest in the technique of
Liouville integrability', see [157] for further references. Another step was realised when Calogero
introduced (quantum) n-body systems on the line [37, 38], which is at the basis of the present
work. In the simplest case, the classical version of the system consists in taking the Hamiltonian

(1.1) with rational potential
Vig) = Zg2v(qj —q), v(x)= 72, (1.4)
j<k
for some coupling constant g > 0. Here, we can think of ¢ as gathering the positions on the
line of n particles interacting with the potential (1.4), so that each particle is characterised by its
position ¢; and momentum p;, which satisfy

dgi _  dpi 2¢*

ac P dt_g;i(qiqk)?"

(1.5)

In this case, Liouville integrability for an arbitrary number of particles was established by Moser
[120]. Though relatively simple in appearance, this system was on the verge of leading to intense
research activities related to integrable systems. Indeed, by the time of Moser’s paper publication
in 1975, it was already known that we could consider the harmonic potential v(z) = 272 + wa?
[37, 38] or the trigonometric potential v(x) = sin(x)~2 [153, 154] in the quantum case. This led
to their classical formulation, and their modification to hyperbolic or elliptic potentials, as well
as generalisations related to root systems of Lie algebras as reviewed in [130]. We refer to all
these systems as Calogero-Moser (or CM) systems, and we call the system with potential (1.4)

the rational CM system (of type A,,_1).

There are three features of integrable particle systems of CM type that will play a central role in
our study of Ruijsenaars-Schneider systems, which we introduce next in Section 1.3. Restricting
our attention to the rational CM system, the first feature discovered by Wojciechowski is that it
is degenerately integrable [172]. In general, this means that for a phase space of dimension 2n,
there exist functions G = (G1,...,G;), n < r < 2n — 1, that are functionally independent

and such that the first s = 2n — r functions GG, ..., G Poisson commute with all the elements

"We confine ourselves to the classical notion of Liouville integrability, leaving historical details related to other

notions of integrability for classical systems to comprehensive treatments of the subjects such as [20, 60, 61, 176].
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of G. The case of Liouville integrability corresponds to r = n. Wojciechowski noticed that
if F = (Fy,...,F,) is an integrable system for the rational CM case, then we can extend any
of the F; to a degenerately integrable system of » = 2n — 1 elements, which is the maximal
possible case. The second feature unveiled by Gibbons and Hermsen is that there exist spin
extensions of the rational CM system [82]. This means that we can widen the phase space with
initial canonical coordinates (g, p) by 2nd elements (af', ¢$*); o Where i = 1,...,n corresponds
to the particle label and o = 1,...,d is an index for internal degrees of freedom, called spins.
For each 4, we consider (ag, ¢&), under the constraint Y afc® = g* and identify R*-orbits for
the action A - (a%, c)s = (Aaf, A1) . The only new non-trivial Poisson bracket is given by

{a$, c]@ } = 0ij00p, and we now look at the potential

n d
1 o o _
Vi) =5 D vl —a), fie=) afc, v(@)=a2, (1.6)
7,k=1 a=1
kit

from which we easily get (1.4) back when d = 1. For this particular potential which defines what
we call the rational spin CM system, Liouville integrability (and, in fact, maximal degenerate
integrability) can also be shown. Finally, the third feature may be the most interesting, as it
gives a geometric realisation of the phase space : it was observed by Kazhdan, Kostant and
Sternberg in [95] that the phase space can be obtained by Hamiltonian (or Marsden-Weinstein)
reduction. The general idea is that, beginning with a Poisson manifold M on which some Lie
group G acts, we can consider a G-stable slice N C M of codimension dim(G), such that
the orbit space N/G is a manifold endowed with a Poisson bracket completely determined by
the one on M. This reduction procedure has two advantages. The first one is that if a family
of G-invariant functions on the bigger space M Poisson commute, then their projections after
reduction will Poisson commute in N/G too. Moreover, computations with the Poisson bracket
of M are usually easier, so that forming an integrable system F' on N/G amounts to find Poisson
commuting G-invariant functions F in M that projects to % dim(N/G) functionally independent
elements. The second one is that the vector fields defined by the functions F' (which descend to
the desired vector fields associated to F') could be easier to integrate in M, so that the evolution
of the system on N/G could be obtained by projecting these flows; this is the projection method.
Quite amazingly, these two advantages occur when we derive the phase space of the rational CM

system by Hamiltonian reduction [95].
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As we mentioned, the three features that we presented were initially concerned with the rational
case (and the trigonometric case for the reduction picture [95]). Though it is a very interesting
subject which has attracted a lot of attention, we will skip the discussion of their possible
generalisation to other potentials. Rather, let us mention that they can be adapted to the complex
version of the rational CM system [170, 171], which has a very interesting consequence that
motivates the present work. Namely, when Wilson described the (completed) phase space
of the complex rational CM system [170] in analogy to the work of Kazhdan, Kostant and
Sternberg [95], he could show that this space is endowed with a hyperkhiler structure because
it is a particular example of Nakajima quiver variety [123]. This, in turn, means that the space
can be defined as the moduli space of representations associated to a particular quiver, i.e. a
directed graph. In his construction [123], Nakajima defined the symplectic structure on this
space in terms of the matrices representing the arrows of the quiver. Therefore, it motivates
the following question : can we understand the Poisson geometry of this space directly at the
level of the quiver? This problem is at the basis of two interesting developments in modern
non-commutative geometry, which are non-commutative symplectic geometry [54, 83] and non-
commutative Poisson geometry [162]. In the latter case, Van den Bergh introduced a non-
commutative version of Hamiltonian reduction for associative algebras, and he explicitly defined
such structures associated to any quiver [162]. Thus, knowing the quiver implicitly considered
by Wilson and using Van den Bergh’s theory, we can partially understand the rational CM
system at the level of a non-commutative algebra. This led to several attempts to enlarge our
understanding of complex integrable systems of CM type using quivers. In particular, this resulted
in a new simple description of the phase space for the spin version of the rational CM system

[32, 118, 155, 156], but also additional generalisations [31, 43, 148, 149].

1.3 Ruijsenaars-Schneider systems

In 1986, a new class of integrable systems was introduced by Ruijsenaars and Schneider, who
motivated them as a relativistic generalisation of the CM systems [144]. We refer to these
systems as Ruijsenaars-Schneider (or RS) systems. As in the CM case, the potential can be
rational/hyperbolic [144], or trigonometric/elliptic [140], and it can be related to different root

systems as was observed by van Diejen [165, 166, 167] directly for the quantum case. To get
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some insight into these models, let us briefly sketch the (complex) hyperbolic case. Its phase

space is associated to the positions of n particles subject to the equations of motion

G; = Lj; , L” =2 Z Ly Ly; coth (¢; — qi) , (1.7)
ki

where L = (L;;);; is a Lax matrix for this system which is of the form

sinh(7) ‘ .
Li;i = Lii, L.i=e¢Pi ). 1<iji<n.
7 sinh(g; — 4 +7) 33 jj = € k|7£|j flak — g;) <4,73<n

Here, + is a fixed nonzero coupling constant and f is a particular function such that (1.7) is defined

by the Hamiltonian tr L under the Poisson bracket (1.3). (The relation between L and the original
Lax matrix given in [144] can be recovered from Lemma 4.2.9.) Compared to the CM system,
it is difficult to understand this model simply by looking at the equations of motion (1.7) or the
Hamiltonian tr L. Nevertheless, and quite surprisingly, systems of RS type enjoy the same kind

of features that the CM systems possess.

In 1995, Krichever and Zabrodin noticed that it was possible to formulate a spin generalisation
of the RS system [105], which they introduced for the elliptic potential. This is a system of n
particles with coordinates (¢;);, momenta (¢;);, and spin variables given by (af', ¢{'); o Where
¢t = 1,...,n corresponds to the particle and o« = 1,...,d ranges over the number of internal
degrees of freedom (spins). Introduce the functions fi; = >, a;'¢j. Given a nonzero coupling

constant vy, the equations of motion are given by

Gi = Y _[Vgi) = V(ars)] firfri (1.8a)
Py
@ =—Nal + " Vigw) af fir, (1.8b)
o
C.f :)‘icf - Z V(qr;) Cg Jrjs (1.8¢)
k#j

where ¢;;. := ¢; — qi and the elliptic potential V' (¢) = ((q) — ((q + ) is defined in terms of the
Weierstrass zeta-function (q). Of particular interest, the rational and trigonometric degenerations

are given by V"% (q) = ¢~ — (¢ + )~ ! and® V¥9(q) = coth(q) — coth(q + ). The functions

2To be precise, we should write this potential VY7 (q) as this corresponds to the hyperbolic potential in this original
real case. Since we will work in the complex setting where the trigonometric and hyperbolic potentials are equivalent,

we call this potential trigonometric and stick to this terminology from now on.
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Ai(t) can be set to zero by a suitable scaling. There are 2nd + 2n coordinates, but we can set the
constants of motion I; = ¢;— Y, afc{ to zero, and get a system of dimension 2nd after imposing
a further n normalisation conditions. Following Arutyunov and Frolov [16], we interpret these
conditions by considering instead the invariant spin variables (af*, c%); o, which correspond to the

rescaling a2 = (3, a$)"ta¢ and ¢ = (3, af)c in the original model. For f;; = >~  a¢

a ™ a ]

obtained after normalisation of the function f;;, this leads to the equations of motion

qi =t , (1.9a)
af = - (af —ad)tuV(gwm), (1.9b)
ki
e =Y (V) — i Viars) ) (1.9¢)
iy

from which we see that the condition ) a® = 1 is preserved. In the case d = 1, we have a] = 1
and f;; = le for all 7, j, and we recover the original RS system from (1.9a)-(1.9c). For example
in the trigonometric case, we get by writing cjl- as L;; that (1.9a) becomes ¢; = L;; while (1.9¢)
can be written as
Lii= Z Lii Ly [coth(g; — qx) — coth(q; — qx + ) — coth(gx — ¢i) + coth(gr — @i + )]
ki

Z sinh(7) Lgg sinh(vy)Li;
sinh(g; — qx + ) sinh(qx — ¢; + )

coth(gi — qx),

so we get precisely (1.7). The Hamiltonian formulation in that case is well-known, but for the
system with d > 1 spins and arbitrary potential, it is only given in a universal form [103].
Therefore, it is an interesting problem to find the formulation of the Poisson bracket in terms
of the coordinates (g;, a$*, c*) (or their normalisation). However, the problem of describing the
Hamiltonian structure of the phase space of the spin RS system turns out to be hard to tackle,
since it was completely solved only for the rational case [16], while for the general elliptic case

there is just a partial result in the case of n = 2 particles [151].

The description of the complex rational case by Arutyunov and Frolov [16] was made possible by
a correct understanding of the Hamiltonian reduction performed to obtain the phase space, an idea
that drew on the pioneering work of Kazhdan, Kostant and Sternberg [95]. After performing the
reduction, Arutyunov and Frolov were able to interpret their phase space using 2nd coordinates

containing the positions (g;);, together with spin variables (af", c{*); o subject to the constraints
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o @5 = 1. Within this framework and for a fixed (complex) coupling constant -, the Lax matrix

L = (L;;); given by

d
f ..
L,.:L, f.. = ano.‘, (110)
1) 4ij + ~y ) Oézl L)
naturally appeared, and allowed them to obtain explicit formulae for the Poisson bracket {—, —} 4

between all variables

{gi,0i}4 =0, {af,q;}a =0, {cf,q;}a = —dicf, (1.11a)
T R SNt
{5, a0} 4 =0 Ly — 'Ly + «swqjlqic;(a? —ap), (1.11¢)
{C}Ciﬁ}A 25(i¢j)qjiqi(c§cf + cicf) +clL; - cLj; . (1.114d)

To relate this phase space endowed with the Poisson bracket (1.11a)—(1.11d) to the rational spin
RS system, they showed that the equations of motion for the Hamiltonian tr(L) induced by these
brackets are the ones for the spin RS system in the form (1.9a)—(1.9¢) with V"% (q), up to a factor

€7/sinh~.

An important remark that Arutyunov and Frolov formulated is that the entries of the Lax matrices
for the spin and non-spin rational RS models satisfy the same Poisson brackets defined from the
same r-matrix formulation. Motivated by this relation, they introduced the spin version for the

trigonometric RS model by defining the matrix L = (L;;);; for
eQij+7

Lj=———"—-f, 1.12
() Slnh(qw +"}/) 1] ( )

and they conjectured that the matrix L should obey the same Poisson algebra than its rational
version, with the r-matrices corresponding to the spinless trigonometric case. Under this
assumption, they could find the Poisson bracket for their new model in terms of the functions

(i, fij)ij, on which it takes the form

{gi»ak}a =0, {fij,qx}a = —0jifij, (1.13a)
{£:5, £} 4 =[coth(gix) + coth(g;;) + coth(qk;) + coth(qu)]f;;fk
+ [coth(gix) + coth(g;i) + coth(gx; + ) — coth(qu + )|fufk;
+ [coth(qx;) + coth(qy + v)]fi;fi + [coth(g;r) — coth(gj; + v)]fi; £

+ [COth(qki) — coth(qkj + 'Y)]fkjfkl + [COth(CIil) + COth(qu + '7)]fljfkl , (1.13b)
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with the convention that a term with a vanishing denominator is omitted. However, they were
unable to find what equations (1.11b)—(1.11d) would become. They attempted to replace the
factors 1/¢ by 1/ coth(q) in (1.11b)—(1.11d), but this elementary adjustment was not successful.

Indeed, as we will see in §4.3.2, some extra terms need to be included.

As we have just explained, the reduction picture played an important role in the understanding of
the rational spin RS system. To go to the trigonometric case, one has to understand the available
pictures in the non-spin case, where we have two possibilities. On the one hand, there is a Poisson
reduction introduced by Fock and Rosly [80], which is a discretisation of the infinite-dimensional
reduction® of Atiyah and Bott [17]. On the other hand, we can use quasi-Hamiltonian reduction
[126], an analogue of Hamiltonian reduction introduced by Alekseev, Kosmann-Schwarzbach,
Malkin and Meinrenken [6, 7]. While both options are worth pursuing, we will focus on the
second one for a very good reason : in his work [162], Van den Bergh did not only introduce a
non-commutative version of Poisson geometry and Hamiltonian reduction, but he also introduced
the non-commutative version of quasi-Hamiltonian reduction. In fact, he also showed that this
theory could be applied to an arbitrary quiver, and relates to multiplicative preprojective algebras
[56]. Therefore, it seems natural to consider the original quiver of Wilson, as well as the variations
which give systems of rational CM type that we mentioned in Section 1.2, and try to understand
their relation to the RS system. Our hope is to derive the phase space for the trigonometric spin
RS system from this method, and then to prove the conjecture of Arutyunov and Frolov stating
that the Poisson bracket satisfies (1.13a)—(1.13b) in this case. It will turn out to work, and we
will be able to prove that the system is Liouville integrable. In fact, we will also recover the third

feature of the CM system : the trigonometric spin RS system is degenerately integrable.

The relation to the spin RS system that we have just indicated is obtained by looking at an
extended Jordan (or one-loop) quiver. However, it is quite satisfying to notice that our method
can be adapted to other quivers, which implies that we can find new integrable particle systems.

We now summarise the main results obtained in this way.

Jordan quiver extended by one arrow. We recover the completed phase space for the

trigonometric RS system. We prove its Liouville integrability using non-commutative quasi-

3We want to restrict our attention to a finite-dimensional reduction picture, so we do not consider the possibility
of studying this infinite-dimensional reduction in the present work. This alternative method can be successfully

considered for the non-spin case [125].
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Poisson geometry. These results have been published [41].

Jordan quiver extended by d > 2 arrows. We obtain the completed phase space for the
trigonometric spin RS system. We compute the Poisson structure in local coordinates and we
prove the conjecture of Arutyunov and Frolov. We show that the spin RS system is both Liouville
integrable and degenerately integrable using Van den Bergh’s formalism. These results have been

submitted for publication [42].

Cyclic quiver on m vertices extended by several arrows. We obtain the completed phase space
for a new integrable particle system, and we compute its Poisson structure in local coordinates.
This allows to prove that on a suitably chosen closed submanifold, this new system restricts to
the trigonometric spin RS system for n € N* particles. This space is also the natural phase
space for two other families of systems, which are S,, x Z] -invariant. All these systems are
both Liouville and degenerately integrable. These results have been published when there is one
additional arrow [41]; these results have been submitted for publication when there is d > 2

additional arrows pointing to the same vertex of the cyclic quiver [62].

1.4 Outline of the thesis

Chapter2 is an introductory chapter which gathers the necessary material that we use in the
rest of the present thesis. It consists of a quick overview of some well-known geometric and
algebraic structures, as well as a more advanced review of the work of Van den Bergh related to
double brackets [162, 163]. We particularly emphasise the notion of quasi-Hamiltonian algebras
associated to quivers and their relation to multiplicative quiver varieties (or MQVs) of Crawley-
Boevey and Shaw [56]. We also add some useful connections between Van den Bergh’s formalism

and the theory of integrable systems.

Chapter 3 is the most technical part of this thesis, where we study quasi-Hamiltonian algebras
defined from the extended Jordan quiver or extended cyclic quivers. The aim of this chapter is to
derive many results that will permit us to construct integrable systems and understand the Poisson
structure on the corresponding MQVs. Though it can be seen as the core of the present thesis,
the beauty of this chapter can only be recognised once we understand its geometric implication

presented in the next two chapters; therefore we advise the reader to skip it on a first reading.
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Chapter4 deals with the MQVs corresponding to the extended Jordan quiver for specific
dimensions. When the extension consists of a single arrow, we can see that the MQYV is the phase
space for the trigonometric RS system, and prove its Liouville integrability. When the extension
consists of d > 2 arrows, we obtain the same result for the trigonometric spin RS system. In the
latter case, we can show that it is both Liouville integrable and degenerately integrable. Moreover,
we can explicitly obtain the Poisson brackets between local coordinates, then recover the Poisson

brackets conjectured by Arutyunov and Frolov [16].

Chapter 5 deals with the MQVs corresponding to extended cyclic quivers for specific dimensions.
We show that we can recover the trigonometric (spin and non-spin) RS system for particular
extensions. We also obtain new generalisations of the spin RS system when we extend the cyclic
quiver by an arbitrary number of arrows. Furthermore, if the cyclic quiver has m vertices, we
describe new systems with W = S,, x Z” symmetry. In all those cases, we can show that the

systems are both Liouville integrable and degenerately integrable.

Chapter 6 is divided into two parts. In the first part, we describe some recent developments and
new perspectives related to the models studied in this thesis. In the second part, we provide an
extensive review of the different applications of double brackets since their introduction by Van

den Bergh.

1.5 Conventions

We denote by N, Z, R, C the sets of non-negative integers, integers, real numbers and complex
numbers respectively. If we omit the zero element, we denote the corresponding sets by

N*, 7X RX,CX.

The Kronecker delta function d;; (also denoted ¢; ; or d(; j)) takes the value +1if ¢ = j or 0
otherwise. For a proposition P, we define in a similar way é p which takes the value +1 if P is

true, and zero if P is false. For example, §;< ) takes the value +1 if 7 < j and O for 7 > j.

Consider a finite set of elements {a;};c; which are totally ordered, i.e. there exists a bijective

map p: {1,...,[J|} — Jsuchthata,q) < ... < a,qs). Then, the corresponding left and right
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products are given by

— —

H aj = Gp(|J)) - - - Ap(2)@p(1) » H aj = Ap(1)p(2) - - - Cp(|J]) -

Jj€J Jj€J
Fix d € N*,d > 2,and let J; = {1,...,d} C N*. The ordering function on d elements is the
map o(—, —) : Jg x Jg — {—1,0,+1} defined by o(«r, ) = +1if a < 5, 0(ar, B) = 0if a = 3,
and o(«, 8) = —1if a > (. This is a skew-symmetric map. We naturally extend the definition to

any totally ordered finite set.
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Chapter 2

Basic notions

2.1 Geometric formalism

In this section, any manifold M is assumed to be complex, and we write Oy for the sheaf of
analytic functions on M. Given any sheaf F on M, we say that a property holds for any f € F
if it holds for any open subset U C M and f € F(U). We will make use of the latter short-hand

notation throughout this section, as well as similar variations.

We equip the exterior algebra /\* T with the Schouten-Nijenhuis bracket [—, —] which is defined
to be the Lie bracket on vector fields and is extended on multivector fields a, 3,y € A\°* Ths as a

bilinear map of degree —1 such that

[Oé?ﬁ] = (_1>(|0‘|_1)(‘6|_1)[67a] ’ (213)
[a, BA~] =[a, B] Ay + (=1)1=DIBIg A [, 4], (2.1b)

0 =[e, [8,7]] + (_1)(|a\71)(lﬁl+h\)[57 [y, a]] + (_1)(|v|71)(\a|+|5\)[% [, B]]. (2.1¢)

2.1.1 Poisson geometry

A Poisson manifold is a manifold M endowed with a holomorphic bivector field P € /\2 T’y such
that [P, P] = 0 under the Schouten-Nijenhuis bracket. The map {—, —} : O57 = Opr : (f,g) =

{f,g} = P(df,dg) defines an antisymmetric C-linear biderivation, and we can show that the
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condition [P, P] = 0 is equivalent to Jacobi identity Jac = 0, where for any g1, g2, 93 € O

Jac(gi, 92, 93) = {{91, 92}, 93} + {{92, 93}, 1} + {{g3, 91}, 92} - (2.2)

Indeed, [P, P| = 2 Jac. This implies that {—, —} is a Poisson bracket. We will only deal with
the case of a nondegenerate Poisson bracket, which means that around any x € M with local
coordinates (z1, ..., xy), the matrix with entries {x;,z;}, 1 < 4,5 < n = dim M, evaluated at

x is invertible. This is equivalent to the property that M is a symplectic manifold.

We say that two functions are in involution if they Poisson commute, i.e. their Poisson bracket
vanishes. To any f € Oj; we associate a vector field Vy = {f, —} on M, and we say that vector
fields of that form are Hamiltonian. We then remark that [V, V] = 0 whenever f and g are in
involution using (2.2). This means that if two functions are in involution, the corresponding vector
fields commute, and thus their flows commute. This is central in the context of integrability that

we review in §2.1.2.

Let us mention two ways of constructing new Poisson manifolds from a reduction procedure.
Consider a Lie group GG with Lie algebra g and a Poisson manifold M such that we have a left
action G x M — M denoted by (g,z) — ¢ - x. We getan actionon f € Opr as (g f)(z) =
f(g~!-x) forall z € M. Recall that the action is said to be free if - = z impliesg =1 € G. It
is said to be proper if the map G x M — M x M, (g,x) — (x, g - z) is proper, i.e. the preimage

of a compact set is compact.

Recall that a morphism ¢ : M — N between Poisson manifolds is Poisson if for all fi, fo € Oy,
v f1, fo}n = {W*f1,¢" fa} . We say that M is an invariant Poisson G-manifold if for all

g € G, the corresponding action is a Poisson morphism.

Proposition 2.1.1 Assume that M is an invariant Poisson G-manifold such that the action is free
and proper. Then the orbit space M /G is a Poisson manifold, and the submersionm : M — M /G
is Poisson.
Given any £ € g, we define
d
eai(h)(z) = @‘ h(exp(—t€)-z),  forallz € M, h e O(M). 2.3)
t=0

This can be extended as amap (—)as : A® g — A°® T preserving wedge products and Schouten-

Nijenhuis brackets (where we also extend the Lie bracket from g to A°® g using (2.1a)—(2.1¢)).
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Note that the element £3; € T hence obtained is not necessarily a Hamiltonian vector field. A
way to overcome this issue is the existence of a moment map, which gives us in particular the tool

of Hamiltonian reduction. This inspires the quasi-Hamiltonian formalism reviewed in §2.1.3.

We say that the invariant Poisson G-manifold M is Hamiltonian if it is endowed with a moment
map, that is a regular map p : M — g* which is G-equivariant (i.e. u(g - z) = adgu(x) for ad*

the coadjoint action on g*) and such that for all £ € g, {u*(&), f} = &m(f) forall f € Oy

Proposition 2.1.2 Assume that M is Hamiltonian with moment map (. If the action is free and

proper; then, for a generic coadjoint orbit O* C g*, the manifold = (O*) /G is Poisson.

We finish this subsection by referring to [114] for a comprehensive review containing all these
subjects, and [131] for an elaborated treatise on momentum maps. Both references focus on the
real case, but complex versions of these results are obtained in the same way, see e.g. [1]. The

results also admit natural versions for affine varieties, see [169].

2.1.2 Classical integrable systems

Definition 2.1.3 An integrable system on a Poisson manifold M endowed with a nondegenerate
Poisson bracket is a set of % dim M elements ( fi)r, with fr, € Oy, that are pairwise in involution

and that are functionally independent on a dense open subset of M.

The importance of the definition comes from the fact that for any function H of the algebra
generated by the (fx)r, we can implicitly compute the flows of (the Hamiltonian vector field
corresponding to) H by quadrature, see e.g. [I, Section 4.2]. We say in that case that H is

(Liouville or completely) integrable.

Example 2.1.4 Write M = gl,,(C)? x Matix,(C) x Mat,,«1(C) for some n € N*. This space

has a nondegenerate Poisson structure given by

N B
. 24
;1 aXijAanﬁ;amAaWi @4

Following [170], we consider the space of matrices (X,Y,V,W) € M satisfying [X,Y] =
Id,, +WV modulo the action of GL,(C) by g - (X,Y,V,W) = (¢Xg~ ', gYg™ ', Vgt gW).
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We denote this space by C,. It has a non-degenerate Poisson bracket induced by (2.4), and
we can easily see that the functions (tr Yk)keN are defined on C,, and are in involution. Write
Y1, - - -, Yn the eigenvalues of Y. These are independent of the GL,,(C) action, so are well-defined
at each point (X,Y,V,W) € C,,. On the dense open subset of C,, where Y is diagonalisable, its
eigenvalues are in fact distinct, so that the Wronskian of the functions % trY* = %(yf 4.+ yﬁ)
fork =1,... nisnonzero. HencetrY,..., % tr Y™ form an integrable system in C,,. This is the
rational CM system introduced in Section 1.2. Indeed, on the dense open subset of C,, where X

has distinct eigenvalues, we can consider a slice where X = diag(qu, . .., qn) and

-1
WT:—V: (1,...,1), Y;j:(sszj—i-é(i#j)i.
9 — qj
Then %tr Y?2 is the (complexified) Hamiltonian for the rational Calogero-Moser system, and its

Liouville integrability follows as the Hamiltonian is part of an integrable system.
The space used in Example 2.1.4 can be seen as an application of Proposition 2.1.2.

Definition 2.1.5 A degenerately integrable system (also called non-commutative integrable
system or superintegrable system) on a Poisson manifold M endowed with a nondegenerate
Poisson bracket is a set of r elements (f1,..., fs, fs+1,--., fr) where fr, € Op, withr + s =
dim M, such that for each 1 < ¢ < sand 1 < k < r the functions f; and fi, are in involution,

and furthermore the r functions are functionally independent on a dense open subset of M.

Remark 2.1.6 [t is important to note that this terminology is also used for a slightly different
notion. In e.g. [94], this term means that for a fixed function f € O(M), the algebra F(f)
generated by the elements that Poisson commute with f is an algebra of dimension r > n such
that the kernel of the Poisson structure restricted to F has dimension s = dim M — r. Our

definition is less restrictive : in our case, we do not require that a degenerately integrable system

(fis--s fsy fs+1s-- -, fr) coincide with the algebra F( f1).

The proof of the integration by quadrature can be adapted to this degenerate case, and we have a
notion of action-angle coordinates [124]. In particular, at a generic point we can locally integrate
the flows corresponding to the Hamiltonian vector fields of (f1,..., fs). We can not integrate

locally the flows for the other functions (fsy1, ..., fr) using this method.
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2.1.3 Quasi-Hamiltonian manifolds

As we have seen in §2.1.1, a possible way to obtain Poisson manifolds of smaller dimension
from a given one is by the process of Hamiltonian reduction, which requires the existence of a Lie
group action on a Poisson manifold, together with a moment map that takes value in the dual of
the corresponding Lie algebra. An interesting question consists in generalising the construction to
moment maps with value in the Lie group itself. This was studied in [7] for the symplectic case,
and generalised to the Poisson case in [6]. We follow the latter reference in this section together

with [106] to focus on complex manifolds. For algebraic varieties, we refer to [162, 7.12-13].

We fix a Lie group G whose Lie algebra g is endowed with a non-degenerate ad-invariant bilinear
form (—, —). We denote by (f,), a basis for g and (f®), its dual under the bilinear form. We
have the structure constants (Cgpe)ape defined by Cope = (fa, [fb, fec]), with which we form an

ad-invariant 3-form ¢ € A\® g by

_ 1 a b c
6= Cacf* NP NS 2.5)
a,b,c
Indeed, the ad-invariance follows from the identification of g and g* using (—, —), so that ¢ is

identified with the map A\® g — C, 2z Ay A z — (z, [y, z]) which is ad-invariant because (—, —)
is. The Lie group structure of GG allows us to define for any £ € g the left- and right-invariant

vector fields £& and ¢% on G defined by
d
L = — .
o)) = L:O g (2 - exp(ts)) ,

d (2.6)
¢"(9)(2) Z&L:Og (exp(té)-z), g€O(G), z€G.

Assume that G acts on a manifold M. This induces for any & € g the infinitesimal vector field

&nr given by (2.3), so after extension to A® g, we can form the trivector field ¢p.

Definition 2.1.7 We say that the G-manifold M is a quasi-Poisson manifold if it is equipped with

a holomorphic bivector field P € \* Tar which is G-invariant and satisfies [P, P] = ¢y.

The bivector field P defines an antisymmetric biderivation {—, —} on O); such that for any

g1, 92, 93 € Oy, we have for Jac defined by (2.2) that

1
Jac(g1, g2, 93) = §¢M(91792793)- .7
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Definition 2.1.8 An equivariant map ® : M — G for the quasi-Poisson manifold (M, P) is a

multiplicative moment map if for all g € Og,

fgo@,—} = 3 () ((E+ 19) 0 ) 8

a

We call the triple (M, P, ®) a quasi-Hamiltonian manifold. We refer to M as a quasi-Hamiltonian

manifold if P and ® are clear from the context.

The equality (2.8) between vector fields on M means that, when taken on some h € Oy, the

function {g o ®, h} evaluated at z € M is equal to
5 S [FE + SR (@)

Here, we use the dual bases (f,), and (f), of g to define the vector fields applied to h using
(2.3) and the vector fields applied to g using (2.6). What is important for us is that we can obtain
new examples of quasi-Hamiltonian manifolds by fusion, and that we can reduce these manifolds

to the Poisson case. We review these two results now.

Theorem 2.1.9 [6, Proposition 5.1] Let (M, P, (®1, P2, V)) be a quasi-Hamiltonian G x G x H-
manifold. Then the diagonal map G — G X G induces a G x H action on M such that for
1
Pfus =P - §Z(fa70)M/\(07 fa)Ma q)fus = ((1)1@2,\1/),
a

the triple (M, Py, ® pys) is a quasi-Hamiltonian G x H-manifold.

We call that process fusion. If we interchange the role of the two copies of G, we get that the

fusion yields isomorphic structures of quasi-Hamiltonian G x H-manifold by [6, Proposition 5.7].

Theorem 2.1.10 /6, Proposition 6.1] Let (M, P, ®) be a quasi-Hamiltonian G-manifold and C a
conjugacy class in G. Then, if the action is free and proper on ®~*(C), the manifold ®~1(C)/G

inherits a Poisson structure.

Under mild assumptions, this theorem can be extended to any (G-stable submanifold as noticed in

[106, Theorem 8].
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2.2 Algebraic formalism

2.2.1 Quivers and path algebras

Let Q = (Q, I) be a quiver with vertex set I and arrow set (), both assumed to be finite. Define
the maps ¢, h : Q — I that associate to every arrow a its tail and head, ¢(a) and h(a). We define a
path over (Q to be a finite word v = a; . .. a; written with letters a; € ). We take the convention
that + represents the path going through a1, then as, and so on up to ag. This means that vy = 0
if h(a;) # t(a;4+1) for some i. We also consider the trivial path e, based at the vertex s € I,
for each s € I. The path algebra C(Q) is the C-vector space whose basis is given by all possible
paths, and on which the multiplication is defined by concatenation : if v/ = a} ... aj, then v7/ is
the path a; ... axa) ... aj, and this operation is extended linearly. We get that for any s, s’ € I,
esYes' = Os (a1)Oh(ay),s' V- Moreover, the unit 1 € CQ decomposes as 1 = __; es, that is the

(es)s form a complete set of orthogonal idempotents.

Let Q) denote the double of (), obtained by adjoining to every arrow a € ( its opposite, a*. We
get in particular, t(a) = h(a*) and h(a) = t(a*). We extend * to an involution on () by setting
(a*)* = aforall a € Q. We define € : Q — {41} the sign function which associates the value
+1 to every arrow of Q and —1 to each arrow of Q \ Q. We write CQ for the path algebra of Q.
We view CQ) as a B-algebra, with B = @4¢7Ces.

Example 2.2.1 The Jordan quiver (or one-loop quiver) Q) is the quiver with vertex set I = {0}

and a unique arrow x : 0 — 0. Its path algebra is the polynomial algebra in one variable C|x].

The tadpole quiver Q) is the extension of the Jordan quiver by one arrow. It has two vertices
{0, 00} and consists of one loop x : 0 — 0 and one arrow v : oo — 0. Its double Q has two
additional arrows y = z* : 0 — 0 and w = v* : 0 — oo, see Figure 1. Its path algebra CQ is

defined over B = Ceqg @ Ce.

Example 2.2.2 Let m > 2 be an integer. The cyclic quiver Q. is given by the vertex set I = Z,
and arrows x5 : s — s+ 1 forall s € Zy, Its double consists of the additional arrows

Yys=2x5:5+1—=s.
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Figure 1: Double of the tadpole quiver

Next, let us introduce the notion of roots associated to a quiver. To do so, consider the Tits
quadratic form associated to a quiver () with vertex set I, which is defined by
¢:2' -7, qla)= Zag - Z Q4(a)Xh(a) - (2.9)
sel ac@
This induces a symmetric bilinear form (—, —) on Z by setting (c, 3) = q(a+B) —q(a) —q(B).
For any s € I, we have a corresponding element e, € Z! such that (es)r = dsr. We can then form

the fundamental region
F={aeN\{0}|(a,e) <0, Vs €I} n{aecN|supp(a)isconnected } ,
and the Weyl group W generated by the reflections
R.:2' - 7' a— a—(a,e)e, forallr e I supporting no loop,

as a subgroup of Aut(Z'). Then, the real roots are the elements in the TV -orbits of e, for s € I
supporting no loop, while imaginary roots are elements in the W-orbits of o foralla € F'. A
root is either a real root or an imaginary root. Moreover, roots are such that each root is either

positive (if it belongs to N’) or negative (if its opposite belongs to N7).

Example 2.2.3 Consider the Jordan quiver Qg given in Example 2.2.1. Since it consists of one
vertex supporting one loop, it clearly has trivial Weyl group and no real roots. Meanwhile, we
can see that its Tits form q : Z — Z given by (2.9) is vanishing identically. Therefore any oo € Z
satisfies (o, €g) < 0, which means that the fundamental region is N*. Thus, the imaginary roots

are precisely the elements of 7.~.

Example 2.2.4 Consider the cyclic quiver Qy, with I = Z,, given in Example 2.2.2, for some

fixed integer m > 2. Using the Tits form given by (2.9), we can write that

Q(a) = Zas(as - OQs—i-l) 5 (aa er) = 204 — Oyl —Qp—1, T, S € I.
sel
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Introduce the element 6 = (1,...,1) € Z!. Clearly, (,¢,) = 0 so any multiple of § is an
imaginary root. In fact, one can easily show that there are no other ones. If we identify I with

{0,...,m — 1}, it is a bit tedious but not complicated to show that the real roots are given by

a==x(e+...+€¢)+kd, 1<i<j<m-1, keZ.

For further references on quivers and their representations (that are introduced in the next section),
see e.g. [49, 97]. We finish with two important constructions associated to the path algebra of a
quiver. First, following Crawley-Boevey and Holland [55], we fix some A € C! and denote by .J)
the two-sided ideal generated by (Z aco €(@)aa” — 3 f A ses) in CQ. The associated quotient
1M (Q) = CQ/Jy is called a deformed preprojective algebra.

Second, following Crawley-Boevey and Shaw [56], we consider the algebra A obtained from CQ
by localisation at the set of elements (1 + aa*) with a € Q. We also fix some ¢ € (C*)! and a

total ordering < on the arrows of (). We then define the two-sided ideal J, generated by

.
H (1+ aa*)g(a) - ques cA,
acQ sel

where the elements in the product appear with respect to the ordering < (so the left-most element
corresponds to the smallest a € @, and so on). The associated quotient A(Q) = A/ Jq is called

a multiplicative preprojective algebra.

Example 2.2.5 Consider the tadpole quiver Q defined in Example 2.2.1. For A\ = (Ao, Aso) €
C x C, the corresponding deformed preprojective algebra is given by
NQ) = CQ/ (xy — yx — wv = Ageg , VW = Aooloo) -

Denote by A the localisation of CQ at the elements 1 + xy, 1 + yx, 1 + wv, 1 + vw, and fix the
order v < y < v < w. Then, for ¢ = (qo,qe0) € C* x C*, the corresponding multiplicative

preprojective algebra is given by
AYQ) = A/ (1 + zy) (1 +yz) "' (1 + vw) (1 + wo) ™ = goeo + goceoo) -
2.2.2 Representation spaces and GIT quotients

For a finitely generated associative algebra A over C and any N € N, the representation

space Rep(A, N) is the affine scheme whose coordinate ring O(Rep(A, N)) is generated by
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symbols a;; for a € A and 4,5 = 1,...,N, such that they are linear in a and satisfy
(ab)ij = >j aiby; for any a,b € A and 1;; = d;;. It is equivalent to see Rep(A, N) as
parametrising algebra homomorphisms ¢ : A — Matx(C), and we get that a;;(0) = o(a);; at
any point ¢ € Rep(A, N). It is important to remark that the definition does not depend on the

chosen presentation of A, because Rep(A, V) represents the functor
Rep’y : S+ Homgg(A, Maty (S))

from the category of finitely generated commutative algebra to the category of sets. In the spirit
of [147], or more generally [57], we say that A is smooth (or formally smooth or quasi-free) if
given any C-algebra C' and nilpotent ideal I C C, every map ¢ : A — C/I can be lifted to C as
b:A—C ie.p=mrodformy:C — C'/I the projection map. It is equivalent to require that
04 =ker(m: A® A — A) is aprojective A°-module. Here, we denote by A° = A® A the set
of elements from A ® A with multiplication given by a1a2 = (a} ® af)(a),® af) = ajal, @ alaf.
Note that {2 4 can also be constructed as the module of differential 1-forms, see [57]. It was noted
in [99] that if A is smooth, then all schemes Rep(A, N) are smooth in the usual (geometric)
sense*. The idea is that the smoothness property in the commutative case is equivalent to the

definition above for an arbitrary commutative C-algebra C.

Following [162, Section 7], to any a € A we associate a matrix-valued function X (a) :=
(aij)ij=1,.,~ on Rep(A, N). Then, if A is finitely generated by elements ay, ..., a) subject

to relations Fj(ay,...,ay) for finitely many [ = 1,..., L, we get that
O(Rep(A, N)) = Cl(a1)ij, - - -, (ar)is]/(Fi(X(a1), ..., X(ar)) =On | I=1,...,L).
In particular, if A is the free algebra on k generators, Rep(A, V) is just AFY.

If A is a B-algebra with B of the form B = Ce; @ ... @ Ceg such that the (es)s form a
complete set of orthogonal idempotents, we can generalise the definition to a relative setting.
Representation spaces are now indexed by K-tuples o = (a,...,ax) € NX. Given a with
a1 + ...+ ag = N, we embed B diagonally into Maty(C) so that Idy is split into a sum
of K diagonal blocks of size a,...,ag, representing the idempotents es. This means that
X(es) is the s-th diagonal identity block of size ay in Idy. By definition, Repg(4,a) =

Hompg (A, Maty(C)), and it can be viewed as an affine scheme in the same way as Rep(A4, N).

*For an explanatory proof, combine [84, Proposition 19.1.4] and [152, Tags 00TA,00TN].
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Example 2.2.6 Consider the path algebra CQ of a quiver QQ defined as in §2.2.1. The matrix
X (a) representing an element a € CQ is an |I| x |I| block matrix. In the case of an arrow a € Q,
we can use the idempotents to write a = €y(q)a€p(q), SO a Is represented by the matrix X (a) with
at most one non-zero block of size avy(q) X aip(q) placed in the t(a)-th block row and h(a)-th block
column. Therefore, a point in Repg(CQ, «) can be viewed as a quiver representation, consisting
of vector spaces Vs = C%, s € I and linear maps X, : Vy(q) = Vy(a) for each a € Q. With this

interpretation, we have

Xa € Mata, ) an0) (C),  Repp(CQ, ) 2 [] Mata,, e, (C)- (2.10)
acqQ
If A = CQ/J for some ideal J generated by elements (7;);, then Repg(A, a) C Repp(CQ, a)

is the subset of matrices such that X (vy;) = Oy for each .

There is a natural action of the algebraic group GLx(C) on Rep(A, N) by conjugation of
matrices, and in the relative case we can embed GL,, := [], GL,, (C) diagonally into GLx (C)
to get a natural GL, action on Repg(A, N). If the latter space is a variety, the affine GIT
quotient Repg(A, N)// GL,, whose coordinate ring is the ring of GL,-invariant functions
O(Repg(A, N))Gle, is also a variety. Note that the latter ring is finitely generated because GL,,
is reductive. The GIT quotient is the orbit space Repg (A4, N)/ GL, provided that all orbits are
closed, i.e. it is a geometric quotient. As we are interested in the complex manifold structure of
such varieties, it is convenient to introduce the algebraic group G(«) defined as GL,, /C*, where
C* denotes the subgroup {[[, uIda, | © € C*} of diagonal matrices. Indeed, this subgroup is
in the stabiliser of any representation, so the action would never be free. As G/(«) is reductive, if
it acts freely on Repg (A, V) and the latter space is smooth, then all the orbits are closed and we
also get that Repg (A, N)// GL, is smooth. Therefore, the GIT quotient is a complex manifold

is such a case.

To understand the GIT quotient from A itself, recall that we can see Repg(A, N) as the set
of (relative) representations of A. Then the orbit of p € Repp(A, N) is closed if and only
if p is a semisimple representation [96]. Thus Repg(A, N)//G(«) is the set of all orbits of
semisimple representations. Moreover, it follows from a theorem of Le Bruyn-Procesi [107] that
the coordinate ring of the GIT quotient is generated by elements of the form tr X(a) fora € A
[52, 53].
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Example 2.2.7 Let 11 be the (deformed) preprojective algebra associated to the tadpole
quiver as in Example 2.2.5, with \g € C* and Ao = —nAg. Then, the GIT quotient
Repg (M1, N)// GL,, is nothing else than the Calogero-Moser space described in Example 2.1.4

(with parameter Ao = 1).

For further references on GIT quotients, we refer to [121, 89, 97].

2.3 At the crossroads : the double world

Combining Examples 2.2.1 and 2.2.7, we see a clear link between the representations of a
deformed preprojective algebra for a tadpole quiver and a natural phase space for the Calogero-
Moser system. Hence, it is natural to ask if the latter integrable system could be realised already
at the level of the algebra II*. This was first discovered by Ginzburg [83] in the context of
noncommutative symplectic geometry, and a similar approach exists using the formalism of
noncommutative Poisson geometry introduced by Van den Bergh [162]. We will just quickly
sketch this result, as our aim is to study the corresponding noncommutative version of quasi-
Poisson geometry and their relation to Ruijsenaars-Schneider systems. All the results in this

section already appear in [162], except when explicitly stated.

2.3.1 Double brackets and associated structures

From now on, unadorned tensor products ® are over C and A denotes a finitely generated
associative unital C-algebra. We often consider A as a B-algebra, i.e. with a ring homomorphism
B — A for B of the form Ce; @ ... ® Cex where the (es)s form a complete set of orthogonal

idempotents in A.

Generalities on double brackets

We form A® A and denote any element a € A® A as a = a’ ®a” using Sweedler’s notation, when
it is necessary to know the elements in each copy of the tensor product. Hence, it is possible to

define a® = a”" ®a’ € A® A. There are two A-bimodule structures on A® A : given b, ¢ € A, the



2.3. At the crossroads : the double world 25

outer bimodule structure is given for any a € A® A as bac = ba’ ® a” ¢, while the inner bimodule
structure is given by b * a * ¢ = a’c ® ba”. To avoid unnecessary confusion, we always use the
notation * to denote the inner bimodule structure. Hence the (outer) A-bimodule structures on A
and A ® A become left A°-modules structure, where we recall that A° = A @ A°P. Following

Crawley-Boevey [50], we consider the additive group
Der(A) = Der(A4,A® A) = {6 € Homye (A, A® A) | §(bc) = §(b)c + bd(c)} ,

which becomes an A-bimodule by inheriting the inner bimodule structure on A ® A : if § €

Der(A), b1, by € A, then by0by € Der(A) is such that for any ¢ € A,
(b15b2)(0) = by % 5(6) x by = 5(0)’(72 &® bl(S(C)” .

If Ais a B-algebra, we consider instead D4, = Derp(A), the submodule of elements § €
Der(A) with 6(B) = 0. In this case, an important class of double derivations is given by the
gauge elements (E5)s indexed by the orthogonal idempotents of B, which are given by F(c) =

ces ®es — e @ egce forany ¢ € A.

Definition 2.3.1 A double bracket { —, —} on A is a C-bilinear map A x A — A ® A such that
(D1)  foranyb,c € A, {c,b} = —{b,c}° (cyclic antisymmetry);

(D2)  foranyb e A, {b,—} € Der(A) (outer derivation property).

Due to the C-bilinearity, we can equivalently define a double bracketasamap A® A - A® A

satisfying (D1)—-(D2). Using these two conditions, one gets
(D2’) forany by, by, c€ A, {biba,c} = by x {ba, c} + {b1,c} xba (inner derivation property).

In other words, a double bracket is a derivation in the second argument for the outer bimodule
structure, and in the first argument for the inner bimodule structure. This implies that the double
bracket is completely determined by the values it takes on generators of A. In the case where A
is a B-algebra, we require the double bracket to be B-bilinear, i.e. to be C-bilinear and to vanish

if one of the entries is an element of B.

More generally, given any n > 2, we endow A®" with the obvious outer bimodule structure. For
anyc € Spanda =a; ®@...®a, € A®", welet 7ca = Ag-1(1) @+ .. @ g-1(p)- Then an n-

bracket {—,...,—} : A®" — A®" is a map C-linear in each argument such that it is cyclically
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antisymmetric, and it is a derivation in the last argument for the outer bimodule structure :

Ty o =Y oty = (FUM -}

{ai,...;an—1,0c} ={ar,...,an—1,0} c+b{a1,...,an—1,c} .

(Note that any n-bracket for n odd is commuting with the permutations T(klmn) for k € N.) Clearly

a double bracket is a 2-bracket, and we call a 3-bracket a triple bracket.

Lemma 2.3.2 ([162, 2.3.1]) Any double bracket {—,—} defines an induced triple bracket

{—, -, —}, which is given for any a,b,c € A by

fa,b,c} = fa, {b,c} I @ {b,c}’
+ 723 40, e, a} | © {e,a}” 2.11)
+ 7(2123) fc, {a, b} }} @ {a,b}" .

In the case where the induced triple bracket identically vanishes, we say that {—, —} is a double
Poisson bracket, and that A is a double Poisson algebra. We use the same terminology in the

relative case.

The double Gerstenhaber algebra of polyvector fields

The Schouten-Nijenhuis bracket given by (2.1a)—(2.1c) defines a Gerstenhaber algebra structure
on A\°® T, which is a graded version of a Poisson bracket. Analogously, there is a graded version
of a double Poisson bracket. To introduce it, fix a graded algebra D, and write |« for the degree
of a homogeneous element o € D. There is a signed .S,, action defined on D®" as follows : for a

homogeneous element o = o] @ ... ® ,, € D™, and for any ¢ € S,,, we define

oo = (—1)t(§’a)a§—l(1) ® ... ® A1), where
te,0)= Y laca(@llac (), 1) ={(@4) i <j. <) > ()}
(1.5)€I()

That is, t(s, ) counts the graded commutation of elements when applying the (unsigned) S,

action 7.. Then, we say that D is a double Gerstenhaber algebra if it is equipped with a graded
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bilinear map {—, —} : D x D — D ® D such that for any o, 8,y € D

{8} = — o0y (=) VIIED {5, a (2.12a)
{57} = e Yy + ()15 fa, 0y (2.12b)
0={{a. {873} @ 8.7}

+ (—1)(|a‘_1)(|ﬁ|+hl)0(123) {{/87 {. 04}}/}} @ {v,a}
+ (=)o 5 1y, {0 B} R © {0 B} (2.12¢)
Compare (2.12a)—(2.12c¢) with (2.1a)—(2.1c). We now work in a relative setting, and let DA :=
TaD 4/p be the tensor algebra of the bimodule D 4,p = Derp(A), with elements of A in degree
0 and relative double derivations in degree +1. To any 91,09 € D4 /B> WE associate {1,d2}};” =
(61®1)d2—(1232)81. We also let {61, 02} = — {02, 01};". These are B-derivations A — A3,

which we can see as elements in A ® D y/p and Dy,p ® A.

Theorem 2.3.3 ([162, 3.2]) There is a unique structure {—, —}}SN of double Gerstenhaber
algebra on D A which satisfies for any b, c € A, 01,02 € D 5/,

{b,chsn =0, {61,0gn = 01(b),  {61,02 gn = T(23) £01, 02} + 712) {01,028, -

We call {—, — }qy the double Schouten-Nijenhuis bracket on D A. The algebra Dp A is useful

because it easily gives examples of n-brackets as follows.

Proposition 2.3.4 ([162, 4.1.1]) For any n € N*, there is a well-defined linear map
o (DpA)n — {B-linear n-brackets on A} : Q — {—,...,—}q ,

which on QQ = 01 ... 0y, is given by

n—1

L L e R I L AR

=0
{{al, - ,an}~Q = 5n(an)'61 (al)” X 51(&1)’52(@2)” R...xQ 6n,1(an,1)’5n(an)” .

Moreover, the map p factors through D A/[Dp A, DgA] (for the graded commutator).

For n = 2, we obtain a double bracket {—, —}}5152 from 102 € (DpA)a, which is defined for
any b,c € Aby

{b, C}5152 = 52(0),51 (b)” ® (51(1)),52(6)// -0 (C)/(sg(b)” &® 62(())/51 (C)H . (2.13)
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We say that an n-bracket is differential if it is defined from some Q) € (DpA),, using Proposition
2.3.4. This has the following consequence : if a double bracket {—, —} is differential for
P € (DpA)a,, then the associated triple bracket {—, —, —} given by (2.11) is differential for
+{P,P}sx € (DpA)s, where {—, —}sn = m o {—, —}qy. In the case where A is formally
smooth over B (see §2.2.2 adapting the definition of formal smoothness for B-algebras A, C)
and A is both left and right flat over B, then the map p in Proposition 2.3.4 is an isomorphism

[162, 4.1.2]. In such a case, all n-brackets are differential.

Associated brackets

For any n-bracket { —, ..., —}, we have an associated bracket
{— . ., —f=mof{—,...,—} :A%" 5 A (2.14)
obtained by multiplication (i.e. concatenation of factors). In the case of a double bracket,

{b,c} =mo {b,c} = {b,c} {b,c}" . (2.15)

We can easily see that this operation satisfies Leibniz rule in the second argument : {b,cico} =
{b,c1}ca + c1{b, co} for any b,c1,co € A. Now, assume that the double bracket {—, —} is
such that the bracket m o {—, —, —} associated to the induced triple bracket { —, —, — }} given by
(2.11) vanishes. Then the bracket {—, —} associated to the double bracket is a left Loday bracket,

ie. {—,—}: A x A — Ais abilinear map such that

{a,{b,c}} = {{a,b},c} +{b,{a,c}}. (2.16)

Note that it is still a derivation in the second argument. The bracket descends to a well-defined
map A/[A, A] x A — A. Moreover, we can consider that map modulo commutators, so that it
yields an antisymmetric map on the vector space A/[A, A]. Hence (A/[A, A],{—,—}) is a Lie
algebra [162, 2.4]. In fact this operation is stronger than being just a Lie bracket. In [52, 53],
Crawley-Boevey introduced the notion of a Hy-Poisson structure on an algebra A, which is a Lie
bracket (—, —) on A/[A, A] such that for each a € A the map (a, —) on A/[A, A] (where a is the
projection of a) is induced by a derivation d, : A — A. Then, under the above assumption, the

associated bracket {—, —} induces a Hy-Poisson structure on A.
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Finally, note that associated brackets can also be defined in the graded setting. We used this fact
after Proposition 2.3.4 when we introduced the bracket {—, —}sn = m o {—, —} ¢y associated

to the double Schouten-Nijenhuis bracket.

2.3.2 Hamiltonian and quasi-Hamiltonian algebras

From now on, we require that A is a B-algebra for B = X | Ces, with K € N,

Hamiltonian algebras

Recall that (A, {—, —}) is a double Poisson algebra when the triple bracket given by (2.11)
vanishes. In the case where the double bracket is differential and defined from an element P &
(DpA), by Proposition 2.3.4, this is equivalent to require { P, P}sy = 0 modulo [DpA, DgA],
and we say that (A, P) is a differential double Poisson algebra. A moment map 1 € A is an
element p = Zle ps wWhere pg € egAes satisfies { s, ¢} = Eq(c) for all ¢ € A. Such a triple
(A, {—, =}, ), or (A, P, ), is called a Hamiltonian algebra.

An important class of Hamiltonian algebras is given by quivers. To state the result, we use the

notations of §2.2.1 and introduce for any a € @ the double derivation % € Der(CQ) given by

ob . €t(a) & €h(a) ifa=0¢€ Qu

2 = ) 2.17)

otherwise .

Theorem 2.3.5 ([162, 6.3.1]) The path algebra A = CQ is Hamiltonian for

g 0 «
Pzzﬁa*%’ ,u:Z[a,a}.

acqQ acqQ

Quasi-Hamiltonian algebras

Let {—, —}} be a double bracket on A. We say that it is a double quasi-Poisson bracket when

1 K
{{_7 I _}} = 12 Z {{_7 g _}Eg . (2.18)

s=1
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Figure 2: The simplest quiver Q.

Here, the left-hand side is the triple bracket associated to { —, —}} by (2.11), while the right-hand
side is a linear combination of the triple brackets defined by E2 € (DpA)s using Proposition

2.3.4. A simple but tedious computation shows that for any a,b,c € A

{a,b,c}ps =3 (cesa Reshb®es — cesa® es R bes — ces @ aegh ® eg + ceg @ aes @ beg

—esa®esbR@esc+ esa®es @begse+ e P aesh @ esc—es ®aes @ besc) .

If {—, —} is differential and defined from an element P € (DpA)s by Proposition 2.3.4, the
condition is equivalent to { P, P}¢y = ¢ S | E3 modulo [DpA, DpAJ, and we say that (A, P)
is a differential double quasi-Poisson bracket. A multiplicative moment map (or moment map
when it is clear from the context that we talk about the quasi-Poisson case) is an element ® =
Zﬁil O, for O, € esAe, such that, for all ¢ € A, we have { D, c}} = %(@sEs + Es®P)(c). We

can rewrite this condition as
1
{Ps,c} = 5(665 RD;—es R@Pc+ Py ®es — Py @ esc) . (2.19)

Such a triple (A4, {—, =}, ®), or (A4, P, ®), is called a quasi-Hamiltonian algebra.

Example 2.3.6 ([162, 6.5.1]) Let Qg be the quiver with two vertices {1,2} and two arrows a :
1 — 2, a*: 2 — 1, see Figure 2. Let Agy be the algebra obtained from the path algebra CQ
by inverting the elements (1 + aa*), (1 + a*a). Then, defining double derivations 8%7 6%* as in

(2.17), Ag is quasi-Hamiltonian for

1 0 0 1 o0 0
P=-(14a"a)——— —=(1 * -, ®=(1 Y1 +a*a)"t.
2( +aa)8a8a* 2( +aa)8a*8a’ (14 aa*)(1+a*a)
Remark 2.3.7 Due to the idempotent decomposition 1 = e; + eq, esex = g €:, We can

equivalently define Ag as the algebra obtained from the path algebra CQq by adding local

inverses to (e1 + aa*) and (ez + a*a). The latter means that we add to CQq the element
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(e1 + aa*)~! such that (e1 + aa*)"!(e1 + aa*) = e; = (e1 + aa*)(e1 + aa*)~! and do the
same for (e3 + a*a). Indeed, we can use the relations (1 + aa*)~! = ey + (e1 + aa*)~! and
(1+a*a)~! = ey + (ea + a*a)~! to go from one description to the other. In particular, note that

we can write &1 = e1 + aa*, Py = (eg + a*a)_l.

We will need a final notion to characterise quasi-Hamiltonian algebras. We assume that A is
formally smooth over B, and let {24 be the A°-module generated by symbols db for b € A, such
that d(b1b2) = by.dbs + db;.bs for any by, b € A, together with db = 0 if b € B. This is an
alternative definition of the module of non-commutative differential 1-forms (relative to B) of
[57]. Slightly adapting [163], we say that the double quasi-Poisson bracket is non-degenerate if
the map Q4 © (©sAEsA) — Dy/p : (a.db.c,0) = a{b, —} c+d is surjective. By [163, 8.3.1],

the double bracket of Example 2.3.6 is non-degenerate.

Fusion for quasi-Hamiltonian algebras

In the Hamiltonian case, one can easily obtain Theorem 2.3.5 for arbitrary () beginning with
the particular case of the quiver Qg given in Example 2.3.6, then obtaining the general case by
‘gluing’ a disjoint union of copies of Qg to construct Q). Indeed, we just need to sum the initial
double Poisson brackets and moment maps together using [162, 2.5.1]. This can also easily be
remarked for their geometric counterparts, with Hamiltonian manifolds. However, we have from
Theorem 2.1.9 that we can not simply sum together bivectors and moment maps in the quasi-

Poisson case. Hence, that theorem needs to be translated at the algebra level first.

We now recall the fusion process [162, 5.3], starting with a differential quasi-Hamiltonian algebra
(A, P, ®). The author has been able to show that the construction also works in the general case,
which was expected by Van den Bergh. However, it would be too long to reproduce these results

here, so we prefer the shorter version of [162, 5.3].

Assume that (A, P, ®) is a quasi-Hamiltonian algebra over B = ©X | Ceg, so that the (es)s are a
complete set of orthogonal idempotents. We want to obtain an algebra from A by identifying the
idempotents e; and es. (For a path algebra CQ), this amounts to glue vertices 1, 2 in the underlying
quiver.) To do so, recall that given algebras A, A’ over B with algebra monomorphisms i : B — A

and j : B — A’, we define the free algebra A xp A’ = T,(A & A’)/I, where I is the two-sided



32 Chapter 2. Basic notions

ideal generated by the relations a; ® ag = ajag, aj ® af = ajab, i(b) = j(b) forall a1, as € A,
aj,al, € Aand b € B. Our first step is to construct the extension algebra A of A along ey, e,
which is given by

A = Axceyaceacy (Matz(C) & Cu) = Axp B, (2.20)

where ;1 = 1—e1—eg, and Maty(C) is seen as the C-algebra generated by e; = €11, €12, €21, €2 =
g9 With egeyy = 0uesy. We can embed elements of A in A, and any element of D A extends
to DgA. This applies to ® = s @5 and P. For the second step, the fusion algebra Af of A

along ey, e is the algebra obtained from A by discarding elements of ea A + Aes, i.e.
Af = €Ae, fore=1—ey. (2.21)

We can now view A/ as a Bf-algebra, and we identify Bf with ®s»2Ces. In this case, an element
a € A descends to A/ using the trace map Tr, given by Tra = eae + eejaaesie. We also get a
map DgA — Dps A givenby Q — TrQ := eQe + ee19Qea1e. Composing with the previous
map, the elements &, € A and P € (DpA)2 define elements <I>£ € Al and P € (DBfAf)Q.

Theorem 2.3.8 ([162, 5.3.2]) The B'-algebra A7 is quasi-Hamiltonian for (P ®7F) given by

1
Pff:Pf—EE{E{, off —alal, ol =of s+#1,2

Note that we multiply the moment maps of the fused idempotents. Hence, the quasi-Hamiltonian
structure is different if we glue idempotents in different orders. For the localised path algebra
A= CQ(l +aa%)4eg of the double @ of a quiver @, this amounts to consider an ordering at each
vertex on the arrows of ) whose tails meet at that vertex. We can now combine Example 2.3.6

and Theorem 2.3.8.

Theorem 2.3.9 ([162, 6.7.1]) Let Q be a double quiver. For each vertex s € I, consider an
ordering < on the set Ty = {a € Q | t(a) = s}. The algebra A obtained from CQ by adding
local inverses (et(a) + aa*) (see Remark 2.3.7) is quasi-Hamiltonian for

1 G
P = 3 ZG(G)(eh(a) +a @)%aa*

1 o ., 0 o ., .0
*52 > <aa*a a&b) (8b*b bab>’ (2.22a)

s€l a<sbeTs
—

©=Y &, ®,= [](es+aa")®. (2.22b)

(ZETS
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As the fusion of non-degenerate double quasi-Poisson brackets is also non-degenerate by [163,

8.2], Theorem 2.3.9 defines a non-degenerate quasi-Hamiltonian structure on A.

Remark 2.3.10 When the ordering < at each vertex s € I comes from a total ordering < on
Q, the algebra N1 = A/(® — q), ¢ € B>, is just an example of multiplicative preprojective
algebra, see §2.2.1. This algebra is the motivation behind Van den Bergh’s work [162], where
he successfully interpreted the element ® as a (multiplicative) moment map. We will also call
the quotient A1 = A/(® — q) a multiplicative preprojective algebra for any orderings (<s)scy.
Indeed, we can always construct a total ordering from it by choosing a total ordering <y on I,

before setting a < bift(a) <y t(b), orifa <s; b when s = t(a) = t(b).

Additional results for quivers

As in Theorem 2.3.9, consider an ordering <, on the set Ts = {a € Q | t(a) = s} for each vertex
s. Write os(—, —) for the corresponding ordering function on 7, which we recall is defined on
arrows a,b € Ts by o5(a,b) = +1if a <; b, 0s5(a,b) = —1if b <4 a and is zero otherwise.
We extend this function to Q by putting os(a,b) = 0 when a ¢ T; or b ¢ Ts. We can prove the

following, which explicitly gives the double bracket in terms of generators.

Proposition 2.3.11 The biderivation of Theorem 2.3.9 takes the following form on arrows of Q

1
{{CL, CL} = iot(a) (av (I*) ((12 ® €t(a) — €h(a) ® a2) ((I € Q) ) (2.23)

1 1
fa,a™} =ep@) @ ey + §a*<l ® €i(a) + 5€h(a) @ aa”

1 (2.24)
+ iot(a)(a, a)(a*®a—a®a") (a€Q),
and for a,b € Q such that b # a,a*
1 N 1 ¥
{a,b} = ioh(a)(a ,0) en(a) ® ab + 50%() (a,b) ba @ ey(q)
(2.25)

1 . 1
- ioh(a)(a ,b ) (b ® a) - §0t(a)(a7 b) (a’ ® b) :

The result has interesting consequences. First, {a, a} = 0 whenever a € Q is not a loop. Second,

if b # a,a*, then {a, b} = 0 whenever a and b do not share a common vertex. Third, we have that
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(2.23)—(2.24) define all double brackets in A by use of the cyclic antisymmetry and the derivation

properties.

We skip the proof of Proposition 2.3.11 for a moment, and consider a specific choice which will
be of interest to us and appears as [41, Proposition 2.6]. To state this particular case, we fix for
each s € I a total ordering < on the set Ms = {a € Q | t(a) = sor h(a) = s}. We assume
that for any two arrows a, b that meet at two different vertices r, s, we have either a <, b,a <s b
or we have b <, a,b <, a. As in [62], we define the collection of all these total orderings as an
ordering on Q. We simply denote this collection as <, since given any arrows a, b that share at

least one vertex, either a < bor b < a.

Proposition 2.3.12 Tuake an ordering in Q so that the arrows of Q are ordered in such a way that

a < a* <b<b* forany a,b € Q with a < b. Then one has

1 _
{a,a} = 5e(a) (a*® €t(a) — €h(a) @ a?) (a€eQ), (2.26a)
. 1, 1 .
fla, "} =en) ® exa) + 507a® eya) + Sen(a) ® aa
1
+ 5(&* ®a—a® a")dpa) ) (a €Q), (2.26b)

1 1
{a, b} = 5¢h(a) ® ab+ gba ® e(q)

1 1 ~ "
— 5(b ® a)éh(am(b) — 5((1 &® b)ét(a),t(b) (a,be@Q,a<b,b#a"). (2.26c)

We now proceed to the proof of Proposition 2.3.11. We need the following lemma.

Lemma 2.3.13 For o € Q define the double derivations

Then they vanish on 3 € Q \ {a} while

*

Ua(@) = €10) @ €pa), Ud (@) =a®ep@), Uy (@) =e€ya)@a, Udla) =eyn @a’a.
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Proof. Equation (2.17) gives for any o € Q,

0 Oda
Ua(a) = <3a> o) = Ja = CH@) @ Ch(a)

(
0 oo
U;(Oé) = (&Xa> (04) = % = €t(a)04 ® eh(a) =a® €h(a) y
_ 0 Je
Us (@) = |ag ) (a) = ax o = cia) @ Qepa) = era) @,
Usla) =« ass (o) =« a*a—a:et(a)@)a Qeh(a) = €1(a) B O,
as desired. O

Proof. (Proposition 2.3.11.) We use Proposition 2.3.4 in the form of (2.13) together with its

linearity. We first derive (2.23) and (2.24). To do so, consider the following terms of P

0

P. zie(a)(l +a a)%(‘)a* + 56(@ )(1+ aa )3oz* 5a

_ 1 9 . ON(Oo 0
9 “te)h(a) 8a*a O‘aa 9o @ oa* )’

for any a € @Q such that either o <y(o) o* if t(r) = h(a), or o € Q otherwise. The biderivation

P, contains all the terms of P that are not trivially zero once evaluated on any two elements of
the set {a, a*} C Q. Also, the last term is nonzero only if « is a loop. Clearly if « is not a loop,
{o,a} = {a*, a*} = 0 which proves (2.23) for a = « in that case. Otherwise, if a is a loop we

compute using (2.13) and Lemma 2.3.13 that

{{a7 O‘} = {{Ck, a}}Pa = {{a7 O‘H%U;U;{

L (U2 (YU (0) © Uz (0) U (0)") -

5 (Ua (Us (@)U (@) @ U () Uq ()"

« (e

DN |

1 2 1 2
zia X et(oc) — iet(a) ®a”,

where we use in the last equality €;(q)€n(a) = €i(a) = €h(a)Ct(a)- Similarly,

fa’ o’} =fa",a"p, = {a" @ bips o
1 . L
:§€t(a*) &® (Oé )2 — 5(0{ )2 &® et(a*) .

To get (2.23), we take a = a if a <y(,) a”, and a = a™ if @ <y(y) a.
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Next, we compute (again with Lemma 2.3.13) since e(a*) = —¢(a)

{{OJ, a*}} = {{a7 a*}}Pa

1 1 1
256(04) {{04704*}%%* + 56(04) {O‘704*}}U&Ua* - 56(04) {aaa*}}Ua*Ua
1 . 1 . 1 «
- 55@) {o,a }}UMUQ 5 fa. a }}U;*Ug ) fo, }}U,;U;*

1 . 1 «
=€(@) ep(a) @ eya) + Se(a) Ao ® eyq) + ie(a) Eh(a) ® Qo

2
+ %&L(a)’t(a)(a* Ra—a®a’).
If a is not a loop, or if a is a loop such that a <;(,) a*, we take @ = a in (2.28) to get (2.24). If a
is a loop with a* <y, a, we take o = a™ in (2.28) to get
{a*,a} = —eya) ® en(a) — L (aa ® ep(a) + eya) @ a’a) + ;(a ®a*—a" ®a).

Using {a,a*}} = — {a*,a}}°, we find (2.24) in this last case.

Finally, to derive (2.25) we remark that P is the sum of all terms P, as above and biderivations

1/0 , 8
P“’5:_2<8a*“ ~"oa )(%*5 Bﬁ)

for all o, 3, where o # (3%, such that t(a) = ¢(8) with a <o) 3. The contribution of that

biderivation is such that

1 1
o Bke, , = —5 {a. By p; = —50® 8, (2.28a)
1
{Oé 75}13 5 {{a 76}U+ U* §€t(a) ® 06*5, (2.28b)
1
fo.5% %, , = {{a FVuzus = FFa® e, (2.28¢)

1
fo".6%p, , =3 {a*ﬁ*}}%% =58 @a. (2.28d)

We now have to check (2.25) for any a,b € Q, b # a,a*. If t(a) = (b), either a <;(,) b and by
(2.28a) we getaterm —3a®bin {a, b}, or b <{(a) @ and we get a term —1b®@ain {b,a}, soby
cyclic antisymmetry we have a term 3a®b in {{a, b}}. Hence we have a term — 30t(a)(a,b) (a®b)
appearing in {a,b}. If h(a) = h(b), either a* <j(,) b* and by (2.28d) we get a term —fb ®a
in {{a,b}, or b* <j(,) a* and we get a term —2a®bin {b,a}. Hence we get a contributing
term —5op,(q) (a*,0*) (b ® a). If t(a) = h(b), either a <) b* and by (2.28¢c) we get a term
%ba ® €4(a)> OF b* <4y a and by (2.28b) we get a term %et(b*) ® ba in {b,a}. This yields
%ot(a) (a,b%)(ba @ eyq)) in {a,bl}. If h(a) = t(b), either a* <j(,) b and (2.28b) gives a term
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%eh(a) ® ab for {a,b}, or b <j,) a* and (2.28c) gives a term %ab ® ey for {b,a}}. Thus, we

have a contribution %oh(a) (a*,b)(en(a) ® ab). Gathering the four cases gives (2.25). O

We finish by a remark on the structure of the moment map of a subquiver of Q). Assume that @’
is a quiver with vertex set I’ C I and Q' = {a € Q|t(a) € I'and h(a) € I'}. This means
that if we look at the subset of vertices I’ of () and erase all the arrows of () which are not both
starting and ending at an element of I’, we recover ()'. Moreover, we require that Q) and Q'
are endowed respectively with orderings <, <’ that satisfy the following conditions : whenever

a,b e Q,a <'bif a < bin the initial quiver Q), and a < cwhena € Q' butc € Q . Q'.

We construct A’ as A above, and we see A’ as a subalgebra of A (after adding the removed
idempotents e, for s € I\ I'). Define elements ®’, P’ by replacing Q with Q' in (2.22b) and
(2.22a). Remark that we can write P = P’ + P, and ® = (¥’ + ngl, €s)Poyt for some
Pout € (DpA)z and @y = (Pout,s)ser. This statement is, in fact, a consequence of the fusion

process which we have used to endow a quiver with a quasi-Hamiltonian structure [162, 6.5-6.7].

Lemma 2.3.14 Forallb,c € A" C A, we have {b,c}p = {b, c}p. In particular, forall s € I’,
we have { @, c}p = L(PLE, + E;P,)(c).

Proof. By linearity of the map in Proposition 2.3.4, we can decompose {—, —}p as the sum

{— —¥p +{— —}p,,, From (2.13), we get that {b,c}p_ isasum of terms of the form
52(0)/51 (b)” & (51(1))/52(6)” - (51 (C)/(Sg(b)” &® (52(())/(51(0)” s (2.29)

for any b,c¢ € A. By construction, P,,; is a sum of (double) biderivations, and by inspecting
(2.22a) each biderivation in P, carries at least one factor 64 = Uy, U, U, Uyford € Q \ @',
as defined in Lemma 2.3.13. Such a derivation d4 vanishes on elements of A’ again by Lemma

2.3.13. Therefore, if both b, ¢ € A’, all terms in (2.29) must vanish, and {b, chp,., =0.

Applying this to @/ and ¢ € A, {®/,, c}p = {P), c}p/. By construction, ' is a multiplicative

moment map for {—, —}/, so it satisfies (2.19). a

This previous construction can be easily generalised as follows. Assume now that Q' C Q is a
subquiver with the same set of vertices I. Suppose that )’, Q) are endowed with orderings </, <

such that whenever a,b € ', a <’ bif a < b in the initial quiver Q, and a < ¢ when a € Q' but
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c € Q ~ Q. We can again construct A’, P’, ® as above from ), and see A’ as a subalgebra of A.
Note that @/, = e if there are no arrow a € ' with t(a) = s or h(a) = s. In the exact same way

as Lemma 2.3.14, we can prove the next result.

Lemma 2.3.15 Forallb,c € A" C A, we have {b, c}p = {b, c}pi. In particular, for all s € I,
with @), # e, we have { @, c}p = 1(PLE, + E,®))(c).

More Lie brackets

Note that the triple bracket associated to a double Poisson bracket vanishes, so the associated
bracket {—, —, —} also does. A small computation shows that it is also the case for a double
quasi-Poisson bracket. Hence, if (A, {—, —}) is a double (quasi-)Poisson algebra, then {—, —}

defines an Hy-Poisson structure on A by §2.3.1.

Let (A, {—, —}, 1) be Hamiltonian, and put A* = A/(u—\) for some A = Y__Ases € B. Then
the associated bracket {—, —} descends to A*/[A*, A*] and defines a Lie bracket. Similarly, if
(A, {—, -}, ®) is quasi-Hamiltonian and we let A? = A/(® —q) for ¢ € B>, then A?/[A?, AY]
also inherits an associated Lie bracket. In fact, we have again an Hy-Poisson structure on both

A? and A9,

2.3.3 Structures on representation spaces

We now explain how the definitions introduced in § 2.3.1 and § 2.3.2 translate to the representation

spaces defined in §2.2.2. Our presentation is mainly based on [162, Section 7].

Generalities for the rest of the section

Throughout, we continue to assume that A is a finitely generated associative algebra over B =

®E | Ces, with ege; = d5e5, that we assume endowed with a double bracket §—, —}.

Let I = {1,...,K} and choose the dimension vector « € N', setting N = Y _, cs. We
consider the representation space (assumed relative to B from now on) Rep(A4, «), that we recall

is such that the matrix X' (e;) satisfies X' (es)ij = dijif oq+.. . +as1+1 <i,j <aq+...+as.
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Le., X(es) is the s-th diagonal block of Idy, and each block is of size as. To ease notations,
denote by R = O(Rep(A4, a)) the coordinate ring. We have from the definition of the scheme
that any element a € A induces functions (a;;);; on Rep(A, «), and we would like to extend this

definition to arbitrary 6 € D 4/p. Forany 1 <i,j < N, define the vector field §;; € Der(R) by
9ij (brr) = (D)0 (b)i; » (2.30)

and introduce the vector field-valued matrix X'(6) with (7, j) entry d;;. We call the particular
disposition of indices in (2.30) the standard index notation as in [163]. More generally, for
an element § = 41...0, € (DpA), we define d;; € A Der(R) from the matrix identity
X(0) =X(01)...X(0p).

It is interesting to note that, for any a € A, {a,—} € Dy /B defines a vector field by
{a, —}i; (w) = {a, b};j {a, b}’ This motivates the following result.

i

Proposition 2.3.16 ([162, 7.5.1, 7.8]) There is a unique antisymmetric biderivation {—, —} :
R x R — R such that forall a,b € Aand 1 <1i,j,k,l <N,

{aij, b} = fa, 0}, fa, 0}y - (2.31)

Moreover, if {—, —} is differential and defined from an element P € (DpA)s by Proposition
2.3.4, then the biderivation (2.31) is defined by the bivector field tr(X (P)). In the latter case, we

denote the map by {—, —} p.

Allowing graded components, the following is expected.

Proposition 2.3.17 ([162, 7.6]) Let P,Q € DgA. Then

[Py, Qui) = ({P, QFsx)i ({P. QY )it -
Le. the (geometric) Schouten-Nijenhuis bracket on Rep(A,«) is determined by the double

Schouten-Nijenhuis bracket on A.

Finally, recall that the algebraic group GL, := Hﬁil GL,,(C) acts by conjugation on
Rep(4, ), and we have’ g - X(a) = g~ *X(a)g. We obtain an induced action of the Lie algebra

SHere we follow [162, Sect. 7], but we will use later the action g - X'(a) := gX(a)g~' when working on
multiplicative quiver varieties. This slight change can be easily forgotten as it will just amount to act with the inverse

element from the algebraic group.
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o 1= Hle gl,, (C) givenby £- X (a) = [X(a),{] forany £ € g,. Moreover, the gauge elements

(Es)s correspond to the action of g, as follows.

Proposition 2.3.18 ([162, 7.9.1]) Fix s € I and take i,j € {1,...,N} such that oy + ...+
as—1+1<1i,j<ai+...+as Let Fj € gq be the elementary matrix which is +1 at (i, j)

entry and zero otherwise. Then the derivation E j; is such that E ji(h) = F;;-hforanyh € R.

The Hamiltonian case

Let us adopt the notation a;; x4 := a; ja%la% € Rforanelementa = o’ ®a”’ @ a" € A®3. As

in [162, 7.5.2], we can compute using (2.31) that for any a,b,c € A,

Jac(aij, b, cuw) = {a, b, ¢t k0 — a0} > (2.32)
where {—, —, —} is the triple bracket defined by {—, —} and Jac is defined by (2.2).

Since (2.32) vanishes for a double Poisson bracket, we can use the general results introduced in

the previous subsection and the smoothness criterion of §2.2.2 to derive the following result.

Theorem 2.3.19 ([162, 7.11.1]) Assume that (A, {—,—}, ) is a Hamiltonian algebra. We
have that Rep(A, «) is a GLq-scheme with Poisson bracket {—, —} determined from {—, —} by
(2.31), and the matrix-valued function X (u) : Rep(A, o) — g4 is a moment map. Furthermore,

if A is smooth, Rep(A, o) admits a structure of a Hamiltonian G(«)-Poisson manifold.

Here, we identified g, and its dual through the trace pairing. Note also that we pass to G(«) =

GL, /C*, as the action is never free otherwise.

Example 2.3.20 Theorem 2.3.5 yields that any double quiver Q induces that Rep(A, «) (in the
relative setting) is a Poisson variety, and admits a moment map. Consider the tadpole quiver
of Example 2.2.1. Then we have a Hamiltonian manifold structure on the representation space
described in Example 2.2.7, which precisely gives the reduced symplectic space described in

Example 2.1.4.

This example is precisely the motivation for the study of quasi-Hamiltonian algebras that we will
do : we will try to understand spaces that could be carrying integrable systems from a coordinate-

free point of view.
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Example 2.3.21 Consider a double quiver Q, and dimension vectors o, w € NI. We extend Q
by adjoining to I one vertex, denoted oo, and by adding wg arrows oo — s for each s € 1.
Write Q% the quiver hence obtain. Moreover, we extend o to & by adding to it oo = 1. Again,
Theorem 2.3.5 gives that Rep(QY, &) is a Gz-variety with a Poisson bracket and momentum map.
Then 1~1(0)//G(@) is an example of Nakajima quiver variety [123] for 0 stability parameter; as
explained in [51].

The latter example justifies the study by Yamakawa of the multiplicative analogues of this
construction [174], and in particular the introduction of such framing, i.e. one extra vertex and
several arrows pointing towards the initial vertices in (). We return to this procedure at the end of

this section.

The quasi-Hamiltonian case

We choose as before the algebraic group GL, with Lie algebra g,. Again, we consider the trace
pairing on g, and we note that the dual basis to (F;;);; (see Proposition 2.3.18 for the definition

of Fj; and which indices are considered to form the basis) is (F};)i;.

Proposition 2.3.22 ([162, 7.12.1]) The trivector field on Rep(A, «) induced by ¢ € /\3 o
defined in (2.5) is given by + >~ tr X (E3).

We now extend the result of [162, 7.13] to the non-differential case, namely double quasi-Poisson
algebras define quasi-Poisson structures on their representation spaces. It was already noticed by
Van den Bergh to be possible, though not proved in [162]. The author believes this slightly longer

proof is worth being written done, and we go through it now.

Recalling relation (2.32), we remark that a similar statement can be proved in the following form.

Lemma 2.3.23 Assume that Q € (DpA)s. Then the following equality holds for any a,b,c € A

tr X(Q)(alja bk‘la Cuv) = ({{CL, ba C}}Q)uj,il,lw - ({aa c, b}}Q)kj,iv,ul ) (233)
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In fact, this result implies (2.32) in the case where {—, —} is differential. Indeed, the double
bracket is defined by an element P € (DpA),, so the triple bracket { —, —, —} is defined by an
element of (DpA)s, viz. ${P, P}gx by [162, 4.2.3]. Meanwhile, {—, —} is defined by tr X'(P)
using Proposition 2.3.16, so Jac is defined by the trivector 3 [tr X'(P), tr X (P)]. Summing over
i = j, k = lin Proposition 2.3.17 thus yield that Jac is defined by § tr X' ({ P, P}gn). It remains
to take @ = ${P, P}sx in (2.33) to get (2.32).

Proof. (Lemma 2.3.23.) Write Q = 6'62>. From Proposition 2.3.4 we can get

{{a, b, C}Q :53(0)/51((1)// ® (51(@)/52(1))// ® 52(b)153(0)//
4 52<C)/63(a)// ® (53(0,)/(51(())” ® 51 (b)/(SQ(C)”
4 51 (c)'52(a)” ® (52((1)/63(17)” ® 53<b)151 (c)// ’

and similarly by swapping b and ¢

{{a, c, b}}Q :(53(1)),51(61)// ® 51 (a)/52(c)// ® 52(0)/63(1))//
4 (52(1))’53((1)" ® 53(a)/51(c>// ® 51 (C)/52(b)//
+61(b)/8%(a)" ® 6%(a)/8%(c)" @ 63(c)' 51 (b)".

Now, recall that the matrix-valued vector field (;;);; representing an element 6 € (DpA);

satisfies d4p(cuw) = 0(c)!,0(c)l, in standard index notation. We compute

Te(Q)(aijs bty cuv) = Y (84 A 62 A 63,) @iy bt un)

rst

= > §'(a) )l 82 (0382 (b)Y 6% ()6 (0)F,

rst

+ 253(0’);7‘53(0’%,] 51 (b);fsél (b);"/l 52(0);“5(52(0);/1)

rst

+> 83 (a)%(a)y; 62062 (0)h 6" ()it ()7,
rst

= 6% (a)i0 (a)); 83 (b) 02 (B)7) 67(c)id® (),
rst

=Y 6% (@);0* (@) P (0)kd* (D) 6 ()18 ()

rst

- Z 52 7,1552 Sj 61(b);€s(51 (b);ﬂ/l 63(0);7‘53(0)2,1) )

rst
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which we rewrite after summation as

We can conclude from our choice of notation. O

The following is the general version of [162, 7.13.2].

Theorem 2.3.24 Assume that (A, {—,—},®) is a quasi-Hamiltonian algebra. We have that
Rep(A, a) is a GLy-scheme with quasi-Poisson bracket {—, —} determined from {—,—} by
(2.31), and the matrix-valued function X (®) : Rep(A, o) — GL, is a multiplicative moment

map.

Proof. We only need to show (2.7) on generators of the coordinate ring R, so fix a,b,c € A. We
remark that by Proposition 2.3.22 the 3-vector field ¢rep(a,q) 1S given by é D tr(E2), hence we

can write

1 1
§¢Rep(A,o¢) (aija bkla Cuv) = E Z tr(Eg)(alja bkla Cuv) .
S

Using Lemma 2.3.23, this is the same as

<11228:{a,b,c}E3> - (11225:{&,67 b}E§,>

But then, since the double bracket is quasi-Poisson we get by definition

uj,il,kv kjiv,ul

1
5¢>Rep(,4,a)(az‘j, bty cuv) = ({a, b, c})ujit ko — ({a, ¢, 0} )k ivul »

which is nothing else but Jac(a;j, by, cuv) by (2.32).

Finally, to prove that equality (2.8) holds, it is enough to reproduce the proof of [162, 7.13.2]

which does not use the assumption that the quasi-Poisson algebra is differential. O

Corollary 2.3.25 Under the assumptions of Theorem 2.3.24 and provided that A is smooth, the

space Rep(A, «) admits a structure of a quasi-Hamiltonian G(«)-manifold.
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Again, we replaced GL,, by G(«) as we always have a copy of C* in the stabiliser of any point

otherwise.

Fix a quiver (). Applying Theorem 2.3.24 to the structure obtained in Theorem 2.3.9 endows the
multiplicative quiver varieties of Crawley-Boevey and Shaw [56] with a Poisson structure. We

now turn to the study of these spaces.

Multiplicative Quiver Varieties

We follow [41, 2.6], and refer to [56] and [174] for details about multiplicative quiver varieties.
Let @ be a quiver, Q its double, and fix & € N’ a dimension vector. We identify Rep(CQ, a)
with representations of () as in Example 2.2.6, i.e. we attach the vector space V, = C® at each
vertex s € I, and a point is determined by the data (X, ), such that X, € Mat,(a))xa(h(a))(C)
for all arrows a € (). We can use the entries of these matrices as coordinates. We then consider
the subspace Rep(A4, «) which is such that for all a € Q, det(Idy,,, +XoXq~) # 0. Hence
Rep(A, ) is a smooth variety. Then Corollary 2.3.25 and Theorem 2.3.9 endow Rep(A, o) with
a structure of quasi-Poisson G («)-manifold. Using the identification we have made, together with
Proposition 2.3.12 and (2.31), we get the following characterisation of the quasi-Poisson bracket

on Rep(A, a), that we denote {—, —}p.

Proposition 2.3.26 Take an ordering in Q) so that the arrows of Q) are ordered in such a way that
a < a*<b<b foranya,b € Q with a < b. Then the quasi-Poisson bracket on Rep(A, «) is

completely determined by

1 _
{(Xa)ij, Xa)m}p = 5e(a) (X2)nj0a — 6k (X2)ar) (a€Q), (2.34a)
1 1
{(Xa)ijs (Xa )ui}p = Orjda + §(Xa*Xa)kj5u + §5kj(XaXa*)z‘z
1
+ ifsh(a),t(a) ( (Xa*)kj(Xa)il - (Xa)kj(Xa*)il) (CL € Q) ) (2.34b)

while if a,b € Q are such that a < b but b # a*,

1 1
{(Xa)ij, (Xp)uyp = 50n(a),10) Ok (XaXb)it + 50n(e) ()0t (Xo-Xa) ks

1 1
= 5%(a),n0) (Xo)kj (Xa)it = 504(a),6) (Xa)kj (Xt -

2

(2.35)

When writing (X,)j above, we always assume 1 < i < ay(q), 1 < j < ap(q)-
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Fix some ¢ = (gs)s € (C*)!. Assuming an ordering is taken, a level set of the moment map
{X(®) = ]I, ¢sIdy,} is nothing else than Rep(A9, a), the moduli space of representations
(of fixed dimension «) of the multiplicative preprojective algebra A? associated to ). Hence
Rep(A%, o) is a closed affine subvariety. This space is easily seen to be empty whenever we have

q“ =11, 4¢3 # 1[56, Lemma 1.5].

Isomorphism classes of representations correspond to orbits under the group G(«), and the semi-
simple representations correspond to closed orbits as recalled in §2.2.2. Thus, the points in the
affine variety S, , := Rep(A?, «)//G () correspond to semi-simple representations of A? of
dimension «, and S, 4 is called a multiplicative quiver variety, that we abbreviate MQV from now
on. Note that the space S, 4 is a Poisson variety. Indeed, the quasi-Poisson bracket of Proposition
2.3.26 descends to a Poisson bracket on O(S, 4) = O(Rep(A9, a))%(®), by restriction to G(a)-
invariant functions [162, Proposition 1.7]. We are particularly interested in the case where the
GIT quotient is a geometric quotient, so that we can hope to have a Poisson manifold structure
after reduction. Restricting to the case where all representations in Rep(A?, «v) are simple, we

find the next result based on [56, Theorem 1.10].

Theorem 2.3.27 [41, Theorem 2.8] Let p(a) = 1 — q(«), where q is the Tits form (2.9). Suppose
that Rep(A?, «) is non-empty and all representations in Rep(AY, «) are simple. Then « is a
positive root of Q and Rep(AY, «v) is a smooth affine variety of dimension g + 2p(«), with
g = dimG(a) = Y ;02 — 1. The group G(a) acts freely on Rep(A?, ), so Saq =
Rep(AY, o) /G(«) is a Poisson manifold of dimension 2p(«), obtained by quasi-Hamiltonian

reduction.

As we observed that the double bracket that induces {—, —}p is defined by a non-degenerate
biderivation P (see [163, Sect. 8]), we get in fact from [163, Proposition 5.2] and [6, Theorem

10.3] that S, 4 is a symplectic manifold when any representation in Rep(A?, «) is simple.

Finally, note that the Poisson bracket on the affine variety S, , (that we only assume to
be non-empty) can be directly understood inside A?/[A9, A9]. Indeed, the coordinate ring
O(Rep(A?, )@ is generated by elements of the form tr X' () for v € A9, which amounts
to know -y projected to A?/[A?, AY]. Remarking that the ideal generated by ® — ¢ is a Lie ideal for
the Lie bracket on A/[A, A] defined by the associated bracket {—, —} = m o {—, —}, it suffices
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to take traces in (2.31) to obtain

{tr X (), tr X(y")}p = tr & ({{%7’}}' {{%7’}}") =tr X({7,7'}), (2.36)

where we see {—, —} as a bilinear map on A?/[A%, A9]. Hence, the Poisson bracket of traces
of matrices representing two paths is the trace of the matrix representing the associated bracket

applied to these paths.

Multiplicative Quiver Varieties obtained by framing

The examples of MQVs that we study in this thesis come from a particular class of quivers
obtained by framing (see [174, Section 6.2] with trivial stability parameter), which we now define.
Let @) be an arbitrary quiver with vertex set I. A framing of () is a quiver @ whose set of vertices
is given by I=1U {o0}, and whose set of arrows is given by the ones of () together with
additional arrows {vs 3 : 00 = s | 1 < 3 < d,} to each s € I with fixed ds € N. As an example,
we can consider the tadpole quiver from Example 2.2.1, which is the simplest framing of a Jordan
quiver. Given arbitrary o € N’ and ¢ € (C*)!, we extend them from I to I by putting e = 1

and ¢oo = ¢~ = [ [, g5 @, so that we are considering

a=(La), §=q “ewt+ ) gses. (2.37)
sel

Note that g = 1. We define the representation space Rep (A9, &) associated to the multiplicative
preprojective algebra of @ with parameter ¢, and construct the quotient

Maq(Q) :=Rep(AT,&)//G(&), where G(a) 2 [ [ GLa, = GL,,

sel
which is a MQV. In order to have a symplectic manifold structure, we say that ¢ = > __; gses
is regular if ¢* # 1 for any root « of the quiver (). We have the following result, which is a

multiplicative analogue of [123, Theorem 2.8], [25, Proposition 3].

Proposition 2.3.28 [41, Proposition 2.9] Choose an arbitrary framing @ of Q and let & and q
be defined as above. If q is regular, then every module of dimension & over the multiplicative
preprojective algebra A9 is simple. Hence, the group GL, acts freely on Rep(A9, &) and the
MQV ./K/lvmq(Q) is smooth.
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It follows that if ¢ is regular and ./K/lvmq(Q) # (0, then @ = (1,a) is a positive root of Q
and M, ,(Q) is a smooth affine variety of dimension 2p(ct). Moreover, it is endowed with a

symplectic form.

2.3.4 Relation to integrability

Assume that (A, {—, —}) is a double (quasi-)Poisson algebra over B = Y% | Ce,. In case A
admits a moment map p (resp. multiplicative moment map ®), we denote by Ag .q the algebra
A/(u— q) for g € B (resp. A/(® — q) for ¢ € B*). We write {—, —} for the bracket associated
to {—, —} on A defined by (2.15).

Definition 2.3.29 Two elements b,c € A are in involution if {b, c} € [A, A]. An elementb € A
is involutive if {b*, '} € [A, A] for all k,1 € N.

To get an example of involutive element, we remark the following result that appears in different

forms throughout Chapter 3.

Lemma 2.3.30 Ifb € A satisfies {b,0} = >, ;(b" ® ay — ay ® b*) where J C N is a finite set

and a; € A forallt € J, then b is involutive.

Proof. We use the derivation properties (D2)—(D2’) to find for k,[ € N

ko1

(S 9 SUS RS QU Lt
o=171=1
ko1
N Z Z Z (bk+7_a+t_1 @ b7 ta'T — T a7 @ bHa_TH_l) .
o=11=1teJ

Applying the multiplication map as in (2.15) yields

l
{bk, bl} —k Z Z(bk+7+t—2atbl—7 o bT—latbl+k—T+t—1)

T=1teJ

l
—k Z Z |:bk+t_1, bT—latbl—T ’

T=1teJ

finishing the proof since [A, A] is the vector space of all commutators. O
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Fix a dimension vector « for the rest of this section. Recall that the space Rep(4, a)//G(«)
inherits a Poisson bracket from the (quasi-)Poisson bracket {—, —} defined in Proposition 2.3.16.
The same is true for M,q := Rep(A?_,, @) //G(«) if A admits a (multiplicative) moment map.

The next two statements hold for Rep(A? . «)//G(«) when defined.

red’

Proposition 2.3.31 If b,c € A are in involution, then tr X (b) and tr X (c) are in involution on
Rep(A, a)//G(a) and on Rep(A?_, a)//G(«) (when defined).

red’

Proof. These are clearly elements of the coordinate ring. Looking at them as functions on
Rep(A, o), we have by (2.31)
{trX(0),tr X(c)} =) {bu,cj5} = > {b, e} {b, Yy =trmo {b,c} .
2 4,3

This last term vanishes by Definition 2.3.29 since we take the trace of a commutator. O

Proposition 2.3.32 Ifb € A is involutive, the symmetric functions of the eigenvalues of X (b) are
in involution on Rep(A4, a)//G(a).

We now assume that M,..4 is defined and is smooth, so that we look at this space as a complex
manifold. Furthermore, we restrict to the case where the Poisson bracket is non-degenerate.
For example, in the quasi-Hamiltonian case, this is the case if the double quasi-Poisson bracket is
non-degenerate, see § 2.3.2. We get criteria for integrability by a simple combination of Definition

2.1.3 and Propositions 2.3.31-2.3.32.

Corollary 2.3.33 Let by,...,b, € A be pairwise in involution with dim M,.q = 2n. If
tr X (by1),...,tr X(by) are functionally independent on a dense open subset of M4, then they

form an integrable system.

= % dim M4,
such that (tv X (V7)) je are functionally independent on a dense open subset of Mcq. Then they

form an integrable system.

There is an obvious reason why we do not take the first n powers of X'(b) : we could have

b ¢ @sesAes, so that tr X (b) = 0. Such examples appears in §3.2.1.
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We now turn to the case of degenerate integrability. We continue with notations as above.

Definition 2.3.35 Let b,c € A. We say that c is in strong involution with b if {b,c} = 0. We say
that b and c are in total involution if {b, c} = 0 = {c, b}. An element b € A is strongly involutive

if for all k,1 € N, b¥ is in strong involution with b.

Note that there exists elements in strong involution but not in total involution : as we can see
in Lemma 3.1.7 (with notations therein), {u”, wavgul} = 0 but going through the proof of that
statement we can remark that {w,vsul, uk} # 0. We can also remark that, in the definition of a

strongly involutive element, we can equivalently require all powers to be in total involution.
Lemma 2.3.36 [f c1,co € A are in strong involution with an element b € A, then {b,c1c2} = 0.

Proof. The bracket { —, —} has the derivation property (D2) in its second variable, so that we
have {b, cico} = c1{b,ca} + {b, c1}ca. O

For b € A, let us form the subalgebra generated by B and some fixed elements in strong involution
with b. Bringing Lemma 2.3.36 together with the B-linearity of the double bracket, we can see

that any element of that subalgebra is also in strong involution with b.

Definition 2.3.37 Let b € A be a strongly involutive element. An involutive chain with respect to
b is given by algebra inclusions C[b] C I(b) C A, where C[b] C A denotes the subalgebra
generated by b and the subalgebra B, while 1(b) C A is a subalgebra generated by b, the

subalgebra B, and some elements that are in strong involution with b* for all k € N.

Note that without the assumption that b is strongly involutive, the first inclusion could be false.
Moreover, an element in strong involution only with b is not necessarily in strong involution with
any b¥, k > 2, since there is no derivation property in the first variable for the associated bracket

(2.14).

We can now look at the structure induced on representation spaces. Let Opy,) be the subring of
C[Rep(A, a)] generated by elements {tr X (c)* | ¢ € I(b),k € N}. Let @[(b) be the Poisson

subalgebra generated by O3 in the (quasi-)Poisson algebra C[Rep(4, a)].

Proposition 2.3.38 The centre Z(O I(v)) contains Cltr X (b)* | k € N.
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Proof. Assume that ¢ € I(z). Then, as in the proof of Proposition 2.3.31, {tr X (b)*, tr X(c)} =
tr X({2", ¢}) for all k, which is zero by assumption on ¢. This implies {tr X (b)¥, Orw)} = 0by

Leibniz rule.

By definition, an element vy € O I(b) 1s @ sum of terms which are obtained from a finite number
of elements g1, ..., g1 € Op), by multiplication or taking Poisson brackets. Using the linearity
of the bracket, we just need to show that it holds by induction on k. If k = 2, either v = ¢1 9
in which case {tr X (b)*, v} = 0 by the first part of the proof, or v = {g1, g2}. Now, recall that
the (quasi-)Poisson bracket {—, —} satisfies Jacobi identity on functions of the form tr(c). In

particular, it implies that the bracket is Poisson on Oy ), hence

{tr X(0)", {91,921} = ({tr X()*, 1}, g2} + {91, {tr X (8)", 92}} = 0.

A similar argument works to show the induction step. O

We find in this way a criterion for degenerate integrability by combining Definition 2.1.5 and

Proposition 2.3.38.

Corollary 2.3.39 Assume that z € A is strongly involutive. Let by,...,b, € A, withn =
dim M,..q — m, be in strong involution with all (z¥)yen. If for some J C N with |J| = m,
the functions (tr X (27))je and tr X (by), ..., tr X(by,) are functionally independent on a dense

open subset, then they form a degenerately integrable system.

Our understanding of (degenerately) integrable systems in Chapter 4 and Chapter 5 will be mostly
based on a correct choice of local coordinates where one of the functions given in Corollary
2.3.33 or Corollary 2.3.39 has an interesting form, see e.g. Example 2.1.4 which is based on
an underlying Hamiltonian algebra by Example 2.3.20. Meanwhile, recall that it was noticed by
Kazhdan, Kostant and Sternberg [95] that flows of integrable systems on a phase space obtained
by Hamiltonian reduction could be easier to integrate on the initial space, and that it was the
case for the Calogero-Moser system. With the notation of Example 2.1.4, the flow under Hy, =
% tr Y* in C,, can be obtained from the flow defined by Hj, in M, where it takes the linear form
X(t) = X(0) +tY (0)*~1, while Y (t), V(t) and W (t) are constant. Indeed, it suffices to look
at a slice around the point at time ¢ where X is diagonalisable (which is possible generically). In

that way, we can obtain the values of (¢;(t), p;(t)); up to permutations. Therefore, if we identify
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a (degenerately) integrable system on M,..4, we can try to see if the equations of motion for
G(«)-invariant functions on Rep(A4, «v) that descend to the (degenerately) integrable system can

be explicitly integrated on Rep(A, «).

Following this line of thought, assume that we want to integrate in Rep(A, «) the flow associated
to a function tr X'(b). We need to know the equations of motion for a set of generators of the
coordinate ring, which are entries of some matrices X (a1), ..., X (ay) if a1, ..., a; generate A
over B. Hence, we just need to analyse the k£ matrix-valued equations of motion {tr X (b), X (a;)},

which by (2.31) are nothing else than
{trX(b), X(a))} = X({b,a;}). (2.38)

where the bracket on the right-hand side is the associated bracket in A. Hence, given a family
of elements in involution by, ..., b, and generators aq, . . ., ai of A, the discussion motivates the
computation of the associated brackets {bj, a;} forl < j<mandl <i < k. A careful reader

can notice that two points need to be clarified :

e Is it true that the flows are constrained to the subspace Rep(A?, ;, «)?

e Do the flows defined for b,b’ € A by (2.38) descend to the same flows on M,..4 if the

elements b, b’ induce the same function on M,..4?
We discuss the quasi-Hamiltonian case where A? , = A/(® — ¢), as the Hamiltonian case is
shown along those lines and is easier.

To answer the first question, remark that since ® = ) ®, is a multiplicative moment map, we

have by (2.19)
1
{b,P5} = —mo {P5,0}° = —§mo(<135®b68—<I>sb®es+es®b<1>s —eshb® ®5) =0.
Hence, by B-linearity, {b, ® — ¢} = 0.

To answer the second question, we obviously have by (2.38) that {tr X'(b), X (a;)} =
{tr X ('), X(a;)}if b— ' € [A, A]. Hence, it remains to show that the evolution of any X'(a;)
under the flow associated to {tr X'(® — ¢), —} is constant in M,..4. Using again (2.19), we have

forany a € A

1
{® —q,a} 252 mo (aes @ Py — €5 @ Pga + aPs ® es — Ps R e5a) = ad — Pa.
S
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Thus, we get for the flow associated to tr X'(® — ¢) that X(a)(t) = e "®X(a)e!® on
Rep(A?

? 4+ @). This means that such flows evolve along an orbit in Rep(A{_,, ), so that the

induced dynamics in M4 is trivial.

Remark 2.3.40 We could be interested in the right-hand sides of (2.38) only, and interpret it as
systems of ordinary differential equations on a non-commutative algebra. We will not treat that
problem at all. However the interested reader can take a considerable step, though trivial, in that
direction by looking at the matrix flows that we derive as being of the form X (a(t) = ...). For
further developments on the subject, see [14, 119, 127] and references therein. See also [15] for

a slight modification of double brackets to understand Kontsevich system introduced in [173].
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Chapter 3

Quasi-Hamiltonian algebras defined

from cyclic quivers

For the whole chapter, we heavily rely on the conventions introduced at the end of Chapter 1 and

the constructions introduced in Chapter 2.

3.1 Jordan quiver

Fix d € N*. In this section, we look at a general framing of a Jordan quiver by d arrows,
which corresponds in the simplest case d = 1 to the tadpole quiver from Example 2.2.1. To
be precise, let @ be the quiver with vertices {0, 00}, and arrows z : 0 — 0 and vy : 00 — 0
for 1 < o < d. The double Q of Q) consists of the additional arrows y = z* : 0 — 0 and
W = v% 1 0 — oo for 1 < a < d. We write CQ for the corresponding path algebra, and A
for the algebra obtained by (locally) inverting the elements e;(,) + aa® for all a € Q. These are
B-algebras for B = Cey @ Ces,. We consider the following ordering on the vertices of ) from

now on

at oo : n<w <...<wyg <wq,
3.1)

at0: r<y<v <wy <...<vg <wgq-.

Note that it is induced by the fotal order x < y < v; < wy < ... < vq < wg on Q.
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Remark 3.1.1 For the remainder of this section, the Greek indices ., 3,7, € are always assumed

to take value in the set {1,...,d}.

3.1.1 Quasi-Hamiltonian formalism

The algebra A = CQ(Q (a)+aa®) is quasi-Hamiltonian by Theorem 2.3.9. To understand this
structure, we first describe the double quasi-Poisson bracket {—, —} induced by P, which is

well-defined on CQ. From Proposition 2.3.12, we have that

{x, 2} :% (x2®eo—eg®x2) . fy,y} = —% (y2®eo—eo®y2) , (3.2a)
{z,y} =eo®e0+ %y$®€o+ %€o®$y+ %(y@x—x@y), (3.2b)
{z,wo}} = %eo ® TWq — %$ Ry, {r,v.}= %vaa: ®eg — %UQ Rx, (3.2¢)
fy, wa}t = %60 ® Ywa — %y Qwa, fy,va}= %vay ® e — %Ua ®y, (3.2d)

while between framing arrows it takes the form

{va, v} = — %o(a, B) (v ® Vo + Vo ® vg) , (3.32)
fwa, wp} = — %o(a, B) (ws @ wa 4 wa @ wp) (3.3b)
{Ua, wﬁ}} = 5a5 <€o ® oo + %wava Q eso + %60 & vawa>
+ % o(ct, B) (€0 ® Vg + Wata ® o) (330)
where o(—, —) is the ordering function on d elements defined in Section 1.5. To derive (3.3a),

note that Proposition 2.3.12 gives for a < f3 that {va, v} = —5(vg ® vo + Vo ® vg). This is
because v, < vg, and their heads and tails coincide. We then find (3.3a) by cyclic antisymmetry
of the double bracket. Identities (3.3b) and (3.3c) are obtained in the same way. Next, we can
write the moment map in A with respect to this quasi-Poisson bracket using Theorem 2.3.9, and

it is given by ® = &y + ®, where

(e0 + wava) "t € egAeg, (3.4a)
d

Do =(eo + xy)(eq + yx) ™"

[e%

el

H
D = H (60 + VaWa) € expAhess . (3.4b)
=1,..d

[ed 9eecy
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For qo, geo € C*, We set § = o€ + GooCoo and define A = A/(® — ). Since our ordering
comes from a total ordering, A9 is a multiplicative preprojective algebra associated to Q with

parameter ¢ as defined in [56].

3.1.2 An interesting localisation

Consider the algebra A’ = A, obtained by formally adjoining an element 2! = egz~leg such
that vz~ ! = eg = 27 '2. As (eg + 2y) ™! € A, both z := y + 2~ ! and 27! lie in A’. The double

bracket descends to A’, and it takes the following form with z

1
fz2} = -5 (FP@e—c®2?), (3.52)
1 1 1
{z, Z}}—gzx@eo-i-feo@xz—i— (Z®x—x®z) (3.5b)
1 1 1
{2z, wa } =§€0®2wa — §z®wa, {z,v.}} = vaz®eo 2va®z, (3.5¢)

To show this, we use the B-linearity of the double bracket and the derivation rules (D2)—~(D2’).
For example, {z, 2} = {z,y} + {z, 27 }} and the first term is given by (3.2b). For the second,

we have for any a € A

0={a,e}} = {{a,ajaj_l}} = fa,z} 2z 42 {{a,x_l}} )

sothat {{z, 271} = —27! {z,2} 2!, whichis (7' @2 —2®2~!) by (3.2a). The algebra A’
also inherits the moment map. Thus (A, {—, —} , @) is quasi-Hamiltonian for the double bracket
given above and the moment map & = &y + ¢, defined by (3.4a)—(3.4b). In particular, we can
rewrite (3.4a) as

—

Oy = w20 H (e0 + wava) L. (3.6)
a=1,....d

The localisation of the algebra A9 is now defined as A’/(® — §), which can be understood as the
algebra A’ with the relations

— —
zzx 27l =g H (e0 + Wava) , H (600 + VaWa) = Gooboo -

a=1,....d a=1,....d
It seems natural to choose a way to rewrite the products appearing in these relations as sums. In
our case, we will see in Chapter 4 that we only care about the first identity, which leads us to the

introduction of spin elements a.,,, ¢, in A’, defined as follows :

a, =we, =1z, c,=v4(e0+ Wa_1Va_1)..- (€0 +wivy)z. 3.7
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Note that we can define the ¢, inductively using

a—1
c/a = Z anAC/)\ -+ Vo< - (38)
A=1
With this choice, the first relation is equivalent to zzz ™" = qoz + o Y, G, Ch-
We are interested in the double brackets between the elements (z, 2, a,,, ¢,,), and the only ones

that we do not have are those involving ¢/,. The proofs of the next few results are postponed to

§3.3.1.

Proposition 3.1.2 Forany o, 5 =1,...,d,

1 1 1
{z,c, )} *fc LT ® e+ 2ca oz, {zd}= —*C;Z@Jeo + 20a®z (3.9a)
1
{{aa,cﬁ}} = — cﬁa ®eg+ = ( (a, B) = dap) oo ® gy
ﬁ 1
— bap (ew@)z—f—Zew@a/}\cl)\) , (3.9b)
A=1

where the last sum is omitted for 3 = 1.

Lemma 3.1.3 Forany o, 5 =1,...,d,
fva, s} = Ly ! ) 4 3.10
va,cﬁ}} = §CB®UQ—§(O(OZ,IB)+ ag)va@)cﬁ. (3.10)
Proposition 3.1.4 Forany o, 5 =1,...,d,
{{c.. s = B) (ch@cl,— ¢, @) . (3.11)

Note that in the case d = 1 we can simply write
1 !/ / /
{d, 1} = - clal © €0 = 500 @ a1C] — €0 ® 2, {c,a1}} =0,
instead of (3.9b) and (3.11).
3.1.3 Associated brackets

Recall that the bracket {—, —} associated to {—, —} by (2.15) defines a left Loday bracket

on A, which descends to a Lie bracket on A/[A, A], see §2.3.2. Moreover, since the left
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Loday bracket is a derivation in the second variable, it descends to an Hg-Poisson structure on
A/[A, A]. Similarly, this holds for A’ and A’/[A’, A’]. This structure defines a Poisson bracket on
corresponding varieties, which is obtained by quasi-Hamiltonian reduction by Theorem 2.3.24.
Furthermore, the latter Poisson bracket is completely characterised by the associated bracket using
(2.36). This motivates the results that we gather now, and their possible relation to integrability

asin §2.3.4.

General results

Now, we derive several identities involving the associated bracket (both as a Loday bracket on A
or a Lie bracket on A/[A, A]), whose importance will be made precise in Chapter4. All proofs

are postponed to § 3.3.2.

Lemma 3.1.5 Forany k,l > 1, we getin A'/[A’, A’

{«* 2!} =0, {2F a cﬁxl} =kal, cﬁka (3.12a)
k
<Z Z) <a dpa”dl, L R r+a:lc//3xk+z rafycéxr>

+ ~o(a,y)(al, cabal,cpa’ + al,dabal cyat)

l\D\)—‘

{a, cat d cﬁx

el

+ —o(e, B)(al, cﬁxka/ cat —ad cakal cﬂxl)

+ ~[o(e, @) + bae] alycla®al cﬁx — 7[ (B,7) + d54] agcéxka;cgwl

+ dae (zx + Za/\c/\x ) a’vclﬁxl

N — DN

— 08y a x| zat + Z aLchl . (3.12b)

In fact, (3.12a) holds in A’ for the left Loday bracket {—, —}. A similar statement is true for the
different variants of Lemma 3.1.5 that we state in the remainder of this subsection and in § 3.2.3.

(We will not write it explicitly to keep those results as simple as possible.)

As a first variant of Lemma 3.1.5, it seems natural to try to write the analogue of this result when

x is replaced by z.
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Lemma 3.1.6 Foranyk,l > 1, we getin A’ /[A’, A’

{2F 21y =0, {d C%zl} =0, (3.13a)

{d.c, 2~ Cﬂz <Z+Z> (a dyz"al dlz T gl dy2 Sl Tafycézr)

1
//k+l k1 1 ror kool
+CLCCL —i—OOé”)/ zacz+a ZCLCZ
By 2( )( B 5)

1
a;cégzkﬂ alcl + 20( B)(al, cﬁzka’ 2t —al 2Pl cﬁzl)
1
+ 5[0(6’a) + Oae] al, 2Rl cﬁz [ (B,7) + d54] a;cézka;cbzl

-1

! k+I+1 ' korog Ll

+ ae <awcﬂz + E a\chz"a cﬁz>
A=1

—bgy | d\c ’“““Jrza cefalc ] (3.13b)

Moreover, (3.13a) holds for any k,l € Z.

This time, we can see that C[z*!]/[C[*!],C[¢*!]] is an abelian subalgebra of A’/[A’, A'],

whose Lie bracket with any element in the infinite set {a;c’ﬁzk | k€ Z, 1 < a,B < d} vanishes.

A modification of those two results consists in using the elements (vq, wq, ) that originally appear
in the definition of A (or A’). Moreover, it allows us to work in greater generalities. Consider
u € {x,y, 2, e + zy}, and assume that we are in A if u # z, and in A" if w = 2. We have that
e(x) = +1, e(y) = —1, and we choose to set €(z) = —1, e(eg + xy) = +1. Then we can write

fu,u} = Le(u)[u? ® eg — eg ® u?]. Furthermore, we have in each case

1 1 1
{u,wo } = 560 ® UWy — JU R wo, Lu,va} = vau ® eq — la Qu. (3.14)

Indeed, all these double brackets are given in that form in §3.1.1 and §3.1.2, or they can be
computed for u = eg + zy. Consider the elements wavlgul foranyl e Nanda,3=1,...,d. In

the case u = z, we have for all « that w,v1 2! = al,¢j 2t~ 1.
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Lemma 3.1.7 Forany k,l > 1, we have in A/[A, A] (orin A'J[A’, A'] when u = z) that

{u¥ u'y =0, {uF wavgu'} =0, (3.15a)

1
{wy vk wavpu'} =3 lo(7, B) + o(e, ) — o(e, B) — o(7, )] waveuX wyvgu!

1 1
+ 50(7, B) wavg woveuFt 4 50(6, @) wavguF T w, v,
1
- 50(6,5) Wavaut wyveu! — 50(7, ) wavgu! wyveu®
1 1
— 048 [waveukH + §wav5 wyveukﬂ + iwaveuk w,yv/gul] (3.15b)
1 1
+ Oe [w.yvguk"’l + Ewavguk'H WA Ve + §waveuk wwvgul]
1 k—1 l
+ ie(u) [Z wavguk+l_7w7U6uT + Z wavguk+”w7v€ul_"]
=1 o=1
1 -1 k
— ge(u) [Z wavgu"wvvgukﬂfg + Z wavgukTwwvsu”T]
o=1 T=1

The next result follows from Definitions 2.3.35, 2.3.37 and the remark after Lemma 3.1.5.

Corollary 3.1.8 The element w is strongly involutive. Furthermore, if I(u) is the subalgebra of
A (or A’) generated by B, u and elements wavguk, we get an involutive chain Clu] C I(u) C A

(or A').

Embeddings of quivers

We now consider two constructions of families of elements in involution, which are associated to

subquivers of Q. Proofs for all non-trivial results are provided in § 3.3.3.

First, let Qp be the quiver with vertices {0,000} and arrows z,y : 0 — 0. In terms of the
construction described before Lemma 2.3.14, this is the subquiver @’ supported at I’ = {0} to
which we add the vertex oo as a disconnected component. Next, let Q1 be obtained from Qg by
adding arrows vy : o0 — 0 and w; : 0 — oo. Similarly, we can consider Q1,...,Qq, Where
Q. is obtained from the previous quiver Q,_1 by adding v,, w,. Clearly, Q4 = Q. We can take
on each subquiver Q,, the ordering obtained by restricting (3.1) to the arrows of Q. This gives

a quasi-Hamiltonian structure on A, the algebra CQ,, localised at the elements €4(a) T aa™ for
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a € Q. This yields in turn a chain of quasi-Hamiltonian algebras
AOCA1CA2C...CAd:A, (3.16)

which can be localised at z. In particular, note that the moment map ®(®) of A, is defined in any

Ag, B > a. Moreover, it can be obtained inductively as

®O = (eg + zy)(e0 +yz) ' + e, D =V 4+ wave) M1+ vaws) . (3.17)

We begin by only considering the embedding Ag C A. Let ¢ = &g = (eg + xy)(eo + yx) 1,
or xzx 1271 when we localise A at . We also assume that there is a formal inverse in A to

u € {x,y, z,ep + xy}, so we work in the localised algebra if u is not already invertible.

Proposition 3.1.9 Let Uy ,, = u(1 +ne), U_,, = u(l + n¢~1), for arbitrary n € C playing the

role of a spectral parameter. Then, if e(u) = —1,

{US Uyt =0 mod[A Al foranyny €C. (3.18)
If e(u) = +1,

{UL,, ULy} =0 mod[A,A],  foranyn,n €C. (3.19)

The result also holds for u = = 4+ y~ !, e(z +y~!) = +1, if we decide to localise at 3. We get

the following by definition 2.3.29.

Corollary 3.1.10 Assume ¢(u) = —1 and for all K € N, develop Ufw = Zszo ugc ;n". Then
any two elements in the set {ug | K € N, 0 < k < K} are in involution. The same holds for

e(u) = +1 with U_ ,, instead.

Proof. We use Proposition 3.1.9 to get all brackets in the discussion below. First, takingn = n' =
0, we get that {ug o, ur o} = 0 for all K, L € N (though we already knew it by Lemma 3.1.7).
This gives by linearity, taking only ' = 0, {Ufm — ugo,uro} = 0. Since %(Uf_f77 —uff) =
ug,1 + o(n), we get from our previous computation that {ux 1,ur 0} = 0 by dividing by 7 then
taking 7 = 0. Repeating the argument, {uf j,ur 0} = 0 for all K < K and all L. Repeating the

argument by developing in terms of 7/, we can conclude. O

If we consider the full chain given in (3.16), we can get a different result. To state it, we restrict

to the cases u € {y, 2}, and we define the element u,) = ®(@)y, for each 0 < o < d.
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Proposition 3.1.11 Forany K,L € N, 0 < «, 8 < d, the elements u{g ),u(Lﬁ) are in involution.

Note that we can write y(g) = (eo+xy)y(eo+zy) " and z(g) = zzz ', hence Proposition 3.1.11
gives other families of elements that commute with any ¢ in the Lie algebra A/[A, A] (or ¥ in

A'J[A’.A") for any d.

Computations for the Loday bracket

The translation of Proposition 3.1.9 on representation spaces is that for e(u) = —1 the
functions (tr X (U, )) ken Poisson commute after quasi-Hamiltonian reduction, as we will see
in Chapter4. It is also true for (tr X(Uf(m))KeN with e(u) = +1. By definition of the Poisson
bracket, we have in fact that such functions are commuting under the quasi-Poisson bracket, i.e.
on the representation spaces before reduction. Hence the flows defined by the corresponding
vector fields {tr X (Ufm), —}p (again, before reduction and it is similar for the other families)
commute. If we can integrate the flows before reduction, it suffices to project them to get the
flows on the reduced space. This section deals with the derivation of the defining vector fields

before reduction, see also the end of §2.3.4 as we will make an extensive use of (2.38).

Lemma 3.1.12 Write U, = 2(1 + n¢) with ¢ = zza~'271. The left Loday bracket {—,—} :
A’ x A" — A satisfies for any K € N*

1 1

E{U,f,x} =— nngU,f(flzx — foﬁlz, E{U,f(, z} = —zUé{flz + Ué(flz2 )
1 1
E{U;(,UB} :O, E{Uf,’u)g} =0.

Let A, be the algebra A localised at y in the same way as we obtained A’ from A.

Lemma 3.1.13 Write U, = y(1 + n¢) with ¢ = (eo + zy)(eo + yx) . The left Loday bracket
{—,—}: Ay x Ay — A, satisfies for any K € N*

1 - — . .
AU ay = = U = 2Oy = noU (eo + ya),

1 - _ — g 1 - 1 -
E{Uéﬁy}:—y(]f ly—i—Ué( 1y2, ?{Uf,vﬁ}zo, E{UJ(,U},@’}ZO
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Lemma 3.1.14 Write Un = 2(1+no~Y) with ¢ = xzx=12~1. The left Loday bracket {—, —} :
A’ x A" — A’ satisfies for any K € N*

7 Uf, z} :sz_lx + nqb_lf]f_lxz,
%{Uf,vﬁ}zo, %{U;ﬂwﬁ}:o.
Note the similarity of Lemmae 3.1.12 and 3.1.14 if we swap z and z.
Lemma 3.1.15 Write U, = (eg+xy)(1+n¢ ") with ¢ = (eg+zy)(eo +yx)~". The left Loday
bracket {—,—} : A x A — A satisfies for any K € N*
%{Uﬁ w} == Uy Yeo + zy)z —nad ™ Uy~ (eo + 2y)
AT (o + 2y)} =(eo -+ 2y) T (eo + 2y) — U eo +a)?,
%{Uf,vﬁ} 0, %{Uf,wﬁ} ~0.
All proofs can be found in §3.3.4. Next, we can state similar results for the elements given in

Proposition 3.1.11, see also § 3.3.4 for the proofs.
Lemma 3.1.16 Write z(,) = Oz with &) given in (3.17) for 0 < o < d. The left Loday
bracket {—,—} : A’ x A" — A’ satisfies for any K € N*
1 1
?{Z(Igz)al‘}:_'z{;)x’ E{Z{;),Z}:O,
1 (o 1 (o
?{z{;),vlg} :vgzz(l;) 1p(a) E{Z{;)’wﬁ} = —zz(lz) 1! )wﬂ, <,
L
K
Moreover, {z(Ig), 2y} = {z{g), o} =0,

1
{z({i),vg} =0, E{z{é),wg} =0, f>a.

Lemma 3.1.17 Write y(,) = Py with ®@) given in (3.17) for 0 < a < d. The left Loday
bracket {—, —} : A x A — A satisfies for any K € N*

1 i 1
=Wy ot ==y oY — iz, =yl vk =0,

1 1 e

= {Wlay va} =vayuyy @ {y(h) wad = —yuy W, B<a,
1 1

?{y{;)avﬂ} =0, ?{y{;ywﬁ}z()? ,8>Oé.

Moreover, {y{;), Yy} = {y(l;)’ o} =0,
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Figure 3:
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The double of a cyclic quiver on m vertices with general framing. The thick arrow

oo — s represents the d elements (vs o )q, While the thick dashed arrow s — oo represents their

ds doubles (ws q)a-

3.2 Cyclic quivers

Fix an integer m > 2 and let I = Z,,, = Z/mZ. When we consider I as a set, we identify it with

{0,...,m—1} by sending an element s € I to its representative in {0, . .., m —1}. Moreover, fix

d = (do,...

,dm-1) € N such that |[d| = 3", ; ds > 1. Without loss of generality, we simply

assume that dyp > 1 while ds € Nfor s € I\ {0}.

We look at a quasi-Hamiltonian structure associated to (the path algebra of the double of) a cyclic

quiver on m arrows, see Example 2.2.2, with framing corresponding to d. We explicitly define

the quiver (4 in the following way. Let Qg be the quiver with vertex set I=1U {o0}, and whose

edge set consists, for all s € I, of ds + 1 arrows given by z, : s = s+ 1 and v, o : 00 — s with

a=1,...

, ds. There is no arrow oo — s when ds = 0. The double Qq of Qq is then given by the

same vertex set and 2m + 2|d| arrows given by the ones above together with ys = x% : s+1 — s,

— *
Ws,0 = Ug,

o 8—ooforalll <o <dsands € I, see Figure 3.

We write CQq for the path algebra of Q4, and we let A denote the algebra obtained by inverting

the elements e;(,) + aa® for all a € Q4. These are B-algebras for B = @,c;Ces ® Ceoo. We
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consider the ordering < on the vertices of Qq given by

at0 : To < Yo < Tm—1 < Ym—1 < V0,1 <wWp,1 < ... <V,dy < Wo,dy (3.20a)
at s : Ts <Ys < Ts—1 < Yso1 < Vg1 < Ws1 < .o < Vg g, < We dg (3.20b)
at oo : V0,1 <wo,1 < ... <Vody <Wody <Vl <Wpp < ...
e < Um—1,1 < Wm—1,1 < - < Um—1dio1 < Win—1,dum—1 (3.20¢)
Here, we omit the elements v 1, ..., ws 4, in the ordering at a vertex when d,; = 0. The ordering

just defined is not induced by a total order on Qgq.

Remark 3.2.1 For the remainder of this section, we adopt several conventions, some of which

have already been noted.

The indices r, s, p, q range in I, and when we write o(r, s) we mean oy, (1, s"), the value of the
ordering function on m elements (defined in Section 1.5) evaluated on the pair (1',s") which is

the representative of (r, s) under the identification of I x I and {0, ..., m — 1}*2 as sets.

When we consider a couple (s, ), for example as index of vs o, we assume that s € I as we
have just explained and o ranges over the set {1, ..., ds}. We omit such couples when ds = 0.
We call those pairs (s, ) the admissible spins (or spin indices). The greek indices «, 3,7, €

corresponding to such couples follow the same convention.

The notation 6,s0(cv, 3) corresponding to admissible spins (s, «), (1, B) takes the value 0 if r # s,
while if r = s it denotes oq4, (v, ), the ordering function on ds elements evaluated on the pair
(o, B), which is well-defined since by convention o, 3 € {1,...,ds}. In the latter case if ds = 0,

this identically vanishes.

3.2.1 Quasi-Hamiltonian formalism

The algebra A = CQ( is quasi-Hamiltonian by Theorem 2.3.9, and we can characterise

et<a)+aa*)

its double quasi-Poisson bracket using Proposition 2.3.12. On the arrows forming the cycle, we
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have that
1 1
{xr, 2} = 56(37,_1) Tp1Ty Q€ — 56(5’r+1) €ri1 @ TpTpyt, (3.21a)
1 1
{yrys} = 55(5,7"—1) er @ YrYr—1 — 55(5,7“-5—1) Yr41Yr @ €r41, (3.21b)

1 1
{{l‘m ys}} = 557" ery1 @ ep + §yrxr ®er + §€r+1 & TrYr

1 1
- Qé(s,r—l) Tr @Yr—1 + 55(s,r+1) Yr41 Q Ty . (3.21¢)

For these arrows with the framing arrows, we can find

{zr, ws o} = %5(5,1”—&-1) €r41 @ TpWri1,a — %&«s Ty ® Wra, (3.22a)
{zr vsal = %57«5 Vp,alr ® € — %%HI) Vrtla @ Ty, (3.22b)
{yr,wsa} = %57“5 er @ YrWr,q — %5(5,7«“) Yr @ Wril,a, (3.22¢)
fvr,vsa} = %5(5,T+1)UT+1,o¢yr ® eptp1 — %&nsvr,a ®Q Y . (3.224d)

Finally, between the framing arrows, we get

{vsarvrpl = — %o(s, T)Vs,0 @ Ur g
— % dsro(a, B) (Ur g @ Vs 0 + Vs,a @ Urg) (3.23a)
{wsa,wrp} = — %o(s, T)Wr 3 @ We o
— % dsro(a, B) (wy g @ We.q + Wsa @ Wrg) , (3.23b)

1
{{Us,om wr,ﬁ}} = *0(57 T) Wy, BVs,a0 & €co
2

1 1
+ 5sr6aﬂ (65 ® eco + §wr,[ﬁvs,a ® eco + 565 ® Us,awr,ﬁ’)

1
+ 5 6sr0(a’ 5) (65 @ Vs,qWr g + Wy Vs o @ 6oo) ) (3.23¢)

All double brackets can be easily obtained. We limit ourselves to show (3.23a), leaving the rest
to the reader. To evaluate {vsq, vrﬁ}, if s = r, we just have to remark that it is the same
computation that leads to (3.3a). So it remains the case s # r, where we only have t(vs ) =
oo = t(vy ). If s < r, we get by Proposition 2.3.12 that {v, o, v, g} = _%Us,a ®@uvpg. If s >,
we have similarly {v; g, vs o} = —%furﬁ ® Vs,a, S0 that by cyclic antisymmetry {v, o, v, 5} =

+%Us,a ® vy, g. Considering all cases at once, we have precisely (3.23a). It will be useful to
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remark that we can write from (3.23c) (note the change of indices!)

{{ws,aa vr,ﬁ} = O(S, r)eoo & Ws,aVr,3 — 557"5046600 X e

(3.24)

+ DN | =

1
5557“[0(057 /8) - 60(,8](600 ® Ws,aVr + VUr, BWs o & 65) .
In the form (3.21a)—(3.22d), the equations involving the arrows z g, ys do not seem to be a natural

generalisation of (3.2a)—(3.2d). To exhibit their similarities, introduce the elements z = ) _ s,

Y=, Ys sothatz € BsesAesiq and y € GyesAes_1. Then we can write (3.22a)—(3.22d) as

1 1 1
{x7 ws,a} = 5 €s Q TWs,o — 5 esT ® Wsq , {{xa Us,a} = 5 Vs,al & €5 — 5 Vs, ® Tes,

1 1 1 1
{{y7 ws,a}} = 5 es ® YWs o — 5 esy X Ws, o {{y, Us,oa}} = 5 Vs,aY X es — 5 Vs« X yes .

which is similar to (3.2¢)—(3.2d). Furthermore, set F,, = Zse 1 €st+a Qe forany a € Z. We have
for example

Flzzei+1®eia F—lzzes—l®eszzes®es+l'

sel sel sel

Then, we can show that

1 1
fo.2} =5 (@R -F2) . fyyh = —5 (P - Fay) (3.252)
1
{z, v} =F + 5 (yebr + Fioy — aFiy + yFi) (3.25b)

2
which contains in particular (3.2a) and (3.2b) if we extend these double brackets to the case
m = 1, where then I = {0} and F,, = ey ® e for all a € Z. Let us prove that the first identity

holds, the other cases being similar. We have by (3.21a)

1 1
{{ZE,JI}} :Z {{mraws}} = 5 Zxr—lxr X er — 5 Zer-i-l X TrZr41
T,8 r r

1 1 1 1
= 51’2 Z€7~+1 Qe — 5 Z€r+1 & €Tx2 = §x2F1 — §F1(1}'2,
T T

where we used that ze, 1 = 2re,41 = T, and e, = €,2, = ;.

All these double brackets define the quasi-Poisson structure on A. To fully understand the quasi-

Hamiltonian structure, remark that the moment map is given by ® = ES o, + b, where

—
Dy =(es + sys)(es + ysflxsfl)_l H (es + ws,avs,a)_l € esAes, (3.26a)
1<a<ds
— —
Poo = H H (oo + Vs,alWs,a) € €ocAbos (3.26b)

1<s<m—1 1<a<ds
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by direct application of Theorem 2.3.9. For q = (qo, . .., ¢m_1) € (C*)! and g, € C*, we can

set § = ., ¢sés + gootoo and form the multiplicative preprojective algebra® A7 = A/(® — q).

3.2.2 Additional localisation

Motivated by the localisation for the Jordan quiver and subsequent developments, see § 3.1.2, we

consider the algebra A’ = A, obtained by inverting z. To define the latter, we add elements

z;l = esp175tes to A such that zsz;! = ey = 2w forall s € I. Thenz™! == > 2t
satisfies 7271 = 1 — e5o = o7 '2. We have that z, := ys + 2;! € A’ and z;1 € A’ since
27t = (es + x5ys) ‘a5 We form the element z = y + 271 = 3" 2, which is readily seen to be
such that z € @zes.1A’es. We can compute double brackets with z and get
Lo 2
fz2h =—5 (2°F_1 — F_12%) (3.27a)
1
{z, 2} =5 (zxFy + Fixz — xF1z + zFix) | (3.27b)
1
{z,2} =— 5 (xzF_ 1+ F_qzx — zF qx +xF_1z) (3.27¢)

where the last identity is obtained by cyclic antisymmetry together with the following

straightforward result.

Lemma 3.2.2 Assume that a € ®gsesA'esiy, b € ®sesA'es_, for some v € 7. We have that

(baF,)° = F_,ba and (aF,b)° = bF_,a.

It is also easy to show that

1 1
{z,wsa} = 565 ©2Wsa = 5 €2 O Wsa,
(3.28)

1 1
{{Z, Us,oz}} = 5 Vs,a? @ €5 — 5 Vs,a & z€5 .

We choose to introduce the following spin variables in A’ :

/ /
Ug o = Ws,ay Cg1 = VUs1%, C;a = Us,a(es + ws,a—lvs,a—l) . (es + ws,lvs,l)z , (3.29)

such that the elements c; , admit an alternative inductive definition as

a—1

/ /
Cs,a = E Us,aws,)\cs,)\ + Vs,a% - (330)
A=1

®Recall that we can recover a total order to match the definition given in [56], see Remark 2.3.10.
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It is important to remark that a, , = esaj ,€c0 and ¢ , = €xoCs o€s—1. This is due to the fact that
Vs,aZ = Vs aZs—1. The reason for this mysterious choice of elements comes from the fact that, in

A’, the identity &, = gse; with @, given by (3.26a) for some gs € C* is equivalent to

ds
-1 _ / /
TsZsTy_1 = (sZs—1 1 qs ) Qg Cs g -

a=1
We can now formulate the double quasi-Poisson bracket evaluated on the elements
(x,2,d. ). Only the double brackets involving c o, are not already known, and we compute

S, sa

them in §3.3.5.

Proposition 3.2.3 Foranyr,se€l,a=1,...,d;, v=1,...,d,,

1 1
{{x, a;’a}} 25 es ® xa;a — 5 esT X a;’a

{zd, . }} :% es @ zal, % €z ® a4, (3.31a)

fo.d B —%cs V@ ot oy ® Tea,

{{z,csa}}——icsazébes 1+; Coo @251, (3.31b)
A 5o(s, ral, ®d,, - %@Tomﬁ) (d, ®d,a+d,0d,). (3o

Proposition 3.2.4 Foranyr,se€ l,a=1,...,ds;, 6=1,...,d,,

1 1
b0 gl =50(5,7) €0 ® €405 = 50(r041) Crpllsa ® €

2
1
+ 50 (0(a, B) = dag) €00 ® @l a0 5 (3.32)
8-1
— (557~(5a5 (eoo ®esz + Z €oo @ a/s)\cls,)\> )
A=1

where the last sum is omitted for = 1.

Lemma 3.2.5 Foranyr,sef,a:1,...,ds,ﬂ:1,...,dr,

1

{{USO“ T,B}}__z 5T vSOé@c ﬂ+ 5(rs+1) ﬂ®vs,o¢
1
2

(3.33)
5 ( (Oé, 5) + 5&5) Vs, & C;ﬂ .

Proposition 3.2.6 Foranyr,se€ l,a=1,...,d;, 6=1,...,d,,

1 1
{{cls,a, C;,g}} = —50(8, T) cg’a ® c;’ﬁ + 5587«0(04, B) (c;ﬂ ® c’s7a — cg’a ® c;ﬁ) . (3.34)
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It is interesting to compare these double brackets with those for a framed Jordan quiver obtained

in§3.1.1 and §3.1.2.

3.2.3 Associated brackets

For the rest of this subsection, we write £ = [ to denote that k is congruent to [ modulo m, for
m

given k, ! € Z. This notation is also well-defined on elements of [ = Z,,

We now translate most of the results from § 3.1.3 to cyclic quivers. We will only keep the results
needed for our study of the corresponding MQVs in Chapter 5. All proofs can be found in § 3.3.6,
§3.3.7 and §3.3.8.

General results

Lemma 3.2.7 Foranyr,s,p,qcl,a=1,...,d,B=1,....d,y=1,...,dpe=1,...,dy,
and k,1 > 1, we have in A’ /[A’, A']

koY N I _ ry k+1
{2%,2'} =0, {2% a5, 457"} = kag ¢ g2" ", (3.35)
1k
ro ko l /o kv ro k+l—v 1 1 v
{0p7Cqet” U aCrpt'} = §§ :(asa O, 8" W Co e T 5,0 Cr g7 Up,yCq,et )
v=1
1 l
/ k+l—v / k+l—v 1 / v
§§ :( s, Tﬁx apchex +asa Crp% ApyCq,et )
v=1

1
+ 5lop1) = o, 5) + 0(q, 5) — ola, )] a ocf a5
6pso(a v) ( ayCy exka; oCr 51’ + a4 flgacka;, Cr. ﬁxl>

ro k.t .1 rg Lk l
+ §5qr0(€, B) (as oCr g Ty Co T — A\ C T, Ch s )

1
+ S0uslo(e, @) + Sac] ah o a1, g

Py
1 / k 1 !
- 2 [ (5 ’Y)—f_(sﬂ’}’] sacqex ap’)’crﬁx
e—1
A S SR P
A=1

11k 1 l
— OprOpy g oCq 2" | 2+ E Uy Cpp | T -

(3.36)
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In particular, in order for the elements on which we evaluate the bracket to be nonzero, we need

k = 0 for z¥, while | =5- (r —1) for a’syac;nﬁxl, and k =p- (g —1) for a;wc;,emk.

Write 17 = 1 —eoo = ), €5, and consider u € {x,y, z, 17 + xy}. We assume that we work in A
if u # z and in A’ otherwise. We set €(z) = €(17 + 2y) = +1, €(y) = €(z) = —1 to extend the
map € : Qq — {£1}. We also set O(u) = e(u) if u = z,y, 2 while (u) = 0 when u = 1; + zy,

so that u € ©sesAe,yg(y)- Then, it is easy to check that we can write in all cases

1
fu,u} :§e(u)[u2F9(u) — Fpuyu?], (3.37a)
1
{u7 ws,a} 25 €s @ UWg o — 5 esU @ Ws q ,
1 1
fu,vs 0} =3 Usall R eg — 3 Usa ® ues . (3.37b)

We can prove the following result.

Lemma 3.2.8 Foranyk,le N, r,sel,a=1,...,ds, 3=1,...,d,,
{uk,ul} =0, {uk,w&avr,gul} =0, (3.38)
andforp,qe I,y =1,...,dp, e=1,...,dy,
{wp77vq7€uk7 ws)avrvﬁul}
1
:i [0(]?, T) + O(qa S) - 0(p7 3) - O(qv 7“)] ws,avq@uk wp,’YUTﬂul
+ iépso(% 7)(ws,avq,eukwp,vvrﬁul + wp,'yvq,eukws,avnﬁul)
1 k l k I
+ §5qr0(ﬁa €)(Ws,aVg,et" Wy Vr, gU" + Ws o Uy, U Wy 4 Vg,eU)
=5 5 k l k+1
+ 9 gs[0(€, @) + ea](Ws,aVg,e " Wp Uy gU + Ws Uy, gUT " Wp Vg, )

1

B 551)7" [o(B,7) + (537](w&avq’eukwpﬁvr,gul + wsu”hﬁ“’pﬁvq,eukﬂ)

(3.39)
k+1

k+l1
+ 0gsOea WpyUr,gU" " — OprOyg Ws,alq,el

k—1 l
1 _ _
+ ie(u) Z ws,avnﬁukH TWp Vg, + Z w&avr,ﬁ“HTwpﬁUq,eul !

T=1 T=1
1 -1 k
T k+l—T1 k—1 l+7
- §€(U) E :ws,avrﬁ“ Wp,yVq,eU + E :ws,avr,ﬁu Wp,yVq,eth .
o=1 T=1

These identities hold directly in A (or A’ for u = z). If we work modulo commutators, the

elements on which we evaluate the bracket are nonzero only if kf(u) = 0 for u*, while 16(u) =
m m
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s — r for wsyavr”@ul . This follows from the decomposition u € @SesAes+9(u). Remark also that
when p = ¢ = r = s, (3.39) can be written in the form (3.15b). Indeed, this is obvious for
u = 17 + zy, while in the other three cases we have that [ = [gm, k = kgm so we replace u™" by

u and in the last sums only the terms 7 = 7ym have a nonzero contribution.

An immediate consequence of Lemma 3.2.8 and Definitions 2.3.35, 2.3.37 is as follows.

Corollary 3.2.9 The element u is strongly involutive. Furthermore, if I (u) is the subalgebra of A
(or A') generated by B, u and elements ws,avrﬁul, we get an involutive chain Clu] C I(u) C A

(or A').

In the particular case where u = 17 + xy, we have that u € $,esAes and we can get a slightly

different result.

Lemma 3.2.10 Fixu =17 +xy. Forany k,l e N, r;s,;t e, a=1,...,d,, B=1,...,d,,
{(esues)k, (eruer)l} =0, {(etuet)k,w&avrwgul} =0. (3.40)

In particular, for any t € I, the element eyuey is strongly involutive. Furthermore, if I;(u) is the
subalgebra of A generated by B and the elements egues, wsﬂvrﬂgul for all possible indices, we

get an involutive chain Cleuet] C It(u) C A.

Embeddings of quivers

Remark 3.2.11 Recall that the admissible spin indices (s,«) introduced in Remark 3.2.1 are
such that s € I, and 1 < a < dg (where we omit such terms for ds = 0). We put a total order on
these couples by setting (s, «) < (r, ) whenever s < r as elements of {0, ..., m — 1}, or when
a < Bif s =r. Wealso denote by 5 € I the element such that (3, ds) is maximal with respect to

this ordering. Equivalently, S is the highest number in {0, ..., m — 1} satisfying ds # 0.

Let Ord(d) = {(s,) | s € I, 1 < a < ds}be the set of admissible spin indices, which is a
totally ordered set by the above construction. If we consider {1,...,|d|} with its natural total
order; there is a unique map p : {1,...,|d|} — Ord(d) preserving total orders on both sets. It

satisfies p(1) = (0,1) and p(|d|) = (8, ds).
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First, let Qo be the cyclic quiver obtained by removing the framing vertices vs o, Ws o from Qg.
In terms of the construction described before Lemma 2.3.14, this is the subquiver @’ supported at
I to which we add the vertex oo as a disconnected component. Next, let Q) be obtained from Q
by adding arrows Up(1) = V0,1 1 00 —> 0 and Wpy(1) = Wo,1 : 0 — oo. Similarly, we can consider
Q1,Qo, ..., Q‘d|, where Qj is obtained from the previous quiver Qj,l by adding vy, wp(j).

Clearly, Q‘d| is our original quiver Qq.

We can take on each subquiver @)}, j € {0} U {1,...,|d|}, the ordering obtained by restricting
(3.20a)—(3.20c¢) to the arrows of Qj. This gives a quasi-Hamiltonian structure on A;, the algebra
CQj localised at the elements e;(,) + aa* for a € Q;. This yields in turn a chain of quasi-
Hamiltonian algebras

AOCA1CA2C...CA|d‘:A, 3.41)

which can be localised at x. In particular, note that for any 7, ;' € {0} U{1,...,|d|}, 7 < j', the
moment map &) of Aj is defined in A ;. Moreover, it can be obtained inductively as
q)(()) = Z(es + xsys)(es + ys—lws—l)_l + 0o,
sel (3.42)
S =00 (1 4+ wy(5y0,(3) T (L + Vo)) -

We begin by considering the simplest embedding Ay C A. We define ¢ = >, ¢ by setting
b5 = q>§0) for any s € I. Thatis ¢s = (es + Tsys)(es + ys_175_1) L or ¢ = a;szswg_llz;_ll
when we localise A at x. For the next proposition, we assume that we work in A localised at

u € {r,y,z,1; +xy}.

Proposition 3.2.12 Let Uy ;) = u(l + n¢), U_,, = u(l + n¢~1), for arbitrary n € C playing
the role of a spectral parameter. Let K, L € N*. Then, if e(u) = —1,

{Ufm’ Uin/} =0 modl[A,A], foranyn,n € C. (3.43)

If e(u) = +1,

{UE,,UL,,} =0 mod[A,A], for any 7,7 € C. (3.44)

Note that when u is not 1; 4+ zy and K is not divisible by m, then Uf , = 0mod [A, A] and the
result is trivial. Indeed, U. fm € ®sesAegy ko(u)- This is also true for the other functions Uff p N

Proposition 3.2.12. The next result is proved as Corollary 3.1.10.
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Corollary 3.2.13 Assume e(u) = —1 and for all K € N, develop Ufm = Zszo ug . Then
any two elements in the set {uy j, | K € N, 0 < k < K} are in involution. The same holds for

€(u) = +1 with U_ ,, instead.

Considering this time the full chain (3.41), we can get a different result. To state it, we assume
that u € {y,z, (1 + zy)~'}. We also set u(jy = ®Uu for any j € {0,1,...,|d|}. Note that
yoy = (s +ay)y(ly +zy) ' € Aand z(p) = zza~t € A

K

Proposition 3.2.14 For any K,L. € N and 0 < j,j' < |d|, the elements u(j),u(Lj,) are in

involution.

Computations for the Loday bracket

We finish by describing the Loday bracket between generators of A and the functions from
Proposition 3.2.12 that commute in A/[A, A]. See the discussion before Lemma 3.1.12 for a

motivation.

Lemma 3.2.15 Write U,y = z(1; + n¢), where ¢ = xzx~'2~1. The left Loday bracket {—, —} :
A’ x A" — A satisfies for any K € mN*
1 1
?{Uf,a:} =— nqu;(_lzx - $U,§(_1Z, ?{Uf, z} = —sz_lz + Uf_le ,
1 1
?{U’f'{(7vs7a} =0, ?{vaw&a} =0.
Denote by A, the algebra A localised at y.
Lemma 3.2.16 Write U, = y(1; + n¢) with ¢ = (11 + xy) (11 + yx)~ 1. The left Loday bracket
{—,—}: Ay x Ay — Ay satisfies for any K € mN*
1 el ke .
AU ay = = U = 2Oy — ol (1 + ye)
1 - e 1 - 1 -

E{U;(ay} :_yUf 1y+Ur§( 1y27 E{U;(av&a} :07 E{Uf7w87a} =0.
Lemma 3.2.17 Write Un =z(17 +n¢~Y) with ¢ = xzx= 271, The left Loday bracket {—, —} :
A" x A" — A’ satisfies for any K € mN*

1 - A A 1 - A -
0 ey == U 4 aU e, AU 2} = 207 4o Uy ez,

1 - 1 .
E{U;(,U&a} :0, E{Uf,w&a} = 0
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Lemma 3.2.18 Write U, = u(1; + o) with ¢ = (17 + zy)(1r + yz)~' and u = 11 + xy.
The left Loday bracket {—,—} : A x A — A satisfies for any K € N*

1 - - - - -
T} = = O o O, O = <D

1 - 1 -
?{Uf,vs,a} :0, g{Ué{,’UJS’a} =0.
We can also do the same for the elements given in Proposition 3.2.14.

Lemma 3.2.19 Write z(;) = ®Uz with ®U) given in (3.42) for j € {0,1,...,|d|}. The left
Loday bracket {—, —} : A’ x A" — A’ satisfies for any K € mN*
L K K L K
Ko = A gl e =0
1 _ , 1 _ ; .
E{zg),v&a} :vs’azzg.) 1) , E{zé{-),ws,a} = —zzg.) 1<I>(J)w57a, (s,a) < p(j),
1 1 .
E{Zé{')vvs,a} :07 E{Z{]{')aws,a} :07 (S,Ck) >,0(]>

Moreover, {zg.), 25} = {z(lj.), dUY =0,

Lemma 3.2.20 Write y(;y = dU)y with ®9) given in (3.42) for j € {0,1,...,|d|}. The left
Loday bracket {—,—} : A x A — A satisfies for any K € mN*

1 ! K L oP R
{ ])730} Yi) ol — YiHt ?{y(j)vy} =0,
1 (i 1 140 .
() vsal =veayy(ly 120 {yf) waa) =~y O Vwea, (s,0) < 0(9),
1 1 .
E{yg)fvs,a} :07 E{y([j('yws,a} 207 (S,Oé) >p(])

Moreover, {y(] G} = {y , 00} =0,

Lemma 3.2.21 Write u(jy = ®YWu with ®U) given in (3.42) for j € {0,1,...,|d|} and u =
(17 + 2y) L. The left Loday bracket {—,—} : A x A — A satisfies for any K € N*

1 1

?{ ()} :ruuf() LpU) | —{ug), uy =0,
1 1 _ ; .
?{ (j) Vs a} =Us auu( ) 1(I>(]) ?{ug), ws,a} = _uug) 1q)(])ws,a y (Sa a) < P(]) s

1 1 .
E{Ug)’vs,a} =0, E{ug),w&a} =0, (s,a)>p(j).

Moreover, {u(] 0t = {ufs Gy ® @} =o0.
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3.3 Remaining proofs

3.3.1 Double brackets for framed Jordan quivers

We successively prove Proposition 3.1.2, Lemma 3.1.3 and Proposition 3.1.4. Most computations
rely on a proof by induction based on the identity (3.8). Knowing the double brackets in §3.1.1
or §3.1.2, if we want to compute the bracket {{F, c% }} for some I' € A, we first find {T', ¢} }

and then show our statement by induction using

a—1
{{F, C;}} = Z (vawA {{F, Cl)\}} + {T, vawy} cl/\) +{T,v.2} . (3.45)
A=1

Proof. (Proposition 3.1.2.) We begin with the first equality of (3.9a). We can write

{z,v02} =vo {z, 2} + {z,v.} 2

1
:§(vazx®60+va®:pz+vaz®x—vax®z)—l—§(vax®z—va®x2)
1
zi(vazx ® ep+ Va2 ® ),

which proves the first equality in (3.9a) for a = 1. Now, we compute

{z,vawy} =va {x, wr} + {x, v} wy
1
:E(va ® TW) — Vo @ w)y) + i(vax R Wy — Vo @ xWy) =0,
so that if we assume that the first part of (3.9a) is true for any A < «, we get from (3.45)

{z, ¢} Z vawy fz, A\ B + {z, vawr} &) + {z, vaz}

A=1

2 2

a—1 a—1
vac +vaz |l xT®e +1 vac’—i—vz &
aWAC) o 0 2 aWAC) 6 )

A=1 A=1

a—1
1, 1, 1
:Zvauu T Rey+ =c\®x +§(vazx®eo+vaz®a:)
=1

l\'.)\v—l

which is exactly the first equality in (3.9a) by using (3.8). For the second equality, we compute

1 1
{z,v02} =va {2, 2} + {2z, va} 2 = 5(—1)0,22 ® eo + Vo ® 22) + i(vaz ® 2 — Vo ® 2°)
1

:i(vaz R 2 — Va2’ @ €o) ,
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which gives the case « = 1. Then, we find {2z, vowy } = 0 by noticing that the brackets for z or

z with v, and w), are exactly the same. We then get by induction that the second equation from

(3.9a) holds, too.

To get (3.9b), recall that a, := w,. We first compute

vz aafy =vs * {{z a0}t + {{vs. anjy * 2

25(60 ® vgzay, — z @ vaay,)

1
+ | %ap 2 @ eoo + 5 [0(B, @) + dag] (z ® vgal, + aLvpz ® exo)

Using {a,, vz} = — {vpz,al, }°, we can write
1
fal,, vz} zﬁ(vgafx ® z — va2ay ® €)) — 0af oc ® 2

1
+ B [o(cr, B) — bag] (vgay, @ 2z + o @ alvpz)

1 1
= — 5(a>5) (2600 & a/avgz + Qvgza'a & eg + 5&,8 oo @ Z)

1 1
+0(a<p) (Uﬁa; ®z— 5052% ® eo + 5600 ® a;vgz) ,

recalling that o(«, 8) = 6(a<p) — 6(a>p)- In particular, this yields

1 1
{{a’a, 0/1}} = —iclla'a ® eg — 5600 ® alc) — 008 oo @ 2

which is exactly the case 5 = 1 in (3.9b). Next, we need to compute

flaa, vewnlt =vs o, walf + {{aa, vs Jf wa

1
=5 o(a, A) (vgwy @ wa + Vawa @ wy)

1
— 0aB €oo @ Wy + 3 [o(cr, B) — dap] (vﬁa; R Wy + s ® a/av[gu))\) )
and this implies that

5-1 B-1

1
Z {al, vawr ¢\ = — Z [20(04, A) (vgwr @ wady + VaWwa @ WACY) + Fapeos ® WAC)
A=1

A=1
1 —
+ 3 [o(c, B) — 6ap] (vgal, ® wac) + €oo ® apvgwACY) -
A=1
In the case o > 3 this gives since w, = al,
B-1 B—-1 B-1

1
/\z:l {al,, vawr}} &y azf Sap ; oo @ WACh + 3 /\X:I (vgwA ® Wal) — s ® aLVaWACY).
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Otherwise, we just write

/-1 <8 1 6-1 a—1
Z {al,, vpwr}} ¢\ = _ 3 ( Z — Z) (vgwA ® Wa ) + VW @ WrCh)
A—1 A

=a+l1 A=1
1=
+3 /\Z:l VaaL, @ WAC + €co @ alvwACY)

Now, assume by induction that (3.9b) holds for any A\ < §, that is

A—1
>A 1 1
{a,,\} aZA ic’/\aﬁx ® eg — 5600 ® alch — Sar | oo ® 2 + Zeoo ®d,d, |,
y=1
1 1
{{ai)n Cl)\}} = §Cl)\ai)¢ ®eo + 5600 ® a;cl)\
In the first case, o > 3, we find from (3.45) and (3.8)
1 p—1 1 B—1
>
{{a/on C,,B}} aéﬁ 9 Z vﬁwkcl)\a/a ® eg — 5 Z VWAL & CL/CXC,)\
A=1 =1
B—1 1 B—1
— 5(15 ; €xo ® wAcl)\ + 2 Z 'UB'LUA ® 'U)O[CA €0 ® a ’Z)Bw)\c)\)

1 / L
— | 5 ® a,vgz + 5 V840 ® eg + 0aB €oo @ 2

1 1
— 5@/’3@; ® eg — 5600 ® A Cy — 0aplos ® (Z a\cy + z)

which coincide with (3.9b). In the second case, we get

«
<B 1 1
o) "3 [~ guamachot @ o~ s @ dhd] e 2
A=1

o

1

_ ngwa ® a + Z (—v[gw,\c)\a ®eg + 3 UBWA ® a C)\)
=1 A=a+1

1 p—1 a—1
D) ( Z - Z) (vpwx ® Wach + vV3wa ® WACY)

A=a+1 A=1

=
+ B ; (v@a’a ® w,\c’)\ + e & alavgw)\c//\)

1 1
+ <v5a’a ®z— ivﬁza’a ® o+ 500 ® a’av52>

which, after some easy manipulations on the sums, yields
12 1 1
{{a’a, C/B }} a<p 5 Z (—vﬁw,\cl/\a'a ® e+ oo ® a'avgw)\c’/\) — ivgza; ® eq + 5600 ® aLvgz
A=1

1]
5€o0 ®a,Cg,

_ 1//
——*Cﬁaa®€0+2

2
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as expected from (3.9b).
Proof. (Lemma 3.1.3.) First, we compute {v,,vs2} :
{va, vz} = {va, v} 2 + v {va, 2}

1 1
=~ 5 0@, 0) (vs ® vaz +va ® Vp2) — SUs ® Va2 + JUsZ @ Va

In particular, we get the base of induction with 3 = 1,

o) 2 fra@d;+

1 1
5 2c'1®va, for,d} = —2v1®c/1+ 20'1®vl.

This is a particular case of our statement for 5 = 1. Now, we compute

{va, vawr} =f{va, v} wr + v {va, wr}

1
3 o(a, ) (V8 ® Vawy + Vo @ VaW)) + JarU8 ® €oo

1
+ 5[0(% A) + ban] (V8 @ Vawy + VWAV @ €no) -

Assume by induction that for all A < 3,

1 1
{{va, c’)\}} = icg\ R vy — 5 (0(a, A) + Gap) Vo ® €

then we get by (3.45)
1= 1 =
{{va, clﬁ}} =3 Z VBWACK ® Vg — 3 o(a, B) Z (vg ® VaWACY + Vg & vﬁw)\c')\)
A=1 A=1
1=
+ d(a<p)Vs ® ¢y + 5 D [0, A) + barlvg ® vawach
=1
1 1
~3 o(a, B) (V8 @ Va2 + Vo ® Vg2) — 3V8 @ Vaz + SUBZ @ Va
In the case a > 3 we find
12 1 1 1
f{va, 5} ozp 3 Z VaWACK ® Vo + 087 ® Vo + 5 Z'Ua ® vgwycy + 5 + vq ® Vg2
A=1 A=1
Ll ot tnasd
= 26,3 Va 2’Ua C,g .
In the case o« = 8 we have
1 1 132 1
{va, c’ﬁ}} a=p 3 Z VEWACK ® Vg + 5087 ® Vo — 3 Z Vg ® VaWAC — 308 ® Va2
=1 =1
:lcl®'l}a— 'Ua®cl.
2P 2 s
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Finally, for o < 3 we get

B—1 B—1
1 1
{va, 5} a<f 5 Z VBWACK ® Vg — 3 Z (v8 ® VawrC) + Vo @ VaWACY) + Vg ® C,
A=1 A=1
1 -1 a—1 1
+§ Z—Z U/B@UQZU)\C,)\—5(@/3@@042""004@@/32)
A=a A=1
! & + ! &
21}5 Va2 21}@2 Va
152 1 132 1
=3 Z VBWACK ® Vo + 3087 ® Vg — 5 Z Vo @ VgWACH — 3 Va ® vp2
A=1 A=1
a—1
+Uﬁ®c;—205®vawAc& — U3 Q Va2,
A=1

which is exactly %c’ﬁ R Vo — %va ® c/’g since the last three terms cancel out.

Proof. (Proposition 3.1.4.) It is easier to use the induction in the first variable, that is
a—1
{{c’w F}} = Z (vawA * {{c&,F}} + {vqwy, T} = C/A) + {vaz, T} (3.46)
A=1

with I' = c’ﬁ in our case. By doing so, we can repeatedly use (3.9a), (3.9b) and Lemma (3.1.3).

We first compute

flvaz, oy = {va hf * 2 Fva x {2,

1 1 1 1
:iclﬂz Dva = (o(, B) + 6ap) Vaz ® 5 — icgz ® Vo + icg ® Va2

1 1
= 5 (O(CV?ﬁ) + 504,6’) Va2 & Clﬁ + 50/5 & Va2,

which gives in particular {{ ch, }} =-1d® c + %C’B ® ¢|. Now we find

{Lvatwx; gy = {{va, € * wr + vax {wr, ¢ )}

1 1 1
zic’BwA ® Vo — 3 (o(a, B) + dap) Vawy @ Clﬁ — 501/3’11})\ ® Vg
B—1

1
(0(A, B) — 0xB) €00 ® an)\clﬁ — 078 | o @ Va2 + Z oo ® vawﬂ,c’7 ,

3
y=1
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and since the first and third terms cancel out we can write

a—1
Z{vawA,cﬁ}}*c/\ =— - (o(a, B) + 6ap) ZvawkcA@)cﬁ
A=1
1 a—1
+ B B) — 5)\5) Cl)\ & an,\clﬁ
A=1
B—1
— (5(5<a)cb ® Vaz — 0(5<a) Z g ® vawvc’7 .
v=1
Now, assume by induction that for all A < «,
{ Gl = 5 B)+6xs) (@ cy —c\®cf)

and let us show that this holds for A = «. Note that it is exactly (3.11) since in the case A = 3 the

two terms cancel out. We find by (3.46)

a—1

{{ca, cﬁ}} =— Z A, B) + 98] (c/ﬁ R VawyCh — ) ® vawxclﬂ)
A 1

1

— 5 (0(0, ) +dag) D vawach @+

—_

a—1
Z (0(X, B) — 0xg) €\ ® vawxCy
=1

O |

B—1

~ Bl ® 0 — sy 3 & v,
v=1
1

— = (0(a, B) 4 0ap) Vaz @ ¢ +

L,
5 568 @ Va2

2

If > 3 we find

[y

o—

B
1
fend) =5 (- 20 | (& vamndh = f @vaunch)
A=1  A=B+1

VaWACy @ cﬁ + Z Z A ® vaw,\cﬁ
A=1  A=8

— 2 ® anAc’)\ + 1voéz ® s — lc’ X Va2
~ B 9 B 9B

192 1 1 1
== E Cls ® VawxCy — icfg@waz—l—i E VaWxCy ® g + §Ua2®0/5,
=1 A=1
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which gives us —%(c’ﬁ ® o — Cq ® ). In the other cases,

a—1
a<p
{., cg}} = Z g @ vawxcy — ¢\ ® vawrcy) — Z VaWxCy ®
2o 2o
12 1
+§ch\®vaw)\c’5 vaz®c/3+ cﬂ®vaz
A=1
and this is precisely —l—%(c’ﬁ ® Cq — Cq ® Cp). O

3.3.2 Associated brackets for framed Jordan quivers

We successively prove Lemmae 3.1.5, 3.1.6 and 3.1.7.

Proof. (Lemma 3.1.5.) The first identity in (3.12a) follows from Lemma 3.1.7 with u = . For

the second one, we compute with (3.2c) and (3.9a)

;. 1 Py 1 1 1
{z,alcsl} = 260 ©TAC5 = ST ® A Cp + 5 5 (g CpT @ eg + - 5 Uy C ® 1, (3.47)
so that we have
k

{{ZL‘k, a’acfgml}} = Z:p"_l s fa, alycp f} 2l w20

o=1

koo
+ Z Z 27 b x a’achTfl fz, 2} a7 xah
o=11=1

Thus, using the double brackets (3.2a) and (3.47)

{{SL‘k,CL/aC/BLE }} § : 2 : (a cs l‘k o+7+1 ® xl—ﬂ'—l—o—l _ alaclﬁxk—a—i-T—l ® xl—ﬂ'-l-cr—l-l)

o=171=1
k

1 _ _
+ 5 (xk 7® a:"a’ac’ﬁacl — ot @ o cﬁa:l
o=1

+ a/aclﬁxkfo%»l ® lerO'*l + alaclﬁxkfo ® l,lJrU) .
(3.48)
If we apply the multiplication m, only the last two terms do not cancel out and we find that

{zF, a Cﬁxl} = kal,cattt

Finally, to get (3.12b) we split {{a’vc’exk, a’acl’ga:l }} as

ar,cq * {{xk, a’oéclﬂxl}} + a,cy {{avcg,xl}} x 2k {{al L, acg}} o x zt



82 Chapter 3. Quasi-Hamiltonian algebras defined from cyclic quivers

Let us first reduce the two first terms. From (3.47) and (3.48) we can get

S ::a;c’E * {{xk,a;clﬁx }} Za g’ ! {=, a, }} 2T w

7 ® a;céxga;cbxl _ phmotl

Il
N
]~
—~
8
T

® a'vcéxg_la;c%xl)

o=1
1 k
! ) k—o+1 ! l+o—1 ! 1 _k—0o ! 1 _l+o
—1-5 g (aacﬁx ® a,c.x +a,c3x ® a; v )
o=1
1 k l
+ 52 :E :(aacﬁxk o+7+1 ®CL c .’El T+o—1 a'acb:ck_”'w_l ®CL C T
o=11=1
1 l
'y 1k l—7 1o T=11 1.k l—7+1
+§ E (—aacﬂm Ay Ce” QT + A CeT T a,C T D )
T=1

+
N | —
MN

(—a’ac’ﬁ:ﬂk'”_l ® a;céml_TH - a'ac,'ga:k'” ® a;chl_T)

3
Il
—_

If we apply the multiplication map, then relabel the indices we can write

k k—1 k— k
S = Z 2" ~%al a7 al,cya’ ~|— Z Z gt 7al cLatte
o=1 o0=0 =0 o=1
1 k—1 -1 —
- k—o+T1 1/ l T+o
1P IED M D > Y -5 |t
c=07=l o0=07=1 o0=17=0 o=k7=0
1 -1 l
_'_5 Z a CBI‘TCL xk—O—l—T_ Z+Z a cls xk-‘rT / é -
7=0 T=1 7=0 =1

After simplification we get

1,, 1
_ - L A N R N Y AN AV W |
S =50yCeT UaCpT — 5T 0y CelnCpT
1 k 1 ! !/ k+l k—o 1 t _l+o
+ = 5 cﬁx a,yc T +aacﬁa +Za cﬂx A, CT
+}z_:a/0/$k+la/ T
92 a®B 2: B Gy Ce
o=0
=
= ! ) _k—o ! T/ k+l T
5 Zaacﬁx av T E a cﬁx awc
o=1
+ *CL;CC/IBCL/VC/EZ‘]C—H — —alc xla;c’Eazk
—lacxka'cxl—lacxkﬂl Zacwk'”'cxlT
9 B 9 atp G- Ce :

— T-‘rO’—‘rl)
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We can continue to cancel terms modulo commutators and get

1 _ _
+ = (a’ c’Bxk 7ol a4 d cﬂmkH "a’vc’ex">

1 ( T//k+lT k+7/ll7)
2

a cﬁx Qry +a, cﬁx (., CcT

1
—a cﬂa' c’ka 5 c a cﬁka

l
] (a cﬁxra/ c k—i—l T—i—a;clﬁxkﬂ T C/.TIT) ’

T2

1
+§ /e

where we added the terms » = k, [ in the sums because they cancel out together. Meanwhile, we

compute using (3.3b) (which is {a.,, a%}}), (3.9b) and (3.11)

1456 dacs )

ol ol e ch bl o ) xd fns)
_ ! o(vy, @) (afyclE ® ap,Ch + g C @ a;clﬁ)

=N

+ -o(e, B) (ancs ® alc — agc, ® a’vcg)

2

1 1
~ 3% 2 CaanCe ® €g + 5 (0(7, B) = 6yp) ager © al,c
— 048 ®z+Zac®ac

1 1
+ Se0 ® alclagdy — 3 (o(v; €) = dae) ape, ® al,cy

2
e—1
+ Oae (z ® alcy + Z a\c\ ® ag%) ;
P

which we have to multiply on the right by 2! (for the outer bimodule structure) and z* (for the

inner bimodule structure). If we do so and apply the multiplication map, we finally get modulo
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//k

commutators that {a’,c, a’ac’ﬁml} equals

+

vTe ve

EPlﬂw
MN

2

L
=2
/\ﬁ

] (CL Cﬁl‘ra/ C/l'k—H T+aixclﬁxk+l ra/ CIQS'T)

[y

_l’_

:U a cﬁx —i—a' c’wka/ cﬁxl>

o(e, B) (a cﬁxka' cal —al caka cﬁxl)

+
L\’)M—t =N = N =

(0(B,7) + 04p) ay, xka;clﬁa:l — 6.5 | dyclatzal + Z ar, c':z:ka’ c, !

e—1
1
+ B (0(€, @) + bue) alcaal cB:L“ + Oae (zxka cs zl + Za)\c/\m a c/’Bxl> ,
A=1

which is our claim. O

Proof. (Lemma 3.1.6.) The first identity in (3.13a) follows from Lemma 3.1.7 with u = z. Next,

remark that if we replace by z in (3.47), it takes the form

1
aacﬁ &z,

1
aacﬁz ®eg + 5

1 1
{z a5l = 260 ® zap,C5 — 37 ® gy — 5

while (3.48) is now written as
1 k
{{Zk’aixc,/gzl}} 252( k=0 2 29 Cﬁzz Shotl g o1y Cﬁzz
o=1
- aacﬁzk ol @ Fto-l 4 a;cbzkﬂ’ ® z”")

ko1
1 gk
- —o+71+1 l—740—-1 __ 1 ) k—o+7—1 l—T7+0+1
5 E E (aaCBZ &z Ao Cg% ®z ) .

Applying the multiplication map on the latter expression clearly yields { z¥, a;cgzl}} = 0. Using
the derivation rules, we arrive at the same conclusion for any &k, € Z. To obtain (3.13b), the

proof is similar to the derivation of (3.12b) using the above expressions. O

Proof. (Lemma 3.1.7.) For the first identity, we have that

{{Uk’ v }} - Zk: ZI: w T (fu, u )l w0
o=1r1=1

ko1
1 —rto— ot _
:ié(u) Z Z k— U+T+1 l T+o—1 uk’ o+7—1 ® ’U,l T+0'+1) ’

o=171=1
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which is easily seen to vanish after applying the multiplication map. Then, using (3.14), we

remark that

{u, wavs} =wo {u, v} + {u, wa }vs

1 (3.49)
=3 (WavsU ® eg — WaVg ® U + €9 @ UWAVE — U @ WaVB)
Therefore’
k l
{{uk’ wavﬁuz }} Z Z (wavﬁuk—r-i—a—kl @yl
- wavﬁukfﬂﬂrofl ® ul70'+‘r+1>
L (3.50)
1 _ _ _
n 5 Zl (wavguk R A wavguk T @bt

+uF T @ uTwavgut —uF T @ uT’lwavfgul> :
After application of the multiplication map, we get 0 and the second equality follows. To prove

that (3.15b) holds, write {{wyveuk, wavﬁul } as

Woy Ve * {{uk, wevgu! }} + wavg {{wyve, ul }} s u” 4+ fwyve, wavph ul x uP

First, we simplify the two first terms. Using (3.49) and (3.50) yields
l
T :=w~v, * {{uk, wevpu! }} - Z Wevpu® T fu, w3 ul 7 x uk
o=1

ko1
§ E (wavﬁuk—T—l-a—i-l ® U),YUE’U,H_T_U_l o wavﬁuk—ﬂ'—i-cr—l ® wvveul'”_”“)

> (wavsu® T @ wyveu T = wavput T @ wyven ”T)
)

o o—1 l—o+1

1 _ _
+ 3 Z (uk T® wwveuTwav[gul — Tl g WV wav[gu
(wav[gu"wyvguk Qul=7 — W VU wvveu U )
1 l
~3 Z (wavguk+”_1 ® wwveul_("+1 - wavﬁuk+” ® Wy Vel ul™ U) .
o=1

This gives, after multiplication and modulo commutators

kol
1 _ o o _
moT = ie(u)i S :(wavguk T+ 0TI wgusuf T pald T a+1> 7

T=10=1

"Note that the summation indices are the opposite of the previous proofs.
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because the last four sums cancel out. Relabelling indices, we write

k—1 l -1 k
moT zée(u) [Z Z + Z Z — Z Z - Z Z] wavguk_ﬂr”wvvﬁul'”_”

T=1 0=l 7=00=1 71=ko=1 71=10=0

k—1 l
1 _ _
zie(u) g wavguk+l Twyveu” + E wav/guk+gw7v€ul g

=1 o=1
-1 k

1
- Qe(u) [Z wavgugwyveuk'”_a + Z wavﬁuk_Tw,yveuH'T]

o=1 T=1

It remains to compute {w-v,, wavg}. We can find from (3.32)—(3.3c)

1
{wyve, wavs} = — 50(7, a) (WaVe ® WAVE + WAV @ WaUR)
1
= 50(8,7) (Wavpwryve ® €0 + Wave ® wyvp)
1 1
— 08y | Wave ® €g + Qwoﬂ)6 ® wyvg + §wavﬁw71/€ R e
1 1
+ dae | €0 ® wyvg + iwav6 ® wyvg + 560 & WA VeWa Vg

+ —o(€, ) (eg ® WyVWREVE + WaVe ® WAVR)

N — DN —

o(€, B) (Wavg @ Wy Ve + WaVe @ WyVE) -

Applying the multiplication map, we get

1
m o ({wyve, wavs ul x uk) =— 50(7, a) (waveukwvv,gul + w,yveukwav,gul)

1

- 50(5,7) (wavﬁwweukul + waveukwwv/gug

k

1 1

— 08y <wav€ukul + iwaveukwvvﬂul + 2wav5wvveukul>
k 1, 1 k 1, 1 !

+ dae | U Wy VRU + 2waveu WAV + 2u WryVeWa VU

+ 0(6, a) (ukwwvewavlgul + waveukw«,vgul>

N — DN

o(e, ) (wavﬁukwyveul + waveukwvvgug .

Adding m o T to this last expression gives {wyveuk, wavﬁul}, which finishes the proof.

3.3.3 Computations using subquivers of the framed Jordan quivers

We prove Propositions 3.1.9 and 3.1.11.
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Proof. (Proposition 3.1.9.) We choose «,n) € C, and prove the statement with a = 7’ to avoid
confusion. Hence, for this proof, « is not seen as a parameter running over 1, ..., d. Recall that
Uty =u(l+n¢). If we write {Us o, Uy} = o’ ® a”, we get

1 _ _
ﬁ{Ufﬂ,Uin} = UL 'd' UL " mod [A, A], (3.51)
after using (2.15) and the derivation property in each argument. Thus, we need to compute

{u+ aup,u+nuel = {u, ul} + o {up, ul} +n {u,udp} + an {ud, ud} . (3.52)

We need the brackets {u, u} = 1e(u)[u? ® eg — eg ® u?] and

{gf),a}}:%(a®¢—eo®¢a+a¢®eo—¢®a), (3.53)

for any a which is a word in {eg, ¢, u}. The second equality can be obtained by combining (2.19)

and Lemma 2.3.14 applied to the subquiver based at I’ = {0}. We find

fud, u}p =us {b, ul + fu,ul ¢

:%(u@)uqb—eo®u¢u+u¢>®u—¢®u2)+%e(u)(u2¢®eo—¢®u2),

{{u,wb}}:—%(u¢®u—uqﬁu®eo+u®u¢—u2®¢)—%e(u)(eo®u2¢—u2®¢).

Here, the second equality is obtained by cyclic antisymmetry : {u,u¢} = — {ugp, u}°. We also

compute

fud, uo} = fud,ul ¢ + u(ux {6, 6}) + u(— o, u}”) « ¢

=5 (4@ g — ey @ uguo +ut @ up — 6 ©26) + 3e(u)(1H © 6 — 6 © )

o (u® ud? +ud? © ) — (6 © u — ubud @ o + u S ud — 126 @ 0)
(b @ e + 126 @ 6 — o © udud — 6 @ 10) + (126 @ 6 — 6 B u’).

Write U,, instead of U ,), for the rest of the first part of the proof. We can use that nu¢ = U,, —u,

and the same holds with ««. Hence we can write

s, ugk =gnud(Us —u) @ eo + snulla — ) @ 9

- %aeo Q@ up(Uy — u) — %aqﬁ@u(Un - u))

+ %e(u)n w(Uqg —u) ® ¢ — %e(u)a ¢ @u(Uy —u).
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Summing all terms appearing in (3.52), we get after cancellation

{Ua: Un} %e(u)(uQ @ e — €0 @ u?) + %a(u 2 ug+ud ®u) + %O‘ﬁ(“ﬂu% @ ¢o)
N %”(uqﬁ ®u+u®up) — %né(U)(eo ® u’g) + %G(U)(nuUa ®¢—ap®uly)
+ %(—aeo ® upUy — ad @ ully +1upla © eo + nula ® ¢).

We use the same trick again to get rid of constants o, 7. We also need the modified version

ny = u‘lU77 — 1 which is obtained by multiplying by v ! on the left. We find

1 1
{U.. U} =+ §(u @ Uy + Uy @ u) + §€(u)(UUa ® €)

1 1

- §(Un Qu+tu®Uy)— §€(U)(60 ® uly)
1 -1 -1

+ iﬁ(u)(uUa Qu Uy —uls, ®@ey—u Uy ®@uly + eg @ uly)
1

+ 5(—eo ® UyUy — u ™ Uy @ ul, + 2e0 @ uly)

1
+ §(U77Ua ®eg+ul, ® u_lUn —2ulU, ® €p) .
Putting the double bracket in (3.51), we find modulo commutators in A/[A, A] that

1 1 1
o WUa Uy} =+ S (U™l + Uy ™ U5 ) + Se(u) Uy~ uly)

—€
2
1 _ Ly 1 _
— S(ULUE w4+ U S — ie(u)(UnLUf Lw)
+ se(w)(UpuUu™ = U Ul — USu™ ' U u+ U US )

+

N =N =N

(U WU w + 20 US4+ UfuU S w™ — 20 U L)
1 1
:i(UnL’lUfu — U Ul + i(UnLUf’lu — UbuUS™)

1
+ 5(1 +e(w)(UfwUEu™ = Ufw UL w) .

Now, notice that aU,, —nU, = (o —n)u. Hence, assuming o # 7, the first term in the expression
just obtained can be written as
1

L-177K L-1, 17K
U, Uy u—U, UUO‘:a—n

(ULUE (alyy, — nUs) — U alU, — nUa)UE)

which vanishes modulo commutators. It is clear that it also vanishes for & = 7, hence the first

term always disappears. Similarly, the second term is zero. Therefore

1 1
ﬁ{Uf, Ukt = S+ e(w)(UuUEu™" = UFw UK w) (3.54)

which vanishes when €(u) = —1.
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Finally, we have to show that, if e(z) = +1, {UX_, U fn} = 0 modulo commutators for U_ , =

—,a

u(1 + agp~1). First, note that we can write
1 1
{w,uly = §€(U)[u2®€0—€0®u2]a fo~"alf = —§(a¢_1®60—¢_1®a+a®¢_1—€o®¢_1a)-

Indeed, we have
0={oo " alt =g« {o " a} +{oa} o™

which yields {¢~1,a}} = —¢~! « {¢,a} * ¢~ '. This implies that {{¢~!, a}} can be obtained

from {¢, a} by replacing ¢ by ¢! and multiplying by —1 since

{00} = 507" o+ Bo(a) + Bo(a) # 6]+ 6 = S [67" x Boa) + Bo(a) » 6],

where we used {¢, a}} as given by Lemma 2.3.14. Thus, reproducing the proof in the first case
with suitable sign changes, we get

1 1 _ _
H{Ufa, Ut} = 5(—1 +e(z) (UL,2UE 271 = UL 2 71UR 2

and we can conclude. O

Proof. (Proposition 3.1.11.) Without loss of generality, we assume that 0 < § < a < d. To
ease notations for the proof, we also set u; = U(a)s U0 = U(g), o1 = @(()a) and ¢y = <I>(()’B). As in

(3.51), we have that
1 _ _
gl ug} = ug ™ fun o} uff ™ fur, o} mod(4, 4]
Hence, we need to compute {u1, ugj} as a first step. Noting that u; = ¢;u for i = 1,2, we write

Lur,uolt = o1, wolt x u+ d1 % Lu, do} u+ d1 % oo {u, ul} .

By assumption, ¢y and ¢; are moment maps corresponding to the last two quivers in the chain

Qo € Qp C Qa. Hence, we get from Lemma 2.3.15 that

{o1,u0} = %(Uo ® P1 — eg ® P1ug + upP1 ® eg — P1 D up)

60, ul = 5

Using the cyclic antisymmetry, the second equality gives {u, ¢ }. Now, since we consider u =

u® ¢o — eo ® pou + udo ® eg — do @ ) .

y, z, we have {u,u} = —1[u? ® ey — o ® u?]. Hence, we can group all these terms and get that
1
fur,uo} = 5(u0u1 ®eg— ur ® up + ug @ up — eg ® ULUp) ,

after simplification. This immediately implies that {u, u§} = 0. a
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3.3.4 Loday brackets for framed Jordan quivers

We successively prove Lemmae 3.1.12, 3.1.13, 3.1.14, 3.1.15, 3.1.16 and 3.1.17.

For the first four results, it is important to remark that we can not use (3.53) to get {4, vg} or
{(¢,ws}, since both elements are not in the initial algebra defined from @, for which ¢ is a
moment map. However, a short calculation enables us to get these double brackets, and we can

write

{o,wp} = %(eo ®pwg —p@wg), o} = %(vggb Reyg—vg® ). (3.55)

We derive the double bracket involving vg, the second case being similar. We assume that we
work in the localised algebra where z is invertible for the proof, but the equality holds without
this assumption. Write ¢ = ¢ $~* for ¢+ = eg+xy, and ¢_ = ey + yx, and remark that (3.14)
is satisfied for both © = ¢, ¢_. Therefore

1
{60} = {o4 v} 507" — 61071+ B, vp} + 071 = S(vpd4 8" ® €0 — v5 @ P19 ""e0),
as desired.

In each case, we also use (2.38) to get that for any U, ¢ € A (or A’) and K € N*, we have

1

E{UK, ¢} ={U,cy UKL {U, e} . (3.56)
Hence, the main step is to compute {U, c} if we want to determine {UX c}.

Proof. (Lemma 3.1.12.) Recall that U,, = z(1 + n¢). We can compute

{Up, 2} ={z, 2} « (1 +n¢) +nzx {¢,2}

Z%(—(eo +1¢) ® zx —22(1 +n¢) @ eg — (1 +1n¢) ® 2+ 2(1 +n¢) ® x)

1
+§n(:v®z¢—eg®z¢x+x¢®z—¢®zx).

We can write U,, — 2 = nz¢, and since z is invertible in A’, we can use 271U, = e + n¢ or
27U, — ep = n¢. Hence
1
{U,,z} = 5(72_1U77 ® 2z — 2U, @ ey — 2 U, ® 2 + U, @ x)
1
+ 5(3: @ Uy —2)—eo® Uy — 2)z+2(27 U, — e0) ® 2 — (271U, — e0) ® 27)

1
:—zflUn®zx—m®z+eo®zx+5($®Un—wUn®eo+Un®x—eg®Unx).
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In particular, using (3.56), we find
1
E{U;(, r}=— zflUnU;(*lzx - a:U,f(flz + U,f(*lza:

=— nqSUf*lz:c — a:Ué(*lz .

Next, we compute

{Un, 2} ={z 2} « (L +09) + 0z * {o, 2}

:% ((eo + ) @ 2% — 2%(1 +1¢) ® eo)

1
+ oz ®2¢— e ® 262+ 20 ® 2 — @ 2%)
1
:§<Z_IU77®22—zUn®eg+z®(Un—z)—eo®(Un—z)z

+(Unfz)®zfz_1(Unfz)®z2)

1
:—z®z+eo®22+5(—zUn®eo—|—z®Un—eo®Unz+Un®z).

This yields {UK,z} = —2UK"12 4+ UK 122
For the element wg, we get
{Un, ws} ={z,ws} (1 +n¢) + 0z« { o, ws}
1
((e0 +n¢) ® zwp — 2(1 +1¢) @ wg) + Snle0 ® zpws — ¢ ® zwp)

2
(Z_IU77 ® 2wg — Uy @ wg + eg @ (Uy — 2)wg — (271U, — eg) ® zwp)

N =N =N =

(=Up ®wg + eg @ Uywg) ,

so that {Uf, wg} = 0. Similarly,

(U, v} ={z,v8} * (L +n¢) +nz* {&,v5}

) 8 o=l 1) 92) + ulpo 0wz
:% (v5U, ® g — vz Uy @ 2 +vg(2 ' Uy — €0) ® 2 — v @ (U, — 2)) .
:% (05U ® €0 —v5 @ Up) ,

which gives {Uf, vg} = 0. O

Proof. (Lemma 3.1.13.) Recall that U,, = y(1 + n¢). By comparing the double brackets (3.2b),
(3.5b), we remark that {y, x } only differ from {z, 2} by replacing z by y and adding an extra
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term —eg ® eg. Hence, by adapting the proof of Lemma 3.1.12 we get

1 1 ek P
AU wy == (o +10) Uy~ =y~ Uy, " tyw — 2l "y + Uy ya

(3.58)
== Ut =l ™ty = noU Heo + ya).
Similarly, the double brackets with y replacing z match so that
1 - K K —
E{Uf,y} = —yUE Ty + UF 1y (3.59)

The same holds for the couple (y,wg) instead of (z,wg), or doing it with vg. This yields
{U}, wg} = 0and {U[, vz} = 0. m

Proof. (Lemma 3.1.14.) Recall that Un = z(1+n¢~1). We can compute

{on o)y =twoh = (ot no™) —mwo™ = .0} x 67"

— (et n67 ) ® e — (o +m97) @ 77)

1
— in(xqﬁ_l Qr—¢ ' +rrd ! —eg@xd ).
We use Un —x = nr¢~!, and that equality after multiplication on the left by z~!. Hence

{{(77,, x}} :%(x(}}, ® ey — U, @ 2%
1 -

+5((Un—x)@x—x_l(ffn—w)®x2+x®(ffn—x)—eo®(f],7—x):c)
1/ . . .
=x®x—eo®x2+§(:L‘Un®eo—m®Un+eo®Unm—Un®:p).

This directly yields

1 . . .
E{Uf, z} :foflx - Uf*1x2 .

Next we find

{00 =] = e 2h o tno) —meo™ x 0.2} 207"

= Galeo + 19 @ eo + (eo + 09 @2)

+ 5 (eleo+ 16 @0 —aleo + 197 @ 2)

1
— in(zqﬁfl Rr—¢ 'Rzt 2zRr¢ ! —ep@rd'2).
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With the previous trick, this gives

. 1 . .
{{Un, z}} =5(2Uy @ eo + e, @xz+ 2270, @0 — U, ® 2)

1 N N ~ N
- 5(295_1(U77 —r)@r—2 YU, —2)@rz+ 23 (U, —z) — e @ (U, — 1)2)

:x_1Un®xz+z®x—eo®wz
1 . R R R
+§(2U,7®60—Un®z—z®Un+eo®Unz),

so that

1 . . . . . .
E{U,f(, z} :a:’lUfa:z + szflx - U,f(’lxz = szflx + 77(]571(]75{*1952'.

After simple computations, we can obtain {{ Un, vg }} = %”BUn@’@O_%UB@ﬁn, so {(7,5(, vg} =0
as before. Similarly, we compute {{ﬁn, wg }} =1 ® ﬁnwg — Un ® wg), which also gives
{Ug{, wg} = 0. O

Proof. (Lemma 3.1.15.) For simplicity, we work in A’ so that U,, = zz(1 + n¢). First, an easy

computation yields

{ }}—12 ® L ® L ® L ®
T2, Xy = 233’ y4 €0 26(] TZX 21‘2 X 21‘ Tz .

We obtain in that way, after using zzn¢ = (~]7, —xzand n¢ = (mz)*lffn —eg

{On,af} =foz,ah+ (1 4067") = nwze™" « 6,0} + 67!
:%(mﬁn ® e — (xz)flﬁn Q rzx — Un QT — x(xz:)flﬁn ® x2)

1 ~ 1 ~
- ix[(xz)*lUn — e @ xz + 5[(3:2)*1U,7 — €] @ zzx

1 8 -
5T [0, — x2] + 360 ® U, — zz]z.

Therefore we get by cancelling out terms
1 -~ . . .
E{Uf, r}=— :E(:cz)_lfoz - Uf_lxzx + asU,f(_lscz

_ k-1 —177K—1
=—-U, zzz —nzo U, " zz.

Second, we get
{{Um xz}} ={xz,xz}* (1 4+ 77(;571) —nrzdp L« {b, 22} * o1

1 ~ -
=5 (szn ®eg — (2) 71U, ® (:Bz)2)

- 310 — ez ® ax + 5[(@2) 710y — ea] @ (o2)°

1
— 5Tz ® Uy — x2] + 260 ® U, — zz]zz.
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We find after simplifying terms that %{Uf, xz} = szf‘la:z - Uf‘l(:cz)Q. Finally, we can
get {{ﬁm vg }} = 1vsU, @ eg — $v5 @ Uy, and {UK vz} = 0 as before. The same holds for wy

too. (|

Proof. (Lemma 3.1.16.) First, note that if a = x, z,vg, wg with 8 < «a, we get from Lemma

2.3.15 that
1 (0% (03
{{cpga), a}} = S(aeo ® 0 — o © @V + a@f © co — B @ ega).

Using that z(,) = @(()a)z together with (3.5a)—(3.5¢), we get

{2 1’}}—* 0) ® €0 = 2(a) ©T = €0 @ 2()T ~ T ® Z(a))
{{20): 2]} = 5 (=2 ® 2(a) + 22(0) @ €0 — 2(a) ® 2 + €0 ® 2(n)?)
{{z(a), wg}} = — —Z(a) Q@ wg + €9 X Z(a)Wg — 22 ® ‘I)(()a)wﬁ)

a2 vslt =5 Uﬂz(a ® e — Vg ® (o) + 2052 © B(Y)

with 5 < «a. Using that

A0} = Lo} 25 () (3.60)

we have the four first cases. For the next two cases, note that if we can show

{{@éa),wg}} = %(60 & q)ga)wg — @ga) & w,g) , a<p,

oIRGB o (O IR (3.61)
{{0’5}} 2(,30@0 3R Dy, 8,

we can easily obtain that

1

- wsl} = 5 (2 @ ws + 0 @ 2@uws), a<p,

1
{zwvs} = S (02 @0 — 05 ® 20)), @ < B,

and then find last two equalities using (3.60). So it remains to prove (3.61), which we do by
induction since ®(® = &~ (¢y + wav,) L. The base case a = 0 is just (3.55), as <I>(()O) = ¢.

Next, remark that for o < 3 we can get from (3.32)—(3.3¢c)

{(eo + wava), wal} = = (€0 ® (eg + wWava)ws — (€0 + Wala) @ wg)

{(e0 + wava), v} = = (va(eo + wava) ® eg — v ® (€9 + Wavy)) -

N =N =
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Assuming by induction that (3.61) holds for « — 1, we can get that

R S

— (I)E)ail)(eo + woﬂ)a)_l * (€0 + wava), w5} * (eo + wava)_l
1
ST

as expected. The same holds for vg with o < 3, which proves our claim.

Finally, we want to show that {z(fgé ) Z(a)} = {z(fgé ) ®(®)} = 0. This follows from the following

two double brackets,

1
(EOEOY :§(Z(Za) @ € — €0 @ 2(y))

1
{{ZW’ 2 }} == (@ ® 2(0) = 220y ® e + €0 © 2() @'V — 2(0) © 1Y),
which were obtained in the proof of Proposition 3.1.11. O

Proof. (Lemma 3.1.17.) This is basically the same proof as Lemma 3.1.16 with y replacing z

everywhere. The only difference is the double bracket

1

{viey 2] = —eo@ DY + 5

(TY(a) ® €0 = Y(a) @ T — €0 ® Y(a)T — T D Y(a)) 5

which gives %{y(fé),m} = _yg;1¢éa) _ y(fg)x' .

3.3.5 Double brackets for framed cyclic quivers

We successively prove Propositions 3.2.3 and 3.2.4, Lemma 3.2.5, then Proposition 3.2.6. As in

§3.3.1, we prove the statements by induction using that (3.30) implies

a—1
{0l =D (aawsr T a B + {0 vsawsn} & )) + T vsaz} | (3.62)
A=1
for any I' € A. Moreover, we can avoid most of the cases by a suitable interpretation of the results

from §3.3.1, as we will see during the proofs®.

Proof. (Proposition 3.2.3.) We use the double brackets derived in §3.2.1 and §3.2.2. First,

note that (3.31a) is already computed since a’w = Ws . Then, to get (3.31b), we only need to

8What we do is more general than the treatment found in [62], where d; = 0 forall s € I \ {0}.
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reproduce what we did in the first part of the proof of Proposition 3.1.2. Let us compute {{x, c{w }}

to show how to deal with the idempotents. We have

{z,v5 02} ={z,v50} 2 + V50 {2, 2}

5 (Vs,a ® €52 — Vg o @ TesZ + Vs 028 F) + Vs o F122 — Vs @ F12 + Vs o 2F1 )

Recalling that v, o € excA’es, We get vs o220 F) = vg g€z F), and since z € Gse;A’es—1 and
x € PsesA’esyq this is equal to Us,als2Tes @ es_1. We can apply the same method to all four

terms given by {x, z}} and get

1
{{x, Us,az} :5 (U57a$65+1 R €52 — V5,05 ® €5 1T2Z + Vg q2TE5 X €51
+ Vs,0€s @ €5-1T2 — Vg qTls11 & €52 + Vg q2€5-1 & 6572.%')
1
:5 (v&azx K es—1+ V5,02 @ xes,l) .

Here, we dropped the idempotents in the first copy of the tensor product since they are determined
by the factor v q. In particular, we get {z,c, ; J} by setting ¢, ; = v 12. It is not hard to show
that {z, v, qws 2} = 0 forany a, A € {1,...,d} so that the claim follows. The double bracket
{{z, cg,a }} is left as an exercise as the computations are similar. Finally, (3.31c) is just (3.23b)

since al, , = Ws 4. 0

Proof. (Proposition 3.2.4.) We begin by treating the case r # s. We first compute
fal o vrpzly = {al o v} 2+ v {dl 4, 2]} using (3.24) and (3.31a). We have

1 1
{{a;,ou Unﬁz}} :§0<3a T) €oo @ als,avr,ﬁz - 5”7"75(2@;,01 ®es — a/s,a ® esz)
:50(3, T) oo @ Uy oV g% — 55&_175)1)7«752@;7& R es.

We obtain last equation by noticing that vrﬁza;’a = vrﬁze,ﬂ_lesagﬂ vanishes for s # r — 1,
while v, gay , = v, geresay , is nonzero if and only if 7 = s, which we discard by assumption.

In particular,

1 1
{{a’s’a, 02,71}} = 50(5, T) oo @ a;’ac;yl - ié(ns_,_l)c;’la;’a ® e . (3.63)

Next, we compute from (3.24) and (3.23b) (recall a;,a = Ws,a)

1 1
{{a’sya, Uy W\ }} = 50(3, T) oo ® a’syavr,gwr’A — 50(3, ) Up gWy \ @ We o
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so that

-1 1 -1
Z {{a;,om ’Uﬁﬁwr:)\}} c;‘,)\ = 50 S 7”) (Z as avT gWr, )\CT‘ A)
A=1

A=1
1 =
_ 50(57 T) Z Uy Wy \ @ ws7ac;7/\ .
A=1
Now, assume by induction that for all A < 3
/ 1 / !/
{{ Os,a r)\}} (5,7) €co ® as alrx 25(T,S+1)Cr,)\as,a ®es. (3.64)
We compute from (3.62)
p-1 B8-1
{{ s r)\}} ST ZUTﬁwTA(X)asa Cr\ ™ 5(7‘s+1 ZvrﬁwTAcr)\asa@eS
A=1 A=1
) -1 -1
+ 50(& r) ® (Z ag,a“rﬁ‘”?ﬂAd,A) - Z Ur,8Wr,\ ® Ws,aCy.\
A=1 A=1
1
+ 50(3, T) o @ a;avrﬁz - 56(T’8+1)vr752a;7a ® ey
1 =
:50(3, T) oo @ a4y 4 Ur,B Z Wy ACr ) + 2
A=1

-1

1

- 55(778-1-1)”7“7/3 <Z Wy ACr z) Ty o ® €
A=1

/

1
20(8 T) €oo & as « T,B 6(7"154'1)6;",6&{9704 ®es,

2

where we used (3.30) to get last equality. This is precisely (3.32) with r # s.

For r = s, it is not hard to see that we can follow the proof from the Jordan case given in §3.3.1,

and establish a result similar to (3.9b) by induction” :

1
{{ s s,ﬂ}} = =56 ,Bas « ®es + 5 (O(Oé, B) - 5046) €oo ® als,acls,b’
B—1 (3.65)
— 0apoo @ €5 (Z + Z a{57>\c;7)\)
A=1

Noticing that ¢ 5 = ecoc| ges—1 and ay , = €5aj 4o, We see that the first term vanishes. This

is precisely (3.32) for r = s. O

For the sceptical reader, the full proof can be found in [62]. For the proof of Lemma 3.2.5 and Lemma 3.2.6, we

will also not bother with the full proof of the case » = s, which can also be found in [62].
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Proof. (Lemma 3.2.5.) Assume that r £ s. We have from (3.23a) that

{vsa vrpz} = — 70(3 ) Vsq @ Uy g2z — = (Up ges ® Vs o2 — Up g2es ® Vs o)
1 1
= — 50(3, ) Vg0 @ Up g2 + 55(7«73_,_1)127»75265 ® Vs,

2

since v, g = vy ge, and r # s. In particular,

1
{{Usou rl}}__ 5 r 'Usa®cr1+ 5(rs+1) r1®vsa (3.66)

Next, we compute

1
{vs,arvrpwrnp = — 50(5, ) Vs,a @ Uy gWy \ — 50(7“, 5) Uy Wr Vs 0 @ €oo -

Assuming by induction that for all A < 3

1 1
{vs.a, Chx = —50(5, ) Vsa ® ) + 55(7«75“)0;“7)\ ® Vs (3.67)

we obtain by (3.62)

-1 p-1

1
{{vsa, rﬁ}} —fos 7’ Usa®v7«/3w”\c )\—i— os 7’ vrgervsa(@cr)\
2
A=1 A=1

1 -1 -1

_50 S, T ;Urﬁwrkvsa(gcr)\_F 5(rs+1)zvr6wr)\cr)\®vsa

1 1
_ 50(5, ) Vsa @ Vp g2 + 55(,«754_1)1},,75265 ® Vs,
1 1
= 50(5, ) Vs,a ® c;,ﬁ + 55(T’5+1)c;,ﬁ ® Vs,

which coincides with our statement. In the case » = s, slightly adapting the proof of Lemma

3.1.3 yields

1
{{vs s Cs ﬁ}} 568 ® Vs, — 5 (o(at, B) + 0ap) Vs,a ® c’sﬁ ) (3.68)
As ¢, 5= c, 5€s—1, the first term disappears, as desired. O

Proof. (Proposition 3.2.6.) Assume that r # s. We compute using Lemma 3.2.5 and (3.31b)

flusaz gl = {{vsas gl * 2+ vsa {{Z’C;‘B}}

0(8,7) V502 ® CTB + 6(T S_,_l)c,, 5% ® Vs a

2

1
2 ﬁz®vsaer 1+26rﬁ®vsa26r 1

1

¢

0(s,7) Vs 02 ® c;q,ﬁ ,
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since r # s implies v, o2€,—1 = 0. In particular,

1
el =—500sm) d@ds. (3.69)
Next, we get

fvsawsai gl = {{vsar gl x wor +vsa s {ws i s
1 1
- 2 (S T)Usaws)\(g)crﬁ'i_ 5(7‘s+1) rﬁws)\@)vsa
1 1
2

/ /
+ 0(87 7') €oo & Vs,aWs \Cp g — 56(r,8+1) Cr gWs,\ & Vs,als

1
=50(5:7) (€o0 ® VsaWsCrg — Us.alWsy @ ) -

Assume by induction that for all A < «,

{crcalt = —%O(S, r) o ® g (3.70)

We get from the equality corresponding to (3.62) with a development taken in the first component

of the double bracket that

1 a—1
{c..as 5 3 250(57 7) Z (A ® Vs, aWs ACp. 5 — Vs,aWs XCs \ B € 3)
A=1
1 e 1
~3 o(s,r )\Z:lcs)\@)vsaws)\crﬁ 3 o(s, r)vsaz@)crﬁ

1
=_ 50(3, ) oo ®Crg,

after using (3.30). In the case r = s, use Equations (3.65) and (3.68) instead of {{ As s c; 5}}
and {{ Vs, c; ﬁ}} in order to have the same forms for the brackets as in the Jordan case, then

reproduce the proof of Proposition 3.1.4 to get

{{ sou s,ﬁ}} sﬁ®cso¢_ci9,a®c;,ﬁ)7

as desired. This means that the vanishing terms that we introduced have cancelled out. O

3.3.6 Other brackets for framed cyclic quivers

We successively prove Lemmae 3.2.7 and 3.2.8.
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Proof. (Lemma 3.2.7.) The first identity in (3.35) follows from Lemma 3.2.8. Next, we compute
with (3.31a) and (3.31b)

{2, doacrpl} =doa (@ g + {7, dear g

1 1
:ia;’ac,lrﬂgx ® 67»_1 + 2(18 a ,,,B ® CE(BT 1 (371)
L1 ) 1 ’
ies®xa5acT5 2esa:®asa E

Let S) = {{:rk, af o€ 57! }} We find by developing

k
S = z::z:"f1 * {{x, a’s’ac'rﬁ}} Y

o=1

—I—ZZ:UU Lyd Uy o Cr gt~ Yz} ol ™" s ab

o=171=1

Using the double brackets (3.71) and (3.37a) for u = x yields

1 k1
5 E 2 § a;’ac;ﬁxﬂ'—klet_l_lxk—o ® $o_1€t$l_T

o=11=1 tel
LA
3 YD Y dhachgr” e T @ el
o=11=1 tel (372)
1 / k—o+1 / —o o l
+2 Qs,0Cr g T ®z7" er 1$ +asarﬂx R x"er_1T
- 1 1
+ esxk 7 ®a%d 40 5$l —ea? M @17 oCr B;ﬁ)

If we apply the multiplication 1, the summands of the two first sums contain a factor e; 12" le;

k—1 k—1

which vanishes except when & = 0 since e;1x = 2" ‘eiri. In the latter case, we can

m

omit to write the idempotents as we get a factor ser€¢s = 1y and x1; = x. We then see that
both sums cancel out. After multiplication, we also get that the last two terms in the third sum

always cancel out. However, the first two terms in that sum both equal a’ Ba:ker 12!, and

SOC'I‘

l

S1 = ka, ac; 5;Uk:L‘ er4+i—1. Modulo commutators, we can omit to write the idempotent since

Erii_10 a vanishes unless r + [ — 1 = s, which is the condition for a’ Bx to be nonzero
m

SOé’r‘

modulo commutators. This finishes to prove (3.35).

We have remarked the important discussion on the role of the idempotents after multiplication.

In particular, we now prove (3.36) assuming that | = s — (r — 1) and k = p — (¢ — 1), since
m m

otherwise the terms will vanish. We will also use without further mention that aj , € esA'es

: / /
while ¢ , € exxA'es-1.
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We consider the decomposition

{apacie® dachon |f = {ahchodbadsh o a* 4 afachs fafcpeatff <ot
+ o Cy e ¥ {{mk a, aciﬁ}} T’ ap, Gk A, Crg {{xk,ml}} .
(3.73)
To find the first term of (3.73), we compute S,. := {{a;)’ﬁ/c;e, s o rﬁ}} using (3.31¢), (3.32)
and (3.34)

1 1
Sac = 5 (p7 ) A o qe®a DY TB 25p50(’)/, O‘)(a;,ad},e(@a DY r,BJrap’y qe®a/s,ac;,ﬁ)
1 1
b LoD 1) oy © s — S Bpht) Bty B

1
+ §5pr [o(7, B) — d+8] a’s’achE ® a;ﬁc;ﬁ Opr03 as o q . epz + Z a;,#c;#

1
/ ! / / / / /
- 50(8 q) ay aCqe @ ap Cr g+ 55(f1,8+1) €s & Ap~Cq els,aCr g

—1
1 / / / / . !/ / / /
_ 5(55(1 (0(ar, €) = dae) g 0Coe @ @y Cr g+ Osqlac | €52 + g Us ACs x| @ ap ,Cr 3
A=1

1 1
= 50(4:7) G aCe ® Gy + 504r0(6, B) (@haChp @ e = GsaCyc @ GpyCrg) -

(Here, we applied the cyclic antisymmetry on {{a/, ., ¢, . J} to get {c, . a},}}.) We will use

m o (Sqex! * 2¥) at the end. Then we compute

AR S VS S PO S

]' / 1 /
= 5% 1®ap'y el T 5T 1®apw q,€
1, 1
— 5%y q7 ®ep—|—2apﬂ/ q€®epx

so that the second term from (3.73) becomes

l

Z a;’ac;ﬁfol {{a;ﬁc;’e, :1:}} 2T x gk
T=1
1
3 Z + Z
1
- = [Z Z] Ay o Cr g7 ) Cy T e,

s o rﬁx €q— 1:1: ®ap7 qe

Now, remark that by assumptions & =p- (g — 1), so that eq,lacka;,7 = :L“’““a;,’7 and cf]ﬁxkep =
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c’q7€mk . Hence, applying the multiplication map on the latter expression, we find that
-1
! / I / l / k+7— ! l—T1
m o (dsaCrp {{azwcq,e’x }} § :as o T Ty
T=1
1 1
! / L A N / k+l 1
T 9%s,aCrpt ApayCoel T 5salr gl ApyCye
1, 1
/ L1 /o kA
~ 9 %s,aCrpt dp, gt + Qas oCr, 80 Cy e

Net, we use (3.71) to compute the third term of (3.73), and it becomes

k
Z a;wc;’exafl * {{x, a;ac;ﬁ }} Y
o=1

1 k— l
=+ Z+Z Uy o Cr " 7 @ ay, X7 €r 1T

» Py g€

1
k— ro / l
+ 5 - E st "7 @ ay, ¢ 27 0 5T

S,

By assumptions, [ = s — (r — 1) so that e,_1z'a), , = z'a) , and . B:Ules =d 5xl. Hence, if we
m ’ ) )

take the multiplication map, we can get rid of the idempotents modulo commutators and we write

k-1
m o (ay,Cy . {{xk a, ac;/g}} zl) = Z a;ac;ﬂmk_aa’ d alte

Y ae
o=1

Ly ko 1 Ik

- +l
+ 5 s,aCr,pT" dp, ch Ew + 2a5 oCr Bap ~Cq.eT

1 1

l ok / k+l 1

- Qasa Tﬁx ap vCq,e” Qas aCrpl OpyCqe

mod A’ /[A", A']. Finally, we compute the fourth term of (3.73) :
!

o—1 / / T—1 l—T k—o
g g A A SN CAPT AR €}

o=171=1
L~y rd I o=1. T
:izzzasﬂaq’ﬁx roet 41T ® Ay Cq T erT
o=171=1tel
1 ko1 / —1 o , o1 9 gn
9 Zzzas,acr BT TEt+1T @ ay, Cq e erxTT T
o=11=1 tel

which becomes, after applying the multiplication map,

/ / / / kol
1 k l
5 § : E : § :a;7aC;,7/3{ET_ll‘26t+1ﬂfk 7l .’Eo_let"L‘l_T
o=1

P’Y q,€
=1 tel

l
1 _ _ _
— 5 § § E a;’ac;ﬁaf 1€t+1l’k o / / z° 16t$2$l T

P’Y lL
o=11=1 tel



3.3. Remaining proofs 103

We consider this expression modulo commutators. Note that in the first sum we have a factor

= 7al, aCh er+1 € es_yyr A1, so weneed t tobe such thatt = s — [ +7and t + 1 =
m m
r+7=(s—1+4+1)+7sincel =s— (r — 1). In other words, the only contribution of the sum
m m
t € I which is not trivially vanishing is the one such that ¢t = s — [ 4+ 7. Then, we can omit to
m

write the idempotents'®. The same is true in the second sum with ¢t = s — [ + 7 — 2. We write

m
/ / k .l
mo( Ap ~ qe * asacrﬁ{{q: » L }})
k-1 1 k 1-1
! / k—o+T1 1 / I+o—T1
DD DD | halhpr T T a T

c=07=1 o0=17=0
The difference of the sums can be written as

l -1

3P 9) 3| FE) 3 S0 B 360 9 I 9 3 P

o=071=1 =0 o=07=1 o0=0 7=l o=117=0 o=k71=0

hence we find

/ / / / k 1
M 0 (A, Cqe ¥ As,aCr, {{"E L }})

1 -1 1 k—1
- / k+1 1 / I—T - Z / / k+l—o 1 ! o
2 as fres 'I" Baj apv'YCQ:fw + 2 as7acraﬁx apzfycqve‘r
=1 o=0
k—1 -1
1 1
- / / k—o 1 / 4o _ — / / T/ / k+l—1
9 As,aCr,gt " OpyCqel 9 Us,aCr,gL" ApyCq,el :
o=1 7=0

Summing the last three terms of (3.73) that we derived, we get in A’/[A’, A’] after simplifications

k l k

{apchezv Uy o ,,53:} m o (Sgex’ * z")
_ = / k+v I l v / k+l—v 1 1 v
= Zasa Crpt™  pyCecl 5 § : @s,0Cr,8T Up,yCq,e”

1o kv 1 ! kv
+ 9 E :as,acnﬁx azwcqs T 9 § :asa Crgt" ap 7Cq,e?

1 1
. ;oKL [PV AV Y B A -5 )
2 (Zs 0407’ 5'%. anYC%f + 2 asvacrﬁapﬁc%fx )

1Tt is important to remark that several terms in the sum will vanish after a more careful analysis. For example, in
the first sum, we need each couple (o, 7) to be such that both c'T,BeH_lm’H'T ‘”’1(1/ b~ and ¢y @ gl 1aé o are not
trivially zero, which means (7 — o) + k + 1 =p- (r—1)and —(1—0)+1-1 =5 - (g — 1). Our aim was
only to avoid writing idempotents in the expressions, so that we do not look at these conditions at the moment and we
postpone their investigation when we will be looking at their representations on the moduli space. The same holds for

the other sums that we have obtained so far.
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which we rewrite

{d! ¢ .k , @y o€ ﬁ:vl} m o (Sgex! % )

Py q,¢
k 1
/ k+l v / k+l—v 1 / v
=t3 E :asa O, %" @ Co e T35 § :asa CrpT p,yCq,et
v=1
/ k—i—l v / k+l—v 1 / v
o 75 :asa Crgt" apchs o § :asa Crp® Ap,yCq,e
P A k+l, 1 1 A N S N
2a57acrvﬁx apfyCQﬁ + 2a57acr’ﬁap7’ch75x

We can add in the sums the terms corresponding to v = k and v = [ as they cancel out. Hence,
the latter expression contains precisely the first two terms of (3.36), with two additional terms.

Modulo commutators, these two terms vanish with the elements

]‘5 / / / 15 ! / / /
T 9 Yrpt1) As,aCr,g0p~Cqe @ €p + 9%(g,s+1) €s & Ap 1 Cqels aCr g

of S, when we add mo (Sac:vl * xk) It now suffices to verify that all the other terms give exactly

(3.36). O

Proof. (Lemma 3.2.8.) For the first identity, we get by (3.37a)

k l
{{uk’ ul }} _ Z Z ua—l % uT—l({{u’ u}})ul_T % uk—a

o=171=1

1 k

2 Z E u” €S+9 u)uk o ® uo—lesul—T

o=171=1 sel

Z Z Z u” es+9 kfcr ® uoflesul77+2 )
o=11=1 sel

If we apply the multiplication map, we get in both sums a factor e s+9(u)uk_1es which can only

be nonzero provided kf(u) = 0 since es+9(u)uk*1 = ukileerkg(u). In the latter case, we can
m
omit to write the idempotents as usual, and both sums cancel out since each of their summands is

just uFt,

Next we compute using (3.37b)

1
{u, ws o, 5} = (es ® UWg,aVp 3 — EsU @ Ws Uy 3 + Ws aUr fU R € — Ws oVp g @ Uey) .
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We find in a way similar to (3.72) in the proof of Lemma 3.2.7,

k
1 _ _ _
{{Uk, ws,avr,ﬁul }} =5 g (esuk 7® u”ws,avrﬂul —equFTotl @ lws,akul

o=1

k—o+1 ® uo'fl l

k— l
+ Ws 0 Uy gU et — We oVpgu” 7 @ ulepu )

k
1 _ _ -
+ 5 § § : 2 (ws,avr,/BUT+let+0(u)uk 7R u’ letul T
o=171=1 tel

-1 k— -1, 1-742
— Ws,aUr U’ Cypyu” ~ @u’ eu " )

To have nonzero terms modulo commutators, recall that we consider £ = 0 mod m while [6(u) =
s —rmod m if u = z,y, z, while k, [ € N otherwise. In particular we do not need to write down

the idempotents after multiplication, and all terms cancel out.

To prove that (3.39) holds, we assume that k0(u) = p—q and [0(u) = s —r, as the proof is trivial
m

s

otherwise since both sides vanish. We decompose

k l k l l k
{{wp»'YUQ»Eu ’w37avr7ﬁu }} :wpv’YUQ7€ * {{u ’wsvavraﬁu }} + ws’avrvﬁ {{wpv’yqu'E’ u }} *U

+ {{wpﬁvq,& wsvavrvﬁ}} ul * ul

and see that the double bracket in the first term has just been computed. Writing this first term as

T, we can write

T _1 k I, .k !
modi —2(68“112,7”%6“ Ws,aUr,fU = €5U" Wp Vg, Ws aVr,4U )

1
k l k l
+ 5 (Ws,a0r, BUTWp A Vg P U — Wi ,aUy fUP Vg U ErUT)

k 1
e(u) 1 k— . S -
+TE g g w&avr,guﬂr 4 40(u)U TWpyUget” Tegu’
o=171=1 tel

k l
e(u) -1 k— -1, 1—7+2
—Tg g g Wg,aUp gU" €14+0(u)U TWpyVget” gt T+
o=171=1 tel

\V]

For the first term in the first line, the idempotent tells us that s = p, but we know the same
from vq,eukw&a = vq,eukqurk,g(u)eswsya by choice of k. Hence, we do not need to write the
idempotent, and this is true for the first four terms. In fact, as in the proof of Lemma 3.2.7, the
idempotents are also determined by the other terms on the last two lines, so we can skip to write

them. Then, the last two sums take the same form as m o 1" in the proof of Lemma 3.1.7, hence
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we can write after simplification that the following holds modulo commutators

1
— k l k+l1
mo Ty —§(wpﬂvq,€u Ws,aVp fU — Wp~Uqg,eWs aVp gU" )

l k k+1
+ 5( Vg, Ws,aVr gU- — Wp,yVq,eU ws,avrﬂ)

k—1 l
1 _ _
+ 56(1‘) Z wWs,ar g Ty L vg cu” + Z wWs,ar, U Twp v Ul T
=1

T=1

-1 k

1

T k+l—1 k—r l+7

- 56("“) E Ws,aUr,gU WpVq,cU + § :ws,avrﬁu Wp,yVq,et .
o=1 =1

Using the computation for {u, ws vy, g} at the beginning, we easily obtain that
! 1 ! !
U5 Wp,yVq,e :i(ep R U Wp Vg — EpU @ WpyUg,c)
1 ! !
+ i(wpﬁvq,gu ® €q — WpAVqe @UEy) .
Applying the cyclic antisymmetry, we easily compute mo(ws oy, 3 {{ Wp A Vq,es ul }} xu*). Modulo

commutators, this cancels out with the first four terms in m o T7.
Finally, we compute that {w), vg.c, ws vy g} is equal to

1
5 [O(p, T) + O(Qa 5) - O(p, S) - 0(qv T)] Ws,aVq,e ® Wp,yVr,3

+ 551080(0% ) (Ws,aVg,e ® Wp,yVr,B + WpryUge @ Ws o Vr,5)
1
+ §5qr0(ﬂa €)(Ws,aVq,e ® WpAVr,g + Ws,alr,3 @ Wp 4 Vg.e)

+ §5qs [o(€, @) + deal(Ws aVg,c ® Wy Ay g + €5 @ Wp AVg,eWs,aVr,p)

1
- 551# [0(8,7) + 08y (Ws,0Vg,c ® WpyVr. g + Ws,aVr fWp 4 Vg,e @ €r)

+ 0gs0ca €5 @ WpyUr,3 — Oprdag Wsalg,e @ €y .
Once we compute 1m 0 ({wp Ve, Ws avr 5} ul * u¥) the idempotents can be omitted. The latter
expression, modulo commutators, yields the first six lines in (3.39), and the remaining two come

from the two last lines of m o T7. O

Proof. (Lemma 3.2.10.) Since (esues) = e uFes, we have

{{(esues)k, (eruer)l}} = e, * € {{uk, ul }} e, * €g
{{(etuet)kv ws,avr,ﬁul }} =€ * {{uk, ws,avr,gul }} * et .

Using the double brackets on the right-hand side obtained in the proof of Lemma 3.2.8 for
e(u) = +1, O(u) = 0 we can easily conclude that these expressions vanish after applying the

multiplication map. O
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3.3.7 Computations using subquivers of the framed cyclic quivers

We prove Propositions 3.2.12 and 3.2.14.

Proof. (Proposition 3.2.12.) The idea for the proof is similar to Proposition 3.1.9. Let a,n € C
and recall that U, ;, = u(1 4 n¢). (Clearly, « is not seen as a parameter running over 1, ..., d

for some s € I.) If we write {U o, U, }} = ¢/ ® a”, we can write
1 K 7L L—1_rprK—1
E{Uﬂ” Uit =Uy, a’U+7a a”  mod [A, A], (3.74)
So we have to compute

{fu+ aud,u+nuol} = {u, ul} + a fup, ul} + nfu, up} + an {ue, ue} . (3.75)

We need the following double brackets for the proof

1 1 1
{u, ulf = gﬁ(u)[UQFe(u) — Fypy?], fo.7} = §¢ * (vFo — Foy) + §(VF0 — Fyy) x ¢,

where «y is any word in the letters {eg, zs,ys} (with possible inverses). The first equation is
(3.37a), while the second equation follows from Lemma 2.3.14 applied to the subquiver based at

I (the set of all vertices in the cycle) with (2.19). In fact, we can write

{6, ul =4 (ubd — Foou) + 3 (uoFo — o),

1 (3.76)
fo. 0} =5 (¢*Fo — Fog?)

because ¢ € DsesAes, 50 pes = esp. Similarly ues = e,_g(, u as u € BsesAegig(y), so that
1 1
{u, o} = S0(uFyw) — Foyu) + 5 (uFou) = Fyuyu)9-

We have already the first term in (3.75). For the second term, we compute

fuo, u} =ux o, ul + fu, ul + ¢

1 1 1
=gu* (uFyp — Fopu) + U (upFo — ¢Fou) + iﬁ(u)(u%Fe(u) — Fyyu®)

—_

1
=5 (WFy(uud — Fopyudu + udFoyu — oFpuyu?) + 5e(u) (W’ dForu) — ¢Foquyu’)

using that ux Fy = Y- es @ues = Y €@ eg_guyu = Fpuyu. To get {u, ugp} = — {ug, u}}’,

we need the following lemma.
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Lemma 3.3.1 Fix some r € N and let a € Gses;Aes, by, b1 € DsesAesty and ¢ € BsesAegior.

Then (boF-b1)° = b1 F,.bg and (cF,a)° = aF,c.

Proof. We compute (bgFb1)° = >, esb1 @ bpesyr = Y, biesqr @ esbg = by Frbg. The second

equality follows similarly. O

Taking r = 6(u), bo = wand by = uf gives (uly(,)up)° = udFy,) u. In a similar way for the

other terms, we find

1 1
{u, ud} = —5 (uFpuyu —uduFoq) +uFp)ud—u Fouyd) + 5 e(u)(u? Fo(u) ¢ — Fouyu’e)
To get the last double bracket, it remains to compute
fug, o} ={u, o} « o +ux{o,0}

1 1
=*¢(UF9(U Fouyu) * ¢+ - (UFe () — Foyu)p * ¢ + U (¢°Fo — Fy9?)
(¢U¢Fa(u) + upFp(uyd — dFyyud — Fpuyud?)
so that we find for {u¢, up} = u {uep, o} + {up, u} &
1
fug, up} =5 (upudFy(w) + W Fpuy® — Fouyudud — ¢Fy)u’e)
1
+ 56(’&) (u2¢F0(u)¢ - ¢F0(u)u2¢) :
We let U,, denote U, to ease notations. Using U, — u = au¢ and U,, — u = nu¢, we can write
an fug, ud} as

1 1 1
3¢ (Ua — u) Fy(y) + 577U(Ua — u) Fy(u)® — iaFe(u)W(Un — u)

1 1 1
= 500 Fyuyu(Uy —u) + Se(w)nuUa — u) Fyw)¢ — Se(u)adFyuyuly —u) .

Summing all terms in (3.75), we get

1 1 1
§€(U)(U2Fe(u) — Fpuyu®) + iaﬁ(u)u%Fe(u) - 5776(“)F9(u)u2¢

+

{Uaa Un}} =

1 1

S (uFpquyud + upFpuyu) — on(udFywyu + ulywyue)
1 1 1

+ §T]U¢UQF‘9(U) + §T]UUO[F9(U)¢ - §O[FQ(U)U¢U77

1 1
— iaqﬁFg(u)uUn + ie(u)nuUaFg(u)qﬁ — ie(u)a(ng(u)uUn .
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Repeating the substitution under the form v=*(U,, — u) = a¢, we find

1 1 1

{Ua, Uy} = e(u)(u?Fypy — Fpuyu®) + gﬁ(u)U(Ua —u) Fy(yy — §€(U)Fe(u)U(Un —u)

2
+ 5 (uFyu) (Ua — u) + (Ua — u) Fy(yyu)

1
+ fe(u)uU&Fg(u)u_l(U,7 —u) — §e(u)u_1(Ua — u) Fyuyuly .

We get after simplifications

1
{U., U} = + 5(1 + e(u) [uUaFpuyu™ Uy — u ' UaFyuyuly)

1

+ §(qu(u)Ua + UaFg(u)u) (Uan(u)u + UF@(u)Un)

_ !
2

1
— UUaFG(u) + FO(u)UUn + i(UnUaFe(u) - Fg(u)UaUn) .

If we insert this in (3.74), we get
1
(UK, UnL} = 5(1 + e(u)) [UnLuUfu_1 - UnLu_lUfu]
(3.77)
1 L—1, 77K L-177K LyrK—1 L, r7K—1
+§(—U77 uU),, —i—Un U, u—l—Un U, u—UnuUa )

all mod [A, A]. Indeed, since U, € @sesAe,g(,)we find for the first term

Z UéﬁluUaeerg(u)UfilesuilUn ZUélfluUa (Z es+9(u)€s(K1)€(u)> Ué(iluflU77
=U U U,

for (K — 1)0(u)= — 6(u) mod m, that is K is divisible by m if (u) # 0, i.e. when u = z,y, 2,
while K > 1 for u = 17 + xy. The same argument works for every element, either by inspecting
K or L. Now, assuming o # 7, we remark that u = %ﬂ?(aUn — nU,). Using this expression in
the second line of (3.77), all the terms cancel out. The second line trivially vanishes for a = 7 so

that the claim follows as e(u) = —1.

The same proof works when €(u) = +1 to show that {U* ,, U E,n} = 0 modulo commutators for

U_ o =u(l+a¢~t). We only need to notice that {{gf)_l, a}} = ¢ 5 fp,a} xo7 L, so we just
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need to replace in the expression {¢,a} the factors ¢ by ¢! and multiply by an overall factor

—1. Thus, reproducing the proof in the first case with some sign changes, we get

1 1 _ _
7L UZa Ulg} = 5 (=14 ew) (U2 uUZ u™ = UZu™ U )
modulo commutators. This yields the desired result for ¢(u) = +1. O

Proof. (Proposition 3.2.14.) First, we assume that v = y, z. We consider K, . = 0. Otherwise
m

the proof is trivial as ug) € @gesAes i (here we need that u = y, z) implies that such a term

vanishes modulo commutator for K not divisible by m. We also assume without loss of generality

that 0 < 5 < j' < d.

To ease notations for the proof, we also set u; = U@y, Up = U(j), o1 = ZS <1>§j/) and ¢y =

5. 0. Asin (3.74), we have that
1 _ _
ﬁ{ufa ugy = ug ™ fur,uo} ui T {ur,ug}” mod[A, A].
Hence, we need to compute {u1,ugj} as a first step. We can write

fur,uo} = fd1, w0} * u+ d1 + {u, ol u+ 1 * do fu, u}l .

By assumption, ¢y and ¢; are moment maps corresponding to the last two quivers in the chain

Qo € Q;j C Q. Hence, we get from Lemma 2.3.15 that

1
{¢’17 UO}} = Z 5(“065 & ¢1,s —es® ¢1,5U0 + u0¢1,s ®es — ¢1,s ® 6SUO)
sel

1
:§(U0F0<Z51 — Fyprug + uoop1Fo — ¢1Foug) ,

since ¢1 = >, es¢1 5. Using cyclic antisymmetry and the fact that u € @ esAes_1 (again

because u = y, z), we get also from Lemma 2.3.15 that

fu. ¢} = — {0, up”
1
- 5 Z(¢07565 ® egyiues — (250,5“65—1 Res+es® es—&-1u¢0,s — EsUEs—1 & esbe,s)
s

1
=- §(¢0F71U — pouF_1 + F_qu¢o — uF_1¢y) .

Finally, recall that we have {u,u} = —3[u?F_; — F_ju?]. We can group all these terms, and

since Fy xu = ukF_1, ¢1 x F_1 = F_1¢1, we get after simplification

1
{ur,uo}} = §(UOU1F—1 —u F_qup + uoF_ju; — F_ququg) .
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Therefore,

1 1
K L L K—1 L—1 K—1
—{w ,uo}:fg (uoulesul Estl — Uy UlesUy  egy1Up
KL 2 =
S

L K-1 L—-1 K-1
+upesu; Tesy1ul — Uy esly es—i—lulu()) )

K—1 _

modulo commutators. Since e;u; uf 71654_1, all terms cancel out mod [A, A].

In the case u = (1; + zy)~!, note that we have {u,ul} = —3[u’Fy) — Fyu?] after a direct
computation using (3.37a) with 1; + zy. Thus, the above proof applies also in this case for any
K, L € N* after minor changes, such as replacing F_1 by Fy everywhere since u € GgesAe, in

this case. O

3.3.8 Loday brackets for framed cyclic quivers

In this subsection, we prove Lemmae 3.2.15, 3.2.16, 3.2.17, 3.2.18, 3.2.19 and 3.2.20. Before

proving these results, recall that for v = x, y, z, 17 + xy we can write

{6 u} = L (uFo6 — Fogu) + & (uoF — 0Fou)

which was obtained as (3.76). We can note as in §3.3.4 that this equality can not be directly
applied to wg g or wg g. Rather, we need an explicit computation using that (3.37b) holds for

u=17+zy,1;r + yx to get

1 1
{{¢a US,BB’ = i(vs,BQS Res—Vs X 52563) s {{¢7 ws,ﬁ}} = 5(63 b2y ¢ws,,8 —esp® ws,ﬁ) . (3.78)

These brackets will be needed, together with the ones written in §3.2.1 and §3.2.2. We also use

without further mention that for any U, ¢ € A (or a suitable localisation) and K € N*, we have
1
?{UK, ¢} ={U,cy UE {U, e}, (3.79)

as a direct application of (2.15).
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Proof. (Lemma 3.2.15.) We can compute

{Umx} = {{Z,I}} * (11 + 77¢) +nz* {{¢7x}}

1
=— —(2zF_ 1+ F_1zx — zF_jx + 2F_12) * (1 + no)

2
+ %n(zqﬁ x (xFy — Fox) + 2 % (xFy — Fozx) * ¢)
__ %(xz(lf + 0P F_1 + (11 + ng)Foizx — 2(11 + o) Fo1x + z(1 + nd) F_12)
+ %U(ZCF—12¢ — F qz¢x) + %n(x(bF_lz — ¢F_1zx),

where we used that ¢ € @ esAes and z € GzesAes 1 to get
xzF_1 % (11 +n¢) = xz(1r + np)F_1, z¢p*xxFy= Zwes ® zpes = xF 12¢,
S

and similar expressions. By definition, U, = z(1 4 n¢), so we can write U, — z = nz¢. We can

also multiply both expressions from the left by 2! to get n¢ = z*lU77 — 17 since we work in A’.

Thus
1
{Uy. 2} = = 5 (@UyFo + 2 U Foyze — Uy Foqx + 22 U F_q2)
1
+ §($F71(Un —z) = F_1(Uy — 2)x)
1
+ §(mz_1(UT7 —2)F_12 — 2" YU, — 2)F_127)

=— z_lUnF,lzx —zF 1z4+ F_1zx

—

+ i(l'F*lUﬁ — l’Uanl — FflUn{L‘ + UnF,1$) .

Now, as Uffl € Mses—1Aeg for K € mN, Y-, es_lU,f(*les = Uffl and we find
1
?{Uf,x} = —z_lUnUf_lza: - J:Uf_lz + Uf_lzx = —ngbUf_lz:U - a:U,f(_lz.

Note that this expression vanishes for K ¢ mN, K # 0, as we expect, so we restrict to K € mN*

for the rest of our discussion. Next, we do this for z and find

{{Un’ Z}} = {Zv Z} * (11 + 77¢) +nz* {[¢’ Z}}

=— %(ZQFA — F_12%) = (17 + ng) + %77(2’@?? * (2Fo — Foz) + 2 x (2Fy — Foz) x ¢)
- %(22(11 +n6) Py — (11 + 1) F12%)

1 1
+ 577(2F_1z<;5 — F_12¢z) + 577(2</>F—1Z — ¢F_12%),
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which with the previous trick becomes

1 1
{U,, 2} =— 5(2UnF_1 — 2 WU, F 2% + §(ZF_1(U77 —z2)—F_1(U, — 2)z)
1 -
+ 5(((],,7 —2)F 12— (27U, — 11)F_12%)
1
=F_ 12> —2F_1z + (P Uy = 2UpFoy + UpFyz = FyUpz)

Hence {U[, 2} = UF~12% — 2U 12, For v, 3 we get

{{Umv&ﬁ} ={z, US,BB’ * (17 +n¢) +nz* {{¢?U875}}

1
=2 (vs,32(11 +19) ® s — vs (11 +nP) @ zes)

2
+ %77('057ﬂ¢ ® zes — Vs g @ 20€s)
= (05211 4 70) © €4 — vy © 7, — 3 ® 200,)
:% (v5,8Up ®@ €5 — vs.8 ® Upes) ,
which gives {Uf, vg} = 0. We find in the exact same way that {Uf, wg} = 0. O

Proof. (Lemma 3.2.16.) Note that, as the double bracket {y, 2} can be obtained from {{z, 2} by

replacing z by y and adding an extra term —F_;, we get by adapting the proof of Lemma 3.2.15

1 . .
02y == (L + )0y =y Ugtye — aU "y + U ya

=— U — 20Ky —noU 111 + ya).

The double bracket {{z, z}} with y replacing z is exactly {y, y}, hence % {UK,y} = —yUL~1y+
Uf‘ly? The same holds for the couple (y,ws g) replacing (2, ws g), or doing it with vy g, so

that {U[, w5} = 0 and {UK, v 5} = 0. m

Proof. (Lemma 3.2.17.) Recall that we assume K € mN* so that Y, es 11 Uf “le, = U,f( -1
which we will use under the form F{Uf‘lF{’ = Uf‘l. Note also that z¢~! * Fy = Fixg~!.

We compute

{on.af) =tw.0d = 1+ 6™ = oo™+ o2} <67
=5 @09 Fr — (17 + n6) Fia?

1
- in(:vglelx — ¢ Fa? + 2Pz — Flzo ).
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Using that Un = z(1 4+ n¢~') and equivalent expressions, we get

{{Um x}} :%(xUnFl — x_IUnleQ)

1 . . . .
- 5((U77 —2)Fiz — 2 (U, — 2)Fi2® + 2 (U, — x) — Fi(U, — 7))

1 . N R N
=zFx— P2 + 5 @U B = Uy Pz = 2 U, + FilUye),

and we find

Next we have

{On =} =t 2h = Qs +00™) —nag™ « 0,2} 5 67!
=5 Gl + 6™ )F 4 (1 0o Fi)

b5 (a(l 46~ YRz 4 2(1r + 06 ) Fra)

1
— in(zgﬁ*lle — ¢ Flaz 4 2Pz — Flagp ).

Furthermore, using the same trick as before gives

{002} =tz 2h = (r 4097 —mao s o, 2 67!
1 . . . .
=-(2U,F1 + 1‘_1U77F1{L’Z —UyFiz + zx_lUnle)

2

1 N N N o
- i(zx_l(Un —z)Fz — 2 (U, — 2)Fizz + 2F1(U, — x) — F1(U, — x)z)

A 1 - N A A
=1 U, Fizz + 2Pz — Floz + 5 (ZUNFL = Uy Pz = 2P Uy + FiUyz)

We easily get

MKy 1K NK-1 prK—1.. _ frK—1 1K1
—{U) 2y =27 U ez +2U) "o —U) “xz=2U," +n¢ Uy~ zz.

Finally, we can get {{ﬁn, vsﬂ}} = %vsﬁﬁn R es — %vsﬁ ® Unes, which gives {Uf, vs 3} = 0.

We can do the same for w; g to get {Uf, vs gt =0. 0

Proof. (Lemma 3.2.18.) We compute in A’ instead of A, so that ) es + 2y = zz and U, =

x2(1 4+ n¢1). This does not change the final result, and only ease notations. First, we note that

1, 1 1
{xz, 2} = % 2Fy — iFO:z:zx — §xZFO$ — inga:z.
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We obtain in that way

{050} =ty s 4 n67) = nazo™ # fo.ah o7

1 - . s .
25(:1;U7,F0 — (22)7 U, Forza — Uy For — x(x2) U, Foxz)
1 . .
+ 5(—x[(xz)_1Un — 1] Foxz + [(z2)~'U, — 1] Fyzzr)
1 ~ ~
+ 5(—3:F0[U17 —xz] + FolUy — z2]z) .

This reduces after simplification to
{{Um x}} = — Fyzze + xFoxz — x(a:z)_lﬁan:rz
1 - - . -
+ i(xUT]FO — ngUn + F()Un.%' — Uanm) ,
which yields for any K € N*
1 - - - -
E{Uf, T} =— :E(:cz)_lfoz - Uf_lxzx + asU,f(_lscz
_ K1 —177K—1
=-U, zzz—nzo U, " zz.
Second, we compute {[75( ,xz}. We get
{{Unv :Ez}} ={xz, 22} x 14+ 0o ) —nrze™ + {o,x2) x ¢!
1 . o
=3 (l’ZUnFQ — (z2) lUan(a:z)Q)
1 . .
+ 5 (—[U77 — x2]Foxz + [(z2) 10, — 1]F0(:cz)2)
1 . -
t3 (—:L’,ZFO[U77 —xz| + FolUy — xz]:cz) .
We get by cancelling terms

. 1 - . . .
{{ Uy, :Bz}} = — Fo(x2)? + zzFpxz + §($ZU"FO — xzFyUy,y + FoUpzz — Uy Foxz) .

This gives us that

1 - . .
?{UJ(, xz} ::EZUé(_lfL’Z - U,f(_l(:zz)2 .

Finally, we can get {{Un, Vs 8 }} = %vsﬁffn ®es — %vs,ﬁ ® Unes, and {ﬁf, vs 3} = 0 as before.

The same holds for w, g too. O
For the last two proofs, we use the notations introduced in Remark 3.2.11.

Proof. (Lemma 3.2.19.) We will use that for any a € A’

1 / — "
=60 =z} =G L2000 (3.80)
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where the double bracket is obtained from the decomposition

{{z(j), a}} = Z {{@ }} x 2+ V) « {z,a} . (3.81)

If a =z, 2, v, 8, wy g With (1, 3) < p(j), we get from Lemma 2.3.15 that

fap.al} = ; 200 — ¢y 0 0Da+ ad) @ e, — ) @ eqa).

s

Hence, we obtain

3 {{@gﬁ, a}} - %(aF()(I)(j) — F®Wa + a®DFy — 39 Fya) |
sel

Using (3.81) together with (3.27a)—(3.27¢), and (3.28) under the form
1
zZywr gy = (Fo1zwrg — 2F 1w g), Z,Upgg = s (Urpgzl_1 —vpgF_12 .
{ }=5F F ), A ¥ = ( F Foqz), (3.82)

we can write that
{20y, 2} = 5 (22 Fr — 2(p Faaw — Foazgyr — aFlq 7))
{200, 2} = 5(=2Foz) + 22() Fo1 — 2 Fo1z + Fo2(5)2)
{{Z ng}} == F_l’u},n//g7 + F_1z( Wr,B — QZF_1<I)( )wr”g)

{{Z Urg}} = — UT,BZ(] F_1—v.gF_ 12(j) + 2v, gz 1<I>(]))

with (r, 8) < p(j). Here we used that Fy * z = zF_; and ®U) « F_; = F_;®U)_ All these
double brackets are sums of terms of the form bF_;c for some b,c € A’. Hence, using (3.80),

such terms contribute to the final Loday bracket as

-1

be z “lee= bE"1e

Z s—1%(5) ©s G =
sel

since z(K.*l

) € @gesAesy1 by assumption on K. Thus, we have the four first cases.

For the next two cases, note that if we can show

Z {{‘I’g]), wr,,@}} = %(Foq)(j)wr,ﬁ - q)(j)FOwr,B) ) p(]) < (Ta ) 5
sel

(3.83)
S a9, vep = (020 Fo — vsFo@0), () < (1, ),

sel
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we get by (3.81) and (3.82) that

{20y, wrsl} = 52y Faawns + Faazgywng) . p(j) < (r,B),
2 vmsl = Urﬁzu - ungFlzg) . (i) < (rB).
As before, putting these expressions in (3.80) yields {zg.),wr,g} = 0 for p(j) < (r,B), and the

same holds with v instead.

We now prove (3.83) by induction on j € {0,1,...,|d|}. The case j = 0 holds since it was

established as (3.78). For the general case, we remark the relation

>0 = @001 +wyyv) " = (297 (L1 + wpy00)
sel

which implies that

D0 s jf = DR sy (01w vi)

sel
— (I)(jfl)(lj +wp(j)vp(j Ly {{ 17 + Wy p(] Urﬁ}} (17 +w () Vp(j )) 17

and a similar expression for v. To compute these, we claim that

L+ 0,700 wr5 ] = 3 (Bo(L1 + 057050605 — (11 + 105105050 Fowr )

{ Qs+ wy00)) vrs =

for all (r,3) > p(j). Denoting p(j) as (t,7) forsome t € I, 1 < v < d;, we have from the

(vr5 (L1 + w5y 0,()) Fo = vr s Fo (11 + Wo(3)Vp(5))) 5

l\DM—ll\D\

definition of the ordering that either » = ¢t and 3 > +, or that > ¢. In the case r > ¢, these two
expressions vanish, in accordance with a direct computation using (3.23b)—(3.23c). In the case

r =t, 8 >+, these expressions can be reduced to

{11 +w(yvoi)s wrp ff = (€t®w () Vo() Wr,8 — Wp(j)Vp(j) @ Wr5)

{1+ wpiyvpi)) vrp )t =

and this is precisely what (3.23a)—(3.24) gives in that case. Assuming by induction that (3.83)

\r—tl\J

5 (0r8Wp() Vo) © €r = U5 © Wy (5)Up(s))

holds for j — 1, we can use the previous expressions to show that (3.83) holds for j, proving
the induction step. (One has to use that both U~ and (17 + w,(j)v,;)) " are elements of

@sesAes-)

To finish the proof, note that the double bracket {{z (G)s 2(5) }} (])F,l F,lz?j)) which
is obtained at the end of the proof of Proposition 3.2.14 imply that {z(j), z(jy} = 0. Using the
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double bracket ) {{ q>£j ), a}} obtained at the beginning of the current proof which holds for

a = z(j), we get that

. 1 .. A A A
> {{Zu‘w ‘59)}} = 5 (@Y F 12 — @V 2y Foy + Flizp @) — 2 F100)).
sel

This is in fact the double bracket for {{z(;), WY since {{@é{}, 2(j) }} =0asexr =0 = zes.
Therefore {zg), o0} = 0. O

Proof. (Lemma 3.2.20.) This is the same proof as Lemma 3.2.19 with y replacing z everywhere,

and an additional term —F_; ®() in the double bracket {{ Y(a)» x}} O

Proof. (Lemma 3.2.21.) A small computation using (3.37a)—(3.37b) with 174y shows that u =
(17 + zy)~! also satisfies (3.37a)—(3.37b) with €(u) = —1, (u) = 0. It is then straightforward
that we can adapt the proof of Lemma 3.2.19 by simply replacing z with w and F_; with Fj in

the cases of the brackets with u, ws o, Vs,a; U(j), o),

For the case of z, a direct calculation using {1; + zy, z }} obtained at the beginning of the proof

of Lemma 3.2.18 shows that
1
{u, 2} = —ux {17+ 2y, 2} xu= i(uFox + Fyux + zulFy — xFyu) .
This yields
1 .
{2} = 5 QouR® + zug By — ug Fow + Fougyz — wFougg))

leading to {ug), x} = Kxuug.)_lé(j). O
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Chapter 4

MQYVs from the Jordan quiver

In this chapter, we combine the general approach to MQVs and integrability exhibited in §2.3.3
and §2.3.4 together with the double quasi-Hamiltonian structure (and related computations) for
the double of a framed Jordan quiver derived in Section 3.1. We begin with the general definition
of such spaces in Section4.1, and gather several results that do not depend on the number of
framing arrows. This global study is followed by a local investigation, which we begin in
Section 4.2 with the simplest type of framing by d = 1 additional arrow to the Jordan quiver.
Most of the results in that section have appeared in [41, Sect. 3]. We finish by the general case of

framing by d > 2 additional arrows in Section 4.3, which is parallel to [42].

We follow the conventions introduced in Remark 3.1.1.

4.1 General considerations

Consider the quiver ) defined in Section 3.1. For n € N* and ¢ € C*, we form @ = (1,n) and
4 = ¢ "ex + qeo as in (2.37). A point p on the moduli space Rep(CQ), &) of representations of
CQ with dimension & consists of the vector spaces Vo = C", Vy, = C together with a linear map
Xa * Vh(a) = Vi(a) for each arrow a € Q. To simplify our discussions, we view a point p as a

2(d + 1)-uple (X,Y,V,, W,) where

X,Y € Mat,xn(C), Vy € Mat1x,(C), W, € Mat,x1(C).
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Hence we have X' (z)(p) = X, X(y)(p) = Y, X(va)(p) = Vq and X(wy)(p) = W,. Itis
important to remark that we use the interpretation of Example 2.2.6 : if we follow exactly §2.2.2,

we would view the point p as a 2(d + 1)-uple (X, Y, V,, W,,) of elements of gl,,, ; (C) where

0 0 0 0 Vo 0 O 0
_ 0 _ 0 0 0 _ 0 0
X = s Vo = s Wa = ’
X W,
0 0 0 0 0 0

and Y takes the same form as X with block Y. We drop the dependence on p from now on.

Consider the smooth open subspace Rep(CQ, @)° C Rep(CQ, &) where
Id, +XY,Id, +Y X, Id, +WaVi € GLo(C), 14+ VaWa#£0, a=1,...,d,

which we identify to Rep(A, &). We can then view Rep(A9, &) as the closed subspace where

H
(Id, +XY)(Id, +Y X) ' =¢ (Idy, +WoVa ), (4.1a)
a=1,...,d

—)
H (1 +VaWa) =q", (4.1b)
=1,....d

«@ 3oy

by applying X to (3.4a)—(3.4b). Note that (4.1b) follows from (4.1a) by taking determinants, so

we omit this condition from now on. Recalling that there exists a GL,,(C) action by
9-(X,Y, Vo, Wa) = (9Xg™ ', gY g™ Vag ™' gWa), g € GLa(C), 4.2)

we form the MQV
Crga = Rep (AT,@) // GLu(C),

as a g-analogue of the Calogero-Moser space C,, introduced by Wilson [170], which is reviewed
in Example 2.1.4. To guarantee that this space is smooth, we apply the regularity criterion of

Proposition 2.3.28 for the roots of the Jordan quiver given in Example 2.2.3.

Proposition 4.1.1 Assume that q is not a root of unity. Then the GL,(C) action on Rep(A?, @)
is free, and Cy, 4 q is a smooth variety of dimension 2nd endowed with a non-degenerate Poisson

bracket {—, —}p.



4.1. General considerations 121

The dimension follows from Theorem 2.3.27 because the space is not empty'!. To compute a
Poisson bracket { F, G}p on Cn,q,d- Tecall that we have two equivalent choices. Either we can lift
the two functions to Rep(A, @), and then use Proposition 2.3.26; or we can remark that these two

functions are (polynomials in elements) of the form tr X'(y), and we apply (2.36).

4.1.1 Localisation

Consider the subspace Rep(CQ, &)° C Rep(CQ, &) where X is invertible. Motivated by § 3.1.2,
we construct the matrix Z = Y + X1, together with A € Mat,,»4(C) and C € Matgyx,(C)

which we refer to as the spin matrices, and that are defined entry-wise by

Aia — [Wa]

70

Caj = [Va(Idn —FWa,lVa,l) A (Idn —|—W1V1)Z]j . (43)

The a-th column of A is W,, so it represents the spin element a/, by (3.7). Similarly, the a-th

row of C represents ¢,,. We get in particular that the moment map equation (4.1a) is equivalent to

XZX ' =qZ +q¢AC. (4.4)

This construction descends to the subspace C;;’ g.d C Cn,q,d Where X is invertible. In particular, we
can understand a point of C;’L’ q.a With four matrices instead of 2d + 2. Indeed, given a quadruple
(X, Z, A, C) as above, we can recover (X, Y, V,, W,) by taking Y = Z — X1, (W,); = Aja,
while we form C,, € Mat;,(C) by (C,); = Cy; and define inductively

Vi=C1Z71, Vo=CoZ Y Id, + W1 Vi) (Idp +Wo1 V1) !,
since all inverses are well-defined by definition of C ;.
Consider the following functions on th a.d
fro=tr(XF), g2 = tr(AE4CXF), keN, a,f=1,....d, (4.5)

where the matrix E,g is the elementary d x d matrix with entry 1 at («, 3) and zero otherwise.
One last benefit of the introduction of the matrices A and C is that it will be possible to understand
the local Poisson structure by knowing the Poisson bracket between the functions ( f, ggﬁ ), as

we will see in Section 4.2 for the case d = 1, and in Section 4.3 for the case d > 2.

"This is a consequence of the local diffeomorphism that exist in both cases d = 1 and d > 2, see below.
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Lemma 4.1.2 Forany o, =1,...,dand k,l > 1,

{fk7 fl}P :0 {fk)g[aﬁ} kgk+[ ) (463)

{gk » 9 6}P =

w\'—*
VOUERS

=
MN

)tr(AEagCXTAE%CX’““ )

+

l
> - Z) tr(AE,sCX " AF,.CX")

_l’_

o, y) (tr(AEWeCX’“AEOCgCXZ) v tr(AEQECXkAEVﬂCXl))

+

o(e, B) (tr(AEaﬁcX’fAE%CXl) - tr(AEMCX’“AEwCXZ))

+
l\D\P—‘[\D\)—‘[\DM—‘[\DM—‘ N | —

[o(€, @) 4 dae] tr(AELCX*AE ;CX?)

e—1

[0(B,7) + 63, tr(AE,CX"AE,sCX")
Z + Z AFEC
A=1

+ Oqe tr (
B—1

—Opytr | |Z4 > AE,C| X'AE,CX" |, (4.6b)
pn=1

k l
X AE%gCX>

where o(—, —) is the ordering function on d elements defined in Section 1.5.

Proof. A first proof consists in applying X to Lemma 3.1.5 with X(z) = X, X(z) = Z,
X (aﬁlc’ﬁ) = AFE,3C. Alternatively, we also show!? how to derive the first equation from
Proposition 2.3.26. We lift fj, to

fk = Z 1112 1213 . sz“ € O(Rep(A, &)) ,

where we take the convention that an unlabelled sum means that we sum over repeated indices

from 1 to n. We do the same for f;. Meanwhile, we have by (2.34a) that

1 1
{Xij, Xptp = §X£j5z‘z — Eéijil'

12We advise the reader to compare this with the computations that can be made with the double bracket to derive
Lemma 3.1.5. It becomes transparent that computations with the double bracket allow to do computations with

{—, —}p in an subscript-free way.
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Hence, we compute

k
;o7 1 1 ! k—
TAGTES 35 9) DE R crils SIS SN IS i

o=171=1
T 1 k—o Xo~ 1 —T
ZZZXJIJT JTZU+1X10+111 i1lo 510]T+1 ]-r+1j1
o=171=1
1 k l
T—1 k—o o 1 l—7
2 ZZZXJU 5JT’U+1XZU+111 Xma lo]r+1Xjr+1j1’
o=171=1

which clearly vanishes. By definition of the Poisson bracket obtained after reduction, this implies

that { fx, fi}p = 0. m

If we want to replace X by Z in the previous lemma, it suffices to apply X to Lemma 3.1.6.

4.1.2 Towards integrability and dynamics

We continue with the notations of §4.1.1 assuming & = (1,n). Note that the discussion that
follows does not depend on the dimension vector and it would hold for any & € N* x N*, except

for item 3 in Proposition 4.1.3.

Let u € {x,y,2,e9 + 2y}, and denote by U = X (u) the matrix representing . Introduce the
algebra Oy generated by the functions tr U* and tr WQVBU’“ forany k € Nand 1 < o, 5 < d

(which we also see as a sheaf).

Proposition 4.1.3 The following holds in C, 4 q (or C,  ,ifU = 2):

n,q,d

1. The symmetric functions {tr Uk | k € N} of U are pairwise in involution;
2. Foranyk,l € Nand1 < o, 8 < d, {tr Uk tr WaV5Ul}P =0,
3. The algebra Oy is a Poisson algebra under {—, —}p;

4. Forfixed o, B € {1,...,d}, the subalgebra of Oy generated by the functions (tr U*);, and

(tr W, VsU®)y, is an abelian Poisson subalgebra.

Proof. First two items follow from Corollary 3.1.8. For the third one, remark that by (2.36)
and (3.15b) in Lemma 3.1.7 the Poisson bracket {tr W,yV;Uk, tr WanUl}p can be written with
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functions of the form tr W, Vg, Ut W,,, Vs, U®2. But using that Vg, U** W, is a scalar, such a
function can be written as tr(Vg, U1 Wy, ) tr(Vs,U**W,,) € Op. Hence, the algebra is Poisson.

For the fourth item, remark that in (3.15b) we get O for v = o and € = f3. O

Since we assume that Z is invertible when we work with U = Z, we can in fact take any k£ € Z,
and leave this easy verification to the reader. Working with the spin matrices in that case, we get

a similar result from Lemma 3.1.6.

Proposition 4.1.4 The symmetric functions {tr Z* | k € Z} of Z are pairwise in involution.

Moreover, they Poisson commute with any function tr AEQBCZZ, forle Zand1l < a,p <d.

Clearly, both results suggest to look at degenerate integrability. However, we still require some
assumptions on the functional independence of the chosen functions to apply Corollary 2.3.39.

This will be detailed in Section 4.3.

We write 00 = X (¢) for the matrix that represents the moment map supported at the vertex 0.
In other words, ©(®) = (Id, +XY)(Id, +Y X) ™ on Cp g, or 00 = XZX'Z on ;.
Furthermore, let us restrict our attention to the open subspace {det U # 0} of C, 4 4 where U is

invertible. Corollary 3.1.10 implies the following.

Proposition 4.1.5 For any K € N*, expand h¥% = - tr[U(1d,, +1(0©)) =W)X in terms of n

as h% = S5, P, w1". Then all the functions {hf s | 0 <k < K} are in involution.

This time, the result suggests that we can form an integrable system for each possible U. Again,
we can not directly apply Corollary 2.3.33 to prove that claim, and we postpone this discussion at
the moment. Nevertheless, we can try to obtain one last result before studying the local picture of
Cp,q,d to establish integrability : it could be possible that we can explicitly obtain the flows defined
by (a lift of) one of the functions h}‘g i 1n Rep(A67 , @), see the comments after Corollary 2.3.39. If
we begin with U = Z, let Z,, = Z(Id,, —i—n@(o)). We get from Lemma 3.1.12 (assuming that we

have localised at X)
(Wi, X}p = —n@ZE"'2Xx - X257, (Wi, ZYp = —22K7' 2 + 2} 22,

while the brackets with Vg or W3 vanish. However, it does not seem possible to integrate most

flows because, after a tedious computations, we can see that {17, Z, }p # 0. Thus the matrix Z,
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is not a constant of motion, although all its symmetric functions are by Proposition 4.1.5. If we
only look at order 0 in 7 instead, we get that for the function hi, , = % tr ZX the flows defined
by d/dtx = {hi o, —}p have to satisfy the defining ODEs

b A av dw,
WX xgi, 2y, W s

-~ _ = 0.
dti ’ dti ’ dti ’ dti

This has the following consequence.

Proposition 4.1.6 Given the initial condition (X (0), Z(0), Vs(0), Wg(0)), the flow at time t
defined by the Hamiltonian % tr ZK for K € N* is given by

X(tx) = X(0) exp(—tx Z(0)"),  Z(tx) = Z(0), Vs(tx)="Vs(0), Waltx)=Ws(0).

o

In particular, the flows descend to complete flows in C;, a.d

Recalling the localisation defined in §4.1.1, we can reintroduce the spin matrices A and C since

X (tg) stays invertible, so that we find A(tx) = A(0) and C(tx) = C(0).

For the next case U = Y, we write ¥;, = Y (Id, +70(®)). We get from Lemma 3.1.13 that

(assuming we look at the subspace {det Y # 0} in Rep(A9, @))

(Y, X}p = -V - XYY — eyl (14 VX)),

(WY, Yp = - YV, 'YV 4+ VY2,
and the quasi-Poisson brackets with Vi3 or W vanish. Again, we can not hope to integrate all
flows explicitly, but considering order 0 in 7 yields for h¥, , = % tr Y& by writing d/dry =
{h% o, —}p that

d d
X yr_xyx WY dVs o dWs

=0.
dri dri Todri T dri

It is important to remark that, in the proof of Lemma 3.1.13, the invertibility condition on y
is needed to get rid of terms containing a factor 7. Hence, these equations are well-defined in

Rep(A9, &), also when Y is not invertible.

Proposition 4.1.7 Given the initial condition (X (0),Y(0), V3(0), Wz(0)) the flow at time T
defined by the Hamiltonian % tr Y for K € N* is given by

X(1r) =X (0) exp(—7Y (0)%) + Y (0)  [exp(—7x Y (0)") — 1d,,],

Y(rx) =Y(0), Wp(rx) = Wp(0), V(i) = V5(0).

In particular, the flows descend to complete flows in C,, 4 4.
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Note that the expression for X (73) is analytic in Y'(0) so does not require its invertibility as we

explained above. Both propositions appear in [41] in the case d = 1, and in [42] for d > 1.

Now for U = X, we write X, = X (Id,, +7(6(?)~!) and we work in the subspace {det X # 0}
in Rep(A9, &). We get from Lemma 3.1.14 that

{hfe, X}p =XXFT'X - X['X? ) {h§, ZYp = ZX 7' X 4o ' X TIXZ

and the quasi-Poisson brackets with Vg or Wy vanish. As before, we look at order 0. (We could
get rid of the assumption that X is invertible if we look at the dynamics of the matrix Y instead
of Z.) For h¥, , = + tr XX, by writing d/dt x = {h% ,, —}p, we obtain that

X iz _ i Vs _ o AW _

v :O, = — = S O
dtg dtg dtg dtg

) )

This yields the next result.

Proposition 4.1.8 Given the initial condition (X (0), Z(0), V5(0), W5(0)), the flow at time tx
defined by the Hamiltonian % tr XX for K € N* is given by

X(ix) = X(0), Z(ix) = Z(0)exp(ixX(0)"), Vs(ix) = Vs(0), Ws(ix) = Ws(0).
In particular, the flows descend to complete flows in C; o.d-
Finally, for U = Id,, + XY, we denote Id,, + XY by T, let T;, = T(Id,, +1(0®)~1), and write

hE = RS2 to ease notations. We can work in Rep(A9, &) since 7T is already invertible by

assumption. We get from Lemma 3.1.15 that
{hie, X}p = = T TX =g X (O@O)ITEAIT - (B, Thp = TT; T - T2,

and the quasi-Poisson brackets with Vi3 or W3 vanish as usual. Reproducing the usual scheme,

we get our last statement.

Proposition 4.1.9 Given the initial condition (X (0),T(0),V3(0), W5(0)), the flow at time tr
defined by the Hamiltonian % tr TX for K € N* satisfies

X(tx) = exp(—txT™)X(0) , T(tx)=T(0), Va(tx)="V3s(0), Ws(tx)=Wp(0).

In particular, the flows descend to complete flows in C,, 4 4.
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The completeness of the flows still requires to show that Y (#f) is well-defined, but we omit
those computations. Rather, remark that when we assume that X (0) is invertible, the proposition
determines the solution Y (fx) = X (tx) [T (tx) — Id,] for all time {f. In that case, we have

1 [¢]
completeness in C;, ;.

For the previous results, we used the matrix representing the moment map ¢ = <I>(()O) € Ao
relative to the subquiver Qo consisting only of the arrows z,y : 0 — 0. Recalling the chain
of quasi-Hamiltonian algebra (3.16), we consider ©(®) = X (<I>(()a)) forany 0 < o < d. Using
(4.1a), we see that in Rep (A7, &)

— —
0@ = (Id, +XV)(Id, +YX)™" J] (dn+WsVs) ' =¢ [[ Adu+WsVs), 47
1<B<a atl<p<d

where we take empty products to be Id,. Finally, set Ui, = Oy with U € {Y, Z}.

Proposition 3.1.11 is easily seen to imply the following result.
Proposition 4.1.10 The functions {tr U{;) | K € N, 0 < o < d} are in involution.

We would also like to form an integrable system from these functions, which we will discuss
later. What we can already do is derive the corresponding flows, in the exact same way as we
did before. We leave the geometric translation of Lemmae 3.1.16 and 3.1.17 to the reader, and

directly state the results.

Proposition 4.1.11 Given the initial condition (X (0), Z(0), V3(0), Wg(0)), the flow at time t
defined by the Hamiltonian % tr Z([;),for K e N*and 0 < a < d, is given by

X(tx) = exp(~tx Z()(0)*)X(0),  Z(tx) = Z(0),

Va(tr) = Vi(0)etx 202 O 1O 0) gy = ¢t 202 0" 100 Oy 0y g < q,

Vs(tr) = V5(0), Wp(tx) = Ws(0), B> a.

In particular, the flows descend to complete flows in C;, od

Proposition 4.1.12 Given the initial condition (X (0),Y (0), V3(0), W3(0)), the flow at time T
defined by the Hamiltonian % tr Y({.f),for K e N*and 0 < o < d, is given by

X (i) = exp(=Tx¥(a) (0)) X (0) + ¥(o) (0)~ fexp(—75 V() (0)) — 1d,,]0',

Vi (7i) = V3(0)e™ Y OYioy O T1O0) 1y (1) — =Y (Yo 01O Oy 0) . g < o,

Y(rx) =Y (0), Vg(rx)=V3(0), Ws(rk) = Wp(0), B> a.
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In particular, the flows descend to complete flows in C,, 4 4.

Let us make some final comments on these expressions for Z, the case for Y being similar. Since
00 = XZX17-1 we have that tr Z(Ié) = tr ZK . Because there areno 1 < B < dwith § <0,
the flows for Z, Vi3, W given in Propositions 4.1.6 and 4.1.11 are clearly the same. Furthermore,

using Proposition 4.1.11 we get that

X(tx) = exp(—tx X (0)Z(0)* X (0)~1) X (0) = X(0) exp(~tx Z(0)"),

o

as in Proposition 4.1.6. Similarly we have from the moment map condition ©(?) = ¢Id,, in Coad

that tr Z({g) = ¢® tr Z¥, and we want to compare the flows. Using Proposition 4.1.11 we get for

the flow of tr Z (Ig) that

X(tx) = exp(—g"tx Z(0)¥)X(0), Z(tx) = Z(0),
Vi(ti) = Va(0)e” 2O Wy(t) = e 0" 2O Wy(0), 1< B < d.

)K

Changing representative after acting by et k2O ¢ GL,,(C) as in (4.2), we precisely get the

flow for ¢ tr ZX obtained from Proposition 4.1.6 with ¢ rescaled to ¢"tx.

4.2 Simple framing

We first look at the case d = 1 where ¢ is not a root of unity, and we write V, W instead of V;, Wj.
We denote Cp, 4,4 simply by C, 4, and we write C;, , for the subspace where X is invertible. In

particular, we get the following interpretation for these smooth spaces

Cnq ={X,Y € gl,(C)|rank(XY — ¢V X + (1 — ¢)Id,,) = 1,det(Id, +Y X) # 0}/GL,(C),
Cp o, ={X.Z € GL,(C) |rank(X ZX ' Z™" — qId,) = 1}/GL,(C).

(4.8)
Indeed, we can discard the case of rank zero since then the condition is empty, e.g. this implies
X7ZX~17Z~! = ¢Id,, which is impossible by taking determinant. Hence, we can remark that
Cn,q 1s similar to the space of matrices satisfying [91, Proposition 5.2] which are related to the
gKP hierarchy. Also, C; , corresponds to the space studied by Fock and Rosly in [80, Appendix],
see also [18, 126], which is associated to the Ruijsenaars-Schneider system. We will make these

relations precise in the next subsections.
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4.2.1 Local Poisson structure
First parametrisation

Let h = C™ with coordinates x1, . .., x,, and define b,¢, to be the open subspace such that

Breg =1z = (z1,...,2n) €H | 2 #0, 2; # ), x; # qzj foralli # j}. 4.9)

Consider h; C breg X C™ such that 1 + p;z; # 0 for each 7, where we take coordinates py, . .., py

on C". Then, defining the matrices

1— )1 + pjz;
X = diag(z1, ..., ), Y:(Yij),forygj:(sl-jpﬁa(#j)( q?( +Wjj), (4.10)

we see that the matrix XY —qY X 4 (1—¢) Id,, has rank one and equals WV for W = (1,...,1)7
and V = (V;), V; = (1 + pjx;). Moreover, since we can write

1
Id,+YX =(1-¢q)C(X)XP(X), where C(X)Z'j = m, P(X)ij = 5@‘(1 +pj$j),
i j

we can see that Id,, +Y X is invertible by assumptions on (z;,p;). Indeed, X and P(X) are

easily seen to be invertible, while to compute det C'(X) we use Cauchy’s determinant formula :

for M € gl,,(C) with M;; = (m; — uj)~" we have

[Tic;(mi —my)(y — pa)
Hi, j(mi = 15) .

Hence, for any (x;,p;) € by we can construct elements (X,Y) € C,, by (4.8), and we

det(M) = (4.11)

can recover that W = (1,...,1)T as above while V = V(Id,, +Y X)~!. Now, remark that
simultaneous permutations in by as 7 - (x4, p;) = (T, Pr(s)) for 7 € S, are equivalent to
the action on (X, Z) by the corresponding permutation matrix. We obtain in that way a map
§:b1/Sy — C ., which is easily seen to be injective. To get surjectivity, we remark that

& surjects onto the subspace C;w C C,,4 where X is invertible and diagonalisable, with its

eigenvalues that define a point in .

Lemma 4.2.1 There is a diffeomorphism £ : b1/S, — C,, , such that &(xi, p;) = (X,Y,V, W)
is determined by (X,Y") defined as (4.10).

In particular, local coordinates are given by diagonal entries of X and Y in the particular form

(4.10), as an obvious generalisation of the Calogero-Moser case from Example 2.1.4.
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Since X is invertible, we can always define Z = Y + X ! in that case, and Z = (Z;;) has the
same off-diagonal entries as Y while Z;; = p; + a:l-_l. Then, following §4.1.1, we remark that the
functions fi = tr(X*) and g, = g}' = =2 tr(ZX*) defined in (4.5) are such that
Ch=Y a7, &g=("-1> (1+pmz)ai",
i i

which are easily seen to define a local coordinate system on C;, ,

Proposition 4.2.2 The diffeomorphism & : b1 /S, — C;uq is a Poisson morphism for the Poisson
bracket {—, —} on b1/ S,, defined by

{zi,z;} =0, (4.122)

{zi,pj} =0i;(1 + xipy) , (4.12b)

(=@t ) (i + 1) (pyzg + 1)
tpips} = (zi — ) (2 — quj) (x5 — qz;)

: (4.12c)

and {—,—}p onC, ,

Remark 4.2.3 Note that a priori we do not know that {—, —} is a Poisson bracket on 1 / Sy, but it
follows from Section B in the Appendix. We use this argument without further mention throughout

the thesis.

Proof. Since the functions ( fx, gr.) form a local coordinates system, it suffices to prove that

E{fe, fite ={& Ny, E{fevatr ={ . Eat, o atr ={ 9w al,

see Remark B.3. To compute the brackets on the left-hand sides, we need Lemma 4.1.2. The first
identity is then trivial as both sides are zero. For the second,
{& fi, &t = Z{l’l pirh el =k(g = 1)) 2 A+ i)
i
and we easily get that this coincides with £*{ fx, g;}p = k&* gi;. For the last identity, we assume

for simplicity that k > [ and we begin by computing {£* g, £*g; } which is up to a factor (g1 —1)?

Z{pixk + ﬂcl-“*l,pjzé» + :Uéfl}

_Z (1—q +pz$z)(1 + pjTj) 33z+$y( bk — akal)
xi — qu;)(xj — qi) T — x; i

+ (k—1) Z[zfﬂ-lpiu + pizi) + P2 (1 4 i)

i
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To reduce this expression, we need the following result.

Lemma 4.2.4 Assume that a > b are positive integers. Then

a—b

(w; + ;) (xf ;’ - xfazj) = (z; — xj) Z(:cfftxgﬁ + xﬁ.’ﬂx?*t).
t=1

Hence, we can write that {£*gy, £*g;} equals

k—1 (1 _'_ple) (1 +pix; ) I+t
t=1 i#j (zi — qz;)(zj — qz1)

7

which is easily seen to be equal to (¢~! — 1)2 ¥l e* tr(Z X 1 Z X!H1), after noticing that
Zij = (1—¢q )Hpﬂz] Finally, recalling our assumption k > [, we rewrite {gx, g:}p = {9}, g} }p

in Lemma 4.1.2 as

k
{gi' 9/ p = > tr(ACX"ACX*7) 4 tr(ZXFACX') — tr(ZX'ACX"),
r=Il+1

since the only nonzero terms come from the two first sums and the last two terms. But in our case

d = 1 we have by (4.4) that AC = ¢ ! XZX ! — Z, so we can write {gx, g;}p as

k-1
1 1
Z |:(1 + q72) tI‘(ZXlthZint) . tr(ZXl+t+1Z)(k7tfl) . tr(ZXH»tleAxkftJrl)
q q
t=1
1 1
+ —tr(ZXMZX Y —tr(Z2XF 22X — S te(Z2 XL Z XY + (2 X2 X
q q
k—1
(1 —q 1)2 tr(ZXlthZkat) ’
t=1
and we have indeed {¢*gy, * g1} = {9k, a1 }p- O

It is natural to try to find coordinates such that the bracket defined by (4.12a)—(4.12c) is in

canonical form on these new coordinates. To do so, set ; = —(1 + p;z;) and remark that

14« 33;

G-De 5 g

1— *11/1..:(51..
( Q) J ](q

coincides with the matrix defined by [91, Eqs (6.4)—(6.5)] after conjugation by diag(z], ..., ).

n

Under the transformation [91, (6.3)] which for us amounts to introduce ¥y, . . . , ¥, such that
qr; — Ty
1+ piz; = A; exp(zjy;), where A; = H , (4.13)
T; — x]
J#i

we have a set of canonical coordinates.
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Proposition 4.2.5 The set of local coordinates (x1,...,%n, Y1, .., Yn) on b is such that
{ziz;} =0, {xi,y;} =65, {vi,y;} =0,

for the Poisson bracket introduced in Proposition 4.2.2.

Proof. The first identity is (4.12a). That identity together with (4.12b) yields {z;, 1 + p;x;} =
dijxzj(1 + p;jx;), and the second identity easily follows. For the third one, a direct computation

gives
LTy — 4
Oijzita; =1

{Ai(@),yi} =) ‘W : (4.14)
14 v

Ojigits TF 7
Then, another tedious computation implies for B; = A;(x) exp(z;y;) that
(1 —q)xjzi(z; + ;)
(i — xj)(qwi — 25)(qr; — 77)
Since B; = 1 + p;x;, this is equivalent to (4.12c). O

{B;,Bj} = B;B;

Second parametrisation

As we can see in the proof of Proposition 4.2.2 and the introduction of new coordinates in (4.13),

the element (1 + p;z;) plays a more important role that p; on its own. Hence, consider hrg =

Breg X (C*)™ with coordinates v, . .., v, on (C*)™ and hyeg given in (4.9). Then, introduce
X = diag(z1,...,2), Z=(Z), for Zij = (1 — q)—2I (4.15)
T; — qx;

Now, the matrix X ZX ~'—qZ isequal to WV for W = (1,...,1) T and V = (1—¢)(v1,.. ., vp),
so that (X, Z) € C;, , by (4.8). Indeed, from the definition of b,eg we have det X # 0 directly,

while Z is invertible again using (4.11). We get a variant of Proposition 4.2.2 in that way.

Proposition 4.2.6 There is a diffeomorphism § : brs/Sn — Cj, such that &(x;,p;) =
(X, Z,V,W) is determined by (X, Z) defined as (4.15). Furthermore, it is a Poisson morphism
for the Poisson bracket {—,—} on hrs/Sy, defined by

{in,xj} :07 (4.168.)
{(L‘i, I/j} :5ijl‘jVj , (4.16b)

(1 — q)Q((I}i + l’j)l‘il'j ViV

, 4.16
2 — 23) (@ — 42;)(@; — q7) (169

{Vi7yj} :<
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and {—,—}p onC, .

Proof. It is similar to the proof of Proposition 4.2.2 since vjz; = (1 + pjz;). O

This time, we can remark that these brackets are similar to [80, (A13)—(A15)]'3, and up to
changing representative under the action of g = diag(\/71,...,/¥,) which is locally well-
defined, we get that Z takes the form [80, (A.12)]. Hence, we can find log-canonical coordinates

following their work, and we introduce

Si v \Z), \x . .
g (2), Al(x) klkl or — o9 @ —ga) (4.17)

Since we are taking square roots in (4.17), this parametrisation is only locally defined. We are not
willing to discuss the definiteness of /A’ (z) at all, and we forget about that issue for a moment.

(We will see that a third parametrisation is better suited to our study.)

Proposition 4.2.7 The set of local coordinates (x1, ..., %n, 81, .., 8,) on hrg is such that
{xi,xj} :0, {Z‘i,Sj} :52‘]‘%1'8]', {Si,Sj} :0,

for the Poisson bracket introduced in Proposition 4.2.6.

Proof. First two identities are obvious. For the third one, it follows easily from the next result.

Lemma 4.2.8
1—q)? wxj(z; + 7))
Al(x),vi b = 83y Al (x)v; ( /AN ) (4.18)
VA vt = e A G o~ g - )
Last lemma requires an easy but tedious computation left to the reader. O

Using these new variables, we find that

To(Z) =) v = isiq(l‘”w I1 (2 — q2i)(zi — qx)
i i=1

oyl (g — ) (2 — x1)

Moreover, using (4.11) yields that tr(Z + Z~!) takes the same form, with (s; + si_l) instead of
s;. It is claimed in [80] that this is the Ruijsenaars-Schneider Hamiltonian'#, and we can in fact
show that taking a suitable representative of the equivalence class, then Z is the complex version

of the Lax matrix introduced in [144].

"3 As noted in [126, Remark 2.1], the multiplicative factor corresponding for us to (¢ — 1) is missing.
"“Their identity [80, (A.24)] contains a typo, since all factors except (s; + s; 1 should be inverted.



134 Chapter 4. MQVs from the Jordan quiver

Lemma 4.2.9 For any (X, Z,V,W) € C,, ,, we can choose a representative such that Z has the

form L = (L) with

0, + 6
Lj; = exp (5 J; ’“) Cit\/F(rj)F(ry), (4.19)
where
2
p— 2 = 7@
g flrj—m) f2r) =1+ 2073 (4.202)
Cjr = [cosh (%(rj - rk)) + fa sinh <%(rj — Tk))} ! , a?=a"2-1. (4.20b)

This is the Lax matrix for the trigonometric RS system introduced in [ 144, Section 4]

Proof. From the representative given in (4.15) such that Z;; = x(_lz_fl)ijq, we get by conjugating

by diag(/71, . .., /Vn) then using the coordinates (x;, s;) that
—1/4
(1-9) L @z (@ =) — 1) xk )
Zij = V555 14" q
Y fey =gV g (z1 — qzi) (@i — qa1) kl;[] j — qzk) (Tr — qz;5)

Introducing coordinates (r;, 6;) such that s; = ei, x; = e"i, and ~ such that ¢ = €27, we can

write
—1/4

0it0; ri—ri sinh(~y
e 2 Hg?“z—m Hg | = Tk)

Zij=e 7 o
Slnh( 5 '7) l#1 k#£j

4.21)

with the functions
sinh (%) sinh (_7)

9(r) = sinh (% — fy) sinh (7” — fy) '

e"™/2) we can get rid of the factor e T in Z;j. Now, notice that

Conjugating by diag(e”/?, ...,
forf=pu=1,0%=— sinh2(7) we obtain from (4.20a)—(4.20b)
sinh(y _

W P =g

sinh (L;V + ’y)

Cjr. =

Hence L;; given by (4.19) is nothing else than (4.21). O

Again, it is important to remark that this is only true in a neighbourhood of a point due to several

manipulations involving square roots.
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Third parametrisation

We start again with the Poisson diffeomorphism given by Proposition 4.2.6. This time, we seek a
set of log-canonical coordinates that does not require any branch cut, contrary to the coordinates

defined in (4.17). This is the approach that was considered in [41]. We choose to set

R Ay = T &=z 422
o= vi Aj(w), Af(x) ,}lﬁm—aw (422)

and we obtain log-canonical coordinates.
Proposition 4.2.10 The set of local coordinates (x1, ..., Ty, 01,...,0y) on hrg is such that
{xi,x]’}:o, {xi,oj}zéij:viaj, {Ui,Uj}:O,

for the Poisson bracket introduced in Proposition 4.2.6.
Proof. First two identities are obvious. For the third one, we need the next result.
Lemma 4.2.11

" — " - -1 ibj
{AY (@)™ vy} = 8eg) Al () M o (_qxi) (Z quxi). (4.23)

The proof of this key lemma is left to the reader. O

In these coordinates, the matrices X and Z =Y + X! of (4.15) take the form

1—q)z; Tk — qT;
Xij = (5ijx]~, Zz‘j =0y ( — ) ] H — J . (4.24)
(x; — qxj) Ny Ty — T

Defining locally canonical coordinates (r;, ¢;) with z; = € and o; = €%, as well as ¢ = €*7,

we can rewrite after acting by diag(e™/2, ... e"n/?)

sinh(7) sinh (%5 )

Zij = _e—(n=1)y ¥
sinh (% — 7) kk+j sinh (%)
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4.2.2 Integrable systems on the MQV
Finding integrable systems

In order to find integrable systems, we need to look at the functionally independent elements in
the families described in §4.1.2. We begin by a first remark when we look at the elements in

. . . k
involution with any tr Z" on Cp, .

Lemma 4.2.12 For any k € N, tr WV Zk e Cltr VA | I < k]. Moreover, for any k' < k, the

element hj, ;. defined in Proposition 4.1.5 is such that hj ;, € Cl[tr ZH 1< k).

Proof. By choice of ¢, tr WV = VIW = ¢7" —1 € C. Next, we use the moment map equation
(4.4) in the form XZX ! = ¢qZ + qWV Z. This gives tr WV Z = (¢~! — 1) tr Z and raising

the moment map relation to the power k > 2 before taking its trace yields
—kteWVZE = (F -Vt ZF+ .+ tr(WVZ)k )

Now, remark that any term on the right-hand side is a trace of some matrix containing either no
or at least two products WV'. We can rewrite the latter terms as products of tr WV Z! with [ < k
using that a factor V Z'W is a scalar equal to tr WV Z'. For example, tr(WV Z)F = (VZW)* =
(tr W'V Z)*. This proves the first part of the lemma by induction. For the second part, remark

that we can rewrite
z 1 —1\k 1 k
hy = %tr(Z—l—nXZX )= Etr((l%—nq)Z—i—anVZ) ,

so that by a similar induction h} € Cltr Z Ltr WV Z' | | < k]. Taking the element at order &’ in

n is hj, .,, which thus satisfies the same property. We conclude by the first part. O

Hence in the particular case d = 1, we have nothing else than the involutive family (tr Z¥)
from Proposition 4.1.3, Proposition 4.1.4'> and Proposition 4.1.5. This is, in fact, true for any

u € {x,y,z,e9 + xy} as we see now.

Lemma 4.2.13 Forany k € Nand k' < k, tt WVU* LY ,, € CltrU! | | € Z], when we work

on the open subset of C,,  where U is invertible.

'5In the case d = 1 we just have tr ACZ' = tr WV Z'*!, so it gives nothing more than Proposition 4.1.3.
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Proof. We remark that in the case e(u) = —1, we can write from the invertibility condition
that the moment map takes the form AUA™'U~! = ¢(Id,, +VW) for some A € GL,, and the
left-hand side in particular is ®¢. Thus ®qU = qU + ¢V WU and we can reproduce the proof of

Lemma 4.2.12 to get our claim that the desired elements are in Ctr U’ | I € NJ.

If €(u) = +1, we write the moment map as UBU " 'B~! = ¢(Id,, +VW) for some B € GL,,.
In a similar way ®, YU = qU + ¢W VU and the proof of Lemma 4.2.12 works again but this time
for C[tr U' | 1 < 0]. O

By the same reasoning, Proposition 4.1.10 gives nothing more than (tr Z¥) or (tr Y*). We now

establish how many elements are functionally independent.

Proposition 4.2.14 At a generic point of C,, 4, there are n functionally independent elements

inside the algebra Cltr U' | 1 € Z].

Proof. We have seen in §4.2.1 that the matrix U = X can be generically parametrised by the
n-uple (z1,...,x,) of its eigenvalues up to permutation. These eigenvalues form a point in byeg,
a n-dimensional space where they are pairwise distinct. This implies that the Jacobian matrix J
of F = (trX,...,1trX") has x;-_l for (7, 7) entry, hence J is a Vandermonde matrix. It is
invertible since x; # x; for i # j, hence the functions forming F' are functionally independent

onCy, ,.
)

In the other cases U = Y, Z,1d,, + XY the proof is similar. Indeed, since C,, , is connected by
[126], we can parametrise generically a point of by the eigenvalues of U with n other coordinates,

then repeat the argument. O

As a corollary of this result, we can generically integrate the flows associated to the vector field
{trU', —}p by quadrature, see §2.1.2. This local integration is an alternative to the global one

derived in §4.1.2, and was remarked in this form in [41].

Local expressions

We use the third parametrisation and the log-canonical coordinates (z;, 0;) of Proposition 4.2.10
to write down on C;L,q some of the functions in each family, and the system of ODEs they define.

This subsection is parallel to the end of [41, Section 3].
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We do not discuss the family (tr X*); since the functions tr X* = S"" ¥ do not yield
interesting systems of ODEs in local coordinates. So we begin with the elements (tr Z¥);, for

which we set G,lc’l = tr Z*. We can write from (4.24)

Gl,l — i (1 _ Q)UiQxiQ (]' — q)ailxil ﬁ H ‘rja — qxia (4 25)
k xil - quig xik - thil Zj ’

i1,k =1 a=1 \ jaija#ia

for any k& € N. In particular, denoting % ={-, Gl’l}p, we get
Jii#k i#£k gk

where we can use Lemma 4.2.11 with o; instead of v; to compute the second term. To
obtain (z;(t),0;(t)) at generic time ¢, it then suffices to integrate locally the flow by forming
an integrable system from Proposition 4.2.14, or to put the element (X (¢), Z(0), V' (0), W (0))
obtained from Proposition 4.1.6 with ¢ = ¢; in the form of the third parametrisation described
in §4.2.1. In other words, we act on (X (¢), Z(0), V' (0), W (0)) by the matrix g; that puts X (¢)
in diagonal form (then act by a diagonal matrix that puts g, (0) equal to (1,...,1)"). This
was observed in [144, Sect. 5] for the Ruijsenaars-Schneider Hamiltonian, which is equivalent to

tr(Z + Z~') as explained with the second parametrisation in §4.2.1.

For the family (tr Y'*);, we can see these elements as deformations of (tr Z*);, on C}, , since

Y = Z — X~ L. Hence, we can write for Hl’1 = tr Y'* that
"1 o; T — qT "1
il — gl _ L H 11 _9 i j i =
! ! Z$i7 Z H:):J—:m—{_, x?
i=1 i=1 YR E) =1 1
and continue for each k£ > 3. We then easily get for % ={—-H 11 11p, that
d:ck .’L‘j — qTL dO’k O (1 — q)xixk Hfj — qx;
e U220 R Ban I T 22
Jig#ik
The functions H ; 1 first appeared in [91] to define the motion of the zeros for the tau function of
the gKP hierarchy, where we need the coordinates (x;, ;) given in Proposition 4.2.5. In the above

coordinates, they can be seen as the classical version of operators introduced in [21, 167, 168],

see [34] for details.

Finally, we want to look at the functions Fkl 1= tr(Id, +XY)*. We can remark that on Crq We
have from (4.24) that

. (1—=q)x; Tk — qT;
(ZX)zJ = J((.CE _q)x‘j) H ?L‘ _qxlj 3
P oy TR
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where ; = o;x;. But an easy consequence of Proposition 4.2.10 is that the coordinates (z;, ;);
have the same Poisson brackets as (z;, 0;);. Hence Fkl’1 = tr(ZX)" defines the same family as

G,lg’1 after the reparametrisation (x;, 0;); — (x;, 3;), so we do not need to discuss this family.

Remark 4.2.15 In the above formulas, we have always chosen X to be in diagonal form. We

could instead put Z in diagonal form and obtain that the couple (Z, X) takes the form

. . (1—qg Yz Ze —q Lz
Z = diag(z1, ..., 2), Xij = 6, ( qfl) 1T 4 % (4.26)
Zi —(q Zj k;éj Zk — Zj

for log-canonical coordinates (z;, &;). This can be compared to (X, Z) in (4.24), and we see that
now X plays the role of the Lax matrix. The functions G,lc’l = tr Z* become trivial, while tr X*
are the symmetric functions associated to the RS system. This astonishing property can be seen
as the duality of the complex trigonometric RS system. Duality properties were first investigated

by Ruijsenaars in the (more complicated) real setting [141, 142, 143].

4.3 Multiple framings

In the spin case d > 2 where ¢ is not a root of unity, we work in C; 0.d with the matrices
(X,Z, A, C) introduced in §4.1.1 in order to understand the local structure in §4.3.1. We only
return to the elements (V,,, W, ), when discussing the possible integrable systems on the space in

§4.3.3.

4.3.1 Local Poisson structure

Recall the spaces h = C" and b,¢s given by (4.9), that are introduced in §4.2.1. We consider
the open subspace C,’%q’ 4 C C, 4q Which is such that for any equivalence class of quadruple
(X,Z,A,C) € C';z, .d> the matrix X is diagonalisable with eigenvalues in bee, and when we
choose a representative with X in diagonal form, the matrix A is such that the entries in each
of its rows sum up to a nonzero value. Hence, we can always pick a representative such that

Y aAia=1inC] q.d> and there is still the freedom to act by permutation matrices.
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Following [42], we take (a®)T,c® € h fora = 1,...,d. We define b5, C hreg x b x h? to be

the subspace such that on global coordinates (z;, a$*, c') we require

1771

Y af =1, det(B), det(Id, +WjV3) #0, (4.27)

where the matrices B, Wé, Vé are defined as follows. We form the matrix B = (B;;) by

[N e)
PIPE: ¢
o -
il q

and we let Wé € Mat,,«1(C) and C”ﬁ € Matqx,,(C) be defined by (I/Vé)Z = aiﬂ, (C’é)Z = cf.

Furthermore, we define inductively
Vi =CyB ' (Id, +WiV)) ' (Idy +Wh_ V)"

This space has dimension 2nd. We define amap ¢ : by, — C; 4. Which associates to (x5, a8, c%)

1771

the equivalence class of the element (X, Z, A, C), where

X = diag(xy,...,z,), Z =B,
(4.29)
A= (Aia) , C= (Cai) with A, = af»“, C.i = C? .
It is readily seen that (4.4) is satisfied, and the invertibility of Z and the elements Id,, +W,V,
comes from (4.27), as we can remark that each pair (V,, W,,) is nothing else than (V., W/).
Note that we have an S,, action on b, given by 7 - (z;,a,cf) = (fol(Z-),af_l(i),cf_l(i)),
which corresponds to the action by a permutation matrix of GL,, on (X, Z, A, C). We obtain in

that way the following result.

Proposition 4.3.1 The map & : b,/ S, — C), q.4 8iven by (4.29) defines a diffeomorphism.

Remark 4.3.2 The (x;,a, c{') extend to a local coordinate system on the connected component
ofC;%d containing C;7q7d. However, we do not know if they extend to Cfmzd as it is not known if

that space is connected for d > 1. For d = 1, it was proved by Oblomkov [126].

Our next step is to investigate if we can extend the map & to a Poisson morphism, as we did in the
case d = 1 with Propositions 4.2.2 and 4.2.6. To do so, remark that the functions defined in (4.5)

can be written in local coordinates as

& fr = Z:cf, §*g?ﬂ = Za?cfxf , Zg*gg‘ﬁ = Zcfxf (4.30)
i i o i
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It follows from these expressions that their differentials span the cotangent space at a generic
point. We computed their Poisson structure as Lemma 4.1.2, which allows us to prove the

expected Poisson property of the morphism £ of Proposition 4.3.1.

Proposition 4.3.3 The map & : b,,/S, — C,, q.d Jrom Proposition 4.3.1 extends to a Poisson
diffeomorphism for the Poisson bracket {—, —} defined on b,/ S, by

{xi,xj} :O {a?,xj} = 0, {cf‘,xj} = —(51']'0?1‘]' 5 (4313)
i+ x; 1
{a},a ,5(#3); —xl( ajai’ +a/aj —ajaj —a/af") + 20( ,7)(ajaf +a/af)
1< 1<
+§Zo(7,0)a( 'a + aja 520 (ajaj +afaj), (4.31b)
o=1 k=1
T+ x;
{c], i} =0caBij — ai'Bjj + 5(1;&]) 2 ZC; (aga —aj) — 5(a<€)a§écj

_xz

~1
*agza?(c?*cj)ﬁLéeaZa Y+ = Z a, k)cj(afaf +ajaj), (4.31c)
A=1

Tj + x; 1
J xl( 5 + ctc ,8) + cﬁB —c;Bji + 50(6,/8)(%%? - c;-c?)

B-1
+Ciﬁza?(c?—65)—Cizaﬁ-‘(Cé‘—Cf), (4.31d)

{ij 7 } - 61753)

(]

and the Poisson bracket {—, —}p on C;l7q7d. In (4.31b)—~(4.31d), o(—, —) is the ordering function

on d elements defined in Section 1.5.

We skip the proof of Proposition 4.3.3 and return to it at the end of this subsection.

Due to the moment map relation in the form (4.4), we are more interested in the entries of the

product S = AC than the entries of the corresponding two matrices. Set g;; = >, aj'cj forall

7, j. Hence, under the isomorphism &, Z is given by the matrix B with entries q% as defined
i J

in (4.28). We find the following result.
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Proposition 4.3.4 The Poisson bracket {—, —} satisfies the identities {x;, gx; } = dyrigr and

r; + 7 Ty + X T+ x;
T s TR s LT
Pp—s F Ok 3 Z; o) x]
T+ 2 n T+ qT; _ xi—i-qa:l}
Tj—2x  Tkp—GqTj T — 4L
Tp + x; .’Ei+qxl:| 1 [ T+ Tk xj—i-qxl]
+ + 59ii95 |0(; -
2 1397 (]#k) m] — Tk 179 — qx;
1 x;, +x; x4+ qT;
+ 5959k [5(1'7&0 x: + uE

1 T+ Tk
{95, 9r1} =59ii Kt [5(i;ék)xz_xk + (540

T; + Tk

1
+ 59i1gk; [5(#19) + 1)

Ti — Tk

1
+ 5919 O(isk)

T — T Ty —qx

1 T +x; T +qx;
+ S 9kj gkl [5(1‘7&14;) - - - ’

2 —T; Tk — QT — T T — QT

4.32)
In particular, the commutative subalgebra of O(bsy,) generated by the elements (x;, gr) and

localised at {x; — xj,x; — qx; | i # j} is a Poisson subalgebra.

We will describe the relation between these Poisson brackets and the Arutyunov—Frolov

conjecture in §4.3.2. Now, we proceed to the proof of Propositions 4.3.3 and 4.3.4.

Poisson diffeomorphism : proof of Proposition 4.3.3

We noticed from the local expressions given in (4.30) that the differentials of the functions

!/

n,q,d- Hence, our aim is

(frs 97", >y g;) generate the cotangent space at a generic point of C

to show that

(), Folp = {&'F, &Ry}, forany Fi, Fy = fi,gl"> gl (4.33)
ol

Indeed, it follows that that this equality will hold when evaluated on a subset of 2nd functionally

independent functions'®. We can then conclude by using Remark B.3.

To write down the terms involved in (4.33), we apply £* to the identities from Lemma 4.1.2 for the

left-hand sides, and use the expressions (4.30) together with the brackets (4.31a)—(4.31d) in the

'®We could omit the third type of functions 3 5 g.¢ from our discussion, since their Poisson brackets are obtained
by summing those for g7 over v = 1,.. ., d. However, we prefer to keep the computations involving these functions
during the proof, so that the reader can have a better idea of the calculations that were needed to discover the brackets
(4.31a)—(4.31d) in the first place. Indeed, as can be seen from the proof, for each new equality of the form (4.33) that we
want to obtain, we just require one new bracket on b5, /S». Hence, the original computations consisted in finding for
which bracket we get an equality. For example, when I wanted to establish £*{ fx, >, gf‘ﬁ}p ={&fe, " Y, glo"B},

I already knew that {z;, z;} = 0 and I wanted to determine what {x;, cf } is in order to get the equality.
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right-hand sides. Note that in local coordinates, we use £*X;; = 0;;xi, £*(AEL3C)ij = af‘c?
together with {*Z;; = B;;.

We reproduce the computations from [42]. First, we note that {z;, z;} = 0 implies £*{ fx, fi}p =
{&" fi, §* fi} since both expressions vanish. Second, recall that by assumption ) a®* = 1 for all

i. Thus, from {z;, c]ﬁ} = (5ijxic?,

Z{f fir € g™} = Z{ch }_kamz 8

i,j=1

Zf {fr.97" o =k Zg Tr(AE,sCX ) _kzcﬁ b+

and we get £*{ f,> ., glo"B o =& fu. >, glaﬁ }. Third, without summing, we get again that
E{fr g oYL = (€ f, & ﬁ} using {a', z;} = 0. This finishes the first case.

Next, we establish (4.33) when the two functions are of the form g,/ or >~ g;“. To obtain the

left-hand side of (4.33) in those cases, we use that Lemma 4.1.2 implies

k l
JJ [ )

5 {gk aglﬂ}P—% <Z Z

n
) ( a ce k41— r+aacﬁ k+l ra’}’cexr)
r=1 r=1/ 1

,7=1
1 n
k k l
+goay) Y (alejayagelsl + atesalajelst)
ij=1
n

1
a B kel €k vBl
+ 20(6,B) E <aj c, zja;cjr; — a; cjria;c, xz)

ij=1

a l
[ €, Oé +5ae Zal Z; (434)

We now want to prove that

Z RUSASIE Z{CExf,cfwl : (4.35)

v,a=1 i,j=1
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Using (4.31a) and (4.31d), the right-hand side of (4.35) can be read as

n

430pns = Y ({ef aldabe] + {af, el efal + {cf, o akal)

7]71
x;
=( —ZZ% a4 Z AT ool 1 il
,5=1
i#]
n 1 n
+ Z xfxi(CfBz] —c;Bji) + 50(6,5) Z xfxi(cfcf — Cj'cf)
L=l ij=1
)\ k..l
+ijlzzal ijzjza
=1 ij=1

The left-hand side of (4.35) can be written from (4.34), after summing over <, and using the

normalisation Zv a] = 1 from (4.27) when possible. We get

k
4.35) s == Z c; C (Z — Z) (xrl’f"'l T xi:t-i—l—rx;) (4.362)

i,7=1 r=1 r=1
1 n d
+ 5 cjcfxf:ci Z o(a,7) (a?a?‘ + af‘a}’) (4.36Db)
ij=1 ay=1
1 n
+ 50(6’ B) Z w?mi (cfcf — cjcf) (4.36¢)
ij=1
1 n
t3 Z[o(e, a) + bae Z a?cjx?cfa:é (4.36d)
a=1 ij=1
1 d n
~5 Z[o(ﬂ, v) + 6] Z cjx?a}cfzé (4.36e)
v=1 i,j=1
n
+ Y abal(Bye] — BjicS) (4.36f)
ij=1
n e—1 n pB—1
+ Z Zag\c?m?ci Z Za c“m , (4.36g)
ij=1 =1 ij=1p=1
To reduce this expression further, remark that by definition of the ordering function o(—, —)
d
Zo(a,'y)( ¢+ af a])zZ( /af + af a}) Z( %+ af aj)—O
a,y=1 a<ly a>y

after relabelling the indices in the second sum, so that (4.36b) disappears. Then, write (4.36a) as

k !
(4.36a) =(k — I Zcfc;”vi”“r chc (Z Z) ( r k= r_i_xk—&-l 'rl,;) ’

i,j=1
i#]
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so that the sum for ¢ ## j can be written as (here we assume k > [, the case k < [ is exactly the

same)

1 — k T — T
5 E CZI'BC;‘ v J (xrxk+lfr+xk+lfrx7j>

i i J
Ti — T
ij=1 r=l41"" J
i#]
1 & 1
_ - B € k+1,1 l+l k I+1 _ 1 k+1
=t
1#]
n n
1 T+ x; 1 T+
== c?cj J (xfa?é —mﬁx?) = —= xixf < fe ci +c; cj) ,
2 — Ti — Tj 2 — T — Tj
27.7_1 7".]_1
i#] i#]

after relabelling indices to obtain last equality. Finally, let us look at the terms in (4.36d), (4.36e)

and (4.36g) together. They can be written as

e—1 B-1 e—1 B-1

k l o€ B €, B AnA LB Ml e

= g xj g - g a;’cjc; — g - E cja;c; + 2 E ajcjc; —2 E a; c; C;
i,j=1 aze o=l =28 =1 A=1 p=1

and if we split the sum )~ as > o = S — 377! and do the same with the sum D spe

we get after using the conditions ) a$ = 1 (and the same for )

n B—1
k.l e B € B A )\ €
> o5 *Zaz “+ZCJ72+Za ;- al
i,j=1 =1 p=1
n e—1 B-1
k..l Al A
=D afai | D al(e) — e - Zaf(cf - c})e;
i,j=1 A=1 pu=1
Summing together all the terms, we have reduced the left-hand side of (4.35) to the form
1 — T+
/3 € k+l 1 kLt /5 € 5
=1 7,7=1
i#]
n
Z .T ( ]ﬁ C;-C?) + Z a:?a:i(B,]cf — Bjici‘)
4,j=1 i,j=1
e—1 B—1
A € €
+Zm ai(j—cj)cf—Zay(cf—cf)cj
t,j=1 A=1 p=1

This is precisely the right-hand side of (4.35).

Before showing the next case, let us remark using (4.37) that we can obtain the following identity
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for any functions x, x" : {1,...,n} — Clhgp)

1 n ‘ k l
LS oND) (z_z> e
i,7=1 r=1 r=1
" 1 — T, +x (4.38)
=(k = 1) Y XX D2 = 5 D7 e (Y (0) + X (X' () -
i=1 ij=1 ¢ J
i#]
In the second case, we have to show
Zg {975, 07"Yp = Z{c]xj,a?cfxl (4.39)
i,7=1

Using (4.31a), (4.31¢)—(4.31d), the right-hand side of (4.39) can be read as

(4-39)RHS: Z ({ijxz}xj a; C; +{$]7 Z}C x +{C]7 ’L}x] Za?+{cj7 za}xj i 5)
1,j=1

_ eaﬁk—i-l klx] E/B e/Ba
= —lZcZalclaj Z —Iz c;c;a; + cjc; aj)

n e—1
k.l.B A
+ Oear Z T T;C; <Bij+Zal- cj> Z x] Z j Bj;aj,
A=1

after some easy simplifications. Meanwhile, we sum (4.34) over ~ to get the left-hand side of

(4.39). Hence, we can split (4.39);, g as (4.40a)—(4.40c) and (4.41a)—(4.41b) where

k1 Zaf‘cfcjxf“ Z PR +a (az ¢} s +afecs) (4.402)
i,j=1
]
1 d n
+5 2 ola) D afuicie] (aZa? + a?et}) (4.40b)
'Y:l i7j:1
1 n
+ 50(6,,3) Z xfacia? (cfci- - cj-cf) , (4.40¢)

i.j=1
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d
1 1
+ 5[0(6, @) + Oae Z x?mécs-a?cf b Z[o(ﬁ,’y) + 08+ Z x?xﬁa?cja}c? (4.41a)

i,j=1 r=1 i,j=1
e—1 n B—1
k_1 A k_ 1
+5a6§ dhale] | By +Y ade) | = > abal [ B+ alel | aet, (4.41b)
i,j=1 A=1 i,j=1 p=1

where we used (4.38) to rewrite the first line of (4.34) in order to obtain (4.40a). By rearranging

terms in (4.41a) and (4.41b), we can write

(4.41a) + (4.41b)
1 n 1 d n
k.l l
=+ 5[1 — 20(a<e)] Z T; :L‘lcjaf‘cf ~3 Z[l — 25(8>)] Z T a:zaj“cja;ycf
3,j=1 y=1 1,7=1
e—1 n n B—1
+ Oae Z il ¢ (B ( i + Zal’-\c?) — Z ahziBjafc — Z ahzlalct aicy
2,7=1 A=1 3,j=1 i,j=1 pn=1
n B—1
l k.l
— b O abelesarel + 3 adates o al(el —ef)
7] 1 Z,jzl ,LLII
e—1 n
+ Jae Z x;“ L ;3 (B” + Zaﬁc?) — Z x?xiBﬂaf‘c;,
i,j=1 A=1 i,j=1
where we used again the condition Z _;a; = 1. Itis not hard to see that adding (4.40a)—(4.40c)

to this last expression gives that (4.39); g and (4.39) p 75 coincide.

In the third case, we need to prove that

oo = 3 (et avelal}. (4.42)
1,5=1

We need the bracket {a] ,C; } obtained by antisymmetry in (4.31c). Namely

1 T+ Tj B 8
(a0l = = 0y Byi + 2] Bji = 58— 2, (@ ~3)) + g<paje;
B-1 B-1 L
+a}2a§”(cf—c?)—6572a§‘ 520 : a{‘a}—i—a}‘-a]).
pn=1 pn=1 o=1

The right-hand side of (4.42) is given by

n
(442)RHS' = Z ({ jv a; }C ﬁ + { _77 C; }C )
ij=1
n n
+ Z xfﬂvi ( ;, Z} + {CJ, : }a ) (k—=1) Za]cﬁaf‘cf:cf“.

ij=1 i=1



148 Chapter 4. MQVs from the Jordan quiver

Hence, using (4.31a)—(4.31d) we can write (4.42) g g as

1 n
k—1 Za’Yceaacﬁxk+l+ mkxl$3+ ( ]ﬁa;ya +Ce 5 aa)

A At et ) J7 e J
S
i#]
1 - 1 =
k 1. Br.v N kol o Y B e.B
+ 50(0[,7) Z ziricic; (aja; +a;aj) + 50(6, B) Z riraia(cic; — cjc;)
1,7=1 1,7=1
n
k.l V. B .«
+ [0(y<8) = I(a<o)] Z zjzialc)c;a;
ij=1
n e—1 n B—1
k1B A l e .a o
+ Ocar Z zizic;a; | By + Z:aZ c; | —dpy Z rjricia; | By + Za] c;
3,j=1 A=1 7,j=1 pn=1

This is obtained by simplifying terms without any non obvious manipulation. Now, remark that

we can write 0(€, ) = §(eca) — O(esa) = 1 — dea — 20(c>q)> SO that

1
5[0(67 a) + Oca — O(ﬁa 7) - 55’7] = [5(’Y<B) - 5(0[<6)] :

We can also repeat the argument in (4.38) backwards, this time with x (i) = c’ a and \/(j) =

(2

ajc;. Incorporating these two facts in the above expression for(4.42) pfrg, we get

k l n
(442) s == <Z > 3 atclalc (x;“a:;?”"“ + xf“‘rx;)
r=1/ 1

r=1 i,g=1

g
2,j=1
n
+ —o(e, B) Z akalal aj(c§ cjﬁ cicf)
ij=1
1 n
l €
+ 5 lo(e, @) + 8o = 0(8,7) — 03 > akalalcselal
ij=1
n
A W )
ij=1
n B-1
— 03y Z ahalctal | Bji+ Zafc“
2,7=1 p=1

This is precisely (4.34) which, by definition, is (4.42) g g.
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Computations with the Poisson brackets : proof of Proposition 4.3.4

Below, we reproduce the analogous result that appears in [42]. Recall that, by definition, g;; =
Zi p aj'c§’. Hence, to obtain the Poisson bracket {gij, gr}, we first need to compute {a', g }

and {c?, gk}, which is given by the following result.

Lemma 4.3.5 Foranye,y=1,...,dand j, k,l =1,...,n, writing (ac)y = > ajcf,

€ € € Zj —"_ x €
{c§, (ac)u} =(Br;ci — Bjic) + (Bi; — Bij)(ac)u + 5( ) a:’;: cj((ac);i — (ac)wr)
1 T+, . . 1, 1.
+ 50020 xj . (cj(ac)u + ci(ac)k;) + 5ci (ac)kj — 5¢5(ac);
e—1
+(ac) ¥ _(c} —cf)(a) — ap), (4.43a)
A=1
T, +x
{a7, (ac)y} =a) By —a) By + 5(,#) i xz (a) —a))((ac)y — (ac)x)
1 b1 1,
55(17&1) (ac)kl( a/ —aj) + aj(ac)u — sa;(ac)y
1 d
+3 Z o(v,0)(ac)yla] (af —af) +af (a) —a])]. (4.43b)
o=1

Proof. We compute from (4.31c)—(4.31d) with the normalisation ) af = 1 that

d
{c§, (ac)u}y = D ({c§, af}ef +ag{cs,cf'})
a=1
T4z e—1
k
=c;By; — (ac)y Bij + 5(]#;) J - cj((ac)ji — (ac)k) — Z cj'ajc;
a=1
e—1
— (ac)k aﬁ(c —Cj +cl€Za2c3\+ ZZ o(a, k)cj'cj(alay + apaf)
)\:1 a=1 k=1
56(#) ( 5(ac)w + cj(ac)y;) + (ac)uBi; — cjBji
1 d e—1 d a—1
+ g2 ol —cte) + (o Y ad(ed — ) = 30 Y aetal(cl — of).
a=1 A=1 a=1p=1

(4.44)

Our aim is to reduce some of these thirteen terms, mostly using properties of the ordering function
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o(—, —). Summing the fourth, sixth and eleventh terms of (4.44) together yields

e—1 e—1
- E aﬁcl)‘cj + Zaﬁc c —|—
A=1 A=1

A
Z Z] akc c] — ajcj'c)

A=e+1 A=1
d

1 A 1 € €
Z akC c — akcz cj) = 2((ac)kjcl — (ac)pcy) .

The fifth and twelfth terms of (4.44) give

e—1 e—1 e—1
—(ac)u Y _ap(c; —cf) + (ac)u Y ap(c} —cf) = (ac)u Y _(a)' —ap)(c} — ).
A=1 A=1 A=1
Relabelling indices, we transform the seventh term from (4.44) as
1 d d d a—1
)95 oS ) o FETRERE
a=1rk=a+1 a=1 k=1
1 a—1
=5 Z Z c§(cl“a?‘ag + cfaga? — cf‘a;fag — claa‘k‘ajo-‘)
a=1p=1
1 d a—1
=5 > S c(el — ef)(alal +afal).
a=1p=1
which can be summed with the thirteenth term in (4.44) to yield
1 a—1 1 d a—1
3 Z ci(cf —cff) (Qagay —afa) — aga?) =3 Z ch(cl —cl) (akay — afal,
a=1p=1 a=1 p=1
1 d a—1 1 d d
=3 Z cj(cf — ¢f)agal — 2 Z Z cj(c)’ — c)alay
a=1p=1 a=1 pu=a+1
1 d d 1 d d 1
=3 0D (e —cfjaal = 5 3> cilageral — alfcl'af) = e ((ac) — (ac);) -
a=1 a=1p=1

Introducing the different terms back in (4.44), we find

€ € € Ty + T €
{cj, (ac)u} =(cjBr; — cjBji) + (Bi; — Byj)(ac)w + 5(;#) IR s ((ac) — (ac)u)
— Tk
1 T +x, . . 1 . c
+ 55(#1) 1:] — (cj(ac)w + cj(ac)x;) + Q(Cl (ac)kj — cj(ac);)

e—1

+(ac)y Y _(c} — c5)(a) — ap),

A=1
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as desired. For the second identity, we get from (4.31b)-(4.43)

d
{a], (ac)u} = D ({a],ag}ef + ap{a], ci'})
a=1
1 T+ 1 d
j k
255(1#) xz ~ (aZ - aZ)((aC)kl (ac)y) + 5 Z o« ag + aZa?)c?
a=1
1 d 1A
5 MZO (a)aj +ajaf 5220 k)a]c(afay + afay) (4.45)
o=1 a=1k=1
T + 2
—a) By +a]B; + 5(1#) — (ac)k(a Z ajajcf
! a=vy+1
d a-1 y—1 1
+ZZakaa cf —cff —akZacl 52 )(ac)p(afa) +afa)).
a=1 p=1 o=1
The second, eighth and tenth terms of (4.45) become
1 v—1 d d v—1
3 Z — Z (a]ajc +ajaf’c)') + Z ajajlci' — Z alaf'cy
a=1 a=y+1 a=vy+1 a=1

1 1
=3 Z(a}aicf‘ —ajafc’) = iaZ(ac)kl — iaZ(ac)il )

a=1
aFy

We write the third and eleventh terms of (4.45) as

d
1
520 (ac)w(a](af —af) +af(a] —a))).

o=1

Now, we transform the fourth term of (4.45) :

i
L

2
1
=3 Z Z a/(afajci’ + ajafcy’ — aj'ajc;’ — ajafcy)
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This can be summed with the ninth term of (4.45) to give

d a—1 d a—1

1
Ko KO Koo\ Y( K «@ Ko KO
fZZa r—=c) 2aiak—aiak—akai)—izzai(cl_Cl)(aiak_akai)
a=1 k=1 a=1 k=1
d a—1
LSS aler etatar =Y Y (e —chatal
a=1 k=1 a=1 k=a+1
d a—1 d a—1 1
LSS al(ef —efarag = £ 303 al(alcfag — afefa) = 2l ((ac)i — (ac)i).
a=1 k=1 alftl
KF#Q K#a

‘We have transformed (4.45) such that

T; + Tk
{al, (ac)u} =(a] —ay)Bu + 5( 4R o (a, —a)((ac)y — (ac)u)

1 T; + 2

56(1#) xz ) (a) — a])(ac)kl + 32 T(ac)y — §aZ(aC)il
1 d

+ 5 ) ol o) @c) () (af — af) +af (a] — a))
o=1
which finishes the proof. O

Now, to establish Proposition 4.3.4, we have from Lemma 4.3.5

d

{9ij> gr} = Z( (ac)ute] +al{c], (ac)kl}>

T; +x
~((ac)s — (@)uy) B+ i r

Y (ae)y; — (ac)y)(ac) + 5 (ac) (ac)s — 5 (ac)(ac)
xX; Iy

d
YD o(v0)(ac)u(alc](af - af) + af (a) — a))c])

((ac)r; — (ac)ij)((ac)i — (ac)x)

+ Byj(ac)y — Bji(ac)i;j + (Bij — Byj)(ac)u

+ 50(i£k) xj o (ac)ij((ac)j — (ac)u)

T+ x
T; — I

((ac)ij(ac)w + (ac)i(ac)k;)

d ~v—1
1 v

1
+ 5 (ac)alac)y; — 5 (ac)ij(ac); + (ac)u ;;a c; —c])(a) —ap).
(4.46)

Again, we used the fact that Zizl a] = 1. The sums in the third line of (4.46) can be reexpressed
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as follows :
- (ajc](af —af) +af(a] —a])c])

(ajc](af —af) —a](a] —a7)c?),

2
Il
—
q
Il
=2
+
[
q

:1_
after swapping the labels o <> v in the second term of the sum. This is nothing else than
1 d
§(ac)kl Z Z Z c —c7)(ap —aj).

v=1 |o=y+1 o=1

Summing with the last term of (4.46), we get

1 d Ry d y-1
§(ac)kl Z Z — Z az(c}’ - c?)(aﬁ —a}) + (ac)y Z a)( c - c )(ap — ap)
y=1 | A=7+1 A=l 7=1A=1
1 d d
A
:§(ac)kl Z Z a/(c] —cj)(a; —ay)
v=1 =1
AFY
1 d d
=5 (ac)u > > a) (c7a2 —cJa) —apc; +aj'c j‘)
y=1 =1

1 1 1
= §(ac k((ac); — (ac)y; — (ac)y; + (ac)y) = Q(ac)kl(ac)lj - §(ac)kl(ac)kj .
If we reintroduce the elements g;; = (ac);;, we can then rewrite (4.46) as

T + T

{9ij, gr1}p =9i5Bi — grjBa + 5(z¢k)7k(gkjgil — Gkjgkl — 9ij9i + Gijgkl)
T; + 2 1 1 1 1
+ 5(2#)7[(9”9“ - gijgkl) + igijgil - §gkjgil + §9k19lj - §9kzgkj
T+ Tk
+ Byjgi — Bjgij + Bijgri — Brjgr + 5(]#)]7(%]9]1 ijgni)
1 a:j + 2 1 1
55 G (nggkz + gigr;) + S9i9kj — 593951

1 1 1
=Yij ( i+ gzl) — Jkj <Bil + 29il> + gil (Bkj + 29kj> — Yij (sz + 29jl>
1 z; +
(Bz] + 291j> — 9kl <Bk:j + 29kj> + 5(#1)17[(%91@1 — Gij9kl)
T+ T
+ 55(i¢k)%7(gkjgil — GkjgkL — 9ij9il + 9ijgkl)

1 Tj+ xp T+
+ 55(#/@ (92]931 9ijgr1) + 5(j;£l)]7xl(gijgkl + gigj)
j
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after rearranging terms. Next, notice that for any i, j

1 q9i; T 1 1x; +qx;
Bii & —qi: — T = L
ij + 292] Pa—— + 29@3 27 — qz; 9ij 5
so that
(o gty =3 B0 g Ao o,

9ij, 9kl s P —2 Fep—— 9iigil 2% — qu 9k; il 27, — gz, Gil9kj 9 7 — qm 9i5 951
LI g A L P o)
pp gy = 55— gk:lgkj (z;él) 919k — Gijgki
1 T+ Tk

+ 55(i¢k)m(gkj9il — Gkjgkl — Gij9a + 9ijgkl)

T+ Tk r;+x

1
+ 500k L (9id 9t — 9iggw) + 5(;;&1) (gz]gkl + gitgrj) -
Tj— Tk

It is not hard to see that, by grouping terms together, we get (4.32).

4.3.2 Relation to the Arutyunov-Frolov conjecture

We can consider locally the coordinates (g;); instead of (z;);, which we define by x; = €24,
Similarly, we put ¢ = e=2 for some v € C* \ i7Q. Then, we can see that Proposition 4.3.4 can

be written as

1
{4, a} 20, {9ij, .} = —553'1@91']',

{94, 91} = [COth(QZk) + coth(g;i) + coth(gx;) + coth(qii)gijgr

[coth(gr) + coth(gj;) + coth(grj + ) — coth(gi + ¥)]gitgr;

1
[coth(gri) 4 coth(qu + ¥)]gijgi + 5 [coth(g;x) — coth(qi + v)]gi594

5l

L\.’)M—ﬂ[\.’)\)—ll\:)\i—l

[coth(gki) — coth(gk; + 7)) 9kjgr + [coth(gi) + coth(q; + 7)) gijgri

where we write ¢;; = ¢; — ¢;, and we take the convention that a term with vanishing denominator
is omitted. We can readily see that if we set f;; = g;; and consider the Poisson bracket
{=,—}a = 2{—, —}, these expressions are nothing else than (1.13a)-(1.13b), i.e. the Poisson
brackets conjectured by Arutyunov and Frolov. The analogy can be pushed further. With those

coordinates, the matrix B defined by (4.28) has entries - e Mt

_e YLy B i
3 snh(a, +7)° 5° that 2¢7 B is gauge

equivalent to the Lax matrix L defined by (1.12). Hence, tr B should define the equation of
motion for the trigonometric spin RS system up to a multiplicative constant, which we prove in

§4.3.3. If we continue to look only at the Poisson structure for the moment, it remains to see
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that (4.31a)—(4.31d) yield (1.11a)—(1.11d) when we degenerate to the rational case. To do so,
fij

we put 2; = €?5% and ¢ = 287, Then, in the limit 5 — 0, we get that 28B;; — PR

which are precisely the entries of the matrix L of Arutyunov and Frolov in the rational case. In
a similar way, note that 23 coth(3¢;;) — 1/¢;; in this limit. Now, if we rescale the bracket by
a factor 23 before taking the limit in (4.31a)—(4.31d), we get (1.11a)—(1.11d) as expected. Thus
the terms containing the ordering of the spins disappear in the rational case, and only the terms
with a factor coth(gj;) are visible in this limit. This was expected since the extra terms between
the spin variables are a pure consequence of the fusion process underlying the quasi-Hamiltonian
formalism we used, while this formalism is not needed in the rational case which can be obtained

by Hamiltonian reduction.

Finally, we could ask if it is possible to obtain the Poisson brackets between the non-normalised
coordinates (af', c§'), see Section 1.3. To do so, recall that we work on the space b, introduced in

§4.3.1 with coordinates (z;,a$", c*);q subject to )~ a® = 1 and other conditions, see (4.27). We

ARE

can get these elements from non-normalised coordinates (x;, af', ¢')iq Of []Sp = Breg X he x phe

through the generically well-defined map N : h sp — bsp given by

a®

N(zi,af, &) = (z;,a,c®), wherea® = —1— c?:c?Za?. (4.47)
g

AR R Ead) 57

ZB a;

We would like to define a Poisson bracket on f{;; that induces (4.31a)—(4.31d).

Lemma 4.3.6 The map N : f]AS;, — by intertwines the Poisson bracket {—, —} on b, defined in

Proposition 4.3.3 and the antisymmetric biderivation {—, —}' on f)z; given by
{zi, xj}/ =0, {a?,xj}/ =0, {cf‘,xj}/ = —d;icxy, (4.48a)
{aj,af Z%‘S(z‘#j) Z J_ril ajaf + ;0(a v)(a]af + ajaf) (4.48b)
{c5,a8Y =0 | BY + Z al'c | = Siaenaics, (4.48¢)
{c5, Y = 5(%)::: . i Cecﬁ i ;0( B)(cie? — 5P, (4.48d)
where o(—, —) is the ordering function on d elements defined in Section 1.5, and B}, = i qiz alg _03;

Proof. Write D; = 34 af . It is not difficult to show that (x;,a$'D; ", ¢ D;) satisfy relations
(4.31a)—(4.31d). One has to remark that D, 1BZVij = B;; for the matrix B defined in (4.28).
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Hence N (BY) = B. Then, the only non obvious identity to use is that

d
Z o(k,0) (ajai +aja?) =0,

o,k=1

which we showed using the skewsymmetry of o(—, —) in the proof of Proposition 4.3.3. o

Note the easier form of the expressions (4.48a)—(4.48d) compared to their normalised version
(4.31a)—(4.31d). Introducing the functions f;; = > aj'ci on [;S; such that N (fij) = fij = gijs

we can also compute their brackets as an analogue of Proposition 4.3.4.

Lemma 4.3.7 Foranyi,j, k,l=1,...,n, {fij,xx} = =i fijzi and

2qxj 2qx; T; + T T+ Tk
_ 50 8
t 0k T OUAD

{fijs fu} = lefk]

(4.49)

In particular, the commutative subalgebra of O(f);;,) generated by (xy, f;j) and localised at {x; —

xj, x; —qx; | i # j} is stable under {—, —}'.

Proof. In a way similar to Lemma 4.3.5, we find that

xz+xk

1 1
{a], fu} =—a]Bj; + 5(1#) - ap fa + a?fkl - §GZf¢l,

z; + T
{c§, fru} =c{By; + 5( A L Esz-i- lekz Cf-fkl-
From {g;, fu}' = >, ({a], fu}'c] + al{cj, fr1}'), we can then compute (4.49) easily. O

Though these brackets are easier to deal with, we have been unable to prove that Jacobi identity
is satisfied for any triple of generators. We conjecture that this is the case, so that {—, —}' would
be a Poisson bracket. It is then an interesting problem to try to extract the momentum p; from the

elements (c'),, for each i. In the rational case, this is already done in [16].

4.3.3 Integrable systems

Forany U € {X,Y, Z,1d,, + XY}, we have candidates for integrability from Propositions 4.1.3
and 4.1.5. We will study these two cases separately. As, in each case, the elements tr U* are part

of the family to consider, we first look at the local expression of such functions.
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Local expressions

We use the isomorphism of Proposition 4.3.1 to write the matrices in local coordinates, and we

9ij Ty

omit to write the map & from now on. For example, we write that on C/, ng.d W have Z;; = P

though this is in fact £* Z;;.

As in the case d = 1 discussed in §4.2.2, we have that tr X k — ZZ xf trivially. Next, we have
for G}C’d = tr ZF that

n

1 d _ k GiviaTiy GiirnTiy
' Ld _ ... 4.50
1 1 _ q Z g’L’L bl k- q Z xil _ qxi2 fCik _ qxil 9 ( )

i1, 0ip=1

with £ > 2. If we let % ={-, G%’d}p, we can find the corresponding set of ODEs on local

coordinates (g;, &S, c*), where each g; satisfies e2% = ;. To do so, introduce the function

2(1 — q)zjzy
(x; — o) (25 — qay)

Vi = = coth(q; — qx) — coth((¢; — qx) +7) - 4.51)

Hence, Vjj, = V"9 (q; — q3,) for the trigonometric potential introduced in Section 1.3.

Lemma 4.3.8 Foranyi=1,...,nanda=1,...,d

dg; q

doi ¢ 4.52
dt 201 )g (220
da’

i _ Vin( . 4.52b
dt 1 —q) k%; (@i = 2o 20
dct q
o =it =y 2 Vikeigin — Viseigns) (*4:320)

(1-aq) =

Proof. Note that {z;, Tr(Z)} = quq > wii, fer}. so that the first assertion follows from

Proposition 4.3.4. Then, remark that from Lemma 4.3.5

T; + Tk 1
{a/, gk} = (a] —a]) By + 5(z¢k) LR @) — a))gi + = (a) — a))gin, (4.53)
— Tk 2
which is clearly zero for k = i. Now, using (4.28) and (4.51),
1 —2qxg T; + Tk 1
{a), gk} = 55(#1@) (a) — a))gix pr—— + l,z e 1| = 55(#1@)(32 —a))girVik, -

(4.54)

It is easy to obtain the third identity from it. The last one is proved similarly. O
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Hence, if we set {—, —}4 = 2{—, —} and f;; = g¢;; as in §4.3.2, this is precisely (1.9a)-(1.9¢c)
with trigonometric potential up to a factor (¢~! — 1)~1. Thus, (¢7! — 1)Gy’ 1 is the Hamiltonian
for the trigonometric spin Ruijsenaars-Schneider system introduced by Krichever and Zabrodin
[105]. In particular, we can explicitly integrate any of the commuting flows defined by G,lc’d in
th 4,4 using Proposition 4.1.6. The motion for the matrices (X, Z) under such flows was already
determined in [138]. It is also important to remark that, due to our method, we are constrained
by the conditions on ¢ given by ¢ # 0 and ¢’V # 1 for any N € Z. Hence, we can not consider
the limiting case v — oo in (4.51), which gives the potential V' (¢) = coth(g). This case arises
in the study of affine Toda solitons, see [33]. A unifying approach in the real setting could be the
methods introduced by Luen-Chau Li (see [111] and references therein) or Laszlo Fehér [64, 65],

where such a potential can be obtained [111, Sect. 5][64, §6.1].

Then, we look at the elements H ,1 4 — fryk, Again, using thatY = Z — X! on C’ we can

n,q,d’

see each function H ;’d as a deformation of G,lg’d. For k = 1,2 we have
n

1 2 ii 1
Ld _ ~ld 1 Ld _ ~Ld_ 24 gii =
Hy" =Gy _E 7 Hy™ = G, 1_q2xi+z$?'

i=1 i=1 =1

We can compute the defining ODEs associated to % ={—-H 11 ’d}p from Lemma 4.3.8, and easily

get that
dgi __a
dt 2(1_ )gllv
da’
dtl = Z‘/lk glk)
k;éz
ﬁ __ 4 Z(V‘kceg'k — Viicgn) — Cj )
dt 2(1 —Q) oy Jk>597 J J Z;

This clearly differs from the RS system of ODEs due to the extra ter _% in dcj /dt. It seems
to define a system that is unknown as was pointed out in [42]. We have that the flows associated

to any H ;’d can be explicitly integrated in C,, 4 4 using Proposition 4.1.7.

Finally, for Fk1 @ — tr(Id, +XY)*, we remark that we can write Fk1 4 — tr(ZX)*. We can write
locally (ZX)i; = q 2.2 g”x] - for §;; = gijxj. Now, note that the coordinates (z;, Gi;);; have the
same Poisson brackets as (wi, gij)ij after an easy computation involving Proposition 4.3.4. Hence
Fk1 4 defines the same function as G,lg’d after the above reparametrisation, and we do not need to

discuss this family.



4.3. Multiple framings 159

Liouville integrability with a spectral parameter

In the non-spin case d = 1, we obtained as Proposition 4.2.14 the existence of n functionally
independent elements in the algebra C[tr U! | I € Z]. While this result does not depend on the
number d > 1, we can not form an integrable system for d > 2 since in that case n < nd =
%dim Cn,q,d- To get a family of functions in involution of greater dimension, we have to study
Proposition 4.1.5. We follow the method given in [62], which is partially based on the proof of

integrability for the spin Calogero-Moser case [20, 104].
Remark 4.3.9 For the remainder of this subsection, we require that d < n.

Lemma 4.3.10 For each U, the commutative algebra generated by the elements

1 —€elu
{ ke = - e[U(1d, +7®; WK KeN, pe c}

is an abelian Poisson algebra of dimension nd — @.
For U = Z, this is in fact proved in [105]. We follow the ideas of that work to claim Liouville

integrability after an extra reduction. Before doing that, we prove Lemma 4.3.10.

Proof. (Lemma 4.3.10.) We begin with the case U = Z. Note that we can write (Id,, +17®¢)Z
as Z +nXZX~'. This means that, for fixed K, the coefficients for the development of hY inn

in front of 7° and 7 are the same. Hence we have a first constraint for each K € N,

Next, note that we can also write (Id,, +7®¢)Z as Z+qn(Z+5S5) by (4.4), recalling that S = AC.
Up to a constant, this means that we can study the elements in the family {tr(Z + nS)’ |j €
N, n € C} (note that this is a different 7). Since these functions are obtained from the eigenvalues
of Z + 7S, it is sufficient to study the functions for j = 1,...,n. Expanding tr(Z + 75)7 in
n as Z{:O Gjm', we get j + 1 functions. Thus, we get at most n(n + 1)/2 + n functionally
independent elements. We already obtained n relations between these functions above. It is not

hard to see that these relations are equivalent to be able to rewrite each G ; in terms of elements

G v with strictly smaller j', or strictly smaller I if j' = j.

We get additional constraints because the rank of S is at most d < n. The exact count is obtained

by looking at a particular spectral curve. We introduce

T(n, 1) = det((Z +nS) — pld,) =0. (4.55)
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We write I'(n, 1) = Y0 ri(n)u’ = 0, where 7;(n) is a symmetric function of order n — i of
Z + 8, so is a function of {G;;|0 <1 < j—1, 1< j < n—i}. Inthe latter set, we omit
I = j because of the constraint obtained above. We can expand each r;(7) in terms of 1 as
ri(n) = Z’;:_g n—i,s7°. Hence the set of functionally independent functions is contained in the
{In—i.s}, which are functions of the n(n + 1)/2 functions {G;;}. To get the exact number of
functionally independent functions, we need to know how many relations exist on the {,,—; s }.

In a neighbourhood of 1 = oo, we can write

n

T(n,p) = [[(n—pi(n),  for pi(n) =nvi, (4.56)
=1

for (v;); the eigenvalues of S. At a generic point, S has rank d and its nonzero eigenvalues are
different, so we can order the (1;); sothat v; < v < ... < wvg,and V441 = ... = v, = 0. Thus
near ) = oo we write I'(n, ) = p" ¢ Hi:l (1 —nv;). From this behaviour at infinity, we require
that if we write I'(n, u) = >0 o T;(u)n’, then T;(u) = 0 foralli = d + 1,...,n. Each I';(u)
has order n — 4 as a polynomial in x whose coefficients are functions of the {I,,—; s}. We can

write T';(p) = Z’;:_é Jn—i,s(I¢)p®. Thus, their vanishing for ¢ > d is equivalent to imposing

n n—d—1
(n—d—-1)n—d) (n—d)(n—d+1)
n—i+1) (j+d)) = (n—d)?*— =
S 2 2

relations. Imposing these constraints on the number of elements {1,,_; s}, we get

nn+1) (n—-d)(n—-d+1) P d(d—1)
2 2 T Ty

independent first integrals. Remark that we get nothing by looking at ;1 = oo, since at a generic

point Z is invertible and diagonalisable.

All the other cases follow this method and yield nd — d(d; L independent functions. For U =

Id,, + XY, we remark that this is equivalent to the case treated above since Id,, + XY can be

generically written as the matrix Z up to the change of coordinates (x;, g;;) — (i, Gij = gi; ;).

For U =Y, remark that we can write (Id,, +17®0)Y = (1 + ¢qn)Y + qnSZ~1Y. After a change
of spectral parameter, we can write the elements of the family in terms of {tr(Y + n7T)7};, with

T = SZ~'Y. Hence, the proof is the same with the pair (Y, T) instead of (Z, S).

For U = X, recall that &) = ¢Id, +¢SZ~! is invertible by definition of the space. Since

the matrix SZ~! = ACZ~! is a product of the n x d matrix A with the d x n matrix
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CZ~', we can use the Woodbury matrix identity to write &;' = ¢~ 'Id,, —¢~'T’ for T" =
A(1d, +¢CZ~'A)~'CZ~1. Then we can write (Id, +n®; )X = (1 + ¢ 'n)X + gnT'X. We
then look at the family {tr(X + nT')’};, with T = T'X, and we redo the proof with the pair
(X, T) instead of (Z,.5). O

We get from Lemma 4.3.10 that our best hope to obtain an integrable system is to restrict our
attention to a space of dimension 2nd — d(d — 1) where the families of functions descend.

Introduce the Lie subgroup (and algebraic subgroup) # C GL4(C) whose elements have the

vector (1,...,1) as eigenvector with eigenvalue 1, as in [105]. This can also be defined as
d
MW= {h = (hag) € GL4(C) ’ S has = 1 forall a} . 4.57)
B=1

We note that ) (Ah);, = 1 for all i and h € #H. Hence, the action h - (X,Z,A,C) =
(X,Z,Ah,h~'C) is well-defined in C’

n.q.a» and we can also show that the system of ODEs

defined by G%’d in Lemma 4.3.8 (or its variant for H 11 ’d) is invariant under the action of .

We define the affine GIT quotient Cz;‘ 0.d 3
C?@{,q,d = C;L,q,d//%7

for the action given above on a quadruple (X,Z, A, C) € C;L’ q.q- The functions in szi,q, d
are H-invariants, so the coordinate ring is generated by traces of words in (X, Z,S), for
S = AC. Lifting such functions to C;l’ a.d> and writing them in coordinates give elements that
are polynomials in (x;, gi;, (x; — qa:j)_l, (i — xj)_l) which are H-invariant and form a Poisson
subalgebra by Proposition 4.3.4. Thus, we can define uniquely a Poisson bracket {—, —} such
that the injection ¢ : C¥, ; — C],  ; dual to O(C}, , ;) = O(C,, , )" is a Poisson morphism.
This is an algebraic analogue to Proposition 2.1.1. The different families (h} )& in Proposition
4.1.5 descend to szfq, 4 since they are ‘H-invariant, and by definition of the Poisson bracket they
stay in involution. For each family, we can equivalently consider as in the proof of Lemma 4.3.10
the elements {tr(U +nT')’};, where T is a specific matrix which has rank d at a generic point of

C/

n.q.d- We look at the expansion tr(U + nT)) = {:0 H}flnl.

Theorem 4.3.11 The elements {H}, | (j,1) € Ja} define a completely integrable system on the
smooth locus ofCqudfor Ja={0G,D]j=1,...,n,1=0,...,min(j — 1,d)}.
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Proof. We show the existence of a non-empty open subset S of cl q.d Where 7 acts properly
and freely in Lemmae 4.3.12 and 4.3.13 below, on which we can perform Poisson reduction as
in Proposition 2.1.1 for the analytic structure. In particular, the space of {-orbits in S defines a

smooth complex manifold of dimension 2nd — d(d — 1) inside C7*

n.q.d- BY construction, a point

(X,Z,A,C)in S is characterised by the fact that all the d-dimensional minors of A are nonzero.
Thus, it is the complement of the Zariski closed subsets defined by having a vanishing minor

of dimension d. The subspace S is dense in C/, q.d» @nd so does its reduction in CZL"q 4 We can

H

intersect S with the complement of the level set {det U = 0}, and still get a dense subset in C 0.d

after reduction. The elements {H}, | (j,1) € Jg} are functionally independent by the argument

developed in Lemma 4.3.10, so the statement holds. O

Lemma 4.3.12 The action of H is free on the subset of Cr’l’ a.d where, for each representative

(X, Z, A, C), either A or C has rank d.

Proof. Assume A has rank d, the proof being the same if we assume the latter for C. By
definition, there exists K = (k1,...,kq) C {1,...,n} such that A = (Ay_g) is a d x d matrix
which has rank d, so is invertible. If we take some h in the stabiliser of the point (X, Z, A, C),

then in particular Ah = A and thus Ah = A. Indeed,

(Ah)aﬁ = ZAka’Yh'Y/B = (Ah)kaﬁ = Akaﬁ = Aaﬁ ° (458)
Y

Since A is invertible, h = Id,. O

Lemma 4.3.13 The action of H is proper on the subset S C cl q.d Where, for each representative

(X, Z, A, C), all the minors of dimension d of A are invertible.

Proof. We have to show that given sequences (h,,) C H, (X, Zm, Am, Cm) C S satisfying
(X, Zmy, A, Cn) = (X, Z,A,C) € S and h,,, - (Xms Zmy A, Cr) = (X', Z/ A/, C) €
S, then h,,, converges in . Note that trivially X’ = X and Z’ = Z.

For any choice of K = (ki,...,kq) C {1,...,n}, we can form A as in Lemma 4.3.12. In
particular, we also write G for the d x d matrix obtained in that way from some n x d matrix G.

We see that h,,, = Ag}hm - A, since Ak = Ay hom.
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From this, form h := A~'A’. This element does not depend on the choice of K : take any
two K = (k1,...,kq), L = (I1,...,13) and construct AX and A’ as before. They are both
invertible, so they are related by A% = T A for some T € GL4(C), and the same holds for any

m € N. Forming h** and h’, we get

hE = lim (AX)"Y(hy, - AX) = lim (AL)" 1T T (A - AL) = BE.

m—r00 m—r00

To get that h € H, we first show that h € GLg4(C). Since h := A~'A’ and both elements on the
right-hand side have nonzero determinant, so too has h. Remark that this is where the condition
that all minors are invertible occurs : in general, if AX is invertible for some K = (k1,...,kq) C
{1,...,n}, we do not know that A’ K is also invertible but only that A’ L'is invertible for some

possibly different string L C {1,...,n} of length d.
Second, h € H as
S hes = Y AAL = YA = 1
B 7.8 Y
Indeed, when o Aio = 1 for all 4, we have > o AW = 1 for all v. Moreover, the same holds

for its inverse. To show this last assertion, denote Uy := A;%. Then

ZAgaUa = ZAgaA;,i = Z(Idd)ﬁ'y =1.
a a,y

v

If we form the vector U = (U,), AU = (1,...,1)". Since A is invertible, U, = 1 forall a. O

Liouville integrability for specific cases

Assume that d = 2 first, and fix «, f € {1,2}. Using item 4 in Proposition 4.1.3, the following
holds.

Theorem 4.3.14 Forany U = XY, Z,1d,, + XY, the elements
{trU”, tr (W, V5U®) | k=1,...,n}

form an integrable system on C,, 4 4.

Proof. We can generically fix a gauge where U is in diagonal form with distinct nonzero

eigenvalues and such that ) | (W, ); = 1 for all 7. (The latter condition is analogous to (4.27).)
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We can complete the set of 3n functions given by the eigenvalues of U and ((W,);, (V3):): by
the diagonal entries of X in the above gauge to get local coordinates, see the more general proof

of Proposition 4.3.16 below. g

It seems natural to ask if we can extend this set whenever d > 2 by additional n(d — 2) functions
in involution. Unfortunately, this task seems difficult as it requires a careful analysis of (3.15b),
which we postpone for a moment. Nevertheless, this is not too hard when n = 1, so we can also
give this specific case. The main step is to note that, when we do not take higher powers of U in

(3.15b), we can write that

1 1 1 1
{t'yev toz,b’}P :5ae(t'yﬁ + Etvetaﬁ + it'y,@toze) - 67,8(75046 + it'yetaﬁ + §t’yﬁtae)

+ 51001, 8) + ofe,@) — (e, B) ~ 07, 0)](tretas + bt

where we have set t,. = tr(W,V.) = V.W,,. In particular, {t,,taa}p = 0.

Theorem 4.3.15 If n = 1, the elements (tr U, toa)axq form an integrable system for any d > 2.

Hence tr U* is Liouville integrable for any k € N*,

Proof. We have already obtained that they Poisson commute. Since in this case each element
Wa, Vo, X, Y is a scalar, the moment map (4.1a) reads ¢ [, (1 + taa) = 1 and we can rewrite
tagas —1 4+ ¢ 1 [Toza(l + taa) L. The group acting in this case is C*, so we can generically
fix the gauge by the condition ) W, = 1, which amounts to Wy =1 — " £d Wo. Thus, at
a generic point the functions (X, Z, W,, tw)a#d are coordinates. In particular, the family from
the statement contains d functionally independent elements at a generic point. We conclude since

trUk:h’fforhl:trUinthecasen:L O

Degenerate integrability

Recall the definition of the subalgebra Oy defined before Proposition 4.1.3, which is generated
by the functions (tr U*, tr W, V3U¥). This algebra is defined on the space Cy, 4 4 (or Cp q.a for
Z), and is in fact a Poisson algebra by Proposition 4.1.3. As mentioned in [42], we can get the

following result!”.

o

"In this subsection and the next one, we can claim integrability only on the connected component of Cr.q.d

containing C;, , 4, see Remark 4.3.2. Since it is conjectured that C,, , ; is connected, we do not emphasise that we

work in a connected component for our results.
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Proposition 4.3.16 We can complete the set of functions (tr U l)le by 2nd — 2n elements of Oy,
such that at a generic point these 2nd — n elements are functionally independent. Moreover,
among these 2nd — n functions only the n elements tr U' Poisson commute with all the other

ones.

As a direct application of Proposition 4.3.16, we obtain the following result.

Corollary 4.3.17 For any k € N*, there exists a degenerate integrable system containing tr U*.

Proof. We use Corollaries 2.3.39 and 3.1.8, or we directly use the definition of degenerate

integrability. U

Proof. (Proposition 4.3.16.) We begin with the case U = Z, and we first introduce a convenient
set of local coordinates. Consider the space h2(d=D+1 where h = C" as before, with local
coordinates (2, Va,i,Wa,i) fori = 1,...,n, 1 < o < d. We consider the subspace h); where

zi # 0, z; # z; for all i # j, and for each o, 1 + ), wq ivq,i # 0. Now, define the matrices
Z = diag(zl7 ey Zn)> Va = (Ua,i)i, Wa = (wa7i)i 5

with 1 < a < d, and consider Fy 1 = q(Id, +Wy_1Vg—1)...(Id, +W1V1)Z. This is
clearly invertible by assumption on h;. Moreover, we claim that F;_; has distinct eigenvalues
genericallylg, and that there exists V; € Matqx, such that Fy = F;_1 + WV F;_1 has the
same spectrum as Z for Wy = (1,..., 1)T. Indeed, this follows by induction on d from Lemma
A.1. Moreover, this lemma tells us that by fixing the matrix X that diagonalises Fy into Z, V; is

uniquely defined.

Since Z is invertible, so is F;. But F,;_; being invertible implies that (Id,, +W;Vj) is invertible

in its turn. So we can define a point of C°

1.q.4 DY fixing X', which amounts to choose an eigenbasis

for F;. In other words, around a generic point of h;, we can locally complete the elements

(2i, Vai, Wa,i) by n additional functions (corresponding to a choice of eigenbasis) such that we

o

define a local coordinate system in C, o.d-

'8To see that this is a non-empty condition, remark that fixing all va; = 0 = wa,:, we have that Fy_; =

diag(gzi,...,q2n)-
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We now form the degenerate integrable system. To do so, introduce tﬁye = tr(W,V.Z!). In local

coordinates tl76 => zfueyiw%i for v, e # d, and ¢! c =D zf-vm- for € # d. We consider

T = ((; tr Zk> ) , (tldl)l ey (tfi’d_1>l ) (tlu)l ey (til—l,l)l) (4.59)

where each k ranges over 1,...,nand [ over 0,...,n — 1. We write

(z,v,w) = ((z)k, (V1k)Ks - - (Vd—18) ks (WL Es -+ s (Wa—1k)E) 5

for this particular order of the subset of coordinates (we omitted those that determine X). Then

we can see that the Jacobian matrix takes the form

V., 0 0
oT B A
o(z,v,w) ¥ 0f-
* *x B

where A = diag(V,,...,V.) is composed of (d — 1) diagonal square blocks V. of size n
with entries (V);; = z;-_l (so V. is the transpose of a Vandermonde matrix), while B =
diag(ViVs, ..., ViV%) is also composed of (d — 1) blocks for Vi = diag(v1,1,...,v1,,). Since
detV, # 0 by assumption and det V] # 0 if we restrict to the generic subspace where
each vy, # 0, we get that the functions forming 7" are generically independent. Therefore,
dim Oz > 2nd — n at a generic point. We have equality as no element ¢, depends on X, hence

on the n remaining coordinates.

Finally, we know from the two first items of Proposition 4.1.3 and the independence of
trZ...,tr Z™ that the centre of Oz has dimension at least n. Assume that the dimension is
strictly greater than n. Then the rank 7z of the Poisson structure on Oy is strictly less than
2nd — 2n. Hence, we see that the rank r of the Poisson structure at a generic point satisfies
r < rz + 2n, since we can at most increase the rank by 2n when completing the elements of T’
by another n independent functions. Thus r < 2nd, which contradicts that the Poisson bracket is

non-degenerate. Hence, the centre of Oz has precisely dimension 7.
For the other cases, we rewrite the moment map equation in the form
(X+Y hy(xX+Yy Hl=Fv, W)Y,
(X2)X Y XZ) ' =F(V,W)X !,

[(Id, +XY)Y])(Id, +XY) " (1d, +XY)Y] ! =F(V,W)(Id,, +XY) !,
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where FI(V,W) = q(Id, +W4Vq) ... (Id, +W1V1). We work either on the subspaces C,, , ;
or {detY # 0} C C,44- Then, we can reproduce the proof in the same way. Note that for
U = X, we use X ! instead of Z, and we diagonalise F/(V, W)X ! into X ! using some Z’,
from which we define a point of C:’L’ q.d Dy setting Z = X —17'. A similar argument is needed for

U=1d, +XY. a

Liouville integrability : the general case

Recall the notation U,) = 0T where U € {Y,Z}, and ©(®) = X (®() is given by (4.7)
for 0 < o < d. We can form the commutative algebra Hy generated by the functions tr U, (Ié )
from Proposition 3.1.11, and this result implies that H; is also a Poisson commutative subalgebra
under {—, —}p. We also denote by s the corresponding sheaf of functions on C,, 4 4 (or C;, a.d

for U = Z). In a way similar to [42], we can obtain the following result.
Proposition 4.3.18 At a generic point, there are nd functionally independent elements in Hy;.

As a direct application of Proposition 4.3.18, we obtain the following result.
Corollary 4.3.19 For any k € N*, there exists a Liouville integrable system containing tr U*.

Proof. (Proposition 4.3.18.) We do the proof for U = Z, the other case being similar. Using

(4.7), we can write that
Ua) = q(Idp +WyVg) ... (Idp +We1Var1)Z, a=0,...,d—-1,

and U(y) = qZ. We will show that the functions ho x = qu tr U(Ié ) are functionally independent
forl <a<dand K =1,...,n. Infact, it is more convenient to study these functions under the
form qu tr[ZU) 2 ~11% and to ease notations we also write by U(q) the matrix obtained after

conjugation, i.e.
U = ¢Z(Idy +WyVg) ... (Idp +Wey1Var1), a=0,...,d—1,

again with Uq) = ¢Z. Recalling that t

«

g =tr WaV[ng, we get that

hdJ(ZtI"ZK, hd_LK:tI"ZK—i-KtCIl(d—i-PK[tldd],
(4.60)
ha, i = tr Z5 + Kth, + Px[the] + Qa1
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where Pkt ] € C[tL, | 0 <1 < K], Py = 0, and the polynomial Q1 f satisfies the following

property : it is a sum of terms of the form

tlvll,mtffﬂg .. .ti;wl, lh+...+1ls =K, a <~ <dwith y; > « for at least one ¢ .

This implies that ()1, vanishes whenever Vg = 01y, or Wg = 0,,x1 forall < 8 < d, so

that 1 i takes the same form as h4 1 x in such case (with « replacing d).

To show functional independence, let us introduce some local coordinates, in a way similar to
Proposition 4.3.16. Consider again h2(~D+1 = C”, with this time the local coordinates
(zi,v8,i,wg,;) fori =1,...,n,1 < B < d. We consider the subspace h where z; # 0, z; # z;
for all i # j, and for each 3,1+ >, wg;vg,; # 0. Now, define the matrices

7 = diag(zl, ceoy Zn), Vg = (Uﬁ,i)i7 Wﬁ = (wg,i)z‘ y

with 1 < 8 < d, and consider F; | = ¢Z(Id, +W4Vy) ... (Id, +W>V2). As in Proposition
4.3.16 but now using Lemma A.4 inductively, we can finally get that there exists V1 € Mat;xn
such that £y = F} | + F;_ W3 Vj has the same spectrum as Z for Wy = (1,...,1)". Moreover,

for some fixed eigenbasis represented by X’ € GL,,(C), we have a unique Vj such that
X'Z(XY ' =F)=F, (1d, +W1 V).

Comparing with (4.1a), we can then define a point of C;, 0.d BY setting X = Z~!X’. Hence, we

can locally complete the elements (z;,vg,,wg;), 1 < < d, to get a coordinate system on a

[e]

. where we can write
bh- 5

(generic) neighbourhood in C

tr ZF = sz’, t’fw = Zwmv/g,izf, 2<aq,B<d. 4.61)
i i

Note that one could argue that we end up in a connected component of C; q.d Which is different
from the one obtained in Proposition 4.3.16 since we have different local coordinates. Given
diagonal Z and generic V,,W,, 1 < v < d, one can get nonzero V,;, W, by the construction in

the proof of Proposition 4.3.16 such that
XZX =Fy (+WyViFy 1 =q(Idy+WyVy) ... (Ad, +W1 V) Z=Z Y F} |+ F) ,WiVi)Z.

And these (X, Z, W, V) define a point of Cz’qu. Thus, taking Vg, W, 1 < 8 < d, and a suitable

eigenbasis for ), , in the above construction, we recover the exact same V7, Wi by uniqueness

o

once we fix X’ = ZX, hence we define the same point C;, 0.d-
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We can now show by (descending) induction on o = d,...,2 that hy,...,ha—1,x, K =
1,...,n, are nd — n(a — 2) independent functions. For o = d, we want to prove that tr Z and
haa,x, K = 1,...,n, are functionally independent. Recall the definition of the latter functions

in (4.60). We easily see that we have an isomorphism of the commutative algebras generated by
the hg i or the téﬁl with K = 1,...,n. So it is sufficient to show the functional independence
of tr ZK, tffd with K = 1,...,n. Using the expressions from (4.61), we just look at the Jacobian

matrix of these functions with respect to (z;, v4,;); which is the 2n x 2n matrix of the form

V' Onxn K th
J = 8 for Vi,; = Lch , A%i _ Olag

.o kii=1,....n.
* Ad Bzz

N (%d’i

In particular, we have that V;; = k’zf_l, Azi = wd7izf. For nonzero distinct (2;) and e.g.

wq; # 0,7 =1,...,n, the matrix J has full rank 2n. By induction on «, the Jacobian matrix J,
forhg k..., hax, K =1,...,n, withrespect to (z;, V4, - .., Vat,i); has full rank n(d —a+1)

(under the identification of the functions (h4—1 x) and (téil), the matrix J above is J;_1). Hence

the Jacobian matrix for hq g, ..., ha—1,x, K = 1,...,n, with respect to (2;, Vg, - - ., Va,;); has
the form
Jo On, Ohe—
Joq = | 7% T forna:n(d—a—i—l)and(}’%:ail’k, k,i=1,...,n.
* c« 6va7i

We could therefore conclude if C* has full rank n at some point. If we restrict our attention to
a point where wg; = vg; = 0 for all &« < 8 < d, it is not hard to see that the differential of

(Qa—1,K vanishes, hence

oo _ O (Koo + Prltao))
ki ava,z’ .
As in the case o = d, we can replace the functions kt®  + Py (tL,,) by t&  fork =1,... nsince

they define the same algebra. Thus, C“ has full rank n at such a point, if this is true for A% where
b = wa7izf. Taking any point of the subspace where the z; are nonzero distinct and we; 7# 0

fori =1,...,n proves the claim, and we get that C'* has generic rank n. O
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Chapter 5

MQYVs from cyclic quivers

In this chapter, we rely on the formalism introduced in Section 3.2 to develop a study similar
to Chapter4 in the case of a framed cyclic quiver. We introduce the MQVs of interest in
Section 5.1, and obtain some preliminary results about integrability. Next, we restrict our attention
in Section 5.2 to these MQVs for specific choices of dimension vectors. In such cases, we can
find local coordinates and write the Poisson structure locally. Moreover, we can formulate precise
statements regarding both degenerate integrability and Liouville integrability in those cases.
We end this chapter with Section 5.3 which details the integrable systems for four families of
framings. In §5.3.2, we look at the special case of a cyclic quiver framed by one arrow, which
first appeared in [41]. In § 5.3.3, we replace this unique arrow by several ones, still pointing to the
same vertex of the cyclic quiver as in [62]. Finally, we proceed to the general case of an arbitrary

framing for a cyclic quiver with m = 2 vertices in § 5.3.4.

We follow the conventions introduced in Remark 3.2.1 throughout this chapter.

5.1 General results

We consider the quiver Qq corresponding to m > 2, d € N/ for I = Z/mZ, and the ordering
defined at the beginning of Section 3.2. As already noted, we choose that dy # 0 up to relabelling

vertices.
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5.1.1 Definition of the MQVs

We fix @ = (1,n) withn = (ny) € N/ such that |n| = DosMs > 0,and § = gocoo+ Y, gses for
some q = (gs) € (C*)! and goo = [[,¢; ™. A point p € Rep(CQgq, &) consists of the vector
space V = @3Vs @ Voo with Vs, = C"s for each s € I and Vo, = C, together with 2m + 2|d|
matrices given by

Xs € Hom(Vsy1,Vs), Ys € Hom(Vs, Vey1),

Vsa € Hom(Vs, V), Wsqo € Hom(Voo, Vs),
which respectively represent the arrows g, ys, Vs .o, Ws,o (under the interpretation given in
Example 2.2.6). We identify the point p with the 2(m +|d|)-uple (X, Ys, Vs o, W o) to ease our

discussion.

The subspace Rep(CQJ, @) is the open affine subset such that the endomorphisms

Ist +X51/57 IdV +YSX87 Ist +Ws,aVs,aa IdVoo +‘/s,aWs,a

s+1

are invertible for all possible indices. We then view Rep(Ag, @) as the closed subscheme defined

by the conditions

—
(Idy, +X,Y3)(Idy, +Ys 1 X 1) " =qs [ (dy, +WeaVia), s€T, (5.1a)

1<a<ds
representing (3.26a). From our choice of ¢, the condition that represents (3.26b) follows by

taking determinants.

We have a GL(n) = [], GL,, (C) action on Rep(Ag, &) given by

9 (X, Yo, Woa, Vi) = (95Xs95 1 9s41Ys95 95 Woias Veags '), 9 = (gs) € GL(n).
5.2)
We form the MQV Rep(Ad,@)//GL(n) as the affine GIT quotient defined by
Spec C[Rep(Ag,&)]GL(“). We want to end up with a smooth manifold, which we can
prescribe by the regularity criterion of Proposition 2.3.28. To do so, it is useful to introduce the

following constants

toi= ] @, 5=0,....m—1, ti=tm 1, tg1:=1. (5.3)
0<3<s
We use the identification of I with {0,...,m — 1}, since t,,,—1 # t_1. In order to state the next

result which generalises [41, Proposition 4.5], we say that a m-uple t = (t5) € (C*) is regular



5.1. General results 173

whenever ¢ 't,, # t* forany k € Z, —1 < 51 < s < m — 1 with (s1, s2) # (—1,m — 1), or

whenever t* # 1 for any k € Z*.

Proposition 5.1.1 Assume that q is such that t defined through (5.3) is regular. Then, provided

that it is not empty, the space Rep(Ag, &)// GL(n) is a smooth variety of dimension 2p(n) =

23 1 Ms(nsg1 + ds — ng), endowed with a non-degenerate Poisson bracket {—, —}p.

Proof. Recall from Example 2.2.4 that real roots for a cyclic quiver have the form
p==x(e+...+¢)+kd, 1<i<j<m-1, keZ,

while imaginary roots are given by p = kd with k € Z*, where 6 = (1,...,1). Hence the
regularity condition given in Proposition 2.3.28, which states that q” # 1 for any root p, can be

written either as (t;_lltj)iltk # 1, or as t* # 1. The dimension is given by Theorem 2.3.27. O

For the rest of this chapter, we assume that the regularity condition in Proposition 5.1.1 is satisfied.

5.1.2 Towards integrability and dynamics

We continue with the notations of Section 5.1, and we assume that the regularity assumption in

Proposition 5.1.1 holds. Below, we use 17 to denote ) _Idy,, hence Idy = Idy_ +1;.

Letu € {x,y, 2,17 + zy}, and denote by U = X'(u) the matrix representing U. The statements
that we consider take place in Rep(Ag, &)// GL(n). Note that for u = z, they are further
restricted on the complement of {det X = 0} which may be empty, see Section 5.2. We introduce

the commutative algebra O generated by the functions tr U* and tr W oV gU ¥ for any indices.

Proposition 5.1.2 The following results hold :

1. The symmetric functions {tr U* | k € N} of U are pairwise in involution;
2. Forany k,l € N and for any possible spin indices, {tr U, tr staVTﬁUZ}p =0

3. The algebra Oy is a Poisson algebra under {—, —}p;
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4. For two fixed admissible spin indices (s, ), (1, 3), the subalgebra of Oy generated by the

functions (tr U*);, and (tr Ws.oVygU k)y. is an abelian Poisson subalgebra.
Proof. This is similar to Proposition 4.1.3, and follows from Lemma 3.2.8 and Corollary 3.2.9 in
this case. O

Note that some items can be trivial, e.g. when U # 1; + XY and k is not divisible by m we
get that tr U* = 0 so such elements trivially commute with any function. In fact, we can get a

stronger statement in the case U = 17 + XY if we also use Lemma 3.2.10.
Proposition 5.1.3 The following results hold :

1. The functions {tr(Idy, +XY5)* | k € N, s € I} are pairwise in involution;
2. Forany k,l € N and for any possible spin indices,
{tr(Idy, +X,Y;)", tr W oV s(Idy, +X,Y;) }p = 0;
3. The commutative algebra Oy, generated by the functions tr(Idy, +X sY;)k and

tr Wp.oVy s(Idy, +X,.Y,)! for any indices is a Poisson algebra under {—,—}p, which

contains Oy.

Proof. We just show the inclusion Oy C Oy, which is completely new. Since we can write
Iy + XY = Z(Ist TX:Ys), WpaVes(lr + XY)Z = WpaVes(Idy, +Xqu)l )
s
it easily follows. O
Note that for any indices,
tr Wy Vy s(1dy, +X, V) = 6000, tr Wy oV s(Idy, +X,Y,) = tr W, oV, 5(17 + XY,

so such an element of Oy, is in Oy. We will show as part of the proof of Corollary 5.2.38 that,

when considered as sheaves, Oy, and Oy coincide at a generic point.

Write © = X'(¢) for the matrix that represents the moment map ¢ for the quiver supported at the
vertices of I. Hence © = (17 + XY)(1;+ Y X)L or©® = XZX1Z~! where X is invertible.
We also consider the open subspace {det U # 0} where U is invertible. Remark that it may be

empty. We get the next result from Corollary 3.2.13.
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Proposition 5.1.4 For any K € N*, expand hY. = % tr[U(1; + n©~<UNIK in terms of n as

hY. = f:o R4 nk. Then all the functions {h% , | 0 < k < K} are in involution.

Again, it can happen that some of these functions are trivially zero.

Propositions 5.1.2, 5.1.3 and 5.1.4 give us candidates to form (degenerate) integrable systems, but
we need specific dimension vectors to be able to state results about integrability. For example, if
ng # ngy1 for some s € I, X will never be invertible so that we can not define Z, and all the
above results corresponding to © = z are not defined on any space. We return to this problem
in §5.2.5 with dimension vector @ = (1,n,...,n). Nevertheless, it is interesting to notice that
we have explicit expressions for some of the Hamiltonian flows, and they do not depend on the

dimension vector.

We begin with the case that may be ill-defined : we pick U = Z and assume for this specific case
that {det X # 0} is not empty. Let Z,, = Z(1; + n©). Then, we obtain from Lemma 3.2.15 that

the equations governing the Hamiltonian flows for 7, with K € mN* are given by
{hi,X}p=-—nOZF ' ZX - XZK'Z, {hi,ZYp=(2;7"2.2],

and {h%,Vsalp = {h%,Wsa}p = 0. As in the Jordan quiver case, it is not clear how to
get an exact solution apart from when 7 = 0. Then, the flows associated to the Hamiltonian

o = 7= tr ZX, K € mN*, satisfy the ODEs (where d/dtx = {h% ,,—}p)

ax dz av. aw’
— =—XxzE =0 52 =0 52— .
dtg T dtx T dti T dtk

Proposition 5.1.5 Given the initial condition (X (0), Z(0), Vs o (0), W o(0)), the flow at time t ¢
defined by the Hamiltonian % tr ZX for K € mN* is given by
X(tx) = X(0) exp(~tx Z(0)%), Z(tx) = Z(0),

V:e,a(tK) - V:e,a(o) 5 Ws,a(tK) - Ws,a(o) .

In particular, the flows descend to complete flows inside the subspace {det X # 0} of
Rep(A%, &@)// GL(n).
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We pick U = Y and set Y;, = Y (1; + 70O). Then, we obtain from Lemma 3.2.16 that the

equations governing the Hamiltonian flows for A%, with K € mN* are given by
(WY, Xp ==Y, oy, N1+ YX) - XYY, (B, Y = (Y)Y Y],

and {h%., Vs o}p = {hY, W5 a}p = 0. Again, we consider 7 = 0 and the flows associated to the

Hamiltonian h%, ; = + tr Y*, K € mN*, satisfy the ODEs (where d/drx = {h% ;, —}p)

dY d‘/tgoé dWSOé
7—0 ) _O )

de:_YKil_XYKa — Y, )
dTi dTi dTi AT

In fact, we have that these ODEs can be obtained without requiring that Y is invertible, so they

are well-defined on any MQYV satisfying the regularity condition of Proposition 5.1.1.

Proposition 5.1.6 Given the initial condition (X (0), Y (0), Vs o(0), W o(0)) the flow at time i
defined by the Hamiltonian % tr YK for K € mN* is given by

X (1) =X(0) exp(—mx Y (0)%) + Y (0) Hexp(—7x Y (0)%) —1d,],
Y(7x) =Y (0), WS,a(TK) =W;sa(0), Vsaltkx) = VS,a(O> .

In particular, the flows descend to complete flows in Rep(Ag, &) // GL(n).

For U = X, we let X;;, = X (17 + n©~!) and we work in the subspace {det X # 0}. We get

from Lemma 3.2.17 that
e, Xyp = — [XET'X, X], (W, Z}p = ZXETIX 4+ n0 7 XX 7,
n n 7 b

while the brackets with V; ,, or W, ,, vanish. As before, we look at order 0, where we could omit

the assumption that X is invertible and get dynamics on any regular MQV. Nevertheless, it is

easier to work with Z which is defined under that condition. For A% , = % tr XX, we obtain for

any K € mN* by writing d/dtx = {0 —}p that

X Z S, S,
aX o 92 _xx Ve dWea
dtg dtg dtg dtg

(If we want to remove the assumption on X, we have to work with dY/di = XK1 + Y XK

instead of the ODE defined on 7.)
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Proposition 5.1.7 Given the initial condition (X (0), Z(0), Vs o(0), Ws (0)), the flow at time t i
defined by the Hamiltonian % tr XX for K € mN* is given by

In particular, the flows descend to complete flows inside the subspace {det X # 0} of
Rep(A%, @)/ GL(n)

In the final case U = 1; + XY, we introduce the notations 7" = Id,, + XY, T), = T'(1; + n®1h,
and h}; = h}(fﬂy. The invertibility of 7' is already assumed to define the MQV, so that the

discussion holds without further assumption. We get from Lemma 3.2.18 that
(P, XYp = =T, 'TX —nXO'TX'T, {hf,T}p = [T, 'T, T,

and the other brackets vanish. (Note that this does not completely define the flow since we need
to know {h%., Y'}p, but in the cases of interest where X is invertible this is sufficient.) Looking
at order 0 in 73, we have for hj o = % tr(1;+ XY)X, K € N, by writing d/dix = {h%; ;,—}p

that
— - 71K, — =0, 22—, W, =0
dt g dig dig dig

Proposition 5.1.8 Given the initial condition (X (0),T(0), V5.4(0), Ws (0)), the flow at time t ¢
defined by the Hamiltonian % tr TX for K € N* satisfies

X(tr) = exp(—txTH)X(0), T(tx) = T(0), Via(tr) = Viu(0), Wsa(tx) = Wsa(0).

)

If X(0) is invertible, this implies that the flows descend to complete flows inside the subspace
{det X # 0} ofRep(Ag, a)// GL(n).

So far, we have only used the embedding Ay C A from (3.41) to get Proposition 5.1.4, and

the following integrations. We can in fact look at the full chain in (3.41). Denote by @gj ) =

X (@9 )) € Hom(Vy, Vs) the matrix representing the component s € I of the j-th moment map
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given in (3.42), j € {0,1,...,|d|}. We can write in Rep(Ag, &)// GL(n) that

N
Oy =(Idy, +X,Y,)(Idy, +Ys1 Xsm1)™h [ (Idv, +WiaVia)
1<a<ds
(5,0)<p(5)
— (5.4)
=(s H (IdVS +Ws,a‘/s,a)
1<a<ds
(5,0)>p(5)

where we have used the map p introduced in Remark 3.2.11. Set ©U) := Do @9 ), and U(;) =
0WU with U € {Y, Z, (17 + XY)~'}. The following result directly follows from Proposition
3.2.14.

Proposition 5.1.9 The functions { tr U(I;) | K eN, je{0,1,..., |d|}} are in involution.

Note that tr Yé() =trz (I;) = 0 trivially when K is not divisible by m, so in those cases we only
consider K € mN. A nice feature of these three families is that we can get explicit expressions

for the flows. We state these results which easily follow from Lemmae 3.2.19, 3.2.20 and 3.2.21.

Proposition 5.1.10 Given the initial condition (X (0), Z(0), Vs o(0), W o(0)), the flow at time t
defined by the Hamiltonian % tr Zg),for K emN*andje {0,1,...,|d

}, is given by

X(t) = exp(—tZ;(0)X)X(0), Z(t) = Z(0),

Vea(t) = Vaa(0)e 2020 OFT100) (5 ) < p(f),
Wia(t) = e 202005000 (0), (s,a) < p(j),
Vs,oc(t> - ‘/s,a((D 5 Ws,a(t) == Ws,a(()) ) (S, a) > P(]) .

In particular, the flows descend to complete flows inside the subspace {det X # 0} of
Rep(Ad, @)/ GL(n).

Proposition 5.1.11 Given the initial condition (X (0),Y (0), V5 «(0), W, o(0)), the flow at time
T defined by the Hamiltonian % tr Yé.(),for K emN*andje€ {0,1,...,|d

}, is given by

X (r) = exp(—7Y(3(0)5) X (0) + Y15 (0) " [exp(—rY(;y (0)X) — 1,]0Y) | Y(7) = Y(0),
Via(T) = Vaa(0)e™ OY( OFT1OD0O) (s 0y < p(j),

Wyalr) = e Y OYO OOV Oy (o), (s,a) < p(j),

‘/S,C!(T) = ‘/s,a(o) 5 Ws,a(T) = Ws,a(o) s (87 Oé) > P(]) .
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In particular, the flows descend to complete flows in Rep(Ag, &) // GL(n).

Proposition 5.1.12 Given the initial condition (X (0), T(0), Vs (0), W 4(0)), the flow at time t

defined by the Hamiltonian - tr T, for T = (1 + XY)™!, K € N*and j € {0,1,...,|d|},

€4

is given by
X(f) = X(0)exp(fT(0)T;(0)* 0, T(8) = T(0),
Vaa(l) = Vea(0)eTOT0 OO0 1 (5.0) < p(j),

Wi a(f) = e TTOTHO OV Oy (0), (s,a) < p(h),

)

Vts,a(f) = ‘/s,a(o) ) Ws,a(g) = Ws,oc<0) ) (Sa Oé) > p(]) :
In particular, the flows descend to complete flows inside the subspace {det X # 0} of
Rep(Ad, &@)// GL(n).

5.2 MQVs with dimension vector (1,7.0)

Motivated both by §3.2.2 and the relevance of some generic subspaces to easily get complete
flows in § 5.1.2, we are particularly interested in the subspace of Rep(Ag, &@)// GL(n) where the
matrices X are invertible. Hence, since this subspace is clearly empty if ny, # ngyq for some
s € I, we restrict our attention to the case & = (1,nd), where n € N* and § = (1,...,1) is the

basic imaginary root for the cyclic quiver. We then write
Cnqa(m) := Rep(Ag, @)// GL(nd),

and denote by C,, q.a(m)° its open subset where the product X ... X, is invertible. We can

write Proposition 5.1.1 in this case as follows.

Proposition 5.2.1 Assume that 15;117532 £ th forany k € 7, -1 < s1 < sy < m — 1 with
(s1,82) # (=1,m — 1), and t* # 1 for any k € Z*. Then Cy, q.a(m) is a smooth symplectic

variety of dimension 2n|d|.

Proof. Remark that the space C, q 4 (m) corresponding to d’ = (1,0,...,0) embeds in any
Cn.q.a(m) by setting Wy o = Opx1, Vs.o = O1xp for all (s,a) # (0,1). Thus, if we show that
Ch.q,a(m)° is not empty, C,, g a(m) is also not empty and by Proposition 5.1.1 it is a smooth

symplectic variety of dimension 2p(nd) = 2n|d|.



180 Chapter 5. MQV:s from cyclic quivers

We now use a construction similar to [41, Section 4.1]. By assumption, each X is invertible in
Cn.q,&(m)° so up to a change of basis through the GL(nd) action we can choose X; = ... =
Xm—1 = Id, and set A := Xy. We also set B = ¢ 1Y, A. There remains an overall GL,,
action by diagonal embedding inside GL(nd). Using (5.1a) for s # 0, we obtain that Y, =
qsX; 1Y 1Xs 1+ (gs — 1) X!, which gives by induction that Y = (tstgl —1)1d, +tsBA™!
for s # 0,m — 1 while Yy = toBA™ L, Y, = (tta1 —1)A™! +tA"'BA~!. The remaining

equation from the moment map at s = 0 reads

(Id, +toBA ) (tty ' 1d, +t A B) ™! = to(Id,, +Wo1V0,1)
which we can rewrite as

(Id,, +(toB)A™")(Id, + A (toB)) ™ = t(Id,, +Wo1 Vo 1) -

Hence, a point in C,, q o (m)° is equivalent to the quadruple (£oB, A~, Vj 1, Wy 1) which defines

[e)

apointin C, ,, see Section4.2, for ¢ = ¢ not a root of unity. (To be precise, we have to check that
invertibility conditions in each space imply those in the other, but this is not difficult to see.) As

Cy, 4 is not empty, the result follows. O

We assume that the condition stated in Proposition 5.2.1 is satisfied for the rest of the chapter.

5.2.1 Matrices after localisation

To reduce the number of matrices defining the space Cp, q.a(m)°, consider R° C Rep(CQgq, @)
as the subspace with invertibility conditions as above, i.e. with Xy...X,,—1 € GL,(C). We
define Zy, = Yy + X, ' foreach s € [andlet X =Y X, YV =) . Y,, Z =", Z,.

For each s, we also introduce A® € Mat, «q,(C) and C* € Maty,_ ., (C) which we refer to as

the s-th spin matrices, and that are defined entry-wise by'®

Afa = [Ws,a]i ) CZ]‘ = [‘/s,a(ldn +Ws,o¢71‘/s,afl) cee (Idn +Ws,1V:9,l)Zsfl]j . (55)

/

The a-th column of A® represents the spin element af, ,, while the a-th row of C* represents ¢ ,.

We get in particular that A®E77;C" represent the element a @c;,’ g Where EZ/s € Maty, xq, ©)

s

is the matrix with entry +1 at («, 3) and zero everywhere else. We can clearly reconstruct the

19This can be readily compared to the matrices A, C in the Jordan case defined with (4.3).
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elements (X, Yy, W o, Vi) once we are given such (X, Z, A*C?). Note that the moment map

equation (5.1a) is now equivalent to
XsZs XY = qsZs—1 + qsA°C® | forallsc 1. (5.6)

As a corollary, the space C,, q a(m)° is characterised by the linear data (X, Z, A®, C?) satisfying

(5.6), modulo the action

g (X,Z,A%,C*) = (gXg ', 9Zg7 1, 9sA%,Cg ")), g=(gs) € GL(nd). (5.7)

5.2.2 The slice

To ease notations, we refer to the MQV C,, g a(m) simply as Cy, , and Cy, q,a(m)° as Cy, ,,,, while

they clearly depend on both d € N/ and q € (C*)!. We also continue to identify I = Z/mZ
with {0,...,m — 1}

For each equivalence class [(X,Z, A C°)| representing a point of C, qa(m)° (ie. a
GL(nd)-orbit in the subspace of R° cut out by (5.6)), we consider an arbitrary representative
(X, Z,A®,C?®), and we want to find a particular element g € GL(nJd) such that g- (X, Z, A®, C*)

adopts a particular chosen form.

Introduce for each s € I the matrix X, = Xj... X, so that C°

nom C Cnm 1s the subspace

where the product X = X,,,_1 is invertible in each equivalence class. Given such a representative
(X,Z,A?,C?)ofapointinCy, ,,,, we can actby g1 = (Id,, Xo, . .., Xy—2) so that g1 - X5 = Idj,

for all s # m — 1 while g1 - X;,,_1 = X. Assume furthermore that X is diagonalisable with

eigenvalues (z1, ..., z,) taking value inside

breg = {z = (z1,...,0) €0 | ; #0, 2; # x5, x; # ta; foralli # j},

that we have already defined in (4.9). Thus, there exists U € GL,(C) such that UXU -1 =
diag(z1,...,xy). Then acting by gy = (U, ...,U), we get that gyg1 - Xy = Id,, forall s # m—1
while gyg1 - X;n—1 = diag(z1,...,2z,). Now, consider the open subspace where a; # 0, with
a; = Ziozl(ghgl - A%);, forall i = 1,...,n. This is a non-empty condition as we assume
do > 0. We can form the matrix A = diag(a;',...,a;"), then define g, = (4, ..., A). We find

that ) (949591 - AY%);, = 1 for each i.
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Remark 5.2.2 We define the subspace C,, ,, C C;, ,, as the subset of points such that we can
always perform the last two choices. l.e. given an arbitrary representative of a point, we set
the matrices X, ..., X2 to the identity, then put X, 1 in diagonal form with entries in breg
defined as (4.9), and after such transformations we have that ZZOZI A?a =% 0. To see that C;hm

is not empty, remark that it contains a subset isomorphic to C;%q for q = t using the proof of

Proposition 5.2.1.

We do a final transformation to have all matrices constituting X in the same form. Consider
A; € C* such that " = z;. In particular, \]" # A" and \]" # ¢t\7" for each ¢ # j. Then acting
by gx = (Idy,, A, ..., A™2), where A = diag(/\l_l, ...y, A; 1), we have that

(X,Z,A%,C*%) = grgagyon - (X, Z, A%, C?) (5.8)

satisfies X = diag(Aq, ..., \,) for each s, and Zi‘;l Aga = +1.

Lemma 5.2.3 The choice of gauge given by (5.8) completely determines the representative up to
an action by the finite group W = S,, X Z},.

Proof. It is clear that the choice of diagonal form of (X s)s depends on both the ordering of
(z1,...,2p), and the choice of m-th root of unity. To be precise, the action of an element
(0,k) € S, x Zp,, is represented by the matrix g = [], 959, °, where g, is the permutation
matrix corresponding to o while g = diag(¢*, ..., (%) fork = (ki,...,k,) € Z" and C is a
primitive m-th root of unity. This clearly maps X, to diag(¢ ko(1) Ao(1)s -5 G ko(n) Ao(n)) for any
s, so each X s remains in the wanted form. To see that ZZ‘):l(g . Ao)ia = 1, remark that the
component of g acting on Vy is just g, 9. ° = go, hence 3% (g- A);, = Zi‘;l(AO)J_%i),a =

1. We conclude as no other element of GL(nd) is in the stabiliser of such a point. a

. s, A s,
Note that if we set a;”” = A7 and c;” = CZ]-,

of local coordinates under the constraint ZZOZI a?’o‘ = 1 (and some invertibility conditions that

then the elements (\;, a;“,c;“

,c;’") form a set

can easily be recovered). Indeed, such data defined from (X LA, CS) completely determine the

~

matrices (Zs). To see this, consider the following functions

ds
gfj ::Za’f’acj’a? h,j=1,...,n, sel, (5.9)

a=1
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which are the entries of the matrix AsC* (assuming ds > 0, and otherwise we set gfj = 0). Then,

foranyr =0,...,m —1,
r m+(s—r—1) y —(s—r—1) m—1 s—r—1ym—(s—r—1)
N tr N A tt, A; /\
(Zr)ij = : ! g5 + g . (5.10)

To show that this relation holds, remark that in our choice of gauge, if we multiply (5.6) at entry

(i,7) by i(Aj /A:)™ 5~ and take the sum over s of all such equations, we get

e Dm—14i = 2 S

7 s=0

which yields in particular

m—1 m—s
R t )\S)\
s=0 57

This is exactly (5.10) for » = m — 1. We can then use relation (5.6) at s = 0 to get Zo, and finally

get the other matrices by induction.

Remark 5.2.4 Recall the residual W = S,, x Z7, action defined in Lemma 5.2.3. The element
k = (ki,...,kn) € Z C W acts as k - (\;,a)*) = (¢FiN;, ¢~%ial?), while k - ¢, =
C(S_l)kic‘?’a for s # 0 and k - CQ’a = C(m_l)kic?’a. In particular, k - gfj = Cs(ki_ki)_kﬂ'gfj for

s # 0, while k - gw = ¢(m=1) k?g?] In all cases, g;;\; is 7Ly, -invariant.

5.2.3 Local Poisson structure

Remark 5.2.5 We continue to denote C,, g qa(m)° as C;,

n,m’

and to identify I with {0, ...,m —1}.

It is convenient to consider the following functions on Cy, ,,
fF=t(XY), gy, =tr(AESCTXY) (5.12)

forany k,l € N, s,r € I, « = 1,...,ds, and B = 1,...,d,. Clearly, f* = 0 if k does

not satisfy k¥ = 0, while ¢ . 5 = 0 whenever the condition [ = s — (r — 1) is not satisfied.
m ’ m

Here, the symbol = means that we take the equality modulo m, see §3.2.3. Since we have that

X(x) = X, X(z) = Z and X(a; ¢, 5) = A°EC", where EJj; € Matg,xq,(C) is given

by (Eg’”ﬁ)a/ g = daa’d5p, Lemma 3.2.7 and (2.36) yield the identities for the Poisson bracket

{—,—}ponCj, ,, between the functions (f%, géaﬂnﬁ).
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Lemma 5.2.6 For any possible indices,

{5 e =0, {f*glamste = kaills, (5.13a)
k l
1 _
{9 Gharade = 3 (Z - Z) tr(A* B0 X VAP ERICIX )
v=1 v=1
1 k
+5 (Z — Z) tr(A*ESCT XTIV APEPICIX ")
v=1 wv=1
1
+ 5lo(p,7) = o(p, 5) + (g, 5) — o, 7)) tr(A* EIICIXFAPEF,CTXT)
1

+ 5 0pso(a, 7)[tr(APERICIX A ESCT XY + tr(ACECIXFAPET,CT X))
]' S ST s S S A T
+ 5 0aro(e, B)[tr(A*EZ5C X*APERICIX!) — tr(AESICIXFAPEN,CT X))

1 S 18 T T
+ S 8gs[0(€, @) + dac] tr(A° ESLCIX APEPLCTXT)

2
1 S S a '
— 50pr[0(8,7) + 95, ] tr(A ECIX APERCXY)
e—1
+ 6gs0ac tr(ZXFAPEVLCTX!) 4 64500c Y tr(A*ESC* X APENCT XY)
A=1
-1
— Opr0y tr(ZX' ASESICIXY) — 6,005, Y tr(A°ECIXFAPEPPCPX!) . (5.13b)
pn=1

(See Remark 3.2.1 for the conventions on symbols.) In particular, in order for the elements on

which we evaluate the Poisson bracket to be nonzero, we need k = 0 for f*, 1 = 0 for f!, while
m

m

— ! — k
l =5- (r —1) for gy, .5 and k =p- (q—1) for gg, ge-

Let by, C C2MAIF7 denote the subspace of elements ();,a;*, c;™®

)

) which can be obtained
when we pick a representative in the form (5.8) of a point (X, Z, A*,C*) € C;,,,. The map
(X, Z,A%,C%)] — (N, a]", ¢’®) has an inverse modulo W by Lemma 5.2.3, and we denote by
€ hopm/W — C;%m this inverse. By construction, £ is a diffeomorphism, and we want to find

the Poisson bracket {—, —} on b, ,,, /W such that ¢ is a Poisson morphism.
For the functions given in (5.12), we remark that we can write locally
n n do n
A P R R e U A L AP VN GA L)
i=1 i=1 a=1 i=1

assuming that k£ = 0, while / = s — (r — 1) and I’ = 1 — r. From these expressions, it is not
m m m

difficult to see that the differentials of the functions (taken with any possible indices)

5 Gharss Ghaor s (5.15)
(6%
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generate the cotangent space at a generic point of C,’%m. Hence, assuming that we have defined

{—,—} on bp.m/W, it suffices to verify the identity
{¢F, ) = &k, Balp, (5.16)

for F1, F> running through the three types of functions in (5.15) in order to get that £ is a Poisson

diffeomorphism, see Remark B.3. This is the strategy for the proof of the next result.

Proposition 5.2.7 The map & : hsp /W — C,’%m is a Poisson diffeomorphism for the Poisson
bracket {—, —} defined on bg /W as follows, with 1 < i,j < n.

For any admissible spins (s, ) and (r, 3), we have

N =0, (M2} =0, {\.c] }— At (5.17)

] )

forany 1 < B, e < dy, we have

{ef.¢"y _2 (z#g)m(cog ¢’ +elej’)
€ 1 € €
+ (Zm—1)ijed’ — (Zm-1)jic) + 50(6,5)(0? C?ﬁ — ] c;”) (5.18)

e—1 -1
08 0A( .0\ Oe Oe Op s Op 08 .
¢ Zai (cj" —¢j) —¢j Zaj (c;" —¢;");
A=1 p=1

foranyq e I\ {0}, 1 <e<djand1l < < dy, we have

ot Py — 408 1 5, A el + X e o
J’ G - ”C ¢ (3&]))\ )\m )\(1 C;
1 (5.19)
— (Zm-1)jicd = eIy " all (e — )
p=1
foranyr € I\ {0}, 1 < B <d,and1 < e < dy, we have
AT AT
0 B Oe .7 0
{e). e’y = Taele] +5<z¢a>W < o AT fc?)
- (5.20)
+ (Zm_l)ijczﬁ + Czﬁ Z ag)‘(cg)‘ — C?e) ;
A=1
orany g € I\ {0} and 1 < B,¢ < d,, we have
forany q € I'\ {0} ; q

1 ! A
(el e} =20 o (cle?” + et} + Sole, B) (efed — et} s (521)
(2
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forany0 <r <q<m—1,andforanyl < 3 <d,, 1 <e <dg, we have

{c¥, c} }q>r 8, L gaeerB + Oz 7)\}" el 4+ 5 N )‘?_checrﬁ.
70 c; 1) m 7 i (ij))\;n_)\;n 7 i (Wéj))\gn_)\;n)\q—r e B
KA
(5.22)
forany0 < q<r<m-—1andforanyl < <d,, 1 <e<dgy we have
q—r
g<r o q—T 8 A 8 AT 8.
;167 % } 5ij m C?ECT + 5(1753) /\m i )\m ;16 i + 5( ))\m —_\m AT Cgecg )
J 1 7
(5.23)
forany 1 < a, e < dy, we have
0 0 )\m + )\m 0 0 0 — 0A 0N
{Cje’aia ’5(#]) )\m A Cje(aja - ) 5(a<e)a ac + Ocar Za
A=1
e—1
+ 55a(Zm—1)ij - ago‘(Zm_l)ij - a?a Z ag)‘(cg)‘ - C[J]-G) (5.24)
1 o &
+ §c§-)€ Z o(a, /f)(aoaaO” + aoo‘ao’*) :
k=1
forany s € I\ {0}, 1 <e<dyandl < a < ds, we have
s—m DVLEPY AT
{cg)e’afa = m 51] 96 i +5(l7é]))\m : )\m Ticgkasa B 5( #J))\ : )\mcgeafa
V. (5.25)
_ asa( _ afa Z ag)A CQe) .
forany g € I\ {0} and 1 < e, < dg, we have
AT 4
o =Bt s et (o)
] ) i
o (5.26)
5(c><<e) cl qa + Oae Z an q/\ + 5046( q— 1)1] ;
A=1
forany g € I\ {0}, 1 <e<dyand1 < o < dy, we have
1 )\m + Al
{0367 a?a _75(5’51) )\m _ )\:n C?E (a?a - aga)
(A
) do (5.27)
+ 2c;1 o(a, n)(aoo‘aO” + aoaa(]”) :
k=1

forany q,s € I\ {0} with q # s, and forany 1 < € < dg, 1 < a < d, we have

A

)\S
€ sa 7£ € sa 7 € s E:1e% € o
{Cg ’al q i(gw 3 + (5(175J)WC;1 <)\i aj — ai ) — 5(S<q)C3~ a;‘l N (528)
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forany 1 < a,v < dy, we have

AT AT

0y — 0y Oa Oy Oa 07,0 07, 0
{]72} 7’753)\7717)\771( + a; —a; a;, —a a;

J 7 ?

1
+ 5o, 7) (@) al + aj7aj?)

do
1 (5.29)
+-a) ) "o(y,0)(a) )" +a;7a))

a, K)(aOaaOI{ + aOaaOn) .

foranyp € I'\ {0} and 1 < o,y < d,,, we have

a7’ al? )‘m A" Y pa m P 1 Py, pa Y, P
j ) &y }_7 (i#7) )\m )\m (a +a j >+§0(aa7)(aj a; +ai aj )
AT p \m » (5.30)
J J i .
B 6(1?5]) )\ )\m vaf’yapa 5(175]) )\m )\m Ti:’af’yafa )
J i
foranys € I\ {0}, 1 <y <dyand1 < a < d,, we have
)\m + A
0 0 0
{aj'Y’a;?Ot _75(”&]) )\m )\m (a Wasa a; ’Yasoc>
AAT g 0
+ 5(2#)7A N (a Tyt - aﬂai'a) (5.31)
1. G
+ iafaz ('7, )( O’Y 00’ _|_a0’Y (])U) .
o=1
foranyp e I\ {0},1 <~ <d,and1 < a < dy, we have
/\m + A"
gw, 0a) _75(1#]) ST <ama0a a§7a9“>
AT /\ P
0 0
+ i) T (@ —alal) (5.32)
1,
_ §a§’y O( )(aOOzaOn + aOaaOH) .
k=1
forany0 <p <s<m-—1,andforanyl <~y <d, 1 < a <ds we have
AP AT
{a7 i} =" —dyaar + i) 3 am (amafa LA
! (5.33)

)‘;n )\j Ele% A;ﬂ )\J i sa ,
B 6(175]) )\ /\m Faiwa - 5( #7) )\ )\m )\ paiwal )
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forany0 < s <p<m—1,andforanyl <y <d, 1 < a <d, we have

N A ASTP

pY _say P=S J PY s J pY . Sa

{a] ,ai = 67,] y a +(5(2¢])7)\m aj a’i + —a. 'a’;
i

e T
\e A )\ » (5.34)
)\;m J APV 8¢ Py s
— 0 N Am A 2 _5(17’5J))\ e a)a;

Remark 5.2.8 The operation {—,—} that we consider on by, /W is only defined as an

antisymmetric biderivation in the first place. This is a Poisson bracket because of Lemma B.1.

Before proceeding to the proof, remark that we can write from Lemma 5.2.6 that

SUM e =0, 4 glapte = kS arelP A (5.35)

=1

Moreover, we also obtain

k l k+1—
5* {gp%qﬁ gsa,rﬁ}P _ = _ (ajacTﬂ)\UapV qe)\ + v)
v=1,...,k v=1,..,l 3]

~

A A
1
51 U I DI Cit et RN

1 € T
+ 5[0(])7 T) - O<p7 3) + 0(q7 S) - 0(Q7 T)] Z(afacg )\?aéyyczﬂ)\b

4.
1 € sa 7“ S« € T
+ 50pso(e,7) > @ el Mas e[ X)) + (afci Mal [ \])]
%,J
1 T € S« € T
+ 50qr0(e. ) > l@secMal el Al — (agci Aal el L))
%,J
1 SOt € '
+ 5 (dusloe @) 4 dad = dprlo(8,7) +0,]) D (@5 et Nl e )
4,J
e—1
+ 0gsOae ((Zsl)ij + Z af’\cj)‘> )\faﬁnczﬁ)\é
i, ] =1

5])7"5/872 p 1 jz+z PU p# )\lasoc qe)\k

(5.36)
° A
where in the sum ), we require v = p — (r — 1), while for > we require v = s — (¢ — 1).
m m
To understand how we get the factor (Z;-1);; when we write £* tr(ZX*APEI,C” X'), remark

that C" : V,_1 — Vs so that the element X'Z in C"X'Z acts as X,_; .. Xiyr—9Zi4r—2. By
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assumption (r — 1) 4+ I = s modulo m, so that the element Z in this expression can be replaced

by Zs_1. The same observation explains how we get (Z,_1);; in £* tr(Z X' ASE;LCIXF).

The proof will follow from the different lemmae presented in the next subsections. Indeed, we

will show that (5.16) holds for the different functions given in (5.15).

First type of brackets

Lemma 5.2.9 For any possible indices,
et = U M A€M D€ Ghanst = €U D doanste:

{g*fk7 g*glsmOl} - g*{fk7géa,01}P :

Proof. The first identity in (5.17) implies {£* [k oexfl } = 0, as desired from (5.35). Similarly,

we get

{¢ f*, Za hars} = meA’“ I ey = D A

which is k) g]g;lrﬁ, hence this is &*{f*,>", db., 5P by Lemma 5.2.6. The last identity is

checked in the same way. O

Second type of brackets

As a second step, we need to check that

{Z g*glg'y,q@ Z g*géa,rﬂ} = Z 5* {glg'y,qﬁ géa,rB}P (5.37)
v o ay

for all possible indices. We can first rewrite the left-hand side using (5.17) as

(5.37) 1 pg = —Z/\k“ e+ Nl e (5.38)

7.7
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while we get for the right-hand side using (5.36) that

]. T v € —v
(5-3Drrs =5 Z - Z > CAPY I N+

1 A A
G T - Ty
=1

v=1,..,k wv=1,.,l 1,5

1 € T
+ 5[0(0, r) 4+ 0(q,0) — o(q,7)] Z(C? )\?ciﬁ)\é)
Y]
1 T € € T
+ 50ar0(e, B) D_[(e] AT N) — (ef A" A))]

.3

1 € r
+ 500 > lole.a) +0ad D _(a¥* el Nec A
o' %,J
1 € T
— 500 ) [0(8.7) +05,) Y (] Nral e X))

o ,J

e—1
+ 5q0 Z ((Zm—l)ij + Z a?)‘c?’\> )\?CZﬂAi
i =1

7:7‘7‘

81
— dor Z (Zm—l)ji + Z a?“c?“ )\icgg)\§€ s
pn=1

° VAN
where in the sum ) | we require v = 1 — r, while for > | we require v = 1 — q. Here, we used that
m m

the fourth line of (5.36) vanishes when we sum over all o,y = 1,...,dy. We clearly see that we

have to discuss the possible choices of ;g = 0, ..., m — 1 separately.
Lemma 5.2.10 For q = r = 0 and for any 1 < 8, ¢ < dy, we have that (5.37) holds.

Proof. We use (5.18), and the proof is similar to the corresponding case for a Jordan quiver given

in Proposition 4.3.3, so we can omit it. O

Lemma 5.2.11 Forr = 0and forany q € I\ {0}, 1 < e <d, 1 < S < doy, we have that (5.37)
holds. For ¢ = 0 and foranyr € I\ {0}, 1 < 8 <d,, 1 < e < dy, we have that (5.37) holds.

Proof. We only need to show that (5.37) holds in the first case, as the second case can be obtained

by antisymmetry. Note that for g’g% qe and gé a,05 10 be nonzero, we need k=kom+1—qand
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[ = lgm + 1 for some kg, lyp € N*. In particular, remark that k < kgm + 1. We can write

kO 1 lo
(5'37)RHS = _ (Z Z) ZCOﬂ)\Uom—H QG)\(k’o-HO vo)m+1—gq

vo=0 wvo=0/ i,

k?O l()
1 - —
(-3 g

vo=1 vo=1 7,7

do
1 e
=5 2 _lo(B,7) + d5,] D_(efNjal e X))
=1

i,
O 0# l .96k
X z NN

Indeed, in the first sum, we need v 1 so we sum over v = vgm + 1 but we can not consider

m

vog = ko, while for the second v = l—gandv = vyym + 1 — ¢ < vgm + 1. Using that

[o(B,7) + 08y =1 — 25(5”) we can write

(53N pErg == Zcoﬁ N, /\1 qu Z 08 qe)\kom+1/\lom+1 q

7.7 ’.7

LT D e
- T { s S

where we have set
Egk,]li _ (Z Z) ()\vom)\ (ko+lo—vo)m —i—)\gkOHO_UO)mA}]Om) ) (5.39)
vo=1 wvo=1

To reduce ngjl)) we have the following result similar to (4.38).

Lemma 5.2.12 Ifi = j, S7) = (ko — o)A O™ while ifi # j,
AT AT
S = S (Aol — Nomykom) (5.40)
i J
Using this lemma, we can write

A +)\m
(3D =5 el e n S (Mo - )
%#J

+ (ko —lo— 1)) NtePede — Zcﬁﬁ g (Aot \lomHl=a g AR
@ Z#J

—1
k! k! Op/ 0 0
_Z)\J/\Z ;]E Z)‘J)‘Z gezaj#(ciu_ciﬂ)'
u=1
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Recalling that k = kgm + 1 — ¢ and | = lgm + 1, we find

Ly e AT ctec?? X e %
(5.37)RHS—2Z)\])\1/\m G + 30t

i#j
+ L+q Z)‘kﬂ 08 qe Z)\k)\l qe 05+)‘3 qe Qg
m /\q z
Z#J
-1
kvl e kvl .qe Opy 0 03
—Z)\])\Z cd(Z ZA]AZ c? Zaj“(ci”—ci ).
p=1

If we sum together the first and third terms of (5.37) p 75 just obtained, it is not hard to see that it

matches (5.37), g g after introducing (5.19) in it. O
Lemma 5.2.13 Forany q € I\ {0} withr = qand 1 < §,e < dg, we have that (5.37) holds.

Proof. For r = ¢, we consider k = kgm + 1 — gand [ = [gm + 1 — ¢ for arbitrary kg, lp € N*.

We can directly write

(53Nrms =5 ZCQBCqEAl NTIBGD +

(kl Z)\k}\l B8 q6 B q€c7.‘6)’

]z
7]

using the symbol EEZJI)) introduced as (5.39). From Lemma 5.2.12, this is

)\m+ m

(53N pis = (ko — 1) Z Aot gaB e 4~ me A{n (e el + el
Z#J Al
Z/\k/\l B i — qecfjﬂ)
€ Ci )s
and since kg — lp = l we conclude that this equals (5.37);, ;5 when we use (5.21). O

Lemma 5.2.14 Forany 0 <r <q<m—1,1< 3 <d, and1 < € < dg, we have that (5.37)

holds. This is also true when 0 < g <r <m — 1.

Proof. By antisymmetry, it suffices to prove that (5.37) holds in the first case. We take k =

kom+1—gqgandl = lgm+1—1r for kg, ly € N*. By assumption, ¢ > rsothatk < kgm+1—r
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while [ > lym 4+ 1 — g. Hence, we write

ko—1 1o
(537)RHS = <Z Z ) Z Tﬁ)\'gom-‘rl—’l‘c‘?E)\‘gko-‘rlo—Uo)m+1_q)

vo=1 wvp=1 i,

ko lo
1 _ _ _
+ = ( E _ z :) E :(CZ,B)\Z(k0+l0 vo)m+1 TC?€A;}Om+1 q)

vo=1 wvo=1 %,

k1l _.qe r,B
_70‘]’ Z)‘JAlj

and if we introduce Zg )) this can be written as

7“/3)\1 r qf)\l qz( i,5) }Z T,B)\l?()m+1—rcq€)\lpm+1—q+%Z)\?}\i ;16 Tﬁ

72(: kD)~ 9 Ci A 37
i,j 12

ey1—
(5 37)RHS = ZCTﬁA1 T ;1 )\] q)\:n N
1#] J
kel qe rf 1 B\ ktq—r geyltr—g , 1 kL ge 1B
(ko — 1) Y MFelel” = DT ePATIT AT 4 0T NNl e]
i 2% i,
k=1 q—r k+l qe B
=T T J LNl
i
L + )\m )\q
kyl17J B J B
+ = ZAJAZW <q“" + = e ;"c;fﬁ)
i#£j )
ﬁ A B
+ = )\k)\l e _c"Pei| .
(e
As in the previous cases, introducing (5.22) in (5.37);, 5 g yields the same result O
Third type of brackets
As a third step, we need to check that
(5.41)

{Z f*gg'y,qe’ g*gia,Ol} = Z g* {ggw,qev gia,Ol}P
v g
for all possible couples of indices (g, €) and (s, ). First, we have by (5.17) that the left-hand side

is given by

k € sa SOc SO&
<541>LHS—*D’““€’ s +ZA§% WHZW cf'{c]", a}



194 Chapter 5. MQVs from cyclic quivers

For the middle term, we can use the expression for {cge, e} given by (5.18) if ¢ = 0, or (5.19)
otherwise. Hence, we will need to consider these two cases separately, and we will discuss

subcases depending on the form of the right-hand side. For the latter, note also that (5.36) gives

54D gys :% z.: — z.: Z asaC01)\v qe)\k+l v
k

Skov=100) 4
1 AN AN
sa 01 yk+l—v _geyv
+3 Z Do | Al
v=1,... v=1,...,,[ 7,7
1 k! 01
+ 5[—0(0, s)+o(q,s) — Z AjNiai el
+ 5082 ZA% cf el [a)"a5" + aj"a;]
y=1

k! sa 01 qe qe 01
q05 (e#£1) § )‘g)‘z 1 Cj C; ]

JotTg JorTg

1
+ §6q8 [0(67 a) + 6&6] Z )\k;)\lcqe sa 01 Z )\k)\ZCQE sa 01

1,J

e—1
+5q36a62)\f)\§ ?1< o 1)ij+zaf>‘c‘;)‘)

A=1
qe
E )\ mljza ij

° A
where in the sum ) | we require v = +1, while for ) ® we require v = s — g + 1.
m m

Third type of brackets : case ¢ = 0. We use (5.18) to write (5.41) ¢ in this case as

(54D s _72)\k+lCOe 01 sa+z)\k)\l 01 957 as™

AT AT

kil
+ = Z)\])\Z/\fﬂ \r a’ (c?E Ol—l—coecgl)

i#]

k1 sa 01 Oe 01
5(#1 ZAMZ aj%(cjcj! — cj°e;) (5.42)

+ Z)\fAﬁ al* ((Zn-1)ij" = (Zm-1)jic))
+ Z )\éﬂ)\i fa 01 Z aO/\ CQE)
,J

Lemma 5.2.15 For q = s = 0 and for any 1 < «, € < dy, we have that (5.41) holds.
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Proof. We use (5.24), and the proof is similar to the corresponding case for a Jordan quiver given

in Proposition 4.3.3, so we can omit it. O
Lemma 5.2.16 Forq=0,s € I\ {0}, 1 <a <dsand1 < e < dy, we have that (5.41) holds.

Proof. We take k = kgm + 1, 1 = lom + s + 1 for kg, ly € N*, and we can note that & <

kom + s + 1. We obtain

lo
1 sa 01 yvom—+1 05 (ko+lo—vo)m+s+1
(541)RHS—2<Z Z)Za c; A° Aj

vo=0 =0 i,

ko—1 0
(Z Z) Z asa 01)\ (ko+lo—vo)m-+1 OeAvom-l—S—l-l

vo=0 wvp=0 i,

k1 sa 01 06 Oe 01
6751) E Aj)‘z 1 —C; ¢ ]

klOesaOl kl sa ,0¢
E)\])\zcj a; g)\)\ Zm—1)5id; cj .

Introducing the element EEI’] )) from (5.39), we write

(5 41)RHS — Z asaCOIA )\S+1 OEEE ))

i,
1
_ = sa 01ylom+1_0eykom+s+1 _ k1l 0e 25 01
5 E ajc; \; C;A; E ATAic; a;
47j
kAl sa 01 05 Oe 01 so,0e
O(et1) g AT Ay — E /\ )jia; e .

We use Lemma 5.2.12 to obtain

AS
(5 41)RHS — (k() o lO -1 Z )\k‘-i-l 801 01 06 o Z )\k)\l (COGasaC(]l + )\.; jacgl(:?E)
B3 #J
4+ = Z )\ )\S—l—l )\m + i: joccol 06 ()\kom/\lgm AiomAf0m>

(2

klsaOlOe k! sa ,0¢
67&1 Z)\JA'L a; - Z)‘ >‘ m 1 j’La c]

:k—l+3 Z Abtlgsac0lcle T Z )\k}\l ( Oc g0 ?1+iza§acglcge>
7

Z#J
A A v N )
"33 M ( + Az SR )

l#J
kAl 01 0 0
e;él Z)\j Ai fa ‘- Z)\ Zm—1 ﬂasacje
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Meanwhile, if we put (5.25) in (5.42), it gives

k—Il+s—m sa . s . .
(54D rHs :TZ )\f“ cOele — 5(#1 Z)\k)\l 01 % — 0l

3 N J
1,3
A + A
_ Z}\k}\l sa Oe 4= Z )\?}\i )\in )\m Zsozcg]lc?e
Z#J
A S
ki 7 J ..sa 01 0Oe klsaOlOe
+Z)\J)\Z)\m /\mFaJ Ci ¢ - Z)\])\lal
i#] Z#J
so the two sides coincide. O

Third type of brackets : case ¢ > 0. Let ¢ € I \ {0}, and use (5.19) to rewrite (5.41) 5 as

(541)LHS :w Z)\k+lcq6C01asa + Z}\k}\l Ol{C] , l

m VA
2%

. A
Z )‘f)\i /\m i )\m fa (Cgecgl + )\;C;KC(n) 6:43)
i#]

Z )\;ﬁ)\i ;sa m— 1)chq

Lemma 5.2.17 Forany q € I\ {0} withs = qand 1 < €, < dg, we have that (5.41) holds.

Proof. We take k = kgm + 1 —¢q, 1l = l[gm + g + 1 for kg, Iy € N*, so that k£ < kgm + 1. Hence

ko—1 lo
1
qo 01 .qeyvom—+1y (ko+lo—vo)m+1
(541)RHS—2<E E)E a; cc)\O )\

vo=0 vp=0 i,

ko—1 lo
Z Z E aqac(]l qﬁ)\ (ko+lo— Uo)m+1Avom+1

vo=0  vo=0 2,]

6 O[ + 6&6 Z}\k)\lcqfaqac()l Z)\k quaqaCOI

JotTg

+6QGZA§Ai ?1 ( q— 1 ”_}_Zaqz\ qA) Z)\ Zm—1 ]zaqach .

Using the element EE )) from (5.39), this is

(54D Rus = Z agacgec?lAiAjzgz;f}) -3 Y al¥ct e, (AfomA?m + AﬁomAme)

1,J Y]
S Z NoXiela®e" + b Z NN ( 1) + Z af’c "*)

k:l qe
Z)\)\ mlﬂa cj.
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We use Lemma 5.2.12 to write the first line as

1
(k() — l(] — 1) Z /\f”agacgec?l - 5 Z agacgecgl)\i)\j (Afom)\épm + Aiom)\ﬁom>
' i#j

)\m—l—)\m
qaq601 kom ylom lom ykom
+s ;a ! MJW(AO N — Ny
A M
(k'O_lO _ 1 Z /\k+laqaCQeC01+Z A;C)\QW)TJJ (agacge 01 +aqacqec§)1> )

7]
Since (ko — lo — 1)m =k + q¢ — (I — ¢) — m, we can write

k—l+2q—m k1 01
(54DRrHs :TZ A Halclc Z)\ Zm—1)jiaf
l ’J

4 24
T (e )

Z#]
§ q€ qOé 5 § § 1[}\ q)\

For the left-hand side, we use (5 .26) and (5.43) to find

k—1+4+2q— Am 2\
(5.41), g = +mq m Z )\f—i-l g€ 01 sa + Z )‘;C)‘i ?l Am z )\m ()\é ;101 _ a;]oc) C?€
( i#]

€_qo A )\
5(Q<G)Z/\§/\5C?1 qaq +5aez)\§)\i ?1 (Zaq a q 1)1']')

/ A
A g el ( et ) St )
i#j

which coincides with the right-hand side after simplifications. O
Lemma 5.2.18 Fors =0,q € I\ {0}, 1 <e <djand1 < a < dy, we have that (5.41) holds.

Proof. We take k = kom +1—¢q, 1 = lgm + 1 for kg, [y € N*, and note that k& < kgm + 1. Thus

ko—1
1 _ _
S4D)gys = 5 < E E > § aOOé 01 QE)\;)om-i-l)\gkoJrlo vo)m+1—gq

vo=0 vo=0 0,7

ko lo
1 — _
+ 5 (Z . Z) Z a?acglcge)\z(koﬂo vo)m+1)\;{om+1 q

vo=1 wvp=1 2,

+ = Z ayz)\p\i ;16 ?1 0y 0a+a0a ?’Y]

g )\f)\icgﬁ afecdt — g )\ Zn—1 ]Zaoo‘cge.
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We can write the first two lines together with the first term in the last line as

1 i 1

< O .qe 01y \1—qgx(ig) L Ocaq€,.01 ykom+1ylom+1—q kL€ 500 01

5 g a;ic;c; A Z(k,l) 5 g ajicic; A Aj g AjAic; a;
i3 i,J

so that Lemma 5.2.12 allows us to write these terms in the following form

1
k+1,q¢,_0a 01 k+qyl—q_q€¢_0c 01 kL€ 50 01
(ko —lo—1) g A elfai ey ~3 g AN e agfe E AjNiC a;

J i#] Z#J

4z Z aOacqﬁ OlA )\1 q )\Z + )\m Akom)\lom )\lom)\ko’m
Z#J A= )\m C
=(ko —1lp—1) Z )\kH a Gac0l 4 ~ Zcqecm)\k)\l Lﬂ T )\;naqo‘ — al
- z;,gj )\;’n _ )\;n J 1
q
4= Z )\k)\l i ﬁ qe 01 Oa
J l>\m —\m )\qcz CJ a;
Z#J i
We get in that way
k—1+q— AT A
(541)RHS — -~ ZAk-‘rl qe 0a 01 4= Z)\;{Ai ;15 ?1 )\‘Zn o (ag)oc . aga)
i 17&] J i
q
+ Z ML A" al [ eV + ﬁcqecm
¥i z)\m - )\m a; 7 )\q 7
i#]
1
+§Z)\f)\ﬁ g 012 o(a, )| a07 Oa+a a Z)\k/\l me1 ]Zaﬁacg6

Introducing (5.27) inside (5.43) easily gives the same expression.

Lemma 5.2.19 Forany q,s € I\ {0} with q # s, and forany 1 < e < dg,, 1 < o < d, we have

that (5.41) holds.

Proof. Wetake k = kgm + 1 — ¢, = lgm + 1 + s for kg, [y € N*, and note that k is less than
both kgm + 1 + s — q and kgm + 1. Thus

ko—1 l

vo=0 v9=0 2,

ko—1 lo
Z Z Z sa 01 q6 k0+lo—ﬂo)m+1)\vom+1+8*q
a; j

vo=0 vp=0/ 1,5

1
+50(g:9) Y A Nag el et — mecjﬁ et Z)\ Zim-1)jiaf*ci.
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Note that the two first terms in the last line sums up together if ¢ > s, while they cancel out if

q < s. For the first line, we can write from (5.39) and Lemma 5.2.12 that it equals

Z asaCQE 01)\ )\1 q+82Ek l%

l

Z asa qe 01 (}\kom—i—l)\lom-i-l q+s + Alom—&—l)\kom—i-l q+s>

q
(k Iy — 1 Z )\k-‘rlasactkc[)l 4= Z Ak/\lm ﬁagacqecol + ﬁagacqecql
0 0 - ’L)\m /\m i )\;1 i Vi g

Al
- kyl J saqe 01 J ,sa g€ 01
g AT (}\Sa] C; ¢ 4—)\(121Z cic; |.

Hence, we can write

k—1 —
(541 pprs = +(J+8 Z)\k—i-l 0,4 01

i A )\q
St (et s e )
e S AT - Sy

which coincides with (5.41); ¢ after substituting (5.28) inside (5.43). O

Fourth type of brackets

Finally, we have to check that

* k * 1 *( k l
£ gp'y,(Jl’g 9m,01} =¢ {gp'y,[)l?gsa,()l}P (5.44)

for all possible couples of indices (p,~y) and (s, «). Using (5.17) and (5.18), the left-hand side is
given by

(544>LH5—ZA‘“A’( e {cf', 2"} + cf'a*{al”, '} + ') {al7, a )
7‘7
AT AT o
Z)\k-‘rl 2 p"/ Sa—i_z)‘f)‘i)\in_)\ma?’ya 091C01 (545)
i#]

Y, sa 01 pY . sa,01
—I—E)\ ml”aac g)\ m1ﬂaac],
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with the brackets in the first line depending on the combination of indices. For the right-hand

side, (5.36) gives

1
5.4 rys = 3 Z — ZaSOéCOlaP’YC01 )\v)\k—l-l v
v=1,.,k v=1,., 1,5
1 A A
01 Ul k41—
tel 2 - Z Zawc e AT
v=1,...,k v=1,..
1
+ §[o(p, 0) —o(p, s) + (0, s) Z)\f)\i allctaz ¢!

+ 5]380 >’Y Z/\ée)\icg)l 01( pY sa+asa éJ’Y)

1 k1
+ 5 <508 - pO) Z )\J )\ch)la?’}’c()lasa

+ dos Q1Z)\k)\l m—1) ]a] C 05172)\

. A
where in the sum ) | we require v = p + 1, while for ) | we require v = s + 1.
m m

] I

We have to analyse the different choices of (p,7) and (s, «). The easiest case is the following

one.

Lemma 5.2.20 Forp = s = 0 and for any 1 < a,v < dy, we have that (5.44) holds.

Proof. We use (5.18), (5.24) and (5.29), and the proof is similar to the corresponding case for a

Jordan quiver given in Proposition 4.3.3, so we can omit it.

a

Fourth type of brackets : case p = s nonzero. We begin with some preliminary results : we

remark that we can write (5.25) in the special case of € = 0 as

408 — DYDY
{Cgl,afa S: — 51] ;)1 sa +(5( ;ﬁj))\ )\m ricg)lasa
puE
= O(ij) N — et ai® — ai* (Zm-1)ij ,

and by antisymmetry we get

Py pAEOM — P ¢ 01, pY AN o Py
{aj ,cz dijc; a; +6(Z¢j))\ VT )\pcl a;

)\?Ln 01
- 5(¢#J)Wcl al’ +al" (Zm-1)ji -

(5.46)

5.47)
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Hence, in the case p = s nonzero, we obtain after simplifications
k—1 i
_ +l 01 2 m pa A\Le01 0t pa
(544 ms —72)‘1' +Z)\J icj o {ag,a)"}
i

+ Z )\kAlC()l 01 P'Y )\:n ] pa + Z Ak)\lc()l 01 Pa /\gn )\75) Py
AN Ci ])\m )\m)\pj V] ¢ ’)\m—/\m)\Pi
J

i#] i#]
(5.48)
Lemma 5.2.21 Foranyp € I\ {0} withs =pand1 < o,~ < d,, we have that (5.44) holds.

Proof. Letk = kgm +p+ 1and !l = lgm + p + 1 for kg, Iy € N*. We can write

_ pa 01_.pv,.01 \p+1yp+1yvgm y (ko+lo—vo)m
(5.44)RH5—2<Z Z)Za cp a; ¢ NN AP Aj

vo=1 =1 ]

(Z Z) Z apac()lapvc()l /\p+1)\p+1)\§ko+lo—vo)m/\gom

vo=1 vo=1 i,J

—_

Z)\k}\l(:Ol 01 IW pa+ pa p'Y)
J ] ¢

We easily recognise EE;JZ)) in the first two lines, so that with Lemma 5.2.12 we can write

AT AP

(5 44)RHS — (kO o ZO Z)\k—l-l 01)2 p’Y pa + = Z}\‘];‘)\ﬁ A.Zn — )\mc‘?lcgl( p'Y Pa + a p’Y pa)
Z#J !
o,y Z A§Aic91 ?1 Py poc +al™ ;97)
Since k = ko —lp, we can see that this expression coincides with (5.44); ¢ after putting (5.30)
in (5.48). O

Fourth type of brackets : case p =0, s # 0 or s = 0, p # 0. Again, we notice that we can write

from (5.24) the simpler expression

0l AP A" 01/ 0a 0a
)t a)} _*5 ;ﬁy)w% (@) —a}) + 610(Zm—1)ij — @) (Zm-1)ij
K3
1 do (5.49)
+ icgl Z o(a, m)(aoaao“ + aoaao"‘)
k=1
and by antisymmetry
AT AT
0 0 0 0
{ ]77 i } _5 G#)3Ym _ ym /\m — )\m Cgl(aiv B ajw) - (51”/(Zm—1)ji + ajv(Zm—l)ji
. do (5.50)
_—en 0(7,0_)( 0y OO’ + aO’Y 00)
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Assuming that p = 0 and s # 0 we can write using (5.46) and (5.50) that

(5-44)LHS—k [+s5— Z)\k—&-l 01)209 sa+z/\k/\l 0101 ¢ 7a729a

3 Vi€
a8 AT\
ky! .01 01 oy j ky! .01 01 0y L
+Z)\J)\Zc] c; asaaj \F _Z)\mF Z)‘J Aicj e aj“a, N
i#£] lsﬁa !
— ,Z)ét)\ic?lao’ycmasa _ ’le)\;c)\icg)l sa o 1)]
i#]
0
LA Dl o )
(5.51)

A similar expression holds for the case p # 0 and s = 0, but we will not need it.

Lemma 5.2.22 Forp = O and forany s € I \ {0}, 1 <y < dpand 1 < a < d, we have that
(5.44) holds. This is also true if s = 0and p € I \ {0}.

Proof. It suffices to prove the case p = 0, s # 0 when we use (5.31), and the other case follows

by antisymmetry. So let k = kgm + 1, ] = [pm + s + 1 and note that k£ < kgm + s 4+ 1. Hence

o lo
(5.44) pprg = (Z Z) Zasacma(wcm )\vom-i-l)\(kOJrlo vo)m-ts+1

vo=0 vo=0 i,]

ko—1 lo
ko+l 1
(Z Z) Zamcmaowcm )\( o+lo—vo)m+ )\vom+s+1

vo=0 v=0 i,J

- Z A?}\i 2)1 Q’Y 01 sa o Z)\ zasocc(])l
_ (kO + 1o — 1) Z )\f—H(C?l)Q 07 sa + = Zc01asac01a0’YA )\S—HEE ))
' 1753
_ = Z )\‘l;)\i )\i ?laO’YaSOCCOI Z A?:Aicglao’ycolasa
zsﬁJ #J

— 81y Y NN (Zim 1) jial )

Using Lemma 5.2.12, we can write the second term as

N 0 0
= E )\]/\Z)\i" )\m (Jnc?l <a5aa e )\i jaa27> .

2#]
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Since (ko — lo)m = k — 1 + s, we get

k—l4s— .
(544)RHS _ —:nS m Z )\erl( 01 2 O'Y sa + Z )\‘l;)\i Am z )\m Cg)la;)“{COIasa
@ i#]

A8
kAl i J 01_sa,01_0y Z sa 01
+E )\])\z)\m_)\m—)\scj aj’c; a; d14 Nexb(z,. 1)jid; cj .
i#j

If we put (5.31) inside (5.51), we get the same result. O

Fourth type of brackets : case of distinct p, s # 0. Let p, s € I'\ {0} that we assume to be distinct.
We can use (5.46) and (5.47) to write

k—p—1
(5.44), g = Pm +SZ)\5+I(C01 2 al sa+z)\k)\l 01601 ¢ ,afa
i

]l]

k101 _01_py A )\5
S 7

+ Z )\] )\ij c; a;'a; )\m o F (5.52)
i#] !
k101 _01_py A;ﬂ )\p
S 1

—i—Z)\])\lcj c;, a; 'a; WV

i#] v

Lemma 5.2.23 Foranyp,s € I\ {0} withp # s, and forany 1 <~ < d,, 1 < a < d, we have

that (5.44) holds.

Proof. We prove the case p < s where we need (5.33). For k = kgm +p+1 < kgm +s+1

and [ = lom + s + 1 with kg, g € N*, we have

ko lo
1 _
(544)RHS — 5 ( Z o Z ) Z a;acglazp'ycgl )\E)om+p+1)\§ko+lo vO)m+5+1

vo=0 vo=0 %,

1 ko—1 lo
ko+lo— 1
4= § : . Z § :asacglaPVCQI )\( o-+lo—vo)m+p+ )\yom+s+1
2 J 1 ] ? J

vo=0 vp=0/ 1,5
_ - E )\éf)\iaf’YCOIasaCOI

—_ (kO +1p— 1) Z )\f—kl(C?l)Q Pig sa + = ZCOlasaCOlaP’Y)\P-i-l)\s—i-lEE ))

%#J
ASTP
_ = kAl J 01,.pv,sa.01 kyl 01, py 01 sa
E AT A N ch a; 'aj“c; E AjAici aj’c; a
z;ﬁ] Z#J

We see that Lemma 5.2.12 allows us to rewrite the second term as

kyl 01 01
A (s ).
i#] i
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So that with (kg — lp)m = (k — p) — (I — s), we get

k—p—1l4+s5s—m sa
(54D Rps = : - Z A (e ?a)a;

i
AP
kAl i 0197 0150 kAl i 01500107
+Z)\J)\Z)\m_)\m] j +§:>\J)\2)\m_)\m)\s pCi & Ci &
i#£] i#j 7

By substituting (5.33) in (5.52), we get the same result. O

5.2.4 Generalisation of the Poisson bracket of Arutyunov-Frolov

Before discussing integrability in §5.2.5 for the dimension vectors (1, nd), let us remark that the
functions tr UK, U € {X,Y,Z,1; + XY}, for which we can explicitly write the flows (see
Propositions 5.1.5, 5.1.6, 5.1.7 and 5.1.8) can be written on Cy, ,,, in terms of traces of matrices
involving X or Z. At the same time, we have seen in §5.2.2 that such matrices only depend on
the elements (\;, 9i; = ZZS 1 ;%¢; @) when restricted to Cy, ,,,. Therefore, it seems natural to try

to obtain the Poisson bracket on these elements, which we do now.

Preparation

In this subsection, the method is just an adaptation of the proof of Lemma 4.3.5 with the Poisson
brackets from Proposition 5.2.7, so we skip the proofs. We denote the matrix Z, given by (5.10)

simply as Z,.

Lemma 5.2.24 Forany 1 < e,v<dpandi,j k,l=1,...,n,

{Cgeaggl} :(Zm—l)kjc?E — (Zm- 1)jlco€ + ((Zm—l)l' - (Zm—l)kj)gl(c]l
1 )\m + A Qe /\m + A"

+ 55(j¢k)W (95— gi) + 5(3#)W(C gha + € 0k;)
Lo o Lo . 05000 00000 0A
T 5% 9kj — 55 95t T Ik Z(Cj —c;) (" —ay"),
A=1
1 AT+ A
0 0 0 0

(8,7, g0} =2, (Zmn—1)a — & (Zm—1)u + 55(1'#) N )\fn (2 —a") (g5 — gn)

+ 5%#)@%(# —a;") + 58, g0 — 53 9i

d
1 0 0
T3 Z o(y,0)ghla; (a)” —al”) +a)" (ay” —a)")].

o=1
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Lemma 5.2.25 Forany 1 <e,v<dy, s € I\ {0}, andi,j, k,l=1,...,n,

m — S
{ef, g} == (0t = 0;)e5 i + (Zm—1)i5 = (Zm—1)ki) i

1 06 m—sys m s
+ 6(]756) )\J /\m Cj [)\ Aj g]l )\j gkl]

1

6(J¢1)W [)‘m 29k + AT TN gk]} +gi D (e —ch) (@ —aph),
Ai

DANTITS A A
{a?7>gkl}_ 9 k) (ay, o a )[ m el v ’:,LQZz]
Chs A AT PNV,

0 s
+ 55(1;&1) (al7 - a )ngl
1
+5 D _o(ro)gial (&) — af?) + al(ay — a)")].
o=1

Lemma 5.2.26 Foranyq e I\ {0}, 1 <e,v<dgandi,jk,l=1,...,n

q—m . 1
{cI% g} ZTéjoqeggz = (Zm-1)iej" + 2C3€gk X K
AT AR
0
+ 5@#)W (91 = o)

1 m g€ m— €
+ 5(]751) )\ )\m [)\ cq gkl + )‘ Q)\chl gg] ’

qg—m 1
{ag’y’glgl} == dua]’ gk:l +af (Zm-1)a + 231 (Qzl 925)
1. AP . ATING .
+ 506k ym —m 7 (af” gry — af " gq1) + d(izn) W 3 (al’ga — ai’ g)
K2

1 e m
+5(i;ﬁl)m()\i "A?a;”gk Al aqvggl)

Lemma 5.2.27 Foranyq € I\ {0}, 1 <e,v<dg andi,jk,l=1,...,n

1 1
{c, gp} e ch G+ (Zg-1)kjel" + 5‘3?69@ - §CJ "G
1 ¢
+5(a¢k)W c] [/\qu 95 — Aingiz]
J

Ll ATEAR
6(]7’”) )\m pUL |:c?€g}(il + CEKQZJ )
l
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q 1
{af”,g,‘il} == E‘Silamggl - ai’V(Zq 1)il + B aj gkl - 5 %’Ygfl

Ll AT
2 (i#k) )\m )\m

1 _
= Sty iy | ML+ NN

q qay Q)

(al gy, +ap g5

1

0 A [

Al g, — gl |

Lemma 5.2.28 Forany q,s € I\ {0}, ¢ < s, 1<e€,v<dg andi,jk,l=1,...,n,

<s|qg—S 1
{ct, g qzs[ Ot 534“ "9+ Sy sy I 5 — Al

1 Csns—
+5(j¢l)m [A?”‘cg‘giﬁk;”ﬂ 5)‘? qc?egij} )
J

S <s e :
{al”. gu} = [“*(M—M]a Ikt + OGil) AN qv} 9k

o |
A= L

1 _
+ 8t 3 [Nral gy + TN Rl g — XA al g — XN algh|

Lemma 5.2.29 Forany q,s € I\ {0}, ¢ > s, 1<e€,v<dg andi,jk,l=1,...,n

s |q— S s 1
CR= [ ot Ok — 1] ) 9+ O Ty SAT 951 = A
1 _ _
+ 0040 Y XA [A}”c;"ginrA? A "C?Egij} :
> q 1 -
{a] ; 7.9 gt = = { ik — E(Sil} a;'mglil “'5(1‘#) AT M [A:n q)\?a;ﬂ Aj'al qq Ik
i l

1 _
+5(l#)W [)‘?Lagvgil‘f‘)‘?ﬁ I A g — Nl g — NI A gkl} .

The generalised Arutyunov-Frolov brackets

In this subsection, the Poisson brackets (5.54)—(5.57) can be obtained by adapting the proof of

Proposition 4.3.4. The main difference is the use of the identities

1, St AT LA+ AT
T Nk —gY — reLe v g st T o 5.53
( m 1)7,j + 291] ; ts_l )\;n _ t)\ng] + 2)\271 _ t)\‘;ngzjv ( a)
m4+s—ry\r—s
(Z 1)-<+lgr.zzt’“—1 A A g.&.‘.lMgT,
2T g At Y 2N — AT
m—1 S—rym—+r—s
tto 1 AT
+ Yy e g, forr #0, (5.53b)

St AT
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which follow directly from (5.10).

To shorten expressions, we take the convention that all the terms with a vanishing denominator

should be omitted. For example /\m+ )\’in stands for ;) )\er X We begin by writing the Poisson

bracket {g{;, g3, } for ¢ = s = 0. It follows from Lemma 5.2.24 that in this case,
AN AN AT+ AT N A4 A

" +
YIRS VIR VI VI VI VD VIS

1
{gwagkl} gzggkl

A AT AT N NI N N

APV A;n—Af1+A;n—tA;n_A;n—tA;n
D VD A N

Y

1

* [Ag@ VIR Vo mm 29931
(5.54)

Lo o [ARHAT  ASHEAT 1 0 A AT AT AT
+7gkjgkl m _ \m  \m _ 4\m 5 m m ™ \m
2 YD VD VIOV YIS VD VY
t AS)\m § t )\8)\’”’1 S
+Z P Yo Mmgzl(gw 9iy) +% . 1w9k3(911 )
AS}\m S

t o NN t
- Z ‘1o >\m Mmgﬂgzy + Z <o W%le

Note that if g7; = 0 for all s #0,i.e. whend = (d,0,...,0), we recover the Poisson brackets of

Arutyunov-Frolov (4.32). We will come back to this relation in §5.3.3. For ¢ = 0 and s # 0, we

get from Lemma 5.2.25 that

s | ATTEAD 2A7 2A7 AP AT
{gz]7gkl} gzjgkl A?L _ AZL + )\;n _ Aim )\m )\m + Aim _ )\m
m—s PV ATTEN
(3
+ T@l 6k])gklgz] + gzlgk;jm + gzlgkj )\m A
)\m s/\s )\S)\m s
+ gzggzl )\m )\m + gljgjl)\m )\m
5.55
Ll [N Ry o
QTRITRUA I — A\ — AT
Lo [Arear Ay
27IRL X — AT — A
)\Q/\m q )\Q)\m q
+ Z [ t)\gng;]jglil - )\m]t)\mgk]gkl]

It is nice to see that some terms are similar in the cases s = 0 and s # 0 by comparing (5.54)

and (5.55). By antisymmetry, we can find {ggj, gj; } for ¢ # 0 and s = 0, which coincide with an
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explicit computation using Lemma 5.2.26.

Next, we can assume ¢, s # 0. If ¢ = s in this case, Lemma 5.2.27 yields

1
{91]7 gkl} gz]gkl

VR - VR

A= AT )\}”—)\lm )\Zl—)\}” A=A

APEN NN I AR

P D D Y Y
s X AP

+ E((s 5’Ll)gl]gkl + gzjgzl )\m — )\m + gzg.glem - )\m

)\m S )\m S)\s (556)
+ 9RiGh o )\m A + gklgljm

1
+ 595191‘3;’

+Ztsl i

s 4

s—1 [)\m—i-q s)\s q )\mﬂ]iS}\Siq
l

J % !

+ k90 — “xm — ki
Am VIR VO SV

tg—
g=s+1 q-1

If ¢ < s are both nonzero, we obtain from Lemma 5.2.28 that

q<s 1
{959k} = 5949k

PVLETD VIV EE P Vi 2\ 2\
+ + +

N T = A — A
+ 93590 [q 5jl + 5]k - %511 - 524

m+q s>\s q )\s qu—&—q S

+ gzlgkj )\m _ )\m +y9 k] ’Ll )\m _ )\21 (557)

M8\ AJAR 7
+ g; 91171 + 94,95 li
] )\m )\;n 1797 )\m )\m
7" M
q s A
By antisymmetry, we get the case ¢ > s. The latter can also be checked using Lemma 5.2.29.
Finally, we have directly that {\;, \;} = Oand {)\;, g}, } = %&j Aigj; by Lemma 5.2.9. Gathering

all these results, we obtain the following.

Proposition 5.2.30 Up to localisation, the commutative algebra generated by the elements

(Ais g5;) inside O[Cy, ,,,] is a Poisson subalgebra.
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5.2.5 Returning to integrability

Forany U € {X,Y,Z 1; + XY}, we have obtained different families of Poisson commuting
functions in Propositions 5.1.2, 5.1.3 and 5.1.9, and they all contain the elements (tr U*)y.
Furthermore, these families are such that we can derive explicit expressions for the Hamiltonian
flows of some of their elements in Propositions 5.1.5-5.1.8 and Propositions 5.1.10-5.1.12. In
particular, we can always write down the flows of the functions (tr U¥)y, in these different cases.
These results suggest that we should try to build (degenerate) integrable systems containing some
of the functions (tr U¥);. In fact, we will show that such functions are indeed (degenerately)
integrable, and proving this statement will occupy the rest of this subsection. We will omit to
write down expressions for the Hamiltonians in terms of local coordinates on C,, ¢ .a(m)’, as this

will be the subject of Section 5.3.

Remark 5.2.31 In a way similar to the study of integrability on the MQVs associated to a
Jordan quiver with general framing that we analysed in §4.3.3, our statements will only hold
in the connected component of Cy, q.a(m)° containing Cp, q.a(m)'. Here, Cy, q.a(m)" denotes the

subspace defined in Remark 5.2.2.

Trivial cases

First, assume that |d| = 2. By construction, this means that the space C,, ,, is characterised
by matrices X, Y, Vi 1, Wi and V,, 5, W, s, where (a, s) is either (1,2) if dy = 2, or (3, 1),
B € I\ {0},if dy = dg = 1 are the only nonzero components of d. Then, from the fourth item

of Proposition 5.1.2, we get in a way similar to Theorem 4.3.14 that the following holds.

Theorem 5.2.32 [f|d| =2and U = X, Y, Z, the elements
{tr UM tr(Wy Vi UM |k =1,...,n}

form an integrable system on Cy, q.a(m) (or Cy qa(m)° forU = Z). For U = 11 + XY, this is

true with tr U* instead of tr U*™.

Next, introduce ¢ = tr(Wp~Vge) = Vy,eWp,, (not to be confused with the parameters (%)

pylge
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from (5.3)). Then, when we look at (3.39) for kK = [ = 0, we see that

1
{tp7|qea tsa\rﬁ}P 25 [O(Z?, T) + 0(Q7 S) - O(p, 8) - O(q, T)] tp’y|qetsa|rﬁ
1
+ 551350(047 '7) (tp'y|qetsa\rﬂ + tsa|qetp'y|r,3)
1
+ 55@"0(57 €)(tpylgetsalrs T salgelpyirs)

1
+ 56% [0(67 Oé) + 6601} (tpv\qetsah“ﬂ + tsa\qetp'ﬂrﬁ) + 5q86601 tp'y|rﬁ

1

- iépr [0(B7 /7) + 55’7](tp7|qetsoc|7“ﬁ + tsa|qetpv\r,8) - 5p7“575 tsalqe

In particular, {t,+|,; tsajsa}P = 0.

Theorem 5.2.33 If n = 1 and U = X,Y, Z, the elements (tr U™, t40)50)(s,0)£(1,1) Jorm an
integrable system for any d. Hence tr U*™ is Liouville integrable for any k € N*. IfU =
17 + XY, the same is true with tr U* for k € N*,

Proof. Using the second item of Proposition 5.1.2 and the remark above, these elements Poisson
commute. We deal with the case U = X now, and we work on the subspace where X is invertible.
In this case each element W , V; o, X, Z; is a scalar, the moment map (4.1a) reads

ds
qs H(l + tsa\sa) = XSZSX;llZ;ll , sel,

a=1
and by taking the product of these expressions we get that ¢ H(&a) (1 + tsa)sa) = 1. Hence, we
can rewrite ¢19)11 in terms of the other ¢4, The group acting in this case is (C*)™, so we can

generically fix the gauge by the conditions X = 1 for s # 0 and ) | Wy o = 1, which amounts
to W()?l =1- Za;él WO,a-

The moment map at s now allows to write Z;/Zs_; in terms of the other elements. Thus, we
can see that at a generic point the functions (X, Zp, Ws’a,t5a|sa>(57a)7ﬁ(071) are coordinates.
In particular, the family from the statement contains |d| functionally independent elements at

a generic point. The other cases are similar. O

Degenerate integrability

Recall the definition of the commutative algebra O defined in Proposition 5.1.2, which is

generated by the functions tr U* and tr(We,oVy gU 1) and is also a Poisson algebra. This algebra
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is defined on the space C,, q.a(m) (or Cy, q,a(m)° for U = Z), and we use the same notation Oy

to denote the corresponding sheaf of analytic functions.

Proposition 5.2.34 For U = X,Y,Z, we can complete the set of functions (tr U lm)le by
2n|d| — 2n elements of Oy, such that they are all functionally independent at a generic point.
Moreover, among these 2n|d| — n functions only the n elements tr U'™ Poisson commute with all

the other ones.

The case U = 17 + XY is slightly more involved. To state it, denote by mgq the cardinality of the
set [g ={se€I]|ds#0}.

Proposition 5.2.35 We can complete the set of functions (tr(1;+XY)) | by 2n|d|—(ma+1)n
elements of Oy, such that they are all functionally independent at a generic point. Moreover, we

can choose these 2n|d| — mgn functions so that mgn of them commute with all the other ones.

As in the one-loop case, we obtain the following result as a direct application of Propositions

5.2.34 and 5.2.35.

Corollary 5.2.36 For any k € NX*, there exists a degenerate integrable system containing

tr U™, forU = X,Y, Z, ortr U* forU = 1; + XY.

In the proof of Proposition 5.2.34, we will use an inductive argument based on the ordering

considered in Remark 3.2.11.

Proof. (Proposition 5.2.34.) We only show the case U = Z, the other cases being treated

similarly (by using an analogue to the argument at the end of Proposition 4.3.16).

First, we need to introduce a convenient set of local coordinates. Consider the space p2(dI=1)+1

where h = C", with local coordinates (2;, Vs a,i; Ws,a,i) fori =1,...,n,s € [,and 1 < a < d;
for s < §, while?® 1 < o < d; for s = 5. We consider the subspace by where z; # 0, z; # z; for
all ¢ # j, and for each (s, ), 1 + >, Ws 0,iVs,a,i # 0. Now, define the matrices

Zm—1 = diag(z1,...,2n), Zs=1d, fors#m —1,

(5.58)
V:s,oz = (vs,a,i)i7 Ws,a - (ws,a,i>z’7 for (57 CE) < (§7 d§)

2See Remark 3.2.11 for the definition of (3, ds).
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We can define for any such (s, a)) < (5, ds) the matrix

— — — —
Fsa=t <HZT—1) H (Idn"i‘wswvs,ﬂ Zs—1 H H (Idn‘i‘Wr,ﬁw,,ﬁ) Zr-1 |,

r>s 1<y<a r<s |1<B<d,

where an empty product is set equal to 1. The rightmost factor is always Z_; := Z,,_1. (Note
that the matrix Fy g4, defined in the same way in C,, qq(m)° is nothing else than the product
Xm-1Zm—1... ZOXW_II_1 by (5.1a).) If the elements (s, «), (r, 3) are such that (s,«) < (r,3)
and they follow one another in the total ordering, we have from our choice of (Z;) defined in

(5.58) that F,. g = (Id,, +W, 3V} ) Fs o, and they are all clearly invertible.

Let (s—, c—) be the element preceding (5, ds) in the ordering. We claim that F;_ ,_ has distinct
eigenvalues generically. We also claim that for W = (1,...,1)T, this implies that there exists
V € Matix, suchthat F, = Fy_  +WVF,_,_hasthe same spectrum as Zy = Z,,—1 ... Zo.
Indeed, this follows from Lemma A.1 by induction on the order of the (s, ). Moreover, this

lemma tells us that by fixing the matrix X,,,—; that diagonalises F'; into Zj, V is uniquely defined.

It remains to show that the elements of h; and a fixed choice of X,,_; determine a point in

Cn.q,d(m)°. Indeed, we can set W5 4. = W, V; 4. = V, and define inductively from X, _;

«—

Xo=qo [] (dn+WoaVoa) Zm-1Xm-1,

1<a<dy
H

Xo=qs J] (dn+WiaVia) Xe1, 0<s<m-—1.

1<a<ds

It is not hard to see that all invertibility conditions of C,, 4 4(m)° are satisfied as well as (5.1a).

Locally, we can complete the coordinates given by (z;, Vs i, Ws,a,i) generic in b by n functions
that correspond to the choice of eigenbasis determining X,,,—; (up to permutation). It remains
to adapt the counting argument in the proof of Proposition 4.3.16 to the present case, where we
want to show that we can find 2n|d| — n functionally independent elements in Oz. Introduce
= tr W, Zkm+P=aV, for any k € N* and admissible spins. We have locally that
t’;ﬂqg = Y 2Fwpivgei for (p,7),(¢,€) # (5,ds), and tf, = tlg,d5|qe = >, 2Fvg e for
(q,€) # (8,ds). Now, recall the map p defined in Remark 3.2.11 which assigns an admissible spin
toall {1,...,|d|}. As p preserves the ordering, p(|d|) = (5, ds). We can consider the functions

and t*

o) for J,7" # |d|. We then form

k
Eoi)loG")

he <<11 " ka>k ’ (t'ff(l))k A (tﬁudlfl))k v (t];(l)’p(l)>k e <t’;<1“’<d'”)k)
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where each k ranges over 1,...,n. Since % tr ZFm = i zf it is an easy exercise to see that the

Jacobian matrix with respect to the coordinates (z;, Vs q.i, Ws «,i) has diagonal form

V. 0 0
or A
z,v,w) | ° 01
* *x B

where A, B are composed of (|d| — 1) diagonal n x n blocks which are generically invertible.

Thus, this matrix has full rank 2n|d| — n as in Proposition 4.3.16.

Finally, we need to show that the functions % tr Z¥m, 1 < k < n, are the only ones that commute
with the other elements of 7. This is similar to the end of the proof of Proposition 4.3.16 : if this

statement were false, this would contradict that C,, o 4 () is symplectic. )

Proof. (Proposition 5.2.35.) We only explain the differences with the proof of Proposition

5.2.34, as the ideas are similar. Recall that mgq is the cardinality of Iq = {s € I | ds # 0}.

First, we introduce a convenient set of local coordinates. Consider the space h2(|d/=ma)+ma where
h = C", with local coordinates (zp i, Us.a,i, Wsa,i) fori=1,...,n,pelqg,s € {peclq|dy >
1} and 1 < a < ds. We consider the subspace b} where z,; # 0, z,; # 2, forall p,q € Iq,
1 <4,j < nwith (p,i) # (q,7), and for each (s, ), 1 + >, Ws 0,iVsa,i # 0. We define the

matrices
B, = diag(zp1,...,2pn) forp € Ia, Voo = (Vsai)i, Wsa= (Wsa,i)i- (5.59)
Next, fix p € Iq. Forany 1 < o < d,,, we can define the matrix
Upa = (Idpy +Wpa,Vpa,) - - (Idn +Wp Vo)

and we also set U, = Id,,. Put W1 = (1,...,1)". As in the proof of Proposition 5.2.34
with Lemma A.4 in this case, we know that there exists some V1 € Mat;x,(C) such that
Upq = BpUpa(Id, +Wy 1V}, 1) has the same spectrum as B,_i. (We take Upo = U, 1 if
d, = 1, otherwise the result follows by induction on «.) Moreover, up to fixing the matrix

Y,—1 € GL,(C) that satisfies
Y, 1Bp 1Y, = Upa, = By(Idn +Wpa,Vpa,) - - - (Idn + W1 V1) (5.60)

the covector V,, 1 is unique. Note that Y,,_; depends on n parameters (c,—1 ;) corresponding to a

choice of eigenbasis. This choice is independent for distinct p, ¢ € I4.
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For each s € I with d; = 0, we set By = Bs_; inductively. This is well-defined since By was

given in (5.59) as dy # 0. We can remark that any matrix Y;_1 € GL,,(C) satisfying
Y, 1By 1Y, | = By, (5.61)
must be diagonal with nonzero entries. We simply fix Y;_; = Id,, in such cases.

We claim that the (2|d| — mgq)n functions (vsq i, Wsa,2pi) Of b} and nmmgq parameters
(€s—1,;) form a local coordinate system around a generic point of C,, g q(m). Indeed, we can
put X, = (t;'Bs — 1Id,)Y;!, so that (Id, +XsY;) = t,B;' and (Id, +Y; 1 X, 1)~} =
t;1,Ys_1Bs 1Y} Then, (5.60)—(5.61) imply that

(Idn +XSY;)(Idn +Y9—1X5—1>_1 ZQSBLg_lY;—lBs—IY;__ll

«—

=(s H (Idn‘i‘Ws,a‘/s,a)a

1<a<ds
which is precisely (5.1a). Hence, we define a point generically inside the subspace {det Y # 0}
of Cy,.q,a(m). The choices of (B, W), 1) atall p € Iq and (B,,Y,_1) atall s € I\ Iq fix the

gauge (up to permutations). Therefore, we get local coordinates.

Second, we pick a suitable set of functions. We will work in the algebra O}, for convenience
(which contains O by Proposition 5.1.3). Hence, we can pick symmetric functions of the
elements Id,, +X,Y;, s € I. We set TF = ;% tr(Id,, +X,Y;)* for each s € I, k € N*,
We also introduce the following elements t’;me =1, Ftr W~ (Id,, +X,Y,)*V,, for any p € Iq,

1 <#,e<d,, and k € N*. Inlocal coordinates, we can write that for any p € Iq, 1 < v,e < d,

k _ —k k _ ) =k k _ =k
Ts - Z Zp,z' ) D,yY,E Z wpﬁﬂvp,ﬁﬂzp,i ’ tp,l,s - Z Upﬁﬂzp,i .

Hence, for each p € I3, we consider

~ 1 k k k k k
T, = (<kTs >k s (tp’Ldp)k ) (tp,1,2>k ) (tpydp72>k [ <tp,272)k

where each k ranges over 1, ..., n (we only take the first n functions for d, = 1). With respect to
the coordinates x; = (24,4, Vg,a,is Wq,a,i) for ¢ € Iq, it is not hard to see that the Jacobian matrix

of Tp vanishes for p # ¢, while for p = ¢ it takes the form

(o0 0

L

axp— * D 0 5
B

* * D
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for some V), € Mat,xn, A € Mat,, xn, and B € Mat,, x,, Where n, = n(d, — 1). These
three matrices are generically invertible, so the matrix oT; »/ 0z, has rank 2nd,, — n. Therefore,
the Jacobian matrix of T' = (Tp) with respect to the coordinates () is constituted of nonzero
diagonal blocks of such ranks at a generic point. Hence, we get

Zn(?dpfl) :2ndef Zn:2n|d|7nmd

p€ly p€la p€la
functionally independent elements. Among them, the nmg functions 7%, p € I and k =

1,...,n, are Poisson commuting with all the other ones by Proposition 5.1.3. Moreover, we

could replace one of the y tr(l; + without changing the functional independence.
1d repl f the TF by tr(1; + XY)* without changing the functional independ m

Liouville integrability

We consider forany j € {0,1,...,|d|} the elements ©U) and Uy = 0WU forU € {Y, Z,(1;+
XY)~!}, which we used to state the involutivity of the functions tr U(Ij() in Proposition 5.1.9.
Denote by Hy the commutative algebra generated by the functions tr U ([j(), je{0,1,...,|d|},
K € N, which is therefore an abelian subalgebra of O[C,, q.a(m)] (or O[Cy, q.a(m)°] for U =
Z). We also refer to the corresponding sheaf of functions as Hyr. The following result is the

generalisation of Proposition 4.3.18.

Proposition 5.2.37 At a generic point, there are n|d| functionally independent elements in Hy.

Corollary 5.2.38 For any k € mN*, there exists a Liouville integrable system containing tr U*.
Furthermore, there exists a Liowville integrable system containing tr(Id, +X,Ys)* for any k €

N*ands € 1.

Proof. (Corollary 5.2.38.) It suffices to show that such elements are in H; at a generic point.
For U =Y, Z, we get from (5.4) that U(\d|) has m blocks ¢;Us of size n x n, on the left of the
diagonal blocks. Hence, tr U, (’T a) = th/m tr U for k divisible by m.

For U = (1; + XY)~!, Uy has diagonal blocks (Id,, +XY)(Id,, +Y X)~!(Id, +XY )7L, so
clearly any tr(1; + Y X)~* is in Hy for k € N, which then follows for any & € Z by using
Cayley-Hamilton theorem. But tr(1; + Y X)* = tr(1; + XY)* for any & € N, so using the
Cayley-Hamilton theorem again, tr(1; + XY)* € Hy for any k € Z.
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To get the last statement, we need that for any K € Nand s € 1
¢ tr(Id, +X,Y5)7F — tr(Id, +Ys 1 X 1) F € Hy . (5.62)

Assuming that (5.62) holds and working on C, qa(m)°, tr(Id, 1Y, 1 X, 1) 7F =
tr(Id, +Xs_1Ys_1)"% so if we take linear combinations of (5.62) this yields that (t* —
1) tr(1d, +Xm,1Ym,1)_l’C € Hy. Since t is not a root of unity by assumption (see Proposition
5.2.1), we get that tr(Id, —I—XSYS)_’“ € Hy for s = m — 1, and using (5.62) shows that this holds

for all s as g5 # 0. The statement for all £ € N then implies it for & € Z.

We now show (5.62) for each s. By assumption, dy > 1, and p(dp) = (0, dp). Hence, using the

second equality in (5.4) for j = dp and s = 0, we find that
tr Ufyyy = tr Ul + 6 tr(Idn +X0Y0) ™ — tr(Idy +Yim 1 Xm—1) 7",

for any k£ € N. This is the base step.

Now, consider 0 < s < m — 1. If ds = 0 note that (Id,, +XYs) = ¢s(Id,, +Ys_1Xs_1)
by (5.1a). Hence there is nothing to prove since (5.62) just vanishes. If d; # 0, denote by
js € {0,1,...,]d|} the element such that p(js) = (s,ds). Then, using the second equality in
(5.4) for j = js and s, we find that

tr Uy = trUf,_gy + 65 tr(ld, +X,Y5) ™ — tr(Id, +Y, 1 X5 1) 7,

for any k € N. Indeed, by assumption p(js — ds) = (r, d;) for some r < s, so U,y and U(;, _q,)

only differ by their s-th diagonal blocks which are

qs(Idy, + X Ye) " for Ugy,  (Idy +XY5) (Idp +Yeo1 Xo—1) 7' (Id, +X,Y5) ™! for Uy, g, -
and the equality easily follows. |

Proof. (Proposition 5.2.37.) We sketch the proof for U = Z and the details can be recovered
by adapting Proposition 4.3.18. Moreover, we can assume |d| > 2 as in the case |d| = 1 we just

need tr Z¥" with k = 1,...,n.

First, we need to introduce a convenient set of local coordinates. Consider the space h2(dI=1)+1

where ) = C", with local coordinates (z;, Vs a.i, Ws ) fori =1,...,n,s € [,and 1 < a < d,,
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with (s, ) # (0,1). We consider the subspace ha where z; # 0, z; # z; for all i # j, and for

each (s,a), 1 + Zz Ws,,iVs,a,i 7 0. Now, define the matrices
Zm—l - diag(?«’l, ) Zn)v Zs = Idn for s 7é m — 17 Vs,oc = (Us,a,i)iy Ws,a = (ws,a,i)i .

with indices (s, ) # (1,1). Then, as in the proof of Proposition 5.2.34, we can complete the
elements of by to get local coordinates on C,, 4 4()° around a generic point (this requires Lemma

A4 to get Vp1).

Recall that the admissible spins (s, ) correspond to some j € {1,...,|d|} under the map p of
Remark 3.2.11. In particular, p(1) = (0,1). Define h; g = tr Zg)m. The proof then consists
in showing by (descending) induction on j = |d|,...,2 that the functions h gk, - -, hj-1 K,
K =1,...,n,are n(|d| — j + 2) independent functions. This is done as in Proposition 4.3.18,
and we only sketch the induction step. Assume that we have independence for some j. Using
the second equality in (5.4), each function hj_; ;¢ depends on all the matrices (V; o, W o) With
(s,cr) > p(j), while any h; g, j < I < |d|, depends on those with (s, ) > p(l) > p(j). Thus
the elements 7)1 := (h;_1,k)%—, depend on the 2n local coordinates x,(;) = (Vp(j),i> Wp(j),i)s

while any hy i with j < [ < |d| does not. It remains to find a point where 9T} 1/0z ;) has rank

n to conclude.

The case U = Y is exactly the same. For the introduction of local coordinates in the case
U = 17+ XY, we need to follow the argument developed in Proposition 5.2.35 and first introduce
nmgq functions (z,;) as entries of the diagonal matrices Id,, +X,Y,, p € Iq, instead of the n

functions (z;). O

5.3 Explicit forms for the Hamiltonians

5.3.1 General expressions

Let us work with a fixed dimension vector (1,7n0) in the setting of Section 5.2. Our aim is to find
explicit expressions for some of the functions forming the integrable systems described in §5.2.5
on the space C,, qd(m). Indeed, we would like to see if such systems can be identified with
known ones, in the same way as we obtained the trigonometric Ruijsenaars-Schneider system in

Section 4.2 or its spin version in Section 4.3, together with some modifications of them. So, let us
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S, sa

consider the local coordinates (\;, a;"”, c;*”) defined in §5.2.2 on the subspace C, q.a(m)’ (see

Remark 5.2.2 for its definition).

On the one hand, we will get nothing from the case U = X since the elements tr X* are just

givenby Y " | )\fm. On the other hand for U =Y, Z, it seems difficult to write the elements
Grd=trzbm, HM = tryhm

since Z is constituted of the blocks (5.10), and Z™ is obtained by multiplying them. This is
similar for Y = Z — X 1. We will only come back to these functions in some specific cases
given below. Hopefully, the case U = 17 + XY is easier to deal with, as we do not need to
consider U™ or its multiples. Moreover, since 17 + XY = 3" _;(Id, +X,Y;) and we noted that

the elements Id,, + XY, are integrable as well in § 5.2.5, it suffices to write down such functions.

Set L, = Id,, +X,Y, for all r € I. Working in C,, q a(m)’, we can write L, = X, Z,, so that in
the gauge given by (5.8) we have from (5.10)

r (S—’!’) —(S—T—l) m—1 s—r m—(s—r—l)
. £ AT b ASTTAT
B2)is = r Zi J r 2 5.63
=3 e e e

S, SOC

where g;; = Zi 1a; . In particular, we can write down the Hamiltonians F =tr L}

from (5.63). For example,

T n
- S
=0 =1

Here, we introduced the elements f;; because they are Zj, -invariant by Remark 5.2.4. (As we

tt 11 Z fzz ’ fzz gzz (564)

s=r+1

will shortly see, it is not a coincidence that in the case d = (d,0,...,0), the function given by
(5.64) for r = m — 1 is precisely G}’d given in (4.25) with ¢ = t.) More generally, we can see
that ¢ FTJrl 1 — T+1F:ﬁ’d = tt,41>,; fiT forr = 0,...,m — 2. Hence, we can equivalently
look at the integrable Hamiltonians
n n n
FOZZinia Fl :Zf7'17" sy Fm—l :Zfzn@l_l
i=1 i=1 i=1
We can evaluate the vector fields that they define on the local coordinates (\;,a;"”, ¢;*) using

the Poisson brackets obtained in § 5.2.4. To write them, we denote the derivation {—, F. } as %,

and we introduce

/T )\Zn + )\;n T
Vij = W%j —2(Zr-1)ij — 9ij » (5.65)

forany r € I.
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Lemma 5.3.1 Forany1 <~,e<dpandi,j=1,...,n

d\, 1
dto _E ’Lfiiv
da% 1
= > @7 —a )V,
0 ki
dcle 1 1
7dtjo = — EC(Jk ‘;:"7 + 5 Z( Ogvk — Ckevk]))\

k#j
Foranyq € I\ {0}, 1 <~,e<dgandi,j=1,...,n,

dal”  m—q 1 - 2/\m I\
dtlo :ma§7f3+a§7(zm_1)ii>\i—2§ (afv‘/f/]c)\k ajy ﬁ ]
1
dcq6 — 1 2Am—q+1Aq—1
j 4 m qe 0 cle ae ="k J 0
T = N Zm1)j N + 5 ;( Vi, — cf AP 7
Proof. Recall that fkk = ggkAk and {\;,c;*} = 5Zk)\zc for any (s, «v). The first bracket is

obvious, while the next two are obtained using that

AV AT
{a)", gp} = 5(z;£k)( ay — )L\m )\fngzok Q?k—2(Zm—1)ik] :

AT+ A

i 1
{c%, g} Zgé(j#)c? Wg]k 99k — 2(Zm—1)jk

AP AT

1 Oe 0
B 55(j¢k)ck ng‘] _gk] 2(Zm—1)kj] ,

as a direct consequence of Lemma 5.2.24. Similarly, the last two brackets are obtained using

—q )\m Q)\q
(a, g%} 5zk aqwgk + 0iral" (Zm—1)ik + Oizral gsz

PVLEEDY
- 55(1'#16)3;” [Mg?k gzok - 2(Zm—1)ik:| ,
(A
m— q)\q
€ —m k
{c], gin} =0 < gkk = 0] (Zm—1)wk + O €l nga

A g
ngk g?k - 2(Zm1)jk] )
j

cl€
+ 50(#k)C;
which follows from Lemma 5.2.26.

To see the similarity between Lemma 5.3.1 and Lemma 4.3.8, we introduce

AN AT A 2 ANTTS

0 ? J 7 J 0,s 7]

0_ 0s _ 20 7%y 5.66
f )\2”—)\2”4_)\?1—”\}%, ij ts_l)\;”—t/\}”’S#O’ (5.66)
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so that we can write using (5.10) and (5.65) that VO = V]gw + Z#O U0 ngj. Moreover, we

replace c?e by c?e)\j for all indices. Then, we obtain d)‘l = )\;” ;; together with

dtg —
da(-)v 1 0 0 0 0
dto 2 > (2 —a ik~ Z > (@ —a U fi
k#1 k;éz s#0

0
dcje _]' OEV 0 EV OEUOS EUOS
=5 D SV L — V) + ZZ ik~ Uy fig) -

0 ey k;éj 50

Thus, for f7; = 0 for all s # 0 with z; = A", we recover precisely Lemma 4.3.8 up to a
multiplicative factor. This is the case when d; = 0 for all s # 0, and we come back to this
relation in §5.3.3 below. This is also the case if we restrict to the subspace of C,, g .a(m)" where
all W o, Vs o With s # 0 are set to zero. In the latter case, the flows are complete on this subspace

by Proposition 5.1.12.

We can also write the vector fields for s # 0. The proof is a boring adaptation of Lemma 5.3.1,

so we leave the details to the reader.

Lemma 5.3.2 Forany1 <~,e<dpandi,j=1,...,n

dX;
)\
dty i
da)” 0 A
a, = Ay Vg ik
s ki
dcO¢ 5)\ —s )\2—1—1 m—s—1
i :_COESJFZ(%#L_ I T v
° k#j A AR k J

Foranyq € I\ {0}, g<s 1<vy,e<dgandi,j=1,...,n,

— s—q\m+q—s
daj” —_ 9,0 - Z al? A _al Ai A s
dt m" P e TR meme ik

ki
qe m—s s—q+1ym+q—s—1
= X (g e g
dty — m ; Am g dak = S T o m T )
k#j k J

Foranyl <~vy,e<dsandi,j=1,...,n,

daf’y S _syrs s 1 s 2NINTE -

= — —a’ ' fs —a’'(Z._ 1)\ — — SYZ7i Tk ps o8 5\ 7
dts mal i a,; ( s l)zz % 9 ]%;l a, /\zn — )\ZL fzk a, Vip Ak
dej®  s—1 1

] — cSfs 4+ ¢3(Z )..)\.+,Z cs Lms — CEVEN
dty,  m 79577 s=1)3i%i T o g)\m )\m]k’ k Vijik
k#j
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Foranyq e I\{0}, ¢>s 1<~v,e<dgandi,j=1,...,n

qy sym—s m+s—qyq—s
daj’ _m— an"/fﬁ _ Z al” AT AL _ a1 Ai Ak 73
dt- — m i Jil i\m o )\m kT ym _\m ik
s ki 7 ) k
qe m s m—+s—q+1yqg—s—1
dts ' < Am Aplak Tk m_\m ki
* k£ ke 7

5.3.2 Simple framing

We consider the MQV C,, ¢ a(m) ford = d’ = (1,0,...,0). Then, the local coordinates are given

by the 3n elements (A\;,al"!, c)"')

under the constraints a(-)’1 = 1 for all ¢. Thus, we only need
to look at the elements (\;, c;), where we have set ¢; = c . We easily obtain from Proposition

5.2.7 that the Poisson brackets are given by

1
i A} =0, {Ai e} = —dijdicy

AT A
{cj cit =0z Wczca + (Zm-1)ij€i — (Zm-1)jic; -

Using (5.10), we have in this case (we remove the hat from the notation)

—r—1yr+1 .
(Z)”:trugo:t ﬁmTIL rel
R R PV AT — tAT! Kk '

Using the case r = m — 1 with t = t,,,_1, this allows us to get after simplification

(AT 4+ A AT\
= AT = AT AT — AT

{Cj, Ci} = (1 — t)gé(iyéj) ()\m CiCj .
J

By doing so, we have proved the following result.

Lemma 5.3.3 Introduce the functions x; = A}, V{ = c¢;. Then, the Poisson bracket on (x;, Z/ZI)

takes the form (4.16a)—(4.16¢). The same is true for (z;,v;) with v; = (1 — t)c; ;.

This lemma implies that there exists a connection to the phase space C;l’t of the (non-spin)
trigonometric RS system introduced in §4.2.1 (with parameter t = [], ¢5), and that the two
spaces are locally diffeomorphic as Poisson manifolds. In fact, this diffeomorphism is globally
defined between C,, q a(m)° and C,‘;t, see the proof of Proposition 5.2.1 (and [41, Appendix C]
to show that the isomorphism is Poisson). As another consequence of this lemma, we can obtain

log-canonical coordinates (z;, 0;) as in (4.22).
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Let us precise the relation between the integrable systems on C,, q q(m) and the non-spin RS
system in a way similar to [41, §4.2]. To do so, it is convenient to break the symmetry between
the matrices Xo, ..., X,,_1 by acting with the element gx = (A= A~ . A7), A =
diag(A1, ..., A\n), as in (5.7). We get that X; = Id,, for 0 < s < m — 1, while X,,,_1 = A,
where A = A™ = diag(zx,...,x,). Moreover, from the expression of Z, given above, we get
after acting with gx that

Zy=t,Br#m—1, Zmi=tm1A'B, By=(1-t)—29_
r; —tx;

The matrices (A, B) are just the elements (X, Z) in (4.15). In particular, this allows us to write
down the Hamiltonian of interest in terms of the Lax matrix and the diagonal matrix of positions

for the trigonometric RS system.
First, we note that
F? = tr(Id, +X,Y,)F = t0(X, Z,)F = th tr BY (5.67)

are just multiples of the functions G,lc’1 = tr B¥ given in (4.25). This is precisely the family of

the trigonometric RS system which we have already studied.

Next, we have

Gt — e 2P = ikt (AT BTE (5.68)

Up to normalisation and using (4.22), we can write GT’l as

m—1 m—1 n

t—1

1 —1
GMl= > (04 Thy) H ——— I I M. 669
1<j0, s Jm—-1<n xjg ]s+1 s=0 a#js
where we have set 4
L=t t—ajz;t
Tij = 1—1’3:1 :1—33‘:5_1'
el I

It is shown in [41] for £ = 1, and in [34] for any k£ > 1, that the (normalised) Hamiltonian G;n’d
is the quasi-classical limit of the Hamiltonian operator of the twisted Macdonald—Ruijsenaars
system in type A,,_1 defined in [40]. Moreover, the work of Braverman, Etingof and Finkelberg
[34] gives a systematic approach to obtain the quantisation of the above integrable systems, as

well as the one based on Y which we now describe.
Using that Yy = Z; — Xs_l, we can find

Yoot ... Yo = (tm1AT'B— A7) (2B —1d,) ... (toB — 1d,,) .
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Introducing the matrix polynomial

P(B)=][][(B-t;'1d,), (5.70)
sel
we can then write
HY — Y ™ =itk ko (ATP(B)" (5.71)

This can be seen as a generalisation of the family G;"’d . Indeed, since each ¢, contains a factor
U !
go, we get in the limit gy — oo that H,T’d degenerate to Gzl’d (after normalisation to get
! !
tr(A~1B™)*). We can also rewrite the functions an’d in terms of {Gll’d | 0 <1 < m}

after introducing G(l)’d/ = mtr AL, As an example, we have for m = 2
’ / t / /
q = g3 - (1 + t;) Gyt + et (5.72)

In the case m = 1, the analogues of these Hamiltonians are related to the ¢gKP hierarchy, see
§4.2.2. In the case m > 2, a similar relation holds between H,Z”’d/ and a version of the gKP

hierarchy with Z,,-symmetry. See Section 6.1 for further explanations.

So far, we have obtained explicit forms for the Hamiltonians in terms of generic matrices (A, B)
satisfying rank[ABA~'B~! — t1d,] = 1 and A is diagonalised. We could, instead, decide to
diagonalise B as described in Remark 4.2.15. In that case, the Hamiltonians E;"’d/ = tr X%,
F" - tr(l; + XY)k = o F:L’dl and H?’d/ are the quasi-classical limit of the generators
of the quantised Coulomb branch of a framed quiver gauge theory of Jordan type as explained in
[98], see also [35, 36]. Finally, the Hamiltonians Gzl’dl can be seen as the quasi-classical limits
of generalised Macdonald operators introduced in [59]. The interested reader can find the details

for these claims in [34, 41].

5.3.3 Multiple framings : the spin case

Similarly to §5.3.2, we will identify locally the MQV C,, q.a(m)° in the case m > 2, d =

(d,0,...,0), with the MQV C°, , in the case m = 1, d € N*, treated in Section4.3. To

do so, recall that we have local coordinates ()\;, a?’o‘ co’a) on Cy, q.a(m)" under the constraint

(g

Zi:l a?’a = 1. Their Poisson structure is defined in Proposition 5.2.7.
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Am a0,0Z 00704

Lemma 5.3.4 The Poisson bracket given on the elements (\*,a;, c,”") is the same as the

Poisson bracket of Y,/ Sy defined in Proposition 4.3.3. The same is true for the elements

(A 2% %),

U/ A at)

0 0
Proof. If we set z; = A", a? = a,”" and ¢t = c,”

nae then the entries of the matrix Z,,_1 given

by (5.10) become

af'clx;
T Ve — ¢ a T g
( m 1)2] Tr; — tl'j
This is exactly (4.28) for ¢ instead of q. Now, it suffices to see that (5.17) is equivalent to (4.31a),

while (5.29), (5.24), (5.18) yield (4.31b)-(4.31d).

Fix p € Z, ¢ € N*. The transformation c — cf‘xf/q, forallt = 1,...,n, preserves (4.31a)-

(4.31d). The second part of the statement follows directly. O

As a consequence of the lemma, there is a local Poisson diffeomorphism C, . a(m) — C/ , 4

given by setting z; = A", a = a?’o‘

0, — — 40
; and c¢f' = ¢;7"A;. Note that fi; = »_ aj'ci = g A;.

J

Hence, we can use the coordinates (z;,a,c$) on C, q.a(m)’ to write the integrable systems
obtained in §5.2.5. In particular, we would like to investigate the relation with the trigonometric

spin RS system.

Local form of the Hamiltonians

As in the case d = 1 given in §5.3.2, it is easier to write the matrices (X, Zs, A°, C?) in terms

of (A, B, A, C), where
A = diag(z1,...,2n), B = UL (5.73)

parametrise a point of C], , , by §4.3.1. Starting from the gauge in (5.8), we act with the element
gx = (A~ A—™mH L AT, A = diag(\g, ..., \n). We get that X = Id,, for 0 < s <

m — 1, while X,,,_1 = A. From the expression (5.10) of Z,., we get after acting with gx that
Zy,=t,B,r+m—1, Zn_1=tm 1A 'B.

Furthermore, A’ = A='A and C" = C. Though we did not prove it, this parametrisation is not

only local but it comes from a global Poisson diffeomorphism C;, , ;, — Cy, q.a(m)° by [62, §5.1].
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We now investigate the Hamiltonians of interest and we follow [62, §5.2]. First, we remark that
F:Zd = tr(Id, +X,Y;)* = tr(X, Z,)F = t* tr B¥ (5.74)

are just multiples of the functions G,lg’d = tr B* given in (4.50). This is precisely the family of

the trigonometric spin RS system which we have already studied.

Next, we have

G = tr ZM =ik Lk (AT B™E
which directly generalises the non-spin case given by (5.69). Up to normalisation of the local
expressions, we can write

n km f z
m,d _ 7:aia+l Z'cL+1 —1
1 e A
i1,ikm=1 \a=1 "o tat+1 0<s<k—1

Finally, we can get the spin analogue of (5.71) as
m—1 -

H™ = e yP — it b (AP(B))

where we use the matrix polynomial given in (5.70). This allows us to write

i1 m ) fi :
Hm,d _ § H T H '/”U'Lam-ﬁ—s-&-l tam—+slam+s+1 _ t_l 5 . .
k - ta(m+1)+1 s—1 (74am+s:1am+s+1) N

i1,y a=0 21\ Tiomes ™ Wiamioi

m,d

This is also the case for d > 2 that the family (H,Zn’d) generalises the family (G°"), and that
we can rewrite the functions H{" “4in terms of {Gll’d | 0 < < m}. For example, (5.72) holds

without any change (except that we use the matrices (5.73)).

To the best of the author’s knowledge, all these Hamiltonians appear to be new. At the same
time they are straightforward generalisations of the Hamiltonians for the non-spin case d = 1
obtained in § 5.3.2 : it suffices to replace the Lax matrix for the trigonometric non-spin RS system
B by its spin versions. Hence, it would be interesting to see which connections to other topics in

mathematics, such as the ones reviewed in § 5.3.2, could be extended to the cases d > 2.

More on integrability

So far, we have not used Proposition 5.1.4 in our discussion of integrability for MQVs associated

to cyclic quivers. The reason is that it is a more subtle statement to consider. Due to the local
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isomorphism C,, g a(m)" — C, , ;in this case d = (d,0,...,0), it is expected that we need an
extra reduction as performed in §4.3.3 when n > d to obtain an analogue to Theorem 4.3.11.
This is indeed true, and we only state the result, leaving to the reader the task to prove the missing

steps based on Lemmae 4.3.10, 4.3.12 and 4.3.13. For the complete proof, see [62, §5.4,5.5].

Recall that we introduced in (4.57) the Lie subgroup H of GL4(C) whose elements have
the vector (1,...,1) as eigenvector with eigenvalue 1. Moreover, introduce an 7{-action on
Cn.qa(m)’ which acts on the (2m + 2)-uple (X, Zs, A%, C%) by h - (Xs, Zs, A", CY) =
(X, Z, A°h, h~*C?). We form the GIT quotient Ct,, = Cy.qa(m)'//H. Fix U = X,Y, Z, 11 +
XY.

Theorem 5.3.5 Consider the functions {h}‘{ i} defined in Proposition 5.1.4. Among them, we
can pick a subset of nd — %d(d — 1) elements which define a completely integrable system on the

smooth locus of CZL'fm.

Some of these additional Hamiltonians can also be written down locally, see [62, §5.2].

5.3.4 Multiple framings : the m = 2 case

Consider the MQV C,, q.a(m) in the case m = 2, d = (dp,d1) € N* x N. If d; = 0, this
corresponds to the case m = 2 discussed in §5.3.3. On C,, q.a(m)’, we have local coordinates
(A, 2, c¥®) for (s,a) with s = 0,1 and 1 < o < dg, under the constraints % al® = 1,

The Poisson bracket evaluated on these elements can be obtained from Proposition 5.2.7.

The eight matrices (X, Zs, A%, C®), s = 0,1, which determine a point of C,, qa(m)’ can be
written down in terms of the local coordinates in the gauge (5.8). We have in particular that
Xo = X = diag(\q, ..., Ay) while by (5.10)

Aj 1 Aj o, t A 1
L Z1)ii =t 04 L
—txg.f”’ (Z1)yy f”+to)\?—t)\§f”

Zo)ij =t
(Zo)ij =to ¥ N2

e —pedi b
( J

where we have set f = g5;\; = S a;“cy"\;. We also set fi; = 0 when d; = 0. If we

consider a square root v/ # 0, we can write

Ai 1 1 1 1 Aj 1 1 1 1

= — + — , = — ,
APt 2N = VRN 2N HVEN T N A 2VEN — VBN 2VEN VBN
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and use these expressions for the entries of Zy, Z;. We do not write the Hamiltonians for kaf,i

as they are not very different from the general discussion in §5.3.1. For the functions Gi’d =

mtr(Z1 Zp)* and H,f’d = mtr(Y1Yp)* where m = 2, the expressions for k& = 1 are not too

cumbersome. First, we have

to Z-Oj—l-\/f l-1j+7fo %—\/7E lel
Xi — VA, Ai + VA

Gy = vt >

2o 55

toffi + Vifji  tofji — Vifj;
Aj— Vit Aj+HVEN |

Indeed, the first factor is 2(Z);; and the second is %(Zl)ﬁ. Next, using that Y, = Z, — X1,

we find
n 0

2o _ 2 (to— )2 4 (14 - Iy +Zn:i
b L Rl AP to) A2| T 42
=1 1 7 =1 1
We can see the W = S, x ZJ-invariance of both Hamiltonians from these expressions. The
Sy-invariance is obvious. The Z} action by an element (k1, . .., ky) is given by Remark 5.2.4 as
A = (—1)]“1')\1-, Z»Oj — Z-Oj, and le — (—1)ki_ki lej Thus, each factor in the terms constituting
Gz’d is multiplied by (—1)* for such a transformation, so each term of Gi’d is Z4-invariant.

The invariance of H ,z’d directly follows. When we restrict to the case d; = 0, we recover the

Hamiltonians written down in [42, 5.6.4] up to a multiplicative factor.



228




229

Chapter 6

Concluding remarks

6.1 New perspectives on integrable systems

In this thesis, we outlined a way of obtaining the completed phase space for the trigonometric spin
RS system as a MQYV, and we proved integrability of the system. We were also able to formulate
the Poisson bracket in terms of local coordinates, which answered a conjecture of Arutyunov and
Frolov [16]. Furthermore, we generalised these results to numerous new systems of RS type with

trigonometric potential.

Our method relied on Van den Bergh’s theory of double quasi-Poisson brackets [162, 163], which
we applied to extended cyclic quivers. From this point of view, a natural question consists
in determining for which quivers we can obtain integrable systems. This question extends the
analogous issue that was formulated in the Hamiltonian case [43, 125], but is still unanswered.
In fact, it is not even known which choices of dimension vector for the cyclic quiver (other than
the ones in Section 5.2) allow to obtain an integrable system. Noticing that the flows associated
to particular functions can be obtained by the projection method (see Propositions 5.1.5-5.1.8)
for any dimension vector & = (1, «) and generic parameter ¢ = (q~ %, q), we are led to believe
that it should be possible to form an integrable system containing any function for which we can
explicitly integrate the flows in that way (as far as the flows are defined in a non-empty subset of
the corresponding MQV). A possible step in that direction could be to use the reflection functor,
as observed in the Hamiltonian case by Silantyev [149]. It would also be important to investigate

if the regularity condition on q that is considered in Proposition 2.3.28 can be relaxed. Indeed,



230 Chapter 6. Concluding remarks

we would like to allow the parameter g considered in Chapter 4 to take the value of some roots of

unity, which is forbidden at the moment due to Proposition 4.1.1.

There have been some recent advances in the understanding of (real) RS systems for different
kinds of potentials and root systems using a reduction picture, following works of Fehér and co-
authors (see e.g. [68, 69, 71, 72, 74]). It would be interesting to know if their complex versions
can be obtained from (quasi-)Hamiltonian algebras. Assuming that the latter is possible, and
since systems of CM or RS type inherit some duality properties [141, 142, 143] (see also [79, 87],
and for some recent developments obtained by reduction [63, 66, 67, 69, 70, 74, 75, 135, 136,
137, 139]), it would be relevant to understand dualities in terms of their underlying algebras. The
author made a first step in that direction in [62] for the self-duality of the trigonometric spin RS
system. Conversely, we hope that the present thesis can prove to be useful in deriving the real
analogues of the systems that we introduced. In fact, the author believes that this work has already

contributed to revive some interest for spin RS systems, see [64, 65, 73].

There are multiple perspectives that we will not mention, though they may be relatively

important’!. Rather, we will focus on some specific directions of research, which the author

has attempted to follow (at least partially) since the beginning of his PhD in September 2015.

Additional reductions

Recall that in Theorem 4.3.11 (for the trigonometric spin RS system and some modifications)
and in Theorem 5.3.5 (for similar systems with additional Z,,-symmetry) we obtained integrable
systems not directly at the level of a MQYV, but after an extra reduction. We conjecture that this

procedure extends to framed cyclic quivers as follows.

Under the notations of Section 5.2, assume that d € N/ is such that 0 < dy < n forall s € I,
with dy > 1 and where n denotes the dimension of the vector spaces (Vs)secr. As in §5.2.1, we
consider the subspace Cy, g,a(m)° of the MQV which we denote simply as Cy, ,,,. Itis characterised
by the linear data (X, Z, A®, C?), where A° € Mat, 4, (C) and C* € Matgy, «,(C). We can
further restrict to the subspace C{Lm from Remark 5.2.2, for which we can pick at each point

a representative (X, Z,As, Cs) satisfying X, = diag(A1,...,A\n) for each s € I, and where

2IFor example, the possibility of obtaining the quantum version of this work using [93].
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Ziozl A?a = +1 for each 1 < ¢ < n. Introduce the algebraic group

do
Ho = {h = (has) € GLgy (C) ‘ 52_:1 hes = 1 forall a} , 6.1)

and set Hs = GLg, (C) foreach s € I\ {0}. When ds = 0, we set H; = {1}. If we now consider

the group H = [[, Ha,, we can define the operation
(hs) - (X,Z,A%,C%) = (X,Z,A%h,h;'C%), (hs) €H,

which yields an action of H onto C;, ,,,. We can then form the GIT quotient Cf{fm = C},m//H. on

ds
a=1

which the functions (i, g;; = Yoo af¥ci”) are well-defined. Assuming that they generate the

J
coordinate ring (up to localisation), we can define uniquely a Poisson bracket {—, —}7* on C::fm
since the commutative algebra generated by the elements (\;, gfj) is Poisson using Proposition

5.2.30.

Conjecture 6.1.1 For eachu € {x,y, z, 11 + 2y}, we can find in the family of functions (h¥, ;)
defined in Proposition 5.1.4 exactly n|d| — % > sc1 ds(ds — 1) functionally independent elements.

These elements descend to an integrable system on the smooth part of CZL'fm.

The assumption that 0 < dgs < n for all s € I is motivated by Lemmae 4.3.12 and 4.3.13. These
results suggest that we have to work on a subspace where each A® has all its ds x ds minors which

are invertible.

Integrable hierarchies

It was first noted in [2, 48] that the positions of the poles of some (1 + 1)-dimensional
integrable partial differential equations (such as the Korteweg-de Vries equation) evolve over
time as classical particles, which interact as a system of CM type. This was extended to the
(2 4+ 1)-dimensional KP equation and CM systems with arbitrary potential [101, 102], then to
the multicomponent (or matrix) KP equation with spin CM system [104]. More importantly
for us, Wilson understood in the rational case that this correspondence holds for the whole KP
hierarchy [170]. In its turn, this was generalised to new versions of the multicomponent KP
hierarchy associated to systems of rational CM type [43], which are constructed from extended

cyclic quivers using Van den Bergh’s Hamiltonian formalism.
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In works in progress with O. Chalykh, the author considers the analogue of these constructions in
the quasi-Hamiltonian case, i.e. for some of the systems considered in this thesis. We can describe
such a relation for the Hamiltonians introduced in §4.2.2 : the flows of (G}C’l) % describe the
motion of the poles of some solutions to the 2D Toda hierarchy, and the same holds for (H ,1 ’1)k
and the gKP hierarchy. The latter generalises the work of Iliev [91]. In the case m > 2 of a cyclic
quiver, a similar relation holds between (G;”’d/) & (resp. (H,Zn’d/) %) given in §5.3.2 and a version
of the 2D Toda (resp. gKP) hierarchy with Z,,-symmetry. Moreover, we can partially generalise
the above cases to multicomponent hierarchies using the Hamiltonians (G,lc’d) g or (H ; ’d) i from
§4.3.3, and get an additional Z,,-symmetry using their analogues (G;n’d) ks (H,Zn’d) & (which are
defined in full generalities in §5.3.1) for particular extensions of cyclic quivers. The case m =

1,d > 1 then generalises the work of Krichever and Zabrodin [105]. All these results can be seen

as an extension of [43] to the g-case.

We give a sketch of the method in the simplest case of the multicomponent hierarchy, without an

additional Z,,,-symmetry. The idea is similar to [43, Section VI].

We consider (7, h) € C* x C and define A? = C(x,y)/(zy — Tyx — h), which is an associative
algebra. For (7,h) = (1,1), A" is the first Weyl algebra. For h = 0 and 7 # 1, A gives
after localisation at z and y the coordinate ring of a quantum torus. This is nothing else than
A’ /(eso, g — Teg) for A’ givenin §3.1.2. If h = 7 — 1, A" is the first quantised Weyl algebra
which, after localisation at 1 + zy is just A/(es, P9 — Teg) for A given in §3.1.1. We then
introduce the associative algebra

Py = { > pil@)y™

i=—N

pi(z) € C(z), N € N}
with multiplication induced by that on A", i.e. it is a consequence of xy — Tyx — h.

We now fix some d € N*. Let P = gl,;(C) ® P, where we denote g® 1 by g for any g € gl,(C),
and Idy ®@p by p for any p € P~ In P, we consider a (d + 1)-uple (L, Ry,), of the form

L=y+) L@y ", Ra=FEs+Y rai@)y, 1<a<d
=0 i=1

Here, l;(x),7rq,i(z) € gly(C) ® C(z) C P, while E, = E,, is an elementary matrix (recall that

(Eap)vye = 0ar03¢). Moreover, we restrict our attention to such (L, R ) satisfying

d
[L,Ra] =0, RoRg=00pRa, » Ra=1Idg. (6.2)

a=1
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Using the decomposition of an arbitrary 7 = Y.2° \ti(z)y™" € PasT = Ty + T_ for

1=—

T, = Z?:_N ti(z)y™" T- =32, ti(x)y ™", we define the multicomponent (7, h)-hierarchy as

oL
3tk5

OR,
3tk 3

= [(L*Rg)y, L], =[(L*Rg)4+, Ra] (6.3)

for time variables ?3, with k € Nand 1 < 3 < d. These derivations pairwise commute, and we
seek solutions (L, Ry )q of (6.3) satisfying (6.2). Note that in the commutative case (7, 7) = (1,0)

any commutator vanishes and the hierarchy becomes trivial, so we omit this case from now on.

Lemma 6.1.2 Let ¥V = 1+ Y 2%, ¢i(x)y~". Form L = YyV~! and R, = VE, V1 [f

8‘2—2’6 = —(L*Rg)_Y for any indices, then (L, Ry)q satisfies (6.2) and (6.3).

Our aim is to construct elements ¥ satisfying Lemma 6.1.2. To do so, our first step is to consider
the space M of matrices (X, Y, 4, jo)a> Where X, Y € gl (C) and i, € Mat,x1(C), jo €
Mat; x,,(C) for any 1 < ao < d. We define the subspace M, given by

d
My = {TXY—YX+hIdn+Ziaja—On} cM,

a=1
and we will use the corresponding moduli space M,.q = My// GL,(C), where we use the

action g - (X,Y,ia,ja) = (9Xg™ 1, gY 97!, gia, jag™ ') forany g € GL,(C).

Meanwhile, we consider on P ® End(C") the elements

X,=10X —yzr®ld,, Y,=1®9Y —y®Id,, ~eC*,

for X, Y € gl,(C), and we put X=X,V =Y. Up to completing the algebra to introduce
formal sums, we can also consider
Xv_l _ _Z(,Yx)—k:—l ® X% y7—1 _ _Zy—k—l ARV
k>0 k>0

We now denote 1 ® i as ¢ for any i € Mat,,«1(C), and 1 ® j as j for any j € Matqx,,(C). This
allows us to define the following elements of PP from any point in M

U=1-> Eup®juX; 'V lig, U=1+Y Ep®ja¥,' X lig.  (64)

af aB

Indeed, for each a, 8 we have that j, X Vig, j,Y, ' Xis € P! We will be concerned with

pairs (¥, ¥’) constructed from elements of M, since in that case they are inverse to each other
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in . Hence, we will denote ¥’ by W', More importantly, as the expressions (6.4) are GL,,(C)

invariant, we can associate a pair (¥, ¥~!) to any point of M.

We now consider an element ¥ obtained from a point of M,..4 by (6.4), and we define L =

Uy¥~land R, = VE, U1

Lemma 6.1.3 The condition -2 dt = (LkRg) U can be identified with the vector field on Mg

given (as the image of the vector field of Mg given) by

dX B k—1

dy diOé k—a—1 k— 1
R T Y%gi5Y "™
T ZO 8ds

=0 = —6,5Y%i
Aty digs apt o

dje, k. <k
— = Y
dtkﬂ aBT Ja )

Furthermore, such vector fields commute in M 4.

Combined with Lemma 6.1.2, this tells us that we can construct a solution (L, R, ), to the
hierarchy (6.3) from a point of M,..4. Moreover, the evolution under time ¢33 of this solution
corresponds to the flow in M,..4 of the corresponding vector field given in Lemma 6.1.3. Due
to this relation, we are interested in an explicit solution for the latter flow. We have not been
successful to construct it in general, though in some cases it is possible. To state the results that
can be obtained, we consider the derivation a i =237 83t Wthh is commuting with the whole

(7, h)-hierarchy.

Lemma 6.1.4 The condition gf’ = —(L*)_V can be identified with the vector field on M .cq
given (as the image of the vector field of Mg given) by
dy dia djo

dX 1

k
S0, 22 =0, P2 o (7F 1)t F_DXYR 4 p—yhd
dty T dty, " dty, (r 1 " dty Lk = (7 ) + T—1 ’
for T #£ 1, while for T = 1
D, Yo o g BX e
dty, dity dty dty,

For (1,h) = (1,1), we get the KP hierarchy and M,..4 is the completed phase space of the
rational spin CM system. We then recover from Lemma 6.1.4 a result of [43] which states that

these vector fields are Hamiltonian for Hy = tr Y*.

A first new result is to consider (7, h) = (¢!, ¢! — 1). We obtain that y is the operator defined

by yz = qry + (¢ — 1), so up to a scaling factor this is the g-difference operator D, which
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satisfies D,z = qv D4+ 1. Hence the hierarchy is a multicomponent version of the ¢gKP hierarchy

[88, 90, 91]. Meanwhile, we can write for the space that

Mied = {(Idn +XY) = q(Id, +YX) —q ) iaja} // GLn(C),

so that, up to restricting to an open subspace, we can make M4 coincides with the space C,, 4 4

considered in Chapter 4 after setting
ia = Wa, Jo=Vald,+Wu_1Vo-1)...(Id, +W1V7)(Id, +Y X), (6.5)

for any 1 < a < d. The space C,, 4.4 is a Poisson manifold, and we can see that the vector field
associated to (1 — q*k)H;’d = (1 — ¢ %) tr Y'* is given by (see Proposition 4.1.7)

dy dWw, dv,, dx i, L o1
“r _ —0 —0, 22— —1)XY —1)ykt,
ai i i " (q ) + (¢ )

It is not hard to see that it coincides with the vector field given in Lemma 6.1.4 with parameters

(1,h) = (¢"%, ¢~ ' — 1). We can state the above remark as follows.

Proposition 6.1.5 Consider the map Cy, g4 — P : (X, Y, Vo, W) — V¥ obtained from (6.4) and
(6.5). Moreover, define L = WyU~! and R, = VE, ¥~ for 1 < o < d. Then the Hamiltonian
flow given in Proposition 4.1.7 of a point in C,, 4 4 under (1 — ¢ ¥)tr Y* is mapped to the flow of

the (d + 1)-uple (L, R,) under % =23 % for the multicomponent gKP hierarchy.

The second new result is to consider (7,/7) = (¢~ !,0). We denote y by z and Y by Z in this
case to avoid any confusion with the previous case. Here, the relation zx = gxz gives that z
is the difference (or shift) operator’”, so we obtain the positive flows of the 2D Toda Lattice
hierarchy [160]. (We omit the discussion of the negative flows and the role of the second operator

M = Uy~ '¥~1)) We can write for the space

Mieq = {XZ =qZX — qziajoc} // GLn<C) :

Up to restricting to an open subspace, M,..q coincides with C;  , considered in Chapter 4 if we

choose to set

io = —Wa, ja=Va(ldy +Wa_1Va1)...(Idn +WiV1)ZX . (6.6)

2To understand z as a difference operator, we think about 2 as being of the form ¢ for some discrete variable

m € Z,sothat z : m — m + 1.
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As before, since C, 44 has a Poisson bracket we can write the vector field associated to the

function (1 — q_k)Gi’d = (1 — q¢~%) tr Z* as (see Proposition 4.1.6)

dz dW,, dV, dX _k k
— = — =0, — =0, — = —1)XZ".
dty, T dty T dty, T dty, (g )

Again, it is precisely the vector field given in Lemma 6.1.4 for (7, k) = (¢~ 1,0).

Proposition 6.1.6 Consider the map C, . ; — P : (X, Z,Vy, Wy) — W obtained from (6.4) and
(6.6). Moreover, define L = U201 and R, = \IJEQ\IJ_lfor 1 < a < d. Then the Hamiltonian
flow given in Proposition 4.1.6 of a point in wa g under (1 — q ") tr Z¥ is mapped to the flow of

the (d + 1)-uple (L, R,,) under % =) 5 % for the multicomponent 2D Toda hierarchy.

We emphasise that, for d > 1, we are unable to identify the other vector fields from Lemma 6.1.3

as being Hamiltonian vector fields on C,, 4 4 or C;, a.d in the last two cases.

In the case d = 1, it would be interesting to understand when the space M,..q coincides with
the moduli space of isomorphism classes of ideals of A’ (up to localisation). This is known to
be true for the Weyl algebra when (7,h) = (1,1) [23, 29, 30], and the quantum torus when
(1,h) = (g,0) with g not a root of unity [27]. An approach based on a general construction for

any (7, i) has been considered, but turns out to be unsuccessful so far.

Hamiltonian algebra for the elliptic CM system

Recall from Section 1.3 that the spin RS system was originally introduced with an elliptic
potential. Since we have shown in this thesis that the trigonometric spin RS system can be
obtained from a suitable quasi-Hamiltonian algebra, it is then an interesting question to determine
if this can be generalised to the elliptic case. To make a first step in that direction, it seems easier
to seek after a Hamiltonian algebra that yields the elliptic CM system, since CM systems can be
seen as a degeneration of RS systems. We outline the method developed by O. Chalykh and the

author to deal with this case.

We start by considering an elliptic curve £ given by y? = 423 — gox — g3, to which we add

punctures at 0 and some p # 0 (modulo the lattice). Using p(q) the Weierstrass p-function
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associated to &, we set A\ = p(u), N = ¢'(u) and remark that the following functions are well-

defined on the punctured curve

S\ A )R A1)

s=x—A=p(q) —p(n), : (6.7)
)= ol % 2ola) ()
The corresponding algebra A = A(u) of functions is given by
1
A = Clu, s]/{(u*s — Nu = s>+ ags +a1), forag=3\, a; =3\* — ~go. (6.8)

4

We can consider the A-bimodule of double derivations Der(A), and construct its tensor algebra

A that we see as an ungraded algebra. It is generated by symbols u, s, d,,, A under the relations

[u,s] =0, u’s—Nu=s>4aps+ay,
(6.9)
[5,0,] = usA + sAu— NA,  [u,0,] = sA+ As + apA — Au? .

Reinterpreting Van den Bergh’s work [162, 3.2], we obtain the following.
Proposition 6.1.7 The algebra A admits a double Poisson bracket and — A is a moment map.
We can look at the induced Lie bracket {—, —} on A/[A, A] (see §2.3.1).

Lemma 6.1.8 The following holds in A/[A, A :
(05,0, =0, {(u+as)* (u+ps)} =0, kleN, a,BeC. (6.10)

In particular 0, u, s (or any linear combination u 4 as) are involutive elements in A.

We then form the algebra A, by identifying the unit in A with the idempotent ez from the path
algebra of the quiver Qo depicted in Figure 2. Since the algebra CQg is Hamiltonian by Theorem
2.3.5 and so is A by Proposition 6.1.7, A, is also a Hamiltonian algebra. We can present A, as
the algebra generated by symbols u, s,9,,, A, v, w, ey, ex Where the first four elements satisfy the

relations (6.9) in A, the orthogonal idempotents e, e, satisfy 1 = ey + e, and
VU =exley, W=eyWes, b=epbeg foranyb=u,s,0,,A. (6.11)

The algebra A, is an algebra over B = Ce, @ Cep, and we can decompose its moment map as

—ep(A + wv)eg + exoVWeso.
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Consider the space of representations of dimension (aoo,9) = (1,n) which we write
Rep(A,, (1,n)). Assuming that A is smooth in the first place, i.e. when £ is a smooth curve, then
Rep(A,, (1,n)) is a smooth GL,, (C)-variety, with Poisson bracket {—, —} defined from {—, —}
by (2.31), and with a moment map given by the matrix ¥ representing —A + p. We can think
of Rep(A,, (1,n)) as the space of matrices U, S, B,,, D € Mat,»,(C), V € Mat,(C) and

W € Mat,,x1(C) (representing respectively u, s, 0, A, v and w) subject to the relations

US=S8U, U?S—NU=5"+ayS+aild,,
(6.12)
[S,B,] =USD+ SDU — XD, [U,B,]=SD+ DS +ayD — DU*.
The preimage under the moment map ¥ of a point I, = (—v Id,,, nv), v € C, corresponds to the

level set in Rep(A,, (1,n)) given by the matrix relations
D+WV =vId,, VW =nv. (6.13)

By construction, we obtain the following result.

Proposition 6.1.9 The space C,,, = V~(1,)//GL,(C) is a Poisson variety obtained by

Hamiltonian reduction.

For v # 0, C,, is a smooth irreducible affine variety of dimension 2n by [24, Theorem 1.1],
which is called the elliptic Calogero-Moser space (with puncture p and trivial line bundle).
Note that, in this original construction, the space is given without the perspective of Hamiltonian

reduction.

To understand the relation to the elliptic CM system, we assume that v # 0 from now on
and proceed as follows. Let C;% ., be the subspace where the matrix .S is semisimple, and each
representative of the matrix V' has no zero entry when S is in diagonal form. Note that when S
is in diagonal form, so is U. We write the diagonal entries of S and U as s; and u; respectively.
The second relation in (6.12) yields that u?s; — Nu; = s? + ags; + a1, that is a pair (u;, s;)

corresponds to a point on the punctured curve A. Using (6.12) and (6.13), we find that
(Si — Sj)(Bu)ij = (uisi + U,jSZ‘ — )\/)<V(5i' — wi) s (6.14)

which gives for i = j that W = v(1,...,1). The diagonal entries of B, remain free and we let

pi = %(BM)ZZ The off-diagonal identities give

(Bu)ij = —v(uisi +ujsi — N)/(si —s5), 1#].
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From our discussion at the beginning of this subsection, we can write the couple (u;, s;) as

I ACORR A,
2(p(ai) — p(p)

for suitable variables (¢;);. Therefore (B,,);; = vp;, while when i # j

si = p(qi) — o) , (6.15)

=2(B,),; = L@ =) [0e) + ¢ (liple) — e(w)] 6.16)

v [0(qi) — p(g;)] (@) — 9(g5)][p(g) — ()]

Some easy pole analysis yields the next result.

Lemma 6.1.10 The matrix B, is proportional to L* given by (L*);; = p; and

o(qj)o(q —p)o(q —q — )
o(q)ol(q; —p)o(a; — @) o(—p)

Lt = fori#j. (6.17)

Up to gauge transformation (see [100, (4.40)-(4.42)]), the matrix L* coincides with the
Lax matrix for the elliptic Calogero-Moser model discovered by Krichever [102] (which was
introduced earlier by Calogero [39] for specific values of the spectral parameter ;). We get that
its symmetric functions tr(L“)k, k € N, pairwise commute by (6.10) and (2.36). (Indeed, (2.36)
also holds in the Hamiltonian case.) If we consider the Poisson structure in local coordinates

(¢, pi)i» we find the following.

Lemma 6.1.11 The Poisson bracket on Cy, ,, obtained by Hamiltonian reduction can be written

locally as {pi, q;} = d;j while {qi,q;} =0 = {p;,p;}.

Since the local coordinates are canonical, the above discussion implies that we have recovered the

usual result stating that the elliptic CM system is Liouville integrable.

Some problems remain unanswered at the moment. First, we would like to be able to identify
open subspaces corresponding to different punctures to get the completed phase space for this
system. Second, we can obtain the phase space for the spin elliptic CM system by fusing d copies
of the algebra CQq with the algebra A. This yields a phase space of dimension 2nd, but we
do not know how to form an integrable system containing the functions tr B*, k = 1,...,n. If
it is obtained, the next step is to understand the Poisson commutativity of the integrable system
at the level of the Hamiltonian algebra directly. Third, (6.10) suggests that for fixed o € C,
tr(U 4+ aS)*, k = 1,...,n, should define an integrable system dual to the elliptic CM system.
We have not found a suitable set of local coordinates to understand this second system. Finally, it

would be interesting to get the elliptic RS system in a similar way.
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6.2 Fifteen years of double brackets : happy birthday!

In our investigation of integrable systems through Chapter4 and Chapter5, a crucial role was
played by the relations that we derived in Chapter 3, which are all completely determined by
the existence of a double (quasi-Poisson) bracket. Hence, the central use of double brackets
in the Ruijsenaars-Schneider family has been outlined in this thesis. To conclude this work, it
seems interesting to collect the different applications of double brackets to integrable systems,
as well as the other topics where such structures have appeared so far. Since the first version of
Van den Bergh’s pioneering work [162] appeared on the arXiv in 2004, this section gathers the

ramifications of double brackets during their first fifteen years in the mathematical community?>.

General study of double brackets

We introduced double brackets over C, but there is a generalisation of double Poisson brackets
over an arbitrary ground ring, see [159]. In particular, this allows to define double brackets for
Hopf algebras [117]. For the sake of conciseness, we now report results regarding algebras over

a field of characteristic zero, as initially introduced by Van den Bergh.

In [161], Van de Weyer gives a first systematic study of double Poisson algebras (see also
[9]), and introduces the notion of double Poisson cohomology, as an analogue of Poisson-
Lichnerowicz cohomology [112]. This cohomological study has been investigated in more details
with Pichereau in [133]. In that paper, the authors show that this cohomology is equivalent to
the Hochschild cohomology of free algebras in the case of a linear double Poisson bracket. For a
particular linear case, the first two cohomology groups are computed in [3]. Moving to quadratic
double Poisson brackets, an explicit classification is obtained in [128] for the free algebra over
two elements, and in [150] over three elements. Few examples are known outside free algebras,
except for quivers [31, 162]. A natural obstruction is that the definition of double brackets is not
suited to commutative algebras : polynomial rings with at least two generators do not have non

trivial double Poisson brackets [134].

ZThis is a list that was established to the best of the author’s knowledge, and that was completed by 1 March 2019.
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Algebraic structures related to double brackets

It is suggested in [58, 129, 145] that we could relax the definition of a double Poisson bracket
by removing its derivation property (D2) in Definition 2.3.1, which would define a double (Lie)
algebra on a vector space, a double analogue of a Lie algebra. In such a case, Jacobi identity
takes place in A®3 as the vanishing of the map (2.11). There do not exist simple double algebra
structures on a finite-dimensional vector space, except the trivial one [86]. In fact, double algebras
are equivalent to solutions of the associative Yang-Baxter equation [128, 145]. This relation is
further explored in [129] where the generators also depend on local parameters. Another way
to relax the definition of a double Poisson bracket is to drop the cyclic antisymmetry (D) from
Definition 2.3.1, as did Arthamonov [13, 15]. Alternatively, we can try to generalise this structure

to Lie algebras instead of associative algebras [122].

There has been some interest in trying to obtain double Poisson algebras up to homotopy. For
example, we can ask the triple bracket (2.11) to be nonzero and to satisfy some relations with
the double bracket up to a 4-bracket (and so on...) which leads to the notion of double Poisson-
infinity algebra [145]. The definition of a double Poisson bracket can also be extended to DG
algebras [26], which turns out to be useful to introduce derived Poisson algebras, a derived
version of Crawley-Boevey’s (non-commutative) Hy—Poisson structures [52, 53]. The definition
can be easily adapted for bimodules over this algebra both in the usual and DG cases [45].
These generalisations of double Poisson brackets appear on Fukaya categories [47], associated
to particular Calabi-Yau algebras [45], related to dual Hodge decompositions [28], and extend the

usual correspondence between bi-symplectic and double Poisson structures [46].

Other features of double Poisson brackets are that they can be studied in terms of a particular
protoperad DPois introduced by Leray [108, 110], or that they are related to pre-Calabi-Yau
structures. Regarding this second relation, it is possible to construct such structures from (graded)
double Poisson brackets on DG categories [175]. In fact, double Poisson brackets (and double

Poisson-infinity brackets) classify pre-Calabi-Yau structures (of prescribed types) [76, 92].



242 Chapter 6. Concluding remarks

More integrable systems

It is quickly mentioned in Remark 2.3.40 that we could look at integrability directly on algebras
endowed with a double (quasi-)Poisson bracket. This gives, in fact, a subset of interesting
examples of Hamiltonian ODEs on associative algebras. As remarked e.g. in [58] and can easily
be seen from (2.38), what plays a central role is the left Loday bracket {—, —} = mo {—, -}
(seenasamap A/[A, A] x A — A). In particular, assuming that the system of ODEs is defined by
{b1, —}, we get from (2.16) that {by, —} defines a symmetry (i.e. a commuting system of ODEs)
whenever {b1,b2} € [A, A]. Thus, what is important to get symmetries is to understand {—, —}
as a map on A/[A, A], which is suggested in [128] under the name of trace bracket, a particular
example of Hg—Poisson structure. This interpretation allows to reformulate studies such as [127]
in terms of double Poisson brackets. Note that a quantisation of trace brackets is proposed in [19],

but it does not provide a quantisation of double brackets directly.

Motivated by the previous point, De Sole, Kac and Valeri define a general scheme to obtain non-
commutative Hamiltonian PDEs in [58]. They introduce double Poisson vertex algebras, where
the underlying associative algebras are differential, and they extend the correspondence between

Poisson vertex algebras and Hamiltonian PDEs to the non-commutative setting.

It is possible to recover systems of Calogero-Moser type from this thesis if the double quasi-
Poisson brackets are replaced by the double Poisson brackets introduced by Van den Bergh [162],
see §2.3.2. Though this has not been written so far, this is an easy exercise and one can recover

existing results that already contain part of the quiver interpretation [32, 43, 118, 155, 156].

Finally, note that it is also possible to introduce non-commutative versions of discrete integrable
systems. Indeed, in [81], the pentagram map was expressed in terms of moves defined on a
network on a disc or annulus, which are particular examples of quivers with weights assigned
to the arrows. In particular, it was found that some quantities are conserved under those moves,
and they imply the complete integrability of the pentagram map. In [132], a double bracket is
introduced on an algebra A associated to such networks, and it is shown that there are analogous

invariants for the moves under the associated Lie bracket on A/[A, A].
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Relation to topology

Considering a punctured oriented surface with a marked point on its boundary, Massuyeau and
Turaev describe in [115] how to endow its fundamental group with a double quasi-Poisson
bracket. Looking at representation spaces, they show that it coincides with the quasi-Poisson
structure on the corresponding representation variety for G = GL,, defined in [6]. They extend
their result in [116] to the Pontryagin algebra of an arbitrary smooth oriented manifold with
boundary. Note that in the construction of the double quasi-Poisson bracket in [115], the authors
first introduce an operation which fails to satisfy the cyclic antisymmetry (D1) from Definition

2.3.1, which they correct to obtain a double quasi-Poisson bracket.

It is also possible to define a double bracket on the fundamental groupoid associated to a ribbon
graph [13]. An alternative construction is given in [132]. Note that both structures descend to the
same induced bracket which coincide with Goldman’s Lie bracket. Quite surprisingly, the two
operations defined by Massuyeau and Turaev [115] described above also descend to Goldman’s
bracket. They have been used to relate Goldman-Turaev formality and the Kashiwara-Vergne

problem in arbitrary genera [3, 4, 5, 8].

Use in non-commutative geometry

The starting point of [162, 163] is the introduction of a non-commutative version of Poisson and
quasi-Poisson geometry. Hence, a natural question is to see which structures depending on a
(quasi-)Poisson manifold admit a non-commutative analogue relying on an algebra with a double
(quasi-)Poisson bracket. For example, the equivalence of Poisson manifolds and differential

graded manifolds of degree 41 admits an algebraic analogue [10].

Recall that there exists a graded version of double Poisson brackets { —, — } o\ satisfying (2.12a)-
(2.12c). This structure can be related to a connection on the algebra of double derivations. This
can be found in [85], where an extension of the theory of differential operators to noncommutative

geometry is given.

A general result in [163] is the introduction of double Lie algebroids, as a double version of Lie
algebroids. As noted in [108], it is more convenient to refer to these structures as double Lie-

Rinehart algebras, in order to avoid confusion with the different notion of double Lie algebroids
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associated to double Lie groupoids [113], but also because it naturally extends the algebraic
version of Lie algebroids, called Lie-Rinehart algebras. An extensive study of these structures and
their shifted version is obtained by Leray [108, 109], while the introduction of non-commutative
calculus on double Lie-Rinehart algebras is investigated by Chemla [44]. A next step is to
establish which structures depending on a Lie algebroid admit non-commutative analogues. This

has been done for Courant algebroids in [11, 77].

Final remarks

Note that we only considered works that explicitly use double brackets. For example, though
[93, 174] rely on the work of Van den Bergh on double quasi-Poisson brackets associated to
quivers, these articles only require the geometric counterpart of the theory (see §2.3.3) and
do not include computations with double brackets. Otherwise, we would also need to collect
the extensive literature connected to quiver varieties based on the works [123, 125], since the
underlying Poisson structure is given by the Hamiltonian algebra structure of the path algebra
of a quiver, see Theorem 2.3.5. We also omitted to mention the applications relying on the
symplectic counterpart of double brackets as introduced in [54] (see e.g. [22, 78, 156, 163]),

or works depending only on the associated Loday bracket (see e.g. [146, 164]).
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Appendices

A Some linear algebra

Lemma A.1 Let Z = diag(z1,...,2,) for pairwise distinct (zy), and put W = (1,...,1)7.
Let F' be an invertible matrix with distinct ordered eigenvalues 11, < ... < y, and fix a
corresponding eigenbasis (e;). Define E = (E;j), where E;; = (e;);, and assume that E=W is

a vector with nonzero entries.
(1) There exists V' € Maty«y, such that F'+ WV F and Z have the same spectrum.

(2) For a fixed choice of ordered eigenbasis, the pair (V, X) satisfying
XZX '=F+WVF,

is uniquely determined up to (C*)" action (¢;) - (V, X) = (V, XC), C = diag(cy, ..., cn).

Proof. We have that Fe; = p;e;, and we form E by E;; = (e;); which satisfies E-'FE =

D,, = diag(p1, - . ., ftn). Note that E is uniquely chosen by assumption.

Remark that we can write for arbitrary V = (v1,...,vy,)

n n
(E"'WVFE)j = ABju;, Ai=)» E.', Bj=> uE;.
s=1 t=1

Here, A; # 0 for all 4, by assumption on £~'1V. For any unknown ), since WV F has rank one,

det(F + WVF — A1d,) = det(E~'FE — A1d,)) [l + VFE(E~'FE — \1d,,)"'E~'W]

= [0 =N+ > ABi [ [ (e — N -
k=1

i=1 ki

"\ AiBiui

1+
= Hi— A

(e — N)

=
s
I
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Now, the problem amounts to determine the entries vy, . . ., v, of V such that
n n
TG =2 =] — A +thZEn s | (= A (A.18)
k=1 k=1 ki

We need the different coefficients of this expression as a polynomial in A to vanish. Introduce for

any [ € N* the (signed) symmetric polynomials (p;, (a1, ..., a;)),_, such that

l
[Tt —» Z/\ pLiv(a,...,a). (A.19)
k=1

Hence, expanding (A.18), we can write

n

Z[pn,n—y(zh ce 7zn) - pn,n—u(,ula cee 7Mn)]AV
v=0

(A.20)
—Z)\ an 1n—1— 1/ ZMZZUtEtly
where we write (ji*) for the sequence of n — 1 terms obtained from (1, . .. , it,) by omitting the
t-th term. In other words, we need to require forv =0,...,n — 1
[pn,nfu(zly ceey Zn) - pn,nfu(l‘bla cee muln)]
(A.21)

n n
= Z vy Z By Aipti pn—1n-1-v (1) -
=1 =1

We write this in matrix notation : by introducing M = (Mut)f,zzlo",‘f.’z,l and N = (N,)y=0,...n—1
where the entries are given by

n
vt = Z EtzAz,ul Pn—l,n—l—u(ﬂi) 5 N, = pn,nfu(zlv ceey Zn) _pn,nfu(/lla ceey Mn)a (A22)
=1

the n equations in (A.21) give us nothing else than the matrix equation MV = N. Thus, V is

unique if M is invertible. Now, remark that if we introduce M° = (M)’ 10’ 71 with

M = pp—1n-1-v(fi") , (A.23)
we can write M in terms of a matrix product as
M = M° diag(Ay,...,A,) D, ET. (A.24)
Thus, part (1) of the lemma follows if we show that M° is invertible. This is Lemma A.3.

For part (2), remark that for a fixed £ the above construction gives a unique V. Then, X

corresponds to a choice of eigenbasis of F' + WV F' ordered with respect to the eigenvalues

(215, 2n)- O
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Remark A.2 Among all the pairs (X,V) such that Z and qF(1d, +WV) have the same
spectrum while X ~1 puts qF(Id,, +WV) in diagonal form, knowing X fixes V. Indeed, assume

that we have
XZX ' =qF1d,+WV), XPZP'X~!=qF(d,+WV),

for some V, V € Matyxn, and a permutation matrix P distinct from the identity. Then, taking the

difference of these equations yields
Z—-PZP ' =¢X'FW(V -V)X.

Since the eigenvalues of Z are pairwise distinct, the matrix on the left has rank at least 2. But the

matrix on the right has rank at most 1, leading to a contradiction.

Lemma A.3 The matrix M° with entries M, = pp—1n—1-v(115- - s fliy- - -, b)) is invertible if

and only if all () are distinct.

Proof. This follows if we can show that

det M° = [ [ (1a — ms) , (A.25)
a>b

which is similar to show the analogous statement for a Vandermonde matrix. Indeed, remark that
when we substract the b-th column from the a-th column, we get that the new a-th column has

entries

Pn—l,n—l—u(ﬂb R /'LA(U s ,,Ltn) - pn—l,n—l—u(ula e 7/2b7 s 7:U’TL) (A26)

But the latter v-th entry of the new column is precisely the coefficient of the element A" in

TT e =2 = T TGk =N, (A27)
kta kb

which is clearly divisible by p, — pp. Such transformations are compatible with taking
determinant, hence (A.25) holds up to a multiplicative constant (because any p, — up divide the

n—1

determinant and such a product has maximal degree). Looking at the coefficient for pio u?,) O 1543

we can conclude that the constant is +1 and (A.25) holds. O

By a straightforward adaptation in the proof of Lemma A.1, we get the next result.
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Lemma A4 Let Z = diag(z1, ..., 2,) for pairwise distinct (zy), and put W := (1,...,1)".
Let F' be an invertible matrix with distinct ordered eigenvalues (11 < ... < ln, and fix a
corresponding eigenbasis (e;). Define E = (E;j), where E;j = (e;);, and assume that E~'W is

a vector with nonzero entries.
(1) There exists V. € Maty «y, such that F'+ FWYV and Z have the same spectrum.

(2) For a fixed choice of ordered eigenbasis, the pair (V, X) satisfying
XZX '=F+FWV,

is uniquely determined up to (C*)™ action (¢;) - (V, X) = (V, XC), C = diag(ci, ..., cn).

B An elementary result in Poisson geometry

Consider the following easy result.

Lemma B.1 Assume that ) : M — N is an isomorphism of manifolds such that {—, —}y is

a Poisson bracket on N. Furthermore, assume that there exists an antisymmetric biderivation

{—,—=}n on M such that for all fi, fo € On, we have that V*{ f1, fo}n = {V* f1,0* fa} 1.

Then {—, —} s is a Poisson bracket.

Proof. For arbitrary g1, g2, g3 € Opr, we have that Jacyr(g1, g2, g3) = v*Jaen(fi1, f2, f3) =0

with f; = g; o™ L. O
This implies that, if M is endowed with an antisymmetric biderivation {—, —} 5; such that Lemma
B.1 holds locally, then {—, —},s is a Poisson bracket since Jacys vanishes around every point.

Meanwhile, let us look at the following.

Lemma B.2 Assume that M is a manifold on which a finite group H acts freely. Assume that
there exists an antisymmetric biderivation {—, —} ;; preserved by the H-action, i.e. forall h € H,
f1, f2 € Oy, we have that h - { f1, fo} ;7 = {h - f1,h - fa} 7. If the restriction of {—, —} ;; on
H-invariant functions defines a Poisson bracket {—,—} s on the manifold M = M /H, then

{—. =1} is Poisson.
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Proof.  Assume that there exist functions fi, fo, f3 and a point p € M such that
Jacy;(f1, f2, f3)(p) # 0. Take a sufficiently small neighbourhood U of p so that h-UNK -U = ()
for all h,h' € H, h # K, and define for each i the function f# on V. = H - U by setting
(o ') = fi(h™t-p') foreach h € H, p’ € h-U. These are clearly H-invariant functions.

We have that the function ' = Jac( i f3H ) does not vanish on V' by assumption. Since

V is identified with the open set V//H of M, and since the functions (f{!) are H-invariant and

can be identified with functions f; on V//H, we can identify by H-invariance of {—, —};, the
function F' with Jacpr(f1, f5, f5). The latter is always zero as {—, —}as is Poisson, giving a
contradiction. O

Combining Lemmae B.1 and B.2, we get the following result : if M is endowed with an
antisymmetric biderivation {—, —} ;; which descends to the quotient M /H for some finite group
H acting freely on M, and if there exists a diffeomorphism v between the quotient space M /H

and some Poisson manifold which intertwines the brackets, then {—, —} ; is a Poisson bracket.

Remark B.3 If we want to apply Lemma B.l, note that we do not need to check that
U f1, fotn = {W* f1,0* fa}ar for all fr, fa € Op, but we only need to check this on a subset
of globally defined functions that are functionally independent (assuming that such a subset of
maximal dimension exists). To be precise, if f1,...,fn € Oy are n = dim N = dim M

functionally independent elements, we only need to check that

O S, kv = {0 fr, V fiym . forall 1 <Kl <n. (B.28)

Furthermore, the antisymmetric biderivation {—, —}p; on M which satisfies (B.28) is unique.
To show this statement, consider another antisymmetric biderivation {—, —}), such that (B.28)

holds, and form the n x n matrices P, QQ with entries

P = {0 i, 0" fid e — {0 o, 0 fi¥ s Qu = {zws midr — {on, w1}y,

where the (x;) form a local coordinate system on M. We have that P is identically zero by
assumption, and we want to show that this is also the case for Q). Note that the Jacobian matrix V
with entries Vi,; = OU* f./Ox; is generically invertible, since otherwise it would contradict that

1 is an isomorphism and the f1, . .., f, are functionally independent. As we can write

oY” fi " fi

0" fusfika = 3 =50 or;

]

{4, xj}M
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and do the same for {—,—},,, we have that P = VQVT. Thus Q = 0,xyn generically, and

hence vanishes since its entries are analytic functions.
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