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Abstract 

Confined rubberised concrete (CRC) was found to be capable of sustaining much 

larger deformations compared to conventional concrete. Therefore, CRC is believed 

to have the potential to be used in deformable structural components. This thesis 

aims to investigate and model the mechanical behaviour of CRC. 

The investigation initially examines conventional concrete and develops the 

methodology to address this issure. The true tri-axial apparatus Mac2T is used to 

simulate passive confinement physically and investigates the concrete loading paths. 

The results show that the loading path of FRP-confined conventional concrete 

overlaps with its failure surface. With passive confinement, conventional concrete 

initially exhibits perfectly plastic up to a lateral strain of 0.008.  A plasticity-based 

material model is proposed for FRP-confined concrete, based on the experimental 

observations.  

The failure mechanism of passively confined rubberised concrete is shown to be 

similar to that of conventional concrete. The loading path of passively confined 

rubberised concrete moves along the failure surface when subjected to 

compressive loads, and it soften when the lateral expansion is larger than 0.008. 

With less strength and stiffness, rubberised concrete is more deformable than 

conventional concrete. At the same level of compressive loading, the deformation 

in the loading direction of FRP-confined rubberised concrete can be ten times larger 

than that of the conventional concrete, which could open up opportunities for 

creating novel structural solution. The material model, developed and implemented 

in the FEA package ABAQUS, can be used for numerical analysis of such solutions.   



iii 
 

Acknowledgements 

I want to express my gratitude to my supervisor, Prof Pilakoutas. Thank you for 

enrolling me into this research group. When I get confused, your advice has always 

been helpful. 

Special thanks to Mihail. It is my great honour and pleasure to work with you. I 

cannot complete my thesis without your help. Thanks again for developing Mac2T. 

Special thanks to Maurizio and Glenn. Thank you for your support in the lab. 

Last but not least. I thank my parents. Your unconditional love and support spoil me. 

 

  



iv 
 

Content 

1 Introduction .......................................................................................................... 1 

1.1 Research objectives ....................................................................................... 4 

1.2 Layout of the thesis ....................................................................................... 4 

2 Background Review .............................................................................................. 6 

2.1 Rubberised concrete ..................................................................................... 7 

2.2 FRP lateral confinement to concrete ............................................................ 8 

2.3 Numerical simulation on FRP-confined concrete ........................................ 10 

2.3.1 Design-oriented material model .......................................................... 10 

2.3.2 Research-oriented material model ...................................................... 13 

3 Multiaxial tests on conventional concrete ......................................................... 16 

3.1 Failure mechanism of FRP-confined concrete ............................................ 16 

3.2 Drawbacks in the FRP-confined concrete cylinder tests ............................. 21 

3.2.1 Imperfect boundary condition ............................................................. 22 

3.2.2 Indirect measurement ......................................................................... 23 

3.2.3 Difficulty of investigating less lateral confinement ............................. 24 

3.3 Multiaxial tests using Mac2T ........................................................................ 24 

3.3.1 Experimental set up -- Mac2T ............................................................... 25 

3.3.2 Testing scheme..................................................................................... 36 

3.4 Experimental test results ............................................................................. 38 

3.4.1 Test results of multiaxial tests with active confinement ..................... 38 

3.4.2 Test results of multiaxial tests with passive confinement ................... 45 

3.5 Summary ...................................................................................................... 55 

4 Modelling of conventional concrete with passive confinement ........................ 57 

4.1 Plasticity-based constitutive model for passively confined concrete ......... 57 



v 
 

4.1.1 Yield surface ......................................................................................... 58 

4.1.2 Hardening rule of passively confined concrete ................................... 61 

4.1.3 Plastic flow potential ............................................................................ 65 

4.2 Analytical simulation through MATLAB....................................................... 71 

4.2.1 Incremental form of perfectly-plastic based constitutive model ........ 71 

4.2.2 Iterative stepwise algorism for stress-strain generation ..................... 76 

4.2.3 Numerical simulation through the MATLAB program ......................... 80 

4.3 Numerical simulation through finite element software ............................. 83 

4.3.1 Algorithm in non-linear finite element analysis .................................. 83 

4.3.2 Material model of passively confined concrete in FEA ........................ 87 

4.3.3 Numerical simulation through ABAQUS .............................................. 92 

4.4 Summary ...................................................................................................... 97 

5 Multiaxial tests on rubberised concrete ............................................................. 98 

5.1 Specimens preparation ............................................................................... 98 

5.1.1 Mix design ............................................................................................ 99 

5.1.2 Recycled rubber products .................................................................. 100 

5.1.3 Production of rubberised concrete specimen ................................... 101 

5.2 Testing scheme .......................................................................................... 103 

5.2.1 Multiaxial tests on rubberised concrete with active confinement .... 104 

5.2.2 Multiaxial tests on rubberised concrete with passive confinement . 104 

5.3 Multiaxial testing results of rubberised concrete ..................................... 105 

5.3.1 Active confinement ............................................................................ 105 

5.3.2 Passive confinement .......................................................................... 110 

5.4 Summary .................................................................................................... 118 

6 Modelling of rubberised concrete with passive confinement ......................... 120 



vi 
 

6.1 Plasticity-based material model of passively confined rubberised concrete

 120 

6.1.1 Yield surface function ......................................................................... 121 

6.1.2 Hardening rule.................................................................................... 121 

6.1.3 Plastic flow rule .................................................................................. 125 

6.2 Implementation of the proposed model in ABAQUS ................................ 128 

6.3 Validation of the material modelling through ABAQUS ............................ 131 

6.4 Summary .................................................................................................... 134 

7 Conclusions and Recommendations for future work ....................................... 136 

7.1 Main conclusion ........................................................................................ 136 

7.2 Recommendations for the future work .................................................... 138 

Reference ................................................................................................................. 139 

 

 

  



vii 
 

List of Figures 

Figure 1.1 Stress-Strain relationship of rubberised concrete varying with the rubber 

content   (Raffoul, 2014) .............................................................................................. 2 

Figure 1.2 Experimental test results of RC with three layers of CFRP confinement 

(Garcia, 2014) ............................................................................................................... 3 

Figure 2.1 Stress equilibrium in FRP confinement ..................................................... 11 

Figure 2.2 Material model for FRP confined concrete (Papastergiou, 2010) ............ 13 

Figure 3.1 Additional confinement applied to the specimen (Papastergiou, 2010) .. 17 

Figure 3.2 Stress-Strain relationship of a typical cylinder specimen ......................... 18 

Figure 3.3 Stress equilibrium in FRP confinement ..................................................... 19 

Figure 3.4 Stress path of concrete cylinder with FRP confinement under uniaxial 

load ............................................................................................................................. 20 

Figure 3.5 Axial stress and confining pressure applied to the concrete cylinder in the 

test by Papastergiou (2010) ....................................................................................... 21 

Figure 3.6 Specimen preparation of experimental tests (Papastergiou, 2010) ......... 22 

Figure 3.7 Layout of lateral strain gauges .................................................................. 23 

Figure 3.8 Design of Mac2t (Petkovski et al., 2006) .................................................... 26 

Figure 3.9 The stress state and crack formation of concrete cylinders ..................... 27 

Figure 3.10 Dependence of concrete strength on different loading application 

systems (Gerstle et al, 1980) ...................................................................................... 28 

Figure 3.11 Schematic diagram of laser interferometer system ............................... 31 

Figure 3.12 Loading path of multiaxial test with active confinement ....................... 32 

Figure 3.13 Constrains in the lateral direction........................................................... 33 

Figure 3.14 Flow chart of the control loop ................................................................ 35 

Figure 3.15 Stress-strain relation of concrete with active confinement ................... 39 

Figure 3.16 The trend line of test results in p-q coordinate ...................................... 41 

Figure 3.17 Tangent modulus history ........................................................................ 43 

Figure 3.18 Poisson's ratio history ............................................................................. 44 

Figure 3.19 Evaluation of the control program for passive confinement.................. 46 

Figure 3.20 Stress-strain relations of the specimens with passive confinement ...... 49 

Figure 3.21 Loading path of the specimens with passive confinement .................... 50 



viii 
 

Figure 3.22 Trend lines of the stress state at same level of lateral strain ................. 51 

Figure 3.23 Effect of confining stiffness on dilation parameter v history ................. 54 

Figure 3.24 A typical tested specimen with passive confinement ............................. 55 

Figure 4.1 The compressive and the tensile meridian of the yield surface ............... 60 

Figure 4.2 Loading path of a passively confined concrete under load ...................... 61 

Figure 4.3 Relation between hardening parameter 𝜎𝑐 and hardening variable 𝜀𝑐𝑝𝑙 63 

Figure 4.4 Trend lines of the stress state at the same level of lateral strain ............. 64 

Figure 4.5 Relation between the parameter d and the hardening variable 𝜀𝑙 .......... 65 

Figure 4.6 The curve of function  𝝋 (−𝑑𝜀2𝑝/𝑑𝜀1𝑝) .................................................... 67 

Figure 4.7 The history of plastic strain increment ratio (−𝑑𝜀2𝑝/𝑑𝜀1𝑝) of P1 ........... 69 

Figure 4.8 History  of dilation angle of multiaxial tests ............................................. 70 

Figure 4.9 Initial dilation angle 𝜑1 at different levels of confining stiffness ............. 70 

Figure 4.10 Flow chart of the verification program ................................................... 79 

Figure 4.11 Numerical simulation results of the experimental test P1 ..................... 81 

Figure 4.12 Comparison between the numerical and the experimental test results 82 

Figure 4.13 Linear interpolation between data points for hardening rule ................ 91 

Figure 4.14 Diagram of spring defined in ABAQUS .................................................... 93 

Figure 4.15 Loading path of concrete in the experimental and the numerical test .. 94 

Figure 4.16 Comparison between the defined yielding surface and data points from 

experimental test P1 .................................................................................................. 95 

Figure 4.17 Stress-strain curves from the numerical and the experimental tests .... 96 

Figure 5.1 Grading curves of the fine and the coarse rubber particles ................... 101 

Figure 5.2 Profile of the mould with rubberised concrete and cement mortar top 103 

Figure 5.3 Rubberised concrete specimen with top surface polished..................... 103 

Figure 5.4 Stress-strain of rubberised concrete with constant confining pressure 106 

Figure 5.5 Trend line of test results in p-q coordinate ............................................ 108 

Figure 5.6 Tangent module history of rubberised concrete with constant 

confinement ............................................................................................................. 109 

Figure 5.7 History of dilation parameter 𝑣𝑡 ............................................................. 110 

Figure 5.8 Evaluation of the control program for passive confinement.................. 111 

Figure 5.9 Stress-strain of rubberised concrete with passive confinement ............ 113 

Figure 5.10 Loading path of rubberised concrete with passive confinement ......... 114 



ix 
 

Figure 5.11 Loading path of rubberised concrete with passive confinement ......... 116 

Figure 6.1 Typical loading path of passively confined concrete .............................. 122 

Figure 6.2 The relation between  𝜎𝑐 and 𝜀𝑐𝑝𝑙 ........................................................... 123 

Figure 6.3 The relation between 𝜎𝑐 and 𝜀𝑙 ............................................................... 123 

Figure 6.4 Relation between 𝜀𝑐𝑝𝑙 and 𝜎𝑐from experimental tests ........................... 125 

Figure 6.5 Relation between 𝜀𝑙 and σc from experimental tests ............................ 125 

Figure 6.6 The history of dilation angle 𝜑 plotted against confining pressure  𝜎𝑙 .. 127 

Figure 6.7 Comparison between data points and function 𝜑(𝜎𝑙) ........................... 130 

Figure 6.8 Mesh of the rubberised concrete specimen ........................................... 131 

Figure 6.9 Loading path of RuC in the experimental and the numerical test .......... 133 

Figure 6.10 Stress-strain from the experimental and the numerical tests .............. 134 

  



x 
 

List of Tables 

Table 2.1 Comparison between original mix design & optimised mix design ............. 8 

Table 3.1 Concrete mix design ................................................................................... 29 

Table 3.2 The process of specimen preparation ........................................................ 29 

Table 3.3 Confining pressure at the end of step 2 ..................................................... 37 

Table 3.4 Confining stiffness for multiaxial tests with passive confinement ............ 37 

Table 3.5 Stress state when the load reaches the peak ............................................ 40 

Table 3.6 The predefined and the actual confining stiffness ..................................... 47 

Table 4.1 Input parameters for the MATLAB program .............................................. 80 

Table 4.2 Material-properties-dependent field variables.......................................... 89 

Table 4.3 Parameters for the shape of the yield surface ........................................... 90 

Table 4.4 Data points imported into ABAQUS for hardening rule ............................. 90 

Table 4.5 Data points imported into ABAQUS for plastic flow rule ........................... 92 

Table 4.6 Spring property in ABAQUS model ............................................................. 93 

Table 5.1 Optimised concrete mix ............................................................................. 99 

Table 5.2 Relative proportion of rubber particles for fine aggregates replacement

 .................................................................................................................................. 100 

Table 5.3 Relative portion of rubber particles for fine aggregates replacement .... 101 

Table 5.4 Constant confining pressure .................................................................... 104 

Table 5.5 Confining stiffness .................................................................................... 105 

Table 5.6 Stress state of rubberised concrete at peak compressive load ............... 107 

Table 5.7 The specified and the actual confining stiffness ...................................... 112 

Table 5.8 Density of rubberised concrete specimen ............................................... 115 

Table 6.1 Material-properties-dependent field variables........................................ 128 

Table 6.2 Parameters for the shape of the yield surface ......................................... 129 

Table 6.3 Data points imported into ABAQUS for hardening rule identification .... 129 

Table 6.4 Confining stiffness defined in numerical model ...................................... 132 

 

  



xi 
 

List of Symbols 

𝜎𝑜𝑐𝑡 Octahedral normal stress 

𝜀𝑜𝑐𝑡 Octahedral normal strain 

𝜏𝑜𝑐𝑡 Octahedral shear stress 

𝛾𝑜𝑐𝑡 Octahedral shear strain 

𝐾𝑡 Tangent bulk module 

𝐺𝑡 Tangent shear module  

 𝜎1 First principal stress 

 𝜎2 Second principal stress 

 𝜎3 Third principal stress 

 𝜀1 First principal strain 

 𝜀2 Second principal strain 

 𝜀3 Third principal strain 

𝜀𝑣 Volumetric strain 
𝐸𝐹𝑅𝑃 Young’s modulus of FRP 

𝜀𝐹𝑅𝑃 Strain of FRP in the hoop direction 

𝑓𝑐  Concrete compressive strength 

𝜎𝑙 Confining pressure of FRP to concrete 

𝑘𝑙  Confining stiffness of FRP to concrete 

𝜀𝑙 Concrete lateral expansion  

𝑝 Equivalent pressure stress  

𝑞 Mises equivalent stress 

𝐸𝑡 Tangent modulus 

𝐸 Young’s modulus of concrete 

𝑣 Poisson's ratio of concrete 

 

 

  



1 
 

1  Introduction 

Reinforced concrete (RC) bridges are important components of the road 

infrastructure. Many of these bridges deteriorate over time due to traffic load, 

natural movement because of temperature and environmental attack. In particular, 

the deterioration of movement joints and associated bearing elements might lead 

to damage and even structural failures. To prevent failures, such elements require 

inspection and structural rehabilitation. Moreover, bearings (usually made of steel 

and/or neoprene) need to be replaced at regular intervals (Zhao and Tonias, 2012). 

These activities not only require significant investment from highway authorities, 

but can also lead to long traffic interruptions and discomfort for road users. In 

recent years, the construction of integral/semi-integral bridges without joints and 

bearings is used to minimise maintenance costs and enhance long-term durability of 

bridges (Burke, 2009). However, large secondary forces induced by creep, shrinkage 

and thermal movement affect the behaviour of integral/semi-integral bridges, and 

these need to be considered in the analysis and design of these structures. Hence, 

there is a need for a flexible and deformable bearing material that does not require 

regular replacement and can accommodate structural movement. 

The concrete research group at the University of Sheffield recently completed the 

EU funded project Anagennisi, which focused on the innovative reuse of the tyre 

components in concrete. Rubberised concrete, made up with one of the reused tyre 

components, rubber, was found to be capable of sustaining large axial and lateral 

deformations. A pilot study has shown that confined rubberised concrete (CRC) can 

enable much larger axial deformations compared to conventional concrete (up to 

20 times more); therefore, CRC structural components are believed to have the 

potential to be used as bearing elements in the substructures of bridges or produce 

integral bridges, and reduce lateral stiffness. Hence, the large restraining forces 

induced by deck movement can be reduced. To enable the engineering use of CRC 

components, it is essential to not only understand the material properties of this 

novel material, but also to develop material models which can facilitate structural 

analysis and design. 
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The concrete research group in the University of Sheffield studied the material 

properties of rubberised concrete (RuC) (Garcia, 2014; Raffoul, 2014; Raffoul et al., 

2016; Raffoul et al., 2017). Previous research mainly addressed the fresh properties 

of RuC (Raffoul, 2014; Raffoul et al., 2016). Due to the difference in the frictional 

properties of rubber and conventional aggregates, the fresh properties of concrete 

change. Specifically, in direct replacement of aggregates both slump reduction and 

the segregation is observed. However, it is found that the optimal mix with 

acceptable fresh properties can be achieved by partly replacing cement with PFA 

and SF while maintaining the water-cement ratio, and by using superplasticizer 

(Raffoul, 2014).  

Since the problem regarding the fresh properties of rubberised concrete has been 

addressed, the challenge left is the identification and modelling of the hardened 

properties. The loss of axial strength with increasing rubber content is well known. 

Figure 1.1 shows uniaxial tests on rubberised concrete cylinders with increasing 

rubber content. As illustrated, both the ultimate strength and corresponding strain 

decrease with increasing rubber content, while the lateral strain at peak load 

increases. Despite the axial capacity reduction, rubberised concrete is more 

deformable than conventional concrete, and it has a promising lateral expansion 

capacity.   

 

Figure 1.1 Stress-Strain relationship of rubberised concrete varying with the 

rubber content   (Raffoul, 2014) 
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According to the fracture process observed in the multiaxial tests of conventional 

concrete, unstable propagation of cracking is immediately followed by concrete 

crushing (Kotsovos & Newman, 1977). The cracks, due to tensile strains, are 

oriented in the direction of the principal compressive stress, i.e. vertically for 

cylinder specimens under uniaxial load. As a result, the strengthening of the 

concrete can be achieved by lateral confinement, since the unstable crack 

development can be arrested. FRP lateral confinement has been widely used for this 

purpose. With adequate FRP lateral confinement, the compressive failure of 

concrete can be prevented.  

It has been shown that the strength loss of rubberised concrete can be recovered by 

lateral confinement (Garcia, 2014). As is illustrated in Figure 1.2, a rubberised 

concrete cylinder with 40% rubber content exhibited an ultimate axial strain more 

than 2%. With higher rubber contents and appropriate FRP confinement, the 

composite is believed to sustain even higher deformations, and possibly up to 10%. 

Even through the behaviour of heavily confined conventional concrete has been 

examined experimentally (through active and passive confinement), the behaviour 

of rubberised concrete under active and passive confinement is not known. 

 

Figure 1.2 Experimental test results of RC with three layers of CFRP confinement 

(Garcia, 2014) 

This research aims to investigate the mechanical behaviour of rubberised concrete 

under lateral confinement. Although extensive research has been conducted on the 
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mechanical behaviour of concrete with FRP lateral confinement in the last 30 years, 

the nature of failure mechanism is still not well known.  

This thesis begin with an investigation on conventional concrete, since research on 

conventional concrete is abundant and comparison can be made. A hypothesis 

regarding the failure mechanism of FRP-confined conventional concrete is proposed, 

according to analysis on previous experimental tests. In order to verify the 

proposed hypothesis and provide firm evidence, multiaxial tests using apparatus 

Mac2T (Petkovski et al., 2006) are designed. 

Following the experiments, a material model for FRP-confined concrete is proposed 

to represent the failure mechanism. The proposed material model can be used for 

both design-oriented and research-oriented analysis.  

1.1 Research objectives 

The research aim, investigation of mechanical behaviour of CRC, is achieved by the 

following objectives: 

 Analyse previous tests that investigate concrete multiaxial behaviour 

 Propose a hypothesis regarding the failure mechanism of FRP-confined 

concrete  

 Design and execute multi-axial tests on concrete specimen to confirm the 

hypothesis 

 Model the mechanical behaviour of FRP-confined concrete based on its 

failure mechanism 

 Adopt an appropriate approach for rubberised concrete and develop a 

material model. 

1.2 Layout of the thesis  

Chapter 2 provides the background review that supports the range of the work 

required for this thesis. The chapter begins by describing the adverse effects of 

rubber contents on the fresh and the hardened properties of concrete. The chapter 

goes on to review previous research on passive confinement for concrete, which 

confirms FRP confinement is capable of strengthening concrete components. Finally, 
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extensive research on numerical modelling of passively confined concrete is 

reviewed. 

In Chapter 3, results of experimental tests on FRP-confined concrete cylinders, in 

terms of loading path in the stress space, are compared and presented against 

concrete failure surface. It is observed that in the stress space passively confined 

concrete under compressive load moves along the failure surface; therefore, a 

hypothesis can be proposed that concrete confined by FRP behaves as a perfect 

plastic material when subjected to compressive loads. 

In order to verify the hypothesis and provide firm evidence, the Mac2t testing facility 

originally designed for true tri-axial tests is used. Mac2t is used to physically simulate 

passive confinement so as to determine the loading path of passively confined 

concrete. It is worth emphasising that the compressive pressure in the lateral 

directions, which represents the confining pressure, is not predefined. Instead, its 

value is dramatically updated according to concrete lateral expansion, such that the 

scenario of passive confinement is realised. The loading path is compared to the 

failure surface of concrete, which is determined by Mac2T either. The hypothesis 

would be confirmed if the loading path overlaps with the failure surface. 

According to the results from multiaxial tests, the behaviour of passively confined 

concrete is modelled using the framework of plasticity theory in Chapter 4. For a 

design-oriented analysis of passively confined concrete, a stress-strain curve is of 

interest. Therefore, the proposed material model is simplified and expressed in the 

incremental form. Consequently, the stress-strain curve of passively confined 

concrete under compressive load can be generated through a MATLAB program. 

Alternatively, the proposed material model can be introduced into nonlinear finite 

element software, such as ABAQUS, so as to analyse passively confined concrete 

structural components with complicated boundary conditions. 

The approach in Chapter 3 and Chapter 4 constitute the methodology for the 

experimental and numerical study on CRC. Chapter 5 focuses on multiaxial tests of 

rubberised concrete, the results of which are used for modelling the mechanical 

behaviour of CRC in Chapter 6.  
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2 Background Review 

In the developed world, one tyre is discarded per person per year, and the 

developing economy (e.g. China) is catching up very quickly in terms of both 

consumption and disposal. End of life tyres are mainly disposed by incineration 

(20%), mechanical shredding (30%) and landfill. Under high temperature and low 

humidity, landfilled tyres are prone to catching fire.  

To address the environmental problems of dealing with the end of life tyres, it is 

proposed to reuse rubber in concrete. End of life tyres become small pieces in a 

process of cutting and shredding. After the steel and fabric components being 

separated, rubber crumb/chips with the size range from 25mm to 460mm can be 

obtained (Presti, 2013). By partly replacing the aggregates of conventional concrete, 

a novel construction material rubberised concrete is derived. However, rubber 

contents have adverse effects on the fresh and the hardened properties of concrete. 

The impaired fresh property of rubberised concrete and corresponding solution is 

reviewed firstly. 

With increasing rubber content, rubberised concrete exhibits decrease in the 

ultimate strength and corresponding strain decrease. Meanwhile, the lateral strain 

at peak load increases. Despite the axial capacity reduction, rubberised concrete is 

more deformable than conventional concrete, and it has a promising lateral 

expansion capacity (Garcia, 2014).   

The use of FRP confinement in the lateral direction has been shown to mitigate the 

strength loss and successfully exploit the enhanced deformability of rubberised 

concrete (Garcia, 2014). A preliminary study has shown that confined rubberised 

concrete (CRC) could enable much larger deformations compared to conventional 

concrete (up to 20 times more), which could lead to novel structural uses, for 

example in bridge bearings,  base isolation and plastic hinges (Garcia, 2014). To 

enable this, it is essential to not only understand the properties of this new material 

but also develop a reliable constitutive model that facilitates numerical analysis. 
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2.1 Rubberised concrete 

Although rubberised concrete has promising environmental benefits, the additional 

rubber has adverse effects on both the fresh and the hardened properties of 

concrete. Rubberised concrete might exhibit poor workability and lower strength 

(Raffoul, 2014; Raffoul et al., 2016). Therefore, the author’s research group conduct 

a group of experimental tests, which aims to adjust concrete mix design and 

improve the fresh and hardened property of rubberised concrete. 

Extensive research has confirmed the adverse effect of rubber content on the 

workability of rubberised concrete (Toutanji, 1996; Oikonomou and Mavridou, 

2009). To the extreme, the fresh rubberised concrete could exhibit no slump when 

rubber particles replace more than 50% of the aggregates by volume (Khatib and 

Bayomy, 1999). 

According to the observation that the entrapped air rises with the enhanced rubber 

content, the decrease in workability of rubberised concrete is believed to be 

attributed to the increasing air content in the fresh mix (Reda et al., 2008). The air 

content could be controlled by adding admixtures, e.g. plasticiser and 

superplasticiser, but a high content of such admixture could result in bleeding and 

segregation.  

Bleeding and segregation of rubberised concrete, however, can be mitigated by the 

addition of silica fume (SF) and Portland fly ash (PFA). Their extra-fine particles 

results in a relatively dense packing and aid workability. (Wong & Kwan, 2008) 

Raffoul et al. (2016) conducted a parametric study on the mix design of rubberised 

concrete, and examined the influence of water-cement ratio, admixture content 

and cement replacement material. The original concrete mix commonly used for the 

bridge construction is listed in Table 2.1 as a benchmark. The optimal mix was 

finally achieved by partly replacing 10% cement with PFA and SF while maintaining 

the water-cement ratio and the admixture content. The optimised mix exhibited 

similar slump and workability as the benchmark mix. 
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Table 2.1 Comparison between original mix design & optimised mix design 

Material Original mix Optimised mix 

CEM II – 52.5 MPa 425 kg/m3 340 kg/m3 

Silica Fume (SF)  42.5 kg/m3 

Pulverised Fuel Ash (PFA)  42.5 kg/m3 

Aggregates 0/5mm 820 kg/m3 820 kg/m3 

Aggregates 5/10mm 364 kg/m3 364 kg/m3 

Aggregates 10/20mm 637 kg/m3 637 kg/m3 

Water 180 l/m3 149 l/m3 

Plasticiser (Sika Viscoflow 1000) 2.5 l/m3 2.5 l/m3 

Superplasticiser (Sika Viscoflow 2000) 5.1 l/m3 5.1 l/m3 

 

Bompa et al. (2017) investigated the mechanical behaviour of rubberised concrete, 

the specimens of which are prepared according to the optimal mixed design 

proposed by Raffoul et al. (2016). The effect of rubber content on the uniaxial 

behaviour of rubberised concrete is under investigation. With the increase of 

rubber content, both the peak compressive stress and the elastic module were 

found to decrease. 

In order to enhance the performance of rubberised concrete and exploit its 

deformable potential, FRP confinement can be a promising solution. 

2.2 FRP lateral confinement to concrete 

Extensive research has shown that Fibre Reinforced Polymers (FRP) can be used to 

confine concrete and effectively increase its axial capacity. As one type of passive 

confinement, FRP is activated by the concrete expansion, and in turn, FRP applies 

lateral confining pressure to concrete, which enhances both strength and ductility.  

Mirmiran and Shahawy (1997) performed tests on concrete cylinders cast into Glass 

FRP tubes. The specimen under increasing compressive load would not fail until the 
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rupture of the FRP confinement. The FRP-confined concrete specimens exhibited a 

significant increase in both strength and ductility when compared to those without 

FRP confinement.  

Teng & Lam (2004) conducted similar tests on concrete cylinders (100mm diameter 

and 200mm height) wrapped by Carbon FRP (CFRP) sheets. With three layers of 

CFRP, the peak axial stress that concrete could sustain increased more than 2.5 

times and the ultimate axial strain was greater than 2%.  

Extensive research has been conducted on small-scale specimens, with different 

levels of concrete strength and different FRP lateral confining stiffness, and the 

results were used to calibrate material models (Spoelstra and Monti, 1999; Rousakis 

and Tepfers, 2001; Berthet et al., 2005; Li, 2006).  

In addition to small-scale tests on concrete cylinders, many researchers examined 

the behaviour of relatively large-scale specimens in order to confirm the 

effectiveness of FRP confinement in strengthening the reinforced concrete 

structures. Garcia et al. (2010) investigated the behaviour of a one-bay two-storey 

frame, designed according to old standards, through shaking table tests. The 

original frame was designed to fail in the weak beam-column joints due to the poor 

stirrup confinement in the shear critical regions. When subjected to an earthquake 

with a PGA of 0.4 g, the frame under investigation exhibited a large drift ratio of 

3.9%, and severe damage was observed at the joints. Subsequently, the damaged 

structure was strengthened with FRP sheets at the beam-column joints and critical 

shear regions. The strengthened frame was subjected to the same level of seismic 

input (PGA=0.4g) and a maximum drift ratio of only 1.3% was observed with limited 

or no visible damage. 

The concrete research group at the University of Sheffield has shown that the 

strength loss of rubberised concrete can be recovered by lateral confinement 

(Garcia, 2014), and has carried out extensive work on confined rubberised concrete. 

Raffoul et al. (2017) conducted small-scale tests on rubberised concrete cylinder 

specimens with 60% rubber content. With adequate lateral confinement, the 
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specimens exhibited the same level of compressive strength as unconfined 

conventional concrete, and ultimate strain up to 5%.  

Elghazouli et al. (2018) carried out large-scale tests on rubberised concrete 

specimens, where circular cross-section rubberised concrete columns with FRP 

confinement were subjected to lateral cyclic displacements and predefined levels of 

axial loading. The specimens with 60% rubber content exhibited stable hysteretic 

behaviour and could sustain large lateral drift.  

2.3 Numerical simulation on FRP-confined concrete 

In order to analyse and design concrete structural components confined with FRP, 

extensive research has been conducted on modelling the mechanical behaviour of 

passively confined concrete. In general, the models proposed can be divided into 

two groups: design-oriented and analysis-oriented. 

In the design-oriented models, only the stress-strain behaviour in the axial direction 

is of interest. Therefore, FRP-confined concrete structural elements are regarded as 

a composite.  

In the research-oriented models, concrete and FRP are simulated separately. When 

subjected to a compressive load, concrete expands in the lateral direction. FRP 

confinement is then stretched and in turn applies confining pressure to concrete. In 

order to correctly simulate such interaction, the volumetric behaviour of concrete 

needs to be taken into account. Due to the complicated material model and 

boundary conditions, the numerical models need to be implemented in a finite 

element framework. 

2.3.1 Design-oriented material model 

Multi-axial tests are normally designed to investigate the behaviour of concrete 

stressed in the principal direction. Based on observations from multi-axial tests, not 

only strength criteria (Kotsovos and Newman, 1977) but also several constitutive 

models (Gerstle, 1981; Han and Chen, 1985; Ohtani and Chen, 1987) have been 

proposed for numerical analysis. As Concrete confined by FRP is also subjected to 



11 
 

multi-axial loading conditions, the main constitutive models based on results from 

multi-axial tests could be adopted for FRP-confined concrete. 

The constitutive model proposed by Gerstle (1981) (Equation 2.1 and 2.2) was used 

by Becque et al. (2003) in a numerical approach to predict the stress-strain 

behaviour of FRP-confined concrete cylinders. 

 𝑑𝜎𝑜𝑐𝑡 = 𝐾𝑡 ∙ 𝑑𝜀𝑜𝑐𝑡 
 

(2.1) 

 𝑑𝜏𝑜𝑐𝑡 = 𝐺𝑡 ∙ 𝑑𝛾𝑜𝑐𝑡 
 

(2.2) 

where 𝜎𝑜𝑐𝑡 and 𝜀𝑜𝑐𝑡 represent the octahedral normal stress and strain; 𝜏𝑜𝑐𝑡 and 𝛾𝑜𝑐𝑡 

represent the octahedral shear stress and strain. 𝐾𝑡 and 𝐺𝑡 are the tangent bulk and 

shear module respectively, which vary with respect to the stress state.  

Figure 2.1 shows the force equilibrium in the FRP confinement. 

  𝜎2 ∙ 𝑅 = 𝜎𝐹𝑅𝑃 ∙ 𝑡 
 

(2.3) 

 

 

Figure 2.1 Stress equilibrium in FRP confinement 

where t represents the thickness of FRP confinement. FRP material exhibits linear 

elastic behaviour when subjected to tensile load; therefore,  

 
 𝜎2 =

𝐸𝐹𝑅𝑃 ∙ 𝜀𝐹𝑅𝑃

𝑅
∙ 𝑡 

(2.4) 

where 𝐸𝐹𝑅𝑃 is the Young’s modulus of FRP and 𝜀𝐹𝑅𝑃 is the strain of FRP in the hoop 

direction. Due to deformation compatibility between concrete and FRP 

confinement, the concrete strain in the hoop direction is equal to that of the FRP. 

Since both the geometry and the load are axisymmetric, the shear components are 
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neglected and 𝜀𝐹𝑅𝑃 is equal to the concrete principal strains in the horizontal 

direction (along the radius and the hoop directions, respectively). Hence, Equation 

2.4 becomes: 

 
 𝜎2 =

𝐸𝐹𝑅𝑃 ∙ 𝜀2

𝑅
∙ 𝑡 

(2.5) 

Becque et al. (2003) regarded Equation 2.5 as the compliment condition. Then, the 

problem reduces to determining the stress-strain history of the uniaxial cylinder test, 

based on the following nonlinear equation system: 

 

{

𝑑𝜎𝑜𝑐𝑡 = 𝐾𝑡 ∙ 𝑑𝜀𝑜𝑐𝑡

𝜏𝑜𝑐𝑡 = 𝐺𝑡 ∙ 𝑑𝛾𝑜𝑐𝑡

            𝜎2 =
𝐸𝐹𝑅𝑃 ∙ 𝜀2

𝑅
∙ 𝑡         

 

 

 
(2.6) 

Becque et al. (2003) developed an iterative procedure to solve this non-linear 

equation system and generate the stress-strain relation of FRP-confined concrete. 

Although the numerical results were shown to agree with experimental data 

available in the literature in terms of uniaxial stress strain, the volumetric response 

was not captured adequately. The inaccurate volumetric simulation may be due to 

the effect of load path. For instance, the concrete constitutive model proposed by 

Gerstle (1981) was calibrated using the experimental testing results (Gerstle et al. 

1978; Gerstle et al. 1980), in which the hydrostatic load was applied first, followed 

by stress deviation in the deviatoric plane. In FRP confined cylinder, however, the 

lateral stress develops as a result of the dilation of concrete following the 

application of axial stress. 

Imran and Pantazopoulou (1996) investigated the effect of different load paths on 

the mechanical behaviour of concrete cylinders under axisymmetric load. It was 

found that the uniaxial strength of concrete cylinder with lateral confining pressure 

is not affected by the load path; on the other hand, this was found not to be the 

case for the volumetric behaviour. Hence, a concrete model calibrated with 

conventional multi-axial tests can only be used to determine the strength of FRP-

confined concrete, and not necessarily the corresponding volumetric behaviour.  
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An alternative approach, which links multi-axial tests and FRP-confined cylinder 

tests, is often used by many researchers (e.g. Spoelstra and Monti 1999; Binici 2005; 

Jiang and Teng 2007) to predict the uniaxial behaviour of FRP-confined concrete 

cylinder. Conventional multi-axial test results can be used to define a family of 

passively confined concrete models in the approach (Figure 2.2), while an empirical 

equation is used to predict the volumetric behaviour based on the results of FRP-

confined cylinder tests. For instance, Papastergiou (2010) adopted this approach to 

predict the response of FRP-confined concrete cylinders under uniaxial load. Since 

the FRP is activated by the lateral expansion of concrete, the confining pressure 

applied to the concrete cylinder varies. By making use of confined concrete models 

for passive confinement (black curves in Figure 2.2), the stress in concrete confined 

by FRP can be determined stepwise. The confining pressure in every step is related 

to the lateral strain, determined by an empirical equation of volumetric response. 

The accuracy of this approach is sensitive to the model used for passively confined 

concrete.  

 

Figure 2.2 Material model for FRP confined concrete (Papastergiou, 2010) 

Although the approach used by Papastergiou (2010) is capable of predicting the 

concrete behaviour with FRP confinement, it is not suitable for use in a finite 

element analysis program. 

2.3.2 Research-oriented material model 

Imran & Pantazopoulou (1996) investigated the triaxial behaviour of concrete by 

testing concrete cylinder with constant confining pressure subjected to a uniaxial 
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compressive load. The experimental results indicated that concrete with low 

confining pressure exhibits brittle failure. With confining pressures higher than 40% 

of the unconfined concrete strength, concrete specimen exhibited no strength 

reduction and behaved in a plastic manner.   

When it comes to FRP-confined concrete, the confining pressure to concrete 

gradually increases, and eventually, the confining pressure is considerable 

compared to the concrete unconfined compressive strength. Therefore, it might be 

appropriate to simulate passively confined concrete through a plasticity-based 

material model. A plasticity-based material model consists of three elements: yield 

surface function, hardening rule and plastic potential function. 

Rochette and Labossiere (1996) modelled concrete with FRP confinement as an 

elastic-perfectly-plastic material. The Drucker-Prager equation was used to describe 

the yield surface function and the plastic potential function. However, since the 

parameters in the yield surface function and the plastic potential function are 

constant and independent of lateral confinement, the material model cannot 

adequately represent the effect of lateral confining stiffness on the unusual 

concrete volumetric behaviour, either compaction or dilation.  

Jiang and Wu (2011) modified the Drucker-Prager plasticity model by relating 

parameters to field variables. The slope of the yielding function, known as friction 

angle, is defined as a parametric function with respect to plastic strain in the 

loading direction. The parameter in the flow rule, known as dilation angle, is 

defined as a function with respect to plastic volumetric strain. Since there is only 

one hardening parameter in the hardening rule that relates the size of yield surface 

to concrete plastic deformation in the loading direction, the model of Jiang & Wu 

(2011) is only feasible for concrete subjected to compressive load and cannot be 

implemented for the analysis of elements subjected to more complex stress states. 

Yu et al. (2010) developed a material model under the framework of Damaged 

Plasticity Model in ABAQUS. The yield surface consists of two hardening parameters, 

to facilitate the simulation concrete under both the compressive and tensile loads. 

Like the model proposed by Jiang and Wu (2011), Yu et al. (2010) used the Drucker-
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Prager function as the flow rule. The parameter in the plastic potential function is 

defined as a function with respect to confining pressure and confining stiffness, in 

order to consider the effect of FRP confinement on volumetric behaviour. 

Several other authors have implemented the use of FEA to study the confinement 

effect of FRP on concrete (Shahawy et al., 2000; Parvin and Wang, 2001; Doran et 

al., 2009; Youssf et al., 2014), generally achieving varying degree of reliability. 

Although all of the proposed methodologies have been shown to approximate well 

the experimental results, exiting models are based on regression analysis of limited 

empirical data rather than on the representation of the actual physical 

phenomenon. A more robust approach that can take into account the true physical 

and mechanical aspect of the problem is therefore needed to assist further 

advancements in the field. 
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3  Multiaxial tests on conventional concrete 

Current material models for FRP-confined concrete utilise results from passively 

confined cylinder tests. In addition, most are based on regression analysis and curve 

fitting rather than on the representation of actual physical phenomena. This 

chapter aims to identify the failure mechanism of FRP-confined concrete under 

compressive load. To achieve this, experimental tests on FRP-confined concrete 

cylinders by Papastergiou (2010) are reviewed, and the corresponding stress path is 

compared with the failure surface proposed by Chen (1994) which was calibrated 

on multiaxial testing results (Kupfer et al., 1969). It is observed that in the stress 

space, passively confined concrete under compressive load moves along the failure 

surface. On this basis, the following hypothesis is proposed: concrete confined by 

FRP should also behaves as a perfect plastic material when subjected to 

compressive load. 

It should be noted that the proposed hypothesis is based on a comparison between 

two sets of experimental tests with different forms of concrete and different load 

path. Since concrete is a material with variability, these two sets of tests might not 

be directly comparable. Additionally, the experimental set-up of the tests on an 

FRP-confined concrete cylinder is not without deficiencies, as discussed are 

reviewed in the following section. 

In order to verify the hypothesis and provide firmer evidence, the apparatus Mac2t 

originally designed for true tri-axial tests is used for two groups of tests. Firstly to 

determine the failure surface of the concrete through the conventional multiaxial 

testing scheme, and secondly to physically simulate passive confinement. This latter 

set of tests was aimed at identifying the loading path of passively confined concrete 

under compressive load.  

3.1 Failure mechanism of FRP-confined concrete 

The tests on the FRP-confined concrete cylinders under investigation were 

conducted by Papastergiou (2010), results of which will be compared with 

conventional multiaxial tests. Concrete cylinder specimens of dimensions 

100mm×200mm with a compressive strength 𝑓𝑐
′ of 42 MPa were confined by 
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several layers of Aramid FRP (AFRP) wrapping. Metal straps were fixed for extra 

confinement at the top and bottom of specimens to prevent premature failures, as 

illustrated in Figure 3.1. An Amsler Universal Testing machine of 2000kN capacity 

was used for testing the FRP-confined concrete specimen. The axial load was 

applied monotonically to failure. For full experimental details, refer to Papastergiou 

(2010).  

 

Figure 3.1 Additional confinement applied to the specimen (Papastergiou, 2010) 

The test results of a typical AFRP confined specimen in terms of stress-strain are 

shown in Figure 3.2. Compared with a concrete cylinder without confinement, the 

ultimate axial stress increased by 150% while the corresponding strain was more 

than 1.3%. Hence, with FRP confinement the ductility capacity of the reinforced 

concrete structural element was significantly enhanced. In addition to this, from the 

observation of the tests on FRP-confined concrete, it is clear that the failure of FRP-

confined concrete cylinder is always initiated by AFRP rupture rather than concrete 

crushing. 
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Figure 3.2 Stress-Strain relationship of a typical cylinder specimen 

Multi-axial tests are normally designed to investigate the behaviour of concrete that 

is stressed in the principal directions. Based on such tests, strength criteria (i.e. the 

failure surface in the stress space) have been proposed and used to represent the 

performance of confined concrete. For instance, Mander (1983)  predicted the 

maximum axial stress of stirrup confined concrete by making use of the failure 

surface. For concrete laterally confined, the compressive stress applied in one 

principal direction has been found to be larger than the stress applied in the other 

two (i.e. 𝜎1 > 𝜎2 = 𝜎3). As a result, the compressive meridian on the failure surface 

is of interest for the cylinder specimen with lateral confinement. 

Previous research on concrete strength indicates that the compressive meridian can 

be expressed by a parabolic equation (Chen 1994), the coefficients of which can be 

determined based on multi-axial tests (Kupfer et al., 1969): 

𝜎𝑜𝑐𝑡

𝑓𝑐
= 𝑏0 + 𝑏1

𝜏𝑜𝑐𝑡

𝑓𝑐
+ 𝑏2(

𝜏𝑜𝑐𝑡

𝑓𝑐
)2 

where 

𝜎𝑜𝑐𝑡, 𝑂𝑐𝑡𝑎ℎ𝑒𝑑𝑟𝑎𝑙 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠: 𝐼1/3 

𝜏𝑜𝑐𝑡, 𝑂𝑐𝑡𝑎ℎ𝑒𝑑𝑟𝑎𝑙 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠: √
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FRP-confined concrete cylinders under uniaxial load are also subjected to multi-axial 

loading condition. In the cylinder tests, the axial stress in the concrete cylinder is 

provided by the Universal Testing machine, while the lateral confining pressure is 

applied to the concrete cylinder by the FRP jacket. The lateral confining pressure 

can be evaluated according to the equilibrium of the confining material ( 𝜎2 ∙ 𝑅 =

𝜎𝐹𝑅𝑃 ∙ 𝑡) shown in Figure 3.3. The stress in FRP can be determined based on the 

horizontal strain gauge readings and the FRP elastic properties. Therefore, both 

axial and lateral stress can be determined and thus the stress path of the confined 

concrete cylinder under uniaxial load can be plotted, as shown in figure 3.4. 

 

 

Figure 3.3 Stress equilibrium in FRP confinement 

In Figure 3.4, the stress path of the FRP-confined concrete cylinder under uniaxial 

load is compared with the uniaxial load path and the compressive meridian. It is 

clear that FRP-confined concrete follows a uniaxial load path before it reaches the 

failure surface, and afterwards moves along the compressive meridian until the 

rupture of FRP. 

The relationship between axial stress and lateral confining pressure provided by the 

FRP is illustrated in Figure 3.5. It is shown that the lateral confining pressure is less 

than 1 𝑀𝑃𝑎 when the axial stress applied is equal to its unconfined strength. That is, 

the initial confining effect of FRP is negligible and concrete can be regarded as 

unconfined as long as the concrete is within the failure surface on of the uniaxial 

load path. Once the uniaxial stress exceeds the unconfined concrete strength, FRP is 

mobilised to prevent concrete from failure. 
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Figure 3.4 Stress path of concrete cylinder with FRP confinement under uniaxial 

load 

Kotsovos & Newman (1977) investigated the crack propagation of concrete 

cylinders under axisymmetric loads. It was observed that the cracking propagation 

becomes unstable after a certain state of stress, which leads to a new envelope, the 

“onset of unstable cracking” envelope (or OUFP). However, within the OUFP 

envelope the crack propagation is stable. That is, provided the current stresses 

applied are maintained inside the OUFP envelope, the crack propagation stops, and 

the passive confinement (e.g. FRP) cannot be effectively activated. However, if the 

stress state is outside of the OUFP envelope, cracking propagation becomes 

unstable, and thus FRP will be stretched by the lateral expansion of concrete.  
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Figure 3.5 Axial stress and confining pressure applied to the concrete cylinder in 

the test by Papastergiou (2010) 

The OUFP envelope has been found to be very close to the failure surface and 

indicates the onset of volumetric expansion (Kotsovos, 1979). Hence, in uniaxial 

tests on FRP-confined concrete, when the stress state is on the failure surface, 

unstable vertical crack occurs and the FRP is stretched. With the confining pressure 

provided by the FRP, the unstable cracking is stopped, and the concrete is 

maintained along its failure surface.   

In summary, the load path of the uniaxial test of FRP-confined concrete can be 

roughly divided into two parts: the uniaxial load path (d𝜎1 ≠ 0; d𝜎2 = d𝜎3 = 0) and 

the path along the failure surface (Figure 3.4). The confining pressure can be 

neglected before the concrete reaches its unconfined strength, and once the 

uniaxial load exceeds the concrete unconfined strength ( 𝜎1 > 𝑓𝑐 ), the FRP 

confinement is effectively activated to delay concrete failure. The concrete is then 

maintained on the compressive meridian. Therefore, this indicates that concrete 

confined by FRP behaves as a perfect plastic material when subjected to 

compressive load. 

3.2 Drawbacks in the FRP-confined concrete cylinder tests  

The hypothesis proposed in the previous section is based on compression tests of 

concrete cylinders wrapped by FRP lateral confinement. However, there are a 
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number of limitations in the experimental set-up, which may affect the reliability of 

the test results, and thus the hypothesis derived from such results. In this section, 

the details of the cylinder tests are reviewed. 

3.2.1 Imperfect boundary condition 

The concrete cylinder specimens in conventional tests are normally with the 

dimension of 100mm×200mm or 150mm×300mm. Having cured more than 28 days, 

concrete cylinders are wrapped with FRP by the wet lay-up process.  

  

Figure 3.6 Specimen preparation of experimental tests (Papastergiou, 2010) 

 
In the wet lay-up process, the fabric sheet is cut to a certain length and 

impregnated with wet resin using a brush, as shown in Figure 3.6. The wet sheet is 

then wrapped around the concrete cylinder. The fibres of the confining material are 

placed in the hoop direction, such that when the concrete cylinder is subjected to a 

vertical load, the evolution of vertical cracks is constrained. Strain gauges are 

attached to FRP to monitor the deformation of the specimen during loading. Hence, 

both the loading history and the deformation history can be monitored in the 

process of testing. To prevent the premature failure of the lateral confinement (e.g. 

slipping), the FRP is wrapped with an overlap as shown in Figure 3.7. However, such 

an overlap causes a non-uniform distribution of lateral strain in the hoop direction.  

According to results from the tests conducted by Papastegiou (2010), the strain 

gauge reading (𝛼1) at the overlap region was much smaller than those of the other 

gauges (𝛼2, 𝛼3), and the ultimate strain at the overlap region for one layer FRP was 

only half of that at the other region. 
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Figure 3.7 Layout of lateral strain gauges 

All the strain gauges were placed at the mid-section of the specimen. To avoid 

failure at other places (e.g. the top or bottom of the cylinder), additional pre-

stressed metallic straps were installed at the top and the bottom, as shown in 

Figure 3.1. That is, the confining stiffness was not constant along the vertical 

direction, and the expansion at mid height was larger than that at the ends. 

Therefore, a shear component may develop in both stress and strain tensors. 

Hence, in the experimental tests, the ideal boundary condition was not strictly met, 

and thus uniformly distributed stress and strain could not be realised. 

3.2.2 Indirect measurement 

The strain gauges were attached to the FRP instead of directly onto the concrete 

cylinder. As a result, the strain of the concrete cylinder was obtained indirectly. 

Apart from the strain, the lateral confining pressure was also evaluated indirectly 

according to the force equilibrium in the lateral confinement, as illustrated in Figure 

3.3. 

According to the equilibrium, the relationship between the confining pressure ( 𝜎𝑙) 

and the tensile stress in the FRP (𝜎𝐹𝑅𝑃) can be expressed as follows: 

 
 𝜎𝑙 =

𝜎𝐹𝑅𝑃 ∙ 𝑡

𝑅
 

(3.1) 
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With the assumption that FRP sheet behaves as a linear-elastic material:  

 
 𝜎𝑙 =

𝐸𝐹𝑅𝑃 ∙ 𝜀𝐹𝑅𝑃 ∙ 𝑡

𝑅
 

(3.2) 

Therefore, the accuracy of the confining pressure evaluation depends on the 

precision of the lateral strain reading. As discussed in the previous section, the 

lateral strain reading can be heavily affected by the overlap. Errors in lateral strain 

measurement can lead to unreliable evaluation of the confining pressure on the 

concrete. 

3.2.3 Difficulty of investigating less lateral confinement 

According to Equation 3.2, the confining stiffness, which is the increment of 

confining pressure to the concrete at unit lateral expansion, can be expressed as: 

 𝑘𝑙 =
𝐸𝐹𝑅𝑃 ∙ 𝑡

𝑅
 

For a large structural element, a bridge pier for instance, the diameter can be up to 

1000 mm. To ensure the same level of confining stiffness, the thickness of FRP to a 

testing cylinder specimen should be 10 times smaller than that of the bridge pier. 

Hence, it might be of interest to investigate the behaviour of concrete specimen 

with less lateral confinement, even less than 1 layer of FRP. However, this is 

impractical, since the minimum value of the fibre sheet thickness is constrained by 

the supplier. 

3.3 Multiaxial tests using Mac2T 

The research group at the University of Sheffield attempted to make use of the 

apparatus Mac2t, originally designed for true tri-axial tests, to physically simulate 

the scenario of concrete with passive confinement under loads; that is, applying the 

load on a concrete cubic specimen in one direction while independently updating 

the confining pressure in the other two directions according to its lateral expansion. 

Such a novel use of the true tri-axial testing apparatus allows the identification of 

the loading path of passively confined concrete under compressive load. It is worth 

emphasising that the compressive pressure in the lateral directions, which 

represents the confining pressure, was not predefined. Instead, its value was 
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continuously updated according to the lateral expansion of the concrete, such that 

the scenario of passive confinement was realised.   

Such novel use of Mac2T is believed by the author to overcome the deficiencies of 

previous tests on FRP-confined concrete cylinders. To be more specific, the stress 

and strain were uniformly distributed in the specimen tested by Mac2T. The 

confining pressure was also directly measured. Additionally, there was flexibility for 

the application of any level of confining stiffness. The loading history was recorded 

and compared with the concrete failure surface and the test results were then used 

to facilitate the calibration of the material constitutive model. 

It has been noted by Gerstle et al. (1980) when comparing the multiaxial test results 

from different resources, that the test results were significantly scattered in terms 

of the failure surface. This may be due to both material and testing method 

variability. In addition, when the failure surface function was calibrated for different 

multiaxial tests, the size and shape of the failure surface varied (Chen, 1994). To 

minimise this variability, multi-axial tests through Mac2t with conventional loading 

paths were planned to investigate the failure surface of the concrete. The concrete 

specimens were firstly subjected to an increasing hydrostatic pressure up to a given 

level. Then, the compressive load was increased in one direction while maintaining 

the other two until the compressive load reached its peak value. 

In the following section, the experimental set-up is detailed, including specimen 

preparation and the control system of Mac2t. Following this, the details of the 

testing scheme are illustrated. 

3.3.1 Experimental set up -- Mac2T  

The apparatus Mac2t is equipped with three independent and orthogonal loading 

frames, as illustrated in Figure 3.8 (a). Therefore, it is capable of subjecting the 

concrete cubic specimen to a multi-axial stress state. In each frame, the 

compressive stress to the specimen is generated by an actuator with 4MN load 

capacity, as shown in Figure 3.8 (b). 
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The specimen is in contact with a rigid platen, and therefore the boundary of the 

specimen is loaded with uniform displacement. In true axial tests, a uniformly 

distributed stress in the specimen is vital. This requires avoiding any eccentricities in 

the specimen, eliminating friction on the specimen’s boundary and precisely 

shaping the cubic specimen. 

To avoid eccentricity, the specimen is placed in the centre of the forces at the onset 

of testing. The horizontal frame X and Y is supported on a low friction roller 

bearings and the horizontal position of the specimen is maintained during loading 

and unloading. An additional actuator (the 4th) was installed beneath the Z frame to 

adjust the level of Z frame interactively, such that the centre of the cubic specimen 

remains at the same height during the entire testing process. Measures taken to 

meet the other two requirements are explained in the following section. 

 

 

(a) loading frame of Mac2t (b) actuator layout 
Figure 3.8 Design of Mac2t (Petkovski et al., 2006) 

 

3.3.1.1 Friction on the boundary of the specimen 

In previous uniaxial compressive tests on the concrete cylinders, the test results 

were affected by the constraint between the specimen and the loading platen. This 

is because, as the compressive load increases, the cylinder specimen tends to 

expand laterally, and this activates friction on the specimen’s boundary. Because of 
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the combination of the uniaxial load and the friction, the ends of the specimens are 

in a multiaxial stress state, as illustrated in Figure 3.9.a. The inclined cracks normally 

observed at the ends of the specimen are the result of the multiaxial stress state. 

The failure mode of the concrete cylinder under compressive load is illustrated in 

the Figure 3.9.b. Hence, the concrete compressive strength obtained from the 

cylinder tests may be overestimated due to the multiaxial compressive stress. 

The effect of the friction on strength enhancement can be minimised by increasing 

the height of the specimen, since the friction at the specimen’s ends has little effect 

on the middle of the specimen. A parametric study regarding specimen slenderness, 

represented by an index “height-diameter ratio” (h/d), was conducted by Van Mier 

(1984). With the increase of specimen height, it was found that the uniaxial 

compression test results became smaller. In addition, if h/d was larger than 2, 

vertical splits were observed in the middle. As a result, the uniaxial compressive test 

results of cylinders with h/d of 2 were deemed to represent unconfined concrete 

strength. This has become a benchmark for other types of concrete tests. 

  
(a) stress state in the specimen (b) failure mode of the cylinder 

Figure 3.9 The stress state and crack formation of concrete cylinders 

 (Van Mier 1984) 

 
Similarly, in the true tri-axial tests friction at the specimen boundary can also 

develop due to the interface constrain. To minimise such interface friction, many 

attempts have been made, including: lubricated platens (Bertacchi & Bellotti, 1972), 
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brush bearing platens (Linse & Aschl, 1976), flexible platens (Schickert & Winkler, 

1977) and fluid cushions (Ko & Sture, 1974). To evaluate the effect of these 

measurements, Gerstle et al. (1980) conducted a cooperative study where all 

laboratories with different multiaxial testing set ups used specimens of the same 

concrete. The test results are illustrated in Figure 3.10 and normalised by the 

concrete’s uniaxial strength obtained from cylinder tests. The concrete cubic 

strength obtained from the tests with the frictionless measurements was reduced 

by approximately 20% compared to that of the test without friction reduction (dry 

platens).  

Lubricated rigid platens exhibit relatively low restraint in the tests that have 

investigated concrete post-peak behaviour (Petkovski al., 2006). Therefore, 

lubricated rigid platens were used in Mac2t in this research. A steel tile (1 mm 

thickness) coated with PTFE (0.25 mm thickness) was placed between the rigid 

platen and the cubic specimen as a measure of lubrication. 

 

Figure 3.10 Dependence of concrete strength on different loading application 

systems (Gerstle et al, 1980) 

3.3.1.2 Specimen preparation 

As discussed previously, the specimen should be as precisely cubic as possible: any 

deviance disturbs the uniform distribution of stress. For this research a large block 
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of concrete was cast. After having cured for more than 28 days, the block was cut 

into cubes with a dimension of 105 mm. The cube was then ground and polished 

such that the length of the edges was shortened to 100 ± 1𝑚𝑚 and the difference 

between edges in one direction was less than 0.1𝑚𝑚.  

Ready mix concrete was used and the specified mix design is shown in Table 3.1. 

The concrete was cast on 28/02/2018 and demoulded two days later. The concrete 

blocks were then placed in a curing room until June when the blocks were taken out, 

cut into cubes and ground. The Gantt chart shown in Table 3.2 illustrates the 

process of the specimen’s preparation. 

Table 3.1 Concrete mix design 

Material Type Supplier Source kg/m3 

Cement CEM I (Rugby cement) Cemex Rugby Works 150 

Coarse 

aggregates 

Graded gravel (4-20 

mm) 
Aggregate Industries Newbold 1097 

Fine aggregates 
Sand MP Gravel (0-

4mm) 
Aggregate Industries Woodhall 804 

GGBS  Holcim Bremen 150 

Admix Plasticiser SIKA 10RM Sikaplast 
2.25 

(lt/m3) 

WCR      0.55 

 

Table 3.2 The process of specimen preparation 

 Feb Mar Apr May Jun Jul Aug Sep 

1. Casting __        

2. Demoulding __        

3. Curing  __ __ __     

4. Sawing     __    

5. Grinding     __ __ __ __ 
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3.3.1.3 Control system of Mac2T 

The operation of Mac2T is done using an in-house developed control system. A 

control loop is carried out at a fixed interval and consists of four steps: acquiring 

data from sensors, averaging data, calculating control variables and sending a signal 

to servo-valves of the actuators (Petkovski et al., 2006). Two computers are 

responsible for processing the data. 

In the load control testing mode, the loading history is pre-defined. During the 

testing, the load is monitored using a full bridge sensor in the loading cell. The load 

rate is the control variable, which is calculated based on the difference between the 

current load and the predefined loading history. Following this, the load rate is sent 

back to the actuator and updated in every loop, so that the load actually applied on 

the specimen can tightly fluctuates around the predefined loading history. With an 

updating interval of 1-3 s, errors can be neglected. 

The deformation of the cubic specimen under load is measured using a laser 

interferometer system, the schematic diagram of which is illustrated in Figure 3.11. 

Each facet of the cubic specimen is touched by a pin connected to a retro-reflector. 

The laser beam, generated from a laser head, is transmitted through a vacuum tube 

inside the actuator to detect any movement (10−6 − 2.5 ∙ 10−3 𝑚) of the retro-

reflector. The data regarding the facet translation is then passed to the computer, 

based on which the strain is calculated. For the cubic specimen of 100 mm edge 

length, the system was capable of detecting a minimum strain of 10−5. 

In displacement control testing mode, the deformation rate is the control variable. 

In the control loop, the transition of the specimen boundary is firstly measured 

using the laser interferometer system, based on which the deformation in terms of 

strain is calculated. The deformation rate is calculated according to the difference 

between the current deformation and predefined deformation, and then the 

command signal is sent to the actuator valve. 
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Figure 3.11 Schematic diagram of laser interferometer system  

(Petkovski et al., 2006) 

Both two loading modes require a predefined criterion. In other words, either 

loading history or displacement history needs to be defined in advance of the 

testing. For instance, in the concrete multiaxial test which aimed to determine the 

compressive meridian of the failure surface, the loading control mode was 

employed in all three frames to apply a hydrostatic pressure. Afterwards, the 

pressure in the x and y directions was maintained by the load control mode, while 

increasing the load in the z-direction up to failure in the displacement control mode. 

The loading path is illustrated in Figure 3.12.  

However, in the tests of passive confinement simulation, the confining pressure 

applied to the specimen was with respect to its lateral expansion, and it was 
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impossible to employ either the load control mode or the displacement control 

mode in the x and the y loading frame. A control program was needed to realise this 

physical simulation.  

 

Figure 3.12 Loading path of multiaxial test with active confinement 

3.3.1.3.1 Process variables in the simulation of passive confinement 

In the control program for passive confinement simulation, the confining pressure 

𝜎𝑙 and the lateral expansion 𝜀𝑙 became process variables. The relationship between 

these two variables is expressed by the following equation: 

 𝜎𝑙 = 𝑘 ∙ 𝜀𝑙 (3.3) 
where the parameter 𝑘 is the confining stiffness. Since the multiaxial tests aimed to 

physically simulate the scenario of FRP-confined concrete cylinder under axial load, 

the parameter k was predefined to reflect the level of passive confinement.  

The force equilibrium in FRP-confined concrete cylinder is illustrated in Figure 3.3. 

The corresponding equation is thus expressed as follows:  

 
 𝜎2 =

𝜎𝐹𝑅𝑃 ∙ 𝑡

𝑅
=

𝐸𝐹𝑅𝑃 ∙ 𝜀𝐹𝑅𝑃 ∙ 𝑡

𝑅
 

(3.4) 

 

where 

𝐸𝐹𝑅𝑃 is the Young’s modulus of FRP; 
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𝜀𝐹𝑅𝑃 is FRP strain; 

𝑡 is the thickness of FRP and 

𝑅 is the radius of the concrete cylinder. 

As the deformation in FRP was consistent with that in concrete, 𝜀𝐹𝑅𝑃 was equal to 

concrete strain in the loop direction. The concrete cylinder met the axisymmetric 

boundary condition; therefore, the strain in the loop direction was equal to that in 

the radial direction.   

 𝜀𝐹𝑅𝑃 = 𝜀𝑙𝑜𝑜𝑝 = 𝜀2 (3.5) 

Equation 3.4 can be expressed as follow: 

 
 𝜎2 =

𝐸𝐹𝑅𝑃 ∙ 𝑡 ∙ 𝜀2

𝑅
 

(3.6) 

It should be noted that  𝜎2  and 𝜀2  are principal stress and principal strain, 

respectively. By comparing Equation 3.3 and Equation 3.6, the parameter k can be 

calculated as follows: 

 
𝑘 =

𝐸𝐹𝑅𝑃 ∙ 𝑡

𝑅
 

(3.7) 

 

To recreate the same stress state as in the FRP-confined concrete cylinder, the 

concrete cubes were loaded vertically while the lateral pressure was updated 

according to its lateral expansion. Figure 3.13 illustrates the lateral transition of the 

boundary of the specimen in the x-direction, as a result of the vertical load. 

 

Figure 3.13 Constrains in the lateral direction 

The elongation in the x-direction, ∆𝑥: 

∆𝑥
′  ∆𝑥

′′ 
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 ∆𝑥= ∆𝑥
′

+ ∆𝑥
′′
 (3.8) 

It follows that the strain in the x-direction is: 

 
𝜀𝑥 =

∆𝑥
′

+ ∆𝑥
′′

𝑙𝑥
 

(3.9) 

Similarly, the lateral strain in the y-direction is: 

 
 𝜀𝑦 =

∆𝑦
′

+ ∆𝑦
′′

𝑙𝑦
 

(3.10) 

There might have been a difference between deformation in the x and the y 

direction, so an average value was taken as the process variable 𝜀𝑙: 

 
  

𝜀𝑙 =
𝜀𝑥 + 𝜀𝑦

2
 (3.11) 

 

3.3.1.3.2 Program to simulate passive confinement 

In the control loop, the input was the lateral transition of the cubic specimen 

(∆𝑥
′

, ∆𝑥
′′

, ∆𝑦
′

, ∆𝑦
′′) according to the reading from the laser interferometer system, while 

the output was the loading rate of the actuator (R) to be sent back to the actuator 

valve. The flow chart of a control loop is illustrated in Figure 3.14.  

The strain in the x and the y direction (𝜀𝑥,𝑖 and 𝜀𝑦,𝑖) was first calculated based on the 

inputs; the translation of the specimen boundaries. The current process variable 

lateral strain (𝜀𝑙,𝑖) was then obtained according to Equation 3.11. Afterward, the 

strain increment (∆𝜀) was calculated. The need for confining pressure increment 

(∆𝜎) could then be evaluated based on the strain increment using Equation 3.3. 

Finally, ∆𝜎 was transferred into loading rate R and the signal sent to the actuator 

valve.  

Such a control loop was used at a fixed interval (t). It is worth mentioning that the 

load rate applied at the current loop was based on the deformation that occurred 

during the previous loop. That is, the lateral load applied was one step behind. To 

minimise the corresponding error, the interval of updating the load rate (t) should 

not be too large, and so was set at every 1.4 seconds. However, if sudden expansion 

of specimen occurs, this would trigger a huge load rate. To protect Mac2t from over-
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reaction, the load rate (R) was set with a lower and a higher boundary, -20 and 60 

kN/s respectively.  

 

Figure 3.14 Flow chart of the control loop 
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3.3.2 Testing scheme 

In general, there were two kinds of multiaxial tests conducted through Mac2T, one 

with active confinement and the other with passive confinement. The former aimed 

to determine the concrete strength criterion, failure surface; while the latter was 

for physical simulation of an FRP-confined concrete cylinder under compressive 

loads.  

To confirm the proposed hypothesis, the loading history of passive confinement 

simulation was compared with the failure surface. In the tests with passive 

confinement, the three principal stresses were in the following order (negative in 

compression):  

0 > 𝜎1 = 𝜎2 > 𝜎3 

where 𝜎1  and 𝜎2  represent confining pressure in the x and the y direction 

respectively, and 𝜎3 indicates the compressive load in the z direction. Hence, only 

the compressive meridian of failure surface was needed in the tests with active 

confinement.  

3.3.2.1 Multiaxial tests with active confinement 

In this group of tests, the loading path was predefined. Hydrostatic pressure was 

first applied. Then, the compressive pressure in the two directions was kept 

constant while load was applied in the other direction up to failure. The typical 

loading path is illustrated in Figure 3.12. Apart from the strength criterion, elastic 

mechanical constants (e.g. Young’s modulus and Poisson's ratio) were also obtained. 

The steps for multiaxial tests with active confinement were as follows: 

1. Contact stress of 0.7 MPa was applied to the specimen in all three directions.  

2. Hydrostatic pressure was then applied in the load control mode up to a 

given level. 

3. Compressive pressure was maintained in the x and the y-direction while 

displacement in the z direction was increased in displacement control until 

the concrete crushed. 
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The level of hydrostatic pressure applied in the second step represents the level of 

active confinement. Several tests were conducted with different active confining 

pressure applied, shown in Table 3.3. 

Table 3.3 Confining pressure at the end of step 2 

Specimen 

No. 
Confining pressure/MPa 

R1 0.7 

R2 5 

R3 10  

R4 20 

R5 30 

 

3.3.2.2 Multiaxial tests with passive confinement 

The steps for multiaxial tests with passive confinement are as follows: 

1. Cubic specimens were placed in the middle of Mac2T and a contact stress of 

0.5 MPa was applied to the specimen in all three directions.  

2. The load in the z direction was increased in displacement control while 

confining pressure was updated according to the lateral expansion and 

confining stiffness. 

The predefined parameter for the confining stiffness was determined from Equation 

3.17. Assuming a concrete cylinder of diameter 102 mm was confined by CFRP. The 

Young’s modulus (𝐸𝐹𝑅𝑃) and the thickness of CFRP (𝑡) were taken as 241000 MPa 

and 0.185 mm respectively. For the cylinder confined by n layers of CFRP, the 

parameter 𝑘 is as follows: 

𝑘 =
𝐸𝐹𝑅𝑃 ∙ 𝑛 ∙ 𝑡

𝑅
=

241000 ∙ 𝑛 ∙ 0.185

51
= 𝑛 ∙ 874 𝑀𝑃𝑎 

Several multiaxial tests with a different level of passive confinement were 

conducted, the details of which are listed in Table 3.4. 

Table 3.4 Confining stiffness for multiaxial tests with passive confinement 

Specimen 
No. 

Confining stiffness (k) 
𝑴𝑷𝒂 

Equivalent to the 102 
mm cylinder confined 
by:  



38 
 

P1 2622 3 Layers of CFRP 
P2 1748 2 Layers of CFRP 
P3 1748 2 Layers of CFRP 
P4 1748 2 Layers of CFRP 
P5 874 1 Layers of CFRP 
P6 874 1 Layers of CFRP 
P7 437 0.5 Layers of CFRP 
P8 174.8 0.2 Layers of CFRP 

 

3.4 Experimental test results 

3.4.1 Test results of multiaxial tests with active confinement 

The section presents and discusses the experimental test results on concrete 

specimens with active confinement. The stress state of concrete under different 

levels of constant confining lateral pressure are also presented. Based on the stress 

state corresponding to the peak compressive load, the compressive meridian of 

failure surface is determined. Finally, the elastic modulus and Poisson's ratio are 

evaluated. 

3.4.1.1 Stress-strain relations 

The multiaxial test results of concrete with active confinement are illustrated in 

Figure 3.15 in the form of stress-strain relationships. With an increase of confining 

pressure 𝜎𝑙, concrete specimens exhibit enhanced strength and deformation. The 

strength of concrete specimen R5 with a constant confining pressure of 30 MPa was 

enhanced by around three times, compared to that of R1 with little confinement. 

Apart from strength enhancement, concrete ductility was also improved by the 

confinement. The load capacity of R1 dropped by around 20% of its peak strength at 

a vertical strain of 0.003. In comparison, for R4 and R5 with lateral confinement of 

19.7 and 30 MPa, respectively, there was little strength decrease that could be 

observed in the post peak region. 
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R1: 𝜎𝑙 = 0.7 𝑀𝑃𝑎 R2: 𝜎𝑙 = 5 𝑀𝑃𝑎 

  
R3: 𝜎𝑙 = 10 𝑀𝑃𝑎 R4: 𝜎𝑙 = 19.7 𝑀𝑃𝑎 

 

 

 

R5: 𝜎𝑙 = 30 𝑀𝑃𝑎  
 

Figure 3.15 Stress-strain relation of concrete with active confinement 

3.4.1.2 Compressive meridian of the failure surface 

Table 3.5 shows the stress state of the specimen when the compressive load 

reached its peak, corresponding to a point on the failure surface of the concrete in 

the stress space. The failure surface is the boundary of all the possible stress states, 

and therefore represents the strength of the concrete. The compressive meridian is 

a curve on the failure surface where the principal stress meets the following 

condition (compressive stress is negative): 

{(𝜎1, 𝜎2, 𝜎3)|0 >𝜎1 = 𝜎2 > 𝜎3} 
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In the multiaxial tests with active confinement, the compressive stresses in the x 

and the y-direction which represent the lateral confinement were identical and 

smaller than the vertical stress. Therefore, it was only necessary to investigate the 

compressive meridian. 

For mathematical convenience, the equation of the compressive meridian is always 

expressed in terms of the equivalent pressure stress (p) and the Mises equivalent 

stress (q), which can be converted by principal stresses as follows: 

The equivalent pressure stress is:   

 
𝑝 = −

1

3
∙ (𝜎1 + 𝜎2 + 𝜎3) 

(3.12) 

The Mises equivalent stress is:   

 

𝑞 = √
1

2
[(𝜎1 − 𝜎2) 2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2] 

 
(3.13) 

 

Table 3.5 Stress state when the load reaches the peak 

Specimen 
No. 

Confining 
pressure (𝜎𝑙 ) 
/ MPa 

Vertical 
load (𝑓𝑐 ) 
/ MPa 

p        
/ MPa 

q 
/ MPa 

R1 -0.7 -61.6 21 60.9 

R2 -5 -92.5 34.2 87.5 

R3 -10 -114.8 44.9 104.8 

R4 -19.7 -152.5 64 132.75 

R5 -30.1 -192.6 84.3 162.5 

 

Based on these five data points, a statistical analysis was conducted to estimate the 

compressive meridian and a trend line was obtained: 

 𝑞 = 1.67 ∙ 𝑝 + 26.1 (3.14) 
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Figure 3.16 The trend line of test results in p-q coordinate 

As illustrated in Figure 3.16, the trend line agrees well with the data points. Apart 

from the trend line, the uniaxial load path is also plotted in Figure 3.16, the 

equation of which can be expressed as:   

 𝜎2 = 𝜎3 = 0 (3.15) 
Which is equivalent to in the p-q coordinate system: 

 𝑞 = 3 ∙ 𝑝 (3.16) 
 

The intersection of these two lines represents the unconfined concrete strength. By 

substituting Equation 3.16 into 3.14, the unconfined concrete strength (𝑓𝑐) was 

obtained, as 59 MPa. 

3.4.1.3 Tangent modulus and Poisson's ratio 

For the active confinement tests, after the application of hydrostatic pressure, a 

stress increment is applied in the z direction. In this case, the tangent modulus and 

the Poisson's ratio can be calculated as follows: 

Tangent modulus Et: 
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𝐸𝑡 =

∆𝜎𝑧

∆𝜀𝑧
 

(3.17) 

The Poisson's ratio may be calculated by either: 

 
𝑣 = −

∆𝜀𝑥

∆𝜀𝑧
 

(3.18.a) 

Or: 

 
𝑣 = −

∆𝜀𝑦

∆𝜀𝑧
 

(3.18.b) 

However, as it is possible for the strain in the x and the y direction to differ, the 

average value was taken from the above two equations as follows: 

 
𝑣 = −

∆𝜀𝑥 + ∆𝜀𝑦

2 ∙ ∆𝜀𝑧
 

(3.19) 

The history of Et and v are shown plotted against the normalised vertical load, which 

is normalised using its peak value. As illustrated Figure 3.17, the tangent modulus Et 

gradually decreases, eventually to zero, when the vertical load reaches the peak. 

For R1, with slight active confinement of 0.7 MPa, the tangent modulus remains 

above 45 GPa until the vertical load reaches 70% of its peak value (42/61 MPa). 

Compared to R1, the tangent modulus of the other four specimens reduces to less 

than 45 GPa much earlier. This is especially true of R5 where the tangent modulus 

dips below 45 GPa just after the beginning of step 3. That is, the uniaxial elastic 

stiffness reduces at higher levels of hydrostatic pressure. This agrees well with the 

observation from other multiaxial compression tests such as those of Kotsovos & 

Newman (1977). Hence, with more lateral active confinement, concrete exhibits a 

more flexible behaviour even if its strength and ductility are enhanced.  

According to “Standard Test Method for Static Modulus of Elasticity and Poisson’s 

Ratio of Concrete in Compression” (ASTM, 2002), the Young's modulus of concrete 

is evaluated based on experimental tests on concrete cylinders under uniaxial 

compressive loading, and the Young's modulus is the secant slope of the axial 

stress-strain curve at 0.4 ∙ 𝑓𝑐. The test results of R1 were used to evaluate the 

secant module, which was found to be 57 GPa. 
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Figure 3.17 Tangent modulus history 

As illustrated in Figure 3.18, the Poisson's ratio of all the specimens fluctuated 

around 0.22 when the vertical load was less than 40% of its maximum value. This is 

expected, as at this load level the concrete is expected to exhibit a linear elastic 

behaviour; as a result, Poisson’s ratio remains constant. 

When the vertical load exceeded 40% of its capacity, the rate of increase in the 

value of Poisson's ratio varies among the five tests. For R1 and R2 where the active 

confinement was low (0.7 and 5 MPa respectively), the Poisson's ratio dramatically 

increased, especially when the vertical load exceeds 90% of its peak value.  

It has been observed by Kotsovos and Newman (1977) that unstable cracks form in 

the concrete as the load approaches its capacity. Therefore, unstable cracks formed 

and dominated the lateral deformation at the end of test R1 and R2. This means 

that small vertical strain increments can result in large lateral expansion. 

Pantazopoulou & Mills (1995) corresponded the concrete strength to its lateral 

expansion. That is, the concrete’s strength is impaired by unstable cracks. As is 

illustrated in Figure 3.15, R1 and R2 exhibit an obvious decrease of strength in the 

post-peak region. 

On the contrary, for high levels of lateral confinement (specimen R4 and R5), the 

Poisson's ratio only gradually rises after the initial elastic stage, reaching just above 

0.5. This means that the ratio between the lateral and the vertical strain increment 
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is relatively stable, and that the unstable cracks are effectively controlled at high 

levels of lateral confinement. In the post-peak region of the R4 and the R5 stress-

strain curves, the decrease of load capacity almost disappears.  

 

Figure 3.18 Poisson's ratio history 
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3.4.2 Test results of multiaxial tests with passive confinement 

In this section, the effectiveness of the passive confinement of Mac2T applied to 

concrete specimens is initially evaluated. The test results of passively confined 

concrete under compressive load are then illustrated in the form of stress-strain 

curves. Following this, the loading paths are plotted and compared to the 

compressive meridian of the failure surface, in order to assess the proposed 

hypothesis. Finally, the effect of confining stiffness on the deformation of concrete 

specimens is investigated 

3.4.2.1 Evaluation of the effectiveness of the control program 

To evaluate the effectiveness of the control program, linear regression analysis was 

conducted on all test results. The confining pressure applied to the specimen is 

plotted against lateral strain in Figure 3.19. The regression equation and the 

regression parameter (𝑅2) are also illustrated. The former is a trend line of the data 

points, the slope of which represents the actual confining stiffness. The latter,𝑅2, 

indicates a correlation between the trend line and the data points (i.e. the fit of the 

regression equation to the data points). The closer 𝑅2 is to 1, the better the 

regression equation fits the data points. Overall, the 𝑅2  of all the regression 

analyses are close to 1, and therefore the linear equations can be accepted. It 

follows that the slope of the equations can be regarded as the actual confining 

stiffness to be compared with the predefined parameter K. 

Table 3.6 shows the comparison between the predefined confining stiffness and the 

slope of the trend line of the tests results. These two values for each test are close 

with only a slight difference between each other. The loading rate given to the 

actuator valve in the current control loop is based on the lateral strain increment 

that occurred in the last loop. As a result, the lateral confining pressure is always 

one step behind. This explains why the confining stiffness obtained from regression 

analysis is around 2% lower than the predefined one.  
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P1 P2 

  
P3 P4 

  
P5 P6 

  
P7 P8 

Figure 3.19 Evaluation of the control program for passive confinement 

Hence, it can be concluded that the Mac2T is capable of simulating passive 

confinement and that passive confinement was successfully applied to all the 

specimens (R1-R8) as expected. 
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Table 3.6 The predefined and the actual confining stiffness 

Specimen 
number 

Confining stiffness (k) 
𝑴𝑷𝒂/𝝁𝜺 

Confining stiffness from 
regression analysis of 

the testing results 

Difference 

P1 0.002622 0.00258 1.6% 
P2 0.001748 0.00172 1.6% 
P3 0.001748 0.00171 2.2% 
P4 0.001748 0.00171 2.2% 
P5 0.000874 0.000859 1.7% 
P6 0.000874 0.000858 1.8% 
P7 0.000437 0.000430 1.6% 
P8 0.0001748 0.000174 0.5% 

 

3.4.2.2 Stress-strain curves 

The test results in the form of stress-strain are plotted in Figure 3.20. The test 

results for R1 – the specimen subjected to the negligible active confinement of 0.7 

MPa – are plotted in Figure 3.20 in dashed line as a benchmark. As expected, before 

the vertical stress (𝜎𝑧) exceeds the unconfined concrete strength, the stress-strain 

of all the specimens (P1-P8) almost coincides with that of R1.  

As illustrated in the previous section, the scale of confining pressure is dependent 

on the lateral expansion. The lateral expansion is negligible until the vertical stress 

is close to the unconfined concrete strength when unstable cracking occurs. With 

small strains, passive confinement is not effectively activated. Therefore, the 

passive confinement can be ignored when the vertical load is small, which is the 

reason why the specimens (P1-P8) behaved as an unconfined specimen (R1) under 

vertical stress less than 𝑓𝑐. 

The passive confinement plays an important role after the uniaxial strength level is 

exceeded, and the strength reduction seen in R1 disappears in all the tests with 

passive confinement. The more confining stiffness the specimens were subjected to, 

the more confining pressure was activated at the same level of lateral expansion, 

and the more vertical load the specimen can withstand. 

It worth highlighting that the peak strength of P8 (57 MPa) is slightly less than that 

of R1, possibly due to eccentricities and material variability. However, with 
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increasing lateral confinement as a result of increasing lateral expansion, vertical 

strength reduction can hardly be noticed in P8, even when the vertical strain was 

increased to more than 1%.  

  
P1 P2 

  
P3 P4 

 
 

P5 P6 

 
 

P7 P8 

0.0

50.0

100.0

150.0

200.0

250.0

300.0

-40000 -20000 0 20000 40000

0.0

50.0

100.0

150.0

200.0

250.0

300.0

-40000 -20000 0 20000 40000

0.0

50.0

100.0

150.0

200.0

250.0

300.0

-40000 -20000 0 20000 40000
0.0

50.0

100.0

150.0

200.0

250.0

300.0

-40000 -20000 0 20000 40000

0.0

50.0

100.0

150.0

200.0

250.0

300.0

-40000 -20000 0 20000 40000 0.0

50.0

100.0

150.0

200.0

250.0

300.0

-40000 -20000 0 20000 40000

0.0

50.0

100.0

150.0

200.0

250.0

300.0

-40000 -20000 0 20000 40000 0.0

50.0

100.0

150.0

200.0

250.0

300.0

-40000 -20000 0 20000 40000



49 
 

 

 

Figure 3.20 Stress-strain relations of the specimens with passive confinement 

 

3.4.2.3 Loading path 

This batch of multiaxial tests aimed to verify the hypothesis that concrete with 

passive confinement behaves as a perfectly plastic material under load. Therefore, 

the loading path of the specimen with passive confinement (P1-P8) is compared 

with the compressive meridian obtained from tests with active confinement in 

Figure 3.21. 

As has been found in the previous section, passively confined specimens show 

similar performance as the unconfined concrete when the vertical load was no 

more than its unconfined strength. As a result, in the stress space specimens (P1-P8) 

followed the uniaxial loading path until reaching the compressive meridian.  

Once the vertical stress approached the unconfined concrete strength and the 

stress state approached the compressive meridian, unstable cracks occurred. It 

follows that the passive confinement started to be activated by the significant 

lateral expansion due to the unstable cracks. 
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Figure 3.21 Loading path of the specimens with passive confinement 

As illustrated in Figure 3.21, after having reached the compressive meridian, the 

stress state of all the specimens moves along the compressive meridian in the stress 

space. The increasing confining pressure keeps pace with the increment of the 

vertical load, such that the stress state stays on the failure surface. With the help of 

the passive confinement, the concrete simply behaves as a perfectly plastic material.  

However, it seems likely that there is a limit of the perfect plasticity since the 

loading path deviates from the compressive meridian of the failure surface at some 

point. The compaction of the yielding surface indicates a reduction in concrete 

strength, also known as softening. Pantazopoulou & Mills (1995) proposed that the 

softening of concrete might be the result of lateral expansion. 
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An investigation was conducted to identify the effect of lateral expansion on the 

extent of softening. Four different levels of lateral strain were investigated: 0.8%, 

1.0%, 1.2% and 1.4%, and the corresponding concrete stress states were plotted in 

the Figure 3.22. These stress states constitute the data points in Figure 3.22 which 

are grouped according to the lateral strain level. The trend line of each group is also 

plotted. 

 

Figure 3.22 Trend lines of the stress state at same level of lateral strain 

As illustrated in Figure 3.22, the trend lines fit well with the corresponding data 

since the parameter R-squared of each trend line is no less than 0.99. When the 

lateral strain is below 0.8%, the trend line of the stress states for all the specimens 

is almost the same as the compressive meridian of the failure surface. That is, the 

softening of passively confined concrete does not occur until lateral strain exceed 

0.8%. The intersection of the trend line with the uniaxial loading path decrease with 

an increase in lateral expansion while the slope remains constant. It follows that 

strength reduction occurs at the sufficiently large lateral strains. In the process of 

softening, the compaction of the compressive meridian of the yield surface is 

witnessed as an isotropic pattern. This means, that the more the concrete 

specimens expand laterally the more their yield surface compacts. 
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3.4.2.4 Axial-lateral strain relationship 

The dilation behaviour of passively confined concrete under load can be indicated 

by the ratio of the lateral and the axial strain increment, 𝑣: 

 
𝑣 = −

∆𝜀𝑙

∆𝜀𝑧
 

(3.20.a) 

As the lateral strain increments (∆𝜀𝑙) can be obtained by the average strain in the x 

and y directions, then 

 
𝑣 = −

∆𝜀𝑥 + ∆𝜀𝑦

2 ∙ ∆𝜀𝑧
 

(3.20.b) 

The parameter 𝑣 was calculated and plotted against the vertical load, as illustrated 

in Figure 3.23. The results of specimen R1 are also plotted as it can serve as a  

benchmark, the one without lateral confinement. 

As can be seen, with increasing load, the dilation parameter 𝑣 of all the specimens 

(P1-P8) gradually increases initially. The passively confined concrete behaved as 

unconfined (R1) at low loads since the lateral confinement was not effectively 

activated.  As the load approached the unconfined concrete strength (i.e. 59 MPa), 

unstable cracks formed, and as a result, a rapid expansion takes place sharply. 

The Poisson's ratio reaches the peak when the vertical compressive stress is 

between 60 and 80 MPa. At this stage, the passive confinement was rapidly 

activated by the intensively increased lateral expansion, and controlls the unstable 

cracking to some extent. It is worth mentioning that for those specimens with a 

higher level of confining stiffness, their peak dilation parameter 𝑣 is smaller. 

As has been found in the previous section, the concrete behaved as a perfectly 

plastic material, and in stress space it moves along the failure surface once the load 

is larger than its unconfined strength. Mathematically, a stress state (𝜎1, 𝜎2, 𝜎3) on 

the failure surface can be expressed as follows: 

 𝑓(𝜎1, 𝜎2, 𝜎3) = 0 (3.21) 
 

Total derivative of both sides of equation 3.21: 
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 𝜕𝑓

𝜕𝜎1
∙ ∆𝜎1 +

𝜕𝑓

𝜕𝜎2
∙ ∆𝜎2 +

𝜕𝑓

𝜕𝜎3
∙ ∆𝜎3 = 0 

(3.22) 

Where vector (
𝜕𝑓

𝜕𝜎1
,

𝜕𝑓

𝜕𝜎2
,

𝜕𝑓

𝜕𝜎3
) represents the normal direction of failure surface. 

In this case, a cubic with passive lateral confinement under vertical load: 

 𝜎1 = 𝜎2 = 𝜎𝑙  
𝜎3 = 𝜎𝑧 

(3.23) 

Substitute Equation 3.23 into 3.22, and organise: 

 

∆𝜎𝑙 =
−

𝜕𝑓
𝜕𝜎𝑧

2 ∙
𝜕𝑓
𝜕𝜎𝑙

∙ ∆𝜎𝑧 

(3.24) 

That is, for any increment of the vertical load ∆𝜎𝑧, a lateral confining pressure 

increment (∆𝜎𝑙) is needed to keep the stress state on the failure surface. Substitute 

∆𝜎𝑙 = 𝑘 ∙ ∆𝜀𝑙 into Equation 3.24: 

 

∆𝜀𝑙 =
1

𝑘
∙

−
𝜕𝑓
𝜕𝜎𝑧

2 ∙
𝜕𝑓
𝜕𝜎𝑙

∙ ∆𝜎𝑧 

(3.25) 

where k is confining stiffness. 

Therefore, the lateral strain increment of a passively confined concrete depends on 

the confining stiffness, the shape of the failure surface and the load increment. For 

a specimen with a higher level of confining stiffness, the need for lateral expansion 

increment is lesser. This is the reason why a specimen with a higher level of 

confining stiffness has a smaller peak dilation parameter 𝑣. 

After having reached the peak, the dilation parameter 𝑣 gradually decreases. As has 

been observed in the stress space, concrete eventually exhibits softening behaviour. 

Therefore, at a given loading increment, the increment of vertical strain becomes 

relatively larger compared to the increment of lateral strain. It should be noted that 

the dilation parameter 𝑣 approaches 0.5 eventually. 

The volumetric strain can be expressed as follows: 

 ∆𝜀𝑣 = ∆𝜀𝑥 + ∆𝜀𝑦 + ∆𝜀𝑧 (3.26.a) 

Substitute Equation 3.20 into 3.26.a, then 
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 ∆𝜀𝑣 = (1 − 2𝑣) ∙ ∆𝜀𝑧 (3.26.b) 
 

𝑣’s value of 0.5 indicates that the volume of the specimen remained constant. At 

the end of tests, the lateral confining pressure was large and thus the specimen 

appeared to be incompressible. 

 

Figure 3.23 Effect of confining stiffness on dilation parameter v history 

3.4.2.5 Observational analysis of the tested specimens  

Since the concrete specimen was invisible during the process of testing, 

observational analysis can only be conducted on tested specimens. Figure 3.24 

shows a typical tested specimen P8, subjected to a lateral confining stiffness of 175 

MPa (0.2 layer of CFRP). As discussed previously, the passively confined concrete 

behaves as unconfined concrete until compressive load approaches concrete 

strength. Then unstable cracks begin to form, which activates lateral confinement. 

Figure 3.24 illustrates the crack orientation in a typical tested specimen: the cracks 

form in the vertical direction. This vertical cracking indicates that the friction 

between the specimen and the Mac2t was well controlled by the measurement of 

lubricated rigid platens. 
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Figure 3.24 A typical tested specimen with passive confinement 

3.5 Summary 

In this chapter, the hypothesis that under compressive load passively confined 

concrete behaves as perfectly plastic material was tested. Two groups of 

experimental tests were conducted on true tri-axial apparatus Mac2T. One aimed to 

determine the failure surface of the concrete through conventional multiaxial tests, 

and the other aimed to physically simulate passive confinement. Mac2T was proven 

capable of subjecting the concrete specimen to the confining pressure, which is 

dependent on its lateral expansion. 

According to the results of experimental tests, the behaviour of passively confined 

concrete under compressive load consists of three phases. Initially, it behaves 

substantially as unconfined concrete, as its the relatively small lateral expansion 

fails to effectively activate the lateral confinement. Once the load is close to the 

unconfined concrete strength, unstable cracks form in the concrete and passive 

confinement begins to be activated. At this point, the lateral confining pressure can 

keep pace with the increasing load such that in the stress space concrete moves 

along the failure surface. Therefore, concrete exhibits the behaviour of a perfectly 

plastic material. However, it seems that there is a limit to this perfect plasticity. 

With the lateral expansion exceeding the strain of 0.008, the yielding surface in the 
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stress space starts to compact. As a result, in the third phase softening of the 

concrete occurs. 
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4 Modelling of conventional concrete with passive 

confinement 

According to the observations recorded from the multiaxial tests, the behaviour of 

passively confined concrete under compressive load consists of three phases. Firstly, 

concrete under load behaved as if unconfined as the lateral confinement could not 

be effectively activated due to the minimal lateral expansion. When the load was 

close to the unconfined concrete’s strength, passive confinement was activated by 

the lateral expansion as a result of unstable cracking. At this point, the lateral 

confining pressure was able to match the forces of the increasing load, such that in 

the stress space, concrete moved along the failure surface. Therefore, in the second 

phase concrete exhibited the behaviours of a perfectly plastic material. However, it 

has been observed that there is a limit to this perfectly plasticity. With the lateral 

expansion exceeding a certain level (i.e. 0.008), the yielding surface in the stress 

space started to compact. As a result, in the third phase softening of concrete 

occurred. In order to capture all of these characteristics, a plasticity-based material 

model for passively confined concrete is proposed in this Chapter. 

A plasticity-based material model consists of three elements: failure surface, 

hardening rule and plastic flow rule. Details of the identification of the proposed 

material model are discussed in section 4.1. For the design-oriented analysis of 

passively confined concrete, a stress-strain curve is always of interest. Therefore, 

the proposed material model was simplified and this is expressed in incremental 

form in section 4.2. Following this, the stress-strain curve of passively confined 

concrete under compressive load is presented as produced in MATLAB. In section 

4.3, the proposed material model is introduced into nonlinear finite element 

software ABAQUS, in order to analyse passively confined concrete structural 

components with complicated boundary condition. 

4.1 Plasticity-based constitutive model for passively confined 

concrete 

In this section, a plasticity-based constitutive model is proposed to capture the 

mechanical behaviour of passively confined concrete, which consists of the 
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identification of the yield surface, the hardening rule, and the plastic flow potential. 

The yield surface function was first proposed by Lee & Fenves (1998), the 

parameters of which were identified based on the results of multiaxial tests 

conducted using Mac2t. The hardening rule was defined to capture the response of 

passively confined concrete under compressive load: it behaves as a perfectly 

plastic material at first and eventually exhibits softening. The plastic flow potential 

is a surface function in the stress space, and the normal surface vector represents 

the direction of plastic principal strain increment vector. According to the 

observations made from multiaxial tests, the plastic potential function is affected by 

the confining stiffness and the confining pressure applied to concrete.  

4.1.1 Yield surface 

Lee and Fenves (1998) proposed the function of the yield surface to be used, 

expressed as follows:   

 
𝑓(𝜎𝑖𝑗) =

1

1 − 𝛼
∙ (𝑞 − 3𝛼𝑝 + 𝛽〈𝜎𝑚𝑎𝑥〉 − 𝛾〈−𝜎𝑚𝑎𝑥〉)

− 𝜎𝑐, 
(4.1) 

 𝛽 =
𝜎𝑐

𝜎𝑡

(𝛼 − 1) − (1 + 𝛼)  

where the stress state 𝜎𝑖𝑗 is in the form of p, q and 𝜎𝑚𝑎𝑥, which represent the 

hydrostatic pressure, the Mises stress and the maximum principal stress 

respectively: 

 
𝑝 = −

1

3
∙ (𝜎1 + 𝜎2 + 𝜎3) 

 

 

𝑞 = √
1

2
[(𝜎1 − 𝜎2) 2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2] 

 

The parameter 𝛼 and 𝛾 in the function are the constants which control the shape of 

the yield surface in the stress space. 𝜎𝑐 and 𝜎𝑡 are the hardening parameters that 

control both the size and the shape of the yield surface and vary with the 

development of the plasticity. 

< > is a mathematical operator: 

 < a >= {
𝑎, 𝑎 ≥ 0
0, 𝑎 < 0

  



59 
 

Therefore, for the cases where all the principal stresses are in compression such as 

the following: 

0 ≥ 𝜎𝑚𝑎𝑥 = 𝜎1 ≥ 𝜎2 ≥ 𝜎3 

then the yield surface function Equation (4.1) can be simplified to: 

 
𝑓(𝜎𝑖𝑗) =

1

1 − 𝛼
∙ (𝑞 − 3𝛼𝑝 + 𝛾𝜎𝑚𝑎𝑥)

− 𝜎𝑐 
(4.2) 

The compressive meridian and the tensile meridian constitute the intersecting curve 

of the yield surface and the plane surface: 𝜎2 − 𝜎3 = 0. The compressive meridian 

is the set of the stress states on the intersecting curve that meets the condition:  

 𝜎1 = 𝜎2 ≥ 𝜎3 (4.3) 
The compressive meridian can then be calculated using simultaneous Equations (4.2) 

and (4.3), and can be expressed as follows: 

 
(

1

3
𝛾 + 1) 𝑞 − (𝛾 + 3𝛼)𝑝 = (1 − 𝛼)𝜎𝑐 (4.4) 

Similarly, the tensile meridian is the set of the stress states on the intersecting curve 

that meets the condition: 

 𝜎1 ≥ 𝜎2 = 𝜎3 (4.5) 
The tensile meridian can then be calculated using simultaneous Equations (4.2) and 

(4.5), and can be expressed as follows: 

 (
2

3
𝛾 + 1) 𝑞 − (𝛾 + 3𝛼)𝑝 = (1 − 𝛼)𝜎𝑐 (4.6) 

𝛾 is the parameter that controls the shape of the yield surface in the 𝜋 plane, which 

is a surface perpendicular to the hydrostatic axis. According to multiaxial tests 

conducted in the past, a 𝛾 equal to 3 can be received for typical concrete (Lubliner 

et al., 1989). 

By substituting 𝛾 = 3 into Equation (4.4), the compressive meridian for 0 ≥ 𝜎𝑚𝑎𝑥 

can be expressed as: 

 2𝑞 − 3(1 + 𝛼)𝑝 = (1 − 𝛼)𝜎𝑐 (4.7) 
In the compression tests of concrete with constant active confinement, the peak 

load that the concrete specimen sustained indicates a stress state on the failure 
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surface. By curve fitting the corresponding data points, a compressive meridian of 

the failure surface was obtained in the previous section, expressed as follows: 

 𝑞 = 1.67 ∙ 𝑝 + 26.1 (4.8) 
By comparing the coefficients of Equations (4.7) and (4.8), the parameter 𝛼 was 

calculated as equal to 0.1145. The compressive meridian and the tensile meridian 

are plotted in the p-q coordinate, as is shown in Figure 4.1. Apart from the 

meridians, the uniaxial compressive and the uniaxial tensile loading paths are also 

plotted. The intersecting point of the compressive meridian and the uniaxial 

compressive loading path represent the stress state (0,0, 𝜎𝑐), and as mentioned 

previously, 𝜎𝑐 is the hardening parameter of the yield surface. Similarly, the other 

hardening parameter 𝜎𝑡 constitutes the stress state (𝜎𝑡, 0,0), the intersecting point 

of the tensile meridian and the uniaxial tensile loading path.  

 

Figure 4.1 The compressive and the tensile meridian of the yield surface 

The yield surface is characterised by its two different hardening parameters. 

Because of the two hardening parameters, the concrete character of different 

strength in compression and tension can be captured. For the cases where all the 

principal stresses are in compression, the yield surface can be expressed by 

Equation (4.2). Under this circumstance, 𝜎𝑐 is the only hardening parameter which 

controls the yield surface evolution.  

q
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4.1.2 Hardening rule of passively confined concrete 

A typical loading path of passively confined concrete (specimen P5) is plotted in 

Figure 4.2 and is compared with the uniaxial loading path and the compressive 

meridian of the failure surface.  The response of passively confined concrete under 

compressive loading consists of three phases:  

1. Following the uniaxial loading path. 

2. Moving along the compressive meridian as a perfectly plastic material. 

3. Softening as a result of significant lateral expansion. 

 

Figure 4.2 Loading path of a passively confined concrete under load 

According to Figure 4.2, in the first phase, the compressive pressure applied to 

concrete was less than its unconfined strength, and the lateral expansion was so 

small that passive confinement could not be effectively activated. At this stage, 

concrete behaved as unconfined concrete. This is followed by the second phase 

when the load exceeded the concrete’s unconfined strength. At this stage unstable 

cracking formed, which generated considerable lateral expansion and effectively 

activated the passive confinement. The increasing confining pressure kept pace with 
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the load increment, such that the concrete moved along the failure surface as a 

perfectly plastic material.  

To capture the response of passively confined concrete in the first two phases, the 

hardening parameter 𝜎𝑐 was defined as a function with respect to the equivalent 

plastic strain ( 𝜀𝑐
𝑝𝑙 ), which represents the permanent deformation in the 

compressive loading direction and can be calculated by the time integral of the 

minimum eigenvalue of the plastic strain rate tensor (𝜀𝑚𝑖𝑛
𝑝�̇� ): 

 
𝜀𝑐

𝑝𝑙 = − ∫ 𝜀𝑚𝑖𝑛
𝑝�̇� 𝑑𝑡

𝑡

0

 (4.9) 

For the cases of passively confined concrete under compressive load, 𝜀𝑚𝑖𝑛
𝑝�̇�  is the 

plastic strain rate in the loading direction. 

As illustrated in Figure 4.3, a bilinear relation between the hardening parameter 𝜎𝑐 

and the equivalent plastic strain 𝜀𝑐
𝑝𝑙  was defined to represent the concrete’s 

response in the first two stages: plastic hardening in the first phase and perfect-

plasticity in the second phase. The function of 𝜎𝑐 with respect to 𝜀𝑐
𝑝𝑙 is expressed as 

follows: 

 

𝜎𝑐 = {

0.3𝑓𝑐
′

𝜀𝑐𝑝1
𝜀𝑐

𝑝𝑙 + 0.7 ∙ 𝑓𝑐
′, 𝜀𝑐

𝑝𝑙 < 𝜀𝑐𝑝1

               𝑓𝑐
′             ,          𝜀𝑐

𝑝𝑙
≥ 𝜀𝑐𝑝1

 
(4.10) 

Initial yielding (𝜀𝑐
𝑝𝑙 = 0) occurred once the stress state of concrete satisfied the 

following: 

{(𝜎𝑖𝑗)|𝑓(𝜎𝑖𝑗 , 𝜎𝑐) = 0, 𝜎𝑐 = 0.7 ∙ 𝑓𝑐
′} 

where 𝑓𝑐
′ represents the concrete uniaxial compressive strength. 

Following this, the equivalent 𝜀𝑐
𝑝𝑙 accumulated as the result of plastic loading, and 

the hardening parameter 𝜎𝑐 increased with the accumulation of 𝜀𝑐
𝑝𝑙 until it was 

equal to 𝑓𝑐
′ . Then the concrete behaved as a perfectly plastic material and 

hardening parameter 𝜎𝑐 was constant after the onset of perfectly plasticity when 
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the equivalent 𝜀𝑐
𝑝𝑙 was equal to 𝜀𝑐𝑝1. Parameter 𝜀𝑐𝑝1 corresponds to the plastic 

strain of concrete under the peak uniaxial compressive load:   

 
𝜀𝑐𝑝1 = 𝜀𝑐1 −

𝑓𝑐
′

𝐸𝑐
 (4.11) 

where  𝜀𝑐1 is the strain at which concrete sustains the peak uniaxial compressive 

stress. 

 

Figure 4.3 Relation between hardening parameter 𝝈𝒄 and hardening variable 𝜺𝒄
𝒑𝒍

 

However, there is a limit to the perfect-plasticity of passively confined concrete. As 

illustrated in Figure 4.2, there are two points marked in the loading path of 

specimen P5 which represent the stress states at the lateral strain (𝜀𝑙) of 0.008 and 

0.014, respectively. Obviously, the data point corresponding to 𝜀𝑙 = 0.008 was on 

the failure surface, while the other (𝜀𝑙 = 0.014) was located within the failure 

surface. It follows that passively confined concrete exhibited softening behaviour 

once its lateral strain exceeded 0.008.  

Apart from that conducted on specimen P5, there were another six experimental 

tests conducted on passively confined concrete. The stress states of all these tests 

at certain levels of lateral strain were collected and the corresponding data points 

plotted in Figure 4.4. The data points were grouped regarding the corresponding 

lateral strain, and the trend lines plotted for each group. These represent the 

compressive meridian of the yield surface. As can be seen, with the increase of 
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lateral expansion of concrete, the yield surface compacted in an isotropic manner, 

since all the four trend lines in Figure 4.4 which represent the compressive meridian 

of yield surface have a similar slope. 

 

Figure 4.4 Trend lines of the stress state at the same level of lateral strain 

A parameter 𝑑 = 𝜎𝑐/𝑓𝑐
′  was introduced to consider the impairment of hardening 

parameter 𝜎𝑐  by lateral strain 𝜀𝑙 , which is plotted against 𝜀𝑙  in Figure 4.5. 

Mathematically, the relationship between 𝑑 and 𝜀𝑙 can be expressed as follows:  

 
𝑑(𝜀𝑙) = {

      1,                          𝜀𝑙 < 0.008
−50.8 ∙ 𝜀𝑙 + 1.414, 𝜀𝑙 ≥ 0.008

 
(4.12) 
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Figure 4.5 Relation between the parameter d and the hardening variable 𝜺𝒍  

In summary, the hardening parameter 𝜎𝑐 is a function of 𝜀𝑐
𝑝𝑙 and 𝜀𝑙 which can be 

expressed as follows: 

 

𝜎𝑐 = {
(
0.3𝑓𝑐

′

𝜀𝑐𝑝1
𝜀𝑐

𝑝𝑙 + 0.7𝑓𝑐
′) ∙ 𝑑(𝜀𝑙), 𝜀𝑐

𝑝𝑙 < 𝜀𝑐𝑝1

                   𝑓𝑐
′ ∙ 𝑑(𝜀𝑙),                      𝜀𝑐

𝑝𝑙 ≥ 𝜀𝑐𝑝1

 
(4.13) 

4.1.3 Plastic flow potential 

The Drucker–Prager function was used as the plastic flow potential: 

 𝑔(𝑝, q) = 𝑞 − 𝑡𝑎𝑛𝜑 ∙ 𝑝 (4.14) 

According to plastic theory, the plastic strain increment dε𝑖𝑗
𝑝  is determined by 

plastic flow rule as follows: 

 
dε𝑖𝑗

𝑝 = dλ ∙
𝜕𝑔

𝜕𝜎𝑖𝑗
 (4.15) 

substitute Equation (4.14) into Equation (4.15): 

 
dε𝑖𝑗

𝑝 = dλ ∙ (
𝑡𝑎𝑛𝜑

3
𝛿𝑖𝑗 +

√3

2

1

√𝐽2

𝑆𝑖𝑗) (4.16) 

for the cases where 𝜎2 = 𝜎3;  𝜀2 = 𝜀3: 

 
dε1

𝑝 = dλ ∙ (
𝑡𝑎𝑛𝜑

3
− 1) (4.17.a) 

d = -50.764*εl + 1.4141
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dε2

𝑝 = dλ ∙ (
𝑡𝑎𝑛𝜑

3
+

1

2
) (4.17.b) 

so: 

dε1
𝑝 + 2 ∙ dε2

𝑝

dε2
𝑝−dε1

𝑝 =
dλ ∙ (𝑡𝑎𝑛𝜑)

dλ ∙ (
3
2)

=
2

3
𝑡𝑎𝑛𝜑 

which is equivalent to: 

 
𝑡𝑎𝑛𝜑 =

3

2
∙

dε1
𝑝 + 2 ∙ dε2

𝑝

dε2
𝑝−dε1

𝑝  (4.18) 

Therefore, dilation angle 𝜑, the only parameter in the plastic flow potential, can be 

determined by the ratio of the lateral and the axial plastic strain increment, as 

follow:  

 

𝜑(−
dε2

𝑝

dε1
𝑝) = tan−1 (

3

2
∙

2 ∙ (−
dε2

𝑝

dε1
𝑝) − 1

(−
dε2

𝑝

dε1
𝑝) + 1

) 

 
(4.19) 

 

As illustrated in Figure 4.6, the dilation angle 𝜑 is plotted against plastic strain ratio 

−dε2
𝑝/dε1

𝑝, according to Equation (4.19). Obviously, 𝜑 is an injective function with 

respect to −dε2
𝑝/dε1

𝑝 , over the domain of (0,3).  Hence, the dilation angle 𝜑 

represents the scale of plastic strain incremental ratio.  
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Figure 4.6 The curve of function 𝝋(−𝐝𝛆𝟐
𝒑

/𝐝𝛆𝟏
𝒑

) 

The parameter identification of the plastic flow rule requires the plastic strain 

history from experimental tests. However, the plastic strain tensor cannot be 

directly read using Mac2t during the experimental tests on passively confined 

concrete. Instead, the only field variables monitored in the process of testing were 

principal stresses and strains.  Therefore, the plastic strain had to be transferred 

using the test reading of total principal stress and strain.  

The total strain can be decomposed as follows: 

 𝜀𝑖𝑗 = ε𝑖𝑗
𝑒 + ε𝑖𝑗

𝑝  (4.20) 

 

According to Hook’s Law, the elastic strain is: 

 ε𝑖𝑗
𝑒 = C𝑖𝑗𝑘𝑙

−1 ∙ 𝜎𝑘𝑙 (4.21) 

 

where 𝐶𝑖𝑗𝑘𝑙 can be determined by material elastic constants Young’s modulus and 

Poisson's ratio. 

Then the plastic strain tensor can be determined as follows: 

 ε𝑖𝑗
𝑝 = 𝜀𝑖𝑗 − C𝑖𝑗𝑘𝑙

−1 ∙ 𝜎𝑖𝑗 (4.22) 

𝜑 

−dε2
𝑝/dε1

𝑝 
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In the cases where 𝜎2 = 𝜎3 and 𝜀2 = 𝜀3 

 
ε1

𝑝 = 𝜀1 −
1

𝐸
(𝜎1 − 2𝑣𝜎2) (4.23.a) 

 
ε2

𝑝 = 𝜀2 −
1

𝐸
[(1 − 𝑣)𝜎2 − 𝑣𝜎1] (4.23.b) 

Therefore, the plastic strain increment ratio (−dε2
𝑝/dε1

𝑝) in the testing process can 

be calculated. −dε2
𝑝/dε1

𝑝 of a typical test on passively confined concrete, P1, is 

plotted against lateral confining pressure in Figure 4.7. When the confining pressure 

was small, −dε2
𝑝/dε1

𝑝 was relatively large. This can be explained by the unstable 

cracking as a result of increasing compressive loading. That is, the expansion in the 

lateral direction was much larger than the deformation in the vertical direction. 

With the increasing lateral confining pressure, the unstable cracking was minimised 

and the lateral plastic strain became smaller; as a result, −dε2
𝑝/dε1

𝑝  gradually 

reduced. It is worth mentioning that −dε2
𝑝/dε1

𝑝  fluctuated around 0.5 at |𝜎𝑙| 

exceeding 20 MPa. The −dε2
𝑝/dε1

𝑝 of 0.5 indicates no plastic volume change. 

The curve of −dε2
𝑝/dε1

𝑝 and 𝜎𝑙 can be fit by a broken line, which is represented by a 

dashed line in Figure 4.7. Due to the 1:1 mapping ratio between 𝜑 and −dε2
𝑝/dε1

𝑝, 

the function 𝜑(𝜎𝑙) can also be expressed in the form of a broken line. 
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Figure 4.7 The history of plastic strain increment ratio (−𝐝𝛆𝟐
𝒑

/𝐝𝛆𝟏
𝒑

) of P1 

Apart from 𝜎𝑙, the confining stiffness (𝑘 = −𝑑𝜎𝑙/𝑑𝜀𝑙) is the other variable that 

affects the dilation angle 𝜑. The 𝜎𝑙 − 𝜑 curves of the experimental tests (P1, P4, P6 

and P7) with different levels of confining stiffness are plotted in Figure 4.8. A broken 

line function (dashed line in Figure 4.8) was introduced to fit the curves, which is 

mathematically expressed as follows: 

 

𝜑 = {

𝜑1

𝜑1 + 18

16
∙ (𝜎𝑙 + 18) − 18       

2

𝜎𝑙 ≥ −2
−2 > 𝜎𝑙 ≥ −18

−18 > 𝜎𝑙

 

 
(4.24) 

where 𝜑1 represents the initial value of the dilation angle, which is a parametric 

function with respect to the confining stiffness k applied to the concrete. The 

relationship between 𝜑1 and k was obtained from experimental test results, as 

illustrated in Figure 4.9. The interpolation of 𝜑1 can be implemented for the k at 

other values. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-60-50-40-30-20-100

P
la

st
ic

 s
tr

ai
n

 in
cr

em
en

t 
ra

ti
o

Lateral confining pressure

Fitting curve

P1



70 
 

 

Figure 4.8 History  of dilation angle of multiaxial tests 

 

 

Figure 4.9 Initial dilation angle 𝝋𝟏 at different levels of confining stiffness 
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4.2 Analytical simulation through MATLAB 

The plasticity-based material model proposed in section 4.1 is too complicated for 

the design-oriented analysis of passively confined concrete structural components 

where a stress-strain curve is always of interest. In order to facilitate the design-

oriented analysis, a MATLAB program was developed to produce the stress-strain 

curve of passively confined concrete under compressive load and is described in this 

section.  

The hardening rule in the proposed material model was simplified. In other words, 

passively confined concrete was assumed to behave as a perfectly plastic material. 

Moreover, the failure surface and the plastic flow rule were maintained as defined 

in the previous section. The perfectly plastic-based constitutive model could then 

be expressed by a matrix equation in an incremental form, i.e. {𝑑𝜎} = [𝐶]𝑒𝑝 ∙ {𝑑𝜀}. 

Apart from the material equation, there is a linear relation between the lateral 

expansion of passively confined concrete and the confining pressure applied to 

concrete (i.e. 𝜎𝑙 = 𝑘 ∙ 𝜀𝑙), which is deemed as the complementary condition.  

The stress-strain curve of passively confined concrete under compression was then 

generated through a MATLAB program by uniting the material matrix equation and 

the complementary condition. Since the parameter of the plastic potential equation, 

the dilation angle, varies with respect to the field variables, the matrix [𝐶]𝑒𝑝is not 

constant. Therefore, an iterative stepwise algorithm was needed for the program to 

incorporate the material matrix equation and the complementary equation.  

The derivation of the incremental material equation is firstly reviewed in this 

section, followed by a description of the algorithm of the MATLAB program. 

Numerical results of the MATLAB program are evaluated by comparing them to the 

experimental tests results. 

4.2.1 Incremental form of perfectly-plastic based constitutive model 

The general form of the incremental model is expressed as follow: 

 𝑑𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙
𝑒𝑝 ∙ 𝑑𝜀𝑘𝑙 (4.25) 



72 
 

Based on the plasticity theory, the strain increment consists of the elastic and the 

plastic components: 

 𝑑𝜀𝑖𝑗 = dε𝑖𝑗
𝑒 + dε𝑖𝑗

𝑝  (4.26) 

 

The incremental stress vector is equal to the elastic strain increment multiplied by a 

fourth order tensor due to the Hooke’s Law: 

 𝑑𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∙ dε𝑖𝑗
𝑒  (4.27) 

 𝐶𝑖𝑗𝑘𝑙 = 2𝐺(𝛿𝑖𝑘𝛿𝑗𝑙 +
𝑣

1 − 2𝑣
𝛿𝑖𝑗𝛿𝑘𝑙) (4.28) 

where 

G is the shear moduli of concrete, 

𝑣 is the Poisson ratio, and 

𝛿𝑖𝑗 is Kronecker’s delta.  

The direction of the stress increment vector is tangential to the failure surface 
 𝑓(𝜎𝑖𝑗) = 0,  known as the consistency condition for perfectly plastic material:   

 𝜕𝑓

𝜕𝜎𝑖𝑗
∙ 𝑑𝜎𝑖𝑗 = 0 (4.29) 

By substituting Equations (4.26) and (4.27) into Equation (4.29), then: 

 𝜕𝑓

𝜕𝜎𝑖𝑗
∙ 𝐶𝑖𝑗𝑘𝑙 ∙ 𝑑𝜀𝑘𝑙 −

𝜕𝑓

𝜕𝜎𝑖𝑗
∙ 𝐶𝑖𝑗𝑘𝑙 ∙ dε𝑘𝑙

𝑝 = 0 (4.30) 

According to the theory of plasticity, the plastic strain increment is calculated as the 

product of a scale dλ and a partial differential vector 
𝜕𝑔

𝜕𝜎𝑖𝑗
, 

 
dε𝑖𝑗

𝑝 = dλ ∙
𝜕𝑔

𝜕𝜎𝑖𝑗
 (4.31) 

where 𝑔(𝜎𝑖𝑗) = 0 is the plastic potential function. 

By substituting Equation (4.31) into Equation (4.30): 

 𝜕𝑓

𝜕𝜎𝑖𝑗
∙ 𝐶𝑖𝑗𝑘𝑙 ∙ 𝑑𝜀𝑘𝑙 −

𝜕𝑓

𝜕𝜎𝑖𝑗
∙ 𝐶𝑖𝑗𝑘𝑙 ∙ dλ ∙

𝜕𝑔

𝜕𝜎𝑘𝑙
= 0 (4.32) 

After having organised equation, dλ can be expressed by: 
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dλ =

1

𝐻
∙

𝜕𝑓

𝜕𝜎𝑖𝑗
∙ 𝐶𝑖𝑗𝑘𝑙 ∙ 𝑑𝜀𝑘𝑙 (4.33) 

where 𝐻 =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝐶𝑖𝑗𝑘𝑙

𝜕𝑔

𝜕𝜎𝑘𝑙
. 

By substituting Equation (4.33) into Equation (4.31): 

 
dε𝑘𝑙

𝑝 =
1

𝐻
∙

𝜕𝑓

𝜕𝜎𝑖𝑗
∙ 𝐶𝑖𝑗𝑘𝑙 ∙

𝜕𝑔

𝜕𝜎𝑘𝑙
∙ 𝑑𝜀𝑘𝑙  (4.34) 

Equation (4.27) can be expressed: 

 𝑑𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∙ 𝑑𝜀𝑘𝑙 − 𝐶𝑖𝑗𝑘𝑙 ∙ dε𝑖𝑗
𝑝  (4.35) 

By substituting Equation (4.34) into Equation (4.35): 

 
𝑑𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∙ 𝑑𝜀𝑘𝑙 −

1

𝐻
∙

𝜕𝑓

𝜕𝜎𝑖𝑗
∙ 𝐶𝑖𝑗𝑘𝑙 ∙ 𝐶𝑖𝑗𝑘𝑙 ∙

𝜕𝑔

𝜕𝜎𝑘𝑙

∙ 𝑑𝜀𝑘𝑙 

(4.36) 

which can be organised as follows: 

 
𝑑𝜎𝑖𝑗 = (𝐶𝑖𝑗𝑘𝑙 −

1

𝐻
𝐻𝑖𝑗

∗ 𝐻𝑘𝑙) ∙ 𝑑𝜀𝑘𝑙  (4.37) 

Therefore, 𝐶𝑖𝑗𝑘𝑙
𝑒𝑝  in Equation (4.25) can be expressed by: 

 
𝐶𝑖𝑗𝑘𝑙

𝑒𝑝 = 𝐶𝑖𝑗𝑘𝑙 −
1

𝐻
𝐻𝑖𝑗

∗ 𝐻𝑘𝑙 (4.38) 

where  

𝐻𝑖𝑗
∗ = 𝐶𝑖𝑗𝑘𝑙

𝜕𝑔

𝜕𝜎𝑘𝑙
 

𝐻𝑘𝑙 =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝐶𝑖𝑗𝑘𝑙 

As illustrated above, the generation of fourth order tensor 𝐶𝑖𝑗𝑘𝑙
𝑒𝑝  requires calculating 

the scalar 𝐻 as well as the second order tensors 𝐻𝑖𝑗
∗  and 𝐻𝑘𝑙. This in turn requires 

the calculation of partial differential of the failure surface (i.e. 𝑓(𝜎𝑖𝑗) = 0) and the 

plastic potential (i.e.  𝑔(𝜎𝑖𝑗) = 0) with respect to the stress tensor. However, the 

failure surface and the plastic potential for the cases where 0 ≥ 𝜎1 = 𝜎2 ≥ 𝜎3 are 

with respect to 𝐼1 𝑎𝑛𝑑  𝐽2 . Therefore, the chain’s rule is employed, as follows: 
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 𝜕𝑓

𝜕𝜎𝑖𝑗
=

𝜕𝑓

𝜕𝐼1

𝜕𝐼1

𝜕𝜎𝑖𝑗
+

𝜕𝑓

𝜕𝐽2

𝜕𝐽2

𝜕𝜎𝑖𝑗
 (4.39.a) 

 𝜕𝑔

𝜕𝜎𝑖𝑗
=

𝜕𝑔

𝜕𝐼1

𝜕𝐼1

𝜕𝜎𝑖𝑗
+

𝜕𝑔

𝜕𝐽2

𝜕𝐽2

𝜕𝜎𝑖𝑗
 (4.39.b) 

Note that only the compressive meridian of failure surface is under investigation in 

this section, due to the same lateral stress  𝜎1 = 𝜎2 . Therefore, the partial 

differential is irrelevant to the Loda angle.  

The compressive meridian of the failure surface defined in the previous section is 

expressed as follows: 

 𝑓(𝑝, 𝑞) = 𝑞 − 1.67 ∙ 𝑝 − 26.1 (4.40) 
equivalent to: 

 𝑓(𝐼1, 𝐽2) =  √3 ∙ 𝐽2 + 0.557 ∙ 𝐼1 − 26.1 (4.41) 

The Drucker-Prager type of plastic potential was employed for the non-associated 

flow rule: 

 𝑔(𝑝, q) = − 𝑡𝑎𝑛 𝜑 ∙ 𝑝 + 𝑞 (4.42) 

equivalent to: 

 
𝑔(𝐼1, 𝐽2) =

𝑡𝑎𝑛 𝜑

3
∙ 𝐼1 + √3 ∙ √𝐽2 (4.43) 

Hence, by substituting the failure surface function Equation (4.41) and the plastic 

potential Equation (4.43) into Equation (4.39), the incremental stiffness tensor  𝐶𝑖𝑗𝑘𝑙
𝑒𝑝  

can be expressed as:  

 
𝐶𝑖𝑗𝑘𝑙

𝑒𝑝 = 𝐶𝑖𝑗𝑘𝑙 −
1

𝐻
𝐻𝑖𝑗

∗ 𝐻𝑘𝑙 (4.44) 

where 

𝐻 = 2𝐺 ∙ [0.557 ∙
1 + 𝑣

1 − 2𝑣
∙ 𝑡𝑎𝑛 𝜑 + 1.5] 

𝐻𝑖𝑗
∗ = 2𝐺 [

𝑡𝑎𝑛 𝜑

3
∙

1 + 𝑣

1 − 2𝑣
𝛿𝑖𝑗 +

√3

2√𝐽2

𝑠𝑖𝑗] 
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𝐻𝑘𝑙 = 2𝐺 [0.557 ∙
1 + 𝑣

1 − 2𝑣
𝛿𝑘𝑙 +

√3

2√𝐽2

𝑠𝑘𝑙] 

where, 𝛿𝑖𝑗 𝑎𝑛𝑑  𝑠𝑖𝑗  represent the Kronecker’s delta and deviator stress tensor 

respectively. 

For the convenience of numerical manipulation, the fourth order tensor has been 

suggested to be expressed as a matrix (Han & Chen 1985). As for the problem 

where the shear components in the stress and the strain could be neglected, the 

incremental constitutive relation is defined by: 

 
[

𝑑𝜎1

𝑑𝜎2

𝑑𝜎3

] = [𝐶]𝑒𝑝 ∙ [

𝑑𝜀1

𝑑𝜀2

𝑑𝜀3

] (4.45) 

 

 

  [

𝑑𝜎1

𝑑𝜎2

𝑑𝜎3

] = ([𝐶]𝑒 −
1

𝐻
∙ [

𝐻11
∗

𝐻22
∗

𝐻33
∗

] ∙ [𝐻11 𝐻22 𝐻33]) ∙ [

𝑑𝜀1

𝑑𝜀2

𝑑𝜀3

] (4.46) 

where, 

[𝐶]𝑒 =
2𝐺

1 − 2𝑣
∙ [

1 − v
v
v

   
v

1 − v
v

   
v
v

1 − v
] 

𝐺 =
𝐸

2(1 + 𝑣)
 

Hence, the incremental stiffness matrix [𝐶]𝑒𝑝 at any strain increment is related to 

the current stress tensor 𝜎𝑖𝑗 and material properties (i.e. 𝐸, 𝑣 𝑎𝑛𝑑 𝜑). As defined in 

the previous section, parameter 𝜑 is related to the confining stiffness and the 

confining pressure. 

In summary, once the FRP confinement was effectively activated by the unstable 

cracking of concrete, the concrete was prevented from failure and can be 

represented as a perfectly plastic material. In this section, the matrix form of the 

incremental constitutive model based on perfectly plasticity has been derived. 
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4.2.2 Iterative stepwise algorism for stress-strain generation 

In this section, a MATLAB program written to generate the stress-strain curve of 

passively confined concrete under compressive loading is described. The principal 

stress 𝜎1 and the principal strain 𝜀1 were in the direction of compressive loading, 

while the principal stresses in another two directions were identical (𝜎2 = 𝜎3) and 

represented the passive confining pressure. The scale of passive confining pressure 

was dependent on concrete lateral expansion such that: 

 𝜎2 = 𝑘 ∙ 𝜀2 (4.47.a) 
 𝜎3 = 𝑘 ∙ 𝜀3 (4.47.b) 
The confining stiffness 𝑘 and the concrete strength were the inputs of the program, 

and the curves of 𝜎1 − 𝜀1  and 𝜎1 − 𝜀2  were the outputs which were used to 

facilitate the structural analysis of concrete structural elements with passive 

confinement. 

The concrete response was assumed as an elastic-perfectly plastic material to 

simplify the algorithm. Therefore, the stress-strain curve consisted of two parts: the 

linear-elastic and the perfectly plastic. For the stress state of concrete within the 

failure surface, i.e. 𝑓(𝜎𝑖𝑗) < 0, concrete exhibits the linear-elastic behaviour: 

 
[

𝜎1

𝜎2

𝜎3

] = [𝐶]𝑒 ∙ [

𝜀1

𝜀2

𝜀3

] (4.48) 

where matrix [𝐶]𝑒 can be expressed as follows: 

[𝐶]𝑒 =
2𝐺

1 − 2𝑣
∙ [

1 − v
v
v

   
v

1 − v
v

   
v
v

1 − v
] 

For the stress state of concrete on the failure surface, i.e. 𝑓(𝜎𝑖𝑗) = 0, perfect-

plasticity of passively confined concrete occurs, and concrete’s behaviour can be 

represented by the incremental material function derived in the last section [i.e. 

Equation (4.45)].  

The end of linear elasticity is the onset of perfect-plasticity. The stress and the strain 

state at this moment are {𝜎0} and {𝜀0} respectively. When the concrete behaves as 

a linear elastic material, its lateral expansion as a result of compressive loading is so 

small that the passive confinement of concrete cannot be effectively activated. 
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Therefore, the confining pressure at the end of linear elasticity can be neglected, 

and the stress state {𝜎0}: 

{𝜎0} = {𝑓𝑐
′ 0 0}𝑇 

According to Equation (4.27), the corresponding strain at {𝜎0}: 

{𝜀0} = ([𝐶]𝑒)−1 ∙ {𝜎0} 

After this, with the increasing load applied to concrete, concrete with passive 

confinement behaves as a perfectly plastic material. The incremental concrete 

material model has been proposed previously to represent such behaviour: 

 
[

𝑑𝜎1

𝑑𝜎2

𝑑𝜎3

] = [𝐶]𝑒𝑝 ∙ [

𝑑𝜀1

𝑑𝜀2

𝑑𝜀3

] (4.49) 

The stiffness matrix[𝐶]𝑒𝑝 was determined by the failure surface and the plastic 

potential function, the coefficients of which vary with respect to certain field 

variables (e.g. confining pressure 𝜎𝑙  and confining stiffness). Details of the 

generation of matrix[𝐶]𝑒𝑝 refers to Equation (4.44). 

Hence, the problem was reduced to determining the stress-strain history, based on 

the following conditions: 

{

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: {𝜎0}, {𝜀0}                        

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦: {𝑑𝜎} = [𝐶]𝑒𝑝 ∙ {𝑑𝜀}  
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝜎𝑙 = 𝑘 ∙  𝜀𝑙           

 

Since the stiffness matrix [𝐶]𝑒𝑝 varies with respect to the field variables confining 

pressure and confining stiffness, an iterative stepwise algorithm was used. The flow 

chart of a loop in the algorithm is illustrated in Figure 4.10. 

A constant axial strain increment 𝑑𝜀1 was applied (step 2) in every loop to initiate 

the displacement control program. The lateral strain consistent with  𝑑𝜀1 was then 

determined by an iterative process through steps 3 to 7, based on the material 

property and consistency condition.  A lateral strain increment 𝑑𝜀𝑙  was assumed 

according to the equations in step 3. It follows that the dilation angle was calculated 

according to the field variables obtained from the last loop, and then the stiffness 
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matrix was generated. In step 6, the stress increment was calculated through 

equation (4.49) based on the assumed lateral strain at step 3. The consistency 

condition was introduced in step 7 to identify the assumed lateral strain increment. 

The lateral strain increment was not accepted and a new value of Δ was to be 

attempted, until the consistency condition was met. It is worth mentioning that Δ 

was initiated at the value of 0.001, and an increase of 0.001 was applied to Δ at 

every loop from steps 3 to 7.  

Once the assumed lateral strain incremental was accepted, the corresponding stress 

and the strain increment were stored and another axial strain increment 𝑑𝜀1 was 

applied for the next loop until the termination of the program.  
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Figure 4.10 Flow chart of the verification program 
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4.2.3 Numerical simulation through the MATLAB program 

The program developed in the previous sections was executed to generate the 

stress-strain curve of passively confined concrete. The input parameters of the 

program consisted of concrete strength, elastic constants, and confining stiffness 

applied to concrete, as is illustrated in Table 4.1. The concrete’s strength, Young’s 

modulus, and the Poisson's Ratio were obtained from the multiaxial tests on 

concrete with active confinement, details of which are provided in section 3.4.1. 

The confining stiffness of 2580 𝑀𝑃𝑎/𝜀 is equivalent to a concrete cylinder of 100 

mm diameter wrapped with 3 layers of CFRP sheet. Hence, the program with the 

input parameters listed in Table 4.1 numerically simulated the scenario of 

experimental test P1. 

Table 4.1 Input parameters for the MATLAB program 

Concrete Strength 
𝒇𝒄

′  /𝑴𝑷𝒂 
Young’s modulus 

𝑬 /𝑮𝑷𝒂 
Poisson's Ratio 

𝒗 
Confining Stiffness 

𝒌 /𝑴𝑷𝒂 
59 51.5 0.206 2580 

 

With the compressive stress 𝜎1 in the loading direction less than 𝑓𝑐
′, passively 

confined concrete was assumed to exhibit linear elastic behaviour and the stress-

strain curves in this segment are therefore in the form of a straight line. Following 

this, the perfectly plastic based program was initiated.  

The 𝜎1 − 𝜀1 and 𝜎1 − 𝜀2 curves as the output of the program are plotted in Figure 

4.11 together with that of the experimental test P1 as the benchmark. The vertical 

axis represents the stress 𝜎1  in the loading direction while the lateral axis 

represents the strain. Due to the sign convention that tensile is positive, the left 

curve with positive strain represents 𝜎1 − 𝜀2 and the right represents 𝜎1 − 𝜀1. 

The numerical simulation matches the test data well with only a minor deviation 

until the lateral strain exceeds 0.008. Hence, the elastic-perfectly plastic assumption 

is reasonable for lateral strain less than 0.008. However, as the lateral strain 

increases and becomes larger than 0.008, errors from the numerical program 

accumulate. At a lateral strain of 1.4%, the strength of passively confined concrete 

estimated by the program is around 15% higher than that of experimental test 
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results. As has been presented in the previous Chapter, compaction of the yielding 

surface in the stress space occurred at a high level of lateral expansion, and 

concrete did not exhibit perfectly plastic behaviour. Therefore, the perfectly plastic 

assumption is no longer validated when the lateral strain of passively confined 

concrete is larger than 0.008. 

 

Figure 4.11 Numerical simulation results of the experimental test P1 

Other multiaxial tests of passively confined concrete with different levels of 

confining stiffness were numerically simulated through the program, and the 

corresponding results are illustrated in Figure 4.12. Similarly, the numerical 

simulation agrees well with the experimental test results if the lateral strain of 

concrete is no more than 0.008, which is the onset of the softening of passively 

confined concrete. The perfectly plastic assumption could lead to an overestimation 

of loading capacity by as much as 15% at a lateral strain of 1.4%.  

It is worth mentioning that the axial strain at any level of lateral expansion can be 

accurately predicted by the MATLAB program, as illustrated in Figure 4.12. That is, 

the plastic flow rule which controls the ratio between the lateral and the axial strain 

is well defined. 
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In summary, the program based on the elastic-perfectly plastic assumption is 

capable of numerically simulating the scenario of passively confined concrete under 

compressive loading. For the design cases in which the lateral expansion of concrete 

is more than 0.008, the stress-strain curves obtained by the MATLAB program must 

be used with caution. 

 

 

a) 3 layers of CFRP b) 2 layers of CFRP 

  

c) 1 layer of CFRP d) 0.5 layer of CFRP 

Figure 4.12 Comparison between the numerical and the experimental test results 
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4.3 Numerical simulation through finite element software 

Finite element analysis can solve the continuum mechanical problem with 

complicated boundary conditions, which makes it versatile for the analyses of 

structural components. Additionally, the material nonlinearity can be taken into 

account in a nonlinear finite element software such as ABAQUS. Therefore, it is 

appropriate to numerically simulate passively confined concrete through ABAQUS 

as was done in this research.   

In this section, the algorithm for the finite element software in solving the material 

nonlinearity is firstly reviewed. Following this, the results from proposed material 

model of passively confined concrete being introduced into ABAQUS are presented. 

The multiaxial tests on passively confined concrete in the previous Chapter were 

numerically simulated using ABAQUS with the proposed material model and these 

results are presented. In order to confirm the effectiveness of the material model of 

passively confined concrete in ABAQUS, the numerical results are finally compared 

to the experimental ones. 

4.3.1 Algorithm in non-linear finite element analysis 

According to the theory of continuum mechanics, the quasi-static behaviour of a 

body (Ω) is governed by the momentum equation: 

 𝜎𝑖𝑗,𝑗 + 𝑓𝑖 = 0 (4.50) 

where 𝜎𝑖𝑗,𝑗 represents spatial differential of stress tensor and  𝑓𝑖  is the body force 

tensor. 

There is a type of continuum mechanics problem where the force or the 

displacement distribution on the boundary of the body (𝜕Ω) is known and the field 

variable distribution within the body is of interest: the initial boundary value 

problem (IBVP). The Finite Element Method is one of the effective solutions to IBVP. 

In the finite element method, the body Ω  is separated into numerous non-

overlapping elements Ω𝑒: 

 
Ω = ∑ Ω𝑒,𝑖

𝑛

𝑖=0

 (4.51) 

 



84 
 

Moreover, the field variables, displacement tensor 𝒖(𝑥, 𝑦, 𝑧) and strain tensor 

𝜺(𝑥, 𝑦, 𝑧) within the element are interpolated according to the element nodal 

displacement (𝒅𝒊): 

 
𝒖(𝑥, 𝑦, 𝑧) = ∑ 𝑵𝒊(𝒙, 𝒚, 𝒛) ∙ 𝒅𝒊

𝒏

𝒊=𝟏

 (4.52) 

 
𝜺(𝑥, 𝑦, 𝑧) = ∑ 𝑩𝒊(𝒙, 𝒚, 𝒛) ∙ 𝒅𝒊

𝒏

𝒊=𝟏

 (4.53) 

 

where subscript 𝑖 indicates the nodal number; 

𝑵𝒊 is the matrix of shape function in associate with nodal 𝑖, and  

𝑩𝒊 is the partial differential of 𝑵𝒊 with respect to the coordinates x, y and z. 

Based on the virtual work principle, the virtual displacement 𝛿𝑢 and the 

corresponding virtual strain 𝛿𝜀 can be expressed as: 

 

∫ 𝑡𝑟([𝛿𝜀]𝑇[𝜎])𝑑Ω

Ω

− ∫ 𝜹𝒖𝑻 ∙ 𝒇 𝑑Ω

Ω

− ∫ 𝜹𝒖𝑻 ∙ 𝒕 𝑑г 

𝜕Ω

= 0 (4.54) 

 

where 𝒕 represents the traction on the body boundary 𝜕Ω as the force boundary 

condition. By substituting Equations (4.52) and (4.53) into Equation (4.54) and 

integrating on an element basis, then: 

 

∑ 𝜹𝒅𝒊
𝑻 ∙ ( ∫ 𝑩𝒊

𝑻 ∙ {𝝈} 𝑑Ω

Ω𝑒

− ∫ 𝑵𝒊
𝑻 ∙ 𝒇 𝑑Ω

Ω𝑒

− ∫ 𝑵𝒊
𝑻 ∙ 𝒕 𝑑г 

г

)

𝒏

𝒊=𝟏

= 0 

(4.55) 

Equation (4.55) is valid for any 𝜹𝒅𝒊
𝑻; therefore: 

 

∫ 𝑩𝒊
𝑻 ∙ {𝝈} 𝑑Ω

Ω𝑒

− ∫ 𝑵𝒊
𝑻 ∙ 𝒇 𝑑Ω

Ω𝑒

− ∫ 𝑵𝒊
𝑻 ∙ 𝒕 𝑑г 

г

= 0 (4.56) 

The first term on the left side of Equation 4.56 represents the internal resistance of 

element 𝒊: 
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𝑓𝑖
𝑖𝑛𝑡 = ∫ 𝑩𝒊

𝑻 ∙ {𝝈} 𝑑Ω

Ω𝑒

 (4.57) 

while the other two terms in Equation (4.56) constitute the nodal force of element 𝒊 

to be balanced by 𝑓𝑖
𝑖𝑛𝑡: 

 

𝑓𝑖
𝑒𝑥𝑡 = ∫ 𝑵𝒊

𝑻 ∙ 𝒇 𝑑Ω

Ω𝑒

− ∫ 𝑵𝒊
𝑻 ∙ 𝒕 𝑑г 

г

 (4.58) 

Then the global internal resistance and the global nodal force can be obtained 

through a linear finite element assembly operator ⋀   (Simo & Hughes, 2006), such 

that: 

 

𝑭𝒊𝒏𝒕 = ⋀ 𝑓𝑖
𝑖𝑛𝑡

𝒏

𝒊=𝟏

= ∫ 𝑩𝒊
𝑻 ∙ {𝝈} 𝑑Ω

Ω

 (4.59) 

 

𝑭𝒆𝒙𝒕 = ⋀ 𝑓𝑖
𝑒𝑥𝑡

𝒏

𝒊=𝟏

== ∫ 𝑵𝒊
𝑻 ∙ 𝒇 𝑑Ω

Ω

− ∫ 𝑵𝒊
𝑻 ∙ 𝒕 𝑑г 

г

 (4.60) 

The IBVP reduces to the determination of nodal displacement, which satisfies the 

equilibrium: 

 𝑭𝒊𝒏𝒕 = 𝑭𝒆𝒙𝒕 (4.61) 

Based on Equation (4.59), 𝑭𝒊𝒏𝒕 is a function with respect to the stress tensor 𝝈, 

which according to material constitutive relation can be expressed as follows: 

 {𝝈} = [𝑫] ∙ {𝜺} = [𝑫] ∙ [𝑩]𝒆 ∙ {𝒅} (4.62) 
where [𝑫] is the constitutive matrix. For nonlinear material such as concrete, matrix 

[𝑫]  is not constant and varies with respect to the nodal displacement 𝒅. It follows 

that Equation (4.62) becomes the nonlinear equation of 𝒅. To solve such nonlinear 

matrix equation, a numerical solution based on a stepwise-iterative algorithm (e.g. 

the Newton-Raphson iterative) is needed. In such a stepwise-iterative algorithm the 

external force vector is increased step-by-step and the nodal displacement vector, 

which is consistent with the force increment, is calculated by the following iteration 

at every step.   

Consider a balanced state at step (n), where the equilibrium is satisfied: 

 𝑭𝑛
𝑖𝑛𝑡(𝒅𝒏) = 𝑭𝑛

𝑒𝑥𝑡 (4.63) 
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A nodal force increment ∆𝑭𝒆𝒙𝒕 is applied at the following step (n+1); then, the 

external force is: 

 𝑭𝑛+1
𝑒𝑥𝑡 = 𝑭𝑛

𝑒𝑥𝑡 + ∆𝑭𝒆𝒙𝒕 (4.64) 
An iteration is needed to calculate the nodal displacement vector 𝒅𝒏+𝟏 that remains 

the equation system in balance. The residual of the equilibrium at step (n+1) can be 

expressed as follows: 

 𝑹 = 𝑭𝑛+1
𝑒𝑥𝑡 − 𝑭𝑛

𝑖𝑛𝑡(𝒅𝒏) (4.65) 
According to the Newton-Raphson, the incremental nodal displacement to decrease 

the residual 𝑹 can be calculated by solving the following equation: 

 𝜕𝑹

𝜕𝒅
∙ {∆𝒅} = 𝑹 (4.66) 

Then the nodal displacement is updated:  

 𝒅𝒏+𝟏 = 𝒅𝒏 + ∆𝒅 (4.67) 
The updated nodal displacement vector is substituted into Equation (4.63) and then 

the new residual 𝑹 of the equilibrium can be determined. Such a process from 

Equation (4.63) to Equation (4.67) is repeated until the scale of residual 𝑹 is within 

the tolerance. Then the corresponding nodal displacement 𝒅𝒏+𝟏 is received as the 

consistent field variable to the nodal force increment ∆𝑭𝒆𝒙𝒕. 

However, there is one problem left in the iteration of nodal displacement: the 

calculation of 𝜕𝑹/𝜕𝒅 in Equation (4.66). Since the external nodal force 𝑭𝑛+1
𝑒𝑥𝑡  is 

constant and independent of nodal displacement, 𝜕𝑹/𝜕𝒅 can be expressed as 

follow: 

 𝜕𝑹

𝜕𝒅
= −

𝑭𝒊𝒏𝒕

𝜕𝒅
 (4.68) 

By substituting Equation (4.57) into Equation (4.68):  

 
𝜕𝑹

𝜕𝒅
= − ⋀ ∫ 𝑩𝒆

𝑻 ∙
𝝏𝝈

𝝏𝜺
∙ 𝑩𝒆 𝑑Ω

Ω𝑒

𝒏

𝒊=𝟏

 (4.69) 

Hence, the determination of 𝜕𝑹/𝜕𝒅 reduces to the calculation of vector partial 

differential  𝜕𝝈/𝜕𝜺, which is dependent of the material constitutive model.  
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According to the theory of material plasticity, 𝜕𝝈/𝜕𝜺  of a time-independent 

hardening material can be expressed as follows (Hinton et al., 2010): 

 𝜕𝝈

𝜕𝜺
= 𝑪 −

𝑪𝑻 ∙ 𝒃 ∙ 𝒂𝑻 ∙ 𝑪

𝐴 + 𝒃𝑻 ∙ 𝑪 ∙ 𝒂
 (4.70) 

where 𝑪  is the matrix form of tensor 𝐶𝑖𝑗𝑘𝑙  defined in Equation (4.28), which 

represents the material elastic behaviour; vector 𝒂 is the gradient of yield surface in 

the stress space (𝜕𝒇/𝜕𝝈); vector 𝒃 is the gradient of plastic potential in the stress 

space (𝜕𝒈/𝜕𝝈); and parameter A is governed by the hardening rule and can be 

expressed by 𝐴 = − {
𝜕𝒇

𝜕𝜀𝑝𝑙
}

𝑻

∙ {
𝜕𝒈

𝜕𝝈
}. Obviously, vector 𝒂 and 𝒃 vary with respect to 

stress state 𝝈; therefore, 𝜕𝝈/𝜕𝜺 is not constant and needs to be determined 

numerically. In most commercial finite element software (e.g. ABAQUS), an implicit 

iteration is used to determine 𝜕𝝈/𝜕𝜺 based on the back-Euler algorithm, details of 

which refer to Simo and Hughes (2006), Hinton et al. (2010) and Lee and Fenves 

(2001). 

4.3.2 Material model of passively confined concrete in FEA 

ABAQUS was used to conduct the finite element analysis on the passively confined 

concrete structures. The material model developed in section 4.1 for passively 

confined concrete was introduced to ABAQUS under the framework of an 

incorporated material model - Concrete Damage Plasticity (CDP). 

4.3.2.1 Framework for the plastic-damage model CDP 

Lubliner et al. (1989) proposed the constitutive model based on the plasticity theory, 

with a novel yielding surface function which fits well with the multiaxial tests results 

from Kupfer et al. (1969). Lee and Fenves (1998) maintained the formulation of 

plasticity theory but modified the yield surface function of Lubliner et al. (1989) by 

introducing two hardening parameters, since concrete exhibits different hardening 

behaviour when subject to compressive and tensile loading. 

When subject to cyclic loads, concrete exhibits stiffness reduction according to the 

observations from experimental tests conducted by Karsan and Jirsa (1969). Such 

stiffness reduction is believed to be attributed to the damage accumulated in the 

process of loading. Therefore, Lee and Fenves (1998) introduced a scalar 
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degradation variable in accordance with plastic deformation, such that the 

loading/unloading stiffness impaired with the increasing deformation can be taken 

into account. It is worth mentioning that the scale degradation variable is 

decoupled with the formulation of the plasticity theory. Without the definition on 

the scale degradation variable, the plastic-damage model reduces to the 

conventional plasticity-based model. 

The material model proposed by Lee and Fenves (1998) was incorporated into 

ABAQUS and termed as CDP (Systemes, 2014) for this research with some 

modification. The Drucker-Prager hyperbolic function was taken by CDP as the 

plastic flow rule, which is a smooth cone surface in stress space. The hardening rule 

in the model of Lee and Fenves (1998) was simplified such that the hardening 

parameters were related to the equivalent tensile plastic strain and the equivalent 

compressive plastic strain, which are the maximum and the minimum eigenvalue of 

the plastic strain tensor, respectively.  

In summary, the CDP model in ABAQUS was simplified and defined as a 

conventional plasticity-based material model. The yield surface function proposed 

by Lee and Fenves (1998) with two different hardening parameters was used. The 

evolution of the yield surface in the process of plasticity was in an isotropic pattern 

and controlled by the hardening rule, which related the hardening parameter to the 

equivalent strain. The plastic flow rule was defined by the Drucker-Prager 

hyperbolic function.  

4.3.2.2 Parameter identification of the CDP 

The material constitutive model proposed for passively confined concrete in this 

research is plasticity-based, as discussed in section 4.1. The yield surface proposed 

by Lee and Fenves (1998) and the Drucker-Prager form plastic flow function were 

employed by the model developed, which are the same as those in the model CDP. 

As a result, it was appropriate to define the material model in ABAQUS based on the 

CDP framework. 

The mechanical performance of concrete is notably enhanced by its lateral 

confinement; therefore, the parameters in the material model varied with respect 
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to the confining pressure, the lateral expansion and the confining stiffness, which 

can be regarded as the field variables in ABAQUS. Therefore, the user subroutine 

option USDFLD in ABAQUS was needed whereby the field variables could be 

redefined and related to material parameters. There were three field variables 

included in the material model proposed, as listed in Table 4.2. The confining 

pressure as Field 1 was calculated by the averaged principal stresses, and the lateral 

expansion as Field 2 was calculated by the averaged principal strain. Then the last 

field variable, confining stiffness, was evaluated by the ratio between the other two.  

It is worth mentioning that the parameters identified in this section are in 

accordance with the conventional concrete used for the multiaxial tests in Chapter 

3. Adjustment of the parameters might be needed for the numerical simulation of 

passively confined concrete with another level of concrete strength. 

Table 4.2 Material-properties-dependent field variables 

 Physical interpretation Formula 

Field 1 Confining pressure (𝜎2 + 𝜎3)/2 

Field 2 Lateral expansion (𝜀2 + 𝜀3)/2 

Field 3 Confining stiffness - Field 1 / Field 2 

 

i. Elastic Constants 

Young’s modulus and Poisson's ratio had to be defined in CDP as elastic constants. 

For the conventional concrete tested in the lab, these two constants were equal to 

51 GPa and 0.206 respectively. 

ii. Yield surface 

The evolution of the yield surface in the process of plastic development is in an 

isotropic pattern; that is, the shape of the yield surface remains unchanged and the 

corresponding parameters are constant. According to ABAQUS Theory Manual 

(Systemes, 2014), the shape of the yield surface in CDP is determined by the 

parameters fb0/fc0 and κ, which are related to the parameters α and γ in Equation 

(4.1). The relationship between fb0/fc0 and α is expressed by Equation (4.71), while 

that between κ and γ is expressed by Equation (4.72). As identified in section 4.1, 
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the α and γ are equal to 0.1145 and 3 respectively for the concrete used in the 

multiaxial tests; therefore, fb0/fc0 and κ were calculated according to Equations 4.71 

and 4.71 and the results are listed in Table 4.3. 

 𝑓𝑏0

𝑓𝑐𝑜
=

𝛼 − 1

2𝛼 − 1
 (4.71) 

 
𝜅 =

𝛾 + 3

2𝛾 + 3
 (4.72) 

 

Table 4.3 Parameters for the shape of the yield surface 

fb0/fc0 κ 

1.149 0.6667 

 

iii. Hardening parameter 

The compressive parameter 𝜎𝑐 identified in section 4.1.2 is a function with respect 

to the equivalent compressive plastic strain (𝜀𝑐
𝑝𝑙) and the lateral strain (𝜀𝑙), which is 

the field variable “Field 2”. ABAQUS cannot read the hardening rule in the form of a 

function; instead, it can accept data points only. Therefore, data points were 

calculated according to the function of the hardening rule and imported into 

ABAQUS. Linear interpolation was used by ABAQUS for the determination of the 

values between the data points.  

Table 4.4 Data points imported into ABAQUS for hardening rule 

Yield 
stress / 
MPa 

Inelastic 
Strain 

Field 2 

41.3 0 0.008 

59 0.001855 0.008 

59 0.05 0.008 

16.4 0 0.02 

23.5 0.001855 0.02 

23.5 0.05 0.02 
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The data points were calculated based on Equation (4.13), the results of which are 

listed in Table 4.4. As illustrated in Figure 4.13, two broken lines were plotted 

according to the data points, which constitutes the boundaries of lateral expansion. 

In ABAQUS, the value of the hardening parameter was assumed to be constant 

outside of the range of independent variables defined. For lateral strain less than 

0.008, the upper broken line governs the hardening rule and the concrete behaved 

as a perfectly plastic material.  

 

Figure 4.13 Linear interpolation between data points for hardening rule 

iv. Plastic flow rule 

The plastic flow rule is governed by a Drucker-Prager type function in the material 

developed, where dilation angle ϕ is the only parameter. As discussed in section 

4.1.3, the dilation angle ϕ is related to the confining pressure and the confining 

stiffness, which are the field variable Field 1 and Field 3, respectively. The definition 

of plastic flow rule in ABAQUS was similar to that of hardening rule. The data points 

were calculated based on the broken line Equation 4.24 and imported to ABAQUS. 

Linear interpolation was used by ABAQUS for the determination of the values of ϕ 

between the data points.  
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Table 4.5 Data points imported into ABAQUS for plastic flow rule 

Dilation angle 

ϕ 

Field 1 /MPa Field 3 /MPa 

48 0 2623 

48 -2 2623 

2 -18 2623 

2 -100 2623 

50 0 1748 

50 -2 1748 

2 -18 1748 

2 -100 1748 

56.3 0 874 

56.3 -2 874 

2 -18 874 

2 -100 874 

 

4.3.3 Numerical simulation through ABAQUS 

In this section, the results of the experimental tests on passively confined concrete 

as numerically simulated through ABAQUS with the material model defined in the 

previous sections are presented. The numerical results are compared to those 

obtained from the experimental tests to confirm that material model CDP can be 

modified to simulate passively confined concrete. Four numerical simulations were 

carried out with four different levels of lateral confining stiffness in accordance with 

those in the experimental tests.  

4.3.3.1 Modelling of the passively confined concrete cube 

The 100 mm cubic specimens in the experimental tests were modelled at full size 

with the compressive load applied in the vertical direction. The passive lateral 

confinement was applied through four rigid pads in contact with the sides of the 

cubic specimen in a frictionless manner. Rotational constrain was defined at the 

centre of each rigid shell such that the translation was only allowed in the direction 

perpendicular to the cube side.  

The linear relationship between confining pressure and lateral expansion was 

realised through the spring installed in the centre of rigid pads. In the experimental 

tests of Mac2t, the confining stiffness was expressed in the form of 𝜎𝑙/𝜀𝑙. However, 
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in ABAQUS the spring property had to be defined by the ratio between the spring 

force and spring displacement (𝐹/𝛥). 

 

Figure 4.14 Diagram of spring defined in ABAQUS 

From Figure 4.14, the lateral strain and the confining pressure can be calculated as 

follow: 

 
𝜀𝑙 =

2 ∙ 𝛥

𝑙
 (4.73) 

 
 𝜎𝑙 =

F

𝐴
 (4.74) 

where 𝐴 and 𝑙  are the cubic surface area and cubic length respectively. 

Then, the spring property can be expressed by 𝜎𝑙/𝜀𝑙  as follows: 

 F

𝛥
=

𝜎𝑙

𝜀𝑙
∙ 2 ∙

A

𝑙
 (4.75) 

According to Equation (4.75), the spring properties of specimens in the ABAQUS 

modelling, corresponding to the experimental tests, were calculated and are listed 

in Table 4.6. 

Table 4.6 Spring property in ABAQUS model 

Experimental 
tests 

specimen 

𝝈𝒍/𝜺𝒍 
MPa 

𝑭/𝜟 
N/m 

Numerical 
simulation No.  

P1 2623 5.25E+08 A1 

P2 P3 P4 1748 3.50E+08 A2 

P5 P6 874 1.75E+08 A3 

P7 437 8.74E+07 A4 

 

Δ 

F F 

Δ 
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The deformable brick element with reduced integration (C3D8R) and the rigid shell 

element (R3D4) were used for the concrete cubic specimen and the rigid pads 

respectively. The mesh size of the cube and the shells were 10 mm but since the 

uniform distribution of stress and strain was expected, the numerical results are 

independent of the mesh size. 

4.3.3.2 Numerical simulation results 

Firstly, the loading paths of passively confined concrete specimens obtained from 

ABAQUS numerical simulation are plotted in Figure 4.15 and compared with those 

of the experimental tests to evaluate the yielding surface and the hardening rule 

defined. The loading path of A2, A3 and A4, agree well with that of the 

experimental tests, while the loading path of A1 deviates from that of experimental 

test P1 with the same level of confining stiffness. 

 

Figure 4.15 Loading path of concrete in the experimental and the numerical test 

The compressive meridian of the yielding surface at a lateral strain of 0.01 and 

0.014 is plotted in Figure 4.16 according to the yield surface function and the 

hardening rule defined in section 4.1. The red points marked in Figure 4.16 

represent the concrete stress state of the experimental test P1 when its lateral 

strain is at 0.01 and 0.014. As discussed in section 4.1, the compressive meridian 

function exhibits a good correlation with the corresponding experimental data 

0

40

80

120

160

200

0 20 40 60 80 100 120

Th
e 

eq
u

iv
le

n
t 

M
is

es
 s

tr
e

ss
 q

 /
 M

P
a

The equivlent pressure p / MPa

Experimental results

ABAQUS simulation

A1

A2

A3

A4



95 
 

points. However, the data points of test P1 are always located below the yield 

surface, as shown in Figure 4.16.  

A similar conclusion has been made by Chen (1994): the linear compressive 

meridian of the yielding surface could overestimate the stress state of concrete at a 

high level of hydrostatic pressure. Therefore, errors in predicting the loading path 

might occur when the load and lateral confining pressure is large, which was the 

case with test P1 where the concrete specimen was subjected to a high level of 

passive confinement and compressive load. 

 

Figure 4.16 Comparison between the defined yielding surface and data points 

from experimental test P1 

The stress and the strain were uniformly distributed in the concrete specimen 

according to the numerical simulation results. 𝜎1 and 𝜀1 represent the stress and 

the strain in the loading direction while 𝜎2 and 𝜀2 represent the stress and the 

strain in the lateral direction. The stress-strain curves of 𝜎1 − 𝜀2  and 𝜎1 − 𝜀1 

according to the numerical simulation results are plotted in Figure 4.17 (red lines) 

and compared with that of the experimental test results (black dashed lines).  
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Since the concrete was passively confined, there is a linear relation between lateral 

stress (𝜎2) and lateral strain (𝜀2): 

 𝜎2 = 𝑘 ∙ 𝜀2 (4.76) 
 

Therefore, the 𝜎1 − 𝜀2 curve has the same trend as 𝜎1 − 𝜎2, which represents the 

stress state history. That is, the accuracy of the numerical simulation of the 𝜎1 − 𝜀2 

curve depends on whether the loading path of passively confined concrete can be 

captured. As discussed previously, the error of the loading path prediction might 

occur when the hydrostatic pressure is at a high level which was the case with A1. 

As a result, the 𝜎1 − 𝜀2 curves obtained from ABAQUS analysis agrees well with the 

experimental tests except for A1, where the stress 𝜎1 was overestimated by 10%.  

The 𝜎1 − 𝜀1 curves obtained by ABAQUS agree well with the experimental tests, 

which indicate that the plastic flow rule was defined correctly. Hence, the material 

model CDP with appropriated modification is capable of simulating passively 

confined concrete. 

 

Figure 4.17 Stress-strain curves from the numerical and the experimental tests 
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4.4 Summary  

In this Chapter, a plasticity-based material has been proposed according to the 

experimental observations made in Chapter 3. The proposed material model is 

capable of representing the behaviour of passively confined concrete in stress space. 

Moreover, the proposed material model considers the effect of FRP confinement on 

the dilation property of concrete. 

For a design-oriented problem, the stress-strain relationship of passively confined 

concrete is of interest, which can be obtained through the developed MATLAB 

program. Provided the lateral expansion of concrete is no more than 0.008, the 

behaviour of passively confined concrete can be well predicted by the program. 

Fianlly, the proposed material model can be introduced into the nonlinear finite 

element software ABAQUS, which facilitates the analysis of mechanical problems 

with complicated boundary condition. 
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5 Multiaxial tests on rubberised concrete 

Rubberised concrete is a novel construction material initially proposed for 

environmental purposes, where the mineral aggregates of conventional concrete 

are partly replaced by one of the reused tyre components - rubber. With the 

increased rubber content, the rubberised concrete exhibits impaired fresh 

properties and strength reduction. According to previous research from the 

University of Sheffield, the former issue can be addressed by an optimal mix design, 

details of which are provided in section 2.1. Despite this, it has been found in the 

compressive tests, rubberised concrete exhibits larger lateral expansion under 

compressive loading compared to its counterpart - conventional concrete without 

rubber content. 

To exploit the deformability of rubberised concrete and address the strength 

reduction, FRP was introduced to the rubberised concrete as lateral confinement. 

FRP confinement – a type of passive confinement – is activated by the lateral 

expansion of rubberised concrete. Then FRP produces the confining pressure and 

enhances the strength and the ductility of rubberised concrete. Most importantly, a 

pilot study has shown that FRP confined rubberised concrete (CRC) can enable 

much larger deformations compared to conventional concrete, which makes it 

feasible for some unique structural applications; for instance, it can be placed in the 

critical region of a frame’s structure where an enormous deformation is expected in 

rare events such as earthquakes with the occurrence rate of once every 2000 years. 

In order to enable engineering use of CRC components, it is essential to not only 

understand the material properties of this novel material but also develop material 

models which can facilitate its structural analysis and design. Therefore, multi-axial 

tests on rubberised concrete were conducted for this present thesis to identify its 

mechanical behaviour.  

5.1 Specimens preparation 

The multiaxial tests in this research focused on rubberised concrete in which 

recycled rubber particles constitute 60% volume of the aggregates. The multiaxial 

testing apparatus Mac2t is in possession of a restriction requirement on the cubic 
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specimen which were to be tested. Therefore, the specimens were carefully 

prepared, details of which are provided in this section. More than 20 rubberised 

concrete cubic specimens were prepared, and then the specimens in the best 

condition in terms of shape were selected to be tested. 

5.1.1 Mix design  

Because of its high rubber content, fresh rubberised concrete can exhibit poor fresh 

properties, specifically segregation or low slump. The former can be mitigated by 

improving the concrete particle packing structure. The cement blender for 

rubberised concrete used in this research consisted of Silica Fume (10%), Pulverised 

Fuel Ash (10%) and cement (80%). The ultra-fine particle, Silica Fume, can fill into 

the gap of cement particles and therefore improve particle packing. The plasticiser 

and the superplasticiser were introduced into the mix as admixtures so as to 

maintain the workability of the fresh rubberised concrete. 

According to a parametric study on mix design by Samar et al. (2016), a concrete 

mix with a water-cement ratio of 0.35 exhibits a good balance between the fresh 

property and the compressive strength when the mineral aggregates are largely 

replaced by reused rubber. The details of the concrete mix used here are illustrated 

in Table 5.1. 

Table 5.1 Optimised concrete mix 

Material Optimised mix 

CEM II – 52.5 MPa 340 kg/m3 

Silica Fume (SF) 42.5 kg/m3 

Pulverised Fuel Ash (PFA) 42.5 kg/m3 

Aggregates 0/5mm 820 kg/m3 

Aggregates 5/10mm 364 kg/m3 

Aggregates 10/20mm 637 kg/m3 

Water 149 l/m3 

Plasticiser (Sika Viscoflow 1000) 2.5 l/m3 

Superplasticiser (Sika Viscoflow 2000) 5.1 l/m3 
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5.1.2 Recycled rubber products 

The tests in this research focused on the rubberised concrete in which the recycled 

rubber particles constituted 60% of the aggregates (by volume). That is, the mineral 

aggregates of the conventional concrete mix illustrated in Table 5.1 had to be partly 

replaced by rubber particles. 

The aggregate grading represents the relative particle proportion, and the concrete 

property can be adversely affected by poor grading. However, little research has 

been done regarding the optimisation of rubber particle grading. Therefore, in this 

research, the grading of rubber particles was determined based on the 

requirements originally proposed for mineral aggregate in ASTM C 33 (2005).   

In the Concrete & Material Lab of the University of Sheffield, rubber particles were 

purchased from two sources: Gumiimpex and Conica. The rubber particles in the 

shape of crumb/granulate were provided by Gumiimpex and were grouped 

according to particle size: 0-0.5, 0.5-2 and 2-3.5 mm, while Conica provided with the 

rubber products (crumb/chips) at relatively large sizes: 2-6, 4-10 and 10-20 mm. 

Four of the rubber products (all three from Gumiimpex and the 2-6 mm from Conica) 

were combined to substitute fine aggregate while the remaining two were used for 

coarse aggregate replacement. 

The relative proportion between the different types of recycled rubber products 

was determined through a trial and error process. The relative proportion for the 

fine and the coarse rubber particles products are listed in Table 5.2 and Table 5.3, 

respectively. The results of sieve analysis in the form of a grading curve are 

illustrated in Figure 5.1. The grading curves of both the fine and the coarse rubber 

particles are within limits specified in standard ASTM C 33.  

Table 5.2 Relative proportion of rubber particles for fine aggregates replacement 

Rubber source Gumiimpex Conica 
Particle size 0-0.5 0.5-2 2-3.5 2-6 

Mass ratio 3 4 1 1 
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Table 5.3 Relative portion of rubber particles for fine aggregates replacement 

Rubber source Gumiimpex Conica 

Particle size 4-10 10-20 

Mass ratio 3 5.25 

 

 

Figure 5.1 Grading curves of the fine and the coarse rubber particles 

5.1.3 Production of rubberised concrete specimen 

In the multiaxial testing of conventional concrete, the concrete specimens were 

prepared through a process of casting, cutting and polishing. That is, a large 

concrete block was cast and cut into cubes (105 mm) using a saw after having been 

cured for no less than 28 days. Following this, the cubes were polished such that the 

length of the edge was approximately 100 mm and the difference between the 

edges in the same direction was less than 0.1 mm. However, the cutting process 

could not be applied to rubberised concrete since the rubber particles were too 

tough to be cut using the concrete saw. Hence, the cubic specimen had to be 

directly cast. Twelve steel cubic moulds in a relatively good condition were selected 

such that the rubberised concrete specimens produced from the moulds met the 

requirements of Mac2t: 1. Specimen faces must be flat and smooth; 2. Two adjacent 

faces must be perpendicular to each other. 
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The rubberised concrete was mixed in the lab using a rotary mixing machine. The 

aggregates, including both the mineral aggregates and the recycled rubber particles, 

were placed in a container and dry mixed for 30 seconds. After this, half of the total 

amount of water was added to the container. The mineral aggregates, rubber 

particles and water were mixed for one minute and then covered by a plastic film to 

allow the aggregates to be saturated. This was then followed by adding the cement 

blender (cement, silica fume and fly ash), the remainder of the water and the 

chemical admixtures to the container. All materials were finally mixed for another 

three minutes before cubic moulds were filled the fresh rubberised concrete. The 

moulds were then placed on a vibration table for 30 seconds to compact the fresh 

concrete and remove the air content. As mentioned previously, a smooth and flat 

surface of the cubic specimen was required for testing by Mac2t; therefore, the top 

surface of the specimen had to be ground after it had been cured and hardened. 

However, the tough rubber particles were very likely to be ripped off during the 

process of polishing and leave a hole on the top of the cubic specimen. In order to 

facilitate the grinding process, the fresh rubberised concrete was topped with a 

layer of high strength cement mortar, as illustrated in Figure 5.2. 

Having been filled by fresh rubberised concrete, the cubic moulds were covered 

with plastic films to maintain the water content in the fresh concrete. Demoulding 

was then conducted in 48 hours, and the rubberised concrete specimens were 

placed in a curing room for 28 days. Following the, the cubic specimens were sent 

to the workshop for polishing of their top surface. Figure 5.3 illustrates a cubic 

specimen with the top surface polished. 
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Figure 5.2 Profile of the mould with rubberised concrete and cement mortar top 

 

Figure 5.3 Rubberised concrete specimen with top surface polished 

5.2 Testing scheme 

The testing scheme for rubberised concrete is similar to that for conventional 

concrete presented in Chapter 3. The strength criterion of rubberised concrete was 

determined through a conventional multiaxial testing scheme; then, the rubberised 

concrete with passive lateral confinement under compressive loading was physically 

simulated. The compressive meridian of the failure surface was obtained in the 

High strength cement mortar 

Rubberised concrete 
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former tests, which became the benchmark when compared to the loading path of 

rubberised concrete with passive confinement.   

5.2.1 Multiaxial tests on rubberised concrete with active confinement 

In this group of tests, a loading path was predefined to the cubic specimen by Mac2t.  

Hydrostatic pressure was applied from the beginning, which represented the level 

of active confinement. The compressive pressure in the lateral direction was 

maintained while increasing the load in the vertical direction up to the peak to 

identify the strength criterion of rubberised concrete. Five tests with different levels 

of active confinement were conducted, the details of which are listed in Table 5.4.  

The loading steps applied by Mac2t are as follows: 

1. Appling contacting stress of 0.4 MPa to the specimen in all three directions.  

2. Hydrostatic pressure was then applied in the load control mode up to a 

certain level. 

3. Maintaining the active confining pressure in the lateral direction (x and y), 

through the load control program; increasing displacement in another 

direction (z) through the displacement control program until the 

corresponding pressure reached the peak. 

Table 5.4 Constant confining pressure 

Specimen No. Confining pressure/MPa 

RR1 0.7 

RR2 5 

RR3 10  

RR4 15 

RR5 20 

 

5.2.2 Multiaxial tests on rubberised concrete with passive confinement 

In this group of tests, the loading path of passively confined concrete was the 

objective, which was compared with the failure surface obtained in the former 

testing group to identify its failure mechanism. 

Mac2t was used to physically simulate the scenario of passive confinement to the 

specimen (i.e. applying the confining pressure in accordance with concrete lateral 
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expansion). The confining stiffness, as a parameter in the control program, 

represented the ratio of the confining pressure (𝜎𝑙) and the concrete lateral 

expansion (𝜀𝑙). Five compressive tests were conducted on rubberised concrete with 

different levels of confining stiffness, as illustrated in Table 5.5. 

Table 5.5 Confining stiffness 

Specimen No. Confining stiffness  
/𝑀𝑃𝑎 

Equivalent to the 102 mm 
cylinder confined by: 

RP1 1748 2 layers of CFRP 

RP2 874 1 layer of CFRP 

RP3 874 1 layer of CFRP 

RP4 437 0.5 layers of CFRP 

RP5 174.8 0.2 layers of CFRP 

 

The steps for multiaxial tests with passive confinement are as follows: 

1. Appling contacting stress of 0.4 MPa to the specimen in all three directions.  

2. Increasing load in the z direction in the displacement control mode then 

updating confining pressure according to the lateral expansion and confining 

stiffness. 

5.3 Multiaxial testing results of rubberised concrete 

5.3.1 Active confinement 

The compressive testing results of concrete with constant confining pressure are 

illustrated in Figure 5.4 in the form of stress-strain curves where stress in the 

loading direction (σz) is plotted against strain (εx, εy and εz). The vertical axis 

represents σz while the horizontal axis represents strain. The peak compressive load 

that the rubberised concrete specimen sustained enhanced with the increase of 

confining pressure. The peak σz of specimen RR5 was around 50 MPa, five times as 

much as that of specimen RR1 with little lateral confinement.  

Apart from the compressive loading capacity, the ductility of rubberised concrete 

was improved by the confining pressure. σz of specimen RR1 dropped by around 20% 

to the maximum value at strain εz of 0.0048, while for the specimens with relatively 

large confining pressure – RR4 and RR5 – little strength decrease could be observed 
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in the post-peak region. Additionally, for specimens RR3, RR6 and RR5, compressive 

strain in the loading direction could have increased to 4 % if the tests had not been 

terminated. Therefore, rubberised concrete with adequate lateral confinement is 

extremely deformable in the loading direction.  

  

RR1: 𝜎𝑙 = 0.5 𝑀𝑃𝑎 RR2: 𝜎𝑙 = 5 𝑀𝑃𝑎 

  

RR3: 𝜎𝑙 = 10 𝑀𝑃𝑎 RR4: 𝜎𝑙 = 15 𝑀𝑃𝑎 

 

 

 

 

RR5: 𝜎𝑙 = 20 𝑀𝑃𝑎  

Figure 5.4 Stress-strain of rubberised concrete with constant confining pressure 
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The stress state corresponding to the peak compressive load for each test is 

illustrated in Table 5.6. The equivalent pressure (p) and Mises equivalent stress (q) 

in accordance with the stress state were then calculated according to the equation: 

 
𝑝 = −

1

3
∙ (𝜎1 + 𝜎2 + 𝜎3) 

(5.1) 

 

𝑞 = √
1

2
[(𝜎1 − 𝜎2) 2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2] (5.2) 

Afterwards, the data points listed in Table 5.6 were plotted in the p-q coordinate 

system as illustrated in Figure 5.5. The trend line of the data points was obtained 

using statistical analysis, which is expressed by the following equation: 

 𝑞 = 0.7228 ∙ 𝑝 + 7.6525 (5.3) 

The trend line fits well with the data points since the correlation parameter R2 is as 

much as 0.98. In the p-q coordinates, the uniaxial compressive loading path can be 

expressed by: 

 𝑞 = 3 ∙ 𝑝 (5.4) 
The intersection point of the trend line and the uniaxial compressive loading path 

represents the rubberised concrete compressive strength fc. By solving the 

simultaneous equations: Equation 5.1, 5.2, 5.3 & 5.4, the rubberised concrete 

compressive strength fc was obtained, which is 10.1 MPa. 

Table 5.6 Stress state of rubberised concrete at peak compressive load 

Specimen 
No. 

Confining 
pressure 

Vertical 
pressure 

p q 

      0 0 

RR1 0.5 9.7 3.6 9.2 

RR2 5.0 21.9 10.6 16.9 

RR3 10.0 29.2 16.4 19.2 

RR4 15.1 39.5 23.2 24.5 

RR5 20.0 48.8 29.6 28.7 

 

In the plasticity-based material model developed for passively confined concrete, 

the yield surface function proposed by Lee and Fenves (1998) was used. As is 
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deduced in section 4.1, the compressive meridian of the yield surface function can 

be expressed by: 

 
(

1

3
𝛾 + 1) 𝑞 − (𝛾 + 3𝛼)𝑝 = (1 − 𝛼)𝜎𝑐 (5.5) 

The parameter 𝜎𝑐 represents the compressive strength; therefore, the value of 10.1 

is in accordance with the stress state of actively confined concrete under peak 

compressive load. The parameters 𝛼 and 𝛾, which control the shape of the yield 

surface, were obtained by curve fitting the data points plotted in Figure 5.5. When 

𝛼=0.12 and 𝛾=0.478, the compressive meridian of the yield surface complies with 

the trend line in Figure 5.5. 

 

Figure 5.5 Trend line of test results in p-q coordinate 

In the experimental tests on rubberised concrete with active confinement, loading 
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2. Increasing displacement in the vertical direction while keeping lateral stress 

constant. 
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𝐸𝑡 =

∆𝜎𝑧

∆𝜀𝑧
 (5.6) 

 
𝑣𝑡 = −

∆𝜀𝑥 + ∆𝜀𝑦

2 ∙ ∆𝜀𝑧
 (5.7) 

As is illustrated in Figure 5.6 and Figure 5.7, the history of 𝐸𝑡 and 𝑣𝑡 were plotted 

respectively against the normalised vertical stress, which is the vertical stress 𝜎𝑧 

divided by its peak value 𝜎𝑧,𝑚𝑎𝑥.  

For the specimens with less confining pressure, RR1 and RR2, the tangent module 

remains constant initially followed by a decreasing trend with the increase of σz. 

Tangent module represents the slope of the stress-strain curve of εz-σz. Therefore, 

when the compressive load was small, specimen RR1 and RR2 exhibited linear 

elastic behaviour. For specimen RR3, RR6 and RR5, σz is relatively large at the onset 

of the second step, 10, 15 and 20 MPa respectively. The tangent module of these 

three specimens decreases with the increasing σz, which indicates the stress state at 

the onset of the second step is not in the elastic range. Hence, Young’s modulus, as 

one of the elastic constants E was taken as 7 GPa for further numerical modelling. 

 

Figure 5.6 Tangent module history of rubberised concrete with constant 

confinement 

As illustrated in Figure 5.7, 𝑣𝑡 fluctuates at around 0.3 when the load is relatively 
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in the numerical material model, was identified as 0.3 of rubberised concrete, which 

is much higher than that of conventional concrete.   

With increasing compressive load, 𝑣𝑡 gradually increases. When the compressive 

stress 𝜎𝑧  exceeds 80% of its peak value 𝜎𝑧,𝑚𝑎𝑥 , 𝑣𝑡  of specimen RR1 with little 

confining pressure soars, which indicates a dramatic lateral expansion; on the 

contrary, with confining pressure no less than 5 MPa, the lateral expansion of the 

other four specimens is well controlled.  

It can also be observed that when the stress state is close to the failure surface (i.e. 

𝜎𝑧/𝜎𝑧,𝑚𝑎𝑥 ≈ 1), 𝑣𝑡  is affected by the constant confining pressure (𝜎𝑙); the more 𝜎𝑙 

applied to rubberised the concrete specimen, the less 𝑣𝑡. Hence, in the material 

model of rubberised concrete, the parameter that controlled dilation should be 

related to confining pressure. 

 

Figure 5.7 History of dilation parameter 𝒗𝒕 

5.3.2 Passive confinement 

The passive confinement applied to rubberised concrete was done through a 

control program in Mac2T. To evaluate the effectiveness of the program, the history 

of the confining pressure (σl) and the lateral expansion (εl) was investigated. As 

illustrated in Figure 5.8, σl is plotted against εl. A linear regression analysis of σl and 

εl was conducted for all rubberised concrete specimens with passive confinement. 
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The analysis results, in the form of linear regression function and regression 

parameter R2, are listed in Figure 5.8.  

  

RP1 RP2 

  

RP3 RP4 

 

 

RP5  

Figure 5.8 Evaluation of the control program for passive confinement 
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passive confinement was successfully applied to rubberised concrete specimens as 

desired. 

Table 5.7 The specified and the actual confining stiffness 

Specimen 
number 

Confining stiffness (k) 
as input to Mat2t 

/𝑴𝑷𝒂 

Confining stiffness from 
regression analysis of 
the testing results 

Difference 

RP1 1748 1729 1.1% 

RP2 874 866 0.9% 

RP3 874 861 1.5% 

RP4 437 436 0.2% 

RP5 174.8 175 -0.1% 

 

The test results of passively confined rubberised concrete under compressive load 

are illustrated in Figure 5.9, where the stress in the loading direction (σz) is plotted 

against strain (εx, εy and εz). The stress-strain curve of RR1, a rubberised concrete 

specimen with a tiny constant confining pressure of 0.5 MPa, is provided in Figure 

5.9 as a benchmark.  

Obviously, before the vertical stress σz exceeds the concrete strength fc, the stress-

strain curves of all specimen with passive confinement almost coincides with that of 

RR1, which implies the fact that passive confinement plays a negligible role when 

the compressive load is small. 

When the vertical stress σz exceeded rubberised concrete’s compressive strength, 

dramatic lateral expansion occurred, and as a result, the confining pressure applied 

to rubberised concrete was effectively activated. No reduction of σz can be 

observed for the specimens with passive confinement, even for the case where the 

confining stiffness is as small as that of specimen RP5 (i.e. confining pressure k=175 

MPa). 

The stress-strain curve of a conventional concrete specimen (R1) subjected to 

uniaxial compression is plotted in Figure 5.9 a and compared with specimen RP1. At 

the same level of compression, rubberised concrete with passive confinement can 
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deform 10 times more than that of conventional concrete with little confining 

pressure, which can confirm the deformable capacity of FRP confined rubberised 

concrete.  

  

RP1 (2CFRP) RP2 (1CFRP) 

  

RP3 (1CFRP) RP4 (0.5 CFRP) 

 

 

RP5 (0.2CFRP)  

Figure 5.9 Stress-strain of rubberised concrete with passive confinement 
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The loading path of all the tests is also plotted in Figure 5.10. As can be seen, the 

passively confined rubberised concrete specimens seem in possession of a large 

variability of strength when compared to the failure surface obtained from 

compressive tests of rubberised concrete specimens with constant confining 

pressure. The specimen RP1 exhibits a larger compressive strength compared to the 

other specimens since its loading path is located outside of that of the others, as 

illustrated in Figure 5.10.  

 

Figure 5.10 Loading path of rubberised concrete with passive confinement 

Extensive previous research has confirmed the correlation between the rubber 

content and the strength of rubberised concrete. The more rubber content the 

specimen contains, the less compressive strength it exhibits. Therefore, the 
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indicates a lower rubber content, which could be the reason why specimen RP1 had 

a higher compressive strength compared to its counterparts. 

Table 5.8 Density of rubberised concrete specimen 

Specimen Density (KG/m3) 

RP1 1874 

RP2 1837 

RP3 1823 

RP4 1828 

RP5 1831 

 

To identify the failure pattern of rubberised concrete with passive confinement, the 

loading paths of the tests are plotted in Figure 5.11 and were compared with the 

uniaxial loading path and the compressive meridian of failure surface. According to 

the previous discussion the parameters 𝛼 and 𝛾 which control the shape of the 

failure surface are equal to 0.12 and 0.478, respectively. Then the compressive 

meridian of failure surface can be expressed as follows: 

 1.159 ∙ 𝑞 − 0.838 ∙ 𝑝 = 0.88 ∙ 𝑓𝑐  (5.8) 
According to the experimental observation on conventional concrete, the passive 

lateral confinement prevents the failure of concrete from compressive loading, and 

the corresponding loading path of concrete is tangential to its compressive meridian 

of the failure surface. With passive confinement, rubberised concrete is expected to 

follow a similar loading path when subjected to the compressive load. 

Since the rubberised concrete exhibited strength variability, the parameter 𝑓𝑐  in 

Equation 5.8 that represents the rubberised concrete strength had to be adjusted 

for different tests, such that the compressive meridian of failure surface was at a 

tangent to the loading path of rubberised concrete with passive confinement. 

Through a trial and error process, 𝑓𝑐  for each test was determined and the 

corresponding compressive meridian of the failure surface is plotted as a solid line 

(see Figure 5.11) 
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RP1 2CFRP 𝑓𝑐=13.0 RP2 1CFRP 𝑓𝑐=10.6 

  

RP3 1CFRP 𝑓𝑐=9.4 RP4 0.5 CFRP 𝑓𝑐=9.0 

 

 

RP5 0.2CFRP 𝑓𝑐=10.3  

Figure 5.11 Loading path of rubberised concrete with passive confinement 
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As illustrated in Figure 5.11, the rubberised concrete followed the uniaxial loading 

path initially. With the increase of compressive loading, the stress state of 

rubberised concrete approached its failure surface. The manner in which the 

passively confined rubberised concrete approached its failure surface was different 

to that of the passively confined conventional concrete.  

For the conventional concrete, the confining pressure applied to it was negligible 

until its stress state was on the failure surface, which was also the onset of unstable 

cracking. The dramatic lateral expansion due to the unstable cracking effectively 

activated the passive confinement, which prevented the concrete from failure and 

kept its stress state on the failure surface as the load increased. As a result, the 

loading path of conventional concrete was strictly along the uniaxial loading path 

before it moved on the failure surface, as shown in Figure 3.21.  

For the passively confined rubberised concrete, especially with a high level of 

confining stiffness, its loading path deviated from uniaxial loading path far before 

the stress state was on the failure surface. That is, the confining pressure was 

effectively activated in advance. Hence, dramatic lateral expansion of rubberised 

concrete under compressive load occurred earlier compared to its counterpart 

without any rubber content. 

With increasing compressive load, the loading path became tangent to the failure 

surface, and then it moved along the failure surface as a perfectly plastic material. 

As has been found in the experimental tests on passively confined conventional 

concrete, there is a limit to its perfectly plastic behaviour. The loading path moved 

away from the failure surface when the lateral strain of concrete exceeded 0.008. 

Therefore, the stress state of the rubberised concrete specimen at the lateral strain 

of 0.008 and 0.015 was significant, as illustrated in Figure 5.11. 

Almost all rubberised concrete specimens exhibited similar behaviour as that of 

conventional concrete. The stress state corresponding to the lateral strain of 0.008 

represents the end of perfectly plasticity and the onset of softening. Only specimen 

RP4 exhibited perfectly plastic behaviour when the lateral strain was as much as 
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0.015, as its stress state was always on the failure surface. This might be due to the 

material’s variability. 

In summary, the response of rubberised concrete with passive confinement under 

compressive load consists of 4 phases: 

1. Following the uniaxial loading path and exhibiting linear elastic behaviour; 

2. Deviating from the uniaxial loading path and behaving as plastic hardening 

material; 

3. Moving on the failure surface and behaving as perfectly plastic material; 

4. Moving away from the failure surface and becoming soft due to significant 

lateral expansion. 

5.4 Summary 

The following generalisations can be made based on the results analysed in this 

Chapter. Firstly, rubberised concrete exhibits weak compressive strength compared 

to conventional concrete. Secondly, passive confinement seems likely to be 

necessary for structural components composed of rubberised concrete. With 

passive lateral confinement, compressive failure of rubberised concrete can be 

prevented. It has also been observed that at the same level of compressive loading, 

rubberised concrete exhibits larger lateral expansion, which could effectively 

activate passive lateral confinement.  

In general, the failure mechanism of passively confined rubberised concrete is 

similar to that of conventional concrete. With passive confinement, rubberised 

concrete moves along with the failure surface when subjected to a compressive 

load and can become soft when the lateral expansion exceeds 0.008 as its stress 

state moves away from the failure surface. In addition, at the same level of 

compressive loading, the deformation in the loading direction of rubberised 

concrete with passive confinement can be 10 times larger than the conventional 

concrete, which might facilitate its use in novel structural applications. 

It is worth mentioning that the rubberised concrete specimens exhibited relatively 

large variability compared to their counterpart, conventional concrete. The 
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different rubber content among specimens might be attributed to the variability of 

mechanical behaviour. 
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6 Modelling of rubberised concrete with passive 

confinement 

According to the observations made from the multiaxial tests on rubberised 

concrete, the mechanical behaviour of rubberised concrete is similar to that of 

conventional concrete. Under compressive load, passively confined rubberised 

concrete moved along its failure surface in the stress space.  Therefore, rubberised 

concrete can be assumed as a perfectly plastic material in numerical simulations. It 

has also been observed that rubberised concrete experiences strength reduction 

when the lateral expansion is greater than 0.008, as its stress state moves away 

from the failure surface. Therefore, this needs to be taken into account in numerical 

modelling. 

A plasticity-based material model has been proposed in Chapter 4 which has been 

proved capable of representing the compressive behaviour of concrete with passive 

confinement. Therefore, the numerical modelling in this Chapter for rubberised 

concrete uses same framework.  

In this Chapter, a description of the plasticity-based material model calibration for 

rubberised concrete is provided. Then, the results from the material model having 

been introduced to finite element software ABAQUS are presented. This is followed 

by a description of the experimental tests using Mac2T which were numerically 

simulated. Finally, a comparison of the numerical results to their experimental 

counterpart as the verification of material modelling of rubberised concrete 

concludes the chapter.   

6.1 Plasticity-based material model of passively confined 

rubberised concrete 

The plasticity-based material model proposed in Chapter 4 was aimed at capturing 

the mechanical behaviour of passively confined concrete under compressive loads. 

As discussed in Chapter 4, the plasticity-based material model consists of three 

elements: yield surface function, hardening rule and plastic potential function. In 

the proposed material model, the yield surface function was provided Lee and 

Fenves (1998), while the Drucker-Prager function was taken as the plastic potential 
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function. The hardening rule relates the hardening parameter to the equivalent 

plastic strain and lateral strain in order to simulate the limited perfectly-plastic 

behaviour of rubberised concrete. In this section, the material model calibration for 

rubberised concrete is described. 

6.1.1 Yield surface function 

The yield surface function proposed by Lee and Fenves (1998) can be expressed as 

follows:  

 
𝑓(𝜎𝑖𝑗) =

1

1 − 𝛼
∙ (𝑞 − 3𝛼𝑝 + 𝛽〈𝜎𝑚𝑎𝑥〉 − 𝛾〈−𝜎𝑚𝑎𝑥〉) − 𝜎𝑐 (6.1) 

𝛽 =
𝜎𝑐

𝜎𝑡

(1 − 𝛼) − (1 + 𝛼) 

The parameters α and γ that control the shape of the failure surface have been 

determined in section 5.3 – 0.12 and 0.478 respectively – such that the failure 

surface complied with the multiaxial test results of rubberised concrete with active 

confinement. Since the plastic-hardening was assumed to be in an isotropic pattern, 

the shape of the yield surface remained unchanged. Therefore, the parameters α 

and γ were kept constant. 

6.1.2 Hardening rule 

According to the experimental observation from Chapter 5, under monotonic 

compressive loading, passively confined rubberised concrete experienced elastic 

behaviour initially, followed by plastic hardening. Once it reached the failure surface, 

it moved alone it as a perfectly plastic material. After the lateral expansion of 

rubberised concrete exceeded a certain level (strain of 0.008), the rubberised 

concrete moved away from the failure surface. One typical loading path of passively 

confined concrete (specimen RP1) is illustrated in Figure 6.1. 

The framework of hardening rule for conventional concrete, defined in Chapter 4, 

was used for the rubberised concrete. That is, the hardening parameter σc is a 

function with respect to the equivalent strain 𝜀𝑐
𝑝𝑙 and the lateral strain 𝜀𝑙, expressed 

as follows: 
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𝜎𝑐 = {
(
0.3𝑓𝑐

′

𝜀𝑐𝑝1
𝜀𝑐

𝑝𝑙 + 0.7𝑓𝑐
′) ∙ 𝑑(𝜀𝑙), 𝜀𝑐

𝑝𝑙 < 𝜀𝑐𝑝1

                   𝑓𝑐
′ ∙ 𝑑(𝜀𝑙),                      𝜀𝑐

𝑝𝑙 ≥ 𝜀𝑐𝑝1

 
(6.2) 

where  

𝑓𝑐
′ is the rubberised concrete uniaxial compressive strength; 

𝜀𝑐𝑝1  is the parameter corresponding to the equivalent plastic strain when 

rubberised concrete initially reach its failure surface; and 

𝑑(𝜀𝑙) is the parametric function with respect to lateral strain 𝜀𝑙. 

 

 

Figure 6.1 Typical loading path of passively confined concrete 

By dividing both sides with 𝑓𝑐
′ , Equation 6.2 becomes: 

 

𝜎𝑐/𝑓𝑐
′ = {

(
0.3

𝜀𝑐𝑝1
𝜀𝑐

𝑝𝑙 + 0.7) ∙ 𝑑(𝜀𝑙), 𝜀𝑐
𝑝𝑙 < 𝜀𝑐𝑝1

                   𝑑(𝜀𝑙),                      𝜀𝑐
𝑝𝑙 ≥ 𝜀𝑐𝑝1

 
(6.3) 

Parametric function 𝑑(𝜀𝑙) represents the strength reduction of rubberised concrete 

as the result of lateral expansion. As observed in experimental tests, when lateral 

strain was no more than 0.008, rubberised concrete could move along its failure 

surface. In other words, the rubberised concrete exhibited no strength reduction. 

Therefore, under this circumstance, the value of 𝑑(𝜀𝑙) was taken as 1. For 𝜀𝑙 ≤

0.008, Equation 6.3 then reduces to the following: 
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𝜎𝑐/𝑓𝑐
′ = {

0.3

𝜀𝑐𝑝1
𝜀𝑐

𝑝𝑙 + 0.7, 𝜀𝑐
𝑝𝑙 < 𝜀𝑐𝑝1

           1             ,         𝜀𝑐
𝑝𝑙 ≥ 𝜀𝑐𝑝1

 
(6.4) 

Then, 𝜎𝑐/𝑓𝑐
′ is plotted against 𝜀𝑐

𝑝𝑙 , as illustrated in Figure 6.2. 

 

Figure 6.2 The relation between  𝝈𝒄 and 𝜺𝒄𝒑𝟏 at 𝜺𝒍 ≤ 𝟎. 𝟎𝟎𝟖 

It is worth mentioning that when the equivalent plastic strain exceeded 𝜀𝑐𝑝1 and 

the rubberised concrete reached its failure surface, the hardening parameter 𝜎𝑐 was 

governed by parametric function 𝑑(𝜀𝑙), as illustrated in Figure 6.3. 

 

Figure 6.3 The relation between 𝝈𝒄 and 𝜺𝒍 
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Following this, parameter 𝜀𝑐𝑝1 and parametric function 𝑑(𝜀𝑙) had to be determined 

by fitting the curves plotted in Figure 6.2 and Figure 6.3 to those obtained in the 

experimental tests. For the scenario of all principal stresses in compression, the 

yield surface function Equation (6.1) can be simplified and expressed as follows: 

 
(

1

3
𝛾 + 1) 𝑞 − (𝛾 + 3𝛼)𝑝 = (1 − 𝛼)𝜎𝑐 (6.5) 

𝜎𝑐 is the only hardening parameter that controls the evolution of the yield surface. 

Substituting α=0.12 and γ=0.478 into Equation 6.5 provides: 

 1.159𝑞 − 0.838𝑝 = 0.88𝜎𝑐 (6.6) 
Therefore, the hardening parameter 𝜎𝑐 corresponding to any stress state can be 

calculated by Equation 6.6. For the cases of passively confined concrete under 

compressive load, the equivalent plastic strain 𝜀𝑐
𝑝𝑙 is the plastic strain in the loading 

direction (𝜀𝑧
𝑝), which can be calculated using the following equation: 

 
𝜀𝑐

𝑝𝑙 = 𝜀𝑧
𝑝 = 𝜀𝑧 −

1

𝐸
(𝜎𝑧 − 2𝑣𝜎𝑙) (6.7) 

where  

𝜎𝑧 and 𝜀𝑧 are stress and strain in the loading direction;  

𝜎𝑙 is the stress in the lateral direction, average of 𝜎𝑥 and 𝜎𝑦. 

By substituting the reading of stress and strain by Mac2T into Equation 6.7, 

equivalent plastic strain 𝜀𝑐
𝑝𝑙 can be evaluated. In order to determine parameters in 

Equation 6.2, 𝜎𝑐  was normalised by rubberised strength 𝑓𝑐
′ and plotted against 

equivalent plastic strain 𝜀𝑐
𝑝𝑙 and lateral strain 𝜀𝑙 respectively, as is illustrated in 

Figure 6.4 and Figure 6.5. The fitting curves were also plotted. Hence, the 

parameter for rubberised concrete could be taken as 0.004; i.e. when plastic strain 

in the compressive loading direction was 0.004, rubberised concrete reached its 

failure surface. The parametric function 𝑑(𝜀𝑙) is expressed as follows:  

 
𝑑(𝜀𝑙) = {

      1,                           𝜀𝑙 < 0.008
−28.6 ∙ 𝜀𝑙 + 1.229, 𝜀𝑙 ≥ 0.008

 
(6.8) 

 



125 
 

 

Figure 6.4 Relation between 𝜺𝒄
𝒑𝒍

 and 𝝈𝒄from experimental tests 

 

Figure 6.5 Relation between 𝜺𝒍 and 𝝈𝒄 from experimental tests 

6.1.3 Plastic flow rule 

In the proposed material model, the Drucker-Prager function was taken as the 

plastic flow potential, with the only parameter dilation angle 𝜑: 

 
𝑔(𝑝, q) = 𝑞 − 𝑡𝑎𝑛𝜑 ∙ 𝑝 (6.9) 
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Therefore, this section shows the process of identification of parameter 𝜑. As 

deduced in section 4.1.3, the dilation angle 𝜑 represents the ratio of plastic strain 

increment in the loading and the lateral direction, and can be expressed as follows: 

 

𝜑 = tan−1 (
3

2
∙

2 ∙ (−
dε2

𝑝

dε1
𝑝) − 1

(−
dε2

𝑝

dε1
𝑝) + 1

) 
(6.10) 

According to the experimental observation on rubberised concrete with active 

confinement (Figure 5.7), its dilation property is dependent on the confining 

pressure applied to it. Therefore, dilation parameter  𝜑  is believed to be a 

parametric function with respect to confining pressure 𝜎𝑙. 

In the process of testing, strain in all three directions (𝜀1, 𝜀2 and 𝜀3 ) was read by 

Mac2T. From this, the plastic components of the strain could be calculated as follows: 

 
ε1

𝑝 = 𝜀1 −
1

𝐸
(𝜎1 − 2𝑣𝜎2) (6.11.a) 

 
ε2

𝑝 = 𝜀2 −
1

𝐸
[(1 − 𝑣)𝜎2 − 𝑣𝜎1] (6.11.b) 

where Young’s modulus 𝐸 and Poisson's ratio 𝑣 was determined in the previous 

section, the values of which are 7 GPs and 0.3, respectively. 

Dilation angle 𝜑 can be calculated by substituting Equation 6.11 into Equation 6.10. 

Dilation angle 𝜑 of rubberised concrete specimens (RP1, RP3, RP4 and RP5) with 

different level of confining stiffness were then plotted against 𝜎𝑙, as illustrated in 

Figure 6.6. 
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Figure 6.6 The history of dilation angle 𝝋 plotted against confining pressure  𝝈𝒍 

 

As has been found in conventional concrete, the dilation angle decreased with the 

increasing confining pressure and became stable when the confining pressure 

exceeded a certain level.   

According to the theory of plasticity, the relationship between plastic volumetric 

strain increment dε𝑣
𝑝 and dilation angle 𝜑 can be expressed as follows: 

 
dε𝑣

𝑝 = dλ ∙ 𝑡𝑎𝑛𝜑 (6.12) 
 

That is, a positive value of 𝜑 indicates the trend of swelling, while a negative one 

indicates the trend of compacting. For conventional concrete, the minimum value 

of dilation angle observed in the experimental tests was no less than 0 – the trend 

of compacting could not be observed for conventional concrete. However, for 

specimen RP1 and RP3, the dilation angle eventually became negative.  

It is worth mentioning that all the tests stopped when the lateral expansion of the 

specimen reached 0.015. For specimens RP1 and RP3 with relatively large confining 

stiffness, the confining pressure reached 26 and 14 MPa respectively. Compared to 

the unconfined rubberised concrete strength (around 10 MPa), such confining 

pressures specimen RP1 and RP3 experienced are very large. Under such a high 
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level of lateral confinement, the rubberised concrete tended to compact. The 

cracking as a result of vertical loading was limited to an extent by the huge lateral 

confining pressure. 

The parametric function of dilation angle was obtained by a curve fitting process, 

and the fitting function is in the form of broken line function as follows: 

 
𝜑 = {

30
−5 ∙ 𝜎𝑙 + 35       

−10

𝜎𝑙 ≥ −1
−1 > 𝜎𝑙 ≥ −9

−9 > 𝜎𝑙

 (6.13) 

 

6.2 Implementation of the proposed model in ABAQUS 

In the previous section, the material model for passively confined concrete was 

calibrated for rubberised concrete. Since the yield surface function and the plastic 

potential function are the same as defined in the ABAQUS CDP material model, the 

proposed material model was easily imported into ABAQUS. 

The hardening parameter 𝜎𝑐 and dilation angle 𝜑 are a parametric function with 

respect to field variables. Therefore, user subroutine option USDFLD in ABAQUS was 

needed, whereby the field variables could be redefined and related to material 

parameters. Two field variables were defined for the rubberised concrete material 

model, as listed in Table 6.1.   

Table 6.1 Material-properties-dependent field variables 

 Physical interpretation Formula 
Field 1 Confining pressure (𝜎2 + 𝜎3)/2 
Field 2 Lateral expansion (𝜀2 + 𝜀3)/2 

 

Young’s modulus and Poisson's ratio had to be defined in CDP as elastic constants. 

For the rubberised concrete tested in the lab, these two constants were 7 GPa and 

0.3 respectively. 

The parameters of yield surface function 𝛼 and 𝛾 were calibrated for rubberised 

concrete in the previous section, equal to 0.12 and 0.4783 respectively. However, 

ABAQUS received  𝑓𝑏0/𝑓𝑐0 and K as the parameters in charge of the shape of yield 
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surface, related to 𝛼 and 𝛾 through Equation 6.14. Therefore, CDP yield surface 

parameters  𝑓𝑏0/𝑓𝑐0 and K for rubberised concrete were calculated and are listed in 

Table 6.2. 

 𝑓𝑏0

𝑓𝑐𝑜
=

𝛼 − 1

2𝛼 − 1
 (6.14.a) 

 
k =

𝛾 + 3

2𝛾 + 3
 (6.14.b) 

 

Table 6.2 Parameters for the shape of the yield surface 

fb0/fc0 k 

1.149 0.6667 

 

The hardening rule is defined by Equation 6.2 in section 6.1.2 for rubberised 

concrete, in which the hardening parameter is a parametric function with respect to 

equivalent plastic strain and lateral strain (field variable Field 2). Software ABAQUS 

is not capable of receiving the hardening rule in the form of parametric function; 

instead, it can only accept data points. Thus, linear interpolation was used by 

ABAQUS for the determination of the values between the data points. The crucial 

data points for rubberised concrete were calculated based on Equation 6.2, as are 

listed in Table 6.3. 

Table 6.3 Data points imported into ABAQUS for hardening rule identification 

Yield 
stress 

Inelastic 
Strain 

Field 2 

𝟎. 𝟓𝟔 ∙ 𝒇𝒄
′
 0 0.015 

𝟎. 𝟖 ∙ 𝒇𝒄
′
 0.004 0.015 

𝟎. 𝟖 ∙ 𝒇𝒄
′
 0.05 0.015 

𝟎. 𝟕 ∙ 𝒇𝒄
′
 0 0.008 

𝒇𝒄
′  0.004 0.008 

𝒇𝒄
′  0.05 0.008 

where  

𝑓𝑐
′ represents the unconfined compressive strength of rubberised concrete. 
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In the developed material model, a Drucker-Prager type function was used as the 

plastic flow rule, in which dilation angle 𝜑 is a parametric function with respect to 

the field variable confining pressure.  

The plastic flow rule in ABAQUS was identified in a similar fashion to the hardening 

rule. The crucial data points were calculated based on Equation 6.13. ABAQUS 

accepted these data points and conducted linear interpolation in order to 

determine the values between the data points. 

 

Figure 6.7 Comparison between data points and function 𝝋(𝝈𝒍) 

It is worth mentioning that a negative dilation angle could not be accepted by 

ABAQUS under the framework of the ABAQUS CDP material model. Thus, when the 

rubberised concrete was subjected to large lateral confining pressure, its 

compacting volumetric trend could not be precisely captured. 

A compromise was made whereby the dilation angle was defined to be 0.5o for 

confining pressures exceeding 7 MPa. The data points imported to ABAQUS were 

then compared to the parametric function obtained in section 6.1.3, as illustrated in 

Figure 6.7. The error of numerical simulation due to such compromise is assessed in 

the following section. 
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6.3 Validation of the material modelling through ABAQUS 

In this section, the results of the numerical simulation of experimental tests on 

passively confined rubberised concrete through ABAQUS are presented, making use 

of the material model defined in the previous sections. The numerical results are 

compared to those obtained from the experimental tests in order to verify the 

proposed material model for rubberised concrete.  

Rubberised concrete specimens were simulated in ABAQUS through the deformable 

brick elements with reduced integration (C3D8R). The mesh of the rubberised 

concrete specimen is illustrated in Figure 6.8, with an element size of 10 mm. Since 

the material model was independent of element size, and uniform stress and strain 

distribution was expected, the mesh of the specimen did not affect the numerical 

results. 

 

Figure 6.8 Mesh of the rubberised concrete specimen 

Passive lateral confinement was applied to the rubberised concrete specimen 

through the rigid shell with the same mesh size, which was in contact with each side 

of the specimen in a frictionless manner. Rotational constrain was defined at the 

centre of the rigid shell and only translation in the direction perpendicular to the 

cubic specimen side was allowed. A spring was installed at the centre of each rigid 

shell in order to relate the confining pressure to rubberised concrete lateral 
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expansion. The confining stiffness 𝜎𝑙/𝜀𝑙 could be adjusted by setting the spring 

stiffness in ABAQUS. 

There were four numerical simulations carried out with four different levels of 

lateral confining stiffness. The confining stiffness was the same as that defined in 

the experimental tests and is listed in Table 6.4. The numerical analysis results of 

rubberised concrete were then compared to their experimental counterparts and 

are presented here. 

Table 6.4 Confining stiffness defined in numerical model 

Numerical 
simulation 

No.  

𝝈𝒍/𝜺𝒍 
MPa 

Experimental 
tests 

specimen 

B1 1748 RP1 

B2 874 RP2 & RP3 

B3 437 RP4 

B4 175 RP5 

 

The loading path of passively confined rubberised concrete as a result of the 

numerical simulation (red solid line) and its experimental counterpart (black solid 

line) were plotted and are shown in Figure 6.9. Clearly, the numerical simulation 

agrees well with the experimental tests. Therefore, the yield surface function and 

the hardening rule were correctly defined for the rubberised concrete. 
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Figure 6.9 Loading path of RuC in the experimental and the numerical test 

The stress and the strain were uniformly distributed in the concrete specimen 

according to the numerical simulation results. 𝜎1 and 𝜀1 represent the stress and 

the strain in the loading direction while 𝜎2 and 𝜀2 represent the stress and the 

strain in the lateral direction. The stress-strain curves of 𝜎1 − 𝜀2 and 𝜎1 − 𝜀1 which 

are plotted in Figure 6.10 (red solid lines) as the numerical simulation results, were 

compared with those of the experimental test results (black dashed lines). As 

discussed in Chapter 4, the accuracy of the 𝜎1 − 𝜀2 curves from numerical tests 

depends on whether the loading path of passively confined concrete could be 

correctly simulated. The numerical results of 𝜎1 − 𝜀2  agree well with their 

experimental counterparts.  

In general, the  𝜎1 − 𝜀1 curves obtained from the numerical simulation are close to 

the experimental test results with the exception of B1. The plastic flow rule governs 

the relation between the strain in the loading direction (𝜀1) and the strain in the 

lateral direction ( 𝜀2 ). Since the lateral expansion of the passively confined 

rubberised concrete was correctly simulated by ABAQUS, the accuracy of the 

prediction of 𝜎1 − 𝜀1 curves depends on the correctness of the plastic flow rule. 

In the numerical testing B1, a relatively large confining stiffness was applied. When 

the compressive load was high, a large confining pressure was activated. As has 
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been observed in the experimental tests, when subjected to large confining 

pressure, the rubberised concrete tended to compact. Under this circumstance, the 

parameter in the proposed plastic flow rule, dilation angle 𝜑, was predicted to be 

negative. However, ABAQUS CDP material model could accept a 𝜑 value less than 0. 

Therefore, a compromise was made in the previous section. When the confining 

pressure exceeded 7 MPa, 𝜑 was taken as 0.5 instead of a negative value. As a 

result, the axial strain in B1 was underestimated when at a high level of confining 

pressure. 

 

Figure 6.10 Stress-strain from the experimental and the numerical tests 

6.4 Summary 

In this Chapter, a material model for rubberised concrete has been proposed based 

on the failure mechanism of rubberised concrete. The behaviour of rubberised 

concrete in the stress space is well simulated by the proposed model. Moreover, 

the proposed model considers the dilation property, which is influenced by FRP 

confinement.  

The material model used the framework of plasticity and was easily introduced into 

finite element software ABAQUS. The experimental tests on the rubberised 

concrete by Mac2T were numerically simulated by ABAQUS. From this, it is obvious 

that the numerical results exhibit a good agreement to their experimental 
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counterparts. Hence, the proposed material model has been proven capable of 

simulating passively confined rubberised concrete under compressive loads.  
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7 Conclusions and Recommendations for future work 

This study investigated the mechanical behaviour of rubberised concrete under 

lateral confinement. The research started with an experimental study on 

conventional concrete, in order to investigate the failure mechanism of FRP-

confined concrete. Based on the observed failure mechanism, the mechanical 

behaviour of passively confined concrete has been modelled numerically. The 

experimental and numerical study on conventional concrete provided the 

methodology for the study of rubberised concrete with passive confinement. The 

objectives of the research are all accomplished, and the main conclusions from the 

previous chapter are reported below. 

7.1 Main conclusion 

From the experimental study on conventional concrete, it is concluded that: 

 A hypothesis that under compressive load passively confined concrete 

behaves as perfectly plastic material is made using results from conventional 

concrete.  

 The proposed hypothesis is validated through a novel use of a true tri-axial 

apparatus Mac2T.  

 Mac2T is proven capable of physically simulate passive confinement to 

concrete.  

 The behaviour of passively confined concrete under compressive load 

consists of three phases. Initially, it behaves as an unconfined one, as lateral 

confinement is not effectively activated. Once the load is approaching 

unconfined concrete strength, unstable cracks form in the concrete that 

activate FRP confinement. The lateral confining pressure is found keep in 

pace with increasing load, such that in the stress space of concrete moves 

along the failure surface. Therefore, concrete initially exhibits the behaviour 

as of a perfectly plastic material.  

 There is a limit to the perfect plasticity. With the lateral expansion exceeding 

the strain of 0.008, the yielding surface in the stress space starts to compact. 

As a result, a third phase of softening of concrete occurs. 
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From the numerical study on conventional concrete, it is concluded that: 

 A plasticity-based material model for conventional concrete with passive 

confinement is developed according to the experimental observation. 

 The proposed material model is capable of representing the behaviour of 

passively confined concrete in the stress space. Moreover, the proposed 

material model considers the effect of FRP confinement on the dilation 

properties of concrete. 

 A MATLAB program that incorporates the proposed material model is 

developed to generate the stress-strain relation of passively confined 

concrete, which can be used in the design-oriented analysis.  

 The proposed material model can be introduced into  nonlinear finite 

element software, such as ABAQUS, whereby a mechanical problem with 

complicated boundary condition can be solved. 

From the experimental study on rubberised concrete, it is concluded that: 

 Rubberised concrete exhibits weak compressive strength compared to 

conventional concrete; therefore, passive confinement is necessary for 

the structural components made up with rubberised concrete. With 

passive lateral confinement, the compressive strength of rubberised 

concrete can be increased to the level of conventional concrete.  

 The failure mechanism of passively confined rubberised concrete is 

similar to that of conventional concrete. With passive confinement, 

rubberised concrete moves along the failure surface when subjected to 

compressive loads. It also soften when the lateral expansion is larger 

than 0.008, as its stress state moves away from the failure surface. 

 At the same level of compressive loading, the deformation in the loading 

direction of rubberised concrete with passive confinement can be ten 

times larger than that of the conventional concrete, which make it 

feasible for some novel structural applications, e.g. integral/semi-

integral bridges and bridge bearings. 
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 Rubberised concrete specimens exhibit larger variability compared to 

conventional concrete. There is a strong correlation between specimen 

density and strength, and this may partly explain its variability.  

Following the numerical study on rubberised concrete, it is concluded that: 

 A plasticity-based material model for rubberised concrete with passive 

confinement is proposed which simulate well the behaviour of 

rubberised concrete in the stress space. 

 The material model was incorporated in ABAQUS with good results.  

 

7.2 Recommendations for the future work 

Multiaxial experimental apparatus Mac2T is proved capable of physically simulate 

passive confinement to concrete. The loading path of passively confined concrete 

under compressive load overlaps with the compressive meridian, which verifies that 

with passive confinement concrete initially behaves as a perfectly plastic material.  

However, it is worth mentioning that the compressive meridian of failure surface is 

comparable to the loading path of passively confined concrete, as the principal 

stresses in the lateral direction are equal to each. If the confining stiffness in the x 

and the y direction is not identical and the principal stresses in the lateral direction 

are not equal, it is not certain if the loading path of passively confined concrete will 

still be on the failure surface. Hence, more experimental tests are needed to 

rigorously validate the proposed hypothesis. The same applies to unequal strain 

distribution, such as arising in non-circular section. 

The proposed material model uses the yield surface function proposed by Lee & 

Fenves (1998), which consists of two hardening parameters. Only one of the 

hardening parameter, which governs the concrete compressive mechanical 

behaviour, is defined. The identification of another hardening parameter is 

necessary for the numerical simulation, when concrete is subjected to tensile stress. 

Since Mac2T could apply compressive stress only, split tests on the rubberised 

concrete cylinder are needed to investigate rubberised concrete tensile behaviour.  
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