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Abstract

Reflection groups have been investigated since the nineteenth century and now have

fundamental relevance for various strands of mathematics, including Lie groups, Lie

algebra, and Weyl groups. Recently, Everitt and Fountain [19] formulated the no-

tion of reflection monoids, a generalisation of the idea of reflection groups to the

semigroup theory. In particular, they introduced the family of Boolean reflection

monoids of types An−1 and Bn, where type An−1 is isomorphic to the symmetric

inverse monoid, and type Bn is isomorphic to the monoid of partial signed permu-

tations.

The last quarter of a century has witnessed a resurgence in the interest in rep-

resentations of semigroups. The principal approach to identifying these represen-

tations is the Clifford-Munn correspondence, the underlying idea of which is that

irreducible representations are in one-to-one correspondence with irreducible repre-

sentations of the maximal subgroups. For type An−1 Boolean reflection monoids,

the maximal subgroups are symmetric groups Sk (k ≤ n), while for type Bn, the

maximal subgroups are signed permutation groups Bk (k ≤ n). These signed per-

mutation groups, and their properties, can be found scattered in the literature. In

this thesis, we collect and reformulate these properties in a form that is analogous

to the symmetric group Sn.

We employ the Clifford-Munn correspondence to provide an explicit account

of the ordinary irreducible representations of types An−1 and Bn Boolean reflection

monoids, utilising combinatorial objects called Young tableaux. Preliminary to this,

we also prove, for an arbitrary finite inverse monoid, that induced and reduced

representations of an irreducible representation, derived from employing the Clifford-

Munn correspondence, are themselves irreducible.
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Preface

The purpose of this thesis is to provide an explicit description of all irreducible rep-

resentations of certain reflection monoids, focusing specifically on types An−1 and

Bn Boolean reflection monoids. The decision was made to commence each of the

thesis’ sections with an outline of notable historical issues, and to accompany this

with an overview of the contents of the respective sections. A summary of the con-

tents of the chapters is presented below.

Chapter 1 provides contextual information relating to semigroups, and illumi-

nates [J ]
�
, a semigroup ideal that plays a vital role in Chapter 4. A proof is presented

for an alternative characterisation of such an ideal. Paired with this, a proof is pro-

vided for the statement that for any element s belonging to a finite semigroup S,

if a product es is not J -related with an idempotent e, then es lies in any J -class,

which is strictly less than the J -class Je. Alongside these proofs, an illustration of

the structural features of inverse and regular semigroups is outlined, and the section

ends with an emphasis on the position of a product of a pair of distinct idempotents

in a finite inverse semigroup.

Chapter 2 is principally concerned with reflection groups and reflection monoids.

An in-depth study of the properties of reflection monoids, as well as the isomorphism

between type An−1 Boolean reflection monoids and the symmetric inverse monoid

along with the isomorphism between type Bn Boolean reflection monoids and the

monoid of signed permutations are presented. Such isomorphisms are valuable for

the subsequent account of irreducible representations of the monoids. The section

concludes by proving the unpublished result of Everitt-Fountain, which relates to

the maximal subgroups of reflection monoids.

Chapter 3 first discusses representations of finite groups, followed by an investiga-

tion of Specht modules for the symmetric groups Sn. In addition, the reformulation

of the properties of type Bn reflection groups with respect to the signed permutation

groups Bn is presented. More specifically, the proof of the sign (signature) of the

elements, the generator elements, and the illustration of the conjugacy classes are

addressed in this chapter. Thereafter, a detailed account of the Specht modules for

the signed permutation groups is provided, and several assertions in the literature

are proven.

The Clifford-Munn correspondence is utilised in Chapter 4 to investigate the

irreducible representations of inverse semigroups, outlining the apex concept and

providing a proof for its alternative formulation. A proof is also provided for The-

orem 4.2.8, which states that the representation of a maximal subgroup, derived

from the reduction of the irreducible representation of a finite inverse semigroup, is

vi



irreducible. Alongside this, Theorem 4.2.11 is proven, which demonstrates that the

representation of a finite inverse semigroup, derived from inducing the irreducible

representation of a maximal subgroup, is irreducible. Notably, these results are ex-

tensions of the arguments that were utilised in [26] to prove a corresponding result,

specifically regarding the finite transformation of semigroups.

Chapter 5 provides a survey of Grood’s approach for deriving the representa-

tions of the symmetric inverse monoid, and one of the thesis’ main results, the

Clifford-Munn correspondence is utilised to provide an explicit account of these rep-

resentations.

Following this, Chapter 6 illustrates the monoid of partial signed permutations,

alongside the link-cycle decomposition for partial signed permutations. Crucially,

this result can be considered an extension of Munn’s decomposition of a partial

permutation. The chapter ends with the presentation of another new result, gener-

ated by applying the Clifford-Munn correspondence to yield explicit descriptions of

irreducible representations over the complex field of the monoids of partial signed

permutations.

Finally, the thesis ends with a broad overview of potential areas for further re-

search. Some of the avenues for further study are highlighted as worthwhile research

pursuits, which are expected to contribute to the development of reflection monoids.
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Chapter 1

Introduction to the semigroup

theory

1.1 Basic notations

A relatively new development in the history of mathematics is the theory of semi-

groups. Although the term “semigroup” first appeared in the literature in 1904,

a solid theoretical foundation was not in place until the 1940s [38]. In subsequent

years, mathematicians increasingly began working on the semigroup theory. In 1951,

Green [31] published a paper explicating a series of equivalence relations that are

now referred to as the five Green’s relations. These equivalence relations conceptu-

alise a semigroup’s elements with respect to the principal ideals they generate, and

since then, they have emerged as a crucial technique for investigating semigroups.

Beginning in the 1960s, Clifford and Preston [12, 13] published what are now

considered foundational textbooks for the algebraic theory of semigroups; since then,

a wealth of general texts have emerged [32, 39, 45, 48], as well as some focussing on

particular aspects of semigroup theory [29, 48, 63]. The purpose of this section is

to present several of the main semigroup ideas that will be drawn on throughout

this dissertation. Specifically, Green’s relations and a pair of two-sided ideals are

examined, since both are pivotal for the subsequent chapters. In addition, a proof is

provided for a minor result (Proposition 1.1.20), since this will aid in the subsequent

examination of the irreducibility of representations of maximal semigroups deduced

by induction (Section 4.2.2).

Definition 1.1.1. [39] A semigroup S is a pair (S, ·) where S is a non-empty set

and · is an associative binary operation on S.

On occasion, we write s · s′ or omit the binary operation · and write ss′ as a

shortcut.

Definition 1.1.2. [39] A monoid S is a semigroup with an identity 1 ∈ S, where

1s = s = s1, for all s ∈ S.
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Observe that the identity of a monoid is always unique. If a semigroup S does

not contain an identity 1, we can always adjoin an element 1 to S to construct a

monoid S ∪ {1} by extending the binary operation in the following manner:

s · s′ ∈ S, for all s, s′ ∈ S

1 · s = s = s · 1, for all s ∈ S

1 · 1 = 1.

Then, the following convention is adopted

S1 =

S, if S contains an identity element,

S ∪ {1}, otherwise.

Definition 1.1.3. [32] A left ideal (dually, right ideal) of a semigroup S is a non-

empty subset I ⊆ S such that S1I = I (dually, IS1 = I). If I is a left and right

ideal simultaneously, then it is called an ideal (or a two-sided ideal).

If a semigroup S does not contain an identity, then for any a ∈ S, the set

Sa = {sa : s ∈ S}

does not necessarily contain a. The subset S1a ⊆ S can be written as

S1a = Sa ∪ {a}.

Dually,

aS1 = aS ∪ {a}.

Similarly,

S1aS1 = SaS ∪ Sa ∪ aS ∪ {a}.

As stated in [39, Section 2.1], the above three subsets of S are respectively called

the principal left (right, two-sided) ideal generated by a. Notice that an element a

belongs to S1a, aS1, and S1aS1; thus, adjoining such an identity guarantees that

principal ideals generated by a ∈ S1 do indeed contain a.

Definition 1.1.4. [39] Let S be a semigroup. A non-empty subset T of S is said

to be a subsemigroup if it is closed under the binary operation; that is T 2 ⊆ T.

Definition 1.1.5. [39] Let S be a monoid with identity 1. A non-empty subset T

of S is said to be a submonoid of S if it is a subsemigroup with identity 1.
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Definition 1.1.6. [39] An element e ∈ S is called an idempotent if ee = e (equiv-

alently, e2 = e).

Denote the set of idempotents in S by E(S). There is an order ≤ among elements

of E(S) defined by

e ≤ f if and only if ef = fe = e.

Definition 1.1.7. [39] Let S and S ′ be semigroups. Then, a map φ : S −→ S ′ is

said to be a semigroup homomorphism if, for all s, t ∈ S,

(st)φ = (sφ)(tφ).

Definition 1.1.8. [39] Let S and S ′ be monoids, with identity elements 1
S

and 1
S′

respectively. Then, a map φ : S −→ S ′ is called a monoid homomorphism if it is a

semigroup homomorphism, and

1
S
φ = 1

S′
.

A homomorphism φ from S into itself is called an endomorphism.

In view of the principal ideals presented above, the binary relations ≤R,≤L and ≤J
on S are defined in the following manner:

a ≤R b if and only if aS1 ⊆ bS1;

a ≤L b if and only if S1a ⊆ S1b; (1.1)

a ≤J b if and only if S1aS1 ⊆ S1bS1.

It is evident that the above relations are reflexive and transitive; thus, the relations

≤R, ≤L, and ≤J are quasi-orders (or Green’s pre-orders) [73, Appendix A.1]. The

equivalence relations affiliated with the preceding pre-orders, which are referred to

as Green’s relations, are introduced below:

Definition 1.1.9 (Green’s relations). Let S be a semigroup and a, b ∈ S. Then,

Green’s equivalence relations R,L, and J are defined in the following manner:

(i) a R b if and only if aS1 = bS1;

(ii) a L b if and only if S1a = S1b;

(iii) a J b if and only if S1aS1 = S1bS1.

In other words, (i) implies that two elements, a and b, are R-related if and only if

both generate the same right ideal. A similar statement can be provided when a and

b are L-related or J -related. The next proposition is an alternative characterisation

of the above equivalence relations.
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Proposition 1.1.10. [39] Let S be a semigroup and a, b ∈ S. Then,

(i) a R b if and only if there exists s, s′ ∈ S1 such that as = b and bs′ = a;

(ii) a L b if and only if there exists s, s′ ∈ S1 such that sa = b and s′b = a;

(iii) a J b if and only if there exists s, s′, t, t′ ∈ S1 such that sas′ = b and tbt′ = a.

Definition 1.1.11. [39] A relation ψ on a semigroup S is said to be left-compatible

if for every s, s′, t ∈ S,

s ψ s′ implies ts ψ ts′.

Dually, a right-compatible relation can be defined. Further, ψ is called compatible

if for all s, s′, t, t′ ∈ S,

s ψ t and s′ ψ t′ =⇒ ss′ ψ tt′.

A left- (right-) compatible equivalence relation is called a left (right) congruence. A

compatible equivalence relation is called a congruence. If a R b, then aS1 = bS1

and then saS1 = sbS1 for some s ∈ S. It follows that sa R sb and hence, R is a left

congruence. A symmetric observation holds for L.

Definition 1.1.12. [39] Let φ and ψ be binary relations on a set T. Then, the

composition of relations φ ◦ ψ is determined by

φ ◦ ψ = {(a, c) ∈ T × T : ∃ b ∈ T such that a φ b and b ψ c}.

Consider a partial order on a set of all equivalence relations on a set S. Let φ∨ψ
be the join of equivalence relations φ and ψ.

Proposition 1.1.13. [39] Let φ and ψ be equivalences on a set S and a, c ∈ S. Then

(a, c) ∈ φ∨ψ if and only if, for some n ∈ N, there exist elements b1, b2, . . . , b2n−1 ∈ S
such that

a φ b1, b1 ψ b2, b2 φ b3, . . . , b2n−1 ψ c.

The proof of the assertion can be found in [39, Proposition 1.5.11].

Proposition 1.1.14. [39] Let φ and ψ be equivalences on a set S such that φ◦ψ =

ψ ◦ φ. Then, φ ∨ ψ = φ ◦ ψ.

The proof of the result appears in [39, Corollary 1.5.12].

Proposition 1.1.15. [39] The equivalence relations R and L commute:

R ◦ L = L ◦ R.
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The proof of the above result appears in [39, Proposition 2.1.3].

There are also two more Green’s relations induced by the equivalence relations

R and L. Define the equivalence relations

H := R∩ L and D := R∨ L-the join of L and R relations.

In fact, with a consideration of Propositions 1.1.15 and 1.1.14, the Green’s rela-

tion D can also be characterised as

D = R∨ L = R ◦ L = L ◦ R. (1.2)

This enables us to rephrase the definition of the relation D as follows:

a D b if and only if there exists s ∈ S such that a R s L b.

if and only if there exists t ∈ S such that a L t R b. (1.3)

Moreover, the relation H can also be described as

a H b if and only if a R b and a L b. (1.4)

In view of Proposition 1.1.10, it is clear that R ⊆ J and L ⊆ J . Moreover, D ⊆ J
as D = R∨ L, and H ⊆ R and H ⊆ L by definition.

D

R L

H

J

Figure 1.1: Hasse diagram of Green’s equivalence relations of a semigroup

The next assertion shows that, in certain cases, the D- and J -relations coincide.

Proposition 1.1.16. [39] If S is a finite semigroup, then D = J .

The proof of the above assertion can be found in [39, Proposition 2.1.4].

As H, R, L, D, and J are all equivalence relations, each one of them naturally

splits a semigroup S into equivalence classes, namely, the H-, R-, L-, D-, J -classes

of S. In other words, if s ∈ S, the J -class containing s, for instance, is the set of all

elements in S that are J -related to s :

Js = {t ∈ S : t J s};
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and all equivalence classes corresponding to the other Green’s relations are obtained

in a similar manner. It is also worth to mentioning that the inclusion order pre-

sented in (1.1) contributes in introducing a partial order among their corresponding

equivalence classes as shown below.

Ra ≤ Rb if aS1 ⊆ bS1;

La ≤ Lb if S1a ⊆ S1b; (1.5)

Ja ≤ Jb if S1aS1 ⊆ S1bS1.

It is evident that for all a ∈ S and s, s′ ∈ S1,

Lsa ≤ La, Ras ≤ Ra, Jss′ ≤ Js, Jss′ ≤ Js′ , Jsas′ ≤ Ja. (1.6)

If a ∈ S, we can redenote the principal (two-sided) ideal S1aS1 generated by the

element a as J(a). The following result appears in [39, Section 3.1], and gives an

alternative characterisation of J(a). The proof is provided here.

Proposition 1.1.17. [39] Let S be a semigroup and J be a J -class of S with a ∈ J.
Then, J(a) =

⋃
J ′≤J J

′.

Proof. If b ∈ J(a), then there exists s, s′ ∈ S such that b = sas′. Consider the

J -class Jsas′ to which sas′ belongs. It follows that Jsas′ ≤ Ja(= J) by (1.6). Thus,

the J -class Jsas′ is one of the J ′ that is less than or equal to J ; therefore, it belongs

to the union. In particular, b = sas′ ∈ ∪J ′≤JJ ′; hence, J(a) ⊂ ∪J ′≤JJ ′. To show

the other direction, let c ∈ ∪J ′≤JJ ′. Thus, there is a J ′ in the union such that

c ∈ J ′ ≤ J. In other words, Jc ≤ Ja; thus, J(c) ⊆ J(a) by (1.5). In particular,

c ∈ J(c) ⊆ J(a). Hence, ∪J ′≤JJ ′ ⊆ J(a), and then we obtain the equality.

Definition 1.1.18. [73] A semigroup S is called stable if both

s J sx ⇐⇒ s R sx and also s J xs ⇐⇒ s L xs,

for all s, x ∈ S.

Theorem 1.1.19. [73] Every finite semigroup is stable.

The proof of the assertion can be found in [73, Theorem A.2.4]. The next assertions

are of considerable use in Section 4.2.1.

Proposition 1.1.20. Let S be a finite semigroup and e ∈ S be an idempotent.

Then, for all s ∈ S, if es /∈ Re, then es ∈ J ′ where J ′ < Je.

Proof. Consider S1esS1; the ideal generated by es. Observe that S1esS1 ⊆ S1eS1;

this implies that es ∈ Jes ≤ Je by (1.6). It suffices to show that es does not lie

in the J -class Je. Since S is finite and es /∈ Re, then es /∈ Je by Theorem 1.1.19.

Hence, es ∈ J ′ < Je.
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According to [27], let S be a finite monoid and J be a (fixed) J -class of S. Define

the following set:

[J ]
�

= {s ∈ S : J * J(s)}.

Note that such a collection forms an ideal of S for the following reason: if t ∈ [J ]
�
,

then J * J(t). Fix s, s′ ∈ S and consider the J -class Jsts′ . By (1.6), we know that

Jsts′ ≤ Jt, and this implies that J(sts′) ⊆ J(t) by (1.5). Since J * J(t), then in

particular J * J(sts′). Thus, sts′ ∈ [J ]
�

and hence [J ]
�

is an ideal. The following

proposition provides an alternative characterisation of the ideal [J ]
�
.

Proposition 1.1.21. Let S be a finite monoid and J be a (fixed) J -class of S.

Then, [J ]
�

=
⋃

J ′′�J
J
′′
.

Thus, [J ]
�

is the ideal of all elements of S that are not J -above some (hence any)

elements of J.

Proof. Let a ∈ [J ]
�
; that is, J * J(a). In view of Proposition 1.1.17, we obtain

that J does not belong to ∪J ′≤JaJ ′. In other words, J � Ja. Thus, Ja is one of J
′′

in the ∪J ′′�JJ ′′ . In particular, a ∈ ∪J ′′�JJ ′′ . Hence, [J ]
� ⊆ ∪J ′′�JJ ′′ . Conversely,

pick any b ∈ ∪J ′′�JJ ′′ ; thus, there is a J
′′

such that b ∈ J ′′ � J. In other words,

J � Jb(= J
′′
). Let r ∈ J, and rewrite the J -class J as Jr; thus, Jr � Jb. Hence,

J(r) * J(b) by (1.5). This implies that J * J(b) as J ⊆ J(r). Therefore, b ∈ [J ]
�

by definition, and then ∪J ′′�JJ ′′ ⊆ [J ]
�
. Hence, we obtain the equality.

Fix a J -class J and a ∈ J. Then, Figure 1.2 illustrates the ideals [J ]
�

and J(a)

among the ordering of the J -classes of a semigroup S.

[J ]
�

J(a)

J

Figure 1.2: Generic picture of the ordering of J -classes of S with J(a) and [J ]
�
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The remainder of this section investigates the structure of D-classes of a semi-

group S. In view of the the definition of the equivalence relation D presented in (1.2),

each D-class in a semigroup S is a union of R-classes as well as L-classes. Moreover,

the intersection of an R-class and an L-class might be empty or an H-class. Assume

that the intersection of an R-class Ra and an L-class Lb is non-trivial; that is, there

exists an element c ∈ S such that c ∈ Ra∩ Lb. It obviously implies that a R c L b,

and then both a and b belong to the D-class D. It immediately follows that Ra ⊆ D

and Lb ⊆ D.

In contrast, with a careful consideration of the definition of D, a D b if and only

if there exists c ∈ S such that a R c L b. Thus, c ∈ Ra∩Lb; that is, Ra∩Lb 6= ∅. As

D is symmetric, La∩Rb 6= ∅. In fact, the above observations suggest the following:

• Whenever an R-class and an L-class intersect, they must be contained in the

same D-class.

• Every R-class and L-class that belong to the same D-class intersect non-

trivially.

It turns out that any D-class can be visualised as an “eggbox”, in which the rows

represent R-classes, the columns represent L-classes, and the cells represent H-

classes. The order of these rows and columns may be placed arbitrarily.

Definition 1.1.22. [39] Let S be a semigroup and s ∈ S1. A map ψs : S −→ S

defined by (a)ψs = as for all a ∈ S, is called a right translation. Dually, a map

φt : S −→ S defined by (a)φt = ta for all a ∈ S, is called a left translation.

The next lemma describes more about the structure of D-classes. It suggests

that multiplication by some favourable semigroup elements produces a one-to-one

correspondence between L-classes containing the same D-class.

Lemma 1.1.23 (Green’s Lemma). [26] Let S be a semigroup and a, b ∈ S such

that a R b. Let s, t ∈ S where as = b and bt = a. Then

(i) The mapping ψs : c 7→ cs sends the L-class La onto the L-class Lb, and the

mapping φt : d 7→ dt sends the L-class Lb onto the L-class La.

(ii) ψs : La −→ Lb and φt : Lb −→ La are mutually inverse; hence bijections;

that is, ψsφt is the identity map on La, and dually φtψs is the identity map on

Lb.

(iii) Both maps ψs and φt preserve R-classes; that is, for all c ∈ La and d ∈ Lb,
we have c R (c)ψs and d R (d)φt.

The proof of the above assertion appears in [39, Lemma 2.1.1]. The figure below

demonstrates the statements of Green’s Lemma 1.1.23.
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La Lb

a as = b

ψs

φt

bijection

bijection

c cs

ddt

Observation 1.1.24. It immediately follows from Green’s lemma that any two L-

classes contained in a D-class have the same cardinality. Moreover, both maps ψs

and φt are mutually inverse bijections between the H-classes belonging to La and

Lb. If x ∈ La, consider the H-class Hx containing x and observe that the restriction

of ψs into Hx yields a bijection ψs|
Hx

: Hx −→ Hxs, with inverse φt|
Hxs

: Hxs −→ Hx.

Specifically, if x = a, then ψs|
Ha

: Ha −→ Hb and φt|
Hb

: Hb −→ Ha are mutually

inverse bijections. Therefore, any two H-classes contained in a D-class have the

same cardinality.

The assertion below is a dual version of Lemma 1.1.23.

Lemma 1.1.25. [26] Let S be a semigroup and a, b ∈ S such that a L b. Let r, q ∈ S
where ra = b and qb = a. Then,

(i) The mapping ψr : c 7→ rc sends the R-class Ra onto the R-class Rb, and the

mapping φq : d 7→ qd sends the R-class Rb onto the R-class Ra.

(ii) ψr : Ra −→ Rb and φq : Rb −→ Ra are mutually inverse bijections.

(iii) Both maps ψr and φq preserve L-classes; that is, for all c ∈ Ra and d ∈ Rb,

we have

c L (c)ψr and d L (d)φq.

Analogous comments to Observation 1.1.24 apply to Green’s lemma 1.1.25.

Proposition 1.1.26. [39] Every idempotent e in a semigroup S is a left identity

for the R-class Re and a right identity for the L-class Le.

Proof. For any c ∈ Le, there exists s ∈ S1 such that c = se; then, consider

ce = (se)e = se2 = se = c.
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Thus, e is a right identity for every element belonging to the L-class Le. A dual

argument can apply to show ed = d for any d ∈ Re.

The assertion below characterises the maximal subgroups within a semigroup S.

Theorem 1.1.27 (Maximal Subgroup Theorem). Let e be an idempotent in a

semigroup S. Then, the H-class He is the maximal subgroup of S with identity e.

The proof of the theorem appears in [39, Corollary 2.2.9 and Theorem 2.2.5].

Remark 1.1.28. If e R a, then e · a = a and a = ex for some x ∈ S. In view

of Observation 1.1.24, there is a bijection between a maximal subgroup He and

the H-class Ha in which every element belongs to the H-class Ha can be uniquely

written as a product ga where g ∈ He. Figure 1.3 illustrates such a bijection, and

this remark will play a vital role in Section 4.2

ψa

g

He
ga

Ha

Le La

Figure 1.3: (−)a : He −→ Ha.

Definition 1.1.29. [39] Let S be a semigroup with an identity 1. Then, the

group of units in S is the set U, which consists of all elements s ∈ S, such that

ss−1 = 1 = s−1s for some s−1 ∈ S.
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1.2 Regular and inverse semigroups

This section illuminates a pair of fundamental semigroup examples and follows on

directly from the previous section’s discussion of semigroup theory. Specifically, reg-

ular semigroups, introduced by Green [31], are investigated alongside inverse semi-

groups invented independently by Vagner and Preston [38]. This section also covers

the partial order among semigroup elements, several instances of inverse semigroups,

and investigates the condition under which the monoid of partial linear isomorphisms

ML(V ) and the symmetric inverse monoid In can be considered factorizable.

Following this, the section explores a minor result (Proposition 1.2.23) that will

play a part in a proof in a subsequent assertion. The result itself will address

the position of the product of a pair of distinct J -related idempotents of a finite

inverse semigroup. Finally, after having stated and presented proofs for the series

of assertions characterising regular and inverse semigroups, the implications of each

for the symmetric inverse monoid In are considered.

Definition 1.2.1. [39] Let S be a semigroup. An element s ∈ S is regular if there

exists an element s′ ∈ S such that ss′s = s. In addition, a semigroup S is called

regular if each element is regular.

It follows that every idempotent is regular and all units are regular.

Proposition 1.2.2. [39] Let s be a regular element in S. Then, every element

belonging to the D-class Ds is regular.

Proof. As s is a regular element, we have ss′s = s. If t ∈ Ds, then there exists

a ∈ S1 such that s R a L t. Since s R a, there exists b, c ∈ S1 such that s = ab and

a = sc. Observe that

a = sc = (ss′s)c = (ss′)sc = ss′a = abs′a = ara,

where r = bs′. Thus, a is regular. Since a L t, a similar argument yields that t is

regular; hence, the result holds.

The preceding assertion indicates that either all elements of a D-class are regular

or none of them are. Moreover, any D-class containing an idempotent is regular.

Contrarily, a regular D-class contains at least one idempotent, since if s ∈ D with

ss′s = s for some s′ ∈ S1, then both ss′ and s′s are idempotents. It immediately

follows that every L-class and every R-class in a regular D-class must contain an

idempotent.

Define the full transformation semigroup (T
X
, ◦) to be the semigroup consisting

of all maps from X into X under composition. If X is finite, we denote T
X

by
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Tn instead, where n is the size of X. Such a semigroup is regular for the following

reason: Suppose σ ∈ Tn, and let us construct a map τ ∈ Tn such that στσ = σ. The

approach of such a construction can be explained in the following manner:

• Let j1, j2, . . . , jk be the images of σ. For each jr ∈ im(σ) with 1 ≤ r ≤ k, let

Fib(jr) be the fibre (the preimage) of jr.

• Partition the codomain of σ into blocks B1, B2, . . . , Bk in which each block

contains only one image point jr of σ. Note that such a partition is not unique.

• Consider the fibres of jr and fix an element lr from each fibre Fib(jr).

• τ assigns each block Br with the selected elements lr. Such an assigning means

that every element belonging to a block maps to a selected element lr.

Hence, the constructed map τ satisfies the condition of regularity.

Definition 1.2.3. [39] Let s be an element of a semigroup S. An element s∗ ∈ S
is said to be an inverse of s if and only if

ss∗s = s and s∗ss∗ = s∗.

Remark 1.2.4. We intend to draw the distinction between inverses in a monoid

and inverses in a group by using s∗ as an inverse of s in the sense of a monoid, and

s−1 as an inverse of s in the sense of a group.

An element with an inverse is obviously regular. Moreover, if s is a regular

element, then there exists t ∈ S such that s = sts. Let s∗ = tst and notice that

s∗ss∗ = (tst)s(tst) = t(sts)(tst) = ts(tst) = t(sts)t = tst = s∗,

and

ss∗s = s(tst)s = (sts)ts = sts = s.

It follows that every regular element s has an inverse s∗. The example below gives

us a clue that a regular element may not generally have a unique inverse. Thus, we

denote the set of all inverses of s by V (s).

Example 1.2.5. Consider the full transformation semigroup T4 and choose the

maps σ, τ , and α as shown in Figure 1.4. Then, a direct calculation shows that τ

and α are both inverses of σ.
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1 2 3 4

1 2 3 4

σ =

1 2 3 4

1 2 3 4

τ =

1 2 3 4

1 2 3 4

α =

Figure 1.4: A map σ with its inverses.

Observe that if s ∈ S is an element that lies in a regular D-class D, then each

inverse s∗ of s must belong to the same D-class D as s R ss∗ L s∗ and s L s∗s R s∗.

The assertion below investigates the locations of the inverses in D-class.

Theorem 1.2.6. [39] Let s ∈ S be an element that belongs to a regular D-class

D.

(i) If s∗ ∈ V (s), then s∗ ∈ D and the H-classes Rs ∩ Ls∗ , Ls ∩ Rs∗ contain the

idempotents ss∗ and s∗s, respectively:

Ls

Rs

Rs∗

Ls∗

s∗s s∗

s ss∗

(ii) If t ∈ D where Rs∩Lt and Ls∩Rt contain idempotents e and f respectively,

then the H-class Ht contains an inverse s∗ of s, where ss∗ = e and s∗s = f.

Ls

Rs

Rt

Lt

f s∗, t

s e

(iii) An H-class H contains at most one inverse of s.

The proof of the assertion appears in [39, Theorem 2.3.4]. The proposition below

shows how the H-classes lying in the same (regular) D-class behave.
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Proposition 1.2.7. [39] Let He and Hf be two H-classes belonging to the same

D-class where e and f are idempotents. Then He
∼= Hf .

Proof. Since He and Hf lie in the same D-class D, then both idempotents e and

f particularly lie in D. It follows that Rf ∩ Le 6= ∅, so let a ∈ Rf ∩ Le. Then

fa = ae = a by Proposition 1.1.26. In view of Theorem 1.2.6(i), there exists a

unique inverse a∗ belongs to Lf ∩ Re; thus, a∗f = ea∗ = a∗. Further, by Theorem

1.2.6(ii), we have

aa∗ = f, a∗a = e. (1.7)

Lf

Rf

Re

Le

a∗ e

f a

As fa = a, utilising Lemma 1.1.23 and Remark 1.1.28 yields the following bijec-

tion
ψa|

Hf
: Hf −→ Ha

h 7→ ha for all h ∈ Hf .

Moreover, since a∗a = e, then by Lemma 1.1.25, we obtain the following bijection:

φa∗|
Ha

: Ha −→ He.

r 7→ a∗r for all r ∈ Ha.

Therefore, the composition map γ = ψa|
Hf
◦ φa∗|

Ha
is a bijection from Hf onto He

defined as follows: For all h ∈ Hf ,

(h)γ = a∗ha,

where its inverse γ−1 is given by (g)γ−1 = aga∗ with g ∈ He. Figures A and B below

illustrate both bijections. If h, k ∈ Hf , then

(h)γ(k)γ = (a∗ha)(a∗ka) = a∗h(aa∗)ka = a∗hfka = a∗hka = (hk)γ,

as f is the identity of the group Hf . Hence, γ is an isomorphism.
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h ha
ψa|

Hf

φa∗ |
Ha

γ

a∗ha

Hf Ha

He

Fig A. γ: Hf −→ He

γ−1

Hf

ga∗
ψa∗ |

He He

φa|
Ha∗

g

aga∗

Ha∗

Fig B. γ−1: He −→ Hf

Definition 1.2.8. [39] A semigroup S is called inverse if, for all s ∈ S, there is a

unique element s∗ ∈ S, such that ss∗s = s and s∗ss∗ = s∗.

The result below provides an alternative characterisation for inverse semigroups.

Theorem 1.2.9. [39] Let S be a semigroup. Then the following statements are

equivalent:

(i) S is an inverse semigroup.

(ii) S is regular and its idempotents commute.

(iii) Every L-class and R-class contains exactly one idempotent.

The proof of the assertion can be found in [39, Theorem 5.1.1]. The next proposition

presents a few additional properties of inverse semigroups.

Proposition 1.2.10. [48] Let S be an inverse semigroup. Then,

(i) e∗ = e for all e ∈ S;

(ii) (a∗)∗ = a for all a ∈ S;

(iii) (a1a2 · · · an)∗ = a∗na
∗
n−1 · · · a∗1 for all a1, a2, . . . , an ∈ S with n ≥ 2;

(iv) If e is an idempotent, then for all s ∈ S, the element s∗es is an idempotent;

(v) For any idempotent e and any s ∈ S, there exists an idempotent f ∈ S such

that es = sf.

(vi) For any idempotent e and any s ∈ S, there exists an idempotent f ∈ S such

that se = fs.
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Proof. (i), (ii), and (iv) are straightforward. For (iii), let n = 2, and note that

a1a2(a∗2a
∗
1)a1a2 = a1(a2a

∗
2)(a∗1a1)a2 = a1(a∗1a1)(a2a

∗
2)a2 = a1a2,

as idempotents commute. Further,

a∗2a
∗
1(a1a2)a∗2a

∗
1 = a∗2(a∗1a1)(a2a

∗
2)a∗1 = a∗2(a2a

∗
2)(a∗1a1)a∗1 = a∗2a

∗
1.

Thus (a1a2)∗ = a∗2a
∗
1. The general case holds by induction. To show (v), consider

the idempotent s∗es given by (iv) and observe that

s · (s∗es) = ss∗es = ess∗s = es.

Putting f = s∗es yields the result. Similarly, we prove (vi).

Definition 1.2.11. [39] Let S be an inverse semigroup. Define a partial order

relation ≤ among the elements as follows: if s, t ∈ S, then s ≤ t if and only if there

exists an idempotent e ∈ S such that s = et.

Proposition 1.2.12. [48] Let S be an inverse semigroup. Then,

(i) s ≤ t if and only if there exists an idempotent f ∈ S such that s = tf.

(ii) For any s, t, r, u ∈ S, if s ≤ t and r ≤ u, then sr ≤ tu.

Proof. (i) As s ≤ t, we have s = et. It follows that et = tf for some idempotent

f ∈ S, by Proposition 1.2.10(v). Thus the result follows. The other direction follows

from Proposition 1.2.10(vi). For (ii), since s ≤ t and r ≤ u, then s = et and r = fu,

where e and f are any idempotents. Hence, sr = etfu, and by Proposition 1.2.10(v),

sr = egtu where g is an idempotent; that is, sr = (eg)tu. It follows that sr ≤ tu.

Proposition 1.2.13. [48] Let S be an inverse semigroup and a, b ∈ S then

(i) a R b if and only if aa∗ = bb∗;

(ii) a L b if and only if a∗a = b∗b.

Proof. We only show (i), as the proof of (ii) dually holds. Suppose a R b. Then by

Proposition 1.1.10(i), there are r, u ∈ S1 such that au = b and a = br. Consider

aa∗ = br(br)∗ = brr∗b∗. (1.8)

Observe that, as brr∗ = b(rr∗) and rr∗ is idempotent, it follows by Proposition

1.2.12(i) that brr∗ ≤ b. Similarly, as rr∗b∗ = (rr∗)b∗, we have rr∗b∗ ≤ b∗. Thus, in

view of Proposition 1.2.12(2), we obtain

(brr∗)(rr∗b∗) ≤ bb∗ ⇐⇒ b(rr∗r)r∗b∗ ≤ bb∗ ⇐⇒ brr∗b∗ ≤ bb∗.
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Therefore, (1.8) becomes aa∗ ≤ bb∗. Dually, bb∗ ≤ aa∗, and thus aa∗ = bb∗.

Proposition 1.2.14. [48] Let S be an inverse semigroup. Then any D-class D has

an equal number of rows and columns.

Proof. Since S is inverse, it is known from Theorem 1.2.9(iii) that every L-class and

R-class contains only one idempotent. As the order of rows and columns is arbitrary,

their positions can be rearranged so that allH-classes containing idempotents appear

in the “diagonal” of the eggbox D. Hence, any D-class D has a square shape.

Example 1.2.15. Given a non-empty set X, a partial permutation is defined as a

bijection σ : dom σ 7→ im σ, where dom σ and im σ are subsets of X. Since σ is a

bijection, there is a map σ∗ : im σ 7→ dom σ, such that

σσ∗ = id
domσ

, σ∗σ = id
imσ
.

Clearly, σσ∗σ = σ and σ∗σσ∗ = σ∗. The set I
X

of all partial permutations of X

forms a monoid under the composition of partial maps, called the symmetric inverse

monoid on X, where if σ, τ ∈ I
X
, then

dom στ = (im σ∩ dom τ)σ∗, im στ = (im σ∩ dom τ)τ,

and στ is the map composition dom στ 7→ im στ. If X = {1, 2, ...., n}, then write

In instead of I
X

. In fact, [39, Theorem 5.1.5] shows that the idempotents of I
X

are

partial identities id
Y
, where Y ⊆ X, and they commute. Hence, I

X
is an inverse

monoid.

Example 1.2.16. [19] Let V be a vector space over R. A partial linear isomorphism

of V is a linear isomorphism α : Y 7→ Y ′ where Y, Y ′ are subspaces of V . Let ML(V )

be the set of the partial linear isomorphisms of V . Since α : Y 7→ Y ′ is a linear

isomorphism, there is a map α∗ : Y ′ 7→ Y with

αα∗ = id
Y
, α∗α = id

Y
′.

Obviously, αα∗α = α, α∗αα∗ = α∗. In fact, the set ML(V ) forms a monoid under

the composition of partial maps; that is, if α : Y 7→ Y ′, and β : Z 7→ Z ′, then the

composition map αβ has the following domain:

dom αβ = (im α∩ dom β)α∗ = (Y ′∩ Z)α∗ = Y ′α∗ ∩ Zα∗ = Y ∩ Zα∗, (1.9)

where Zα∗ is the image of Z under the partial isomorphism α∗, and it has the

following image:

im αβ = (im α∩ dom β)β = (Y ′∩ Z)β = Y ′β ∩ Zβ = Y ′β ∩ Z ′.
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The idempotents of ML(V ) are partial identities on the subspaces of V. Moreover,

it is clear that ML(V ) ⊂ I
V
, since a vector space V can be considered as a set

and its subspaces as subsets; thus, it turns out that ML(V ) is a submonoid of I
V
.

Hence, for every α ∈ML(V ), α has a unique inverse α∗; then ML(V ) is an inverse

(sub)monoid of I
V
, called the general linear monoid on V.

Notice that the interpretation of the partial order relation ≤ in In is described

in the following manner: α ≤ β if and only if α is a restriction of β; that is, α ≤ β

if and only if dom α ⊆ dom β and xα = xβ for all x ∈ dom α, since α ≤ β requires

the existence of an idempotent e such that α = eβ. Moreover, eα = eeβ = eβ = α.

Thus, observe that

αα∗β = (eα)α∗β = e(αα∗)β = (αα∗)eβ = αα∗α = α.

Therefore,

α ≤ β ⇐⇒ α = αα∗β,

⇐⇒ α = id
domα

β,

⇐⇒ dom α ⊆ dom β and xα = xβ for all x ∈ dom α,

⇐⇒ α = β
domα

.

Similar result holds for ML(V ).

It must be noted that the units of the symmetric inverse monoid I
X

are the

elements of the symmetric group S
X
, whereas the units of ML(V ) are the elements

of the general linear group GL(V ).

Definition 1.2.17. [39] An inverse monoid S is said to be factorizable if for all

elements s ∈ S, there is a unit g ∈ U such that s ≤ g. In other words, for all

s ∈ S, thereexists a unit g ∈ U and an idempotent e ∈ E such that s = eg; that

is, S = EU.

Notice that if M is an inverse submonoid of In , then M is factorizable if and

only if every element α ∈M is a restriction of a unit g ∈M.

Definition 1.2.18. Let V be a vector space over R and g ∈ GL(V ) be a linear

isomorphism. If Y is a subspace of V, then the restriction of g to Y, denoted by g
Y
,

is a partial linear isomorphism Y 7→ Y g defined by

(v)g
Y

=

vg v ∈ Y,

undefined v /∈ Y.

It must be noted that if V is a finite dimensional vector space, then for any

partial isomorphism α : X → Y, where X and Y are subspaces of V , there always
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exists a (full) linear isomorphism g : V → V whose restriction to X is α; that is,

g
X

= α. However, if V has infinite dimension, then finding such a linear isomorphism

g : V → V is not necessarily possible. For example, let V be the real vector space

with basis Z and U be a proper subspace spanned by 2Z. Define a map f : U → V

on bases by f : 2m 7→ m, with m ∈ Z.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 60

0 1 2 3 4 5 6-1-2-3-4-5-6

Then f : U → V is a linear isomorphism; hence, it is onto. Consequently, f cannot

be extended to a linear isomorphism f̂ : V → V.

Note that the above discussion provides a clue with regard to whether the gen-

eral linear monoid ML(V ) could be factorizable. Indeed, the general linear monoid

ML(V ) is factorizable if and only if the vector space V is finite dimensional [19, Sec-

tion 7], because otherwise we cannot guarantee that every partial linear isomorphism

α ∈ ML(V ) is a restriction of a unit g ∈ GL(V ). Similarly, the symmetric inverse

monoid I
X

is factorizable if and only if the set X is finite [48, Proposition 2.1.1].

This is because if X is a finite set and σ ∈ I
X

is a partial bijection, then

|X \ dom σ| = |X \ im σ| .

This implies that a bijective map τ : X \ dom σ → X \ im σ can be found. Hence,

σ ∪ τ : X → X is a permutation of X that extends σ. However, if X is infinite,

then the example can be used (here, consider 2Z and Z as the sets) to show that it

cannot be promised that every partial permutation σ ∈ I
X

can be a restriction of a

bijection (permutation) on X.

The next assertion is regarded as the analogous inverse semigroup assertion to

Cayley’s Theorem in group theory:

Theorem 1.2.19 (Wagner-Preston Theorem). Let S be an inverse semigroup.

Then, there exists a set X and a monomorphism φ from S into I
X
.

The proof of the above result can be found in [39, Theorem 5.1.7].

This section concludes with the interpretation of some of the notions presented

earlier in this chapter in the special case of In. The benefit of such an illustration

will become clear in Section 5.2.

Proposition 1.2.20 (Green’s relations for In). Let In be the symmetric inverse

monoid. Then,
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(i) (σ, τ) ∈ R if and only if dom(σ) = dom(τ);

(ii) (σ, τ) ∈ L if and only if im(σ) = im(τ);

(iii) (σ, τ) ∈ D if and only if there exists γ ∈ In, where dom(σ) = dom(γ) and

im(γ) = im(τ); and alternatively, there exists γ′ ∈ In, with im(γ′) = im(σ),

and dom(γ′) = dom(τ);

(iv) (σ, τ) ∈ J if and only if |dom(σ)| = |dom(τ)| if and only if |im(σ)| = |im(τ)| .

The proof of the above result was obtained by Reilly [69, Lemma 2] and subsequently

by Munn [55, Lemma 1.2]. Such a result contributes to simplifying the description of

any J -class of In, as all we need is to illuminate the domains of partial permutations

and partition the symmetric inverse monoid In, based on all possible sizes of these

domains. Observe that the largest domain size we could have is n, and the smallest

domain size is zero. Therefore, we may label the J -classes of In as follows.

J0 , J1 , · · · , Jk , · · · , Jn−1 , Jn , (1.10)

where J0 indicates that the J -class consists of the zero partial permutation 0 : ∅ → ∅,
and J

k
indicates that the J -class consists of all partial permutations σ ∈ In whose

domains are subsets Y ⊆ {1, . . . , n} with size k.

Further, since In is a finite inverse monoid, D and J coincides, and by Propo-

sition 1.2.14, each J -class J
k

consists of an equal numbers of rows and columns.

The rows of a J -class J
k

are R-classes, and its columns are L-classes. However,

since any two partial permutations σ and τ are R-related if and only if they have

the same domain, then all partial permutations placed in an R-class must have the

same domain of size k. Thus, the rows of the J -class can be labelled by all possible

domains of σ’s with size k.

Similarly, two partial permutations are L-equivalent if they have the same image;

hence, the columns of the J -class are labelled by all possible images of γ with size

k. It follows that the columns and the rows of the J -class J
k

are labelled by all

subsets Y ⊂ {1, . . . , n} with |Y | = k, and 0 ≤ k ≤ n. Then, the number of rows

and columns inside a J -class J
k

are
(
n
k

)
.

In view of Theorem 1.1.27, anH-class H with idempotent e forms a maximal sub-

group He, and any idempotent e ∈ In is a partial identity on a set Y = {y1, . . . , yk};
e fixes Y point-wise, and it is undefined in {1, . . . , n} \ Y. It follows that a maxi-

mal subgroup He is isomorphic to the symmetric group Sk. By considering Theorem

1.2.9(iii) and Proposition 1.2.14, it is deduced that there are
(
n
k

)
maximal subgroups

Sk belonging in J
k
-class.

In subsequent chapters, the significant contribution of such groups to obtaining

the irreducible representations of In will be shown. Further, it must also be noted
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that the J -classes of In are linearly (totally) ordered by the sizes of the domains [21,

Section 3], and hence they can be drawn as depicted in Figure 1.5.

Jn

Jk

J2

J1

J0

Figure 1.5: The J -classes of In.

Remark 1.2.21. Consider an idempotent e ∈ Jk, and recall that e is a partial

identity idX on X where X ⊆ {1, · · · , n} with |X| = k. Consider the R-class of e

and observe that if σ ∈ Re , then dom(σ) = X = dom(e). Let σ : X −→ Y where

Y ⊆ {1, . . . , n} with |Y | = k. For any τ ∈ In, the composition στ lies in Re if and

only if dom(στ) = dom(e) = X if and only if Y = im(σ) ⊆ dom(τ). Hence,

στ ∈ Re if and only if Y ⊆ dom(τ). (1.11)

The interpretation of the ideals presented in Proposition 1.1.17 and Proposition

1.1.21 for the symmetric inverse monoid In are illustrated in the following example.

Example 1.2.22. Consider the symmetric inverse monoid In, and fix a J -class Jk

such that γ ∈ Jk with 1 ≤ k ≤ n. Consider a partial map αγβ where α, β ∈ In.

By the composition αγβ presented in Figure 1.6, we deduce that |dom(αγβ)| ≤
|dom(γ)| = k. Thus, the partial map αγβ belongs to a J -class J ′ where J ′ ≤ Jk.

dom(αγβ)
dom(γβ) ⊂ dom(γ)

im(αγβ)

γ

α

β

Figure 1.6: The composition of the partial map αγβ

Hence J(γ) = S1γS1 = ∪J ′≤JkJ ′ = ∪ki=0 Ji. Moreover, in view of Proposition 1.1.21

and the total order among J -classes of In, we obtain

[Jk]
�

= ∪J ′′�JkJ
′′

= ∪ki=1 Ji−1.
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Both concepts are illustrated in Figure 1.7:

Jn

J0

−→ [Jk]
�

Jk γ ∈ Jk

J(γ)←−

Figure 1.7: The illustration of J(γ) and [Jk]
�

of In.

Henceforth, all semigroups S are finite and the relation J is written for both

J and D when no confusion should arise. The result below will be of considerable

use in Section 5.2.2.

Proposition 1.2.23. Let S be a finite inverse semigroup, and e, f be distinct J -

related idempotents. Then, their product ef does not lie in the same J -class.

Proof. Suppose e and f are two distinct J -related idempotents such that e J f J ef .

By Theorem 1.2.19, we can embed S into I
S

using a morphism φ. Observe that if g

is an idempotent in S, then gφ = (g2)φ = (gφ)2; thus, gφ is an idempotent in I
S
.

Moreover, if x, y ∈ S such that x L y, then x = zy and y = z′x for some z, z′ ∈ S. By

applying φ, we have xφ = (zy)φ = zφyφ, and yφ = (z′x)φ = z′φxφ; thus, xφ L yφ.

The argument for R is dual. Hence, if x J y, then there exists c ∈ S such that

x L c R y; it follows that xφ L cφ R yφ. Therefore, xφ J yφ. Now, it follows from

our assumption that

eφ J fφ J (eφfφ). (1.12)

Observe that eφ and fφ are distinct idempotents (partial identities maps) in I
S

as φ is injection and e 6= f. Thus, im(eφ) 6= dom(fφ). By the composition eφfφ

presented in Figure 1.8, we deduce |dom(eφfφ)| < |dom(eφ)| .

dom(eφfφ)

X X

Y Y

fφ

eφ

Figure 1.8: The composition of the partial identities eφfφ
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In other words, eφfφ lies in the J -class that is lower than the J -class containing

eφ. This contradicts the result (1.12) that is deduced from the assumption. Hence,

the product ef /∈ Je.

Example 1.2.24. Let n = 3. The following diagram illustrates the J -classes of the

symmetric inverse monoid I4 .

J1

{1} {2} {3} {4}

{1}

{2}

{3}

{4}

=S1

∼=S1

∼=S1

∼=S1

J0

∅

J2

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1,2}

{1,3}

{1,4}

{2,3}

{2,4}

{3,4}

=S2

∼=S2

∼=S2

∼=S2

∼=S2

∼=S2

J3

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3}

{1,2,4}

{1,3,4}

{2,3,4}

=S3

∼=S3

∼=S3

∼=S3

J4

{1,2,3,4}

{1,2,3,4} =S4
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Chapter 2

Introduction to reflection groups

and reflection monoids

2.1 Reflections and reflection groups

Harold Coxeter [14] initially classified finite Euclidean reflection groups in 1934.

Many years later, in 1954, the theory of finite complex reflection groups was es-

tablished by Shepherd and Todd. Such groups can also arise from a root system,

a collection of non-zero vectors in a Euclidean space satisfying certain properties.

The latter concept is at the heart of the theory of Lie groups and Lie algebras, and

particularly for the representation of semisimple Lie algebras.

This section provides a brief illustration of certain reflection groups which are

relevant to the forthcoming chapters, and it is organized as follows. The section be-

gins with a review of the reflections over a Euclidean vector space. Subsequently, we

will explore reflection groups and offer proofs of various properties that emerge from

the literature. We then also explore the concept of root systems and demonstrate

how they can be utilised to transfer back and forth from finite reflection groups. We

will finish the section by outlining three root systems and their relevant reflection

groups.

Definition 2.1.1. [74] A Euclidean vector space V is a vector space over the real

numbers R with an inner product defined on it.

Definition 2.1.2. [74] Let V be a Euclidean vector space. Any vectors v and u

are said to be orthogonal if and only if 〈v, u〉 = 0.

Definition 2.1.3. [74] Let V be a vector space over R. A linear hyperplane in V is

an (n− 1)-dimensional subspace of V. Alternatively, for any non-zero vector v ∈ V,
a subspace consists of all vectors that are orthogonal to a vector v, is also called the

linear hyperplane determined by v; that is,

Hv = {u ∈ V : 〈v, u〉 = 0}.
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Throughout this thesis, we write mapping symbols on the right.

Definition 2.1.4. [40] Let V be a Euclidean vector space and Hv be a linear

hyperplane orthogonal to the non-zero vector v. A reflection sv in Hv is a linear

map V → V, such that

• (u)sv = u, for all u ∈ Hv,

• (v)sv = −v.

Hv

v

−v

Figure 2.1: Effect of a reflection on a hyperplane Hv and a vector v.

Note that, since a reflection sv is a linear map, then (λw + µw′)sv = λ(w)sv +

µ(w′)sv for every w,w′ ∈ V, λ, µ ∈ R, and (0)sv = 0. Indeed, a reflection sv is a

bijective linear map, and for every reflection sv, (w)svsv = w; that is, s2
v = id (the

identity map). For all 0 6= λ ∈ R, we have sv = sλv.

Remark 2.1.5. [44] From the definition of a reflection, every reflection sv is de-

termined by a vector v. However, we can also define a reflection with respect to a

reflecting hyperplane H by s
H

instead of sv as the following: A reflection s
H

is a

linear map V → V such that

• (u)s
H

= u, for all u ∈ H,

• (v)s
H

= −v, if v is perpendicular to H.

The lemma below suggests a formula for a reflection.

Lemma 2.1.6. [40] Let sv be a reflection determined by the non-zero vector v ∈ V
and Hv be its reflecting hyperplane. Then, for all w ∈ V, we have:

(w)sv = w − 2〈w, v〉
〈v, v〉

v.

Proof. By choosing a sensible basis, we can verify the formula by considering the

effect of the right hand side on it. Alternatively, since the vector w − 〈w,v〉〈v,v〉 v ∈ V,
then

〈w − 〈w, v〉
〈v, v〉

v, v〉 = 〈w, v〉 − 〈w, v〉
〈v, v〉

〈v, v〉 = 〈w, v〉 − 〈w, v〉 = 0.
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This implies that w − 〈w,v〉〈v,v〉 v ∈ Hv and (w − 〈w,v〉〈v,v〉 v)sv = w − 〈w,v〉〈v,v〉 v. Hence,

(w)sv = (w − 〈w, v〉
〈v, v〉

v +
〈w, v〉
〈v, v〉

v)sv,

= (w − 〈w, v〉
〈v, v〉

v)sv +
〈w, v〉
〈v, v〉

(v)sv,

= w − 〈w, v〉
〈v, v〉

v − 〈w, v〉
〈v, v〉

v,

= w − 2〈w, v〉
〈v, v〉

v.

Definition 2.1.7. [74] A linear map g : V → V is said to be an orthogonal map if

and only if 〈wg,w′g〉 = 〈w,w′〉 for all w,w′ ∈ V.

Using the formula in Lemma 2.1.6 and the inner product of V , it is easy to

convince ourselves that every reflection is an orthogonal map; that is, 〈wsv, w′sv〉 =

〈w,w′〉. It follows that a reflection sv preserves the length; that is,

wsv = u implies ‖u‖ = ‖w‖ . (2.1)

Definition 2.1.8. [40] A reflection group W is a group generated by finitely many

reflections.

Example 2.1.9. Let D4 be the group of symmetries of a square. It contains four

reflections {s1, s2, s3, s4} and four rotations. Notice that each element of D4 can be

written as a product of reflections. The reason is clear for the reflections as each is

self-generated.

s2s1

(s2s1)2

C
(s2s1)3

D

s1 s2

A

s3

B

s4

Figure 2.2: Rotations in D4 are the powers of the reflections s1 and s2.

However, for the rotations, we need to think about the square as being divided into

eight chambers where each chamber is bounded by two reflections. If we choose

any chamber and compose its reflections together, we will obtain the quarter turn

rotation counter-clockwise; that is, if we choose the chamber which is bounded by

the reflections s1 and s2, then the first quarter turn rotation counter-clockwise is

26



s2s1. Observe that the other rotations are the powers of s2s1; hence, D4 is a reflection

group.

s2s1

(s2s1)2

(s2s1)3

s1 s2
s1s2s1

s2s1s2

Figure 2.3: All elements of D4 are composition of the reflections s1 and s2

In fact, the reflections s1 and s2 can generate the whole group. Thus,

D4 = 〈s1, s2〉 = {1, s1, s2, s1s2s1, s2s1s2, s2s1, (s2s1)2, (s2s1)3}.

Notice that if v is a vector that corresponds to a reflection sv and g : V → V is an

orthogonal map, then the image of the vector v under g is a vector that corresponds

to a reflection and is called svg . The following lemma illustrates that the reflection

svg of the vector vg is the conjugate of a reflection sv by g.

g−1svg

sv

v

vg

Figure 2.4: vg corresponds to the reflection g−1svg.

Lemma 2.1.10. [40] Let g : V → V be an orthogonal map. If v ∈ V and sv is the

corresponding reflection, then svg = g−1svg.

Proof. Since svg is a reflection determined by a vector vg, then it must fix everything

in the hyperplane Hvg and send the vector vg to the negative of itself. To show that

g−1svg is precisely svg , we need to check that g−1svg is a reflection that sends the

vector vg to −vg and fixes everything in Hvg . Firstly,

(vg)g−1svg = v(gg−1)svg = v(svg) = (vsv)g = −vg.
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Therefore, the reflection g−1svg sends the vector vg to −vg. Since the vector v is

perpendicular to the reflecting hyperplane Hv , we have 〈u, v〉 = 0 for all u ∈ Hv .

Also, since g is an orthogonal map, then it preserves the inner product; that is

〈ug, vg〉 = 〈u, v〉 = 0. Therefore, ug ∈ Hvg . Notice that

(ug)g−1svg = u(gg−1)svg = usvg = ug.

Hence, the reflection g−1svg fixes ug ∈ Hvg .

According to Remark 2.1.5, we can rewrite the reflection g−1svg with respect to

the reflecting hyperplane H as follows:

s
Hg

= g−1s
H
g. (2.2)

Corollary 2.1.11. If W is a finite reflection group and g ∈ W , then sv ∈ W if and

only if svg ∈ W .

Proof. svg ∈ W ⇐⇒ g−1svg ∈ W ⇐⇒ sv ∈ W since a group W is closed under

conjugation.

Henceforth, all reflection groups are finite and all vector spaces V are finite

dimensional.

Consider the symmetries of a square presented in Example 2.1.9, and all the

reflections si with 1 ≤ i ≤ 4 (not only the generating ones). Let vi,−vi be the

vectors that are orthogonal to each reflecting hyperplane Hi of a reflection si as

illustrated in Figure 2.5.

s1 s2
s3

s4
−v1

v4

−v4

v1

v2 v3

−v3 −v2

Figure 2.5: vectors vi, orthogonal to hyperplanes Hi, with their negatives −vi

Then, if we collect all such vectors, for each reflection si in a set Φ, we observe the

following properties:

• All the vectors in Φ are nonzero vectors.

• Fix v ∈ Φ, and notice that the only vectors in Φ that belong to the line span

of v are v and −v; that is,
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λv ∈ Φ if and only if λ = ±1.

• Fix v ∈ Φ, and observe that the reflection sv associated with v permutes Φ;

that is (w)sv ∈ Φ for all w ∈ Φ.

In fact, such an observation motivates the following concept.

Definition 2.1.12. [40] Let V be a finite dimensional Euclidean vector space. A

finite set Φ of nonzero vectors in V is called a root system if and only if the following

conditions are satisfied:

(i) Φ∩ Rv = {±v} for any v ∈ Φ.

(ii) (Φ)sv = Φ for all v ∈ Φ.

The reason for considering such a concept goes back to the relationship between

a root system and a finite reflection group. In other words, given a root system Φ,

we can obtain a finite Euclidean reflection group W (Φ) and vice versa, as stated

below.

Proposition 2.1.13. [44] Let W be a finite reflection group acting on the finite

dimensional Euclidean vector space V . Then a root system Φ given by W is obtained

by

Φ =
{
±v
‖v‖ : v are vectors associated with all reflections sv ∈ W

}
.

Moreover, if Φ ⊂ V is a root system, then a finite reflection group W (Φ) arising

from Φ is determined by

W (Φ) = 〈sv | v ∈ Φ〉.

Proof. Let W be a finite reflection group, and T be the set of all reflections belonging

toW (not solely the generating ones). For each reflection sv ∈ T, consider the vectors
±v
‖v‖ , and observe that both vectors have length 1. Then the set

Φ = { ±v‖v‖ : sv ∈ W}

is a root system for W as Φ is finite and clearly satisfies condition (i) of Definition

2.1.12. Let w, u ∈ Φ. Since sw, su ∈ W, then s
(w)su

∈ W by Corollary 2.1.11. It

follows that (w)su has a unit length, as shown in (2.1); thus, (w)su ∈ Φ. Hence,

condition (ii) holds. Conversely, let Φ ⊂ V be a root system with |Φ| = r. For each

±v ∈ Φ, we obtain a reflection sv = s−v. Let S = {sv : v ∈ Φ}; then

W (Φ) = 〈sv | sv ∈ S〉 ⊂ GL(V )
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is the reflection group generated by S. It remains to show that W (Φ) is finite. Let

U be the subspace of V spanned by Φ. It follows that V = U ⊕ U⊥ where U⊥ is

the orthogonal complement of U . Since v ∈ Φ ⊂ U, then a reflection sv associated

with v fixes U⊥ pointwise. Thus, each g ∈ W acts trivially on U⊥ because g is

a composition of some reflections sv ∈ W. In view of property (ii) in Definition

2.1.12, any reflection sv permutes the root system Φ. This allows us to define a

group homomorphism ψ : W −−→ S
Φ

where each g ∈ W gives a permutation (g)ψ

of elements of Φ. Notice that Ker(ψ) = {id
W
}, where id

W
is the identity reflection

since, for any g ∈ Ker(ψ), we have (g)ψ = id ∈ S
Φ

and this implies that g ∈ W

preserves every element v ∈ Φ. It follows that g fixes U pointwise; thus, g fixes V

pointwise. Hence, g = id
W
. By the first isomorphism theorem, W ∼= im(ψ) ⊆ S

Φ
.

This implies that |W | ≤ r! .

We will discuss below some examples for root systems Φ and their corresponding

finite reflection groups W (Φ).

Example 2.1.14. Let V be a Euclidean vector space with an orthonormal basis

{v1, . . . , vn}.

(i) Root system An−1

Let An−1 ⊂ V where

An−1 = {±(vi − vj) : and i, j = 1, 2, . . . , n}.

Let us now verify that An−1 satisfies the axioms of a root system. It is clear

that the set An−1 is finite with size 2
(
n
2

)
. For the second axiom, consider the

vector vi−vj and its line span λ(vi−vj). Any vector of An−1 is a scalar multiple

of (vi−vj) if and only if the positions of the nonzero entries match the i-th and

j-th positions in vi− vj. But the only roots in An−1 that satisfy this condition

are ±(vi−vj). To show (An−1)sv = An−1 for all v = vi−vj ∈ An−1, let us first

examine the action of sv on the basis vectors {v1, . . . , vn}. Using the reflection

formula shown in Lemma 2.1.6, we have

(vk)sv =


vi if k = j

vj, if k = i

vk if otherwise.

(2.3)

Therefore, depending on the value of k, a reflection sv permutes the basis vec-

tors {v1, . . . , vn} by interchanging (vi, vj) and fixing all other basis vectors. In

other words, a reflection sv permutes {v1, . . . , vn} precisely as a transposition

(i, j) permutes {1, . . . , n}. As a reflection sv is a linear map, it follows that
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(vk − v`)sv = (vk)sv − (v`)sv ∈ An−1,

for all vk − v` ∈ An−1, and this implies (An−1)sv ⊆ An−1. Furthermore,

An−1 = ((An−1)sv)sv ⊆ (An−1)sv.

Thus, for each v ∈ An−1, a reflection sv permutes An−1. Hence, An−1 is a

root system. By Proposition 2.1.13, for each vector vi − vj ∈ An−1, consider

a reflection svi−vj and then construct the group generated by these reflections

as follows.

W (An−1) = 〈svi−vj : i 6= j〉.

Such a group is called the reflection group of type An−1. Recall that each gen-

erator svi−vj of W (An−1) only interchanges the basis vectors vi and vj and fixes

the others as clarified above. It follows that each generator svi−vj is a permuta-

tion “transposition” of {v1, . . . , vn} and every element w ∈ W (An−1) is a com-

position of these generators. Hence, the finite reflection group W (An−1) arising

from An−1 is a symmetric group Sn acting on V by permuting {v1, . . . , vn}.

id

(12)

(13)

(23)

(123)

(132)

π ∈ S3 π acts on the basis of R3 π ∈ S3 π acts on the basis of R3

Figure 2.6: The action of S3 on R3

(ii) Root system Bn

Let Bn ⊂ V where

Bn = {±vi ± vj : i 6= j} ∪ {±vi} with i, j = 1, 2, . . . , n.

Clearly, Bn is finite with size 2n2, and for all v ∈ Bn and λ ∈ R, λv ∈
Bn if and only if λ = ±1. Moreover, we know the action of a reflection svi−vj ,

on the basis vectors from (2.3). Similarly, by formula 2.1.6, the action of
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svi+vj = s−vi−vj on the basis vectors can be deduced as

(vk)svi+vj =


−vi if k = j

−vj, if k = i

vk otherwise,

(2.4)

while the action of svi = s−vi on the basis vectors is obtained by

(vk)svi =

−vi if k = i

vk, if k 6= i.
(2.5)

Utilising all the above cases, (Bn)sv = Bn, where v ∈ Bn. Hence, the set Bn

is a root system, and then using Proposition 2.1.13, the group generated by

these reflections is obtained by

W (Bn) = 〈sv : v ∈ Bn〉.

= 〈svi−vj , svi+vj , svi : i 6= j〉, (2.6)

and called the reflection group of type Bn. In fact, the generating set of W (Bn)

is smaller than the set of generators shown in (2.6) for the reason below. Since

vi + vj = (vi − vj) + 2vj = (vi − vj)−
2 〈vi − vj, vj〉
〈vj, vj〉

vj = (vi − vj)svj , (2.7)

then, using Lemma 2.1.10, we have

svi+vj = s
((vi−vj)svj )

= s−1
vj
s(vi−vj)svj = svjs(vi−vj)svj . (2.8)

In other words, each reflection svi+vj can be written as a product of the other

generators of W (Bn). Therefore, W (Bn) can be redrafted as follows.

W (Bn) = 〈svi−vj , 1 ≤ i 6= j ≤ n ; svi , 1 ≤ i ≤ n〉. (2.9)

It should be noted that the action of certain reflections presented in (2.5) does

not only permute basis vectors {v1, . . . , vn} among themselves. However, it

sends some of the basis vectors vi to −vi. This indeed suggests considering the

set {±v1, . . . ,±vn} and examining the action of W (Bn) on it. Observe that

the generators of W (Bn) can be viewed as permutations of {±v1, . . . ,±vn}
with a property that (−vi)sv = −(vi)sv for all v ∈ Bn as shown in Figure 2.7.
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v1

−v1

vj vi

−vi−vj

vn

−vn

svi+vj =

v1

−v1

vj vi

−vi−vj

vn

−vn

svi−vj =

v1

−v1

vi

−vi

vn

−vn

svi =

Figure 2.7: Generators of a reflection group W (Bn).

This implies that the composition σ of the generators also permutes {±v1, . . . ,±vn}
and satisfies (−vi)σ = −(vi)σ. It turns out that

W (Bn) ∼= { τ ∈ S{±1,...,±n} : (−x)τ = −(x)τ with x ∈ {±1, . . . ,±n}}, (2.10)

where the set in the right side of (2.10) is called the signed permutation group

Bn, and it is intensively investigated in Section 3.3 of this thesis.

(iii) Root system Dn

Let Dn be a subset of the root system Bn such that

Dn = {±vi ± vj : i 6= j and i, j = 1, . . . , n}.

Clearly, it is a root system with size 4
(
n
2

)
, and a reflection group W (Dn) is a

subgroup of W (Bn) that is determined by

W (Dn) = 〈svi−vj , svi+vj , s−vi−vj , s−vi+vj : i 6= j〉;

= 〈svi−vj , svi+vj : 1 ≤ i 6= j ≤ n〉.

According to [40, Section 1.1], the reflection group W (Dn) arising from the

root system of type Dn is isomorphic to the group of even signed permutations

Be
n where

Be
n =

{
τ ∈S{±1,···,±n} : (−x)τ = −(x)τ ; x ∈ {±1, · · · ,±n} and

|{x ∈ {1, · · · , n} : (x)τ ∈ {−1, · · · ,−n}}| is even
}
.

The latter condition appearing in the definition ofBe
n means that the number of

positive integers whose images are negative is even. The reader can consult [19,

Section 5] for more details about Be
n and [44, Section 2.2] for justifying the

isomorphism.

(iv) There are also other well-known root systems

E6, E7, E8, F4, H3, H4, I2(m).

The reader can consult [40, Chapter 2] for more details about these root sys-

tems, and their reflection groups can be constructed in a similar manner as

just demonstrated.
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2.2 Monoids of partial linear isomorphisms and

reflection monoids

The symmetric group Sn has been the focus of extensive study as the permutation

group of the set [n] = {1, 2, . . . , n}. The study also takes the form of, among others,

a reflection group which is generated by reflections in the hyperplanes of a finite

dimensional Euclidean space. Similarly, the symmetric inverse monoid I
X
, whose

elements are the partial bijections, takes other versions. If the symmetric group

Sn represents the group of symmetries of [n], then the symmetric inverse monoid In

should be considered for the partial symmetries. One interesting shortcoming is that

the symmetric inverse monoid I
X

is not considered a monoid generated by certain

partial reflections; that is, no generalisation of reflection groups to the partial case

was known.

Recently, Everitt and Fountain [19, Section 2] put forward a proposal to identify

the symmetric inverse monoid I
X

as a “partial” reflection monoid. The authors

described reflection monoids as a certain factorizable inverse monoid generated by

partial reflections. A reflection group G and a collection of domain subspaces with

favourable behaviour (a so-called system S) can also define a reflection monoid

M(G,S). The development of such monoids forms the focus of this section. It will

also discuss in detail a number of notable outcomes obtained by the aforementioned

authors. This section is structured to have four subsections. In the first subsection,

certain subspaces that form the domains of the partial isomorphisms, with a par-

ticular emphasis on two examples associated with these subspaces, are discussed.

In the second subsection, the monoids of partial linear isomorphisms M(G,S) and

reflection monoids, alongside several of their key attributes, are characterised. Fi-

nally, in the last subsection, Green’s relations for M(G,S) and maximal subgroups

are considered.

2.2.1 Systems of subspaces

This subsection is devoted to introducing essential subspaces that form a domain

of the partial isomorphisms. The reader can consult [19, Section 2 and 3] for more

details.

Recall from Example 1.2.16 that

ML(V ) = {σ : Y −−→ Y ′ an isomorphism where Y, Y ′ ⊆ V }

is the monoid of all partial linear isomorphisms of V. Let α : Y 7→ Y ′, and β :

Z 7→ Z ′. Then, a careful consideration of the domain Y ∩ Zα∗ in the composition
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αβ ∈ML(V ), described in (1.9), suggests the following.

Definition 2.2.1. [19] Let V be a vector space over R and G be a subgroup of

GL(V ). A set S of subspaces of V is called a system in V for G if and only if

(i) V ∈ S,

(ii) for each Y ∈ S and g ∈ G, we have Y g ∈ S, and

(iii) if Y, Z ∈ S, then Y ∩ Z ∈ S.

Utilising the alternative descriptions of the preceding reflection groups, we will

discuss some examples of systems of subspaces.

Example 2.2.2 (Boolean systems).

(i) Boolean system for Sn

Let V be a Euclidean vector space with an orthonormal basis {v1, . . . , vn}.
Stemming from Figure 2.6, the symmetric group Sn ⊂ GL(V ) acts on V by

permuting the coordinates; that is, for all σ ∈ Sn, define gσ ∈ GL(V ) by:

vi . gσ = viσ.

Let

X(L) =
⊕
l∈L

Rvl (2.11)

be a subspace of V where L ⊆ [n] = {1, . . . , n}, and define B = {X(L) :

for all L ⊆ [n]}. Notice that X(∅) = 0, and if L = [n], then X(L) = V .

Moreover, for any two subspaces X(L), X(L′) ∈ B, we have

X(L) ∩X(L′) = X(L ∩ L′), (2.12)

with L,L′ ⊆ [n]. Also, for all gσ ∈ Sn,

X(L)gσ = X(Lσ). (2.13)

Therefore, B is indeed a system. We call such the system of subspaces, gener-

ated by all coordinate hyperplanes and their intersections, the Boolean system

in V for Sn. For instance, let R2 be a vector space with an orthonormal basis

{v1, v2}. Since all the subsets of [2] are {L1 = φ, L2 = {1}, L3 = {2}, L4 =

{1, 2}}, then all possible subsets of the basis are {φ, {v1}, {v2}, {v1, v2}}. No-

tice that dim X(Li) = |Li|, and the subspaces of V are

X(L1) = 0
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X(L2) = Rv1

X(L3) = Rv2

X(L4) = Rv1 ⊕ Rv2.

Hence,

B = {X(L1), X(L2), X(L3), X(L4)},

is the Boolean system in R2 for S2. Below is an illustration of the Boolean

system in R3 for S3.

Figure 2.8: All subspaces of R3, spanned by a subset of the given basis, forms the Boolean system for S3

(ii) Boolean system for Bn

Let V be a Euclidean vector space with an orthonormal basis {v1, . . . , vn}. Let

the signed permutation group Bn ⊂ GL(V ) act on V by

vi . fπ =

viπ, if iπ > 0

v−iπ := −viπ, if iπ < 0,

where π ∈ Bn. Let X(L) as defined in (2.11). In view of the above exam-

ple, X([n]) = V and equation (2.12) holds. Since R(−vi) = R(vi), the last

condition

X(L)fπ = X(Lπ)

holds. Therefore, B = {X(L) : for all L ⊆ [n]} is the Boolean system for Bn.
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(iii) Boolean system for Be
n

As Be
n is a subgroup of Bn, any system B for Bn is automatically a system for

Be
n. Thus, B is the Boolean system for Be

n.

According to [19, Section 5], there will never be a Boolean system B for any

reflection group W (Φ) arising from root systems presented in Example 2.1.14(iv).

Example 2.2.3 (Arrangement system). Let V be a Euclidean vector space with

an orthonormal basis {v1, . . . , vn} and W ⊂ GL(V ) be a finite reflection group. We

know that each reflection s ∈ W has a reflecting hyperplane H associated with it.

Let A be the set of all the reflecting hyperplanes H of W ; that is,

A = {H : for each reflection s ∈ W}.

Let H be the collection of all the possible intersections of the hyperplanes H in A,

and the vector space V ; that is,

H = V ∪ { ∩i Hi : Hi ∈ A}.

We claim that H is a system in V for the reflection group W. To see this, observe

that V ∈ H. Suppose ∩iHi and ∩jHj ∈ H for some reflecting hyperplanes Hi and

Hj in A. Then,

(∩iHi) ∩ (∩jHj) ∈ H.

If ∩iHi ∈ H and g ∈ W , we want to show that (∩iHi)g ∈ H. Let us first show that,

if H ∈ A and g ∈ W, then Hg ∈ A. Since H ∈ A, then its associated reflection s
H

belongs to W . Using Lemma 2.1.10 and equation (2.2), we have a reflection

s
Hg

= g−1s
H
g.

Hence, s
Hg
∈ W for W is a group, and then its reflecting hyperplane Hg is in A.

Let H1, H2, ... , Hr be reflecting hyperplanes in A. Since g ∈ W (bijective map),

then

(∩ri=1 Hi)g = ∩ri=1 Hig.

However, for all 1 ≤ i ≤ r, each Hig ∈ A, so ∩ri=1 Hig ∈ H. Thus, (∩ri=1 Hi)g ∈ H.

2.2.2 Reflection monoids

This subsection is devoted to the study of the monoid of partial linear isomorphisms

M(G,S) and reflection monoids. We provide a preliminary overview of some sig-

nificant properties of the monoids of partial linear isomorphisms. The reader can
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consult ( [19], [20]) for more details.

Definition 2.2.4. [19] Let G be a subgroup of GL(V ) and S be a system in V for

G. A submonoid of ML(V ) defined by

M(G,S) := {g
Y

: g ∈ G, Y ∈ S}

is called a monoid of partial linear isomorphisms given by a group G and a system

S.

Definition 2.2.5. [19] A submonoid M ⊂ML(V ) is said to be a reflection monoid

if M is of the form M(W,S) for W is a reflection group and S is a system for W.

Let us shed more light on the structure of M(G,S) and pave the way to reprove

the striking results of Proposition 2.2.13 and Corollary 2.2.15, which give us an

alternative characterisation of reflection monoids. The next proposition tells us how

to compose two partial linear isomorphisms in M(G,S).

Proposition 2.2.6. [19] If g
Y

, h
Z
∈ M(G,S), where g, h ∈ G ≤ GL(V ) and

Y, Z ∈ S, then

dom (g
Y
h
Z
) = Y ∩ Zg−1 , and im (g

Y
h
Z
) = (Y ∩ Zg−1)gh,

and

g
Y
h
Z

= (gh)
Y ∩Zg−1 . (2.14)

Y g
Y Y g

Z

Zh

V

h
Z

dom g
Y
h
Z

im g
Y
h
Z

Proof. If g
Y
, h

Z
∈M(G,S) where

g
Y

: Y 7→ Y g , h
Z

: Z 7→ Zh,

then

dom (g
Y
h
Z
) = {v ∈ V : v ∈ dom g

Y
and (v)g ∈ dom h

Z
},

= {v ∈ V : v ∈ Y and (v)g ∈ Z},

= {v ∈ V : v ∈ Y and v ∈ Zg−1},
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= Y ∩ Zg−1.

Furthermore,

im(g
Y
h
Z
) = (Y ∩ Zg−1)g

Y
h
Z
,

= ((Y ∩ Zg−1)g
Y

)h
Z
,

= ((Y ∩ Zg−1)g)h
Z
,

= (Y g∩ Z)h
Z
,

= (Y g∩ Z)h.

However,

(Y ∩ Zg−1)gh = (Y )gh∩ (Zg−1)gh = (Y g)h∩ (Zg−1g)h = (Y g∩ Z)h.

Therefore, im (g
Y
h
Z
) = (Y ∩ Zg−1)gh. Thus, g

Y
h
Z

is the map composition

Y ∩ Zg−1 7→ (Y ∩ Zg−1)gh.

If x ∈ Y ∩Zg−1, then it is clear that x(g
Y
h
Z
) = (xg

Y
)h

Z
= (xg)h

Z
= x(gh). Hence,

g
Y
h
Z

= (gh)
Y ∩Zg−1 .

Observation 2.2.7. Since g
Y

is a partial linear isomorphism Y → Y g, then there

is a partial linear isomorphism (g
Y

)∗ : Y g → Y such that

g
Y

(g
Y

)∗ = id
Y
, (g

Y
)∗ g

Y
= id

Y g

Figure 2.9 shows that we are allowed to write (g
Y

)∗ as follows:

(g
Y

)∗ = (g
−1

)
Y g
. (2.15)

g

g−1

Y

Y g

g
Y

(g
Y

)∗

V V

Figure 2.9: (g
−1

)
Y g

is the partial linear isomorphism Y g → Y .
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Notice that the right side of equality (2.15) is a linear isomorphism g−1 ∈ G that

is restricted to a subspace Y g ∈ S. Hence, (g
−1

)
Y g
∈ M(G,S). Moreover, (g

Y
)∗ is

an inverse of g
Y
, because

g
Y

(g
Y

)∗ g
Y

= g
Y

(g
−1

)
Yg
g
Y

= (g
Y

(g
−1

)
Yg

) g
Y

= ((gg−1)
Y ∩Y gg−1 ) g

Y

= (id
Y ∩Y ) g

Y

= id
Y
g
Y

= g
Y
.

In addition,

(g
Y

)∗ g
Y

(g
Y

)∗ = (g
−1

)
Yg
g
Y

(g
−1

)
Yg

= ((g
−1

)
Yg
g
Y

) (g
−1

)
Yg

= ((g−1g)
Y g∩Y (g−1)−1 ) (g

−1

)
Yg

= (id
Yg∩Yg

) (g
−1

)
Yg

= id
Yg

(g
−1

)
Yg

= (id g−1)
Yg∩Y gid−1

= (g−1)
Yg∩Yg

= (g−1)
Yg

= (g
Y

)∗.

Remark 2.2.8. If we take any two different linear isomorphisms g, h ∈ G and two

subspaces Y, Z ∈ S, it is crucial to know when they have the same partial linear

isomorphisms. Obviously, partial linear isomorphisms are equal if they have the

same domain and images and the same effect on the domain:

dom (g
Y

) = dom (h
Z
)⇔ Y = Z.

Furthermore, for all v ∈ Y , vg
Y

= vh
Z
⇔ vg = vh⇔ vgh−1 = v; that is, when gh−1

fixes Y pointwise. In fact, this leads us to define the isotropy group.

Definition 2.2.9. [19] Given a subspace Y of V , the set G
Y

consists of all elements

g ∈ GL(V ) that fixes Y pointwise is called the isotropy group of Y :

G
Y

= {g ∈ GL(V ) : vg = v , ∀ v ∈ Y }.
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Utilising the above definition, we have

g
Y

= h
Z
⇐⇒ Y = Z and gh−1 ∈ GY . (2.16)

Observation 2.2.10. If gY , hZ ∈ M(G,S), then by (2.14), their composition is

g
Y
h
Z

= (gh)
Y ∩Zg−1 . Since g ∈ G and Y, Z ∈ S, then Zg−1 ∈ S and Y ∩ Zg−1 ∈ S

by the axioms (ii) and (iii) in Definition 2.2.1. Therefore, the map gh is restricted

to a subspace Y ∩ Zg−1 ∈ S; hence, gY hZ ∈ M(G,S). Consider the identity linear

isomorphism id ∈ G, and restrict it to any subspace Y ∈ S; we will obtain the partial

identity id
Y
∈ M(G,S). All elements id

Y
with Y ∈ S satisfy (id

Y
)2 = id

Y
, and are

the idempotents. Let us show why they are the only idempotents in M(G,S). In

other words, for any g
Y
∈ M(G,S) where g ∈ G and Y ∈ S, if g2

Y
= g

Y
, then

g
Y

= id
Y
. To see this, notice that

g
Y

= g2
Y

= g
Y
· g

Y
= (g2)

Y ∩Y g−1 .

In view of (2.16), we have Y ∩ Y g−1 = Y and then by applying g to both sides,

we obtain Y g ⊆ Y. Moreover, since g is bijection and Y is finite, we have Y g = Y.

In view of (2.16), we also acquire that for all y ∈ Y, (yg)g = yg. However, as g is

one-to-one, we have yg = y for all y ∈ Y. Hence all idempotents in M(G,S) are

partial identities on Y. In particular, the identity map id ∈ G is also an element of

M(G,S) for V ∈ S, and it is the identity of M(G,S); that is, for all g
Y
∈M(G,S)

g
Y
id

V
= (g id)

Y ∩V g−1 = g
(Y ∩V )

= g
Y
.

Similarly, id
V
g
Y

= g
Y

. Finally, since M(G,S) ⊂ML(V ), the associative law holds

in the composition of partial linear isomorphisms. Hence, M(G,S) is a submonoid

of ML(V ).

Observe that for all g
Y
∈ M(G,S), there is a map (g

Y
)∗ with (g

Y
)∗ = (g

−1
)
Yg

that satisfies

g
Y

(g
Y

)∗ g
Y

= g
Y

and (g
Y

)∗ g
Y

(g
Y

)∗ = (g
Y

)∗.

Further, idempotents in M(G,S) commute as they are restrictions of the identity

linear map to any subspace Y ∈ S. Hence, M(G,S) is an inverse monoid.

It is highly beneficial to know the interpretation of the partial order relation in an

inverse submonoid M(G,S). The next observation tells us precisely when g
Y
≤ h

Z

for any g
Y
, h

Z
∈M(G,S).

Observation 2.2.11. If g
Y
, h

Z
∈ M(G,S), then g

Y
≤ h

Z
if and only if there is

41



an idempotent id
X
∈M(G,S), such that

g
Y

= id
X
h
Z
⇐⇒ g

Y
= (id h)

X∩Zid−1 ⇐⇒ g
Y

= h
X∩Z .

However, according to Remark 2.2.8, g
Y

= h
X∩Z implies that Y = X ∩Z and gh−1

fixes Y pointwise; that is,

Y ⊆ Z and ∀ y ∈ Y, v(gh−1) = v ⇐⇒ vg = vh ⇐⇒ g
Y

= h
Y
.

Thus,

g
Y
≤ h

Z
⇐⇒ Y ⊆ Z and g

Y
= h

Y
.

Proposition 2.2.12. [19] Let V be a vector space over R, G ≤ GL(V ) and S is a

system of subspaces. Then an inverse monoid M(G,S) is factorizable.

Proof. In order to show thatM(G,S) is factorizable, we need to check thatM(G,S) =

EU where E is the set of idempotents and U is the set of units. Since the whole

space V ∈ S, then all (full) linear isomorphisms g ∈ G are in M(G,S); thus they

form the group of units inside M(G,S). It should be noted that each partial linear

isomorphism g
Y

is the product of a partial identity id
Y

and a linear isomorphism g,

since

id
Y
g = (id g)

Y ∩V id−1 = g
Y ∩V = g

Y
.

Hence, M(G,S) is factorizable.

The following proposition classifies a factorizable inverse monoid M ⊂ ML(V )

and asserts that it is the monoid of the partial linear isomorphisms M(G,S) under

some restrictions of G and S.

Proposition 2.2.13. [19] If V is a vector space over R, then M ⊂ ML(V ) is a

factorizable inverse submonoid if and only if M = M(G,S) where G is the group of

units of M and S = {dom σ | σ ∈M} is the system in V for G.

Proof. If M = M(G,S) where G is the group of units of M and S = {dom σ | σ ∈
M} is the system (see below), then in view of the preceding proposition, M is a

factorizable inverse submonoid of ML(V ). Conversely, suppose M is a factorizable

inverse submonoid of ML(V ), G is the group of units of M and S = {dom σ |
σ ∈ M} is a collection of subspaces of V . We first need to form a monoid of the

partial linear isomorphisms M(G,S) and deduce that M = M(G,S). To construct

M(G,S), it suffices to show that S = {dom σ | σ ∈ M} is indeed the system.

Since the identity map id : V 7→ V belongs to ML(V ), and M is a submonoid of

ML(V ), then id : V 7→ V is also in M ; thus, V ∈ S since V = dom id. Suppose

that Y, Z ∈ S, where Y = dom σ and Z = dom τ for some σ, τ ∈M , and consider
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the partial linear isomorphism σσ∗ττ ∗ ∈M, where σ∗ and τ ∗ are the inverses of σ, τ

respectively. Since

σσ∗ττ ∗ = id
Y
id

Z
= id

Y ∩Z ,

then dom(σσ∗ττ ∗) = Y ∩Z. However, Y ∩Z = domσ∩domτ ; thus, domσ∩domτ ∈ S.
Let g ∈ G be a unit. If Y ∈ S, then Y = dom σ for some σ. Consider a partial

linear isomorphism g−1σ ∈M ; since

dom(g−1σ) = V ∩ Y (g−1)−1 = V ∩ Y g = Y g,

then, Y g ∈ S. However, Y g = dom(σ)g; hence, dom(σ)g ∈ S. Therefore, S =

{dom σ | σ ∈ M} is the system in V for G, and this allows us to form the monoid

of partial linear isomorphisms, as follows:

M(G,S) = {g
Y
| g ∈ G (group of units) and Y = dom σ ∈ S}.

To show M = M(G,S), pick any partial linear isomorphism g
Y
∈M(G,S) in which

g ∈ G and Y = dom σ for some σ ∈M . Consider σσ∗g ∈M and notice that

σσ∗g = id
Y
g = (id g)Y ∩V id−1 = g

Y ∩V = g
Y
.

Therefore, g
Y
∈ M, and then M(G,S) ⊆ M . Hence, M(G,S) is a factorizable

inverse submonoid of M . Conversely, let σ ∈ M . Since M is a factorizable inverse

submonoid of ML(V ), then M = EG, where E is the set of idempotents and G is

the group of units of M . In particular, σ = id
Y
g, with id

Y
∈ E and g ∈ G. Since

both id
Y

and g belong to M , their domains Y and V are in S. Thus, id
Y
, g ∈

M(G,S), and then their product id
Y
g ∈ M(G,S) as well. Hence, M ⊆ M(G,S),

and M = M(G,S).

Definition 2.2.14. [19] A partial reflection of a real vector space V is a partial

linear isomorphism of the form s
Y
, where s is a (full) reflection and Y is a subspace

of V .

In view of Definition 2.1.8, we know that a reflection group is only a group gen-

erated by reflections. However, the corresponding assertion for a reflection monoid

needs to be more than a monoid generated by partial reflections. The following

corollary identifies when a monoid generated by partial reflections can be called a

reflection monoid.

Corollary 2.2.15. [19] A submonoid M ⊂ ML(V ) is a reflection monoid if and

only if M is a factorizable inverse (sub)monoid generated by partial reflections.

Proof. Suppose M ⊂ ML(V ) is a reflection monoid, then by Definition 2.2.5, M

is of the form M(W,S), where W = 〈S〉 is a reflection group and S is a set of
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reflections. In view of Proposition 2.2.12, M is a factorizable inverse monoid. It

remains to show that M = M(W,S) is indeed generated by partial reflections. Let

σ ∈ M ; then σ has the form of g
Y

, where g ∈ W and Y ∈ S. However, M is a

factorizable inverse monoid. Therefore, σ = g
Y

= id
Y
g, where id

Y
is an idempotent

and g ∈ W is a unit. Since W is a reflection group and g ∈ W , then g is a product

of reflections; that is g = s1s2 . . . sk , si ∈ S with i ∈ {1, 2, · · · , k}. Therefore,

id
Y
g = id

Y
s1s2 . . . sk = (id

Y
s1)s2 . . . sk = (s1)

Y
s2 . . . sk ,

where (s1)
Y

is a partial reflection. Hence, any σ is a composition of partial reflections.

For the other direction, suppose that M is a factorizable inverse (sub)monoid

of ML(V ) generated by partial reflections. Then, according to Proposition 2.2.13,

M = M(G,S), where G is the group of units of M and S = {dom σ | σ ∈ M}
is a system. Notice that each element in M is a product of partial reflections. In

particular, the elements in the group of units G are of the form

g = (s1)
Y1

(s2)
Y2
· · · (s

i
)
Yi
· · · (s

k
)
Y
k
, (2.17)

where (s1)
Y1
, (s2)

Y2
, . . . , (s

i
)
Yi
, . . . , (s

k
)
Y
k

are generating partial reflections. We want

to show that G is a reflection group, which means that each g ∈ G is a product of

(full) reflections; that is, the domain of (s
i
)
Yi

for all 1 ≤ i ≤ k, in (2.17) is the whole

space V. The way we prove it is by contradiction: suppose some of the generating

partial reflections (s
i
)
Yi

in (2.17) have domains proper subspaces Yi ( V. If we

compute the domain of the product on the right side of (2.17), we obtain

Y1 ∩ Y2(s1)−1 ∩ · · · ∩ Yi(s1s2 . . . s
i−1

)−1 ∩ · · · ∩ Yk(s1s2 . . . s
k−1

)−1,

which is equivalent to

Y1 ∩ Y2s1 ∩ · · · ∩ Yi(si−1
. . . s2s1)∩ · · · ∩ Yk(sk−1

. . . s2s1). (2.18)

However, Yi(si−1
. . . s2s1) is a proper subspace of V because Yi ( V is a proper

subspace, and the product s
i−1

. . . s2s1 is a linear isomorphism. Therefore, the

intersection of domains in (2.18) is a proper subspace of V as well since it is contained

in Yi(si−1
... s2s1). It turns out that the domain of the product on the right side of

(2.17) is a proper subspace of V, whereas the domain of g is V because it is a unit

by assumption; hence, a contradiction exists. Therefore, g is just a product of full

reflections, and then G is a reflection group. Let F be the collection of generating

partial reflections for M . Then G = 〈F̄ 〉 where F̄ ⊆ F .

Example 2.2.16. Let V be a Euclidean vector space with an orthonormal basis

{v1, . . . , vn}. Let the symmetric group Sn ⊂ GL(V ) act on V as discussed in Exam-
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ple 2.2.2(i):

vi . gσ = v(iσ).

Recall that B = {X(L) : L ⊆ [n]} is the Boolean system in V for Sn. Hence, by

Definition 2.2.5, we construct a reflection monoid given by a reflection group Sn and

a system B as follows:

M(Sn,B) = {(gσ)
X(L)

| gσ ∈ Sn, X(L) ∈ B}.

We call M(Sn,B) the Boolean (reflection) monoid of type An−1. Similarly, the

Boolean system B = {X(L) : L ⊆ [n]} is also a system in V for Bn and Be
n; hence,

M(Bn,B) and M(Be
n,B) are the Boolean (reflection) monoids of type Bn and Dn

respectively. The reader can consult [19, Section 5] for more details about the latter

Boolean monoids.

The following proposition gives us nice combinatorial descriptions of the above

Boolean monoids.

Proposition 2.2.17. [19] The Boolean monoid M(Sn,B) of type An−1 is isomor-

phic to the symmetric inverse monoid In.

The detailed proof of the above proposition can be found in [19, Proposition 3.1].

Proposition 2.2.18. [19] The Boolean monoid M(Bn,B) of type Bn is isomorphic

to the monoid of partial signed permutations MBn where

MBn =
{
σ : X

bijection−−−−−→ Y : X, Y ⊆ [±n], where x ∈ X ⇐⇒ −x ∈ X and (−x)σ = −(x)σ
}
.

The full proof of the proposition appears in [19, Proposition 5.1]. We provide an

in-depth study of MBn in Section 6.1 of this thesis. The reader will notice that

Proposition 2.2.17 and Proposition 2.2.18 will be utilised to explicitly describe the

irreducible representations of the Boolean monoids of types An−1 and Bn.

Proposition 2.2.19. [19] The Boolean monoid M(Be
n,B) of type Dn is isomorphic

to the monoid of partial even signed permutations MBe
n where

MBe
n =

{
σ : X

bijection−−−−−→ Y : X, Y ⊆ [±n], where x ∈ X ⇐⇒ −x ∈ X

and (−x)σ = −(x)σ and the number of x,with (x)σ is negative, is even
}
.

The detailed proof of the assertion can also be found in [19, Proposition 5.1].

Example 2.2.20. Let V be a Euclidean vector space with an orthonormal basis

{v1, . . . , vn} and W ⊂ GL(V ) be a finite reflection group. Suppose that A is a set

of all the reflecting hyperplanes H corresponding to each reflection s and that H is
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the collection of all possible intersections of the hyperplanes H in A along with the

vector space V . We have seen in Example 2.2.3 that

H = V ∪ { ∩ Hi : Hi ∈ A},

forms a system in V for the associated reflection group W . Consequently, M(W,H)

is a reflection monoid given by a reflection group W and a system H, and is called

the Coxeter arrangement monoid.

2.2.3 Green’s relations for M(G,S) and maximal subgroups

This subsection illustrates the Green’s relations for the monoid of partial linear

isomorphisms M(G,S) and investigates its maximal subgroups.

Proposition 2.2.21. [19] Let σ, τ ∈ M(G,S) with σ = g
Y

and τ = h
Z

where

g, h ∈ G and Y, Z ∈ S. Then,

(i) σ R τ if and only if Y = Z;

(ii) σ L τ if and only if Y g = Zg;

(iii) σ D τ if and only if Y ∈ ZG; in other words, σ and τ are D-related if and

only if subspaces Y and Z lie in the same orbit of the action of the group G.

Observe that, in view of the above assertion, the rows and columns of any D-

class of M(G,S) are indexed by the subspaces of the system S of a fixed dimension.

In addition, according to (i) and (ii), an H-class H
Y,Z

in M(G,S) is the set of all

maps g
Y

that have the same given domain Y and the same given image Z = Y g;

H
Y,Z

= {g
Y

: Z = Y g, where Y, Z ∈ S}. (2.19)

Since any H-class that contains an idempotent forms a maximal subgroup and an

idempotent in M(G,S) is of the form id
Y
, a partial identity on Y, it follows that a

maximal subgroup in M(G,S) can be characterised as

MY:= H
Y,Y

= {g
Y

: Y = Y g, with Y ∈ S} (2.20)

with identity id
Y
. In other words, MY contains all partial maps that have the same

given domain and image. Another interesting maximal subgroup of M(G,S) is the

group of units

MV = {g
V

: V = V g, with V is the whole vector space}; (2.21)
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that is the group G. Specifically, if M(W,S) is a reflection monoid, then MY is

a maximal subgroup and MV is the reflection group W. Interestingly, unlike a

general finite inverse semigroup, all maximal subgroups MY of a reflection monoid

M(W,S) can be obtained from the group of units; the reflection group W. Such an

observation is an unpublished result due to Everitt and Fountain, and we provide

the proof below.

Proposition 2.2.22. Consider the following two subgroups of W :

W Y = {g ∈ W : Y g = Y };

the invariant subgroup of Y and the isotropy subgroup of Y :

W
Y

= {g ∈ W : vg = v for all v ∈ Y }.

Then each maximal subgroup MY is determined by taking the subquotient of the

subgroup W Y by the isotropy group W
Y

:

M
Y ∼=

W Y

W
Y

.

Proof. It is clear that W
Y
⊂ W Y . Let us define a map

W Y ψ−−−→MY by

g 7→ g
Y
.

Observe that ψ is a group homomorphism for the following reason: Let g, h ∈ W Y ;

that is Y g = Y = Y h. Then,

gψ hψ = g
Y
h
Y

= (gh)
Y ∩Y g−1 = (gh)

Y ∩Y = (gh)
Y

= (gh)ψ,

and ψ is surjective because, for all g
Y
∈ MY , we have Y g = Y ; thus, there exists

g ∈ W Y with gψ = g
Y

. Moreover,

Ker(ψ) = {g : gψ = id
Y
}

= {g : g
Y

= id
Y
}

= {g : g id−1 ∈ G
Y
} [By (2.16)]

= {g : vg = v ∀ v ∈ Y }

= W
Y
.

The result then follows by the first isomorphism theorem.
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Chapter 3

Representation theory of finite

groups

3.1 General theory of linear representations

This section provides a preliminary overview of key contextual information that will

be built on in the thesis. The decision was made to refrain from providing an in-

depth account of all relevant background materials, and instead, a brief illumination

of some fundamental concepts, such as the simplicity and semisimplicity of a group

representation, is given. The symmetric group Sn was chosen as an example to illus-

trate these concepts. At this stage, suppositions are not mainly made on the field K.

Definition 3.1.1. [77] Let G be a finite group and V be a finite dimensional vector

space over a field K. Let GL(V ) be the group of all invertible linear maps on V. A

representation of G over K is a homomorphism φ : G −→ GL(V ).

We call dim V the degree of φ. Notice that, since φ is a homomorphism, it follows

that, for all g, h ∈ G, (gh)φ = (g)φ(h)φ. Moreover, if 1 is the identity of G and id is

the identity linear map in GL(V ), then (1)φ = id. Hence, (g−1)φ = (gφ)−1 as

id = (1)φ = (gg−1)φ = (g)φ(g−1)φ.

Now, for all v ∈ V and g, g′ ∈ G, the product v(gφ) ∈ V and homomorphism

defined above yield that

v((gg′)φ) = v(gφ)(g′φ).

Further, as (1)φ is the identity map, it follows that v(1φ) = v for all v ∈ V, and the

features of the linear maps in GL(V ) show that for all v, v′ ∈ V, k ∈ K and g ∈ G,
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we have

(kv)(gφ) = k(v(gφ)) and (v + v′)(gφ) = v(gφ) + v′(gφ)

In fact, such an observation allows us to view a representation φ of G as a G-module

or KG-module, as defined below.

Definition 3.1.2. [43] Let G be a finite group and V be a finite dimensional vector

space over K. Then, V is a right G-module if there exists a mapping V ×G −→ V

such that (v, g) 7→ vg ∈ V, where v ∈ V and g ∈ G, and it satisfies the following

conditions for all v, u ∈ V, k ∈ K and g, g′ ∈ G :

(i) v(gg′) = (vg)g′,

(ii) v1
G

= v, where 1
G

is the identity of a group G,

(iii) (kv)g = k(vg),

(iv) (v + v′)g = vg + v′g.

Example 3.1.3.

(i) Consider the symmetric group Sn, and let V be a C-vector space with basis

{v1, . . . , vn}. We know from Section 2.2.1 that elements of Sn can be thought

of as linear maps acting on V by permuting the coordinates; that is, for all

σ ∈ Sn,

(vi)σ = viσ.

Observe that, for all i with 1 ≤ i ≤ n, (vi)σ ∈ V and (vi)id = vi where id

is the identity permutation. Moreover, for all σ, τ ∈ Sn, (vi)στ = vi(στ) =

v(iσ)τ = (viσ)τ. In addition, extending this action linearly to V yields

(
∑
i

civi)σ =
∑
i

ci(viσ).

Hence, V is an Sn-module. In fact, such an action is called a permutation

module for Sn.

(ii) Let G also be the symmetric group Sn and V be a vector space over C. Define

the action of Sn on V as follows: For all v ∈ V and σ ∈ Sn,

vσ =

v, if σ is an even permutation,

−v, if σ is an odd permutation.
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Observe that vσ ∈ V as V is a vector space and v′,−v ∈ V. Furthermore,

the identity permutation id is even; thus (v)id = v and (kv)σ = k(vσ). In

addition, for all v, v′ ∈ V, we have

vσ + v′σ =

v, if σ ∈ An,

−v, otherwise.
+

v′, if σ ∈ An,

−v′, otherwise.

=

v + v′, if σ ∈ An,

−(v + v′), otherwise.

= (v + v′)σ.

Let us now show that v(στ) = (vσ)τ. Consider v(στ) and suppose στ is an

even permutation. Then, v = v(στ). In view of our assumption on στ , we

have two cases, as follows: either σ and τ are both even permutations or they

are both odd. In the first case, (vσ)τ = vτ = v, and in the second case,

(vσ)τ = (−v)τ = −(−v) = v. Thus, v(στ) = v = (vσ)τ. Let us now assume

that στ is an odd permutation. Hence −v = v(στ). Moreover, the assumption

also requires that either σ is even and τ is odd or vice versa. Without loss

of generality, let σ be even and τ be odd. Then, (vσ)τ = vτ = −v. Hence,

v(στ) = (vσ)τ. In fact, the above discussion shows that V is an Sn-module,

which is commonly called a sign representation. If dim V = 1, then it is called

the signed representation.

Definition 3.1.4. [43] A one-dimensional vector space V over K with vg = v for

all v ∈ V and g ∈ G is called the trivial G-module (trivial representation of G).

Definition 3.1.5. [43] Let V be a G-module. A subspace U ⊆ V is called a G-

submodule of V if and only if it is a subspace of V and is invariant under the action

of G; that is, for all u ∈ U and g ∈ G, ug ∈ U.

Definition 3.1.6. [43] A G-module V is called simple (or irreducible) if and only if

V is nonzero and the only submodules of V are V and 000. Otherwise, V is reducible.

The example below appears in [18] and illustrates the two previous concepts.

Example 3.1.7. Let G be the symmetric group Sn and V be a permutation module

over C with basis {v1, · · · , vn}. Consider the following two subspaces of V :

(a) The subspace spanned by the vector v1 + · · ·+ vn; that is,

U = SpanC {v1 + v2 + · · ·+ vn}.
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It is obvious that U is an Sn-submodule of V, and it is simple as dim U = 1. Thus,

V is a reducible Sn-representation and U is a trivial Sn-module.

(b) The hyperplane W with equation x1 + x2 + · · ·+ xn = 0; that is,

W =
{
w =

n∑
i=1

civi ∈ V :
n∑
i=1

ci = 0
}
.

It should be noted that W is an Sn-submodule of V, since for all w = c1v1 + c2v2 +

· · · + cnvn, where c1 + c2 + · · ·+ cn = 0 and all σ ∈ Sn, we have

(w)σ = (c1v1 + c2v2 + · · · + cnvn)σ

= c1v1σ + c2v2σ + · · · + cnvnσ,

where c1 + c2 + · · · + cn = 0 as well. It turns out that W is indeed a simple

Sn-submodule. The following argument was supplied by Dr.Michael Bate for the

notes [18]. Let w ∈ W with w 6= 000. Suppose first that w has the same coefficients;

that is, w =
∑n

i=1 cvi. Thus,
∑n

i=1 c = 0 as w ∈ W. Observe that

n∑
i=1

c = 0 ⇐⇒ nc = 0 ⇐⇒ c = 0, [ char(C) - n as char(C) = 0]

and this implies that w = 000. Therefore, we acquire a contradiction with the assump-

tion that w is a nonzero vector. Hence, each w ∈ W has at least two distinct scalar

multiples when it is written as a linear combination of basis vectors; that is,

w = c1v1 + · · ·+ crvr + · · ·+ csvs + · · ·+ cnvn, (3.1)

where cr 6= cs for some 1 ≤ r < s ≤ n. Since the elements of Sn are permutations,

then for any two numbers r, s ∈ [n], there always exists a permutation that sends

them to two consecutive numbers. In other words, for all i ∈ [n], there is σi ∈ Sn
such that rσi = i and sσi = i+ 1. However, by applying σi to w, we have

(w)σi = c1v1σi + · · ·+ crvrσi + · · ·+ csvsσi + · · ·+ cnvnσi

= c1v1σi + · · ·+ crvi + csvi+1 + · · ·+ cnvnσi .

Observe that the scalar multiples of the i-th and (i + 1)-th basis vectors in (w)σi

are still distinct. Let us relabel them as cr = ci and cs = ci+1:

(w)σi = c1v1σi + · · ·+ civi + ci+1vi+1 + · · ·+ cnvnσi .

Now, considering any submodule W ′ of W that contains w yields that (w)σi ∈ W ′.

Thus, an Sn-submodule W ′ contains both w and (w)σi for all i ∈ [n]. If we write
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(w)σi in terms of its coordinates (c1, . . . , ci, ci+1, . . . , cn) and consider the vector

(w)σi(i, i+ 1)− (w)σi ∈ W ′, we have

(w)σi(i, i+ 1)− (w)σi = (c1, . . . , ci, ci+1, . . . , cn)(i, i+ 1)− (c1, . . . , ci, ci+1, . . . , cn)

= (c1, . . . , ci+1, ci, . . . , cn)− (c1, . . . , ci, ci+1, . . . , cn)

= (0, . . . , 0, ci+1 − ci, ci − ci+1, 0, . . . , 0)

= ζ(0, . . . , 0, 1,−1, 0, . . . , 0),

where ζ = ci+1−ci and ζ 6= 0, as ci 6= ci+1. Thus, (w)σi(i, i+1)−(w)σi = ζ(vi−vi+1),

and then, vi − vi+1 ∈ W ′ ⊆ W, for all i with 1 ≤ i ≤ n − 1. Now, we claim that

{vi − vi+1, 1 ≤ i ≤ n − 1} forms a basis of W. To see this, notice that the set

{vi − vi+1, 1 ≤ i ≤ n− 1} is independent since if

c1(v1 − v2) + c2(v2 − v3) + · · ·+ cn−1(vn−1 − vn) = 0,

then c1v1 + (c2 − c1)v2 + (c3 − c2)v3 + · · · + (cn−1 − cn−2)vn−1 + (−cn−1)vn = 0. As

{v1, · · · , vn} is the basis of V , hence it is independent. It follows that

c1 = c2 − c1 = c3 − c2 = cn−1 − cn−2 = −cn−1 = 0.

Thus, c1 = c2 = · · · = cn−1 = 0. Moreover, these vectors {vi − vi+1} spans (n − 1)-

dimensional subspace of W :

Span
C
{vi − vi+1, s1 ≤ i ≤ n− 1} ≤ W

However, W is a hyperplane so dim W = n − 1. Thus, Span
C
{vi − vi+1, 1 ≤ i ≤

n − 1} = W. This means that W ′ contains a basis for W ; hence, W is a simple

Sn-module.

Definition 3.1.8. [43] Let V and V ′ be two G-modules. A function ϑ : V −→ V ′

is called a G-homomorphism if ϑ is a linear map and

(vg)ϑ = (vϑ)g for all v ∈ V, g ∈ G.

If ϑ is a G-homomorphism and invertible, then it is a G-isomorphism, and V

and V ′ are isomorphic G-modules.

Proposition 3.1.9. [43] Let V and V ′ be two G-modules and ϑ : V −→ V ′ be a

G-homomorphism. Then,

(i) Ker ϑ is a G-submodule of V.

(ii) Im ϑ is a G-submodule of V ′.
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Recall that if V is a vector space and V1, · · · , Vm are subspaces of V, then

V1 + · · ·+ Vm = {v1 + · · ·+ vm : vi ∈ Vi where 1 ≤ i ≤ m}.

Observe that V1 + · · ·+ Vm is a subspace of V.

Definition 3.1.10. [74] A vector space V is the direct sum of a family {Vi : 1 ≤
i ≤ m} of subspaces of V if and only if

(i) V =
∑

i Vi, and

(ii) For each i, where 1 ≤ i ≤ m,

Vi
⋂

(
∑

j 6=i Vj) = 000

Then, V is denoted
⊕

i Vi, with 1 ≤ i ≤ m.

Definition 3.1.11. [74] Let V be a G-module and suppose that as a vector space

V =
m⊕
i

Vi,

where the Vi are G-submodules of V. Then V is called a direct sum of submodules.

Definition 3.1.12. [43] A G-module V is said to be semisimple (or a completely

reducible representation) if it is a direct sum of simple G-submodules (or irreducible

subrepresentations) Vi with 1 ≤ i ≤ m.

We will now state a fundamental result in the representation theory of finite

groups.

Theorem 3.1.13 (Maschke’s Theorem). Let G be a finite group and K be a field

whose characteristic does not divide the order of G. If V is any G-module and V ′ is

a G-submodule of V, then V has a submodule V ′′ such that V = V ′ ⊕ V ′′.

A full proof of the above statement appears in [17, Theorem 18.1.1]. Notice that if

the field is the complex numbers, then the hypothesis of Maschke’s Theorem holds.

Corollary 3.1.14. Let G be a finite group and K be a field such that char(K) - |G| .
Then, every finite dimensional G-module V is semisimple (completely reducible).

Proof. Let V be a non-zero G-module V. We will prove the result utilising induction

on the dimension of V. If dim V = 1, then the result holds as every 1-dimensional

G-module is simple. Let dim V = n, and suppose every G-module of dimension less

than n is isomorphic to a direct sum of simple G-submodules. Then, we have two

cases:
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• Case 1. If V is a simple G-module, then the result holds.

• Case 2. If V is not a simple G-module, then V has a non-zero proper submodule

V ′. Thus, by Maschke’s Theorem, V has a G-submodule complement V ′′ such

that V = V ′ ⊕ V ′′. Notice that dim V ′ < n and dim V ′′ < n; hence, by

induction, both V ′ and V ′′ are direct sums of some simple G-submodules V ′i

and V ′′j respectively. In other words,

V ′ = V ′1 ⊕ · · · ⊕ V ′k and V ′′ = V ′′1 ⊕ · · · ⊕ V ′′l .

Therefore, V is a direct sum of simpleG-submodules, and the induction is completed.

Example 3.1.15. Let G be the symmetric group Sn and V be the permutation

module V illustrated in Example 3.1.7. Then V = U ⊕ W where U and W are

Sn-modules described in the same example.

Lemma 3.1.16 (Schur’s Lemma). Let V and V ′ be simple G-modules over the

complex field C. If ϑ : V −→ V ′ is a G-homomorphism, then either ϑ is a G-

isomorphism, or (v)ϑ = 000 for all v ∈ V.

The proof of the lemma appears in [43, Lemma 9.1].

We will now close this section with stating a striking theorem in the repre-

sentation theory of finite groups that provides a connection between the number

of inequivalent irreducible representations and that of conjugacy classes of a finite

group G.

Theorem 3.1.17. Let G be a finite group and C be the field of complex numbers.

Then, the number of inequivalent irreducible representations of G is equal to the

number of conjugacy classes of G.

The proof of the above assertion can be found in [17, Theorem 18.2.10]. Through-

out the remaining chapters, we work over the field of complex numbers C unless

otherwise specified.
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3.2 Specht modules for the symmetric group Sn

The question of how many representations we need to look for was dealt with in

the previous section, where we stated that one representation should be found for

each conjugacy class. Despite this, an explicit one-to-one correspondence has not

generally been identified between the conjugacy classes and irreducible representa-

tions. Nevertheless, in the case of the finite symmetric group Sn and a few other

groups, it is possible to capitalise on our knowledge of the association between the

conjugacy classes and elegant combinatorial descriptions, thus creating correspond-

ing irreducible representations. That is to say, distinct from the general case of finite

groups, there exists a natural strategy by which the parameterisation of irreducible

representations can take place. To be more precise, this strategy relies on the set

which is responsible for parametrising the conjugacy classes (i.e. partitions of n, or

as would be equivalent, n-size Young diagrams).

Based on his work in the field of invariant theory, the British mathematician

Alfred Young [81] devised Young diagrams and Young tableaux in 1901. In the

following years, Young and Frobenius [23] independently demonstrated how Young

tableaux provide data pertaining to representations of symmetric groups, and from

then on, these combinatorial objects have performed critical functions in numerous

mathematical branches.

With a focus on combinatorial issues, this section provides a concise overview

of the fundamental representation theory of the symmetric group. While basic

information about Specht modules is presented, we dedicate a significant portion of

this section to ensuring that the reader is pointed toward more effective sources for

proofs of this kind. Alongside this, examples are given to elucidate key concepts,

and three primary irreducible representations for the symmetric group are outlined.

Definition 3.2.1. [17] Let π ∈ Sn. The cycle structure (shape or type) of a per-

mutation π is an expression (λ1, . . . , λr), where λ1 ≥ λ2 ≥ . . . ≥ λr and there is

a λi for each cycle of length λi when a permutation π is decomposed as a disjoint

product of cycles (including cycles of length one).

Note that a cycle shape for π ∈ Sn can also be called a partition λ of n. A

partition of an integer n can be defined as given below.

Definition 3.2.2. [75] A partition of a positive integer n ∈ Z+ is a tuple λ =

(λ1, λ2, . . . , λm) such that

• λi ∈ Z+ for all 1 ≤ i ≤ m,

• λ1 ≥ λ2 ≥ . . . ≥ λm,
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• λ1 + λ2 + . . . + λm = n.

We write λ ` n to denote that λ is a partition of n.

We denote
∑m

i=1 λi by |λ| and allow λ to be the empty set. It becomes clear

that the partitions of n are canonically associated with the cycle shapes of Sn. For

instance, the partition (4, 2, 1) of 7 is associated with the permutations on 7 letters

with 1 four-cycle, 1 two-cycle and 1 one-cycle.

Proposition 3.2.3. [43] Let π be a cycle (a1, a2, · · · , am) of length m and τ ∈ Sn.
Then, a permutation

τ−1πτ = (a1τ, a2τ, · · · , amτ)

is also of length m.

Proposition 3.2.4. Two permutations in Sn are conjugate if and only if they have

the same cycle structure.

The proof of the above assertion appears in [17, Proposition 11].

Corollary 3.2.5. [17] For each positive integer n, the number of different partitions

of n is equal to the number of conjugacy classes of Sn.

Proof. There is a one-to-one correspondence between the conjugacy classes of Sn

and the cycle structure, and every cycle shape is a partition.

Recall that the number of conjugacy classes of Sn is equal to the number of

irreducible representations of Sn over C by Theorem 3.1.17. Hence, the irreducible

representations of Sn over the complex field are parametrised by the partitions of

n. The following combinatorial objects are fundamental tools in computing the

irreducible representations of the symmetric group Sn.

Definition 3.2.6. [24] Given a partition λ = (λ1, λ2, . . . , λm) of n, a Young dia-

gram of shape λ is a collection of non-increasing, left-justified, empty boxes arranged

in rows such that there are λi boxes in the ith row.

For example, the following is the Young diagram of shape (4, 3, 2, 1) :

Definition 3.2.7. [75] Given a partition λ of n, a Young tableau t of shape λ is

obtained by filling in the boxes of a λ-Young diagram with the numbers {1, 2, . . . , n},
such that different boxes contain distinct numbers.
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Clearly, there are n! distinct Young tableaux for each λ. Moreover, each Young

tableau corresponds to a permutation; that is, if we decompose a permutation into

a product of disjoint cycles, then the numbers in each cycle form the entries of rows

in a tableau. For instance, a permutation π = (13)(2)(4) ∈ S4 can be presented in

a tableau as follows:

1 3
2
4

or
3 1
2
4

Further, the symmetric group Sn acts on a λ-Young tableau t by permuting the

entries. For instance,

1 3
5 4
2
· (12)(354) =

2 5
4 3
1

The definitions below are crucial in determining the irreducible representations of

Sn utilising Young tableaux.

Definition 3.2.8. [24] Given a Young tableau t of shape λ = (λ1, λ2, . . . , λm),

define the row group Rt to be the subgroup of Sn consisting of all the permutations

that preserve the rows of t.

Observe that Rt
∼= Sλ1 × Sλ2 × . . .× Sλm .

Definition 3.2.9. [75] Let c1, c2, . . . , cl be the columns of a λ-Young tableau t. De-

fine the column group Ct to be the subgroup of Sn consisting of all the permutations

that preserve the columns ci of t.

It should be noted that Ct = Sc1 × Sc2 × . . .× Scl .

Proposition 3.2.10. [75] Let t be a λ-tableau and π ∈ Sn. Then,

(i) Ctπ = π−1Ctπ,

(ii) Rtπ = π−1Rtπ.

The proof of the above assertion appears in [75, Lemma 2.3.3].

Let Y λ be the set of all λ-Young tableaux t. Define an equivalence relation on

Y λ as follows:

t1 ∼ t2 if and only if the entries of each row in t1 are the same as the entries

in the corresponding row of t2.

We say that t1 and t2 are then row equivalent. The following definition allows us to

partition the set Y λ into distinct classes:
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Definition 3.2.11. [75] Given a Young tableau t of shape λ, define a Young tabloid

{t} to be the set of all Young tableaux of shape λ that are row equivalent to t; that

is, a Young tabloid {t} is the orbit of Young tableau t under the action of the row

group.

{t} = {(t)σ : σ ∈ Rt}.

It is sometimes denoted by omitting the vertical lines between boxes, as stated

in [24, Section 7.2].

For instance, if (3, 1) ` 4 and t = 1 2 3
4

is a (3, 1)-tableau, then

{t} =
{

1 2 3
4

, 1 3 2
4

, 2 1 3
4

, 2 3 1
4

, 3 1 2
4

, 3 2 1
4

}
.

Observe that the symmetric group Sn acts on the set of tabloids by the following

formula

{t} . π = {tπ} for all π ∈ Sn, (3.2)

and such an action is clearly well defined [24, Section 7.2]. Notice that if π ∈ Rt ⊆ Sn,

then π stabilises the Young tabloid {t}.

Definition 3.2.12. Let λ ` n. Define Mλ to be the complex vector space whose

basis is the set of distinct λ-tabloids {t}.

A typical element of Mλ is a formal C-linear combination of tabloids {t} of shape

λ.

Lemma 3.2.13. [75] If λ ` n and λ = (λ1, λ2, . . . , λm), then the dimension of

Mλ is determined by the following formula:

dim Mλ =
n!

λ1! λ2! . . . λm!
.

In view of the action presented in (3.2), the symmetric group Sn acts on the set

of distinct tabloids {t}, and by extending such an action linearly, Mλ becomes a

right Sn-module.

Example 3.2.14. Let n = 3 and fix λ = (2, 1) ` 3. Then, the set of all 6 distinct

λ-tableaux and the S3-module M (2,1) can be determined as follows:

Y (2,1) =
{
t12 = 2 3

1
, t13 = 3 2

1
, t21 = 1 3

2
, t23 = 3 1

2
, t31 = 1 2

3
, t32 = 2 1

3

}
.
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M (2,1) = C-
[{

2 3
1

}
,
{

1 3
2

}
,
{

1 2
3

}]
.

More generally, if λ = (n− 1, 1) ` n, let

vj =
{

1 2 ··· ĵ ··· n

j

}
be a basis (n − 1, 1)-tabloid of M (n−1,1), where j refers to the entry in the bottom

row with 1 ≤ j ≤ n and ĵ in the upper row means that the number j omitted.

Observe that the tabloid vj only varies when the entry in the bottom row varies. In

other words, the bottom row entry uniquely determines the basis vectors and

M (n−1,1) = C-
[
v1 =

{
2 3 ··· n

1

}
, · · · , vn =

{
1 2 · · · n-1

n

} ]
.

Thus, there are n distinct basis vectors ofM (n−1,1). In view of the Sn-action presented

in the formula (3.2), for all π ∈ Sn,

vj · π =
{

1π 2π ··· ĵπ ··· nπ

jπ

}
= vjπ.

It follows that M (n−1,1) is the Sn-permutation representation, as described in Ex-

ample 3.1.3(i).

The following definition give us a clue for figuring out all of the irreducible

representations of Sn.

Definition 3.2.15. [75] Fix λ ` n. For each Young tableau t of shape λ, there is

an element et ∈Mλ defined by the formula

et =
∑
σ∈Ct

sgn(σ) {t}σ.

Such an element is called a λ-polytabloid.

The following lemma illustrates how the symmetric group Sn permutes the set

{et : t is a Young tableau of shape λ}.

Lemma 3.2.16. For any Young tableau t and permutation π ∈ Sn, we have

et . π = etπ

Proof. For all π ∈ Sn, we have

et . π =
(∑
σ∈Ct

sgn(σ) {t}σ
)
. π

=
∑
σ∈Ct

sgn(σ)
(
{tσ}. π

)
[By (3.2) and Mλ is an Sn-module]
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=
∑
σ∈Ct

sgn(σ)
(
{t}. ππ−1σπ

)
[As Ct ≤ Sn]

=
∑
σ∈Ct

sgn(σ) {t}. π (π−1σπ)

=
∑
σ∈Ct

sgn(π−1σπ) {t}. π (π−1σπ) [As sgn(π−1σπ) = sgn π−1 sgn σ sgn π]

=
∑

τ∈π−1Ctπ

sgn(τ) {t}. π τ [τ = π−1σπ]

=
∑
τ∈Ctπ

sgn(τ) {tπ}. τ [By Proposition 3.2.10(i)]

= etπ.

Definition 3.2.17. [24] For any partition λ of n, define the Specht module Sλ to

be the subspace of Mλ spanned by the elements et, where t is taken over all the

Young tableaux of shape λ; that is,

Sλ = {c1et1 + . . . + cn!etn!
: ci ∈ C, ti is a Young tableau ∀ 1 ≤ i ≤ n! }.

By extending the action presented in the preceding lemma, the Specht module

Sλ is invariant under Sn; hence, Sλ is an Sn-submodule of Mλ. In the next example,

we illustrate various Specht modules Sλ.

Example 3.2.18.

(i) Let n = 3 and λ = (3) ` 3. Then, there are 3! distinct (3)-tableaux.

Y (3) = { 1 2 3 , 1 3 2 , 2 1 3 , 2 3 1 , 3 1 2 , 3 2 1 }

Notice that all these tableaux of shape (3) generate the same tabloid { 1 2 3 }.
Further, the column group Ct for all t ∈ Y (3) has size 1. Thus, any (3)-tableau

in Y (3) gives the same polytabloid; that is,

e
1 2 3

= +{ 1 2 3 } id = { 1 2 3 }

Hence,

S(3) = SpanC

{
e

1 2 3

}
.

However, a polytabloid e
1 2 3

is indeed preserved by S3 as for all π ∈ S3,

{ 1 2 3 } · π = { 1 2 3 }.
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It follows that the Specht module S(3) is the 1-dimensional trivial S3-module.

More generally, if λ = (n), then

S(n) = SpanC

{
e

1 2 · · · n

}
is the trivial Sn-module.

(ii) Let n = 3 and λ = (1, 1, 1) ` 3. Then, there are 3! distinct (1, 1, 1)-tableaux.

Y (1,1,1) =
{
t1 =

1
2
3
, t2 =

1
3
2
, t3 =

2
1
3
, t4 =

2
3
1
, t5 =

3
1
2
, t6 =

3
2
1

}
It is worth knowing that, for each (1, 1, 1)-tableau ti with 1 ≤ i ≤ 6, the

column group Cti
= S3; thus, each polytabloid eti constructed by any of the

above (1, 1, 1)-tableaux ti is a sum of 3! distinct (1, 1, 1)-tabloids. For instance,

et1 = +

{
1
2
3

}
id−

{
1
2
3

}
(12)−

{
1
2
3

}
(13)−

{
1
2
3

}
(23) +

{
1
2
3

}
(123) +

{
1
2
3

}
(132).

= +

{
1
2
3

}
−
{

2
1
3

}
−
{

3
2
1

}
−
{

1
3
2

}
+

{
2
3
1

}
+

{
3
1
2

}

Thus, the Specht module

S(1,1,1) = SpanC{et1 , et2 , et3 , et4 , et5 , et6}.

Observe that for all π ∈ S3 and ti ∈ Y (1,1,1)we have

eti · π =
( ∑
σ∈Cti

sgn(σ) {ti}σ
)
· π

=
∑
σ∈S3

sgn(σ) {ti}σπ

=
∑
σ∈S3

sgn(σπ) sgn(π) {ti}σπ
sgn(σπ) = sgn(σ)sgn(π)

sgn(σ) = sgn(σπ)sgn(π)

= sgn(π)
∑
σ∈S3

sgn(σπ){ti}σπ

= sgn(π)
∑

σπ∈S3·π

sgn(σπ){ti}σπ

= sgn(π)
∑
τ∈S3

sgn(τ) {ti}τ [Set τ = σπ]

= sgn(π) eti

Note that for all ti ∈ Y (1,1,1), eti = ± et1 . Hence, S(1,1,1) = SpanC{et1} is indeed

the 1-dimensional sign S3-module. More generally, if λ = (1, 1, · · · , 1︸ ︷︷ ︸
n

) ` n, then
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the Specht module S(1,1,···,1) is the 1-dimensional sign Sn-module.

(iii) Let n = 3 and λ = (2, 1) ` 3. We illustrated in Example 3.2.14 the 3! distinct

(3)-tableaux. Let us relabel a tableau in a set Y (2,1) by tji = i k
j

where j, i

refer to the first column entries and j in particular is the lower row entry.

Since a column group Ctji = {id = (i)(j)(k), (i, j)(k)}, we have,

etji =
{

i k

j

}
−
{

j k

i

}
= vj − vi.

Therefore, the Specht module

S(2,1) = SpanC{et12 , et13 , et21 , et23 , et31 , et32}

= SpanC{vj − vi : 1 ≤ j 6= i ≤ 3}.

Notice that etji = −etij .

Remark 3.2.19. [75] If λ, µ ` n, where λ = (λ1, λ2, . . . , λm) and µ = (µ1, µ2, . . . , µl),

then λ = µ ⇐⇒ m = l and λi = µi for all i.

We are now ready to state the main theorem in this section.

Theorem 3.2.20. [75] Given a partition λ of n, the Specht modules

Sλ = SpanC{et : t is a tableau of shape λ}

form a complete list of inequivalent irreducible representations of Sn over C and

Sλ ∼= Sµ if and only if λ = µ.

The complete proof of the above theorem requires some assertions and properties

that we chose not to address for the purpose of shortening. The reader can con-

sult [75, Section 2.4] for more details.

In view of Examples 3.2.18 (ii) and (iii), the spanning set {et : t is a λ-Young tableau}
of the Specht module Sλ is not in general an independent set, and thus, it is not a

basis for Sλ. The next definition determines a basis for the Specht module Sλ.

Definition 3.2.21. [75] For any λ ` n, a standard tableau t is a Young tableau of

shape λ, where the entries in each row and column are increasing.

Theorem 3.2.22. Given a partition λ of n, the set

{et : t runs through all standard tableaux of shape λ}

forms a basis for Sλ.
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The proof of the independence of λ-standard polytobloids et appears in [75, Section

2.5], and [75, Section 2.6] shows that such a set spans the Specht module Sλ.

Let fλ denote the number of λ-standard tableaux. Then, as a consequence of

the preceding theorem, we have the result below.

Corollary 3.2.23. Let λ ` n. Then, dim Sλ = fλ.

Example 3.2.24. In view of Example 3.2.18 (ii), the standard tableaux of shape

(2, 1) are 1 3

2
and 1 2

3
. As a result, the (2, 1)-polytabloids associated with them are

e21 =
{

1 3
2

}
−
{

2 3
1

}
e31 =

{
1 2
3

}
−
{

3 2
1

}
= v2 − v1 = v3 − v1

Hence, by Theorem 3.2.22, we write the the Specht module S(2,1) as

S(2,1) = C-{e21, e31}

= C-{v2 − v1, v3 − v1}.

More generally, let n ≥ 2; if λ = (n− 1, 1) ` n, then

S(n−1,1) = C-{e21, e31, · · · , en1}

= C-{vj − v1 : 2 ≤ j ≤ n}.

and dim S(n−1,1) = n − 1. Interestingly, S(n−1,1) is the hyperplane W of the Sn-

permutation moduleM (n−1,1) presented in Example 3.2.14, and the standard tableaux

give us the basis {vj − v1 : 2 ≤ j ≤ n} that is different from the basis we discussed

in Example 3.1.7(b).

We end this section by exhibiting the hook formula, which contributes to deter-

mining the number of standard tableaux of a given diagram of shape λ.

Definition 3.2.25. [75] Fix λ ` n. Let bij be the box in a Young diagram placed in

the ith row and jth column. Define the hook length of a box bij to be the number

of boxes occurring below or to the right of box bij, counting the box itself; the hook

length of box bij is denoted by h(bij).

Example 3.2.26. Fix a partition λ = (3, 2, 1) ` 6, and notice that the hook length

of the box b21 is equal to 3.

• •
•
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Theorem 3.2.27. [75] Given a partition λ of n and the associated Young diagram,

the dimension of the Specht module Sλ is determined by the following formula:

dim (Sλ) =
n!∏

ij h(bij)
.

The full proof of the lemma can be found in [75, Section 3.10].

Example 3.2.28. If λ = (3, 2, 1), then the hook lengths of the Young diagram

below are placed inside the boxes of the array:

5 3 1
3 1
1

Hence, the dimension of S(3,2,1) = 6!
5·32·13 = 16.
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3.3 Specht modules for the signed permutation

group Bn

The signed permutation group Bn [19] has been described as the reflection group of

type Bn, hypoctahedral group Bn, Weyl group of type Bn, Coxeter group of type

Bn and symmetries of n dimensional cube. The application of the various descrip-

tions, assertions and properties of this group in diverse contexts complicates efforts

to unite them with their proofs under a single umbrella. As a consequence of the di-

verse descriptions of the group, the irreducible representations have also been clearly

characterised in various contexts [3, 4, 28,30,36].

The purpose of this section is to represent and prove some assertions in the con-

text of the signed permutation group Bn, as well as in a manner that is useful to us.

Then, by utilising the combinatorial objects known as Young tableaux, the explicit

descriptions of irreducible representations over the complex field of this group are

studied. In fact, the decision to adopt Morris’s approach [53] was determined by

its similarity to James’s diagrammatic approach [41, 75] of describing irreducible

representations over the complex field of the symmetric groups, as discussed in the

previous section. This approach is especially attractive because it utilises familiar

concepts, such as Young tableaux, Young tabloids, polytabloids, as well as row and

column groups, which have familiar counterparts in the representation of the sym-

metric group.

However, we encountered the obstacle of Morris’ [53] failure to report the proof

of these results, requiring us to reprove some of them in a manner comparable to the

corresponding assertions in the symmetric group and its representations. Indeed,

the similarity in the construction of these irreducible representations for Sn and Bn

would simplify the explicit description of irreducible representations over C of the

Boolean reflection monoids of type An−1 and Bn, as presented in the next chapters.

Definition 3.3.1. [19] Let S2n be the group of bijections on the set [+−n] =

{+−1, . . . ,+−n}. The signed permutation group Bn is defined by

Bn := {σ ∈ S2n : (−i)σ = −(i)σ, for all i ∈ [+−n]}.

Definition 3.3.2. [1] A product of two l-cycles in S2n of the form (a1, . . . , al)(−a1, . . . ,−al),
where 1 ≤ l ≤ n and ai ∈ [+−n], is called a positive cycle.

Definition 3.3.3. [1] A 2l-cycle in S2n of the form (a1, . . . , al,−a1, . . . ,−al), where

1 ≤ l ≤ n and ai ∈ [+−n], is called a negative cycle.
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Definition 3.3.4. [1] The length of a negative 2l-cycle or positive two l-cycles is

equal to l.

Proposition 3.3.5. Any signed permutation σ ∈ Bn can be written uniquely as a

disjoint product of positive and negative cycles.

Proof. Let us first prove that any positive or negative cycle belongs to Bn. Let

α ∈ S2n be a positive two l-cycles α = (a1, . . . , al)(−a1, . . . ,−al), and let β ∈ S2n be

a negative 2l-cycles β = (a1, . . . , al,−a1, . . . ,−al). It is clear that (−ai)α = −(ai)α

for all i, since we know by definition that

(−ai)α =

−ai+1, ∀ i = 1, . . . , l − 1,

−a1, i = l.
and (ai)α =

ai+1, ∀ i = 1, . . . , l − 1,

a1, i = l.

Similarly, (−ai)β = −(ai)β for all i, since

(−ai)β =

−ai+1, ∀ i = 1, . . . , l − 1,

a1, i = l.
and (ai)β =

ai+1, ∀ i = 1, . . . , l − 1,

−a1, i = l.

Hence, positive and negative cycles belong in Bn. Let us choose a number a1 ∈ [+−n]

and σ ∈ Bn, and consider the repeated images of a1 under the signed permutation

σ; then, the orbit of a1 is determined as follows:

a1, (a1)σ, (a1)σ2, (a1)σ3, · · · , (3.3)

where a2 = (a1)σ, a3 = (a1)σ2, a4 = (a1)σ3 and so on. However, as the set [+−n] is

finite, the above orbit must be finite; that is, there must exist some power q such

that (a1)σq is indeed one of the images appearing in (3.3). In other words, there

exists q > p such that (a1)σq = (a1)σp; thus, (a1)σq−p = a1. Let q − p = l; then, we

have l distinct elements of [+−n], forming the cycle (a1, a2, · · · , al), and (3.3) can be

illustrated as in Figure 3.1.

a1 7−→

=a2︷︸︸︷
(a1)σ1 7−→

=a3︷︸︸︷
(a1)σ2 7−→ · · · 7−→

=a
l︷ ︸︸ ︷

(a1)σ(q−p)−1

Figure 3.1: An illustration of the cycle (a1, a2, · · · , al).

Indeed, a careful consideration of these images appearing in the cycle yields the

following enquiry: Is there a pair of images that are negatives of each other? The

answer needs to be discussed in two cases.

Case 1. There is no such pair of images in Figure 3.1 in which each is a negative of

the other. In particular, −a1 does not appear in the cycle. Consequently, by taking
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the images of −a1 under σ repeatedly and utilising the property (−r)σ = −(r)σ for

all r ∈ [+−n], we obtain another cycle (−a1,−a2, · · · ,−al). Hence, we determine the

first positive cycle

(a1, a2, · · · , al)(−a1,−a2, · · · ,−al).

Case 2. Suppose we have two powers s, t of σ where s < t and both (a1)σt and (a1)σs

are the first pair occurring in Figure 3.2 such that (a1)σt = −(a1)σs.

a1 7→ (a1)σ1 7→ (a1)σs 7→··· 7→ ··· 7→ (a1)σt 7→ ··· 7→

=a
l︷ ︸︸ ︷

(a1)σ(q−p)−1

Figure 3.2: Another illustration of the cycle (a1, a2, · · · , al).

In other words, none of the images

{a1, (a1)σ, . . . , (a1)σs, . . . , (a1)σt−1}

is a negative of others. Let (a1)σs = b1 and rearrange the cycle to start from b1

instead of a1 as follows:

=b1︷ ︸︸ ︷
(a1)σs,

=b2︷ ︸︸ ︷
(a1)σs+1, · · · ,

=bl︷ ︸︸ ︷
(a1)σt−1,

=−b1︷ ︸︸ ︷
(a1)σt, · · · (3.4)

Note that the image of the next one is

(a1)σt+1 = ((a1)σt)σ = (−(a)σs)σ = −((a)σs)σ = −(a)σs+1 = −b2;

this means that (a1)σt+1 is indeed the negative of the second image in (3.4). If we

continue taking the images of the next ones, we will end up listing the negatives of

all the others. Thus, (3.4) becomes

b1
σ7→ b2

σ7→ · · · σ7→ bl
σ7→ − b1

σ7→ − b2 · · ·
σ7→ − bl.

Observe that if we apply σ to −bl, then we obtain

(−bl)σ = −(bl)σ = −((a1)σt−1)σ = −(a1)σt = b1.

Therefore, we establish a negative cycle (b1, b2, · · · , bl,−b1,−b2, · · · ,−bl). We choose

another number c ∈ [+−n] that does not appear in either of the current positive and

negative cycles and consider both cases again to produce the others. We repeat

these processes until the set [+−n] is exhausted.

Example 3.3.6. Let σ = (1,−2) ∈ S2(2). Note that −1 and 2 both are fixed by σ.
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In addition, it is clear that σ is neither a positive nor a negative cycle, and it does

not belong to B2, as (1)σ = −2 while (−1)σ = −1, and (−1)σ 6= −(1)σ.

Definition 3.3.7. [1] A positive transposition has the form (a, b)(−a,−b), and a

negative transposition has the form (c,−c), where a, b, c ∈ [+−n].

Note that, as stated in [1], positive transpositions generate a subgroup of Bn

that is isomorphic to the symmetric group Sn, and negative transpositions generate

a normal subgroup of Bn isomorphic to Zn2 .

Proposition 3.3.8. Bn
∼= Zn2 o Sn.

The proof of this proposition appears in [4]. Using the above assertion, we have

Proposition 3.3.9. [6] The order of the signed permutation group Bn is equal to

2nn! .

Example 3.3.10. If n = 2, then the order of B2 = 8, and the elements of B2 can

be written as positive and negative cycles with their products, as follows:

B2 = {id, (1,−1), (2,−2), (1,−1)(2,−2), (1, 2)(−1,−2), (1,−2)(−1, 2), (1, 2,−1,−2), (1,−2,−1, 2)},

where the identity id = (1)(−1)(2)(−2). It should be noted that elements of B2 can

also be illustrated as shown below.

1 2

−1 −2

id=

1 2

−1 −2

(1,−1)=

1 2

−1 −2

(2,−2)=

1 2

−1 −2

(1,−1)(2,−2)=

1 2

−1 −2

(1,2)(−1,−2)=

1 2

−1 −2

(1,−2)(−1,2)=

1 2

−1 −2

(1,2,−1,−2)=

1 2

−1 −2

(1,−2,−1,2)=

Figure 3.3: Alternative illustration of elements of B2.

The next result follows from Proposition 3.3.8. However, we intended to prove it

just to know how positive and negative cycles decompose into positive and negative

transpositions.

Proposition 3.3.11. The positive and negative transpositions generate the signed

permutation group Bn.

Proof. In view of Proposition 3.3.5, every signed permutation σ ∈ Bn may be written

uniquely as a product of positive and negative cycles. Therefore, it suffices to show
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this for positive and negative cycles. Any positive cycle can be written as a product

of positive transpositions, since for all l > 2,

(a1, . . . , al)(−a1, . . . ,−al) = (a
l−1
, a

l
)(−a

l−1
,−a

l
) · (a

l−2
, a

l−l)(−al−2
,−a

l−1
) · · · (a1, a2)(−a1,−a2) .

Furthermore, any negative cycle can be written as a product of a negative transpo-

sition and positive transpositions, since for all l > 2,

(a1, . . . , al ,−a1, . . . ,−al) = (a
l
,−a

l
) · (a

l−1
, a

l
)(−a

l−1
,−a

l
) · (a

l−2
, a

l−l)(−al−2
,−a

l−1
) · · · (a1, a2)(−a1,−a2).

Hence, each signed permutation σ ∈ Bn can be written as a product of positive and

negative transpositions.

Note that these transpositions need not be disjoint, and the decomposition is not

unique.

Example 3.3.12. A positive cycle (1,−2, 3)(−1, 2,−3) ∈ B3 can be written as

(1,−2, 3)(−1, 2,−3) = (−2, 3)(2,−3) · (1,−2)(−1, 2),

while a negative cycle (1,−2,−3,−1, 2, 3) can be expressed as

(1,−2,−3,−1, 2, 3) = (−3, 3)(−2,−3)(2, 3)(1,−2)(−1, 2).

In contrast, note that a negative cycle (1, 2, 3,−1,−2,−3) ∈ B5 can be expressed

as a product of transpositions in distinct ways, as follows:

(1, 2, 3,−1,−2,−3) = (3,−3)(2, 3)(−2,−3)(1, 2)(−1,−2)

= (3,−3)(2, 3)(−2,−3)(1, 2)(−1,−2)(4, 5)(−4,−5)(4, 5)(−4,−5).

However, the parity of the number of positive and negative transpositions in the

decompositions is the same, no matter how (1, 2, 3,−1,−2,−3) is written. Let us

investigate why this is true in general for any σ ∈ Bn.

Let us introduce the multivariable polynomial P (x1, . . . , xn) ∈ K[x1, . . . , xn],

where

P (x1, . . . , xn) = x1 · · · xn
∏

1≤i<j≤n

(xi − xj)(xi + xj).

Now, for each σ ∈ Bn, let σ act on P by permuting the variables exactly as σ

permutes indices; that is,

Pσ := P (x1σ, . . . , xnσ),
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where we adopt the convention that x−j = −xj. We claim that for all σ ∈ Bn, the

signed permutation σ permutes the terms of P and may change some of their signs;

that is,

Pσ =

{
+P

−P

To see this, take a signed permutation σ ∈ Bn and apply it to the multivariable

polynomial P ; that is,

Pσ =
(
x1 · · · xn

∏
1≤i<j≤n

(xi − xj)(xi + xj)
)
σ.

Let us now discuss what σ does for each term in P. In the first term, each xi will be

sent under σ to +−xiσ, depending on whether iσ > 0 or iσ < 0; that is,

xi
σ7→+− xiσ.

In the other terms, the effect of σ relies on what it does for each pair of parentheses

(xi − xj)(xi + xj). To clarify, the image of a factor (xi − xj)(xi + xj) under σ; that

is,

(xi − xj)(xi + xj)
σ7→ (xiσ − xjσ)(xiσ + xjσ),

depends on whether iσ or jσ is positive or negative. Set iσ = k and jσ = l, and

recall that i < j by assumption. Let us consider all the possibilities of iσ and jσ,

described below.

Case 1. Suppose iσ > 0 and jσ > 0. Then,

[(xi − xj)(xi + xj)]σ = (xiσ − xjσ)(xiσ + xjσ)

= (xk − xl)(xk + xl)

=

(xk − xl)(xk + xl), if k < l,

−(xk − xl)(xk + xl), otherwise.

Case 2. Suppose, without loss of generality, iσ < 0 and jσ > 0. Then,

[(xi − xj)(xi + xj)]σ = (xiσ − xjσ)(xiσ + xjσ)

= (x−k − xl)(x−k + xl)

= (−xk − xl)(−xk + xl)

= −(xk + xl)(−xk + xl)

= (xk + xl)(xk − xl)
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=

(xk − xl)(xk + xl), if k < l,

−(xk − xl)(xk + xl), otherwise.

Thus, we will obtain the same results as above, in which the permutation σ will

permute the factors (xi − xj)(xi + xj) of the polynomial P, and simultaneously, it

may change some of their signs.

Case 3. Suppose iσ < 0 and jσ < 0. Then,

[(xi − xj)(xi + xj)]σ = (xiσ − xjσ)(xiσ + xjσ)

= (x−k − x−l)(x−k + x−l)

= (−xk + xl)(−xk − xl)

= −(−xk + xl)(xk + xl)

= (xk − xl)(xk + xl)

=

(xk − xl)(xk + xl), if k < l,

−(xk − xl)(xk + xl), otherwise.

Thus, the factors (xi−xj)(xi+xj) of the polynomial P will be again permuted by σ,

and at the same time, this may change the signs of some of the other factors. Note

that, in all cases, we will consider the images of all factors (xi − xj)(xi + xj) for all

i and j, where 1 ≤ i < j ≤ n under σ. Furthermore, we will consider the action of σ

on the first term, and then we will take the overall effects with pluses and minuses.

Hence, we can definitively conclude that the action of Bn on the polynomial P is

either a positive or negative value of P.

For any σ ∈ Bn, define the sign of σ as follows:

sgn(σ) :=

+1, Pσ = P,

−1, Pσ = −P,
(3.5)

Example 3.3.13. Let n = 3, and σ = (1,−2, 3,−1, 2,−3) ∈ B3. Then,

P (x1, x2, x3) = x1x2x3(x1 − x2)(x1 + x2)(x1 − x3)(x1 + x3)(x2 − x3)(x2 + x3).

Clearly, Pσ = −P, and then sgn σ = −1.

Proposition 3.3.14. Let σ ∈ Bn be a positive or negative transposition. Then,

sgn(σ) = −1.

Proof. Let σ = (c,−c) be a negative transposition. Then, for any i ∈ {1, 2, . . . , n},
if i = c, the action of Pσ is determined by the action σ on the first and the second
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terms of P. Let us see the effect of σ on the first term

[x1 · · · xi · · · xn](c,−c) = x1 · · · x−c · · · xn
= −x1, · · · xc · · · xn.

This means that all other variables xr will be fixed by σ, and the only one to be

changed is xi. The action of σ on the other terms is as follows:

[(xi − xj)(xi + xj)](c,−c) = (x−c − xj)(x−c + xj)

= (−xc − xj)(−xc + xj)

= (xc + xj)(xc − xj),

and all other factors are fixed by σ. Hence, by taking the overall effects with pluses

and minuses for both terms in P, we will obtain Pσ = −P, and then sgn(σ) = −1.

Similarly, we obtain the same result if j = c. Now, let σ = (a, b)(−a,−b) be a

positive transposition. For any i, j ∈ {1, 2, . . . , n}, if i = a and j = b with i < j,

then the action of σ on the first term of P will be as follows:

[x1 · · · xi · · ·xj · · · xn](a, b)(−a,−b) = x1 · · · xb · · ·xa · · · xn;

that is, xa and xb are swapped, with no sign change, and all other xr with r ∈
{1, · · · , n}\{a, b} are fixed. However, the action of σ = (a, b)(−a,−b) where a, b > 0

with a < b on other terms yields the following cases:

Case 1. The factors (xi − xj)(xi + xj) with neither i nor j equal to a nor b, are

fixed.

Case 2. For the factors with precisely one index in {a, b}, we will have three

sub-cases:

(a) If other index is between {a, b}, then we notice that

[(xa − xj)(xa + xj)](a, b)(−a,−b) = (xb − xj)(xb + xj)

= −(xj − xb)(xj + xb), (3.6)

as a ≤ i < j ≤ b by assumption. Moreover,

[(xi − xb)(xi + xb)](a, b)(−a,−b) = (xi − xa)(xi + xa)

= −(xa − xi)(xa + xi). (3.7)

Hence, the two sign changes in (3.6) and (3.7) cancel each other out.
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(b) If the other index is larger than b, then we notice that

[(xa − xj)(xa + xj)](a, b)(−a,−b) = (xb − xj)(xb + xj) (3.8)

and

[(xb − xj)(xb + xj)](a, b)(−a,−b) = (xa − xj)(xa + xj) (3.9)

Hence, the factors in (3.8) and (3.9) are are swapped, with no sign change.

(c) If the other index is smaller than a, then we notice that

[(xi − xa)(xi + xa)](a, b)(−a,−b) = (xi − xb)(xi + xb), (3.10)

and

[(xi − xb)(xi + xb)](a, b)(−a,−b) = (xi − xa)(xi + xa). (3.11)

Hence, the factors in (3.10) and (3.11) are are swapped, with no sign

change.

Case 3. For the factor with i = a and j = b, we have

[(xa − xb)(xa + xb)](a, b)(−a,−b) = (xb − xa)(xb + xa)

= −(xa − xb)(xa + xb).

Hence, by taking the overall effects with pluses and minuses for both terms in P, we

will obtain Pτ = −P, and then sgn(τ) = −1. Similarly, for (−a, b)(a,−b).

Proposition 3.3.15. The sign of a permutation σ defines a homomorphism; that is,

the map between the signed permutation group Bn and multiplicative group {−1, 1}

sgn : Bn −→ {−1, 1}

is a homomorphism: sgn(στ) = sgn(σ)sgn(τ), for all σ, τ ∈ Bn.

Proof. In view of (3.5), we know that if Pσ = P, then sgn(σ) = 1, and if Pσ = −P,
then sgn(σ) = −1. Therefore, Pσ = sgn(σ)P. Consequently, we have

P (στ) = sgn(στ) P. (3.12)

In contrast, we also know that

P (στ) = (Pσ) τ = sgn(σ) Pτ = sgn(σ)sgn(τ)P. (3.13)
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Thus, by comparing (3.12) and (3.13), we have sgn(στ)P = sgn(σ)sgn(τ)P ; hence,

sgn(στ) = sgn(σ)sgn(τ).

In view of Proposition 3.3.11 and the homomorphism property of the sign map,

consider the following: Let σ = τ1τ2 · · · τk, where τi are positive and negative

transpositions for all 1 ≤ i ≤ k. Then,

sgn(σ) = sgn(τ1τ2 · · · τk)

= sgn(τ1)sgn(τ2) · · · sgn(τk).

However, we know from Proposition 3.3.14 that sgn(τi) = −1 for all 1 ≤ i ≤ k.

Thus, we can conclude that

sgn(σ) = (−1)k, (3.14)

where k is the number of positive and negative transpositions in a decomposition

of σ ∈ Bn. In fact, equation (3.14) can be considered another way of determining

the sign of a permutation σ ∈ Bn. The only point we still need to examine is that

the parity of the number of positive and negative transpositions in a decomposition

does not differ, no matter how σ is written as a product of positive and negative

transpositions.

Proposition 3.3.16. If σ can be expressed as products of r and s positive and

negative transpositions, then r and s have the same parity.

Proof. Let σ ∈ Bn, and suppose it is decomposed into two distinct expressions of

positive and negative transpositions; that is,

σ = α1α2 · · · αr and σ = β1β2 · · · βs,

where α1 · · ·αr and β1 · · · βs are positive and negative transpositions. Thus,

β1β2 · · · βs = α1α2 · · · αr

and then,

id = (α1α2 · · · αr) · (β1β2 · · · βs)−1

= (α1α2 · · · αr) · (β−1
s β−1

s−1 · · · β−1
1 )

= α1α2 · · · αr βsβs−1 · · · β1. [each transposition is its own inverse]

Thus, if we apply sgn to both sides, we have

sgn (id) = sgn (α1α2 · · · αr βsβs−1 · · · β1) (3.15)
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However, we know that sgn (id) = 1, as (P ) id = P , where P is the multivariable

polynomial described above. Thus, equation (3.15) becomes

1 = sgn (α1α2 · · · αr) sgn (βsβs−1 · · · β1)

1 = (−1)r(−1)s

1 = (−1)r+s.

This implies that r + s ≡ 0 mod 2, and then both r and s are either even or odd.

Hence, the parity of the number of positive and negative transpositions is always

the same.

Note that, in Example 3.3.12, sgn((1,−2, 3)(−1, 2,−3)) = (−1)2 = 1, while

sgn(1, 2, 3,−1,−2,−3) = (−1)3 = −1.

Definition 3.3.17. Let σ ∈ Bn. The signed cycle structure (shape) of a permutation

σ is an expression ((λ1, . . . , λr) , (µ1, . . . , µs)), where λ1 ≥ λ2 ≥ . . . ≥ λr,

µ1 ≥ µ2 . . . ≥ µs and there is a λi for each negative cycle of length λi and a µj for

each positive cycle of length µj, when a permutation σ is decomposed as a disjoint

product of positive and negative cycles (including positive cycles of length one).

We write |λ|=
∑r

i=1 λi, |µ|=
∑s

j=1 µj. Note that a signed cycle shape for σ ∈ Bn

can also be called a complementary partition (λ, µ) of n.

Definition 3.3.18. [1] A complementary partition of a positive integer n ∈ Z+ is a

pair (λ, µ) of partitions where λ = (λ1, . . . , λr) is a partition of |λ|, µ = (µ1, . . . , µs)

is a partition of |µ|, and |λ|+|µ|= n. Write (λ, µ) ` n for a complementary partition.

Again, we recall that |λ| or |µ| can be zero.

Example 3.3.19. Let us characterise the signed cycle shape of the following per-

mutations:

(i) The identity permutation id = (1)(−1)(2)(−2)(3)(−3) ∈ B3 has the signed

cycle shape (λ, µ) = (φ, (1, 1, 1)), since the identity is always expressed as a

product of positive cycles of length one, while no negative cycle exists in the

decomposition;

(ii) The permutation (1,−1) ∈ B3 has the signed cycle shape (λ, µ) = ((1), (1, 1)),

since it is written as product of a negative cycle of length one and two positive

cycles of length one; that is, (1,−1) = (1,−1) · (2)(−2) · (3)(−3);

(iii) The permutation (1,−3,−1, 3) ∈ B3 has the signed cycle shape (λ, µ) =

((2), (1)), since it is a product of a negative cycle of length two and a pos-

itive cycle of length one; that is, (1,−3,−1, 3) = (1,−3,−1, 3) · (2)(−2); and
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(iv) The permutation (1, 2,−1,−1)(3,−3) ∈ B3 has the signed cycle shape (λ, µ) =

((2, 1), φ), since it is a product of a negative cycle of length two and another

negative cycle of length one, while no positive cycle exists in the decomposition.

It becomes clear that the signed cycle shapes of Bn are canonically affiliated

with the complementary partitions of n; for instance, the complementary partition

(λ, µ) = ((4, 1), (2, 1, 1)) of 9 is associated with the signed permutation on nine

numbers with one negative cycle of length four, one negative cycle of length one,

one positive cycle of length two, and two positive cycles of length one. For example,

α = (1, 3,−5,−7,−1,−3, 5, 7) · (4,−4) · (2,−6)(−2, 6) · (8)(−8) · (9)(−9).

Theorem 3.3.20. Two signed permutations in Bn are conjugate if and only if they

have the same cycle structure/complementary partition.

Proof. Suppose that we have two signed permutations σ, τ ∈ Bn that are con-

jugate. This means that there exists a signed permutation γ ∈ Bn such that

γ−1σγ = τ. We intend to show that both σ and τ have the same signed cycle struc-

ture. Consider a positive (l, l)-cycle (a1, . . . , al)(−a1, . . . ,−al) and a negative 2l-

cycle (a1, . . . , al,−a1, . . . ,−al). Then, let us show the following: For any 1 ≤ l ≤ n,

we have

(i) γ−1(a1, . . . , al,−a1, . . . ,−al)γ = (a1γ, . . . , alγ,−a1γ, . . . ,−alγ),

(ii) γ−1(a1, . . . , al)(−a1, . . . ,−al)γ = (a1γ, . . . , alγ)(−a1γ, . . . ,−alγ).

We will show (i). Note that the image of each entry aiγ or−aiγ, belongs to a negative

cycle on the right-hand side, is expressed as

(+−ai)γ =

+−ai+1γ, for all 1 ≤ i ≤ l − 1,

∓a1γ, if i = l.

Let us verify whether the effect of the left-hand side of (i) has the same effect as the

right-hand side for the entries. Since, for all 1 ≤ i ≤ l − 1,

+−aiγ
γ−1

7−−→ +−ai
(a1,...,al,−a1,...,−al)7−−−−−−−−−−−−→ +−ai+1

γ7−−→ +−ai+1
γ,

and if i = l, we have

+−alγ
γ−1

7−−→ +−al
(a1,...,al,−a1,...,−al)7−−−−−−−−−−−−→ ∓a1

γ7−→ ∓a1γ.

Thus, the effect of the left-hand side of (i) is the same as that of the right-hand

side. Hence, (i) holds, and similarly, we can prove (ii). Now, since every signed

permutation σ = σ1 . . . σm can be written as a disjoint product of positive and
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negative σj cycles, then

γ−1σγ = γ−1 σ1σ2 . . . σm γ = γ−1σ1γ γ−1σ2γ . . . γ−1σmγ,

is indeed a disjoint product of positive and negative cycles, where each γ−1σjγ

has the same length as σj by (i) and (ii). In other words, the conjugation of σ

by γ is the same as applying γ to each transposition. Consequently, the con-

jugation of σ by γ will not change the signed cycle structure. Hence, let τ =

γ−1σ1γ γ−1σ2γ . . . γ−1σmγ, and then we have γ−1σγ = τ, which means that σ and

τ have the same signed cycle structure.

For the other direction, suppose that both σ and τ have the signed cycle structure;

this means that the signed cycle structure of σ and τ is ((λ1, . . . , λr) , (µ1, . . . , µs)),

where λ1 ≥ λ2 ≥ . . . ≥ λr, and µ1 ≥ µ2 . . . ≥ µs, and there is a λi for each negative

cycle of length λi and a µj for each positive cycle of length µj when both σ and τ

decompose as a disjoint product of positive and negative cycles. Let us rearrange σ

and τ by the signed cycle structure and pair of corresponding cycles, as follows:

σ = (a11 , . . . , a1λ1
,−a11 , . . . ,−a1λ1

) · · · (ap1 , . . . , apλr ,−ap1 , . . . ,−apλr ) (b11 , . . . , b1µ1
)(−b11 , . . . ,−b1µ1

) · · · (bq1 , . . . , bqµs )(−bq1 , . . . ,−bqµs )

τ = (c11 , . . . , c1λ1
,−c11 , . . . ,−c1λ1

) · · · (cp1 , . . . , cpλr ,−cp1 , . . . ,−cpλr ) (d11 , . . . , d1µ1
)(−d11 , . . . ,−d1µ1

) · · · (dq1 , . . . , dqµs )(−dq1 , . . . ,−dqµs ),

Now, for each x ∈ [+−n], define (x)γ as the image of x under γ ∈ S2n with respect

to the following pairing:

(a11 , . . . , a1λ1
,−a11 , . . . ,−a1λ1

) . . . (ap1 , . . . , apλr ,−ap1 , . . . ,−apλr ) (b11 , . . . , b1µ1
) (−b11 , . . . ,−b1µ1

) . . . (bq1 , . . . , bqµs ) (−bq1 , . . . ,−bqµs )

(c11 , . . . c1λ1
−c11 , . . . −c1λ1

) . . . (cp1 , . . . , cpλr , −cp1 , . . . , −cpλr ) (d11 , . . . , d1µ1
) (−d11 , . . . ,−d1µ1

) . . . (dq1 , . . . , dqµs ) (−dq1 , . . . ,−dqµs )

γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ

Note that, as this pairing is not unique, we can attain distinct γ’s, but this is not an

issue, as our goal is to show the existence. Moreover, (x)γ is well defined, since the

cycles are disjoint in both σ and τ. Therefore, for all x, y ∈ [+−n] with x 6= y, we have

(x)γ 6= (y)γ. Furthermore, γ ∈ Bn; that is, (−x)γ = −(x)γ for all x ∈ [+−n]. This

follows from the fact that both σ and τ are disjoint products of positive and negative

cycles and the pairing. Then, for any two consecutive numbers x, y appearing in σ

and z, w appearing in τ, the diagram below commutes.

x y

z w

σ

γ γ

τ

That is, σγ = γτ, which implies that γ−1σγ = τ for some γ ∈ Bn.

The lemma below asserts a connection between the number of different comple-

mentary partitions (λ, µ) of n and the number of conjugacy classes of Bn.
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Lemma 3.3.21. [82] For each positive integer n, the number of distinct comple-

mentary partitions (λ, µ) of n is equal to the number of conjugacy classes of Bn.

The proof of this lemma is not difficult because of the above theorem pointing out

that the conjugacy classes of Bn are determined by the signed cycle structure; that

is, complementary partitions of n.

Observe that Theorem 3.3.20 and Lemma 3.3.21 allow us to characterise the

members of a given conjugacy class as follows: The conjugacy class parametrised by

a complementary partition (λ, µ) consists of all σ ∈ Bn with negative and positive

cycles of lengths λ1, λ2 . . . , λr and µ1, µ2 . . . , µs respectively.

The number of conjugacy classes of Bn is equal to the number of ordinary ir-

reducible representations of Bn by Theorem 3.1.17. Hence, our discussion above

emphasises that the irreducible representations of Bn over C are parametrised by

the complementary partitions of n. In fact, we will consider the following combina-

torial objects that play a role in computing the ordinary irreducible representations

of the signed permutation group Bn.

Definition 3.3.22. [1] Given a complementary partition (λ, µ) ` n where λ =

(λ1, . . . , λr) and µ = (µ1, . . . , µs), and |λ| + |µ|= n. A double Young diagram of

shape (λ, µ) is a pair t = (tλ, tµ), where tλ is the Young diagram of shape and λ and

tµ is the Young diagram of shape and µ.

Recall that a Young diagram of shape λ is a collection of non-increasing, left-

justified, empty boxes arranged in rows, such that there are λi boxes in each ith

row.

Example 3.3.23. Let n = 5. Then, the double Young diagram corresponding to

the complementary partition ((2, 1), (1, 1)) is

t =
(

,
)
.

Note that since either |λ| or |µ| might be zero, the double Young diagram corre-

sponding to the complementary partition ((4), φ) is

t′ =
(

, φ
)
.

Definition 3.3.24. [1] Given a complementary partition (λ, µ) of n, a (λ, µ)-

Young tableau t is a double diagram t of shape (λ, µ) filled with numbers [+−n] =

{+−1, . . . ,+−n}, such that different boxes contain distinct numbers and for each i ∈
[+−n], either i or −i occurs in t.

Note that we can restate the above condition as follows: if we take the absolute

value |i| for each entry i appearing in t, we will obtain the set {1, 2, · · · , n}. Moreover,
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it is worthwhile clarifying that not all members of the set {+−1, . . . ,+−n} are filling

the Young diagram t; however, it will be filled with exactly half of them, as we only

have n boxes in t.

Example 3.3.25. Let n = 6, and choose the complementary partition ((3, 1), (2)).

Then, (
1 2 3

5
, −4 6

)
and

(
−2 3 6

1
, 5 4

)
are two Young tableaux of shape ((3, 1), (2)). However,(

1 2 5

6
, −1 6

)
is not a Young tableau, as there is no occurrence of 3 or −3 and 4 or −4.

Definition 3.3.26. Fix (λ, µ) ` n. Define Y
(λ,µ)

to be the set of all distinct tableaux

t of shape (λ, µ); that is,

Y
(λ,µ)

= {t = (tλ, tµ) : t runs through all Young tableaux of shape (λ, µ)}.

Observe that if we fix a complementary partition (λ, µ) of n, then the number of

distinct Young tableaux in Y
(λ,µ)

is indeed equal to 2nn! , since there are n! distinct

ways of filling the boxes of t with distinct numbers from {1, 2, . . . , n}. Moreover, we

have two choices in each box: We can either change the entry to its negative or leave

it as is. Hence, the number of distinct Young tableaux of shape (λ, µ) corresponds

to the number of elements of Bn.

Definition 3.3.27. [53] Fix (λ, µ) ` n, and define the action of the signed permu-

tation groups Bn on a (λ, µ)-Young tableau t by taking the images of all entries in

t under a signed permutation σ ∈ Bn.

Proposition 3.3.28. Let (λ, µ) ` n and Y
(λ,µ)

be the set of all distinct tableaux t

of shape (λ, µ). Then, Y
(λ,µ)

is left invariant under the action of Bn; that is,

Y
(λ,µ) ×Bn −→ Y

(λ,µ)

.

Proof. Let σ ∈ Bn and t ∈ Y (λ,µ)
. Then, by Definition 3.3.24, we know that for all

ai ∈ t, we have {|a1|, . . . , |an|} = {1, . . . , n}, and |ai|6= |aj|, as each one corre-

sponds to a number in {1, . . . , n}. To show that tσ ∈ Y (λ,µ)
, we need to examine

that for all (ai)σ ∈ tσ, we have {|(a1)σ|, . . . , |(an)σ|} = {1, . . . , n}. Suppose, for a

contradiction, that there exists j 6= k such that |(aj)σ|= |(ak)σ|. Therefore, we have

two cases, as described below.

Case 1. (aj)σ = (ak)σ. However, since σ is a bijection, this implies that j = k, and

this contradicts the assumption.
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Case 2. (aj)σ = −(ak)σ. Hence, (aj)σ = (−ak)σ, as σ ∈ Bn and for all ai ∈ [+−n], we

have −(ak)σ = (−ak)σ. It follows that aj = −ak as σ is again a bijection. Now, by

taking their absolute value, we have |aj|= |ak|, which is again a contradiction with

the fact that, for any two entries aj, ak ∈ t, we have |aj|6= |ak|, as each corresponds

to a number in {1, · · · , n}. Thus, the assumption cannot hold, and this implies that

{|(aj)σ|: 1 ≤ j ≤ n} = {1, · · · n}. Hence, either (aj)σ or −(aj)σ must occur in tσ

and then tσ ∈ Y (λ,µ)
.

The following notation has been stated in [7], and it is important to note, as we

will utilise it below. Let (λ, µ) ` n, and t = (tλ, tµ) ∈ Y (λ,µ)
. Denote by

t(i, j,m) =

tλ(i, j), m = 1,

tµ(i, j), m = 2,

where tx(i, j) is the entry in the ith row and jth column of tx where x = λ or x = µ.

Definition 3.3.29. [1] Given a Young tableau t of shape (λ, µ), define a row

permutation of t to be an element σ ∈ Bn which permutes the entries in each row

of t = (tλ, tµ) and may change the sign of entries in tµ. That is, σ ∈ Bn is a called

a row permutation if and only if it is a permutation of the entries of tλ and tµ such

that

t(i, j, 1)σ = t(i, k, 1), for some k,

t(i, j, 2)σ = +− t(i, k, 2), for some k.

Similarly, we define a column permutation of t to be an element τ ∈ Bn that

permutes the entries in each column of t = (tλ, tµ) and may change the sign of

entries in tλ; that is, τ ∈ Bn is called a column permutation if and only if it is a

permutation of the entries of tλ and tµ such that

t(i, j, 1)τ = +− t(q, j, 1), for some q,

t(i, j, 2)τ = t(q, j, 2), for some q.

Observation 3.3.30. It is significant to consider the effect of a row permutation

on tµ, since we do not mean that it is changing the signs of all entries in the row at

once. What we infer by changing the sign of tµ is that it may change the signs of

the individual entries of the row and leave the other ones unchanged. Similarly, the

same consideration applies for a column permutation.

Definition 3.3.31. [1] Let (λ, µ) ` n and t = (tλ, tµ) ∈ Y (λ,µ)
. Define Rt to be the

subgroup of Bn consisting of all row permutations of t :
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Rt =
{
σ ∈ Bn : tλ(i, j)σ = tλ(i, k),

tµ(i, j)σ = +− tµ(i, l), for some k and l
}
.

In fact, the reader should bear in mind that the row group Rt can also be

described as follows: If (λ, µ) ` n, where λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs),

then

Rt
∼= Sλ1 × · · · × Sλr ×Bµ1 × · · · ×Bµs , (3.16)

where Sλi represents the symmetric groups on λi, with 1 ≤ i ≤ r, and Bµj is the

signed permutation group on µj, with 1 ≤ j ≤ s. In fact, it is not surprising to find

such an isomorphism, as we know that for each ith row in the first tableau tλ, there

are λi boxes containing numbers, and a row permutation plays a role in permuting

these numbers among themselves. Thus, we need to establish a group isomorphic

to Sλi , and a simple way of constructing such a group is as follows: If the entries of

the ith row of tλ are illustrated as

...

p1 p2 ... p
λi

...
...

...

,

then

Sλi
∼= 〈(p1 , p2)(−p1 ,−p2), · · · , (p

λi−1
, p

λi
)(−p

λi−1
,−p

λi
)〉,

since Sλi is a symmetric group inside Bn and it is generated by consecutive transpo-

sitions. Indeed, the product Sλ1 × · · ·×Sλr contributes to preserving all the rows of

tλ. However, in the second tableau tµ, there are µj boxes in each jth row. Further-

more, the entries in each jth row of tµ need not only be permuted among themselves,

but they can also have a sign change for each individual entry in that row; thus,

we need to identify a group isomorphic to Bµj . A simple way of constructing such a

group is as follows: If the entries of the jth row of tµ are

...

q1 q2 ... qµj

...
...

...

,
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then

Bµj
∼= 〈

transpositions generating Z
µj
2︷ ︸︸ ︷

(q1 ,−q1), (q2 ,−q2) · · · , (qµj ,−qµj ) ,

transpositions generating Sµj︷ ︸︸ ︷
(q1 , q2)(−q1 ,−q2), · · · , (qµj−1 , qµj )(−qµj−1 ,−qµj ) 〉,

since Bµj
∼= Zµj2 oSµj , as clarified in Proposition 3.3.8. Indeed, the part Bµ1 ×· · ·×

Bµs of (3.16) will definitely preserve all the rows of tµ and the sign change for each

entry. Similarly, we define the column group Ct as shown below.

Definition 3.3.32. [1] Let (λ, µ) ` n and t = (tλ, tµ) ∈ Y (λ,µ)
. Define Ct to be a

subgroup of Bn consisting of all column permutations of t; that is,

Ct =
{
τ ∈ Bn : tλ(i, j)τ = +− tλ(k, j),

tµ(i, j)τ = tµ(l, j), for some k and l
}
.

Definition 3.3.33. Let (λ, µ) ` n, where λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs),

and t = (tλ, tµ) ∈ Y (λ,µ)
. The partitions λ′ = (λ′1, . . . , λ

′
r′) and µ′ = (µ′1, . . . , µ

′
s′)

are called the conjugates of λ and µ, respectively, where λ′i is the number of boxes

in the ith column of tλ and µ′j is the number of boxes in the jth column of tµ.

Given the preceding definition, we can describe the column group Ct as follows:

Let (λ, µ) ` n and λ′ and µ′ be the conjugate partitions of λ and µ, respectively,

where λ′ = (λ′1, . . . , λ
′
r′) and µ′ = (µ′1, . . . , µ

′
s′). Then,

Ct ∼= Bλ′1
× · · · ×Bλ′

r′
× Sµ′1 × · · · × Sµ′s′ ,

where Bλ′i
is the signed permutation group on λ′i with 1 ≤ i ≤ r′ and Sµ′j is the

symmetric group on µ′j with 1 ≤ j ≤ s′.

Example 3.3.34. Let n = 7 and(
−2 1 −4

5
,

7 3

−6

)
be a Young tableau of shape ((3, 1), (2, 1)). Then,

Rt = 〈(−2, 1)(2,−1), (1,−4)(−1, 4), (7, 3)(−7,−3), (7,−7), (3,−3), (−6, 6)〉 and

Ct = 〈(−2, 5)(2,−5), (−2, 2), (5,−5), (1,−1), (−4, 4), (7, 3)(−7,−3)〉.

Proposition 3.3.35. [53] Let π ∈ Bn. Then, π−1Ctπ = Ctπ and π−1Rtπ = Rtπ.

Proof. We show π−1Ctπ = Ctπ. Let t = (tλ, tµ) ∈ Y (λ,µ)
and tλ(i, j) be the entry in

the ith row and jth column of tλ, with tµ(i, j) being the entry in the ith row and

jth column of tµ. Consider a (λ, µ)-tableau tπ where tλ(i, j)π is the (i, j)-th entry

of t
λ
π and tµ(i, j)π is the (i, j)-th entry of tµπ.
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Now for all i, j

τ ∈ Ctπ if and only if

tλ(i, j)πτ = +− tλ(k, j)π,

tµ(i, j)πτ = tµ(l, j)π, for some k and l.

This also holds if and only if

tλ(i, j)πτ = (+− tλ(k, j))π, [ as− (r)π = (−r)π for all r],

tµ(i, j)πτ = tµ(l, j)π, for some k and l.

This also true if and only if

tλ(i, j)πτπ
−1 = +− tλ(k, j), for some k,

tµ(i, j)πτπ−1 = tµ(l, j), for some l.

This also holds if and only if πτπ−1 ∈ Ct, as tx(r, s) with x = λ or x = µ are

entries in (λ, µ)-tableau t. Hence, we have πCtππ
−1 = Ct and then Ctπ = π−1Ct π.

Similarly, we can show Rtπ = π−1Rt π, where π ∈ Bn.

Remark 3.3.36. Let (λ, µ) ` n. Define a relation ∼ on the set of (λ, µ)-tableaux

Y
(λ,µ)

as follows:

t1 ∼ t2 ⇐⇒ ∃ σ ∈ Rt1 such that t2 = t1σ,

for all t1, t2 ∈ Y
(λ,µ)

. In fact, the above relation ∼ is an equivalence relation, as it

is reflexive. Moreover, if t1 ∼ t2; that is, t2 = t1σ, then t2σ
−1 = t1, as σ is a group

element. However, σ−1 = σ−1σ−1σ ∈ σ−1Rt1σ = Rt1σ = Rt2 . Hence, the relation

∼ is also symmetric. It remains to be shown that it is also transitive. Suppose

t1 ∼ t2 and t2 ∼ t3. Then there exists σ ∈ Rt1 such that t2 = t1σ, and τ ∈ Rt2

such that t3 = t2τ. Consider t3 = t2τ = t1στ. This gives us t3 = t1στ. Now, if

we prove that τ ∈ Rt1 , then we have completed the demonstration. Notice that

τ ∈ Rt2 = Rt1σ = σ−1Rt1σ; that is, τ ∈ σ−1Rt1σ, and then τ ∈ Rt1 . Hence, t1 ∼ t3.

Definition 3.3.37. [53] Fix (λ, µ) ` n. Define a (λ, µ)-tabloid {t} to be the set of all

Young tableaux of shape (λ, µ) that are row equivalent to t; that is, a (λ, µ)-tabloid

{t} is the orbit of Young tableau t under the action of the row group Rt

{t} := {s ∈ Y (λ,µ)

: s = tσ for some σ ∈ Rt}.

Example 3.3.38. Let n = 4, and fix the complementary partition (λ, µ) = ((1, 1), (2)).

Then, the tabloid of
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t =
(

1

3
, −2−4

)
is equal to

{
t
}

=
{(

1

3
, −2−4

)
,
(

1

3
, −4−2

)
,
(

1

3
, 2 −4

)
,
(

1

3
, −2 4

)
,(

1

3
, 2 4

)
,
(

1

3
, −4 2

)
,
(

1

3
, 4 −2

)
,
(

1

3
, 4 2

)}
.

Observe that, as Morris pointed out in [53], the signed permutation group Bn

acts on the set of (λ, µ)-tabloids via the following formula:

{t} σ = {tσ} for all σ ∈ Bn. (3.17)

This action is well defined for the following reason: Suppose {t} and {s} are (λ, µ)-

tabloids where {t} is a row equivalent to {s}. Thus, there exists a permutation

τ ∈ Rt such that s = tτ. Let σ ∈ Bn, and consider

sσ = (tτ)σ = t(σσ−1)τσ = tσ(σ−1τσ). (3.18)

Let γ = σ−1τσ, and observe that γ ∈ σ−1Rtσ. Using Proposition 3.3.35 results in

γ ∈ Rtσ. Hence, we can rewrite equation (3.18) as follows:

sσ = (tσ)γ where γ ∈ Rtσ.

Thus, {tσ} = {(tσ)γ} = {sσ}. Hence, the action of Bn on (λ, µ)-tabloids is well

defined.

Definition 3.3.39. [53] Fix (λ, µ) ` n. Define M (λ,µ) to be the C-vector space with

basis the distinct (λ, µ)-tabloids {t}.

The elements of M (λ,µ) are the formal C-linear combinations of distinct tabloids

{t} of shape (λ, µ); that is,

M (λ,µ) = C-[{t1} , . . . , {tm}],

where {ti} with 1 ≤ i ≤ m is a complete list of (λ, µ)-tabloids. By extending the

preceding action linearly, M (λ,µ) becomes a right CBn module or Bn-module.

M (λ,µ) ×Bn ⊆M (λ,µ).

In other words, M (λ,µ) is a representation of the signed permutation group Bn.

Proposition 3.3.40. [53] Let (λ, µ) be a complementary partition of n where

λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs). Then,

dim M (λ,µ) = 2n−|µ|
n!

λ1! · · · λr!µ1! · · · µs!
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The reason for this is simple, as we know that the size of the set Y (λ,µ), which

consists of all distinct (λ, µ)-tableaux, is equal to 2nn! . Moreover, each (λ, µ)-tabloid

{t} is determined by {t} = {s ∈ Y (λ,µ) : s = tσ with σ ∈ Rt}. Hence, the number

of tableaux in any (λ, µ)-tabloid {t} is equal to |Rt| . Furthermore, since Rt
∼=

Sλ1 × · · · × Sλr ×Bµ1 × · · · ×Bµs , then

|Rt| = λ1! · · · λr! 2µ1µ1! · · · 2µsµs!

= λ1! · · · λr! µ1! · · · µs! 2|µ|.

Since each orbit {t} has the same size |Rt| , then dividing the number of all (λ, µ)-

tableaux in Y (λ,µ) by the number of tableaux in each (λ, µ)-tabloid {t} results in the

number of distinct (λ, µ)-tabloids; that is,

# distinct (λ, µ)-tabloids =
2nn!

λ1! · · · λr! µ1! · · · µs! 2|µ|

= 2n−|µ|
n!

λ1! · · · λr!µ1! · · · µ1!
.

Example 3.3.41. Let n = 2, and fix the complementary partition (λ, µ) = ((1), (1)).

Then, the set Y ((1),(1)) of all distinct ((1), (1))-tableaux and the B2-module M ((1),(1))

are determined as follows:

Y ((1),(1)) =
{(

1 , 2

)
,
(

1 , −2

)
,
(
−1 , −2

)
,
(
−1 , 2

)
,
(

2 , 1

)
,
(

2 , −1

)
,
(
−2 , 1

)
,
(
−2 , −1

)}
.

M ((1),(1)) = C-
[{(

1 , 2

)}
,
{(
−1 , −2

)}
,
{(

2 , 1

)}
,
{(
−2 , −1

)}]
.

The following assertions indicates how we might determine all the irreducible

representations of Bn.

Definition 3.3.42. [53] Fix (λ, µ) ` n. For each Young tableau t of shape (λ, µ),

define the element et ∈M (λ,µ) as follows:

et =
∑
σ∈C(t)

sgn(σ) {t}σ.

Such an element et is called a (λ, µ)-polytabloid associated with the tableau t =

(tλ, tµ).

The result below illustrates how the signed permutation group Bn permutes the

set

{et : t = (tλ, tµ) is a Young tableau of shape (λ, µ)}.
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Proposition 3.3.43. [7] Fix (λ, µ) ` n. For any Young tableau t of shape (λ, µ)

and signed permutation σ ∈ Bn, we have

et . σ = etσ.

The proof of this proposition is entirely analogous to the proof of Lemma 3.2.16

in which we utilise Proposition 3.3.35 and Definition 3.3.42 to obtain the result.

Definition 3.3.44. [53] For any complementary partition (λ, µ) of n, define the

Specht module S(λ,µ) to be the subspace of M (λ,µ) spanned by the elements et, where

t = (tλ, tµ) ranges over all the Young tableaux of shape (λ, µ); that is,

S(λ,µ) = {c1et1 + . . . + cqetq : ci ∈ C, ti ∈ Y (λ,µ) for all 1 ≤ i ≤ q}.

In view of the preceding proposition, it is clear that the Specht module S(λ,µ)

is preserved by the action of Bn, and this justifies the identification of S(λ,µ) as a

Bn-submodule of M (λ,µ). Let us now state some essential assertions that can be em-

ployed to show the irreducibility of the Specht module S(λ,µ).

Fix (λ, µ) ` n. Let us define an inner product on M (λ,µ) over the complex field

to be a Hermitian linear extension of

〈{t}, {s}〉 =

1, {t} = {s},

0, otherwise,

that is, if a =
∑
ct{t} and b =

∑
cs{s} are both vectors in M (λ,µ) with the ct, cs ∈ C,

then

〈a, b〉 =
∑
s,t

ctc̄s 〈{t}, {s}〉 =
∑
r

crc̄r,

where the bar represents complex conjugation. The form 〈·, ·〉 is invariant under the

action of Bn; that is, for all σ ∈ Bn,

〈aσ, bσ〉 = 〈a, b〉. (3.19)

To verify this invariance, it suffices to examine (3.19) for the basis elements of M (λ,µ).

If σ ∈ Bn, then

〈{t}σ, {s}σ〉 =

1, {t}σ = {s}σ,

0, otherwise,
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=

1, {t} = {s}, [As σ is a bijection and {t}, {s} are tabloids]

0, otherwise,

= 〈{t}, {s}〉

If W ⊆M (λ,µ), the orthogonal space W⊥ can be defined by

W⊥ = {v ∈M (λ,µ) : 〈w, v〉 = 0 for all w ∈ W}.

Observe that, if W is a Bn-submodule of M (λ,µ) and v ∈ W⊥, σ ∈ Bn, then

〈w, vσ〉 = 〈wσ−1, vσσ−1〉 [As the form is invariant]

= 〈wσ−1, v〉

= 0 [v ∈ W⊥, wσ−1 ∈ W for W is a submodule].

Consequently, vσ ∈ W⊥, and then W⊥ is also a Bn-submodule of M (λ,µ).

Theorem 3.3.45 (Submodule Theorem [53]). Fix (λ, µ) ` n. Let U be a Bn-

submodule of M (λ,µ). Then, either

S(λ,µ) ⊆ U or U ⊆ (S(λ,µ))⊥,

where (S(λ,µ))⊥ is the orthogonal space of S(λ,µ) in M (λ,µ).

The proof of the assertion appears in [53].

Lemma 3.3.46. [7] Let (λ, µ) be a complementary partition of n. Then, the Specht

module S(λ,µ) is a Bn-irreducible module over the complex field C.

Proof. Let U be a non-zero Bn-submodule of S(λ,µ). Then, U is specifically a Bn-

submodule of M (λ,µ). In view of Theorem 3.3.45, we have either

S(λ,µ) ⊆ U or U ⊆ (S(λ,µ))⊥. (3.20)

However, since U ⊆ S(λ,µ), we can rewrite the expression in (3.20) as follows: We

have either

U = S(λ,µ) or U ⊆ S(λ,µ) ∩ (S(λ,µ))⊥.

Let us show that S(λ,µ) ∩ (S(λ,µ))⊥ = 000. We know that 000 ⊆ S(λ,µ) ∩ (S(λ,µ))⊥, and if

x ∈ S(λ,µ) ∩ (S(λ,µ))⊥, then x ∈ S(λ,µ) and x ∈ (S(λ,µ))⊥. In particular, 〈x, x〉 = 0,

and this implies that x = 000 as 〈·, ·〉 is a Hermitian inner product. In other words,

S(λ,µ) ∩ (S(λ,µ))⊥ ⊆ 000; thus, we obtain the equality, and S(λ,µ) is equal to U. Hence,

it is irreducible.

The result below asserts that the Specht modules for the group of signed permu-

tations Bn are mutually inequivalent; that is,
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S(λ,µ) = S(λ′,µ′) ⇐⇒ (λ, µ) = (λ′, µ′).

where equality of complementary partitions is similar to equality of partitions as

stated in Remark 3.2.19.

Theorem 3.3.47. [7] Given a complementary partition (λ, µ) of n. The Specht

modules S(λ,µ) form a complete list of inequivlent irreducible representations of Bn

over the complex field C.

A detailed proof of this theorem can be found in [7, Theorem 2.6]. Notably, we

must point out that Morris [53] and Can [7] considered the field of rational numbers

Q when they established the proof of this vital assertion. However, the reader can

easily recognise that the argument they utilise in the proof holds when the field is

the complex numbers C. The reader can consult [1, 53], for an explicit description

of simple modules of Bn in the modular case.

Example 3.3.48. Let n = 2, and fix the complementary partition (λ, µ) = ((1), (1)).

Then, the set Y ((1),(1)) of all distinct ((1), (1))-tableaux is determined as follows:

Y ((1),(1)) =
{(

1 , 2

)
,
(

1 , −2

)
,
(
−1 , −2

)
,
(
−1 , 2

)
,
(

2 , 1

)
,
(

2 , −1

)
,
(
−2 , 1

)
,
(
−2 , −1

)}
.

Let us now compute all ((1), (1))-polytabloids for each ((1), (1))-tableau in Y ((1),(1))

as follows:

t1 =
(

1 , 2

)
and Ct1 = {id, (1,−1)}. Thus, et1 = +

{(
1 , 2

)}
−
{(
−1 , 2

)}
t2 =

(
1 , −2

)
and Ct2 = {id, (1,−1)}. Thus, et2 = +

{(
1 , −2

)}
−
{(
−1 , −2

)}
t3 =

(
−1 , −2

)
and Ct3 = {id, (1,−1)}, Thus, et3 = +

{(
−1 , −2

)}
−
{(

1 , −2

)}
t4 =

(
−1 , 2

)
and Ct4 = {id, (1,−1)}, Thus, et4 = +

{(
−1 , 2

)}
−
{(

1 , 2

)}
t5 =

(
2 , 1

)
and Ct5 = {id, (2,−2)}, Thus, et5 = +

{(
2 , 1

)}
−
{(
−2 , 1

)}
t6 =

(
2 , −1

)
and Ct6 = {id, (2,−2)}, Thus, et6 = +

{(
2 , −1

)}
−
{(
−2 , −1

)}
t7 =

(
−2 , 1

)
and Ct7 = {id, (2,−2)}, Thus, et7 = +

{(
−2 , 1

)}
−
{(

2 , 1

)}
t8 =

(
−2 , −1

)
and Ct8 = {id, (2,−2)}, Thus, et8 = +

{(
−2 , −1

)}
−
{(

2 , −1

)}
.

Hence,

S((1),(1)) = SpanC{et1 , et2 , et3 , et4 , et5 , et6 , et6 , et7 , et8}.

Observe that et2 = et1 , and et3 = −et1 = et4 . Moreover, et6 = et5 , and et7 =

−et5 = et8 . This gives us a clue that polytabloids spanning S(λ,µ) are not necessarily

independent. The following definition sheds light on a subset of the spanning set

{et : t is a (λ, µ)-tableau} that forms a basis for the Specht module S(λ,µ).

Definition 3.3.49. [7] A (λ, µ)-tableau t is said to be standard if the entries of t

are all positive integers, and tλ, tµ are both standard tableaux.
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Theorem 3.3.50. [7] The set {et : t is a standard (λ, µ)-tableau} is a C-basis for

S(λ,µ) and the dimension of S(λ,µ) is the number of standard (λ, µ)-tableaux.

A detailed proof of the assertion appears in [7, Section 3].

Example 3.3.51. In Example 3.3.48, both t1 = ( 1 , 2 ) and t5 = ( 2 , 1 ) are ((1), (1))-

standard tableaux. Using Theorem 3.3.50, S((1),(1)) can be written with respect to

its basis elements of standard polytabloids {et1 , et5}, as follows:

S((1),(1)) = C-[et1 , et5 ].
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Chapter 4

Representation theory of

semigroups

4.1 Basic notions

The critical role played by the theory of linear representations in investigating finite

groups and finite dimensional algebras has been acknowledged for over a century.

Contrarily, relatively few applications in the representation theory of semigroups

arose and were explored independently in the 1950s by scholars such as Clifford [11],

Munn [56,58,59] and Ponizovskĭı [64]. Although it was also developed in the 1960s

and 1970s by McAlister [52], Lallement and Petrich [46], as well as Rhodes and

Zalcstein (their results were written a long time before they were published [72]),

the absence of ready-made applications implied that the representation theory of

semigroups subsequently went unexplored [78].

However, beginning with the research of Renner [70, 71], who worked on the

theory of linear algebraic monoids, as well as Putcha [67, 68], who computed the

irreducible representations of the full transformation monoid, novel explorations of

the representation theory of finite semigroups resumed in the 1980s and 1990s. As

a result, something of a renaissance started in the representation theory of finite

monoids, with numerous articles subsequently being published on the subject. A

particularly noteworthy recent text is that of Steinberg [78], which provides a deep

overview of each of the aforementioned issues and also presents former and modern

techniques for simplifying the theory of characters of such monoids.

The immediate aim of this section is to offer fundamental insights into the theory

of semigroup representations, and following this, to provide proofs of several of the

related assertions commonly encountered in the literature. We mostly follow [26,

Chapter 11].
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Definition 4.1.1. [26] Let S be a finite regular monoid and V be a finite dimen-

sional vector space over C. Let End(V ) be the monoid of all linear maps on V.

An S-representation, or a linear representation of S, is a monoid homomorphism

ψ : S −→ End(V ); that is, for any s ∈ S, we have that (s)ψ ∈ End(V ) is a linear

map.

We call dim V the degree of ψ. In the following remark, we highlight some

assertions which contribute to a better understanding of this representation.

Remark 4.1.2.

(i) In the above definition, S can be any semigroup, which means that it is not

strictly necessary to have the terms “monoid”, “finiteness”, and “regularity”

in the definition of a semigroup representation. However, we insist on adding

such terms to make the statement of results cleaner.

(ii) The elements of End(V ), like those of S, need not have inverses. If S is a

group, then the images (s)ψ are invertible as ψ is a homomorphism; hence,

(s)ψ lies in GL(V )− a group of invertible linear maps. In particular, if S is a

group, the above definition reduces to that of a group representation.

(iii) As indicated in Chapter 1, a monoid homomorphism ψ requires

• For all s, s′ ∈ S, (ss′)ψ = sψ · s′ψ

• 1
S

ψ−→ id
End(V )

; that is, ψ must send the identity element of a monoid S

to the identity linear map id : V −→ V. Consequently, im ψ 6= 000.

(iv) Since S is regular, the regularity is preserved by a homomorphism ψ; that is,

for all s ∈ S, there exists s′ such that ss′s = s and s′ss′ = s′. Thus,

(s)ψ = (ss′s)ψ = sψ s′ψ sψ,

and then t = tt′t where t = (s)ψ ∈ Sψ ⊆ End(V ).

Henceforth, for any v ∈ V, we will abuse the notation v(s)ψ and write v · s or vs

instead. In other words, we can think of s ∈ S as a linear map acting on the vectors

of V. This indeed leads us to an alternative way of viewing the S-representation V

as an S-module or CS-module, as shown in the following definition.

Definition 4.1.3. [26] Let S be a finite regular monoid and V be a finite di-

mensional vector space over C. Then, V is an S-module if there exists a mapping

V × S −→ V such that (v, s) 7→ v · s where v ∈ V and s ∈ S, that satisfies the

following conditions for all v, u ∈ V, c ∈ C and s, s′ ∈ S :

(i) v · (s · s′) = (v · s) · s′,
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(ii) v · 1
S

= v, where 1
S

is the identity of S,

(iii) (cv) · s = c(v · s),

(iv) (v + u) · s = v · s+ u · s.

It should be noted that the above conditions (iii) and (iv) as well as v · s ∈ V
confirm that for all s ∈ S, the function

v −→ v · s

is an endomorphism of V.

The concepts of S-modules and S-representations are equivalent; thus, assertions

and results associated with representations can be presented in terms of modules or

endomorphisms. We frequently present such notions in the module theoretic lan-

guage, although we occasionally state the equivalent assertions for S-representations.

Throughout the remaining chapters, we may also abuse language and utilise the ter-

minologies “representation of S” or “S-representation” when we mean S-module.

Definition 4.1.4. [26] Let V be an S-module. A subspace U ⊂ V is called an

S-submodule of V if and only if it is invariant under the action of S; that is, u·s ∈ U
for all u ∈ U and s ∈ S.

It is clear that the whole vector space V and zero vector space 000 are submodules

of any S-module V.

Definition 4.1.5. [26] An S-module V is called simple (or irreducible S-representation

of V ) if and only if V is nonzero and the only submodules of V are V or 000. Otherwise,

V is reducible.

The next example, presented in [18], demonstrates the concept of reducibility of

certain monoid representations. We redraft it with more details.

Example 4.1.6.

(i) Let S be the symmetric inverse monoid In with n > 1, and let V be a finite

dimensional vector space over C with basis {v1, . . . , vn}. Define a linear map

acting on V by partially permuting its basis vectors as follows: for all σ ∈ In,

vi · σ =

viσ, i ∈ dom (σ),

000, otherwise.
(4.1)

Consider the following two subspaces of V and let us verify whether both can

be In-submodules of V below.
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(a) The subspace U = SpanC {v1 + v2 + · · · + vn}. Consider a partial map

σi ∈ In that permutes two consecutive numbers of {1, . . . , n} and is undefined

elsewhere; that is,

1

1

i i+1

i i+1

n

n

σi =

Then U × In 6⊆ U because

(v1 + · · ·+ vi + vi+1 + · · ·+ vn) · σi = 0 + · · · 0 + vi+1 + vi + 0 + · · ·+ 0 /∈ U.

Hence, U is not an In-submodule.

(b) The hyperplaneW consisting of the vectors {w =
∑n

i=1 civi ∈ V :
∑n

i=1 ci =

0} is also not an In-submodule because, if we apply σi (i > 1) to the vector

vi − v1, we obtain (vi − v1) · σi = vi+1 /∈ W.

Moreover, the In-module V is simple for the following reason: suppose that

W ′ ⊆ V is a nonzero In-submodule, we show that W ′ = V. Since W ′ 6= 000, then

there exists a vector w′ ∈ W ′ where w′ 6= 000; that is, w′ =
∑n

i=1 civi with cr 6= 0

for some r. Consider the following partial map σs ∈ In :

1 2

1 2

r

s

n

n

σs =

where 1 ≤ s ≤ n. As W ′ is an In-submodule, applying σs to w′ results in

w′ · σs = crvs ∈ W ′; then, vs = 1
cr

(w′ · σs) ∈ W ′. However, since the above

observation holds for all s where 1 ≤ s ≤ n and {vs : 1 ≤ s ≤ n} forms the

basis for V, we conclude that W ′ = V. This means that the only In-submodules

of V are the trivial one and the whole space V. Thus, V is a simple In-module

called the partial permutation module.

(ii) Let S be the monoid of transformation maps Tn with n > 1, and V be a C-

vector space with basis {v1, . . . , vn}. Define a linear map acting on the basis

vectors of V in the following manner: for all σ ∈ Tn,

vi · σ = viσ. (4.2)

Consider the previous two subspaces of V :

(a) The subspace U = SpanC {v1 + v2 + · · ·+ vn}. Consider the following map

σ ∈ Tn :
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1

1 2

i

r

n

n

σ =

This means that if we fix r ∈ [n], then (i)σ = r, for all i ∈ [n]. Thus,

(v1 + v2 + · · ·+ vn) · σ = vr + vr + · · ·+ vr = nvr /∈ U.

Hence, the subspace U is not a Tn-submodule of V.

(b) The hyperplane W consisting of {w =
∑n

d=1 cdvd ∈ V :
∑n

d=1 cd = 0} is

indeed a Tn-submodule of V for the following reason: let w ∈ W, and a map

σ ∈ Tn be given:

1 j1 j2 ··· jr

X1 X2 ··· Xr

n

σ =

where im(σ) = {j1, j2, . . . , jr} ⊂ [n] and the dom(σ) is a disjoint union of the

preimages Xi of ji with 1 ≤ i ≤ r. In other words,

dom(σ) = [n] =
r⋃
i=1

Xi,

where Xi = {x ∈ [n] : (x)σ = ji}. The image of w under σ is obtained by

w · σ =
(∑
i∈X1

ci

)
vj1 + · · ·+

(∑
i∈Xr

ci

)
vjr ,

where the sum of its coefficients is

∑
i∈X1

ci + · · ·+
∑
i∈Xr

ci =
n∑
d=1

cd = 0.

Thus, w · σ ∈ W, so W is a Tn-submodule of V. Hence, a Tn-module V is not

simple and is called a mapping module of Tn.

In fact, W turns out to be a simple Tn-submodule, and to show such an

assertion, let us state the result below.

Claim: Let S be a monoid and S ′ be a submonoid of S. If V is an S-module,

then restricting the S-action on V to S ′ yields that V is an S ′−module.

Proof. For every v ∈ V and s′ ∈ S ′, we have v · s′ ∈ V, as S ′ ≤ S and V is

an S-module. Moreover, as S ′ a submonoid of S, it has the same identity 1
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of S, and then v · 1 = v ∈ V. It is also clear that for all s′1, s
′
2 ∈ S ′, we have

v · (s′1s′2) = (vs′1)s′2 ∈ V. Thus, V × S ′ −→ V, and hence the desired result

holds.

Let us now show that W is a simple Tn-module by exploiting the fact that

W has no proper Sn-submodules. In view of the above assertion, since W is

a Tn-module, it can also be thought as an Sn-module. Moreover, if W ′ were

a Tn-submodule of Tn-module W, then by applying the above assertion again,

we would obtain that W ′ is an Sn-submodule of the Sn-module W. This means

that any proper subspace W ′ of W, which is invariant under the Tn-action, is

certainly invariant under the Sn-action (Sn ⊂ Tn). However, W is a simple

Sn-module as shown in Example 3.1.7(b); that is, there is no such proper Sn-

submodule of W . Hence, W is a simple Tn-module.

It is also worthwhile noticing that if n > 2, the Tn-module V contains no 1-

dimensional Tn-submodule: Consider a nonzero Tn-submodule V ′ of V. Then,

there must exist a nonzero element v′ ∈ V ′ such that

v′ = c1v1 + · · ·+ cjvj + · · ·+ cnvn,

for some cj 6= 0. Fix r, s, t ∈ {1, · · · , n} with r < s < t and let σr, σs be

Tn-maps such that

1

1 r

j

ts

n

n

σr =

1

1 r

j

ts

n

n

σs =

Now, by applying σr and σs to v′, we obtain

v′ · σr = c1v(1)σr + · · ·+ cjv(j)σr + · · ·+ cnv(n)σr

= cjvr + lvt.

v′ · σs = c1v1σs + · · ·+ cjvjσs + · · ·+ cnvnσs

= cjvs + lvt,

where l = c1 + · · ·+ ĉj + · · ·+ cn. Notice that v′ · σr and v′ · σs belong to V ′ as

it is a Tn-submodule. Let us verify that both vectors are linearly independent

from each other. Assume that

c1(v′ · σr) + c2(v′ · σs) = 000

c1(cjvr + lvt) + c2(cjvs + lvt) = 000
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for some c1, c2 ∈ C Now, by dividing the r-th entry and s-entry in v′ · σr and

v′ · σs respectively by cj, we have c1vr + c2vs + ((c2 + c2) l
cj

)vt = 000. It follows

that c1 = c2 = 0. Hence, both vectors are independent and so V ′ is at least a

two-dimensional Tn-submodule.

In view of Definition 3.1.10, we can construct a new S-representations as ex-

plained below.

Definition 4.1.7. [74] Let V be a S-module, and suppose that as vector spaces

V =
⊕
i

Vi, with 1 ≤ i ≤ m,

where Vi are S-submodules of V. Then, V is called a direct sum of submodules.

Definition 4.1.8. An S-module V is said to be semisimple (or a completely re-

ducible S-representation) if it is a direct sum of simple submodules (or irreducible

subrepresentations) Vi with 1 ≤ i ≤ m; that is,

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm.

A map that preserves group structures is called a group homomorphism; the

corresponding notion for S-representations is called an S-homomorphism, which is

defined as given below.

Definition 4.1.9. Let V and V ′ be two S-modules. A function ϕ : V −→ V ′ is said

to be an S-homomorphism if ϕ is a linear map and

(vs)ϕ = (vϕ)s.

In other words, ϕ is a linear map such that for all s ∈ S, the following diagram

commutes:

V V

V ′ V ′

(-)s

ϕ ϕ

(-)s

We write Hom
S
(V, V ′) for the set of all S-homomorphisms from V to V ′, and it

is clear that it forms a vector space over C by defining ϕ+ϕ′ and cϕ in the following

manner:

v(ϕ+ ϕ′) = vϕ+ vϕ′,

(cv)ϕ = c(vϕ),

for all v ∈ V , c ∈ C and ϕ, ϕ′ ∈ Hom
S
(V, V ′). Moreover, ϕ is an isomorphism if and

only if it is invertible.
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Proposition 4.1.10. [26] Let V and V ′ be two S-representations and ϕ ∈ Hom
S
(V, V ′).

Then,

(i) The kernel Ker(ϕ) of ϕ is an S-submodule of V.

(ii) The image im(ϕ) of ϕ is an S-submodule of V ′.

(iii) If both V and V ′ are simple S-modules, then ϕ is either an S-isomorphism or

zero.

The proof of the above proposition can be found in [26, Proposition 11.1.7]. It is

also worth noticing that the assertion mentioned in (iii) is the version of Schur’s

lemma for a monoid representation.

Proposition 4.1.11. Let S be a (finite regular) monoid and V be an S-representation,

and write

V = V1 ⊕ · · · ⊕ Vm,

a direct sum of irreducible S-subrepresentations Vi, where 1 ≤ i ≤ m. If V ′ is an

irreducible subrepresentation of V, then V ′ ∼= Vi for some i.

Proof. Suppose v′ ∈ V ′ ⊂ V ; thus, v′ can be expressed uniquely as v1 + · · · + vm,

where vi ∈ Vi. Define a map βi : V ′ −→ Vi such that v′βi = vi. If we choose i with

vi 6= 000 for some v′ ∈ V ′, we obtain a nonzero map βi. Notice that since V ′ is an

S-subrepresentation of V, then for all s ∈ S, we have

(v′s)βi = [(v1 + · · ·+ vm)s]βi = (v1s+ · · ·+ vms)βi = vis = (v′βi)s.

Moreover, it is clear that βi is linear; thus, βi is an S-homomorphism. However, as

both V ′ and Vi are irreducible and βi 6= 0, βi is an S-isomorphism by Proposition

4.1.10(iii).

Definition 4.1.12. Let S be a finite semigroup and C be the complex field. Define a

vector space CS where the basis vectors are elements of S; that is, if S = {s1, . . . , sn},
then let

CS =
{ n∑

i=1

cisi : ci ∈ C
}

where

n∑
i=1

cisi +
n∑
i=1

c′isi =
n∑
i=1

(ci + c′i)si and c
( n∑
i=1

cisi

)
=

n∑
i=1

(cci)si,
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and dim CS = n. Define a multiplication on CS in the following manner:(∑
s∈S

css
)(∑

s∈S

ctt
)

=
∑
s,t∈S

csct(st),

where cs, ct ∈ S. Then CS is called the semigroup algebra of S over C.

Definition 4.1.13. [22] Let S be a finite regular monoid and K be a field. Then the

semigroup algebra KS is semisimple when every S-module V over K is completely

reducible.

Theorem 4.1.14 (Oganesyan [61]). Let S be a finite inverse monoid and K be a

field. Then, the semigroup algebra KS is semisimple if and only if the characteristic

of K does not divide the order of any subgroup G of S.

The proof of this assertion can be found in [12, Theorem 5.26]; where it is pointed

out that such a result was presented in [61]. Further, the above theorem is regarded

as the analogous semigroup assertion to Maschke’s theorem of finite group represen-

tations. It should be noted that it suffices to examine the semisimplicity condition,

stated in the theorem, for maximal subgroups. In other words, for all subgroups

G ≤ S,

char(K) - |G| ⇐⇒ char(K) - |He| ,

for any maximal subgroup He of S. To prove this, we will show that if char(K) - |He| ,
then char(K) - |G| by contraposition and the other direction is straightforward. Let

char(K) = r and suppose that r | |G| . Since any subgroup G is contained in a

maximal subgroup He for some idempotent e, the Lagrange theorem implies that

|G| | |He| ; thus, r | |He| . Hence, the proof of the contrapositive infers the original

statement.

For instance, in the symmetric inverse monoid In, we have seen in Section 1.2

that all maximal subgroups are isomorphic to symmetric groups Sr where 1 ≤ r ≤ n.

Thus, an In-module V is semisimple if and only if char(K) - r! for all 1 ≤ r ≤ n.

Consequently, an In-module V is semisimple if and only if char(K) - n! . Specifically,

when the field K is the complex number C, every In-module is semisimple.

In the full transformation monoid Tn, we cannot apply the theorem, as it is not

an inverse monoid. However, with the consideration of a Tn-module V illustrated in

Example 4.1.6(ii), a hyperplane space W is a simple Tn-submodule of V. Assume

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm,

where Vi are simple Tn-submodules with 1 ≤ i ≤ m. Then, by Proposition 4.1.11,

W ∼= Vi for some i. Thus, V has to be decomposable with only two simple Tn-

submodules; W with dimension n − 1 and a Vj with dimension 1. Observe that if
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n > 2, then we obtain a contradiction with the fact that there never exists a Tn-

subspace of V with dimension 1. Consequently, V can never be semisimple, regardless

of the field’s characteristic.
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4.2 The Clifford-Munn correspondence theorem

Drawing on the syntax of matrix representations and semigroup algebras, Clif-

ford [12, Chapter 5], Munn [56, Section 2] and Ponizovskĭı [65, Theorem 2.7] provided

an account of the simple modules for a finite semigroup. Notably, this description,

commonly referred to as the Clifford-Munn correspondence (CMC), is presently re-

garded as a landmark theorem for the representation of semigroups, and Munn [60]

utilised the result to account for all characters of the symmetric inverse semoigroup

In. As stated in the previous section, Munn’s research was then built on by Rhodes

and Zalcstein [72] in the following years, both of whom made striking progress in

illustrating the notion of a representation of a monoid utilising a linear theoretic

terminology.

Ganyushkin and Mazorchuk [26] utilised the CMC in 2008 to derive all simple

modules for finite transformation semigroups. In addition, these authors collabo-

rated with Steinberg [27] to publish a brief proof of the CMC, which relied on the

use of a free-standing description of the theory of simple modules over the semigroup

algebra of a finite semigroup. This research, which drew exclusively on the instru-

ments of associative algebras, was especially noteworthy because it enabled general

mathematicians to interact with the results in a way that had previously not been

easily possible.

With [18] used as a scaffolding, this section now turns to an elementary demon-

stration of this theorem. To promote clearness and straightforwardness, we separate

our analysis of the CMC into three parts: first, we discuss the reduction process

(often called the restriction process), where we examine how to determine the apex

of an In-partial permutation module; second, we investigate the induction process,

where we prove some assertions in the inverse case and give a pair of examples; fi-

nally, we present the CMC. Henceforth, S is a finite inverse monoid unless otherwise

specified.

4.2.1 The reduction process

The aim of the this subsection is to describe the technical process, which contributes

to constructing a representation of a maximal subgroup from an S-representation.

Let V be a simple S-module. Consider the poset of J -classes of S, a generic

picture is shown in Figure 4.1.

100



J

Figure 4.1: Generic picture of J -classes of a finite regular monoid S.

Fix an idempotent e belonging to a J -class J and consider the maximal subgroup

Ge with e ∈ Ge. To construct a representation of Ge, we need the following two

processes:

(a) Consider the C-subspace V e = {v · e : v ∈ V } of V.

(b) Define the action of Ge on V e in the following manner: for all g ∈ Ge and a

vector v · e ∈ V e,

(v · e) · g := v · (eg). (4.3)

Such an action leaves the vector space V e invariant for the following reason:

(v · e) · g = v · (eg)

= v · (ge) [As e is the identity of Ge]

= (vg) · e [As V is an S-module and e, g ∈ Ge ⊂ S]

∈ V e.

Hence, V e is a Ge-module. It is also crucial to point out that, up to this

point, we have no clue as to whether the produced Ge-module V e is simple

and whether it is a nonzero module or null module. This completes the steps

required in the reduction process.

Recall from Chapter 1 that if two idempotents e and f belong to the same J -

class J , then in view of Theorem 1.2.6(ii), we know that there exist a and a∗ such

that

a∗a = e, aa∗ = f, fa = ae = a, and a∗ = a∗f = ea∗. (4.4)

Moreover, Proposition 1.2.7 and its proof indicate that the maximal subgroups Ge

and Gf are isomorphic, and an isomorphism γ : Gf −→ Ge, is given by h 7→ a∗ha

for all h ∈ Gf . The following proposition states that for all idempotents e belonging

to the same J -class J , the Ge-modules V e are equivalent up to isomorphism.
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Proposition 4.2.1. For any two idempotents e, f ∈ J -class J , we have V e ∼= V f.

Proof. Define a map ϕ : V f −→ V e via (v · f)ϕ = v · (fa), where a is as in (4.4),

and

v · (fa) = v · (ae) = (v · a) · e ∈ V e.

Notice that ϕ is linear because for all v, v′ ∈ V, we have

(v · f + v′ · f)ϕ = ((v + v′) · f)ϕ [As V is an S-module and f ∈ S]

= (v + v′) · (fa)

= v · (fa) + v′ · (fa)

= (v · f)ϕ+ (v′ · f)ϕ

Similarly, (cv · f)ϕ = c(v · f)ϕ, for all c ∈ C. Let us show that the diagram below

commutes

V f V f

V e V e

(-)h

ϕ ϕ

(-)a∗ha

If v · f ∈ V f and h ∈ Gf , then

((v · f) · h)ϕ = (v · (f · h))ϕ

= (v · (h · f))ϕ [As f is the identity of Gf ]

= ((v · h) · f)ϕ

= (v · h) · fa

= (v · h) · ae

= (v · ha) · e. (4.5)

On the other hand,

((v · f)ϕ) · a∗ha = (v · fa) · a∗ha

= v · (faa∗ha)

= v · (ffha)

= v · (fha)

= v · (hfa)

= v · (hae)

= (v · ha) · e. (4.6)

Therefore, the equality of (4.5) and (4.6) implies that the above diagram is com-
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mutative. Let us construct the inverse map ψ : V e −→ V f via (v · e)ψ = v · (ea∗),
where a is as in (4.4), and

v · (ea∗) = v · (a∗f) = (v · a∗) · f ∈ V f.

We will show that ϕψ = id
V f

and ψϕ = id
V e

where id
V f

and id
V e

are the identity

maps on V f and V e respectively. For all v ∈ V, we have

(v · f)ϕψ = (v · (fa))ψ

= (v · (ae))ψ [By (4.4)]

= ((v · a) · e)ψ

= (v · a)ea∗

= v · (ae)a∗

= v · (fa)a∗ [By (4.4)]

= v · faa∗

= v · ff [As a R f ⇐⇒ aa∗ = f by Proposition 1.2.13]

= v · f.

Similarly, ψϕ = id
V e
. Hence, ϕ is an isomorphism.

Definition 4.2.2. [27] Let S be a semigroup and V be an S-module. Then, the

set

AnnS(V ) = {s ∈ S : V s = 000},

is called the annihilator of V.

Notice that for all t, t′ ∈ S and s ∈ AnnS(V ), we have

V (tst′) = V t (st′) ⊆ V (st′) = (V s) t′ ⊆ 000 t′ = 000.

Thus, tst′ ∈ AnnS(V ) and hence, AnnS(V ) is an ideal.

Proposition 4.2.3. If s and t are J -related, then V s = 000 if and only if V t = 000.

Proof. Since s J t, there are a, a′ and b, b′ such that s = ata′ and t = bsb′. Suppose

V s = 000; then,

V t = V (bsb′) = V b (sb′) ⊆ V (sb′) = (V s) b′ = 000 b′ = 000.

Similarly, we can show the other direction and then the result holds.
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Remark 4.2.4. In view of the above proposition, either the entire J -class of s

is contained in AnnS(V ) or it is completely disjoint from AnnS(V ). Thus, we can

alternatively describe AnnS(V ) to be the union of all J -classes of s where V s = 000.

Recall from Section 1.1 that J(s) = S1sS1 and if we fix a J -class J of S, then

[J ]
�

= {s ∈ S : J * J(s)} is an ideal. It is the union of all J -classes J
′′

that are

not greater than or equal to J. The definition below appears in [56, Section 2] and

plays a vital role in the representation theory of semigroups.

Definition 4.2.5 (Apex [27]). Let V be an S-module. A J -class J is said to be

the apex of V if AnnS(V ) = [J ]
�
.

The following proposition gives a vital alternative characterisation of the apex

of an S-module V that has not been proved in either [27] or [52]. We provide its

proof below.

Proposition 4.2.6. An S-module V has apex J if and only if J is the unique

minimal J -class, with respect to the order of J -classes, that does not annihilate V.

Proof. Suppose J is the apex of an S-module V. We will prove that J is the unique

minimal J -class that does not annihilate V. Let X be the set of all J -classes J̄ that

do not annihilate V ; that is, X = {J̄ : V s 6= 000 for some s ∈ J̄}. Since J /∈ [J ]
�
,

then J /∈ AnnS(V ) as J is the apex. Thus, J does not annihilate V, and hence,

J ∈ X and X 6= ∅. Let J̃ ∈ X such that J̃ 6= J. It follows that J̃ /∈ AnnS(V ). Hence,

J̃ /∈ [J ]
�
; that is, J̃ does not belong to the union of all J -classes that are not greater

than or equal to J. In other words, whenever we choose an arbitrary J̃ ∈ X where

J̃ 6= J, we obtain J̃ > J. Therefore, J is a minimal J -class with respect to J -classes

in X. The uniqueness of J remains to be shown. Suppose that J and J ′ are both

minimal J -classes within X. Since J is minimal, then it is less than or equal to all

J -classes in X. Specifically, J ′ ≥ J. Similarly, J ≥ J ′ as J ′ is minimal. Thus, both

must be equal to each other. Hence, J is the unique minimal J -class in X.

Conversely, suppose J is the unique minimal J -class that does not annihilate V.

We will show that J is the apex of V ; that is AnnS(V ) = [J ]
�
. If s ∈ AnnS(V ),

then, V s = 000. Thus, s /∈ J. In other words, s ∈ J ′ where J ′ 6= J. In view of

Remark 4.2.4, the J -class J ′ annihilates V. It follows that J ′ � J because of the

assumption on J. Hence, J ′ ∈ [J ]
�

by Proposition 1.1.21. Specifically, s ∈ [J ]
�
,

thus, AnnS(V ) ⊆ [J ]
�
. Conversely, if s ∈ [J ]

�
, then s belongs to J -class J ′ such

that J ′ � J. However, since J is the minimal J -class that does not annihilate V,

then J ′ must annihilate V. In other words, V s = 000 for s ∈ J ′; thus, s ∈ AnnS(V ).

This means that [J ]
� ⊆ AnnS(V ), thus, we obtain the equality. Hence, J is the

apex of V.

The theorem below sheds some light on the existence of apexes.
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Theorem 4.2.7. [27] Let S be a finite semigroup. Then, every simple S-module

V has an apex.

The proof of the above assertion was given independently by Munn [58] and Poni-

zovskĭı [66]; the reader is also referred to [78, Theorem 5.5 (ii)] and [27, Theorem 5]

for the most recent proofs.

With a consideration of the above assertions, we observe that if we consider a

simple S-module V and choose an idempotent representative e from each J -class of

S as well as apply the preceding two reduction steps, then we will come up with a

list of Ge-modules V e corresponding to each J -class, as shown in the figure below.

V er

apex

V es, Js ≯ J

V es, Js ≯ J

V es, Js ≯ J

V es, Js ≯ J

V es, Js ≯ J

V es, Js ≯ J

V es, Js ≯ J

V es, Js ≯ J

Figure 4.2: The apex J -class J of S-module V.

We will also notice that there exists a unique minimal J -class J (= Jr) called the

apex of V with r ∈ J that satisfies the following conditions:

• Its idempotent representative er (:= e ∈ Jr) determines a nonzero Ger -module

V er;

• For all other J -classes Js that are greater than the J -class J (with respect to

partial ordering ≤J ), their idempotent representatives es yield nonzero Ges-

modules V es. In other words,

For each es ∈ Js where Js > J, we have V es 6= 000;

• For all remaining J -classes Js that are not greater than the J -class J , their

idempotent representatives es annihilate V. In other words,

For each es ∈ Js where Js ≯ J, we have V es = 000.

Hence, what has been discussed above suggests that an idempotent representative

er belonging to the J -class J can also identify the apex of V as stated in [78, Section

5.2], and is unique up to J -equivalence. In fact, the apex J (or er ∈ J) of V plays

105



a vital role in semigroup representation theory, as it associates a simple S-module

V with a simple Ger -module V er, as will see below.

Theorem 4.2.8. Let S be a finite inverse monoid. If V is a simple S-module with

apex er ∈ J, then the Ger -module V er is simple.

Proof. The approach we adopt to show the result is by using contraposition. Suppose

the Ger -module V er is not simple (i.e. it is reducible); this means that V er contains

a nonzero proper Ger -submodule U :

000 6= U < V er.

We will now work to find a nonzero proper S-submodule of V. Consider the J -class

Jr. Let I be the set of labels for all R-classes (and L-classes) in Jr and F be a set

of representative hi for each H-class in Rer , the R-class of er :

F = {hi : i ∈ I},

where the idempotent e := er itself is a representative of the H-class in which Ge is

placed. For simplicity, set H-class H1 = Ge.

Ge

h1 = e

1

1

i

hi

h∗ii ei

j

hj Re

h∗j
ejj

· · · · · ·

...

...

. . .

. . .

Fix i ∈ I and consider a subspace of V denoted by Vi := V · (h∗ihi) = V ei, where

ei = h∗ihi is an idempotent. Observe that if i = 1, then V1 = V e. As Jr is the apex

of V and ei ∈ Jr, it follows Vi 6= 000 by Proposition 4.2.6 and Proposition 4.2.3. Now

we claim that for any i, j ∈ I with i 6= j, we have Vi
⋂∑

i 6=j Vj = 000. Since if vi ∈ Vi,
then vi = v · ei where v ∈ V. Thus,

vi · ei = (v · ei) · ei = v · e2
i = v · ei = vi. (4.7)

In other words, ei restricted to a subspace Vi ⊆ V fixes every vector in Vi; therefore,

it is the identity linear map on Vi :

ei|Vi= id on Vi.
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Observe that the intersection of subspaces Vi and
∑

i 6=j Vj of V is contained in Vi :

(Vi ∩
∑

i 6=j Vj) := Ki ⊆ Vi.

Thus, Ki is fixed by ei as well. Hence,

Ki = Kiei = (Vi ∩
∑

i 6=j Vj)ei

⊆ Viei ∩ (
∑

i 6=j Vj)ei

= V ei ∩
∑

i 6=j V ejei. (4.8)

Observe that ejei ∈ Jejei ≤ Jej ; however, by Proposition 1.2.23, ejei /∈ Jej . It follows

that the composition ejei belongs to a J -class lower than the apex Jr when i 6= j.

Therefore, (4.8) becomes

Ki ⊆ V ei ∩
∑

i 6=j V (ejei) = V ei ∩ 000 = 000, (4.9)

for all i, as Jr is the minimal J -class which does not annihilate V, and this makes

the intersection Vi∩
∑

i 6=j Vj trivial. This completes the proof of the claim. In view

of the result (4.9) and Definition 3.1.10, the sum of the subspaces Vi is direct:∑
i∈I Vi =

⊕
i∈I Vi inside V.

It must be noted that the assumption that U is a Ge-submodule of V e does not

mean that it is also invariant under the S-action; this raises a question regarding

the existence of the smallest S-subrepresentation of V which contains U. To answer

this, let Ü be the span of all possible images of all vectors in U under the S-action;

that is

Ü := SpanC{u · s : s ∈ S and u ∈ U}. (4.10)

It is clear that Ü is an S-invariant subspace of V. Moreover, U is contained in Ü . As

U ⊆ V e ⊆ V and V is an S-module, it follows that u · 1 = u for all u ∈ U. In other

words, every vector in U has the form u · 1; thus, U consists of linear combinations

of u · 1 and U ⊆ Ü . Notice that if U ′ is an S-invariant subspace of V containing U,

then Ü ⊆ U ′ as if U ′ contains any u ∈ U, then it contains u · s since it is S-invariant.

Moreover, U ′ is a subspace, so it contains the span of any of its vectors. Therefore,

U ′ contains Ü . All the above discussions confirm that Ü is the smallest S-submodule

of V containing U. However, the existence of an S-submodule of V is not sufficient

for asserting that V is reducible. There is another step to examine: Ü is not all of

V. Let us show that Ü is a proper S-submodule of V.

Observe that as U ≤ V e(= V er), it follows that for all u ∈ U, s ∈ S and v ∈ V,
we have u · s = (v · e) · s = (v · e2) · s = (v · e) · es = u · es. Now, if es /∈ Re, then
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by Proposition 1.1.20, es ∈ J ′ where J ′ < Jr. Thus, u · s = u · es = 000 as Jr is the

apex of V. However, if es ∈ Re, then by Remark 1.1.28, es = ghi where g ∈ Ge and

hi ∈ Hes. However, as hi L ei for all i, it follows that hi = hiei, and

Ge

e

1

1

i

hi
es

i ei

Re
· · ·

... . . .

u · s = u · es = u · ghi = u · g(hiei) = (u · ghi) · ei ∈ V ei = Vi.

Hence, we redraft the spanning set of Ü appearing in (4.10) in the following manner.

For all s ∈ S and u ∈ U,

Ü = SpanC{u · s : u · s ∈ Vi for some i}. (4.11)

As i varies, it follows that the spanning set elements u · s are in the direct sum of

all possible Vi for all possible i :

u · s ∈ Vi ⊂
⊕
i

Vi = V1 ⊕
⊕
i 6=1

Vi. (4.12)

Further, es ∈ Re implies that it can particularly be in any H-class in Re. If it occurs

that es ∈ H1(= Ge), then es = ge where g, e ∈ Ge. In other words, es = g as the

idempotent e is the identity of Ge. Thus,

u · s = u · es = u · g ∈ U.

Since U is a Ge-submodule of V e(= V1), we redraft (4.12) as given below:

u · s ∈ U ⊕
⊕
i 6=1

Vi.

As the u · s spans Ü , we obtain

Ü ⊆ U ⊕
⊕
i 6=1

Vi. (4.13)

However, U is a proper Ge-submodule of V1, which means

U ⊕
⊕
i 6=1

Vi ( V1 ⊕
⊕
i 6=1

Vi.
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As the direct sum V1 ⊕
⊕

i 6=1 Vi is subspace of V, (4.13) becomes

Ü ⊆ U ⊕
⊕
i 6=1

Vi ( V1 ⊕
⊕
i 6=1

Vi ⊆ V.

This proves that Ü is a proper S-submodule of V. Hence, the proof of the contraposi-

tive infers the original statement. Therefore, V e (= V er) is a simple Ger -module.

We can conclude from the above theorems and earlier reduction process that the

passage from the simple S-modules V to the simple modules V e of the maximal

subgroup representatives Ge is the reduction via the apex e ∈ J.

Definition 4.2.9 (reduced representation). Let S be a finite inverse monoid and

V be an irreducible representation of S with apex J and e ∈ J be an idempotent.

Then, the reduced Ge-representation is obtained by

V ↓ Ge = V e.

We will illustrate the reduction procedure in the following example.

Example 4.2.10. Let S be the symmetric inverse monoid In and recall from Section

1.2 that the J -classes Jl of In, where 1 ≤ l ≤ n, can be ordered totally, as shown in

Figure 4.3.

en ∈ Jn

el ∈ Jl

e2 ∈ J2

e1 ∈ J1

e0 ∈ J0

Figure 4.3: All J -classs of In.

Let V be the In-partial permutation module with basis {v1, . . . , vn}. In Example

4.1.6 (i), we showed that V is a simple In-module. Fix a Jl-class of In and choose

an idempotent representative el ∈ Jl. Consider the maximal subgroup Gel to which

the idempotent el belongs. Recall that the maximal subgroup Gel is isomorphic to

the symmetric group SX where |X| = l. Because of the isomorphism and notational

simplicity, let X = {1, . . . , l} and notice that the idempotent el will fix X point-

wise. We will apply the preceding reduction process, seeking to associate the simple

In-module V with the corresponding module of a maximal subgroup which turns

out to be simple, as illustrated below.
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• Consider the C-vector space Vel = {v · el : v ∈ V }. In view of the In-action

presented in the formula (4.1), a basis of Vel is the set {v1, v2, . . . , vl}, and

hence dim(Vel) = l.

• Such a vector space Vel with the action defined in (4.3) yields a Gel-module

Vel . Since Gel
∼= SX , we have that Vel is isomorphic to the permutation module

of SX ; this is not simple, as stated in Example 3.1.7.

Notice that considering an idempotent representative el for all J -classes Jl of In

where 0 ≤ l ≤ n and applying the above two steps result in a chain of Gel-modules

Vel corresponding to each Jl-class, as appearing in Figure 4.4.

Jn V en with dim = n

Jl V el with dim = l

J2 V e2 with dim = 2

J1 V e1 with dim = 1

J0 V e0 with dim = 0

Figure 4.4: All Gei modules Vei corresponding to J -class Jl.

Notice that all the following permutation modules V e2, V e3, . . . , V en of the max-

imal subgroups Ge2 , Ge3 , . . . , Gen are neither null nor simple. However, V e1 is the

nonzero simple module of Ge1 as it is one-dimensional, and Ve0 is the null module.

Thus, it is clear that the J1-class is the unique minimal J -class that does not an-

nihilate V. Therefore, using Proposition 4.2.6, the J1-class is the apex of the partial

permutation module V, as illustrated in Figure 4.5.

J0 V e0 = 0

J1 V e1 6= 0 and simpleApex −→

J2 V e2 6= 0

Jl V el 6= 0

Jn V en 6= 0

Figure 4.5: The apex of the In-module V.

Hence, the simple In-partial permutation module V with apex J1 is affiliated with

the simple module V ↓ Ge1(= Ve1) of the maximal subgroup Ge1 .
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4.2.2 The induction process

The aim of this subsection is to clarify the technical process that contributes to con-

structing a simple S-module out of a simple module of a maximal subgroup G. This

represents an important process, as most of the results of the remaining chapters

rely on this subsection.

Let S be a finite inverse monoid, and consider the poset of J -classes of S. Fix

an idempotent e ∈ J and consider Re, the R-class of e to which the idempotent e

and the maximal subgroup Ge belong. To construct an irreducible representation of

S, we follow the process illustrated below.

(a) Consider a simple module U of the maximal subgroup Ge.

(b) Let I index the H-classes in Re and A be a set of representatives ai of each

H-class of the R-class of e :

A = {ai : i ∈ I},

where the idempotent e itself is a representative of the H-class in which Ge is

placed. Note that each H-class has precisely one representative ai.

Ge=He

. . .
ai

Hi

e
Re

(c) Consider a copy of a simple Ge-module U for each H-class as follows: for

each i ∈ I, let Ui be a copy of U corresponding to an H-class where ai is its

representative. Such a copy of U can be constructed in the following manner:

Ui = {ui := u⊗ ai : u ∈ U and ai ∈ A}. (4.14)

In other words, the elements of such a copy Ui are of the form u ⊗ ai where

ai is fixed and u ∈ U varies. Note that each copy Ui carries a vector space

structure via

ui + u′i = (u⊗ ai) + (u′ ⊗ ai) = (u+ u′)⊗ ai
cui = c(u⊗ ai) = (cu)⊗ ai,

where u, u′ ∈ U and c ∈ C. Moreover, dim Ui =dim U. The notation − ⊗ ai
is only a tool to indicate in which specific copy of U a vector lies, and serves

no purpose apart from that.
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(d) Consider all the copies Ui and define the following vector space:

M =
⊕
i∈I

Ui,

where a typical element of M is a formal sum
∑

i∈I ui with ui ∈ Ui. We

occasionally denote an element of M by m =
∑

i∈I ui. Observe that

dim
⊕
i∈I
Ui =

∑
i∈I dim Ui =

∑
i∈I dim U = |I| · dim U.

(e) For all b ∈ S and m ∈M, we let S act on each component u⊗ai of a vector m

in the following manner. If ai · b belongs to the R-class of e, then it is worth

identifying to which H-class of Re the element ai · b belongs. Let ai · b ∈ Hj

and observe that by Remark 1.1.28, there exists a unique element g ∈ Ge such

that ai · b = g · aj with aj ∈ A.
Ge=He

. . .
ai

Hi Hj

g ai·baj
Re

Hence, we define

(u⊗ ai) · b =

(u · g)⊗ aj, if ai · b ∈ Re and ai · b = g · aj,with aj ∈ A,

0 otherwise.
(4.15)

Set U ↑ S := M and observe that U ↑ S is an S-module induced by a simple

Ge-module U. This completes the steps required for the induction process.

The theorem below shows the irreducibility of the S-module U ↑ S.

Theorem 4.2.11. Let S be a finite inverse monoid and U be a simple Ge-module.

Then, U ↑ S is simple.

Proof. We will show the result by choosing any nonzero vector m ∈ U ↑ S and

proving that any submodule of U ↑ S containing m must be U ↑ S. Let U be a simple

Ge-module and fix an arbitrary nonzero vector m ∈ U ↑ S so that m =
∑

i∈I ciui,

with ci ∈ C and 000 6= ui ∈ Ui for all i ∈ I. Thus, m 6= 000 if a scalar cj 6= 0 exists

with j ∈ I. Let Q be the C-span of all the images of the fixed vector m under the

elements of S; that is,

Q = SpanC{ m · s : s ∈ S }.

Observe that Q is an S-submodule of U ↑ S as S permutes the spanning set elements

among themselves. As m · 1 = m, it follows that m ∈ Q. For all i ∈ I, we have

ai · ei = ai, (4.16)
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where ei is the idempotent belonging to Ri ∩ Li, as shown in Figure 4.6. For

simplicity, we have re-ordered the J -class so that if i = 1, then e1 = e, U1 = U and

R1 ∩ L1 = Ge, the maximal subgroup.

Ge

e

1

1

Li

ai

Ri ei

Re· · ·

... . . .

Figure 4.6: The square eggbox of the J -class of e.

Now, we claim that for all i ∈ I, ui · ei = ui. Since ui ∈ Ui, it has the form

ui = u⊗ ai with u ∈ U. This means that ui · ei = (u⊗ ai) · ei, but ai · ei = ai = e · ai,
as ai and e are R-related. Therefore, using the S-action that appears in (4.15), we

obtain

ui · ei = (u⊗ ai) · ei = (u · e)⊗ ai = u⊗ ai = ui

for all i ∈ I. This completes the proof of the claim.

Observe that if i 6= j with i, j ∈ I, then by Proposition 1.2.23, the composition eiej

does not belong to the J -class Jei(= Je); in particular, eiej /∈ Re. Hence,

m · ej =
(∑

i∈I

ciui

)
· ej

=
∑
i∈I

ci ui · ej

=
∑
i∈I

ci (ui · ei) · ej [As proved in the claim]

=
∑
i∈I

ci ui · (eiej). (4.17)

Notice that J(aieiej) ≤ Jeiej ≤ Jei(= Je), but Jeiej 6= Je by Proposition 1.2.23. It

follows that Jaieiej < Je; particularly, aieiej /∈ Je. Hence, aieiej /∈ Re. Now, let i

run through I and apply the S-action presented in (4.15). Then, the equality (4.17)

becomes

m · ej = cj uj · e2
j = cj uj · ej = cj uj 6= 000. (4.18)

As m · ej ∈ Q and cj 6= 0, it follows that uj ∈ Q. Moreover, as e R aj, we have

ee∗ = aja
∗
j ; that is, e = aja

∗
j . Since uj ∈ Q and Q is an S-submodule, we obtain,

uj · a∗j = (u⊗ aj) · a∗j
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= (u · e)⊗ e [As aja
∗
j = e = e · e, then apply the action in (4.15)]

= u⊗ e [As u ∈ U a Ge-module]

= u. [As u⊗ e ∈ U ]

Thus, u ∈ Q with u 6= 000 as uj 6= 000, and consequently, u ∈ U ∩ Q. Using the above

results, let us now verify that Q = U ↑ S. Recall that Q is an S-submodule of U ↑ S;

thus, it is a subspace

Q ≤ U ↑ S =
⊕
i∈I

Ui,

Moreover, U (= U1) is a subspace of U ↑ S, which implies that U ∩ Q is also a

subspace. Since Q is an S-module and Ge ⊆ S, it follows that Q×Ge ⊆ Q; thus, Q

can also be viewed as a Ge-module. As U is a Ge-module, it follows that U ∩Q is

a Ge-submodule of U containing the nonzero vector u. However, U is simple, which

means U ∩ Q = U ; hence, U ⊆ Q. In other words, the first copy of U(= U1) is

contained in Q. We claim that all other copies Ui of U (i 6= 1) are also contained in

Q. To see this, observe that for all i ∈ I, we have Uai = Ui, as for u ∈ U,

u · ai = (u⊗ e) · ai [ As U is a copy of itself ]

= (u · e)⊗ ai [ As e · ai = ai ∈ Re then use (4.15)]

= u⊗ ai.

As Q is an S-module, it follows that Ui = Uai ⊂ Q for any i ∈ I.

In view of the above result and the fact that Q is a submodule, we obtain
⊕
i∈I
Ui ⊂ Q;

that is, U ↑ S ⊂ Q. Thus, U ↑ S = Q. If W is a nonzero S-submodule of U ↑ S
containing m, then W contains any vector m · s ∈ W with s ∈ S. It follows that the

span of all m · s also belongs to W as W is a subspace.

SpanC{ m · s : s ∈ S } ⊆ W.

This implies that Q = SpanC{ m · s : s ∈ S } ⊆ W ; however, as U ↑ S = Q, it

follows that U ↑ S ⊆ W. We obtained equality, which makes the S-module U ↑ S
simple.

The following assertion was proved in [26, Proposition 11.2.1] and states that the

construction of U ↑ S does not rely on the choice of the set of representatives A.

Proposition 4.2.12. Let A and A′ be two distinct sets of representatives of H-

classes in Re. Then, the induced S-module U ↑ S arising from A is isomorphic to

the induced S-module U ↑ S arising from A′.
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Proposition 4.2.13. Let e and f be two idempotents belonging to the same J -class.

Then, the S-module U ↑ S obtained by inducing a Ge-module U is isomorphic to the

S-module U ′ ↑ S obtained by inducing a Gf -module U ′.

The reader can consult [26, Proposition 11.2.2] for proof of the proposition.

Definition 4.2.14 (induced representation). Let S be a finite inverse monoid,

U be an irreducible representation of the maximal subgroup Ge of S, and Ui be the

copies of U given by (4.14). Then, the S-representation U ↑ S obtained by inducing

U is given by

U ↑ S =
⊕
i∈I

Ui,

and S acts on it, as presented in (4.15).

We illustrate the induction procedure in the example below.

Example 4.2.15. Let S = In and J1 be the J -class consisting of all partial bijec-

tions between subsets of [n] = {1, . . . , n} with size 1; that is,

J1 = {d ∈ In : d : X −→ Y with X, Y ⊂ [n] and |X| = |Y | = 1}.

Fix an idempotent e : {j} −→ {j} ∈ J1 where j ∈ [n], and consider Re, the R-class

of e to which the idempotent e and Ge maximal subgroup belong. It is obvious that

the maximal subgroup Ge is isomorphic to the trivial symmetric group S1. Indeed,

the induction process requires the steps outlined below.

(a) Consider a module U of a trivial group Ge and notice that U is a 1-dimensional

module with basis {u} where u · e = u. Hence, U is simple.

(b) Let A = {ak : {j} −→ {k}, k ∈ [n]} be the set of representatives ak of each

H-class in Re, where the idempotent e is the representative of He. Notice

that each H-class in Re has only one element; thus, there is no choice for the

representatives ak. Moreover, such a representative ak has the fixed domain

{j} and the image {k} varies with k:

{j}

. . .
ak:{j}−→{k}

{k}

e:{j}−→{j}

Ge

{j} Re

(c) Consider a copy Uk of U for each H-class as given below:

Uk = {u⊗ ak : u ∈ U and ak ∈ A}.

Observe that dim Uk =dim U = 1 as Uk ∼= U.
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(d) Consider all the copies Uk and the vector space
⊕
ak∈A

Uk. Observe that

dim
⊕
ak∈A

Uk =
∑

ak∈A dim Uk =
∑

ak∈A dim U = 1 + · · ·+ 1︸ ︷︷ ︸
(n1)

= n (4.19)

(e) To determine the In-action, observe that for all b ∈ In, we have ak · b ∈ Re if

and only if dom(ak · b) = dom(e) = {j}. This indeed occurs when k belongs

to the domain of b, as discussed in Remark 1.2.21. In other words,

ak · b ∈ Re if and only if k ∈ dom(b).

Thus, the partial map ak · b can be described in the following manner:

ak · b =

akb : {j} −→ {kb}, if k ∈ dom(b),

0 otherwise.

Further, in view of Remark 1.1.28, we know that there is a unique element

e ∈ Ge such that ak · b = akb = e · akb.

{j} {kb}

. . .
ak:{j}−→{k}

{k}

e:{j}−→{j} a
kb

:{j}→{kb}

Ge

{j} Re

Hence, the In-action can be written as

(u⊗ ak) · b =

(u · e)⊗ akb, if ak · b ∈ Re and ak · b = e · akb,with ak ∈ A.

0 otherwise.

However, as u · e = u; thus, the action of In becomes

(u⊗ ak) · b =

u⊗ akb, if ak · b ∈ Re and ak · b = e · akb,with ak ∈ A.

0 otherwise.

Observe that the above formula is precisely the partial permutation action on the

n-dimensional In-module
⊕
ak∈A

Uk with basis {u⊗ak : ak ∈ A}, and its basis elements

u⊗ak are partially permuted by elements b ∈ In. Notice that we commenced with a

simple module U for the trivial group Ge and by inducing it up into In, we obtained

the simple In-module U ↑ In =
⊕
ak∈A

Uk.

4.2.3 The Clifford-Munn correspondence

In this subsection, we will illustrate the Clifford-Munn correspondence (CMC) that

states that if S is a finite regular monoid, then the irreducible representations are
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in one-to-one correspondence with the irreducible representations of the subgroups

G1, . . . , Gn, which represent a set of maximal subgroup representatives of the J -

classes of the semigroup S. Such a fundamental assertion was developed by Clifford

in his earlier results presented in [11] and followed by Munn in his series of pa-

pers [58, 59] and [56, Section 2], as well as Ponizovskĭı [65, Theorem 2.7]. In fact,

the semigroup S does not need to be inverse, although all our examples in the

upcoming chapters are, and this greatly eases the acquisition of results since the

annihilator turns to be trivial (see Proposition 4.2.22 and Theorem 4.2.16).

To state CMC, let Irr(S) be the set of isomorphism classes of simple S-modules

and Irre(S) consist of all simple S-modules that have the apex e;

Irre(S) = {V ∈ Irr(S) : V has apex J with e ∈ J}.

Moreover, let D = {e1, . . . , es} be a complete list of idempotent representatives

for the J -classes of S. Then, for each representative idempotent e ∈ D, we have the

irreducible Ge-modules of the maximal subgroup Ge. Let Irr(Ge) be the set of all

simple Ge-modules. Recall from Section 4.2.2 that if U is a simple Ge-module, then

we define a vector space

M =
⊕
i∈I

Ui,

where Ui is a copy of U constructed as in (4.14). Let Ann
Le

(M) be the set of the

vectors in M that are annihilated by all elements of the L-class Le:

Ann
Le

(M) = { m ∈ M : m · b = 000 for all b ∈ Le}.

Theorem 4.2.16 (Clifford-Munn correspondence). Let S be a finite (regular)

monoid. Then, for all V ∈ Irre(S), and U ∈ Irr(Ge) :

(a) If V is a simple S-module with apex e, then V ↓ Ge = V e is a simple Ge-

module.

(b) If U is a simple Ge-module, then

Ann
Le

(M) = { m ∈ M : m · b = 000 for all b ∈ Le}

is the unique maximal S-submodule of M and

U ↑ S = M/Ann
Le

(M)

is the unique simple S-module with apex e such that (U ↑ S) · e = U.

(c) There is a bijection between isomorphism classes Irre(S) of simple S-modules
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with apex e and isomorphism classes Irr(Ge) of simple Ge-modules; that is,

for all V ∈ Irre(S), and U ∈ Irr(Ge),

Irre(S)
Φ−−−−−−→

bijection
Irr(Ge), Irr(Ge)

Ψ−−−−−−→
bijection

Irre(S),

V 7−−−−−→ V ↓ Ge U 7−−−−−→ U ↑ S

where Φ and Ψ are mutual inverses; hence, they are bijections between Irre(S)

and Irr(Ge).

The proof of the theorem can be found in [72, Section 2] as well as [12, Theorem

5.33], and the reader can also consult [78, Theorem 5.5] and [27, Theorem 7] for the

most recent proofs.

Below is an illustration of the above theorem with a few schematic pictures.

Suppose that S is a finite regular monoid with J -classes visualised as follows:

Jr

Jr+1

Fig A. Poset of J -classes

. . .

Jr

Jr+1

...

. . .

...

Fig B. Partition of S into J -classes

Consider the set Irr(S) of isomorphism classes of simple S-modules. We will present

such a set as in the box below.

Irr(S) = All simple S-modules

By Theorem 4.2.7, we know that every simple S-module in Irr(S) has an apex, and

such an apex er (or Jr) is unique (up to equivalence) by Proposition 4.2.6. Let us

now split up the set Irr(S) into classes such that each class Irrer(S) consists of all
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simple S-modules that have apex er :

Irrer(S) = {simple S-modules with apex er}.

We rearrange such classes in a manner that each class corresponds to the placement

of their apexes in the poset J -classes as follows:

Jr

Jr+1Jr+2

Jr+3

Irre
r+1

(S)

Irre
r+2

(S)

Irre
r+3

(S)

Irrer (S)

Observe that the uniqueness of an apex for each simple S-module yields the Irrer (S)

partitions Irr(S). In other words, the set Irr(S) can be thought of as the disjoint

union of all blocks Irre(S) where e is the idempotent representatives for the J -class

of S :

Irr(S) =
⋃
e∈D

Irre(S), (4.20)

where D = {e : e is an idempotent representative for each J -class}.

Observe that the equation (4.20) gives us a clue that the key to understanding

all the simple modules Irr(S) of a finite monoid S is to understand each individ-

ual component Irre(S) of the union. Moreover, Theorem 4.2.16 established the

correspondence between the sets Irre(S) of all simple modules of a finite (regular)

monoid S with apex e and the sets Irr(Ge) of all simple modules of the maximal

subgroups Ge within S :

Irre(S) ←→ Irr(Ge). (4.21)

Hence, we conclude the result below.

Corollary 4.2.17. [78] Let S be a finite (regular) monoid. Let D = {e1, . . . , es} be

a complete list of idempotent representatives for the J -classes of S. Then, there is

a one-to-one correspondence between Irr(S) and the disjoint union
⋃s
r=1 Irr(Ger).

In view of the finiteness of S and disjointness of the union, we deduce the corollary

below.
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Corollary 4.2.18. The number of simple S-modules is

|Irr(S)| =
s∑
r=1

|Irr(Ger)| .

The conclusion that can be drawn from the above discussion is that the irre-

ducible representations of a finite regular monoid S are parametrised by the irre-

ducible representations of the maximal subgroups. Thus, to construct all irreducible

representations of S, it suffices to consider all irreducible representations of the max-

imal subgroups representative Ger of each J -class Jr and apply the induction process

to each individual one.

Stemming from Theorem 4.2.16, we observe that the S-module M presented in

the preceding section is factored out by the annihilator Ann
Le

(M). This implies

that when S is a finite (regular) monoid, we require an extra step in the induction

process to obtain the induced simple S-module U ↑ S. We will now shed light on

some preliminary results that contribute to proving that such an additional step is

unnecessary if S is a finite inverse monoid.

Recall from step (b) of the induction process illustrated in Section 4.2.2 that

A = {ai : i ∈ I} is the set of transversals ai for all H-classes in the R-class Re.

Observation 4.2.19. Let S be an inverse monoid and fix a representative a
k
∈ Re

for some k ∈ I; then, we have a
k
a∗
k

= ee∗ = e by Proposition 1.2.13. Hence,

a∗
k

= a∗
k
a
k
a∗
k

= a∗
k
e. (4.22)

This implies that a∗
k

and e are L-related; that is, a∗
k
∈ Le.

Proposition 4.2.20. Let S be an inverse monoid and a
i
, a

k
∈ A be representatives

of two H-classes in Re, and a∗
k

be the inverse of a
k
. Then,

a
i
a∗
k
∈ Re if and only if a

i
= a

k
.

Proof. If a
i

= a
k
, then a

i
a∗
k

= a
i
a∗
i
. Since a

i
∈ Re, then by Proposition 1.2.13,

a
i
a∗
i

= e. Thus, a
i
a∗
k
∈ Re. Conversely, suppose that a

i
a∗
k
∈ Re, and let us show that

a
i

= a
k
. In other words, we aim to show that a

i
and a

k
represent the same H-class.

As a
i

and a
k

are R-related by assumption, it suffices to show that a
i

and a
k

are

L-related. Observe that

a
i

= ea
i

= (a
i
a∗
k
a
k
a∗
i
)a

i
[By a

i
a∗
k
∈ Re and Proposition 1.2.13]

= a
i
(a∗

k
a
k
)(a∗

i
a
i
)

= a
i
(a∗

i
a
i
)(a∗

k
a
k
) [As idempotents commutes]

= (a
i
a∗
k
)a

k
.
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Thus, a
i

= ra
k

where r = a
i
a∗
k
. Similarly, by interchanging a

i
and a

k
, we obtain

a
k

= sa
i

where s = a
k
a∗
i
. Consequently, a

i
L a

k
, and then both a

i
and a

k
are

H-related. As there is only one representative for each H-class in Re, we have

a
i

= a
k
.

Corollary 4.2.21. a
i
a∗
k
/∈ Re if and only if a

i
6= a

k
.

For notational simplicity, we redraft the elements of M as
∑

i∈I wi ⊗ ai where

each term belongs to a copy Ui. The assertion below suggests that for a finite inverse

monoid, the annihilator Ann
Le

(M) of M , presented in the above theorem, is trivial.

Proposition 4.2.22. Let S be a finite inverse monoid. Then, Ann
Le

(M) = {000}.

Proof. Let m ∈ Ann
Le

(M); that is, m =
∑

i∈I wi ⊗ ai ∈ M and for all b ∈ Le, we

have m · b = 000. For any representative a
k
∈ Re, we have a∗

k
∈ Le. Hence,

000 = m · a∗
k

=
(∑

i∈I

wi ⊗ ai
)
· a∗

k

=
∑
i∈I

(wi ⊗ ai) · a∗k

= (wk ⊗ ak) · a∗k [By Proposition 4.2.20, and formula (4.15)]

= (wk · e)⊗ e [By formula (4.15) and a
k
a∗
k

= e = e · e]

= wk ⊗ e. [As wk ∈ U (Ge-module) and e is the identity of Ge]

This means that the vector wk⊗e belonging to copy U, corresponding to the H-class

where e is its representative, is a zero vector. However, this occurs precisely when

wk = 000 in the Ge-module U. It follows that the corresponding vector wk ⊗ ak of wk

in the k-th copy Uk of U is also a zero vector. Now, let k vary; we obtain m = 000.

Hence, the annihilator Ann
Le

(M) is trivial.
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Chapter 5

Representation theory of type

An−1 Boolean reflection monoids

5.1 Specht modules for the symmetric inverse monoids

Grood’s approach

Two pieces of information, namely, the Boolean system B (a collection of well be-

haved domain subspaces) and a reflection group W (An−1), comprise the type An−1

Boolean monoid. This monoid is also known as the symmetric inverse monoid In as

stated in Section 2.2. Alternatively, and according to Solomon [76], the symmetric

inverse monoid In also has a matrix version called the rook monoid Rn. In fact, Rn

is the submonoid of the monoid of all the n× n matrices over N under the multipli-

cation consisting of all matrices where we have at most one entry of 1 in any row or

column and where all the other entries are 0.
Below is an illustration of a partial map α from n× n matrix (aij) ∈ Rn. Define

a map as follows:

(j)α =

i, if there is a row i where its entry aij = 1

0, otherwise.

The well-definedness of a such map is justified by the definition of Rn.


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 ∼=
1 2 3 4 5

1 2 3 4 5

Figure 5.1: A 5× 5 matrix corresponds to a map α.
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The complex monoid algebra CRn was revealed to be semisimple by Munn [58,60],

who determined the irreducible representations of Rn and illustrated that these ir-

reducibles are parameterised by partitions of nonnegative integers r less than or

equal to n. Grood, in [33], constructed a Specht module for the rook monoid Rn

and, as an extension of her work, Solomon generated a range of character formulas

in conjunction with several aesthetically pleasing combinatorics.

This section will offer an insight into Grood’s approach of calculating such Specht

modules as well as some examples to clarify the assertions. We redrafted the proof

of Munn’s theorem [60, Theorem 1.1] in relation to the decomposition of any partial

permutation as a disjoint product of links and cycles to our benefit. The reader can

consult [33] for more details.

Recall that a partition of a positive integer, r ∈ Z+, where 0 ≤ r ≤ n, is a tuple

λ = (λ1, . . . , λq) such that

(i) λi ∈ Z+ for all 1 ≤ i ≤ q.

(ii) λ1 ≥ λ2 ≥ . . . ≥ λq ≥ 0.

(iii) λ1 + λ2 + . . . + λq = r.

Similar to the statement from Section 3.2 that each partition of n corresponds

to a Young diagram, the partitions of r where 0 ≤ r ≤ n can also be associated with

a Young diagram.

Definition 5.1.1. Given a partition λ of r where 0 ≤ r ≤ n, define a λnr -tableau to

be a Young diagram of shape λ filled with r numbers from the set [n] = {1, 2, . . . , n}
such that different boxes contain distinct numbers.

Note that if λ ` r where 0 ≤ r ≤ n, then there are n(n− 1)(n− 2) · · · (n− r+ 1)
distinct λnr -tableaux for each λ. However,

n(n− 1)(n− 2) · · · (n− r + 1) =
n(n− 1) · · · (n− r + 1)(n− r)!

(n− r)!

=
n(n− 1) · · · (n− r + 1)(n− r)(n− r − 1) · · · 3 · 2 · 1

(n− r)!

=
n!

(n− r)!
.

Hence, the number of distinct λnr -tableaux for each λ is also equal to n!
(n−r)! .

Example 5.1.2. Let r = 3 and n = 4 and fix λ = (2, 1) ` 3. There are 24 distinct

λ4
3
-tableaux illustrated in set T λr , as follows:

T λr =
{

3 4
1

, 4 3
1

, 2 3
1

, 3 2
1

, 2 4
1

, 4 2
1

, 1 3
2

, 3 1
2

, 1 4
2

, 4 1
2

, 3 4
2

, 4 3
2

,

1 2
3

, 2 1
3

, 1 4
3

, 4 1
3

, 2 4
3

, 4 2
3

, 1 2
4

, 2 1
4

, 1 3
4

, 3 1
4

, 2 3
4

, 3 2
4

}
.
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Let tij be the entry in box Bij of λnr -tableau t,

. . .

tij . . .

...
...

...

Now define the action of any partial permutation b ∈ In on λnr -tableau t, as follows:

(tij) . π =

(tπ)ij, if tij ∈ dom(π) for all i, j

0, otherwise.
(5.1)

Definition 5.1.3. Given λ ` r, where 0 ≤ r ≤ n, define a λnr -tabloid {t} to be the

set of all λnr -tableaux that are row-equivalent to t. In other words, we do not care

about the order of elements in each row in t.

Definition 5.1.4. Given λ ` r where 0 ≤ r ≤ n, define Mλ as the complex vector

space whose basis is the set of all distinct λnr -tabloids {t}.

Note that the action of In on the basis element λnr -tabloid {t} will be defined by

{t} . b =

{tb}, if all entries of t belong to dom(b)

0, otherwise.
(5.2)

Extending this action to vector space Mλ implies that Mλ is an In- module.

Example 5.1.5. Considering Example 5.1.2 yields that the complex vector space

Mλ is determined as follows:

Mλ = C-
[{

3 4
1

}
,
{

2 3
1

}
,
{

2 4
1

}
,
{

1 3
2

}
,
{

1 4
2

}
,
{

3 4
2

}
,{

1 2
3

}
,
{

1 4
3

}
,
{

2 4
3

}
,
{

1 2
4

}
,
{

1 3
4

}
,
{

2 3
4

}]
.

Definition 5.1.6. Fix λ ` r where 0 ≤ r ≤ n, and a λnr -tableau t. Let Cj be the

numbers in the jth column of t and let X = ∪Cj. It follows that |X| = r. Let us

now define the group

Ct = SC1 × SC2 × . . .× SCl .

Notice that Ct is a subgroup within the J-class labelled by r. More precisely, it is a

subgroup of SX ⊆ In. Also note that every element in Ct preserves the columns of t.

Observe that for all σ ∈ Ct, we can define sgn(σ) as the sign function of the

symmetric group SX .
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Definition 5.1.7. Let λ ` r, where 0 ≤ r ≤ n. For each λnr -tableau, define the

element of Mλ as follows:

et =
∑
σ∈Ct

sgn(σ) {t}σ.

Notice that in this definition, whenever we apply σ ∈ Ct to a λnr -tabloid {t},
the product will never be zero because σ is a permutation of the numbers in t. This

means that every entry in t belongs to the domain of σ.

Definition 5.1.8. For any λ ` r where 0 ≤ r ≤ n, define Rλ to be the subspace of

Mλ spanned by elements et, where t runs through all the λnr -tableaux; that is,

Rλ = {c1et1 + . . . + cieti : ci ∈ C, ti is a λnr -tableau for all i}.

Example 5.1.9.

Consider Example 5.1.2 and fix a λ4
3
-tableau t = 3 4

1
. Then, the column group Ct is

obtained as follows:

Ct = {id = (1)(3)(4), (13)}.

Hence,

e
3 4
1

=
∑
σ∈C(t)

sgn(σ)
{

3 4
1

}
σ

= +
{

3 4
1

}
id−

{
3 4
1

}
(13)

=
{

3 4
1

}
−
{

1 4
3

}
∈Mλ.

Observe that the permutation (13)(2)(4) ∈ S4 ⊂ I4 also preserves the columns of t

but does not belong to the column group Ct. Now, by computing all et where t ∈ T λr ,
as illustrated in Example 5.1.2, we acquire a C-subspace Rλ of Mλ as follows:

Rλ = SpanC

{
e

3 4
1

, e
4 3
1

, e
2 4
1

, e
4 2
1

, e
2 3
1

, e
3 2
1

, e
1 3
2

, e
3 1
2

, e
1 4
2

, e
4 1
2

, e
3 4
2

, e
4 3
2

e
1 2
3

, e
2 1
3

, e
1 4
3

, e
4 1
3

, e
2 4
3

, e
4 2
3

, e
1 2
4

, e
2 1
4

, e
1 3
4

, e
3 1
4

, e
2 3
4

, e
3 2
4

}
.

Notice that since

e
k m
l

= −e
l m
k

,

where k, l,m ∈ {1, 2, 3, 4}, the spanning set {et : t ∈ T λr } is not a basis for Rλ

because it is not linearly independent.

125



Munn [60, Theorem 1.1] has developed a simple technique for the decomposition

of a partial permutation. We will rephrase it here in a manner which is suitable

for our purposes. Let π ∈ In and π : X
bij−−→ Y, where X = {x1, . . . , xk} and

Y = {y1, . . . , yk} are subsets of [n].

For notational simplicity, we define b as (xr)π = yr for all 1 ≤ r ≤ k.

1

1

x1 x2

y1 y2

xk

yk

n

n

π =

Now consider the following cases:

Case 1. If X = Y, then b is a permutation in SX , and we know by Proposition ??

that it can be expressed uniquely as a disjoint product of cycles.

Case 2. If X 6= Y and X ∩ Y 6= ∅, then choose any xr ∈ X \ X ∩ Y and consider

its image under π. Now, (xr)π belongs to either X ∩ Y or Y \ X ∩ Y. Notice that

(xr)π can never be in X \X ∩ Y, as Y is the set of images of π. Thus, we have two

sub-cases.

(I) If (xr)π ∈ X ∩ Y ; thus (xr)π ∈ X. Let (xr)π := xr+1 and keep taking the

images under π as long as the images remain in X ∩Y. However, as X ∩Y is a finite

subset of [n] containing distinct elements and π is a bijection, we will eventually

obtain an element ys ∈ Y \X ∩ Y. Hence, we produce a sequence of numbers from

[n] of which the first is xr ∈ X \X ∩ Y and the last is y
l
∈ Y \X ∩ Y :

xr
π−−→ xr+1

π−−→ xr+2
π−−→ · · · π−−→ xs

π−−→ y
l
. (5.3)

Let us denote such a sequence by [xr, xr+1, . . . , xs, yl ] and call it a link.

(II) If (xr)b ∈ Y \X ∩ Y, then we obtain a sequence [xr, yr] of length two, where

yr = (xr)π.

Observe that if set X \X ∩Y contains more than one element, then we can produce

another link. We will repeat the entire procedure of producing links until set X \
X ∩ Y is exhausted. If there exist some xr ∈ X ∩ Y that are not contained in any

produced link, which means their images under π never belonged to Y \X ∩Y, then

their images must belong to X ∩Y. Such numbers, which remain at the intersection

X ∩ Y after considering their images and are not contained in the produced links,

will be permuted among themselves. Thus, they form permutations which can also

be expressed as disjoint products of cycles. The nature of the preceding process

ensures that the above decomposition is unique.
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The following assertion recapitulates the above observations:

Theorem 5.1.10. [60] Every partial permutation of a finite set can be expressed

uniquely as a product of links and disjoint cycles.

Example 5.1.11. Let π ∈ I9 such that π : X
bij−−→ Y where X = {1, 2, 4, 5, 6, 7, 9}

and Y = {2, 3, 4, 5, 6, 7, 9} and π is defined as follows:

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

π =

Notice that X∩Y = {2, 4, 5, 6, 7, 9} and X \X∩Y = {1} as well as Y \X∩Y = {3}.
Hence, π can be decomposed into a link and two cycles, as follows:

π = [1, 2, 3](4, 5, 6)(7, 9).

Importantly, the number 8 belongs neither to X \X ∩ Y nor to Y \X ∩ Y ; hence,

we may omit it or write it as a link of length one [8]. Thus, π may also be expressed

as

π = [1, 2, 3](4, 5, 6)(7, 9)[8].

Definition 5.1.12. Let π ∈ In. Then, define π
∧

as an element of the symmetric

group Sn obtained by changing each link appearing in π to the coressponding cycle.

Notice that if π ∈ Sn, then π = π
∧

. For instance, if π = [1, 2, 3](4, 5, 6)(7, 9)[8],

then π
∧

= (1, 2, 3)(4, 5, 6)(7, 9)(8) ∈ S9.

The following propositions play a role in making the vector space Rλ an In-

module.

Proposition 5.1.13. Let π ∈ In and t be a λnr -tableau. If tπ 6= 0, then tπ = tπ
∧

.

Proposition 5.1.14. Suppose π ∈ In, and t be a λnr -tableau. If tπ = 0, then etπ = 0.

Otherwise, etπ = e
tπ
∧.

The above proposition ensures the following result:

Corollary 5.1.15. Let λ ` r, where 0 ≤ r ≤ n. The vector space Rλ is an In-

module.

The following assertion indicates that the In-module Rλ is irreducible, and it

gives us a complete list of In-irreducible modules.
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Theorem 5.1.16. Let λ ` r where 0 ≤ r ≤ n. Then, Rλ is an irreducible In-

module and, whenever any two In-modules Rλ and Rµ are isomorphic, their parti-

tions λ and µ must be equal.

Definition 5.1.17. A λnr -tableau is standard if and only if the entries in each row

and column are increasing.

In the following theorem, Grood determines the basis vectors for an In-module

Rλ.

Theorem 5.1.18. Let λ ` r where 0 ≤ r ≤ n. Then the following set forms a basis

for Rλ :

{et : t runs through all λnr -standard tableaux},

and dim Rλ =
(
n
r

)
·fλ where fλ is the number of λnr -standard tableaux.

In Example 5.1.9, we computed a Specht module Rλ for In and verified that the

spanning set is not a basis for Rλ. However, by considering all λnr -standard tableaux{
1 3
2

, 1 2
3

, 1 4
2

, 1 2
4

, 1 4
3

, 1 3
4

, 2 4
3

, 2 3
4

}
,

we rewrite the Specht module Rλ for In in terms of its basis elements as follows:

Rλ = C-

[
e

1 3
2

, e
1 2
3

, e
1 4
2

, e
1 2
4

, e
1 4
3

, e
1 3
4

, e
2 4
3

, e
2 3
4

]
.
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5.2 Specht modules for the symmetric inverse monoids

using CMC

The purpose of this section is to consider explicit descriptions of the ordinary ir-

reducible representations of the Boolean reflection monoid of type An−1 (the sym-

metric inverse monoid In) utilising combinatorial objects called Young tableaux.

The principle approach for accomplishing this is the Clifford-Munn correspondence

that states that, if S is an inverse monoid, then the irreducible representations are

in one-to-one correspondence with the irreducible representations of the subgroups

G1, . . . , Gn, which represent a set of maximal subgroup representatives of the J -

classes of the semigroup S. As illustrated in Section 4.2.2, the passage from the

irreducible modules of the maximal subgroups to the irreducible modules of semi-

group S is called induction.

The maximal subgroupsGi of the symmetric inverse monoid In are the symmetric

subgroups Sr (r ≤ n) of Sn. The irreducible modules here were derived from the

classical work of Munn [60]; however, it is reasonable to anticipate that the Specht

modules of the maximal subgroups will be subject to induction in such a way so as

to produce generalised Specht modules for In.

Although this was achieved recently by Grood, as presented in the preceding

section, the Clifford-Munn correspondence was not employed for this purpose. In

fact, Grood began her combinatorial construction of these irreducible modules from

a unique starting point, using an independent method to obtain the modules in

question. In a manner that was less explicit than Grood’s approach, Steinberg [77,

Section 9.4] later illustrated Specht modules for the symmetric inverse monoid In by

means of the induction of the Specht modules of the maximal subgroups. Tabloids

and polytabloids were not examined in detail in his work.

This section includes a more explicit description of the Specht modules for the

Boolean monoid of type An−1 resulting from the induction of the Specht modules of

the maximal subgroups. Such an approach combines the explicit nature of Grood

and the Clifford-Munn correspondence. We give further precise information arising

from the induction techniques and portray how tabloids and polytabloids appear,

as well as how the symmetric inverse monoid In acts on them.

The isomorphism between the generalized Specht modules for the Boolean monoid

type of An−1 resulting from induction and the Specht modules for the rook monoid

acquired in Grood’s work is verified. The Specht modules for the Boolean monoid

M(S4,B) is calculated at the close of this section by means of the Specht modules

for the symmetric inverse monoid I4.
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Consider the J -classes Jr of In and recall from Section 4.2.2 that for each Jr -class

of In where 0 ≤ r ≤ n, if we choose an idempotent e ∈ Jr and consider the maximal

subgroup Ge, then the induction of a representation of Ge into In results in such a

representation of In. Let us discuss this process in detail:

Fix an idempotent e ∈ Jr, where

(x)e =

x x ∈ X = dom(e) ⊆ [n], and |X| = r

undefined otherwise.

Consider Re as the R-class of e to which the idempotent e and the Ge maximal sub-

group belong. Recall that the maximal subgroup Ge is isomorphic to the symmetric

subgroup Sr (r ≤ n) of Sn. In view of the isomorphism and for notational simplicity,

consider X = {1, 2, . . . r}. Recall that the irreducible representations of Sr over C
are parametrised by the λ partitions of r.

Fix λ ` r and let t be a Young tableau of shape λ with entries from X. Consider

Mλ to be the C-vector space with basis distinct λ-tabloids {t} whose ij-th entries

tij ∈ X; that is,

Mλ = C-
[
{t1} , . . . , {tm}

]
, (5.4)

where {tl} with 1 ≤ l ≤ m is a complete list of distinct λ-tabloids. In Section 3.2,

we stated that Mλ is a representation of the symmetric group Sr that is reducible.

Note that inducing Mλ into In results in a representation of the symmetric inverse

monoid In, which is also reducible as we will see later. Indeed, the induction process

requires the following steps:

(a) Fix a representation Mλ of Sr. Take a representative a
Y

of each H-class of the

R-class of e, considering the idempotent e itself representative of the H-class

in which Sr is placed.

X

X

Ge ∼= Sr
. . .

Y

a
Y

e = a
X

Re

Z

a
Z

Henceforth, we will fix the following choice for a
Y

: a
Y

is a partial map whose

domain is X = [r] and image is Y = {y1 , y2 , . . . , yr}, where y1 < y2 < · · · < yr ,

and Y ⊆ [n], with |Y | = r, and

(x)a
Y

=

yx x ∈ X,

undefined otherwise.
(5.5)
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A representative a
Y

for an H-class labelled by Y can be illustrated as follows:

1 2 r n

1 y1 y2 yr n

a
Y

=

... X ...

... Y ...

Figure 5.2: A representative aY for an H-class labelled by Y .

Similarly to (5.1), define the action of any partial map b ∈ In on a λ-tableau

t as follows:

(tij)b =

(tb)ij, if tij ∈ dom(b) for all i, j

0, otherwise
(5.6)

In particular, as the entries of tl belong to X, if we apply a partial map a
Y

to tl, we obtain a λ-Young tableau t
l

Y
:= tl · a

Y
where the entries are in Y.

In other words, the entries of a λ-Young tableau t
l

Y
are (t

l

ij)aY where t
l

ij is an

element of X appearing in row i and column j of tl.

tl
Y

=

...

tl
ij
a
Y

...

.

.

.

We will now highlight some similar definitions to ones discussed in the previous

section:

Definition 5.2.1. Fix λ ` r, where 0 ≤ r ≤ n. Let t
Y

be any λ-Young tableau

whose entries are (tij ·aY ) where Y ⊆ [n] with |Y | = r. Then the column group

Ct
Y

is a Young subgroup of a maximal subgroup S
Y
, preserving the columns

of t
Y

:

Ct
Y

= {σ ∈ S
Y

: σ leaves the columns of t
Y

invariant}. (5.7)

Similarly, define the row group Rt
Y

as follows:

Definition 5.2.2. Fix λ ` r, where 0 ≤ r ≤ n. Let t
Y

be any λ-Young tableau

whose entries are (tij · aY ) where Y ⊆ [n] with |Y | = r. Then the row group

Rt
Y

is a Young subgroup of a maximal subgroup S
Y

preserving the rows of

t
Y

:

Rt
Y

= {τ ∈ S
Y

: τ leaves the rows of t
Y

invariant}. (5.8)
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Our chief aim of leaving the columns or rows invariant is to allow the entries in

the same column or row to be permuted among themselves. Observe that both

Ct
Y

and Rt
Y

are subgroups within the J-class labelled by r; specifically, they

are subgroups of S
Y
⊂ In. Moreover, not all the elements of In that stabilise

the columns or rows of t
Y

are contained in Ct
Y

or Rt
Y

respectively.

(b) Consider a copy of Mλ for each H-class as follows: let M
λ

Y
be a copy of Mλ

corresponding to an H-class where a
Y

is its representative. The approach

in constructing such a copy M
λ

Y
is that, for each basis element {tl} ∈ Mλ

presented in (5.4), let {tl
Y
} := {tl · a

Y
} be a tabloid in M

λ

Y
. In other words,

{tl
Y
} can also be described as the orbit of the λ-tableau tl

Y
under the row

group action Rtl
Y
. Thus, M

λ

Y
is the C-vector space with basis λ-tabloids {tl

Y
}

whose ij-th entries are (tlij · aY ). Note that the entries of any basis vector λ-

tabloid {tl
Y
} of M

λ

Y
are elements from Y. Further, whenever we alter a subset

Y to another subset Y ′ of [n] with |Y ′| = r, we acquire another copy of Mλ

corresponding to another H-class. Since M
λ

Y
is a copy of Mλ, they all have

the same dimension.

(c) Consider all the copies M
λ

Y
where Y ⊆ [n] with |Y | = r and define the following

vector space:

Mλ ↑ In =
⊕
Y

M
λ

Y
.

Observe that the dimension of the direct sum is the sum of the dimensions of

each M
λ

Y
; that is,

dim
⊕
Y

M
λ

Y
=
∑
Y

dim M
λ

Y
=

(
n

r

)
· dim Mλ,

since there are
(
n
r

)
subsets Y of [n] where |Y | = r and Mλ ∼= M

λ

Y
for all Y.

(d) Define the action of In on Mλ ↑ In as follows: for all b ∈ In and any basis

vector {tl
Y
} ∈Mλ

Y
,

{tl
Y
} · b =

has ij-th entry tlij(aY · b), if a
Y
· b ∈ Re,

0 otherwise.
(5.9)

In view of Remark 1.2.21, we know that a
Y
· b belongs to Re if and only if

Y ⊆ dom(b). Thus, we can redraft the above formula as follows:

{tl
Y
} · b =

has ij-th entry tlij(aY · b), if Y ⊆ dom(b),

0 otherwise.
(5.10)
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Let us show that the above action is well-defined. In view of Definition 5.2.2,

two λ-tabloids are row-equivalent if and only if their sets of entries in each row

are identical; that is, we do not care about the entries’ position in each row.

Let Y i be the set of all entries in the i-th row of a tabloid {tl
Y
} and observe

that {tl
Y
} = {sl

Y
} implies that

{tl
Y
} =

Y 1

Y 2

.

.

.

= {sl
Y
}

Thus, if Y ⊆ dom(b), then applying a partial map b to both sides requires
applying b to each set Y i in each row; that is,

{tl
Y
} · b =

Y 1b

Y 2b
.
.
.

= {tl
Y
b} and {sl

Y
} · b =

Y 1b

Y 2b
.
.
.

= {sl
Y
b} (5.11)

Hence, the action of b in formula (5.9) is well-defined.

Since a
Y
· b belongs to the R-class of e, let us point out to which H-class of

Re that a
Y
· b belongs. In order to answer the enquiry, let us first determine

the image of a composition a
Y
· b as follows:

im(a
Y
· b) = (im a

Y
∩ dom(b))b = (Y ∩ dom(b))b = Y b,

as Y ⊆ dom(b). Hence, a
Y
· b ∈ Re if and only if a

Y
· b has the domain X

and image Y b. As Y ⊆ [n] with |Y | = r and b is a partial map a “bijection”,

Y b ⊆ [n] with |Y b| = r. Thus, a
Y
· b is a partial map that is precisely placed

in the H-class of Re labelled by Y b.

Note that the representative of the H-class of Re labelled by Y b is a partial

map a
Y b

whose domain is X and whose image is Y b = {y′
1
, y′

2
, . . . , y′

r
} where

y′
1
< y′

2
< · · · < y′

r
. It follows that both partial maps a

Y
· b and a

Y b
are in the

H-class labelled by Y b, as illustrated in the following diagram.

X

X

Ge
∼= Sr . . .

Y

a
Y

g
Re

Y b

(a
Y
·b)

a
Y b

This draws our attention to the relationship between a
Y
· b and a

Y b
.
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1 2 r n

1 y′
1

y′
2

y′
r

n

a
Y b

... X ...

... Y b ...

1 2 r n

1 y1 y2 yr n

1 y2b y1b yr b
n

a
Y

b

... X ...

... Y ...

... Y b ...

Figure 5.3: A partial map aY b versus a partial map aY · b.

In view of Remark 1.1.28, there must exist a unique permutation g ∈ Sr such

that a
Y
· b = g · a

Y b
holds. Thus, if a

Y
· b ∈ Re, then {tl

Y
} · b has ij-th entries

t
l

ij · (aY · b) = t
l

ij · (g · aY b ) = (t
l

ij · g) · a
Y b
. (5.12)

On the other hand, a tabloid {(tlg)
Y b
} also has ij-th entries (t

l

ijg) · a
Y b
. This

indeed allows us to produce an improved version of (5.9) as follows:

{tl
Y
} · b =

{(t
l
g)

Y b
}, Y ⊆ dom b, a

Y
· b = g · a

Y b
and g ∈ Sr

0 otherwise.
(5.13)

Therefore, we now know how In acts on the basis vector {tl
Y
} of M

λ

Y
for any

Y ⊆ [n] with |Y | = r. Extending this action linearly reveals how In acts on⊕
Y

M
λ

Y
.

Observation 5.2.3. Since t
l

is a λ-tableau with entries from [r] and g ∈ Sr, then

t
l
g is another λ-tableau filled with entries from [r]. We also have Y b ⊆ [n] with

|Y b| = r as b is a bijection; thus, {(tlg)
Y b
} ∈ Mλ

Y b
, where Mλ

Y b
is another summand

of Mλ ↑ In.

The above observation concludes all essential steps required in the induction

process. Given all that has been discussed so far, we state the following theorem.

Theorem 5.2.4. Fix λ ` r, where 0 ≤ r ≤ n, and consider a representation Mλ of

a maximal subgroup Sr of In over the complex field C. Then, Mλ induces to an In

representation Mλ ↑ In determined by a vector space

Mλ ↑ In =
⊕
Y

M
λ

Y
, Y ⊆ [n] with |Y | = r,

and the action described as follows: For all basis vectors {tl
Y
} of Mλ ↑ In where

1 ≤ l ≤ m and a partial map b ∈ In,

{tl
Y
} · b =

{(t
l
g)

Y b
}, Y ⊆ dom(b), a

Y
· b = g · a

Y b
and g ∈ Sr

0 otherwise,
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where t
l

is a λ-tableau that forms a distinct basis element {tl} of Mλ.

The following theorem shows that there is an isomorphism between the In-module

Mλ ↑ In obtained by the induction and the In-module Mλ introduced by Grood.

Theorem 5.2.5. Let λ ` r, where 0 ≤ r ≤ n, and let Mλ be a representation of a

maximal subgroup Sr. Then, for all λ and for all r ≤ n, Mλ ↑ In is isomorphic to

Mλ where Mλ is the In-module with basis the set of all distinct λnr -tabloids {t};

Mλ ↑ In ∼= Mλ.

Proof. Let us first show that they are isomorphic as vector spaces by showing that

they have the same dimension. We already computed the dimension of Mλ ↑ In
in step (c) of the induction process as dim Mλ ↑ In =

(
n
r

)
· dim Mλ. In view of

Lemma 3.2.13, we have dim Mλ = r! /κ , where κ = λ1! λ2! . . . λm! . Hence, dim

Mλ ↑ In = n!
(n−r)!·κ . Let us determine the dimension of Mλ . We know that there are

n! /(n− r)! ways to fill in the boxes of a λnr -Young diagram with r distinct numbers

from {1, 2, . . . , n}. In other words, the size of set T λr is equal to n! /(n− r)!. Observe

that each λnr -tabloid {t} ∈ Mλ is the orbit of t under the action of the row group

Rt :

{t} = {tσ : σ ∈ Rt}.

Hence, the number of tableaux in any λnr -tabloid {t} is equal to |Rt| = κ since

Rt
∼= Sλ1 × Sλ2 . . . Sλm . Therefore, dividing the number of all λnr -tableaux in T λr

by the number of tableaux in any λnr -tabloid {t} yields the number of distinct λnr -

tabloids, which is n!
(n−r)!·κ . Hence, we can infer that there is an isomorphism ϕ

between Mλ ↑ In and Mλ is defined as follows:

ϕ:Mλ ↑ In −→Mλ

{tl
Y
} 7 −→ {t′′}, (5.14)

where t
′′

= t
l

Y
. Thus, ϕ is a vector space isomorphism. To show that ϕ gives an

In-module isomorphism it remains to check the action. Notice that for all b ∈ In and

{tl
Y
} ∈Mλ ↑ In, if Y ⊆ dom b, then by formula (5.13), we have {tl

Y
} . b = {(tlg)

Y b
}.

Thus, {(tlg)
Y b
} · ϕ = {t′}, where t′ = (t

l
g)

Y b
. Moreover, {tl

Y
} . ϕ = {t′′}, where

t
′′

= t
l

Y
. In view of formula (5.2), we have {t′′} · b = {t′′b}. Note that by formula

(5.12), both tabloids {t′′b} and {t′} have ij-th entry (t
l · a

Y
) · b. Hence the following

diagram commutes:

Mλ ↑ In Mλ ↑ In

Mλ Mλ

(-)b

ϕ ϕ

(-)b

Therefore, In acts on Mλ ↑ In in the same way it acts on Mλ.
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Example 5.2.6. Let r = 3 and n = 4. Fix λ = (2, 1) ` 3, we know from Example

3.2.14 that Mλ can be written in terms of basis vectors as follows:

M (2,1) = C-
[{

2 3
1

}
,
{

1 3
2

}
,
{

1 2
3

}]
Recall that M (2,1) is a permutational representation of the symmetric group S3 . Fix

an idempotent e ∈ J3, where

(x)e =

x if x ∈ {1, 2, 3},

undefined otherwise.

Consider the R-class of e “ Re” as follows:

J3

J2

J1

J0

Y1= {1,2,3} Y2= {1,2,4} Y3= {1,3,4} Y4= {2,3,4}

{1,2,3}

{1,2,4}

{1,3,4}

{2,3,4}

e = a
Y1

a
Y2

a
Y3

a
Y4 Re

J4

Now, choose the representatives for each H-class in Re as follows:

1 2 3 4

1 2 3 4

e =

1 2 3 4

1 2 3 4

a
Y2

=

1 2 3 4

1 2 3 4

a
Y3

=

1 2 3 4

1 2 3 4

a
Y4

=

Hence, we can determine the copies of Mλ using the above representatives for

each H-class as follows:

M (2,1)
Y1

= C-
[{

2 3
1

}
,
{

1 3
2

}
,
{

1 2
3

}]
, M (2,1)

Y2
= C-

[{
2 4
1

}
,
{

1 4
2

}
,
{

1 2
4

}]

M (2,1)
Y3

= C-
[{

3 4
1

}
,
{

1 4
3

}
,
{

1 3
4

}]
, M (2,1)

Y4
= C-

[{
3 4
2

}
,
{

2 4
3

}
,
{

2 3
4

}]
.
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Thus,

M (2,1) ↑ I4 = C-
[ [{

2 3

1

}
,
{

1 3

2

}
,
{

1 2

3

}]⊕[{
2 4

1

}
,
{

1 4

2

}
,
{

1 2

4

}]⊕[{
3 4

1

}
,
{

1 4

3

}
,
{

1 3

4

}]⊕{{
3 4

2

}
,
{

2 4

3

}
,
{

2 3

4

}] ]
.

Notice that the Clifford-Munn correspondence only guarantees correspondence

between irreducible representations of maximal subgroups and irreducible represen-

tations of semigroups. Although Mλ is reducible, we attempted to induce it to

ascertain how the basis vector of such a module could be presented and how In acts

on it. Our primary aim is inducing the Specht module Sλ for a maximal subgroup

Sr into In, 0 ≤ r ≤ n since it is the only irreducible module for such a maximal

subgroup.

In view of the action presented in (5.10), the restriction of In action to the

maximal subgroup S
Y

plays a role in the following definition. Such a definition is

the crucial prerequisite we require in order to obtain the Specht module for In.

Definition 5.2.7. Fix λ ` r, where 0 ≤ r ≤ n, and Y ⊆ [n] with |Y | = r. For each

Young tableau t of shape λ, determine a λ-tableau t
Y

and then define an element

et
Y
∈Mλ

Y
as follows:

et
Y

=
∑
σ∈Ct

Y

sgn(σ) {t
Y
}σ. (5.15)

Observe that for all σ ∈ Ct
Y

, we define sgn(σ) to be the sign function of S
Y
. The

following example illustrates what the vector et
Y4

of M
(2,1)

Y4
looks like.

Example 5.2.8. As shown in Example 5.2.6, let r = 3 and n = 4. Fix λ = (2, 1) ` 3

and choose the Young tableau t = 1 2

3
and Y4 = {2, 3, 4} ⊂ [4]. Therefore, we can

determine that the λ-Young tableau t
Y4

= 2 3

4
. Note that Ct

Y4
= {id , (24)}, and

hence the vector et
Y4

can be obtained as follows:

et
Y4

=
∑

σ∈Ct
Y4

sgn(σ)
{

2 3
4

}
· σ

= +
{

2 3
4

}
−
{

4 3
2

}
∈M (2,1)

Y4
.
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Recall from Definition 3.2.17, the Specht module Sλ for the symmetric group Sr

can be defined as follows: For any partition λ of r, where 0 ≤ r ≤ n, the Specht

module Sλ is the subspace of Mλ spanned by the elements et, where t runs through

all Young tableaux of shape λ; that is,

Sλ = SpanC {et : t is a tableau filled with numbers from {1, . . . , r}}.

Moreover, Sλ is an Sr irreducible submodule of Mλ by Theorem 3.2.20. In fact,

Sλ was considered because whenever an irreducible representation Sλ of Sr is in-

duced into In, we acquire a corresponding irreducible representation of In as stated

in the Clifford-Munn correspondence theorem.

Let us now examine all four steps again to induce Sλ up to In.

(a) Fix a Specht module Sλ for the symmetric group Sr. Take a representative

a
Y

from each H-class of the R-class of e, considering the idempotent e a

representative of the H-class in which Sr is placed.

(b) Consider a copy of Sλ for each H-class as follows: let S
λ

Y
be a copy of Sλ

corresponding to an H-class with a representative a
Y
. In fact, S

λ

Y
is defined as

the subspace of M
λ

Y
spanned by all the elements et

Y
, where t runs through all

Young tableaux of shape λ; that is,

S
λ

Y
= SpanC {etY : t a λ-tableau filled with numbers from {1, . . . , r}}. (5.16)

Here, the subset Y is fixed, and we only let t vary. Importantly, whenever we

alter a subset Y to another subset Z of [n] with |Z| = r, we attain another

copy S
λ

Z of Sλ corresponding to the H-class labelled by Z. Moreover, since

S
λ

Y
is a copy of Sλ, then both respect their vector space structures. Therefore,

the spanning set

{et
Y

: t is a λ-Young tableau filled with numbers from {1, . . . , r}},

is not linearly independent; thus, it cannot be a basis for S
λ

Y
. However, if

we choose t to run through all standard tableaux of shape λ and adapt the

representative a
Y

chosen for each H-class, as stated in (5.5), then the set

{et
Y

: t is a standard tableau filled with numbers from {1, . . . , r}}

forms a basis for S
λ

Y
. Hence, we can present S

λ

Y
by utilising its basis elements.

However, we will maintain our consideration of S
λ

Y
as it appears in (5.16) for

the remainder of this section unless stated otherwise.

(c) Consider all copies S
λ

Y
where Y ⊆ [n] with |Y | = r, and define the following
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vector space:

Sλ ↑ In =
⊕
Y

S
λ

Y
.

Now S
λ

Y
is a subspace of M

λ

Y
for all Y ⊆ [n] with |Y | = r; thus,

⊕
Y

S
λ

Y
is also a

subspace of
⊕
Y

M
λ

Y
. Furthermore, with a consideration of standard tableaux,

we know that the dimension of each summand S
λ

Y
is equal to the dimension

of Sλ, and there are
(
n
r

)
subsets Y of [n] in which |Y | = r. Hence, we can

determine the dimension of
⊕
Y

S
λ

Y
as follows:

dim
⊕
Y

S
λ

Y
=
∑
Y

dim S
λ

Y
=

(
n

r

)
· dim Sλ. (5.17)

The last step in the induction process reveals how the symmetric inverse

monoid In acts on such a vector. However, let us first lay the groundwork

by proving the lemmas that help to demonstrate such an action on the in-

duced module Sλ ↑ In.

In Section 5.1, we explored how every partial map of a finite set can be written

uniquely as a product of links and disjoint cycles. We also know that if b ∈ In,
then b

∧

is an element in Sn ⊂ In, which can be determined by changing every

link in b into a cycle. Moreover, it is crucial to point out that the last number

in any link of b ∈ In does not belong to the domain of b, and the first number

in a link does not belong to the image of b.

Lemma 5.2.9. Fix λ ` r, where 0 ≤ r ≤ n and Y ⊆ [n] with |Y | = r. Let

b ∈ In, and t
Y

be a λ-tableau whose entries belong to Y. If Y ⊆ dom b, then

(1) t
Y
· b = t

Y
· b
∧

(2) {t
Y
} · b = {t

Y
} · b

∧

(3) et
Y
· b = et

Y
· b
∧

Proof. (1) Let us denote the entries of λ-tableau t
Y

by tij and write b ∈ In as

a product of links and disjoint cycles. If Y ⊆ dom (b), then none of the tij

entries of tableau t
Y

appear as the last number in any link of b; that is, the tij

entries that do appear in tableau t
Y

have the same image under b as they do

under b
∧

. Hence, tij b
∧

= tij b for all i, j. Thus, (1) holds.

(2) This is straightforward by (1) and (5.11).

(3) Since
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et
Y

=
∑
σ∈Ct

Y

sgn(σ) {t
Y
}σ,

each summand {t
Y
σ} of et

Y
is clearly a tabloid whose entries are precisely the

same as the entries of t
Y

but in a different order. In other words, the entries

of each summand {t
Y
σ} still belong to dom(b). Hence,

et
Y
· b =

( ∑
σ∈Ct

Y

sgn(σ) {t
Y
}σ
)
· b,

=
( ∑
σ∈Ct

Y

sgn(σ) {t
Y
σ}
)
· b,

=
∑
σ∈Ct

Y

sgn(σ)
(
{t

Y
σ} · b

)
,

=
∑
σ∈Ct

Y

sgn(σ)
(
{h

Y
} · b

)
, [ Put h

Y
= t

Y
σ]

=
∑
σ∈Ct

Y

sgn(σ)
(
{h

Y
} · b

∧)
, [ By (2)]

=
( ∑
σ∈Ct

Y

sgn(σ) {h
Y
}
)
· b
∧

,

=
( ∑
σ∈Ct

Y

sgn(σ) {t
Y
σ}
)
· b
∧

,

= et
Y
· b
∧

.

Thus, (3) holds.

Observation 5.2.10. Let λ ` r, where 0 ≤ r ≤ n and Y ⊆ [n] with |Y | = r.

Let t
Y

be a λ-Young tableau with entries from Y and recall that the column

group Ct
Y

is a subgroup of a maximal subgroup S
Y
⊂ In. Define an injective

map

σ ∈ S
Y
↪−−→ σ́ ∈ Sn such that

(y)σ́ =

(y)σ y ∈ Y,

y otherwise.

In other words, the injective map σ́ embeds a maximal subgroup S
Y

into the

group of units Sn of In. Hence, this embedding allows both σ ∈ S
Y

and σ́ ∈ Sn
to have the same sign.

Example 5.2.11. Let r = 5 and n = 7, and fix λ = (3, 2) ` 5. Choose
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Y = {2, 3, 4, 5, 6} ⊂ [7] with |Y | = 5. Choose the (3, 2)-Young tableau

t
Y

=
2 5
4 3
6

Notice that Ct
Y

= S{2,4,6} × S{3,5} , and let the permutation

σ = (4, 6, 2)(3, 5)

= (6, 2)(4, 6)(3, 5) ∈ Ct
Y
⊂ S

Y
.

Thus, the permutation

σ́ = (4, 6, 2)(3, 5)(1)(7)

= (6, 2)(4, 6)(3, 5)(1)(7) ∈ S7.

Moreover, sgn(σ) = sgn(σ́) = (−1)3 = −1.

In view of the above observation and considering Sn as a maximal subgroup

of In, we have the following lemma.

Lemma 5.2.12. Fix λ = (λ1, . . . , λq) ` r, where 0 ≤ r ≤ n, and let t
Y

be a

λ-Young tableau whose entries belong to Y, where Y ⊆ [n] with |Y | = r. Then,

for all π ∈ Sn, we have

(1) π−1Ct
Y
π = Ct

Y
π.

(2) sgn(π−1σπ) = sgn(σ), ∀ σ ∈ Ct
Y
.

Proof. (1) Let c1, c2, . . . , cd be the columns of a λ-tableau t
Y
. Then,

σ ∈ Ct
Y

=⇒ (cj)σ = cj ∀ j = 1, 2, . . . , d,

=⇒ (cj)σπ = cjπ ∀ j = 1, 2, . . . , d and for all π ∈ Sn,

=⇒ (cj)ππ
−1σπ = cjπ,

=⇒ cjπ π−1σπ = cjπ,

=⇒ π−1σπ ∈ C(t
Y
π),

and this implies that π−1Ct
Y
π ⊆ C(t

Y
π). Conversely,

σ ∈ C(t
Y
π) =⇒ (cjπ)σ = cjπ ∀ j = 1, 2, . . . , d,

=⇒ cj πσπ
−1 = cj, ∀ j = 1, 2, . . . , d,

=⇒ πσπ−1 ∈ Ct
Y
,

=⇒ σ ∈ π−1Ct
Y
π

=⇒ C(t
Y
π) ⊆ π−1Ct

Y
π.
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Hence, π−1Ct
Y
π = Ct

Y
π for all π ∈ Sn.

(2) S
Y

can be viewed as a subgroup of Sn, so for all σ ∈ Ct
Y
≤ S

Y
, we have

sgn(π−1σπ) = sgn(π−1) sgn(σ) sgn(π)

= sgn(σ),

since sgn(π−1) = sgn(π).

The above discussion makes several noteworthy contributions to the investi-

gation of how In acts on Sλ ↑ In. Thus, let us proceed with the last step of

the induction process of In by considering the following lemma:

Lemma 5.2.13. Fix λ ` r, where 0 ≤ r ≤ n, and let t
Y

be a λ-Young tableau

filled with numbers from Y ⊆ [n] with |Y | = r. Then, for all b ∈ In and

et
Y
∈ Sλ ↑ In, we have

et
Y
· b =

e
tg

Y b
, Y ⊆ dom b and a

Y
· b = g · a

Y b
where g ∈ Sr

0 otherwise.
(5.18)

Proof. Suppose that Y ⊆ dom b, then by Lemma 5.2.9 (3), we have

et
Y
· b = et

Y
· b
∧

=
( ∑
σ∈Ct

Y

sgn(σ) {tY }σ
)
· b
∧

,

=
∑

σ∈Ct
Y

sgn(σ) {tY } σ · b
∧

,

=
∑

σ∈Ct
Y

sgn(σ) {tY } b
∧

b
∧−1

σ b
∧

, [As b
∧

∈ Sn, and Ct
Y
≤ SY ⊆ Sn]

=
∑

σ∈Ct
Y

sgn(σ) {tY } b
∧

(b
∧−1

σ b
∧

)

=
∑

σ∈Ct
Y

sgn(b
∧−1

σ b
∧

) {tY } b
∧

(b
∧−1

σ b
∧

), [By Lemma 5.2.12 (2)]

=
∑

ρ∈b
∧−1

Ct
Y
b
∧

sgn(ρ) {tY } b
∧

· ρ, [ρ = b
∧−1

σ b
∧

]

=
∑

ρ∈C
(t
Y
·b̂)

sgn(ρ) {tY } b
∧

· ρ, [By Lemma 5.2.12 (1)]

=
∑

ρ∈C(t
Y
·b)

sgn(ρ) {tY } b · ρ, [By Lemma 5.2.9 (1) and (2)]

=
∑

ρ∈C(tg)
Y b

sgn(ρ) {(tg)
Y b
} ρ, [By formula (5.13) and tY · b = (tg)

Y b
]

= e
tg

Y b
.
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By contrast, if Y 6⊆ dom b, then by formula (5.13), we have {tY } · b = 0, which

means that at least one entry (tij · aY ) of tY does not belong to the domain of b.

Moreover, since

et
Y

=
∑

σ∈Ct
Y

sgn(σ) {tY }σ,

each summand of et
Y

has precisely the same entries as those of tableau t
Y

but in

a different order. In particular, entry (tij · aY ) still belongs to every summand

in et
Y
. Therefore, if we apply a partial map b to a ploytabloid et

Y
, then each

summand will be sent to zero. Hence, et
Y
· b = 0.

Observation 5.2.14. In (5.18), since t is a λ-tableau with entries from X =

{1, . . . , r} and g ∈ Sr , tg is another λ-tableau filled with entries from X.

Also notice that Y b ⊆ [n] with |Y b| = r since b is a bijection; thus, etg
Y b

is

a summand of Sλ ↑ In. As In is an inverse monoid, there is no need for a

further step; hence, the Clifford-Munn correspondence asserts that Sλ ↑ In
is an irreducible representation for In. By Theorem 3.2.20, if λ 6= µ, then

Sλ � Sµ. Consequently, both Sλ ↑ In, and Sµ ↑ In are inequivalant irreducible

representations of In for all λ 6= µ.

In view of all that has been discussed so far, we state the following main result.

Theorem 5.2.15. Fix λ ` r, where 0 ≤ r ≤ n, and consider a Specht module

Sλ for the maximal subgroup representative Sr of a J -class Jr of In. Then, Sλ

induces to an In-representation Sλ ↑ In called the Specht module for In and

determined as follows:

Sλ ↑ In =
⊕
Y

S
λ

Y
, Y ⊆ [n] with |Y | = r,

where S
λ

Y
is given by (5.16). Moreover, for each vector et

Y
∈ Sλ ↑ In and

partial permutation b ∈ In,

et
Y
· b =

e
tg

Y b
, Y ⊆ dom b and a

Y
· b = g · a

Y b
where g ∈ Sr

0 otherwise.

The next theorem shows that there is an isomorphism between the Specht modules

Sλ ↑ In for In produced by utilising the Clifford-Munn correspondence and the

Specht modules Rλ for In produced by Grood.

Theorem 5.2.16. Let λ ` r, where 0 ≤ r ≤ n, and let Sλ be a Specht module

for Sr. Then, Sλ ↑ In is isomorphic as an In-module to Rλ, where Rλ is a Specht
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module for In spanned by polytabloids et such that t ranges over all λnr -tableaux:

Sλ ↑ In ∼= Rλ.

Proof. To show that Sλ ↑ In and Rλ are isomorphic as In modules, recall that

Theorem 5.2.5 shows that there is an In module isomorphism ϕ between Mλ ↑ In
and Mλ; that is, for all v ∈Mλ ↑ In and b ∈ In, we have

Mλ ↑ In
ϕ−−→Mλ

(v · b) ϕ = (vϕ) · b. (5.19)

Moreover, Lemma 5.2.13 shows that Sλ ↑ In is an In submodule of Mλ ↑ In. Con-

trariwise, Proposition 5.1.14 confirms that Rλ is a submodule of Mλ as well. The

following diagram illustrates the isomorphism

Mλ ↑ In
∼=

module−−−−−→
ϕ

Mλ

↪→ ↪→
Sλ ↑ In

ϕ̄−−−−−→ Rλ.

Note that if we restrict ϕ to Sλ ↑ In, then this restriction, denoted by ϕ̄ := ϕ|
Sλ↑In

,

maps Sλ ↑ In to Rλ because for all et
Y
∈ Sλ ↑ In and b ∈ In, we have the following:

(et
Y
· b) ϕ|

Sλ↑In
=
(( ∑

σ∈Ct
Y

sgn(σ) {t
Y
}σ
)
· b
)
ϕ

=
(( ∑

σ∈Ct
Y

sgn(σ) {t
Y
}σ
)
· ϕ
)
b [ By (5.19) ]

=
( ∑
σ∈Ct

Y

sgn(σ)
(
{t

Y
}σ
)
· ϕ
)
b [ ϕ an isomorphism ]

=
( ∑
σ∈Ct

Y

sgn(σ)
(
{t

Y
}ϕ
)
· σ
)
b [ σ ∈ Ct

Y
≤ S

Y
⊆ In ]

=
(∑
σ∈Ct

sgn(σ) {t}σ
)
b [ By (5.14), and t = t

Y
]

= et · b ∈ Rλ.

Thus, the image of Sλ ↑ In under action In is contained in Rλ. Moreover, this

restriction inherits module map properties from ϕ. It remains to show that ϕ̄ is

a bijection. Observe that ϕ is a one-to-one map as it is an isomorphism; thus,

ϕ̄ is a one-to-one map as well because it is a restriction. Thus ϕ̄ maps Sλ ↑ In
isomorphically onto a submodule U of Rλ. In other words, dim Sλ ↑ In = dim U. In

view of Theorem 5.1.18 and equality (5.17), we have dim Sλ ↑ In = dim Rλ. This
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yields that ϕ̄ is onto, so it is an isomorphism.

Example 5.2.17. Let r = 3, n = 4 and fix λ = (2, 1) ` 3. We know from Example

3.2.14 that the set of all 6 distinct λ-tableaux and the S3-module M (2,1) can be

determined as follows:

Y (2,1) =
{
t1 = 2 3

1
, t2 = 3 2

1
, t3 = 1 3

2
, t4 = 3 1

2
, t5 = 1 2

3
, t6 = 2 1

3

}
.

M (2,1) = C-
[{

2 3
1

}
,
{

1 3
2

}
,
{

1 2
3

}]
.

In Example 3.2.18(iii), we also obtained a Specht module S(2,1) for S3 as follows:

S(2,1) = SpanC{et1 , et2 , et3 , et4 , et5 , et6}.

Fix an idempotent e ∈ J3, where

(x)e =

x x ∈ [3] = {1, 2, 3},

undefined otherwise.

Consider the R-class of e “ Re” as appears below:

J3

J0

Y1= {1,2,3} Y2= {1,2,4} Y3= {1,3,4} Y4= {2,3,4}

{1,2,3}

{1,2,4}

{1,3,4}

{2,3,4}

e = a
Y1

a
Y2

a
Y3

a
Y4 Re

J4

Now, choose the same representatives for each H-class in Re as those in Example

5.2.6

1 2 3 4

1 2 3 4

e =

1 2 3 4

1 2 3 4

a
Y2

=

1 2 3 4

1 2 3 4

a
Y3

=

1 2 3 4

1 2 3 4

a
Y4

=

Figure 5.4: Representatives of H-classes of the Re.
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Notice that inducing S(2,1) into I4 requires that the copies of S(2,1) be obtained for

each H-class of Re using the above representatives. Considering the first represen-

tative a
Y1

yields the following:

S(2,1)

Y1

= SpanC{et1Y1
, et2

Y1
, et3

Y1
, et4

Y1
, et5

Y1
, et6

Y1
}.

= SpanC{et1 , et2 , et3 , et4 , et5 , et6}.

Consider the second representative a
Y2
, and let us compute S(2,1)

Y2

as follows:

t1
Y2

= 2 4
1

and Ct1
Y2

= {id = (1)(2)(4), (12)}. Thus, et1
Y2

= +
{

2 4
1

}
−
{

1 4
2

}
t2
Y2

= 4 2
1

and Ct2
Y2

= {id = (1)(2)(4), (14)}. Thus, et2
Y2

= +
{

4 2
1

}
−
{

1 2
4

}
t3
Y2

= 1 4
2

and Ct3
Y2

= {id = (1)(2)(4), (12)}. Thus, et3
Y2

= +
{

1 4
2

}
−
{

2 4
1

}
t4
Y2

= 4 1
2

and Ct4
Y2

= {id = (1)(2)(4), (24)}. Thus, et4
Y2

= +
{

4 1
2

}
−
{

2 1
4

}
t5
Y2

= 1 2
4

and Ct5
Y2

= {id = (1)(2)(4), (14)}. Thus, et5
Y2

= +
{

1 2
4

}
−
{

4 2
1

}
t6
Y2

= 2 1
4

and Ct6
Y2

= {id = (1)(2)(4), (24)}. Thus, et6
Y2

= +
{

2 1
4

}
−
{

4 1
2

}
Hence, the copy of S(2,1), corresponding to the H-class labelled by Y2 is

S(2,1)

Y2

= SpanC{et1Y2
, et2

Y2
, et3

Y2
, et4

Y2
, et5

Y2
, et6

Y2
}.

Consider the third representative a
Y3
, and compute S(2,1)

Y3

as follows:

t1
Y3

= 3 4
1

and Ct1
Y3

= {id = (1)(3)(4), (13)}. Thus, et1
Y3

= +
{

3 4
1

}
−
{

1 4
3

}
t2
Y3

= 4 3
1

and Ct2
Y3

= {id = (1)(3)(4), (14)}. Thus, et2
Y3

= +
{

4 3
1

}
−
{

1 3
4

}
t3
Y3

= 1 4
3

and Ct3
Y3

= {id = (1)(3)(4), (13)}. Thus, et3
Y3

= +
{

1 4
3

}
−
{

3 4
1

}
t4
Y3

= 4 1
3

and Ct4
Y3

= {id = (1)(3)(4), (34)}. Thus, et4
Y3

= +
{

4 1
3

}
−
{

3 1
4

}
t5
Y3

= 1 3
4

and Ct5
Y3

= {id = (1)(3)(4), (14)}. Thus, et5
Y3

= +
{

1 3
4

}
−
{

4 3
1

}
t6
Y3

= 3 1
4

and Ct6
Y3

= {id = (1)(3)(4), (34)}. Thus, et6
Y3

= +
{

3 1
4

}
−
{

4 1
3

}
Hence, the copy of S(2,1) that corresponds to the H-class labelled by Y3 is

S(2,1)

Y3

= SpanC{et1Y3
, et2

Y3
, et3

Y3
, et4

Y3
, et5

Y3
, et6

Y3
}.

Consider the last representative a
Y4
, and compute S(2,1)

Y4

as follows:

t1
Y4

= 3 4
2

and Ct1
Y4

= {id = (2)(3)(4), (23)}. Thus, et1
Y4

= +
{

3 4
2

}
−
{

2 4
3

}
t2
Y4

= 4 3
2

and Ct2
Y4

= {id = (2)(3)(4), (24)}. Thus, et2
Y4

= +
{

4 3
2

}
−
{

2 3
4

}
t3
Y4

= 2 4
3

and Ct3
Y4

= {id = (2)(3)(4), (23)}. Thus, et3
Y4

= +
{

2 4
3

}
−
{

3 4
2

}
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t4
Y4

= 4 2
3

and Ct4
Y4

= {id = (2)(3)(4), (34)}. Thus, et4
Y4

= +
{

4 2
3

}
−
{

3 2
4

}
t5
Y4

= 2 3
4

and Ct5
Y4

= {id = (2)(3)(4), (24)}. Thus, et5
Y4

= +
{

2 3
4

}
−
{

4 3
2

}
t6
Y4

= 3 2
4

and Ct6
Y4

= {id = (2)(3)(4), (34)}. Thus, et6
Y4

= +
{

3 2
4

}
−
{

4 2
3

}
Therefore, the copy of S(2,1) that corresponds to the H-class labelled by Y4 is

S(2,1)

Y4

= SpanC{et1Y4
, et2

Y4
, et3

Y4
, et4

Y4
, et5

Y4
, et6

Y4
}.

Hence, we acquire a Specht module S(2,1) ↑ I4 for I4 as follows:

S(2,1) ↑ I4 = S(2,1)

Y1

⊕
S(2,1)

Y2

⊕
S(2,1)

Y3

⊕
S(2,1)

Y4

.

However, by Example 3.2.24, the Specht module S(2,1) for S3 can also be written as

a linear combination of the two basis vectors involving (2, 1)-standard tableaux:

S(2,1) = C-
[
e

1 3
2

, e
1 2
3

]

Thus, we can redraft the copies of S(2,1) with respect to (2, 1)-standard tableaux:

S(2,1)
Y1

= C-
[
e

1 3
2

, e
1 2
3

]
, S(2,1)

Y2
= C-

[
e

1 4
2

, e
1 2
4

]

S(2,1)
Y3

= C-
[
e

1 4
3

, e
1 3
4

]
, S(2,1)

Y4
= C-

[
e

2 4
3

, e
2 3
4

]
.

Hence, we also obtain a Specht module S(2,1) ↑ I4 for the symmetric inverse

monoid I4 written with respect to basis vectors involving (2, 1)-standard tableaux

as follows:

S(2,1) ↑ I4 = C-

[e
1 3
2

, e
1 2
3

]⊕[
e

1 4
2

, e
1 2
4

]⊕[
e

1 4
3

, e
1 3
4

]⊕[
e

2 4
3

, e
2 3
4

].
In the following example, we will compute Specht modules for the symmetric

inverse monoid I4 by inducing all Specht modules for the maximal subgroup repre-

sentatives of J -classes Jr, where 0 ≤ r ≤ 4.

Example 5.2.18. Let n = 4, and consider all the partitions λ for all nonnegative

integer r, where 0 ≤ r ≤ 4. Let us illustrate all Specht modules Sλ ↑ I4 for all λ ` r,
as follows:

Let r = 0. Then the only partition λ of 0 is the empty set ∅, and the corresponding

147



Specht module is

S
∅

= 0, zero vector space.

The corresponding Specht module for I4 is

S
∅ ↑ I4 = 0.

˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙

Let r = 1; then, the only possible partition of 1 is λ = (1), and the Specht module

for the maximal subgroup representative S1 of J1 is

S(1) = C [e
1

].

However, the corresponding Specht module for I4 is

S(1) ↑ I4 = C-
[[
e

1

]⊕[
e

2

]⊕[
e

3

]⊕[
e

4

]]
.

Observe that e
i

= +{ i } for all i.

˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙

Let r = 2. Then, all possible partitions of 2 are λ = (2) and λ = (1, 1).

Case (I) If λ = (2), then the corresponding Specht module for the maximal sub-

group representative S2 of J2, expressed in its basis vector involving a (2)-standard

tableau is

S(2) = c [e
1 2

], c ∈ C.

Furthermore, the corresponding Specht module for I4 is

S(2) ↑ I4 = C-
[
[e

1 2
]
⊕

[e
1 3

]
⊕

[e
1 4

]
⊕

[e
2 3

]
⊕

[e
2 4

]
⊕

[e
3 4

]
]
.

Observe that e
i j

= +{ i j }.

Case (II) if λ = (1, 1), then the corresponding Specht module for the maximal

subgroup representative S2 of J2 expressed in its basis vector involving a (1, 1)-

standard tableau is

S(1,1) = c e
1
2

, c ∈ C.
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The corresponding Specht module for I4 is

S(1,1) ↑ I4 = C-

[[
e

1
2

]⊕[
e

1
3

]⊕[
e

1
4

]⊕[
e

2
3

]⊕[
e

2
4

]⊕[
e

3
4

]]
.

Notice that in both Specht modules, e
i
j

= +
{

i
j

}
−
{

j
i

}
.

˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙

Let r = 3. Then, all possible partitions of 3 are λ = (3), λ = (1, 1, 1) and

λ = (2, 1).

Case (I) If λ = (3), then the corresponding Specht module for the maximal

subgroup representative S3 of J3 expressed in its basis vector involving a (3)-standard

tableau is

S(3) = c [e
1 2 3

], c ∈ C.

The corresponding Specht module for I4 is

S(3) ↑ I4 = C-
[
[e

1 2 3
]
⊕

[e
1 2 4

]
⊕

[e
1 3 4

]
⊕

[e
2 3 4

]
]
.

Observe that e
i j k

= +{ i j k }.

Case (II) If λ = (1, 1, 1), then the corresponding Specht module for the maximal

subgroup representative S3 of J3 expressed in its basis vector involving a (1, 1, 1)-

standard tableau is

S(1,1,1) = c e
1
2
3

c ∈ C.

The corresponding Specht module for I4 is obtained by

S(1,1,1) ↑ I4 = C-

[e
1
2
3

]⊕[
e

1
2
4

]⊕[
e

1
3
4

]⊕[
e

2
3
4

] .
Observe that e

i
j
k

=
∑

σ∈S{i,j,k} sgn(σ)
{

i
j
k

}
σ.

Case (III) If λ = (2, 1), then the corresponding Specht module for the maximal

subgroup representative S3 of J3 expressed in its basis vectors is
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S(2,1) = C-
[
e

1 3
2

, e
1 2
3

]
.

In contrast, the corresponding Specht module for I4 is determined as follows:

S(2,1) ↑ I4 = C-

[e
1 3
2

, e
1 2
3

]⊕[
e

1 4
2

, e
1 2
4

]⊕[
e

1 4
3

, e
1 3
4

]⊕[
e

2 4
3

, e
2 3
4

].
It is clear that e

i k
j

=
{

i k
j

}
−
{

j k
i

}
.

˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙

Let r = 4. Then, all possible partitions of 4 are λ = (4), λ = (1, 1, 1, 1), λ = (2, 2),

λ = (2, 1, 1) and λ = (3, 1).

Case (I) If λ = (4), then the corresponding Specht module for the group of units

S4 of J4 expressed in its basis vector involving a (4)-standard tableau is

S(4) = c [e
1 2 3 4

], c ∈ C.

The corresponding Specht module for I4 is obtained by

S(4) ↑ I4 = c [e
1 2 3 4

], c ∈ C.

Notice that e
i j k l

=
{

i j k l

}
.

Case (II) If λ = (1, 1, 1, 1), then the corresponding Specht module for the group

of units S4 of J4 expressed in its basis vector involving a (1, 1, 1, 1)-standard tableau

is

S(1,1,1,1) = c e
1

2

3

4

, c ∈ C.

Hence, the corresponding irreducible module for I4 is

S(1,1,1,1) ↑ I4 = c e
1
2
3
4

, c ∈ C.

Obviously e
i
j
k
l

=
∑

σ∈S{i,j,k,l} sgn(σ)
{

i
j
k
l

}
σ.
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Case (III) If λ = (3, 1), then the corresponding Specht module for the group of

units S4 of J4 expressed in its basis vectors involving (3, 1)-standard tableaux is

S(3,1) = C-
[
e

1 3 4

2

, e
1 2 4

3

, e
1 2 3

4

]
,

and the corresponding irreducible module for I4 is obtained as follows:

S(3,1) ↑ I4 = C-
[
e

1 3 4

2

, e
1 2 4

3

, e
1 2 3

4

]
.

Observe that e
i k l
j

= +
{

i k l
j

}
−
{

j k l
i

}
.

Case (III) If λ = (2, 2), then the corresponding Specht module for the group of

units S4 of J4 expressed in its basis vectors involving (2, 2)-standard tableaux is

S(2,2) = C-
[
e

1 2
3 4

, e
1 3
2 4

]
.

and the corresponding irreducible module for I4 is determined by

S(2,2) ↑ I4 = C-

e
1 2
3 4

, e
1 3
2 4

 .
Observe that e

i k
j l

=
∑

σ∈S{i,j}×S{k,l} sgn(σ)
{

i k
j l

}
σ.

Case (IV) If λ = (2, 1, 1), then the corresponding Specht module for the group

of units S4 of J4 expressed in its basis vectors involving (2, 1, 1)-standard tableaux

is

S(2,1,1) = C-

e
1 4

2

3

, e
1 2

3

4

, e
1 3

2

4

 .
and the corresponding irreducible module for I4 is

S(2,1,1) ↑ I4 = C-

e
1 4

2

3

, e
1 2

3

4

, e
1 3

2

4

 .
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It is clear that e
i l
j
k

=
∑

σ∈S{i,j,k} sgn(σ)
{

i l
j
k

}
σ.

It is no surprise that for all λ ` 4, Sλ and Sλ ↑ I4 are identical as r = n = 4.
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Chapter 6

Representation theory of type Bn

Boolean reflection monoids

6.1 The monoid of partial signed permutations

MBn

The combination of both the Boolean system B and the reflection group W (Bn) of

type Bn yields the reflection monoids known as the Boolean monoids M(W (Bn),B),

as discussed in Section 2.2. Alternatively, and according to Everitt and Fountain

in [19, Proposition 5.1], these are also known as the monoids of partial signed per-

mutations MBn. This section is primarily concerned with the detailed study of the

monoid of partial signed permutations MBn. This section establishes some signifi-

cant assertions and properties which contribute to a better understanding of such

monoids. As part of this study, we aim to analyse and in turn gain a much more in-

depth insight into the J -classes of MBn and determine their maximal subgroups.

We will then pinpoint the processes involved in the decomposition of any partial

signed permutation as a disjoint product of positive links and positive and negative

cycles.

Consider the signed permutations group Bn, and recall that α ∈ Bn is a signed

permutation on [+−n] satisfying the property that (−r)α = −(r)α for all r ∈ [+−n].

Choose a subset X ⊆ [+−n] such that whenever +x ∈ X, −x ∈ X as well. Notice that

the restriction of α to X, denoted by α|
X
, is a partial signed permutation X −→ Xα

defined by

(x)α|
X

=

(x)α x ∈ X,

undefined x /∈ X,

where (−x)α = −(x)α is satisfied for all x ∈ X. It is worth noting that the result
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of such restriction is not unique; there may be another signed permutation β ∈ Bn

such that when we restrict it to some subset X ⊆ [+−n] such that whenever +x ∈ X,
−x ∈ X we acquire the same partial signed permutation:

α|
X

= β|
X
.

However, this obstacle can be overcome in the following manner: for all signed

permutations α, β ∈ Bn and X, Y ⊆ [+−n], two partial signed permutations are the

same if they satisfy the following:

α|
X

= β|
Y
⇐⇒ X = Y and (x)α = (x)β, for all x ∈ X.

Example 6.1.1. Let n = 5 and α ∈ B5 such that

1 2 3 4 5

−1 −2 −3 −4 −5

α =

Let X = {+−2,+−3} ⊂ [+−5]. Then, the restriction α|
X
, which is defined only on X

and is undefined elsewhere, results in a partial signed permutation α|
X
, as illustrated

below:

1 2 3 4 5

−1 −2 −3 −4 −5

α
X

=

We can also illustrate a partial signed permutation α|
X

as follows:

−5 −4 −3 −2 −1 1 2 3 4 5

−5 −4 −3 −2 −1 1 2 3 4 5

α
X

=

The latter illustration will be used in computing irreducible representations for the

monoid MBn in the next section.

Definition 6.1.2. [19] The monoid of partial signed permutations MBn is defined

as

MBn = {σ : X
bij−−→ Y : X,Y ⊆ [+−n], where

x ∈ X ⇐⇒ −x ∈ X and (−x)σ = −(x)σ},

with a similar composition stated in Proposition 2.2.6; that is, if σ : X1 −→ Y1 and

τ : X2 −→ Y2 where X1, X2, Y1, Y2 ⊆ [+−n], then the composition στ is defined on

the following domain:
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dom(στ) = {x ∈ [+−n] : x ∈ dom(σ) and xσ ∈ dom(τ)};

= {x ∈ [+−n] : x ∈ dom(σ) and x ∈ dom(τ)σ∗};

= dom(σ) ∩ dom(τ)σ∗;

= X1 ∩X2σ
∗,

where σ∗ : Y1 −→ X1. Moreover, since (−r)σ = −(r)σ and (−r)τ = −(r)τ, its

composition satisfies this property as well; that is (−r)(στ) = −(r)(στ)

From the composition described above, it is obvious that

dom(στ) ⊆ dom(σ). (6.1)

Observation 6.1.3. Since for every partial signed permutation σ : X1 −→ Y1,

there is a partial signed permutation σ∗ : Y1 → X1 belonging to MBn such that

σσ∗σ = σ. Thus, MBn is a regular monoid whose identity id is a signed permutation

fixing every number in [+−n]. Further, the group of units ofMBn is the group of signed

permutations Bn, and the idempotents in MBn are all partial signed identities on

X ⊆ [+−n]; that is, all e ∈ MBn such that e fixes X ⊆ [+−n] point-wise and is

undefined in [+−n] \ X. Let X, Y ⊆ [+−n] and e, f be idempotents on X and Y,

respectively. Let us show that the idempotents commute; that is ef = fe. Consider

the diagram below

X e X

Y

Y

f

dom(ef)

im(ef)

and notice that since e = e∗ and X ∩ Y ⊆ X, we have

dom(ef) = (im(e) ∩ dom(f))e∗ = (X ∩ Y )e∗ = (X ∩ Y )e = X ∩ Y.

Thus, im(ef) = (X ∩ Y )ef = X ∩ Y as X ∩ Y ⊆ X, Y and e, f are idempotents.

Hence, dom(ef) = X ∩ Y = im(ef). Similarly, dom(fe) = X ∩ Y = im(fe).

Now, for all +−r ∈ X ∩ Y, we have (+−r)(ef) = ((+−r)e)f = (+−r)f = +−r. Similarly,

(+−r)(ef) = +−r. Thus, the idempotents commute. Alternatively, for each partial

signed permutation σ, its σ∗ is clearly unique. Hence, MBn is an inverse monoid.

We deduce Green’s equivalence relations for the monoids of partial signed permu-

tations MBn from the isomorphisms mentioned in Propositions 2.2.18 and 2.2.21;

however, it is also worthwhile to discuss why Green’s equivalence relations hold for

MBn :
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Proposition 6.1.4. Let MBn be the monoids of partial signed permutations. Then,

(i) (σ, τ) ∈ R if and only if dom(σ) = dom(τ);

(ii) (σ, τ) ∈ L if and only if im(σ) = im(τ);

(iii) (σ, τ) ∈ D if and only if there exists γ ∈ MBn, where dom(σ) = dom(γ) and

im(γ) = im(τ), and alternatively, there exists γ′ ∈MBn, with im(γ′) = im(σ),

and dom(γ′) = dom(τ); and

(iv) (σ, τ) ∈ J if and only if |dom(σ)| = |dom(τ)| if and only if |im(σ)| = |im(τ)| .

Proof. (i) Suppose (σ, τ) ∈ R; then, by Proposition 1.1.10(i), there exists γ, ξ ∈
MBn such that σ = τγ and τ = σξ. Thus, in consideration of (6.1), we have

dom(σ) = dom(τγ) ⊆ dom (τ);

that is, dom(σ) ⊆ dom (τ). Similarly, we have dom(τ) ⊆ dom (σ), so dom(σ) =

dom(τ). Conversely, if dom(σ) = dom(τ), then we can write σ as σ = ττ ∗σ because

ττ ∗ is the partial signed identity on dom(τ). Put γ = τ ∗σ, then we obtain a partial

signed permutation γ ∈MBn such that σ = τγ. Using a similar argument, we have

τ = σξ for some ξ ∈MBn. Thus, both σ and τ are R-related.

(ii) It can be proved in the same manner as (i).

(iii) Suppose that (σ, τ) ∈ D; then, by (1.3), there exists γ ∈MBn such that σ R γ

and γ L τ. Hence, using (i) and (ii), we obtain dom(σ) = dom(γ) and im(γ) = im(τ).

The reverse assertion follows in a similar manner.

(iv) Suppose that (σ, τ) ∈ J ; then, by definition both σ and τ generate the same

two-sided ideal; that is, there exist γ1, γ2, ζ1, ζ1 ∈ MBn such that σ = γ1τγ2 and

τ = ζ1σζ2. Consider σ = γ1·(τγ2), and notice that by (6.1), we have dom(γ1·(τγ2)) ⊆
dom(γ1). Moreover, with careful consideration of dom(γ1 · (τγ2)), we have that for

all x ∈ dom(γ1 · (τγ2)),

x ∈ dom(γ1) and xγ1 ∈ dom(τγ2). (6.2)

However, it is also known that dom(τγ2) ⊆ dom(τ). Thus, (6.2) can be rewritten as

follows: for all x ∈ dom(γ1 · (τγ2)),

x ∈ dom(γ1) and xγ1 ∈ dom(τ).

Now, since γ1 is a bijective map and dom(γ1τγ2) ⊆ dom(γ1), the restriction of γ1

into dom(γ1τγ2) induces a one-to-one map into dom(τ); this is illustrated in Figure

6.1.

γ1|dom(γ1τγ2)
: dom(γ1τγ2)

1−1−−→ dom(τ).
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γ
1
|dom(γ

1
τγ

2
)

dom(τγ2) ⊂ dom(τ)

im(γ1τγ2)

τ

γ1

γ
2

Figure 6.1: γ1|dom(γ1τγ2)
is a one-to-one map into dom(τ).

Thus, the injective map between two sets, dom(γ1τγ2) and dom(τ), implies that

|dom(γ1τγ2)| ≤ |dom(τ)| ; (6.3)

that is, |dom(σ)| ≤ |dom(τ)| . Using a similar argument for τ = ζ1σζ2, we acquire

the reverse inequality, and then |dom(σ)| = |dom(τ)| .

Conversely, suppose we have two partial signed permutations σ, τ ∈ MBn, where

σ : X1 −→ Y1, τ : X2 −→ Y2, and |dom(σ)| = |dom(τ)| . Let X1 = {+−x1 , · · · ,+−xk}
and X2 = {+−x′1 , · · · ,+−x

′
k
}. The aim is to show that there exist γ1 , γ2 , ζ1 , ζ2 ∈ MBn

such that σ = γ1τγ2 and τ = ζ1σζ2 . It suffices to show that σ = γ1τγ2 and τ = ζ1σζ2

can then be shown in a similar manner. Since |X1| = |X2| , then there exists a

bijection γ1 : X1 −→ X2 such that (xr)γ1 = x′
r

and (−xr)γ1 = −x′
r

with 1 ≤ r ≤ k.

It also follows that |Y1| = |Y2| as σ and τ are bijections. Consequently, a bijection

must exist between subsets Y1 and Y2. Define a map γ2 as follows:

γ2 : Y2 −→ Y1, where (+−y)γ2 := (+−y)τ ∗γ∗
1
σ.

X
1

Y
1

X2 Y2

τ

τ∗

γ1
γ∗

1

σ

γ
2

Figure 6.2: γ2 is a composition of τ∗ with γ∗
1

and σ.

Clearly, γ2 is a bijective map, as it is a composition of bijections. The only point
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that needs to be verified is the property (−y)γ2 = −(y)γ2 .

(−y)γ2 = (−y)τ∗γ∗
1
σ

= (−y)τ∗(γ∗
1
σ)

= −(y)τ∗γ∗
1
σ

= (−(y)τ∗)γ∗
1
σ

= (−(y)τ∗γ∗
1
)σ

= −(y)τ∗γ∗
1
σ

= −(y)γ2 .

Thus, we obtain γ1τγ2 = σ. Similarly, it can be shown τ = ζ1σζ2 . Hence, σ J τ.

Notice that since σ J τ ⇐⇒ |dom(σ)| = |dom(τ)| and σ, τ are bijections, we have

|im(σ)| = |dom(σ)| = |dom(τ)| = |im(τ)| .

Proposition 6.1.5. On the monoid of partial signed permutations MBn, the rela-

tions D and J coincide.

The last property in Proposition 6.1.4 plays a vital role in describing the J -

classes of the monoid MBn. To determine the J -classes, we need to illuminate the

domains of partial signed permutations and then partition the monoid MBn based

on all possible sizes of these domains. However, upon careful consideration of the

property, which emphasises that whenever +x ∈ dom(σ), −x ∈ dom(σ) as well for

all σ ∈MBn, we deduce that the domain of any partial signed permutation σ always

has an even size. Consequently, the largest domain is 2n, and the smallest domain

is zero. Hence, the J -classes of the monoid MBn can be labelled in the following

manner:

J0 , J2 , . . . , J2k
, . . . , J2n−2 , J2n , (6.4)

where J0 indicates that the J -class consists of the zero partial signed permutation,

and J
2k

indicates that the J -class consists of all partial signed permutations σ ∈
MBn whose domains are subsets X ⊂ [+−n] with size 2k which satisfy the following

property: for all x ∈ X,−x ∈ X. Further, by the J -class labelling listed in (6.4),

it is clear that the number of all J -classes of MBn is n+ 1, beginning with J0 and

ending with J2n . Notice that if σ ∈ J
2k
, then σ is a bijection between subsets of [+−n]

with the same size 2k; that is,

|dom(σ)| = |im(σ)| = 2k.

Therefore, the sizes of the σ images are also even.

Now, in view of the coincidence of the relations J and D, the J -class J
2k

can be

visualised as an eggbox. In addition, since MBn is an inverse monoid, each J -class
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J
2k

consists of equal numbers of rows and columns by Proposition 1.2.14. Recall

that the rows of an eggbox are R-classes and its columns are L-classes. However,

since any two partial signed permutations σ, τ are R-related if and only if they

have the same domain, then all partial signed permutations placed in an R-class

must have the same domain. This allows us to label the rows of an eggbox J
2k

by all possible domains of σ with size 2k. In other words, the rows of J
2k

can be

labelled with all subsets of X ⊆ [+−n] with size 2k. Similarly, as two partial signed

permutations γ and ζ are L-related if and only if they have the same images, it

follows that all partial signed permutations located in an L-class have the same

images. Consequently, we can label the columns of J
2k

by all possible images of γ

with size 2k. In other words, the columns of J
2k

can be labelled with all subsets

Y ⊆ [+−n] with size 2k.

However, the following question needs to be raised: how many rows/columns

are there in the J -class J
2k

? In order to answer this enquiry, we need to pay close

attention to the domain of any partial signed permutation σ ∈MBn. As the domain

of σ is a subset of [+−n] with size 2k such that whenever x ∈ dom(σ), −x ∈ dom(σ) as

well, let dom(σ) = X = {+−x1, · · · ,+−xk}. Recall the property (−xr)σ = −(xr)σ for

all 1 ≤ r ≤ k, which says that wherever xr goes under the action of σ, the negative

of xr will be its mirror image. In other words, the negatives of all xr numbers

will be permuted by σ in the same manner that their positives xr are permuted

by σ. Thus, all we need to be wary of is selecting all possible subsets {x1, · · · , xk}
of [+n] = {1, · · · , n} with size k and then consider their corresponding negatives.

This implies that we consider
(
n
k

)
subsets of [+n] of size k, and by considering their

negatives, we have
(
n
k

)
subsets of [+−n] of size 2k labelling the rows and columns of

the J -class J
2k
. Hence, we have

(
n
k

)
rows and

(
n
k

)
columns for the J -class J

2k
.

As indicated in Chapter 1, each row intersects column, thereby creating cells

called H-classes, and there is only one H-class in each row and column contain-

ing a unique idempotent, since MBn is an inverse monoid. Further, we know

by Observation 6.1.3 that an idempotent f ∈ J
2k

is a partial signed identity on

X = {+−x1, · · · ,+−xk}; f fixes X point-wise and it is undefined in [+−n] \X.

x1 x21 xk n

−x1 −x2−1 −xk −n

f =

Figure 6.3: Idempotent f belongs to J2k .

As dom(f) = X = im(f), this suggests how a maximal subgroup Gf in J
2k

can

be described. It is indeed an H-class in which its domain and image are the same;

that is,
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Gf = {σ : X
bij−−→ X : X ⊆ [+−n], where |X| = 2k and (−i)σ = −(i)σ}. (6.5)

In view of Definition 3.3.1, it is evident that a maximal subgroup Gf is isomorphic

to the signed permutation group Bk. We rearrange the rows and columns of the

J -class J
2k

in such a manner that all maximal subgroups appear in the diagonal

of the J
2k
. After doing so,

(
n
k

)
maximal subgroups appear in J

2k
, and each one

is isomorphic to the others. Hence, it is reasonable to only consider a maximal

subgroup representative for each J -class J
2k

of MBn, where 0 ≤ k ≤ n.

The following proposition suggests how to order the J -classes of MBn.

Proposition 6.1.6. J
2k
≤ J

2l
if and only if 2k ≤ 2l for all 0 ≤ k, l ≤ n.

Proof. Suppose τ ∈ J
2k
, σ ∈ J

2l
and J

2k
≤ J

2l
. We want to show that 2k ≤ 2l. Since

τ ∈ J
2k
, τ is a partial signed map whose domain is of the size 2k. Set S1 = MBn,

and consider the set S1τS1. Recall that by (6.3), we have |dom(γ1τγ2)| ≤ |dom(τ)|
for all γ1 , γ2 ∈ S1. Hence, the set S1τS1 may be described in the following manner:

S1τS1 = {γ1τγ2 : |dom(γ1τγ2)| ≤ 2k, for all γ1 , γ2 ∈ S1}.

Similarly, since σ ∈ J
2l
, σ is a partial signed map whose domain is of the size 2l,

then,

S1σS1 = {γ1σγ2 : |dom(γ1σγ2)| ≤ 2l, for all γ1 , γ2 ∈ S1}.

However, since J
2k
≤ J

2l
, then S1τS1 ⊆ S1σS1, and this implies 2k ≤ 2l. The other

direction easily follows from the assumption.

The preceding proposition accounts for the fact that all the J -classes of MBn

are linearly (totally) ordered by the sizes of the domains; thus, we can visualise all

J -classes J
2k

of MBn where 0 ≤ k ≤ n as a chain beginning with J0 and ending

with J2n as follows:
J2(n)

J2(k)

J2(2)

J2(1)

J0

Figure 6.4: All J -classes of MBn.
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Example 6.1.7. Let n = 3. The following diagram illustrates the J -classes of the

monoid of partial signed permutations MB3 .

J2(0)
0

J2(1)

{+−1} {+−2} {+−3}

{+−1}

{+−2}

{+−3}

=B1

∼=B1

∼=B1

J2(2)

{+−1,+−2} {+−1,+−3} {+−2,+−3}

{+−1,+−2}

{+−1,+−3}

{+−2,+−3}

=B2

∼=B2

∼=B2

J2(3)

{+−1,+−2,+−3}

{+−1,+−2,+−3} =B3

Remark 6.1.8. Consider an idempotent f ∈ J
2k
, as illustrated in Figure 6.3, and

the R-class of f. Notice that if σ ∈ R
f
, then dom(σ) = X = dom(f). Thus, σ can

be written as σ : X −→ Y where Y ⊆ [+−n] with |Y | = 2k. For all τ ∈ MBn, σ · τ
belongs to R

f
requires that

dom(σ · τ) = dom(f) = X.

Now, observe that

dom(σ · τ) = (im σ ∩ dom(τ))σ∗

X = (Y ∩ dom(τ))σ∗. (6.6)

By multiplying both sides of (6.6) from the right by σ, we obtain
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Xσ = (Y ∩ dom(τ)) σ∗σ

Y = (Y ∩ dom(τ))id
Y
.

Y = Y ∩ dom(τ).

Hence, Y ⊆ dom(τ). Conversely, if Y ⊆ dom(τ), then it is straightforward that

σ · τ ∈ R
f
. Hence,

σ · τ ∈ R
f

if and only if Y ⊆ dom(τ). (6.7)

All the propositions and discussions above contribute to a better understanding

of the structure of all J -classes of the monoid of partial signed maps MBn.

Theorem 5.1.10 shows how a partial map belonging to In can be expressed

uniquely as a product of links and disjoint cycles. Let us end this section by proving

the corresponding assertion in the context of the monoids of partial signed permu-

tations MBn. As a first step towards investigating the decomposition of a partial

signed permutation, let σ ∈MBn and σ : X
bij−−→ Y, where X = {+−x1, · · · ,+−xk} and

Y = {+−y1, · · · ,+−yk} are subsets of [+−n] and 1 ≤ k ≤ n.

For notational simplicity, we define σ as (+−xr)σ = +−yr for all 1 ≤ r ≤ k. Thus,

it is obvious that for all xr, (−xr)σ = −(xr)σ.

1

−1

−xk

−yk

−x2 −x1

−y2 −y1

x1 x2

y1 y2

xk

yk

n

−n

σ =

Now consider the following cases:

Case 1. If X = Y, then σ is a signed permutation lying in BX and by Proposition

3.3.5, it can be expressed uniquely as a disjoint product of positive and negative

cycles.

Case 2. If X 6= Y and X ∩ Y 6= ∅, then choose any xr ∈ X \X ∩ Y, and consider

its image under σ. Now, either (xr)σ belongs to X ∩ Y, or it belongs to Y \X ∩ Y.
Observe that (xr)σ can never be in X \X ∩ Y as Y is the set of images of σ. Thus,

we have two sub-cases.

(I) If (xr)σ ∈ X ∩ Y ; that is (xr)σ ∈ X. Let (xr)σ := xr+1, and keep taking the

images under σ as long as the images remain in X ∩Y. However, as X ∩Y is a finite

subset of [+−n] containing distinct elements and σ is a bijection, we eventually end

up obtaining element ys ∈ Y \ X ∩ Y. Hence, a sequence of numbers is produced
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from [+−n], in which the first number is xr ∈ X \ X ∩ Y and the last number is

y
l
∈ Y \X ∩ Y :

xr
σ−−→ xr+1

σ−−→ xr+2
σ−−→ · · · σ−−→ xs

σ−−→ y
l
. (6.8)

Let us denote such a sequence by [xr, xr+1, . . . , xs, yl ]. Observe that the first num-

ber xr in a sequence is only in dom(σ) but not in im(σ). However, the last number

y
l

is only in im(σ) but not in dom(σ). Meanwhile, all other numbers in between

belong to both dom(σ) and im(σ).

Claim: −xr also belongs to X \X ∩ Y.

Proof. We know necessarily that −xr ∈ X. Suppose, with the aim of obtaining a

contradiction, that −xr ∈ Y ; then, xr must belong to Y because whenever −xr ∈
Y, xr must be in Y as well. Thus, we have xr /∈ X \X ∩ Y, which contradicts our

choice that xr ∈ X \X ∩ Y. Hence, −xr /∈ Y, so −xr must be in X \X ∩ Y.

Now, by taking an image of −xr under σ and considering the images in (6.8) as well

as the property that for all xr, (−xr)σ = −(xr)σ, we can obtain another sequence:

[−xr,−xr+1, . . . ,−xs,−yl ].

Observe that the first number −xr of the sequence is only in dom(σ) and not in

im(σ) and all other numbers except the last one belong to both dom(σ) and im(σ).

We only need to verify that the last number −y
l

of the sequence belongs to im(σ)

but not to dom(σ). Since y
l
∈ Y, −y

l
∈ Y as well. Suppose, with the aim of

a contradiction, that −y
l
∈ X, then y

l
∈ X. Thus, we attain a contradiction as

y
l
∈ Y \X ∩ Y. Hence, −y

l
/∈ X and then −y

l
∈ Y \X ∩ Y ; that is, it only belongs

to im(σ) and not to dom(σ). Such a pair of sequences,

[xr, xr+1, . . . , xs, yl ][−xr,−xr+1, . . . ,−xs,−yl ],

is called a positive link.

(II) If (xr)σ ∈ Y \X ∩Y, then we obtain a sequence [xr, yr] of length two, where

yr = (xr)σ. Thus, by the same argument used in (I), we also acquire the second

sequence [−xr,−yr]. Hence, we have a two-element-positive link [xr, yr][−xr,−yr].

In both sub-cases (I and II), if the set X \X ∩ Y has more than one element, then

we can produce another positive link. We persist going through the entire procedure

of producing positive links until the set X \ X ∩ Y vanishes. Notice that if there

exist some xr ∈ X ∩ Y that are not contained in any produced positive link, it

means that their images under σ never belong to Y \X ∩ Y, and their images must
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belong to X ∩ Y. In fact, such numbers, which remain at the intersection X ∩ Y
after considering their images and are not contained in produced positive links, will

produce positive or negative cycles. In other words, the elements of the intersection

X ∩Y either appear in positive links or appear as signed permutations that can also

be written as disjoint products of positive or negative cycles, as stated in Proposition

3.3.5.

Case 3. If X 6= Y and X ∩ Y = ∅, then the image of any xr ∈ X under σ will

only be in Y. Hence, we obtain a two-element-positive link [xr, yr][−xr,−yr] for all

xr ∈ X. Importantly, the virtue of the preceding steps guarantees that the above

decomposition is unique.

We recapitulate these observations in a theorem, described below

Theorem 6.1.9. Every partial signed permutation in MBn may be expressed

uniquely as a product of positive links and disjoint positive and negative cycles.

Observation 6.1.10. In view of the attribute of the produced sequence in (6.8),

we confirm that a negative link does not exist; this is because if there were such a

link, then there would be a sequence of the following form:

[xr, xr+1, . . . , yl , −xr, −xr+1, . . . , −yl ].

Observe that all numbers occurring in the above sequence, including y
l
, belong to

dom(σ), except for the last number −y
l
, which belongs to im(σ) and not to dom(σ).

Thus, we obtain a contradiction with the fact that whenever y
l
∈ dom(σ), −y

l
must

be in dom(σ) as well. Hence, no such link exists.

Example 6.1.11. Let α ∈MB7 such that α : X
bij−−→ Y, whereX = {+−1,+−3,+−4,+−6}

and Y = {+−1,+−2,+−4,+−6}, and α is defined in the following manner:

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7

α =

Observe that X ∩ Y = {+−1,+−4,+−6} and X \ X ∩ Y = {+−3}; note also that

Y \X ∩ Y = {+−2}. Hence, α can be decomposed into a positive link and a positive

cycle, as follows.

[3, 1,−2][−3,−1, 2](4, 6)(−4,−6).
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6.2 The Specht module for the monoids of partial

signed permutations MBn

This section examines explicit accounts of irreducible representations over the com-

plex field of the monoids of partial signed permutations MBn, which draw on the

combinatorial objects referred to as Young tableaux. The Clifford−Munn corre-

spondence is the main way in which to achieve this. The key starting point is to

examine the irreducible representations of the maximuml subgroups Gi which con-

stitute signed permutations subgroups Bk of Bn where (k ≤ n).

Induction is the main tool utilised for turning irreducible representations of these

maximal subgroups into irreducible representations of the monoid MBn. This ap-

proach is completely analogous to the one which was outlined in Section 5.2, although

the inputs and outputs in each case are different. At the same time, we give some

examples of Specht modules for the monoid of partial signed permutations MB3.

Consider the J -classes J
2k

of MBn where 0 ≤ k ≤ n. Recall from Section 4.2.2

that for each J -class J
2k

of MBn, if we choose an idempotent f ∈ J
2k

and consider

the maximal subgroup Gf , then the induction of an irreducible representation of

Gf into MBn results in such an irreducible representation of MBn. In the following

account, we will pave the way to go through this process in detail:

Fix an idempotent f ∈ J
2k

; this means that f is a partial signed identity on X that

fixes X point-wise, and it is undefined in [+−n] \X, where X ⊆ [+−n] with |X| = 2k.

(r)f =

r r ∈ X, X ⊆ [+−n],

undefined otherwise.

Consider Rf as the R-class of f, to which the idempotent f belongs. Re-

call that the maximal subgroup Gf is isomorphic to the signed permutation sub-

groups Bk of Bn. Because of the isomorphism and notational simplicity, consider

X = {+−1, . . . ,+−k}. Recall from Section 3.3 that the irreducible representations of

Bk over the complex field are parametrised by the complementary partitions (λ, µ)

of k.

Fix (λ, µ) ` k and let t be a Young tableau of shape (λ, µ), with entries from

X = {+−1, . . . ,+−k}. Thus, t is a double Young diagram (tλ, tµ), where the ij-th

entries xz(i, j) belong to X, and z = λ or z = µ and satisfies the condition that, for

all x ∈ X, either x or −x, but not both, occurs in t. Consider M (λ,µ) the C-vector
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space with basis the distinct (λ, µ)-tabloids {t}; that is,

M (λ,µ) = C-[{t1} , . . . , {tm}] (6.9)

where {tr} with 1 ≤ r ≤ m is a complete list of distinct (λ, µ)-tabloids. Recall from

Section 3.3 that M (λ,µ) is a reducible representation of Bk. Observe that inducing

M (λ,µ) into MBn results in a representation of the monoid of partial signed permu-

tation MBn, which is also reducible, as we will see below. Indeed, the induction

process requires the following steps:

(a) Fix a representation M (λ,µ) of Bk. Take a representative a
Y

of each H-class of

the R-class of f, considering the idempotent f as representative of the H-class

in which Bk is placed.

X

X

Gf
∼= Bk . . .

Y

a
Y

f = a
X

Rf

Z

a
Z

Henceforth, we will fix the following choice for a
Y

: a
Y

is a partial signed map

with the domain X = [+−k] and image Y = {+−y1
, . . . ,+−yk}, where

−y
k
< · · · < −y2 < −y1 < y1 < y2 < · · · < y

k
, (6.10)

and Y ⊆ [+−n], with |Y | = 2k. In addition,

(x)a
Y

=


yx x ∈ X and x > 0,

−y−x x ∈ X and x < 0,

undefined otherwise.

(6.11)

In fact, a representative a
Y

for an H-class labelled by Y can be illustrated in

the following manner:

−n

−n

−k

−y
k

−1−2

−y2 −y1

1

y1

2

y2

k

y
k

n

−n

a
Y

=

The above illustration of such a partial signed map a
Y

ensures the satisfaction

of the property (−x)a
Y

= −(x)a
Y
, where x ∈ X. Let us define the action of a

partial signed map b ∈MBn on any (λ, µ)-Young tableau t as follows:

t . b =

xz(i, j) · b = xbz(i, j), if xz(i, j) ∈ dom(b) for all i, j and z = λ or z = µ

0, otherwise
(6.12)
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The only property that needs to be verified is that for all entries x ∈ t, only

(x)b or −(x)b occurs in (λ, µ)-Young tableau t · b. Suppose, with the aim of

a contradiction, that there were x ∈ t such that (x)b and −(x)b occurred

simultaneously in tb. Then, we would have (−x)b ∈ tb as (−x)b = −(x)b, and

this requires that −x ∈ t. Hence, we obtain a contradiction with the fact that

as long as x ∈ t, −x /∈ t.

In particular, since the entries of tr belong to X, if we apply a partial signed

map a
Y

to tr, we obtain a (λ, µ)-Young tableau tr
Y

:= tr · a
Y

where the entries

are in Y. In other words, the entries of a (λ, µ)-Young tableau tr
Y

are precisely

(x)a
Y

where x is an element of X appearing in tr.

tr
Y

=


...

...
.
.
.

,

...

xa
Y
...

.

.

.


It is also worthwhile pointing out an alternative description of (λ, µ)-tableau

tr
Y
. If t

r
= (t

r

λ, t
r

µ) is a (λ, µ)-tableau where the ij-th entries xz(i, j) belong to

X, and z = λ or z = µ, then, a tableau tr
Y

of shape (λ, µ) is a double Young

diagram ((t
r

λ)Y , (t
r

µ)
Y

) where

(t
r

λ)Y := a tableau of shape λ whose entries are xλ(i, j) · aY ,

(t
r

µ)
Y

:= a tableau of shape µ whose entries are xµ(i, j) · a
Y

Let us now draw special attention to some definitions that contribute to un-

derstanding the upcoming steps as well as the analogues of the Specht module

for the monoid of partial signed permutations MBn.

Definition 6.2.1. Fix (λ, µ) ` k, where 0 ≤ k ≤ n. Let tr
Y

be a (λ, µ)-Young

tableau, where the entries are xz(i, j) · aY and z = λ or z = µ as well as

Y ⊆ [+−n] with |Y | = 2k. Then, the row group Rtr
Y

is a Young subgroup of a

maximal subgroup B
Y

that preserves the rows of tr
Y

and may change the signs

of the entries of (t
r

µ)
Y

; that is,

Rtr
Y

=
{
σ ∈ BY : (xλ(i, j)aY )σ = xλ(i, p)aY ,

(xµ(i, j)aY )σ = +−xµ(i, q)aY , for some p and q
}
.

Notice that what we meant by the possibility of changing the signs of the

entries of (t
r

µ)
Y

is that a row group Rtr
Y

contains some signed permutations σ

that may change the sign of each individual entry of (t
r

µ)
Y

and leave the other
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ones unchanged. Hence, a signed permutation σ does not necessarily have to

change the signs of all entries in the (t
r

µ)
Y

at once to be an element in Rtr
Y
.

Similarly, the column group Ctr
Y

is defined in the following manner;

Definition 6.2.2. Fix (λ, µ) ` k, where 0 ≤ k ≤ n. Let tr
Y

be a (λ, µ)-Young

tableau where the entries are xz(i, j) · aY and z = λ or z = µ as well as

Y ⊆ [+−n] with |Y | = 2k. Then, the column group Ctr
Y

is a Young subgroup of

B
Y

that preserves the columns of tr
Y

and may change the sign of the entries of

(t
r

λ)Y ; that is,

Ctr
Y

=
{
τ ∈ BY : (xλ(i, j)aY )τ = +− xλ(p, j)aY ,

(xµ(i, j)aY )τ = xµ(q, j)aY , for some p and q
}
.

Similar comments regarding sign change apply to the column group Ctr
Y

as

do to the row group Rtr
Y
. Observe that both Rtr

Y
and Ctr

Y
are subgroups of

a maximal subgroup BY in the J -class labelled by 2k. Hence, both Rtr
Y

and

Ctr
Y

are placed on the diagonal H-class labelled by Y.

J2k

Y

Y
Ctr
Y

BY

Figure 6.5: Column group Ctr
Y

placed in the H-class labelled by Y.

It is also significant to observe that not all the elements of MBn that preserve

the columns of tr
Y

and may change the sign of the entries of (t
r

λ)Y contained in

Ctr
Y
. For instance, if k 6= n, we may have a signed permutation τ ∈ Bn ⊂MBn

that preserves the columns of tr
Y

and may change the sign of the entries of (t
r

λ)Y ;

however clearly, τ /∈ Ctr
Y

as Ctr
Y

is a subgroup of B
Y

with |Y | = 2k.

Let us now proceed to the induction process:

(b) Consider a copy of M (λ,µ) for each H-class, as follows: let M
(λ,µ)

Y
be a copy

of M (λ,µ) corresponding to an H-class where a
Y

is its representative. The

approach to constructing such a copy M
(λ,µ)

Y
is that for each basis element

{tr} ∈ M (λ,µ) presented in (6.9), where 1 ≤ r ≤ m, let {tr
Y
} := {tr · a

Y
} be a
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tabloid in M
(λ,µ)

Y
. Note that a tabloid {tr

Y
} can also be described as the orbit of

tr
Y

under the row group Rtr
Y

. Further, M
(λ,µ)

Y
is defined as the C-vector space

with basis the (λ, µ)-tabloids {tr
Y
}. It should be noted that the entries of any

basis vector (λ, µ)-tabloid {tr
Y
} of M

(λ,µ)

Y
are elements from Y, and whenever a

subset Y is altered to another subset Z = {+−z1 , . . . , +−zk} of [+−n], we acquire

another copy of M (λ,µ) corresponding to another H-class. Since M
(λ,µ)

Y
is a

copy of M (λ,µ), they all have the same dimension.

(c) Consider all the copies M
(λ,µ)

Y
, where Y ⊆ [+−n] with |Y | = 2k, and define the

following vector space:

M (λ,µ) ↑MBn =
⊕
Y

M
(λ,µ)

Y
. (6.13)

Note that the dimension of the direct sum is the sum of the dimensions of each

M
(λ,µ)

Y
; that is,

dim
⊕
Y

M
(λ,µ)

Y
=
∑
Y

dim M
(λ,µ)

Y
=

(
n

k

)
· dim M

(λ,µ)

Y
=

(
n

k

)
· dim M (λ,µ),

since there are
(
n
k

)
subsets Y of [+−n] where |Y | = 2k, with the property that,

whenever y ∈ Y, −y ∈ Y and M (λ,µ) ∼= M
(λ,µ)

Y
.

(d) Define the action of MBn on M (λ,µ) ↑ MBn in the following manner: for all

b ∈MBn and any basis vector {tr
Y
} ∈M (λ,µ)

Y
,

{tr
Y
} · b =

has ij-th entries xz(i, j)(aY · b) if a
Y
· b ∈ Rf ,

0 otherwise,
(6.14)

where z = λ or z = µ. In view of the result presented in (6.7), a
Y
· b belongs

to R
f

if and only if Y ⊆ dom(b). Hence, the above formula can be elaborated

in the following manner:

{tr
Y
} · b =

has ij-th entries xz(i, j)(aY · b) if Y ⊆ dom(b),

0 otherwise,
(6.15)

In order to show that the above action is well-defined, suppose that {tr
Y
} and

{s
Y
} are row-related. With a careful consideration of the row group Rtr

Y
, we

note that {tr
Y
} = {s

Y
} requires that the rows’ contents Zi of both (t

r

λ)Y and

(s
λ
)
Y

are identical. However, the rows’ contents of (t
r

µ)
Y

and (sµ)
Y

can be

identified as follows:

The entries of each i-th row of (t
r

µ)
Y

can be split up into disjoint union sets
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Yi ∪Wi; where set Yi contains numbers that are identical to certain numbers

in the i-th row of (sµ)
Y

and set Wi contains all the remaining numbers such

that their signs are changed in the corresponding i-th row in (sµ)
Y
.− ,

Y1 ∪W1
...

Yi ∪Wi

 = {−, (trµ)
Y
} = {−, (sµ)

Y
} =

− ,

Y1 ∪ (−W1)
...

Yi ∪ (−Wi)


Now, if Y ⊆ dom(b), then applying b ∈MBn to both tabloids requires applying

b to the rows’ contents of (t
r

λ)Y and (s
λ
)
Y

as well as the rows’ contents of (t
r

µ)
Y

and (sµ)
Y
. In the first case, as the rows’ entries of (t

r

λ)Y and (s
λ
)
Y

are identical,

the above action is well-defined as for the symmetric inverse monoid In [see

(5.11)]. Hence, it remains to verify that the MBn action is also well-defined

for the rows’ contents of (t
r

µ)
Y

and (sµ)
Y
. Notice that applying b to each i-th

row of (t
r

µ)
Y

implies that

(Yi ∪Wi)b = Yib∪Wib = Y ′ ∪W [Put Y ′ = Yib and W = Wib]. (6.16)

However, applying b to each i-th row of (sµ)
Y

yields that

(Yi ∪ (−Wi))b = Yib∪ (−Wi)b = Yib∪ (−(Wib)) = Y ′ ∪ (−W ). (6.17)

Thus, by comparing equations (6.16) and (6.17), it is clear that each row of

(t
r

µ)
Y
·b splits up into disjoint union sets Y ′∪W, where one set is identical to its

corresponding in (sµ)
Y
· b and the other set is the negative of its corresponding

in (sµ)
Y
· b.

{−, (trµ)
Y
} · b =

− ,

Y1b ∪W1b
.
.
.

Yib ∪Wib

 = {−, (trµ)
Y
b}

{−, (sµ)
Y
} · b =

− ,

Y1b ∪ −(W1)b
.
.
.

Yib ∪ −(Wi)b

 = {−, (sµ)
Y
b}

In other words, both {tr
Y
} · b and {s

Y
} · b represent the same tabloid; hence,

the action is well-defined.

{tr
Y
} · b = {s

Y
} · b (6.18)

Observe that as a
Y
· b ∈ Rf , it is reasonable to indicate to which H-class of
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Rf that a
Y
· b precisely belongs. As a first step towards answering the above

enquiry, let us first find the image of composition a
Y
· b as follows:

im(a
Y
· b) = (im a

Y
∩ dom(b))b

= (Y ∩ dom(b))b

= Y b. [As Y ⊆ dom(b)]

Therefore, if a
Y
·b ∈ Rf , then a

Y
·b has the domain X and image Y b. However,

since Y ⊆ [+−n] has |Y | = 2k and b is a partial signed map, “a bijection”, then

Y b ⊆ [+−n] has |Y b| = 2k as well. Moreover, a
Y
· b satisfies the property that

(−x)a
Y
· b = −(x)a

Y
· b, as a

Y
· b is a composition of bijections. Hence, a

Y
· b is

a partial signed map that is precisely placed in the H-class of Rf labelled by

Y b. Recall that the representative of the H-class of Rf labelled by Y b is a
Y b
,

which has the domain X and image Y b = {+−y′1 , . . . ,+−y
′
k
}, where

−y′
k
< · · · < −y′

2
< −y′

1
< y′

1
< y′

2
< · · · < y′

k
.

Hence, both partial signed maps, a
Y
· b and a

Y b
, are in the H-class labelled by

Y b, as illustrated in the diagram below.

X

X

Gf ∼= B
K . . .

Y

a
Y

f
Rf

Y b

(a
Y
·b)

a
Y b

Figure 6.6: Place of partial map aY b and partial map aY · b in the Rf .

This raises a concern regarding the relation between a
Y
· b and a

Y b
.

−n

−n

−k

−y′
k

−1−2

−y′2 −y′
1

1

y′
1

2

y′
2

k

y′
k

n

−n

a
Y b

−n

−n

−n

−k

−y
k

−y
2
b

−1−2

−y2

−y
k
b

−y1

y
1
b

1

y1

−y
1
b

2

y2

y
k
b

k

y
k

y
2
b

n

−n

−n

a
Y

b

Figure 6.7: Partial map aY b versus partial map aY · b.

However, in view of Remark 1.1.28, we deduce the existence of a unique signed

permutation g ∈ Bk such that a
Y
· b = g · a

Y b
holds. Thus, if a

Y
· b ∈ Rf , then

the product {tr
Y
} · b has ij-th entries:

xz(i, j)(aY · b) = xz(i, j) · (g · a
Y b

) = (xz(i, j) · g) · a
Y b
, (6.19)

where z = λ or z = µ. On the other hand, {(trg)
Y b
} also has ij-th entries,

(xz(i, j)g)·a
Y b
. Hence, the discussion above allows us to produce an “improved”
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version of (6.14), as follows:

{tr
Y
} · b =

{(trg)
Y b
}, Y ⊆ dom(b), a

Y
· b = g · a

Y b
and g ∈ Bk

0 otherwise,
(6.20)

where tr is a (λ, µ)-tableau that forms a distinct basis element {tr} of M (λ,µ).

Therefore, we now know how MBn acts on the basis vector {tr
Y
} of M

(λ,µ)

Y
for

any Y ⊆ [+−n] such that whenever r ∈ Y, −r ∈ Y as well and |Y | = 2k. In

addition, extending this action linearly illustrates how MBn acts on
⊕
Y

M
(λ,µ)

Y
.

Observation 6.2.3. Since tr is a (λ, µ)-tableau with entries from [+−k] and g ∈ B
k
,

then trg is another (λ, µ)-tableau filled with entries from [+−k]. We also have Y b ⊆
[+−n] with |Y b| = 2k as b is a bijection; thus, {(trg)

Y b
} ∈ M

(λ,µ)

Y b
, where M

(λ,µ)

Y b
is

another summand of M (λ,µ) ↑MBn.

This completes the steps required in the induction process, and all that has been

investigated above can be summarised in the theorem below:

Theorem 6.2.4. Fix (λ, µ) ` k, where 0 ≤ k ≤ n, and consider a representation

M (λ,µ) of a maximal subgroup Bk. Then, M (λ,µ) induces to an MBn representation

M (λ,µ) ↑MBn determined by a vector space

M (λ,µ) ↑MBn =
⊕
Y

M
(λ,µ)

Y
, Y ⊆ [+−n] with |Y | = 2k,

and the action described as follows: For all basis vectors {tr
Y
} of M (λ,µ) ↑MBn and

partial signed permutation b ∈MBn,

{tr
Y
} · b =

{(trg)
Y b
}, Y ⊆ dom(b), a

Y
· b = g · a

Y b
and g ∈ Bk

0 otherwise,

where tr is a (λ, µ)-tableau that forms a distinct basis element {tr} of M (λ,µ).

Example 6.2.5. Let k = 2 and n = 3. Fix the complementary partition (λ, µ) =

((1), (1)) ` 2. We know from Example 3.3.41 that

M ((1),(1)) = C-
[{(

1 , 2

)}
,
{(
−1 , −2

)}
,
{(

2 , 1

)}
,
{(
−2 , −1

)}]
.

Recall that the signed permutation group

B2 = {id, (1,−1), (2,−2), (1,−1)(2,−2), (1, 2)(−1,−2), (1,−2)(−1, 2), (1, 2,−1,−2), (1,−2,−1, 2)},

and notice that M ((1),(1)) is a representation of the signed permutation group B2.

Fix an idempotent f ∈ J2(2), where
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(x)f =

x x ∈ {+−1,+−2},

undefined otherwise.

Consider the J2(2)-class and the R-class of f “ Rf” as shown in Figure 6.8. Now,

J2(0)

J2(2)

Y1={+−1,+−2} Y2={+−1,+−3} Y3={+−2,+−3}

{+−1,+−2}

{+−1,+−3}

{+−2,+−3}

Gf∼=B2

f=a
Y1

a
Y
2

a
Y
3 Rf

J2(3)

Figure 6.8: J2(2)-class and R-class of idempotent f with representatives aY
i
.

select the representatives for each H-class in Rf to be as illustrated in Figure 6.9.

−3

−3

−1 1

1

−2

−1−2

2

2

3

3

aY
1

=

−3

−3

−1 1

1

−2

−1−2

2

2

3

3

aY
2

=

−3

−3

−1 1

1

−2

−1−2

2

2

3

3

aY
3

=

Figure 6.9: Representatives of H-classes of Rf .

Thus, by utilising the above representatives for eachH-class, we obtain the following

copies of M ((1),(1)) :

M ((1),(1))
Y1

= C-
[{(

1 , 2

)}
,
{(
−1 , −2

)}
,
{(

2 , 1

)}
,
{(
−2 , −1

)}]
.

M ((1),(1))
Y2

= C-
[{(

1 , 3

)}
,
{(
−1 , −3

)}
,
{(

3 , 1

)}
,
{(
−3 , −1

)}]
.

M ((1),(1))
Y3

= C-
[{(

2 , 3

)}
,
{(
−2 , −3

)}
,
{(

3 , 2

)}
,
{(
−3 , −2

)}]
.

Thus,

M ((1),(1)) ↑MB3 = C-
[ [{(

1 , 2

)}
,

{(
−1 ,−2

)}
,

{(
2 , 1

)}
,

{(
−2 ,−1

)}]⊕
[{(

1 , 3

)}
,

{(
−1 ,−3

)}
,

{(
3 , 1

)}
,

{(
−3 ,−1

)}]⊕
[{(

2 , 3

)}
,

{(
−2 ,−3

)}
,

{(
3 , 2

)}
,

{(
−3 ,−2

)}] ]
.

Observe that the Clifford-Munn Theorem only guarantees correspondence be-

tween irreducible representations of maximal subgroups and irreducible representa-

tions of semigroups. Although M (λ,µ) is reducible, we induce it to obtain the sense

of how to present the basis vector of this module and how MBn acts on it. However,
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we aim to induce up S(λ,µ) the Specht module for Bk where 0 ≤ k ≤ n to MBn, as

it is the irreducible module for such a maximal subgroup Bk.

In view of the action presented in (6.15), the restriction of the MBn action to

the maximal subgroup B
Y

plays a vital role in considering the following definition.

This definition is a crucial assertion that we require before we resume the induction

process to acquire the Specht module for MBn.

Definition 6.2.6. Let (λ, µ) ` k, where 0 ≤ k ≤ n, and Y ⊆ [+−n] with |Y | = 2k.

Fix any (λ, µ)-Young tableau t filled with numbers from [+−k], and then determine

(λ, µ)-tableau t
Y

and define an element et
Y
∈M (λ,µ)

Y
in the following manner:

et
Y

=
∑
τ∈Ct

Y

sgn(τ) {t
Y
}τ. (6.21)

Call such an element et
Y

a polytabloid which is determined by t and Y.

Observe that for all τ ∈ Ct
Y

, the sgn(τ) is defined as the sign function of the

maximal subgroup B
Y
. If t

Y
is a standard (λ, µ)-tableau, then we call et

Y
a standard

(λ, µ)-polytabloid associated with the (λ, µ)-tableau t
Y
. Let us now illustrate an

example of how the vector et
Y3

of M
((1),(1))

Y3
is identified.

Example 6.2.7. As shown in Example 6.2.5, let k = 2 and n = 3. Fix the comple-

mentary partition ((1), (1)) ` 2 and select the following ((1), (1))-Young tableau:

t =
(

1 , 2

)
∈ Y ((1),(1))

.

Choose Y3 = {+−2,+−3} ⊂ [+−3] and consider the representative a
Y3

as illustrated in

Example 6.2.5. Let us now determine the ((1), (1))-Young tableau t
Y3

as follows:

t
Y3

=
(

1 , 2

)
· a

Y3
=
(

2 , 3

)
.

Note that the column group Ct
Y3

= {id = (2)(−2)(3)(−3), (2,−2)}. Hence, the

polytabloid et
Y3

associated with the ((1), (1))-Young tableau t
Y3

can be identified by

et
Y3

=
∑

τ∈Ct
Y3

sgn(τ)
{(

2 , 3

)}
τ

= +
{(

2 , 3

)}
−
{(
−2 , 3

)}
∈M ((1),(1))

Y3
.

In view of Definition 3.3.44, for any complementary partition (λ, µ) of k, define

S(λ,µ) to be the subspace of M (λ,µ) spanned by the elements et, where t runs through

all the Young tableaux of shape (λ, µ); that is,

S(λ,µ) = SpanC {et : t is a (λ, µ)-Young tableau filled with numbers from [+−k]}.
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Recall that S(λ,µ) is the Specht module for Bk; that is, it is an irreducible rep-

resentation of the maximal subgroup Bk. Moreover, we know that whenever an

irreducible representation S(λ,µ) of Bk is induced into the monoid of partial signed

permutation MBn, we obtain a corresponding irreducible representation of MBn,

as emphasised in the Clifford-Munn correspondence theorem.

Let us now go through all four steps again to induce S(λ,µ) up to MBn as follows:

(a) Fix an irreducible representation S(λ,µ) of Bk. Take a representative a
Y

of each

H-class of the R-class of f considering the idempotent f representative of the

H-class in which Bk is placed.

(b) Consider a copy of S(λ,µ) for each H-class in the following manner: let S
(λ,µ)

Y

be a copy of S(λ,µ) corresponding to an H-class with a representative a
Y
. In

fact, S
(λ,µ)

Y
is defined as a subspace of M

(λ,µ)

Y
spanned by all the elements et

Y
,

where t runs through all Young tableaux of shape (λ, µ) :

S
(λ,µ)

Y
= SpanC {etY : t is a (λ, µ)-tableau filled with numbers from [+−k]}. (6.22)

Observe that in the spanning set of S
(λ,µ)

Y
, we fixed the subset Y , and we

only let t vary. Observe that whenever we alter a subset Y to another sub-

set Z = {+−z1 , · · · , +−zk} of [+−n], we generate another copy S
(λ,µ)

Z
of S

(λ,µ)

corresponding to the H-class labelled by Z. As S
(λ,µ)

Y
is a copy of S

(λ,µ)
,

both respect their vector space structures. It follows that the spanning set

{et
Y

: t is a Young tableau of shape (λ, µ)} of S
(λ,µ)

Y
is not linearly indepen-

dent; thus, it does not form a basis for S
(λ,µ)

Y
.

Recall that a (λ, µ)-Young tableau t = (tλ, tµ) filled with numbers [+−k] is said

to be standard if all the entries of t are positive and both tλ and tµ are standard.

In view of Theorem 3.3.50, the set {et : t is a (λ, µ)-standard tableau} forms

a basis for S
(λ,µ)

. Hence, if we let the (λ, µ)-Young tableau t in (6.22) run

through all the standard tableaux of shape (λ, µ), and adapt the choise of

a representative a
Y

for an H-class labelled by Y as mentioned in (6.10) and

(6.11), then the set

{et
Y

: t is a standard tableau filled with numbers from [+−k]} (6.23)

forms a basis for S
(λ,µ)

Y
.

Notice that failing to consider the choice of representative a
Y

may not con-

tribute to expressing S
(λ,µ)

Y
in terms of its basis. Thus, our discussion above

provides us an alternative approach to present the copy S
(λ,µ)

Y
of S

(λ,µ)
in terms

of its basis elements. However, we maintain our consideration of the definition

175



of S
(λ,µ)

Y
as it appears in (6.22) for the remainder of this section unless stated

otherwise.

(c) Consider all the copies S
(λ,µ)

Y
where Y ⊆ [+−n] with |Y | = 2k, and define the

following vector space:

S(λ,µ) ↑MBn =
⊕
Y

S
(λ,µ)

Y
. (6.24)

Since S
(λ,µ)

Y
is a subspace ofM

(λ,µ)

Y
for all Y ⊆ [+−n] with |Y | = 2k, thus,

⊕
Y

S
(λ,µ)

Y

is also a subspace of
⊕
Y

M
(λ,µ)

Y
. Observe that as S

(λ,µ)

Y
is a copy of S

(λ,µ)
, the

dimension of each summand S
(λ,µ)

Y
is equal to the dimension of S

(λ,µ)
. Thus,

the dimension of S(λ,µ) ↑MBn can be deduced as follows:

dim S(λ,µ) ↑MBn = dim
⊕
Y

S
(λ,µ)

Y

=
∑
Y

dim S
(λ,µ)

Y

=

(
n

r

)
· dim S

(λ,µ)

, (6.25)

since there are
(
n
k

)
distinct subsets Y of [+−n] in which |Y | = 2k.

The next step in the investigation is to elucidate how the monoid of par-

tial signed permutations MBn acts on the vector space S(λ,µ) ↑ MBn defined

above. However, to describe such an action, we need to consider some as-

sertions and lemmas. Recall from Section 6.1 that every partial signed map

b ∈ MBn may be written uniquely as a product of positive links and disjoint

positive and negative cycles. Furthermore, the last number appearing in a

positive link of b ∈ MBn does not belong to the domain of b and the first

number in a positive link does not belong to the images of b; however, all

other numbers in between are in both the domain and image of b.

Definition 6.2.8. Fix b ∈MBn and let b̃ be the element in the group of units

Bn ⊂MBn determined by altering every positive link in b into a positive cycle.

For instance, let n = 7 and b = [3, 1,−2][−3,−1, 2](4, 6)(−4,−6) ∈ MB7.

Then

b̃ = (3, 1,−2)(−3,−1, 2)(4, 6)(−4,−6).

= (3, 1,−2)(−3,−1, 2)(4, 6)(−4,−6)(5)(−5)(7)(−7) ∈ B7.

Lemma 6.2.9. Fix (λ, µ) ` k, where 0 ≤ k ≤ n, and Y ⊆ [+−n] with |Y | =

2k. Let b ∈ MBn and t
Y

be a (λ, µ)-Young tableau whose entries from Y. If
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Y ⊆ dom(b), then

(1) t
Y
· b = t

Y
· b̃

(2) {t
Y
} · b = {t

Y
} · b̃

(3) et
Y
· b = et

Y
· b̃

Proof. (1) Since t
Y

is a (λ, µ)-Young tableau, then its entries are of the form

xz(i, j)aY with z = λ or z = µ. Let b ∈ MBn, then by Theorem 6.1.9, we can

express b uniquely as a product of positive links and disjoint positive and neg-

ative cycles. If Y ⊆ dom(b), then none of the entries xz(i, j)aY with z = λ or

z = µ of t
Y

appear as the last number in any positive link of b. In other words,

the entries xz(i, j)aY with z = λ or z = µ that occur in tableau t
Y

have the

same image under b as they do under b̃. Hence, (xz(i, j)aY ) b̃ = (xz(i, j)aY ) b

with z = λ or z = µ for all i, j. Thus, (1) holds.

(2) Since Y ⊆ dom b, the entries of {t
Y
} · b are (xz(i, j)aY ) b with z = λ

or z = µ. In view of (6.19), there must exist g ∈ Bk such that a
Y
· b = g · a

Y b

and for all i, j,

xz(i, j) aY b = xz(i, j) g · aY b , (6.26)

where z = λ or z = µ. However, Y b = Y b̃ as Y ⊆ dom(b), and none of the

elements of Y occur as the last numbers in any positive link of b. In other

words, both Y b and Y b̃ label the same H-class, and then the representative

of the H-class determined by these labels must be the same as well; that is,

a
Y b

= a
Y b̃
. Thus, equation (6.26) can be rewritten in the following manner: for

all i, j in {t
Y
} · b,

xz(i, j) aY b = xz(i, j) g · aY b
= xz(i, j) g · aY b̃
= xz(i, j) aY · b̃,

where z = λ or z = µ. Hence, {t
Y
} · b = {t

Y
} · b̃.

(3) Since

et
Y

=
∑
τ∈Ct

Y

sgn(τ) {t
Y
}τ,

each summand {t
Y
τ} of et

Y
is clearly a (λ, µ)-tabloid with entries from Y. Since

Y ⊆ dom(b), then applying b to et
Y

requires applying b to each summand {t
Y
τ}
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of et
Y
. However, using the preceding result, we have {t

Y
τ} · b = {t

Y
τ} · b̃ for

each summand {t
Y
τ} occurring in et

Y
. Hence, et

Y
· b = et

Y
· b̃.

Remark 6.2.10. Fix (λ, µ) ` k, where 0 ≤ k ≤ n, and Y ⊆ [+−n] with

|Y | = 2k. Let t
Y

be a (λ, µ)-Young tableau with entries from Y, and recall

that the column group Ct
Y

is a subgroup of a maximal subgroup B
Y
. In fact,

we can embed a maximal subgroup B
Y

within the group of units Bn of MBn

in the following manner: Define an injective map

τ ∈ B
Y
↪−−→ τ̂ ∈ Bn such that

(r)τ̂ =

(r)τ r ∈ Y,

r otherwise,

and for all −r ∈ Y, we have (−r)τ̂ = (−r)τ = −(r)τ = −(r)τ̂ . It should be

noted that because of the nature of the embedding, both τ ∈ B
Y

and τ̂ ∈ Bn

have the same sign.

Example 6.2.11. Let k = 7 and n = 8, and fix (λ, µ) = ((3, 1), (2, 1)) ` 7.

Choose Y = {+−1, · · · ,+−7} ⊂ [+−8]. In addition, select the ((3, 1), (2, 1))-Young

tableau

t
Y

=
(
−2 1 −4

5
,

7 3

−6

)
.

It is clear that Ct
Y

= 〈(−2, 5)(2,−5), (−2, 2), (5,−5), (1,−1), (−4, 4), (7,−6)(−7, 6)〉.
Notice that the permutation

τ = (−2, 5)(2,−5) (1,−1) (−4, 4) (7,−6)(−7, 6) ∈ Ct
Y
⊂ B

Y
,

and the permutation

τ̂ = (−2, 5)(2,−5) (1,−1) (−4, 4) (7,−6)(−7, 6) (3)(−3) (8)(−8) ∈ B8.

have the same sign as sgn(τ) = (−1)4 = sgn(τ̂).

In view of the preceding remark, we obtain the following lemma.

Lemma 6.2.12. Fix (λ, µ) ` k, where 0 ≤ k ≤ n, and let t
Y

be a (λ, µ)-Young

tableau with entries from Y ⊆ [+−n] where |Y | = 2k. Then, for all π ∈ Bn, we

have

(1) π−1Ct
Y
π = Ct

Y
π.

(2) sgn(π−1τπ) = sgn(τ), ∀ τ ∈ Ct
Y
.
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Proof. (1) The proof is similar to the proof of Proposition 3.3.35. We rephrase

it here using our conventions. Let us show that π−1Ct
Y
π = Ct

Y
π. Recall that

t
Y

= ((tλ)Y , (tµ)
Y

), where

(tλ)Y := a tableau of shape λ whose entries are xλ(i, j) · aY ,

(tµ)
Y

:= a tableau of shape µ whose entries are xµ(i, j) · a
Y

Consider a (λ, µ)-tableau t
Y
π, where xλ(i, j)aY π is the (i, j)-th entry of (tλ)Y π

and xµ(i, j)a
Y
π is the (i, j)-th entry of (tµ)

Y
π. Now for all i, j

σ ∈ Ct
Y
π if and only if

xλ(i, j)aY πσ = +− xλ(p, j)aY π,

xµ(i, j)a
Y
πσ = xµ(q, j)a

Y
π, for some p and q.

This also holds if and only if

xλ(i, j)aY πσ = (+− xλ(p, j)aY )π, [ as− (r)π = (−r)π for all r, r = xλ(p, j)aY ]

xµ(i, j)a
Y
πσ = xµ(q, j)a

Y
π,

This also true if and only if

xλ(i, j)aY πσπ
−1 = +− xλ(p, j)aY ,

xµ(i, j)a
Y
πσπ−1 = xµ(q, j)a

Y
.

This also holds if and only if πσπ−1 ∈ Ct
Y
, as xz(i, j)aY with z = λ or z = µ

are entries in (λ, µ)-tableau t
Y
. Hence, we have Ct

Y
π = π−1Ct

Y
π.

(2) Since Ct
Y

is a subgroup of a maximal subgroup B
Y
, and B

Y
can be viewed

as a subgroup of Bn, as discussed in the above remark, then for all τ ∈ Ct
Y
,

we have

sgn(π−1τπ) = sgn(π−1) sgn(τ) sgn(π)

= sgn(τ),

since sgn(π−1) = sgn(π).

In fact, all what we have investigated above play a vital role in verifying how

MBn acts on S(λ,µ) ↑MBn. Let us now end this section with the the following

lemma, which is considered the last step in the MBn induction process:

Lemma 6.2.13. Fix (λ, µ) ` k, where 0 ≤ k ≤ n, and let t
Y

be a λ-Young

tableau filled with numbers from Y ⊆ [+−n] with |Y | = 2k. Then, for all b ∈
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MBn and et
Y
∈ S(λ,µ) ↑MBn, we have

et
Y
· b =

e
tg

Y b
, if Y ⊆ dom b and a

Y
· b = g · a

Y b
with g ∈ Bk

0 otherwise.
(6.27)

Proof. Suppose that Y ⊆ dom(b); then, using Lemma 6.2.9 (3), we obtain

et
Y
· b = et

Y
· b̃

=
( ∑
τ∈Ct

Y

sgn(τ) {t
Y
}τ
)
· b̃,

=
∑
τ∈Ct

Y

sgn(τ) {t
Y
} τ · b̃,

=
∑
τ∈Ct

Y

sgn(τ) {t
Y
} b̃ b̃

−1

τ b̃, [ b̃ ∈ Bn, and Ct
Y
≤ B

Y
⊆ Bn ]

=
∑
τ∈Ct

Y

sgn(τ) {t
Y
} b̃ (b̃

−1

τ b̃)

=
∑
τ∈Ct

Y

sgn(b̃
−1

τ b̃) {t
Y
} b̃ (b̃

−1

τ b̃), [By Lemma 6.2.12 (2)]

=
∑

ρ∈b̃−1Ct
Y
b̃

sgn(ρ) {t
Y
} b̃ · ρ, [ ρ = b̃

−1

τ b̃ ]

=
∑

ρ∈C(t
Y
·b̃)

sgn(ρ) {t
Y
} b̃ · ρ, [By Lemma 6.2.12 (1)]

=
∑

ρ∈C(t
Y
·b)

sgn(ρ) {t
Y
} b · ρ, [By Lemma 6.2.9 (1) and (2)]

=
∑

ρ∈C(tg)
Y b

sgn(ρ) {(tg)
Y b
} ρ, [By formula (6.20) and as t

Y
· b = (tg)

Y b
]

= e
tg

Y b
.

On the other hand, if Y 6⊆ dom(b), then using formula (6.20), we obtain

{t
Y
} · b = 0; that is, there is at least one entry y of t

Y
that does not belong to

the domain of b. In consequence, the negative of y never belongs to dom(b) as

well; that is −y /∈ dom(b). Now, since

et
Y

=
∑
τ∈Ct

Y

sgn(τ) {t
Y
}τ,

then for each summand {t
Y
τ} of et

Y
, the tableau t

Y
τ has the same entries as

a tableau t
Y

but in a different order, or it may have the entries’ negatives of

(t
Y

)λ. In other words, either the entry y or −y still belongs to these summands.

Thus, by applying b to et
Y
, every summand will be sent to zero under the action

of b. Hence, et
Y
· b = 0.
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Observation 6.2.14. In the formula of Lemma 6.2.13, observe that t is a

(λ, µ)-tableau with entries from X = {+−1, · · · ,+−k} and g ∈ B
k
, then tg is

another (λ, µ)-tableau filled with entries from X. We also have Y b ⊆ [+−n]

with |Y b| = 2k as b is a bijection; thus, etg
Y b
∈ S(λ,µ)

Y b
where S

(λ,µ)

Y b
is a summand

of S(λ,µ) ↑ MBn. In addition, the Clifford-Munn correspondence asserts that

S(λ,µ) ↑ MBn is an irreducible representation for MBn. Moreover, Theorem

3.3.47 tells us that whenever (λ, µ) 6= (λ′, µ′), S(λ,µ) � S(λ′,µ′). Consequently,

S(λ′,µ′) ↑ MBn, and S(λ′,µ′) ↑ MBn represent distinct irreducible representa-

tions for MBn for all (λ, µ) 6= (λ′, µ′).

What we have investigated thus far allows us to make the following assertion:

Theorem 6.2.15. Fix (λ, µ) ` k, where 0 ≤ k ≤ n, and consider the Specht

module S(λ,µ) for the signed permutation groups Bk. Then, S(λ,µ) induces to

an MBn representation S(λ,µ) ↑MBn, called the Specht module for MBn and

determined as follows:

S(λ,µ) ↑MBn =
⊕
Y

S
(λ,µ)

Y
, Y ⊆ [+−n] with |Y | = 2k.

Moreover, for each vector et
Y
∈ S(λ,µ) ↑ MBn and partial signed permutation

b ∈MBn,

et
Y
· b =

e
tg

Y b
, if Y ⊆ dom b and a

Y
· b = g · a

Y b
where g ∈ Bk

0 otherwise.

Example 6.2.16. Let k = 2 and n = 3. Fix the complementary partition (λ, µ) =

((1), (1)) ` 2. Recall from Example 3.3.41 that

Y ((1),(1)) =
{
t1 =

(
1 , 2

)
, t2 =

(
1 , −2

)
, t3 =

(
−1 , −2

)
, t4 =

(
−1 , 2

)
, t5 =

(
2 , 1

)
, t6 =

(
2 , −1

)
, t7 =

(
−2 , 1

)
, t8 =

(
−2 , −1

)}
.

M ((1),(1)) = C-
[{(

1 , 2

)}
,
{(
−1 , −2

)}
,
{(

2 , 1

)}
,
{(
−2 , −1

)}]
.

From Example 3.3.48, we also obtain the Specht module S((1),(1)) for B2 as given

below:

S((1),(1)) = SpanC{et1 , et2 , et3 , et4 , et5 , et6 , et6 , et7 , et8}.

Fix an idempotent f ∈ J2(2), where

(x)f =

x x ∈ {+−1,+−2},

undefined otherwise.

Consider the R-class Rf of f as shown below.
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J2(0)

J2(2)

Y1={+−1,+−2} Y2={+−1,+−3} Y3={+−2,+−3}

{+−1,+−2}

{+−1,+−3}

{+−2,+−3}

Gf∼=B2

f=a
Y
1

a
Y
2

a
Y
3 Rf

J2(3)

Figure 6.10: R-class of idempotent f with representatives aYr
.

Now, select the representatives for each H-class in Rf to be as shown below:

−3

−3

−1 1

1

−2

−1−2

2

2

3

3

aY
1

=

−3

−3

−1 1

1

−2

−1−2

2

2

3

3

aY
2

=

−3

−3

−1 1

1

−2

−1−2

2

2

3

3

aY
3

=

Figure 6.11: Representatives of H-classes of Rf .

Notice that inducing S((1),(1)) into MB3 requires obtaining the copies of S((1),(1)) for

each H-class of Rf using the above representatives. It is clear that considering the

first representative a
Y1

yields

S((1),(1))

Y1

= SpanC{et1Y1
, et2

Y1
, et3

Y1
, et4

Y1
, et5

Y1
, et6

Y1
, et7

Y1
, et8

Y1
}.

= SpanC{et1 , et2 , et3 , et4 , et5 , et6 , et7 , et8}.

Consider the second representative a
Y2
, and let us compute S((1),(1))

Y2

as

t1
Y2

=
(

1 , 3

)
and Ct1

Y2

= {id, (1,−1)}. Thus, et1
Y2

= +
{(

1 , 3

)}
−
{(
−1 , 3

)}
t2
Y2

=
(

1 , −3

)
and Ct2

Y2

= {id, (1,−1)}. Thus, et2
Y2

= +
{(

1 , −3

)}
−
{(
−1 , −3

)}
t3
Y2

=
(
−1 , −3

)
and Ct3

Y2

= {id, (1,−1)}. Thus, et3
Y2

= +
{(
−1 , −3

)}
−
{(

1 , −3

)}
t4
Y2

=
(
−1 , 3

)
and Ct4

Y2

= {id, (1,−1)}. Thus, et4
Y2

= +
{(
−1 , 3

)}
−
{(

1 , 3

)}
t5
Y2

=
(

3 , 1

)
and Ct5

Y2

= {id, (3,−3)}. Thus, et5
Y2

= +
{(

3 , 1

)}
−
{(
−3 , 1

)}
t6
Y2

=
(

3 , −1

)
and Ct6

Y2

= {id, (3,−3)}. Thus, et6
Y2

= +
{(

3 , −1

)}
−
{(
−3 , −1

)}
t7
Y2

=
(
−3 , 1

)
and Ct7

Y2

= {id, (3,−3)}. Thus, et7
Y2

= +
{(
−3 , 1

)}
−
{(

3 , 1

)}
t8
Y2

=
(
−3 , −1

)
and Ct8

Y2

= {id, (3,−3)}. Thus, et8
Y2

= +
{(
−3 , −1

)}
−
{(

3 , −1

)}

Hence, the copy of S((1),(1)) corresponding to the H-class labelled by Y2 is
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S((1),(1))

Y2

= SpanC{et1Y2
, et2

Y2
, et3

Y2
, et4

Y2
, et5

Y2
, et6

Y2
, et7

Y2
, et8

Y2
}.

Consider the last representative a
Y3
, and let us compute S((1),(1))

Y3

as

t1
Y3

=
(

2 , 3

)
and Ct1

Y3

= {id, (2,−2)}. Thus, et1
Y3

= +
{(

2 , 3

)}
−
{(
−2 , 3

)}
t2
Y3

=
(

2 , −3

)
and Ct2

Y3

= {id, (2,−2)}. Thus, et2
Y3

= +
{(

2 , −3

)}
−
{(
−2 , −3

)}
t3
Y3

=
(
−2 , −3

)
and Ct3

Y3

= {id, (2,−2)}. Thus, et3
Y3

= +
{(
−2 , −3

)}
−
{(

2 , −3

)}
t4
Y3

=
(
−2 , 3

)
and Ct4

Y3

= {id, (2,−2)}. Thus, et4
Y3

= +
{(
−2 , 3

)}
−
{(

2 , 3

)}
t5
Y3

=
(

3 , 2

)
and Ct5

Y3

= {id, (3,−3)}. Thus, et5
Y3

= +
{(

3 , 2

)}
−
{(
−3 , 2

)}
t6
Y3

=
(

3 , −2

)
and Ct6

Y3

= {id, (3,−3)}. Thus, et6
Y3

= +
{(

3 , −2

)}
−
{(
−3 , −2

)}
t7
Y3

=
(
−3 , 2

)
and Ct7

Y3

= {id, (3,−3)}. Thus, et7
Y3

= +
{(
−3 , 2

)}
−
{(

3 , 2

)}
t8
Y3

=
(
−3 , −2

)
and Ct8

Y3

= {id, (3,−3)}. Thus, et8
Y3

= +
{(
−3 , −2

)}
−
{(

3 , −2

)}

Thus, the copy of S((1),(1)) corresponding to the H-class labelled by Y3 is

S((1),(1))

Y3

= SpanC{et1Y3
, et2

Y3
, et3

Y3
, et4

Y3
, et5

Y3
, et6

Y3
, et7

Y3
, et8

Y3
}.

Hence, S((1),(1)) ↑MB3 = S((1),(1))

Y1

⊕
S((1),(1))

Y2

⊕
S((1),(1))

Y3

.

It is worthwhile to mention that considering the standard tableaux t1 =
(

1 , 2

)
and

t5 =
(

2 , 1

)
facilitates the acquisition of results. Recall from Example 3.3.51 that the

Specht module S((1),(1)) for B2 can be written using its basis elements, the “standard

polytabloids” {et1 , et5}, as

S((1),(1)) = C-[et1 , et5 ].

Hence, the copies of S((1),(1)) for each H-class of Rf are obtained in the following

manner:

S((1),(1))

Y1

= C-[et1
Y1
, et5

Y1
]

S((1),(1))

Y2

= C-[et1
Y2
, et5

Y2
]

S((1),(1))

Y3

= C-[et1
Y3
, et5

Y3
.]

Therefore,

S((1),(1)) ↑MB3 = S((1),(1))

Y1

⊕
S((1),(1))

Y2

⊕
S((1),(1))

Y3

.

= C-
[

[et1
Y1
, et5

Y1
]
⊕

[et1
Y2
, et5

Y2
]
⊕

[et1
Y3
, et5

Y3
]
]
.
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Chapter 7

Further work on representations of

reflection monoids

The even signed permutation group Be
n [19] (a subgroup of the signed permutation

group Bn of index two) is comparable to Bn in terms of being considered the Weyl

group of type Dn, Coxeter group of type Dn, and reflection group of type Dn. Since

the group has been described in many different ways, its irreducible representations

have also been provided in a range of settings [8, 10, 36, 50]. Nevertheless, the rep-

resentations of the even signed permutation group Be
n do not appear to have been

conveniently characterised in the form of a tableau filled with numbers and, in a

manner, resembling James’ diagrammatic approach delineated by [41]. Thus, it is

suggested that an explicit description of the irreducible representations of Be
n can

be achieved by amending the techniques put forth by Morris and Halicioǧlu [35,37].

It is worthwhile to have investigated the monoid version of the even signed per-

mutation group, known as “the monoid of partial even signed permutations MBe
n”.

According to [19], the maximal subgroups of such a monoid are all signed permuta-

tion groups Bk (k < n) apart from its group of units, which is an even signed permu-

tation group Be
n. Such an observation is useful for future research because, despite

the knowledge possessed regarding the irreducible representations of Bk (k < n), the

difficulty presented by the lack of a convenient description of the irreducible repre-

sentations of Be
n remains. Dealing with this challenge will enable the application of

induction to the irreducible representations of the maximal subgroups in order to

achieve generalised MBe
n irreducible representations.

Further, another relevant research topic is the Coxeter arrangement monoids.

Comprehension of the maximal subgroups of these monoids is necessary although

a difficult problem. Subsequently, the irreducible representations of the Coxeter

arrangement monoids can be obtained through the application of the CMC.
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[65] Ponizovskĭı I. On irreducible matrix semigroups. Semigroup Forum. 1982 Dec;

24(1): 117-148.
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