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Abstract
The main goal of this thesis is to provide a systematic study of several integrable systems defined

on complex Poisson manifolds associated to extended cyclic quivers. These spaces are particular

examples of multiplicative quiver varieties of Crawley-Boevey and Shaw, for which Van den

Bergh observed that they can be equipped with a Poisson bracket obtained by quasi-Hamiltonian

reduction. In his approach, Van den Bergh introduced the notion of double brackets to translate

the geometric quasi-Hamiltonian structure associated to these varieties directly at the level of the

path algebra of the quivers. We pursue this line of thought and examine these double brackets

in order to find families of algebraic elements on the path algebra of extended cyclic quivers that

give rise to families of Poisson commuting functions on the corresponding multiplicative quiver

varieties. This provides a way to obtain candidates for Liouville integrability, and this can be

adapted to the case of degenerate integrability. For specific dimensions of these spaces, we can

compute the number of functionally independent elements in each family, and conclude that we

can form integrable systems. They can be written in terms of local coordinates, and be related

to the trigonometric spin Ruijsenaars-Schneider system or generalisations of the latter system.

As part of our construction, we also prove that their flows can be obtained by the projection

method from explicit integrations performed before the quasi-Hamiltonian reduction. Another

application of this work consists in describing the Poisson structure in terms of local coordinates.

In particular, this allows us to prove a conjecture of Arutyunov and Frolov regarding the form of

the Poisson bracket for the trigonometric spin Ruijsenaars-Schneider system.
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Chapter 1

Introduction

1.1 Hamiltonian systems and integrability

For centuries, there has been a persistent interest in trying to understand how a mechanical system

parametrised by a finite number of positions q = (q1, . . . , qn) could evolve over time. Based

on the foundation of classical mechanics by Newton at the end of the 17th century, the general

evolution of systems such as the two-body problem, or the problem of two fixed centres for

celestial bodies could be derived. However, determining the general solution of a system for

arbitrary initial positions was a harder task. To overcome this issue, two important tools were

developed in the 19th century in the newly formulated Hamiltonian mechanics : the separation of

variables by Jacobi, and the concept of integrability by Liouville. We focus on the latter notion

from now on, which we call Liouville integrability.

Assuming that the system is governed by some potential V (q), Hamilton suggested to consider

a phase space parametrised by the positions q and their associated momenta p = (p1, . . . , pn),

together with the energy function (nowadays called the Hamiltonian)

H(q, p) =
1

2

n∑
i=1

p2
i + V (q) . (1.1)

Then the problem could be reformulated as expressing the evolution from an initial condition

(q0, p0) in the phase space of the 2n-uple (q, p) governed by the ordinary differential equation

dqi
dt

=
∂H(q, p)

∂pi
,

dpi
dt

= −∂H(q, p)

∂qi
, i = 1, . . . , n . (1.2)
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We can introduce an operation {−,−} on the functions defined on the phase space as

{f, g} =
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)
, (1.3)

which is easily seen to be antisymmetric and a biderivation. This operation also satisfies an

additional property called Jacobi identity, which makes it a Poisson bracket. It is not difficult to

see that we can rewrite the equations of motion (1.2) simply using the derivation d
dt = {−, H},

where {−, H} : f 7→ {f,H}. In fact, what Liouville noticed is that given n such derivations

that pairwise commute under the Poisson bracket and are independent, in other words if we have

n functionally independent elements F = (F1, F2, . . . , Fn) with F1 = H , which also satisfy

{Fi, Fj} = 0 for all indices, then we can locally construct a solution to (1.2). This process,

called integration by quadrature, uses only algebraic manipulations and integrations, as well as

the inverse function theorem. Therefore, it does not only apply to smooth real functions as in

its original formulation, but also to complex analytic functions. We refer to the functions F as a

(Liouville) integrable system, and we say that H is Liouville integrable. It is worth mentioning

that, to define an integrable system, H can be an arbitrary function of (q, p) not necessarily of

the form (1.1). Indeed, the integration by quadrature does not require any particular form for the

functions occurring in F .

From a modern point of view, what we need to define an integrable system is a space endowed

locally with the operation {−,−} given by (1.3), i.e. a manifold with a non-degenerate Poisson

bracket. In fact, the definition can also be relaxed to the case of a degenerate Poisson bracket, to

the case of degenerate integrability which we will encounter in this text, or to both cases. While

these generalisations are almost straightforward, moving to the case of algebraic varieties is more

subtle. For more on these topics, we refer to [1, 12, 114, 169].

1.2 Calogero-Moser systems

Our presentation of Liouville integrability suggests that this notion should have played an

important role directly after its introduction. However, it quickly faded away at the end of the

19th century. At that time, Poincaré made the important observation that a small perturbation

can break integrability, so that Liouville integrable systems are rare among mechanical systems.
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As a consequence, the mathematical community lost its interest in Liouville integrability, which

condemned the subject to oblivion for several decades. Fortunately, at the end of the 1960s,

the introduction of the Toda lattice [158] was a first step to revive interest in the technique of

Liouville integrability1, see [157] for further references. Another step was realised when Calogero

introduced (quantum) n-body systems on the line [37, 38], which is at the basis of the present

work. In the simplest case, the classical version of the system consists in taking the Hamiltonian

(1.1) with rational potential

V (q) =
∑
j<k

g2v(qj − qk) , v(x) = x−2 , (1.4)

for some coupling constant g > 0. Here, we can think of q as gathering the positions on the

line of n particles interacting with the potential (1.4), so that each particle is characterised by its

position qi and momentum pi, which satisfy

dqi
dt

= pi ,
dpi
dt

=
∑
k 6=i

2g2

(qi − qk)3
. (1.5)

In this case, Liouville integrability for an arbitrary number of particles was established by Moser

[120]. Though relatively simple in appearance, this system was on the verge of leading to intense

research activities related to integrable systems. Indeed, by the time of Moser’s paper publication

in 1975, it was already known that we could consider the harmonic potential v(x) = x−2 + ωx2

[37, 38] or the trigonometric potential v(x) = sin(x)−2 [153, 154] in the quantum case. This led

to their classical formulation, and their modification to hyperbolic or elliptic potentials, as well

as generalisations related to root systems of Lie algebras as reviewed in [130]. We refer to all

these systems as Calogero-Moser (or CM) systems, and we call the system with potential (1.4)

the rational CM system (of type An−1).

There are three features of integrable particle systems of CM type that will play a central role in

our study of Ruijsenaars-Schneider systems, which we introduce next in Section 1.3. Restricting

our attention to the rational CM system, the first feature discovered by Wojciechowski is that it

is degenerately integrable [172]. In general, this means that for a phase space of dimension 2n,

there exist functions G = (G1, . . . , Gr), n ≤ r ≤ 2n − 1, that are functionally independent

and such that the first s = 2n − r functions G1, . . . , Gs Poisson commute with all the elements
1We confine ourselves to the classical notion of Liouville integrability, leaving historical details related to other

notions of integrability for classical systems to comprehensive treatments of the subjects such as [20, 60, 61, 176].
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of G. The case of Liouville integrability corresponds to r = n. Wojciechowski noticed that

if F = (F1, . . . , Fn) is an integrable system for the rational CM case, then we can extend any

of the Fi to a degenerately integrable system of r = 2n − 1 elements, which is the maximal

possible case. The second feature unveiled by Gibbons and Hermsen is that there exist spin

extensions of the rational CM system [82]. This means that we can widen the phase space with

initial canonical coordinates (q, p) by 2nd elements (aαi , c
α
i )i,α where i = 1, . . . , n corresponds

to the particle label and α = 1, . . . , d is an index for internal degrees of freedom, called spins.

For each i, we consider (aαi , c
α
i )α under the constraint

∑
α a

α
i c
α
i = g2 and identify R×-orbits for

the action λ · (aαi , cαi )α = (λaαi , λ
−1cαi )α. The only new non-trivial Poisson bracket is given by

{aαi , c
β
j } = δijδαβ , and we now look at the potential

V (q) =
1

2

n∑
j,k=1
k 6=j

fjkv(qj − qk) , fjk =

d∑
α=1

aαj c
α
k , v(x) = x−2 , (1.6)

from which we easily get (1.4) back when d = 1. For this particular potential which defines what

we call the rational spin CM system, Liouville integrability (and, in fact, maximal degenerate

integrability) can also be shown. Finally, the third feature may be the most interesting, as it

gives a geometric realisation of the phase space : it was observed by Kazhdan, Kostant and

Sternberg in [95] that the phase space can be obtained by Hamiltonian (or Marsden-Weinstein)

reduction. The general idea is that, beginning with a Poisson manifold M on which some Lie

group G acts, we can consider a G-stable slice N ⊂ M of codimension dim(G), such that

the orbit space N/G is a manifold endowed with a Poisson bracket completely determined by

the one on M . This reduction procedure has two advantages. The first one is that if a family

of G-invariant functions on the bigger space M Poisson commute, then their projections after

reduction will Poisson commute in N/G too. Moreover, computations with the Poisson bracket

of M are usually easier, so that forming an integrable system F on N/G amounts to find Poisson

commuting G-invariant functions F̃ in M that projects to 1
2 dim(N/G) functionally independent

elements. The second one is that the vector fields defined by the functions F̃ (which descend to

the desired vector fields associated to F ) could be easier to integrate in M , so that the evolution

of the system on N/G could be obtained by projecting these flows; this is the projection method.

Quite amazingly, these two advantages occur when we derive the phase space of the rational CM

system by Hamiltonian reduction [95].
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As we mentioned, the three features that we presented were initially concerned with the rational

case (and the trigonometric case for the reduction picture [95]). Though it is a very interesting

subject which has attracted a lot of attention, we will skip the discussion of their possible

generalisation to other potentials. Rather, let us mention that they can be adapted to the complex

version of the rational CM system [170, 171], which has a very interesting consequence that

motivates the present work. Namely, when Wilson described the (completed) phase space

of the complex rational CM system [170] in analogy to the work of Kazhdan, Kostant and

Sternberg [95], he could show that this space is endowed with a hyperkhäler structure because

it is a particular example of Nakajima quiver variety [123]. This, in turn, means that the space

can be defined as the moduli space of representations associated to a particular quiver, i.e. a

directed graph. In his construction [123], Nakajima defined the symplectic structure on this

space in terms of the matrices representing the arrows of the quiver. Therefore, it motivates

the following question : can we understand the Poisson geometry of this space directly at the

level of the quiver? This problem is at the basis of two interesting developments in modern

non-commutative geometry, which are non-commutative symplectic geometry [54, 83] and non-

commutative Poisson geometry [162]. In the latter case, Van den Bergh introduced a non-

commutative version of Hamiltonian reduction for associative algebras, and he explicitly defined

such structures associated to any quiver [162]. Thus, knowing the quiver implicitly considered

by Wilson and using Van den Bergh’s theory, we can partially understand the rational CM

system at the level of a non-commutative algebra. This led to several attempts to enlarge our

understanding of complex integrable systems of CM type using quivers. In particular, this resulted

in a new simple description of the phase space for the spin version of the rational CM system

[32, 118, 155, 156], but also additional generalisations [31, 43, 148, 149].

1.3 Ruijsenaars-Schneider systems

In 1986, a new class of integrable systems was introduced by Ruijsenaars and Schneider, who

motivated them as a relativistic generalisation of the CM systems [144]. We refer to these

systems as Ruijsenaars-Schneider (or RS) systems. As in the CM case, the potential can be

rational/hyperbolic [144], or trigonometric/elliptic [140], and it can be related to different root

systems as was observed by van Diejen [165, 166, 167] directly for the quantum case. To get
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some insight into these models, let us briefly sketch the (complex) hyperbolic case. Its phase

space is associated to the positions of n particles subject to the equations of motion

q̇i = Lii , L̇ii = 2
∑
k 6=i

LikLki coth (qi − qk) , (1.7)

where L = (Lij)ij is a Lax matrix for this system which is of the form

Lij =
sinh(γ)

sinh(qi − qj + γ)
Ljj , Ljj = epj

√∏
k 6=j

f(qk − qj) , 1 ≤ i, j ≤ n .

Here, γ is a fixed nonzero coupling constant and f is a particular function such that (1.7) is defined

by the Hamiltonian trL under the Poisson bracket (1.3). (The relation between L and the original

Lax matrix given in [144] can be recovered from Lemma 4.2.9.) Compared to the CM system,

it is difficult to understand this model simply by looking at the equations of motion (1.7) or the

Hamiltonian trL. Nevertheless, and quite surprisingly, systems of RS type enjoy the same kind

of features that the CM systems possess.

In 1995, Krichever and Zabrodin noticed that it was possible to formulate a spin generalisation

of the RS system [105], which they introduced for the elliptic potential. This is a system of n

particles with coordinates (qi)i, momenta (q̇i)i, and spin variables given by (aαi , c
α
i )i,α where

i = 1, . . . , n corresponds to the particle and α = 1, . . . , d ranges over the number of internal

degrees of freedom (spins). Introduce the functions fij =
∑

α a
α
i c
α
j . Given a nonzero coupling

constant γ, the equations of motion are given by

q̈i =
∑
k 6=i

[V (qik)− V (qki)] fikfki , (1.8a)

ȧβi =− λiaβi +
∑
k 6=i

V (qik) a
β
k fik , (1.8b)

ċβj =λic
β
i −

∑
k 6=j

V (qkj) c
β
k fkj , (1.8c)

where qik := qi − qk and the elliptic potential V (q) = ζ(q)− ζ(q + γ) is defined in terms of the

Weierstrass zeta-function ζ(q). Of particular interest, the rational and trigonometric degenerations

are given by V rat(q) = q−1 − (q+ γ)−1 and2 V trig(q) = coth(q)− coth(q+ γ). The functions

2To be precise, we should write this potential V hyp(q) as this corresponds to the hyperbolic potential in this original

real case. Since we will work in the complex setting where the trigonometric and hyperbolic potentials are equivalent,

we call this potential trigonometric and stick to this terminology from now on.
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λi(t) can be set to zero by a suitable scaling. There are 2nd+ 2n coordinates, but we can set the

constants of motion Ii = q̇i−
∑

α a
α
i c
α
i to zero, and get a system of dimension 2nd after imposing

a further n normalisation conditions. Following Arutyunov and Frolov [16], we interpret these

conditions by considering instead the invariant spin variables (aαi , c
α
i )i,α, which correspond to the

rescaling aαi = (
∑

α a
α
i )−1aαi and cαi = (

∑
α a

α
i )cαi in the original model. For fij =

∑
α a

α
i c

α
j

obtained after normalisation of the function fij , this leads to the equations of motion

q̇i =fii , (1.9a)

ȧαi =−
∑
k 6=i

(aαi − aαk )fikV (qik) , (1.9b)

ċαj =
∑
k 6=j

( cαj fjkV (qjk)− cαk fkjV (qkj) ) , (1.9c)

from which we see that the condition
∑

α a
α
i = 1 is preserved. In the case d = 1, we have a1

i = 1

and fij = c1
j for all i, j, and we recover the original RS system from (1.9a)–(1.9c). For example

in the trigonometric case, we get by writing c1
j as Ljj that (1.9a) becomes q̇i = Lii while (1.9c)

can be written as

L̇ii =
∑
k 6=i

LiiLkk [coth(qi − qk)− coth(qi − qk + γ)− coth(qk − qi) + coth(qk − qi + γ)]

=2
∑
k 6=i

sinh(γ)Lkk
sinh(qi − qk + γ)

sinh(γ)Lii
sinh(qk − qi + γ)

coth(qi − qk) ,

so we get precisely (1.7). The Hamiltonian formulation in that case is well-known, but for the

system with d > 1 spins and arbitrary potential, it is only given in a universal form [103].

Therefore, it is an interesting problem to find the formulation of the Poisson bracket in terms

of the coordinates (qi, a
α
i , c

α
i ) (or their normalisation). However, the problem of describing the

Hamiltonian structure of the phase space of the spin RS system turns out to be hard to tackle,

since it was completely solved only for the rational case [16], while for the general elliptic case

there is just a partial result in the case of n = 2 particles [151].

The description of the complex rational case by Arutyunov and Frolov [16] was made possible by

a correct understanding of the Hamiltonian reduction performed to obtain the phase space, an idea

that drew on the pioneering work of Kazhdan, Kostant and Sternberg [95]. After performing the

reduction, Arutyunov and Frolov were able to interpret their phase space using 2nd coordinates

containing the positions (qi)i, together with spin variables (aαi , c
α
i )i,α subject to the constraints
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∑
α a

α
i = 1. Within this framework and for a fixed (complex) coupling constant γ, the Lax matrix

L = (Lij)ij given by

Lij =
fij

qij + γ
, fij =

d∑
α=1

aαi c
α
j , (1.10)

naturally appeared, and allowed them to obtain explicit formulae for the Poisson bracket {−,−}A

between all variables

{qi, qj}A =0 , {aαi , qj}A = 0 , {cαi , qj}A = −δijcαi , (1.11a)

{aγj ,a
α
i }A =δ(i 6=j)

1

qj − qi
(aγj a

α
i + aγi a

α
j − aγj a

α
j − aγi a

α
i ) , (1.11b)

{cεj ,aαi }A =δεαLij − aαi Lij + δ(i 6=j)
1

qj − qi
cεj(a

α
j − aαi ) , (1.11c)

{cεj , c
β
i }A =δ(i 6=j)

1

qj − qi
(cεjc

β
i + cεic

β
j ) + cβi Lij − cεjLji . (1.11d)

To relate this phase space endowed with the Poisson bracket (1.11a)–(1.11d) to the rational spin

RS system, they showed that the equations of motion for the Hamiltonian tr(L) induced by these

brackets are the ones for the spin RS system in the form (1.9a)–(1.9c) with V rat(q), up to a factor

eγ/ sinh γ.

An important remark that Arutyunov and Frolov formulated is that the entries of the Lax matrices

for the spin and non-spin rational RS models satisfy the same Poisson brackets defined from the

same r-matrix formulation. Motivated by this relation, they introduced the spin version for the

trigonometric RS model by defining the matrix L = (Lij)ij for

Lij =
eqij+γ

sinh(qij + γ)
fij , (1.12)

and they conjectured that the matrix L should obey the same Poisson algebra than its rational

version, with the r-matrices corresponding to the spinless trigonometric case. Under this

assumption, they could find the Poisson bracket for their new model in terms of the functions

(qi, fij)ij , on which it takes the form

{qi, qk}A =0 , {fij , qk}A = −δjkfij , (1.13a)

{fij , fkl}A =[coth(qik) + coth(qjl) + coth(qkj) + coth(qli)]fijfkl

+ [coth(qik) + coth(qjl) + coth(qkj + γ)− coth(qil + γ)]filfkj

+ [coth(qki) + coth(qil + γ)]fijfil + [coth(qjk)− coth(qjl + γ)]fijfjl

+ [coth(qki)− coth(qkj + γ)]fkjfkl + [coth(qil) + coth(qlj + γ)]fljfkl , (1.13b)
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with the convention that a term with a vanishing denominator is omitted. However, they were

unable to find what equations (1.11b)–(1.11d) would become. They attempted to replace the

factors 1/q by 1/ coth(q) in (1.11b)–(1.11d), but this elementary adjustment was not successful.

Indeed, as we will see in § 4.3.2, some extra terms need to be included.

As we have just explained, the reduction picture played an important role in the understanding of

the rational spin RS system. To go to the trigonometric case, one has to understand the available

pictures in the non-spin case, where we have two possibilities. On the one hand, there is a Poisson

reduction introduced by Fock and Rosly [80], which is a discretisation of the infinite-dimensional

reduction3 of Atiyah and Bott [17]. On the other hand, we can use quasi-Hamiltonian reduction

[126], an analogue of Hamiltonian reduction introduced by Alekseev, Kosmann-Schwarzbach,

Malkin and Meinrenken [6, 7]. While both options are worth pursuing, we will focus on the

second one for a very good reason : in his work [162], Van den Bergh did not only introduce a

non-commutative version of Poisson geometry and Hamiltonian reduction, but he also introduced

the non-commutative version of quasi-Hamiltonian reduction. In fact, he also showed that this

theory could be applied to an arbitrary quiver, and relates to multiplicative preprojective algebras

[56]. Therefore, it seems natural to consider the original quiver of Wilson, as well as the variations

which give systems of rational CM type that we mentioned in Section 1.2, and try to understand

their relation to the RS system. Our hope is to derive the phase space for the trigonometric spin

RS system from this method, and then to prove the conjecture of Arutyunov and Frolov stating

that the Poisson bracket satisfies (1.13a)–(1.13b) in this case. It will turn out to work, and we

will be able to prove that the system is Liouville integrable. In fact, we will also recover the third

feature of the CM system : the trigonometric spin RS system is degenerately integrable.

The relation to the spin RS system that we have just indicated is obtained by looking at an

extended Jordan (or one-loop) quiver. However, it is quite satisfying to notice that our method

can be adapted to other quivers, which implies that we can find new integrable particle systems.

We now summarise the main results obtained in this way.

Jordan quiver extended by one arrow. We recover the completed phase space for the

trigonometric RS system. We prove its Liouville integrability using non-commutative quasi-
3We want to restrict our attention to a finite-dimensional reduction picture, so we do not consider the possibility

of studying this infinite-dimensional reduction in the present work. This alternative method can be successfully

considered for the non-spin case [125].
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Poisson geometry. These results have been published [41].

Jordan quiver extended by d ≥ 2 arrows. We obtain the completed phase space for the

trigonometric spin RS system. We compute the Poisson structure in local coordinates and we

prove the conjecture of Arutyunov and Frolov. We show that the spin RS system is both Liouville

integrable and degenerately integrable using Van den Bergh’s formalism. These results have been

submitted for publication [42].

Cyclic quiver on m vertices extended by several arrows. We obtain the completed phase space

for a new integrable particle system, and we compute its Poisson structure in local coordinates.

This allows to prove that on a suitably chosen closed submanifold, this new system restricts to

the trigonometric spin RS system for n ∈ N× particles. This space is also the natural phase

space for two other families of systems, which are Sn n Znm-invariant. All these systems are

both Liouville and degenerately integrable. These results have been published when there is one

additional arrow [41]; these results have been submitted for publication when there is d ≥ 2

additional arrows pointing to the same vertex of the cyclic quiver [62].

1.4 Outline of the thesis

Chapter 2 is an introductory chapter which gathers the necessary material that we use in the

rest of the present thesis. It consists of a quick overview of some well-known geometric and

algebraic structures, as well as a more advanced review of the work of Van den Bergh related to

double brackets [162, 163]. We particularly emphasise the notion of quasi-Hamiltonian algebras

associated to quivers and their relation to multiplicative quiver varieties (or MQVs) of Crawley-

Boevey and Shaw [56]. We also add some useful connections between Van den Bergh’s formalism

and the theory of integrable systems.

Chapter 3 is the most technical part of this thesis, where we study quasi-Hamiltonian algebras

defined from the extended Jordan quiver or extended cyclic quivers. The aim of this chapter is to

derive many results that will permit us to construct integrable systems and understand the Poisson

structure on the corresponding MQVs. Though it can be seen as the core of the present thesis,

the beauty of this chapter can only be recognised once we understand its geometric implication

presented in the next two chapters; therefore we advise the reader to skip it on a first reading.
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Chapter 4 deals with the MQVs corresponding to the extended Jordan quiver for specific

dimensions. When the extension consists of a single arrow, we can see that the MQV is the phase

space for the trigonometric RS system, and prove its Liouville integrability. When the extension

consists of d ≥ 2 arrows, we obtain the same result for the trigonometric spin RS system. In the

latter case, we can show that it is both Liouville integrable and degenerately integrable. Moreover,

we can explicitly obtain the Poisson brackets between local coordinates, then recover the Poisson

brackets conjectured by Arutyunov and Frolov [16].

Chapter 5 deals with the MQVs corresponding to extended cyclic quivers for specific dimensions.

We show that we can recover the trigonometric (spin and non-spin) RS system for particular

extensions. We also obtain new generalisations of the spin RS system when we extend the cyclic

quiver by an arbitrary number of arrows. Furthermore, if the cyclic quiver has m vertices, we

describe new systems with W = Sn n Znm symmetry. In all those cases, we can show that the

systems are both Liouville integrable and degenerately integrable.

Chapter 6 is divided into two parts. In the first part, we describe some recent developments and

new perspectives related to the models studied in this thesis. In the second part, we provide an

extensive review of the different applications of double brackets since their introduction by Van

den Bergh.

1.5 Conventions

We denote by N,Z,R,C the sets of non-negative integers, integers, real numbers and complex

numbers respectively. If we omit the zero element, we denote the corresponding sets by

N×,Z×,R×,C×.

The Kronecker delta function δij (also denoted δi,j or δ(i,j)) takes the value +1 if i = j or 0

otherwise. For a proposition P , we define in a similar way δP which takes the value +1 if P is

true, and zero if P is false. For example, δ(i≤j) takes the value +1 if i ≤ j and 0 for i > j.

Consider a finite set of elements {aj}j∈J which are totally ordered, i.e. there exists a bijective

map ρ : {1, . . . , |J |} → J such that aρ(1) < . . . < aρ(|J |). Then, the corresponding left and right
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products are given by

←−∏
j∈J

aj = aρ(|J |) . . . aρ(2)aρ(1) ,
−→∏
j∈J

aj = aρ(1)aρ(2) . . . aρ(|J |) .

Fix d ∈ N×, d ≥ 2, and let Jd = {1, . . . , d} ⊂ N×. The ordering function on d elements is the

map o(−,−) : Jd×Jd → {−1, 0,+1} defined by o(α, β) = +1 if α < β, o(α, β) = 0 if α = β,

and o(α, β) = −1 if α > β. This is a skew-symmetric map. We naturally extend the definition to

any totally ordered finite set.
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Chapter 2

Basic notions

2.1 Geometric formalism

In this section, any manifold M is assumed to be complex, and we write OM for the sheaf of

analytic functions on M . Given any sheaf F on M , we say that a property holds for any f ∈ F

if it holds for any open subset U ⊂M and f ∈ F(U). We will make use of the latter short-hand

notation throughout this section, as well as similar variations.

We equip the exterior algebra
∧• TM with the Schouten-Nijenhuis bracket [−,−] which is defined

to be the Lie bracket on vector fields and is extended on multivector fields α, β, γ ∈
∧• TM as a

bilinear map of degree −1 such that

[α, β] =− (−1)(|α|−1)(|β|−1)[β, α] , (2.1a)

[α, β ∧ γ] =[α, β] ∧ γ + (−1)(|α|−1)|β|β ∧ [α, γ] , (2.1b)

0 =[α, [β, γ]] + (−1)(|α|−1)(|β|+|γ|)[β, [γ, α]] + (−1)(|γ|−1)(|α|+|β|)[γ, [α, β]] . (2.1c)

2.1.1 Poisson geometry

A Poisson manifold is a manifoldM endowed with a holomorphic bivector field P ∈
∧2 TM such

that [P, P ] = 0 under the Schouten-Nijenhuis bracket. The map {−,−} : O×2
M → OM : (f, g) 7→

{f, g} := P (df, dg) defines an antisymmetric C-linear biderivation, and we can show that the
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condition [P, P ] = 0 is equivalent to Jacobi identity Jac = 0, where for any g1, g2, g3 ∈ OM

Jac(g1, g2, g3) = {{g1, g2}, g3}+ {{g2, g3}, g1}+ {{g3, g1}, g2} . (2.2)

Indeed, [P, P ] = 2 Jac. This implies that {−,−} is a Poisson bracket. We will only deal with

the case of a nondegenerate Poisson bracket, which means that around any x ∈ M with local

coordinates (x1, . . . , xn), the matrix with entries {xi, xj}, 1 ≤ i, j ≤ n = dimM , evaluated at

x is invertible. This is equivalent to the property that M is a symplectic manifold.

We say that two functions are in involution if they Poisson commute, i.e. their Poisson bracket

vanishes. To any f ∈ OM we associate a vector field Vf = {f,−} on M , and we say that vector

fields of that form are Hamiltonian. We then remark that [Vf , Vg] = 0 whenever f and g are in

involution using (2.2). This means that if two functions are in involution, the corresponding vector

fields commute, and thus their flows commute. This is central in the context of integrability that

we review in § 2.1.2.

Let us mention two ways of constructing new Poisson manifolds from a reduction procedure.

Consider a Lie group G with Lie algebra g and a Poisson manifold M such that we have a left

action G ×M → M denoted by (g, x) 7→ g · x. We get an action on f ∈ OM as (g · f)(x) =

f(g−1 ·x) for all x ∈M . Recall that the action is said to be free if g ·x = x implies g = 1 ∈ G. It

is said to be proper if the map G×M →M ×M , (g, x) 7→ (x, g · x) is proper, i.e. the preimage

of a compact set is compact.

Recall that a morphism ψ : M → N between Poisson manifolds is Poisson if for all f1, f2 ∈ ON ,

ψ∗{f1, f2}N = {ψ∗f1, ψ
∗f2}M . We say that M is an invariant Poisson G-manifold if for all

g ∈ G, the corresponding action is a Poisson morphism.

Proposition 2.1.1 Assume that M is an invariant Poisson G-manifold such that the action is free

and proper. Then the orbit spaceM/G is a Poisson manifold, and the submersion π : M →M/G

is Poisson.

Given any ξ ∈ g, we define

ξM (h)(x) =
d

dt t=0
h (exp(−tξ) · x) , for all x ∈M, h ∈ O(M). (2.3)

This can be extended as a map (−)M :
∧• g→ ∧• TM preserving wedge products and Schouten-

Nijenhuis brackets (where we also extend the Lie bracket from g to
∧• g using (2.1a)–(2.1c)).
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Note that the element ξM ∈ TM hence obtained is not necessarily a Hamiltonian vector field. A

way to overcome this issue is the existence of a moment map, which gives us in particular the tool

of Hamiltonian reduction. This inspires the quasi-Hamiltonian formalism reviewed in § 2.1.3.

We say that the invariant Poisson G-manifold M is Hamiltonian if it is endowed with a moment

map, that is a regular map µ : M → g∗ which is G-equivariant (i.e. µ(g · x) = ad∗gµ(x) for ad∗

the coadjoint action on g∗) and such that for all ξ ∈ g, {µ∗(ξ), f} = ξM (f) for all f ∈ OM .

Proposition 2.1.2 Assume that M is Hamiltonian with moment map µ. If the action is free and

proper, then, for a generic coadjoint orbit O∗ ⊂ g∗, the manifold µ−1(O∗)/G is Poisson.

We finish this subsection by referring to [114] for a comprehensive review containing all these

subjects, and [131] for an elaborated treatise on momentum maps. Both references focus on the

real case, but complex versions of these results are obtained in the same way, see e.g. [1]. The

results also admit natural versions for affine varieties, see [169].

2.1.2 Classical integrable systems

Definition 2.1.3 An integrable system on a Poisson manifold M endowed with a nondegenerate

Poisson bracket is a set of 1
2 dimM elements (fk)k, with fk ∈ OM , that are pairwise in involution

and that are functionally independent on a dense open subset of M .

The importance of the definition comes from the fact that for any function H of the algebra

generated by the (fk)k, we can implicitly compute the flows of (the Hamiltonian vector field

corresponding to) H by quadrature, see e.g. [1, Section 4.2]. We say in that case that H is

(Liouville or completely) integrable.

Example 2.1.4 WriteM = gln(C)2 ×Mat1×n(C)×Matn×1(C) for some n ∈ N×. This space

has a nondegenerate Poisson structure given by

n∑
i,j=1

∂

∂Xij
∧ ∂

∂Yji
+

n∑
i=1

∂

∂Vi
∧ ∂

∂Wi
. (2.4)

Following [170], we consider the space of matrices (X,Y, V,W ) ∈ M satisfying [X,Y ] =

Idn +WV modulo the action of GLn(C) by g · (X,Y, V,W ) = (gXg−1, gY g−1, V g−1, gW ).
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We denote this space by Cn. It has a non-degenerate Poisson bracket induced by (2.4), and

we can easily see that the functions (trY k)k∈N are defined on Cn and are in involution. Write

y1, . . . , yn the eigenvalues of Y . These are independent of the GLn(C) action, so are well-defined

at each point (X,Y, V,W ) ∈ Cn. On the dense open subset of Cn where Y is diagonalisable, its

eigenvalues are in fact distinct, so that the Wronskian of the functions 1
k trY k = 1

k (yk1 + . . .+ykn)

for k = 1, . . . , n is nonzero. Hence trY, . . . , 1
n trY n form an integrable system in Cn. This is the

rational CM system introduced in Section 1.2. Indeed, on the dense open subset of Cn where X

has distinct eigenvalues, we can consider a slice where X = diag(q1, . . . , qn) and

W> = −V = (1, . . . , 1), Yij = δijpj + δ(i 6=j)
−1

qi − qj
.

Then 1
2 trY 2 is the (complexified) Hamiltonian for the rational Calogero-Moser system, and its

Liouville integrability follows as the Hamiltonian is part of an integrable system.

The space used in Example 2.1.4 can be seen as an application of Proposition 2.1.2.

Definition 2.1.5 A degenerately integrable system (also called non-commutative integrable

system or superintegrable system) on a Poisson manifold M endowed with a nondegenerate

Poisson bracket is a set of r elements (f1, . . . , fs, fs+1, . . . , fr) where fk ∈ OM , with r + s =

dimM , such that for each 1 ≤ i ≤ s and 1 ≤ k ≤ r the functions fi and fk are in involution,

and furthermore the r functions are functionally independent on a dense open subset of M .

Remark 2.1.6 It is important to note that this terminology is also used for a slightly different

notion. In e.g. [94], this term means that for a fixed function f ∈ O(M), the algebra F(f)

generated by the elements that Poisson commute with f is an algebra of dimension r ≥ n such

that the kernel of the Poisson structure restricted to F has dimension s = dimM − r. Our

definition is less restrictive : in our case, we do not require that a degenerately integrable system

(f1, . . . , fs, fs+1, . . . , fr) coincide with the algebra F(f1).

The proof of the integration by quadrature can be adapted to this degenerate case, and we have a

notion of action-angle coordinates [124]. In particular, at a generic point we can locally integrate

the flows corresponding to the Hamiltonian vector fields of (f1, . . . , fs). We can not integrate

locally the flows for the other functions (fs+1, . . . , fr) using this method.
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2.1.3 Quasi-Hamiltonian manifolds

As we have seen in § 2.1.1, a possible way to obtain Poisson manifolds of smaller dimension

from a given one is by the process of Hamiltonian reduction, which requires the existence of a Lie

group action on a Poisson manifold, together with a moment map that takes value in the dual of

the corresponding Lie algebra. An interesting question consists in generalising the construction to

moment maps with value in the Lie group itself. This was studied in [7] for the symplectic case,

and generalised to the Poisson case in [6]. We follow the latter reference in this section together

with [106] to focus on complex manifolds. For algebraic varieties, we refer to [162, 7.12-13].

We fix a Lie groupG whose Lie algebra g is endowed with a non-degenerate ad-invariant bilinear

form (−,−). We denote by (fa)a a basis for g and (fa)a its dual under the bilinear form. We

have the structure constants (Cabc)abc defined by Cabc = (fa, [fb, fc]), with which we form an

ad-invariant 3-form φ ∈
∧3 g by

φ =
1

12

∑
a,b,c

Cabcf
a ∧ f b ∧ f c . (2.5)

Indeed, the ad-invariance follows from the identification of g and g∗ using (−,−), so that φ is

identified with the map
∧3 g→ C, x ∧ y ∧ z 7→ (x, [y, z]) which is ad-invariant because (−,−)

is. The Lie group structure of G allows us to define for any ξ ∈ g the left- and right-invariant

vector fields ξL and ξR on G defined by

ξL(g)(z) =
d

dt t=0
g (z · exp(tξ)) ,

ξR(g)(z) =
d

dt t=0
g (exp(tξ) · z) , g ∈ O(G), z ∈ G .

(2.6)

Assume that G acts on a manifold M . This induces for any ξ ∈ g the infinitesimal vector field

ξM given by (2.3), so after extension to
∧• g, we can form the trivector field φM .

Definition 2.1.7 We say that the G-manifold M is a quasi-Poisson manifold if it is equipped with

a holomorphic bivector field P ∈
∧2 TM which is G-invariant and satisfies [P, P ] = φM .

The bivector field P defines an antisymmetric biderivation {−,−} on OM such that for any

g1, g2, g3 ∈ OM , we have for Jac defined by (2.2) that

Jac(g1, g2, g3) =
1

2
φM (g1, g2, g3) . (2.7)
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Definition 2.1.8 An equivariant map Φ : M → G for the quasi-Poisson manifold (M,P ) is a

multiplicative moment map if for all g ∈ OG,

{g ◦ Φ,−} =
1

2

∑
a

(fa)M
(
(fLa + fRa )(g) ◦ Φ

)
. (2.8)

We call the triple (M,P,Φ) a quasi-Hamiltonian manifold. We refer toM as a quasi-Hamiltonian

manifold if P and Φ are clear from the context.

The equality (2.8) between vector fields on M means that, when taken on some h ∈ OM , the

function {g ◦ Φ, h} evaluated at x ∈M is equal to

1

2

∑
a

[(fa)M (h)](x) [(fLa + fRa )(g)](Φ(x)) .

Here, we use the dual bases (fa)a and (fa)a of g to define the vector fields applied to h using

(2.3) and the vector fields applied to g using (2.6). What is important for us is that we can obtain

new examples of quasi-Hamiltonian manifolds by fusion, and that we can reduce these manifolds

to the Poisson case. We review these two results now.

Theorem 2.1.9 [6, Proposition 5.1] Let (M,P, (Φ1,Φ2,Ψ)) be a quasi-HamiltonianG×G×H-

manifold. Then the diagonal map G→ G×G induces a G×H action on M such that for

Pfus = P − 1

2

∑
a

(fa, 0)M ∧ (0, fa)M , Φfus = (Φ1Φ2,Ψ) ,

the triple (M,Pfus,Φfus) is a quasi-Hamiltonian G×H-manifold.

We call that process fusion. If we interchange the role of the two copies of G, we get that the

fusion yields isomorphic structures of quasi-HamiltonianG×H-manifold by [6, Proposition 5.7].

Theorem 2.1.10 [6, Proposition 6.1] Let (M,P,Φ) be a quasi-Hamiltonian G-manifold and C a

conjugacy class in G. Then, if the action is free and proper on Φ−1(C), the manifold Φ−1(C)/G

inherits a Poisson structure.

Under mild assumptions, this theorem can be extended to any G-stable submanifold as noticed in

[106, Theorem 8].
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2.2 Algebraic formalism

2.2.1 Quivers and path algebras

Let Q = (Q, I) be a quiver with vertex set I and arrow set Q, both assumed to be finite. Define

the maps t, h : Q→ I that associate to every arrow a its tail and head, t(a) and h(a). We define a

path over Q to be a finite word γ = a1 . . . ak written with letters ai ∈ Q. We take the convention

that γ represents the path going through a1, then a2, and so on up to ak. This means that γ = 0

if h(ai) 6= t(ai+1) for some i. We also consider the trivial path es based at the vertex s ∈ I ,

for each s ∈ I . The path algebra CQ is the C-vector space whose basis is given by all possible

paths, and on which the multiplication is defined by concatenation : if γ′ = a′1 . . . a
′
l, then γγ′ is

the path a1 . . . aka
′
1 . . . a

′
l, and this operation is extended linearly. We get that for any s, s′ ∈ I ,

esγes′ = δs,t(a1)δh(ak),s′ γ. Moreover, the unit 1 ∈ CQ decomposes as 1 =
∑

s∈I es, that is the

(es)s form a complete set of orthogonal idempotents.

Let Q̄ denote the double of Q, obtained by adjoining to every arrow a ∈ Q its opposite, a∗. We

get in particular, t(a) = h(a∗) and h(a) = t(a∗). We extend ∗ to an involution on Q̄ by setting

(a∗)∗ = a for all a ∈ Q. We define ε : Q̄ → {±1} the sign function which associates the value

+1 to every arrow of Q and −1 to each arrow of Q̄ \Q. We write CQ̄ for the path algebra of Q̄.

We view CQ̄ as a B-algebra, with B = ⊕s∈ICes.

Example 2.2.1 The Jordan quiver (or one-loop quiver) Q0 is the quiver with vertex set I = {0}

and a unique arrow x : 0→ 0. Its path algebra is the polynomial algebra in one variable C[x].

The tadpole quiver Q is the extension of the Jordan quiver by one arrow. It has two vertices

{0,∞} and consists of one loop x : 0 → 0 and one arrow v : ∞ → 0. Its double Q̄ has two

additional arrows y = x∗ : 0 → 0 and w = v∗ : 0 → ∞, see Figure 1. Its path algebra CQ̄ is

defined over B = Ce0 ⊕ Ce∞.

Example 2.2.2 Let m ≥ 2 be an integer. The cyclic quiver Qm is given by the vertex set I = Zm

and arrows xs : s → s + 1 for all s ∈ Zm. Its double consists of the additional arrows

ys = x∗s : s+ 1→ s.
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∞ 0

v
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x

y

Figure 1: Double of the tadpole quiver

Next, let us introduce the notion of roots associated to a quiver. To do so, consider the Tits

quadratic form associated to a quiver Q with vertex set I , which is defined by

q : ZI → Z , q(α) =
∑
s∈I

α2
s −

∑
a∈Q

αt(a)αh(a) . (2.9)

This induces a symmetric bilinear form (−,−) on ZI by setting (α, β) = q(α+β)−q(α)−q(β).

For any s ∈ I , we have a corresponding element εs ∈ ZI such that (εs)r = δsr. We can then form

the fundamental region

F =
{
α ∈ NI \ {0} | (α, εs) ≤ 0, ∀s ∈ I

}
∩
{
α ∈ NI | supp(α) is connected

}
,

and the Weyl group W generated by the reflections

Rr : ZI → ZI , α 7→ α− (α, εr)εr , for all r ∈ I supporting no loop ,

as a subgroup of Aut(ZI). Then, the real roots are the elements in the W -orbits of ±εs for s ∈ I

supporting no loop, while imaginary roots are elements in the W -orbits of ±α for all α ∈ F . A

root is either a real root or an imaginary root. Moreover, roots are such that each root is either

positive (if it belongs to NI ) or negative (if its opposite belongs to NI ).

Example 2.2.3 Consider the Jordan quiver Q0 given in Example 2.2.1. Since it consists of one

vertex supporting one loop, it clearly has trivial Weyl group and no real roots. Meanwhile, we

can see that its Tits form q : Z→ Z given by (2.9) is vanishing identically. Therefore any α ∈ Z

satisfies (α, ε0) ≤ 0, which means that the fundamental region is N×. Thus, the imaginary roots

are precisely the elements of Z×.

Example 2.2.4 Consider the cyclic quiver Qm with I = Zm given in Example 2.2.2, for some

fixed integer m ≥ 2. Using the Tits form given by (2.9), we can write that

q(α) =
∑
s∈I

αs(αs − αs+1) , (α, εr) = 2αr − αr+1 − αr−1 , r, s ∈ I .
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Introduce the element δ = (1, . . . , 1) ∈ ZI . Clearly, (δ, εr) = 0 so any multiple of δ is an

imaginary root. In fact, one can easily show that there are no other ones. If we identify I with

{0, . . . ,m− 1}, it is a bit tedious but not complicated to show that the real roots are given by

α = ±(εi + . . .+ εj) + kδ , 1 ≤ i ≤ j ≤ m− 1, k ∈ Z .

For further references on quivers and their representations (that are introduced in the next section),

see e.g. [49, 97]. We finish with two important constructions associated to the path algebra of a

quiver. First, following Crawley-Boevey and Holland [55], we fix some λ ∈ CI and denote by Jλ

the two-sided ideal generated by
(∑

a∈Q̄ ε(a) aa∗ −
∑

s∈I λses

)
in CQ̄. The associated quotient

Πλ(Q) = CQ̄/Jλ is called a deformed preprojective algebra.

Second, following Crawley-Boevey and Shaw [56], we consider the algebra A obtained from CQ̄

by localisation at the set of elements (1 + aa∗) with a ∈ Q̄. We also fix some q ∈ (C×)I and a

total ordering < on the arrows of Q̄. We then define the two-sided ideal Jq generated by
−→∏
a∈Q̄

(1 + aa∗)ε(a) −
∑
s∈I

qses ∈ A ,

where the elements in the product appear with respect to the ordering < (so the left-most element

corresponds to the smallest a ∈ Q̄, and so on). The associated quotient Λq(Q) = A/Jq is called

a multiplicative preprojective algebra.

Example 2.2.5 Consider the tadpole quiver Q̄ defined in Example 2.2.1. For λ = (λ0, λ∞) ∈

C× C, the corresponding deformed preprojective algebra is given by

Πλ(Q) = CQ̄/ 〈xy − yx− wv = λ0e0 , vw = λ∞e∞〉 .

Denote by A the localisation of CQ̄ at the elements 1 + xy, 1 + yx, 1 + wv, 1 + vw, and fix the

order x < y < v < w. Then, for q = (q0, q∞) ∈ C× × C×, the corresponding multiplicative

preprojective algebra is given by

Λq(Q) = A/
〈
(1 + xy)(1 + yx)−1(1 + vw)(1 + wv)−1 = q0e0 + q∞e∞

〉
.

2.2.2 Representation spaces and GIT quotients

For a finitely generated associative algebra A over C and any N ∈ N, the representation

space Rep(A,N) is the affine scheme whose coordinate ring O(Rep(A,N)) is generated by
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symbols aij for a ∈ A and i, j = 1, . . . , N , such that they are linear in a and satisfy

(ab)ij =
∑

k aikbkj for any a, b ∈ A and 1ij = δij . It is equivalent to see Rep(A,N) as

parametrising algebra homomorphisms % : A → MatN (C), and we get that aij(%) = %(a)ij at

any point % ∈ Rep(A,N). It is important to remark that the definition does not depend on the

chosen presentation of A, because Rep(A,N) represents the functor

RepAN : S 7→ Homalg(A,MatN (S))

from the category of finitely generated commutative algebra to the category of sets. In the spirit

of [147], or more generally [57], we say that A is smooth (or formally smooth or quasi-free) if

given any C-algebra C and nilpotent ideal I ⊂ C, every map φ : A→ C/I can be lifted to C as

φ̃ : A→ C, i.e. φ = πI ◦ φ̃ for πI : C → C/I the projection map. It is equivalent to require that

ΩA = ker(m : A⊗A→ A) is a projectiveAe-module. Here, we denote byAe = A⊗Aop the set

of elements from A⊗A with multiplication given by a1a2 = (a′1⊗a′′1)(a′2⊗a′′2) = a′1a
′
2⊗a′′2a′′1 .

Note that ΩA can also be constructed as the module of differential 1-forms, see [57]. It was noted

in [99] that if A is smooth, then all schemes Rep(A,N) are smooth in the usual (geometric)

sense4. The idea is that the smoothness property in the commutative case is equivalent to the

definition above for an arbitrary commutative C-algebra C.

Following [162, Section 7], to any a ∈ A we associate a matrix-valued function X (a) :=

(aij)i,j=1,...,N on Rep(A,N). Then, if A is finitely generated by elements a1, . . . , ak subject

to relations Fl(a1, . . . , ak) for finitely many l = 1, . . . , L, we get that

O(Rep(A,N)) = C[(a1)ij , . . . , (ak)ij ]/〈Fl(X (a1), . . . ,X (ak)) = 0N | l = 1, . . . , L〉 .

In particular, if A is the free algebra on k generators, Rep(A,N) is just AkNC .

If A is a B-algebra with B of the form B = Ce1 ⊕ . . . ⊕ CeK such that the (es)s form a

complete set of orthogonal idempotents, we can generalise the definition to a relative setting.

Representation spaces are now indexed by K-tuples α = (α1, . . . , αK) ∈ NK . Given α with

α1 + . . . + αK = N , we embed B diagonally into MatN (C) so that IdN is split into a sum

of K diagonal blocks of size α1, . . . , αK , representing the idempotents es. This means that

X (es) is the s-th diagonal identity block of size αs in IdN . By definition, RepB(A,α) =

HomB(A,MatN (C)), and it can be viewed as an affine scheme in the same way as Rep(A,N).
4For an explanatory proof, combine [84, Proposition 19.1.4] and [152, Tags 00TA,00TN].
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Example 2.2.6 Consider the path algebra CQ of a quiver Q defined as in § 2.2.1. The matrix

X (a) representing an element a ∈ CQ is an |I|×|I| block matrix. In the case of an arrow a ∈ Q,

we can use the idempotents to write a = et(a)aeh(a), so a is represented by the matrix X (a) with

at most one non-zero block of size αt(a)×αh(a) placed in the t(a)-th block row and h(a)-th block

column. Therefore, a point in RepB(CQ,α) can be viewed as a quiver representation, consisting

of vector spaces Vs = Cαs , s ∈ I and linear maps Xa : Vh(a) → Vt(a) for each a ∈ Q. With this

interpretation, we have

Xa ∈ Matαt(a),αh(a)
(C) , RepB(CQ,α) ∼=

∏
a∈Q

Matαt(a),αh(a)
(C). (2.10)

If A = CQ/J for some ideal J generated by elements (γl)l, then RepB(A,α) ⊂ RepB(CQ,α)

is the subset of matrices such that X (γl) = 0N for each l.

There is a natural action of the algebraic group GLN (C) on Rep(A,N) by conjugation of

matrices, and in the relative case we can embed GLα :=
∏
s GLαs(C) diagonally into GLN (C)

to get a natural GLα action on RepB(A,N). If the latter space is a variety, the affine GIT

quotient RepB(A,N)//GLα, whose coordinate ring is the ring of GLα-invariant functions

O(RepB(A,N))GLα , is also a variety. Note that the latter ring is finitely generated because GLα

is reductive. The GIT quotient is the orbit space RepB(A,N)/GLα provided that all orbits are

closed, i.e. it is a geometric quotient. As we are interested in the complex manifold structure of

such varieties, it is convenient to introduce the algebraic group G(α) defined as GLα /C×, where

C× denotes the subgroup {
∏
s µ Idαs | µ ∈ C×} of diagonal matrices. Indeed, this subgroup is

in the stabiliser of any representation, so the action would never be free. As G(α) is reductive, if

it acts freely on RepB(A,N) and the latter space is smooth, then all the orbits are closed and we

also get that RepB(A,N)//GLα is smooth. Therefore, the GIT quotient is a complex manifold

is such a case.

To understand the GIT quotient from A itself, recall that we can see RepB(A,N) as the set

of (relative) representations of A. Then the orbit of ρ ∈ RepB(A,N) is closed if and only

if ρ is a semisimple representation [96]. Thus RepB(A,N)//G(α) is the set of all orbits of

semisimple representations. Moreover, it follows from a theorem of Le Bruyn-Procesi [107] that

the coordinate ring of the GIT quotient is generated by elements of the form trX (a) for a ∈ A

[52, 53].
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Example 2.2.7 Let Πλ be the (deformed) preprojective algebra associated to the tadpole

quiver as in Example 2.2.5, with λ0 ∈ C× and λ∞ = −nλ0. Then, the GIT quotient

RepB(Πλ, N)//GLn is nothing else than the Calogero-Moser space described in Example 2.1.4

(with parameter λ0 = 1).

For further references on GIT quotients, we refer to [121, 89, 97].

2.3 At the crossroads : the double world

Combining Examples 2.2.1 and 2.2.7, we see a clear link between the representations of a

deformed preprojective algebra for a tadpole quiver and a natural phase space for the Calogero-

Moser system. Hence, it is natural to ask if the latter integrable system could be realised already

at the level of the algebra Πλ. This was first discovered by Ginzburg [83] in the context of

noncommutative symplectic geometry, and a similar approach exists using the formalism of

noncommutative Poisson geometry introduced by Van den Bergh [162]. We will just quickly

sketch this result, as our aim is to study the corresponding noncommutative version of quasi-

Poisson geometry and their relation to Ruijsenaars-Schneider systems. All the results in this

section already appear in [162], except when explicitly stated.

2.3.1 Double brackets and associated structures

From now on, unadorned tensor products ⊗ are over C and A denotes a finitely generated

associative unital C-algebra. We often consider A as a B-algebra, i.e. with a ring homomorphism

B → A for B of the form Ce1 ⊕ . . . ⊕ CeK where the (es)s form a complete set of orthogonal

idempotents in A.

Generalities on double brackets

We formA⊗A and denote any element a ∈ A⊗A as a = a′⊗a′′ using Sweedler’s notation, when

it is necessary to know the elements in each copy of the tensor product. Hence, it is possible to

define a◦ = a′′⊗a′ ∈ A⊗A. There are twoA-bimodule structures onA⊗A : given b, c ∈ A, the
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outer bimodule structure is given for any a ∈ A⊗A as bac = ba′⊗a′′c, while the inner bimodule

structure is given by b ∗ a ∗ c = a′c ⊗ ba′′. To avoid unnecessary confusion, we always use the

notation ∗ to denote the inner bimodule structure. Hence the (outer) A-bimodule structures on A

and A ⊗ A become left Ae-modules structure, where we recall that Ae = A ⊗ Aop. Following

Crawley-Boevey [50], we consider the additive group

Der(A) = Der(A,A⊗A) = {δ ∈ HomAe(A,A⊗A) | δ(bc) = δ(b)c+ bδ(c)} ,

which becomes an A-bimodule by inheriting the inner bimodule structure on A ⊗ A : if δ ∈

Der(A), b1, b2 ∈ A, then b1δb2 ∈ Der(A) is such that for any c ∈ A,

(b1δb2)(c) = b1 ∗ δ(c) ∗ b2 = δ(c)′b2 ⊗ b1δ(c)′′ .

If A is a B-algebra, we consider instead DA/B = DerB(A), the submodule of elements δ ∈

Der(A) with δ(B) = 0. In this case, an important class of double derivations is given by the

gauge elements (Es)s indexed by the orthogonal idempotents of B, which are given by Es(c) =

ces ⊗ es − es ⊗ esc for any c ∈ A.

Definition 2.3.1 A double bracket {{−,−}} on A is a C-bilinear map A×A→ A⊗A such that

(D1) for any b, c ∈ A, {{c, b}} = −{{b, c}}◦ (cyclic antisymmetry);

(D2) for any b ∈ A, {{b,−}} ∈ Der(A) (outer derivation property).

Due to the C-bilinearity, we can equivalently define a double bracket as a map A⊗ A→ A⊗ A

satisfying (D1)–(D2). Using these two conditions, one gets

(D2’) for any b1, b2, c∈A, {{b1b2, c}} = b1 ∗{{b2, c}}+{{b1, c}}∗ b2 (inner derivation property).

In other words, a double bracket is a derivation in the second argument for the outer bimodule

structure, and in the first argument for the inner bimodule structure. This implies that the double

bracket is completely determined by the values it takes on generators of A. In the case where A

is a B-algebra, we require the double bracket to be B-bilinear, i.e. to be C-bilinear and to vanish

if one of the entries is an element of B.

More generally, given any n ≥ 2, we endow A⊗n with the obvious outer bimodule structure. For

any ς ∈ Sn and a = a1 ⊗ . . . ⊗ an ∈ A⊗n, we let τς a = aς−1(1) ⊗ . . . ⊗ aς−1(n). Then an n-

bracket {{−, . . . ,−}} : A⊗n → A⊗n is a map C-linear in each argument such that it is cyclically
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antisymmetric, and it is a derivation in the last argument for the outer bimodule structure :

τ(1...n) ◦ {{−, . . . ,−}} ◦ τ−1
(1...n) = (−1)n+1 {{−, . . . ,−}} ,

{{a1, . . . , an−1, bc}} = {{a1, . . . , an−1, b}} c+ b {{a1, . . . , an−1, c}} .

(Note that any n-bracket for n odd is commuting with the permutations τk(1...n) for k ∈ N.) Clearly

a double bracket is a 2-bracket, and we call a 3-bracket a triple bracket.

Lemma 2.3.2 ([162, 2.3.1]) Any double bracket {{−,−}} defines an induced triple bracket

{{−,−,−}}, which is given for any a, b, c ∈ A by

{{a, b, c}} =
{{
a, {{b, c}}′

}}
⊗ {{b, c}}′′

+ τ(123)

{{
b, {{c, a}}′

}}
⊗ {{c, a}}′′

+ τ2
(123)

{{
c, {{a, b}}′

}}
⊗ {{a, b}}′′ .

(2.11)

In the case where the induced triple bracket identically vanishes, we say that {{−,−}} is a double

Poisson bracket, and that A is a double Poisson algebra. We use the same terminology in the

relative case.

The double Gerstenhaber algebra of polyvector fields

The Schouten-Nijenhuis bracket given by (2.1a)–(2.1c) defines a Gerstenhaber algebra structure

on
∧• TM , which is a graded version of a Poisson bracket. Analogously, there is a graded version

of a double Poisson bracket. To introduce it, fix a graded algebra D, and write |α| for the degree

of a homogeneous element α ∈ D. There is a signed Sn action defined on D⊗n as follows : for a

homogeneous element α = α1 ⊗ . . .⊗ αn ∈ D⊗n, and for any ς ∈ Sn, we define

σς α = (−1)t(ς,α)ας−1(1) ⊗ . . .⊗ ας−1(n) , where

t(ς, α) =
∑

(i,j)∈I(ς)

|ας−1(i)| |ας−1(j)| , I(ς) =
{

(i, j) | i < j , ς−1(i) > ς−1(j)
}
.

That is, t(ς, α) counts the graded commutation of elements when applying the (unsigned) Sn

action τς . Then, we say that D is a double Gerstenhaber algebra if it is equipped with a graded
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bilinear map {{−,−}} : D ×D → D ⊗D such that for any α, β, γ ∈ D

{{α, β}} =− σ(12)(−1)(|α|−1)(|β|−1) {{β, α}} , (2.12a)

{{α, βγ}} = {{α, β}} γ + (−1)(|α|−1)|β|β {{α, γ}} , (2.12b)

0 =
{{
α, {{β, γ}}′

}}
⊗ {{β, γ}}′′

+ (−1)(|α|−1)(|β|+|γ|)σ(123)

{{
β, {{γ, α}}′

}}
⊗ {{γ, α}}′

+ (−1)(|γ|−1)(|α|+|β|)σ(132)

{{
γ, {{α, β}}′

}}
⊗ {{α, β}}′′ . (2.12c)

Compare (2.12a)–(2.12c) with (2.1a)–(2.1c). We now work in a relative setting, and let DBA :=

TADA/B be the tensor algebra of the bimodule DA/B = DerB(A), with elements of A in degree

0 and relative double derivations in degree +1. To any δ1, δ2 ∈ DA/B , we associate {{δ1, δ2}}∼l =

(δ1⊗1)δ2−(1⊗δ2)δ1. We also let {{δ1, δ2}}∼r = −{{δ2, δ1}}∼l . These areB-derivationsA→ A⊗3,

which we can see as elements in A⊗DA/B and DA/B ⊗A.

Theorem 2.3.3 ([162, 3.2]) There is a unique structure {{−,−}}SN of double Gerstenhaber

algebra on DBA which satisfies for any b, c ∈ A, δ1, δ2 ∈ DA/B ,

{{b, c}}SN = 0 , {{δ1, b}}SN = δ1(b) , {{δ1, δ2}}SN = τ(23) {{δ1, δ2}}∼l + τ(12) {{δ1, δ2}}∼r .

We call {{−,−}}SN the double Schouten-Nijenhuis bracket on DBA. The algebra DBA is useful

because it easily gives examples of n-brackets as follows.

Proposition 2.3.4 ([162, 4.1.1]) For any n ∈ N×, there is a well-defined linear map

µ : (DBA)n → {B-linear n-brackets on A} : Q 7→ {{−, . . . ,−}}Q ,

which on Q = δ1 . . . δn is given by

{{−, . . . ,−}}Q =

n−1∑
i=0

(−1)(n−1)iτ i(1...n) ◦ {{−, . . . ,−}}̃Q ◦ τ
−i
(1...n) ,

{{a1, . . . , an}}̃Q = δn(an)′δ1(a1)′′ ⊗ δ1(a1)′δ2(a2)′′ ⊗ . . .⊗ δn−1(an−1)′δn(an)′′ .

Moreover, the map µ factors through DBA/[DBA,DBA] (for the graded commutator).

For n = 2, we obtain a double bracket {{−,−}}δ1δ2 from δ1δ2 ∈ (DBA)2, which is defined for

any b, c ∈ A by

{{b, c}}δ1δ2 = δ2(c)′δ1(b)′′ ⊗ δ1(b)′δ2(c)′′ − δ1(c)′δ2(b)′′ ⊗ δ2(b)′δ1(c)′′ . (2.13)
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We say that an n-bracket is differential if it is defined from some Q ∈ (DBA)n using Proposition

2.3.4. This has the following consequence : if a double bracket {{−,−}} is differential for

P ∈ (DBA)2, then the associated triple bracket {{−,−,−}} given by (2.11) is differential for
1
2{P, P}SN ∈ (DBA)3, where {−,−}SN = m ◦ {{−,−}}SN. In the case where A is formally

smooth over B (see § 2.2.2 adapting the definition of formal smoothness for B-algebras A,C)

and A is both left and right flat over B, then the map µ in Proposition 2.3.4 is an isomorphism

[162, 4.1.2]. In such a case, all n-brackets are differential.

Associated brackets

For any n-bracket {{−, . . . ,−}}, we have an associated bracket

{−, . . . ,−} = m ◦ {{−, . . . ,−}} : A⊗n → A (2.14)

obtained by multiplication (i.e. concatenation of factors). In the case of a double bracket,

{b, c} = m ◦ {{b, c}} = {{b, c}}′ {{b, c}}′′ . (2.15)

We can easily see that this operation satisfies Leibniz rule in the second argument : {b, c1c2} =

{b, c1}c2 + c1{b, c2} for any b, c1, c2 ∈ A. Now, assume that the double bracket {{−,−}} is

such that the bracket m◦{{−,−,−}} associated to the induced triple bracket {{−,−,−}} given by

(2.11) vanishes. Then the bracket {−,−} associated to the double bracket is a left Loday bracket,

i.e. {−,−} : A×A→ A is a bilinear map such that

{a, {b, c}} = {{a, b}, c}+ {b, {a, c}} . (2.16)

Note that it is still a derivation in the second argument. The bracket descends to a well-defined

map A/[A,A] × A → A. Moreover, we can consider that map modulo commutators, so that it

yields an antisymmetric map on the vector space A/[A,A]. Hence (A/[A,A], {−,−}) is a Lie

algebra [162, 2.4]. In fact this operation is stronger than being just a Lie bracket. In [52, 53],

Crawley-Boevey introduced the notion of a H0-Poisson structure on an algebra A, which is a Lie

bracket 〈−,−〉 on A/[A,A] such that for each a ∈ A the map 〈ā,−〉 on A/[A,A] (where ā is the

projection of a) is induced by a derivation da : A → A. Then, under the above assumption, the

associated bracket {−,−} induces a H0-Poisson structure on A.
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Finally, note that associated brackets can also be defined in the graded setting. We used this fact

after Proposition 2.3.4 when we introduced the bracket {−,−}SN = m ◦ {{−,−}}SN associated

to the double Schouten-Nijenhuis bracket.

2.3.2 Hamiltonian and quasi-Hamiltonian algebras

From now on, we require that A is a B-algebra for B = ⊕Ks=1Ces, with K ∈ N×.

Hamiltonian algebras

Recall that (A, {{−,−}}) is a double Poisson algebra when the triple bracket given by (2.11)

vanishes. In the case where the double bracket is differential and defined from an element P ∈

(DBA)2 by Proposition 2.3.4, this is equivalent to require {P, P}SN = 0 modulo [DBA,DBA],

and we say that (A,P ) is a differential double Poisson algebra. A moment map µ ∈ A is an

element µ =
∑K

s=1 µs where µs ∈ esAes satisfies {{µs, c}} = Es(c) for all c ∈ A. Such a triple

(A, {{−,−}} , µ), or (A,P, µ), is called a Hamiltonian algebra.

An important class of Hamiltonian algebras is given by quivers. To state the result, we use the

notations of § 2.2.1 and introduce for any a ∈ Q̄ the double derivation ∂
∂a ∈ Der(CQ̄) given by

∂b

∂a
=

 et(a) ⊗ eh(a) if a = b ∈ Q̄ ,

0 otherwise .
(2.17)

Theorem 2.3.5 ([162, 6.3.1]) The path algebra A = CQ̄ is Hamiltonian for

P =
∑
a∈Q

∂

∂a∗
∂

∂a
, µ =

∑
a∈Q

[a, a∗] .

Quasi-Hamiltonian algebras

Let {{−,−}} be a double bracket on A. We say that it is a double quasi-Poisson bracket when

{{−,−,−}} =
1

12

K∑
s=1

{{−,−,−}}E3
s
. (2.18)
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1 2

a

a∗

Figure 2: The simplest quiver Q̄0.

Here, the left-hand side is the triple bracket associated to {{−,−}} by (2.11), while the right-hand

side is a linear combination of the triple brackets defined by E3
s ∈ (DBA)3 using Proposition

2.3.4. A simple but tedious computation shows that for any a, b, c ∈ A

{{a, b, c}}E3
s

=3
(
cesa⊗ esb⊗ es − cesa⊗ es ⊗ bes − ces ⊗ aesb⊗ es + ces ⊗ aes ⊗ bes

− esa⊗ esb⊗ esc+ esa⊗ es ⊗ besc+ es ⊗ aesb⊗ esc− es ⊗ aes ⊗ besc
)
.

If {{−,−}} is differential and defined from an element P ∈ (DBA)2 by Proposition 2.3.4, the

condition is equivalent to {{P, P}}SN = 1
6

∑K
s=1E

3
s modulo [DBA,DBA], and we say that (A,P )

is a differential double quasi-Poisson bracket. A multiplicative moment map (or moment map

when it is clear from the context that we talk about the quasi-Poisson case) is an element Φ =∑K
s=1 Φs for Φs ∈ esAes such that, for all c ∈ A, we have {{Φs, c}} = 1

2(ΦsEs + EsΦs)(c). We

can rewrite this condition as

{{Φs, c}} =
1

2
(ces ⊗ Φs − es ⊗ Φsc+ cΦs ⊗ es − Φs ⊗ esc) . (2.19)

Such a triple (A, {{−,−}} ,Φ), or (A,P,Φ), is called a quasi-Hamiltonian algebra.

Example 2.3.6 ([162, 6.5.1]) Let Q̄0 be the quiver with two vertices {1, 2} and two arrows a :

1 → 2, a∗ : 2 → 1, see Figure 2. Let A0 be the algebra obtained from the path algebra CQ̄0

by inverting the elements (1 + aa∗), (1 + a∗a). Then, defining double derivations ∂
∂a ,

∂
∂a∗ as in

(2.17), A0 is quasi-Hamiltonian for

P =
1

2
(1 + a∗a)

∂

∂a

∂

∂a∗
− 1

2
(1 + aa∗)

∂

∂a∗
∂

∂a
, Φ = (1 + aa∗)(1 + a∗a)−1 .

Remark 2.3.7 Due to the idempotent decomposition 1 = e1 + e2, eset = δstet, we can

equivalently define A0 as the algebra obtained from the path algebra CQ̄0 by adding local

inverses to (e1 + aa∗) and (e2 + a∗a). The latter means that we add to CQ̄0 the element
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(e1 + aa∗)−1 such that (e1 + aa∗)−1(e1 + aa∗) = e1 = (e1 + aa∗)(e1 + aa∗)−1 and do the

same for (e2 + a∗a). Indeed, we can use the relations (1 + aa∗)−1 = e2 + (e1 + aa∗)−1 and

(1 + a∗a)−1 = e1 + (e2 + a∗a)−1 to go from one description to the other. In particular, note that

we can write Φ1 = e1 + aa∗, Φ2 = (e2 + a∗a)−1.

We will need a final notion to characterise quasi-Hamiltonian algebras. We assume that A is

formally smooth over B, and let ΩA be the Ae-module generated by symbols db for b ∈ A, such

that d(b1b2) = b1.db2 + db1.b2 for any b1, b2 ∈ A, together with db = 0 if b ∈ B. This is an

alternative definition of the module of non-commutative differential 1-forms (relative to B) of

[57]. Slightly adapting [163], we say that the double quasi-Poisson bracket is non-degenerate if

the map ΩA⊕ (⊕sAEsA)→ DA/B : (a.db.c, δ) 7→ a {{b,−}} c+ δ is surjective. By [163, 8.3.1],

the double bracket of Example 2.3.6 is non-degenerate.

Fusion for quasi-Hamiltonian algebras

In the Hamiltonian case, one can easily obtain Theorem 2.3.5 for arbitrary Q̄ beginning with

the particular case of the quiver Q̄0 given in Example 2.3.6, then obtaining the general case by

‘gluing’ a disjoint union of copies of Q̄0 to construct Q̄. Indeed, we just need to sum the initial

double Poisson brackets and moment maps together using [162, 2.5.1]. This can also easily be

remarked for their geometric counterparts, with Hamiltonian manifolds. However, we have from

Theorem 2.1.9 that we can not simply sum together bivectors and moment maps in the quasi-

Poisson case. Hence, that theorem needs to be translated at the algebra level first.

We now recall the fusion process [162, 5.3], starting with a differential quasi-Hamiltonian algebra

(A,P,Φ). The author has been able to show that the construction also works in the general case,

which was expected by Van den Bergh. However, it would be too long to reproduce these results

here, so we prefer the shorter version of [162, 5.3].

Assume that (A,P,Φ) is a quasi-Hamiltonian algebra over B = ⊕Ks=1Ces, so that the (es)s are a

complete set of orthogonal idempotents. We want to obtain an algebra from A by identifying the

idempotents e1 and e2. (For a path algebra CQ̄, this amounts to glue vertices 1, 2 in the underlying

quiver.) To do so, recall that given algebrasA,A′ overB with algebra monomorphisms i : B → A

and j : B → A′, we define the free algebra A ∗B A′ = Tk(A⊕ A′)/I , where I is the two-sided
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ideal generated by the relations a1 ⊗ a2 = a1a2, a′1 ⊗ a′2 = a′1a
′
2, i(b) = j(b) for all a1, a2 ∈ A,

a′1, a
′
2 ∈ A and b ∈ B. Our first step is to construct the extension algebra Ā of A along e1, e2,

which is given by

Ā = A ∗Ce1⊕Ce2⊕Cµ (Mat2(C)⊕ Cµ) = A ∗B B̄ , (2.20)

where µ = 1−e1−e2, and Mat2(C) is seen as the C-algebra generated by e1 = e11, e12, e21, e2 =

e22 with esteuv = δtuesv. We can embed elements of A in Ā, and any element of DBA extends

to DB̄Ā. This applies to Φ =
∑

s Φs and P . For the second step, the fusion algebra Af of A

along e1, e2 is the algebra obtained from Ā by discarding elements of e2Ā+ Āe2, i.e.

Af = εĀε , for ε = 1− e2 . (2.21)

We can now viewAf as aBf -algebra, and we identifyBf with⊕s 6=2Ces. In this case, an element

ā ∈ Ā descends to Af using the trace map Tr, given by Tr ā = εāε + εe12āe21ε. We also get a

map DB̄Ā → DBfA
f given by Q̄ 7→ Tr Q̄ := εQ̄ε + εe12Q̄e21ε. Composing with the previous

map, the elements Φs ∈ A and P ∈ (DBA)2 define elements Φf
s ∈ Af and P f ∈ (DBfA

f )2.

Theorem 2.3.8 ([162, 5.3.2]) The Bf -algebra Af is quasi-Hamiltonian for (P ff ,Φff ) given by

P ff = P f − 1

2
Ef1E

f
2 , Φff

1 = Φf
1Φf

2 , Φff
s = Φf

s , s 6= 1, 2.

Note that we multiply the moment maps of the fused idempotents. Hence, the quasi-Hamiltonian

structure is different if we glue idempotents in different orders. For the localised path algebra

A = CQ̄(1+aa∗)a∈Q̄
of the double Q̄ of a quiver Q, this amounts to consider an ordering at each

vertex on the arrows of Q̄ whose tails meet at that vertex. We can now combine Example 2.3.6

and Theorem 2.3.8.

Theorem 2.3.9 ([162, 6.7.1]) Let Q̄ be a double quiver. For each vertex s ∈ I , consider an

ordering <s on the set Ts = {a ∈ Q̄ | t(a) = s}. The algebra A obtained from CQ̄ by adding

local inverses (et(a) + aa∗) (see Remark 2.3.7) is quasi-Hamiltonian for

P =
1

2

∑
a∈Q̄

ε(a)(eh(a) + a∗a)
∂

∂a

∂

∂a∗

− 1

2

∑
s∈I

∑
a<sb∈Ts

(
∂

∂a∗
a∗ − a ∂

∂a

)(
∂

∂b∗
b∗ − b ∂

∂b

)
, (2.22a)

Φ =
∑
s

Φs , Φs =

−→∏
a∈Ts

(es + aa∗)ε(a) . (2.22b)
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As the fusion of non-degenerate double quasi-Poisson brackets is also non-degenerate by [163,

8.2], Theorem 2.3.9 defines a non-degenerate quasi-Hamiltonian structure on A.

Remark 2.3.10 When the ordering <s at each vertex s ∈ I comes from a total ordering < on

Q̄, the algebra Λq = A/(Φ − q), q ∈ B×, is just an example of multiplicative preprojective

algebra, see § 2.2.1. This algebra is the motivation behind Van den Bergh’s work [162], where

he successfully interpreted the element Φ as a (multiplicative) moment map. We will also call

the quotient Λq = A/(Φ − q) a multiplicative preprojective algebra for any orderings (<s)s∈I .

Indeed, we can always construct a total ordering from it by choosing a total ordering <I on I ,

before setting a < b if t(a) <I t(b), or if a <s b when s = t(a) = t(b).

Additional results for quivers

As in Theorem 2.3.9, consider an ordering<s on the set Ts = {a ∈ Q̄ | t(a) = s} for each vertex

s. Write os(−,−) for the corresponding ordering function on Ts, which we recall is defined on

arrows a, b ∈ Ts by os(a, b) = +1 if a <s b, os(a, b) = −1 if b <s a and is zero otherwise.

We extend this function to Q̄ by putting os(a, b) = 0 when a /∈ Ts or b /∈ Ts. We can prove the

following, which explicitly gives the double bracket in terms of generators.

Proposition 2.3.11 The biderivation of Theorem 2.3.9 takes the following form on arrows of Q̄

{{a, a}} =
1

2
ot(a)(a, a

∗)
(
a2 ⊗ et(a) − eh(a) ⊗ a2

)
(a ∈ Q̄) , (2.23)

{{a, a∗}} = eh(a) ⊗ et(a) +
1

2
a∗a⊗ et(a) +

1

2
eh(a) ⊗ aa∗

+
1

2
ot(a)(a, a

∗) (a∗ ⊗ a− a⊗ a∗) (a ∈ Q) ,

(2.24)

and for a, b ∈ Q̄ such that b 6= a, a∗

{{a, b}} =
1

2
oh(a)(a

∗, b) eh(a) ⊗ ab+
1

2
ot(a)(a, b

∗) ba⊗ et(a)

− 1

2
oh(a)(a

∗, b∗) (b⊗ a)− 1

2
ot(a)(a, b) (a⊗ b) .

(2.25)

The result has interesting consequences. First, {{a, a}} = 0 whenever a ∈ Q̄ is not a loop. Second,

if b 6= a, a∗, then {{a, b}} = 0 whenever a and b do not share a common vertex. Third, we have that
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(2.23)–(2.24) define all double brackets in A by use of the cyclic antisymmetry and the derivation

properties.

We skip the proof of Proposition 2.3.11 for a moment, and consider a specific choice which will

be of interest to us and appears as [41, Proposition 2.6]. To state this particular case, we fix for

each s ∈ I a total ordering <s on the set Ms = {a ∈ Q̄ | t(a) = s or h(a) = s}. We assume

that for any two arrows a, b that meet at two different vertices r, s, we have either a <r b, a <s b

or we have b <r a, b <s a. As in [62], we define the collection of all these total orderings as an

ordering on Q̄. We simply denote this collection as <, since given any arrows a, b that share at

least one vertex, either a < b or b < a.

Proposition 2.3.12 Take an ordering in Q̄ so that the arrows of Q̄ are ordered in such a way that

a < a∗ < b < b∗ for any a, b ∈ Q with a < b. Then one has

{{a, a}} =
1

2
ε(a)

(
a2 ⊗ et(a) − eh(a) ⊗ a2

)
(a ∈ Q̄) , (2.26a)

{{a, a∗}} = eh(a) ⊗ et(a) +
1

2
a∗a⊗ et(a) +

1

2
eh(a) ⊗ aa∗

+
1

2
(a∗ ⊗ a− a⊗ a∗)δh(a),t(a) (a ∈ Q) , (2.26b)

{{a, b}} =
1

2
eh(a) ⊗ ab+

1

2
ba⊗ et(a)

− 1

2
(b⊗ a)δh(a),h(b) −

1

2
(a⊗ b)δt(a),t(b) (a, b ∈ Q̄ , a < b , b 6= a∗) . (2.26c)

We now proceed to the proof of Proposition 2.3.11. We need the following lemma.

Lemma 2.3.13 For α ∈ Q̄, define the double derivations

Uα =
∂

∂α
, U+

α =
∂

∂α
α, U−α = α

∂

∂α
, Ūα = α∗α

∂

∂α
.

Then they vanish on β ∈ Q̄ \ {α} while

Uα(α) = et(α) ⊗ eh(α), U+
α (α) = α⊗ eh(α), U−α (α) = et(α) ⊗ α, Uα(α) = et(α) ⊗ α∗α .
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Proof. Equation (2.17) gives for any α ∈ Q̄,

Uα(α) =

(
∂

∂α

)
(α) =

∂α

∂α
= et(α) ⊗ eh(α) ,

U+
α (α) =

(
∂

∂α
α

)
(α) =

∂α

∂α
∗ α = et(α)α⊗ eh(α) = α⊗ eh(α) ,

U−α (α) =

(
α
∂

∂α

)
(α) = α ∗ ∂α

∂α
= et(α) ⊗ αeh(α) = et(α) ⊗ α ,

Uα(α) =

(
α∗α

∂

∂α

)
(α) = α∗α ∗ ∂α

∂α
= et(α) ⊗ α∗αeh(α) = et(α) ⊗ α∗α ,

as desired. 2

Proof. (Proposition 2.3.11.) We use Proposition 2.3.4 in the form of (2.13) together with its

linearity. We first derive (2.23) and (2.24). To do so, consider the following terms of P

Pα =
1

2
ε(α)(1 + α∗α)

∂

∂α

∂

∂α∗
+

1

2
ε(α∗)(1 + αα∗)

∂

∂α∗
∂

∂α

− 1

2
δt(α),h(α)

(
∂

∂α∗
α∗ − α ∂

∂α

)(
∂

∂α
α− α∗ ∂

∂α∗

)
,

for any α ∈ Q̄ such that either α <t(α) α
∗ if t(α) = h(α), or α ∈ Q otherwise. The biderivation

Pα contains all the terms of P that are not trivially zero once evaluated on any two elements of

the set {α, α∗} ⊂ Q̄. Also, the last term is nonzero only if α is a loop. Clearly if α is not a loop,

{{α, α}} = {{α∗, α∗}} = 0 which proves (2.23) for a = α in that case. Otherwise, if a is a loop we

compute using (2.13) and Lemma 2.3.13 that

{{α, α}} = {{α, α}}Pα = {{α, α}} 1
2
U−α U

+
α

=
1

2

(
U+
α (α)′U−α (α)′′ ⊗ U−α (α)′U+

α (α)′′
)
− 1

2

(
U−α (α)′U+

α (α)′′ ⊗ U+
α (α)′U−α (α)′′

)
=

1

2
α2 ⊗ et(α) −

1

2
et(α) ⊗ α2 ,

where we use in the last equality et(α)eh(α) = et(α) = eh(α)et(α). Similarly,

{{α∗, α∗}} = {{α∗, α∗}}Pα = {{α∗, α∗}} 1
2
U+
α∗U

−
α∗

=
1

2
et(α∗) ⊗ (α∗)2 − 1

2
(α∗)2 ⊗ et(α∗) .

To get (2.23), we take α = a if a <t(a) a
∗, and α = a∗ if a∗ <t(a) a.
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Next, we compute (again with Lemma 2.3.13) since ε(α∗) = −ε(α)

{{α, α∗}} = {{α, α∗}}Pα

=
1

2
ε(α) {{α, α∗}}UαUα∗ +

1

2
ε(α) {{α, α∗}}ŪαUα∗ −

1

2
ε(α) {{α, α∗}}Uα∗Uα

− 1

2
ε(α) {{α, α∗}}Ūα∗Uα −

1

2
{{α, α∗}}U+

α∗U
+
α
− 1

2
{{α, α∗}}U−α U−α∗

=ε(α) eh(α) ⊗ et(α) +
1

2
ε(α)α∗α⊗ et(α) +

1

2
ε(α) eh(α) ⊗ αα∗

+
1

2
δh(α),t(α)(α

∗ ⊗ α− α⊗ α∗) .

If a is not a loop, or if a is a loop such that a <t(a) a
∗, we take α = a in (2.28) to get (2.24). If a

is a loop with a∗ <t(a) a, we take α = a∗ in (2.28) to get

{{a∗, a}} = −et(a) ⊗ eh(a) −
1

2
(aa∗ ⊗ eh(a) + et(a) ⊗ a∗a) +

1

2
(a⊗ a∗ − a∗ ⊗ a) .

Using {{a, a∗}} = −{{a∗, a}}◦, we find (2.24) in this last case.

Finally, to derive (2.25) we remark that P is the sum of all terms Pα as above and biderivations

Pα,β =− 1

2

(
∂

∂α∗
α∗ − α ∂

∂α

)(
∂

∂β∗
β∗ − β ∂

∂β

)
,

for all α, β, where α 6= β∗, such that t(α) = t(β) with α <t(α) β. The contribution of that

biderivation is such that

{{α, β}}Pα,β = −1

2
{{α, β}}U−α U−β = −1

2
α⊗ β , (2.28a)

{{α∗, β}}Pα,β =
1

2
{{α∗, β}}U+

α∗U
−
β

=
1

2
et(α) ⊗ α∗β , (2.28b)

{{α, β∗}}Pα,β =
1

2
{{α, β∗}}U−α U+

β∗
=

1

2
β∗α⊗ et(α) , (2.28c)

{{α∗, β∗}}Pα,β = −1

2
{{α∗, β∗}}U+

α∗U
+
β∗

= −1

2
β∗ ⊗ α∗ . (2.28d)

We now have to check (2.25) for any a, b ∈ Q̄, b 6= a, a∗. If t(a) = t(b), either a <t(a) b and by

(2.28a) we get a term−1
2a⊗ b in {{a, b}}, or b <t(a) a and we get a term−1

2b⊗a in {{b, a}}, so by

cyclic antisymmetry we have a term 1
2a⊗b in {{a, b}}. Hence we have a term−1

2ot(a)(a, b) (a⊗b)

appearing in {{a, b}}. If h(a) = h(b), either a∗ <h(a) b
∗ and by (2.28d) we get a term −1

2b ⊗ a

in {{a, b}}, or b∗ <h(a) a
∗ and we get a term −1

2a ⊗ b in {{b, a}}. Hence we get a contributing

term −1
2oh(a)(a

∗, b∗) (b ⊗ a). If t(a) = h(b), either a <t(a) b
∗ and by (2.28c) we get a term

1
2ba ⊗ et(a), or b∗ <t(a) a and by (2.28b) we get a term 1

2et(b∗) ⊗ ba in {{b, a}}. This yields
1
2ot(a)(a, b

∗)(ba ⊗ et(a)) in {{a, b}}. If h(a) = t(b), either a∗ <h(a) b and (2.28b) gives a term
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1
2eh(a) ⊗ ab for {{a, b}}, or b <h(a) a

∗ and (2.28c) gives a term 1
2ab ⊗ et(b) for {{b, a}}. Thus, we

have a contribution 1
2oh(a)(a

∗, b)(eh(a) ⊗ ab). Gathering the four cases gives (2.25). 2

We finish by a remark on the structure of the moment map of a subquiver of Q̄. Assume that Q̄′

is a quiver with vertex set I ′ ⊂ I and Q̄′ = {a ∈ Q̄ | t(a) ∈ I ′ and h(a) ∈ I ′}. This means

that if we look at the subset of vertices I ′ of Q̄ and erase all the arrows of Q̄ which are not both

starting and ending at an element of I ′, we recover Q̄′. Moreover, we require that Q̄ and Q̄′

are endowed respectively with orderings <,<′ that satisfy the following conditions : whenever

a, b ∈ Q̄′, a <′ b if a < b in the initial quiver Q̄, and a < c when a ∈ Q̄′ but c ∈ Q̄r Q̄′.

We construct A′ as A above, and we see A′ as a subalgebra of A (after adding the removed

idempotents es for s ∈ I \ I ′). Define elements Φ′, P′ by replacing Q̄ with Q̄′ in (2.22b) and

(2.22a). Remark that we can write P = P′+ Pout and Φ = (Φ′ +
∑

s/∈I′ es)Φout for some

Pout ∈ (DBA)2 and Φout = (Φout,s)s∈I . This statement is, in fact, a consequence of the fusion

process which we have used to endow a quiver with a quasi-Hamiltonian structure [162, 6.5-6.7].

Lemma 2.3.14 For all b, c ∈ A′ ⊂ A, we have {{b, c}}P = {{b, c}}P′ . In particular, for all s ∈ I ′,

we have {{Φ′s, c}}P = 1
2(Φ′sEs + EsΦ

′
s)(c).

Proof. By linearity of the map in Proposition 2.3.4, we can decompose {{−,−}}P as the sum

{{−,−}}P′ + {{−,−}}Pout . From (2.13), we get that {{b, c}}Pout is a sum of terms of the form

δ2(c)′δ1(b)′′ ⊗ δ1(b)′δ2(c)′′ − δ1(c)′δ2(b)′′ ⊗ δ2(b)′δ1(c)′′ , (2.29)

for any b, c ∈ A. By construction, Pout is a sum of (double) biderivations, and by inspecting

(2.22a) each biderivation in Pout carries at least one factor δd = Ud, U
+
d , U

−
d , Ūd for d ∈ Q̄r Q̄′,

as defined in Lemma 2.3.13. Such a derivation δd vanishes on elements of A′ again by Lemma

2.3.13. Therefore, if both b, c ∈ A′, all terms in (2.29) must vanish, and {{b, c}}Pout = 0.

Applying this to Φ′s and c ∈ A′, {{Φ′s, c}}P = {{Φ′s, c}}P′ . By construction, Φ′ is a multiplicative

moment map for {{−,−}}P′ , so it satisfies (2.19). 2

This previous construction can be easily generalised as follows. Assume now that Q̄′ ⊂ Q̄ is a

subquiver with the same set of vertices I . Suppose that Q̄′, Q̄ are endowed with orderings <′, <

such that whenever a, b ∈ Q̄′, a <′ b if a < b in the initial quiver Q̄, and a < c when a ∈ Q̄′ but
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c ∈ Q̄r Q̄′. We can again construct A′,P′,Φ′ as above from Q̄, and see A′ as a subalgebra of A.

Note that Φ′s = es if there are no arrow a ∈ Q̄′ with t(a) = s or h(a) = s. In the exact same way

as Lemma 2.3.14, we can prove the next result.

Lemma 2.3.15 For all b, c ∈ A′ ⊂ A, we have {{b, c}}P = {{b, c}}P′ . In particular, for all s ∈ I ,

with Φ′s 6= es, we have {{Φ′s, c}}P = 1
2(Φ′sEs + EsΦ

′
s)(c).

More Lie brackets

Note that the triple bracket associated to a double Poisson bracket vanishes, so the associated

bracket {−,−,−} also does. A small computation shows that it is also the case for a double

quasi-Poisson bracket. Hence, if (A, {{−,−}}) is a double (quasi-)Poisson algebra, then {−,−}

defines an H0-Poisson structure on A by § 2.3.1.

Let (A, {{−,−}} , µ) be Hamiltonian, and putAλ = A/(µ−λ) for some λ =
∑

s λses ∈ B. Then

the associated bracket {−,−} descends to Aλ/[Aλ, Aλ] and defines a Lie bracket. Similarly, if

(A, {{−,−}} ,Φ) is quasi-Hamiltonian and we let Aq = A/(Φ− q) for q ∈ B×, then Aq/[Aq, Aq]

also inherits an associated Lie bracket. In fact, we have again an H0-Poisson structure on both

Aλ and Aq.

2.3.3 Structures on representation spaces

We now explain how the definitions introduced in § 2.3.1 and § 2.3.2 translate to the representation

spaces defined in § 2.2.2. Our presentation is mainly based on [162, Section 7].

Generalities for the rest of the section

Throughout, we continue to assume that A is a finitely generated associative algebra over B =

⊕Ks=1Ces, with eset = δstes, that we assume endowed with a double bracket {{−,−}}.

Let I = {1, . . . ,K} and choose the dimension vector α ∈ NI , setting N =
∑

s∈I αs. We

consider the representation space (assumed relative to B from now on) Rep(A,α), that we recall

is such that the matrix X (es) satisfies X (es)ij = δij if α1 + . . .+αs−1 +1 ≤ i, j ≤ α1 + . . .+αs.
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I.e., X (es) is the s-th diagonal block of IdN , and each block is of size αs. To ease notations,

denote by R = O(Rep(A,α)) the coordinate ring. We have from the definition of the scheme

that any element a ∈ A induces functions (aij)ij on Rep(A,α), and we would like to extend this

definition to arbitrary δ ∈ DA/B . For any 1 ≤ i, j ≤ N , define the vector field δij ∈ Der(R) by

δij(bkl) = δ(b)′kjδ(b)
′′
il , (2.30)

and introduce the vector field-valued matrix X (δ) with (i, j) entry δij . We call the particular

disposition of indices in (2.30) the standard index notation as in [163]. More generally, for

an element δ = δ1 . . . δn ∈ (DBA)n we define δij ∈
∧n
R Der(R) from the matrix identity

X (δ) = X (δ1) . . .X (δn).

It is interesting to note that, for any a ∈ A, {{a,−}} ∈ DA/B defines a vector field by

{{a,−}}ij (bkl) = {{a, b}}′kj {{a, b}}
′′
il. This motivates the following result.

Proposition 2.3.16 ([162, 7.5.1, 7.8]) There is a unique antisymmetric biderivation {−,−} :

R×R→ R such that for all a, b ∈ A and 1 ≤ i, j, k, l ≤ N ,

{aij , bkl} = {{a, b}}′kj {{a, b}}
′′
il . (2.31)

Moreover, if {{−,−}} is differential and defined from an element P ∈ (DBA)2 by Proposition

2.3.4, then the biderivation (2.31) is defined by the bivector field tr(X (P )). In the latter case, we

denote the map by {−,−}P .

Allowing graded components, the following is expected.

Proposition 2.3.17 ([162, 7.6]) Let P,Q ∈ DBA. Then

[Pij , Qkl] = ({{P,Q}}′SN)kj({{P,Q}}′′SN)il .

I.e. the (geometric) Schouten-Nijenhuis bracket on Rep(A,α) is determined by the double

Schouten-Nijenhuis bracket on A.

Finally, recall that the algebraic group GLα :=
∏K
s=1 GLαs(C) acts by conjugation on

Rep(A,α), and we have5 g · X (a) = g−1X (a)g. We obtain an induced action of the Lie algebra
5Here we follow [162, Sect. 7], but we will use later the action g · X (a) := gX (a)g−1 when working on

multiplicative quiver varieties. This slight change can be easily forgotten as it will just amount to act with the inverse

element from the algebraic group.
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gα :=
∏K
s=1 glαs(C) given by ξ ·X (a) = [X (a), ξ] for any ξ ∈ gα. Moreover, the gauge elements

(Es)s correspond to the action of gα as follows.

Proposition 2.3.18 ([162, 7.9.1]) Fix s ∈ I and take i, j ∈ {1, . . . , N} such that α1 + . . . +

αs−1 + 1 ≤ i, j ≤ α1 + . . . + αs. Let Fij ∈ gα be the elementary matrix which is +1 at (i, j)

entry and zero otherwise. Then the derivation Es,ji is such that Es,ji(h) = Fij · h for any h ∈ R.

The Hamiltonian case

Let us adopt the notation aij,kl,uv := a′ija
′′
kla
′′′
uv ∈ R for an element a = a′⊗ a′′⊗ a′′′ ∈ A⊗3. As

in [162, 7.5.2], we can compute using (2.31) that for any a, b, c ∈ A,

Jac(aij , bkl, cuv) = {{a, b, c}}uj,il,kv − {{a, c, b}}kj,iv,ul , (2.32)

where {{−,−,−}} is the triple bracket defined by {{−,−}} and Jac is defined by (2.2).

Since (2.32) vanishes for a double Poisson bracket, we can use the general results introduced in

the previous subsection and the smoothness criterion of § 2.2.2 to derive the following result.

Theorem 2.3.19 ([162, 7.11.1]) Assume that (A, {{−,−}} , µ) is a Hamiltonian algebra. We

have that Rep(A,α) is a GLα-scheme with Poisson bracket {−,−} determined from {{−,−}} by

(2.31), and the matrix-valued function X (µ) : Rep(A,α)→ gα is a moment map. Furthermore,

if A is smooth, Rep(A,α) admits a structure of a Hamiltonian G(α)-Poisson manifold.

Here, we identified gα and its dual through the trace pairing. Note also that we pass to G(α) =

GLα /C×, as the action is never free otherwise.

Example 2.3.20 Theorem 2.3.5 yields that any double quiver Q̄ induces that Rep(A,α) (in the

relative setting) is a Poisson variety, and admits a moment map. Consider the tadpole quiver

of Example 2.2.1. Then we have a Hamiltonian manifold structure on the representation space

described in Example 2.2.7, which precisely gives the reduced symplectic space described in

Example 2.1.4.

This example is precisely the motivation for the study of quasi-Hamiltonian algebras that we will

do : we will try to understand spaces that could be carrying integrable systems from a coordinate-

free point of view.
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Example 2.3.21 Consider a double quiver Q̄, and dimension vectors α,w ∈ NI . We extend Q̄

by adjoining to I one vertex, denoted ∞, and by adding ws arrows ∞ → s for each s ∈ I .

Write Q̄w the quiver hence obtain. Moreover, we extend α to α̃ by adding to it α∞ = 1. Again,

Theorem 2.3.5 gives that Rep(Q̄w, α̃) is aGα̃-variety with a Poisson bracket and momentum map.

Then µ−1(0)//G(α̃) is an example of Nakajima quiver variety [123] for 0 stability parameter, as

explained in [51].

The latter example justifies the study by Yamakawa of the multiplicative analogues of this

construction [174], and in particular the introduction of such framing, i.e. one extra vertex and

several arrows pointing towards the initial vertices in Q̄. We return to this procedure at the end of

this section.

The quasi-Hamiltonian case

We choose as before the algebraic group GLα with Lie algebra gα. Again, we consider the trace

pairing on gα, and we note that the dual basis to (Fij)ij (see Proposition 2.3.18 for the definition

of Fij and which indices are considered to form the basis) is (Fji)ij .

Proposition 2.3.22 ([162, 7.12.1]) The trivector field on Rep(A,α) induced by φ ∈
∧3 gα

defined in (2.5) is given by 1
6

∑
s trX (E3

s ).

We now extend the result of [162, 7.13] to the non-differential case, namely double quasi-Poisson

algebras define quasi-Poisson structures on their representation spaces. It was already noticed by

Van den Bergh to be possible, though not proved in [162]. The author believes this slightly longer

proof is worth being written done, and we go through it now.

Recalling relation (2.32), we remark that a similar statement can be proved in the following form.

Lemma 2.3.23 Assume that Q ∈ (DBA)3. Then the following equality holds for any a, b, c ∈ A

trX (Q)(aij , bkl, cuv) = ({{a, b, c}}Q)uj,il,kv − ({{a, c, b}}Q)kj,iv,ul , (2.33)
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In fact, this result implies (2.32) in the case where {{−,−}} is differential. Indeed, the double

bracket is defined by an element P ∈ (DBA)2, so the triple bracket {{−,−,−}} is defined by an

element of (DBA)3, viz. 1
2{P, P}SN by [162, 4.2.3]. Meanwhile, {−,−} is defined by trX (P )

using Proposition 2.3.16, so Jac is defined by the trivector 1
2 [trX (P ), trX (P )]. Summing over

i = j, k = l in Proposition 2.3.17 thus yield that Jac is defined by 1
2 trX ({P, P}SN). It remains

to take Q = 1
2{P, P}SN in (2.33) to get (2.32).

Proof. (Lemma 2.3.23.) Write Q = δ1δ2δ3. From Proposition 2.3.4 we can get

{{a, b, c}}Q =δ3(c)′δ1(a)′′ ⊗ δ1(a)′δ2(b)′′ ⊗ δ2(b)′δ3(c)′′

+ δ2(c)′δ3(a)′′ ⊗ δ3(a)′δ1(b)′′ ⊗ δ1(b)′δ2(c)′′

+ δ1(c)′δ2(a)′′ ⊗ δ2(a)′δ3(b)′′ ⊗ δ3(b)′δ1(c)′′ ,

and similarly by swapping b and c

{{a, c, b}}Q =δ3(b)′δ1(a)′′ ⊗ δ1(a)′δ2(c)′′ ⊗ δ2(c)′δ3(b)′′

+ δ2(b)′δ3(a)′′ ⊗ δ3(a)′δ1(c)′′ ⊗ δ1(c)′δ2(b)′′

+ δ1(b)′δ2(a)′′ ⊗ δ2(a)′δ3(c)′′ ⊗ δ3(c)′δ1(b)′′ .

Now, recall that the matrix-valued vector field (δij)ij representing an element δ ∈ (DBA)1

satisfies δab(cuv) = δ(c)′ubδ(c)
′
av in standard index notation. We compute

Tr(Q)(aij , bkl, cuv) =
∑
rst

(δ1
rs ∧ δ2

st ∧ δ3
tr)(aij , bkl, cuv)

=
∑
rst

δ1(a)′isδ
1(a)′′rj δ

2(b)′ktδ
2(b)′′sl δ

3(c)′urδ
3(c)′′tv

+
∑
rst

δ3(a)′irδ
3(a)′′tj δ

1(b)′ksδ
1(b)′′rl δ

2(c)′utδ
2(c)′′sv

+
∑
rst

δ2(a)′itδ
2(a)′′sj δ

3(b)′krδ
3(b)′′tl δ

1(c)′usδ
1(c)′′rv

−
∑
rst

δ1(a)′isδ
1(a)′′rj δ

3(b)′krδ
3(b)′′tl δ

2(c)′utδ
2(c)′′sv

−
∑
rst

δ3(a)′irδ
3(a)′′tj δ

2(b)′ktδ
2(b)′′sl δ

1(c)′usδ
1(c)′′rv

−
∑
rst

δ2(a)′itδ
2(a)′′sj δ

1(b)′ksδ
1(b)′′rl δ

3(c)′urδ
3(c)′′tv ,
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which we rewrite after summation as

Tr(Q)(aij , bkl, cuv) = (δ3(c)′δ1(a)′′)uj(δ
1(a)′δ2(b)′′)il(δ

2(b)′δ3(c)′′)kv

+ (δ2(c)′δ3(a)′′)uj(δ
3(a)′δ1(b)′′)il(δ

1(b)′δ2(c)′′)kv

+ (δ1(c)′δ2(a)′′)uj(δ
2(a)′δ3(b)′′)il(δ

3(b)′δ1(c)′′)kv

− (δ3(b)′δ1(a)′′)kj(δ
1(a)′δ2(c)′′)iv(δ

2(c)′δ3(b)′′)ul

− (δ2(b)′δ3(a)′′)kj(δ
3(a)′δ1(c)′′)iv(δ

1(c)′δ2(b)′′)ul

− (δ1(b)′δ2(a)′′)kj(δ
2(a)′δ3(c)′′)iv(δ

3(c)′δ1(b)′′)ul .

We can conclude from our choice of notation. 2

The following is the general version of [162, 7.13.2].

Theorem 2.3.24 Assume that (A, {{−,−}} ,Φ) is a quasi-Hamiltonian algebra. We have that

Rep(A,α) is a GLα-scheme with quasi-Poisson bracket {−,−} determined from {{−,−}} by

(2.31), and the matrix-valued function X (Φ) : Rep(A,α) → GLα is a multiplicative moment

map.

Proof. We only need to show (2.7) on generators of the coordinate ring R, so fix a, b, c ∈ A. We

remark that by Proposition 2.3.22 the 3-vector field φRep(A,α) is given by 1
6

∑
s tr(E3

s ), hence we

can write
1

2
φRep(A,α)(aij , bkl, cuv) =

1

12

∑
s

tr(E3
s )(aij , bkl, cuv) .

Using Lemma 2.3.23, this is the same as(
1

12

∑
s

{{a, b, c}}E3
s

)
uj,il,kv

−

(
1

12

∑
s

{{a, c, b}}E3
s

)
kj,iv,ul

But then, since the double bracket is quasi-Poisson we get by definition

1

2
φRep(A,α)(aij , bkl, cuv) = ({{a, b, c}})uj,il,kv − ({{a, c, b}})kj,iv,ul ,

which is nothing else but Jac(aij , bkl, cuv) by (2.32).

Finally, to prove that equality (2.8) holds, it is enough to reproduce the proof of [162, 7.13.2]

which does not use the assumption that the quasi-Poisson algebra is differential. 2

Corollary 2.3.25 Under the assumptions of Theorem 2.3.24 and provided that A is smooth, the

space Rep(A,α) admits a structure of a quasi-Hamiltonian G(α)-manifold.
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Again, we replaced GLα by G(α) as we always have a copy of C× in the stabiliser of any point

otherwise.

Fix a quiver Q̄. Applying Theorem 2.3.24 to the structure obtained in Theorem 2.3.9 endows the

multiplicative quiver varieties of Crawley-Boevey and Shaw [56] with a Poisson structure. We

now turn to the study of these spaces.

Multiplicative Quiver Varieties

We follow [41, 2.6], and refer to [56] and [174] for details about multiplicative quiver varieties.

Let Q be a quiver, Q̄ its double, and fix α ∈ NI a dimension vector. We identify Rep(CQ̄, α)

with representations of Q̄ as in Example 2.2.6, i.e. we attach the vector space Vs = Cαs at each

vertex s ∈ I , and a point is determined by the data (Xa)a such that Xa ∈ Matα(t(a))×α(h(a))(C)

for all arrows a ∈ Q̄. We can use the entries of these matrices as coordinates. We then consider

the subspace Rep(A,α) which is such that for all a ∈ Q̄, det(IdVt(a)
+XaXa∗) 6= 0. Hence

Rep(A,α) is a smooth variety. Then Corollary 2.3.25 and Theorem 2.3.9 endow Rep(A,α) with

a structure of quasi-PoissonG(α)-manifold. Using the identification we have made, together with

Proposition 2.3.12 and (2.31), we get the following characterisation of the quasi-Poisson bracket

on Rep(A,α), that we denote {−,−}P.

Proposition 2.3.26 Take an ordering in Q̄ so that the arrows of Q̄ are ordered in such a way that

a < a∗ < b < b∗ for any a, b ∈ Q with a < b. Then the quasi-Poisson bracket on Rep(A,α) is

completely determined by

{(Xa)ij , (Xa)kl}P =
1

2
ε(a)

(
(X2

a)kjδil − δkj(X2
a)il
)

(a ∈ Q̄) , (2.34a)

{(Xa)ij , (Xa∗)kl}P = δkjδil +
1

2
(Xa∗Xa)kjδil +

1

2
δkj(XaXa∗)il

+
1

2
δh(a),t(a) ( (Xa∗)kj(Xa)il − (Xa)kj(Xa∗)il ) (a ∈ Q) , (2.34b)

while if a, b ∈ Q̄ are such that a < b but b 6= a∗,

{(Xa)ij , (Xb)kl}P =
1

2
δh(a),t(b)δkj(XaXb)il +

1

2
δh(b),t(a)δil(XbXa)kj

− 1

2
δh(a),h(b)(Xb)kj(Xa)il −

1

2
δt(a),t(b)(Xa)kj(Xb)il .

(2.35)

When writing (Xa)ij above, we always assume 1 ≤ i ≤ αt(a), 1 ≤ j ≤ αh(a).
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Fix some q = (qs)s ∈ (C×)I . Assuming an ordering is taken, a level set of the moment map

{X (Φ) =
∏
s qs IdVs} is nothing else than Rep(Λq, α), the moduli space of representations

(of fixed dimension α) of the multiplicative preprojective algebra Λq associated to Q. Hence

Rep(Λq, α) is a closed affine subvariety. This space is easily seen to be empty whenever we have

qα :=
∏
s q

αs
s 6= 1 [56, Lemma 1.5].

Isomorphism classes of representations correspond to orbits under the group G(α), and the semi-

simple representations correspond to closed orbits as recalled in § 2.2.2. Thus, the points in the

affine variety Sα,q := Rep(Λq, α)//G(α) correspond to semi-simple representations of Λq of

dimension α, and Sα,q is called a multiplicative quiver variety, that we abbreviate MQV from now

on. Note that the space Sα,q is a Poisson variety. Indeed, the quasi-Poisson bracket of Proposition

2.3.26 descends to a Poisson bracket on O(Sα,q) = O(Rep(Λq, α))G(α), by restriction to G(α)-

invariant functions [162, Proposition 1.7]. We are particularly interested in the case where the

GIT quotient is a geometric quotient, so that we can hope to have a Poisson manifold structure

after reduction. Restricting to the case where all representations in Rep(Λq, α) are simple, we

find the next result based on [56, Theorem 1.10].

Theorem 2.3.27 [41, Theorem 2.8] Let p(α) = 1− q(α), where q is the Tits form (2.9). Suppose

that Rep(Λq, α) is non-empty and all representations in Rep(Λq, α) are simple. Then α is a

positive root of Q and Rep(Λq, α) is a smooth affine variety of dimension g + 2p(α), with

g = dimG(α) =
∑

s∈I α
2
s − 1. The group G(α) acts freely on Rep(Λq, α), so Sα,q =

Rep(Λq, α)/G(α) is a Poisson manifold of dimension 2p(α), obtained by quasi-Hamiltonian

reduction.

As we observed that the double bracket that induces {−,−}P is defined by a non-degenerate

biderivation P (see [163, Sect. 8]), we get in fact from [163, Proposition 5.2] and [6, Theorem

10.3] that Sα,q is a symplectic manifold when any representation in Rep(Λq, α) is simple.

Finally, note that the Poisson bracket on the affine variety Sα,q (that we only assume to

be non-empty) can be directly understood inside Λq/[Λq,Λq]. Indeed, the coordinate ring

O(Rep(Λq, α))G(α) is generated by elements of the form trX (γ) for γ ∈ Λq, which amounts

to know γ projected to Λq/[Λq,Λq]. Remarking that the ideal generated by Φ−q is a Lie ideal for

the Lie bracket on A/[A,A] defined by the associated bracket {−,−} = m ◦ {{−,−}}, it suffices
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to take traces in (2.31) to obtain

{trX (γ), trX (γ′)}P = trX
({{

γ, γ′
}}′ {{

γ, γ′
}}′′)

= trX ({γ, γ′}), (2.36)

where we see {−,−} as a bilinear map on Λq/[Λq,Λq]. Hence, the Poisson bracket of traces

of matrices representing two paths is the trace of the matrix representing the associated bracket

applied to these paths.

Multiplicative Quiver Varieties obtained by framing

The examples of MQVs that we study in this thesis come from a particular class of quivers

obtained by framing (see [174, Section 6.2] with trivial stability parameter), which we now define.

Let Q be an arbitrary quiver with vertex set I . A framing of Q is a quiver Q̃ whose set of vertices

is given by Ĩ = I ∪ {∞}, and whose set of arrows is given by the ones of Q together with

additional arrows {vs,β :∞→ s | 1 ≤ β ≤ ds} to each s ∈ I with fixed ds ∈ N. As an example,

we can consider the tadpole quiver from Example 2.2.1, which is the simplest framing of a Jordan

quiver. Given arbitrary α ∈ NI and q ∈ (C×)I , we extend them from I to Ĩ by putting α∞ = 1

and q∞ = q−α =
∏
s∈I q

−αs
s , so that we are considering

α̃ = (1, α) , q̃ = q−αe∞ +
∑
s∈I

qses . (2.37)

Note that q̃α̃ = 1. We define the representation space Rep(Λq̃, α̃) associated to the multiplicative

preprojective algebra of Q̃ with parameter q̃, and construct the quotient

M̃α,q(Q) := Rep(Λq̃, α̃)//G(α̃) , where G(α̃) ∼=
∏
s∈I

GLαs = GLα ,

which is a MQV. In order to have a symplectic manifold structure, we say that q =
∑

s∈I qses

is regular if qα 6= 1 for any root α of the quiver Q. We have the following result, which is a

multiplicative analogue of [123, Theorem 2.8], [25, Proposition 3].

Proposition 2.3.28 [41, Proposition 2.9] Choose an arbitrary framing Q̃ of Q and let α̃ and q̃

be defined as above. If q is regular, then every module of dimension α̃ over the multiplicative

preprojective algebra Λq̃ is simple. Hence, the group GLα acts freely on Rep(Λq̃, α̃) and the

MQV M̃α,q(Q) is smooth.



2.3. At the crossroads : the double world 47

It follows that if q is regular and M̃α,q(Q) 6= ∅, then α̃ = (1, α) is a positive root of Q̃

and M̃α,q(Q) is a smooth affine variety of dimension 2p(α̃). Moreover, it is endowed with a

symplectic form.

2.3.4 Relation to integrability

Assume that (A, {{−,−}}) is a double (quasi-)Poisson algebra over B =
∑K

s=1 Ces. In case A

admits a moment map µ (resp. multiplicative moment map Φ), we denote by Aqred the algebra

A/(µ− q) for q ∈ B (resp. A/(Φ− q) for q ∈ B×). We write {−,−} for the bracket associated

to {{−,−}} on A defined by (2.15).

Definition 2.3.29 Two elements b, c ∈ A are in involution if {b, c} ∈ [A,A]. An element b ∈ A

is involutive if {bk, bl} ∈ [A,A] for all k, l ∈ N.

To get an example of involutive element, we remark the following result that appears in different

forms throughout Chapter 3.

Lemma 2.3.30 If b ∈ A satisfies {{b, b}} =
∑

t∈J(bt ⊗ at − at ⊗ bt) where J ⊂ N is a finite set

and at ∈ A for all t ∈ J , then b is involutive.

Proof. We use the derivation properties (D2)–(D2’) to find for k, l ∈ N

{{
bk, bl

}}
=

k∑
σ=1

l∑
τ=1

bσ−1 ∗ bτ−1 {{b, b}} bl−τ ∗ bk−σ

=
k∑

σ=1

l∑
τ=1

∑
t∈J

(
bk+τ−σ+t−1 ⊗ bσ−1atb

l−τ − bτ−1atb
k−σ ⊗ bl+σ−τ+t−1

)
.

Applying the multiplication map as in (2.15) yields

{bk, bl} =k
l∑

τ=1

∑
t∈J

(bk+τ+t−2atb
l−τ − bτ−1atb

l+k−τ+t−1)

=k

l∑
τ=1

∑
t∈J

[
bk+t−1, bτ−1atb

l−τ
]
,

finishing the proof since [A,A] is the vector space of all commutators. 2
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Fix a dimension vector α for the rest of this section. Recall that the space Rep(A,α)//G(α)

inherits a Poisson bracket from the (quasi-)Poisson bracket {−,−} defined in Proposition 2.3.16.

The same is true forMred := Rep(Aqred, α)//G(α) if A admits a (multiplicative) moment map.

The next two statements hold for Rep(Aqred, α)//G(α) when defined.

Proposition 2.3.31 If b, c ∈ A are in involution, then trX (b) and trX (c) are in involution on

Rep(A,α)//G(α) and on Rep(Aqred, α)//G(α) (when defined).

Proof. These are clearly elements of the coordinate ring. Looking at them as functions on

Rep(A,α), we have by (2.31)

{trX (b), trX (c)} =
∑
i,j

{bii, cjj} =
∑
i,j

{{b, c}}′ji {{b, c}}
′′
ij = trm ◦ {{b, c}} .

This last term vanishes by Definition 2.3.29 since we take the trace of a commutator. 2

Proposition 2.3.32 If b ∈ A is involutive, the symmetric functions of the eigenvalues of X (b) are

in involution on Rep(A,α)//G(α).

We now assume thatMred is defined and is smooth, so that we look at this space as a complex

manifold. Furthermore, we restrict to the case where the Poisson bracket is non-degenerate.

For example, in the quasi-Hamiltonian case, this is the case if the double quasi-Poisson bracket is

non-degenerate, see § 2.3.2. We get criteria for integrability by a simple combination of Definition

2.1.3 and Propositions 2.3.31–2.3.32.

Corollary 2.3.33 Let b1, . . . , bn ∈ A be pairwise in involution with dimMred = 2n. If

trX (b1), . . . , trX (bn) are functionally independent on a dense open subset ofMred, then they

form an integrable system.

Corollary 2.3.34 Let b ∈ A be involutive. Assume that there exists J ⊂ N×, |J | = 1
2 dimMred,

such that (trX (bj))j∈J are functionally independent on a dense open subset ofMred. Then they

form an integrable system.

There is an obvious reason why we do not take the first n powers of X (b) : we could have

b /∈ ⊕sesAes, so that trX (b) = 0. Such examples appears in § 3.2.1.
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We now turn to the case of degenerate integrability. We continue with notations as above.

Definition 2.3.35 Let b, c ∈ A. We say that c is in strong involution with b if {b, c} = 0. We say

that b and c are in total involution if {b, c} = 0 = {c, b}. An element b ∈ A is strongly involutive

if for all k, l ∈ N, bk is in strong involution with bl.

Note that there exists elements in strong involution but not in total involution : as we can see

in Lemma 3.1.7 (with notations therein), {uk, wαvβul} = 0 but going through the proof of that

statement we can remark that {wαvβul, uk} 6= 0. We can also remark that, in the definition of a

strongly involutive element, we can equivalently require all powers to be in total involution.

Lemma 2.3.36 If c1, c2 ∈ A are in strong involution with an element b ∈ A, then {b, c1c2} = 0.

Proof. The bracket {{−,−}} has the derivation property (D2) in its second variable, so that we

have {b, c1c2} = c1{b, c2}+ {b, c1}c2. 2

For b ∈ A, let us form the subalgebra generated byB and some fixed elements in strong involution

with b. Bringing Lemma 2.3.36 together with the B-linearity of the double bracket, we can see

that any element of that subalgebra is also in strong involution with b.

Definition 2.3.37 Let b ∈ A be a strongly involutive element. An involutive chain with respect to

b is given by algebra inclusions C[b] ⊂ I(b) ⊂ A, where C[b] ⊂ A denotes the subalgebra

generated by b and the subalgebra B, while I(b) ⊂ A is a subalgebra generated by b, the

subalgebra B, and some elements that are in strong involution with bk for all k ∈ N.

Note that without the assumption that b is strongly involutive, the first inclusion could be false.

Moreover, an element in strong involution only with b is not necessarily in strong involution with

any bk, k ≥ 2, since there is no derivation property in the first variable for the associated bracket

(2.14).

We can now look at the structure induced on representation spaces. Let OI(b) be the subring of

C[Rep(A,α)] generated by elements {trX (c)k | c ∈ I(b), k ∈ N}. Let ÔI(b) be the Poisson

subalgebra generated by OI(b) in the (quasi-)Poisson algebra C[Rep(A,α)].

Proposition 2.3.38 The centre Z(ÔI(b)) contains C[trX (b)k | k ∈ N].
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Proof. Assume that c ∈ I(z). Then, as in the proof of Proposition 2.3.31, {trX (b)k, trX (c)} =

trX ({zk, c}) for all k, which is zero by assumption on c. This implies {trX (b)k,OI(b)} = 0 by

Leibniz rule.

By definition, an element γ ∈ ÔI(b) is a sum of terms which are obtained from a finite number

of elements g1, . . . , gl ∈ OI(b), by multiplication or taking Poisson brackets. Using the linearity

of the bracket, we just need to show that it holds by induction on k. If k = 2, either γ = g1g2

in which case {trX (b)k, γ} = 0 by the first part of the proof, or γ = {g1, g2}. Now, recall that

the (quasi-)Poisson bracket {−,−} satisfies Jacobi identity on functions of the form tr(c). In

particular, it implies that the bracket is Poisson on OI(b), hence

{trX (b)k, {g1, g2}} = {{trX (b)k, g1}, g2}+ {g1, {trX (b)k, g2}} = 0 .

A similar argument works to show the induction step. 2

We find in this way a criterion for degenerate integrability by combining Definition 2.1.5 and

Proposition 2.3.38.

Corollary 2.3.39 Assume that z ∈ A is strongly involutive. Let b1, . . . , bn ∈ A, with n =

dimMred − m, be in strong involution with all (zk)k∈N. If for some J ⊂ N with |J | = m,

the functions (trX (zj))j∈J and trX (b1), . . . , trX (bn) are functionally independent on a dense

open subset, then they form a degenerately integrable system.

Our understanding of (degenerately) integrable systems in Chapter 4 and Chapter 5 will be mostly

based on a correct choice of local coordinates where one of the functions given in Corollary

2.3.33 or Corollary 2.3.39 has an interesting form, see e.g. Example 2.1.4 which is based on

an underlying Hamiltonian algebra by Example 2.3.20. Meanwhile, recall that it was noticed by

Kazhdan, Kostant and Sternberg [95] that flows of integrable systems on a phase space obtained

by Hamiltonian reduction could be easier to integrate on the initial space, and that it was the

case for the Calogero-Moser system. With the notation of Example 2.1.4, the flow under Hk =

1
k trY k in Cn can be obtained from the flow defined by Hk inM, where it takes the linear form

X(t) = X(0) + tY (0)k−1, while Y (t), V (t) and W (t) are constant. Indeed, it suffices to look

at a slice around the point at time t where X is diagonalisable (which is possible generically). In

that way, we can obtain the values of (qi(t), pi(t))i up to permutations. Therefore, if we identify
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a (degenerately) integrable system on Mred, we can try to see if the equations of motion for

G(α)-invariant functions on Rep(A,α) that descend to the (degenerately) integrable system can

be explicitly integrated on Rep(A,α).

Following this line of thought, assume that we want to integrate in Rep(A,α) the flow associated

to a function trX (b). We need to know the equations of motion for a set of generators of the

coordinate ring, which are entries of some matrices X (a1), . . . ,X (ak) if a1, . . . , ak generate A

overB. Hence, we just need to analyse the kmatrix-valued equations of motion {trX (b),X (ai)},

which by (2.31) are nothing else than

{trX (b),X (ai)} = X ({b, ai}) , (2.38)

where the bracket on the right-hand side is the associated bracket in A. Hence, given a family

of elements in involution b1, . . . , bn and generators a1, . . . , ak of A, the discussion motivates the

computation of the associated brackets {bj , ai} for 1 ≤ j ≤ n and 1 ≤ i ≤ k. A careful reader

can notice that two points need to be clarified :

• Is it true that the flows are constrained to the subspace Rep(Aqred, α)?

• Do the flows defined for b, b′ ∈ A by (2.38) descend to the same flows on Mred if the

elements b, b′ induce the same function onMred?

We discuss the quasi-Hamiltonian case where Aqred = A/(Φ − q), as the Hamiltonian case is

shown along those lines and is easier.

To answer the first question, remark that since Φ =
∑

s Φs is a multiplicative moment map, we

have by (2.19)

{b,Φs} = −m ◦ {{Φs, b}}◦ = −1

2
m ◦ (Φs ⊗ bes − Φsb⊗ es + es ⊗ bΦs − esb⊗ Φs) = 0 .

Hence, by B-linearity, {b,Φ− q} = 0.

To answer the second question, we obviously have by (2.38) that {trX (b),X (ai)} =

{trX (b′),X (ai)} if b − b′ ∈ [A,A]. Hence, it remains to show that the evolution of any X (ai)

under the flow associated to {trX (Φ− q),−} is constant inMred. Using again (2.19), we have

for any a ∈ A

{Φ− q, a} =
1

2

∑
s

m ◦ (aes ⊗ Φs − es ⊗ Φsa+ aΦs ⊗ es − Φs ⊗ esa) = aΦ− Φa .
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Thus, we get for the flow associated to trX (Φ − q) that X (a)(t) = e−tΦX (a)etΦ on

Rep(Aqred, α). This means that such flows evolve along an orbit in Rep(Aqred, α), so that the

induced dynamics inMred is trivial.

Remark 2.3.40 We could be interested in the right-hand sides of (2.38) only, and interpret it as

systems of ordinary differential equations on a non-commutative algebra. We will not treat that

problem at all. However the interested reader can take a considerable step, though trivial, in that

direction by looking at the matrix flows that we derive as being of the form X (a(t) = ...). For

further developments on the subject, see [14, 119, 127] and references therein. See also [15] for

a slight modification of double brackets to understand Kontsevich system introduced in [173].
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Chapter 3

Quasi-Hamiltonian algebras defined

from cyclic quivers

For the whole chapter, we heavily rely on the conventions introduced at the end of Chapter 1 and

the constructions introduced in Chapter 2.

3.1 Jordan quiver

Fix d ∈ N×. In this section, we look at a general framing of a Jordan quiver by d arrows,

which corresponds in the simplest case d = 1 to the tadpole quiver from Example 2.2.1. To

be precise, let Q be the quiver with vertices {0,∞}, and arrows x : 0 → 0 and vα : ∞ → 0

for 1 ≤ α ≤ d. The double Q̄ of Q consists of the additional arrows y = x∗ : 0 → 0 and

wα = v∗α : 0 → ∞ for 1 ≤ α ≤ d. We write CQ̄ for the corresponding path algebra, and A

for the algebra obtained by (locally) inverting the elements et(a) + aa∗ for all a ∈ Q̄. These are

B-algebras for B = Ce0 ⊕ Ce∞. We consider the following ordering on the vertices of Q̄ from

now on

at∞ : v1 < w1 < . . . < vd < wd ,

at 0 : x < y < v1 < w1 < . . . < vd < wd .
(3.1)

Note that it is induced by the total order x < y < v1 < w1 < . . . < vd < wd on Q̄.
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Remark 3.1.1 For the remainder of this section, the Greek indices α, β, γ, ε are always assumed

to take value in the set {1, . . . , d}.

3.1.1 Quasi-Hamiltonian formalism

The algebra A = CQ̄(et(a)+aa
∗) is quasi-Hamiltonian by Theorem 2.3.9. To understand this

structure, we first describe the double quasi-Poisson bracket {{−,−}} induced by P, which is

well-defined on CQ̄. From Proposition 2.3.12, we have that

{{x, x}} =
1

2

(
x2 ⊗ e0 − e0 ⊗ x2

)
, {{y, y}} = −1

2

(
y2 ⊗ e0 − e0 ⊗ y2

)
, (3.2a)

{{x, y}} = e0 ⊗ e0 +
1

2
yx⊗ e0 +

1

2
e0 ⊗ xy +

1

2
(y ⊗ x− x⊗ y) , (3.2b)

{{x,wα}} =
1

2
e0 ⊗ xwα −

1

2
x⊗ wα , {{x, vα}} =

1

2
vαx⊗ e0 −

1

2
vα ⊗ x , (3.2c)

{{y, wα}} =
1

2
e0 ⊗ ywα −

1

2
y ⊗ wα , {{y, vα}} =

1

2
vαy ⊗ e0 −

1

2
vα ⊗ y , (3.2d)

while between framing arrows it takes the form

{{vα, vβ}} = − 1

2
o(α, β) (vβ ⊗ vα + vα ⊗ vβ) , (3.3a)

{{wα, wβ}} = − 1

2
o(α, β) (wβ ⊗ wα + wα ⊗ wβ) , (3.3b)

{{vα, wβ}} = δαβ

(
e0 ⊗ e∞ +

1

2
wαvα ⊗ e∞ +

1

2
e0 ⊗ vαwα

)
+

1

2
o(α, β) (e0 ⊗ vαwβ + wβvα ⊗ e∞) , (3.3c)

where o(−,−) is the ordering function on d elements defined in Section 1.5. To derive (3.3a),

note that Proposition 2.3.12 gives for α < β that {{vα, vβ}} = −1
2(vβ ⊗ vα + vα ⊗ vβ). This is

because vα < vβ , and their heads and tails coincide. We then find (3.3a) by cyclic antisymmetry

of the double bracket. Identities (3.3b) and (3.3c) are obtained in the same way. Next, we can

write the moment map in A with respect to this quasi-Poisson bracket using Theorem 2.3.9, and

it is given by Φ = Φ0 + Φ∞ where

Φ0 =(e0 + xy)(e0 + yx)−1
−→∏

α=1,...,d

(e0 + wαvα)−1 ∈ e0Ae0 , (3.4a)

Φ∞ =
−→∏

α=1,...,d

(e∞ + vαwα) ∈ e∞Ae∞ . (3.4b)
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For q0, q∞ ∈ C×, we set q̃ = q0e0 + q∞e∞ and define Λq̃ = A/(Φ − q̃). Since our ordering

comes from a total ordering, Λq̃ is a multiplicative preprojective algebra associated to Q with

parameter q̃ as defined in [56].

3.1.2 An interesting localisation

Consider the algebra A′ = Ax obtained by formally adjoining an element x−1 = e0x
−1e0 such

that xx−1 = e0 = x−1x. As (e0 + xy)−1 ∈ A, both z := y + x−1 and z−1 lie in A′. The double

bracket descends to A′, and it takes the following form with z

{{z, z}} = − 1

2

(
z2 ⊗ e0 − e0 ⊗ z2

)
, (3.5a)

{{x, z}} =
1

2
zx⊗ e0 +

1

2
e0 ⊗ xz +

1

2
(z ⊗ x− x⊗ z) , (3.5b)

{{z, wα}} =
1

2
e0 ⊗ zwα −

1

2
z ⊗ wα , {{z, vα}} =

1

2
vαz ⊗ e0 −

1

2
vα ⊗ z , (3.5c)

To show this, we use the B-linearity of the double bracket and the derivation rules (D2)–(D2’).

For example, {{x, z}} = {{x, y}}+
{{
x, x−1

}}
and the first term is given by (3.2b). For the second,

we have for any a ∈ A

0 = {{a, e0}} =
{{
a, xx−1

}}
= {{a, x}}x−1 + x

{{
a, x−1

}}
,

so that
{{
x, x−1

}}
= −x−1 {{x, x}}x−1, which is 1

2(x−1⊗x−x⊗x−1) by (3.2a). The algebraA′

also inherits the moment map. Thus (A, {{−,−}} ,Φ) is quasi-Hamiltonian for the double bracket

given above and the moment map Φ = Φ0 + Φ∞ defined by (3.4a)–(3.4b). In particular, we can

rewrite (3.4a) as

Φ0 = xzx−1z−1
−→∏

α=1,...,d

(e0 + wαvα)−1 . (3.6)

The localisation of the algebra Λq̃ is now defined as A′/(Φ− q̃), which can be understood as the

algebra A′ with the relations

xzx−1z−1 = q0

←−∏
α=1,...,d

(e0 + wαvα) ,

−→∏
α=1,...,d

(e∞ + vαwα) = q∞e∞ .

It seems natural to choose a way to rewrite the products appearing in these relations as sums. In

our case, we will see in Chapter 4 that we only care about the first identity, which leads us to the

introduction of spin elements a′α, c
′
α in A′, defined as follows :

a′α = wα , c′1 = v1z , c′α = vα(e0 + wα−1vα−1) . . . (e0 + w1v1)z . (3.7)
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Note that we can define the c′α inductively using

c′α =
α−1∑
λ=1

vαwλc
′
λ + vαz . (3.8)

With this choice, the first relation is equivalent to xzx−1 = q0z + q0
∑

α a
′
αc
′
α.

We are interested in the double brackets between the elements (x, z, a′α, c
′
α), and the only ones

that we do not have are those involving c′α. The proofs of the next few results are postponed to

§ 3.3.1.

Proposition 3.1.2 For any α, β = 1, . . . , d,

{{
x, c′α

}}
=

1

2
c′αx⊗ e0 +

1

2
c′α ⊗ x ,

{{
z, c′α

}}
= −1

2
c′αz ⊗ e0 +

1

2
c′α ⊗ z (3.9a){{

a′α, c
′
β

}}
= − 1

2
c′βa
′
α ⊗ e0 +

1

2
(o(α, β)− δαβ) e∞ ⊗ a′αc′β

− δαβ

(
e∞ ⊗ z +

β−1∑
λ=1

e∞ ⊗ a′λc′λ

)
, (3.9b)

where the last sum is omitted for β = 1.

Lemma 3.1.3 For any α, β = 1, . . . , d,

{{
vα, c

′
β

}}
=

1

2
c′β ⊗ vα −

1

2
(o(α, β) + δαβ) vα ⊗ c′β . (3.10)

Proposition 3.1.4 For any α, β = 1, . . . , d,

{{
c′α, c

′
β

}}
=

1

2
o(α, β)

(
c′β ⊗ c′α − c′α ⊗ c′β

)
. (3.11)

Note that in the case d = 1 we can simply write

{{
a′1, c

′
1

}}
= −1

2
c′1a
′
1 ⊗ e0 −

1

2
e∞ ⊗ a′1c′1 − e∞ ⊗ z ,

{{
c′1, c

′
1

}}
= 0 ,

instead of (3.9b) and (3.11).

3.1.3 Associated brackets

Recall that the bracket {−,−} associated to {{−,−}} by (2.15) defines a left Loday bracket

on A, which descends to a Lie bracket on A/[A,A], see § 2.3.2. Moreover, since the left
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Loday bracket is a derivation in the second variable, it descends to an H0-Poisson structure on

A/[A,A]. Similarly, this holds forA′ andA′/[A′, A′]. This structure defines a Poisson bracket on

corresponding varieties, which is obtained by quasi-Hamiltonian reduction by Theorem 2.3.24.

Furthermore, the latter Poisson bracket is completely characterised by the associated bracket using

(2.36). This motivates the results that we gather now, and their possible relation to integrability

as in § 2.3.4.

General results

Now, we derive several identities involving the associated bracket (both as a Loday bracket on A

or a Lie bracket on A/[A,A]), whose importance will be made precise in Chapter 4. All proofs

are postponed to § 3.3.2.

Lemma 3.1.5 For any k, l ≥ 1, we get in A′/[A′, A′]

{xk, xl} =0 , {xk, a′αc′βxl} = k a′αc
′
βx

k+l , (3.12a)

{a′γc′εxk, a′αc′βxl} =
1

2

(
k∑
r=1

−
l∑

r=1

)(
a′αc
′
βx

ra′γc
′
εx
k+l−r + a′αc

′
βx

k+l−ra′γc
′
εx
r
)

+
1

2
o(α, γ)(a′γc

′
εx
ka′αc

′
βx

l + a′αc
′
εx
ka′γc

′
βx

l)

+
1

2
o(ε, β)(a′αc

′
βx

ka′γc
′
εx
l − a′αc′εxka′γc′βxl)

+
1

2
[o(ε, α) + δαε] a

′
αc
′
εx
ka′γc

′
βx

l − 1

2
[o(β, γ) + δβγ ] a′αc

′
εx
ka′γc

′
βx

l

+ δαε

(
zxk +

ε−1∑
λ=1

a′λc
′
λx

k

)
a′γc
′
βx

l

− δβγ a′αc′εxk
zxl +

β−1∑
µ=1

a′µc
′
µx

l

 . (3.12b)

In fact, (3.12a) holds in A′ for the left Loday bracket {−,−}. A similar statement is true for the

different variants of Lemma 3.1.5 that we state in the remainder of this subsection and in § 3.2.3.

(We will not write it explicitly to keep those results as simple as possible.)

As a first variant of Lemma 3.1.5, it seems natural to try to write the analogue of this result when

x is replaced by z.
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Lemma 3.1.6 For any k, l ≥ 1, we get in A′/[A′, A′]

{zk, zl} =0 , {zk, a′αc′βzl} = 0 , (3.13a)

{a′γc′εzk, a′αc′βzl} =
1

2

(
k∑
r=1

+
l∑

r=1

)(
a′αc
′
βz

ra′γc
′
εz
k+l−r − a′αc′βzk+l−ra′γc

′
εz
r
)

+ a′αc
′
βa
′
γc
′
εz
k+l +

1

2
o(α, γ)(a′γc

′
εz
ka′αc

′
βz

l + a′αc
′
εz
ka′γc

′
βz

l)

− a′αc′βzk+la′γc
′
ε +

1

2
o(ε, β)(a′αc

′
βz

ka′γc
′
εz
l − a′αc′εzka′γc′βzl)

+
1

2
[o(ε, α) + δαε] a

′
αc
′
εz
ka′γc

′
βz

l − 1

2
[o(β, γ) + δβγ ] a′αc

′
εz
ka′γc

′
βz

l

+ δαε

(
a′γc
′
βz

k+l+1 +

ε−1∑
λ=1

a′λc
′
λz
ka′γc

′
βz

l

)

− δβγ

a′αc′εzk+l+1 +

β−1∑
µ=1

a′αc
′
εz
ka′µc

′
µz

l

 . (3.13b)

Moreover, (3.13a) holds for any k, l ∈ Z.

This time, we can see that C[z±1]/
[
C[z±1],C[z±1]

]
is an abelian subalgebra of A′/[A′, A′],

whose Lie bracket with any element in the infinite set {a′αc′βzk | k ∈ Z, 1 ≤ α, β ≤ d} vanishes.

A modification of those two results consists in using the elements (vα, wα)α that originally appear

in the definition of A (or A′). Moreover, it allows us to work in greater generalities. Consider

u ∈ {x, y, z, e0 + xy}, and assume that we are in A if u 6= z, and in A′ if u = z. We have that

ε(x) = +1, ε(y) = −1, and we choose to set ε(z) = −1, ε(e0 + xy) = +1. Then we can write

{{u, u}} = 1
2ε(u)[u2 ⊗ e0 − e0 ⊗ u2]. Furthermore, we have in each case

{{u,wα}} =
1

2
e0 ⊗ uwα −

1

2
u⊗ wα , {{u, vα}} =

1

2
vαu⊗ e0 −

1

2
vα ⊗ u . (3.14)

Indeed, all these double brackets are given in that form in § 3.1.1 and § 3.1.2, or they can be

computed for u = e0 + xy. Consider the elements wαvβul for any l ∈ N and α, β = 1, . . . , d. In

the case u = z, we have for all α that wαv1z
l = a′αc

′
1z
l−1.
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Lemma 3.1.7 For any k, l ≥ 1, we have in A/[A,A] (or in A′/[A′, A′] when u = z) that

{uk, ul} =0 , {uk, wαvβul} = 0 , (3.15a)

{wγvεuk, wαvβul} =
1

2
[o(γ, β) + o(ε, α)− o(ε, β)− o(γ, α)]wαvεu

k wγvβu
l

+
1

2
o(γ, β) wαvβ wγvεu

k+l +
1

2
o(ε, α) wαvβu

k+l wγvε

− 1

2
o(ε, β) wαvβu

k wγvεu
l − 1

2
o(γ, α) wαvβu

l wγvεu
k

− δγβ
[
wαvεu

k+l +
1

2
wαvβ wγvεu

k+l +
1

2
wαvεu

k wγvβu
l

]
(3.15b)

+ δαε

[
wγvβu

k+l +
1

2
wαvβu

k+l wγvε +
1

2
wαvεu

k wγvβu
l

]
+

1

2
ε(u)

[
k−1∑
τ=1

wαvβu
k+l−τwγvεu

τ +
l∑

σ=1

wαvβu
k+σwγvεu

l−σ

]

− 1

2
ε(u)

[
l−1∑
σ=1

wαvβu
σwγvεu

k+l−σ +

k∑
τ=1

wαvβu
k−τwγvεu

l+τ

]

The next result follows from Definitions 2.3.35, 2.3.37 and the remark after Lemma 3.1.5.

Corollary 3.1.8 The element u is strongly involutive. Furthermore, if I(u) is the subalgebra of

A (or A′) generated by B, u and elements wαvβuk, we get an involutive chain C[u] ⊂ I(u) ⊂ A

(or A′).

Embeddings of quivers

We now consider two constructions of families of elements in involution, which are associated to

subquivers of Q̄. Proofs for all non-trivial results are provided in § 3.3.3.

First, let Q̄0 be the quiver with vertices {0,∞} and arrows x, y : 0 → 0. In terms of the

construction described before Lemma 2.3.14, this is the subquiver Q̄′ supported at I ′ = {0} to

which we add the vertex∞ as a disconnected component. Next, let Q̄1 be obtained from Q̄0 by

adding arrows v1 : ∞ → 0 and w1 : 0 → ∞. Similarly, we can consider Q̄1, . . . , Q̄d, where

Q̄α is obtained from the previous quiver Q̄α−1 by adding vα, wα. Clearly, Q̄d = Q̄. We can take

on each subquiver Q̄α the ordering obtained by restricting (3.1) to the arrows of Q̄α. This gives

a quasi-Hamiltonian structure on Aα, the algebra CQ̄α localised at the elements et(a) + aa∗ for
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a ∈ Q̄α. This yields in turn a chain of quasi-Hamiltonian algebras

A0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ Ad = A , (3.16)

which can be localised at x. In particular, note that the moment map Φ(α) of Aα is defined in any

Aβ , β ≥ α. Moreover, it can be obtained inductively as

Φ(0) = (e0 + xy)(e0 + yx)−1 + e∞, Φ(α) = Φ(α−1)(1 + wαvα)−1(1 + vαwα) . (3.17)

We begin by only considering the embedding A0 ⊂ A. Let φ = Φ0 = (e0 + xy)(e0 + yx)−1,

or xzx−1z−1 when we localise A at x. We also assume that there is a formal inverse in A to

u ∈ {x, y, z, e0 + xy}, so we work in the localised algebra if u is not already invertible.

Proposition 3.1.9 Let U+,η = u(1 + ηφ), U−,η = u(1 + ηφ−1), for arbitrary η ∈ C playing the

role of a spectral parameter. Then, if ε(u) = −1,

{UK+,η, UL+,η′} = 0 mod [A,A], for any η, η′ ∈ C . (3.18)

If ε(u) = +1,

{UK−,η, UL−,η′} = 0 mod [A,A], for any η, η′ ∈ C . (3.19)

The result also holds for u = x + y−1, ε(x + y−1) = +1, if we decide to localise at y. We get

the following by definition 2.3.29.

Corollary 3.1.10 Assume ε(u) = −1 and for all K ∈ N, develop UK+,η =
∑K

k=0 uK,kη
k. Then

any two elements in the set {uK,k | K ∈ N, 0 ≤ k ≤ K} are in involution. The same holds for

ε(u) = +1 with U−,η instead.

Proof. We use Proposition 3.1.9 to get all brackets in the discussion below. First, taking η = η′ =

0, we get that {uK,0, uL,0} = 0 for all K,L ∈ N (though we already knew it by Lemma 3.1.7).

This gives by linearity, taking only η′ = 0, {UK+,η − uK,0, uL,0} = 0. Since 1
η (UK+,η − uK) =

uK,1 + o(η), we get from our previous computation that {uK,1, uL,0} = 0 by dividing by η then

taking η = 0. Repeating the argument, {uK,k, uL,0} = 0 for all k ≤ K and all L. Repeating the

argument by developing in terms of η′, we can conclude. 2

If we consider the full chain given in (3.16), we can get a different result. To state it, we restrict

to the cases u ∈ {y, z}, and we define the element u(α) = Φ(α)u for each 0 ≤ α ≤ d.
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Proposition 3.1.11 For any K,L ∈ N, 0 ≤ α, β ≤ d, the elements uK(α), u
L
(β) are in involution.

Note that we can write y(0) = (e0 +xy)y(e0 +xy)−1 and z(0) = xzx−1, hence Proposition 3.1.11

gives other families of elements that commute with any yK in the Lie algebra A/[A,A] (or zK in

A′/[A′.A′]) for any d.

Computations for the Loday bracket

The translation of Proposition 3.1.9 on representation spaces is that for ε(u) = −1 the

functions (trX (UK+,η))K∈N Poisson commute after quasi-Hamiltonian reduction, as we will see

in Chapter 4. It is also true for (trX (UK−,η))K∈N with ε(u) = +1. By definition of the Poisson

bracket, we have in fact that such functions are commuting under the quasi-Poisson bracket, i.e.

on the representation spaces before reduction. Hence the flows defined by the corresponding

vector fields {trX (UK+,η),−}P (again, before reduction and it is similar for the other families)

commute. If we can integrate the flows before reduction, it suffices to project them to get the

flows on the reduced space. This section deals with the derivation of the defining vector fields

before reduction, see also the end of § 2.3.4 as we will make an extensive use of (2.38).

Lemma 3.1.12 Write Uη = z(1 + ηφ) with φ = xzx−1z−1. The left Loday bracket {−,−} :

A′ ×A′ → A′ satisfies for any K ∈ N×

1

K
{UKη , x} =− ηφUK−1

η zx− xUK−1
η z ,

1

K
{UKη , z} = −zUK−1

η z + UK−1
η z2 ,

1

K
{UKη , vβ} =0 ,

1

K
{UKη , wβ} = 0 .

Let Ay be the algebra A localised at y in the same way as we obtained A′ from A.

Lemma 3.1.13 Write Ūη = y(1 + ηφ) with φ = (e0 + xy)(e0 + yx)−1. The left Loday bracket

{−,−} : Ay ×Ay → Ay satisfies for any K ∈ N×

1

K
{ŪKη , x} =− ŪK−1

η − xŪK−1
η y − ηφŪK−1

η (e0 + yx) ,

1

K
{ŪKη , y} =− yŪK−1

η y + ŪK−1
η y2 ,

1

K
{ŪKη , vβ} = 0 ,

1

K
{ŪKη , wβ} = 0 .
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Lemma 3.1.14 Write Ûη = x(1 + ηφ−1) with φ = xzx−1z−1. The left Loday bracket {−,−} :

A′ ×A′ → A′ satisfies for any K ∈ N×

1

K
{ÛKη , x} =xÛK−1

η x− ÛK−1
η x2 ,

1

K
{ÛKη , z} =zÛK−1

η x+ ηφ−1ÛK−1
η xz ,

1

K
{ÛKη , vβ} =0 ,

1

K
{ÛKη , wβ} = 0 .

Note the similarity of Lemmae 3.1.12 and 3.1.14 if we swap x and z.

Lemma 3.1.15 Write Ũη = (e0 +xy)(1+ηφ−1) with φ = (e0 +xy)(e0 +yx)−1. The left Loday

bracket {−,−} : A×A→ A satisfies for any K ∈ N×

1

K
{ŨKη , x} =− ŨK−1

η (e0 + xy)x− ηxφ−1ŨK−1
η (e0 + xy) ,

1

K
{ŨKη , (e0 + xy)} =(e0 + xy)ŨK−1

η (e0 + xy)− ŨK−1
η (e0 + xy)2 ,

1

K
{ŨKη , vβ} =0 ,

1

K
{ŨKη , wβ} = 0 .

All proofs can be found in § 3.3.4. Next, we can state similar results for the elements given in

Proposition 3.1.11, see also § 3.3.4 for the proofs.

Lemma 3.1.16 Write z(α) = Φ(α)z with Φ(α) given in (3.17) for 0 ≤ α ≤ d. The left Loday

bracket {−,−} : A′ ×A′ → A′ satisfies for any K ∈ N×

1

K
{zK(α), x} =− zK(α)x ,

1

K
{zK(α), z} = 0 ,

1

K
{zK(α), vβ} =vβzz

K−1
(α) Φ(α) ,

1

K
{zK(α), wβ} = −zzK−1

(α) Φ(α)wβ , β ≤ α ,
1

K
{zK(α), vβ} =0 ,

1

K
{zK(α), wβ} = 0 , β > α .

Moreover, {zK(α), z(α)} = {zK(α),Φ
(α)} = 0.

Lemma 3.1.17 Write y(α) = Φ(α)y with Φ(α) given in (3.17) for 0 ≤ α ≤ d. The left Loday

bracket {−,−} : A×A→ A satisfies for any K ∈ N×

1

K
{yK(α), x} =− yK−1

(α) Φ(α) − yK(α)x ,
1

K
{yK(α), y} = 0 ,

1

K
{yK(α), vβ} =vβyy

K−1
(α) Φ(α) ,

1

K
{yK(α), wβ} = −yyK−1

(α) Φ(α)wβ , β ≤ α ,
1

K
{yK(α), vβ} =0 ,

1

K
{yK(α), wβ} = 0 , β > α .

Moreover, {yK(α), y(α)} = {yK(α),Φ
(α)} = 0.



3.2. Cyclic quivers 63

∞

0

m−1

1

m−2

s

s+1

s−1

s+2

x0 y0

xm−1 ym−1

xm−2
ym−2

xs−1ys−1

xsys

xs+1
ys+1

Figure 3: The double of a cyclic quiver on m vertices with general framing. The thick arrow

∞→ s represents the ds elements (vs,α)α, while the thick dashed arrow s→∞ represents their

ds doubles (ws,α)α.

3.2 Cyclic quivers

Fix an integer m ≥ 2 and let I = Zm = Z/mZ. When we consider I as a set, we identify it with

{0, . . . ,m−1} by sending an element s ∈ I to its representative in {0, . . . ,m−1}. Moreover, fix

d = (d0, . . . , dm−1) ∈ NI such that |d| =
∑

s∈I ds ≥ 1. Without loss of generality, we simply

assume that d0 ≥ 1 while ds ∈ N for s ∈ I \ {0}.

We look at a quasi-Hamiltonian structure associated to (the path algebra of the double of) a cyclic

quiver on m arrows, see Example 2.2.2, with framing corresponding to d. We explicitly define

the quiver Q̄d in the following way. LetQd be the quiver with vertex set Ĩ = I∪{∞}, and whose

edge set consists, for all s ∈ I , of ds + 1 arrows given by xs : s→ s+ 1 and vs,α :∞→ s with

α = 1, . . . , ds. There is no arrow∞→ swhen ds = 0. The double Q̄d ofQd is then given by the

same vertex set and 2m+2|d| arrows given by the ones above together with ys = x∗s : s+1→ s,

ws,α = v∗s,α : s→∞ for all 1 ≤ α ≤ ds and s ∈ I , see Figure 3.

We write CQ̄d for the path algebra of Q̄d, and we let A denote the algebra obtained by inverting

the elements et(a) + aa∗ for all a ∈ Q̄d. These are B-algebras for B = ⊕s∈ICes ⊕ Ce∞. We
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consider the ordering < on the vertices of Q̄d given by

at 0 : x0 < y0 < xm−1 < ym−1 < v0,1 < w0,1 < . . . < v0,d0 < w0,d0 (3.20a)

at s : xs < ys < xs−1 < ys−1 < vs,1 < ws,1 < . . . < vs,ds < ws,ds (3.20b)

at∞ : v0,1 < w0,1 < . . . < v0,d0 < w0,d0 < v1,1 < w1,1 < . . .

. . . < vm−1,1 < wm−1,1 < . . . < vm−1,dm−1 < wm−1,dm−1 (3.20c)

Here, we omit the elements vs,1, . . . , ws,ds in the ordering at a vertex when ds = 0. The ordering

just defined is not induced by a total order on Q̄d.

Remark 3.2.1 For the remainder of this section, we adopt several conventions, some of which

have already been noted.

The indices r, s, p, q range in I , and when we write o(r, s) we mean om(r′, s′), the value of the

ordering function on m elements (defined in Section 1.5) evaluated on the pair (r′, s′) which is

the representative of (r, s) under the identification of I × I and {0, . . . ,m− 1}×2 as sets.

When we consider a couple (s, α), for example as index of vs,α, we assume that s ∈ I as we

have just explained and α ranges over the set {1, . . . , ds}. We omit such couples when ds = 0.

We call those pairs (s, α) the admissible spins (or spin indices). The greek indices α, β, γ, ε

corresponding to such couples follow the same convention.

The notation δrso(α, β) corresponding to admissible spins (s, α), (r, β) takes the value 0 if r 6= s,

while if r = s it denotes ods(α, β), the ordering function on ds elements evaluated on the pair

(α, β), which is well-defined since by convention α, β ∈ {1, . . . , ds}. In the latter case if ds = 0,

this identically vanishes.

3.2.1 Quasi-Hamiltonian formalism

The algebra A = CQ̄(et(a)+aa
∗) is quasi-Hamiltonian by Theorem 2.3.9, and we can characterise

its double quasi-Poisson bracket using Proposition 2.3.12. On the arrows forming the cycle, we



3.2. Cyclic quivers 65

have that

{{xr, xs}} =
1

2
δ(s,r−1) xr−1xr ⊗ er −

1

2
δ(s,r+1) er+1 ⊗ xrxr+1 , (3.21a)

{{yr, ys}} =
1

2
δ(s,r−1) er ⊗ yryr−1 −

1

2
δ(s,r+1) yr+1yr ⊗ er+1 , (3.21b)

{{xr, ys}} = δsr

(
er+1 ⊗ er +

1

2
yrxr ⊗ er +

1

2
er+1 ⊗ xryr

)
− 1

2
δ(s,r−1) xr ⊗ yr−1 +

1

2
δ(s,r+1) yr+1 ⊗ xr . (3.21c)

For these arrows with the framing arrows, we can find

{{xr, ws,α}} =
1

2
δ(s,r+1) er+1 ⊗ xrwr+1,α −

1

2
δrs xr ⊗ wr,α , (3.22a)

{{xr, vs,α}} =
1

2
δrs vr,αxr ⊗ er −

1

2
δ(s,r+1) vr+1,α ⊗ xr , (3.22b)

{{yr, ws,α}} =
1

2
δrs er ⊗ yrwr,α −

1

2
δ(s,r+1) yr ⊗ wr+1,α , (3.22c)

{{yr, vs,α}} =
1

2
δ(s,r+1)vr+1,αyr ⊗ er+1 −

1

2
δrsvr,α ⊗ yr . (3.22d)

Finally, between the framing arrows, we get

{{vs,α, vr,β}} = − 1

2
o(s, r)vs,α ⊗ vr,β

− 1

2
δsro(α, β) (vr,β ⊗ vs,α + vs,α ⊗ vr,β) , (3.23a)

{{ws,α, wr,β}} = − 1

2
o(s, r)wr,β ⊗ ws,α

− 1

2
δsro(α, β) (wr,β ⊗ ws,α + ws,α ⊗ wr,β) , (3.23b)

{{vs,α, wr,β}} =
1

2
o(s, r)wr,βvs,α ⊗ e∞

+ δsrδαβ

(
es ⊗ e∞ +

1

2
wr,βvs,α ⊗ e∞ +

1

2
es ⊗ vs,αwr,β

)
+

1

2
δsro(α, β) (es ⊗ vs,αwr,β + wr,βvs,α ⊗ e∞) , (3.23c)

All double brackets can be easily obtained. We limit ourselves to show (3.23a), leaving the rest

to the reader. To evaluate {{vs,α, vr,β}}, if s = r, we just have to remark that it is the same

computation that leads to (3.3a). So it remains the case s 6= r, where we only have t(vs,α) =

∞ = t(vr,β). If s < r, we get by Proposition 2.3.12 that {{vs,α, vr,β}} = −1
2vs,α ⊗ vr,β . If s > r,

we have similarly {{vr,β , vs,α}} = −1
2vr,β ⊗ vs,α, so that by cyclic antisymmetry {{vs,α, vr,β}} =

+1
2vs,α ⊗ vr,β . Considering all cases at once, we have precisely (3.23a). It will be useful to
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remark that we can write from (3.23c) (note the change of indices!)

{{ws,α, vr,β}} =
1

2
o(s, r)e∞ ⊗ ws,αvr,β − δsrδαβe∞ ⊗ es

+
1

2
δsr[o(α, β)− δαβ](e∞ ⊗ ws,αvr,β + vr,βws,α ⊗ es) .

(3.24)

In the form (3.21a)–(3.22d), the equations involving the arrows xs, ys do not seem to be a natural

generalisation of (3.2a)–(3.2d). To exhibit their similarities, introduce the elements x =
∑

s xs,

y =
∑

s ys, so that x ∈ ⊕sesAes+1 and y ∈ ⊕sesAes−1. Then we can write (3.22a)–(3.22d) as

{{x,ws,α}} =
1

2
es ⊗ xws,α −

1

2
esx⊗ ws,α , {{x, vs,α}} =

1

2
vs,αx⊗ es −

1

2
vs,α ⊗ xes ,

{{y, ws,α}} =
1

2
es ⊗ yws,α −

1

2
esy ⊗ ws,α , {{y, vs,α}} =

1

2
vs,αy ⊗ es −

1

2
vs,α ⊗ yes .

which is similar to (3.2c)–(3.2d). Furthermore, set Fa =
∑

s∈I es+a⊗ es for any a ∈ Z. We have

for example

F1 =
∑
s∈I

ei+1 ⊗ ei , F−1 =
∑
s∈I

es−1 ⊗ es =
∑
s∈I

es ⊗ es+1 .

Then, we can show that

{{x, x}} =
1

2

(
x2F1 − F1x

2
)
, {{y, y}} = −1

2

(
y2F−1 − F−1y

2
)

(3.25a)

{{x, y}} =F1 +
1

2
(yxF1 + F1xy − xF1y + yF1x) , (3.25b)

which contains in particular (3.2a) and (3.2b) if we extend these double brackets to the case

m = 1, where then I = {0} and Fa = e0 ⊗ e0 for all a ∈ Z. Let us prove that the first identity

holds, the other cases being similar. We have by (3.21a)

{{x, x}} =
∑
r,s

{{xr, xs}} =
1

2

∑
r

xr−1xr ⊗ er −
1

2

∑
r

er+1 ⊗ xrxr+1

=
1

2
x2
∑
r

er+1 ⊗ er −
1

2

∑
r

er+1 ⊗ erx2 =
1

2
x2F1 −

1

2
F1x

2 ,

where we used that xer+1 = xrer+1 = xr and erx = erxr = xr.

All these double brackets define the quasi-Poisson structure on A. To fully understand the quasi-

Hamiltonian structure, remark that the moment map is given by Φ =
∑

s Φs + Φ∞, where

Φs =(es + xsys)(es + ys−1xs−1)−1
−→∏

16α6ds

(es + ws,αvs,α)−1 ∈ esAes , (3.26a)

Φ∞ =

−→∏
16s6m−1

−→∏
16α6ds

(e∞ + vs,αws,α) ∈ e∞Ae∞ , (3.26b)
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by direct application of Theorem 2.3.9. For q = (q0, . . . , qm−1) ∈ (C×)I and q∞ ∈ C×, we can

set q̃ =
∑

s qses + q∞e∞ and form the multiplicative preprojective algebra6 Λq̃ = A/(Φ− q̃).

3.2.2 Additional localisation

Motivated by the localisation for the Jordan quiver and subsequent developments, see § 3.1.2, we

consider the algebra A′ = Ax obtained by inverting x. To define the latter, we add elements

x−1
s = es+1x

−1
s es to A such that xsx−1

s = es = x−1
s xs for all s ∈ I . Then x−1 :=

∑
s x
−1
s

satisfies xx−1 = 1 − e∞ = x−1x. We have that zs := ys + x−1
s ∈ A′ and z−1

s ∈ A′ since

z−1
s = (es + xsys)

−1xs. We form the element z = y + x−1 =
∑

s zs which is readily seen to be

such that z ∈ ⊕ses+1A
′es. We can compute double brackets with z and get

{{z, z}} =− 1

2

(
z2F−1 − F−1z

2
)

(3.27a)

{{x, z}} =
1

2
(zxF1 + F1xz − xF1z + zF1x) , (3.27b)

{{z, x}} =− 1

2
(xzF−1 + F−1zx− zF−1x+ xF−1z) , (3.27c)

where the last identity is obtained by cyclic antisymmetry together with the following

straightforward result.

Lemma 3.2.2 Assume that a ∈ ⊕sesA′es+r, b ∈ ⊕sesA′es−r for some r ∈ Z. We have that

(baFr)
◦ = F−rba and (aFrb)

◦ = bF−ra.

It is also easy to show that

{{z, ws,α}} =
1

2
es ⊗ zws,α −

1

2
esz ⊗ ws,α ,

{{z, vs,α}} =
1

2
vs,αz ⊗ es −

1

2
vs,α ⊗ zes .

(3.28)

We choose to introduce the following spin variables in A′ :

a′s,α = ws,α , c′s,1 = vs,1z , c′s,α = vs,α(es + ws,α−1vs,α−1) . . . (es + ws,1vs,1)z , (3.29)

such that the elements c′s,α admit an alternative inductive definition as

c′s,α =

α−1∑
λ=1

vs,αws,λc
′
s,λ + vs,αz . (3.30)

6Recall that we can recover a total order to match the definition given in [56], see Remark 2.3.10.
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It is important to remark that a′s,α = esa
′
s,αe∞ and c′s,α = e∞c

′
s,αes−1. This is due to the fact that

vs,αz = vs,αzs−1. The reason for this mysterious choice of elements comes from the fact that, in

A′, the identity Φs = qses with Φs given by (3.26a) for some qs ∈ C× is equivalent to

xszsx
−1
s−1 = qszs−1 + qs

ds∑
α=1

a′s,αc
′
s,α .

We can now formulate the double quasi-Poisson bracket evaluated on the elements

(x, z, a′s,α, c
′
s,α). Only the double brackets involving c′s,α are not already known, and we compute

them in § 3.3.5.

Proposition 3.2.3 For any r, s ∈ I , α = 1, . . . , ds, γ = 1, . . . , dr,{{
x, a′s,α

}}
=

1

2
es ⊗ xa′s,α −

1

2
esx⊗ a′s,α ,{{

z, a′s,α
}}

=
1

2
es ⊗ za′s,α −

1

2
esz ⊗ a′s,α , (3.31a){{

x, c′s,α
}}

=
1

2
c′s,αx⊗ es−1 +

1

2
c′s,α ⊗ xes−1 ,{{

z, c′s,α
}}

=− 1

2
c′s,αz ⊗ es−1 +

1

2
c′s,α ⊗ zes−1 , (3.31b){{

a′s,α, a
′
r,γ

}}
= − 1

2
o(s, r) a′r,γ ⊗ a′s,α −

1

2
δsro(α, γ)

(
a′r,γ ⊗ a′s,α + a′s,α ⊗ a′r,γ

)
. (3.31c)

Proposition 3.2.4 For any r, s ∈ I , α = 1, . . . , ds, β = 1, . . . , dr,{{
a′s,α, c

′
r,β

}}
=

1

2
o(s, r) e∞ ⊗ a′s,αc′r,β −

1

2
δ(r,s+1) c

′
r,βa

′
s,α ⊗ es

+
1

2
δsr (o(α, β)− δαβ) e∞ ⊗ a′s,αc′r,β

− δsrδαβ

(
e∞ ⊗ esz +

β−1∑
λ=1

e∞ ⊗ a′s,λc′s,λ

)
,

(3.32)

where the last sum is omitted for β = 1.

Lemma 3.2.5 For any r, s ∈ I , α = 1, . . . , ds, β = 1, . . . , dr,{{
vs,α, c

′
r,β

}}
=− 1

2
o(s, r) vs,α ⊗ c′r,β +

1

2
δ(r,s+1)c

′
r,β ⊗ vs,α

− 1

2
δsr (o(α, β) + δαβ) vs,α ⊗ c′r,β .

(3.33)

Proposition 3.2.6 For any r, s ∈ I , α = 1, . . . , ds, β = 1, . . . , dr,{{
c′s,α, c

′
r,β

}}
= −1

2
o(s, r) c′s,α ⊗ c′r,β +

1

2
δsro(α, β)

(
c′r,β ⊗ c′s,α − c′s,α ⊗ c′r,β

)
. (3.34)
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It is interesting to compare these double brackets with those for a framed Jordan quiver obtained

in § 3.1.1 and § 3.1.2.

3.2.3 Associated brackets

For the rest of this subsection, we write k ≡
m
l to denote that k is congruent to l modulo m, for

given k, l ∈ Z. This notation is also well-defined on elements of I = Zm.

We now translate most of the results from § 3.1.3 to cyclic quivers. We will only keep the results

needed for our study of the corresponding MQVs in Chapter 5. All proofs can be found in § 3.3.6,

§ 3.3.7 and § 3.3.8.

General results

Lemma 3.2.7 For any r, s, p, q ∈ I , α = 1, . . . , ds, β = 1, . . . , dr, γ = 1, . . . , dp, ε = 1, . . . , dq,

and k, l ≥ 1, we have in A′/[A′, A′]

{xk, xl} = 0 , {xk, a′s,αc′r,βxl} = k a′s,αc
′
r,βx

k+l , (3.35)

{a′p,γc′q,εxk, a′s,αc′r,βxl} =
1

2

k∑
v=1

(
a′s,αc

′
r,βx

va′p,γc
′
q,εx

k+l−v + a′s,αc
′
r,βx

k+l−va′p,γc
′
q,εx

v
)

− 1

2

l∑
v=1

(
a′s,αc

′
r,βx

va′p,γc
′
q,εx

k+l−v + a′s,αc
′
r,βx

k+l−va′p,γc
′
q,εx

v
)

+
1

2
[o(p, r)− o(p, s) + o(q, s)− o(q, r)] a′s,αc′q,εxka′p,γc′r,βxl

+
1

2
δpso(α, γ)

(
a′p,γc

′
q,εx

ka′s,αc
′
r,βx

l + a′s,αc
′
q,εx

ka′p,γc
′
r,βx

l
)

+
1

2
δqro(ε, β)

(
a′s,αc

′
r,βx

ka′p,γc
′
q,εx

l − a′s,αc′q,εxka′p,γc′r,βxl
)

+
1

2
δqs[o(ε, α) + δαε] a

′
s,αc
′
q,εx

ka′p,γc
′
r,βx

l

− 1

2
δpr[o(β, γ) + δβγ ] a′s,αc

′
q,εx

ka′p,γc
′
r,βx

l

+ δqsδαε

(
z +

ε−1∑
λ=1

a′s,λc
′
s,λ

)
xka′p,γc

′
r,βx

l

− δprδβγ a′s,αc′q,εxk
z +

β−1∑
µ=1

a′p,µc
′
p,µ

xl .

(3.36)
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In particular, in order for the elements on which we evaluate the bracket to be nonzero, we need

k ≡
m

0 for xk, while l ≡
m
s− (r − 1) for a′s,αc

′
r,βx

l, and k ≡
m
p− (q − 1) for a′p,γc

′
q,εx

k.

Write 1I = 1− e∞ =
∑

s es, and consider u ∈ {x, y, z, 1I + xy}. We assume that we work in A

if u 6= z and in A′ otherwise. We set ε(x) = ε(1I + xy) = +1, ε(y) = ε(z) = −1 to extend the

map ε : Q̄d → {±1}. We also set θ(u) = ε(u) if u = x, y, z while θ(u) = 0 when u = 1I + xy,

so that u ∈ ⊕sesAes+θ(u). Then, it is easy to check that we can write in all cases

{{u, u}} =
1

2
ε(u)[u2Fθ(u) − Fθ(u)u

2] , (3.37a)

{{u,ws,α}} =
1

2
es ⊗ uws,α −

1

2
esu⊗ ws,α ,

{{u, vs,α}} =
1

2
vs,αu⊗ es −

1

2
vs,α ⊗ ues . (3.37b)

We can prove the following result.

Lemma 3.2.8 For any k, l ∈ N, r, s ∈ I , α = 1, . . . , ds, β = 1, . . . , dr,

{uk, ul} = 0 , {uk, ws,αvr,βul} = 0 , (3.38)

and for p, q ∈ I , γ = 1, . . . , dp, ε = 1, . . . , dq,

{wp,γvq,εuk, ws,αvr,βul}

=
1

2
[o(p, r) + o(q, s)− o(p, s)− o(q, r)]ws,αvq,εuk wp,γvr,βul

+
1

2
δpso(α, γ)(ws,αvq,εu

kwp,γvr,βu
l + wp,γvq,εu

kws,αvr,βu
l)

+
1

2
δqro(β, ε)(ws,αvq,εu

kwp,γvr,βu
l + ws,αvr,βu

kwp,γvq,εu
l)

+
1

2
δqs[o(ε, α) + δεα](ws,αvq,εu

kwp,γvr,βu
l + ws,αvr,βu

k+lwp,γvq,ε)

− 1

2
δpr[o(β, γ) + δβγ ](ws,αvq,εu

kwp,γvr,βu
l + ws,αvr,βwp,γvq,εu

k+l)

+ δqsδεαwp,γvr,βu
k+l − δprδγβ ws,αvq,εuk+l

+
1

2
ε(u)

[
k−1∑
τ=1

ws,αvr,βu
k+l−τwp,γvq,εu

τ +
l∑

τ=1

ws,αvr,βu
k+τwp,γvq,εu

l−τ

]

− 1

2
ε(u)

[
l−1∑
σ=1

ws,αvr,βu
τwp,γvq,εu

k+l−τ +

k∑
τ=1

ws,αvr,βu
k−τwp,γvq,εu

l+τ

]
.

(3.39)

These identities hold directly in A (or A′ for u = z). If we work modulo commutators, the

elements on which we evaluate the bracket are nonzero only if kθ(u) ≡
m

0 for uk, while lθ(u) ≡
m
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s− r for ws,αvr,βul. This follows from the decomposition u ∈ ⊕sesAes+θ(u). Remark also that

when p = q = r = s, (3.39) can be written in the form (3.15b). Indeed, this is obvious for

u = 1I + xy, while in the other three cases we have that l = l0m, k = k0m so we replace um by

u and in the last sums only the terms τ = τ0m have a nonzero contribution.

An immediate consequence of Lemma 3.2.8 and Definitions 2.3.35, 2.3.37 is as follows.

Corollary 3.2.9 The element u is strongly involutive. Furthermore, if I(u) is the subalgebra ofA

(or A′) generated by B, u and elements ws,αvr,βul, we get an involutive chain C[u] ⊂ I(u) ⊂ A

(or A′).

In the particular case where u = 1I + xy, we have that u ∈ ⊕sesAes and we can get a slightly

different result.

Lemma 3.2.10 Fix u = 1I + xy. For any k, l ∈ N, r, s, t ∈ I , α = 1, . . . , ds, β = 1, . . . , dr,

{(esues)k, (eruer)l} = 0 , {(etuet)k, ws,αvr,βul} = 0 . (3.40)

In particular, for any t ∈ I , the element etuet is strongly involutive. Furthermore, if It(u) is the

subalgebra of A generated by B and the elements esues, ws,αvr,βul for all possible indices, we

get an involutive chain C[etuet] ⊂ It(u) ⊂ A.

Embeddings of quivers

Remark 3.2.11 Recall that the admissible spin indices (s, α) introduced in Remark 3.2.1 are

such that s ∈ I , and 1 ≤ α ≤ ds (where we omit such terms for ds = 0). We put a total order on

these couples by setting (s, α) < (r, β) whenever s < r as elements of {0, . . . ,m− 1}, or when

α < β if s = r. We also denote by s̄ ∈ I the element such that (s̄, ds̄) is maximal with respect to

this ordering. Equivalently, s̄ is the highest number in {0, . . . ,m− 1} satisfying ds̄ 6= 0.

Let Ord(d) = {(s, α) | s ∈ I, 1 ≤ α ≤ ds}be the set of admissible spin indices, which is a

totally ordered set by the above construction. If we consider {1, . . . , |d|} with its natural total

order, there is a unique map ρ : {1, . . . , |d|} → Ord(d) preserving total orders on both sets. It

satisfies ρ(1) = (0, 1) and ρ(|d|) = (s̄, ds̄).



72 Chapter 3. Quasi-Hamiltonian algebras defined from cyclic quivers

First, let Q̄0 be the cyclic quiver obtained by removing the framing vertices vs,α, ws,α from Q̄d.

In terms of the construction described before Lemma 2.3.14, this is the subquiver Q̄′ supported at

I to which we add the vertex∞ as a disconnected component. Next, let Q̄1 be obtained from Q̄0

by adding arrows vρ(1) = v0,1 : ∞ → 0 and wρ(1) = w0,1 : 0 → ∞. Similarly, we can consider

Q̄1, Q̄2, . . . , Q̄|d|, where Q̄j is obtained from the previous quiver Q̄j−1 by adding vρ(j), wρ(j).

Clearly, Q̄|d| is our original quiver Q̄d.

We can take on each subquiver Q̄j , j ∈ {0} ∪ {1, . . . , |d|}, the ordering obtained by restricting

(3.20a)–(3.20c) to the arrows of Q̄j . This gives a quasi-Hamiltonian structure on Aj , the algebra

CQ̄j localised at the elements et(a) + aa∗ for a ∈ Q̄j . This yields in turn a chain of quasi-

Hamiltonian algebras

A0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ A|d| = A , (3.41)

which can be localised at x. In particular, note that for any j, j′ ∈ {0} ∪ {1, . . . , |d|}, j ≤ j′, the

moment map Φ(j) of Aj is defined in Aj′ . Moreover, it can be obtained inductively as

Φ(0) =
∑
s∈I

(es + xsys)(es + ys−1xs−1)−1 + e∞,

Φ(j) =Φ(j−1)(1 + wρ(j)vρ(j))
−1(1 + vρ(j)wρ(j)) .

(3.42)

We begin by considering the simplest embedding A0 ⊂ A. We define φ =
∑

s φs by setting

φs = Φ
(0)
s for any s ∈ I . That is φs = (es + xsys)(es + ys−1xs−1)−1 or φs = xszsx

−1
s−1z

−1
s−1

when we localise A at x. For the next proposition, we assume that we work in A localised at

u ∈ {x, y, z, 1I + xy}.

Proposition 3.2.12 Let U+,η = u(1 + ηφ), U−,η = u(1 + ηφ−1), for arbitrary η ∈ C playing

the role of a spectral parameter. Let K,L ∈ N×. Then, if ε(u) = −1,

{UK+,η, UL+,η′} = 0 mod [A,A], for any η, η′ ∈ C . (3.43)

If ε(u) = +1,

{UK−,η, UL−,η′} = 0 mod [A,A], for any η, η′ ∈ C . (3.44)

Note that when u is not 1I + xy and K is not divisible by m, then UK+,η = 0 mod [A,A] and the

result is trivial. Indeed, UK+,η ∈ ⊕sesAes+Kθ(u). This is also true for the other functions UK−,η in

Proposition 3.2.12. The next result is proved as Corollary 3.1.10.
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Corollary 3.2.13 Assume ε(u) = −1 and for all K ∈ N, develop UK+,η =
∑K

k=0 uK,kη
k. Then

any two elements in the set {uK,k | K ∈ N, 0 ≤ k ≤ K} are in involution. The same holds for

ε(u) = +1 with U−,η instead.

Considering this time the full chain (3.41), we can get a different result. To state it, we assume

that u ∈ {y, z, (1I + xy)−1}. We also set u(j) = Φ(j)u for any j ∈ {0, 1, . . . , |d|}. Note that

y(0) = (1I + xy)y(1I + xy)−1 ∈ A and z(0) = xzx−1 ∈ A′.

Proposition 3.2.14 For any K,L ∈ N and 0 ≤ j, j′ ≤ |d|, the elements uK(j), u
L
(j′) are in

involution.

Computations for the Loday bracket

We finish by describing the Loday bracket between generators of A and the functions from

Proposition 3.2.12 that commute in A/[A,A]. See the discussion before Lemma 3.1.12 for a

motivation.

Lemma 3.2.15 Write Uη = z(1I + ηφ), where φ = xzx−1z−1. The left Loday bracket {−,−} :

A′ ×A′ → A′ satisfies for any K ∈ mN×

1

K
{UKη , x} =− ηφUK−1

η zx− xUK−1
η z ,

1

K
{UKη , z} = −zUK−1

η z + UK−1
η z2 ,

1

K
{UKη , vs,α} =0 ,

1

K
{UKη , ws,α} = 0 .

Denote by Ay the algebra A localised at y.

Lemma 3.2.16 Write Ūη = y(1I + ηφ) with φ = (1I + xy)(1I + yx)−1. The left Loday bracket

{−,−} : Ay ×Ay → Ay satisfies for any K ∈ mN×

1

K
{ŪKη , x} =− ŪK−1

η − xŪK−1
η y − ηφŪK−1

η (1I + yx) ,

1

K
{ŪKη , y} =− yŪK−1

η y + ŪK−1
η y2 ,

1

K
{ŪKη , vs,α} = 0 ,

1

K
{ŪKη , ws,α} = 0 .

Lemma 3.2.17 Write Ûη = x(1I + ηφ−1) with φ = xzx−1z−1. The left Loday bracket {−,−} :

A′ ×A′ → A′ satisfies for any K ∈ mN×

1

K
{ÛKη , x} =− ÛK−1

η x2 + xÛK−1
η x ,

1

K
{ÛKη , z} = zÛK−1

η + ηφ−1ÛK−1
η xz ,

1

K
{ÛKη , vs,α} =0 ,

1

K
{ÛKη , ws,α} = 0 .
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Lemma 3.2.18 Write Ũη = u(1I + ηφ−1) with φ = (1I + xy)(1I + yx)−1 and u = 1I + xy.

The left Loday bracket {−,−} : A×A→ A satisfies for any K ∈ N×

1

K
{ŨKη , x} =− ŨK−1

η ux− η xφ−1ŨK−1
η u ,

1

K
{ŨKη , u} = −ŨK−1

η u2 + uŨK−1
η u ,

1

K
{ŨKη , vs,α} =0 ,

1

K
{ŨKη , ws,α} = 0 .

We can also do the same for the elements given in Proposition 3.2.14.

Lemma 3.2.19 Write z(j) = Φ(j)z with Φ(j) given in (3.42) for j ∈ {0, 1, . . . , |d|}. The left

Loday bracket {−,−} : A′ ×A′ → A′ satisfies for any K ∈ mN×

1

K
{zK(j), x} =− zK(j)x ,

1

K
{zK(j), z} = 0 ,

1

K
{zK(j), vs,α} =vs,αzz

K−1
(j) Φ(j) ,

1

K
{zK(j), ws,α} = −zzK−1

(j) Φ(j)ws,α , (s, α) ≤ ρ(j) ,

1

K
{zK(j), vs,α} =0 ,

1

K
{zK(j), ws,α} = 0 , (s, α) > ρ(j) .

Moreover, {zK(j), z(j)} = {zK(j),Φ
(j)} = 0.

Lemma 3.2.20 Write y(j) = Φ(j)y with Φ(j) given in (3.42) for j ∈ {0, 1, . . . , |d|}. The left

Loday bracket {−,−} : A×A→ A satisfies for any K ∈ mN×

1

K
{yK(j), x} =− yK−1

(j) Φ(j) − yK(j)x ,
1

K
{yK(j), y} = 0 ,

1

K
{yK(j), vs,α} =vs,αyy

K−1
(j) Φ(j) ,

1

K
{yK(j), ws,α} = −yyK−1

(j) Φ(j)ws,α , (s, α) ≤ ρ(j) ,

1

K
{yK(j), vs,α} =0 ,

1

K
{yK(j), ws,α} = 0 , (s, α) > ρ(j) .

Moreover, {yK(j), y(j)} = {yK(j),Φ
(j)} = 0.

Lemma 3.2.21 Write u(j) = Φ(j)u with Φ(j) given in (3.42) for j ∈ {0, 1, . . . , |d|} and u =

(1I + xy)−1. The left Loday bracket {−,−} : A×A→ A satisfies for any K ∈ N×

1

K
{uK(j), x} =xuuK−1

(j) Φ(j) ,
1

K
{uK(j), u} = 0 ,

1

K
{uK(j), vs,α} =vs,αuu

K−1
(j) Φ(j) ,

1

K
{uK(j), ws,α} = −uuK−1

(j) Φ(j)ws,α , (s, α) ≤ ρ(j) ,

1

K
{uK(j), vs,α} =0 ,

1

K
{uK(j), ws,α} = 0 , (s, α) > ρ(j) .

Moreover, {uK(j), u(j)} = {uK(j),Φ
(j)} = 0.
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3.3 Remaining proofs

3.3.1 Double brackets for framed Jordan quivers

We successively prove Proposition 3.1.2, Lemma 3.1.3 and Proposition 3.1.4. Most computations

rely on a proof by induction based on the identity (3.8). Knowing the double brackets in § 3.1.1

or § 3.1.2, if we want to compute the bracket
{{

Γ, c′β

}}
for some Γ ∈ A, we first find {{Γ, c′1}}

and then show our statement by induction using

{{
Γ, c′α

}}
=

α−1∑
λ=1

(
vαwλ

{{
Γ, c′λ

}}
+ {{Γ, vαwλ}} c′λ

)
+ {{Γ, vαz}} . (3.45)

Proof. (Proposition 3.1.2.) We begin with the first equality of (3.9a). We can write

{{x, vαz}} =vα {{x, z}}+ {{x, vα}} z

=
1

2
(vαzx⊗ e0 + vα ⊗ xz + vαz ⊗ x− vαx⊗ z) +

1

2
(vαx⊗ z − vα ⊗ xz)

=
1

2
(vαzx⊗ e0 + vαz ⊗ x) ,

which proves the first equality in (3.9a) for α = 1. Now, we compute

{{x, vαwλ}} =vα {{x,wλ}}+ {{x, vα}}wλ

=
1

2
(vα ⊗ xwλ − vαx⊗ wλ) +

1

2
(vαx⊗ wλ − vα ⊗ xwλ) = 0 ,

so that if we assume that the first part of (3.9a) is true for any λ < α, we get from (3.45)

{{
x, c′α

}}
=
α−1∑
λ=1

(
vαwλ

{{
x, c′λ

}}
+ {{x, vαwλ}} c′λ

)
+ {{x, vαz}}

=

α−1∑
λ=1

vαwλ

(
1

2
c′λx⊗ e0 +

1

2
c′λ ⊗ x

)
+

1

2
(vαzx⊗ e0 + vαz ⊗ x)

=
1

2

(
α−1∑
λ=1

vαwλc
′
λ + vαz

)
x⊗ e0 +

1

2

(
α−1∑
λ=1

vαwλc
′
λ + vαz

)
⊗ x ,

which is exactly the first equality in (3.9a) by using (3.8). For the second equality, we compute

{{z, vαz}} =vα {{z, z}}+ {{z, vα}} z =
1

2
(−vαz2 ⊗ e0 + vα ⊗ z2) +

1

2
(vαz ⊗ z − vα ⊗ z2)

=
1

2
(vαz ⊗ z − vαz2 ⊗ e0) ,
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which gives the case α = 1. Then, we find {{z, vαwλ}} = 0 by noticing that the brackets for x or

z with vα and wλ are exactly the same. We then get by induction that the second equation from

(3.9a) holds, too.

To get (3.9b), recall that a′α := wα. We first compute{{
vβz, a

′
α

}}
=vβ ∗

{{
z, a′α

}}
+
{{
vβ, a

′
α

}}
∗ z

=
1

2
(e0 ⊗ vβza′α − z ⊗ vβa′α)

+

[
δαβ z ⊗ e∞ +

1

2
[o(β, α) + δαβ]

(
z ⊗ vβa′α + a′αvβz ⊗ e∞

)]
.

Using {{a′α, vβz}} = −{{vβz, a′α}}
◦, we can write{{

a′α, vβz
}}

=
1

2
(vβa

′
α ⊗ z − vβza′α ⊗ e0)− δαβ e∞ ⊗ z

+
1

2
[o(α, β)− δαβ]

(
vβa
′
α ⊗ z + e∞ ⊗ a′αvβz

)
=− δ(α>β)

(
1

2
e∞ ⊗ a′αvβz +

1

2
vβza

′
α ⊗ e0 + δαβ e∞ ⊗ z

)
+ δ(α<β)

(
vβa
′
α ⊗ z −

1

2
vβza

′
α ⊗ e0 +

1

2
e∞ ⊗ a′αvβz

)
,

recalling that o(α, β) = δ(α<β) − δ(α>β). In particular, this yields{{
a′α, c

′
1

}}
= −1

2
c′1a
′
α ⊗ e0 −

1

2
e∞ ⊗ a′αc′1 − δαβ e∞ ⊗ z

which is exactly the case β = 1 in (3.9b). Next, we need to compute{{
a′α, vβwλ

}}
=vβ

{{
a′α, wλ

}}
+
{{
a′α, vβ

}}
wλ

=− 1

2
o(α, λ) (vβwλ ⊗ wα + vβwα ⊗ wλ)

− δαβ e∞ ⊗ wλ +
1

2
[o(α, β)− δαβ]

(
vβa
′
α ⊗ wλ + e∞ ⊗ a′αvβwλ

)
,

and this implies that

β−1∑
λ=1

{{
a′α, vβwλ

}}
c′λ =−

β−1∑
λ=1

[
1

2
o(α, λ)

(
vβwλ ⊗ wαc′λ + vβwα ⊗ wλc′λ

)
+ δαβe∞ ⊗ wλc′λ

]

+
1

2
[o(α, β)− δαβ]

β−1∑
λ=1

(
vβa
′
α ⊗ wλc′λ + e∞ ⊗ a′αvβwλc′λ

)
.

In the case α > β this gives since wα = a′α

β−1∑
λ=1

{{
a′α, vβwλ

}}
c′λ

α>β
= − δαβ

β−1∑
λ=1

e∞ ⊗ wλc′λ +
1

2

β−1∑
λ=1

(
vβwλ ⊗ wαc′λ − e∞ ⊗ a′αvβwλc′λ

)
.
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Otherwise, we just write
β−1∑
λ=1

{{
a′α, vβwλ

}}
c′λ

α<β
= − 1

2

(
β−1∑

λ=α+1

−
α−1∑
λ=1

) (
vβwλ ⊗ wαc′λ + vβwα ⊗ wλc′λ

)
+

1

2

β−1∑
λ=1

(
vβa
′
α ⊗ wλc′λ + e∞ ⊗ a′αvβwλc′λ

)
Now, assume by induction that (3.9b) holds for any λ < β, that is

{{
a′α, c

′
λ

}} α>λ
= − 1

2
c′λa
′
α ⊗ e0 −

1

2
e∞ ⊗ a′αc′λ − δαλ

e∞ ⊗ z +
λ−1∑
γ=1

e∞ ⊗ a′γc′γ

 ,

{{
a′α, c

′
λ

}} α<λ
= − 1

2
c′λa
′
α ⊗ e0 +

1

2
e∞ ⊗ a′αc′λ

In the first case, α ≥ β, we find from (3.45) and (3.8)

{{
a′α, c

′
β

}} α>β
= − 1

2

β−1∑
λ=1

vβwλc
′
λa
′
α ⊗ e0 −

1

2

β−1∑
λ=1

vβwλe∞ ⊗ a′αc′λ

− δαβ
β−1∑
λ=1

e∞ ⊗ wλc′λ +
1

2

β−1∑
λ=1

(
vβwλ ⊗ wαc′λ − e∞ ⊗ a′αvβwλc′λ

)
−
(

1

2
e∞ ⊗ a′αvβz +

1

2
vβza

′
α ⊗ e0 + δαβ e∞ ⊗ z

)
=− 1

2
c′βa
′
α ⊗ e0 −

1

2
e∞ ⊗ a′αc′β − δαβe∞ ⊗

(
β−1∑
λ=1

a′λc
′
λ + z

)
which coincide with (3.9b). In the second case, we get{{

a′α, c
′
β

}} α<β
=

α∑
λ=1

[
− 1

2
vβwλc

′
λa
′
α ⊗ e0 −

1

2
vβwλ ⊗ a′αc′λ

]
− vβwα ⊗ z

−
α−1∑
γ=1

vβwα ⊗ a′γc′γ +

β−1∑
λ=α+1

(
−1

2
vβwλc

′
λa
′
α ⊗ e0 +

1

2
vβwλ ⊗ a′αc′λ

)

− 1

2

(
β−1∑

λ=α+1

−
α−1∑
λ=1

) (
vβwλ ⊗ wαc′λ + vβwα ⊗ wλc′λ

)
+

1

2

β−1∑
λ=1

(
vβa
′
α ⊗ wλc′λ + e∞ ⊗ a′αvβwλc′λ

)
+

(
vβa
′
α ⊗ z −

1

2
vβza

′
α ⊗ e0 +

1

2
e∞ ⊗ a′αvβz

)
which, after some easy manipulations on the sums, yields

{{
a′α, c

′
β

}} α<β
=

1

2

β−1∑
λ=1

(
−vβwλc′λa′α ⊗ e0 + e∞ ⊗ a′αvβwλc′λ

)
− 1

2
vβza

′
α ⊗ e0 +

1

2
e∞ ⊗ a′αvβz

=− 1

2
c′βa
′
α ⊗ e0 +

1

2
e∞ ⊗ a′αc′β ,
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as expected from (3.9b). 2

Proof. (Lemma 3.1.3.) First, we compute {{vα, vβz}} :

{{vα, vβz}} = {{vα, vβ}} z + vβ {{vα, z}}

=− 1

2
o(α, β) (vβ ⊗ vαz + vα ⊗ vβz)−

1

2
vβ ⊗ vαz +

1

2
vβz ⊗ vα

In particular, we get the base of induction with β = 1,

{{
vα, c

′
1

}} α>1
=

1

2
vα ⊗ c′1 +

1

2
c′1 ⊗ vα ,

{{
v1, c

′
1

}}
= −1

2
v1 ⊗ c′1 +

1

2
c′1 ⊗ v1 .

This is a particular case of our statement for β = 1. Now, we compute

{{vα, vβwλ}} = {{vα, vβ}}wλ + vβ {{vα, wλ}}

=− 1

2
o(α, β) (vβ ⊗ vαwλ + vα ⊗ vβwλ) + δαλvβ ⊗ e∞

+
1

2
[o(α, λ) + δαλ] (vβ ⊗ vαwλ + vβwλvα ⊗ e∞) .

Assume by induction that for all λ < β,

{{
vα, c

′
λ

}}
=

1

2
c′λ ⊗ vα −

1

2
(o(α, λ) + δαλ) vα ⊗ c′λ ,

then we get by (3.45)

{{
vα, c

′
β

}}
=

1

2

β−1∑
λ=1

vβwλc
′
λ ⊗ vα −

1

2
o(α, β)

β−1∑
λ=1

(
vβ ⊗ vαwλc′λ + vα ⊗ vβwλc′λ

)
+ δ(α<β)vβ ⊗ c′α +

1

2

β−1∑
λ=1

[o(α, λ) + δαλ]vβ ⊗ vαwλc′λ

− 1

2
o(α, β) (vβ ⊗ vαz + vα ⊗ vβz)−

1

2
vβ ⊗ vαz +

1

2
vβz ⊗ vα .

In the case α > β we find

{{
vα, c

′
β

}} α>β
=

1

2

β−1∑
λ=1

vβwλc
′
λ ⊗ vα +

1

2
vβz ⊗ vα +

1

2

β−1∑
λ=1

vα ⊗ vβwλc′λ +
1

2
+ vα ⊗ vβz

=
1

2
c′β ⊗ vα +

1

2
vα ⊗ c′β .

In the case α = β we have

{{
vα, c

′
β

}} α=β
=

1

2

β−1∑
λ=1

vβwλc
′
λ ⊗ vα +

1

2
vβz ⊗ vα −

1

2

β−1∑
λ=1

vβ ⊗ vαwλc′λ −
1

2
vβ ⊗ vαz

=
1

2
c′β ⊗ vα −

1

2
vα ⊗ c′β .
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Finally, for α < β we get

{{
vα, c

′
β

}} α<β
=

1

2

β−1∑
λ=1

vβwλc
′
λ ⊗ vα −

1

2

β−1∑
λ=1

(
vβ ⊗ vαwλc′λ + vα ⊗ vβwλc′λ

)
+ vβ ⊗ c′α

+
1

2

[
β−1∑
λ=α

−
α−1∑
λ=1

]
vβ ⊗ vαwλc′λ −

1

2
(vβ ⊗ vαz + vα ⊗ vβz)

− 1

2
vβ ⊗ vαz +

1

2
vβz ⊗ vα

=
1

2

β−1∑
λ=1

vβwλc
′
λ ⊗ vα +

1

2
vβz ⊗ vα −

1

2

β−1∑
λ=1

vα ⊗ vβwλc′λ −
1

2
vα ⊗ vβz

+ vβ ⊗ c′α −
α−1∑
λ=1

vβ ⊗ vαwλc′λ − vβ ⊗ vαz ,

which is exactly 1
2c
′
β ⊗ vα −

1
2vα ⊗ c

′
β since the last three terms cancel out. 2

Proof. (Proposition 3.1.4.) It is easier to use the induction in the first variable, that is

{{
c′α,Γ

}}
=

α−1∑
λ=1

(
vαwλ ∗

{{
c′λ,Γ

}}
+ {{vαwλ,Γ}} ∗ c′λ

)
+ {{vαz,Γ}} (3.46)

with Γ = c′β in our case. By doing so, we can repeatedly use (3.9a), (3.9b) and Lemma (3.1.3).

We first compute

{{
vαz, c

′
β

}}
=
{{
vα, c

′
β

}}
∗ z + vα ∗

{{
z, c′β

}}
=

1

2
c′βz ⊗ vα −

1

2
(o(α, β) + δαβ) vαz ⊗ c′β −

1

2
c′βz ⊗ vα +

1

2
c′β ⊗ vαz

=− 1

2
(o(α, β) + δαβ) vαz ⊗ c′β +

1

2
c′β ⊗ vαz ,

which gives in particular
{{
c′1, c

′
β

}}
= −1

2c
′
1 ⊗ c′β + 1

2c
′
β ⊗ c′1. Now we find

{{
vαwλ, c

′
β

}}
=
{{
vα, c

′
β

}}
∗ wλ + vα ∗

{{
wλ, c

′
β

}}
=

1

2
c′βwλ ⊗ vα −

1

2
(o(α, β) + δαβ) vαwλ ⊗ c′β −

1

2
c′βwλ ⊗ vα

+
1

2
(o(λ, β)− δλβ) e∞ ⊗ vαwλc′β − δλβ

e∞ ⊗ vαz +

β−1∑
γ=1

e∞ ⊗ vαwγc′γ

 ,
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and since the first and third terms cancel out we can write

α−1∑
λ=1

{{
vαwλ, c

′
β

}}
∗ c′λ =− 1

2
(o(α, β) + δαβ)

α−1∑
λ=1

vαwλc
′
λ ⊗ c′β

+
1

2

α−1∑
λ=1

(o(λ, β)− δλβ) c′λ ⊗ vαwλc′β

− δ(β<α)c
′
β ⊗ vαz − δ(β<α)

β−1∑
γ=1

c′β ⊗ vαwγc′γ .

Now, assume by induction that for all λ < α,

{{
c′λ, c

′
β

}}
=

1

2
[o(λ, β) + δλβ]

(
c′β ⊗ c′λ − c′λ ⊗ c′β

)
,

and let us show that this holds for λ = α. Note that it is exactly (3.11) since in the case λ = β the

two terms cancel out. We find by (3.46)

{{
c′α, c

′
β

}}
=

1

2

α−1∑
λ=1

[o(λ, β) + δλβ]
(
c′β ⊗ vαwλc′λ − c′λ ⊗ vαwλc′β

)
− 1

2
(o(α, β) + δαβ)

α−1∑
λ=1

vαwλc
′
λ ⊗ c′β +

1

2

α−1∑
λ=1

(o(λ, β)− δλβ) c′λ ⊗ vαwλc′β

− δ(β<α)c
′
β ⊗ vαz − δ(β<α)

β−1∑
γ=1

c′β ⊗ vαwγc′γ

− 1

2
(o(α, β) + δαβ) vαz ⊗ c′β +

1

2
c′β ⊗ vαz .

If α > β we find

{{
c′α, c

′
β

}} α>β
=

1

2

 β∑
λ=1

−
α−1∑

λ=β+1

(c′β ⊗ vαwλc′λ − c′λ ⊗ vαwλc′β)

+
1

2

α−1∑
λ=1

vαwλc
′
λ ⊗ c′β +

1

2

β−1∑
λ=1

−
α−1∑
λ=β

 c′λ ⊗ vαwλc′β

−
β−1∑
λ=1

c′β ⊗ vαwλc′λ +
1

2
vαz ⊗ c′β −

1

2
c′β ⊗ vαz

=− 1

2

α−1∑
λ=1

c′β ⊗ vαwλc′λ −
1

2
c′β ⊗ vαz +

1

2

α−1∑
λ=1

vαwλc
′
λ ⊗ c′β +

1

2
vαz ⊗ c′β ,
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which gives us −1
2(c′β ⊗ c′α − c′α ⊗ c′β). In the other cases,

{{
c′α, c

′
β

}} α6β
=

1

2

α−1∑
λ=1

(
c′β ⊗ vαwλc′λ − c′λ ⊗ vαwλc′β

)
− 1

2

α−1∑
λ=1

vαwλc
′
λ ⊗ c′β

+
1

2

α−1∑
λ=1

c′λ ⊗ vαwλc′β −
1

2
vαz ⊗ c′β +

1

2
c′β ⊗ vαz ,

and this is precisely +1
2(c′β ⊗ c′α − c′α ⊗ c′β). 2

3.3.2 Associated brackets for framed Jordan quivers

We successively prove Lemmae 3.1.5, 3.1.6 and 3.1.7.

Proof. (Lemma 3.1.5.) The first identity in (3.12a) follows from Lemma 3.1.7 with u = x. For

the second one, we compute with (3.2c) and (3.9a)

{{
x, a′αc

′
β

}}
=

1

2
e0 ⊗ xa′αc′β −

1

2
x⊗ a′αc′β +

1

2
a′αc
′
βx⊗ e0 +

1

2
a′αc
′
β ⊗ x , (3.47)

so that we have{{
xk, a′αc

′
βx

l
}}

=

k∑
σ=1

xσ−1 ∗
{{
x, a′αc

′
β

}}
xl ∗ xk−σ

+

k∑
σ=1

l∑
τ=1

xσ−1 ∗ a′αc′βxτ−1 {{x, x}}xl−τ ∗ xk−σ .

Thus, using the double brackets (3.2a) and (3.47)

{{
xk, a′αc

′
βx

l
}}

=
1

2

k∑
σ=1

l∑
τ=1

(
a′αc
′
βx

k−σ+τ+1 ⊗ xl−τ+σ−1 − a′αc′βxk−σ+τ−1 ⊗ xl−τ+σ+1
)

+
1

2

k∑
σ=1

(
xk−σ ⊗ xσa′αc′βxl − xk−σ+1 ⊗ xσ−1a′αc

′
βx

l

+ a′αc
′
βx

k−σ+1 ⊗ xl+σ−1 + a′αc
′
βx

k−σ ⊗ xl+σ
)
.

(3.48)

If we apply the multiplication m, only the last two terms do not cancel out and we find that

{xk, a′αc′βxl} = k a′αc
′
βx

k+l.

Finally, to get (3.12b) we split
{{
a′γc
′
εx
k, a′αc

′
βx

l
}}

as

a′γc
′
ε ∗
{{
xk, a′αc

′
βx

l
}}

+ a′αc
′
β

{{
a′γc
′
ε, x

l
}}
∗ xk +

{{
a′γc
′
ε, a
′
αc
′
β

}}
xl ∗ xk .
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Let us first reduce the two first terms. From (3.47) and (3.48) we can get

S :=a′γc
′
ε ∗
{{
xk, a′αc

′
βx

l
}}
−

l∑
τ=1

a′αc
′
βx

τ−1
{{
x, a′γc

′
ε

}}◦
xl−τ ∗ xk

=
1

2

k∑
σ=1

(
xk−σ ⊗ a′γc′εxσa′αc′βxl − xk−σ+1 ⊗ a′γc′εxσ−1a′αc

′
βx

l
)

+
1

2

k∑
σ=1

(
a′αc
′
βx

k−σ+1 ⊗ a′γc′εxl+σ−1 + a′αc
′
βx

k−σ ⊗ a′γc′εxl+σ
)

+
1

2

k∑
σ=1

l∑
τ=1

(
a′αc
′
βx

k−σ+τ+1 ⊗ a′γc′εxl−τ+σ−1 − a′αc′βxk−σ+τ−1 ⊗ a′γc′εxl−τ+σ+1
)

+
1

2

l∑
τ=1

(
−a′αc′βxτa′γc′εxk ⊗ xl−τ + a′αc

′
βx

τ−1a′γc
′
εx
k ⊗ xl−τ+1

)
+

1

2

l∑
τ=1

(
−a′αc′βxk+τ−1 ⊗ a′γc′εxl−τ+1 − a′αc′βxk+τ ⊗ a′γc′εxl−τ

)
If we apply the multiplication map, then relabel the indices we can write

S =
1

2

[
k∑

σ=1

−
k−1∑
σ=0

]
xk−σa′γc

′
εx
σa′αc

′
βx

l +
1

2

[
k−1∑
σ=0

+

k∑
σ=1

]
a′αc
′
βx

k−σa′γc
′
εx
l+σ

+
1

2

[
k−1∑
σ=0

∑
τ=l

+
∑
σ=0

l−1∑
τ=1

−
k−1∑
σ=1

∑
τ=0

−
∑
σ=k

l−1∑
τ=0

]
a′αc
′
βx

k−σ+τa′γc
′
εx
l−τ+σ

+
1

2

[
l−1∑
τ=0

−
l∑

τ=1

]
a′αc
′
βx

τa′γc
′
εx
k+l−τ − 1

2

[
l−1∑
τ=0

+
l∑

τ=1

]
a′αc
′
βx

k+τa′γc
′
εx
l−τ .

After simplification we get

S =
1

2
a′γc
′
εx
ka′αc

′
βx

l − 1

2
xka′γc

′
εa
′
αc
′
βx

l

+
1

2
a′αc
′
βx

ka′γc
′
εx
l + a′αc

′
βa
′
γc
′
εx
k+l +

k−1∑
σ=1

a′αc
′
βx

k−σa′γc
′
εx
l+σ

+
1

2

k−1∑
σ=0

a′αc
′
βx

k+l−σa′γc
′
εx
σ +

1

2

l−1∑
τ=1

a′αc
′
βx

k+τa′γc
′
εx
l−τ

− 1

2

k−1∑
σ=1

a′αc
′
βx

k−σa′γc
′
εx
l+σ − 1

2

l−1∑
τ=0

a′αc
′
βx

τa′γc
′
εx
k+l−τ

+
1

2
a′αc
′
βa
′
γc
′
εx
k+l − 1

2
a′αc
′
βx

la′γc
′
εx
k

− 1

2
a′αc
′
βx

ka′γc
′
εx
l − 1

2
a′αc
′
βx

k+la′γc
′
ε −

l−1∑
τ=1

a′αc
′
βx

k+τa′γc
′
εx
l−τ .
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We can continue to cancel terms modulo commutators and get

S = +
1

2
a′αc
′
βa
′
γc
′
εx
k+l − 1

2
a′αc
′
βx

k+la′γc
′
ε

+
1

2

k−1∑
σ=1

(
a′αc
′
βx

k−σa′γc
′
εx
l+σ + a′αc

′
βx

k+l−σa′γc
′
εx
σ
)

− 1

2

l−1∑
τ=1

(
a′αc
′
βx

τa′γc
′
εx
k+l−τ + a′αc

′
βx

k+τa′γc
′
εx
l−τ
)

=
1

2
a′αc
′
βa
′
γc
′
εx
k+l − 1

2
a′γc
′
εa
′
αc
′
βx

k+l

+
1

2

[
k∑
r=1

−
l∑

r=1

](
a′αc
′
βx

ra′γc
′
εx
k+l−r + a′αc

′
βx

k+l−ra′γc
′
εx
r
)
,

where we added the terms r = k, l in the sums because they cancel out together. Meanwhile, we

compute using (3.3b) (which is {{a′α, a′β}}), (3.9b) and (3.11)

{{
a′γc
′
ε, a
′
αc
′
β

}}
=
{{
a′γ , a

′
α

}}
c′β ∗ c′ε + a′α

{{
a′γ , c

′
β

}}
∗ c′ε + a′γ ∗

{{
c′ε, a

′
α

}}
c′β + a′γ ∗ a′α

{{
c′ε, c

′
β

}}
=− 1

2
o(γ, α)

(
a′γc
′
ε ⊗ a′αc′β + a′αc

′
ε ⊗ a′γc′β

)
+

1

2
o(ε, β)

(
a′αc
′
β ⊗ a′γc′ε − a′αc′ε ⊗ a′γc′β

)
− 1

2
a′αc
′
βa
′
γc
′
ε ⊗ e0 +

1

2
(o(γ, β)− δγβ) a′αc

′
ε ⊗ a′γc′β

− δγβ

a′αc′ε ⊗ z +

β−1∑
µ=1

a′αc
′
ε ⊗ a′µc′µ


+

1

2
e0 ⊗ a′γc′εa′αc′β −

1

2
(o(α, ε)− δαε) a′αc′ε ⊗ a′γc′β

+ δαε

(
z ⊗ a′γc′β +

ε−1∑
λ=1

a′λc
′
λ ⊗ a′γc′β

)
,

which we have to multiply on the right by xl (for the outer bimodule structure) and xk (for the

inner bimodule structure). If we do so and apply the multiplication map, we finally get modulo
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commutators that {a′γc′εxk, a′αc′βxl} equals

+
1

2

[
k∑
r=1

−
l∑

r=1

](
a′αc
′
βx

ra′γc
′
εx
k+l−r + a′αc

′
βx

k+l−ra′γc
′
εx
r
)

+
1

2
o(α, γ)

(
a′γc
′
εx
ka′αc

′
βx

l + a′αc
′
εx
ka′γc

′
βx

l
)

+
1

2
o(ε, β)

(
a′αc
′
βx

ka′γc
′
εx
l − a′αc′εxka′γc′βxl

)
− 1

2
(o(β, γ) + δγβ) a′αc

′
εx
ka′γc

′
βx

l − δγβ

a′αc′εxkzxl +

β−1∑
µ=1

a′αc
′
εx
ka′µc

′
µx

l


+

1

2
(o(ε, α) + δαε) a

′
αc
′
εx
ka′γc

′
βx

l + δαε

(
zxka′γc

′
βx

l +
ε−1∑
λ=1

a′λc
′
λx

ka′γc
′
βx

l

)
,

which is our claim. 2

Proof. (Lemma 3.1.6.) The first identity in (3.13a) follows from Lemma 3.1.7 with u = z. Next,

remark that if we replace x by z in (3.47), it takes the form

{{
z, a′αc

′
β

}}
=

1

2
e0 ⊗ za′αc′β −

1

2
z ⊗ a′αc′β −

1

2
a′αc
′
βz ⊗ e0 +

1

2
a′αc
′
β ⊗ z ,

while (3.48) is now written as

{{
zk, a′αc

′
βz

l
}}

=
1

2

k∑
σ=1

(
zk−σ ⊗ zσa′αc′βzl − zk−σ+1 ⊗ zσ−1a′αc

′
βz

l

− a′αc′βzk−σ+1 ⊗ zl+σ−1 + a′αc
′
βz

k−σ ⊗ zl+σ
)

− 1

2

k∑
σ=1

l∑
τ=1

(
a′αc
′
βz

k−σ+τ+1 ⊗ zl−τ+σ−1 − a′αc′βzk−σ+τ−1 ⊗ zl−τ+σ+1
)
.

Applying the multiplication map on the latter expression clearly yields {{zk, a′αc′βzl}} = 0. Using

the derivation rules, we arrive at the same conclusion for any k, l ∈ Z. To obtain (3.13b), the

proof is similar to the derivation of (3.12b) using the above expressions. 2

Proof. (Lemma 3.1.7.) For the first identity, we have that

{{
uk, ul

}}
=

k∑
σ=1

l∑
τ=1

uσ−1 ∗ uτ−1({{u, u}})ul−τ ∗ uk−σ

=
1

2
ε(u)

k∑
σ=1

l∑
τ=1

(uk−σ+τ+1 ⊗ ul−τ+σ−1 − uk−σ+τ−1 ⊗ ul−τ+σ+1) ,
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which is easily seen to vanish after applying the multiplication map. Then, using (3.14), we

remark that

{{u,wαvβ}} =wα {{u, vβ}}+ {{u,wα}} vβ

=
1

2
(wαvβu⊗ e0 − wαvβ ⊗ u+ e0 ⊗ uwαvβ − u⊗ wαvβ) .

(3.49)

Therefore7{{
uk, wαvβu

l
}}

=
1

2
ε(u)

k∑
τ=1

l∑
σ=1

(
wαvβu

k−τ+σ+1 ⊗ ul−σ+τ−1

− wαvβuk−τ+σ−1 ⊗ ul−σ+τ+1
)

+
1

2

k∑
τ=1

(
wαvβu

k−τ+1 ⊗ ul+τ−1 − wαvβuk−τ ⊗ ul+τ

+ uk−τ ⊗ uτwαvβul − uk−τ+1 ⊗ uτ−1wαvβu
l
)
.

(3.50)

After application of the multiplication map, we get 0 and the second equality follows. To prove

that (3.15b) holds, write {{wγvεuk, wαvβul}} as

wγvε ∗
{{
uk, wαvβu

l
}}

+ wαvβ

{{
wγvε, u

l
}}
∗ uk + {{wγvε, wαvβ}}ul ∗ uk .

First, we simplify the two first terms. Using (3.49) and (3.50) yields

T :=wγvε ∗
{{
uk, wαvβu

l
}}
−

l∑
σ=1

wαvβu
σ−1 {{u,wγvε}}◦ ul−σ ∗ uk

=
1

2
ε(u)

k∑
τ=1

l∑
σ=1

(
wαvβu

k−τ+σ+1 ⊗ wγvεul+τ−σ−1 − wαvβuk−τ+σ−1 ⊗ wγvεul+τ−σ+1
)

+
1

2

k∑
τ=1

(
wαvβu

k−τ+1 ⊗ wγvεul+τ−1 − wαvβuk−τ ⊗ wγvεul+τ
)

+
1

2

k∑
τ=1

(
uk−τ ⊗ wγvεuτwαvβul − uk−τ+1 ⊗ wγvεuτ−1wαvβu

l
)

− 1

2

l∑
σ=1

(
wαvβu

σwγvεu
k ⊗ ul−σ − wαvβuσ−1wγvεu

k ⊗ ul−σ+1
)

− 1

2

l∑
σ=1

(
wαvβu

k+σ−1 ⊗ wγvεul−σ+1 − wαvβuk+σ ⊗ wγvεul−σ
)
.

This gives, after multiplication and modulo commutators

m ◦ T =
1

2
ε(u)

k∑
τ=1

l∑
σ=1

(
wαvβu

k−τ+σ+1wγvεu
l+τ−σ−1 − wαvβuk−τ+σ−1wγvεu

l+τ−σ+1
)
,

7Note that the summation indices are the opposite of the previous proofs.
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because the last four sums cancel out. Relabelling indices, we write

m ◦ T =
1

2
ε(u)

[
k−1∑
τ=1

∑
σ=l

+
∑
τ=0

l∑
σ=1

−
∑
τ=k

l−1∑
σ=1

−
k∑
τ=1

∑
σ=0

]
wαvβu

k−τ+σwγvεu
l+τ−σ

=
1

2
ε(u)

[
k−1∑
τ=1

wαvβu
k+l−τwγvεu

τ +
l∑

σ=1

wαvβu
k+σwγvεu

l−σ

]

− 1

2
ε(u)

[
l−1∑
σ=1

wαvβu
σwγvεu

k+l−σ +

k∑
τ=1

wαvβu
k−τwγvεu

l+τ

]

It remains to compute {{wγvε, wαvβ}}. We can find from (3.3a)–(3.3c)

{{wγvε, wαvβ}} =− 1

2
o(γ, α) (wαvε ⊗ wγvβ + wγvε ⊗ wαvβ)

− 1

2
o(β, γ) (wαvβwγvε ⊗ e0 + wαvε ⊗ wγvβ)

− δβγ
(
wαvε ⊗ e0 +

1

2
wαvε ⊗ wγvβ +

1

2
wαvβwγvε ⊗ e0

)
+ δαε

(
e0 ⊗ wγvβ +

1

2
wαvε ⊗ wγvβ +

1

2
e0 ⊗ wγvεwαvβ

)
+

1

2
o(ε, α) (e0 ⊗ wγvεwαvβ + wαvε ⊗ wγvβ)

− 1

2
o(ε, β) (wαvβ ⊗ wγvε + wαvε ⊗ wγvβ) .

Applying the multiplication map, we get

m ◦ ({{wγvε, wαvβ}}ul ∗ uk) =− 1

2
o(γ, α)

(
wαvεu

kwγvβu
l + wγvεu

kwαvβu
l
)

− 1

2
o(β, γ)

(
wαvβwγvεu

kul + wαvεu
kwγvβu

l
)

− δβγ
(
wαvεu

kul +
1

2
wαvεu

kwγvβu
l +

1

2
wαvβwγvεu

kul
)

+ δαε

(
ukwγvβu

l +
1

2
wαvεu

kwγvβu
l +

1

2
ukwγvεwαvβu

l

)
+

1

2
o(ε, α)

(
ukwγvεwαvβu

l + wαvεu
kwγvβu

l
)

− 1

2
o(ε, β)

(
wαvβu

kwγvεu
l + wαvεu

kwγvβu
l
)
.

Adding m ◦ T to this last expression gives {wγvεuk, wαvβul}, which finishes the proof. 2

3.3.3 Computations using subquivers of the framed Jordan quivers

We prove Propositions 3.1.9 and 3.1.11.
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Proof. (Proposition 3.1.9.) We choose α, η ∈ C, and prove the statement with α = η′ to avoid

confusion. Hence, for this proof, α is not seen as a parameter running over 1, . . . , d. Recall that

U+,η = u(1 + ηφ). If we write {{U+,α, U+,η}} = a′ ⊗ a′′, we get

1

KL
{UK+,α, UL+,η} = UL−1

+,η a
′UK−1

+,α a′′ mod [A,A] , (3.51)

after using (2.15) and the derivation property in each argument. Thus, we need to compute

{{u+ αuφ, u+ ηuφ}} = {{u, u}}+ α {{uφ, u}}+ η {{u, uφ}}+ αη {{uφ, uφ}} . (3.52)

We need the brackets {{u, u}} = 1
2ε(u)[u2 ⊗ e0 − e0 ⊗ u2] and

{{φ, a}} =
1

2
(a⊗ φ− e0 ⊗ φa+ aφ⊗ e0 − φ⊗ a) , (3.53)

for any a which is a word in {e0, φ, u}. The second equality can be obtained by combining (2.19)

and Lemma 2.3.14 applied to the subquiver based at I ′ = {0}. We find

{{uφ, u}} =u ∗ {{φ, u}}+ {{u, u}} ∗ φ

=
1

2
(u⊗ uφ− e0 ⊗ uφu+ uφ⊗ u− φ⊗ u2) +

1

2
ε(u)(u2φ⊗ e0 − φ⊗ u2) ,

{{u, uφ}} =− 1

2
(uφ⊗ u− uφu⊗ e0 + u⊗ uφ− u2 ⊗ φ)− 1

2
ε(u)(e0 ⊗ u2φ− u2 ⊗ φ) .

Here, the second equality is obtained by cyclic antisymmetry : {{u, uφ}} = −{{uφ, u}}◦. We also

compute

{{uφ, uφ}} = {{uφ, u}}φ+ u(u ∗ {{φ, φ}}) + u(−{{φ, u}}◦) ∗ φ

=
1

2
(u⊗ uφ2 − e0 ⊗ uφuφ+ uφ⊗ uφ− φ⊗ u2φ) +

1

2
ε(u)(u2φ⊗ φ− φ⊗ u2φ)

+
1

2
(−u⊗ uφ2 + uφ2 ⊗ u)− 1

2
(uφ2 ⊗ u− uφuφ⊗ e0 + uφ⊗ uφ− u2φ⊗ φ)

=
1

2
(uφuφ⊗ e0 + u2φ⊗ φ− e0 ⊗ uφuφ− φ⊗ u2φ) +

ε(u)

2
(u2φ⊗ φ− φ⊗ u2φ) .

Write Uη instead of U+,η, for the rest of the first part of the proof. We can use that ηuφ = Uη−u,

and the same holds with α. Hence we can write

αη {{uφ, uφ}} =
1

2
η uφ(Uα − u)⊗ e0 +

1

2
η u(Uα − u)⊗ φ)

− 1

2
α e0 ⊗ uφ(Uη − u)− 1

2
αφ⊗ u(Uη − u))

+
1

2
ε(u)η u(Uα − u)⊗ φ− 1

2
ε(u)αφ⊗ u(Uη − u) .
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Summing all terms appearing in (3.52), we get after cancellation

{{Uα, Uη}} =
1

2
ε(u)(u2 ⊗ e0 − e0 ⊗ u2) +

1

2
α(u⊗ uφ+ uφ⊗ u) +

1

2
αε(u)(u2φ⊗ e0)

− 1

2
η(uφ⊗ u+ u⊗ uφ)− 1

2
ηε(u)(e0 ⊗ u2φ) +

1

2
ε(u)(ηuUα ⊗ φ− αφ⊗ uUη)

+
1

2
(−αe0 ⊗ uφUη − αφ⊗ uUη + ηuφUα ⊗ e0 + ηuUα ⊗ φ) .

We use the same trick again to get rid of constants α, η. We also need the modified version

ηφ = u−1Uη − 1 which is obtained by multiplying by u−1 on the left. We find

{{Uα, Uη}} = +
1

2
(u⊗ Uα + Uα ⊗ u) +

1

2
ε(u)(uUα ⊗ e0)

− 1

2
(Uη ⊗ u+ u⊗ Uη)−

1

2
ε(u)(e0 ⊗ uUη)

+
1

2
ε(u)(uUα ⊗ u−1Uη − uUα ⊗ e0 − u−1Uα ⊗ uUη + e0 ⊗ uUη)

+
1

2
(−e0 ⊗ UαUη − u−1Uα ⊗ uUη + 2e0 ⊗ uUη)

+
1

2
(UηUα ⊗ e0 + uUα ⊗ u−1Uη − 2uUα ⊗ e0) .

Putting the double bracket in (3.51), we find modulo commutators in A/[A,A] that

1

KL
{UKα , ULη } = +

1

2
(UL−1

η uUKα + UL−1
η UKα u) +

1

2
ε(u)(UL−1

η uUKα )

− 1

2
(ULη U

K−1
α u+ ULη uU

K−1
α )− 1

2
ε(u)(ULη U

K−1
α u)

+
1

2
ε(u)(ULη uU

K
α u
−1 − UL−1

η uUKα − ULη u−1UKα u+ ULη U
K−1
α u)

+
1

2
(−ULη u−1UKα u+ 2ULη U

K−1
α u+ ULη uU

K
α u
−1 − 2UL−1

η uUKα )

=
1

2
(UL−1

η UKα u− UL−1
η uUKα ) +

1

2
(ULη U

K−1
α u− ULη uUK−1

α )

+
1

2
(1 + ε(u))(ULη uU

K
α u
−1 − ULη u−1UKα u) .

Now, notice that αUη−ηUα = (α−η)u. Hence, assuming α 6= η, the first term in the expression

just obtained can be written as

UL−1
η UKα u− UL−1

η uUKα =
1

α− η
(UL−1

η UKα (αUη − ηUα)− UL−1
η (αUη − ηUα)UKα )

which vanishes modulo commutators. It is clear that it also vanishes for α = η, hence the first

term always disappears. Similarly, the second term is zero. Therefore

1

KL
{UKα , ULη } =

1

2
(1 + ε(u))(ULη uU

K
α u
−1 − ULη u−1UKα u) , (3.54)

which vanishes when ε(u) = −1.
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Finally, we have to show that, if ε(z) = +1, {UK−,α, UL−,η} = 0 modulo commutators for U−,α =

u(1 + αφ−1). First, note that we can write

{{u, u}} =
1

2
ε(u)[u2⊗e0−e0⊗u2],

{{
φ−1, a

}}
= −1

2
(aφ−1⊗e0−φ−1⊗a+a⊗φ−1−e0⊗φ−1a).

Indeed, we have

0 =
{{
φφ−1, a

}}
= φ ∗

{{
φ−1, a

}}
+ {{φ, a}} ∗ φ−1

which yields
{{
φ−1, a

}}
= −φ−1 ∗ {{φ, a}} ∗ φ−1. This implies that

{{
φ−1, a

}}
can be obtained

from {{φ, a}} by replacing φ by φ−1 and multiplying by −1 since{{
φ−1, a

}}
= −1

2
φ−1 ∗ [φ ∗ E0(a) + E0(a) ∗ φ] ∗ φ−1 = −1

2
[φ−1 ∗ E0(a) + E0(a) ∗ φ−1] ,

where we used {{φ, a}} as given by Lemma 2.3.14. Thus, reproducing the proof in the first case

with suitable sign changes, we get

1

KL
{UK−,α, UL−,η} =

1

2
(−1 + ε(z))

(
UL−,ηzU

K
−,αz

−1 − UL−,ηz−1UK−,αz
)
,

and we can conclude. 2

Proof. (Proposition 3.1.11.) Without loss of generality, we assume that 0 ≤ β ≤ α ≤ d. To

ease notations for the proof, we also set u1 = u(α), u0 = u(β), φ1 = Φ
(α)
0 and φ0 = Φ

(β)
0 . As in

(3.51), we have that

1

KL
{uK1 , uL0 } = uL−1

0 {{u1, u0}}′ uK−1
1 {{u1, u0}}′′ mod[A,A] .

Hence, we need to compute {{u1, u0}} as a first step. Noting that ui = φiu for i = 1, 2, we write

{{u1, u0}} = {{φ1, u0}} ∗ u+ φ1 ∗ {{u, φ0}}u+ φ1 ∗ φ0 {{u, u}} .

By assumption, φ0 and φ1 are moment maps corresponding to the last two quivers in the chain

Q̄0 ⊆ Q̄β ⊆ Q̄α. Hence, we get from Lemma 2.3.15 that

{{φ1, u0}} =
1

2
(u0 ⊗ φ1 − e0 ⊗ φ1u0 + u0φ1 ⊗ e0 − φ1 ⊗ u0) ,

{{φ0, u}} =
1

2
(u⊗ φ0 − e0 ⊗ φ0u+ uφ0 ⊗ e0 − φ0 ⊗ u) .

Using the cyclic antisymmetry, the second equality gives {{u, φ0}}. Now, since we consider u =

y, z, we have {{u, u}} = −1
2 [u2⊗ e0− e0⊗ u2]. Hence, we can group all these terms and get that

{{u1, u0}} =
1

2
(u0u1 ⊗ e0 − u1 ⊗ u0 + u0 ⊗ u1 − e0 ⊗ u1u0) ,

after simplification. This immediately implies that {uK1 , uL0 } = 0. 2



90 Chapter 3. Quasi-Hamiltonian algebras defined from cyclic quivers

3.3.4 Loday brackets for framed Jordan quivers

We successively prove Lemmae 3.1.12, 3.1.13, 3.1.14, 3.1.15, 3.1.16 and 3.1.17.

For the first four results, it is important to remark that we can not use (3.53) to get {{φ, vβ}} or

{{φ,wβ}}, since both elements are not in the initial algebra defined from Q̄0, for which φ is a

moment map. However, a short calculation enables us to get these double brackets, and we can

write

{{φ,wβ}} =
1

2
(e0 ⊗ φwβ − φ⊗ wβ) , {{φ, vβ}} =

1

2
(vβφ⊗ e0 − vβ ⊗ φ) . (3.55)

We derive the double bracket involving vβ , the second case being similar. We assume that we

work in the localised algebra where x is invertible for the proof, but the equality holds without

this assumption. Write φ = φ+φ
−1
− for φ+ = e0 +xy, and φ− = e0 + yx, and remark that (3.14)

is satisfied for both u = φ+, φ−. Therefore

{{φ, vβ}} = {{φ+, vβ}} ∗ φ−1
− − φ+φ

−1
− ∗ {{φ, vβ}} ∗ φ−1

− =
1

2
(vβφ+φ

−1
− ⊗ e0 − vβ ⊗ φ+φ

−1
− e0) ,

as desired.

In each case, we also use (2.38) to get that for any U, c ∈ A (or A′) and K ∈ N×, we have

1

K
{UK , c} = {{U, c}}′ UK−1 {{U, c}}′′ . (3.56)

Hence, the main step is to compute {{U, c}} if we want to determine {UK , c}.

Proof. (Lemma 3.1.12.) Recall that Uη = z(1 + ηφ). We can compute

{{Uη, x}} = {{z, x}} ∗ (1 + ηφ) + ηz ∗ {{φ, x}}

=
1

2
(−(e0 + ηφ)⊗ zx− xz(1 + ηφ)⊗ e0 − x(1 + ηφ)⊗ z + z(1 + ηφ)⊗ x)

+
1

2
η(x⊗ zφ− e0 ⊗ zφx+ xφ⊗ z − φ⊗ zx) .

We can write Uη − z = ηzφ, and since z is invertible in A′, we can use z−1Uη = e0 + ηφ or

z−1Uη − e0 = ηφ. Hence

{{Uη, x}} =
1

2
(−z−1Uη ⊗ zx− xUη ⊗ e0 − xz−1Uη ⊗ z + Uη ⊗ x)

+
1

2
(x⊗ (Uη − z)− e0 ⊗ (Uη − z)x+ x(z−1Uη − e0)⊗ z − (z−1Uη − e0)⊗ zx)

= −z−1Uη ⊗ zx− x⊗ z + e0 ⊗ zx+
1

2
(x⊗ Uη − xUη ⊗ e0 + Uη ⊗ x− e0 ⊗ Uηx) .
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In particular, using (3.56), we find

1

K
{UKη , x} =− z−1UηU

K−1
η zx− xUK−1

η z + UK−1
η zx

=− ηφUK−1
η zx− xUK−1

η z .

Next, we compute

{{Uη, z}} = {{z, z}} ∗ (1 + ηφ) + ηz ∗ {{φ, z}}

=
1

2

(
(e0 + ηφ)⊗ z2 − z2(1 + ηφ)⊗ e0

)
+

1

2
η(z ⊗ zφ− e0 ⊗ zφz + zφ⊗ z − φ⊗ z2)

=
1

2

(
z−1Uη ⊗ z2 − zUη ⊗ e0 + z ⊗ (Uη − z)− e0 ⊗ (Uη − z)z

+ (Uη − z)⊗ z − z−1(Uη − z)⊗ z2
)

=− z ⊗ z + e0 ⊗ z2 +
1

2
(−zUη ⊗ e0 + z ⊗ Uη − e0 ⊗ Uηz + Uη ⊗ z) .

This yields 1
K {U

K
η , z} = −zUK−1

η z + UK−1
η z2.

For the element wβ , we get

{{Uη, wβ}} = {{z, wβ}} ∗ (1 + ηφ) + ηz ∗ {{φ,wβ}}

=
1

2
((e0 + ηφ)⊗ zwβ − z(1 + ηφ)⊗ wβ) +

1

2
η(e0 ⊗ zφwβ − φ⊗ zwβ)

=
1

2

(
z−1Uη ⊗ zwβ − Uη ⊗ wβ + e0 ⊗ (Uη − z)wβ − (z−1Uη − e0)⊗ zwβ

)
=

1

2
(−Uη ⊗ wβ + e0 ⊗ Uηwβ) ,

so that {UKη , wβ} = 0. Similarly,

{{Uη, vβ}} = {{z, vβ}} ∗ (1 + ηφ) + ηz ∗ {{φ, vβ}}

=
1

2
(vβz(1 + ηφ)⊗ e0 − vβ(1 + ηφ)⊗ z) +

1

2
η(vβφ⊗ z − vβ ⊗ zφ)

=
1

2

(
vβUη ⊗ e0 − vβz−1Uη ⊗ z + vβ(z−1Uη − e0)⊗ z − vβ ⊗ (Uη − z)

)
=

1

2
(vβUη ⊗ e0 − vβ ⊗ Uη) ,

(3.57)

which gives {UKη , vβ} = 0. 2

Proof. (Lemma 3.1.13.) Recall that Ūη = y(1 + ηφ). By comparing the double brackets (3.2b),

(3.5b), we remark that {{y, x}} only differ from {{z, x}} by replacing z by y and adding an extra
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term −e0 ⊗ e0. Hence, by adapting the proof of Lemma 3.1.12 we get

1

K
{ŪKη , x} =− (e0 + ηφ)ŪK−1

η − y−1ŪηŪ
K−1
η yx− xŪK−1

η y + ŪK−1
η yx

=− ŪK−1
η − xŪK−1

η y − ηφŪK−1
η (e0 + yx) .

(3.58)

Similarly, the double brackets with y replacing z match so that

1

K
{ŪKη , y} = −yŪK−1

η y + ŪK−1
η y2 . (3.59)

The same holds for the couple (y, wβ) instead of (z, wβ), or doing it with vβ . This yields

{ŪKη , wβ} = 0 and {ŪKη , vβ} = 0. 2

Proof. (Lemma 3.1.14.) Recall that Ûη = x(1 + ηφ−1). We can compute

{{
Ûη, x

}}
= {{x, x}} ∗ (e0 + ηφ−1)− ηxφ−1 ∗ {{φ, x}} ∗ φ−1

=
1

2
(x2(e0 + ηφ−1)⊗ e0 − (e0 + ηφ−1)⊗ x2)

− 1

2
η(xφ−1 ⊗ x− φ−1 ⊗ x2 + x⊗ xφ−1 − e0 ⊗ xφ−1x) .

We use Ûη − x = ηxφ−1, and that equality after multiplication on the left by x−1. Hence

{{
Ûη, x

}}
=

1

2
(xÛη ⊗ e0 − x−1Ûη ⊗ x2)

+
1

2
((Ûη − x)⊗ x− x−1(Ûη − x)⊗ x2 + x⊗ (Ûη − x)− e0 ⊗ (Ûη − x)x)

= x⊗ x− e0 ⊗ x2 +
1

2

(
xÛη ⊗ e0 − x⊗ Ûη + e0 ⊗ Ûηx− Ûη ⊗ x

)
.

This directly yields

1

K
{ÛKη , x} =xÛK−1

η x− ÛK−1
η x2 .

Next we find{{
Ûη, z

}}
= {{x, z}} ∗ (e0 + ηφ−1)− ηxφ−1 ∗ {{φ, z}} ∗ φ−1

=
1

2
(zx(e0 + ηφ−1)⊗ e0 + (e0 + ηφ−1)⊗ xz)

+
1

2
(z(e0 + ηφ−1)⊗ x− x(e0 + ηφ−1)⊗ z)

− 1

2
η(zφ−1 ⊗ x− φ−1 ⊗ xz + z ⊗ xφ−1 − e0 ⊗ xφ−1z) .
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With the previous trick, this gives{{
Ûη, z

}}
=

1

2
(zÛη ⊗ e0 + x−1Ûη ⊗ xz + zx−1Ûη ⊗ x− Ûη ⊗ z)

− 1

2
(zx−1(Ûη − x)⊗ x− x−1(Ûη − x)⊗ xz + z ⊗ (Ûη − x)− e0 ⊗ (Ûη − x)z)

=x−1Ûη ⊗ xz + z ⊗ x− e0 ⊗ xz

+
1

2
(zÛη ⊗ e0 − Ûη ⊗ z − z ⊗ Ûη + e0 ⊗ Ûηz) ,

so that

1

K
{ÛKη , z} =x−1ÛKη xz + zÛK−1

η x− ÛK−1
η xz = zÛK−1

η x+ ηφ−1ÛK−1
η xz .

After simple computations, we can obtain
{{
Ûη, vβ

}}
= 1

2vβÛη⊗e0− 1
2vβ⊗Ûη, so {ÛKη , vβ} = 0

as before. Similarly, we compute
{{
Ûη, wβ

}}
= 1

2(e0 ⊗ Ûηwβ − Ûη ⊗ wβ), which also gives

{ÛKη , wβ} = 0. 2

Proof. (Lemma 3.1.15.) For simplicity, we work in A′ so that Ũη = xz(1 + ηφ). First, an easy

computation yields

{{xz, x}} =
1

2
x2z ⊗ e0 −

1

2
e0 ⊗ xzx−

1

2
xz ⊗ x− 1

2
x⊗ xz .

We obtain in that way, after using xzηφ = Ũη − xz and ηφ = (xz)−1Ũη − e0{{
Ũη, x

}}
= {{xz, x}} ∗ (1 + ηφ−1)− ηxzφ−1 ∗ {{φ, x}} ∗ φ−1

=
1

2
(xŨη ⊗ e0 − (xz)−1Ũη ⊗ xzx− Ũη ⊗ x− x(xz)−1Ũη ⊗ xz)

− 1

2
x[(xz)−1Ũη − e0]⊗ xz +

1

2
[(xz)−1Ũη − e0]⊗ xzx

− 1

2
x⊗ [Ũη − xz] +

1

2
e0 ⊗ [Ũη − xz]x .

Therefore we get by cancelling out terms

1

K
{ŨKη , x} =− x(xz)−1ŨKη xz − ŨK−1

η xzx+ xŨK−1
η xz

=− ŨK−1
η xzx− η xφ−1ŨK−1

η xz .

Second, we get{{
Ũη, xz

}}
= {{xz, xz}} ∗ (1 + ηφ−1)− ηxzφ−1 ∗ {{φ, xz}} ∗ φ−1

=
1

2

(
xzŨη ⊗ e0 − (xz)−1Ũη ⊗ (xz)2

)
− 1

2
[Ũη − xz]⊗ xz +

1

2
[(xz)−1Ũη − e0]⊗ (xz)2

− 1

2
xz ⊗ [Ũη − xz] +

1

2
e0 ⊗ [Ũη − xz]xz .
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We find after simplifying terms that 1
K {Ũ

K
η , xz} = xzŨK−1

η xz − ŨK−1
η (xz)2. Finally, we can

get
{{
Ũη, vβ

}}
= 1

2vβŨη ⊗ e0− 1
2vβ ⊗ Ũη, and {ŨKη , vβ} = 0 as before. The same holds for wβ

too. 2

Proof. (Lemma 3.1.16.) First, note that if a = x, z, vβ, wβ with β ≤ α, we get from Lemma

2.3.15 that{{
Φ

(α)
0 , a

}}
=

1

2
(ae0 ⊗ Φ

(α)
0 − e0 ⊗ Φ

(α)
0 a+ aΦ

(α)
0 ⊗ e0 − Φ

(α)
0 ⊗ e0a) .

Using that z(α) = Φ
(α)
0 z together with (3.5a)–(3.5c), we get

{{
z(α), x

}}
=

1

2
(xz(α) ⊗ e0 − z(α) ⊗ x− e0 ⊗ z(α)x− x⊗ z(α)){{

z(α), z
}}

=
1

2
(−z ⊗ z(α) + zz(α) ⊗ e0 − z(α) ⊗ z + e0 ⊗ z(α)z){{

z(α), wβ
}}

=
1

2
(−z(α) ⊗ wβ + e0 ⊗ z(α)wβ − 2z ⊗ Φ

(α)
0 wβ){{

z(α), vβ
}}

=
1

2
(vβz(α) ⊗ e0 − vβ ⊗ z(α) + 2vβz ⊗ Φ

(α)
0 ) ,

with β ≤ α. Using that

1

K
{zK(α), a} =

{{
z(α), a

}}′
zK−1

(α)

{{
z(α), a

}}′′
, (3.60)

we have the four first cases. For the next two cases, note that if we can show{{
Φ

(α)
0 , wβ

}}
=

1

2
(e0 ⊗ Φ

(α)
0 wβ − Φ

(α)
0 ⊗ wβ) , α < β ,{{

Φ
(α)
0 , vβ

}}
=

1

2
(vβΦ

(α)
0 ⊗ e0 − vβ ⊗ Φ

(α)
0 ) , α < β ,

(3.61)

we can easily obtain that

{{
z(α), wβ

}}
=

1

2
(−z(α) ⊗ wβ + e0 ⊗ z(α)wβ) , α < β ,{{

z(α), vβ
}}

=
1

2
(vβz(α) ⊗ e0 − vβ ⊗ z(α)) , α < β ,

and then find last two equalities using (3.60). So it remains to prove (3.61), which we do by

induction since Φ(α) = Φ(α−1)(e0 + wαvα)−1. The base case α = 0 is just (3.55), as Φ
(0)
0 = φ.

Next, remark that for α < β we can get from (3.3a)–(3.3c)

{{(e0 + wαvα), wβ}} =
1

2
(e0 ⊗ (e0 + wαvα)wβ − (e0 + wαvα)⊗ wβ)

{{(e0 + wαvα), vβ}} =
1

2
(vβ(e0 + wαvα)⊗ e0 − vβ ⊗ (e0 + wαvα)) .
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Assuming by induction that (3.61) holds for α− 1, we can get that{{
Φ

(α)
0 , wβ

}}
=
{{

Φ
(α−1)
0 , wβ

}}
∗ (e0 + wαvα)−1

− Φ
(α−1)
0 (e0 + wαvα)−1 ∗ {{(e0 + wαvα), wβ}} ∗ (e0 + wαvα)−1

=
1

2
(e0 ⊗ Φ

(α)
0 wβ − Φ

(α)
0 ⊗ wβ) ,

as expected. The same holds for vβ with α < β, which proves our claim.

Finally, we want to show that {zK(α), z(α)} = {zK(α),Φ
(α)} = 0. This follows from the following

two double brackets,

{{
z(α), z(α)

}}
=

1

2
(z2

(α) ⊗ e0 − e0 ⊗ z2
(α)){{

z(α),Φ
(α)
}}

=− 1

2
(Φ(α) ⊗ z(α) − Φ(α)z(α) ⊗ e0 + e0 ⊗ z(α)Φ

(α) − z(α) ⊗ Φ(α)) ,

which were obtained in the proof of Proposition 3.1.11. 2

Proof. (Lemma 3.1.17.) This is basically the same proof as Lemma 3.1.16 with y replacing z

everywhere. The only difference is the double bracket

{{
y(α), x

}}
= −e0 ⊗ Φ

(α)
0 +

1

2
(xy(α) ⊗ e0 − y(α) ⊗ x− e0 ⊗ y(α)x− x⊗ y(α)) ,

which gives 1
K {y

K
(α), x} = −yK−1

(α) Φ
(α)
0 − yK(α)x. 2

3.3.5 Double brackets for framed cyclic quivers

We successively prove Propositions 3.2.3 and 3.2.4, Lemma 3.2.5, then Proposition 3.2.6. As in

§ 3.3.1, we prove the statements by induction using that (3.30) implies

{{
Γ, c′s,α

}}
=

α−1∑
λ=1

(
vs,αws,λ

{{
Γ, c′s,λ

}}
+ {{Γ, vs,αws,λ}} c′s,λ

)
+ {{Γ, vs,αz}} , (3.62)

for any Γ ∈ A. Moreover, we can avoid most of the cases by a suitable interpretation of the results

from § 3.3.1, as we will see during the proofs8.

Proof. (Proposition 3.2.3.) We use the double brackets derived in § 3.2.1 and § 3.2.2. First,

note that (3.31a) is already computed since a′s,α = ws,α. Then, to get (3.31b), we only need to

8What we do is more general than the treatment found in [62], where ds = 0 for all s ∈ I \ {0}.
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reproduce what we did in the first part of the proof of Proposition 3.1.2. Let us compute
{{
x, c′s,α

}}
to show how to deal with the idempotents. We have

{{x, vs,αz}} = {{x, vs,α}} z + vs,α {{x, z}}

=
1

2
(vs,αx⊗ esz − vs,α ⊗ xesz + vs,αzxF1 + vs,αF1xz − vs,αxF1z + vs,αzF1x)

Recalling that vs,α ∈ e∞A′es, we get vs,αzxF1 = vs,αeszxF1, and since z ∈ ⊕sesA′es−1 and

x ∈ ⊕sesA′es+1 this is equal to vs,αeszxes ⊗ es−1. We can apply the same method to all four

terms given by {{x, z}} and get

{{x, vs,αz}} =
1

2

(
vs,αxes+1 ⊗ esz − vs,αes ⊗ es−1xz + vs,αzxes ⊗ es−1

+ vs,αes ⊗ es−1xz − vs,αxes+1 ⊗ esz + vs,αzes−1 ⊗ es−2x
)

=
1

2

(
vs,αzx⊗ es−1 + vs,αz ⊗ xes−1

)
.

Here, we dropped the idempotents in the first copy of the tensor product since they are determined

by the factor vs,α. In particular, we get
{{
x, c′s,1

}}
by setting c′s,1 = vs,1z. It is not hard to show

that {{x, vs,αws,λ}} = 0 for any α, λ ∈ {1, . . . , ds} so that the claim follows. The double bracket{{
z, c′s,α

}}
is left as an exercise as the computations are similar. Finally, (3.31c) is just (3.23b)

since a′s,α = ws,α. 2

Proof. (Proposition 3.2.4.) We begin by treating the case r 6= s. We first compute{{
a′s,α, vr,βz

}}
=
{{
a′s,α, vr,β

}}
z + vr,β

{{
a′s,α, z

}}
using (3.24) and (3.31a). We have

{{
a′s,α, vr,βz

}}
=

1

2
o(s, r) e∞ ⊗ a′s,αvr,βz −

1

2
vr,β(za′s,α ⊗ es − a′s,α ⊗ esz)

=
1

2
o(s, r) e∞ ⊗ a′s,αvr,βz −

1

2
δ(r−1,s)vr,βza

′
s,α ⊗ es .

We obtain last equation by noticing that vr,βza′s,α = vr,βzer−1esa
′
s,α vanishes for s 6= r − 1,

while vr,βa′s,α = vr,βeresa
′
s,α is nonzero if and only if r = s, which we discard by assumption.

In particular,

{{
a′s,α, c

′
r,1

}}
=

1

2
o(s, r) e∞ ⊗ a′s,αc′r,1 −

1

2
δ(r,s+1)c

′
r,1a
′
s,α ⊗ es . (3.63)

Next, we compute from (3.24) and (3.23b) (recall a′s,α = ws,α)

{{
a′s,α, vr,βwr,λ

}}
=

1

2
o(s, r) e∞ ⊗ a′s,αvr,βwr,λ −

1

2
o(s, r) vr,βwr,λ ⊗ ws,α ,
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so that
β−1∑
λ=1

{{
a′s,α, vr,βwr,λ

}}
c′r,λ =

1

2
o(s, r) e∞ ⊗

(
β−1∑
λ=1

a′s,αvr,βwr,λc
′
r,λ

)

− 1

2
o(s, r)

β−1∑
λ=1

vr,βwr,λ ⊗ ws,αc′r,λ .

Now, assume by induction that for all λ < β

{{
a′s,α, c

′
r,λ

}}
=

1

2
o(s, r) e∞ ⊗ a′s,αc′r,λ −

1

2
δ(r,s+1)c

′
r,λa

′
s,α ⊗ es . (3.64)

We compute from (3.62)

{{
a′s,α, c

′
r,λ

}}
=

1

2
o(s, r)

β−1∑
λ=1

vr,βwr,λ ⊗ a′s,αc′r,λ −
1

2
δ(r,s+1)

β−1∑
λ=1

vr,βwr,λc
′
r,λa

′
s,α ⊗ es

+
1

2
o(s, r)

[
e∞ ⊗

(
β−1∑
λ=1

a′s,αvr,βwr,λc
′
r,λ

)
−

β−1∑
λ=1

vr,βwr,λ ⊗ ws,αc′r,λ

]

+
1

2
o(s, r) e∞ ⊗ a′s,αvr,βz −

1

2
δ(r,s+1)vr,βza

′
s,α ⊗ es

=
1

2
o(s, r) e∞ ⊗ a′s,αvr,β

(
β−1∑
λ=1

wr,λc
′
r,λ + z

)

− 1

2
δ(r,s+1)vr,β

(
β−1∑
λ=1

wr,λc
′
r,λ + z

)
a′s,α ⊗ es

=
1

2
o(s, r) e∞ ⊗ a′s,αc′r,β −

1

2
δ(r,s+1)c

′
r,βa

′
s,α ⊗ es ,

where we used (3.30) to get last equality. This is precisely (3.32) with r 6= s.

For r = s, it is not hard to see that we can follow the proof from the Jordan case given in § 3.3.1,

and establish a result similar to (3.9b) by induction9 :

{{
a′s,α, c

′
s,β

}}
= − 1

2
c′s,βa

′
s,α ⊗ es +

1

2
(o(α, β)− δαβ) e∞ ⊗ a′s,αc′s,β

− δαβe∞ ⊗ es

(
z +

β−1∑
λ=1

a′s,λc
′
s,λ

)
.

(3.65)

Noticing that c′s,β = e∞c
′
s,βes−1 and a′s,α = esa

′
s,αe∞, we see that the first term vanishes. This

is precisely (3.32) for r = s. 2

9For the sceptical reader, the full proof can be found in [62]. For the proof of Lemma 3.2.5 and Lemma 3.2.6, we

will also not bother with the full proof of the case r = s, which can also be found in [62].
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Proof. (Lemma 3.2.5.) Assume that r 6= s. We have from (3.23a) that

{{vs,α, vr,βz}} = − 1

2
o(s, r) vs,α ⊗ vr,βz −

1

2
(vr,βes ⊗ vs,αz − vr,βzes ⊗ vs,α)

=− 1

2
o(s, r) vs,α ⊗ vr,βz +

1

2
δ(r,s+1)vr,βzes ⊗ vs,α ,

since vr,β = vr,βer and r 6= s. In particular,

{{
vs,α, c

′
r,1

}}
= −1

2
o(s, r) vs,α ⊗ c′r,1 +

1

2
δ(r,s+1)c

′
r,1 ⊗ vs,α . (3.66)

Next, we compute

{{vs,α, vr,βwr,λ}} = − 1

2
o(s, r) vs,α ⊗ vr,βwr,λ −

1

2
o(r, s) vr,βwr,λvs,α ⊗ e∞ .

Assuming by induction that for all λ < β

{{
vs,α, c

′
r,λ

}}
= −1

2
o(s, r) vs,α ⊗ c′r,λ +

1

2
δ(r,s+1)c

′
r,λ ⊗ vs,α , (3.67)

we obtain by (3.62)

{{
vs,α, c

′
r,β

}}
= − 1

2
o(s, r)

β−1∑
λ=1

vs,α ⊗ vr,βwr,λc′r,λ +
1

2
o(s, r)

β−1∑
λ=1

vr,βwr,λvs,α ⊗ c′r,λ

− 1

2
o(s, r)

β−1∑
λ=1

vr,βwr,λvs,α ⊗ c′r,λ +
1

2
δ(r,s+1)

β−1∑
λ=1

vr,βwr,λc
′
r,λ ⊗ vs,α

− 1

2
o(s, r) vs,α ⊗ vr,βz +

1

2
δ(r,s+1)vr,βzes ⊗ vs,α

=− 1

2
o(s, r) vs,α ⊗ c′r,β +

1

2
δ(r,s+1)c

′
r,β ⊗ vs,α ,

which coincides with our statement. In the case r = s, slightly adapting the proof of Lemma

3.1.3 yields

{{
vs,α, c

′
s,β

}}
=

1

2
c′s,βes ⊗ vs,α −

1

2
(o(α, β) + δαβ) vs,α ⊗ c′s,β . (3.68)

As c′s,β = c′s,βes−1, the first term disappears, as desired. 2

Proof. (Proposition 3.2.6.) Assume that r 6= s. We compute using Lemma 3.2.5 and (3.31b){{
vs,αz, c

′
r,β

}}
=
{{
vs,α, c

′
r,β

}}
∗ z + vs,α ∗

{{
z, c′r,β

}}
=− 1

2
o(s, r) vs,αz ⊗ c′r,β +

1

2
δ(r,s+1)c

′
r,βz ⊗ vs,α

− 1

2
c′r,βz ⊗ vs,αer−1 +

1

2
c′r,β ⊗ vs,αzer−1

=− 1

2
o(s, r) vs,αz ⊗ c′r,β ,
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since r 6= s implies vs,αzer−1 = 0. In particular,

{{
c′s,1, c

′
r,β

}}
= −1

2
o(s, r) c′s,1 ⊗ c′r,β . (3.69)

Next, we get

{{
vs,αws,λ, c

′
r,β

}}
=
{{
vs,α, c

′
r,β

}}
∗ ws,λ + vs,α ∗

{{
ws,λ, c

′
r,β

}}
=− 1

2
o(s, r) vs,αws,λ ⊗ c′r,β +

1

2
δ(r,s+1)c

′
r,βws,λ ⊗ vs,α

+
1

2
o(s, r) e∞ ⊗ vs,αws,λc′r,β −

1

2
δ(r,s+1) c

′
r,βws,λ ⊗ vs,αes

=
1

2
o(s, r) (e∞ ⊗ vs,αws,λc′r,β − vs,αws,λ ⊗ c′r,β) .

Assume by induction that for all λ < α,

{{
c′s,λ, c

′
r,β

}}
= −1

2
o(s, r) c′s,λ ⊗ c′r,β . (3.70)

We get from the equality corresponding to (3.62) with a development taken in the first component

of the double bracket that

{{
c′s,α, c

′
r,β

}}
=

1

2
o(s, r)

α−1∑
λ=1

(c′s,λ ⊗ vs,αws,λc′r,β − vs,αws,λc′s,λ ⊗ c′r,β)

− 1

2
o(s, r)

α−1∑
λ=1

c′s,λ ⊗ vs,αws,λc′r,β −
1

2
o(s, r) vs,αz ⊗ c′r,β

=− 1

2
o(s, r) c′s,α ⊗ c′r,β ,

after using (3.30). In the case r = s, use Equations (3.65) and (3.68) instead of
{{
a′s,α, c

′
s,β

}}
and

{{
vs,α, c

′
s,β

}}
in order to have the same forms for the brackets as in the Jordan case, then

reproduce the proof of Proposition 3.1.4 to get

{{
c′s,α, c

′
s,β

}}
=

1

2
(c′s,β ⊗ c′s,α − c′s,α ⊗ c′s,β) ,

as desired. This means that the vanishing terms that we introduced have cancelled out. 2

3.3.6 Other brackets for framed cyclic quivers

We successively prove Lemmae 3.2.7 and 3.2.8.
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Proof. (Lemma 3.2.7.) The first identity in (3.35) follows from Lemma 3.2.8. Next, we compute

with (3.31a) and (3.31b){{
x, a′s,αc

′
r,β

}}
=a′s,α

{{
x, c′r,β

}}
+
{{
x, a′s,α

}}
c′r,β

=
1

2
a′s,αc

′
r,βx⊗ er−1 +

1

2
a′s,αc

′
r,β ⊗ xer−1

+
1

2
es ⊗ xa′s,αc′r,β −

1

2
esx⊗ a′s,αc′r,β .

(3.71)

Let S1 =
{{
xk, a′s,αc

′
r,βx

l
}}

. We find by developing

S1 =

k∑
σ=1

xσ−1 ∗
{{
x, a′s,αc

′
r,β

}}
xl ∗ xk−σ

+
k∑

σ=1

l∑
τ=1

xσ−1 ∗ a′s,αc′r,βxτ−1 {{x, x}}xl−τ ∗ xk−σ .

Using the double brackets (3.71) and (3.37a) for u = x yields

S1 =
1

2

k∑
σ=1

l∑
τ=1

∑
t∈I

a′s,αc
′
r,βx

τ+1et+1x
k−σ ⊗ xσ−1etx

l−τ

− 1

2

k∑
σ=1

l∑
τ=1

∑
t∈I

a′s,αc
′
r,βx

τ−1et+1x
k−σ ⊗ xσ−1etx

l−τ+2

+
1

2

k∑
σ=1

(
a′s,αc

′
r,βx

k−σ+1 ⊗ xσ−1er−1x
l + a′s,αc

′
r,βx

k−σ ⊗ xσer−1x
l

+ esx
k−σ ⊗ xσa′s,αc′r,βxl − esxk−σ+1 ⊗ xσ−1a′s,αc

′
r,βx

l
)
.

(3.72)

If we apply the multiplication m, the summands of the two first sums contain a factor et+1x
k−1et

which vanishes except when k ≡
m

0 since et+1x
k−1 = xk−1et+k. In the latter case, we can

omit to write the idempotents as we get a factor
∑

s∈I es = 1I and x1I = x. We then see that

both sums cancel out. After multiplication, we also get that the last two terms in the third sum

always cancel out. However, the first two terms in that sum both equal a′s,αc
′
r,βx

ker−1x
l, and

S1 = ka′s,αc
′
r,βx

kxler+l−1. Modulo commutators, we can omit to write the idempotent since

er+l−1a
′
s,α vanishes unless r + l − 1 ≡

m
s, which is the condition for a′s,αc

′
r,βx

l to be nonzero

modulo commutators. This finishes to prove (3.35).

We have remarked the important discussion on the role of the idempotents after multiplication.

In particular, we now prove (3.36) assuming that l ≡
m
s − (r − 1) and k ≡

m
p − (q − 1), since

otherwise the terms will vanish. We will also use without further mention that a′s,α ∈ esA
′e∞

while c′s,α ∈ e∞A′es−1.
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We consider the decomposition{{
a′p,γc

′
q,εx

k, a′s,αc
′
r,βx

l
}}

=
{{
a′p,γc

′
q,ε, a

′
s,αc
′
r,β

}}
xl ∗ xk + a′s,αc

′
r,β

{{
a′p,γc

′
q,ε, x

l
}}
∗ xk

+ a′p,γc
′
q,ε ∗

{{
xk, a′s,αc

′
r,β

}}
xl + a′p,γc

′
q,ε ∗ a′s,αc′r,β

{{
xk, xl

}}
.

(3.73)

To find the first term of (3.73), we compute Sac :=
{{
a′p,γc

′
q,ε, a

′
s,αc
′
r,β

}}
using (3.31c), (3.32)

and (3.34)

Sac =− 1

2
o(p, s) a′s,αc

′
q,ε ⊗ a′p,γc′r,β −

1

2
δpso(γ, α)(a′s,αc

′
q,ε ⊗ a′p,γc′r,β + a′p,γc

′
q,ε ⊗ a′s,αc′r,β)

+
1

2
o(p, r) a′s,αc

′
q,ε ⊗ a′p,γc′r,β −

1

2
δ(r,p+1) a

′
s,αc
′
r,βa

′
p,γc
′
q,ε ⊗ ep

+
1

2
δpr [o(γ, β)− δγβ] a′s,αc

′
q,ε ⊗ a′p,γc′r,β − δprδγβ a′s,αc′q,ε ⊗

epz +

β−1∑
µ=1

a′p,µc
′
p,µ


− 1

2
o(s, q) a′s,αc

′
q,ε ⊗ a′p,γc′r,β +

1

2
δ(q,s+1) es ⊗ a′p,γc′q,εa′s,αc′r,β

− 1

2
δsq (o(α, ε)− δαε) a′s,αc′q,ε ⊗ a′p,γc′r,β + δsqδαε

(
esz +

ε−1∑
λ=1

a′s,λc
′
s,λ

)
⊗ a′p,γc′r,β

− 1

2
o(q, r) a′s,αc

′
q,ε ⊗ a′p,γc′r,β +

1

2
δqro(ε, β)

(
a′s,αc

′
r,β ⊗ a′p,γc′q,ε − a′s,αc′q,ε ⊗ a′p,γc′r,β

)
.

(Here, we applied the cyclic antisymmetry on
{{
a′s,α, c

′
q,ε

}}
to get

{{
c′q,ε, a

′
s,α

}}
.) We will use

m ◦ (Sacx
l ∗ xk) at the end. Then we compute

{{
a′p,γc

′
q,ε, x

}}
=a′p,γ ∗

{{
c′q,ε, x

}}
+
{{
a′p,γ , x

}}
∗ c′q,ε

=− 1

2
eq−1 ⊗ a′p,γc′q,εx−

1

2
xeq−1 ⊗ a′p,γc′q,ε

− 1

2
xa′p,γc

′
q,ε ⊗ ep +

1

2
a′p,γc

′
q,ε ⊗ epx ,

so that the second term from (3.73) becomes

l∑
τ=1

a′s,αc
′
r,βx

τ−1
{{
a′p,γc

′
q,ε, x

}}
xl−τ ∗ xk

=− 1

2

[
l−1∑
τ=0

+

l∑
τ=1

]
a′s,αc

′
r,βx

τeq−1x
k ⊗ a′p,γc′q,εxl−τ

− 1

2

[
l∑

τ=1

−
l−1∑
τ=0

]
a′s,αc

′
r,βx

τa′p,γc
′
q,εx

k ⊗ epxl−τ .

Now, remark that by assumptions k ≡
m
p− (q − 1), so that eq−1x

ka′p,γ = xka′p,γ and c′q,εx
kep =
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c′q,εx
k. Hence, applying the multiplication map on the latter expression, we find that

m ◦ (a′s,αc
′
r,β

{{
a′p,γc

′
q,ε, x

l
}}
∗ xk) =−

l−1∑
τ=1

a′s,αc
′
r,βx

k+τa′p,γc
′
q,εx

l−τ

− 1

2
a′s,αc

′
r,βx

ka′p,γc
′
q,εx

l − 1

2
a′s,αc

′
r,βx

k+la′p,γc
′
q,ε

− 1

2
a′s,αc

′
r,βx

la′p,γc
′
q,εx

k +
1

2
a′s,αc

′
r,βa

′
p,γc
′
q,εx

k+l .

Net, we use (3.71) to compute the third term of (3.73), and it becomes
k∑

σ=1

a′p,γc
′
q,εx

σ−1 ∗
{{
x, a′s,αc

′
r,β

}}
xl ∗ xk−σ

= +
1

2

[
k−1∑
σ=0

+
k∑

σ=1

]
a′s,αc

′
r,βx

k−σ ⊗ a′p,γc′q,εxσer−1x
l

+
1

2

[
k∑

σ=1

−
k−1∑
σ=0

]
esx

k−σ ⊗ a′p,γc′q,εxσa′s,αc′r,βxl .

By assumptions, l ≡
m
s− (r− 1) so that er−1x

la′s,α = xla′s,α and c′r,βx
les = c′r,βx

l. Hence, if we

take the multiplication map, we can get rid of the idempotents modulo commutators and we write

m ◦ (a′p,γc
′
q,ε

{{
xk, a′s,αc

′
r,β

}}
xl) =

k−1∑
σ=1

a′s,αc
′
r,βx

k−σa′p,γc
′
q,εx

l+σ

+
1

2
a′s,αc

′
r,βx

ka′p,γc
′
q,εx

l +
1

2
a′s,αc

′
r,βa

′
p,γc
′
q,εx

k+l

+
1

2
a′s,αc

′
r,βx

la′p,γc
′
q,εx

k − 1

2
a′s,αc

′
r,βx

k+la′p,γc
′
q,ε

mod A′/[A′, A′]. Finally, we compute the fourth term of (3.73) :
k∑

σ=1

l∑
τ=1

a′p,γc
′
q,εx

σ−1 ∗ a′s,αc′r,βxτ−1 {{x, x}}xl−τ ∗ xk−σ

=
1

2

k∑
σ=1

l∑
τ=1

∑
t∈I

a′s,αc
′
r,βx

τ−1x2et+1x
k−σ ⊗ a′p,γc′q,εxσ−1etx

l−τ

− 1

2

k∑
σ=1

l∑
τ=1

∑
t∈I

a′s,αc
′
r,βx

τ−1et+1x
k−σ ⊗ a′p,γc′q,εxσ−1etx

2xl−τ ,

which becomes, after applying the multiplication map,

m ◦ (a′p,γc
′
q,ε ∗ a′s,αc′r,β

{{
xk, xl

}}
)

=
1

2

k∑
σ=1

l∑
τ=1

∑
t∈I

a′s,αc
′
r,βx

τ−1x2et+1x
k−σa′p,γc

′
q,εx

σ−1etx
l−τ

− 1

2

k∑
σ=1

l∑
τ=1

∑
t∈I

a′s,αc
′
r,βx

τ−1et+1x
k−σa′p,γc

′
q,εx

σ−1etx
2xl−τ .



3.3. Remaining proofs 103

We consider this expression modulo commutators. Note that in the first sum we have a factor

xl−τa′s,αc
′
r,βx

τ+1 ∈ es−l+τA
′er+τ , so we need t to be such that t ≡

m
s − l + τ and t + 1 ≡

m

r + τ ≡
m

(s− l + 1) + τ since l ≡
m
s− (r − 1). In other words, the only contribution of the sum

t ∈ I which is not trivially vanishing is the one such that t ≡
m
s − l + τ . Then, we can omit to

write the idempotents10. The same is true in the second sum with t ≡
m
s− l + τ − 2. We write

m ◦ (a′p,γc
′
q,ε ∗ a′s,αc′r,β

{{
xk, xl

}}
)

=
1

2

[
k−1∑
σ=0

l∑
τ=1

−
k∑

σ=1

l−1∑
τ=0

]
a′s,αc

′
r,βx

k−σ+τa′p,γc
′
q,εx

l+σ−τ .

The difference of the sums can be written as[
k−1∑
σ=0

l∑
τ=1

−
k∑

σ=1

l−1∑
τ=0

]
... =

[∑
σ=0

l−1∑
τ=1

+

k−1∑
σ=0

∑
τ=l

−
k−1∑
σ=1

∑
τ=0

−
∑
σ=k

l−1∑
τ=0

]
... ,

hence we find

m ◦ (a′p,γc
′
q,ε ∗ a′s,αc′r,β

{{
xk, xl

}}
)

=
1

2

l−1∑
τ=1

a′s,αc
′
r,βx

k+τa′p,γc
′
q,εx

l−τ +
1

2

k−1∑
σ=0

a′s,αc
′
r,βx

k+l−σa′p,γc
′
q,εx

σ

− 1

2

k−1∑
σ=1

a′s,αc
′
r,βx

k−σa′p,γc
′
q,εx

l+σ − 1

2

l−1∑
τ=0

a′s,αc
′
r,βx

τa′p,γc
′
q,εx

k+l−τ .

Summing the last three terms of (3.73) that we derived, we get in A′/[A′, A′] after simplifications

{a′p,γc′q,εxk, a′s,αc′r,βxl} −m ◦ (Sacx
l ∗ xk)

=− 1

2

l−1∑
v=1

a′s,αc
′
r,βx

k+va′p,γc
′
q,εx

l−v +
1

2

k−1∑
v=1

a′s,αc
′
r,βx

k+l−va′p,γc
′
q,εx

v

+
1

2

k−1∑
v=1

a′s,αc
′
r,βx

k−va′p,γc
′
q,εx

l+v − 1

2

l−1∑
v=1

a′s,αc
′
r,βx

va′p,γc
′
q,εx

k+l−v

− 1

2
a′s,αc

′
r,βx

k+la′p,γc
′
q,ε +

1

2
a′s,αc

′
r,βa

′
p,γc
′
q,εx

k+l ,

10It is important to remark that several terms in the sum will vanish after a more careful analysis. For example, in

the first sum, we need each couple (σ, τ) to be such that both c′r,βet+1x
k+τ−σ+1a′p,γ and c′q,εxl−τ+σ−1a′s,α are not

trivially zero, which means (τ − σ) + k + 1 ≡
m
p − (r − 1) and −(τ − σ) + l − 1 ≡

m
s − (q − 1). Our aim was

only to avoid writing idempotents in the expressions, so that we do not look at these conditions at the moment and we

postpone their investigation when we will be looking at their representations on the moduli space. The same holds for

the other sums that we have obtained so far.
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which we rewrite

{a′p,γc′q,εxk, a′s,αc′r,βxl} −m ◦ (Sacx
l ∗ xk)

= +
1

2

k−1∑
v=1

a′s,αc
′
r,βx

va′p,γc
′
q,εx

k+l−v +
1

2

k−1∑
v=1

a′s,αc
′
r,βx

k+l−va′p,γc
′
q,εx

v

− 1

2

l−1∑
v=1

a′s,αc
′
r,βx

va′p,γc
′
q,εx

k+l−v − 1

2

l−1∑
v=1

a′s,αc
′
r,βx

k+l−va′p,γc
′
q,εx

v

− 1

2
a′s,αc

′
r,βx

k+la′p,γc
′
q,ε +

1

2
a′s,αc

′
r,βa

′
p,γc
′
q,εx

k+l .

We can add in the sums the terms corresponding to v = k and v = l as they cancel out. Hence,

the latter expression contains precisely the first two terms of (3.36), with two additional terms.

Modulo commutators, these two terms vanish with the elements

−1

2
δ(r,p+1) a

′
s,αc
′
r,βa

′
p,γc
′
q,ε ⊗ ep +

1

2
δ(q,s+1) es ⊗ a′p,γc′q,εa′s,αc′r,β

of Sac when we add m◦ (Sacx
l ∗xk). It now suffices to verify that all the other terms give exactly

(3.36). 2

Proof. (Lemma 3.2.8.) For the first identity, we get by (3.37a)

{{
uk, ul

}}
=

k∑
σ=1

l∑
τ=1

uσ−1 ∗ uτ−1({{u, u}})ul−τ ∗ uk−σ

=
1

2
ε(u)

k∑
σ=1

l∑
τ=1

∑
s∈I

uτ+1es+θ(u)u
k−σ ⊗ uσ−1esu

l−τ

− 1

2
ε(u)

k∑
σ=1

l∑
τ=1

∑
s∈I

uτ−1es+θ(u)u
k−σ ⊗ uσ−1esu

l−τ+2 .

If we apply the multiplication map, we get in both sums a factor es+θ(u)u
k−1es which can only

be nonzero provided kθ(u) ≡
m

0 since es+θ(u)u
k−1 = uk−1es+kθ(u). In the latter case, we can

omit to write the idempotents as usual, and both sums cancel out since each of their summands is

just uk+l.

Next we compute using (3.37b)

{{u,ws,αvr,β}} =
1

2
(es ⊗ uws,αvr,β − esu⊗ ws,αvr,β + ws,αvr,βu⊗ er − ws,αvr,β ⊗ uer) .
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We find in a way similar to (3.72) in the proof of Lemma 3.2.7,

{{
uk, ws,αvr,βu

l
}}

=
1

2

k∑
σ=1

(
esu

k−σ ⊗ uσws,αvr,βul − esuk−σ+1 ⊗ uσ−1ws,αvr,βu
l

+ ws,αvr,βu
k−σ+1 ⊗ uσ−1eru

l − ws,αvr,βuk−σ ⊗ uσerul
)

+
1

2

k∑
σ=1

l∑
τ=1

∑
t∈I

(
ws,αvr,βu

τ+1et+θ(u)u
k−σ ⊗ uσ−1etu

l−τ

− ws,αvr,βuτ−1et+θ(u)u
k−σ ⊗ uσ−1etu

l−τ+2
)
.

To have nonzero terms modulo commutators, recall that we consider k = 0 modm while lθ(u) =

s− r mod m if u = x, y, z, while k, l ∈ N otherwise. In particular we do not need to write down

the idempotents after multiplication, and all terms cancel out.

To prove that (3.39) holds, we assume that kθ(u) ≡
m
p−q and lθ(u) ≡

m
s−r, as the proof is trivial

otherwise since both sides vanish. We decompose

{{
wp,γvq,εu

k, ws,αvr,βu
l
}}

=wp,γvq,ε ∗
{{
uk, ws,αvr,βu

l
}}

+ ws,αvr,β

{{
wp,γvq,ε, u

l
}}
∗ uk

+ {{wp,γvq,ε, ws,αvr,β}}ul ∗ ul

and see that the double bracket in the first term has just been computed. Writing this first term as

T1, we can write

m ◦ T1 =
1

2
(eswp,γvq,εu

kws,αvr,βu
l − esukwp,γvq,εws,αvr,βul)

+
1

2
(ws,αvr,βu

kwp,γvq,εeru
l − ws,αvr,βwp,γvq,εukerul)

+
ε(u)

2

k∑
σ=1

l∑
τ=1

∑
t∈I

ws,αvr,βu
τ+1et+θ(u)u

k−σwpγvqεu
σ−1etu

l−τ

− ε(u)

2

k∑
σ=1

l∑
τ=1

∑
t∈I

ws,αvr,βu
τ−1et+θ(u)u

k−σwpγvqεu
σ−1etu

l−τ+2

For the first term in the first line, the idempotent tells us that s = p, but we know the same

from vq,εu
kws,α = vq,εu

keq+kθ(u)esws,α by choice of k. Hence, we do not need to write the

idempotent, and this is true for the first four terms. In fact, as in the proof of Lemma 3.2.7, the

idempotents are also determined by the other terms on the last two lines, so we can skip to write

them. Then, the last two sums take the same form as m ◦ T in the proof of Lemma 3.1.7, hence
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we can write after simplification that the following holds modulo commutators

m ◦ T1 =
1

2
(wp,γvq,εu

kws,αvr,βu
l − wp,γvq,εws,αvr,βuk+l)

+
1

2
(wp,γvq,εu

lws,αvr,βu
k − wp,γvq,εuk+lws,αvr,β)

+
1

2
ε(u)

[
k−1∑
τ=1

ws,αvr,βu
k+l−τwp,γvq,εu

τ +

l∑
τ=1

ws,αvr,βu
k+τwp,γvq,εu

l−τ

]

− 1

2
ε(u)

[
l−1∑
σ=1

ws,αvr,βu
τwp,γvq,εu

k+l−τ +
k∑
τ=1

ws,αvr,βu
k−τwp,γvq,εu

l+τ

]
.

Using the computation for {{u,ws,αvr,β}} at the beginning, we easily obtain that{{
ul, wp,γvq,ε

}}
=

1

2
(ep ⊗ ulwp,γvq,ε − epul ⊗ wp,γvq,ε)

+
1

2
(wp,γvq,εu

l ⊗ eq − wp,γvq,ε ⊗ uleq) .

Applying the cyclic antisymmetry, we easily computem◦(ws,αvr,β
{{
wp,γvq,ε, u

l
}}
∗uk). Modulo

commutators, this cancels out with the first four terms in m ◦ T1.

Finally, we compute that {{wp,γvq,ε, ws,αvr,β}} is equal to

1

2
[o(p, r) + o(q, s)− o(p, s)− o(q, r)]ws,αvq,ε ⊗ wp,γvr,β

+
1

2
δpso(α, γ)(ws,αvq,ε ⊗ wp,γvr,β + wp,γvq,ε ⊗ ws,αvr,β)

+
1

2
δqro(β, ε)(ws,αvq,ε ⊗ wp,γvr,β + ws,αvr,β ⊗ wp,γvq,ε)

+
1

2
δqs[o(ε, α) + δεα](ws,αvq,ε ⊗ wp,γvr,β + es ⊗ wp,γvq,εws,αvr,β)

− 1

2
δpr[o(β, γ) + δβγ ](ws,αvq,ε ⊗ wp,γvr,β + ws,αvr,βwp,γvq,ε ⊗ er)

+ δqsδεα es ⊗ wp,γvr,β − δprδγβ ws,αvq,ε ⊗ er .

Once we compute m ◦ ({{wp,γvq,ε, ws,αvr,β}}ul ∗ uk) the idempotents can be omitted. The latter

expression, modulo commutators, yields the first six lines in (3.39), and the remaining two come

from the two last lines of m ◦ T1. 2

Proof. (Lemma 3.2.10.) Since (esues)
k = esu

kes, we have{{
(esues)

k, (eruer)
l
}}

= es ∗ er
{{
uk, ul

}}
er ∗ es ,{{

(etuet)
k, ws,αvr,βu

l
}}

= et ∗
{{
uk, ws,αvr,βu

l
}}
∗ et .

Using the double brackets on the right-hand side obtained in the proof of Lemma 3.2.8 for

ε(u) = +1, θ(u) = 0 we can easily conclude that these expressions vanish after applying the

multiplication map. 2
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3.3.7 Computations using subquivers of the framed cyclic quivers

We prove Propositions 3.2.12 and 3.2.14.

Proof. (Proposition 3.2.12.) The idea for the proof is similar to Proposition 3.1.9. Let α, η ∈ C

and recall that U+,η = u(1 + ηφ). (Clearly, α is not seen as a parameter running over 1, . . . , ds

for some s ∈ I .) If we write {{U+,α, U+,η}} = a′ ⊗ a′′, we can write

1

KL
{UK+,α, UL+,η} = UL−1

+,η a
′UK−1

+,α a′′ mod [A,A] , (3.74)

So we have to compute

{{u+ αuφ, u+ ηuφ}} = {{u, u}}+ α {{uφ, u}}+ η {{u, uφ}}+ αη {{uφ, uφ}} . (3.75)

We need the following double brackets for the proof

{{u, u}} =
1

2
ε(u)[u2Fθ(u) − Fθ(u)u

2] , {{φ, γ}} =
1

2
φ ∗ (γF0 − F0γ) +

1

2
(γF0 − F0γ) ∗ φ ,

where γ is any word in the letters {es, xs, ys} (with possible inverses). The first equation is

(3.37a), while the second equation follows from Lemma 2.3.14 applied to the subquiver based at

I (the set of all vertices in the cycle) with (2.19). In fact, we can write

{{φ, u}} =
1

2
(uF0φ− F0φu) +

1

2
(uφF0 − φF0u) ,

{{φ, φ}} =
1

2
(φ2F0 − F0φ

2) ,

(3.76)

because φ ∈ ⊕sesAes, so φes = esφ. Similarly ues = es−θ(u)u as u ∈ ⊕sesAes+θ(u), so that

{{u, φ}} =
1

2
φ(uFθ(u) − Fθ(u)u) +

1

2
(uFθ(u) − Fθ(u)u)φ .

We have already the first term in (3.75). For the second term, we compute

{{uφ, u}} =u ∗ {{φ, u}}+ {{u, u}} ∗ φ

=
1

2
u ∗ (uF0φ− F0φu) +

1

2
u ∗ (uφF0 − φF0u) +

1

2
ε(u)(u2φFθ(u) − φFθ(u)u

2)

=
1

2
(uFθ(u)uφ− Fθ(u)uφu+ uφFθ(u)u− φFθ(u)u

2) +
1

2
ε(u)(u2φFθ(u) − φFθ(u)u

2)

using that u ∗F0 =
∑

s es⊗ues =
∑

s es⊗ es−θ(u)u = Fθ(u)u. To get {{u, uφ}} = −{{uφ, u}}◦,

we need the following lemma.
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Lemma 3.3.1 Fix some r ∈ N and let a ∈ ⊕sesAes, b0, b1 ∈ ⊕sesAes+r and c ∈ ⊕sesAes+2r.

Then (b0Frb1)◦ = b1Frb0 and (cFra)◦ = aFrc.

Proof. We compute (b0Frb1)◦ =
∑

s esb1 ⊗ b0es+r =
∑

s b1es+r ⊗ esb0 = b1Frb0. The second

equality follows similarly. 2

Taking r = θ(u), b0 = u and b1 = uθ gives (uFθ(u)uφ)◦ = uφFθ(u)u. In a similar way for the

other terms, we find

{{u, uφ}} = −1

2
(uφFθ(u)u−uφuFθ(u) +uFθ(u)uφ−u2Fθ(u)φ)+

1

2
ε(u)(u2Fθ(u)φ−Fθ(u)u

2φ) .

To get the last double bracket, it remains to compute

{{uφ, φ}} = {{u, φ}} ∗ φ+ u ∗ {{φ, φ}}

=
1

2
φ(uFθ(u) − Fθ(u)u) ∗ φ+

1

2
(uFθ(u) − Fθ(u)u)φ ∗ φ+

1

2
u ∗ (φ2F0 − F0φ

2)

=
1

2
(φuφFθ(u) + uφFθ(u)φ− φFθ(u)uφ− Fθ(u)uφ

2) ,

so that we find for {{uφ, uφ}} = u {{uφ, φ}}+ {{uφ, u}}φ

{{uφ, uφ}} =
1

2
(uφuφFθ(u) + u2φFθ(u)φ− Fθ(u)uφuφ− φFθ(u)u

2φ)

+
1

2
ε(u)(u2φFθ(u)φ− φFθ(u)u

2φ) .

We let Uα denote U+,α to ease notations. Using Uα− u = αuφ and Uη − u = ηuφ, we can write

αη {{uφ, uφ}} as

1

2
ηuφ(Uα − u)Fθ(u) +

1

2
ηu(Uα − u)Fθ(u)φ−

1

2
αFθ(u)uφ(Uη − u)

− 1

2
αφFθ(u)u(Uη − u) +

1

2
ε(u)ηu(Uα − u)Fθ(u)φ−

1

2
ε(u)αφFθ(u)u(Uη − u) .

Summing all terms in (3.75), we get

{{Uα, Uη}} =
1

2
ε(u)(u2Fθ(u) − Fθ(u)u

2) +
1

2
αε(u)u2φFθ(u) −

1

2
ηε(u)Fθ(u)u

2φ

+
1

2
α(uFθ(u)uφ+ uφFθ(u)u)− 1

2
η(uφFθ(u)u+ uFθ(u)uφ)

+
1

2
ηuφUαFθ(u) +

1

2
ηuUαFθ(u)φ−

1

2
αFθ(u)uφUη

− 1

2
αφFθ(u)uUη +

1

2
ε(u)ηuUαFθ(u)φ−

1

2
ε(u)αφFθ(u)uUη .
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Repeating the substitution under the form u−1(Uα − u) = αφ, we find

{{Uα, Uη}} =
1

2
ε(u)(u2Fθ(u) − Fθ(u)u

2) +
1

2
ε(u)u(Uα − u)Fθ(u) −

1

2
ε(u)Fθ(u)u(Uη − u)

+
1

2
(uFθ(u)(Uα − u) + (Uα − u)Fθ(u)u)

− 1

2
((Uη − u)Fθ(u)u+ uFθ(u)(Uη − u))

+
1

2
(Uη − u)UαFθ(u) +

1

2
uUαFθ(u)u

−1(Uη − u)

− 1

2
Fθ(u)(Uα − u)Uη −

1

2
u−1(Uα − u)Fθ(u)uUη

+
1

2
ε(u)uUαFθ(u)u

−1(Uη − u)− 1

2
ε(u)u−1(Uα − u)Fθ(u)uUη .

We get after simplifications

{{Uα, Uη}} = +
1

2
(1 + ε(u))

[
uUαFθ(u)u

−1Uη − u−1UαFθ(u)uUη
]

+
1

2
(uFθ(u)Uα + UαFθ(u)u)− 1

2
(UηFθ(u)u+ uFθ(u)Uη)

− uUαFθ(u) + Fθ(u)uUη +
1

2
(UηUαFθ(u) − Fθ(u)UαUη) .

If we insert this in (3.74), we get

{UKα , ULη } =
1

2
(1 + ε(u))

[
ULη uU

K
α u
−1 − ULη u−1UKα u

]
+

1

2
(−UL−1

η uUKα + UL−1
η UKα u+ ULη U

K−1
α u− ULη uUK−1

α )

(3.77)

all mod [A,A]. Indeed, since Uα ∈ ⊕sesAes+θ(u)we find for the first term

∑
s

UL−1
η uUαes+θ(u)U

K−1
α esu

−1Uη =UL−1
η uUα

(∑
s

es+θ(u)es−(K−1)θ(u)

)
UK−1
α u−1Uη

=UL−1
η uUαU

K−1
α u−1Uη

for (K − 1)θ(u)≡− θ(u) mod m, that is K is divisible by m if θ(u) 6= 0, i.e. when u = x, y, z,

while K ≥ 1 for u = 1I + xy. The same argument works for every element, either by inspecting

K or L. Now, assuming α 6= η, we remark that u = 1
α−η (αUη − ηUα). Using this expression in

the second line of (3.77), all the terms cancel out. The second line trivially vanishes for α = η so

that the claim follows as ε(u) = −1.

The same proof works when ε(u) = +1 to show that {UK−,α, UL−,η} = 0 modulo commutators for

U−,α = u(1+αφ−1). We only need to notice that
{{
φ−1, a

}}
= −φ−1 ∗{{φ, a}}∗φ−1, so we just
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need to replace in the expression {{φ, a}} the factors φ by φ−1 and multiply by an overall factor

−1. Thus, reproducing the proof in the first case with some sign changes, we get

1

KL
{UK−,α, UL−,η} =

1

2
(−1 + ε(u))

(
UL−,ηuU

K
−,αu

−1 − UL−,ηu−1UK−,αu
)
,

modulo commutators. This yields the desired result for ε(u) = +1. 2

Proof. (Proposition 3.2.14.) First, we assume that u = y, z. We consider K,L ≡
m

0. Otherwise

the proof is trivial as uK(j) ∈ ⊕sesAes−K (here we need that u = y, z) implies that such a term

vanishes modulo commutator forK not divisible bym. We also assume without loss of generality

that 0 ≤ j ≤ j′ ≤ d.

To ease notations for the proof, we also set u1 = u(j′), u0 = u(j), φ1 =
∑

s Φ
(j′)
s and φ0 =∑

s Φ
(j)
s . As in (3.74), we have that

1

KL
{uK1 , uL0 } = uL−1

0 {{u1, u0}}′ uK−1
1 {{u1, u0}}′′ mod[A,A] .

Hence, we need to compute {{u1, u0}} as a first step. We can write

{{u1, u0}} = {{φ1, u0}} ∗ u+ φ1 ∗ {{u, φ0}}u+ φ1 ∗ φ0 {{u, u}} .

By assumption, φ0 and φ1 are moment maps corresponding to the last two quivers in the chain

Q̄0 ⊆ Q̄j ⊆ Q̄j′ . Hence, we get from Lemma 2.3.15 that

{{φ1, u0}} =
∑
s∈I

1

2
(u0es ⊗ φ1,s − es ⊗ φ1,su0 + u0φ1,s ⊗ es − φ1,s ⊗ esu0)

=
1

2
(u0F0φ1 − F0φ1u0 + u0φ1F0 − φ1F0u0) ,

since φ1 =
∑

s esφ1,ses. Using cyclic antisymmetry and the fact that u ∈ ⊕sesAes−1 (again

because u = y, z), we get also from Lemma 2.3.15 that

{{u, φ0}} = −{{φ0, u}}◦

=− 1

2

∑
s

(φ0,ses ⊗ es+1ues − φ0,sues−1 ⊗ es + es ⊗ es+1uφ0,s − esues−1 ⊗ esφ0,s)

=− 1

2
(φ0F−1u− φ0uF−1 + F−1uφ0 − uF−1φ0) .

Finally, recall that we have {{u, u}} = −1
2 [u2F−1 − F−1u

2]. We can group all these terms, and

since F0 ∗ u = uF−1, φ1 ∗ F−1 = F−1φ1, we get after simplification

{{u1, u0}} =
1

2
(u0u1F−1 − u1F−1u0 + u0F−1u1 − F−1u1u0) .
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Therefore,

1

KL
{uK1 , uL0 } =

1

2

∑
s∈I

(
uL0 u1esu

K−1
1 es+1 − uL−1

0 u1esu
K−1
1 es+1u0

+ uL0 esu
K−1
1 es+1u1 − uL−1

0 esu
K−1
1 es+1u1u0

)
,

modulo commutators. Since esuK−1
1 = uK−1

1 es+1, all terms cancel out mod [A,A].

In the case u = (1I + xy)−1, note that we have {{u, u}} = −1
2 [u2F0 − F0u

2] after a direct

computation using (3.37a) with 1I + xy. Thus, the above proof applies also in this case for any

K,L ∈ N× after minor changes, such as replacing F−1 by F0 everywhere since u ∈ ⊕sesAes in

this case. 2

3.3.8 Loday brackets for framed cyclic quivers

In this subsection, we prove Lemmae 3.2.15, 3.2.16, 3.2.17, 3.2.18, 3.2.19 and 3.2.20. Before

proving these results, recall that for u = x, y, z, 1I + xy we can write

{{φ, u}} =
1

2
(uF0φ− F0φu) +

1

2
(uφF0 − φF0u) ,

which was obtained as (3.76). We can note as in § 3.3.4 that this equality can not be directly

applied to ws,β or ws,β . Rather, we need an explicit computation using that (3.37b) holds for

u = 1I + xy, 1I + yx to get

{{φ, vs,β}} =
1

2
(vs,βφ⊗ es− vs,β ⊗φes) , {{φ,ws,β}} =

1

2
(es⊗φws,β − esφ⊗ws,β) . (3.78)

These brackets will be needed, together with the ones written in § 3.2.1 and § 3.2.2. We also use

without further mention that for any U, c ∈ A (or a suitable localisation) and K ∈ N×, we have

1

K
{UK , c} = {{U, c}}′ UK−1 {{U, c}}′′ , (3.79)

as a direct application of (2.15).
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Proof. (Lemma 3.2.15.) We can compute

{{Uη, x}} = {{z, x}} ∗ (1I + ηφ) + ηz ∗ {{φ, x}}

=− 1

2
(xzF−1 + F−1zx− zF−1x+ xF−1z) ∗ (1I + ηφ)

+
1

2
η(zφ ∗ (xF0 − F0x) + z ∗ (xF0 − F0x) ∗ φ)

=− 1

2
(xz(1I + ηφ)F−1 + (1I + ηφ)F−1zx− z(1I + ηφ)F−1x+ x(1I + ηφ)F−1z)

+
1

2
η(xF−1zφ− F−1zφx) +

1

2
η(xφF−1z − φF−1zx) ,

where we used that φ ∈ ⊕sesAes and z ∈ ⊕sesAes−1 to get

xzF−1 ∗ (1I + ηφ) = xz(1I + ηφ)F−1 , zφ ∗ xF0 =
∑
s

xes ⊗ zφes = xF−1zφ ,

and similar expressions. By definition, Uη = z(1 + ηφ), so we can write Uη − z = ηzφ. We can

also multiply both expressions from the left by z−1 to get ηφ = z−1Uη − 1I since we work in A′.

Thus

{{Uη, x}} =− 1

2
(xUηF−1 + z−1UηF−1zx− UηF−1x+ xz−1UηF−1z)

+
1

2
(xF−1(Uη − z)− F−1(Uη − z)x)

+
1

2
(xz−1(Uη − z)F−1z − z−1(Uη − z)F−1zx)

=− z−1UηF−1zx− xF−1z + F−1zx

+
1

2
(xF−1Uη − xUηF−1 − F−1Uηx+ UηF−1x) .

Now, as UK−1
η ∈ ⊕ses−1Aes for K ∈ mN,

∑
s∈I es−1U

K−1
η es = UK−1

η and we find

1

K
{UKη , x} = −z−1UηU

K−1
η zx− xUK−1

η z + UK−1
η zx = −ηφUK−1

η zx− xUK−1
η z .

Note that this expression vanishes forK /∈ mN,K 6= 0, as we expect, so we restrict toK ∈ mN×

for the rest of our discussion. Next, we do this for z and find

{{Uη, z}} = {{z, z}} ∗ (1I + ηφ) + ηz ∗ {{φ, z}}

=− 1

2
(z2F−1 − F−1z

2) ∗ (1I + ηφ) +
1

2
η(zφ ∗ (zF0 − F0z) + z ∗ (zF0 − F0z) ∗ φ)

=− 1

2
(z2(1I + ηφ)F−1 − (1I + ηφ)F−1z

2)

+
1

2
η(zF−1zφ− F−1zφz) +

1

2
η(zφF−1z − φF−1z

2) ,
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which with the previous trick becomes

{{Uη, z}} =− 1

2
(zUηF−1 − z−1UηF−1z

2) +
1

2
(zF−1(Uη − z)− F−1(Uη − z)z)

+
1

2
((Uη − z)F−1z − (z−1Uη − 1I)F−1z

2)

=F−1z
2 − zF−1z +

1

2
(zF−1Uη − zUηF−1 + UηF−1z − F−1Uηz) .

Hence 1
K {U

K
η , z} = UK−1

η z2 − zUK−1
η z. For vs,β we get

{{Uη, vs,β}} = {{z, vs,β}} ∗ (1I + ηφ) + ηz ∗ {{φ, vs,β}}

=
1

2
(vs,βz(1I + ηφ)⊗ es − vs,β(1I + ηφ)⊗ zes)

+
1

2
η(vs,βφ⊗ zes − vs,β ⊗ zφes)

=
1

2
(vs,βz(1I + ηφ)⊗ es − vs,β ⊗ zes − vs,β ⊗ zφes)

=
1

2
(vs,βUη ⊗ es − vs,β ⊗ Uηes) ,

which gives {UKη , vβ} = 0. We find in the exact same way that {UKη , wβ} = 0. 2

Proof. (Lemma 3.2.16.) Note that, as the double bracket {{y, x}} can be obtained from {{z, x}} by

replacing z by y and adding an extra term −F−1, we get by adapting the proof of Lemma 3.2.15

1

K
{ŪKη , x} =− (1I + ηφ)ŪK−1

η − y−1ŪKη yx− xŪK−1
η y + ŪK−1

η yx

=− ŪK−1
η − xŪK−1

η y − ηφŪK−1
η (1I + yx).

The double bracket {{z, z}}with y replacing z is exactly {{y, y}}, hence 1
K {Ū

K
η , y} = −yŪK−1

η y+

ŪK−1
η y2. The same holds for the couple (y, ws,β) replacing (z, ws,β), or doing it with vs,β , so

that {ŪKη , ws,β} = 0 and {ŪKη , vs,β} = 0. 2

Proof. (Lemma 3.2.17.) Recall that we assume K ∈ mN× so that
∑

s es+1Û
K−1
η es = ÛK−1

η ,

which we will use under the form F ′1Û
K−1
η F ′′1 = ÛK−1

η . Note also that xφ−1 ∗ F0 = F1xφ
−1.

We compute {{
Ûη, x

}}
= {{x, x}} ∗ (1I + ηφ−1)− ηxφ−1 ∗ {{φ, x}} ∗ φ−1

=
1

2
(x2(1I + ηφ−1)F1 − (1I + ηφ)F1x

2

− 1

2
η(xφ−1F1x− φ−1F1x

2 + xF1xφ
−1 − F1xφ

−1x) .
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Using that Ûη = x(1 + ηφ−1) and equivalent expressions, we get

{{
Ûη, x

}}
=

1

2
(xÛηF1 − x−1ÛηF1x

2)

− 1

2
((Ûη − x)F1x− x−1(Ûη − x)F1x

2 + xF1(Ûη − x)− F1(Ûη − x)x)

=xF1x− F1x
2 +

1

2
(xÛηF1 − ÛηF1x− xF1Ûη + F1Ûηx) ,

and we find
1

K
{ÛKη , x} = xÛK−1

η x− ÛK−1
η x2 .

Next we have{{
Ûη, z

}}
= {{x, z}} ∗ (1I + ηφ−1)− ηxφ−1 ∗ {{φ, z}} ∗ φ−1

=
1

2
(zx(1I + ηφ−1)F1 + (1I + ηφ−1)F1xz)

+
1

2
(−x(1I + ηφ−1)F1z + z(1I + ηφ−1)F1x)

− 1

2
η(zφ−1F1x− φ−1F1xz + zF1xφ

−1 − F1xφ
−1z) .

Furthermore, using the same trick as before gives{{
Ûη, z

}}
= {{x, z}} ∗ (1I + ηφ−1)− ηxφ−1 ∗ {{φ, z}} ∗ φ−1

=
1

2
(zÛηF1 + x−1ÛηF1xz − ÛηF1z + zx−1ÛηF1x)

− 1

2
(zx−1(Ûη − x)F1x− x−1(Ûη − x)F1xz + zF1(Ûη − x)− F1(Ûη − x)z)

=x−1ÛηF1xz + zF1x− F1xz +
1

2
(zÛηF1 − ÛηF1z − zF1Ûη + F1Ûηz) .

We easily get

1

K
{ÛKη , z} = x−1ÛKη xz + zÛK−1

η x− ÛK−1
η xz = zÛK−1

η + ηφ−1ÛK−1
η xz .

Finally, we can get
{{
Ûη, vs,β

}}
= 1

2vs,βÛη ⊗ es −
1
2vs,β ⊗ Ûηes, which gives {ŨKη , vs,β} = 0.

We can do the same for ws,β to get {ÛKη , vs,β} = 0. 2

Proof. (Lemma 3.2.18.) We compute in A′ instead of A, so that
∑

s es + xy = xz and Ũη =

xz(1 + ηφ−1). This does not change the final result, and only ease notations. First, we note that

{{xz, x}} =
1

2
x2zF0 −

1

2
F0xzx−

1

2
xzF0x−

1

2
xF0xz .
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We obtain in that way{{
Ũη, x

}}
= {{xz, x}} ∗ (1 + ηφ−1)− ηxzφ−1 ∗ {{φ, x}} ∗ φ−1

=
1

2
(xŨηF0 − (xz)−1ŨηF0xzx− ŨηF0x− x(xz)−1ŨηF0xz)

+
1

2
(−x[(xz)−1Ũη − 1I ]F0xz + [(xz)−1Ũη − 1I ]F0xzx)

+
1

2
(−xF0[Ũη − xz] + F0[Ũη − xz]x) .

This reduces after simplification to{{
Ũη, x

}}
=− F0xzx+ xF0xz − x(xz)−1ŨηF0xz

+
1

2
(xŨηF0 − xF0Ũη + F0Ũηx− ŨηF0x) ,

which yields for any K ∈ N×

1

K
{ŨKη , x} =− x(xz)−1ŨKη xz − ŨK−1

η xzx+ xŨK−1
η xz

=− ŨK−1
η xzx− η xφ−1ŨK−1

η xz .

Second, we compute {ŨKη , xz}. We get{{
Ũη, xz

}}
= {{xz, xz}} ∗ (1 + ηφ−1)− ηxzφ−1 ∗ {{φ, xz}} ∗ φ−1

=
1

2

(
xzŨηF0 − (xz)−1ŨηF0(xz)2

)
+

1

2

(
−[Ũη − xz]F0xz + [(xz)−1Ũη − 1]F0(xz)2

)
+

1

2

(
−xzF0[Ũη − xz] + F0[Ũη − xz]xz

)
.

We get by cancelling terms{{
Ũη, xz

}}
=− F0(xz)2 + xzF0xz +

1

2
(xzŨηF0 − xzF0Ũη + F0Ũηxz − ŨηF0xz) .

This gives us that
1

K
{ŨKη , xz} =xzŨK−1

η xz − ŨK−1
η (xz)2 .

Finally, we can get
{{
Ũη, vs,β

}}
= 1

2vs,βŨη ⊗ es−
1
2vs,β ⊗ Ũηes, and {ŨKη , vs,β} = 0 as before.

The same holds for ws,β too. 2

For the last two proofs, we use the notations introduced in Remark 3.2.11.

Proof. (Lemma 3.2.19.) We will use that for any a ∈ A′

1

K
{zK(j), a} =

{{
z(j), a

}}′
zK−1

(j)

{{
z(j), a

}}′′
, (3.80)
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where the double bracket is obtained from the decomposition

{{
z(j), a

}}
=
∑
s∈I

{{
Φ(j)
s , a

}}
∗ z + Φ(j) ∗ {{z, a}} . (3.81)

If a = x, z, vr,β , wr,β with (r, β) ≤ ρ(j), we get from Lemma 2.3.15 that

{{
Φ(j)
s , a

}}
=

1

2
(aes ⊗ Φ(j)

s − es ⊗ Φ(j)
s a+ aΦ(j)

s ⊗ es − Φ(j)
s ⊗ esa) .

Hence, we obtain

∑
s∈I

{{
Φ(j)
s , a

}}
=

1

2
(aF0Φ(j) − F0Φ(j)a+ aΦ(j)F0 − Φ(j)F0a) .

Using (3.81) together with (3.27a)–(3.27c), and (3.28) under the form

{{z, wr,β}} =
1

2
(F−1zwr,β − zF−1wr,β) , {{z, vr,β}} =

1

2
(vr,βzF−1 − vr,βF−1z) , (3.82)

we can write that{{
z(j), x

}}
=

1

2
(xz(j)F−1 − z(j)F−1x− F−1z(j)x− xF−1z(j)){{

z(j), z
}}

=
1

2
(−zF−1z(j) + zz(j)F−1 − z(j)F−1z + F−1z(j)z){{

z(j), wr,β
}}

=
1

2
(−z(j)F−1wr,β + F−1z(j)wr,β − 2zF−1Φ

(j)
0 wr,β){{

z(j), vr,β
}}

=
1

2
(vr,βz(j)F−1 − vr,βF−1z(j) + 2vr,βzF−1Φ

(j)
0 ) ,

with (r, β) ≤ ρ(j). Here we used that F0 ∗ z = zF−1 and Φ(j) ∗ F−1 = F−1Φ(j). All these

double brackets are sums of terms of the form bF−1c for some b, c ∈ A′. Hence, using (3.80),

such terms contribute to the final Loday bracket as

∑
s∈I

bes−1z
K−1
(j) esc = bzK−1

(j) c ,

since zK−1
(j) ∈ ⊕sesAes+1 by assumption on K. Thus, we have the four first cases.

For the next two cases, note that if we can show∑
s∈I

{{
Φ(j)
s , wr,β

}}
=

1

2
(F0Φ(j)wr,β − Φ(j)F0wr,β) , ρ(j) < (r, β) ,

∑
s∈I

{{
Φ(j)
s , vr,β

}}
=

1

2
(vr,βΦ(j)F0 − vr,βF0Φ(j)) , ρ(j) < (r, β) ,

(3.83)
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we get by (3.81) and (3.82) that{{
z(j), wr,β

}}
=

1

2
(−z(j)F−1wr,β + F−1z(j)wr,β) , ρ(j) < (r, β) ,{{

z(j), vr,β
}}

=
1

2
(vr,βz(j)F−1 − vr,βF−1z(j)) , ρ(j) < (r, β) .

As before, putting these expressions in (3.80) yields {zK(j), wr,β} = 0 for ρ(j) < (r, β), and the

same holds with v instead.

We now prove (3.83) by induction on j ∈ {0, 1, . . . , |d|}. The case j = 0 holds since it was

established as (3.78). For the general case, we remark the relation∑
s∈I

Φ(j)
s = Φ(j−1)(1I + wρ(j)vρ(j))

−1 =
(

Φ(j−1)
s

)
(1I + wρ(j)vρ(j))

−1 ,

which implies that∑
s∈I

{{
Φ(j)
s , wr,β

}}
=
∑
s

{{
Φ(j−1)
s , wr,β

}}
∗ (1I + wρ(j)vρ(j))

−1

− Φ(j−1)(1I + wρ(j)vρ(j))
−1 ∗

{{
(1I + wρ(j)wρ(j)), vr,β

}}
∗ (1I + wρ(j)vρ(j))

−1 ,

and a similar expression for v. To compute these, we claim that{{
(1I + wρ(j)vρ(j)), wr,β

}}
=

1

2

(
F0(1I + wρ(j)vρ(j))wr,β − (1I + wρ(j)vρ(j))F0wr,β

)
{{

(1I + wρ(j)vρ(j)), vr,β
}}

=
1

2

(
vr,β(1I + wρ(j)vρ(j))F0 − vr,βF0(1I + wρ(j)vρ(j))

)
,

for all (r, β) > ρ(j). Denoting ρ(j) as (t, γ) for some t ∈ I , 1 ≤ γ ≤ dt, we have from the

definition of the ordering that either r = t and β > γ, or that r > t. In the case r > t, these two

expressions vanish, in accordance with a direct computation using (3.23b)–(3.23c). In the case

r = t, β > γ, these expressions can be reduced to{{
(1I + wρ(j)vρ(j)), wr,β

}}
=

1

2

(
et ⊗ wρ(j)vρ(j)wr,β − wρ(j)vρ(j) ⊗ wr,β

)
{{

(1I + wρ(j)vρ(j)), vr,β
}}

=
1

2

(
vr,βwρ(j)vρ(j) ⊗ er − vr,β ⊗ wρ(j)vρ(j)

)
,

and this is precisely what (3.23a)–(3.24) gives in that case. Assuming by induction that (3.83)

holds for j − 1, we can use the previous expressions to show that (3.83) holds for j, proving

the induction step. (One has to use that both Φ(j−1) and (1I + wρ(j)vρ(j))
−1 are elements of

⊕sesAes.)

To finish the proof, note that the double bracket
{{
z(j), z(j)

}}
= 1

2(z2
(j)F−1 − F−1z

2
(j)) which

is obtained at the end of the proof of Proposition 3.2.14 imply that {zK(j), z(j)} = 0. Using the
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double bracket
∑

s

{{
Φ

(j)
s , a

}}
obtained at the beginning of the current proof which holds for

a = z(j), we get that

∑
s∈I

{{
z(j),Φ

(j)
s

}}
= −1

2
(Φ(j)F−1z(j) − Φ(j)z(j)F−1 + F−1z(j)Φ

(j) − z(j)F−1Φ(j)) .

This is in fact the double bracket for
{{
z(j),Φ

(j)
}}

, since
{{

Φ
(j)
∞ , z(j)

}}
= 0 as e∞z = 0 = ze∞.

Therefore {zK(j),Φ
(j)} = 0. 2

Proof. (Lemma 3.2.20.) This is the same proof as Lemma 3.2.19 with y replacing z everywhere,

and an additional term −F−1Φ(j) in the double bracket
{{
y(α), x

}}
. 2

Proof. (Lemma 3.2.21.) A small computation using (3.37a)–(3.37b) with 1I+xy shows that u =

(1I + xy)−1 also satisfies (3.37a)–(3.37b) with ε(u) = −1, θ(u) = 0. It is then straightforward

that we can adapt the proof of Lemma 3.2.19 by simply replacing z with u and F−1 with F0 in

the cases of the brackets with u,ws,α, vs,α, u(j),Φ
(j).

For the case of x, a direct calculation using {{1I + xy, x}} obtained at the beginning of the proof

of Lemma 3.2.18 shows that

{{u, x}} = −u ∗ {{1I + xy, x}} ∗ u =
1

2
(uF0x+ F0ux+ xuF0 − xF0u) .

This yields

{{
u(j), x

}}
=

1

2
(2xuF0Φ(j) + xu(j)F0 − u(j)F0x+ F0u(j)x− xF0u(j)) ,

leading to {uK(j), x} = KxuuK−1
(j) Φ(j). 2
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Chapter 4

MQVs from the Jordan quiver

In this chapter, we combine the general approach to MQVs and integrability exhibited in § 2.3.3

and § 2.3.4 together with the double quasi-Hamiltonian structure (and related computations) for

the double of a framed Jordan quiver derived in Section 3.1. We begin with the general definition

of such spaces in Section 4.1, and gather several results that do not depend on the number of

framing arrows. This global study is followed by a local investigation, which we begin in

Section 4.2 with the simplest type of framing by d = 1 additional arrow to the Jordan quiver.

Most of the results in that section have appeared in [41, Sect. 3]. We finish by the general case of

framing by d ≥ 2 additional arrows in Section 4.3, which is parallel to [42].

We follow the conventions introduced in Remark 3.1.1.

4.1 General considerations

Consider the quiver Q̄ defined in Section 3.1. For n ∈ N× and q ∈ C×, we form α̃ = (1, n) and

q̃ = q−ne∞ + qe0 as in (2.37). A point ρ on the moduli space Rep(CQ̄, α̃) of representations of

CQ̄ with dimension α̃ consists of the vector spaces V0 = Cn,V∞ = C together with a linear map

Xa : Vh(a) → Vt(a) for each arrow a ∈ Q̄. To simplify our discussions, we view a point ρ as a

2(d+ 1)-uple (X,Y, Vα,Wα) where

X,Y ∈ Matn×n(C), Vα ∈ Mat1×n(C), Wα ∈ Matn×1(C) .
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Hence we have X (x)(ρ) = X , X (y)(ρ) = Y , X (vα)(ρ) = Vα and X (wα)(ρ) = Wα. It is

important to remark that we use the interpretation of Example 2.2.6 : if we follow exactly § 2.2.2,

we would view the point ρ as a 2(d+ 1)-uple (X̄, Ȳ , V̄α, W̄α) of elements of gln+1(C) where

X̄ =


0 0 . . . 0

0
... X

0

 , V̄α =


0 Vα

0 0 . . . 0
...

...
...

0 0 . . . 0

 , W̄α =


0 0 . . . 0

0 . . . 0

Wα
...

...

0 . . . 0

 ,

and Ȳ takes the same form as X̄ with block Y . We drop the dependence on ρ from now on.

Consider the smooth open subspace Rep(CQ̄, α̃)◦ ⊂ Rep(CQ̄, α̃) where

Idn +XY, Idn +Y X, Idn +WαVα ∈ GLn(C) , 1 + VαWα 6= 0 , α = 1, . . . , d ,

which we identify to Rep(A, α̃). We can then view Rep(Λq̃, α̃) as the closed subspace where

(Idn +XY )(Idn +Y X)−1 = q

←−∏
α=1,...,d

(Idn +WαVα) , (4.1a)

−→∏
α=1,...,d

(1 + VαWα) = q−n , (4.1b)

by applying X to (3.4a)–(3.4b). Note that (4.1b) follows from (4.1a) by taking determinants, so

we omit this condition from now on. Recalling that there exists a GLn(C) action by

g.(X,Y, Vα,Wα) = (gXg−1, gY g−1, Vαg
−1, gWα) , g ∈ GLn(C) , (4.2)

we form the MQV

Cn,q,d = Rep
(

Λq̃, α̃
)
//GLn(C) ,

as a q-analogue of the Calogero-Moser space Cn introduced by Wilson [170], which is reviewed

in Example 2.1.4. To guarantee that this space is smooth, we apply the regularity criterion of

Proposition 2.3.28 for the roots of the Jordan quiver given in Example 2.2.3.

Proposition 4.1.1 Assume that q is not a root of unity. Then the GLn(C) action on Rep(Λq̃, α̃)

is free, and Cn,q,d is a smooth variety of dimension 2nd endowed with a non-degenerate Poisson

bracket {−,−}P.
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The dimension follows from Theorem 2.3.27 because the space is not empty11. To compute a

Poisson bracket {F,G}P on Cn,q,d, recall that we have two equivalent choices. Either we can lift

the two functions to Rep(A, α̃), and then use Proposition 2.3.26; or we can remark that these two

functions are (polynomials in elements) of the form trX (γ), and we apply (2.36).

4.1.1 Localisation

Consider the subspace Rep(CQ̄, α̃)◦ ⊂ Rep(CQ̄, α̃) whereX is invertible. Motivated by § 3.1.2,

we construct the matrix Z = Y + X−1, together with A ∈ Matn×d(C) and C ∈ Matd×n(C)

which we refer to as the spin matrices, and that are defined entry-wise by

Aiα = [Wα]i , Cαj = [Vα(Idn +Wα−1Vα−1) . . . (Idn +W1V1)Z]j . (4.3)

The α-th column of A is Wα, so it represents the spin element a′α by (3.7). Similarly, the α-th

row of C represents c′α. We get in particular that the moment map equation (4.1a) is equivalent to

XZX−1 = qZ + qAC . (4.4)

This construction descends to the subspace C◦n,q,d ⊂ Cn,q,d whereX is invertible. In particular, we

can understand a point of C◦n,q,d with four matrices instead of 2d + 2. Indeed, given a quadruple

(X,Z,A,C) as above, we can recover (X,Y, Vα,Wα) by taking Y = Z −X−1, (Wα)i = Aiα,

while we form Cα ∈ Mat1×n(C) by (Cα)i = Cαi and define inductively

V1 = C1Z
−1 , Vα = CαZ

−1(Idn +W1V1)−1 . . . (Idn +Wα−1Vα−1)−1 ,

since all inverses are well-defined by definition of C◦n,q,d.

Consider the following functions on C◦n,q,d

fk := tr(Xk) , gαβk = tr(AEαβCX
k) , k ∈ N, α, β = 1, . . . , d , (4.5)

where the matrix Eαβ is the elementary d × d matrix with entry 1 at (α, β) and zero otherwise.

One last benefit of the introduction of the matrices A and C is that it will be possible to understand

the local Poisson structure by knowing the Poisson bracket between the functions (fk, g
αβ
k ), as

we will see in Section 4.2 for the case d = 1, and in Section 4.3 for the case d ≥ 2.
11This is a consequence of the local diffeomorphism that exist in both cases d = 1 and d ≥ 2, see below.
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Lemma 4.1.2 For any α, β = 1, . . . , d and k, l ≥ 1,

{fk, fl}P = 0 , {fk, gαβl }P = k gαβk+l , (4.6a)

{gγεk , g
αβ
l }P =

1

2

(
k∑
r=1

−
l∑

r=1

)
tr(AEαβCX

rAEγεCX
k+l−r)

+
1

2

(
k∑
r=1

−
l∑

r=1

)
tr(AEαβCX

k+l−rAEγεCX
r)

+
1

2
o(α, γ)

(
tr(AEγεCX

kAEαβCX
l) + tr(AEαεCX

kAEγβCX
l)
)

+
1

2
o(ε, β)

(
tr(AEαβCX

kAEγεCX
l)− tr(AEαεCX

kAEγβCX
l)
)

+
1

2
[o(ε, α) + δαε] tr(AEαεCX

kAEγβCX
l)

− 1

2
[o(β, γ) + δβγ ] tr(AEαεCX

kAEγβCX
l)

+ δαε tr

([
Z +

ε−1∑
λ=1

AEλλC

]
XkAEγβCX

l

)

− δβγ tr

Z +

β−1∑
µ=1

AEµµC

X lAEαεCX
k

 , (4.6b)

where o(−,−) is the ordering function on d elements defined in Section 1.5.

Proof. A first proof consists in applying X to Lemma 3.1.5 with X (x) = X , X (z) = Z,

X (a′αc
′
β) = AEαβC. Alternatively, we also show12 how to derive the first equation from

Proposition 2.3.26. We lift fk to

f̂k =
∑

Xi1i2Xi2i3 . . . Xiki1 ∈ O(Rep(A, α̃)) ,

where we take the convention that an unlabelled sum means that we sum over repeated indices

from 1 to n. We do the same for fl. Meanwhile, we have by (2.34a) that

{Xij , Xkl}P =
1

2
X2
kjδil −

1

2
δkjXil .

12We advise the reader to compare this with the computations that can be made with the double bracket to derive

Lemma 3.1.5. It becomes transparent that computations with the double bracket allow to do computations with

{−,−}P in an subscript-free way.
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Hence, we compute

{f̂k, f̂l}P =
∑ k∑

σ=1

l∑
τ=1

Xσ−1
i1iσ

Xτ−1
j1jτ
{Xiσiσ+1 , Xjτ jτ+1}PX l−τ

jτ+1j1
Xk−σ
iσ+1i1

=
1

2

∑ k∑
σ=1

l∑
τ=1

Xτ−1
j1jτ

X2
jτ iσ+1

Xk−σ
iσ+1i1

Xσ−1
i1iσ

δiσjτ+1X
l−τ
jτ+1j1

− 1

2

∑ k∑
σ=1

l∑
τ=1

Xτ−1
j1jτ

δjτ iσ+1X
k−σ
iσ+1i1

Xσ−1
i1iσ

X2
iσjτ+1

X l−τ
jτ+1j1

,

which clearly vanishes. By definition of the Poisson bracket obtained after reduction, this implies

that {fk, fl}P = 0. 2

If we want to replace X by Z in the previous lemma, it suffices to apply X to Lemma 3.1.6.

4.1.2 Towards integrability and dynamics

We continue with the notations of § 4.1.1 assuming α̃ = (1, n). Note that the discussion that

follows does not depend on the dimension vector and it would hold for any α̃ ∈ N××N×, except

for item 3 in Proposition 4.1.3.

Let u ∈ {x, y, z, e0 + xy}, and denote by U = X (u) the matrix representing u. Introduce the

algebra OU generated by the functions trUk and trWαVβU
k for any k ∈ N and 1 ≤ α, β ≤ d

(which we also see as a sheaf).

Proposition 4.1.3 The following holds in Cn,q,d (or C◦n,q,d if U = Z) :

1. The symmetric functions {trUk | k ∈ N} of U are pairwise in involution;

2. For any k, l ∈ N and 1 ≤ α, β ≤ d, {trUk, trWαVβU
l}P = 0;

3. The algebra OU is a Poisson algebra under {−,−}P;

4. For fixed α, β ∈ {1, . . . , d}, the subalgebra ofOU generated by the functions (trUk)k and

(trWαVβU
k)k is an abelian Poisson subalgebra.

Proof. First two items follow from Corollary 3.1.8. For the third one, remark that by (2.36)

and (3.15b) in Lemma 3.1.7 the Poisson bracket {trWγVεU
k, trWαVβU

l}P can be written with
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functions of the form trWα1Vβ1U
s1Wα2Vβ2U

s2 . But using that Vβ1U
s1Wα2 is a scalar, such a

function can be written as tr(Vβ1U
s1Wα2) tr(Vβ2U

s2Wα1) ∈ OU . Hence, the algebra is Poisson.

For the fourth item, remark that in (3.15b) we get 0 for γ = α and ε = β. 2

Since we assume that Z is invertible when we work with U = Z, we can in fact take any k ∈ Z,

and leave this easy verification to the reader. Working with the spin matrices in that case, we get

a similar result from Lemma 3.1.6.

Proposition 4.1.4 The symmetric functions {trZk | k ∈ Z} of Z are pairwise in involution.

Moreover, they Poisson commute with any function trAEαβCZ
l, for l ∈ Z and 1 ≤ α, β ≤ d.

Clearly, both results suggest to look at degenerate integrability. However, we still require some

assumptions on the functional independence of the chosen functions to apply Corollary 2.3.39.

This will be detailed in Section 4.3.

We write Θ(0) = X (φ) for the matrix that represents the moment map supported at the vertex 0.

In other words, Θ(0) = (Idn +XY )(Idn +Y X)−1 on Cn,q,d, or Θ(0) = XZX−1Z−1 on C◦n,q,d.

Furthermore, let us restrict our attention to the open subspace {detU 6= 0} of Cn,q,d where U is

invertible. Corollary 3.1.10 implies the following.

Proposition 4.1.5 For any K ∈ N×, expand huK = 1
K tr[U(Idn +η(Θ(0))−ε(u))]K in terms of η

as huK =
∑K

k=0 h
u
K,kη

k. Then all the functions {huK,k | 0 ≤ k ≤ K} are in involution.

This time, the result suggests that we can form an integrable system for each possible U . Again,

we can not directly apply Corollary 2.3.33 to prove that claim, and we postpone this discussion at

the moment. Nevertheless, we can try to obtain one last result before studying the local picture of

Cn,q,d to establish integrability : it could be possible that we can explicitly obtain the flows defined

by (a lift of) one of the functions huK,k in Rep(Λq̃, α̃), see the comments after Corollary 2.3.39. If

we begin with U = Z, let Zη = Z(Idn +ηΘ(0)). We get from Lemma 3.1.12 (assuming that we

have localised at X)

{hzK , X}P = −ηΦZK−1
η ZX −XZK−1

η Z , {hzK , Z}P = −ZZK−1
η Z + Zk−1

η Z2 ,

while the brackets with Vβ or Wβ vanish. However, it does not seem possible to integrate most

flows because, after a tedious computations, we can see that {hzK , Zη}P 6= 0. Thus the matrix Zη
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is not a constant of motion, although all its symmetric functions are by Proposition 4.1.5. If we

only look at order 0 in η instead, we get that for the function hzK,0 = 1
K trZK the flows defined

by d/dtK = {hzK,0,−}P have to satisfy the defining ODEs

dX

dtK
= −XZK , dZ

dtK
= 0 ,

dVβ
dtK

= 0 ,
dWβ

dtK
= 0 .

This has the following consequence.

Proposition 4.1.6 Given the initial condition (X(0), Z(0), Vβ(0),Wβ(0)), the flow at time tK

defined by the Hamiltonian 1
K trZK for K ∈ N× is given by

X(tK) = X(0) exp(−tKZ(0)K) , Z(tK) = Z(0) , Vβ(tK) = Vβ(0) , Wβ(tK) = Wβ(0) .

In particular, the flows descend to complete flows in C◦n,q,d.

Recalling the localisation defined in § 4.1.1, we can reintroduce the spin matrices A and C since

X(tK) stays invertible, so that we find A(tK) = A(0) and C(tK) = C(0).

For the next case U = Y , we write Yη = Y (Idn +ηΘ(0)). We get from Lemma 3.1.13 that

(assuming we look at the subspace {detY 6= 0} in Rep(Λq̃, α̃))

{hyK , X}P =− Y K−1
η −XY K−1

η Y − ηΦY K−1
η (1 + Y X) ,

{hyK , Y }P =− Y Y K−1
η Y + Y K−1

η Y 2 ,

and the quasi-Poisson brackets with Vβ or Wβ vanish. Again, we can not hope to integrate all

flows explicitly, but considering order 0 in η yields for hyK,0 = 1
K trY K by writing d/dτK =

{hyK,0,−}P that

dX

dτK
= −Y K−1 −XY K ,

dY

dτK
= 0 ,

dVβ
dτK

= 0 ,
dWβ

dτK
= 0 .

It is important to remark that, in the proof of Lemma 3.1.13, the invertibility condition on y

is needed to get rid of terms containing a factor η. Hence, these equations are well-defined in

Rep(Λq̃, α̃), also when Y is not invertible.

Proposition 4.1.7 Given the initial condition (X(0), Y (0), Vβ(0),Wβ(0)) the flow at time τK

defined by the Hamiltonian 1
K trY K for K ∈ N× is given by

X(τK) =X(0) exp(−τKY (0)K) + Y (0)−1[exp(−τKY (0)K)− Idn] ,

Y (τK) =Y (0) , Wβ(τK) = Wβ(0) , Vβ(τK) = Vβ(0) .

In particular, the flows descend to complete flows in Cn,q,d.
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Note that the expression for X(τk) is analytic in Y (0) so does not require its invertibility as we

explained above. Both propositions appear in [41] in the case d = 1, and in [42] for d ≥ 1.

Now for U = X , we write Xη = X(Idn +η(Θ(0))−1) and we work in the subspace {detX 6= 0}

in Rep(Λq̃, α̃). We get from Lemma 3.1.14 that

{hxK , X}P =XXK−1
η X −XK−1

η X2 , {hxK , Z}P = ZXK−1
η X + ηφ−1XK−1

η XZ ,

and the quasi-Poisson brackets with Vβ or Wβ vanish. As before, we look at order 0. (We could

get rid of the assumption that X is invertible if we look at the dynamics of the matrix Y instead

of Z.) For hxK,0 = 1
K trXK , by writing d/dt̂K = {hxK,0,−}P, we obtain that

dX

dt̂K
= 0 ,

dZ

dt̂K
= ZXK ,

dVβ

dt̂K
= 0 ,

dWβ

dt̂K
= 0 .

This yields the next result.

Proposition 4.1.8 Given the initial condition (X(0), Z(0), Vβ(0),Wβ(0)), the flow at time t̂K

defined by the Hamiltonian 1
K trXK for K ∈ N× is given by

X(t̂K) = X(0) , Z(t̂K) = Z(0) exp(t̂KX(0)K) , Vβ(t̂K) = Vβ(0) , Wβ(t̂K) = Wβ(0) .

In particular, the flows descend to complete flows in C◦n,q,d.

Finally, for U = Idn +XY , we denote Idn +XY by T , let Tη = T (Idn +η(Θ(0))−1), and write

hTK = he0+xy
K to ease notations. We can work in Rep(Λq̃, α̃) since T is already invertible by

assumption. We get from Lemma 3.1.15 that

{hTK , X}P =− TK−1
η TX − ηX(Θ(0))−1TK−1

η T , {hTK , T}P = TTK−1
η T − TK−1

η T 2 ,

and the quasi-Poisson brackets with Vβ or Wβ vanish as usual. Reproducing the usual scheme,

we get our last statement.

Proposition 4.1.9 Given the initial condition (X(0), T (0), Vβ(0),Wβ(0)), the flow at time t̃K

defined by the Hamiltonian 1
K trTK for K ∈ N× satisfies

X(t̃K) = exp(−t̃KTK)X(0) , T (t̃K) = T (0) , Vβ(t̃K) = Vβ(0) , Wβ(t̃K) = Wβ(0) .

In particular, the flows descend to complete flows in Cn,q,d.
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The completeness of the flows still requires to show that Y (t̃K) is well-defined, but we omit

those computations. Rather, remark that when we assume that X(0) is invertible, the proposition

determines the solution Y (t̃K) = X(t̃K)−1[T (t̃K) − Idn] for all time t̃K . In that case, we have

completeness in C◦n,q,d.

For the previous results, we used the matrix representing the moment map φ = Φ
(0)
0 ∈ A0

relative to the subquiver Q̄0 consisting only of the arrows x, y : 0 → 0. Recalling the chain

of quasi-Hamiltonian algebra (3.16), we consider Θ(α) = X (Φ
(α)
0 ) for any 0 ≤ α ≤ d. Using

(4.1a), we see that in Rep(Λq̃, α̃)

Θ(α) = (Idn +XY )(Idn +Y X)−1
−→∏

1≤β≤α
(Idn +WβVβ)−1 = q

←−∏
α+1≤β≤d

(Idn +WβVβ) , (4.7)

where we take empty products to be Idn. Finally, set U(α) = Θ(α)U with U ∈ {Y,Z}.

Proposition 3.1.11 is easily seen to imply the following result.

Proposition 4.1.10 The functions {trUK(α) | K ∈ N, 0 ≤ α ≤ d} are in involution.

We would also like to form an integrable system from these functions, which we will discuss

later. What we can already do is derive the corresponding flows, in the exact same way as we

did before. We leave the geometric translation of Lemmae 3.1.16 and 3.1.17 to the reader, and

directly state the results.

Proposition 4.1.11 Given the initial condition (X(0), Z(0), Vβ(0),Wβ(0)), the flow at time tK

defined by the Hamiltonian 1
K trZK(α), for K ∈ N× and 0 ≤ α ≤ d, is given by

X(tK) = exp(−tKZ(α)(0)K)X(0) , Z(tK) = Z(0) ,

Vβ(tK) = Vβ(0)etKZ(0)Z(α)(0)K−1Θ(α)(0), Wβ(tK) = e−tKZ(0)Z(α)(0)K−1Θ(α)(0)Wβ(0), β ≤ α,

Vβ(tK) = Vβ(0) , Wβ(tK) = Wβ(0) , β > α .

In particular, the flows descend to complete flows in C◦n,q,d.

Proposition 4.1.12 Given the initial condition (X(0), Y (0), Vβ(0),Wβ(0)), the flow at time τK

defined by the Hamiltonian 1
K trY K

(α), for K ∈ N× and 0 ≤ α ≤ d, is given by

X(τK) = exp(−τKY(α)(0)K)X(0) + Y(α)(0)−1[exp(−τKY(α)(0)K)− Idn]Θ(α) ,

Vβ(τK)=Vβ(0)eτKY (0)Y(α)(0)K−1Θ(α)(0), Wβ(τK)=e−τKY (0)Y(α)(0)K−1Θ(α)(0)Wβ(0), β ≤ α,

Y (τK) = Y (0) , Vβ(τK) = Vβ(0) , Wβ(τK) = Wβ(0) , β > α .
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In particular, the flows descend to complete flows in Cn,q,d.

Let us make some final comments on these expressions for Z, the case for Y being similar. Since

Θ(0) = XZX−1Z−1, we have that trZK(0) = trZK . Because there are no 1 ≤ β ≤ dwith β ≤ 0,

the flows for Z, Vβ,Wβ given in Propositions 4.1.6 and 4.1.11 are clearly the same. Furthermore,

using Proposition 4.1.11 we get that

X(tK) = exp(−tKX(0)Z(0)KX(0)−1)X(0) = X(0) exp(−tKZ(0)K) ,

as in Proposition 4.1.6. Similarly we have from the moment map condition Θ(d) = q Idn in C◦n,q,d
that trZK(d) = qK trZK , and we want to compare the flows. Using Proposition 4.1.11 we get for

the flow of trZK(d) that

X(tK) = exp(−qKtKZ(0)K)X(0) , Z(tK) = Z(0) ,

Vβ(tK) = Vβ(0)eq
KtKZ(0)K , Wβ(tK) = e−q

KtKZ(0)KWβ(0), 1 ≤ β ≤ d.

Changing representative after acting by eq
KtKZ(0)K ∈ GLn(C) as in (4.2), we precisely get the

flow for qK trZK obtained from Proposition 4.1.6 with tK rescaled to qKtK .

4.2 Simple framing

We first look at the case d = 1 where q is not a root of unity, and we write V,W instead of V1,W1.

We denote Cn,q,d simply by Cn,q, and we write C◦n,q for the subspace where X is invertible. In

particular, we get the following interpretation for these smooth spaces

Cn,q ={X,Y ∈ gln(C) |rank(XY − qY X + (1− q) Idn) = 1,det(Idn +Y X) 6= 0}/GLn(C),

C◦n,q ={X,Z ∈ GLn(C) |rank(XZX−1Z−1 − q Idn) = 1}/GLn(C) .

(4.8)

Indeed, we can discard the case of rank zero since then the condition is empty, e.g. this implies

XZX−1Z−1 = q Idn which is impossible by taking determinant. Hence, we can remark that

Cn,q is similar to the space of matrices satisfying [91, Proposition 5.2] which are related to the

qKP hierarchy. Also, C◦n,q corresponds to the space studied by Fock and Rosly in [80, Appendix],

see also [18, 126], which is associated to the Ruijsenaars-Schneider system. We will make these

relations precise in the next subsections.
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4.2.1 Local Poisson structure

First parametrisation

Let h = Cn with coordinates x1, . . . , xn and define hreg to be the open subspace such that

hreg = {x = (x1, . . . , xn) ∈ h | xi 6= 0 , xi 6= xj , xi 6= qxj for all i 6= j} . (4.9)

Consider hI ⊂ hreg×Cn such that 1 + pixi 6= 0 for each i, where we take coordinates p1, . . . , pn

on Cn. Then, defining the matrices

X = diag(x1, . . . , xn) , Y = (Yij) , for Yij = δijpj + δ(i 6=j)
(1− q)(1 + pjxj)

xi − qxj
, (4.10)

we see that the matrixXY −qY X+(1−q) Idn has rank one and equalsWṼ forW = (1, . . . , 1)>

and Ṽ = (Ṽj), Ṽj = (1 + pjxj). Moreover, since we can write

Idn +Y X = (1− q)C(X)XP (X) , where C(X)ij =
1

xi − qxj
, P (X)ij = δij(1 + pjxj) ,

we can see that Idn +Y X is invertible by assumptions on (xi, pi). Indeed, X and P (X) are

easily seen to be invertible, while to compute detC(X) we use Cauchy’s determinant formula :

for M ∈ gln(C) with Mij = (mi − µj)−1 we have

det(M) =

∏
i<j(mi −mj)(µj − µi)∏

i,j(mi − µj)
. (4.11)

Hence, for any (xi, pi) ∈ hI we can construct elements (X,Y ) ∈ Cn,q by (4.8), and we

can recover that W = (1, . . . , 1)> as above while V = Ṽ (Idn +Y X)−1. Now, remark that

simultaneous permutations in hI as τ · (xi, pi) = (xτ(i), pτ(i)) for τ ∈ Sn are equivalent to

the action on (X,Z) by the corresponding permutation matrix. We obtain in that way a map

ξ : hI/Sn → C◦n,q, which is easily seen to be injective. To get surjectivity, we remark that

ξ surjects onto the subspace C′n,q ⊂ C◦n,q where X is invertible and diagonalisable, with its

eigenvalues that define a point in hreg.

Lemma 4.2.1 There is a diffeomorphism ξ : hI/Sn → C′n,q such that ξ(xi, pi) = (X,Y, V,W )

is determined by (X,Y ) defined as (4.10).

In particular, local coordinates are given by diagonal entries of X and Y in the particular form

(4.10), as an obvious generalisation of the Calogero-Moser case from Example 2.1.4.
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Since X is invertible, we can always define Z = Y + X−1 in that case, and Z = (Zij) has the

same off-diagonal entries as Y while Zii = pi +x−1
i . Then, following § 4.1.1, we remark that the

functions fk = tr(Xk) and gk = g11
k = (1−q)

q tr(ZXk) defined in (4.5) are such that

ξ∗fk =
∑
i

xki , ξ∗gk = (q−1 − 1)
∑
i

(1 + pixi)x
k−1
i ,

which are easily seen to define a local coordinate system on C′n,q.

Proposition 4.2.2 The diffeomorphism ξ : hI/Sn → C′n,q is a Poisson morphism for the Poisson

bracket {−,−} on hI/Sn defined by

{xi, xj} =0 , (4.12a)

{xi, pj} =δij(1 + xipj) , (4.12b)

{pi, pj} =
(1− q)2(xi + xj)(pixi + 1)(pjxj + 1)

(xi − xj)(xi − qxj)(xj − qxi)
, (4.12c)

and {−,−}P on C′n,q.

Remark 4.2.3 Note that a priori we do not know that {−,−} is a Poisson bracket on hI/Sn, but it

follows from Section B in the Appendix. We use this argument without further mention throughout

the thesis.

Proof. Since the functions (fk, gk) form a local coordinates system, it suffices to prove that

ξ∗{fk, fl}P = {ξ∗fk, ξ∗fl} , ξ∗{fk, gl}P = {ξ∗fk, ξ∗gl} , ξ∗{gk, gl}P = {ξ∗gk, ξ∗gl} ,

see Remark B.3. To compute the brackets on the left-hand sides, we need Lemma 4.1.2. The first

identity is then trivial as both sides are zero. For the second,

{ξ∗fk, ξ∗gl} = (q−1 − 1)
∑
i,j

{xki , pjxlj + xl−1
j } = k (q−1 − 1)

∑
i

xk+l−1
i (1 + xipi) ,

and we easily get that this coincides with ξ∗{fk, gl}P = kξ∗gk+l. For the last identity, we assume

for simplicity that k > l and we begin by computing {ξ∗gk, ξ∗gl}which is up to a factor (q−1−1)2∑
ij

{pixki + xk−1
i , pjx

l
j + xl−1

j }

=
∑
i<j

(1− q)2 (1 + pixi)(1 + pjxj)

(xi − qxj)(xj − qxi)
xi + xj
xi − xj

(xki x
l
j − xkjxli)

+ (k − l)
∑
i

[xk+l−1
i pi(1 + pixi) + xk+l−2

i (1 + pixi)] .
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To reduce this expression, we need the following result.

Lemma 4.2.4 Assume that a > b are positive integers. Then

(xi + xj) (xai x
b
j − xbixaj ) = (xi − xj)

a−b∑
t=1

(xa−ti xb+tj + xb+ti xa−tj ).

Hence, we can write that {ξ∗gk, ξ∗gl} equals

(q−1 − 1)2
k−l∑
t=1

(1− q)2
∑
i 6=j

(1 + pixi)x
k−t
i (1 + pjxj)x

l+t
j

(xi − qxj)(xj − qxi)
+
∑
i

xk+l−2
i (1 + pixi)

2

 ,

which is easily seen to be equal to (q−1 − 1)2
∑k−l

t=1 ξ
∗ tr(ZXk−tZX l+t), after noticing that

Zij = (1−q)1+pjxj
xi−qxj . Finally, recalling our assumption k > l, we rewrite {gk, gl}P = {g11

k , g
11
l }P

in Lemma 4.1.2 as

{g11
k , g

11
l }P =

k∑
r=l+1

tr(ACXrACXk+l−r) + tr(ZXkACX l)− tr(ZX lACXk) ,

since the only nonzero terms come from the two first sums and the last two terms. But in our case

d = 1 we have by (4.4) that AC = q−1XZX−1 − Z, so we can write {gk, gl}P as

k−l∑
t=1

[
(1 + q−2) tr(ZX l+tZXk−t)− 1

q
tr(ZX l+t+1ZXk−t−1)− 1

q
tr(ZX l+t−1ZXk−t+1)

]
+

1

q
tr(ZXk+1ZX l−1)− tr(ZXkZX l)− 1

q
tr(ZX l+1ZXk−1) + tr(ZX lZXk)

=
k−l∑
t=1

(1− q−1)2 tr(ZX l+tZXk−t) ,

and we have indeed {ξ∗gk, ξ∗gl} = ξ∗{gk, gl}P. 2

It is natural to try to find coordinates such that the bracket defined by (4.12a)–(4.12c) is in

canonical form on these new coordinates. To do so, set x′i = −(1 + pixi) and remark that

(1− q)−1Yij = δij
1 + x′i

(q − 1)xi
− δ(i 6=j)

x′j
xi − qxj

coincides with the matrix defined by [91, Eqs (6.4)–(6.5)] after conjugation by diag(x′1, . . . , x
′
n).

Under the transformation [91, (6.3)] which for us amounts to introduce y1, . . . , yn such that

1 + pixi = Ai exp(xiyi) , where Ai =
∏
j 6=i

qxi − xj
xi − xj

, (4.13)

we have a set of canonical coordinates.
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Proposition 4.2.5 The set of local coordinates (x1, . . . , xn, y1, . . . , yn) on hI is such that

{xi, xj} = 0 , {xi, yj} = δij , {yi, yj} = 0 ,

for the Poisson bracket introduced in Proposition 4.2.2.

Proof. The first identity is (4.12a). That identity together with (4.12b) yields {xi, 1 + pjxj} =

δijxj(1 + pjxj), and the second identity easily follows. For the third one, a direct computation

gives

{Ai(x), yj} =
∑
l 6=i

Ai(x) (1− q)
qxi − xl

·


δij

xl
xi−xl i = j,

−δjl xi
xi−xl i 6= j.

(4.14)

Then, another tedious computation implies for Bi = Ai(x) exp(xiyi) that

{Bi, Bj} = BiBj
(1− q)2xjxi(xi + xj)

(xi − xj)(qxi − xj)(qxj − xi)
.

Since Bi = 1 + pixi, this is equivalent to (4.12c). 2

Second parametrisation

As we can see in the proof of Proposition 4.2.2 and the introduction of new coordinates in (4.13),

the element (1 + pixi) plays a more important role that pi on its own. Hence, consider hRS =

hreg × (C×)n with coordinates ν1, . . . , νn on (C×)n and hreg given in (4.9). Then, introduce

X = diag(x1, . . . , xn) , Z = (Zij) , for Zij = (1− q) νjxj
xi − qxj

. (4.15)

Now, the matrixXZX−1−qZ is equal toWV̂ forW = (1, . . . , 1)> and V̂ = (1−q)(ν1, . . . , νn),

so that (X,Z) ∈ C◦n,q by (4.8). Indeed, from the definition of hreg we have detX 6= 0 directly,

while Z is invertible again using (4.11). We get a variant of Proposition 4.2.2 in that way.

Proposition 4.2.6 There is a diffeomorphism ξ : hRS/Sn → C′n,q such that ξ(xi, pi) =

(X,Z, V,W ) is determined by (X,Z) defined as (4.15). Furthermore, it is a Poisson morphism

for the Poisson bracket {−,−} on hRS/Sn defined by

{xi, xj} =0 , (4.16a)

{xi, νj} =δijxjνj , (4.16b)

{νi, νj} =
(1− q)2(xi + xj)xixj νiνj

(xi − xj)(xi − qxj)(xj − qxi)
, (4.16c)
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and {−,−}P on C′n,q.

Proof. It is similar to the proof of Proposition 4.2.2 since νjxj = (1 + pjxj). 2

This time, we can remark that these brackets are similar to [80, (A13)–(A15)]13, and up to

changing representative under the action of g = diag(
√
ν1, . . . ,

√
νn) which is locally well-

defined, we get that Z takes the form [80, (A.12)]. Hence, we can find log-canonical coordinates

following their work, and we introduce

si = q(n−1)/2 νi

√
A′i(x) , A′i(x) =

∏
k,k 6=i

(xk − xi)(xi − xk)
(xk − qxi)(xi − qxk)

. (4.17)

Since we are taking square roots in (4.17), this parametrisation is only locally defined. We are not

willing to discuss the definiteness of
√
A′i(x) at all, and we forget about that issue for a moment.

(We will see that a third parametrisation is better suited to our study.)

Proposition 4.2.7 The set of local coordinates (x1, . . . , xn, s1, . . . , sn) on hRS is such that

{xi, xj} = 0 , {xi, sj} = δijxisj , {si, sj} = 0 ,

for the Poisson bracket introduced in Proposition 4.2.6.

Proof. First two identities are obvious. For the third one, it follows easily from the next result.

Lemma 4.2.8 {
A′i(x), νj

}
= δ(i 6=j)A

′
i(x)νj

(1− q)2 xixj(xi + xj)

(xj − xi)(xi − qxj)(xj − qxi)
. (4.18)

Last lemma requires an easy but tedious computation left to the reader. 2

Using these new variables, we find that

Tr(Z) =
∑
i

νi =
n∑
i=1

siq
(1−n)/2

√√√√∏
k,k 6=i

(xk − qxi)(xi − qxk)
(xk − xi)(xi − xk)

.

Moreover, using (4.11) yields that tr(Z + Z−1) takes the same form, with (si + s−1
i ) instead of

si. It is claimed in [80] that this is the Ruijsenaars-Schneider Hamiltonian14, and we can in fact

show that taking a suitable representative of the equivalence class, then Z is the complex version

of the Lax matrix introduced in [144].
13As noted in [126, Remark 2.1], the multiplicative factor corresponding for us to (q − 1)2 is missing.
14Their identity [80, (A.24)] contains a typo, since all factors except (si + s−1

i ) should be inverted.
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Lemma 4.2.9 For any (X,Z, V,W ) ∈ C′n,q, we can choose a representative such that Z has the

form L = (Ljk) with

Ljk = exp

(
β
θj + θk

2

)
Cjk

√
F (rj)F (rk) , (4.19)

where

F (rj) :=
∏
l 6=j

f(rj − rl) , f2(r) := 1 +
α2

sinh2(r/2)
, (4.20a)

Cjk =
[
cosh

(µ
2

(rj − rk)
)

+ ia sinh
(µ

2
(rj − rk)

)]−1
, a2 = α−2 − 1 . (4.20b)

This is the Lax matrix for the trigonometric RS system introduced in [144, Section 4].

Proof. From the representative given in (4.15) such that Zij =
(1−q)νj
xix
−1
j −q

, we get by conjugating

by diag(
√
ν1, . . . ,

√
νn) then using the coordinates (xi, si) that

Zij =
(1− q)
xi/xj − q

√
sisj

qn−1
∏
l 6=i

(xl − xi)(xi − xl)
(xl − qxi)(xi − qxl)

qn−1
∏
k 6=j

(xj − xk)(xk − xj)
(xj − qxk)(xk − qxj)

−1/4

Introducing coordinates (ri, θi) such that si = eθi , xi = eri , and γ such that q = e2γ , we can

write

Zij = e
θi+θj

2 e
rj−ri

2
sinh(γ)

sinh
(
rj−ri

2 + γ
)
∏
l 6=i

g(rl − ri)
∏
k 6=j

g(rj − rk)

−1/4

(4.21)

with the functions

g(r) =
sinh

(
r
2

)
sinh

(−r
2

)
sinh

(
r
2 − γ

)
sinh

(−r
2 − γ

) .
Conjugating by diag(er1/2, . . . , ern/2) we can get rid of the factor e

rj−ri
2 in Zij . Now, notice that

for β = µ = 1, α2 = − sinh2(γ) we obtain from (4.20a)–(4.20b)

Cjk =
sinh(γ)

sinh
(
rk−rj

2 + γ
) , f2(r) = g−1(r) ,

Hence Lij given by (4.19) is nothing else than (4.21). 2

Again, it is important to remark that this is only true in a neighbourhood of a point due to several

manipulations involving square roots.
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Third parametrisation

We start again with the Poisson diffeomorphism given by Proposition 4.2.6. This time, we seek a

set of log-canonical coordinates that does not require any branch cut, contrary to the coordinates

defined in (4.17). This is the approach that was considered in [41]. We choose to set

σi = νi A
′′
i (x) , A′′i (x) =

∏
k,k 6=i

(xk − xi)
(xk − qxi)

, (4.22)

and we obtain log-canonical coordinates.

Proposition 4.2.10 The set of local coordinates (x1, . . . , xn, σ1, . . . , σn) on hRS is such that

{xi, xj} = 0 , {xi, σj} = δijxiσj , {σi, σj} = 0 ,

for the Poisson bracket introduced in Proposition 4.2.6.

Proof. First two identities are obvious. For the third one, we need the next result.

Lemma 4.2.11

{
A′′i (x)−1, νj

}
= δ(i 6=j)A

′′
i (x)−1νj

(q − 1)xixj
(xj − xi)(xj − qxi)

. (4.23)

The proof of this key lemma is left to the reader. 2

In these coordinates, the matrices X and Z = Y +X−1 of (4.15) take the form

Xij = δijxj , Zij = σj
(1− q)xj
(xi − qxj)

∏
k,k 6=j

xk − qxj
xk − xj

. (4.24)

Defining locally canonical coordinates (ri, ϕi) with xi = eri and σi = eϕi , as well as q = e2γ ,

we can rewrite after acting by diag(er1/2, . . . , ern/2)

Zij = −e−(n−1)γ eϕj
sinh(γ)

sinh
(
ri−rj

2 − γ
) ∏
k,k 6=j

sinh
(
rk−rj

2 − γ
)

sinh
(
rk−rj

2

) .
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4.2.2 Integrable systems on the MQV

Finding integrable systems

In order to find integrable systems, we need to look at the functionally independent elements in

the families described in § 4.1.2. We begin by a first remark when we look at the elements in

involution with any trZk on C◦n,q.

Lemma 4.2.12 For any k ∈ N, trWV Zk ∈ C[trZ l | l ≤ k]. Moreover, for any k′ ≤ k, the

element hzk,k′ defined in Proposition 4.1.5 is such that hzk,k′ ∈ C[trZ l | l ≤ k].

Proof. By choice of q∞, trWV = VW = q−n−1 ∈ C. Next, we use the moment map equation

(4.4) in the form XZX−1 = qZ + qWV Z. This gives trWV Z = (q−1 − 1) trZ and raising

the moment map relation to the power k ≥ 2 before taking its trace yields

−kqk trWV Zk = (qk − 1) trZk + . . . + qk tr(WV Z)k .

Now, remark that any term on the right-hand side is a trace of some matrix containing either no

or at least two products WV . We can rewrite the latter terms as products of trWV Z l with l < k

using that a factor V Z lW is a scalar equal to trWV Z l. For example, tr(WV Z)k = (V ZW )k =

(trWV Z)k. This proves the first part of the lemma by induction. For the second part, remark

that we can rewrite

hzk =
1

k
tr(Z + ηXZX−1)k =

1

k
tr((1 + ηq)Z + ηqWV Z)k ,

so that by a similar induction hzk ∈ C[trZ l, trWV Z l | l ≤ k]. Taking the element at order k′ in

η is hzk,k′ , which thus satisfies the same property. We conclude by the first part. 2

Hence in the particular case d = 1, we have nothing else than the involutive family (trZk)

from Proposition 4.1.3, Proposition 4.1.415 and Proposition 4.1.5. This is, in fact, true for any

u ∈ {x, y, z, e0 + xy} as we see now.

Lemma 4.2.13 For any k ∈ N and k′ ≤ k, trWV Uk, hUk,k′ ∈ C[trU l | l ∈ Z], when we work

on the open subset of Cn,q where U is invertible.

15In the case d = 1 we just have trACZl = trWV Zl+1, so it gives nothing more than Proposition 4.1.3.
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Proof. We remark that in the case ε(u) = −1, we can write from the invertibility condition

that the moment map takes the form AUA−1U−1 = q(Idn +VW ) for some A ∈ GLn, and the

left-hand side in particular is Φ0. Thus Φ0U = qU + qV WU and we can reproduce the proof of

Lemma 4.2.12 to get our claim that the desired elements are in C[trU l | l ∈ N].

If ε(u) = +1, we write the moment map as UBU−1B−1 = q(Idn +VW ) for some B ∈ GLn.

In a similar way Φ−1
0 U = qU +qWV U and the proof of Lemma 4.2.12 works again but this time

for C[trU l | l ≤ 0]. 2

By the same reasoning, Proposition 4.1.10 gives nothing more than (trZk) or (trY k). We now

establish how many elements are functionally independent.

Proposition 4.2.14 At a generic point of Cn,q, there are n functionally independent elements

inside the algebra C[trU l | l ∈ Z].

Proof. We have seen in § 4.2.1 that the matrix U = X can be generically parametrised by the

n-uple (x1, . . . , xn) of its eigenvalues up to permutation. These eigenvalues form a point in hreg,

a n-dimensional space where they are pairwise distinct. This implies that the Jacobian matrix J

of F = (trX, . . . , 1
n trXn) has xi−1

j for (i, j) entry, hence J is a Vandermonde matrix. It is

invertible since xi 6= xj for i 6= j, hence the functions forming F are functionally independent

on C′n,q.

In the other cases U = Y,Z, Idn +XY the proof is similar. Indeed, since Cn,q is connected by

[126], we can parametrise generically a point of by the eigenvalues of U with n other coordinates,

then repeat the argument. 2

As a corollary of this result, we can generically integrate the flows associated to the vector field

{trU l,−}P by quadrature, see § 2.1.2. This local integration is an alternative to the global one

derived in § 4.1.2, and was remarked in this form in [41].

Local expressions

We use the third parametrisation and the log-canonical coordinates (xi, σi) of Proposition 4.2.10

to write down on C′n,q some of the functions in each family, and the system of ODEs they define.

This subsection is parallel to the end of [41, Section 3].
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We do not discuss the family (trXk)k since the functions trXk =
∑n

i=1 x
k
i do not yield

interesting systems of ODEs in local coordinates. So we begin with the elements (trZk)k, for

which we set G1,1
k = trZk. We can write from (4.24)

G1,1
k =

n∑
i1,...,ik=1

(1− q)σi2xi2
xi1 − qxi2

. . .
(1− q)σi1xi1
xik − qxi1

k∏
a=1

 ∏
ja;ja 6=ia

xja − qxia
xja − xia

 , (4.25)

for any k ∈ N. In particular, denoting d
dt = {−, G1,1

1 }P, we get

dxk
dt

= xkσk
∏
j;j 6=k

xj − qxk
xj − xk

,
dσk
dt

=
∑
i 6=k

σiσk
(1− q)xixk
(xk − xi)2

∏
j;j 6=i,k

xj − qxi
xj − xi

,

where we can use Lemma 4.2.11 with σj instead of νj to compute the second term. To

obtain (xi(t), σi(t)) at generic time t, it then suffices to integrate locally the flow by forming

an integrable system from Proposition 4.2.14, or to put the element (X(t), Z(0), V (0),W (0))

obtained from Proposition 4.1.6 with t = t1 in the form of the third parametrisation described

in § 4.2.1. In other words, we act on (X(t), Z(0), V (0),W (0)) by the matrix gt that puts X(t)

in diagonal form (then act by a diagonal matrix that puts gtW (0) equal to (1, . . . , 1)>). This

was observed in [144, Sect. 5] for the Ruijsenaars-Schneider Hamiltonian, which is equivalent to

tr(Z + Z−1) as explained with the second parametrisation in § 4.2.1.

For the family (trY k)k, we can see these elements as deformations of (trZk)k on C′n,q since

Y = Z −X−1. Hence, we can write for H1,1
k = trY k that

H1,1
1 = G1,1

1 −
n∑
i=1

1

xi
, H1,1

2 = G1,1
2 − 2

n∑
i=1

σi
xi

∏
j;j 6=i

xj − qxi
xj − xi

+
n∑
i=1

1

x2
i

,

and continue for each k ≥ 3. We then easily get for d
dt = {−, H1,1

1 }P, that

dxk
dt

= xkσk
∏
j;j 6=k

xj − qxk
xj − xk

,
dσk
dt

= −σk
xk

+
∑
i 6=k

σiσk
(1− q)xixk
(xk − xi)2

∏
j;j 6=i,k

xj − qxi
xj − xi

.

The functions H1,1
k first appeared in [91] to define the motion of the zeros for the tau function of

the qKP hierarchy, where we need the coordinates (xi, yi) given in Proposition 4.2.5. In the above

coordinates, they can be seen as the classical version of operators introduced in [21, 167, 168],

see [34] for details.

Finally, we want to look at the functions F 1,1
k = tr(Idn +XY )k. We can remark that on C′n,q we

have from (4.24) that

(ZX)ij = σ̃j
(1− q)xj
(xi − qxj)

∏
k,k 6=j

xk − qxj
xk − xj

,
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where σ̃j = σjxj . But an easy consequence of Proposition 4.2.10 is that the coordinates (xi, σ̃i)i

have the same Poisson brackets as (xi, σi)i. Hence F 1,1
k = tr(ZX)k defines the same family as

G1,1
k after the reparametrisation (xi, σi)i 7→ (xi, σ̃i)i, so we do not need to discuss this family.

Remark 4.2.15 In the above formulas, we have always chosen X to be in diagonal form. We

could instead put Z in diagonal form and obtain that the couple (Z,X) takes the form

Z = diag(z1, . . . , zn) , Xij = σ̃j
(1− q−1)zj
zi − q−1zj

∏
k 6=j

zk − q−1zj
zk − zj

, (4.26)

for log-canonical coordinates (zi, σ̃i). This can be compared to (X,Z) in (4.24), and we see that

now X plays the role of the Lax matrix. The functions G1,1
k = trZk become trivial, while trXk

are the symmetric functions associated to the RS system. This astonishing property can be seen

as the duality of the complex trigonometric RS system. Duality properties were first investigated

by Ruijsenaars in the (more complicated) real setting [141, 142, 143].

4.3 Multiple framings

In the spin case d ≥ 2 where q is not a root of unity, we work in C◦n,q,d with the matrices

(X,Z,A,C) introduced in § 4.1.1 in order to understand the local structure in § 4.3.1. We only

return to the elements (Vα,Wα)α when discussing the possible integrable systems on the space in

§ 4.3.3.

4.3.1 Local Poisson structure

Recall the spaces h = Cn and hreg given by (4.9), that are introduced in § 4.2.1. We consider

the open subspace C′n,q,d ⊂ C◦n,q,d which is such that for any equivalence class of quadruple

(X,Z,A,C) ∈ C′n,q,d, the matrix X is diagonalisable with eigenvalues in hreg, and when we

choose a representative with X in diagonal form, the matrix A is such that the entries in each

of its rows sum up to a nonzero value. Hence, we can always pick a representative such that∑
αAiα = 1 in C′n,q,d, and there is still the freedom to act by permutation matrices.
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Following [42], we take (aα)>, cα ∈ h for α = 1, . . . , d. We define hsp ⊂ hreg × hd × hd to be

the subspace such that on global coordinates (xi,a
α
i , c

α
i ) we require∑

α

aαi = 1 , det(B), det(Idn +W ′βV
′
β) 6= 0 , (4.27)

where the matrices B, W ′β, V
′
β are defined as follows. We form the matrix B = (Bij) by

Bij = q

∑
α a

α
i c

α
j

xix
−1
j − q

(4.28)

and we let W ′β ∈ Matn×1(C) and C ′β ∈ Mat1×n(C) be defined by (W ′β)i = aβi , (C ′β)i = cβi .

Furthermore, we define inductively

V ′β = C ′βB
−1(Idn +W ′1V

′
1)−1 . . . (Idn +W ′β−1V

′
β−1)−1 .

This space has dimension 2nd. We define a map ξ : hsp → C◦n,q,d which associates to (xi,a
α
i , c

α
i )

the equivalence class of the element (X,Z,A,C), where

X = diag(x1, . . . , xn) , Z = B ,

A = (Aiα) , C = (Cαi) with Aiα = aαi , Cαi = cαi .
(4.29)

It is readily seen that (4.4) is satisfied, and the invertibility of Z and the elements Idn +WαVα

comes from (4.27), as we can remark that each pair (Vα,Wα) is nothing else than (V ′α,W
′
α).

Note that we have an Sn action on hsp given by τ · (xi,aαi , cαi ) = (xτ−1(i),a
α
τ−1(i), c

α
τ−1(i)),

which corresponds to the action by a permutation matrix of GLn on (X,Z,A,C). We obtain in

that way the following result.

Proposition 4.3.1 The map ξ : hsp/Sn → C′n,q,d given by (4.29) defines a diffeomorphism.

Remark 4.3.2 The (xi,a
α
i , c

α
i ) extend to a local coordinate system on the connected component

of C◦n,q,d containing C′n,q,d. However, we do not know if they extend to C◦n,q,d as it is not known if

that space is connected for d > 1. For d = 1, it was proved by Oblomkov [126].

Our next step is to investigate if we can extend the map ξ to a Poisson morphism, as we did in the

case d = 1 with Propositions 4.2.2 and 4.2.6. To do so, remark that the functions defined in (4.5)

can be written in local coordinates as

ξ∗fk :=
∑
i

xki , ξ∗gαβk =
∑
i

aαi c
β
i x

k
i ,

∑
α

ξ∗gαβk =
∑
i

cβi x
k
i . (4.30)
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It follows from these expressions that their differentials span the cotangent space at a generic

point. We computed their Poisson structure as Lemma 4.1.2, which allows us to prove the

expected Poisson property of the morphism ξ of Proposition 4.3.1.

Proposition 4.3.3 The map ξ : hsp/Sn → C′n,q,d from Proposition 4.3.1 extends to a Poisson

diffeomorphism for the Poisson bracket {−,−} defined on hsp/Sn by

{xi, xj} =0 , {aαi , xj} = 0 , {cαi , xj} = −δijcαi xj , (4.31a)

{aγj ,a
α
i } =

1

2
δ(i 6=j)

xj + xi
xj − xi

(aγj a
α
i + aγi a

α
j − aγj a

α
j − aγi a

α
i ) +

1

2
o(α, γ)(aγj a

α
i + aγi a

α
j )

+
1

2

d∑
σ=1

o(γ, σ)aαi (aγj a
σ
i + aγi a

σ
j )− 1

2

d∑
κ=1

o(α, κ)aγj (aκj a
α
i + aκi a

α
j ) , (4.31b)

{cεj ,aαi } =δεαBij − aαi Bij +
1

2
δ(i 6=j)

xj + xi
xj − xi

cεj(a
α
j − aαi )− δ(α<ε)a

α
i c

ε
j

− aαi

ε−1∑
λ=1

aλi (cλj − cεj) + δεα

ε−1∑
λ=1

aλi c
λ
j +

1

2

d∑
κ=1

o(α, κ)cεj(a
κ
j a

α
i + aκi a

α
j ) , (4.31c)

{cεj , c
β
i } =

1

2
δ(i 6=j)

xj + xi
xj − xi

(cεjc
β
i + cεic

β
j ) + cβi Bij − cεjBji +

1

2
o(ε, β)(cεic

β
j − cεjc

β
i )

+ cβi

ε−1∑
λ=1

aλi (cλj − cεj)− cεj

β−1∑
µ=1

aµj (cµi − cβi ) , (4.31d)

and the Poisson bracket {−,−}P on C′n,q,d. In (4.31b)–(4.31d), o(−,−) is the ordering function

on d elements defined in Section 1.5.

We skip the proof of Proposition 4.3.3 and return to it at the end of this subsection.

Due to the moment map relation in the form (4.4), we are more interested in the entries of the

product S = AC than the entries of the corresponding two matrices. Set gij =
∑

α a
α
i c

α
j for all

i, j. Hence, under the isomorphism ξ, Z is given by the matrix B with entries q gijxj
xi−qxj as defined

in (4.28). We find the following result.
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Proposition 4.3.4 The Poisson bracket {−,−} satisfies the identities {xi, gkl} = δilxigkl and

{gij , gkl} =
1

2
gijgkl

[
δ(i 6=k)

xi + xk
xi − xk

+ δ(j 6=l)
xj + xl
xj − xl

+ δ(k 6=j)
xk + xj
xk − xj

+ δ(l 6=i)
xl + xi
xl − xi

]
+

1

2
gilgkj

[
δ(i 6=k)

xi + xk
xi − xk

+ δ(j 6=l)
xj + xl
xj − xl

+
xk + qxj
xk − qxj

− xi + qxl
xi − qxl

]
+

1

2
gijgil

[
δ(i 6=k)

xk + xi
xk − xi

+
xi + qxl
xi − qxl

]
+

1

2
gijgjl

[
δ(j 6=k)

xj + xk
xj − xk

− xj + qxl
xj − qxl

]
+

1

2
gkjgkl

[
δ(i 6=k)

xk + xi
xk − xi

− xk + qxj
xk − qxj

]
+

1

2
gljgkl

[
δ(i 6=l)

xi + xl
xi − xl

+
xl + qxj
xl − qxj

]
.

(4.32)

In particular, the commutative subalgebra of O(hsp) generated by the elements (xi, gkl) and

localised at {xi − xj , xi − qxj | i 6= j} is a Poisson subalgebra.

We will describe the relation between these Poisson brackets and the Arutyunov–Frolov

conjecture in § 4.3.2. Now, we proceed to the proof of Propositions 4.3.3 and 4.3.4.

Poisson diffeomorphism : proof of Proposition 4.3.3

We noticed from the local expressions given in (4.30) that the differentials of the functions

(fk, g
γε
k ,
∑

γ g
γε
k ) generate the cotangent space at a generic point of C′n,q,d. Hence, our aim is

to show that

ξ∗{F1, F2}P = {ξ∗F1, ξ
∗F2} , for any F1, F2 = fk, g

γε
k ,
∑
γ

gγεk . (4.33)

Indeed, it follows that that this equality will hold when evaluated on a subset of 2nd functionally

independent functions16. We can then conclude by using Remark B.3.

To write down the terms involved in (4.33), we apply ξ∗ to the identities from Lemma 4.1.2 for the

left-hand sides, and use the expressions (4.30) together with the brackets (4.31a)–(4.31d) in the

16We could omit the third type of functions
∑
γ g

γε
k from our discussion, since their Poisson brackets are obtained

by summing those for gγεk over γ = 1, . . . , d. However, we prefer to keep the computations involving these functions

during the proof, so that the reader can have a better idea of the calculations that were needed to discover the brackets

(4.31a)–(4.31d) in the first place. Indeed, as can be seen from the proof, for each new equality of the form (4.33) that we

want to obtain, we just require one new bracket on hsp/Sn. Hence, the original computations consisted in finding for

which bracket we get an equality. For example, when I wanted to establish ξ∗{fk,
∑
l g
αβ
l }P = {ξ∗fk, ξ∗

∑
l g
αβ
l },

I already knew that {xi, xj} = 0 and I wanted to determine what {xi, cβj } is in order to get the equality.
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right-hand sides. Note that in local coordinates, we use ξ∗Xij = δijxi, ξ∗(AEαβC)ij = aαi c
β
j

together with ξ∗Zij = Bij .

We reproduce the computations from [42]. First, we note that {xi, xj} = 0 implies ξ∗{fk, fl}P =

{ξ∗fk, ξ∗fl} since both expressions vanish. Second, recall that by assumption
∑

α a
α
i = 1 for all

i. Thus, from {xi, cβj } = δijxic
β
j ,

∑
α

{ξ∗fk, ξ∗gαβl } =

n∑
i,j=1

{xki , c
β
j x

l
j} =

n∑
i=1

k xk+l
i cβi ,

∑
α

ξ∗{fk, gαβl }P =k
∑
α

ξ∗Tr(AEαβCX
k+l) = k

n∑
i=1

cβi x
k+l
i ,

and we get ξ∗{fk,
∑

α g
αβ
l }P = {ξ∗fk, ξ∗

∑
α g

αβ
l }. Third, without summing, we get again that

ξ∗{fk, gαβl }P = {ξ∗fk, ξ∗gαβl } using {aαi , xj} = 0. This finishes the first case.

Next, we establish (4.33) when the two functions are of the form gγεk or
∑

γ g
γε
k . To obtain the

left-hand side of (4.33) in those cases, we use that Lemma 4.1.2 implies

ξ∗{gγεk , g
αβ
l }P =

1

2

(
k∑
r=1

−
l∑

r=1

)
n∑

i,j=1

(
aαj c

β
i x

r
ia
γ
i c
ε
jx
k+l−r
j + aαj c

β
i x

k+l−r
i aγi c

ε
jx
r
j

)
+

1

2
o(α, γ)

n∑
i,j=1

(
aγi c

ε
jx
k
ja

α
j c

β
i x

l
i + aαi c

ε
jx
k
ja

γ
j c
β
i x

l
i

)
+

1

2
o(ε, β)

n∑
i,j=1

(
aαj c

β
i x

k
i a

γ
i c
ε
jx
l
j − aαi c

ε
jx
k
ja

γ
j c
β
i x

l
i

)
+

1

2
[o(ε, α) + δαε]

n∑
i,j=1

aαi c
ε
jx
k
ja

γ
j c
β
i x

l
i

− 1

2
[o(β, γ) + δβγ ]

n∑
i,j=1

aαi c
ε
jx
k
ja

γ
j c
β
i x

l
i

+ δαε

n∑
i,j=1

(
Bij +

ε−1∑
λ=1

aλi c
λ
j

)
xkja

γ
j c
β
i x

l
i

− δβγ
n∑

i,j=1

Bji +

β−1∑
µ=1

aµj c
µ
i

xlia
α
i c

ε
jx
k
j .

(4.34)

We now want to prove that

d∑
γ,α=1

ξ∗{gγεk , g
αβ
l }P =

n∑
i,j=1

{cεjxkj , c
β
i x

l
i} . (4.35)



144 Chapter 4. MQVs from the Jordan quiver

Using (4.31a) and (4.31d), the right-hand side of (4.35) can be read as

(4.35)RHS =
n∑

i,j=1

(
{cεj , xli}xkj c

β
i + {xkj , c

β
i }c

ε
jx
l
i + {cεj , c

β
i }x

k
jx

l
i

)
=(k − l)

n∑
i=1

cεi , c
β
i x

k+l
i +

1

2

n∑
i,j=1
i 6=j

xkjx
l
i

xj + xi
xj − xi

(cεjc
β
i + cεic

β
j )

+
n∑

i,j=1

xkjx
l
i(c

β
i Bij − cεjBji) +

1

2
o(ε, β)

n∑
i,j=1

xkjx
l
i(c

ε
ic
β
j − cεjc

β
i )

+
n∑

i,j=1

xkjx
l
ic
β
i

ε−1∑
λ=1

aλi (cλj − cεj)−
n∑

i,j=1

xkjx
l
ic
ε
j

β−1∑
µ=1

aµj (cµi − cβi ).

The left-hand side of (4.35) can be written from (4.34), after summing over α, γ and using the

normalisation
∑

γ a
γ
i = 1 from (4.27) when possible. We get

(4.35)LHS =
1

2

n∑
i,j=1

cβi c
ε
j

(
k∑
r=1

−
l∑

r=1

)(
xrix

k+l−r
j + xk+l−r

i xrj

)
(4.36a)

+
1

2

n∑
i,j=1

cεjc
β
i x

k
jx

l
i

d∑
α,γ=1

o(α, γ)
(
aγi a

α
j + aαi a

γ
j

)
(4.36b)

+
1

2
o(ε, β)

n∑
i,j=1

xkjx
l
i

(
cβj c

ε
i − cεjc

β
i

)
(4.36c)

+
1

2

d∑
α=1

[o(ε, α) + δαε]
n∑

i,j=1

aαi c
ε
jx
k
j c
β
i x

l
i (4.36d)

− 1

2

d∑
γ=1

[o(β, γ) + δβγ ]
n∑

i,j=1

cεjx
k
ja

γ
j c
β
i x

l
i (4.36e)

+
n∑

i,j=1

xkjx
l
i(Bijc

β
i −Bjic

ε
j) (4.36f)

+
n∑

i,j=1

ε−1∑
λ=1

aλi c
λ
j x

k
j c
β
i x

l
i −

n∑
i,j=1

β−1∑
µ=1

aµj c
µ
i x

l
ic
ε
jx
k
j , (4.36g)

To reduce this expression further, remark that by definition of the ordering function o(−,−)

d∑
α,γ=1

o(α, γ)
(
aγi a

α
j + aαi a

γ
j

)
=
∑
α<γ

(
aγi a

α
j + aαi a

γ
j

)
−
∑
α>γ

(
aγi a

α
j + aαi a

γ
j

)
= 0 ,

after relabelling the indices in the second sum, so that (4.36b) disappears. Then, write (4.36a) as

(4.36a) =(k − l)
n∑
i=1

cβi c
ε
ix
k+l
i +

1

2

n∑
i,j=1
i 6=j

cβi c
ε
j

(
k∑
r=1

−
l∑

r=1

)(
xrix

k+l−r
j + xk+l−r

i xrj

)
,
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so that the sum for i 6= j can be written as (here we assume k > l, the case k < l is exactly the

same)

1

2

n∑
i,j=1
i 6=j

cβi c
ε
j

k∑
r=l+1

xi − xj
xi − xj

(
xrix

k+l−r
j + xk+l−r

i xrj

)

=
1

2

n∑
i,j=1
i 6=j

cβi c
ε
j

1

xi − xj

(
xk+1
i xlj − xl+1

i xkj + xki x
l+1
j − xlixk+1

j

)

=
1

2

n∑
i,j=1
i 6=j

cβi c
ε
j

xi + xj
xi − xj

(
xki x

l
j − xlixkj

)
= −1

2

n∑
i,j=1
i 6=j

xlix
k
j

xi + xj
xi − xj

(
cβj c

ε
i + cβi c

ε
j

)
,

(4.37)

after relabelling indices to obtain last equality. Finally, let us look at the terms in (4.36d), (4.36e)

and (4.36g) together. They can be written as

1

2

n∑
i,j=1

xkjx
l
i

∑
α≥ε
−

ε−1∑
α=1

aαi c
ε
jc
β
i −

∑
γ≥β
−
β−1∑
γ=1

 cεja
γ
j c
β
i + 2

ε−1∑
λ=1

aλi c
λ
j c
β
i − 2

β−1∑
µ=1

aµj c
µ
i c

ε
j


and if we split the sum

∑
α≥ε as

∑
α≥ε =

∑d
α=1−

∑ε−1
α=1 and do the same with the sum

∑
γ≥β ,

we get after using the conditions
∑

α a
α
i = 1 (and the same for γ)

n∑
i,j=1

xkjx
l
i

− ε−1∑
α=1

aαi c
ε
jc
β
i +

β−1∑
γ=1

cεja
γ
j c
β
i +

ε−1∑
λ=1

aλi c
λ
j c
β
i −

β−1∑
µ=1

aµj c
µ
i c

ε
j


=

n∑
i,j=1

xkjx
l
i

ε−1∑
λ=1

aλi (cλj − cεj)c
β
i −

β−1∑
µ=1

aµj (cµi − cβi )cεj

 .

Summing together all the terms, we have reduced the left-hand side of (4.35) to the form

(4.35)LHS =(k − l)
n∑
i=1

cβi c
ε
ix
k+l
i − 1

2

n∑
i,j=1
i 6=j

xlix
k
j

xi + xj
xi − xj

(
cβj c

ε
i + cβi c

ε
j

)

+
1

2
o(ε, β)

n∑
i,j=1

xkjx
l
i

(
cβj c

ε
i − cεjc

β
i

)
+

n∑
i,j=1

xkjx
l
i(Bijc

β
i −Bjic

ε
j)

+

n∑
i,j=1

xkjx
l
i

ε−1∑
λ=1

aλi (cλj − cεj)c
β
i −

β−1∑
µ=1

aµj (cµi − cβi )cεj

 .

This is precisely the right-hand side of (4.35).

Before showing the next case, let us remark using (4.37) that we can obtain the following identity
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for any functions χ, χ′ : {1, . . . , n} → C[hsp]

1

2

n∑
i,j=1

χ(i)χ′(j)

(
k∑
r=1

−
l∑

r=1

)(
xrix

k+l−r
j + xk+l−r

i xrj

)
=(k − l)

n∑
i=1

χ(i)χ′(i)xk+l
i − 1

2

n∑
i,j=1
i 6=j

xlix
k
j

xi + xj
xi − xj

(
χ(j)χ′(i) + χ(i)χ′(j)

)
.

(4.38)

In the second case, we have to show

d∑
γ=1

ξ∗{gγεk , g
αβ
l }P =

n∑
i,j=1

{cεjxkj ,aαi c
β
i x

l
i} . (4.39)

Using (4.31a), (4.31c)–(4.31d), the right-hand side of (4.39) can be read as

(4.39)RHS =
n∑

i,j=1

(
{cεj , xli}xkjaαi c

β
i + {xkj , c

β
i }c

ε
ja
α
i x

l
i + {cεj , c

β
i }x

k
jx

l
ia
α
i + {cεj ,aαi }xkjxlic

β
i

)
=(k − l)

n∑
i=1

cεia
α
i c

β
i x

k+l
i +

1

2

n∑
i,j=1
i 6=j

xkjx
l
i

xj + xi
xj − xi

(cεic
β
j a

α
i + cεjc

β
i a

α
j )

+
1

2

d∑
κ=1

o(α, κ)

n∑
i,j=1

xkjx
l
ic
β
i c

ε
j(a

κ
j a

α
i + aκi a

α
j )

+
1

2
o(ε, β)

n∑
i,j=1

xkjx
l
i(c

ε
ic
β
j − cεjc

β
i )aαi

−
n∑

i,j=1

xkjx
l
ia
α
i c

ε
j

β−1∑
µ=1

aµj (cµi − cβi )− δ(α<ε)

n∑
i,j=1

xkjx
l
ic
β
i a

α
i c

ε
j

+ δεα

n∑
i,j=1

xkjx
l
ic
β
i

(
Bij +

ε−1∑
λ=1

aλi c
λ
j

)
−

n∑
i,j=1

xkjx
l
ic
ε
jBjia

α
i ,

after some easy simplifications. Meanwhile, we sum (4.34) over γ to get the left-hand side of

(4.39). Hence, we can split (4.39)LHS as (4.40a)–(4.40c) and (4.41a)–(4.41b) where

(k − l)
n∑
i=1

aαi c
β
i c

ε
jx
k+l
i − 1

2

n∑
i,j=1
i 6=j

xkjx
l
i

xi + xj
xi − xj

(
aαi c

β
j c

ε
i + aαj c

β
i c

ε
j

)
(4.40a)

+
1

2

d∑
γ=1

o(α, γ)

n∑
i,j=1

xkjx
l
ic
ε
jc
β
i

(
aγi a

α
j + aαi a

γ
j

)
(4.40b)

+
1

2
o(ε, β)

n∑
i,j=1

xkjx
l
ia
α
i

(
cβj c

ε
i − cεjc

β
i

)
, (4.40c)
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+
1

2
[o(ε, α) + δαε]

n∑
i,j=1

xkjx
l
ic
ε
ja
α
i c

β
i −

1

2

d∑
γ=1

[o(β, γ) + δβγ ]
n∑

i,j=1

xkjx
l
ia
α
i c

ε
ja
γ
j c
β
i (4.41a)

+ δαε

n∑
i,j=1

xkjx
l
ic
β
i

(
Bij +

ε−1∑
λ=1

aλi c
λ
j

)
−

n∑
i,j=1

xkjx
l
i

Bji +

β−1∑
µ=1

aµj c
µ
i

aαi c
ε
j , (4.41b)

where we used (4.38) to rewrite the first line of (4.34) in order to obtain (4.40a). By rearranging

terms in (4.41a) and (4.41b), we can write

(4.41a) + (4.41b)

= +
1

2
[1− 2δ(α<ε)]

n∑
i,j=1

xkjx
l
ic
ε
ja
α
i c

β
i −

1

2

d∑
γ=1

[1− 2δ(β>γ)]
n∑

i,j=1

xkjx
l
ia
α
i c

ε
ja
γ
j c
β
i

+ δαε

n∑
i,j=1

xkjx
l
ic
β
i

(
Bij +

ε−1∑
λ=1

aλi c
λ
j

)
−

n∑
i,j=1

xkjx
l
iBjia

α
i c

ε
j −

n∑
i,j=1

xkjx
l
ia
α
i c

ε
j

β−1∑
µ=1

aµj c
µ
i

=− δ(α<ε)

n∑
i,j=1

xkjx
l
ic
ε
ja
α
i c

β
i +

n∑
i,j=1

xkjx
l
ia
α
i c

ε
j

β−1∑
µ=1

aµj (cβi − cµi )

+ δαε

n∑
i,j=1

xkjx
l
ic
β
i

(
Bij +

ε−1∑
λ=1

aλi c
λ
j

)
−

n∑
i,j=1

xkjx
l
iBjia

α
i c

ε
j ,

where we used again the condition
∑d

γ=1 a
γ
j = 1. It is not hard to see that adding (4.40a)–(4.40c)

to this last expression gives that (4.39)LHS and (4.39)RHS coincide.

In the third case, we need to prove that

ξ∗{gγεk , g
αβ
l }P =

n∑
i,j=1

{aγj c
ε
jx
k
j ,a

α
i c

β
i x

l
i} . (4.42)

We need the bracket {aγj , c
β
i }, obtained by antisymmetry in (4.31c). Namely

{aγj , c
β
i } =− δβγBji + aγjBji −

1

2
δ(j 6=i)

xi + xj
xi − xj

cβi (aγi − aγj ) + δ(γ<β)a
γ
j c
β
i

+ aγj

β−1∑
µ=1

aµj (cµi − cβi )− δβγ
β−1∑
µ=1

aµj c
µ
i −

1

2

d∑
σ=1

o(γ, σ)cβi (aσi a
γ
j + aσj a

γ
i ) .

The right-hand side of (4.42) is given by

(4.42)RHS =
n∑

i,j=1

xkjx
l
i

(
{aγj ,a

α
i }cεjc

β
i + {aγj , c

β
i }c

ε
ja
α
i

)
+

n∑
i,j=1

xkjx
l
i

(
{cεj ,aαi }a

γ
j c
β
i + {cεj , c

β
i }a

γ
j a

α
i

)
+ (k − l)

n∑
i=1

aγi c
ε
ia
α
i c

β
i x

k+l
i .
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Hence, using (4.31a)–(4.31d) we can write (4.42)RHS as

(k − l)
n∑
i=1

aγi c
ε
ia
α
i c

β
i x

k+l
i +

1

2

n∑
i,j=1
i 6=j

xkjx
l
i

xj + xi
xj − xi

(cεic
β
j a

γ
j a

α
i + cεjc

β
i a

γ
i a

α
j )

+
1

2
o(α, γ)

n∑
i,j=1

xkjx
l
ic
ε
jc
β
i (aγj a

α
i + aγi a

α
j ) +

1

2
o(ε, β)

n∑
i,j=1

xkjx
l
ia
α
i a

γ
j (cεic

β
j − cεjc

β
i )

+ [δ(γ<β) − δ(α<ε)]
n∑

i,j=1

xkjx
l
ia
γ
j c
ε
jc
β
i a

α
i

+ δεα

n∑
i,j=1

xkjx
l
ic
β
i a

γ
j

(
Bij +

ε−1∑
λ=1

aλi c
λ
j

)
− δβγ

n∑
i,j=1

xkjx
l
ic
ε
ja
α
i

Bji +

β−1∑
µ=1

aµj c
µ
i

 .

This is obtained by simplifying terms without any non obvious manipulation. Now, remark that

we can write o(ε, α) = δ(ε<α) − δ(ε>α) = 1− δεα − 2δ(ε>α), so that

1

2
[o(ε, α) + δεα − o(β, γ)− δβγ ] = [δ(γ<β) − δ(α<ε)] .

We can also repeat the argument in (4.38) backwards, this time with χ(i) = cβi a
γ
i and χ′(j) =

aαj c
ε
j . Incorporating these two facts in the above expression for(4.42)RHS , we get

(4.42)RHS =
1

2

(
k∑
r=1

−
l∑

r=1

)
n∑

i,j=1

aαj c
β
i a

γ
i c
ε
j

(
xrix

k+l−r
j + xk+l−r

i xrj

)
+

1

2
o(α, γ)

n∑
i,j=1

xkjx
l
ic
ε
jc
β
i (aγj a

α
i + aγi a

α
j )

+
1

2
o(ε, β)

n∑
i,j=1

xkjx
l
ia
α
i a

γ
j (cεic

β
j − cεjc

β
i )

+
1

2
[o(ε, α) + δεα − o(β, γ)− δβγ ]

n∑
i,j=1

xkjx
l
ia
γ
j c
ε
jc
β
i a

α
i

+ δεα

n∑
i,j=1

xkjx
l
ic
β
i a

γ
j

(
Bij +

ε−1∑
λ=1

aλi c
λ
j

)

− δβγ
n∑

i,j=1

xkjx
l
ic
ε
ja
α
i

Bji +

β−1∑
µ=1

aµj c
µ
i

 .

This is precisely (4.34) which, by definition, is (4.42)LHS .
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Computations with the Poisson brackets : proof of Proposition 4.3.4

Below, we reproduce the analogous result that appears in [42]. Recall that, by definition, gij =∑d
α=1 a

α
i c

α
j . Hence, to obtain the Poisson bracket {gij , gkl}, we first need to compute {aαi , gkl}

and {cαj , gkl}, which is given by the following result.

Lemma 4.3.5 For any ε, γ = 1, . . . , d and j, k, l = 1, . . . , n, writing (ac)kl =
∑

α a
α
kc

α
l ,

{cεj , (ac)kl} =(Bkjc
ε
l −Bjlcεj) + (Blj −Bkj)(ac)kl +

1

2
δ(j 6=k)

xj + xk
xj − xk

cεj((ac)jl − (ac)kl)

+
1

2
δ(j 6=l)

xj + xl
xj − xl

(cεj(ac)kl + cεl (ac)kj) +
1

2
cεl (ac)kj −

1

2
cεj(ac)jl

+ (ac)kl

ε−1∑
λ=1

(cλj − cεj)(a
λ
l − aλk) , (4.43a)

{aγi , (ac)kl} =aγiBil − aγkBil +
1

2
δ(i 6=k)

xi + xk
xi − xk

(aγk − aγi )((ac)il − (ac)kl)

+
1

2
δ(i 6=l)

xi + xl
xi − xl

(ac)kl(a
γ
l − aγi ) +

1

2
aγi (ac)il −

1

2
aγk(ac)il

+
1

2

d∑
σ=1

o(γ, σ)(ac)kl[a
γ
i (aσk − aσl ) + aσi (aγk − aγl )] . (4.43b)

Proof. We compute from (4.31c)–(4.31d) with the normalisation
∑

α a
α
k = 1 that

{cεj , (ac)kl} =
d∑

α=1

(
{cεj ,aαk}cαl + aαk{cεj , cαl }

)
=cεlBkj − (ac)klBkj +

1

2
δ(j 6=k)

xj + xk
xj − xk

cεj((ac)jl − (ac)kl)−
ε−1∑
α=1

cαl a
α
kc

ε
j

− (ac)kl

ε−1∑
λ=1

aλk(cλj − cεj) + cεl

ε−1∑
λ=1

aλkc
λ
j +

1

2

d∑
α=1

d∑
κ=1

o(α, κ)cαl c
ε
j(a

κ
j a

α
k + aκka

α
j )

+
1

2
δ(j 6=l)

xj + xl
xj − xl

(cεj(ac)kl + cεl (ac)kj) + (ac)klBlj − cεjBjl

+
1

2

d∑
α=1

o(ε, α)aαk (cεlc
α
j − cεjc

α
l ) + (ac)kl

ε−1∑
λ=1

aλl (cλj − cεj)−
d∑

α=1

α−1∑
µ=1

aαkc
ε
ja
µ
j (cµl − cαl ) .

(4.44)

Our aim is to reduce some of these thirteen terms, mostly using properties of the ordering function
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o(−,−). Summing the fourth, sixth and eleventh terms of (4.44) together yields

−
ε−1∑
λ=1

aλkc
λ
l c
ε
j +

ε−1∑
λ=1

aλkc
λ
j c
ε
l +

1

2

[
d∑

λ=ε+1

−
ε−1∑
λ=1

]
(aλkc

λ
j c
ε
l − aλkc

λ
l c
ε
j)

=
1

2

d∑
λ=1
λ 6=ε

(aλkc
λ
j c
ε
l − aλkc

λ
l c
ε
j) =

1

2
((ac)kjc

ε
l − (ac)klc

ε
j) .

The fifth and twelfth terms of (4.44) give

−(ac)kl

ε−1∑
λ=1

aλk(cλj − cεj) + (ac)kl

ε−1∑
λ=1

aλl (cλj − cεj) = (ac)kl

ε−1∑
λ=1

(aλl − aλk)(cλj − cεj) .

Relabelling indices, we transform the seventh term from (4.44) as

1

2

[
d∑

α=1

d∑
κ=α+1

−
d∑

α=1

α−1∑
κ=1

]
cαl c

ε
j(a

κ
j a

α
k + aκka

α
j )

=
1

2

d∑
α=1

α−1∑
µ=1

cεj(c
µ
l a

α
j a

µ
k + cµl a

α
ka

µ
j − cαl a

µ
j a

α
k − cαl a

µ
ka

α
j )

=
1

2

d∑
α=1

α−1∑
µ=1

cεj(c
µ
l − cαl )(aαj a

µ
k + aαka

µ
j ) ,

which can be summed with the thirteenth term in (4.44) to yield

1

2

d∑
α=1

α−1∑
µ=1

cεj(c
α
l − cµl )

(
2aαka

µ
j − aαj a

µ
k − aαka

µ
j

)
=

1

2

d∑
α=1

α−1∑
µ=1

cεj(c
α
l − cµl )

(
aαka

µ
j − aαj a

µ
k

)

=
1

2

d∑
α=1

α−1∑
µ=1

cεj(c
α
l − cµl )aαka

µ
j −

1

2

d∑
α=1

d∑
µ=α+1

cεj(c
µ
l − cαl )aµj a

α
k

=
1

2

d∑
α=1

d∑
µ=1
µ 6=α

cεj(c
α
l − cµl )aαka

µ
j =

1

2

d∑
α=1

d∑
µ=1

cεj(a
α
kc

α
l a

µ
j − aµj c

µ
l a

α
k ) =

1

2
cεj ((ac)kl − (ac)jl) .

Introducing the different terms back in (4.44), we find

{cεj , (ac)kl} =(cεlBkj − cεjBjl) + (Blj −Bkj)(ac)kl +
1

2
δ(j 6=k)

xj + xk
xj − xk

cεj((ac)jl − (ac)kl)

+
1

2
δ(j 6=l)

xj + xl
xj − xl

(cεj(ac)kl + cεl (ac)kj) +
1

2
(cεl (ac)kj − cεj(ac)jl)

+ (ac)kl

ε−1∑
λ=1

(cλj − cεj)(a
λ
l − aλk) ,
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as desired. For the second identity, we get from (4.31b)-(4.43)

{aγi , (ac)kl} =
d∑

α=1

({aγi ,a
α
k}cαl + aαk{a

γ
i , c

α
l })

=
1

2
δ(i 6=k)

xi + xk
xi − xk

(aγi − aγk)((ac)kl − (ac)il) +
1

2

d∑
α=1

o(α, γ)(aγi a
α
k + aγka

α
i )cαl

+
1

2
(ac)kl

d∑
σ=1

o(γ, σ)(aγi a
σ
k + aγka

σ
i )− 1

2

d∑
α=1

d∑
κ=1

o(α, κ)aγi c
α
l (aκi a

α
k + aκka

α
i )

− aγkBil + aγiBil +
1

2
δ(i 6=l)

xi + xl
xi − xl

(ac)kl(a
γ
l − aγi ) +

d∑
α=γ+1

aαka
γ
i c
α
l

+
d∑

α=1

α−1∑
µ=1

aαka
γ
i a

µ
i (cµl − cαl )− aγk

γ−1∑
µ=1

aµi c
µ
l −

1

2

d∑
σ=1

o(γ, σ)(ac)kl(a
σ
l a

γ
i + aσi a

γ
l ) .

(4.45)

The second, eighth and tenth terms of (4.45) become

1

2

γ−1∑
α=1

−
d∑

α=γ+1

 (aγi a
α
kc

α
l + aγka

α
i c

α
l ) +

d∑
α=γ+1

aγi a
α
kc

α
l −

γ−1∑
α=1

aγka
α
i c

α
l

=
1

2

γ−1∑
α=1
α 6=γ

(aγi a
α
kc

α
l − aγka

α
i c

α
l ) =

1

2
aγi (ac)kl −

1

2
aγk(ac)il .

We write the third and eleventh terms of (4.45) as

1

2

d∑
σ=1

o(γ, σ)(ac)kl
(
aγi (aσk − aσl ) + aσi (aγk − aγl )

)
.

Now, we transform the fourth term of (4.45) :

− 1

2

[
d∑

α=1

d∑
κ=α+1

−
d∑

α=1

α−1∑
κ=1

]
aγi (aκi a

α
kc

α
l + aκka

α
i c

α
l )

=
1

2

d∑
α=1

α−1∑
κ=1

aγi (aκi a
α
kc

α
l + aκka

α
i c

α
l − aαi a

κ
kc
κ
l − aαka

κ
i c
κ
l )

=
1

2

d∑
α=1

α−1∑
κ=1

aγi (cαl − cκl )(aκi a
α
k + aκka

α
i ) .
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This can be summed with the ninth term of (4.45) to give

1

2

d∑
α=1

α−1∑
κ=1

aγi (cκl − cαl )(2aκi a
α
k − aκi a

α
k − aκka

α
i ) =

1

2

d∑
α=1

α−1∑
κ=1

aγi (cκl − cαl )(aκi a
α
k − aκka

α
i )

=
1

2

d∑
α=1

α−1∑
κ=1

aγi (cκl − cαl )aκi a
α
k −

d∑
α=1

d∑
κ=α+1

aγi (cαl − cκl )aαka
κ
i

=
1

2

d∑
α=1

α−1∑
κ=1
κ6=α

aγi (cκl − cαl )aκi a
α
k =

1

2

d∑
α=1

α−1∑
κ=1
κ6=α

aγi (aκi c
κ
l a

α
k − aαkc

α
l a

κ
i ) =

1

2
aγi ((ac)il − (ac)kl) .

We have transformed (4.45) such that

{aγi , (ac)kl} =(aγi − aγk)Bil +
1

2
δ(i 6=k)

xi + xk
xi − xk

(aγk − aγi )((ac)il − (ac)kl)

+
1

2
δ(i 6=l)

xi + xl
xi − xl

(aγl − aγi )(ac)kl +
1

2
aγi (ac)il −

1

2
aγk(ac)il

+
1

2

d∑
σ=1

o(γ, σ)(ac)kl
(
aγi (aσk − aσl ) + aσi (aγk − aγl )

)
,

which finishes the proof. 2

Now, to establish Proposition 4.3.4, we have from Lemma 4.3.5

{gij , gkl} =
d∑

γ=1

(
{aγi , (ac)kl}cγj + aγi {c

γ
j , (ac)kl}

)
=((ac)ij − (ac)kj)Bil +

1

2
δ(i 6=k)

xi + xk
xi − xk

((ac)kj − (ac)ij)((ac)il − (ac)kl)

+
1

2
δ(i 6=l)

xi + xl
xi − xl

((ac)lj − (ac)ij)(ac)kl +
1

2
(ac)ij(ac)il −

1

2
(ac)kj(ac)il

+
1

2

d∑
γ=1

d∑
σ=1

o(γ, σ)(ac)kl
(
aγi c

γ
j (aσk − aσl ) + aσi (aγk − aγl )cγj

)
+Bkj(ac)il −Bjl(ac)ij + (Blj −Bkj)(ac)kl

+
1

2
δ(j 6=k)

xj + xk
xj − xk

(ac)ij((ac)jl − (ac)kl)

+
1

2
δ(j 6=l)

xj + xl
xj − xl

((ac)ij(ac)kl + (ac)il(ac)kj)

+
1

2
(ac)il(ac)kj −

1

2
(ac)ij(ac)jl + (ac)kl

d∑
γ=1

γ−1∑
λ=1

aγi (cλj − cγj )(aλl − aλk) .

(4.46)

Again, we used the fact that
∑d

γ=1 a
γ
i = 1. The sums in the third line of (4.46) can be reexpressed
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as follows :

1

2
(ac)kl

d∑
γ=1

 d∑
σ=γ+1

−
γ−1∑
σ=1

(aγi cγj (aσk − aσl ) + aσi (aγk − aγl )cγj
)

=
1

2
(ac)kl

d∑
γ=1

 d∑
σ=γ+1

−
γ−1∑
σ=1

(aγi cγj (aσk − aσl )− aγi (aσk − aσl )cσj
)
,

after swapping the labels σ ↔ γ in the second term of the sum. This is nothing else than

1

2
(ac)kl

d∑
γ=1

 d∑
σ=γ+1

−
γ−1∑
σ=1

aγi (cγj − cσj )(aσk − aσl ) .

Summing with the last term of (4.46), we get

1

2
(ac)kl

d∑
γ=1

 d∑
λ=γ+1

−
γ−1∑
λ=1

aγi (cγj − cλj )(aλk − aλl ) + (ac)kl

d∑
γ=1

γ−1∑
λ=1

aγi (cλj − cγj )(aλl − aλk)

=
1

2
(ac)kl

d∑
γ=1

d∑
λ=1
λ 6=γ

aγi (cγj − cλj )(aλk − aλl )

=
1

2
(ac)kl

d∑
γ=1

d∑
λ=1

aγi

(
cγj a

λ
k − cγj a

λ
l − aλkc

λ
j + aλl c

λ
j

)
=

1

2
(ac)kl

(
(ac)ij − (ac)ij − (ac)kj + (ac)lj

)
=

1

2
(ac)kl(ac)lj −

1

2
(ac)kl(ac)kj .

If we reintroduce the elements gij = (ac)ij , we can then rewrite (4.46) as

{gij , gkl}P =gijBil − gkjBil +
1

2
δ(i 6=k)

xi + xk
xi − xk

(gkjgil − gkjgkl − gijgil + gijgkl)

+
1

2
δ(i 6=l)

xi + xl
xi − xl

(gljgkl − gijgkl) +
1

2
gijgil −

1

2
gkjgil +

1

2
gklglj −

1

2
gklgkj

+Bkjgil −Bjlgij +Bljgkl −Bkjgkl +
1

2
δ(j 6=k)

xj + xk
xj − xk

(gijgjl − gijgkl)

+
1

2
δ(j 6=l)

xj + xl
xj − xl

(gijgkl + gilgkj) +
1

2
gilgkj −

1

2
gijgjl

=gij

(
Bil +

1

2
gil

)
− gkj

(
Bil +

1

2
gil

)
+ gil

(
Bkj +

1

2
gkj

)
− gij

(
Bjl +

1

2
gjl

)
+ gkl

(
Blj +

1

2
glj

)
− gkl

(
Bkj +

1

2
gkj

)
+

1

2
δ(i 6=l)

xi + xl
xi − xl

(gljgkl − gijgkl)

+
1

2
δ(i 6=k)

xi + xk
xi − xk

(gkjgil − gkjgkl − gijgil + gijgkl)

+
1

2
δ(j 6=k)

xj + xk
xj − xk

(gijgjl − gijgkl) +
1

2
δ(j 6=l)

xj + xl
xj − xl

(gijgkl + gilgkj) ,
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after rearranging terms. Next, notice that for any i, j

Bij +
1

2
gij =

qgijxj
xi − qxj

+
1

2
gij =

1

2

xi + qxj
xi − qxj

gij ,

so that

{gij , gkl}P =
1

2

xi + qxl
xi − qxl

gijgil −
1

2

xi + qxl
xi − qxl

gkjgil +
1

2

xk + qxj
xk − qxj

gilgkj −
1

2

xj + qxl
xj − qxl

gijgjl

+
1

2

xl + qxj
xl − qxj

gklglj −
1

2

xk + qxj
xk − qxj

gklgkj +
1

2
δ(i 6=l)

xi + xl
xi − xl

(gljgkl − gijgkl)

+
1

2
δ(i 6=k)

xi + xk
xi − xk

(gkjgil − gkjgkl − gijgil + gijgkl)

+
1

2
δ(j 6=k)

xj + xk
xj − xk

(gijgjl − gijgkl) +
1

2
δ(j 6=l)

xj + xl
xj − xl

(gijgkl + gilgkj) .

It is not hard to see that, by grouping terms together, we get (4.32).

4.3.2 Relation to the Arutyunov–Frolov conjecture

We can consider locally the coordinates (qi)i instead of (xi)i, which we define by xi = e2qi .

Similarly, we put q = e−2γ for some γ ∈ C× \ iπQ. Then, we can see that Proposition 4.3.4 can

be written as

{qi, qk} =0 , {gij , qk} = −1

2
δjkgij ,

{gij , gkl} =
1

2
[coth(qik) + coth(qjl) + coth(qkj) + coth(qli)]gijgkl

+
1

2
[coth(qik) + coth(qjl) + coth(qkj + γ)− coth(qil + γ)]gilgkj

+
1

2
[coth(qki) + coth(qil + γ)]gijgil +

1

2
[coth(qjk)− coth(qjl + γ)]gijgjl

+
1

2
[coth(qki)− coth(qkj + γ)]gkjgkl + [coth(qil) + coth(qlj + γ)]gljgkl

where we write qij = qi− qj , and we take the convention that a term with vanishing denominator

is omitted. We can readily see that if we set fij = gij and consider the Poisson bracket

{−,−}A = 2{−,−}, these expressions are nothing else than (1.13a)–(1.13b), i.e. the Poisson

brackets conjectured by Arutyunov and Frolov. The analogy can be pushed further. With those

coordinates, the matrix B defined by (4.28) has entries e−γ

2
e−qij fij

sinh(qij+γ) , so that 2eγB is gauge

equivalent to the Lax matrix L defined by (1.12). Hence, trB should define the equation of

motion for the trigonometric spin RS system up to a multiplicative constant, which we prove in

§ 4.3.3. If we continue to look only at the Poisson structure for the moment, it remains to see
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that (4.31a)–(4.31d) yield (1.11a)–(1.11d) when we degenerate to the rational case. To do so,

we put xi = e2βqi and q = e−2βγ . Then, in the limit β → 0, we get that 2βBij → fij
qij+γ

,

which are precisely the entries of the matrix L of Arutyunov and Frolov in the rational case. In

a similar way, note that 2β coth(βqij) → 1/qij in this limit. Now, if we rescale the bracket by

a factor 2β before taking the limit in (4.31a)–(4.31d), we get (1.11a)–(1.11d) as expected. Thus

the terms containing the ordering of the spins disappear in the rational case, and only the terms

with a factor coth(qji) are visible in this limit. This was expected since the extra terms between

the spin variables are a pure consequence of the fusion process underlying the quasi-Hamiltonian

formalism we used, while this formalism is not needed in the rational case which can be obtained

by Hamiltonian reduction.

Finally, we could ask if it is possible to obtain the Poisson brackets between the non-normalised

coordinates (aαi , c
α
i ), see Section 1.3. To do so, recall that we work on the space hsp introduced in

§ 4.3.1 with coordinates (xi,a
α
i , c

α
i )iα subject to

∑
α a

α
i = 1 and other conditions, see (4.27). We

can get these elements from non-normalised coordinates (xi, a
α
i , c

α
i )iα of h̃sp = hreg × hd × hd

through the generically well-defined map Ñ : h̃sp → hsp given by

Ñ(xi, a
α
i , c

α
i ) = (xi,a

α
i , c

α
i ) , where aαi =

aαi∑
β a

β
i

, cαi = cαi
∑
β

aβi . (4.47)

We would like to define a Poisson bracket on h̃sp that induces (4.31a)–(4.31d).

Lemma 4.3.6 The map Ñ : h̃sp → hsp intertwines the Poisson bracket {−,−} on hsp defined in

Proposition 4.3.3 and the antisymmetric biderivation {−,−}′ on h̃sp given by

{xi, xj}′ =0 , {aαi , xj}′ = 0 , {cαi , xj}′ = −δijcαi xj , (4.48a)

{aγj , a
α
i }′ =

1

2
δ(i 6=j)

xj + xi
xj − xi

aγi a
α
j +

1

2
o(α, γ)(aγj a

α
i + aγi a

α
j ) , (4.48b)

{cεj , aαi }′ =δεα

B∨ij +
ε−1∑
µ=1

aµi c
µ
j

− δ(α<ε)a
α
i c
ε
j , (4.48c)

{cεj , c
β
i }
′ =

1

2
δ(i 6=j)

xj + xi
xj − xi

cεic
β
j +

1

2
o(ε, β)(cεic

β
j − c

ε
jc
β
i ) , (4.48d)

where o(−,−) is the ordering function on d elements defined in Section 1.5, andB∨ij = q
∑
α a

α
i c
α
j

xix
−1
j −q

.

Proof. Write Di =
∑

β a
β
i . It is not difficult to show that (xi, a

α
i D
−1
i , cαi Di) satisfy relations

(4.31a)–(4.31d). One has to remark that D−1
i B∨ijDj = Bij for the matrix B defined in (4.28).
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Hence Ñ(B∨) = B. Then, the only non obvious identity to use is that

d∑
σ,κ=1

o(κ, σ) (aκj a
σ
i + aκi a

σ
j ) = 0 ,

which we showed using the skewsymmetry of o(−,−) in the proof of Proposition 4.3.3. 2

Note the easier form of the expressions (4.48a)–(4.48d) compared to their normalised version

(4.31a)–(4.31d). Introducing the functions fij =
∑

α a
α
i c
α
j on h̃sp such that Ñ(fij) = fij = gij ,

we can also compute their brackets as an analogue of Proposition 4.3.4.

Lemma 4.3.7 For any i, j, k, l = 1, . . . , n, {fij , xk}′ = −δjkfijxk and

{fij , fkl}′ =
1

2
filfkj

[
2qxj

xk − qxj
− 2qxl
xi − qxl

+ δ(i 6=k)
xi + xk
xi − xk

+ δ(j 6=l)
xj + xk
xj − xl

]
. (4.49)

In particular, the commutative subalgebra ofO(h̃sp) generated by (xk, fij) and localised at {xi−

xj , xi − qxj | i 6= j} is stable under {−,−}′.

Proof. In a way similar to Lemma 4.3.5, we find that

{aγi , fkl}
′ =− aγkB

∨
il +

1

2
δ(i 6=k)

xi + xk
xi − xk

aγkfil +
1

2
aγi fkl −

1

2
aγkfil ,

{cεi , fkl}′ =cεlB∨ki +
1

2
δ(i 6=l)

xi + xl
xi − xl

cεlfki +
1

2
cεlfki −

1

2
cεifkl .

From {gij , fkl}′ =
∑

γ({aγi , fkl}′c
γ
j + aγi {c

γ
j , fkl}′), we can then compute (4.49) easily. 2

Though these brackets are easier to deal with, we have been unable to prove that Jacobi identity

is satisfied for any triple of generators. We conjecture that this is the case, so that {−,−}′ would

be a Poisson bracket. It is then an interesting problem to try to extract the momentum pi from the

elements (cαi )α for each i. In the rational case, this is already done in [16].

4.3.3 Integrable systems

For any U ∈ {X,Y, Z, Idn +XY }, we have candidates for integrability from Propositions 4.1.3

and 4.1.5. We will study these two cases separately. As, in each case, the elements trUk are part

of the family to consider, we first look at the local expression of such functions.
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Local expressions

We use the isomorphism of Proposition 4.3.1 to write the matrices in local coordinates, and we

omit to write the map ξ from now on. For example, we write that on C′n,q,d we have Zij = q
gijxj
xi−qxj

though this is in fact ξ∗Zij .

As in the case d = 1 discussed in § 4.2.2, we have that trXk =
∑

i x
k
i trivially. Next, we have

for G1,d
k = trZk that

G1,d
1 =

q

1− q
∑
i

gii , G1,d
k = qk

n∑
i1,...,ik=1

gi1i2xi2
xi1 − qxi2

. . .
giki1xi1
xik − qxi1

, (4.50)

with k ≥ 2. If we let d
dt = {−, G1,d

1 }P, we can find the corresponding set of ODEs on local

coordinates (qi,a
α
i , c

α
i ), where each qi satisfies e2qi = xi. To do so, introduce the function

Vik =
2(1− q)xixk

(xi − xk)(xi − qxk)
= coth(qi − qk)− coth((qi − qk) + γ) . (4.51)

Hence, Vik = V trig(qi − qk) for the trigonometric potential introduced in Section 1.3.

Lemma 4.3.8 For any i = 1, . . . , n and α = 1, . . . , d

dqi
dt

=
q

2(1− q)
gii , (4.52a)

daγi
dt

=− q

2(1− q)
∑
k 6=i

Vik(a
γ
i − aγk)gik , (4.52b)

dcεj
dt

=
q

2(1− q)
∑
k 6=j

(Vjkc
ε
jgjk − Vkjcεkgkj) . (4.52c)

Proof. Note that {xi,Tr(Z)} = q
1−q

∑
k{xi, fkk}, so that the first assertion follows from

Proposition 4.3.4. Then, remark that from Lemma 4.3.5

{aγi , gkk} = (aγi − aγk)Bik +
1

2
δ(i 6=k)

xi + xk
xi − xk

(aγk − aγi )gik +
1

2
(aγi − aγk)gik , (4.53)

which is clearly zero for k = i. Now, using (4.28) and (4.51),

{aγi , gkk} =
1

2
δ(i 6=k)(a

γ
k − aγi )gik

[
−2qxk
xi − qxk

+
xi + xk
xi − xk

− 1

]
=

1

2
δ(i 6=k)(a

γ
k − aγi )gikVik .

(4.54)

It is easy to obtain the third identity from it. The last one is proved similarly. 2
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Hence, if we set {−,−}A = 2{−,−} and fij = gij as in § 4.3.2, this is precisely (1.9a)–(1.9c)

with trigonometric potential up to a factor (q−1 − 1)−1. Thus, (q−1 − 1)G1,d
1 is the Hamiltonian

for the trigonometric spin Ruijsenaars-Schneider system introduced by Krichever and Zabrodin

[105]. In particular, we can explicitly integrate any of the commuting flows defined by G1,d
k in

C◦n,q,d using Proposition 4.1.6. The motion for the matrices (X,Z) under such flows was already

determined in [138]. It is also important to remark that, due to our method, we are constrained

by the conditions on q given by q 6= 0 and qN 6= 1 for any N ∈ Z. Hence, we can not consider

the limiting case γ → ∞ in (4.51), which gives the potential V (q) = coth(q). This case arises

in the study of affine Toda solitons, see [33]. A unifying approach in the real setting could be the

methods introduced by Luen-Chau Li (see [111] and references therein) or Laszlo Fehér [64, 65],

where such a potential can be obtained [111, Sect. 5][64, §6.1].

Then, we look at the elements H1,d
k = trY k. Again, using that Y = Z −X−1 on C′n,q,d, we can

see each function H1,d
k as a deformation of G1,d

k . For k = 1, 2 we have

H1,d
1 = G1,d

1 −
n∑
i=1

1

xi
, H1,d

2 = G1,d
2 −

2q

1− q

n∑
i=1

gii
xi

+
n∑
i=1

1

x2
i

.

We can compute the defining ODEs associated to d
dt = {−, H1,d

1 }P from Lemma 4.3.8, and easily

get that
dqi
dt

=
q

2(1− q)
gii ,

daγi
dt

=− q

2(1− q)
∑
k 6=i

Vik(a
γ
i − aγk)gik ,

dcεj
dt

=
q

2(1− q)
∑
k 6=j

(Vjkc
ε
jgjk − Vkjcεkgkj)−

cεj
xj
.

This clearly differs from the RS system of ODEs due to the extra term − cεj
xj

in dcεj/dt. It seems

to define a system that is unknown as was pointed out in [42]. We have that the flows associated

to any H1,d
k can be explicitly integrated in Cn,q,d using Proposition 4.1.7.

Finally, for F 1,d
k = tr(Idn +XY )k, we remark that we can write F 1,d

k = tr(ZX)k. We can write

locally (ZX)ij = q
g̃ijxj
xi−qxj for g̃ij = gijxj . Now, note that the coordinates (xi, g̃ij)ij have the

same Poisson brackets as (xi, gij)ij after an easy computation involving Proposition 4.3.4. Hence

F 1,d
k defines the same function as G1,d

k after the above reparametrisation, and we do not need to

discuss this family.
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Liouville integrability with a spectral parameter

In the non-spin case d = 1, we obtained as Proposition 4.2.14 the existence of n functionally

independent elements in the algebra C[trU l | l ∈ Z]. While this result does not depend on the

number d ≥ 1, we can not form an integrable system for d ≥ 2 since in that case n < nd =

1
2 dim Cn,q,d. To get a family of functions in involution of greater dimension, we have to study

Proposition 4.1.5. We follow the method given in [62], which is partially based on the proof of

integrability for the spin Calogero-Moser case [20, 104].

Remark 4.3.9 For the remainder of this subsection, we require that d ≤ n.

Lemma 4.3.10 For each U , the commutative algebra generated by the elements{
huK =

1

K
tr[U(Idn +ηΦ

−ε(u)
0 )]K

K ∈ N, η ∈ C
}

is an abelian Poisson algebra of dimension nd− d(d−1)
2 .

For U = Z, this is in fact proved in [105]. We follow the ideas of that work to claim Liouville

integrability after an extra reduction. Before doing that, we prove Lemma 4.3.10.

Proof. (Lemma 4.3.10.) We begin with the case U = Z. Note that we can write (Idn +ηΦ0)Z

as Z + ηXZX−1. This means that, for fixed K, the coefficients for the development of huK in η

in front of η0 and ηK are the same. Hence we have a first constraint for each K ∈ N.

Next, note that we can also write (Idn +ηΦ0)Z asZ+qη(Z+S) by (4.4), recalling that S = AC.

Up to a constant, this means that we can study the elements in the family {tr(Z + ηS)j | j ∈

N, η ∈ C} (note that this is a different η). Since these functions are obtained from the eigenvalues

of Z + ηS, it is sufficient to study the functions for j = 1, . . . , n. Expanding tr(Z + ηS)j in

η as
∑j

l=0Gj,lη
l, we get j + 1 functions. Thus, we get at most n(n + 1)/2 + n functionally

independent elements. We already obtained n relations between these functions above. It is not

hard to see that these relations are equivalent to be able to rewrite each Gj,j in terms of elements

Gj′,l′ with strictly smaller j′, or strictly smaller l′ if j′ = j.

We get additional constraints because the rank of S is at most d 6 n. The exact count is obtained

by looking at a particular spectral curve. We introduce

Γ(η, µ) ≡ det((Z + ηS)− µ Idn) = 0 . (4.55)
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We write Γ(η, µ) ≡
∑n

i=0 ri(η)µi = 0, where ri(η) is a symmetric function of order n − i of

Z + ηS, so is a function of {Gj,l|0 6 l 6 j − 1, 1 6 j 6 n − i}. In the latter set, we omit

l = j because of the constraint obtained above. We can expand each ri(η) in terms of η as

ri(η) =
∑n−i

s=0 In−i,sη
s. Hence the set of functionally independent functions is contained in the

{In−i,s}, which are functions of the n(n + 1)/2 functions {Gj,l}. To get the exact number of

functionally independent functions, we need to know how many relations exist on the {In−i,s}.

In a neighbourhood of η =∞, we can write

Γ(η, µ) =
n∏
i=1

(µ− µi(η)) , for µi(η) = ηνi , (4.56)

for (νi)i the eigenvalues of S. At a generic point, S has rank d and its nonzero eigenvalues are

different, so we can order the (νi)i so that ν1 < ν2 < . . . < νd, and νd+1 = . . . = νn = 0. Thus

near η =∞ we write Γ(η, µ) = µn−d
∏d
i=1(µ−ηνi). From this behaviour at infinity, we require

that if we write Γ(η, µ) ≡
∑n

i=0 Γi(µ)ηi, then Γi(µ) = 0 for all i = d + 1, . . . , n. Each Γi(µ)

has order n − i as a polynomial in µ whose coefficients are functions of the {In−i,s}. We can

write Γi(µ) =
∑n−i

s=0 Jn−i,s(Ik,t)µ
s. Thus, their vanishing for i > d is equivalent to imposing

n∑
i=d+1

(n− i+1) =
n−d−1∑
j=0

(n−(j+d)) = (n−d)2− (n− d− 1)(n− d)

2
=

(n− d)(n− d+ 1)

2

relations. Imposing these constraints on the number of elements {In−i,s}, we get

n(n+ 1)

2
− (n− d)(n− d+ 1)

2
= nd− d(d− 1)

2

independent first integrals. Remark that we get nothing by looking at µ = ∞, since at a generic

point Z is invertible and diagonalisable.

All the other cases follow this method and yield nd − d(d−1)
2 independent functions. For U =

Idn +XY , we remark that this is equivalent to the case treated above since Idn +XY can be

generically written as the matrix Z up to the change of coordinates (xi, gij) 7→ (xi, g̃ij = gijxj).

For U = Y , remark that we can write (Idn +ηΦ0)Y = (1 + qη)Y + qηSZ−1Y . After a change

of spectral parameter, we can write the elements of the family in terms of {tr(Y + ηT )j}j , with

T = SZ−1Y . Hence, the proof is the same with the pair (Y, T ) instead of (Z, S).

For U = X , recall that Φ0 = q Idn +qSZ−1 is invertible by definition of the space. Since

the matrix SZ−1 = ACZ−1 is a product of the n × d matrix A with the d × n matrix
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CZ−1, we can use the Woodbury matrix identity to write Φ−1
0 = q−1 Idn−q−1T ′ for T ′ =

A(Idn +qCZ−1A)−1CZ−1. Then we can write (Idn +ηΦ−1
0 )X = (1 + q−1η)X + qηT ′X . We

then look at the family {tr(X + ηT )j}j , with T = T ′X , and we redo the proof with the pair

(X,T ) instead of (Z, S). 2

We get from Lemma 4.3.10 that our best hope to obtain an integrable system is to restrict our

attention to a space of dimension 2nd − d(d − 1) where the families of functions descend.

Introduce the Lie subgroup (and algebraic subgroup) H ⊂ GLd(C) whose elements have the

vector (1, . . . , 1) as eigenvector with eigenvalue 1, as in [105]. This can also be defined as

H =
{
h = (hαβ) ∈ GLd(C)

∣∣∣ d∑
β=1

hαβ = 1 for all α
}
. (4.57)

We note that
∑

α(Ah)iα = 1 for all i and h ∈ H. Hence, the action h · (X,Z,A,C) =

(X,Z,Ah, h−1C) is well-defined in C′n,q,d, and we can also show that the system of ODEs

defined by G1,d
1 in Lemma 4.3.8 (or its variant for H1,d

1 ) is invariant under the action ofH.

We define the affine GIT quotient CHn,q,d as

CHn,q,d = C′n,q,d//H ,

for the action given above on a quadruple (X,Z,A,C) ∈ C′n,q,d. The functions in CHn,q,d
are H-invariants, so the coordinate ring is generated by traces of words in (X,Z, S), for

S = AC. Lifting such functions to C′n,q,d, and writing them in coordinates give elements that

are polynomials in (xi, gij , (xi− qxj)−1, (xi−xj)−1) which areH-invariant and form a Poisson

subalgebra by Proposition 4.3.4. Thus, we can define uniquely a Poisson bracket {−,−}H such

that the injection ι : CHn,q,d → C′n,q,d dual to O(C′n,q,d) → O(C′n,q,d)H is a Poisson morphism.

This is an algebraic analogue to Proposition 2.1.1. The different families (huK)K in Proposition

4.1.5 descend to CHn,q,d since they are H-invariant, and by definition of the Poisson bracket they

stay in involution. For each family, we can equivalently consider as in the proof of Lemma 4.3.10

the elements {tr(U + ηT )j}j , where T is a specific matrix which has rank d at a generic point of

C′n,q,d. We look at the expansion tr(U + ηT )j =
∑j

l=0H
u
j,lη

l.

Theorem 4.3.11 The elements {Hu
j,l | (j, l) ∈ Jd} define a completely integrable system on the

smooth locus of CHn,q,d for Jd = {(j, l) | j = 1, . . . , n, l = 0, . . . ,min(j − 1, d)}.
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Proof. We show the existence of a non-empty open subset S of C′n,q,d where H acts properly

and freely in Lemmae 4.3.12 and 4.3.13 below, on which we can perform Poisson reduction as

in Proposition 2.1.1 for the analytic structure. In particular, the space of H-orbits in S defines a

smooth complex manifold of dimension 2nd − d(d − 1) inside CHn,q,d. By construction, a point

(X,Z,A,C) in S is characterised by the fact that all the d-dimensional minors of A are nonzero.

Thus, it is the complement of the Zariski closed subsets defined by having a vanishing minor

of dimension d. The subspace S is dense in C′n,q,d, and so does its reduction in CHn,q,d. We can

intersect S with the complement of the level set {detU = 0}, and still get a dense subset in CHn,q,d
after reduction. The elements {Hu

j,l | (j, l) ∈ Jd} are functionally independent by the argument

developed in Lemma 4.3.10, so the statement holds. 2

Lemma 4.3.12 The action of H is free on the subset of C′n,q,d where, for each representative

(X,Z,A,C), either A or C has rank d.

Proof. Assume A has rank d, the proof being the same if we assume the latter for C. By

definition, there exists K = (k1, . . . , kd) ⊂ {1, . . . , n} such that Ā = (Akαβ) is a d × d matrix

which has rank d, so is invertible. If we take some h in the stabiliser of the point (X,Z,A,C),

then in particular Ah = A and thus Āh = Ā. Indeed,

(Āh)αβ =
∑
γ

Akαγhγβ = (Ah)kαβ = Akαβ = Āαβ . (4.58)

Since Ā is invertible, h = Idd. 2

Lemma 4.3.13 The action ofH is proper on the subset S ⊂ C′n,q,d where, for each representative

(X,Z,A,C), all the minors of dimension d of A are invertible.

Proof. We have to show that given sequences (hm) ⊂ H, (Xm, Zm,Am,Cm) ⊂ S satisfying

(Xm, Zm,Am,Cm) → (X,Z,A,C) ∈ S and hm · (Xm, Zm,Am,Cm) → (X ′, Z ′,A′,C′) ∈

S, then hm converges inH. Note that trivially X ′ = X and Z ′ = Z.

For any choice of K = (k1, . . . , kd) ⊂ {1, . . . , n}, we can form Ā as in Lemma 4.3.12. In

particular, we also write Ḡ for the d× d matrix obtained in that way from some n× d matrix Ḡ.

We see that hm = Ā−1
m hm ·Am, since Amhm = Āmhm.
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From this, form h := Ā−1Ā′. This element does not depend on the choice of K : take any

two K = (k1, . . . , kd), L = (l1, . . . , ld) and construct ĀK and ĀL as before. They are both

invertible, so they are related by ĀK = T ĀL for some T ∈ GLd(C), and the same holds for any

m ∈ N. Forming hK and hL, we get

hK = lim
m→∞

(ĀK
m)−1(hm · ĀK

m) = lim
m→∞

(ĀL
m)−1T−1

m Tm(hm · ĀL
m) = hL .

To get that h ∈ H, we first show that h ∈ GLd(C). Since h := Ā−1Ā′ and both elements on the

right-hand side have nonzero determinant, so too has h. Remark that this is where the condition

that all minors are invertible occurs : in general, if ĀK is invertible for someK = (k1, . . . , kd) ⊂

{1, . . . , n}, we do not know that Ā′K is also invertible but only that Ā′L is invertible for some

possibly different string L ⊂ {1, . . . , n} of length d.

Second, h ∈ H as ∑
β

hαβ =
∑
γ,β

Ā−1
αγ Ā

′
γβ =

∑
γ

Ā−1
αγ1 = 1 .

Indeed, when
∑

αAiα = 1 for all i, we have
∑

α Āγα = 1 for all γ. Moreover, the same holds

for its inverse. To show this last assertion, denote Uα :=
∑

γ Ā
−1
αγ . Then∑

α

ĀβαUα =
∑
α,γ

ĀβαĀ
−1
αγ =

∑
γ

(Idd)βγ = 1 .

If we form the vector U = (Uα), ĀU = (1, . . . , 1)>. Since Ā is invertible, Uα = 1 for all α. 2

Liouville integrability for specific cases

Assume that d = 2 first, and fix α, β ∈ {1, 2}. Using item 4 in Proposition 4.1.3, the following

holds.

Theorem 4.3.14 For any U = X,Y, Z, Idn +XY , the elements

{trUk , tr(WαVβU
k) | k = 1, . . . , n}

form an integrable system on Cn,q,d.

Proof. We can generically fix a gauge where U is in diagonal form with distinct nonzero

eigenvalues and such that
∑

α(Wα)i = 1 for all i. (The latter condition is analogous to (4.27).)
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We can complete the set of 3n functions given by the eigenvalues of U and ((Wα)i, (Vβ)i)i by

the diagonal entries of X in the above gauge to get local coordinates, see the more general proof

of Proposition 4.3.16 below. 2

It seems natural to ask if we can extend this set whenever d > 2 by additional n(d− 2) functions

in involution. Unfortunately, this task seems difficult as it requires a careful analysis of (3.15b),

which we postpone for a moment. Nevertheless, this is not too hard when n = 1, so we can also

give this specific case. The main step is to note that, when we do not take higher powers of U in

(3.15b), we can write that

{tγε, tαβ}P =δαε(tγβ +
1

2
tγεtαβ +

1

2
tγβtαε)− δγβ(tαε +

1

2
tγεtαβ +

1

2
tγβtαε)

+
1

2
[o(γ, β) + o(ε, α)− o(ε, β)− o(γ, α)](tγεtαβ + tγβtαε) ,

where we have set tγε = tr(WγVε) = VεWγ . In particular, {tγγ , tαα}P = 0.

Theorem 4.3.15 If n = 1, the elements (trU, tαα)α 6=d form an integrable system for any d ≥ 2.

Hence trUk is Liouville integrable for any k ∈ N×.

Proof. We have already obtained that they Poisson commute. Since in this case each element

Wα, Vα, X, Y is a scalar, the moment map (4.1a) reads q
∏
α(1 + tαα) = 1 and we can rewrite

tdd as −1 + q−1
∏
α 6=d(1 + tαα)−1. The group acting in this case is C×, so we can generically

fix the gauge by the condition
∑

αWα = 1, which amounts to Wd = 1 −
∑

α 6=dWα. Thus, at

a generic point the functions (X,Z,Wα, tαα)α 6=d are coordinates. In particular, the family from

the statement contains d functionally independent elements at a generic point. We conclude since

trUk = hk1 for h1 = trU in the case n = 1. 2

Degenerate integrability

Recall the definition of the subalgebra OU defined before Proposition 4.1.3, which is generated

by the functions (trUk, trWαVβU
k). This algebra is defined on the space Cn,q,d (or C◦n,q,d for

Z), and is in fact a Poisson algebra by Proposition 4.1.3. As mentioned in [42], we can get the

following result17.
17In this subsection and the next one, we can claim integrability only on the connected component of C◦n,q,d

containing C′n,q,d, see Remark 4.3.2. Since it is conjectured that C◦n,q,d is connected, we do not emphasise that we

work in a connected component for our results.
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Proposition 4.3.16 We can complete the set of functions (trU l)nl=1 by 2nd−2n elements ofOU ,

such that at a generic point these 2nd − n elements are functionally independent. Moreover,

among these 2nd − n functions only the n elements trU l Poisson commute with all the other

ones.

As a direct application of Proposition 4.3.16, we obtain the following result.

Corollary 4.3.17 For any k ∈ N×, there exists a degenerate integrable system containing trUk.

Proof. We use Corollaries 2.3.39 and 3.1.8, or we directly use the definition of degenerate

integrability. 2

Proof. (Proposition 4.3.16.) We begin with the case U = Z, and we first introduce a convenient

set of local coordinates. Consider the space h2(d−1)+1 where h = Cn as before, with local

coordinates (zi, vα,i, wα,i) for i = 1, . . . , n, 1 ≤ α < d. We consider the subspace h1 where

zi 6= 0, zi 6= zj for all i 6= j, and for each α, 1 +
∑

iwα,ivα,i 6= 0. Now, define the matrices

Z = diag(z1, . . . , zn), Vα = (vα,i)i, Wα = (wα,i)i ,

with 1 ≤ α < d, and consider Fd−1 = q(Idn +Wd−1Vd−1) . . . (Idn +W1V1)Z. This is

clearly invertible by assumption on h1. Moreover, we claim that Fd−1 has distinct eigenvalues

generically18, and that there exists Vd ∈ Mat1×n such that Fd = Fd−1 + WdVdFd−1 has the

same spectrum as Z for Wd = (1, . . . , 1)>. Indeed, this follows by induction on d from Lemma

A.1. Moreover, this lemma tells us that by fixing the matrix X that diagonalises Fd into Z, Vd is

uniquely defined.

Since Z is invertible, so is Fd. But Fd−1 being invertible implies that (Idn +WdVd) is invertible

in its turn. So we can define a point of C◦n,q,d by fixing X , which amounts to choose an eigenbasis

for Fd. In other words, around a generic point of h1, we can locally complete the elements

(zi, vα,i, wα,i) by n additional functions (corresponding to a choice of eigenbasis) such that we

define a local coordinate system in C◦n,q,d.

18To see that this is a non-empty condition, remark that fixing all vα,i = 0 = wα,i, we have that Fd−1 =

diag(qz1, . . . , qzn).
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We now form the degenerate integrable system. To do so, introduce tlγε = tr(WγVεZ
l). In local

coordinates tlγε =
∑

i z
l
ivε,iwγ,i for γ, ε 6= d, and tldε =

∑
i z
l
ivε,i for ε 6= d. We consider

T =

((
1

k
trZk

)
k

,
(
tld1

)
l
, . . . ,

(
tld,d−1

)
l
,
(
tl11

)
l
, . . . ,

(
tld−1,1

)
l

)
(4.59)

where each k ranges over 1, . . . , n and l over 0, . . . , n− 1. We write

(z, v, w) = ((zk)k, (v1,k)k, . . . , (vd−1,k)k, (w1,k)k, . . . , (wd−1,k)k) ,

for this particular order of the subset of coordinates (we omitted those that determine X). Then

we can see that the Jacobian matrix takes the form

∂T

∂(z, v, w)
=


Vz 0 0

∗ A 0

∗ ∗ B

 ,

where A = diag(Vz, . . . , Vz) is composed of (d − 1) diagonal square blocks Vz of size n

with entries (Vz)ij = zi−1
j (so Vz is the transpose of a Vandermonde matrix), while B =

diag(V1Vz, . . . , V1Vz) is also composed of (d − 1) blocks for V1 = diag(v1,1, . . . , v1,n). Since

detVz 6= 0 by assumption and detV1 6= 0 if we restrict to the generic subspace where

each v1,k 6= 0, we get that the functions forming T are generically independent. Therefore,

dimOZ ≥ 2nd− n at a generic point. We have equality as no element tlεα depends on X , hence

on the n remaining coordinates.

Finally, we know from the two first items of Proposition 4.1.3 and the independence of

trZ . . . , trZn that the centre of OZ has dimension at least n. Assume that the dimension is

strictly greater than n. Then the rank rZ of the Poisson structure on OZ is strictly less than

2nd − 2n. Hence, we see that the rank r of the Poisson structure at a generic point satisfies

r ≤ rZ + 2n, since we can at most increase the rank by 2n when completing the elements of T

by another n independent functions. Thus r < 2nd, which contradicts that the Poisson bracket is

non-degenerate. Hence, the centre of OZ has precisely dimension n.

For the other cases, we rewrite the moment map equation in the form

(X + Y −1)Y (X + Y −1)−1 =F (V,W )Y ,

(XZ)X−1(XZ)−1 =F (V,W )X−1 ,

[(Idn +XY )Y ](Idn +XY )−1[(Idn +XY )Y ]−1 =F (V,W )(Idn +XY )−1 ,
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where F (V,W ) = q(Idn +WdVd) . . . (Idn +W1V1). We work either on the subspaces C◦n,q,d
or {detY 6= 0} ⊂ Cn,q,d. Then, we can reproduce the proof in the same way. Note that for

U = X , we use X−1 instead of Z, and we diagonalise F (V,W )X−1 into X−1 using some Z ′,

from which we define a point of C◦n,q,d by setting Z = X−1Z ′. A similar argument is needed for

U = Idn +XY . 2

Liouville integrability : the general case

Recall the notation U(α) = Θ(α)U where U ∈ {Y,Z}, and Θ(α) = X (Φ(α)) is given by (4.7)

for 0 ≤ α ≤ d. We can form the commutative algebra HU generated by the functions trUK(α)

from Proposition 3.1.11, and this result implies thatHU is also a Poisson commutative subalgebra

under {−,−}P. We also denote by HU the corresponding sheaf of functions on Cn,q,d (or C◦n,q,d
for U = Z). In a way similar to [42], we can obtain the following result.

Proposition 4.3.18 At a generic point, there are nd functionally independent elements inHU .

As a direct application of Proposition 4.3.18, we obtain the following result.

Corollary 4.3.19 For any k ∈ N×, there exists a Liouville integrable system containing trUk.

Proof. (Proposition 4.3.18.) We do the proof for U = Z, the other case being similar. Using

(4.7), we can write that

U(α) = q(Idn +WdVd) . . . (Idn +Wα+1Vα+1)Z , α = 0, . . . , d− 1 ,

and U(d) = qZ. We will show that the functions hα,K = 1
qK

trUK(α) are functionally independent

for 1 ≤ α ≤ d and K = 1, . . . , n. In fact, it is more convenient to study these functions under the

form 1
qK

tr[ZU(α)Z
−1]K , and to ease notations we also write by U(α) the matrix obtained after

conjugation, i.e.

U(α) = qZ(Idn +WdVd) . . . (Idn +Wα+1Vα+1) , α = 0, . . . , d− 1 ,

again with U(d) = qZ. Recalling that tlαβ = trWαVβZ
l, we get that

hd,K = trZK , hd−1,K = trZK +KtKdd + PK [tldd] ,

hα−1,K = trZK +KtKαα + PK [tlαα] +Qα−1,K ,
(4.60)
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where PK [tlαα] ∈ C[tlαα | 0 ≤ l < K], P0 = 0, and the polynomialQα−1,K satisfies the following

property : it is a sum of terms of the form

tl1γ1γ2
tl2γ2γ3

. . . tlsγsγ1
, l1 + . . .+ ls = K, α ≤ γi ≤ d with γi > α for at least one i .

This implies that Qα−1,K vanishes whenever Vβ = 01×n or Wβ = 0n×1 for all α < β ≤ d, so

that hα−1,K takes the same form as hd−1,K in such case (with α replacing d).

To show functional independence, let us introduce some local coordinates, in a way similar to

Proposition 4.3.16. Consider again h2(d−1)+1, h = Cn, with this time the local coordinates

(zi, vβ,i, wβ,i) for i = 1, . . . , n, 1 < β ≤ d. We consider the subspace h2 where zi 6= 0, zi 6= zj

for all i 6= j, and for each β, 1 +
∑

iwβ,ivβ,i 6= 0. Now, define the matrices

Z = diag(z1, . . . , zn), Vβ = (vβ,i)i, Wβ = (wβ,i)i ,

with 1 < β ≤ d, and consider F ′d−1 = qZ(Idn +WdVd) . . . (Idn +W2V2). As in Proposition

4.3.16 but now using Lemma A.4 inductively, we can finally get that there exists V1 ∈ Mat1×n

such that F ′d = F ′d−1 +F ′d−1W1V1 has the same spectrum as Z for W1 = (1, . . . , 1)>. Moreover,

for some fixed eigenbasis represented by X ′ ∈ GLn(C), we have a unique Vd such that

X ′Z(X ′)−1 = F ′d = F ′d−1(Idn +W1V1) .

Comparing with (4.1a), we can then define a point of C◦n,q,d by setting X = Z−1X ′. Hence, we

can locally complete the elements (zi, vβ,i, wβ,i), 1 < β ≤ d, to get a coordinate system on a

(generic) neighbourhood in C◦n,q,d, where we can write

trZk =
∑
i

zki , tkαβ =
∑
i

wα,ivβ,iz
k
i , 2 ≤ α, β ≤ d . (4.61)

Note that one could argue that we end up in a connected component of C◦n,q,d which is different

from the one obtained in Proposition 4.3.16 since we have different local coordinates. Given

diagonal Z and generic Vγ ,Wγ , 1 ≤ γ < d, one can get nonzero Vd,Wd by the construction in

the proof of Proposition 4.3.16 such that

XZX−1 =Fd−1+WdVdFd−1 =q(Idn+WdVd) . . . (Idn +W1V1)Z=Z−1(F ′d−1+F ′d−1W1V1)Z.

And these (X,Z,Wγ , Vγ) define a point of C◦n,q,d. Thus, taking Vβ,Wβ , 1 < β ≤ d, and a suitable

eigenbasis for F ′d−1 in the above construction, we recover the exact same V1,W1 by uniqueness

once we fix X ′ = ZX , hence we define the same point C◦n,q,d.
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We can now show by (descending) induction on α = d, . . . , 2 that hd,K , . . . , hα−1,K , K =

1, . . . , n, are nd− n(α− 2) independent functions. For α = d, we want to prove that trZK and

hd−1,K , K = 1, . . . , n, are functionally independent. Recall the definition of the latter functions

in (4.60). We easily see that we have an isomorphism of the commutative algebras generated by

the hd−1,K or the tKdd with K = 1, . . . , n. So it is sufficient to show the functional independence

of trZK , tKdd with K = 1, . . . , n. Using the expressions from (4.61), we just look at the Jacobian

matrix of these functions with respect to (zi, vd,i)i which is the 2n× 2n matrix of the form

J :=

V 0n×n

∗ Ad

 for Vki =
∂ trZk

∂zi
, Adki =

∂tkdd
∂vd,i

. k, i = 1, . . . , n .

In particular, we have that Vki = k zk−1
i , Adki = wd,iz

k
i . For nonzero distinct (zi) and e.g.

wd,i 6= 0, i = 1, . . . , n, the matrix J has full rank 2n. By induction on α, the Jacobian matrix Jα

for hd,K , . . . , hα,K ,K = 1, . . . , n, with respect to (zi, vd,i, . . . , vα+1,i)i has full rank n(d−α+1)

(under the identification of the functions (hd−1,K) and (tKdd), the matrix J above is Jd−1). Hence

the Jacobian matrix for hd,K , . . . , hα−1,K , K = 1, . . . , n, with respect to (zi, vd,i, . . . , vα,i)i has

the form

Jα−1 :=

Jα 0nα×n

∗ Cα

 for nα = n(d− α+ 1) and Cαki =
∂hα−1,k

∂vα,i
, k, i = 1, . . . , n .

We could therefore conclude if Cα has full rank n at some point. If we restrict our attention to

a point where wβ,i = vβ,i = 0 for all α < β ≤ d, it is not hard to see that the differential of

Qα−1,K vanishes, hence

Cαki =
∂
(
ktkαα + Pk(t

l
αα)
)

∂vα,i
.

As in the case α = d, we can replace the functions ktkαα +Pk(t
l
αα) by tkαα for k = 1, . . . , n since

they define the same algebra. Thus, Cα has full rank n at such a point, if this is true for Aα where

Aαki = wα,iz
k
i . Taking any point of the subspace where the zi are nonzero distinct and wα,i 6= 0

for i = 1, . . . , n proves the claim, and we get that Cα has generic rank n. 2
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Chapter 5

MQVs from cyclic quivers

In this chapter, we rely on the formalism introduced in Section 3.2 to develop a study similar

to Chapter 4 in the case of a framed cyclic quiver. We introduce the MQVs of interest in

Section 5.1, and obtain some preliminary results about integrability. Next, we restrict our attention

in Section 5.2 to these MQVs for specific choices of dimension vectors. In such cases, we can

find local coordinates and write the Poisson structure locally. Moreover, we can formulate precise

statements regarding both degenerate integrability and Liouville integrability in those cases.

We end this chapter with Section 5.3 which details the integrable systems for four families of

framings. In § 5.3.2, we look at the special case of a cyclic quiver framed by one arrow, which

first appeared in [41]. In § 5.3.3, we replace this unique arrow by several ones, still pointing to the

same vertex of the cyclic quiver as in [62]. Finally, we proceed to the general case of an arbitrary

framing for a cyclic quiver with m = 2 vertices in § 5.3.4.

We follow the conventions introduced in Remark 3.2.1 throughout this chapter.

5.1 General results

We consider the quiver Q̄d corresponding to m ≥ 2, d ∈ NI for I = Z/mZ, and the ordering

defined at the beginning of Section 3.2. As already noted, we choose that d0 6= 0 up to relabelling

vertices.
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5.1.1 Definition of the MQVs

We fix α̃ = (1,n) with n = (ns) ∈ NI such that |n| =
∑

s ns > 0, and q̃ = q∞e∞+
∑

s qses for

some q = (qs) ∈ (C×)I and q∞ =
∏
s q
−ns
s . A point ρ ∈ Rep(CQ̄d, α̃) consists of the vector

space V = ⊕sVs ⊕ V∞ with Vs = Cns for each s ∈ I and V∞ = C, together with 2m + 2|d|

matrices given by

Xs ∈ Hom(Vs+1,Vs) , Ys ∈ Hom(Vs,Vs+1) ,

Vs,α ∈ Hom(Vs,V∞) , Ws,α ∈ Hom(V∞,Vs) ,

which respectively represent the arrows xs, ys, vs,α, ws,α (under the interpretation given in

Example 2.2.6). We identify the point ρ with the 2(m+ |d|)-uple (Xs, Ys, Vs,α,Ws,α) to ease our

discussion.

The subspace Rep(CQ̄◦d, α̃) is the open affine subset such that the endomorphisms

IdVs +XsYs, IdVs+1 +YsXs, IdVs +Ws,αVs,α, IdV∞ +Vs,αWs,α

are invertible for all possible indices. We then view Rep(Λq
d, α̃) as the closed subscheme defined

by the conditions

(IdVs +XsYs)(IdVs +Ys−1Xs−1)−1 =qs

←−∏
16α6ds

(IdVs +Ws,αVs,α) , s ∈ I , (5.1a)

representing (3.26a). From our choice of q∞, the condition that represents (3.26b) follows by

taking determinants.

We have a GL(n) =
∏
s GLns(C) action on Rep(Λq

d, α̃) given by

g · (Xs, Ys,Ws,α, Vs,α) = (gsXsg
−1
s+1, gs+1Ysg

−1
s , gsWs,α, Vs,αg

−1
s ) , g = (gs) ∈ GL(n) .

(5.2)

We form the MQV Rep(Λq
d, α̃)//GL(n) as the affine GIT quotient defined by

SpecC[Rep(Λq
d, α̃)]GL(n). We want to end up with a smooth manifold, which we can

prescribe by the regularity criterion of Proposition 2.3.28. To do so, it is useful to introduce the

following constants

ts :=
∏

0≤s̃≤s
qs̃ , s = 0, . . . ,m− 1 , t := tm−1 , t−1 := 1 . (5.3)

We use the identification of I with {0, . . . ,m − 1}, since tm−1 6= t−1. In order to state the next

result which generalises [41, Proposition 4.5], we say that a m-uple t = (ts) ∈ (C×)I is regular
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whenever t−1
s1 ts2 6= tk for any k ∈ Z, −1 ≤ s1 < s2 ≤ m − 1 with (s1, s2) 6= (−1,m − 1), or

whenever tk 6= 1 for any k ∈ Z×.

Proposition 5.1.1 Assume that q is such that t defined through (5.3) is regular. Then, provided

that it is not empty, the space Rep(Λq
d, α̃)//GL(n) is a smooth variety of dimension 2p(n) =

2
∑

s∈I ns(ns+1 + ds − ns), endowed with a non-degenerate Poisson bracket {−,−}P.

Proof. Recall from Example 2.2.4 that real roots for a cyclic quiver have the form

ρ = ±(εi + . . .+ εj) + kδ , 1 ≤ i < j ≤ m− 1, k ∈ Z ,

while imaginary roots are given by ρ = kδ with k ∈ Z×, where δ = (1, . . . , 1). Hence the

regularity condition given in Proposition 2.3.28, which states that qρ 6= 1 for any root ρ, can be

written either as (t−1
i−1tj)

±1tk 6= 1, or as tk 6= 1. The dimension is given by Theorem 2.3.27. 2

For the rest of this chapter, we assume that the regularity condition in Proposition 5.1.1 is satisfied.

5.1.2 Towards integrability and dynamics

We continue with the notations of Section 5.1, and we assume that the regularity assumption in

Proposition 5.1.1 holds. Below, we use 1I to denote
∑

s IdVs , hence IdV = IdV∞ +1I .

Let u ∈ {x, y, z, 1I + xy}, and denote by U = X (u) the matrix representing U . The statements

that we consider take place in Rep(Λq
d, α̃)//GL(n). Note that for u = z, they are further

restricted on the complement of {detX = 0}which may be empty, see Section 5.2. We introduce

the commutative algebraOU generated by the functions trUk and trWs,αVr,βU
k for any indices.

Proposition 5.1.2 The following results hold :

1. The symmetric functions {trUk | k ∈ N} of U are pairwise in involution;

2. For any k, l ∈ N and for any possible spin indices, {trUk, trWs,αVr,βU
l}P = 0;

3. The algebra OU is a Poisson algebra under {−,−}P;



174 Chapter 5. MQVs from cyclic quivers

4. For two fixed admissible spin indices (s, α), (r, β), the subalgebra of OU generated by the

functions (trUk)k and (trWs,αVr,βU
k)k is an abelian Poisson subalgebra.

Proof. This is similar to Proposition 4.1.3, and follows from Lemma 3.2.8 and Corollary 3.2.9 in

this case. 2

Note that some items can be trivial, e.g. when U 6= 1I + XY and k is not divisible by m we

get that trUk = 0 so such elements trivially commute with any function. In fact, we can get a

stronger statement in the case U = 1I +XY if we also use Lemma 3.2.10.

Proposition 5.1.3 The following results hold :

1. The functions {tr(IdVs +XsYs)
k | k ∈ N, s ∈ I} are pairwise in involution;

2. For any k, l ∈ N and for any possible spin indices,

{tr(IdVs +XsYs)
k, trWp,αVq,β(IdVr +XrYr)

l}P = 0 ;

3. The commutative algebra O′U generated by the functions tr(IdVs +XsYs)
k and

trWp,αVq,β(IdVr +XrYr)
l for any indices is a Poisson algebra under {−,−}P, which

contains OU .

Proof. We just show the inclusion OU ⊆ O′U which is completely new. Since we can write

1I +XY =
∑
s

(IdVs +XsYs) , Wp,αVq,β(1I +XY )l = Wp,αVq,β(IdVq +XqYq)
l ,

it easily follows. 2

Note that for any indices,

trWp,αVq,β(IdVr +XrYr)
l = δqrδpr trWp,αVq,β(IdVr +XrYr)

l = trWp,αVq,β(1I +XY )l ,

so such an element of O′U is in OU . We will show as part of the proof of Corollary 5.2.38 that,

when considered as sheaves, O′U and OU coincide at a generic point.

Write Θ = X (φ) for the matrix that represents the moment map φ for the quiver supported at the

vertices of I . Hence Θ = (1I +XY )(1I + Y X)−1, or Θ = XZX−1Z−1 where X is invertible.

We also consider the open subspace {detU 6= 0} where U is invertible. Remark that it may be

empty. We get the next result from Corollary 3.2.13.
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Proposition 5.1.4 For any K ∈ N×, expand huK = 1
K tr[U(1I + ηΘ−ε(u))]K in terms of η as

huK =
∑K

k=0 h
u
K,kη

k. Then all the functions {huK,k | 0 ≤ k ≤ K} are in involution.

Again, it can happen that some of these functions are trivially zero.

Propositions 5.1.2, 5.1.3 and 5.1.4 give us candidates to form (degenerate) integrable systems, but

we need specific dimension vectors to be able to state results about integrability. For example, if

ns 6= ns+1 for some s ∈ I , Xs will never be invertible so that we can not define Zs, and all the

above results corresponding to u = z are not defined on any space. We return to this problem

in § 5.2.5 with dimension vector α̃ = (1, n, . . . , n). Nevertheless, it is interesting to notice that

we have explicit expressions for some of the Hamiltonian flows, and they do not depend on the

dimension vector.

We begin with the case that may be ill-defined : we pick U = Z and assume for this specific case

that {detX 6= 0} is not empty. Let Zη = Z(1I + ηΘ). Then, we obtain from Lemma 3.2.15 that

the equations governing the Hamiltonian flows for hzK with K ∈ mN× are given by

{hzK , X}P = −ηΘZK−1
η ZX −XZK−1

η Z , {hzK , Z}P = [Zk−1
η Z,Z] ,

and {hzK , Vs,α}P = {hzK ,Ws,α}P = 0. As in the Jordan quiver case, it is not clear how to

get an exact solution apart from when η = 0. Then, the flows associated to the Hamiltonian

hzK,0 = 1
K trZK , K ∈ mN×, satisfy the ODEs (where d/dtK = {hzK,0,−}P)

dX

dtK
= −XZK , dZ

dtK
= 0 ,

dVs,α
dtK

= 0 ,
dWs,α

dtK
= 0 .

Proposition 5.1.5 Given the initial condition (X(0), Z(0), Vs,α(0),Ws,α(0)), the flow at time tK

defined by the Hamiltonian 1
K trZK for K ∈ mN× is given by

X(tK) = X(0) exp(−tKZ(0)K) , Z(tK) = Z(0) ,

Vs,α(tK) = Vs,α(0) , Ws,α(tK) = Ws,α(0) .

In particular, the flows descend to complete flows inside the subspace {detX 6= 0} of

Rep(Λq
d, α̃)//GL(n).
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We pick U = Y and set Yη = Y (1I + ηΘ). Then, we obtain from Lemma 3.2.16 that the

equations governing the Hamiltonian flows for hyK with K ∈ mN× are given by

{hyK , X}P = −Y K−1
η − ηΘY K−1

η (1I + Y X)−XY K−1
η Y , {hyK , Y }P = [Y k−1

η Y, Y ] ,

and {hyK , Vs,α}P = {hyK ,Ws,α}P = 0. Again, we consider η = 0 and the flows associated to the

Hamiltonian hyK,0 = 1
K trY K , K ∈ mN×, satisfy the ODEs (where d/dτK = {hyK,0,−}P)

dX

dτK
= −Y K−1 −XY K ,

dY

dτK
= 0 ,

dVs,α
dτK

= 0 ,
dWs,α

dτK
= 0 .

In fact, we have that these ODEs can be obtained without requiring that Y is invertible, so they

are well-defined on any MQV satisfying the regularity condition of Proposition 5.1.1.

Proposition 5.1.6 Given the initial condition (X(0), Y (0), Vs,α(0),Ws,α(0)) the flow at time τK

defined by the Hamiltonian 1
K trY K for K ∈ mN× is given by

X(τK) =X(0) exp(−τKY (0)K) + Y (0)−1[exp(−τKY (0)K)− Idn] ,

Y (τK) =Y (0) , Ws,α(τK) = Ws,α(0) , Vs,α(τK) = Vs,α(0) .

In particular, the flows descend to complete flows in Rep(Λq
d, α̃)//GL(n).

For U = X , we let Xη = X(1I + ηΘ−1) and we work in the subspace {detX 6= 0}. We get

from Lemma 3.2.17 that

{hxK , X}P =− [XK−1
η X,X] , {hxK , Z}P = ZXK−1

η X + ηΘ−1XK−1
η XZ ,

while the brackets with Vs,α or Ws,α vanish. As before, we look at order 0, where we could omit

the assumption that X is invertible and get dynamics on any regular MQV. Nevertheless, it is

easier to work with Z which is defined under that condition. For hxK,0 = 1
K trXK , we obtain for

any K ∈ mN× by writing d/dt̂K = {hxK,0,−}P that

dX

dt̂K
= 0 ,

dZ

dt̂K
= ZXK ,

dVs,α

dt̂K
= 0 ,

dWs,α

dt̂K
= 0 .

(If we want to remove the assumption on X , we have to work with dY/dt̂K = XK−1 + Y XK

instead of the ODE defined on Z.)
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Proposition 5.1.7 Given the initial condition (X(0), Z(0), Vs,α(0),Ws,α(0)), the flow at time t̂K

defined by the Hamiltonian 1
K trXK for K ∈ mN× is given by

X(t̂K) = X(0) , Z(t̂K) = Z(0) exp(t̂KX(0)K) ,

Vs,α(t̂K) = Vs,α(0) , Ws,α(t̂K) = Ws,α(0) .

In particular, the flows descend to complete flows inside the subspace {detX 6= 0} of

Rep(Λq
d, α̃)//GL(n).

In the final case U = 1I +XY , we introduce the notations T = Idn +XY , Tη = T (1I + ηΦ−1),

and hTK = h1I+xy
K . The invertibility of T is already assumed to define the MQV, so that the

discussion holds without further assumption. We get from Lemma 3.2.18 that

{hTK , X}P =− TK−1
η TX − ηXΘ−1TK−1

η T , {hTK , T}P = [−TK−1
η T, T ] ,

and the other brackets vanish. (Note that this does not completely define the flow since we need

to know {hTK , Y }P, but in the cases of interest where X is invertible this is sufficient.) Looking

at order 0 in η, we have for hTK,0 = 1
K tr(1I +XY )K , K ∈ N×, by writing d/dt̃K = {hTK,0,−}P

that
dX

dt̃K
= −TKX ,

dT

dt̃K
= 0 ,

dVs,α

dt̃K
= 0 ,

dWs,α

dt̃K
= 0 .

Proposition 5.1.8 Given the initial condition (X(0), T (0), Vs,α(0),Ws,α(0)), the flow at time t̃K

defined by the Hamiltonian 1
K trTK for K ∈ N× satisfies

X(t̃K) = exp(−t̃KTK)X(0) , T (t̃K) = T (0) , Vs,α(t̃K) = Vs,α(0) , Ws,α(t̃K) = Ws,α(0).

If X(0) is invertible, this implies that the flows descend to complete flows inside the subspace

{detX 6= 0} of Rep(Λq
d, α̃)//GL(n).

So far, we have only used the embedding A0 ⊂ A from (3.41) to get Proposition 5.1.4, and

the following integrations. We can in fact look at the full chain in (3.41). Denote by Θ
(j)
s =

X (Φ
(j)
s ) ∈ Hom(Vs,Vs) the matrix representing the component s ∈ I of the j-th moment map
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given in (3.42), j ∈ {0, 1, . . . , |d|}. We can write in Rep(Λq
d, α̃)//GL(n) that

Θ(j)
s =(IdVs +XsYs)(IdVs +Ys−1Xs−1)−1

−→∏
16α6ds

(s,α)≤ρ(j)

(IdVs +Ws,αVs,α)

=qs

←−∏
16α6ds

(s,α)>ρ(j)

(IdVs +Ws,αVs,α)

(5.4)

where we have used the map ρ introduced in Remark 3.2.11. Set Θ(j) :=
∑

s Θ
(j)
s , and U(j) =

Θ(j)U with U ∈ {Y,Z, (1I + XY )−1}. The following result directly follows from Proposition

3.2.14.

Proposition 5.1.9 The functions
{

trUK(j) | K ∈ N, j ∈ {0, 1, . . . , |d|}
}

are in involution.

Note that trY K
(j) = trZK(j) = 0 trivially when K is not divisible by m, so in those cases we only

consider K ∈ mN. A nice feature of these three families is that we can get explicit expressions

for the flows. We state these results which easily follow from Lemmae 3.2.19, 3.2.20 and 3.2.21.

Proposition 5.1.10 Given the initial condition (X(0), Z(0), Vs,α(0),Ws,α(0)), the flow at time t

defined by the Hamiltonian 1
K trZK(j), for K ∈ mN× and j ∈ {0, 1, . . . , |d|}, is given by

X(t) = exp(−tZ(j)(0)K)X(0) , Z(t) = Z(0) ,

Vs,α(t) = Vs,α(0)etZ(0)Z(j)(0)K−1Θ(j)(0), (s, α) ≤ ρ(j),

Ws,α(t) = e−tZ(0)Z(j)(0)K−1Θ(j)(0)Ws,α(0), (s, α) ≤ ρ(j),

Vs,α(t) = Vs,α(0) , Ws,α(t) = Ws,α(0) , (s, α) > ρ(j) .

In particular, the flows descend to complete flows inside the subspace {detX 6= 0} of

Rep(Λq
d, α̃)//GL(n).

Proposition 5.1.11 Given the initial condition (X(0), Y (0), Vs,α(0),Ws,α(0)), the flow at time

τ defined by the Hamiltonian 1
K trY K

(j), for K ∈ mN× and j ∈ {0, 1, . . . , |d|}, is given by

X(τ) = exp(−τY(j)(0)K)X(0) + Y(j)(0)−1[exp(−τY(j)(0)K)− 1I ]Θ
(j) , Y (τ) = Y (0) ,

Vs,α(τ) = Vs,α(0)eτY (0)Y(j)(0)K−1Θ(j)(0), (s, α) ≤ ρ(j),

Ws,α(τ) = e−τY (0)Y(j)(0)K−1Θ(j)(0)Ws,α(0), (s, α) ≤ ρ(j),

Vs,α(τ) = Vs,α(0) , Ws,α(τ) = Ws,α(0) , (s, α) > ρ(j) .
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In particular, the flows descend to complete flows in Rep(Λq
d, α̃)//GL(n).

Proposition 5.1.12 Given the initial condition (X(0), T (0), Vs,α(0),Ws,α(0)), the flow at time t̃

defined by the Hamiltonian 1
K trTK(j), for T = (1I + XY )−1, K ∈ N× and j ∈ {0, 1, . . . , |d|},

is given by

X(t̃) = X(0) exp(t̃T (0)T(j)(0)K−1Θ(j)) , T (t̃) = T (0) ,

Vs,α(t̃) = Vs,α(0)et̃T (0)T(j)(0)K−1Θ(j)(0), (s, α) ≤ ρ(j),

Ws,α(t̃) = e−t̃T (0)T(j)(0)K−1Θ(j)(0)Ws,α(0), (s, α) ≤ ρ(j),

Vs,α(t̃) = Vs,α(0) , Ws,α(t̃) = Ws,α(0) , (s, α) > ρ(j) .

In particular, the flows descend to complete flows inside the subspace {detX 6= 0} of

Rep(Λq
d, α̃)//GL(n).

5.2 MQVs with dimension vector (1, nδ)

Motivated both by § 3.2.2 and the relevance of some generic subspaces to easily get complete

flows in § 5.1.2, we are particularly interested in the subspace of Rep(Λq
d, α̃)//GL(n) where the

matrices Xs are invertible. Hence, since this subspace is clearly empty if ns 6= ns+1 for some

s ∈ I , we restrict our attention to the case α̃ = (1, nδ), where n ∈ N× and δ = (1, . . . , 1) is the

basic imaginary root for the cyclic quiver. We then write

Cn,q,d(m) := Rep(Λq
d, α̃)//GL(nδ) ,

and denote by Cn,q,d(m)◦ its open subset where the product X0 . . . Xm−1 is invertible. We can

write Proposition 5.1.1 in this case as follows.

Proposition 5.2.1 Assume that t−1
s1 ts2 6= tk for any k ∈ Z, −1 ≤ s1 < s2 ≤ m − 1 with

(s1, s2) 6= (−1,m − 1), and tk 6= 1 for any k ∈ Z×. Then Cn,q,d(m) is a smooth symplectic

variety of dimension 2n|d|.

Proof. Remark that the space Cn,q,d′(m) corresponding to d′ = (1, 0, . . . , 0) embeds in any

Cn,q,d(m) by setting Ws,α = 0n×1, Vs,α = 01×n for all (s, α) 6= (0, 1). Thus, if we show that

Cn,q,d′(m)◦ is not empty, Cn,q,d(m) is also not empty and by Proposition 5.1.1 it is a smooth

symplectic variety of dimension 2p(nδ) = 2n|d|.
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We now use a construction similar to [41, Section 4.1]. By assumption, each Xs is invertible in

Cn,q,d′(m)◦ so up to a change of basis through the GL(nδ) action we can choose X1 = . . . =

Xm−1 = Idn and set A := X0. We also set B = q−1
0 Y0A. There remains an overall GLn

action by diagonal embedding inside GL(nδ). Using (5.1a) for s 6= 0, we obtain that Ys =

qsX
−1
s Ys−1Xs−1 + (qs − 1)X−1

s , which gives by induction that Ys = (tst
−1
0 − 1) Idn +tsBA

−1

for s 6= 0,m − 1 while Y0 = t0BA
−1, Ym−1 = (tt−1

0 − 1)A−1 + tA−1BA−1. The remaining

equation from the moment map at s = 0 reads

(Idn +t0BA
−1)(tt−1

0 Idn +tA−1B)−1 = t0(Idn +W0,1V0,1) ,

which we can rewrite as

(Idn +(t0B)A−1)(Idn +A−1(t0B))−1 = t(Idn +W0,1V0,1) .

Hence, a point in Cn,q,d′(m)◦ is equivalent to the quadruple (t0B,A
−1, V0,1,W0,1) which defines

a point in C◦n,q, see Section 4.2, for q = t not a root of unity. (To be precise, we have to check that

invertibility conditions in each space imply those in the other, but this is not difficult to see.) As

C◦n,q is not empty, the result follows. 2

We assume that the condition stated in Proposition 5.2.1 is satisfied for the rest of the chapter.

5.2.1 Matrices after localisation

To reduce the number of matrices defining the space Cn,q,d(m)◦, consider R◦ ⊂ Rep(CQ̄d, α̃)

as the subspace with invertibility conditions as above, i.e. with X0 . . . Xm−1 ∈ GLn(C). We

define Zs = Ys +X−1
s for each s ∈ I and let X =

∑
sXs, Y =

∑
s Ys, Z =

∑
s Zs.

For each s, we also introduce As ∈ Matn×ds(C) and Cs ∈ Matds×n(C) which we refer to as

the s-th spin matrices, and that are defined entry-wise by19

As
iα = [Ws,α]i , Cs

αj = [Vs,α(Idn +Ws,α−1Vs,α−1) . . . (Idn +Ws,1Vs,1)Zs−1]j . (5.5)

The α-th column of As represents the spin element a′s,α, while the α-th row of Cs represents c′s,α.

We get in particular that AsEsrαβC
r represent the element a′s,αc

′
r,β , where Esrαβ ∈ Matds×dr(C)

is the matrix with entry +1 at (α, β) and zero everywhere else. We can clearly reconstruct the

19This can be readily compared to the matrices A,C in the Jordan case defined with (4.3).
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elements (Xs, Ys,Ws,α, Vs,α) once we are given such (X,Z,AsCs). Note that the moment map

equation (5.1a) is now equivalent to

XsZsX
−1
s−1 = qsZs−1 + qsA

sCs , for all s ∈ I . (5.6)

As a corollary, the space Cn,q,d(m)◦ is characterised by the linear data (X,Z,As,Cs) satisfying

(5.6), modulo the action

g · (X,Z,As,Cs) = (gXg−1, gZg−1, gsA
s,Csg−1

s−1) , g = (gs) ∈ GL(nδ) . (5.7)

5.2.2 The slice

To ease notations, we refer to the MQV Cn,q,d(m) simply as Cn,m and Cn,q,d(m)◦ as C◦n,m, while

they clearly depend on both d ∈ NI and q ∈ (C×)I . We also continue to identify I = Z/mZ

with {0, . . . ,m− 1}.

For each equivalence class [(X,Z,As,Cs)] representing a point of Cn,q,d(m)◦ (i.e. a

GL(nδ)-orbit in the subspace of R◦ cut out by (5.6)), we consider an arbitrary representative

(X,Z,As,Cs), and we want to find a particular element g ∈ GL(nδ) such that g ·(X,Z,As,Cs)

adopts a particular chosen form.

Introduce for each s ∈ I the matrix Xs = X0 . . . Xs, so that C◦n,m ⊂ Cn,m is the subspace

where the product X = Xm−1 is invertible in each equivalence class. Given such a representative

(X,Z,As,Cs) of a point in C◦n,m, we can act by g1 = (Idn,X0, . . . ,Xm−2) so that g1 ·Xs = Idn

for all s 6= m − 1 while g1 · Xm−1 = X. Assume furthermore that X is diagonalisable with

eigenvalues (x1, . . . , xn) taking value inside

hreg = {x = (x1, . . . , xn) ∈ h | xi 6= 0 , xi 6= xj , xi 6= txj for all i 6= j} ,

that we have already defined in (4.9). Thus, there exists U ∈ GLn(C) such that UXU−1 =

diag(x1, . . . , xn). Then acting by gh = (U, . . . , U), we get that ghg1 ·Xs = Idn for all s 6= m−1

while ghg1 · Xm−1 = diag(x1, . . . , xn). Now, consider the open subspace where ai 6= 0, with

ai :=
∑d0

α=1(ghg1 · A0)iα for all i = 1, . . . , n. This is a non-empty condition as we assume

d0 > 0. We can form the matrix A = diag(a−1
1 , . . . , a−1

n ), then define ga = (A, . . . , A). We find

that
∑

α(gaghg1 ·A0)iα = 1 for each i.
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Remark 5.2.2 We define the subspace C′n,m ⊂ C◦n,m as the subset of points such that we can

always perform the last two choices. I.e. given an arbitrary representative of a point, we set

the matrices X0, . . . , Xm−2 to the identity, then put Xm−1 in diagonal form with entries in hreg

defined as (4.9), and after such transformations we have that
∑d0

α=1 A
0
iα 6= 0. To see that C′n,m

is not empty, remark that it contains a subset isomorphic to C′n,q for q = t using the proof of

Proposition 5.2.1.

We do a final transformation to have all matrices constituting X in the same form. Consider

λi ∈ C× such that λmi = xi. In particular, λmi 6= λmj and λmi 6= tλmj for each i 6= j. Then acting

by gλ = (Idn,Λ, . . . ,Λ
m−2), where Λ = diag(λ−1

1 , . . . , λ−1
n ), we have that

(X̂, Ẑ, Âs, Ĉs) = gλgaghg1 · (X,Z,As,Cs) (5.8)

satisfies X̂s = diag(λ1, . . . , λn) for each s, and
∑d0

α=1 Â
0
iα = +1.

Lemma 5.2.3 The choice of gauge given by (5.8) completely determines the representative up to

an action by the finite group W = Sn n Znm.

Proof. It is clear that the choice of diagonal form of (X̂s)s depends on both the ordering of

(x1, . . . , xn), and the choice of m-th root of unity. To be precise, the action of an element

(σ,k) ∈ Sn n Znm, is represented by the matrix g =
∏
s gσg

−s
k , where gσ is the permutation

matrix corresponding to σ while gk = diag(ζk1 , . . . , ζkn) for k = (k1, . . . , kn) ∈ Znm and ζ is a

primitive m-th root of unity. This clearly maps X̂s to diag(ζkσ(1)λσ(1), . . . , ζ
kσ(n)λσ(n)) for any

s, so each X̂s remains in the wanted form. To see that
∑d0

α=1(g · Â0)iα = 1, remark that the

component of g acting on V0 is just gσg−0
k = gσ, hence

∑d0
α=1(g · Â0)iα =

∑d0
α=1(Â0)σ−1(i),α =

1. We conclude as no other element of GL(nδ) is in the stabiliser of such a point. 2

Note that if we set as,αi = Âs
iα and cs,αj = Ĉs

αj , then the elements (λi,a
s,α
i , cs,αi ) form a set

of local coordinates under the constraint
∑d0

α=1 a
0,α
i = 1 (and some invertibility conditions that

can easily be recovered). Indeed, such data defined from (X̂, Âs, Ĉs) completely determine the

matrices (Ẑs). To see this, consider the following functions

gsij :=

ds∑
α=1

as,αi cs,αj , i, j = 1, . . . , n, s ∈ I , (5.9)
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which are the entries of the matrix ÂsĈs (assuming ds > 0, and otherwise we set gsij = 0). Then,

for any r = 0, . . . ,m− 1,

(Ẑr)ij =

r∑
s=0

tr
ts−1

λ
m+(s−r−1)
i λ

−(s−r−1)
j

λmi − tλmj
gsij +

m−1∑
s=r+1

ttr
ts−1

λs−r−1
i λ

m−(s−r−1)
j

λmi − tλmj
gsij . (5.10)

To show that this relation holds, remark that in our choice of gauge, if we multiply (5.6) at entry

(i, j) by t
ts

(λj/λi)
m−s−1 and take the sum over s of all such equations, we get(

λi
λj
− t

λm−1
j

λm−1
i

)
Ẑm−1,ij =

m−1∑
s=0

t

ts−1

(
λj
λi

)m−s−1

gsij ,

which yields in particular

(Ẑm−1)ij =
m−1∑
s=0

t

ts−1

λsiλ
m−s
j

λmi − tλmj
gsij . (5.11)

This is exactly (5.10) for r = m−1. We can then use relation (5.6) at s = 0 to get Ẑ0, and finally

get the other matrices by induction.

Remark 5.2.4 Recall the residual W = Sn n Znm action defined in Lemma 5.2.3. The element

k = (k1, . . . , kn) ∈ Znm ⊂ W acts as k · (λi,as,αi ) = (ζkiλi, ζ
−skias,αi ), while k · cs,αi =

ζ(s−1)kics,αi for s 6= 0 and k · c0,α
i = ζ(m−1)kic0,α

i . In particular, k · gsij = ζs(kj−ki)−kjgsij for

s 6= 0, while k · g0
ij = ζ(m−1)kjg0

ij . In all cases, gsiiλi is Znm-invariant.

5.2.3 Local Poisson structure

Remark 5.2.5 We continue to denote Cn,q,d(m)◦ as C◦n,m, and to identify I with {0, . . . ,m− 1}.

It is convenient to consider the following functions on C◦n,m

fk := tr(Xk) , glsα,rβ = tr(AsEsrαβC
rX l) , (5.12)

for any k, l ∈ N, s, r ∈ I , α = 1, . . . , ds, and β = 1, . . . , dr. Clearly, fk = 0 if k does

not satisfy k ≡
m

0, while glsα,rβ = 0 whenever the condition l ≡
m
s − (r − 1) is not satisfied.

Here, the symbol ≡
m

means that we take the equality modulo m, see § 3.2.3. Since we have that

X (x) = X , X (z) = Z and X (a′s,αc
′
r,β) = AsEsrαβC

r, where Esrαβ ∈ Matds×dr(C) is given

by (Esrαβ)α′β′ = δαα′δββ′ , Lemma 3.2.7 and (2.36) yield the identities for the Poisson bracket

{−,−}P on C◦n,m between the functions (fk, glsα,rβ).
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Lemma 5.2.6 For any possible indices,

{fk, f l}P = 0 , {fk, glsα,rβ}P = k gk+l
sα,rβ , (5.13a)

{gkpγ,qε, glsα,rβ}P =
1

2

(
k∑
v=1

−
l∑

v=1

)
tr(AsEsrαβC

rXvApEpqγεC
qXk+l−v)

+
1

2

(
k∑
v=1

−
l∑

v=1

)
tr(AsEsrαβC

rXk+l−vApEpqγεC
qXv)

+
1

2
[o(p, r)− o(p, s) + o(q, s)− o(q, r)] tr(AsEsqαεC

qXkApEprγβC
rX l)

+
1

2
δpso(α, γ)[tr(ApEpqγεC

qXkAsEsrαβC
rX l) + tr(AsEsqαεC

qXkApEprγβC
rX l)]

+
1

2
δqro(ε, β)[tr(AsEsrαβC

rXkApEpqγεC
qX l)− tr(AsEsqαεC

qXkApEprγβC
rX l)]

+
1

2
δqs[o(ε, α) + δαε] tr(AsEsqαεC

qXkApEprγβC
rX l)

− 1

2
δpr[o(β, γ) + δβγ ] tr(AsEsqαεC

qXkApEprγβC
rX l)

+ δqsδαε tr(ZXkApEprγβC
rX l) + δqsδαε

ε−1∑
λ=1

tr(AsEssλλC
sXkApEprγβC

rX l)

− δprδβγ tr(ZX lAsEsqαεC
qXk)− δprδβγ

β−1∑
µ=1

tr(AsEsqαεC
qXkApEppµµC

pX l) . (5.13b)

(See Remark 3.2.1 for the conventions on symbols.) In particular, in order for the elements on

which we evaluate the Poisson bracket to be nonzero, we need k ≡
m

0 for fk, l ≡
m

0 for f l, while

l ≡
m
s− (r − 1) for glsα,rβ , and k ≡

m
p− (q − 1) for gkpγ,qε.

Let hsp,m ⊂ C2n|d|+n denote the subspace of elements (λi,a
s,α
i , cs,αi ) which can be obtained

when we pick a representative in the form (5.8) of a point (X,Z,As,Cs) ∈ C′n,m. The map

[(X,Z,As,Cs)] 7→ (λi,a
s,α
i , cs,αi ) has an inverse modulo W by Lemma 5.2.3, and we denote by

ξ : hsp,m/W → C′n,m this inverse. By construction, ξ is a diffeomorphism, and we want to find

the Poisson bracket {−,−} on hsp,m/W such that ξ is a Poisson morphism.

For the functions given in (5.12), we remark that we can write locally

ξ∗fk = m

n∑
i=1

λki , ξ∗glsα,rβ =
n∑
i=1

asαi crβi λ
l
i ,

d0∑
α=1

ξ∗gl
′

0α,rβ =
n∑
i=1

crβi λ
l′
i , (5.14)

assuming that k ≡
m

0, while l ≡
m
s − (r − 1) and l′ ≡

m
1 − r. From these expressions, it is not

difficult to see that the differentials of the functions (taken with any possible indices)

fk ,
∑
α

gl
′

0α,rβ , glsα,01 , (5.15)
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generate the cotangent space at a generic point of C′n,m. Hence, assuming that we have defined

{−,−} on hsp,m/W , it suffices to verify the identity

{ξ∗F1, ξ
∗F2} = ξ∗{F1, F2}P , (5.16)

for F1, F2 running through the three types of functions in (5.15) in order to get that ξ is a Poisson

diffeomorphism, see Remark B.3. This is the strategy for the proof of the next result.

Proposition 5.2.7 The map ξ : hsp,m/W → C′n,m is a Poisson diffeomorphism for the Poisson

bracket {−,−} defined on hsp,m/W as follows, with 1 ≤ i, j ≤ n.

For any admissible spins (s, α) and (r, β), we have

{λi, λj} = 0, {λi,asαj } = 0, {λi, crβj } =
1

m
δijλic

rβ
j ; (5.17)

for any 1 ≤ β, ε ≤ d0, we have

{c0ε
j , c

0β
i } =

1

2
δ(i 6=j)

λmj + λmi
λmj − λmi

(c0ε
j c

0β
i + c0ε

i c
0β
j )

+ (Zm−1)ijc
0β
i − (Zm−1)jic

0ε
j +

1

2
o(ε, β)(c0ε

i c
0β
j − c0ε

j c
0β
i )

+ c0β
i

ε−1∑
λ=1

a0λ
i (c0λ

j − c0ε
j )− c0ε

j

β−1∑
µ=1

a0µ
j (c0µ

i − c0β
i ) ;

(5.18)

for any q ∈ I \ {0}, 1 ≤ ε ≤ dq and 1 ≤ β ≤ d0, we have

{cqεj , c
0β
i } =

q −m
m

δijc
qε
j c

0β
i + δ(i 6=j)

λmi
λmj − λmi

(
cqεj c

0β
i +

λqj
λqi

cqεi c
0β
j

)

− (Zm−1)jic
qε
j − cqεj

β−1∑
µ=1

a0µ
j (c0µ

i − c0β
i ) ;

(5.19)

for any r ∈ I \ {0}, 1 ≤ β ≤ dr and 1 ≤ ε ≤ d0, we have

{c0ε
j , c

rβ
i } =

m− r
m

δijc
0ε
j c

rβ
i + δ(i 6=j)

λmj
λmj − λmi

(
c0ε
j c

rβ
i +

λ−rj

λ−ri
c0ε
i c

rβ
j

)

+ (Zm−1)ijc
rβ
i + crβi

ε−1∑
λ=1

a0λ
i (c0λ

j − c0ε
j ) ;

(5.20)

for any q ∈ I \ {0} and 1 ≤ β, ε ≤ dq, we have

{cqεj , c
qβ
i } =

1

2
δ(i 6=j)

λmj + λmi
λmj − λmi

(
cqεj c

qβ
i + cqεi c

qβ
j

)
+

1

2
o(ε, β)

(
cqεi c

qβ
j − cqεj c

qβ
i

)
; (5.21)
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for any 0 < r < q ≤ m− 1, and for any 1 ≤ β ≤ dr, 1 ≤ ε ≤ dq, we have

{cqεj , c
rβ
i }

q>r
= δij

q − r
m

cqεj c
rβ
i + δ(i 6=j)

λmj
λmj − λmi

cqεj c
rβ
i + δ(i 6=j)

λmi
λmj − λmi

λq−rj

λq−ri

cqεi c
rβ
j ;

(5.22)

for any 0 < q < r ≤ m− 1, and for any 1 ≤ β ≤ dr, 1 ≤ ε ≤ dq, we have

{cqεj , c
rβ
i }

q<r
= δij

q − r
m

cqεj c
rβ
i + δ(i 6=j)

λmi
λmj − λmi

cqεj c
rβ
i + δ(i 6=j)

λmj
λmj − λmi

λq−rj

λq−ri

cqεi c
rβ
j ;

(5.23)

for any 1 ≤ α, ε ≤ d0, we have

{c0ε
j ,a

0α
i } =

1

2
δ(i 6=j)

λmj + λmi
λmj − λmi

c0ε
j (a0α

j − a0α
i )− δ(α<ε)a

0α
i c0ε

j + δεα

ε−1∑
λ=1

a0λ
i c0λ

j

+ δεα(Zm−1)ij − a0α
i (Zm−1)ij − a0α

i

ε−1∑
λ=1

a0λ
i (c0λ

j − c0ε
j )

+
1

2
c0ε
j

d0∑
κ=1

o(α, κ)(a0α
i a0κ

j + a0α
j a0κ

i ) ;

(5.24)

for any s ∈ I \ {0}, 1 ≤ ε ≤ d0 and 1 ≤ α ≤ ds, we have

{c0ε
j ,a

sα
i } =

s−m
m

δijc
0ε
j a

sα
i + δ(i 6=j)

λmi
λmj − λmi

λsj
λsi

c0ε
j a

sα
j − δ(i 6=j)

λmj
λmj − λmi

c0ε
j a

sα
i

− asαi (Zm−1)ij − asαi

ε−1∑
λ=1

a0λ
i (c0λ

j − c0ε
j ) ;

(5.25)

for any q ∈ I \ {0} and 1 ≤ ε, α ≤ dq, we have

{cqεj ,a
qα
i } =

q

m
δijc

qε
j a

qα
i + δ(i 6=j)

λmi
λmj − λmi

cqεj

(
λqj
λqi

aqαj − aqαi

)

− δ(α<ε)c
qε
j a

qα
i + δαε

ε−1∑
λ=1

aqλi cqλj + δαε(Zq−1)ij ;

(5.26)

for any q ∈ I \ {0}, 1 ≤ ε ≤ dq and 1 ≤ α ≤ d0, we have

{cqεj ,a
0α
i } =

1

2
δ(i 6=j)

λmj + λmi
λmj − λmi

cqεj
(
a0α
j − a0α

i

)
+

1

2
cqεj

d0∑
κ=1

o(α, κ)(a0α
i a0κ

j + a0α
j a0κ

i ) ;

(5.27)

for any q, s ∈ I \ {0} with q 6= s, and for any 1 ≤ ε ≤ dq, 1 ≤ α ≤ ds, we have

{cqεj ,a
sα
i }

q 6=s
=

s

m
δijc

qε
j a

sα
i + δ(i 6=j)

λmi
λmj − λmi

cqεj

(
λsj
λsi

asαj − asαi

)
− δ(s<q)c

qε
j a

qα
i ; (5.28)
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for any 1 ≤ α, γ ≤ d0, we have

{a0γ
j ,a

0α
i } =

1

2
δ(i 6=j)

λmj + λmi
λmj − λmi

(
a0γ
j a0α

i + a0γ
i a0α

j − a0γ
j a0α

j − a0γ
i a0α

i

)
+

1

2
o(α, γ)(a0γ

j a0α
i + a0γ

i a0α
j )

+
1

2
a0α
i

d0∑
σ=1

o(γ, σ)(a0γ
j a0σ

i + a0γ
i a0σ

j )

− 1

2
a0γ
j

d0∑
κ=1

o(α, κ)(a0α
i a0κ

j + a0α
j a0κ

i ) ;

(5.29)

for any p ∈ I \ {0} and 1 ≤ α, γ ≤ dp, we have

{apγj ,a
pα
i } =

1

2
δ(i 6=j)

λmj + λmi
λmj − λmi

(
apγj apαi + apγi apαj

)
+

1

2
o(α, γ)(apγj apαi + apγi apαj )

− δ(i 6=j)
λmi

λmj − λmi

λpj
λpi

apγj apαj − δ(i 6=j)
λmj

λmj − λmi
λpi
λpj

apγi apαi ;

(5.30)

for any s ∈ I \ {0}, 1 ≤ γ ≤ d0 and 1 ≤ α ≤ ds, we have

{a0γ
j ,a

sα
i } =

1

2
δ(i 6=j)

λmj + λmi
λmj − λmi

(
a0γ
j asαi − a0γ

i asαi

)
+ δ(i 6=j)

λmi
λmj − λmi

λsj
λsi

(
a0γ
i asαj − a0γ

j asαj

)
+

1

2
asαi

d0∑
σ=1

o(γ, σ)(a0γ
j a0σ

i + a0γ
i a0σ

j ) ;

(5.31)

for any p ∈ I \ {0}, 1 ≤ γ ≤ dp and 1 ≤ α ≤ d0, we have

{apγj ,a
0α
i } =

1

2
δ(i 6=j)

λmj + λmi
λmj − λmi

(
apγj a0α

i − apγj a0α
j

)
+ δ(i 6=j)

λmj
λmj − λmi

λ−pj

λ−pi

(
apγi a0α

j − apγi a0α
i

)
− 1

2
apγj

d0∑
κ=1

o(α, κ)(a0α
i a0κ

j + a0α
j a0κ

i ) ;

(5.32)

for any 0 < p < s ≤ m− 1, and for any 1 ≤ γ ≤ dp, 1 ≤ α ≤ ds, we have

{apγj ,a
sα
i }

p<s
= − δijapγj asαi + δ(i 6=j)

λmi
λmj − λmi

(
apγj asαi +

λs−pj

λs−pi

apγi asαj

)

− δ(i 6=j)
λmi

λmj − λmi

λsj
λsi

apγj asαj − δ(i 6=j)
λmj

λmj − λmi

λ−pj

λ−pi
apγi asαi ;

(5.33)
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for any 0 < s < p ≤ m− 1, and for any 1 ≤ γ ≤ dp, 1 ≤ α ≤ ds, we have

{apγj ,a
sα
i }

p>s
= δija

pγ
j asαi + δ(i 6=j)

λmj
λmj − λmi

(
apγj asαi +

λs−pj

λs−pi

apγi asαj

)

− δ(i 6=j)
λmi

λmj − λmi

λsj
λsi

apγj asαj − δ(i 6=j)
λmj

λmj − λmi

λ−pj

λ−pi
apγi asαi .

(5.34)

Remark 5.2.8 The operation {−,−} that we consider on hsp,m/W is only defined as an

antisymmetric biderivation in the first place. This is a Poisson bracket because of Lemma B.1.

Before proceeding to the proof, remark that we can write from Lemma 5.2.6 that

ξ∗{fk, f l}P = 0 , ξ∗{fk, glsα,rβ}P = k
n∑
i=1

asαi crβi λ
k+l
i . (5.35)

Moreover, we also obtain

ξ∗{gkpγ,qε, glsα,rβ}P =
1

2

 •∑
v=1,...,k

−
•∑

v=1,...,l

∑
i,j

(asαj crβi λ
v
i a
pγ
i cqεj λ

k+l−v
j )

+
1

2

 4∑
v=1,...,k

−
4∑

v=1,...,l

∑
i,j

(asαj crβi λ
k+l−v
i apγi cqεj λ

v
j )

+
1

2
[o(p, r)− o(p, s) + o(q, s)− o(q, r)]

∑
i,j

(asαi cqεj λ
k
ja

pγ
j crβi λ

l
i)

+
1

2
δpso(α, γ)

∑
i,j

[(apγi cqεj λ
k
ja

sα
j crβi λ

l
i) + (asαi cqεj λ

k
ja

pγ
j crβi λ

l
i)]

+
1

2
δqro(ε, β)

∑
i,j

[(asαi crβj λ
k
ja

pγ
j cqεi λ

l
i)− (asαi cqεj λ

k
ja

pγ
j crβi λ

l
i)]

+
1

2

(
δqs[o(ε, α) + δαε]− δpr[o(β, γ) + δβγ ]

)∑
i,j

(asαi cqεj λ
k
ja

pγ
j crβi λ

l
i)

+ δqsδαε
∑
i,j

(
(Zs−1)ij +

ε−1∑
λ=1

asλi csλj

)
λkja

pγ
j crβi λ

l
i

− δprδβγ
∑
i,j

(Zp−1)ji +

β−1∑
µ=1

apµj cpµi

λlia
sα
i cqεj λ

k
j ,

(5.36)

where in the sum
•∑

we require v ≡
m
p − (r − 1), while for

4∑
we require v ≡

m
s − (q − 1).

To understand how we get the factor (Zs−1)ij when we write ξ∗ tr(ZXkApEprγβC
rX l), remark

that Cr : Vr−1 → V∞ so that the element X lZ in CrX lZ acts as Xr−1 . . . Xl+r−2Zl+r−2. By
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assumption (r − 1) + l = s modulo m, so that the element Z in this expression can be replaced

by Zs−1. The same observation explains how we get (Zp−1)ji in ξ∗ tr(ZX lAsEsqαεCqXk).

The proof will follow from the different lemmae presented in the next subsections. Indeed, we

will show that (5.16) holds for the different functions given in (5.15).

First type of brackets

Lemma 5.2.9 For any possible indices,

{ξ∗fk, ξ∗f l} = ξ∗{fk, f l}P, {ξ∗fk,
∑
α

ξ∗gl0α,rβ} = ξ∗{fk,
∑
α

gl0α,rβ}P,

{ξ∗fk, ξ∗glsα,01} = ξ∗{fk, glsα,01}P .

Proof. The first identity in (5.17) implies {ξ∗fk, ξ∗f l} = 0, as desired from (5.35). Similarly,

we get

{ξ∗fk,
∑
α

ξ∗gl0α,rβ} = mk
∑
ij

λk−1
i λlj{λi, c

rβ
j } = k

∑
i

λk+l
i crβi ,

which is k
∑

α g
k+l
0α,rβ , hence this is ξ∗{fk,

∑
α g

l
0α,rβ}P by Lemma 5.2.6. The last identity is

checked in the same way. 2

Second type of brackets

As a second step, we need to check that

{
∑
γ

ξ∗gk0γ,qε,
∑
α

ξ∗gl0α,rβ} =
∑
α,γ

ξ∗{gk0γ,qε, gl0α,rβ}P (5.37)

for all possible indices. We can first rewrite the left-hand side using (5.17) as

(5.37)LHS =
k − l
m

∑
i

λk+l
i cqεi c

rβ
i +

∑
i,j

λkjλ
l
i{c

qε
j , c

rβ
i } , (5.38)
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while we get for the right-hand side using (5.36) that

(5.37)RHS =
1

2

 •∑
v=1,...,k

−
•∑

v=1,...,l

∑
i,j

(crβi λ
v
i c
qε
j λ

k+l−v
j )

+
1

2

 4∑
v=1,...,k

−
4∑

v=1,...,l

∑
i,j

(crβi λ
k+l−v
i cqεj λ

v
j )

+
1

2
[o(0, r) + o(q, 0)− o(q, r)]

∑
i,j

(cqεj λ
k
j c
rβ
i λ

l
i)

+
1

2
δqro(ε, β)

∑
i,j

[(crβj λ
k
j c
qε
i λ

l
i)− (cqεj λ

k
j c
rβ
i λ

l
i)]

+
1

2
δq0
∑
α

[o(ε, α) + δαε]
∑
i,j

(a0α
i cqεj λ

k
j c
rβ
i λ

l
i)

− 1

2
δ0r

∑
γ

[o(β, γ) + δβγ ]
∑
i,j

(cqεj λ
k
ja

0γ
j crβi λ

l
i)

+ δq0
∑
i,j

(
(Zm−1)ij +

ε−1∑
λ=1

a0λ
i c0λ

j

)
λkj c

rβ
i λ

l
i

− δ0r

∑
i,j

(Zm−1)ji +

β−1∑
µ=1

a0µ
j c0µ

i

λlic
qε
j λ

k
j ,

where in the sum
•∑

we require v ≡
m

1− r, while for
4∑

we require v ≡
m

1− q. Here, we used that

the fourth line of (5.36) vanishes when we sum over all α, γ = 1, . . . , d0. We clearly see that we

have to discuss the possible choices of r, q = 0, . . . ,m− 1 separately.

Lemma 5.2.10 For q = r = 0 and for any 1 ≤ β, ε ≤ d0, we have that (5.37) holds.

Proof. We use (5.18), and the proof is similar to the corresponding case for a Jordan quiver given

in Proposition 4.3.3, so we can omit it. 2

Lemma 5.2.11 For r = 0 and for any q ∈ I \ {0}, 1 ≤ ε ≤ dq, 1 ≤ β ≤ d0, we have that (5.37)

holds. For q = 0 and for any r ∈ I \ {0}, 1 ≤ β ≤ dr, 1 ≤ ε ≤ d0, we have that (5.37) holds.

Proof. We only need to show that (5.37) holds in the first case, as the second case can be obtained

by antisymmetry. Note that for gk0γ,qε and gl0α,0β to be nonzero, we need k = k0m + 1 − q and
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l = l0m+ 1 for some k0, l0 ∈ N×. In particular, remark that k < k0m+ 1. We can write

(5.37)RHS =
1

2

(
k0−1∑
v0=0

−
l0∑

v0=0

)∑
i,j

c0β
i λ

v0m+1
i cqεj λ

(k0+l0−v0)m+1−q
j

+
1

2

(
k0∑
v0=1

−
l0∑

v0=1

)∑
i,j

c0β
i λ

(k0+l0−v0)m+1
i cqεj λ

v0m+1−q
j

− 1

2

d0∑
γ=1

[o(β, γ) + δβγ ]
∑
i,j

(cqεj λ
k
ja

0γ
j c0β

i λ
l
i)

−
∑
i,j

(Zm−1)ji +

β−1∑
µ=1

a0µ
j c0µ

i

λlic
qε
j λ

k
j ,

Indeed, in the first sum, we need v ≡
m

1 so we sum over v = v0m + 1 but we can not consider

v0 = k0, while for the second v ≡
m

1 − q and v = v0m + 1 − q < v0m + 1. Using that

[o(β, γ) + δβγ ] = 1− 2δ(β>γ), we can write

(5.37)RHS =
1

2

∑
i,j

c0β
i cqεj λiλ

1−q
j Σ

(i,j)
(k,l) −

1

2

∑
i,j

c0β
i cqεj λ

k0m+1
i λl0m+1−q

j

− 1

2

∑
i,j

λkjλ
l
ic
qε
j c

0β
i +

∑
i,j

λkjλ
l
ic
qε
j

β−1∑
γ=1

a0γ
j c0β

i

−
∑
i,j

λkjλ
l
ic
qε
j

(Zm−1)ji +

β−1∑
µ=1

a0µ
j c0µ

i

 ,

where we have set

Σ
(i,j)
(k,l) :=

(
k0∑
v0=1

−
l0∑

v0=1

)(
λv0m
i λ

(k0+l0−v0)m
j + λ

(k0+l0−v0)m
i λv0m

j

)
. (5.39)

To reduce Σ
(i,j)
(k,l), we have the following result similar to (4.38).

Lemma 5.2.12 If i = j, Σ
(i,j)
(k,l) = (k0 − l0)λ

(k0+l0)m
i , while if i 6= j,

Σ
(i,j)
(k,l) =

λmi + λmj
λmi − λmj

(
λk0m
i λl0mj − λl0mi λk0m

j

)
. (5.40)

Using this lemma, we can write

(5.37)RHS =
1

2

∑
i 6=j

c0β
i cqεj λiλ

1−q
j

λmi + λmj
λmi − λmj

(
λk0m
i λl0mj − λl0mi λk0m

j

)
+ (k0 − l0 − 1)

∑
i

λk+l
i c0β

i cqεi −
1

2

∑
i 6=j

c0β
i cqεj (λk0m+1

i λl0m+1−q
j + λkjλ

l
i)

−
∑
i,j

λkjλ
l
ic
qε
j (Zm−1)ji −

∑
i,j

λkjλ
l
ic
qε
j

β−1∑
µ=1

a0µ
j (c0µ

i − c0β
i ) .



192 Chapter 5. MQVs from cyclic quivers

Recalling that k = k0m+ 1− q and l = l0m+ 1, we find

(5.37)RHS =
1

2

∑
i 6=j

λkjλ
l
i

λmj + λmi
λmj − λmi

(
cqεj c

0β
i +

λqj
λqi

cqεi c
0β
j

)

+

(
k − l
m

+
q −m
m

)∑
i

λk+l
i c0β

i cqεi −
1

2

∑
i 6=j

λkjλ
l
i

(
cqεj c

0β
i +

λqj
λqi

cqεi c
0β
j

)

−
∑
i,j

λkjλ
l
ic
qε
j (Zm−1)ji −

∑
i,j

λkjλ
l
ic
qε
j

β−1∑
µ=1

a0µ
j (c0µ

i − c0β
i ) .

If we sum together the first and third terms of (5.37)RHS just obtained, it is not hard to see that it

matches (5.37)LHS after introducing (5.19) in it. 2

Lemma 5.2.13 For any q ∈ I \ {0} with r = q and 1 ≤ β, ε ≤ dq, we have that (5.37) holds.

Proof. For r = q, we consider k = k0m+ 1− q and l = l0m+ 1− q for arbitrary k0, l0 ∈ N×.

We can directly write

(5.37)RHS =
1

2

∑
i,j

cqβi cqεj λ
1−q
i λ1−q

j Σ
(i,j)
(k,l) +

1

2
o(ε, β)

∑
i,j

λkjλ
l
i(c

rβ
j cqεi − cqεj c

rβ
i ) ,

using the symbol Σ
(i,j)
(k,l) introduced as (5.39). From Lemma 5.2.12, this is

(5.37)RHS = (k0 − l0)
∑
i

λk+l
i cqβi cqεi +

1

2

∑
i 6=j

λkjλ
l
i

λmj + λmi
λmj − λmi

(crβj cqεi + cqεj c
rβ
i )

+
1

2
o(ε, β)

∑
i,j

λkjλ
l
i(c

rβ
j cqεi − cqεj c

rβ
i ) ,

and since k0 − l0 = k−l
m we conclude that this equals (5.37)LHS when we use (5.21). 2

Lemma 5.2.14 For any 0 < r < q ≤ m − 1, 1 ≤ β ≤ dr and 1 ≤ ε ≤ dq, we have that (5.37)

holds. This is also true when 0 < q < r ≤ m− 1.

Proof. By antisymmetry, it suffices to prove that (5.37) holds in the first case. We take k =

k0m+ 1− q and l = l0m+ 1− r for k0, l0 ∈ N×. By assumption, q > r so that k < k0m+ 1− r
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while l > l0m+ 1− q. Hence, we write

(5.37)RHS =
1

2

(
k0−1∑
v0=1

−
l0∑

v0=1

)∑
i,j

(crβi λ
v0m+1−r
i cqεj λ

(k0+l0−v0)m+1−q
j )

+
1

2

(
k0∑
v0=1

−
l0∑

v0=1

)∑
i,j

(crβi λ
(k0+l0−v0)m+1−r
i cqεj λ

v0m+1−q
j )

− 1

2
o(q, r)

∑
i,j

λkjλ
l
ic
qε
j c

rβ
i ,

and if we introduce Σ
(i,j)
(k,l) this can be written as

1

2

∑
i,j

crβi λ
1−r
i cqεj λ

1−q
j Σ

(i,j)
(k,l) −

1

2

∑
i,j

crβi λ
k0m+1−r
i cqεj λ

l0m+1−q
j +

1

2

∑
i,j

λkjλ
l
ic
qε
j c

rβ
i .

We use Lemma 5.2.12 in order to obtain

(5.37)RHS =
1

2

∑
i 6=j

crβi λ
1−r
i cqεj λ

1−q
j

λmi + λmj
λmi − λmj

(
λk0m
i λl0mj − λl0mi λk0m

j

)
(k0 − l0)

∑
i

λk+l
i cqεi c

rβ
i −

1

2

∑
i,j

crβi λ
k+q−r
i cqεj λ

l+r−q
j +

1

2

∑
i,j

λkjλ
l
ic
qε
j c

rβ
i

=

(
k − l
m

+
q − r
m

)∑
i

λk+l
i cqεi c

rβ
i

+
1

2

∑
i 6=j

λkjλ
l
i

λmj + λmi
λmj − λmi

(
cqεj c

rβ
i +

λq−rj

λq−ri

crβj cqεi

)

+
1

2

∑
i 6=j

λkjλ
l
i

(
cqεj c

rβ
i −

λq−rj

λq−ri

crβj cqεi

)
.

As in the previous cases, introducing (5.22) in (5.37)LHS yields the same result. 2

Third type of brackets

As a third step, we need to check that

{
∑
γ

ξ∗gk0γ,qε, ξ
∗glsα,01} =

∑
γ

ξ∗{gk0γ,qε, glsα,01}P (5.41)

for all possible couples of indices (q, ε) and (s, α). First, we have by (5.17) that the left-hand side

is given by

(5.41)LHS =
k − l
m

∑
i

λk+l
i cqεi c

01
i asαi +

∑
i,j

λkjλ
l
ia
sα
i {c

qε
j , c

01
i }+

∑
i,j

λkjλ
l
ic

01
i {c

qε
j ,a

sα
i } .
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For the middle term, we can use the expression for {cqεj , c01
i } given by (5.18) if q = 0, or (5.19)

otherwise. Hence, we will need to consider these two cases separately, and we will discuss

subcases depending on the form of the right-hand side. For the latter, note also that (5.36) gives

(5.41)RHS =
1

2

 •∑
v=1,...,k

−
•∑

v=1,...,l

∑
i,j

asαj c01
i λ

v
i c
qε
j λ

k+l−v
j

+
1

2

 4∑
v=1,...,k

−
4∑

v=1,...,l

∑
i,j

asαj c01
i λ

k+l−v
i cqεj λ

v
j

+
1

2
[−o(0, s) + o(q, s)− o(q, 0)]

∑
i,j

λkjλ
l
ia
sα
i cqεj c

01
i

+
1

2
δ0s

d0∑
γ=1

o(α, γ)
∑
i,j

λkjλ
l
ic
qε
j c

01
i [a0γ

i asαj + asαi a0γ
j ]

− 1

2
δq0δ(ε6=1)

∑
i,j

λkjλ
l
ia
sα
i [c01

j cqεi − cqεj c
01
i ]

+
1

2
δqs[o(ε, α) + δαε]

∑
i,j

λkjλ
l
ic
qε
j a

sα
i c01

i −
1

2

∑
i,j

λkjλ
l
ic
qε
j a

sα
i c01

i

+ δqsδαε
∑
i,j

λkjλ
l
ic

01
i

(
(Zs−1)ij +

ε−1∑
λ=1

asλi csλj

)

−
∑
i,j

λkjλ
l
i(Zm−1)jia

sα
i cqεj ,

where in the sum
•∑

we require v ≡
m

+1, while for
4∑

we require v ≡
m
s− q + 1.

Third type of brackets : case q = 0. We use (5.18) to write (5.41)LHS in this case as

(5.41)LHS =
k − l
m

∑
i

λk+l
i c0ε

i c
01
i asαi +

∑
i,j

λkjλ
l
ic

01
i {c0ε

j ,a
sα
i }

+
1

2

∑
i 6=j

λkjλ
l
i

λmj + λmi
λmj − λmi

asαi (c0ε
j c

01
i + c0ε

i c
01
j )

− 1

2
δ(ε6=1)

∑
i,j

λkjλ
l
ia
sα
i (c0ε

i c
01
j − c0ε

j c
01
i )

+
∑
i,j

λkjλ
l
ia
sα
i

(
(Zm−1)ijc

01
i − (Zm−1)jic

0ε
j

)
+
∑
i,j

λkjλ
l
ia
sα
i c01

i

ε−1∑
λ=1

a0λ
i (c0λ

j − c0ε
j ) .

(5.42)

Lemma 5.2.15 For q = s = 0 and for any 1 ≤ α, ε ≤ d0, we have that (5.41) holds.
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Proof. We use (5.24), and the proof is similar to the corresponding case for a Jordan quiver given

in Proposition 4.3.3, so we can omit it. 2

Lemma 5.2.16 For q = 0, s ∈ I \ {0}, 1 ≤ α ≤ ds and 1 ≤ ε ≤ d0, we have that (5.41) holds.

Proof. We take k = k0m + 1, l = l0m + s + 1 for k0, l0 ∈ N×, and we can note that k <

k0m+ s+ 1. We obtain

(5.41)RHS =
1

2

(
k0∑
v0=0

−
l0∑

v0=0

)∑
i,j

asαj c01
i λ

v0m+1
i c0ε

j λ
(k0+l0−v0)m+s+1
j

+
1

2

(
k0−1∑
v0=0

−
l0∑

v0=0

)∑
i,j

asαj c01
i λ

(k0+l0−v0)m+1
i c0ε

j λ
v0m+s+1
j

− 1

2
δ(ε6=1)

∑
i,j

λkjλ
l
ia
sα
i [c01

j c0ε
i − c0ε

j c
01
i ]

− 1

2

∑
i,j

λkjλ
l
ic

0ε
j a

sα
i c01

i −
∑
i,j

λkjλ
l
i(Zm−1)jia

sα
i c0ε

j .

Introducing the element Σ
(i,j)
(k,l) from (5.39), we write

(5.41)RHS =
1

2

∑
i,j

asαj c01
i λ

1
iλ

s+1
j c0ε

j Σ
(i,j)
(k,l)

− 1

2

∑
i,j

asαj c01
i λ

l0m+1
i c0ε

j λ
k0m+s+1
j − 1

2

∑
i,j

λkjλ
l
ic

0ε
j a

sα
i c01

i

− 1

2
δ(ε 6=1)

∑
i,j

λkjλ
l
ia
sα
i [c01

j c0ε
i − c0ε

j c
01
i ]−

∑
i,j

λkjλ
l
i(Zm−1)jia

sα
i c0ε

j .

We use Lemma 5.2.12 to obtain

(5.41)RHS = (k0 − l0 − 1)
∑
i,j

λk+l
i asαi c01

i c0ε
i −

1

2

∑
i 6=j

λkjλ
l
i

(
c0ε
j a

sα
i c01

i +
λsj
λsi

asαj c01
i c0ε

j

)

+
1

2

∑
i 6=j

λiλ
s+1
j

λmi + λmj
λmi − λmj

asαj c01
i c0ε

j

(
λk0m
i λl0mj − λl0mi λk0m

j

)
− 1

2
δ(ε6=1)

∑
i,j

λkjλ
l
ia
sα
i [c01

j c0ε
i − c0ε

j c
01
i ]−

∑
i,j

λkjλ
l
i(Zm−1)jia

sα
i c0ε

j

=
k − l + s−m

m

∑
i,j

λk+l
i asαi c01

i c0ε
i −

1

2

∑
i 6=j

λkjλ
l
i

(
c0ε
j a

sα
i c01

i +
λsj
λsi

asαj c01
i c0ε

j

)

+
1

2

∑
i 6=j

λkjλ
l
i

λmj + λmi
λmj − λmi

(
asαi c01

j c0ε
i +

λsj
λsi

asαj c01
i c0ε

j

)
− 1

2
δ(ε6=1)

∑
i,j

λkjλ
l
ia
sα
i [c01

j c0ε
i − c0ε

j c
01
i ]−

∑
i,j

λkjλ
l
i(Zm−1)jia

sα
i c0ε

j .
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Meanwhile, if we put (5.25) in (5.42), it gives

(5.41)LHS =
k − l + s−m

m

∑
i,j

λk+l
i asαi c01

i c0ε
i −

1

2
δ(ε6=1)

∑
i,j

λkjλ
l
ia
sα
i [c01

j c0ε
i − c0ε

j c
01
i ]

−
∑
i,j

λkjλ
l
i(Zm−1)jia

sα
i c0ε

j +
1

2

∑
i 6=j

λkjλ
l
i

λmj + λmi
λmj − λmi

asαi c01
j c0ε

i

+
∑
i 6=j

λkjλ
l
i

λmi
λmj − λmi

λsj
λsi

asαj c01
i c0ε

j −
1

2

∑
i 6=j

λkjλ
l
ia
sα
i c01

i c0ε
j ,

so the two sides coincide. 2

Third type of brackets : case q > 0. Let q ∈ I \ {0}, and use (5.19) to rewrite (5.41)LHS as

(5.41)LHS =
k − l + q −m

m

∑
i

λk+l
i cqεi c

01
i asαi +

∑
i,j

λkjλ
l
ic

01
i {c

qε
j ,a

sα
i }

+
∑
i 6=j

λkjλ
l
i

λmi
λmj − λmi

asαi

(
cqεj c

01
i +

λqj
λqi

cqεi c
01
j

)

−
∑
i,j

λkjλ
l
ia
sα
i (Zm−1)jic

qε
j .

(5.43)

Lemma 5.2.17 For any q ∈ I \ {0} with s = q and 1 ≤ ε, α ≤ dq, we have that (5.41) holds.

Proof. We take k = k0m+ 1− q, l = l0m+ q+ 1 for k0, l0 ∈ N×, so that k < k0m+ 1. Hence

(5.41)RHS =
1

2

(
k0−1∑
v0=0

−
l0∑

v0=0

)∑
i,j

aqαj c01
i cqεj λ

v0m+1
i λ

(k0+l0−v0)m+1
j

+
1

2

(
k0−1∑
v0=0

−
l0∑

v0=0

)∑
i,j

aqαj c01
i cqεj λ

(k0+l0−v0)m+1
i λv0m+1

j

+
1

2
[o(ε, α) + δαε]

∑
i,j

λkjλ
l
ic
qε
j a

qα
i c01

i −
1

2

∑
i,j

λkjλ
l
ic
qε
j a

qα
i c01

i

+ δαε
∑
i,j

λkjλ
l
ic

01
i

(
(Zq−1)ij +

ε−1∑
λ=1

aqλi cqλj

)
−
∑
i,j

λkjλ
l
i(Zm−1)jia

qα
i cqεj .

Using the element Σ
(i,j)
(k,l) from (5.39), this is

(5.41)RHS =
1

2

∑
i,j

aqαj cqεj c
01
i λiλjΣ

(i,j)
(k,l) −

1

2

∑
i,j

aqαj cqεj c
01
i λiλj

(
λk0m
i λl0mj + λl0mi λk0m

j

)

− δ(α<ε)

∑
i,j

λkjλ
l
ic
qε
j a

qα
i c01

i + δαε
∑
i,j

λkjλ
l
ic

01
i

(
(Zq−1)ij +

ε−1∑
λ=1

aqλi cqλj

)

−
∑
i,j

λkjλ
l
i(Zm−1)jia

qα
i cqεj .
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We use Lemma 5.2.12 to write the first line as

(k0 − l0 − 1)
∑
i

λk+l
i aqαi cqεi c

01
i −

1

2

∑
i 6=j

aqαj cqεj c
01
i λiλj

(
λk0m
i λl0mj + λl0mi λk0m

j

)
+

1

2

∑
i 6=j

aqαj cqεj c
01
i λiλj

λmi + λmj
λmi − λmj

(
λk0m
i λl0mj − λl0mi λk0m

j

)
=(k0 − l0 − 1)

∑
i

λk+l
i aqαi cqεi c

01
i +

∑
i 6=j

λkjλ
l
i

λmi
λmj − λmi

λqj
λqi

(
aqαj cqεj c

01
i + aqαi cqεi c

01
j

)
.

Since (k0 − l0 − 1)m = k + q − (l − q)−m, we can write

(5.41)RHS =
k − l + 2q −m

m

∑
i

λk+l
i aqαi cqεi c

01
i −

∑
i,j

λkjλ
l
i(Zm−1)jia

qα
i cqεj

+
∑
i 6=j

λkjλ
l
i

λmi
λmj − λmi

λqj
λqi

(
aqαj cqεj c

01
i + aqαi cqεi c

01
j

)

− δ(α<ε)

∑
i,j

λkjλ
l
ic
qε
j a

qα
i c01

i + δαε
∑
i,j

λkjλ
l
ic

01
i

(
(Zq−1)ij +

ε−1∑
λ=1

aqλi cqλj

)
.

For the left-hand side, we use (5.26) and (5.43) to find

(5.41)LHS =
k − l + 2q −m

m

∑
i

λk+l
i cqεi c

01
i asαi +

∑
i 6=j

λkjλ
l
ic

01
i

λmi
λmj − λmi

(
λqj
λqi

aqαj − aqαi

)
cqεj

− δ(α<ε)

∑
i,j

λkjλ
l
ic

01
i cqεj a

qα
i + δαε

∑
i,j

λkjλ
l
ic

01
i

(
ε−1∑
λ=1

aqλi cqλj + (Zq−1)ij

)

+
∑
i 6=j

λkjλ
l
i

λmi
λmj − λmi

asαi

(
cqεj c

01
i +

λqj
λqi

cqεi c
01
j

)
−
∑
i,j

λkjλ
l
ia
sα
i (Zm−1)jic

qε
j ,

which coincides with the right-hand side after simplifications. 2

Lemma 5.2.18 For s = 0, q ∈ I \ {0}, 1 ≤ ε ≤ dq and 1 ≤ α ≤ d0, we have that (5.41) holds.

Proof. We take k = k0m+ 1− q, l = l0m+ 1 for k0, l0 ∈ N×, and note that k < k0m+ 1. Thus

(5.41)RHS =
1

2

(
k0−1∑
v0=0

−
l0∑

v0=0

)∑
i,j

a0α
j c01

i cqεj λ
v0m+1
i λ

(k0+l0−v0)m+1−q
j

+
1

2

(
k0∑
v0=1

−
l0∑

v0=1

)∑
i,j

a0α
j c01

i cqεj λ
(k0+l0−v0)m+1
i λv0m+1−q

j

+
1

2

∑
γ

o(α, γ)
∑
i,j

λkjλ
l
ic
qε
j c

01
i [a0γ

i a0α
j + a0α

i a0γ
j ]

− 1

2

∑
i,j

λkjλ
l
ic
qε
j a

0α
i c01

i −
∑
i,j

λkjλ
l
i(Zm−1)jia

0α
i cqεj .
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We can write the first two lines together with the first term in the last line as

1

2

∑
i,j

a0α
j cqεj c

01
i λiλ

1−q
j Σ

(i,j)
(k,l) −

1

2

∑
i,j

a0α
j cqεj c

01
i λ

k0m+1
i λl0m+1−q

j − 1

2

∑
i,j

λkjλ
l
ic
qε
j a

0α
i c01

i ,

so that Lemma 5.2.12 allows us to write these terms in the following form

(k0 − l0 − 1)
∑
i

λk+l
i cqεi a

0α
i c01

i −
1

2

∑
i 6=j

λk+q
i λl−qj cqεj a

0α
j c01

i −
1

2

∑
i 6=j

λkjλ
l
ic
qε
j a

0α
i c01

i

+
1

2

∑
i 6=j

a0α
j cqεj c

01
i λiλ

1−q
j

λmi + λmj
λmi − λmj

(
λk0m
i λl0mj − λl0mi λk0m

j

)

=(k0 − l0 − 1)
∑
i

λk+l
i cqεi a

0α
i c01

i +
1

2

∑
i 6=j

cqεj c
01
i λ

k
jλ

l
i

(
λmj + λmi
λmj − λmi

a0α
j − a0α

i

)

+
1

2

∑
i 6=j

λkjλ
l
i

λmi
λmj − λmi

λqj
λqi

cqεi c
01
j a0α

i .

We get in that way

(5.41)RHS =
k − l + q −m

m

∑
i

λk+l
i cqεi a

0α
i c01

i +
1

2

∑
i 6=j

λkjλ
l
ic
qε
j c

01
i

λmj + λmi
λmj − λmi

(
a0α
j − a0α

i

)
+
∑
i 6=j

λkjλ
l
i

λmi
λmj − λmi

a0α
i

(
cqεj c

01
i +

λqj
λqi

cqεi c
01
j

)

+
1

2

∑
i,j

λkjλ
l
ic
qε
j c

01
i

∑
γ

o(α, γ)[a0γ
i a0α

j + a0α
i a0γ

j ]−
∑
i,j

λkjλ
l
i(Zm−1)jia

0α
i cqεj .

Introducing (5.27) inside (5.43) easily gives the same expression. 2

Lemma 5.2.19 For any q, s ∈ I \ {0} with q 6= s, and for any 1 ≤ ε ≤ dq, 1 ≤ α ≤ ds, we have

that (5.41) holds.

Proof. We take k = k0m+ 1− q, l = l0m+ 1 + s for k0, l0 ∈ N×, and note that k is less than

both k0m+ 1 + s− q and k0m+ 1. Thus

(5.41)RHS =
1

2

(
k0−1∑
v0=0

−
l0∑

v0=0

)∑
i,j

asαj c01
i cqεj λ

v0m+1
i λ

(k0+l0−v0)m+1+s−q
j

+
1

2

(
k0−1∑
v0=0

−
l0∑

v0=0

)∑
i,j

asαj c01
i cqεj λ

(k0+l0−v0)m+1
i λv0m+1+s−q

j

+
1

2
o(q, s)

∑
i,j

λkjλ
l
ia
sα
i cqεj c

01
i −

1

2

∑
i,j

λkjλ
l
ic
qε
j a

sα
i c01

i −
∑
i,j

λkjλ
l
i(Zm−1)jia

sα
i cqεj .
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Note that the two first terms in the last line sums up together if q > s, while they cancel out if

q < s. For the first line, we can write from (5.39) and Lemma 5.2.12 that it equals

1

2

∑
i,j

asαj cqεj c
01
i λiλ

1−q+s
j Σ

(i,j)
(k,l)

− 1

2

∑
i,j

asαj cqεj c
01
i

(
λk0m+1
i λl0m+1−q+s

j + λl0m+1
i λk0m+1−q+s

j

)

=(k0 − l0 − 1)
∑
i

λk+l
i asαi cqεi c

01
i +

1

2

∑
i,j

λkjλ
l
i

λmj + λmi
λmj − λmi

(
λsj
λsi

asαj cqεj c
01
i +

λqj
λqi

asαi cqεi c
01
j

)

− 1

2

∑
i,j

λkjλ
l
i

(
λsj
λsi

asαj cqεj c
01
i +

λqj
λqi

asαi cqεi c
01
j

)
.

Hence, we can write

(5.41)RHS =
k − l + q + s−m

m

∑
i

λk+l
i asαi cqεi c

01
i

+
∑
i,j

λkjλ
l
i

λmi
λmj − λmi

(
λsj
λsi

asαj cqεj c
01
i +

λqj
λqi

asαi cqεi c
01
j

)

− δ(q>s)

∑
i,j

λkjλ
l
ic
qε
j a

sα
i c01

i −
∑
i,j

λkjλ
l
i(Zm−1)jia

sα
i cqεj ,

which coincides with (5.41)LHS after substituting (5.28) inside (5.43). 2

Fourth type of brackets

Finally, we have to check that

{ξ∗gkpγ,01, ξ
∗glsα,01} = ξ∗{gkpγ,01, g

l
sα,01}P (5.44)

for all possible couples of indices (p, γ) and (s, α). Using (5.17) and (5.18), the left-hand side is

given by

(5.44)LHS =
∑
i,j

λkjλ
l
i

(
apγj c01

i {c01
j ,a

sα
i }+ c01

j asαi {a
pγ
j , c

01
i }+ c01

j c01
i {a

pγ
j ,a

sα
i }
)

+
k − l
m

∑
i

λk+l
i (c01

i )2apγi asαi +
∑
i 6=j

λkjλ
l
i

λmj + λmi
λmj − λmi

apγj asαi c01
j c01

i

+
∑
i,j

λkjλ
l
i(Zm−1)ija

pγ
j asαi c01

i −
∑
i,j

λkjλ
l
i(Zm−1)jia

pγ
j asαi c01

j ,

(5.45)
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with the brackets in the first line depending on the combination of indices. For the right-hand

side, (5.36) gives

(5.44)RHS =
1

2

 •∑
v=1,...,k

−
•∑

v=1,...,l

∑
i,j

asαj c01
i apγi c01

j λvi λ
k+l−v
j

+
1

2

 4∑
v=1,...,k

−
4∑

v=1,...,l

∑
i,j

asαj c01
i apγi c01

j λk+l−v
i λvj

+
1

2
[o(p, 0)− o(p, s) + o(0, s)]

∑
i,j

λkjλ
l
ia
pγ
j c01

j asαi c01
i

+
1

2
δpso(α, γ)

∑
i,j

λkjλ
l
ic

01
j c01

i (apγi asαj + asαi apγj )

+
1

2

(
δ0s − δp0

)∑
i,j

λkjλ
l
ic

01
j apγj c01

i asαi

+ δ0sδα1

∑
i,j

λkjλ
l
i(Zm−1)ija

pγ
j c01

i − δp0δ1γ

∑
i,j

λkjλ
l
i(Zm−1)jia

sα
i c01

j ,

where in the sum
•∑

we require v ≡
m
p+ 1, while for

4∑
we require v ≡

m
s+ 1.

We have to analyse the different choices of (p, γ) and (s, α). The easiest case is the following

one.

Lemma 5.2.20 For p = s = 0 and for any 1 ≤ α, γ ≤ d0, we have that (5.44) holds.

Proof. We use (5.18), (5.24) and (5.29), and the proof is similar to the corresponding case for a

Jordan quiver given in Proposition 4.3.3, so we can omit it. 2

Fourth type of brackets : case p = s nonzero. We begin with some preliminary results : we

remark that we can write (5.25) in the special case of ε = 0 as

{c01
j ,a

sα
i }

s 6=0
=
s−m
m

δijc
01
j asαi + δ(i 6=j)

λmi
λmj − λmi

λsj
λsi

c01
j asαj

− δ(i 6=j)
λmj

λmj − λmi
c01
j asαi − asαi (Zm−1)ij ,

(5.46)

and by antisymmetry we get

{apγj , c
01
i }

p6=0
=
m− p
m

δijc
01
i apγj + δ(i 6=j)

λmj
λmj − λmi

λpi
λpj

c01
i apγi

− δ(i 6=j)
λmi

λmj − λmi
c01
i apγj + apγj (Zm−1)ji .

(5.47)
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Hence, in the case p = s nonzero, we obtain after simplifications

(5.44)LHS =
k − l
m

∑
i

λk+l
i (c01

i )2apγi apαi +
∑
i,j

λkjλ
l
ic

01
j c01

i {a
pγ
j ,a

pα
i }

+
∑
i 6=j

λkjλ
l
ic

01
j c01

i apγj
λmi

λmj − λmi

λpj
λpi

apαj +
∑
i 6=j

λkjλ
l
ic

01
j c01

i apαi
λmj

λmj − λmi
λpi
λpj

apγi .

(5.48)

Lemma 5.2.21 For any p ∈ I \ {0} with s = p and 1 ≤ α, γ ≤ dp, we have that (5.44) holds.

Proof. Let k = k0m+ p+ 1 and l = l0m+ p+ 1 for k0, l0 ∈ N×. We can write

(5.44)RHS =
1

2

(
k0∑
v0=1

−
l0∑

v0=1

)∑
i,j

apαj c01
i apγi c01

j λp+1
i λp+1

j λv0m
i λ

(k0+l0−v0)m
j

+
1

2

(
k0∑
v0=1

−
l0∑

v0=1

)∑
i,j

apαj c01
i apγi c01

j λp+1
i λp+1

j λ
(k0+l0−v0)m
i λv0m

j

+
1

2
o(α, γ)

∑
i,j

λkjλ
l
ic

01
j c01

i (apγi apαj + apαi apγj ) .

We easily recognise Σ
(i,j)
(k,l) in the first two lines, so that with Lemma 5.2.12 we can write

(5.44)RHS = (k0 − l0)
∑
i

λk+l
i (c01

i )2apγi apαi +
1

2

∑
i 6=j

λkjλ
l
i

λmj + λmi
λmj − λmi

c01
j c01

i (apγj apαi + apγi apαj )

+
1

2
o(α, γ)

∑
i,j

λkjλ
l
ic

01
j c01

i (apγi apαj + apαi apγj ) .

Since k−l
m = k0− l0, we can see that this expression coincides with (5.44)LHS after putting (5.30)

in (5.48). 2

Fourth type of brackets : case p = 0, s 6= 0 or s = 0, p 6= 0. Again, we notice that we can write

from (5.24) the simpler expression

{c01
j ,a

0α
i } =

1

2
δ(i 6=j)

λmj + λmi
λmj − λmi

c01
j (a0α

j − a0α
i ) + δ1α(Zm−1)ij − a0α

i (Zm−1)ij

+
1

2
c01
j

d0∑
κ=1

o(α, κ)(a0α
i a0κ

j + a0α
j a0κ

i ) ,

(5.49)

and by antisymmetry

{a0γ
j , c

01
i } =

1

2
δ(i 6=j)

λmj + λmi
λmj − λmi

c01
i (a0γ

i − a0γ
j )− δ1γ(Zm−1)ji + a0γ

j (Zm−1)ji

− 1

2
c01
i

d0∑
σ=1

o(γ, σ)(a0γ
j a0σ

i + a0γ
i a0σ

j ) .

(5.50)
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Assuming that p = 0 and s 6= 0 we can write using (5.46) and (5.50) that

(5.44)LHS =
k − l + s−m

m

∑
i

λk+l
i (c01

i )2a0γ
i asαi +

∑
i,j

λkjλ
l
ic

01
j c01

i {a
0γ
j ,a

sα
i }

+
∑
i 6=j

λkjλ
l
ic

01
j c01

i asαj aoγj
λmi

λmj − λmi

λsj
λsi

+
1

2

∑
i 6=j

λkjλ
l
ic

01
j c01

i asαi a0γ
i

λmj + λmi
λmj − λmi

− 1

2

∑
i 6=j

λkjλ
l
ic

01
j aoγj c01

i asαi − δγ1

∑
i,j

λkjλ
l
ic

01
j asαi (Zm−1)ji

− 1

2

∑
i,j

λkjλ
l
ic

01
j c01

i asαi

d0∑
σ=1

o(γ, σ)(a0γ
j a0σ

i + a0γ
i a0σ

j ) .

(5.51)

A similar expression holds for the case p 6= 0 and s = 0, but we will not need it.

Lemma 5.2.22 For p = 0 and for any s ∈ I \ {0}, 1 ≤ γ ≤ d0 and 1 ≤ α ≤ ds, we have that

(5.44) holds. This is also true if s = 0 and p ∈ I \ {0}.

Proof. It suffices to prove the case p = 0, s 6= 0 when we use (5.31), and the other case follows

by antisymmetry. So let k = k0m+ 1, l = l0m+ s+ 1 and note that k < k0m+ s+ 1. Hence

(5.44)RHS =
1

2

(
k0∑
v0=0

−
l0∑

v0=0

)∑
i,j

asαj c01
i a0γ

i c01
j λv0m+1

i λ
(k0+l0−v0)m+s+1
j

+
1

2

(
k0−1∑
v0=0

−
l0∑

v0=0

)∑
i,j

asαj c01
i a0γ

i c01
j λ

(k0+l0−v0)m+1
i λv0m+s+1

j

− 1

2

∑
i,j

λkjλ
l
ic

01
j a0γ

j c01
i asαi − δ1γ

∑
i,j

λkjλ
l
i(Zm−1)jia

sα
i c01

j

= (k0 + l0 − 1)
∑
i

λk+l
i (c01

i )2a0γ
i asαi +

1

2

∑
i 6=j

c01
j asαj c01

i a0γ
i λ

1
iλ

s+1
j Σ

(i,j)
(k,l)

− 1

2

∑
i 6=j

λkjλ
l
i

λsj
λsi

c01
i a0γ

i asαj c01
j −

1

2

∑
i 6=j

λkjλ
l
ic

01
j a0γ

j c01
i asαi

− δ1γ

∑
i,j

λkjλ
l
i(Zm−1)jia

sα
i c01

j .

Using Lemma 5.2.12, we can write the second term as

1

2

∑
i 6=j

λkjλ
l
i

λmj + λmi
λmj − λmi

c01
j c01

i

(
asαi a0γ

j +
λsj
λsi

asαj a0γ
i

)
.
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Since (k0 − l0)m = k − l + s, we get

(5.44)RHS =
k − l + s−m

m

∑
i

λk+l
i (c01

i )2a0γ
i asαi +

∑
i 6=j

λkjλ
l
i

λmi
λmj − λmi

c01
j a0γ

j c01
i asαi

+
∑
i 6=j

λkjλ
l
i

λmi
λmj − λmi

λsj
λsi

c01
j asαj c01

i a0γ
i − δ1γ

∑
i,j

λkjλ
l
i(Zm−1)jia

sα
i c01

j .

If we put (5.31) inside (5.51), we get the same result. 2

Fourth type of brackets : case of distinct p, s 6= 0. Let p, s ∈ I \{0} that we assume to be distinct.

We can use (5.46) and (5.47) to write

(5.44)LHS =
k − p− l + s

m

∑
i

λk+l
i (c01

i )2apγi asαi +
∑
i,j

λkjλ
l
ic

01
j c01

i {a
pγ
j ,a

sα
i }

+
∑
i 6=j

λkjλ
l
ic

01
j c01

i apγj asαj
λmi

λmj − λmi

λsj
λsi

+
∑
i 6=j

λkjλ
l
ic

01
j c01

i apγi asαi
λmj

λmj − λmi
λpi
λpj
.

(5.52)

Lemma 5.2.23 For any p, s ∈ I \ {0} with p 6= s, and for any 1 ≤ γ ≤ dp, 1 ≤ α ≤ ds, we have

that (5.44) holds.

Proof. We prove the case p < s where we need (5.33). For k = k0m + p + 1 < k0m + s + 1

and l = l0m+ s+ 1 with k0, l0 ∈ N×, we have

(5.44)RHS =
1

2

(
k0∑
v0=0

−
l0∑

v0=0

)∑
i,j

asαj c01
i apγi c01

j λv0m+p+1
i λ

(k0+l0−v0)m+s+1
j

+
1

2

(
k0−1∑
v0=0

−
l0∑

v0=0

)∑
i,j

asαj c01
i apγi c01

j λ
(k0+l0−v0)m+p+1
i λv0m+s+1

j

− 1

2

∑
i,j

λkjλ
l
ia
pγ
j c01

j asαi c01
i

= (k0 + l0 − 1)
∑
i

λk+l
i (c01

i )2apγi asαi +
1

2

∑
i 6=j

c01
j asαj c01

i apγi λ
p+1
i λs+1

j Σ
(i,j)
(k,l)

− 1

2

∑
i 6=j

λkjλ
l
i

λs−pj

λs−pi

c01
i apγi asαj c01

j −
1

2

∑
i 6=j

λkjλ
l
ic

01
j apγj c01

i asαi .

We see that Lemma 5.2.12 allows us to rewrite the second term as

1

2

∑
i 6=j

λkjλ
l
i

λmj + λmi
λmj − λmi

c01
j c01

i

(
asαi apγj +

λs−pj

λs−pi

asαj apγi

)
,
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So that with (k0 − l0)m = (k − p)− (l − s), we get

(5.44)RHS =
k − p− l + s−m

m

∑
i

λk+l
i (c01

i )2a0γ
i asαi

+
∑
i 6=j

λkjλ
l
i

λmi
λmj − λmi

c01
j apγj c01

i asαi +
∑
i 6=j

λkjλ
l
i

λmi
λmj − λmi

λs−pj

λs−pi

c01
j asαj c01

i apγi .

By substituting (5.33) in (5.52), we get the same result. 2

5.2.4 Generalisation of the Poisson bracket of Arutyunov–Frolov

Before discussing integrability in § 5.2.5 for the dimension vectors (1, nδ), let us remark that the

functions trUK , U ∈ {X,Y, Z, 1I + XY }, for which we can explicitly write the flows (see

Propositions 5.1.5, 5.1.6, 5.1.7 and 5.1.8) can be written on C◦n,m in terms of traces of matrices

involving X or Z. At the same time, we have seen in § 5.2.2 that such matrices only depend on

the elements (λi, g
s
ij =

∑ds
α=1 a

sα
i csαj ) when restricted to C′n,m. Therefore, it seems natural to try

to obtain the Poisson bracket on these elements, which we do now.

Preparation

In this subsection, the method is just an adaptation of the proof of Lemma 4.3.5 with the Poisson

brackets from Proposition 5.2.7, so we skip the proofs. We denote the matrix Ẑr given by (5.10)

simply as Zr.

Lemma 5.2.24 For any 1 ≤ ε, γ ≤ d0 and i, j, k, l = 1, . . . , n,

{c0ε
j , g

0
kl} =(Zm−1)kjc

0ε
l − (Zm−1)jlc

0ε
j + ((Zm−1)lj − (Zm−1)kj)g

0
kl

+
1

2
δ(j 6=k)

λmj + λmk
λmj − λmk

c0ε
j (g0

jl − g0
kl) +

1

2
δ(j 6=l)

λmj + λml
λmj − λml

(c0ε
j g

0
kl + c0ε

l g
0
kj)

+
1

2
c0ε
l g

0
kj −

1

2
c0ε
j g

0
jl + g0

kl

ε−1∑
λ=1

(c0λ
j − c0ε

j )(a0λ
l − a0λ

k ) ,

{a0γ
i , g

0
kl} =a0γ

i (Zm−1)il − a0γ
k (Zm−1)il +

1

2
δ(i 6=k)

λmi + λmk
λmi − λmk

(a0γ
k − a0γ

i )(g0
il − g0

kl)

+
1

2
δ(i 6=l)

λmi + λml
λmi − λml

g0
kl(a

0γ
l − a0γ

i ) +
1

2
a0γ
i g

0
il −

1

2
a0γ
k g

0
il

+
1

2

d∑
σ=1

o(γ, σ)g0
kl[a

0γ
i (a0σ

k − a0σ
l ) + a0σ

i (a0γ
k − a0γ

l )] .
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Lemma 5.2.25 For any 1 ≤ ε, γ ≤ d0, s ∈ I \ {0}, and i, j, k, l = 1, . . . , n,

{c0ε
j , g

s
kl} =

m− s
m

(δjl − δkj)c0ε
j g

s
kl + ((Zm−1)lj − (Zm−1)kj)g

s
kl

+ δ(j 6=k)
1

λmj − λmk
c0ε
j

[
λm−sk λsjg

s
jl − λmj gskl

]
+ δ(j 6=l)

1

λmj − λml

[
λmj c

0ε
j g

s
kl + λm−sj λsl c

0ε
l g

s
kj

]
+ gskl

ε−1∑
λ=1

(c0λ
j − c0ε

j )(a0λ
l − a0λ

k ) ,

{a0γ
i , g

s
kl} =

1

2
δ(i 6=k)(a

0γ
k − a0γ

i )

[
2λsiλ

m−s
k

λmi − λmk
gsil −

λmi + λmk
λmi − λmk

gskl

]
+

1

2
δ(i 6=l)(a

0γ
l − a0γ

i )
λmi + λml
λmi − λml

gskl

+
1

2

d0∑
σ=1

o(γ, σ)gskl[a
0γ
i (a0σ

k − a0σ
l ) + a0σ

i (a0γ
k − a0γ

l )] .

Lemma 5.2.26 For any q ∈ I \ {0}, 1 ≤ ε, γ ≤ dq, and i, j, k, l = 1, . . . , n,

{cqεj , g
0
kl} =

q −m
m

δjlc
qε
j g

0
kl − (Zm−1)jlc

qε
j +

1

2
cqεj g

0
kl −

1

2
cqεj g

0
jl

+
1

2
δ(j 6=k)

λmj + λmk
λmj − λmk

cqεj (g0
jl − g0

kl)

+ δ(j 6=l)
1

λmj − λml

[
λml c

qε
j g

0
kl + λm−ql λqjc

qε
l g

0
kj

]
,

{aqγi , g
0
kl} =− q −m

m
δila

qγ
i g

0
kl + aqγi (Zm−1)il +

1

2
aqγi (g0

il − g0
kl)

+
1

2
δ(i 6=k)

λmi + λmk
λmi − λmk

(aqγi g
0
kl − aqγi g

0
il) + δ(i 6=k)

λm−qi λqk
λmi − λmk

(aqγk g
0
il − aqγk g

0
kl)

+ δ(i 6=l)
1

λmi − λml
(λm−qi λql a

qγ
l g

0
kl − λml a

qγ
i g

0
kl) .

Lemma 5.2.27 For any q ∈ I \ {0}, 1 ≤ ε, γ ≤ dq, and i, j, k, l = 1, . . . , n,

{cqεj , g
q
kl} =

q

m
δjkc

qε
j g

q
kl + (Zq−1)kjc

qε
l +

1

2
cqεl g

q
kj −

1

2
cqεj g

q
kl

+ δ(j 6=k)
1

λmj − λmk
cqεj

[
λqjλ

m−q
k gqjl − λ

m
k g

q
kl

]
+

1

2
δ(j 6=l)

λmj + λml
λmj − λml

[
cqεj g

q
kl + cqεl g

q
kj

]
,



206 Chapter 5. MQVs from cyclic quivers

{aqγi , g
q
kl} =− q

m
δila

qγ
i g

q
kl − aqγk (Zq−1)il +

1

2
aqγi g

q
kl −

1

2
aqγk g

q
il

+
1

2
δ(i 6=k)

λmi + λmk
λmi − λmk

(aqγi g
q
kl + aqγk g

q
il)

− δ(i 6=k)
1

λmi − λmk

[
λqiλ

m−q
k aqγi g

q
il + λm−qi λqka

qγ
k g

q
kl

]
+ δ(i 6=l)

1

λmi − λml

[
λm−qi λql a

qγ
l g

q
kl − λ

m
i a

qγ
i g

q
kl

]
.

Lemma 5.2.28 For any q, s ∈ I \ {0}, q < s, 1 ≤ ε, γ ≤ dq, and i, j, k, l = 1, . . . , n,

{cqεj , g
s
kl}

q<s
=

[
q − s
m

δjl +
s

m
δjk

]
cqεj g

s
kl + δ(j 6=k)

1

λmj − λmk
cqεj
[
λsjλ

m−s
k gsjl − λmk gskl

]
+ δ(j 6=l)

1

λmj − λml

[
λml c

qε
j g

s
kl + λm+q−s

j λs−ql cqεl g
s
kj

]
,

{aqγi , g
s
kl}

q<s
=
[
1− q

m
δil − δik

]
aqγi g

s
kl + δ(i 6=l)

1

λmi − λml

[
λm−qi λql a

qγ
l − λ

m
i a

qγ
i

]
gskl

+ δ(i 6=k)
1

λmi − λmk

[
λmk a

qγ
i g

s
kl + λm+q−s

k λs−qi aqγk g
s
il − λsiλm−sk aqγi g

s
il − λ

m−q
i λqka

qγ
k g

s
kl

]
.

Lemma 5.2.29 For any q, s ∈ I \ {0}, q > s, 1 ≤ ε, γ ≤ dq, and i, j, k, l = 1, . . . , n,

{cqεj , g
s
kl}

q>s
=

[
q − s
m

δjl +
s

m
δjk − 1

]
cqεj g

s
kl + δ(j 6=k)

1

λmj − λmk
cqεj
[
λsjλ

m−s
k gsjl − λmk gskl

]
+ δ(j 6=l)

1

λmj − λml

[
λmj c

qε
j g

s
kl + λq−sj λm+s−q

l cqεl g
s
kj

]
,

{aqγi , g
s
kl}

q>s
=
[
δik −

q

m
δil

]
aqγi g

s
kl + δ(i 6=l)

1

λmi − λml

[
λm−qi λql a

qγ
l − λ

m
i a

qγ
i

]
gskl

+ δ(i 6=k)
1

λmi − λmk

[
λmi a

qγ
i g

s
kl + λm+s−q

i λq−sk aqγk g
s
il − λsiλm−sk aqγi g

s
il − λ

m−q
i λqka

qγ
k g

s
kl

]
.

The generalised Arutyunov-Frolov brackets

In this subsection, the Poisson brackets (5.54)–(5.57) can be obtained by adapting the proof of

Proposition 4.3.4. The main difference is the use of the identities

(Zm−1)ij +
1

2
g0
ij =

m−1∑
s=1

tr−1

ts−1

λsiλ
m−s
j

λmi − tλmj
gsij +

1

2

λmi + tλmj
λmi − tλmj

grij , (5.53a)

(Zr−1)ij +
1

2
grij =

r−1∑
s=0

tr−1

ts−1

λm+s−r
i λr−sj

λmi − tλmj
gsij +

1

2

λmi + tλmj
λmi − tλmj

grij

+

m−1∑
s=r+1

ttr−1

ts−1

λs−ri λm+r−s
j

λmi − tλmj
gsij , for r 6= 0 , (5.53b)



5.2. MQVs with dimension vector (1, nδ) 207

which follow directly from (5.10).

To shorten expressions, we take the convention that all the terms with a vanishing denominator

should be omitted. For example λmi +λmk
λmi −λmk

stands for δ(i 6=k)
λmi +λmk
λmi −λmk

. We begin by writing the Poisson

bracket {gqij , gskl} for q = s = 0. It follows from Lemma 5.2.24 that in this case,

{g0
ij , g

0
kl} =

1

2
g0
ijg

0
kl

[
λmi + λmk
λmi − λmk

+
λmj + λml
λmj − λml

+
λmk + λmj
λmk − λmj

+
λml + λmi
λml − λmi

]

+
1

2
g0
ilg

0
kj

[
λmi + λmk
λmi − λmk

+
λmj + λml
λmj − λml

+
λmk + tλmj
λmk − tλmj

−
λmi + tλml
λmi − tλml

]

+
1

2
g0
ijg

0
il

[
λmk + λmi
λmk − λmi

+
λmi + tλml
λmi − tλml

]
+

1

2
g0
ijg

0
jl

[
λmj + λmk
λmj − λmk

−
λmj + tλml
λmj − tλml

]

+
1

2
g0
kjg

0
kl

[
λmk + λmi
λmk − λmi

−
λmk + tλmj
λmk − tλmj

]
+

1

2
g0
ljg

0
kl

[
λmi + λml
λmi − λml

+
λml + tλmj
λml − tλmj

]

+
∑
s 6=0

t

ts−1

λsiλ
m−s
l

λmi − tλml
gsil(g

0
ij − g0

kj) +
∑
s 6=0

t

ts−1

λskλ
m−s
j

λmk − tλmj
gskj(g

0
il − g0

kl)

−
∑
s 6=0

t

ts−1

λsjλ
m−s
l

λmj − tλml
gsjlg

0
ij +

∑
s 6=0

t

ts−1

λslλ
m−s
j

λml − tλmj
gsljg

0
kl .

(5.54)

Note that if gsij = 0 for all s 6= 0, i.e. when d = (d, 0, . . . , 0), we recover the Poisson brackets of

Arutyunov-Frolov (4.32). We will come back to this relation in § 5.3.3. For q = 0 and s 6= 0, we

get from Lemma 5.2.25 that

{g0
ij , g

s
kl} =

1

2
g0
ijg

s
kl

[
λmi + λmk
λmi − λmk

+
2λmj

λmj − λml
+

2λmj
λmk − λmj

+
λml + λmi
λml − λmi

]

+
m− s
m

(δjl − δkj)gsklg0
ij + gsilg

0
kj

λsiλ
m−s
k

λmi − λmk
+ g0

ilg
s
kj

λm−sj λsl
λmj − λml

+ g0
ijg

s
il

λm−sk λsi
λmk − λmi

+ g0
ijg

s
jl

λsjλ
m−s
k

λmj − λmk

+
1

2
g0
kjg

s
kl

[
λmk + λmi
λmk − λmi

−
λmk + tλmj
λmk − tλmj

]

+
1

2
g0
ljg

s
kl

[
λmi + λml
λmi − λml

+
λml + tλmj
λml − tλmj

]

+
∑
q 6=0

t

tq−1

[
λql λ

m−q
j

λml − tλmj
gqljg

s
kl −

λqkλ
m−q
j

λmk − tλmj
gqkjg

s
kl

]
.

(5.55)

It is nice to see that some terms are similar in the cases s = 0 and s 6= 0 by comparing (5.54)

and (5.55). By antisymmetry, we can find {gqij , gskl} for q 6= 0 and s = 0, which coincide with an
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explicit computation using Lemma 5.2.26.

Next, we can assume q, s 6= 0. If q = s in this case, Lemma 5.2.27 yields

{gsij , gskl} =
1

2
gsijg

s
kl

[
λmi + λmk
λmi − λmk

+
λmj + λml
λmj − λml

+
2λmk

λmk − λmj
+

2λmi
λml − λmi

]

+
1

2
gsilg

s
kj

[
λmi + λmk
λmi − λmk

+
λmj + λml
λmj − λml

+
λmk + tλmj
λmk − tλmj

−
λmi + tλml
λmi − tλml

]

+
s

m
(δjk − δil)gsijgskl + gsijg

s
il

λm−sk λsi
λmk − λmi

+ gsijg
s
jl

λsjλ
m−s
k

λmj − λmk

+ gskjg
s
kl

λskλ
m−s
i

λmk − λmi
+ gsklg

s
lj

λm−si λsl
λmi − λml

+

s−1∑
q=0

ts−1

tq−1

[
λm+q−s
k λs−qj

λmk − tλmj
gqkjg

s
il −

λm+q−s
i λs−ql

λmi − tλml
gskjg

q
il

]

+

m−1∑
q=s+1

tts−1

tq−1

[
λq−sk λm+s−q

j

λmk − tλmj
gqkjg

s
il −

λq−si λm+s−q
l

λmi − tλml
gskjg

q
il

]
.

(5.56)

If q < s are both nonzero, we obtain from Lemma 5.2.28 that

{gqij , g
s
kl}

q<s
=

1

2
gqijg

s
kl

[
λmi + λmk
λmi − λmk

+
λmj + λml
λmj − λml

+
2λmk

λmk − λmj
+

2λmi
λml − λmi

]

+ gqijg
s
kl

[
q − s
m

δjl +
s

m
δjk −

q

m
δil − δik

]
+ gqilg

s
kj

λm+q−s
j λs−ql

λmj − λml
+ gqkjg

s
il

λs−qi λm+q−s
k

λmi − λmk

+ gqijg
s
il

λm−sk λsi
λmk − λmi

+ gqijg
s
jl

λsjλ
m−s
k

λmj − λmk

+ gqkjg
s
kl

λqkλ
m−q
i

λmk − λmi
+ gqljg

s
kl

λm−qi λql
λmi − λml

.

(5.57)

By antisymmetry, we get the case q > s. The latter can also be checked using Lemma 5.2.29.

Finally, we have directly that {λi, λj} = 0 and {λi, gskl} = 1
mδijλig

s
kl by Lemma 5.2.9. Gathering

all these results, we obtain the following.

Proposition 5.2.30 Up to localisation, the commutative algebra generated by the elements

(λi, g
s
ij) inside O[C′n,m] is a Poisson subalgebra.
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5.2.5 Returning to integrability

For any U ∈ {X,Y, Z, 1I + XY }, we have obtained different families of Poisson commuting

functions in Propositions 5.1.2, 5.1.3 and 5.1.9, and they all contain the elements (trUk)k.

Furthermore, these families are such that we can derive explicit expressions for the Hamiltonian

flows of some of their elements in Propositions 5.1.5–5.1.8 and Propositions 5.1.10–5.1.12. In

particular, we can always write down the flows of the functions (trUk)k in these different cases.

These results suggest that we should try to build (degenerate) integrable systems containing some

of the functions (trUk)k. In fact, we will show that such functions are indeed (degenerately)

integrable, and proving this statement will occupy the rest of this subsection. We will omit to

write down expressions for the Hamiltonians in terms of local coordinates on Cn,q,d(m)′, as this

will be the subject of Section 5.3.

Remark 5.2.31 In a way similar to the study of integrability on the MQVs associated to a

Jordan quiver with general framing that we analysed in § 4.3.3, our statements will only hold

in the connected component of Cn,q,d(m)◦ containing Cn,q,d(m)′. Here, Cn,q,d(m)′ denotes the

subspace defined in Remark 5.2.2.

Trivial cases

First, assume that |d| = 2. By construction, this means that the space Cn,m is characterised

by matrices X,Y, V1,1,W1,1 and Vα,s,Wα,s, where (α, s) is either (1, 2) if d0 = 2, or (β, 1),

β ∈ I \ {0}, if d0 = dβ = 1 are the only nonzero components of d. Then, from the fourth item

of Proposition 5.1.2, we get in a way similar to Theorem 4.3.14 that the following holds.

Theorem 5.2.32 If |d| = 2 and U = X,Y, Z, the elements

{trUkm , tr(W1,1V1,1U
km) | k = 1, . . . , n}

form an integrable system on Cn,q,d(m) (or Cn,q,d(m)◦ for U = Z). For U = 1I + XY , this is

true with trUk instead of trUkm.

Next, introduce tpγ|qε = tr(Wp,γVq,ε) = Vq,εWp,γ (not to be confused with the parameters (ts)
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from (5.3)). Then, when we look at (3.39) for k = l = 0, we see that

{tpγ|qε, tsα|rβ}P =
1

2
[o(p, r) + o(q, s)− o(p, s)− o(q, r)] tpγ|qεtsα|rβ

+
1

2
δpso(α, γ)(tpγ|qεtsα|rβ + tsα|qεtpγ|rβ)

+
1

2
δqro(β, ε)(tpγ|qεtsα|rβ + tsα|qεtpγ|rβ)

+
1

2
δqs[o(ε, α) + δεα](tpγ|qεtsα|rβ + tsα|qεtpγ|rβ) + δqsδεα tpγ|rβ

− 1

2
δpr[o(β, γ) + δβγ ](tpγ|qεtsα|rβ + tsα|qεtpγ|rβ)− δprδγβ tsα|qε

In particular, {tpγ|pγ , tsα|sα}P = 0.

Theorem 5.2.33 If n = 1 and U = X,Y, Z, the elements (trUm, tsα|sα)(s,α)6=(1,1) form an

integrable system for any d. Hence trUkm is Liouville integrable for any k ∈ N×. If U =

1I +XY , the same is true with trUk for k ∈ N×.

Proof. Using the second item of Proposition 5.1.2 and the remark above, these elements Poisson

commute. We deal with the case U = X now, and we work on the subspace whereX is invertible.

In this case each element Ws,α, Vs,α, Xs, Zs is a scalar, the moment map (4.1a) reads

qs

ds∏
α=1

(1 + tsα|sα) = XsZsX
−1
s−1Z

−1
s−1 , s ∈ I ,

and by taking the product of these expressions we get that t
∏

(s,α)(1 + tsα|sα) = 1. Hence, we

can rewrite t11|11 in terms of the other tsα|sα. The group acting in this case is (C×)m, so we can

generically fix the gauge by the conditions Xs = 1 for s 6= 0 and
∑

αW0,α = 1, which amounts

to W0,1 = 1−
∑

α 6=1W0,α.

The moment map at s now allows to write Zs/Zs−1 in terms of the other elements. Thus, we

can see that at a generic point the functions (X0, Z0,Ws,α, tsα|sα)(s,α) 6=(0,1) are coordinates.

In particular, the family from the statement contains |d| functionally independent elements at

a generic point. The other cases are similar. 2

Degenerate integrability

Recall the definition of the commutative algebra OU defined in Proposition 5.1.2, which is

generated by the functions trUk and tr(Ws,αVr,βU
l) and is also a Poisson algebra. This algebra
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is defined on the space Cn,q,d(m) (or Cn,q,d(m)◦ for U = Z), and we use the same notation OU

to denote the corresponding sheaf of analytic functions.

Proposition 5.2.34 For U = X,Y, Z, we can complete the set of functions (trU lm)nl=1 by

2n|d| − 2n elements of OU , such that they are all functionally independent at a generic point.

Moreover, among these 2n|d|−n functions only the n elements trU lm Poisson commute with all

the other ones.

The case U = 1I +XY is slightly more involved. To state it, denote by md the cardinality of the

set Id = {s ∈ I | ds 6= 0}.

Proposition 5.2.35 We can complete the set of functions (tr(1I+XY )l)nl=1 by 2n|d|−(md+1)n

elements of OU , such that they are all functionally independent at a generic point. Moreover, we

can choose these 2n|d| −mdn functions so that mdn of them commute with all the other ones.

As in the one-loop case, we obtain the following result as a direct application of Propositions

5.2.34 and 5.2.35.

Corollary 5.2.36 For any k ∈ N×, there exists a degenerate integrable system containing

trUkm, for U = X,Y, Z, or trUk for U = 1I +XY .

In the proof of Proposition 5.2.34, we will use an inductive argument based on the ordering

considered in Remark 3.2.11.

Proof. (Proposition 5.2.34.) We only show the case U = Z, the other cases being treated

similarly (by using an analogue to the argument at the end of Proposition 4.3.16).

First, we need to introduce a convenient set of local coordinates. Consider the space h2(|d|−1)+1

where h = Cn, with local coordinates (zi, vs,α,i, ws,α,i) for i = 1, . . . , n, s ∈ I , and 1 ≤ α ≤ ds

for s < s̄, while20 1 ≤ α < ds̄ for s = s̄. We consider the subspace h1 where zi 6= 0, zi 6= zj for

all i 6= j, and for each (s, α), 1 +
∑

iws,α,ivs,α,i 6= 0. Now, define the matrices

Zm−1 = diag(z1, . . . , zn), Zs = Idn for s 6= m− 1,

Vs,α = (vs,α,i)i, Ws,α = (ws,α,i)i , for (s, α) < (s̄, ds̄).
(5.58)

20See Remark 3.2.11 for the definition of (s̄, ds̄).
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We can define for any such (s, α) < (s̄, ds̄) the matrix

Fs,α= t

(←−∏
r>s

Zr−1

) ←−∏
16γ6α

(Idn +Ws,γVs,γ)

Zs−1

←−∏
r<s

 ←−∏
16β6dr

(Idn +Wr,βVr,β)

Zr−1

,
where an empty product is set equal to 1. The rightmost factor is always Z−1 := Zm−1. (Note

that the matrix Fs̄,ds̄ defined in the same way in Cn,q,d(m)◦ is nothing else than the product

Xm−1Zm−1 . . . Z0X
−1
m−1 by (5.1a).) If the elements (s, α), (r, β) are such that (s, α) < (r, β)

and they follow one another in the total ordering, we have from our choice of (Zs) defined in

(5.58) that Fr,β = (Idn +Wr,βVr,β)Fs,α, and they are all clearly invertible.

Let (s−, α−) be the element preceding (s̄, ds̄) in the ordering. We claim that Fs−,α− has distinct

eigenvalues generically. We also claim that for W = (1, . . . , 1)>, this implies that there exists

V ∈ Mat1×n such that F+ = Fs−,α−+WV Fs−,α− has the same spectrum as Z0 = Zm−1 . . . Z0.

Indeed, this follows from Lemma A.1 by induction on the order of the (s, α). Moreover, this

lemma tells us that by fixing the matrixXm−1 that diagonalises F+ intoZ0, V is uniquely defined.

It remains to show that the elements of h1 and a fixed choice of Xm−1 determine a point in

Cn,q,d(m)◦. Indeed, we can set Ws̄,ds̄ = W , Vs̄,ds̄ = V , and define inductively from Xm−1

X0 =q0

←−∏
16α6d0

(Idn +W0,αV0,α) Zm−1Xm−1 ,

Xs =qs

←−∏
16α6ds

(Idn +Ws,αVs,α) Xs−1 , 0 < s < m− 1 .

It is not hard to see that all invertibility conditions of Cn,q,d(m)◦ are satisfied as well as (5.1a).

Locally, we can complete the coordinates given by (zi, vs,α,i, ws,α,i) generic in h1 by n functions

that correspond to the choice of eigenbasis determining Xm−1 (up to permutation). It remains

to adapt the counting argument in the proof of Proposition 4.3.16 to the present case, where we

want to show that we can find 2n|d| − n functionally independent elements in OZ . Introduce

tkpγ|qε = trWp,γZ
km+p−qVq,ε for any k ∈ N× and admissible spins. We have locally that

tkpγ|qε =
∑

i z
k
i wp,γ,ivq,ε,i for (p, γ), (q, ε) 6= (s̄, ds̄), and tkqε := tks̄,ds̄|qε =

∑
i z
k
i vq,ε,i for

(q, ε) 6= (s̄, ds̄). Now, recall the map ρ defined in Remark 3.2.11 which assigns an admissible spin

to all {1, . . . , |d|}. As ρ preserves the ordering, ρ(|d|) = (s̄, ds̄). We can consider the functions

tkρ(j)|ρ(j′) and tkρ(j) for j, j′ 6= |d|. We then form

T =

((
1

k
trZkm

)
k

,
(
tkρ(1)

)
k
, . . . ,

(
tkρ(|d|−1)

)
k
, . . .

(
tkρ(1),ρ(1)

)
k
, . . . ,

(
tkρ(1),ρ(|d|−1)

)
k

)
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where each k ranges over 1, . . . , n. Since 1
k trZkm =

∑
i z
k
i , it is an easy exercise to see that the

Jacobian matrix with respect to the coordinates (zi, vs,α,i, ws,α,i) has diagonal form

∂T

∂(z, v, w)
=


Vz 0 0

∗ A 0

∗ ∗ B

 ,

where A,B are composed of (|d| − 1) diagonal n × n blocks which are generically invertible.

Thus, this matrix has full rank 2n|d| − n as in Proposition 4.3.16.

Finally, we need to show that the functions 1
k trZkm, 1 ≤ k ≤ n, are the only ones that commute

with the other elements of T . This is similar to the end of the proof of Proposition 4.3.16 : if this

statement were false, this would contradict that Cn,q,d(m) is symplectic. 2

Proof. (Proposition 5.2.35.) We only explain the differences with the proof of Proposition

5.2.34, as the ideas are similar. Recall that md is the cardinality of Id = {s ∈ I | ds 6= 0}.

First, we introduce a convenient set of local coordinates. Consider the space h2(|d|−md)+md where

h = Cn, with local coordinates (zp,i, vs,α,i, ws,α,i) for i = 1, . . . , n, p ∈ Id, s ∈ {p ∈ Id | dp >

1} and 1 < α ≤ ds. We consider the subspace h′1 where zp,i 6= 0, zp,i 6= zp,j for all p, q ∈ Id,

1 ≤ i, j ≤ n with (p, i) 6= (q, j), and for each (s, α), 1 +
∑

iws,α,ivs,α,i 6= 0. We define the

matrices

Bp = diag(zp,1, . . . , zp,n) for p ∈ Id, Vs,α = (vs,α,i)i, Ws,α = (ws,α,i)i . (5.59)

Next, fix p ∈ Id. For any 1 < α ≤ dp, we can define the matrix

Up,α = (Idn +Wp,dpVp,dp) . . . (Idn +Wp,αVp,α) ,

and we also set Up,+ = Idn. Put Wp,1 = (1, . . . , 1)>. As in the proof of Proposition 5.2.34

with Lemma A.4 in this case, we know that there exists some Vp,1 ∈ Mat1×n(C) such that

Up,1 := BpUp,2(Idn +Wp,1Vp,1) has the same spectrum as Bp−1. (We take Up,2 = Up,+ if

dp = 1, otherwise the result follows by induction on α.) Moreover, up to fixing the matrix

Yp−1 ∈ GLn(C) that satisfies

Yp−1Bp−1Y
−1
p−1 = Up,dp = Bp(Idn +Wp,dpVp,dp) . . . (Idn +Wp,1Vp,1) , (5.60)

the covector Vp,1 is unique. Note that Yp−1 depends on n parameters (cp−1,i) corresponding to a

choice of eigenbasis. This choice is independent for distinct p, q ∈ Id.
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For each s ∈ I with ds = 0, we set Bs = Bs−1 inductively. This is well-defined since B0 was

given in (5.59) as d0 6= 0. We can remark that any matrix Ys−1 ∈ GLn(C) satisfying

Ys−1Bs−1Y
−1
s−1 = Bs , (5.61)

must be diagonal with nonzero entries. We simply fix Ys−1 = Idn in such cases.

We claim that the (2|d| − md)n functions (vs,α,i, ws,α,i, zp,i) of h′1 and nmd parameters

(cs−1,i) form a local coordinate system around a generic point of Cn,q,d(m). Indeed, we can

put Xs = (t−1
s Bs − Idn)Y −1

s , so that (Idn +XsYs) = tsB
−1
s and (Idn +Ys−1Xs−1)−1 =

t−1
s−1Ys−1Bs−1Y

−1
s−1. Then, (5.60)–(5.61) imply that

(Idn +XsYs)(Idn +Ys−1Xs−1)−1 =qsB
−1
s Ys−1Bs−1Y

−1
s−1

=qs

←−∏
16α6ds

(Idn +Ws,αVs,α) ,

which is precisely (5.1a). Hence, we define a point generically inside the subspace {detY m 6= 0}

of Cn,q,d(m). The choices of (Bp,Wp,1) at all p ∈ Id and (Bs, Ys−1) at all s ∈ I \ Id fix the

gauge (up to permutations). Therefore, we get local coordinates.

Second, we pick a suitable set of functions. We will work in the algebra O′U for convenience

(which contains OU by Proposition 5.1.3). Hence, we can pick symmetric functions of the

elements Idn +XsYs, s ∈ I . We set T ks = t−ks tr(Idn +XsYs)
k for each s ∈ I , k ∈ N×.

We also introduce the following elements tkp,γ,ε = t−kp trWp,γ(Idn +XpYp)
kVpε, for any p ∈ Id,

1 ≤ γ, ε ≤ dp, and k ∈ N×. In local coordinates, we can write that for any p ∈ Id, 1 < γ, ε ≤ dp

T ks =
∑
i

z−kp,i , tkp,γ,ε =
∑
i

wp,γ,ivp,ε,iz
−k
p,i , tkp,1,ε =

∑
i

vp,ε,iz
−k
p,i .

Hence, for each p ∈ Id, we consider

T̃p =

((
1

k
T ks

)
k

,
(
tkp,1,dp

)
k
, . . . ,

(
tkp,1,2

)
k
,
(
tkp,dp,2

)
k
, . . . ,

(
tkp,2,2

)
k

)
where each k ranges over 1, . . . , n (we only take the first n functions for dp = 1). With respect to

the coordinates xq = (zq,i, vq,α,i, wq,α,i) for q ∈ Id, it is not hard to see that the Jacobian matrix

of T̃p vanishes for p 6= q, while for p = q it takes the form

∂T̃p
∂xp

=


Vp 0 0

∗ Ap 0

∗ ∗ Bp

 ,
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for some Vp ∈ Matn×n, A ∈ Matnp×np and B ∈ Matnp×np where np = n(dp − 1). These

three matrices are generically invertible, so the matrix ∂T̃p/∂xp has rank 2ndp − n. Therefore,

the Jacobian matrix of T = (T̃p) with respect to the coordinates (xq) is constituted of nonzero

diagonal blocks of such ranks at a generic point. Hence, we get∑
p∈Id

n(2dp − 1) = 2n
∑
p∈Id

dp −
∑
p∈Id

n = 2n|d| − nmd

functionally independent elements. Among them, the nmd functions T kp , p ∈ Id and k =

1, . . . , n, are Poisson commuting with all the other ones by Proposition 5.1.3. Moreover, we

could replace one of the T kp by tr(1I +XY )k without changing the functional independence. 2

Liouville integrability

We consider for any j ∈ {0, 1, . . . , |d|} the elements Θ(j) andU(j) = Θ(j)U forU ∈ {Y, Z, (1I+

XY )−1}, which we used to state the involutivity of the functions trUK(j) in Proposition 5.1.9.

Denote by HU the commutative algebra generated by the functions trUK(j), j ∈ {0, 1, . . . , |d|},

K ∈ N, which is therefore an abelian subalgebra of O[Cn,q,d(m)] (or O[Cn,q,d(m)◦] for U =

Z). We also refer to the corresponding sheaf of functions as HU . The following result is the

generalisation of Proposition 4.3.18.

Proposition 5.2.37 At a generic point, there are n|d| functionally independent elements inHU .

Corollary 5.2.38 For any k ∈ mN×, there exists a Liouville integrable system containing trUk.

Furthermore, there exists a Liouville integrable system containing tr(Idn +XsYs)
k for any k ∈

N× and s ∈ I .

Proof. (Corollary 5.2.38.) It suffices to show that such elements are in HU at a generic point.

For U = Y,Z, we get from (5.4) that U(|d|) has m blocks qsUs of size n × n, on the left of the

diagonal blocks. Hence, trUk(|d|) = tk/m trUk for k divisible by m.

For U = (1I + XY )−1, U0 has diagonal blocks (Idn +XY )(Idn +Y X)−1(Idn +XY )−1, so

clearly any tr(1I + Y X)−k is in HU for k ∈ N, which then follows for any k ∈ Z by using

Cayley-Hamilton theorem. But tr(1I + Y X)k = tr(1I + XY )k for any k ∈ N, so using the

Cayley-Hamilton theorem again, tr(1I +XY )k ∈ HU for any k ∈ Z.
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To get the last statement, we need that for any k ∈ N and s ∈ I

qks tr(Idn +XsYs)
−k − tr(Idn +Ys−1Xs−1)−k ∈ HU . (5.62)

Assuming that (5.62) holds and working on Cn,q,d(m)◦, tr(Idn +Ys−1Xs−1)−k =

tr(Idn +Xs−1Ys−1)−k so if we take linear combinations of (5.62) this yields that (tk −

1) tr(Idn +Xm−1Ym−1)−k ∈ HU . Since t is not a root of unity by assumption (see Proposition

5.2.1), we get that tr(Idn +XsYs)
−k ∈ HU for s = m− 1, and using (5.62) shows that this holds

for all s as qs 6= 0. The statement for all k ∈ N then implies it for k ∈ Z.

We now show (5.62) for each s. By assumption, d0 ≥ 1, and ρ(d0) = (0, d0). Hence, using the

second equality in (5.4) for j = d0 and s = 0, we find that

trUk(d0) = trUk(0) + qk0 tr(Idn +X0Y0)−k − tr(Idn +Ym−1Xm−1)−k ,

for any k ∈ N. This is the base step.

Now, consider 0 < s ≤ m − 1. If ds = 0 note that (Idn +XsYs) = qs(Idn +Ys−1Xs−1)

by (5.1a). Hence there is nothing to prove since (5.62) just vanishes. If ds 6= 0, denote by

js ∈ {0, 1, . . . , |d|} the element such that ρ(js) = (s, ds). Then, using the second equality in

(5.4) for j = js and s, we find that

trUk(js) = trUk(js−ds) + qks tr(Idn +XsYs)
−k − tr(Idn +Ys−1Xs−1)−k ,

for any k ∈ N. Indeed, by assumption ρ(js − ds) = (r, dr) for some r < s, so U(js) and U(js−ds)

only differ by their s-th diagonal blocks which are

qs(Idn +XsYs)
−1 for U(js) , (Idn +XsYs)(Idn +Ys−1Xs−1)−1(Idn +XsYs)

−1 for U(js−ds) .

and the equality easily follows. 2

Proof. (Proposition 5.2.37.) We sketch the proof for U = Z and the details can be recovered

by adapting Proposition 4.3.18. Moreover, we can assume |d| ≥ 2 as in the case |d| = 1 we just

need trZkm with k = 1, . . . , n.

First, we need to introduce a convenient set of local coordinates. Consider the space h2(|d|−1)+1

where h = Cn, with local coordinates (zi, vs,α,i, ws,α,i) for i = 1, . . . , n, s ∈ I , and 1 ≤ α ≤ ds,
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with (s, α) 6= (0, 1). We consider the subspace h2 where zi 6= 0, zi 6= zj for all i 6= j, and for

each (s, α), 1 +
∑

iws,α,ivs,α,i 6= 0. Now, define the matrices

Zm−1 = diag(z1, . . . , zn), Zs = Idn for s 6= m− 1, Vs,α = (vs,α,i)i, Ws,α = (ws,α,i)i .

with indices (s, α) 6= (1, 1). Then, as in the proof of Proposition 5.2.34, we can complete the

elements of h2 to get local coordinates on Cn,q,d(m)◦ around a generic point (this requires Lemma

A.4 to get V0,1).

Recall that the admissible spins (s, α) correspond to some j ∈ {1, . . . , |d|} under the map ρ of

Remark 3.2.11. In particular, ρ(1) = (0, 1). Define hj,K = trZKm(j) . The proof then consists

in showing by (descending) induction on j = |d|, . . . , 2 that the functions h|d|,K , . . . , hj−1,K ,

K = 1, . . . , n, are n(|d| − j + 2) independent functions. This is done as in Proposition 4.3.18,

and we only sketch the induction step. Assume that we have independence for some j. Using

the second equality in (5.4), each function hj−1,K depends on all the matrices (Vs,α,Ws,α) with

(s, α) ≥ ρ(j), while any hl,K , j ≤ l ≤ |d|, depends on those with (s, α) > ρ(l) ≥ ρ(j). Thus

the elements Tj−1 := (hj−1,K)nK=1 depend on the 2n local coordinates xρ(j) = (vρ(j),i, wρ(j),i),

while any hl,K with j ≤ l ≤ |d| does not. It remains to find a point where ∂Tj−1/∂xρ(j) has rank

n to conclude.

The case U = Y is exactly the same. For the introduction of local coordinates in the case

U = 1I+XY , we need to follow the argument developed in Proposition 5.2.35 and first introduce

nmd functions (zp,i) as entries of the diagonal matrices Idn +XpYp, p ∈ Id, instead of the n

functions (zi). 2

5.3 Explicit forms for the Hamiltonians

5.3.1 General expressions

Let us work with a fixed dimension vector (1, nδ) in the setting of Section 5.2. Our aim is to find

explicit expressions for some of the functions forming the integrable systems described in § 5.2.5

on the space Cn,q,d(m). Indeed, we would like to see if such systems can be identified with

known ones, in the same way as we obtained the trigonometric Ruijsenaars-Schneider system in

Section 4.2 or its spin version in Section 4.3, together with some modifications of them. So, let us
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consider the local coordinates (λi,a
s,α
i , cs,αi ) defined in § 5.2.2 on the subspace Cn,q,d(m)′ (see

Remark 5.2.2 for its definition).

On the one hand, we will get nothing from the case U = X since the elements trXkm are just

given by
∑n

i=1 λ
km
i . On the other hand for U = Y,Z, it seems difficult to write the elements

Gm,dk = trZkm , Hm,d
k = trY km ,

since Z is constituted of the blocks (5.10), and Zm is obtained by multiplying them. This is

similar for Y = Z − X−1. We will only come back to these functions in some specific cases

given below. Hopefully, the case U = 1I + XY is easier to deal with, as we do not need to

consider Um or its multiples. Moreover, since 1I +XY =
∑

r∈I(Idn +XrYr) and we noted that

the elements Idn +XrYr are integrable as well in § 5.2.5, it suffices to write down such functions.

Set Lr = Idn +XrYr for all r ∈ I . Working in Cn,q,d(m)′, we can write Lr = XrZr, so that in

the gauge given by (5.8) we have from (5.10)

(L̂r)ij =

r∑
s=0

tr
ts−1

λ
m+(s−r)
i λ

−(s−r−1)
j

λmi − tλmj
gsij +

m−1∑
s=r+1

ttr
ts−1

λs−ri λ
m−(s−r−1)
j

λmi − tλmj
gsij , (5.63)

where gsij :=
∑ds

α=1 a
s,α
i cs,αj . In particular, we can write down the Hamiltonians Fm,dr,k = trLkr

from (5.63). For example,

Fm,dr,1 =
tr

1− t

r∑
s=0

t−1
s−1

n∑
i=1

fsii +
tr

1− t

m−1∑
s=r+1

tt−1
s−1

n∑
i=1

fsii , fsii = gsiiλi . (5.64)

Here, we introduced the elements fsii because they are Znm-invariant by Remark 5.2.4. (As we

will shortly see, it is not a coincidence that in the case d = (d, 0, . . . , 0), the function given by

(5.64) for r = m − 1 is precisely G1,d
1 given in (4.25) with q = t.) More generally, we can see

that trF
m,d
r+1,1 − tr+1F

m,d
r,1 = ttr+1

∑
i f

r+1
ii for r = 0, . . . ,m − 2. Hence, we can equivalently

look at the integrable Hamiltonians

F0 =
n∑
i=1

f0
ii , F1 =

n∑
i=1

f1
ii , . . . , Fm−1 =

n∑
i=1

fm−1
ii .

We can evaluate the vector fields that they define on the local coordinates (λi,a
s,α
i , cs,αi ) using

the Poisson brackets obtained in § 5.2.4. To write them, we denote the derivation {−, Fr} as d
dtr

,

and we introduce

Ṽ r
ij =

λmi + λmj
λmi − λmj

grij − 2(Zr−1)ij − grij , (5.65)

for any r ∈ I .
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Lemma 5.3.1 For any 1 ≤ γ, ε ≤ d0 and i, j = 1, . . . , n,

dλi
dt0

=
1

m
λif

0
ii ,

da0γ
i

dt0
=− 1

2

∑
k 6=i

(a0γ
i − a0γ

k )Ṽ 0
ikλk ,

dc0ε
j

dt0
=− 1

m
c0ε
j f

0
jj +

1

2

∑
k 6=j

(c0ε
j Ṽ

0
jk − c0ε

k Ṽ
0
kj)λk .

For any q ∈ I \ {0}, 1 ≤ γ, ε ≤ dq and i, j = 1, . . . , n,

daqγi
dt0

=
m− q
m

aqγi f
0
ii + aqγi (Zm−1)iiλi −

1

2

∑
k 6=i

(
aqγi Ṽ

0
ikλk − aqγk

2λm−qi λqk
λmi − λmk

f0
ik

)
,

dcqεj
dt0

=
q − 1−m

m
cqεj f

0
jj − cqεj (Zm−1)jjλj +

1

2

∑
k 6=j

(
cqεj Ṽ

0
jkλk − cqεk

2λm−q+1
k λq−1

j

λmk − λmj
f0
kj

)
.

Proof. Recall that f0
kk = g0

kkλk and {λi, csαk } = 1
mδikλic

sα
k for any (s, α). The first bracket is

obvious, while the next two are obtained using that

{a0γ
i , g

0
kk} =

1

2
δ(i 6=k)(a

0γ
k − a0γ

i )

[
λmi + λmk
λmi − λmk

g0
ik − g0

ik − 2(Zm−1)ik

]
,

{c0ε
j , g

0
kk} =

1

2
δ(j 6=k)c

0ε
j

[
λmj + λmk
λmj − λmk

g0
jk − g0

jk − 2(Zm−1)jk

]

− 1

2
δ(j 6=k)c

0ε
k

[
λmk + λmj
λmk − λmj

g0
kj − g0

kj − 2(Zm−1)kj

]
,

as a direct consequence of Lemma 5.2.24. Similarly, the last two brackets are obtained using

{a0γ
i , g

0
kk} =δik

m− q
m

aqγi g
0
kk + δika

qγ
i (Zm−1)ik + δ(i 6=k)a

qγ
k g

0
ik

λm−qi λqk
λmi − λmk

− 1

2
δ(i 6=k)a

qγ
i

[
λmi + λmk
λmi − λmk

g0
ik − g0

ik − 2(Zm−1)ik

]
,

{c0ε
j , g

0
kk} =δjk

q −m
m

cqεj g
0
kk − δjkc

qε
j (Zm−1)kk + δ(j 6=k)c

qε
k

λm−qk λqj
λmk − λmj

g0
kj

+
1

2
δ(j 6=k)c

qε
j

[
λmj + λmk
λmj − λmk

g0
jk − g0

jk − 2(Zm−1)jk

]
,

which follows from Lemma 5.2.26. 2

To see the similarity between Lemma 5.3.1 and Lemma 4.3.8, we introduce

V 0
ij =

λmi + λmj
λmi − λmj

+
λmi + tλmj
λmi − tλmj

, U0,s
ij =

2t

ts−1

λsiλ
m−s
j

λmi − tλmj
, s 6= 0 , (5.66)
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so that we can write using (5.10) and (5.65) that Ṽ 0
ij = V 0

ijg
0
ij +

∑
s 6=0 U

0,s
ij g

s
ij . Moreover, we

replace c0ε
j by c0ε

j λj for all indices. Then, we obtain dλmi
dt0

= λmi f
0
ii together with

da0γ
i

dt0
=− 1

2

∑
k 6=i

(a0γ
i − a0γ

k )V 0
ikf

0
ik −

1

2

∑
k 6=i

∑
s6=0

(a0γ
i − a0γ

k )U0,s
ik f

s
ik ,

dc0ε
j

dt0
=

1

2

∑
k 6=j

(c0ε
j V

0
jkf

0
jk − c0ε

k V
0
kjf

0
kj) +

1

2

∑
k 6=j

∑
s 6=0

(c0ε
j U

0,s
jk f

s
jk − c0ε

k U
0,s
kj f

s
kj) .

Thus, for fsij = 0 for all s 6= 0 with xi = λmi , we recover precisely Lemma 4.3.8 up to a

multiplicative factor. This is the case when ds = 0 for all s 6= 0, and we come back to this

relation in § 5.3.3 below. This is also the case if we restrict to the subspace of Cn,q,d(m)′ where

allWs,α, Vs,α with s 6= 0 are set to zero. In the latter case, the flows are complete on this subspace

by Proposition 5.1.12.

We can also write the vector fields for s 6= 0. The proof is a boring adaptation of Lemma 5.3.1,

so we leave the details to the reader.

Lemma 5.3.2 For any 1 ≤ γ, ε ≤ d0 and i, j = 1, . . . , n,

dλi
dts

=
1

m
λif

s
ii ,

da0γ
i

dts
=−

∑
k 6=i

(a0γ
i − a0γ

k )
λsiλ

m−s
k

λmi − λmk
fsik ,

dc0ε
j

dts
=− 1

m
c0ε
j f

s
jj +

∑
k 6=j

(
c0ε
j

λsjλ
m−s
k

λmj − λmk
fsjk − c0ε

k

λs+1
k λm−s−1

j

λmk − λmj
fskj

)
.

For any q ∈ I \ {0}, q < s, 1 ≤ γ, ε ≤ dq and i, j = 1, . . . , n,

daqγi
dts

=− q

m
aqγi f

s
ii −

∑
k 6=i

(
aqγi

λsiλ
m−s
k

λmi − λmk
− aqγk

λs−qi λm+q−s
k

λmi − λmk

)
fsik ,

dcqεj
dts

=
q − 1

m
cqεj f

s
jj +

∑
k 6=j

(
cqεj

λsjλ
m−s
k

λmj − λmk
fsjk − cqεk

λs−q+1
k λm+q−s−1

j

λmk − λmj
f skj

)
.

For any 1 ≤ γ, ε ≤ ds and i, j = 1, . . . , n,

dasγi
dts

=− s

m
asγi f

s
ii − asγi (Zs−1)iiλi −

1

2

∑
k 6=i

(
asγi

2λsiλ
m−s
k

λmi − λmk
fsik − asγk Ṽ

s
ikλk

)
,

dcsεj
dts

=
s− 1

m
csεj f

s
jj + csεj (Zs−1)jjλj +

1

2

∑
k 6=j

(
csεj

2λsjλ
m−s
k

λmj − λmk
f sjk − csεk Ṽ

s
kjλk

)
.
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For any q ∈ I \ {0}, q > s, 1 ≤ γ, ε ≤ dq and i, j = 1, . . . , n,

daqγi
dts

=
m− q
m

aqγi f
s
ii −

∑
k 6=i

(
aqγi

λsiλ
m−s
k

λmi − λmk
− aqγk

λm+s−q
i λq−sk

λmi − λmk

)
fsik ,

dcqεj
dts

=
q − 1−m

m
cqεj f

s
jj +

∑
k 6=j

(
cqεj

λsjλ
m−s
k

λmj − λmk
fsjk − cqεk

λm+s−q+1
k λq−s−1

j

λmk − λmj
fskj

)
.

5.3.2 Simple framing

We consider the MQV Cn,q,d(m) for d = d′ = (1, 0, . . . , 0). Then, the local coordinates are given

by the 3n elements (λi,a
0,1
i , c0,1

i ) under the constraints a0,1
i = 1 for all i. Thus, we only need

to look at the elements (λi, ci), where we have set ci = c0,1
i . We easily obtain from Proposition

5.2.7 that the Poisson brackets are given by

{λi, λj} =0 , {λi, cj} =
1

m
δijλicj ,

{cj , ci} =δ(i 6=j)
λmj + λmi
λmj − λmi

cicj + (Zm−1)ijci − (Zm−1)jicj .

Using (5.10), we have in this case (we remove the hat from the notation)

(Zr)ij =
tr
t−1

λm−r−1
i λr+1

j

λmi − tλmj
g0
ij = tr

(
λi
λj

)m−r−1 λmj
λmi − tλmj

cj , r ∈ I .

Using the case r = m− 1 with t = tm−1, this allows us to get after simplification

{cj , ci} = (1− t)2δ(i 6=j)
(λmj + λmi )λmi λ

m
j

(λmj − λmi )(λmi − tλmj )(λmj − tλmi )
cicj .

By doing so, we have proved the following result.

Lemma 5.3.3 Introduce the functions xi = λmi , ν ′i = ci. Then, the Poisson bracket on (xi, ν
′
i)

takes the form (4.16a)–(4.16c). The same is true for (xi, νi) with νi = (1− t)ciλi.

This lemma implies that there exists a connection to the phase space C′n,t of the (non-spin)

trigonometric RS system introduced in § 4.2.1 (with parameter t =
∏
s qs), and that the two

spaces are locally diffeomorphic as Poisson manifolds. In fact, this diffeomorphism is globally

defined between Cn,q,d(m)◦ and C◦n,t, see the proof of Proposition 5.2.1 (and [41, Appendix C]

to show that the isomorphism is Poisson). As another consequence of this lemma, we can obtain

log-canonical coordinates (xi, σi) as in (4.22).
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Let us precise the relation between the integrable systems on Cn,q,d(m) and the non-spin RS

system in a way similar to [41, §4.2]. To do so, it is convenient to break the symmetry between

the matrices X0, . . . , Xm−1 by acting with the element gX = (Λ−m,Λ−m+1, . . . ,Λ−1), Λ =

diag(λ1, . . . , λn), as in (5.7). We get that Xs = Idn for 0 ≤ s < m − 1, while Xm−1 = A,

where A = Λm = diag(x1, . . . , xn). Moreover, from the expression of Zr given above, we get

after acting with gX that

Zr = trB , r 6= m− 1 , Zm−1 = tm−1A
−1B , Bij = (1− t) νjxj

xi − txj
.

The matrices (A,B) are just the elements (X,Z) in (4.15). In particular, this allows us to write

down the Hamiltonian of interest in terms of the Lax matrix and the diagonal matrix of positions

for the trigonometric RS system.

First, we note that

Fm,d
′

r,k = tr(Idn +XrYr)
k = tr(XrZr)

k = tkr trBk , (5.67)

are just multiples of the functions G1,1
k = trBk given in (4.25). This is precisely the family of

the trigonometric RS system which we have already studied.

Next, we have

Gm,d
′

k = trZkm = mtkm−1 . . . t
k
0 tr(A−1Bm)k . (5.68)

Up to normalisation and using (4.22), we can write Gm,11 as

Gm,11 =
∑

1≤j0,...,jm−1≤n
(σj0 . . . σjm−1)x−1

j0

m−1∏
s=0

t− 1

t− xjsx−1
js+1

m−1∏
s=0

n∏
a6=js

Υjsa , (5.69)

where we have set

Υij =
1− txix−1

j

1− xix−1
j

=
t− xjx−1

i

1− xjx−1
i

.

It is shown in [41] for k = 1, and in [34] for any k ≥ 1, that the (normalised) Hamiltonian Gm,d
′

k

is the quasi-classical limit of the Hamiltonian operator of the twisted Macdonald–Ruijsenaars

system in type An−1 defined in [40]. Moreover, the work of Braverman, Etingof and Finkelberg

[34] gives a systematic approach to obtain the quantisation of the above integrable systems, as

well as the one based on Y which we now describe.

Using that Ys = Zs −X−1
s , we can find

Ym−1 . . . Y0 =
(
tm−1A

−1B −A−1
)

(tm−2B − Idn) . . . (t0B − Idn) .
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Introducing the matrix polynomial

P(B) =
∏
s∈I

(B − t−1
s Idn) , (5.70)

we can then write

Hm,d′

k = trY km = mtkm−1 . . . t
k
1 tr

(
A−1P(B)

)k
. (5.71)

This can be seen as a generalisation of the family Gm,d
′

k . Indeed, since each ts contains a factor

q0, we get in the limit q0 → ∞ that Hm,d′

k degenerate to Gm,d
′

k (after normalisation to get

tr(A−1Bm)k). We can also rewrite the functions Hm,d′

1 in terms of {Gl,d
′

1 | 0 ≤ l ≤ m}

after introducing G0,d′

1 = m trA−1. As an example, we have for m = 2

H2,d′

1 = G2,d′

1 −
(

1 +
t1
t0

)
G1,d′

1 +G0,d′

1 . (5.72)

In the case m = 1, the analogues of these Hamiltonians are related to the qKP hierarchy, see

§ 4.2.2. In the case m ≥ 2, a similar relation holds between Hm,d′

k and a version of the qKP

hierarchy with Zm-symmetry. See Section 6.1 for further explanations.

So far, we have obtained explicit forms for the Hamiltonians in terms of generic matrices (A,B)

satisfying rank[ABA−1B−1 − t Idn] = 1 and A is diagonalised. We could, instead, decide to

diagonalise B as described in Remark 4.2.15. In that case, the Hamiltonians Em,d
′

k = trXk,

Fm,d
′

k = tr(1I + XY )k =
∑

r F
m,d′

r,k and Hm,d′

k are the quasi-classical limit of the generators

of the quantised Coulomb branch of a framed quiver gauge theory of Jordan type as explained in

[98], see also [35, 36]. Finally, the Hamiltonians Gm,d
′

k can be seen as the quasi-classical limits

of generalised Macdonald operators introduced in [59]. The interested reader can find the details

for these claims in [34, 41].

5.3.3 Multiple framings : the spin case

Similarly to § 5.3.2, we will identify locally the MQV Cn,q,d(m)◦ in the case m ≥ 2, d =

(d, 0, . . . , 0), with the MQV C◦n,t,d in the case m = 1, d ∈ N×, treated in Section 4.3. To

do so, recall that we have local coordinates (λi,a
0,α
i , c0,α

i ) on Cn,q,d(m)′ under the constraint∑d
α=1 a

0,α
i = 1. Their Poisson structure is defined in Proposition 5.2.7.
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Lemma 5.3.4 The Poisson bracket given on the elements (λmi ,a
0,α
i , c0,α

i ) is the same as the

Poisson bracket of hsp/Sn defined in Proposition 4.3.3. The same is true for the elements

(λmi ,a
0,α
i , c0,α

i λi).

Proof. If we set xi = λmi , aαi = a0,α
i and cαj = c0,α

j , then the entries of the matrix Zm−1 given

by (5.10) become

(Zm−1)ij = t

∑
α a

α
i c

α
j xj

xi − txj
.

This is exactly (4.28) for t instead of q. Now, it suffices to see that (5.17) is equivalent to (4.31a),

while (5.29), (5.24), (5.18) yield (4.31b)–(4.31d).

Fix p ∈ Z, q ∈ N×. The transformation cαi 7→ cαi x
p/q
i , for all i = 1, . . . , n, preserves (4.31a)–

(4.31d). The second part of the statement follows directly. 2

As a consequence of the lemma, there is a local Poisson diffeomorphism Cn,q,d(m)′ → C′n,t,d
given by setting xi = λmi , aαi = a0,α

i and cαi = c0,α
i λi. Note that fij =

∑
α a

α
i c

α
j = g0

ijλj .

Hence, we can use the coordinates (xi,a
α
i , c

α
i ) on Cn,q,d(m)′ to write the integrable systems

obtained in § 5.2.5. In particular, we would like to investigate the relation with the trigonometric

spin RS system.

Local form of the Hamiltonians

As in the case d = 1 given in § 5.3.2, it is easier to write the matrices (Xs, Zs,A
0,C0) in terms

of (A,B,A,C), where

A = diag(x1, . . . , xn) , Bij = t
fijxj

xi − txj
, Aiα = aαi , Cαj = cαj , (5.73)

parametrise a point of C′n,t,d by § 4.3.1. Starting from the gauge in (5.8), we act with the element

gX = (Λ−m,Λ−m+1, . . . ,Λ−1), Λ = diag(λ1, . . . , λn). We get that Xs = Idn for 0 ≤ s <

m− 1, while Xm−1 = A. From the expression (5.10) of Zr, we get after acting with gX that

Zr = trB , r 6= m− 1 , Zm−1 = tm−1A
−1B .

Furthermore, A0 = A−1A and C0 = C. Though we did not prove it, this parametrisation is not

only local but it comes from a global Poisson diffeomorphism C◦n,t,d → Cn,q,d(m)◦ by [62, §5.1].
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We now investigate the Hamiltonians of interest and we follow [62, §5.2]. First, we remark that

Fm,dr,k = tr(Idn +XrYr)
k = tr(XrZr)

k = tkr trBk , (5.74)

are just multiples of the functions G1,d
k = trBk given in (4.50). This is precisely the family of

the trigonometric spin RS system which we have already studied.

Next, we have

Gm,dk = trZkm = mtkm−1 . . . t
k
0 tr(A−1Bm)k ,

which directly generalises the non-spin case given by (5.69). Up to normalisation of the local

expressions, we can write

Gm,dk =
n∑

i1,...,ikm=1

(
km∏
a=1

fiaia+1xia+1

xia − txia+1

)  ∏
0≤s≤k−1

x−1
ism+1

 .

Finally, we can get the spin analogue of (5.71) as

Hm,d
k = trY km = mtkm−1 . . . t

k
1 tr

(
A−1P(B)

)k
,

where we use the matrix polynomial given in (5.70). This allows us to write

Hm,d
k =

∑
i1,...,ijm

j−1∏
a=0

xia(m+1)+1

m∏
s=1

(
xiam+s+1fiam+siam+s+1

xiam+s − txiam+s+1

− t−1
s−1δ(iam+s,iam+s+1)

)
.

This is also the case for d ≥ 2 that the family (Hm,d
k ) generalises the family (Gm,dk ), and that

we can rewrite the functions Hm,d
1 in terms of {Gl,d1 | 0 ≤ l ≤ m}. For example, (5.72) holds

without any change (except that we use the matrices (5.73)).

To the best of the author’s knowledge, all these Hamiltonians appear to be new. At the same

time they are straightforward generalisations of the Hamiltonians for the non-spin case d = 1

obtained in § 5.3.2 : it suffices to replace the Lax matrix for the trigonometric non-spin RS system

B by its spin versions. Hence, it would be interesting to see which connections to other topics in

mathematics, such as the ones reviewed in § 5.3.2, could be extended to the cases d ≥ 2.

More on integrability

So far, we have not used Proposition 5.1.4 in our discussion of integrability for MQVs associated

to cyclic quivers. The reason is that it is a more subtle statement to consider. Due to the local
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isomorphism Cn,q,d(m)′ → C′n,t,d in this case d = (d, 0, . . . , 0), it is expected that we need an

extra reduction as performed in § 4.3.3 when n ≥ d to obtain an analogue to Theorem 4.3.11.

This is indeed true, and we only state the result, leaving to the reader the task to prove the missing

steps based on Lemmae 4.3.10, 4.3.12 and 4.3.13. For the complete proof, see [62, §5.4,5.5].

Recall that we introduced in (4.57) the Lie subgroup H of GLd(C) whose elements have

the vector (1, . . . , 1) as eigenvector with eigenvalue 1. Moreover, introduce an H-action on

Cn,q,d(m)′ which acts on the (2m + 2)-uple (Xs, Zs,A
0,C0) by h · (Xs, Zs,A

0,C0) =

(X,Z,A0h, h−1C0). We form the GIT quotient CHn,m = Cn,q,d(m)′//H. Fix U = X,Y, Z, 1I +

XY .

Theorem 5.3.5 Consider the functions {huK,k} defined in Proposition 5.1.4. Among them, we

can pick a subset of nd− 1
2d(d− 1) elements which define a completely integrable system on the

smooth locus of CHn,m.

Some of these additional Hamiltonians can also be written down locally, see [62, §5.2].

5.3.4 Multiple framings : the m = 2 case

Consider the MQV Cn,q,d(m) in the case m = 2, d = (d0, d1) ∈ N× × N. If d1 = 0, this

corresponds to the case m = 2 discussed in § 5.3.3. On Cn,q,d(m)′, we have local coordinates

(λi,a
s,α
i , cs,αi ),for (s, α) with s = 0, 1 and 1 ≤ α ≤ ds, under the constraints

∑d0
α=1 a

0,α
i = 1.

The Poisson bracket evaluated on these elements can be obtained from Proposition 5.2.7.

The eight matrices (Xs, Zs,A
s,Cs), s = 0, 1, which determine a point of Cn,q,d(m)′ can be

written down in terms of the local coordinates in the gauge (5.8). We have in particular that

X0 = X1 = diag(λ1, . . . , λn) while by (5.10)

(Z0)ij =t0
λi

λ2
i − tλ2

j

f0
ij + t

λj
λ2
i − tλ2

j

f1
ij , (Z1)ij = t

λj
λ2
i − tλ2

j

f0
ij +

t

t0

λi
λ2
i − tλ2

j

f1
ij ,

where we have set f sij = gsijλj =
∑ds

α=1 a
s,α
i cs,αj λj . We also set f1

ij = 0 when d1 = 0. If we

consider a square root
√
t 6= 0, we can write

λi
λ2
i − tλ2

j

=
1

2

1

λi −
√
tλj

+
1

2

1

λi +
√
tλj

,
λj

λ2
i − tλ2

j

=
1

2
√
t

1

λi −
√
tλj
− 1

2
√
t

1

λi +
√
tλj

,
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and use these expressions for the entries of Z0, Z1. We do not write the Hamiltonians for F 2,d
s,k

as they are not very different from the general discussion in § 5.3.1. For the functions G2,d
k =

m tr(Z1Z0)k and H2,d
k = m tr(Y1Y0)k where m = 2, the expressions for k = 1 are not too

cumbersome. First, we have

G2,d
k =

√
t

2t0

n∑
i,j=1

[
t0f

0
ij +
√
tf1
ij

λi −
√
tλj

+
t0f

0
ij −
√
tf1
ij

λi +
√
tλj

][
t0f

0
ji +
√
tf1
ji

λj −
√
tλi

−
t0f

0
ji −
√
tf1
ji

λj +
√
tλi

]
.

Indeed, the first factor is 2(Z0)ij and the second is 2t0√
t
(Z1)ji. Next, using that Ys = Zs −X−1

s ,

we find

H2,d
k = G2,d

k −
2

1− t

n∑
i=1

[
(t0 − t)

f0
ii

λ2
i

+

(
t+

t

t0

)
f1
ii

λ2
i

]
+

n∑
i=1

1

λ2
i

.

We can see the W = Sn n Zn2 -invariance of both Hamiltonians from these expressions. The

Sn-invariance is obvious. The Zn2 action by an element (k1, . . . , kn) is given by Remark 5.2.4 as

λi 7→ (−1)kiλi, f0
ij 7→ f0

ij , and f1
ij 7→ (−1)kj−kif1

ij . Thus, each factor in the terms constituting

G2,d
k is multiplied by (−1)ki for such a transformation, so each term of G2,d

k is Zn2 -invariant.

The invariance of H2,d
k directly follows. When we restrict to the case d1 = 0, we recover the

Hamiltonians written down in [42, 5.6.4] up to a multiplicative factor.
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Chapter 6

Concluding remarks

6.1 New perspectives on integrable systems

In this thesis, we outlined a way of obtaining the completed phase space for the trigonometric spin

RS system as a MQV, and we proved integrability of the system. We were also able to formulate

the Poisson bracket in terms of local coordinates, which answered a conjecture of Arutyunov and

Frolov [16]. Furthermore, we generalised these results to numerous new systems of RS type with

trigonometric potential.

Our method relied on Van den Bergh’s theory of double quasi-Poisson brackets [162, 163], which

we applied to extended cyclic quivers. From this point of view, a natural question consists

in determining for which quivers we can obtain integrable systems. This question extends the

analogous issue that was formulated in the Hamiltonian case [43, 125], but is still unanswered.

In fact, it is not even known which choices of dimension vector for the cyclic quiver (other than

the ones in Section 5.2) allow to obtain an integrable system. Noticing that the flows associated

to particular functions can be obtained by the projection method (see Propositions 5.1.5–5.1.8)

for any dimension vector α̃ = (1, α) and generic parameter q̃ = (q−α,q), we are led to believe

that it should be possible to form an integrable system containing any function for which we can

explicitly integrate the flows in that way (as far as the flows are defined in a non-empty subset of

the corresponding MQV). A possible step in that direction could be to use the reflection functor,

as observed in the Hamiltonian case by Silantyev [149]. It would also be important to investigate

if the regularity condition on q that is considered in Proposition 2.3.28 can be relaxed. Indeed,
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we would like to allow the parameter q considered in Chapter 4 to take the value of some roots of

unity, which is forbidden at the moment due to Proposition 4.1.1.

There have been some recent advances in the understanding of (real) RS systems for different

kinds of potentials and root systems using a reduction picture, following works of Fehér and co-

authors (see e.g. [68, 69, 71, 72, 74]). It would be interesting to know if their complex versions

can be obtained from (quasi-)Hamiltonian algebras. Assuming that the latter is possible, and

since systems of CM or RS type inherit some duality properties [141, 142, 143] (see also [79, 87],

and for some recent developments obtained by reduction [63, 66, 67, 69, 70, 74, 75, 135, 136,

137, 139]), it would be relevant to understand dualities in terms of their underlying algebras. The

author made a first step in that direction in [62] for the self-duality of the trigonometric spin RS

system. Conversely, we hope that the present thesis can prove to be useful in deriving the real

analogues of the systems that we introduced. In fact, the author believes that this work has already

contributed to revive some interest for spin RS systems, see [64, 65, 73].

There are multiple perspectives that we will not mention, though they may be relatively

important21. Rather, we will focus on some specific directions of research, which the author

has attempted to follow (at least partially) since the beginning of his PhD in September 2015.

Additional reductions

Recall that in Theorem 4.3.11 (for the trigonometric spin RS system and some modifications)

and in Theorem 5.3.5 (for similar systems with additional Zm-symmetry) we obtained integrable

systems not directly at the level of a MQV, but after an extra reduction. We conjecture that this

procedure extends to framed cyclic quivers as follows.

Under the notations of Section 5.2, assume that d ∈ NI is such that 0 ≤ ds ≤ n for all s ∈ I ,

with d0 ≥ 1 and where n denotes the dimension of the vector spaces (Vs)s∈I . As in § 5.2.1, we

consider the subspace Cn,q,d(m)◦ of the MQV which we denote simply as C◦n,m. It is characterised

by the linear data (X,Z,As,Cs), where As ∈ Matn×ds(C) and Cs ∈ Matds×n(C). We can

further restrict to the subspace C′n,m from Remark 5.2.2, for which we can pick at each point

a representative (X̂, Ẑ, Âs, Ĉs) satisfying X̂s = diag(λ1, . . . , λn) for each s ∈ I , and where

21For example, the possibility of obtaining the quantum version of this work using [93].
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∑d0
α=1 Â

0
iα = +1 for each 1 ≤ i ≤ n. Introduce the algebraic group

H0 =
{
h = (hαβ) ∈ GLd0(C)

∣∣∣ d0∑
β=1

hαβ = 1 for all α
}
, (6.1)

and setHs = GLds(C) for each s ∈ I \{0}. When ds = 0, we setHs = {1}. If we now consider

the groupH =
∏
sHds , we can define the operation

(hs) · (X̂, Ẑ, Âs, Ĉs) = (X̂, Ẑ, Âshs, h
−1
s Ĉs) , (hs) ∈ H ,

which yields an action of H onto C′n,m. We can then form the GIT quotient CHn,m = C′n,m//H, on

which the functions (λi, g
s
ij =

∑ds
α=1 a

sα
i csαj ) are well-defined. Assuming that they generate the

coordinate ring (up to localisation), we can define uniquely a Poisson bracket {−,−}H on CHn,m
since the commutative algebra generated by the elements (λi, g

s
ij) is Poisson using Proposition

5.2.30.

Conjecture 6.1.1 For each u ∈ {x, y, z, 1I + xy}, we can find in the family of functions (huK,k)

defined in Proposition 5.1.4 exactly n|d|− 1
2

∑
s∈I ds(ds−1) functionally independent elements.

These elements descend to an integrable system on the smooth part of CHn,m.

The assumption that 0 ≤ ds ≤ n for all s ∈ I is motivated by Lemmae 4.3.12 and 4.3.13. These

results suggest that we have to work on a subspace where each As has all its ds×ds minors which

are invertible.

Integrable hierarchies

It was first noted in [2, 48] that the positions of the poles of some (1 + 1)-dimensional

integrable partial differential equations (such as the Korteweg-de Vries equation) evolve over

time as classical particles, which interact as a system of CM type. This was extended to the

(2 + 1)-dimensional KP equation and CM systems with arbitrary potential [101, 102], then to

the multicomponent (or matrix) KP equation with spin CM system [104]. More importantly

for us, Wilson understood in the rational case that this correspondence holds for the whole KP

hierarchy [170]. In its turn, this was generalised to new versions of the multicomponent KP

hierarchy associated to systems of rational CM type [43], which are constructed from extended

cyclic quivers using Van den Bergh’s Hamiltonian formalism.
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In works in progress with O. Chalykh, the author considers the analogue of these constructions in

the quasi-Hamiltonian case, i.e. for some of the systems considered in this thesis. We can describe

such a relation for the Hamiltonians introduced in § 4.2.2 : the flows of (G1,1
k )k describe the

motion of the poles of some solutions to the 2D Toda hierarchy, and the same holds for (H1,1
k )k

and the qKP hierarchy. The latter generalises the work of Iliev [91]. In the case m ≥ 2 of a cyclic

quiver, a similar relation holds between (Gm,d
′

k )k (resp. (Hm,d′

k )k) given in § 5.3.2 and a version

of the 2D Toda (resp. qKP) hierarchy with Zm-symmetry. Moreover, we can partially generalise

the above cases to multicomponent hierarchies using the Hamiltonians (G1,d
k )k or (H1,d

k )k from

§ 4.3.3, and get an additional Zm-symmetry using their analogues (Gm,dk )k, (H
m,d
k )k (which are

defined in full generalities in § 5.3.1) for particular extensions of cyclic quivers. The case m =

1, d > 1 then generalises the work of Krichever and Zabrodin [105]. All these results can be seen

as an extension of [43] to the q-case.

We give a sketch of the method in the simplest case of the multicomponent hierarchy, without an

additional Zm-symmetry. The idea is similar to [43, Section VI].

We consider (τ, ~) ∈ C× ×C and define A~
τ = C〈x, y〉/(xy − τyx− ~), which is an associative

algebra. For (τ, ~) = (1, 1), A~
τ is the first Weyl algebra. For ~ = 0 and τ 6= 1, A~

τ gives

after localisation at x and y the coordinate ring of a quantum torus. This is nothing else than

A′/(e∞,Φ0 − τe0) for A′ given in § 3.1.2. If ~ = τ − 1, A~
τ is the first quantised Weyl algebra

which, after localisation at 1 + xy is just A/(e∞,Φ0 − τe0) for A given in § 3.1.1. We then

introduce the associative algebra

P~
τ =

{ ∞∑
i=−N

pi(x)y−i
∣∣∣pi(x) ∈ C(x), N ∈ N

}
with multiplication induced by that on A~

τ , i.e. it is a consequence of xy − τyx− ~.

We now fix some d ∈ N×. Let P = gld(C)⊗P~
τ , where we denote g⊗1 by g for any g ∈ gld(C),

and Idd⊗p by p for any p ∈ P~
τ . In P , we consider a (d+ 1)-uple (L,Rα)α of the form

L = y +
∞∑
i=0

li(x)y−i , Rα = Eα +
∞∑
i=1

rα,i(x)y−i , 1 ≤ α ≤ d.

Here, li(x), rα,i(x) ∈ gld(C)⊗ C(x) ⊂ P , while Eα = Eαα is an elementary matrix (recall that

(Eαβ)γε = δαγδβε). Moreover, we restrict our attention to such (L,Rα)α satisfying

[L,Rα] = 0 , RαRβ = δαβRα ,
d∑

α=1

Rα = Idd . (6.2)
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Using the decomposition of an arbitrary T =
∑∞

i=−N ti(x)y−i ∈ P as T = T+ + T− for

T+ =
∑0

i=−N ti(x)y−i, T− =
∑∞

i=1 ti(x)y−i, we define the multicomponent (τ, ~)-hierarchy as

∂L

∂tkβ
= [(LkRβ)+, L] ,

∂Rα
∂tkβ

= [(LkRβ)+, Rα] , (6.3)

for time variables tkβ , with k ∈ N and 1 ≤ β ≤ d. These derivations pairwise commute, and we

seek solutions (L,Rα)α of (6.3) satisfying (6.2). Note that in the commutative case (τ, ~) = (1, 0)

any commutator vanishes and the hierarchy becomes trivial, so we omit this case from now on.

Lemma 6.1.2 Let Ψ = 1 +
∑∞

i=1 ψi(x)y−i. Form L = ΨyΨ−1 and Rα = ΨEαΨ−1. If
∂Ψ
∂tkβ

= −(LkRβ)−Ψ for any indices, then (L,Rα)α satisfies (6.2) and (6.3).

Our aim is to construct elements Ψ satisfying Lemma 6.1.2. To do so, our first step is to consider

the space M of matrices (X,Y, iα, jα)α, where X,Y ∈ gln(C) and iα ∈ Matn×1(C), jα ∈

Mat1×n(C) for any 1 ≤ α ≤ d. We define the subspaceM0 given by

M0 =

{
τXY − Y X + ~ Idn +

d∑
α=1

iαjα = 0n

}
⊂M ,

and we will use the corresponding moduli space Mred = M0//GLn(C), where we use the

action g · (X,Y, iα, jα) = (gXg−1, gY g−1, giα, jαg
−1) for any g ∈ GLn(C).

Meanwhile, we consider on P~
τ ⊗ End(Cn) the elements

X̂γ = 1⊗X − γx⊗ Idn, Ŷγ = 1⊗ γY − y ⊗ Idn, γ ∈ C× ,

for X,Y ∈ gln(C), and we put X̂ = X̂1, Ŷ = Ŷ1. Up to completing the algebra to introduce

formal sums, we can also consider

X̂−1
γ = −

∑
k≥0

(γx)−k−1 ⊗Xk , Ŷ −1
γ = −

∑
k≥0

y−k−1 ⊗ γkY k .

We now denote 1 ⊗ i as i for any i ∈ Matn×1(C), and 1 ⊗ j as j for any j ∈ Mat1×n(C). This

allows us to define the following elements of P from any point inM

Ψ = 1−
∑
αβ

Eαβ ⊗ jαX̂−1
τ Ŷ −1iβ , Ψ′ = 1 +

∑
αβ

Eαβ ⊗ jαŶ −1
τ X̂−1iβ . (6.4)

Indeed, for each α, β we have that jαX̂−1
τ Ŷ iβ, jαŶ

−1
τ X̂iβ ∈ P~

τ . We will be concerned with

pairs (Ψ,Ψ′) constructed from elements ofM0, since in that case they are inverse to each other
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in P . Hence, we will denote Ψ′ by Ψ−1. More importantly, as the expressions (6.4) are GLn(C)

invariant, we can associate a pair (Ψ,Ψ−1) to any point ofMred.

We now consider an element Ψ obtained from a point of Mred by (6.4), and we define L =

ΨyΨ−1 and Rα = ΨEαΨ−1.

Lemma 6.1.3 The condition ∂Ψ
∂tkβ

= −(LkRβ)−Ψ can be identified with the vector field onMred

given (as the image of the vector field ofM0 given) by

dY

dtkβ
= 0 ,

diα
dtkβ

= −δαβY kiα ,
djα
dtkβ

= δαβτ
kjαY

k ,
dX

dtkβ
= −

k−1∑
a=0

τk−a−1Y aiβjβY
k−a−1 .

Furthermore, such vector fields commute inMred.

Combined with Lemma 6.1.2, this tells us that we can construct a solution (L,Rα)α to the

hierarchy (6.3) from a point of Mred. Moreover, the evolution under time tkβ of this solution

corresponds to the flow in Mred of the corresponding vector field given in Lemma 6.1.3. Due

to this relation, we are interested in an explicit solution for the latter flow. We have not been

successful to construct it in general, though in some cases it is possible. To state the results that

can be obtained, we consider the derivation ∂
∂tk

=
∑

β
∂

∂tkβ
which is commuting with the whole

(τ, ~)-hierarchy.

Lemma 6.1.4 The condition ∂Ψ
∂tk

= −(Lk)−Ψ can be identified with the vector field on Mred

given (as the image of the vector field ofM0 given) by

dY

dtk
= 0 ,

diα
dtk

= 0 ,
djα
dtk

= (τk − 1)jαY
k ,

dX

dtk
= (τk − 1)XY k + ~

τk − 1

τ − 1
Y k−1 ,

for τ 6= 1, while for τ = 1

dY

dtk
= 0 ,

diα
dtk

= 0 ,
djα
dtk

= 0 ,
dX

dtk
= k~Y k−1 .

For (τ, ~) = (1, 1), we get the KP hierarchy and Mred is the completed phase space of the

rational spin CM system. We then recover from Lemma 6.1.4 a result of [43] which states that

these vector fields are Hamiltonian for Hk = trY k.

A first new result is to consider (τ, ~) = (q−1, q−1 − 1). We obtain that y is the operator defined

by yx = qxy + (q − 1), so up to a scaling factor this is the q-difference operator Dq which
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satisfiesDqx = qxDq+1. Hence the hierarchy is a multicomponent version of the qKP hierarchy

[88, 90, 91]. Meanwhile, we can write for the space that

Mred =

{
(Idn +XY ) = q(Idn +Y X)− q

∑
α

iαjα

}
//GLn(C) ,

so that, up to restricting to an open subspace, we can makeMred coincides with the space Cn,q,d
considered in Chapter 4 after setting

iα = −Wα , jα = Vα(Idn +Wα−1Vα−1) . . . (Idn +W1V1)(Idn +Y X) , (6.5)

for any 1 ≤ α ≤ d. The space Cn,q,d is a Poisson manifold, and we can see that the vector field

associated to (1− q−k)H1,d
k = (1− q−k) trY k is given by (see Proposition 4.1.7)

dY

dtk
= 0 ,

dWα

dtk
= 0 ,

dVα
dtk

= 0 ,
dX

dtk
= (q−k − 1)XY k + (q−k − 1)Y k−1 .

It is not hard to see that it coincides with the vector field given in Lemma 6.1.4 with parameters

(τ, ~) = (q−1, q−1 − 1). We can state the above remark as follows.

Proposition 6.1.5 Consider the map Cn,q,d → P : (X,Y, Vα,Wα) 7→ Ψ obtained from (6.4) and

(6.5). Moreover, define L = ΨyΨ−1, and Rα = ΨEαΨ−1 for 1 ≤ α ≤ d. Then the Hamiltonian

flow given in Proposition 4.1.7 of a point in Cn,q,d under (1− q−k) trY k is mapped to the flow of

the (d+ 1)-uple (L,Rα) under ∂
∂tk

=
∑

β
∂

∂tkβ
for the multicomponent qKP hierarchy.

The second new result is to consider (τ, ~) = (q−1, 0). We denote y by z and Y by Z in this

case to avoid any confusion with the previous case. Here, the relation zx = qxz gives that z

is the difference (or shift) operator22, so we obtain the positive flows of the 2D Toda Lattice

hierarchy [160]. (We omit the discussion of the negative flows and the role of the second operator

M = Ψy−1Ψ−1.) We can write for the space

Mred =

{
XZ = qZX − q

∑
α

iαjα

}
//GLn(C) .

Up to restricting to an open subspace,Mred coincides with C◦n,q,d considered in Chapter 4 if we

choose to set

iα = −Wα , jα = Vα(Idn +Wα−1Vα−1) . . . (Idn +W1V1)ZX . (6.6)
22To understand z as a difference operator, we think about x as being of the form qm for some discrete variable

m ∈ Z, so that z : m 7→ m+ 1.
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As before, since Cn,q,d has a Poisson bracket we can write the vector field associated to the

function (1− q−k)G1,d
k = (1− q−k) trZk as (see Proposition 4.1.6)

dZ

dtk
= 0 ,

dWα

dtk
= 0 ,

dVα
dtk

= 0 ,
dX

dtk
= (q−k − 1)XZk .

Again, it is precisely the vector field given in Lemma 6.1.4 for (τ, ~) = (q−1, 0).

Proposition 6.1.6 Consider the map C◦n,q,d → P : (X,Z, Vα,Wα) 7→ Ψ obtained from (6.4) and

(6.6). Moreover, define L = ΨzΨ−1, and Rα = ΨEαΨ−1 for 1 ≤ α ≤ d. Then the Hamiltonian

flow given in Proposition 4.1.6 of a point in C◦n,q,d under (1− q−k) trZk is mapped to the flow of

the (d+ 1)-uple (L,Rα) under ∂
∂tk

=
∑

β
∂

∂tkβ
for the multicomponent 2D Toda hierarchy.

We emphasise that, for d > 1, we are unable to identify the other vector fields from Lemma 6.1.3

as being Hamiltonian vector fields on Cn,q,d or C◦n,q,d in the last two cases.

In the case d = 1, it would be interesting to understand when the space Mred coincides with

the moduli space of isomorphism classes of ideals of A~
τ (up to localisation). This is known to

be true for the Weyl algebra when (τ, ~) = (1, 1) [23, 29, 30], and the quantum torus when

(τ, ~) = (q, 0) with q not a root of unity [27]. An approach based on a general construction for

any (τ, ~) has been considered, but turns out to be unsuccessful so far.

Hamiltonian algebra for the elliptic CM system

Recall from Section 1.3 that the spin RS system was originally introduced with an elliptic

potential. Since we have shown in this thesis that the trigonometric spin RS system can be

obtained from a suitable quasi-Hamiltonian algebra, it is then an interesting question to determine

if this can be generalised to the elliptic case. To make a first step in that direction, it seems easier

to seek after a Hamiltonian algebra that yields the elliptic CM system, since CM systems can be

seen as a degeneration of RS systems. We outline the method developed by O. Chalykh and the

author to deal with this case.

We start by considering an elliptic curve E given by y2 = 4x3 − g2x − g3, to which we add

punctures at 0 and some µ 6= 0 (modulo the lattice). Using ℘(q) the Weierstrass ℘-function
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associated to E , we set λ = ℘(µ), λ′ = ℘′(µ) and remark that the following functions are well-

defined on the punctured curve

s = x− λ = ℘(q)− ℘(µ) , u =
y + λ′

2s
=

℘′(q) + ℘′(µ)

2(℘(q)− ℘(µ))
. (6.7)

The corresponding algebra A = A(µ) of functions is given by

A = C[u, s]/〈u2s− λ′u = s2 + a0s+ a1〉 , for a0 = 3λ , a1 = 3λ2 − 1

4
g2 . (6.8)

We can consider the A-bimodule of double derivations Der(A), and construct its tensor algebra

A that we see as an ungraded algebra. It is generated by symbols u, s, ∂µ,∆ under the relations

[u, s] = 0 , u2s− λ′u = s2 + a0s+ a1 ,

[s, ∂µ] = us∆ + s∆u− λ′∆ , [u, ∂µ] = s∆ + ∆s+ a0∆−∆u2 .
(6.9)

Reinterpreting Van den Bergh’s work [162, 3.2], we obtain the following.

Proposition 6.1.7 The algebra A admits a double Poisson bracket and −∆ is a moment map.

We can look at the induced Lie bracket {−,−} on A/[A,A] (see § 2.3.1).

Lemma 6.1.8 The following holds in A/[A,A] :

{∂kµ, ∂lµ} = 0 , {(u+ αs)k, (u+ βs)l} = 0 , k, l ∈ N, α, β ∈ C. (6.10)

In particular ∂µ, u, s (or any linear combination u+ αs) are involutive elements in A.

We then form the algebra Aµ by identifying the unit in A with the idempotent e2 from the path

algebra of the quiver Q̄0 depicted in Figure 2. Since the algebra CQ̄0 is Hamiltonian by Theorem

2.3.5 and so is A by Proposition 6.1.7, Aµ is also a Hamiltonian algebra. We can present Aµ as

the algebra generated by symbols u, s, ∂µ,∆, v, w, e0, e∞ where the first four elements satisfy the

relations (6.9) in A, the orthogonal idempotents e0, e∞ satisfy 1 = e0 + e∞, and

v = e∞ve0 , w = e0we∞ , b = e0be0 for any b = u, s, ∂µ,∆ . (6.11)

The algebra Aµ is an algebra over B = Ce∞ ⊕ Ce0, and we can decompose its moment map as

−e0(∆ + wv)e0 + e∞vwe∞.
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Consider the space of representations of dimension (α∞, α0) = (1, n) which we write

Rep(Aµ, (1, n)). Assuming thatA is smooth in the first place, i.e. when E is a smooth curve, then

Rep(Aµ, (1, n)) is a smooth GLn(C)-variety, with Poisson bracket {−,−} defined from {{−,−}}

by (2.31), and with a moment map given by the matrix Ψ representing −∆ + µ. We can think

of Rep(Aµ, (1, n)) as the space of matrices U, S,Bµ, D ∈ Matn×n(C), V ∈ Mat1×n(C) and

W ∈ Matn×1(C) (representing respectively u, s, ∂µ,∆, v and w) subject to the relations

US = SU , U2S − λ′U = S2 + a0S + a1 Idn ,

[S,Bµ] = USD + SDU − λ′D , [U,Bµ] = SD +DS + a0D −DU2 .
(6.12)

The preimage under the moment map Ψ of a point Iν = (−ν Idn, nν), ν ∈ C, corresponds to the

level set in Rep(Aµ, (1, n)) given by the matrix relations

D +WV = ν Idn , V W = n ν . (6.13)

By construction, we obtain the following result.

Proposition 6.1.9 The space Cn,µ = Ψ−1(Iν)//GLn(C) is a Poisson variety obtained by

Hamiltonian reduction.

For ν 6= 0, Cn,µ is a smooth irreducible affine variety of dimension 2n by [24, Theorem 1.1],

which is called the elliptic Calogero-Moser space (with puncture µ and trivial line bundle).

Note that, in this original construction, the space is given without the perspective of Hamiltonian

reduction.

To understand the relation to the elliptic CM system, we assume that ν 6= 0 from now on

and proceed as follows. Let C′n,µ be the subspace where the matrix S is semisimple, and each

representative of the matrix V has no zero entry when S is in diagonal form. Note that when S

is in diagonal form, so is U . We write the diagonal entries of S and U as si and ui respectively.

The second relation in (6.12) yields that u2
i si − λ′ui = s2

i + a0si + a1, that is a pair (ui, si)

corresponds to a point on the punctured curve A. Using (6.12) and (6.13), we find that

(si − sj)(Bµ)ij = (uisi + ujsi − λ′)(νδij − wi) , (6.14)

which gives for i = j that W = ν(1, . . . , 1). The diagonal entries of Bµ remain free and we let

pi := 1
ν (Bµ)ii. The off-diagonal identities give

(Bµ)ij = −ν(uisi + ujsi − λ′)/(si − sj) , i 6= j .
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From our discussion at the beginning of this subsection, we can write the couple (ui, si) as

ui =
℘′(qi) + ℘′(µ)

2(℘(qi)− ℘(µ))
, si = ℘(qi)− ℘(µ) , (6.15)

for suitable variables (qi)i. Therefore (Bµ)ii = νpi, while when i 6= j

−2

ν
(Bµ)ij =

℘′(qi)− ℘′(µ)

[℘(qi)− ℘(qj)]
+

[℘′(qj) + ℘′(µ)][℘(qi)− ℘(µ)]

[℘(qi)− ℘(qj)][℘(qj)− ℘(µ)]
. (6.16)

Some easy pole analysis yields the next result.

Lemma 6.1.10 The matrix Bµ is proportional to Lµ given by (Lµ)ii = pi and

Lµij =
σ(qj)σ(qi − µ)σ(qj − qi − µ)

σ(qi)σ(qj − µ)σ(qj − qi)σ(−µ)
for i 6= j . (6.17)

Up to gauge transformation (see [100, (4.40)–(4.42)]), the matrix Lµ coincides with the

Lax matrix for the elliptic Calogero-Moser model discovered by Krichever [102] (which was

introduced earlier by Calogero [39] for specific values of the spectral parameter µ). We get that

its symmetric functions tr(Lµ)k, k ∈ N, pairwise commute by (6.10) and (2.36). (Indeed, (2.36)

also holds in the Hamiltonian case.) If we consider the Poisson structure in local coordinates

(qi, pi)i, we find the following.

Lemma 6.1.11 The Poisson bracket on Cn,µ obtained by Hamiltonian reduction can be written

locally as {pi, qj} = δij while {qi, qj} = 0 = {pi, pj}.

Since the local coordinates are canonical, the above discussion implies that we have recovered the

usual result stating that the elliptic CM system is Liouville integrable.

Some problems remain unanswered at the moment. First, we would like to be able to identify

open subspaces corresponding to different punctures to get the completed phase space for this

system. Second, we can obtain the phase space for the spin elliptic CM system by fusing d copies

of the algebra CQ̄0 with the algebra A. This yields a phase space of dimension 2nd, but we

do not know how to form an integrable system containing the functions trBk
µ, k = 1, . . . , n. If

it is obtained, the next step is to understand the Poisson commutativity of the integrable system

at the level of the Hamiltonian algebra directly. Third, (6.10) suggests that for fixed α ∈ C,

tr(U + αS)k, k = 1, . . . , n, should define an integrable system dual to the elliptic CM system.

We have not found a suitable set of local coordinates to understand this second system. Finally, it

would be interesting to get the elliptic RS system in a similar way.
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6.2 Fifteen years of double brackets : happy birthday!

In our investigation of integrable systems through Chapter 4 and Chapter 5, a crucial role was

played by the relations that we derived in Chapter 3, which are all completely determined by

the existence of a double (quasi-Poisson) bracket. Hence, the central use of double brackets

in the Ruijsenaars-Schneider family has been outlined in this thesis. To conclude this work, it

seems interesting to collect the different applications of double brackets to integrable systems,

as well as the other topics where such structures have appeared so far. Since the first version of

Van den Bergh’s pioneering work [162] appeared on the arXiv in 2004, this section gathers the

ramifications of double brackets during their first fifteen years in the mathematical community23.

General study of double brackets

We introduced double brackets over C, but there is a generalisation of double Poisson brackets

over an arbitrary ground ring, see [159]. In particular, this allows to define double brackets for

Hopf algebras [117]. For the sake of conciseness, we now report results regarding algebras over

a field of characteristic zero, as initially introduced by Van den Bergh.

In [161], Van de Weyer gives a first systematic study of double Poisson algebras (see also

[9]), and introduces the notion of double Poisson cohomology, as an analogue of Poisson-

Lichnerowicz cohomology [112]. This cohomological study has been investigated in more details

with Pichereau in [133]. In that paper, the authors show that this cohomology is equivalent to

the Hochschild cohomology of free algebras in the case of a linear double Poisson bracket. For a

particular linear case, the first two cohomology groups are computed in [3]. Moving to quadratic

double Poisson brackets, an explicit classification is obtained in [128] for the free algebra over

two elements, and in [150] over three elements. Few examples are known outside free algebras,

except for quivers [31, 162]. A natural obstruction is that the definition of double brackets is not

suited to commutative algebras : polynomial rings with at least two generators do not have non

trivial double Poisson brackets [134].

23This is a list that was established to the best of the author’s knowledge, and that was completed by 1 March 2019.
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Algebraic structures related to double brackets

It is suggested in [58, 129, 145] that we could relax the definition of a double Poisson bracket

by removing its derivation property (D2) in Definition 2.3.1, which would define a double (Lie)

algebra on a vector space, a double analogue of a Lie algebra. In such a case, Jacobi identity

takes place in A⊗3 as the vanishing of the map (2.11). There do not exist simple double algebra

structures on a finite-dimensional vector space, except the trivial one [86]. In fact, double algebras

are equivalent to solutions of the associative Yang-Baxter equation [128, 145]. This relation is

further explored in [129] where the generators also depend on local parameters. Another way

to relax the definition of a double Poisson bracket is to drop the cyclic antisymmetry (D1) from

Definition 2.3.1, as did Arthamonov [13, 15]. Alternatively, we can try to generalise this structure

to Lie algebras instead of associative algebras [122].

There has been some interest in trying to obtain double Poisson algebras up to homotopy. For

example, we can ask the triple bracket (2.11) to be nonzero and to satisfy some relations with

the double bracket up to a 4-bracket (and so on...) which leads to the notion of double Poisson-

infinity algebra [145]. The definition of a double Poisson bracket can also be extended to DG

algebras [26], which turns out to be useful to introduce derived Poisson algebras, a derived

version of Crawley-Boevey’s (non-commutative) H0–Poisson structures [52, 53]. The definition

can be easily adapted for bimodules over this algebra both in the usual and DG cases [45].

These generalisations of double Poisson brackets appear on Fukaya categories [47], associated

to particular Calabi-Yau algebras [45], related to dual Hodge decompositions [28], and extend the

usual correspondence between bi-symplectic and double Poisson structures [46].

Other features of double Poisson brackets are that they can be studied in terms of a particular

protoperad DPois introduced by Leray [108, 110], or that they are related to pre-Calabi-Yau

structures. Regarding this second relation, it is possible to construct such structures from (graded)

double Poisson brackets on DG categories [175]. In fact, double Poisson brackets (and double

Poisson-infinity brackets) classify pre-Calabi-Yau structures (of prescribed types) [76, 92].
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More integrable systems

It is quickly mentioned in Remark 2.3.40 that we could look at integrability directly on algebras

endowed with a double (quasi-)Poisson bracket. This gives, in fact, a subset of interesting

examples of Hamiltonian ODEs on associative algebras. As remarked e.g. in [58] and can easily

be seen from (2.38), what plays a central role is the left Loday bracket {−,−} = m ◦ {{−,−}}

(seen as a mapA/[A,A]×A→ A). In particular, assuming that the system of ODEs is defined by

{b1,−}, we get from (2.16) that {b2,−} defines a symmetry (i.e. a commuting system of ODEs)

whenever {b1, b2} ∈ [A,A]. Thus, what is important to get symmetries is to understand {−,−}

as a map on A/[A,A], which is suggested in [128] under the name of trace bracket, a particular

example of H0–Poisson structure. This interpretation allows to reformulate studies such as [127]

in terms of double Poisson brackets. Note that a quantisation of trace brackets is proposed in [19],

but it does not provide a quantisation of double brackets directly.

Motivated by the previous point, De Sole, Kac and Valeri define a general scheme to obtain non-

commutative Hamiltonian PDEs in [58]. They introduce double Poisson vertex algebras, where

the underlying associative algebras are differential, and they extend the correspondence between

Poisson vertex algebras and Hamiltonian PDEs to the non-commutative setting.

It is possible to recover systems of Calogero-Moser type from this thesis if the double quasi-

Poisson brackets are replaced by the double Poisson brackets introduced by Van den Bergh [162],

see § 2.3.2. Though this has not been written so far, this is an easy exercise and one can recover

existing results that already contain part of the quiver interpretation [32, 43, 118, 155, 156].

Finally, note that it is also possible to introduce non-commutative versions of discrete integrable

systems. Indeed, in [81], the pentagram map was expressed in terms of moves defined on a

network on a disc or annulus, which are particular examples of quivers with weights assigned

to the arrows. In particular, it was found that some quantities are conserved under those moves,

and they imply the complete integrability of the pentagram map. In [132], a double bracket is

introduced on an algebra A associated to such networks, and it is shown that there are analogous

invariants for the moves under the associated Lie bracket on A/[A,A].
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Relation to topology

Considering a punctured oriented surface with a marked point on its boundary, Massuyeau and

Turaev describe in [115] how to endow its fundamental group with a double quasi-Poisson

bracket. Looking at representation spaces, they show that it coincides with the quasi-Poisson

structure on the corresponding representation variety for G = GLn defined in [6]. They extend

their result in [116] to the Pontryagin algebra of an arbitrary smooth oriented manifold with

boundary. Note that in the construction of the double quasi-Poisson bracket in [115], the authors

first introduce an operation which fails to satisfy the cyclic antisymmetry (D1) from Definition

2.3.1, which they correct to obtain a double quasi-Poisson bracket.

It is also possible to define a double bracket on the fundamental groupoid associated to a ribbon

graph [13]. An alternative construction is given in [132]. Note that both structures descend to the

same induced bracket which coincide with Goldman’s Lie bracket. Quite surprisingly, the two

operations defined by Massuyeau and Turaev [115] described above also descend to Goldman’s

bracket. They have been used to relate Goldman-Turaev formality and the Kashiwara-Vergne

problem in arbitrary genera [3, 4, 5, 8].

Use in non-commutative geometry

The starting point of [162, 163] is the introduction of a non-commutative version of Poisson and

quasi-Poisson geometry. Hence, a natural question is to see which structures depending on a

(quasi-)Poisson manifold admit a non-commutative analogue relying on an algebra with a double

(quasi-)Poisson bracket. For example, the equivalence of Poisson manifolds and differential

graded manifolds of degree +1 admits an algebraic analogue [10].

Recall that there exists a graded version of double Poisson brackets {{−,−}}SN satisfying (2.12a)–

(2.12c). This structure can be related to a connection on the algebra of double derivations. This

can be found in [85], where an extension of the theory of differential operators to noncommutative

geometry is given.

A general result in [163] is the introduction of double Lie algebroids, as a double version of Lie

algebroids. As noted in [108], it is more convenient to refer to these structures as double Lie-

Rinehart algebras, in order to avoid confusion with the different notion of double Lie algebroids
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associated to double Lie groupoids [113], but also because it naturally extends the algebraic

version of Lie algebroids, called Lie-Rinehart algebras. An extensive study of these structures and

their shifted version is obtained by Leray [108, 109], while the introduction of non-commutative

calculus on double Lie-Rinehart algebras is investigated by Chemla [44]. A next step is to

establish which structures depending on a Lie algebroid admit non-commutative analogues. This

has been done for Courant algebroids in [11, 77].

Final remarks

Note that we only considered works that explicitly use double brackets. For example, though

[93, 174] rely on the work of Van den Bergh on double quasi-Poisson brackets associated to

quivers, these articles only require the geometric counterpart of the theory (see § 2.3.3) and

do not include computations with double brackets. Otherwise, we would also need to collect

the extensive literature connected to quiver varieties based on the works [123, 125], since the

underlying Poisson structure is given by the Hamiltonian algebra structure of the path algebra

of a quiver, see Theorem 2.3.5. We also omitted to mention the applications relying on the

symplectic counterpart of double brackets as introduced in [54] (see e.g. [22, 78, 156, 163]),

or works depending only on the associated Loday bracket (see e.g. [146, 164]).
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A Some linear algebra

Lemma A.1 Let Z = diag(z1, . . . , zn) for pairwise distinct (zk), and put W := (1, . . . , 1)>.

Let F be an invertible matrix with distinct ordered eigenvalues µ1 < . . . < µn, and fix a

corresponding eigenbasis (ei). Define E = (Eij), where Eij = (ej)i, and assume that E−1W is

a vector with nonzero entries.

(1) There exists V ∈ Mat1×n such that F +WV F and Z have the same spectrum.

(2) For a fixed choice of ordered eigenbasis, the pair (V,X) satisfying

XZX−1 = F +WV F ,

is uniquely determined up to (C×)n action (ci) · (V,X) = (V,XC), C = diag(c1, . . . , cn).

Proof. We have that Fei = µiei, and we form E by Eij = (ej)i which satisfies E−1FE =

Dµ = diag(µ1, . . . , µn). Note that E is uniquely chosen by assumption.

Remark that we can write for arbitrary V = (v1, . . . , vn)

(E−1WV FE)ij = AiBjµj , Ai =

n∑
s=1

E−1
is , Bj =

n∑
t=1

vtEtj .

Here, Ai 6= 0 for all i, by assumption on E−1W . For any unknown λ, since WV F has rank one,

det(F +WV F − λ Idn) = det(E−1FE − λ Idn)
[
1 + V FE(E−1FE − λ Idn)−1E−1W

]
=

n∏
k=1

(µk − λ)

[
1 +

n∑
i=1

AiBiµi
µi − λ

]
=

n∏
k=1

(µk − λ) +

n∑
i=1

AiBiµi
∏
k 6=i

(µk − λ) .
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Now, the problem amounts to determine the entries v1, . . . , vn of V such that
n∏
k=1

(zk − λ) =
n∏
k=1

(µk − λ) +
n∑
t=1

vt

n∑
i=1

EtiAiµi
∏
k 6=i

(µk − λ) . (A.18)

We need the different coefficients of this expression as a polynomial in λ to vanish. Introduce for

any l ∈ N× the (signed) symmetric polynomials (pl,ν(a1, . . . , al))
l
ν=0 such that

l∏
k=1

(ak − λ) =

l∑
ν=0

λν pl,l−ν(a1, . . . , al) . (A.19)

Hence, expanding (A.18), we can write
n∑
ν=0

[pn,n−ν(z1, . . . , zn)− pn,n−ν(µ1, . . . , µn)]λν

=

n−1∑
ν=0

λν
n∑
i=1

pn−1,n−1−ν(µ̂i)Aiµi

n∑
t=1

vtEti ,

(A.20)

where we write (µ̂i) for the sequence of n− 1 terms obtained from (µ1, . . . , µn) by omitting the

i-th term. In other words, we need to require for ν = 0, . . . , n− 1

[pn,n−ν(z1, . . . , zn)− pn,n−ν(µ1, . . . , µn)]

=

n∑
t=1

vt

n∑
i=1

EtiAiµi pn−1,n−1−ν(µ̂i) .
(A.21)

We write this in matrix notation : by introducing M = (Mνt)
t=1,...,n
ν=0,...,n−1 and N = (Nν)ν=0,...,n−1

where the entries are given by

Mνt =

n∑
i=1

EtiAiµi pn−1,n−1−ν(µ̂i) , Nν = pn,n−ν(z1, . . . , zn)−pn,n−ν(µ1, . . . , µn), (A.22)

the n equations in (A.21) give us nothing else than the matrix equation MV = N . Thus, V is

unique if M is invertible. Now, remark that if we introduce M◦ = (M◦νi)
i=1,...,n
ν=0,...,n−1 with

M◦νi = pn−1,n−1−ν(µ̂i) , (A.23)

we can write M in terms of a matrix product as

M = M◦ diag(A1, . . . , An)DµE
> . (A.24)

Thus, part (1) of the lemma follows if we show that M◦ is invertible. This is Lemma A.3.

For part (2), remark that for a fixed E the above construction gives a unique V . Then, X

corresponds to a choice of eigenbasis of F + WV F ordered with respect to the eigenvalues

(z1, . . . , zn). 2
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Remark A.2 Among all the pairs (X,V ) such that Z and qF (Idn +WV ) have the same

spectrum while X−1 puts qF (Idn +WV ) in diagonal form, knowing X fixes V . Indeed, assume

that we have

XZX−1 = qF (Idn +WV ) , XPZP−1X−1 = qF (Idn +WṼ ) ,

for some V, Ṽ ∈ Mat1×n, and a permutation matrix P distinct from the identity. Then, taking the

difference of these equations yields

Z − PZP−1 = qX−1FW (V − Ṽ )X .

Since the eigenvalues of Z are pairwise distinct, the matrix on the left has rank at least 2. But the

matrix on the right has rank at most 1, leading to a contradiction.

Lemma A.3 The matrix M◦ with entries M◦νi = pn−1,n−1−ν(µ1, . . . , µ̂i, . . . , µn) is invertible if

and only if all (µk)k are distinct.

Proof. This follows if we can show that

detM◦ =
∏
a>b

(µa − µb) , (A.25)

which is similar to show the analogous statement for a Vandermonde matrix. Indeed, remark that

when we substract the b-th column from the a-th column, we get that the new a-th column has

entries

pn−1,n−1−ν(µ1, . . . , µ̂a, . . . , µn)− pn−1,n−1−ν(µ1, . . . , µ̂b, . . . , µn). (A.26)

But the latter ν-th entry of the new column is precisely the coefficient of the element λν in

∏
k 6=a

(µk − λ)−
∏
k 6=b

(µk − λ) , (A.27)

which is clearly divisible by µa − µb. Such transformations are compatible with taking

determinant, hence (A.25) holds up to a multiplicative constant (because any µa − µb divide the

determinant and such a product has maximal degree). Looking at the coefficient for µ2µ
2
3 . . . µ

n−1
n

we can conclude that the constant is +1 and (A.25) holds. 2

By a straightforward adaptation in the proof of Lemma A.1, we get the next result.
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Lemma A.4 Let Z = diag(z1, . . . , zn) for pairwise distinct (zk), and put W := (1, . . . , 1)>.

Let F be an invertible matrix with distinct ordered eigenvalues µ1 < . . . < µn, and fix a

corresponding eigenbasis (ei). Define E = (Eij), where Eij = (ej)i, and assume that E−1W is

a vector with nonzero entries.

(1) There exists V ∈ Mat1×n such that F + FWV and Z have the same spectrum.

(2) For a fixed choice of ordered eigenbasis, the pair (V,X) satisfying

XZX−1 = F + FWV ,

is uniquely determined up to (C×)n action (ci) · (V,X) = (V,XC), C = diag(c1, . . . , cn).

B An elementary result in Poisson geometry

Consider the following easy result.

Lemma B.1 Assume that ψ : M → N is an isomorphism of manifolds such that {−,−}N is

a Poisson bracket on N . Furthermore, assume that there exists an antisymmetric biderivation

{−,−}M on M such that for all f1, f2 ∈ ON , we have that ψ∗{f1, f2}N = {ψ∗f1, ψ
∗f2}M .

Then {−,−}M is a Poisson bracket.

Proof. For arbitrary g1, g2, g3 ∈ OM , we have that JacM (g1, g2, g3) = ψ∗JacN (f1, f2, f3) = 0

with fi = gi ◦ ψ−1. 2

This implies that, ifM is endowed with an antisymmetric biderivation {−,−}M such that Lemma

B.1 holds locally, then {−,−}M is a Poisson bracket since JacM vanishes around every point.

Meanwhile, let us look at the following.

Lemma B.2 Assume that M̃ is a manifold on which a finite group H acts freely. Assume that

there exists an antisymmetric biderivation {−,−}M̃ preserved by theH-action, i.e. for all h ∈ H ,

f1, f2 ∈ OM̃ , we have that h · {f1, f2}M̃ = {h · f1, h · f2}M̃ . If the restriction of {−,−}M̃ on

H-invariant functions defines a Poisson bracket {−,−}M on the manifold M = M̃/H , then

{−,−}M̃ is Poisson.
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Proof. Assume that there exist functions f1, f2, f3 and a point p ∈ M̃ such that

JacM̃ (f1, f2, f3)(p) 6= 0. Take a sufficiently small neighbourhood U of p so that h·U∩h′ ·U = ∅

for all h, h′ ∈ H , h 6= h′, and define for each i the function fHi on V = H · U by setting

(fHi )|h·U (p′) = fi(h
−1 · p′) for each h ∈ H , p′ ∈ h · U . These are clearly H-invariant functions.

We have that the function F = JacM̃ (fH1 , f
H
2 , f

H
3 ) does not vanish on V by assumption. Since

V is identified with the open set V/H of M , and since the functions (fHi ) are H-invariant and

can be identified with functions f ′i on V/H , we can identify by H-invariance of {−,−}M̃ the

function F with JacM (f ′1, f
′
2, f
′
3). The latter is always zero as {−,−}M is Poisson, giving a

contradiction. 2

Combining Lemmae B.1 and B.2, we get the following result : if M̃ is endowed with an

antisymmetric biderivation {−,−}M̃ which descends to the quotient M̃/H for some finite group

H acting freely on M̃ , and if there exists a diffeomorphism ψ between the quotient space M̃/H

and some Poisson manifold which intertwines the brackets, then {−,−}M̃ is a Poisson bracket.

Remark B.3 If we want to apply Lemma B.1, note that we do not need to check that

ψ∗{f1, f2}N = {ψ∗f1, ψ
∗f2}M for all f1, f2 ∈ ON , but we only need to check this on a subset

of globally defined functions that are functionally independent (assuming that such a subset of

maximal dimension exists). To be precise, if f1, . . . , fn ∈ ON are n = dimN = dimM

functionally independent elements, we only need to check that

ψ∗{fk, fl}N = {ψ∗fk, ψ∗fl}M , for all 1 ≤ k, l ≤ n . (B.28)

Furthermore, the antisymmetric biderivation {−,−}M on M which satisfies (B.28) is unique.

To show this statement, consider another antisymmetric biderivation {−,−}′M such that (B.28)

holds, and form the n× n matrices P,Q with entries

Pkl = {ψ∗fk, ψ∗fl}M − {ψ∗fk, ψ∗fl}′M , Qkl = {xk, xl}M − {xk, xl}′M ,

where the (xi) form a local coordinate system on M . We have that P is identically zero by

assumption, and we want to show that this is also the case forQ. Note that the Jacobian matrix V

with entries Vki = ∂ψ∗fk/∂xi is generically invertible, since otherwise it would contradict that

ψ is an isomorphism and the f1, . . . , fn are functionally independent. As we can write

{ψ∗fk, ψ∗fl}M =
∑
i,j

∂ψ∗fk
∂xi

{xi, xj}M
∂ψ∗fl
∂xj

,
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and do the same for {−,−}′M , we have that P = V QV >. Thus Q = 0n×n generically, and

hence vanishes since its entries are analytic functions.
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[71] L. Fehér and C. Klimčı́k, Poisson-Lie generalization of the Kazhdan-Kostant-Sternberg
reduction, Lett. Math. Phys. 87 (2009), no. 1-2, 125–138.

[72] L. Fehér and T.J. Kluck, New compact forms of the trigonometric Ruijsenaars-Schneider
system, Nuclear Phys. B 882 (2014), 97–127.

[73] L. Fehér and I. Marshall, Poisson-Lie analogue of the real trigonometric Gibbons-Hermsen
model, In preparation.

[74] L. Fehér and I. Marshall, The action-angle dual of an integrable Hamiltonian system of
Ruijsenaars–Schneider–van Diejen type, J. Phys. A 50 (2017), no. 31, 314004, 20.

[75] L. Fehér and I. Marshall, Global description of action-angle duality for a Poisson-Lie
deformation of the trigonometric BCn Sutherland system, Ann. Henri Poincaré 20 (2019),
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[124] N.N. Nehorošev, Action-angle variables, and their generalizations, Trudy Moskov. Mat.
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