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ABSTRACT 
 

Nitric oxide (NO) is an air pollutant generated during fuel combustion 

which is responsible for ground-level ozone, acid rain and smog formation. 

Current abatement technologies include reducing NO to nitrogen (N2) in the 

presence of a reductant, usually ammonia, and a catalyst. Replacing ammonia 

with a less-toxic reductant such as hydrogen (H2-SCR) requires the utilization 

of expensive precious metal as a catalyst supported on metal oxides. This 

study aims to evaluate the potential use of hydrogen as a renewable reductant; 

activated carbon as a sustainable catalyst support; and less-precious metals 

as a catalyst to selectively convert NO to N2. Mono- and bimetallic oxide 

catalysts were synthesized via incipient wetness method using copper, iron 

and manganese oxides supported over palm kernel shell activated carbon. 

Copper-based catalysts were proven to totally convert NO (100 %) in an 

oxidizing condition starting at 250 °C, while co-impregnating with iron oxide 

(PKSFeCu) improved N2 selectivity (eg. from 80 to 100 % at 200 °C) as well 

as lowering the carbon combustion rate (eg. from 3.1 to 2.3 µmol CO+CO2/s). 

The catalysts were characterized via elemental and metal content analyses, 

nitrogen adsorption-desorption, ammonia-temperature-programmed 

desorption, Fourier-Transform infra-red spectroscopy, hydrogen-temperature-

programmed reduction, thermogravimetric analysis, and NO-temperature-

programmed desorption. The conversion and selectivity were found to 

correlate strongly with the catalyst reducibility and acidity. Kinetic experiments 

revealed that the rate of reaction for H2-SCR using PKSFeCu obeys a power 

rate law with an order of 0.82 with respect to NO concentration. The stability 

test showed that the catalyst is susceptible to changes in physical properties 

under prolonged exposure to high temperatures and feed gas disturbance. 

Therefore, improvements in terms of catalyst stability should be the main focus 

of future work for this sustainable H2-SCR system to become an attractive 

alternative to NH3-SCR.   
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CHAPTER 1. INTRODUCTION 

1.1 Nitrogen Oxides 

 NOx is the cumulative notation for nitrogen oxides, consisting mostly of 

nitric oxide (NO) and nitrogen dioxide (NO2), which are mainly generated 

during fuel combustion. It has attracted major interest due to its toxicity and 

capacity to produce secondary pollutants in the atmosphere (Goodsite et al., 

2011). It is a strong respiratory irritant and corrosive to the organ at high 

concentrations. Acid rain formation, through the transformation of nitrogen 

oxides and water into HNO3, can cause death to aquatic ecosystems (Holder, 

2002). Additionally, ammonium nitrate particles (0.1 to 1.0 µm size range) may 

be formed by the nitric acid produced by the reaction of NOx with water and 

oxygen available in the atmosphere. This particle is responsible for smog 

formation, which reduces visibility (Nevers, 1995). NOx is also associated with 

the formation of ozone, which is unwanted at ground level and is known to 

cause respiratory problems, eye irritation and bronchoconstriction (equation 

1.1) (Goodsite et al., 2011; Holder, 2002; Nevers, 1995); 

𝑁𝑂 + 𝐻𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛 + 𝑂2 + 𝑠𝑢𝑛𝑙𝑖𝑔ℎ𝑡 → 𝑁𝑂2 + 𝑂3 1.1 

The formation of NO and its further oxidation to NO2 proceeds 

according to equations 1.2 and 1.3, respectively (Nevers, 1995). It is normally 

assumed that all NO emitted from flue gases react with ozone to form NO2 

which is associated with decreased lung function and increased respiratory 

infection (Goodsite et al., 2011).  

𝑁2 + 𝑂2 ↔ 2𝑁𝑂                                                            ∆𝐻298𝐾 = 180.6 𝑘𝐽/𝑚𝑜𝑙 1.2 

𝑁𝑂 + 0.5𝑂2 ↔ 𝑁𝑂2 1.3 

Major sources for NOx can be divided into stationary sources such as 

coal-fired combustion and mobile sources like motorized vehicles (Nevers, 

1995). As of 2011 in Europe, road transportation contributed 40.5 % of total 

NOx emissions, as compared to energy production and distribution at 22.5 %. 

However, the NOx from on-road emission has greatly decreased due to the 

decreased limit in the European emission standards. For example, Euro 3, 

introduced in 2000 for diesel vehicles, has a limit of 0.5 gNOx/km while Euro 

5a in 2009 is 0.18 gNOx/km. From 1990 to 2011, road transportation 
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contributed 47.3 % reduction of the total Europe NOx emissions. In 2015, they 

continued to be more stringent by introducing Euro 6 at 0.08 gNOx/km. 

However, the regulation imposed on the energy sectors (flue gas emission) 

only contributed to 26.8 % of total reduction (European Environment Agency, 

2014). NOx emission contributors also vary based on world region. For 

instance, the largest NOx contributor for the US is mobile sources (57.5 %), 

while China’s major contributor is stationary sources (71 %) (Zhang & Samet, 

2015). Figure 1.1 shows the variations in NOx emissions across the globe 

(selected countries) from 1970 to 2010. It can be seen that while some 

countries like the UK and Russia showed reduction in total NOx emission, 

some developing countries in South East Asia exhibited otherwise.   

 

Figure 1.1: Annual nitrogen oxides concentration from 1970 to 2010 for 
selected countries. S: stationary sources and M:mobile sources. USA: United 

States of America, SEA: South East Asia, and UK: United Kingdom. Data 
source: (European Commission, 2016). 
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The production of NOx is conditional, as it can be classified as thermal, 

prompt or fuel NOx. Thermal NOx is mostly formed at high temperature (well 

above 1300 °C such as in combustion) without the need for other molecules 

while prompt and fuel NOx can form at low temperature, with proper interaction 

between nitrogen molecules and the carbon-bearing radicals for the prompt 

NOx, and proper NO-to-O2 ratio for the fuel NOx. Prompt NOx is formed by 

nitrogen contained in the air while nitrogen available in the fuel is the source 

of the formation of fuel NOx. To add to the list, the types of fuel and oxidizer 

used, the size of flame, the degree of fuel-air premixing, the amount of fuel-air 

pre-heat as well as the formation of intermediates such as free radicals (O, N, 

OH, H, C, NH, NH2 and hydrocarbons which have lost hydrogen), water vapor, 

HCN, oxygen and nitrogen affect the complexity of the prediction of the NOx 

generation in a given system (Nevers, 1995). 

1.1.1 NOx emission regulations 

Japan, the European Union and the United States are among the 

pioneering regulators that have established regulations specifically targeted 

on reducing pollutants from stationary flue gases, especially power stations. 

For nitrogen oxides, Japan started focused regulation as early as 1973 under 

the Air Pollution Control Law by the Environmental Standards for Nitrogen 

Dioxides and Photochemical Oxidants (European Environment Agency, 

2010). As for the Europeans, the reduction target was as high as 40 % for NOx 

emission within 10 years starting from 1988 (Council of the European 

Communities, 1988). The 1999 Multi-effect Protocol was introduced thereafter, 

which included the US and Canada setting limits for the emission of sulfur 

dioxide, nitrogen oxides, non-methane volatile organic compounds and 

ammonia by 63, 41, 40 and 17 % respectively in 2010 based on the emission 

in 1999. The protocol has been renewed in 2012 to achieve reduction target 

by 2020 (United Nations Economic Commission for Europe, 1979). As of 2012, 

the treaty had been ratified by 26 parties, including the United States and the 

European Union (United Nations Economic Commission for Europe, 2012).  

Consequently, regulations on NOx emission have become more 

stringent in participating countries over the years. For instance, in the U.S, the 

level of the allowable NOx emission from boilers using lignite was 
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0.8 lbs/MMBtu in 1971. This was only applicable to boilers of higher than 

73 MW capacity but effective 1997, the regulation was also imposed on boilers 

of 25 MW or higher capacity with only 0.15 lbs/MMBtu NOx emission limit 

(United Nations Economic Commission for Europe, 1979). Besides, Figure 1.2 

shows the NOx emission ceilings targeted by the European Union are mostly 

lower under the revised United Nations Convention on Long-Range 

Transboundary Air Pollution (CLRTAP) for 2020 as compared to the targets 

set for 2010 and under the EU National Ceilings Directive 2001/81/EC 

(NECD). 

 

Figure 1.2: NOx emission ceilings for the EU in 2010 and 2020 (European 
Environment Agency, 2010). 

 

In the Southeast Asian countries (members of the Association of 

Southeast Asian Nations, ASEAN), multilateral agreements have been ratified 

as part of an approach to controlling air pollution caused by agricultural 

activities such as open burning and deforestation (Khwaja et al., 2012). The 

ASEAN Transboundary Haze Pollution was developed as a correspondence 

to the worst episodes of haze in 1997 that consumed over USD 9 billion 
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economic losses to the region (Khwaja et al., 2012; Goodsite et al., 2011). 

Haze is caused by the accumulation of particulate matters, usually mixed with 

the gaseous pollutants including ozone, nitrogen dioxide, carbon monoxide 

and sulfur dioxide. It reduces visibility, which is dangerous to both land and air 

traffic besides reducing crop yields and disturbing the earth radiation budget, 

which affects meteorology (Goodsite et al., 2011).    

The World Health Organization’s recommended allowable NOx 

concentrations in air quality standard are 40 μg/m3 and 200 μg/m3 for annual 

mean and 1-hour mean, respectively (Goodsite et al., 2011). For the emission 

limit values (ELV) from stationary sources, each country uses different 

methods and units of measurement, so it is difficult to compare emission 

standards. In addition, most countries impose different ELV between new and 

existing plants (concerning the starting operational date and the effective date 

of the regulation) which each have their own criteria. However generally, the 

new plants have stricter ELV and have been used as the basis of discussion 

here, alongside the conversion factor produced by Zhu and Wang (2014). 

European countries set the ELV to 150 mg/m3 of NOx emission from a new 

coal-fired power plants, measured continuously except for the Germany 

whose measurements are on a daily basis. Australia has the highest ELV 

(most lenient) at 800 mg/m3 while China has the lowest value at 50 mg/m3. 

Countries in Asia have a wide ELV variation. For example, the levels in Japan, 

Thailand and Indonesia are in increasing order of 200, 410 and 750 mg/m3 

(Zhang, 2016).  

1.1.2 NOx emission controls 

There are generally two ways to control NOx emissions: by modifying 

the combustion system or by treating the exhaust gas to convert NOx into a 

safer compound before release (Nevers, 1995). Therefore, the Best Available 

Technologies (BAT) to ensure the reduction targets fulfills the national 

standards are categorized as follows (European Commission, 2006): 

i) Reduction of NOx formation during the combustion process 

a. Wet combustion controls 

b. Dry combustion controls 

ii) Post-combustion NOx reduction 
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a. Selective non-catalytic reduction (SNCR) 

b. Selective catalytic reduction (SCR) 

As thermal NOx formation becomes significant due to the presence of 

hot spots in the combustion chamber, water or steam is used to lower the peak 

flame temperature and subsequently lower the formation of NOx. The injection 

can be performed into the furnace during combustion or directly into the flame 

in the primary combustion zone (European Commission, 2006). Water and 

steam injection have been shown to reduce up to 42 and 25 ppmv NOx, 

respectively with the presence of 15 % O2. Since water has a higher heat 

absorbing capacity, less is required to achieve the same effect given by steam. 

However, this method is associated with increased CO and hydrocarbon 

formation and reduced turbine efficiency (California Energy Commission, 

2002).  

The formation of hot zones in the combustion chamber can also be 

reduced using dry combustion controls such as flue-gas recirculation (FGR), 

oxygen injection, staged combustion and natural gas injection. In the FGR, the 

secondary combustion air is replaced with recirculated flue gases that contain 

lower oxygen concentration which lower the flue-gas temperature. 

Additionally, pure oxygen or air with enriched oxygen can be used during 

combustion to limit the supply of nitrogen which leads to NOx formation. In the 

staged combustion, oxygen supply in the primary zone is reduced to obtain 

lower temperature and the subsequent combustion zone is supplied with more 

air to ensure products of incomplete combustion, such as CO, are kept at a 

minimum. Finally, natural gas has been used by injection, either into a zone 

above the primary combustion or directly into the primary zone to inhibit NOx 

formation (European Commission, 2006). These options are comparable to 

the wet combustion controls and are especially preferable if the supply of water 

is limited and the formation of CO and hydrocarbons could be prevented 

(California Energy Commission, 2002).  

1.1.3 Post-combustion NOX controls 

Another means of reducing NOx from combustion is treating the flue 

gas before release into the atmosphere. This is usually preferable either when 

high conversion is required, or the NOx content in the flue gas is too low it is 
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difficult to remove via the methods discussed earlier. Selective non-catalytic 

reduction (SNCR) is performed by injecting a fluid, mostly amine-based such 

as ammonia and urea, in the hot zone downstream usually between 850 – 

1000 °C (European Commission, 2006). The reaction follows equation 1.4 

within this temperature window, whereas NH3 oxidizes further to NO at higher 

temperatures, according to equation 1.5 (Tahir et al., 2013).  

4𝑁𝑂 + 4𝑁𝐻3 + 𝑂2 → 4𝑁2 + 6𝐻2𝑂 1.4 

4𝑁𝐻3 + 5𝑂2 → 4𝑁𝑂 + 6𝐻2𝑂 1.5 

 SNCR is very temperature sensitive, as lower temperature would leave 

most of the ammonia unreacted, called ammonia slip (Tahir et al., 2013). This 

can also occur when more reagent is required to convert NOx at more than 

80 %. Therefore, a wet scrubber is often used to recover the ammonia and 

feed back to SNCR.  Staged NH3 injection is also practiced to ensure optimum 

ammonia consumption at varying temperature zones in the combustion 

chamber. The key factors in this method are homogeneous mixing and 

adequate gas residence time (European Commission, 2006). 

Alternatively, and sometimes ultimately, selective catalytic reduction 

(SCR) is used to reduce NOx especially when the removal required is more 

than 90 %. SCR is the primary selection installed on stationary sources with 

desired NOx reduction unachievable by SNCR (Sorrels et al., 2015).  

This technique is discussed in detail in Section 2.1 but it is worth 

mentioning here that the difference between SNCR and SCR is the need for a 

catalyst that reduces the temperature requirement for the conversion to take 

place. Various catalysts have been used in industry and studied in 

laboratories, especially vanadia- and carbon-based catalysts, in combination 

with different reducing fluids such as urea, hydrocarbon, hydrogen and carbon 

monoxide. Choices of catalyst and reductant are dependent on the cost and 

resource availability. However, it is the current interest to develop a cheaper 

and sustainable system. Carbon has proven to be functional in the SCR 

system and it is one of the most sustainable catalyst supports.   Hydrogen 

theoretically would not form additional pollutants such as CO and CO2 which 

are produced when using urea and hydrocarbon, and is non-toxic when used 

in excess in comparison to ammonia and carbon monoxide. With the advent 
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of sustainable hydrogen production, it is interesting to study the performance 

of its utilization in SCR.  

1.2 Biomass Activated Carbon 

Carbon is becoming an alternative to zeolite and metallic oxides 

supports for catalysts due to its comparatively high porosity and surface area 

of up to 1,500 m2/g. It is obtained by carbonizing coal, wood or various other 

carbonaceous materials, such as biomass and biomass waste including olive 

stones and coconut shell, in an inert gas. The surface can then be activated 

by, for example, oxidation via nitric acid or carbon dioxide. This process 

usually results in various surface entities such as hydroxyl and carboxyl, which 

make significant contributions to the performance of carbon as a catalyst 

support (Qian et al., 2015). Therefore, the derivation of carbon from biomass 

or waste for various purposes including fuel cell, adsorption, gas storage and 

catalytic reactions has recently becoming popular due to the fact that it is much 

cheaper, renewable and sustainable (Lam & Luong, 2014). 

Activated carbon in particular is widely utilized in wastewater treatment 

and certain gas purification processes due to its high adsorption capacity. Its 

potential uses in other applications, especially catalysis, have also been cited 

and proven. Yang et al. (2011) has reviewed the applications of various forms 

of carbon as catalyst supports for flue gas treatment, concluding that activated 

carbon can be a potentially cost-effective solution, especially at a low 

temperature system (Yang, Chiang, & Burke, 2011). Besides acting as 

adsorbents to the reactants, biochar also converts the metal oxides into 

metallic state that increases the catalytic activity. Cotton stalks, coconut shells, 

rice straw and sewage sludge have all been investigated as catalyst supports 

in SCR to convert NOx into inert nitrogen (Singh et al., 2013; Bingnan et al., 

2011; Cha et al., 2010). 
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1.3 Objectives  

The main objective of this research is to study nitrogen oxides (NOx) 

reduction with the following criteria: 

1) Using hydrogen as a renewable reductant; 

2) Using palm kernel shell carbons (PKS) as a sustainable catalyst 

support; and 

3) Using earth-abundant and less precious metals (copper, iron, 

manganese) as a catalyst precursor. 

 

This study aims to achieve the following research outcomes; 

1) To evaluate the performance of PKS as a catalyst support for NO 

reduction with hydrogen;  

2) To develop structure-performance relationship by correlating the 

performance of the catalyst with the measured physico-chemical 

properties; 

3) To evaluate the kinetics parameters and stability of the PKS-derived 

catalysts in H2- SCR.    
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CHAPTER 2. LITERATURE REVIEW  

2.1 Selective Catalytic Reduction 

In controlling NOx emissions, selective catalytic reduction (SCR) is the 

dominant technology typically applied in industry (also considered as one of 

the BACT, best available control technologies) (Mihet & Lazar, 2014). In earlier 

patented reactions, methane and hydrogen were used to reduce nitric oxide in 

an industrial stack gas by contacting those reactants with metallic catalysts 

producing nitrogen, carbon dioxide and water according to the stoichiometric 

equations 2.1 and 2.2 which proceed at temperatures greater than 500 °C 

(Eugene, William, & James, 1959); 

𝐶𝐻4 + 4𝑁𝑂 → 𝐶𝑂2 + 2𝑁2 + 2𝐻2𝑂 2.1 

2𝐻2 + 2𝑁𝑂 → 2𝐻2𝑂 + 𝑁2 2.2 

These reactions are fundamental to three-way catalysis under 

stoichiometric conditions and have been improved for lean-burn condition as 

in the SCR system. Since then, SCR has found wide application in remediating 

NOx from stationary sources such as thermal power plants, chemical plants, 

municipal waste incinerators, glass, steel and cement industries as well as 

mobile sources including heavy and medium-duty vehicles (Johnson, 2009; 

Forzatti, 2001). Over 1,000 SCR units have been installed in the US alone with 

at least 300 on coal-fired boilers ranging between 100 to 1,400 MWe. It can 

be utilized solely to control NOx emission or combined with other technologies 

such as selective non-catalytic reduction, low NOx burner and flue gas 

recirculation (Sorrels et al., 2015).   

Capital cost for SCR increased from USD 100/kW in 2000, to USD 250-

300/kW in 2011, and was predicted to reach an average of USD 570/kW after 

2014 (all costs in 2011 USD). Operating and maintenance costs are typically 

0.1 cents/kWh and depend on the capacity of the unit (unit used for multiple 

combustion sources usually has lower average operating cost but higher 

reduction target increases this cost) (Sorrels et al., 2015). As many other 

countries are following the stringent regulations of NOx emission, several 

catalysts and reducing agents have been studied to improve the system’s 
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performance for a particular application and to reduce the capital and 

operating costs of the deNOxing system (Cai et al., 2016).  

2.1.1 Process description 

 There are basically three options for SCR arrangements in an industrial 

boiler – high-dust, low-dust and tail-end configurations (shown in Figure 2.1). 

The choice depends on the type of fuel used, technology availability and cost 

and space constraints. The high-dust configuration is the most widely used 

due to the availability of metal oxide catalysts, which are reactive at high 

temperatures and relatively stable against poisons because it is situated prior 

to any air pollution control devices. On the contrary, the catalyst’s stability 

towards particulate matters (PM) is less important if the second option, low-

dust configuration, is used, as PM have been removed prior to the SCR reactor 

(Jensen-holm, Castellino, & White, 2012). However, the flue gas temperature 

could drop below the NH3-SCR optimum operating temperature, requiring an 

increase in the size of the economizer bypass duct. In the third option, a tail-

end configuration requires the flue gas to be heated up to the SCR operating 

temperature as it is positioned downstream of the other air pollution control 

devices (Sorrels et al., 2015). Despite the higher costs incurred by this type of 

arrangement, a low cost catalyst such as carbon catalysts can be used to 

disregard the effect of particulate matters and poisons such as SO2 (Singh et 

al., 2013). 

A typical means of introducing ammonia is by injection, either from its 

anhydrous or aqueous form, with the latter requiring a vaporizer. Gaseous 

ammonia decomposes into NH3 and NH2 and comes into contact with NOx. As 

NH3 is toxic, it is sometimes stored in a more stable form such as urea and 

solid reductants.  The usage of urea requires a complex injection system which 

is temperature-sensitive, while the size of the droplets formed affects the 

overall performance. Generally, there are three steps involved in the 

decomposition of urea in the SCR reactor: evaporation of water from the 

solution; hydrolysis of molten urea into ammonia and isocyanic acid (HNCO); 

and hydrolysis of HNCO into ammonia and CO2. This process is summarized 

in equation 2.3, where it can be seen that 2 mol of NH3 is produced for every 
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mol of urea, which is sufficient for both standard and fast SCR reactions (Guan 

et al., 2014). 

𝑁𝐻2 − 𝐶𝑂 − 𝑁𝐻2 + 𝐻2𝑂 → 2𝑁𝐻3 + 𝐶𝑂2 2.3 

  

 

Figure 2.1: Process flow diagram for flue gas treatment with SCR for options; 
1) High-dust, 2) Low-dust, and 3) Tail-end SCR. Summarized from (Sorrels 

et al., 2015; Jensen-holm, Castellino, & White, 2012). 

 

However, a survey conducted on SCR operators revealed that 80 % 

use ammonia (anhydrous and aqueous) because as more than half of the 

respondents indicated, cost is their primary criterion. Only a quarter took safety 

as the priority (Sorrels et al., 2015). On another note, the need for 

sophisticated ammonia injection causes the non-SCR operators to avoid this 

technology regardless of its effectiveness. Additionally, there have been 

arguments over the secondary pollution instigated by using ammonia in this 

treatment via the slip ammonia (unreacted portion) and reaction with SO2 

producing ammonium sulfates at temperature below 350 °C (Armor, 1992). 

This is accompanied by increased capital and operating costs, mostly due to 

the reagent and catalyst replacement. Nevertheless, SCR is preferred over 

other NOx-reducing techniques such as SNCR because of its higher efficiency 
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and the lower and wider temperature window (Roy, Hegde, & Madras, 2009). 

Therefore, the utilization of other renewable reagents such as hydrocarbon, 

hydrogen and carbon monoxide, and cheaper catalysts in SCR have been 

areas of interest (Mrad et al., 2015; Hamada & Haneda, 2012; Liu, Li, & Woo, 

2012).  

2.1.2 Conventional reactions and catalysts 

 The reactions of nitric oxide reduced using ammonia are given by 

equations 2.4 (standard SCR) and 2.5 (without oxygen) while the reduction of 

nitrogen dioxide is given by equation 2.6. The fastest reaction occurs at 

equimolar NO and NO2, as represented in equation 2.7 (fast SCR) (Guan et 

al., 2014; Forzatti, 2001); 

4𝑁𝑂 + 4𝑁𝐻3 + 𝑂2 → 4𝑁2 + 6𝐻2𝑂 2.4 

6𝑁𝑂 + 4𝑁𝐻3 → 5𝑁2 + 6𝐻2𝑂 2.5 

6𝑁𝑂2 + 8𝑁𝐻3 → 7𝑁2 + 12𝐻2𝑂 2.6 

2𝑁𝑂 + 2𝑁𝑂2 + 4𝑁𝐻3 → 4𝑁2 + 6𝐻2𝑂 2.7 

The reaction temperature depends on the catalyst being used but most 

commercial catalysts require optimum temperatures between 250 and 430 °C. 

Some of the industrial catalysts also produce nitrous oxide (N2O) according to 

the reaction in equation 2.8 at temperatures higher than 400 °C and ammonia 

is oxidized into additional NO at temperatures beyond 500 °C, as shown in 

equation 2.9, both of which are undesirable. Besides, too low a temperature 

(below 200 °C) can cause the formation of ammonium nitrate (NH4NO3), as 

depicted by equation 2.10 (Guan et al., 2014). 

4𝑁𝐻3 + 4𝑁𝑂 + 3𝑂2 → 4𝑁2𝑂 + 6𝐻2𝑂 2.8 

4𝑁𝐻3 + 5𝑂2 → 4𝑁𝑂 + 6𝐻2𝑂 2.9 

2𝑁𝐻3 + 2𝑁𝑂2 → 𝑁𝐻4𝑁𝑂3 + 𝑁2 + 𝐻2𝑂 2.10 

Formerly, precious metals such as platinum, palladium and rhodium 

were used as SCR catalysts, but were limited to natural gas combustion and 

other low-temperature exhaust gas applications because of their ammonia-

oxidizing ability at high temperature (Forzatti, 2001). Therefore, base metals 

such as vanadium, titanium and tungsten have emerged as excellent SCR 
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catalysts due to the ability to broaden the temperature window. Zeolites and 

crystalline alumina silicates are also used as supports, usually for high 

temperature applications (360 – 540 °C), but this would increase the overall 

cost of the catalyst (Sorrels et al., 2015). 

Vanadium-based catalysts demonstrated excellent performance in 

reducing NOx gases over wide temperature window such as that shown by V5-

W3/TiO2 and V2O5/AC, supported by different materials (i.e. titania and 

activated carbon, respectively) with high NOx conversion at 400 and 150 °C 

correspondingly (Camposeco et al., 2014; Hou et al., 2014). However, there 

have also been reports claiming that toxic vanadium compounds were 

released at above 600 °C arousing environmental concern over its uses.  

Hence, numerous studies have formulated new vanadium-based catalysts, 

including a tungsten-coupled TiO2-supported catalyst and rare earth modified 

vanadates which have shown no indication of toxic release at temperatures as 

high as 850 °C (Guan et al., 2014). Titanium dioxide is a preferred choice of 

support due to its high tolerance against SO2 poisoning, which is common in 

an SCR system (Fang et al., 2015). The incorporation of TiO2 as W and/or V 

support has displayed a synergistic effect which promotes the oxidation of 

hydrocarbon and soot presence in flue gas (Japke et al., 2015).  

Generally, the rate of reaction is first order in NO, as well as 

independent of oxygen, ammonia and water for >2 vol.% O2 (Forzatti, 2001), 

NH3/NO >1 and >5 vol.% H2O correspondingly (Busca et al., 1998). It has been 

accepted that N2 formed via equation 2.4 attains one atom each from NO and 

NH3 (Forzatti, 2001). The activity requires both acid-base and redox sites that 

are responsible for adsorption and activation of ammonia, respectively 

(Jensen-holm, Castellino, & White, 2012). The activation energy is provided 

by the high flue gas temperature and the reaction is not limited by the 

thermodynamic equilibrium, for the amount of heat released is considerably 

small (Sorrels et al., 2015).  The extent of the favoured reactions depends 

highly on the surface reactivity of the catalysts. For a vanadia-based catalyst, 

the reactive site can be V-OH, V=O or V(5+)=O group (based on different 

proposal by different researchers). Regardless of the reactive site, the popular 

mechanism proposed for these range of catalysts is that of Eley-Rideal, in 
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which ammonia is adsorbed at these sites before reacting with NO and 

selectively forming nitrogen (Forzatti, 2001).  

The typical reactivity of a V2O5-WO3/TiO2 catalyst can be explained with 

a transient response analysis such as that by Lietti et al. (1998), as shown in 

Figure 2.2. It is clear (from A) that NO is weakly adsorbed on the catalyst as 

the breakthrough curves resemble the ideal positive step change. Meanwhile, 

NH3 is appreciably adsorbed on the catalysts for the delayed breakthrough 

time as compared to the step change. Feeding in NH3 into the NO+O2+He 

system (in B) indicates a dead time at the beginning before steady-state is 

reached while the formation of N2 is specular to the consumption of NO. On 

the other hand, feeding in NO into the NH3+O2+He system (in C) 

instantaneously brought all components to their steady-state concentration. 

This strengthened the fact that the reaction proceeds via an Eley-Rideal 

mechanism, which requires only NH3 adsorption, while NO is converted in its 

gas phase/weakly adsorbed molecules.  

 

 

Figure 2.2: Transient response analysis of V2O5-WO3/TiO2 model catalyst 
during positive step of (A) NO and NH3 into He+O2, (B) NH3 into NO+O2+He 
and (C) NO into NH3+O2+He. Reaction condition: 700 ppm NO + 700 ppm 

NH3 + 1 % O2 + He at 120 sccm over 0.16 g catalyst between 220 to 350 °C. 
Reprinted with permission from (Lietti et al., 1998). Copyright (1998) 

Elsevier. 
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2.2 Ammonia-less SCR 

As discussed in Chapter 1, many other countries are implementing the 

stringent regulations of NOx emission and SCR has been accepted as the best 

available technology. However, the high capital and operating costs 

associated with ammonia have hindered SCR deployment especially in 

developing countries. Alternative reducing agents, and consequently 

catalysts, have been studied to reduce the costs and eliminate the formation 

of toxic by-products / ammonia slip while competing with the performance of a 

conventional method. Additionally, it is worth reviewing the catalytic 

decomposition of NOx without the presence of a reductant as an alternative to 

NH3-SCR. 

2.2.1 Reagentless NOx catalytic decomposition 

Nitric oxide can be decomposed to nitrogen via equation 2.11, but the 

reaction does not proceed at a perceptible rate because it is spin-forbidden 

and has high activation energy (364 kJ/mol) (Mrad et al., 2015; Roy, Hegde, 

& Madras, 2009).  

𝑁𝑂 →
1

2
𝑁2 +

1

2
𝑂2                                          𝛥𝐻298𝐾

° = −86.6 𝑘𝐽/𝑚𝑜𝑙 2.11 

 Catalysts have been developed to overcome the activation energy and 

make decomposition possible under attractive reaction conditions. One of the 

factors required for a decomposition catalyst is the adsorption of nitric oxide 

that can be either dissociative or molecularly on the catalyst. Desorption of 

oxygen from the catalyst surface is preferred to be fast to prevent metal 

oxidation or the formation of an oxygen adlayer over the catalyst surface, 

which obstructs subsequent decomposition processes (Roy, Hegde, & 

Madras, 2009). 

Figure 2.3 shows the typical types of NO adsorption states reported so 

far on transition metal surfaces where it can be dissociative, molecular or both. 

Though the rule is presented based on the position of the metals in the periodic 

table, adsorption species formation is rather complex, as it depends on the 

surface temperature and crystallinity, as well as the presence of surface 

defects and NO coverage (Brown & King, 2000). The weaker N-O bond as 

compared to the M-N dissociates the NO molecules into nitrogen and oxygen 
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adatoms. Most single crystalline metals are permanently oxidized by M=O 

bonds, which deters the further NO adsorption-dissociation steps. However, 

metals such as rhodium, ceria and cobalt oxides showed ‘oxygen spillover’ 

effect where the dissociated oxygen forms weak bonds with the metals that 

are easier to desorb (Roy, Hegde, & Madras, 2009). The dissociation of NO 

as a dinitrosyl species is abundant on Mo surfaces especially Mo{110} and 

complete dissociation is always seen on W surfaces. However, at very high 

NO coverage, little molecular NO adsorption occurs on either metals (Brown 

& King, 2000).  

 

Figure 2.3: Nitric oxide adsorption states on selected transition metals. M: 
metal, N: nitrogen, O: oxygen atom. Adapted from (Roy, Hegde, & Madras, 

2009; Brown & King, 2000). 

 

Molecular adsorption is more prominent as NO interacts with metals of 

increasing d subshell electrons (metals to the right of the periodic table). This 

can be explained by considering the bonding between CO and the transition 

metals. As CO is bonded to the metals to the right of the table, overlapping 

between d-metal and CO 2π* orbitals decreases such that the dissociation of 

the C-O bond does not occur spontaneously (Roy, Hegde, & Madras, 2009). 

Pd evidently allowed complete molecular NO adsorption. Choi et al. (2015), 

via temperature-programmed desorption (TPD) after exposure of PdO{101} 

with NO at 90 K, observed no desorption of other species than molecular NO 

up to 600 K showing no dissociation reaction. Reflection absorption infra-red 

spectroscopy (RAIRS) showed the presence of linear (or atop) and bridged-

NO which requires two adjacent sites to hold one NO molecule.  
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The adsorption of NO on metal surfaces is fundamental in designing 

the sorbent material, lean-NOx trap (LNT) catalysts and NOx-decomposition 

catalysts. NO sorbent has many applications including medical, as non-toxic 

sorbents such as carbon can be used to deliver NO in therapies (Fioretos, 

Psofogiannakis, & Froudakis, 2011). Selective NOx recirculation (SNR), 

developed by Daimler-Chrysler, is using two adsorbing beds that operate 

alternatively where the desorption returns NOx into the combustion chamber 

to decompose NOx thermally. This is a similar concept to LNT but upon 

desorption, LNT uses reductants, usually hydrocarbons, carbon monoxide and 

hydrogen, to chemically reduce NOx (Gomez-Garcia, Pitchon, & Kiennemann, 

2005). On the other hand, NOx decomposition catalysts convert NOx into 

nitrogen without requiring desorption step and reducing agents. 

 Alumina-silica supported transition metals have shown considerable 

adsorption capacity at room temperature of up to 0.23 mg NO/m2. Copper is 

said to be more adsorptive in its oxidized form than the reduced state, unlike 

other metals such as iron, nickel, chromium, cobalt and platinum. Adsorption 

on alumina-supported precious metals also produces NO2, which is more 

reactive in reduction reaction (Gomez-Garcia, Pitchon, & Kiennemann, 2005). 

Other adsorptive supports have also been used with metal oxides including 

silica, zeolite and carbonaceous materials. SBA-15 silica showed significant 

adsorption improvement (from 0.3 to 5.0 mmol NO2/g) when doped with 

cerium-zirconium mixed oxides. Fe and Cu have also been impregnated onto 

carbons and shown adsorption capacity up to 320 mg NO/g at 303 K with 

desorption temperature as low as 393 K. However, traces of CO2 would have 

been observed with this sorbent starting at 383 K, making this a trade-off of its 

optimal performance (Gomez-Garcia, Pitchon, & Kiennemann, 2005).  

 Winter (1971) found that the NO decomposition mechanism is similar 

to the decomposition of N2O (equation 2.12) over metal oxides. However, the 

NO adsorption is higher than the N2O, and the presence of oxygen has 

significant impact on the surface coverage of the metal oxides especially CuO 

and Cr2O3 which shown higher affinity towards O2. The NO decomposition 

over 40 metal oxides showed first order kinetics with respect to NO pressure 

and the rate-determining steps are the NO adsorption on the adjacent anion 

vacancies and reforming of the sites via oxygen desorption. A similar 
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mechanism can be seen by using precious metals such as platinum, and 

zeolite-based catalysts (Haneda & Hamada, 2016). 

2𝑁2𝑂 → 2𝑁2 + 𝑂2                                                       
2.12 

Copper ion-exchanged zeolite ZMS-5 has attracted much attention in 

SCR since its discovery due to superior NO decomposition to N2 (conversion 

and selectivity of at least 90 and 60 %, respectively), and persistence against 

oxygen of up to 10 %  (Li & Armor, 1991). The adsorption species are 

molecular NO and its dimer (NO)2 on Cu+ ions that exist alongside Cu2+ in 

zeolite framework. The reversible redox interaction between copper ions 

(Cu2+↔Cu+) continues the reduction of NO to N2. However, NO2 was also 

reported to form with small amount of N2O at low temperature and high 

temperature is required to regenerate the catalysts. As the zeolite structure is 

altered above 600 °C, this catalyst is preferred for use in low-temperature 

SCRs (Imanaka & Masui, 2012).  

Activated carbon (discussed in Section 1.2) has also been shown to 

decompose NO in the presence of CuO. NO can be readily adsorbed on the 

activated carbon due to the high surface area and rich in oxygenated functional 

groups (Plens, Monaro, & Coutinho, 2015). Inopportunely, NO2 in the flue gas 

is also being adsorbed and reduced to NO while oxidizing carbon surface. The 

addition of copper on carbon alters the adsorption mechanism by forming 

copper nitrate/nitrite, before completely being reduced at temperatures as low 

as 270 °C (Levasseur et al., 2011; Xue et al., 2008). The mechanism of NOx 

decomposition over activated carbon-supported copper is illustrated in Figure 

2.4. As the NO2 oxidizes the carbon, the CO formed is used to reduce Cu2+ to 

Cu+, which can be re-oxidized by NO in its reduction to nitrogen (Sager et al., 

2013). 
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Figure 2.4: NOx decomposition over Cu-carbon. Adapted from (Sager et al., 
2013). 

 

Overall, reagentless decomposition of NO suffers from the high 

temperature requirement and oxidation by the intrinsic oxygen content in the 

exhaust/flue gas that hinders the practical application. Therefore, a reagent is 

added to overcome these problems. 

2.2.2 Hydrocarbon and carbon monoxide SCR 

In earlier patented reactions, methane and hydrogen were used to 

reduce nitric oxide in industrial stacks by contacting those reactants with 

metallic catalysts producing nitrogen, carbon dioxide and water according to 

the stoichiometric equations 2.13 and 2.14 which occur at temperatures 

greater than 500 °C. The catalysts used were layered 0.5 wt.% platinum 

supported over alumina and nickel aluminate and at 25,999 h-1, the reduction 

is almost 100 % (Eugene, William, & James, 1959); 

𝐶𝐻4 + 4𝑁𝑂 → 𝐶𝑂2 + 2𝑁2 + 2𝐻2𝑂 2.13 

2𝐻2 + 2𝑁𝑂 → 2𝐻2𝑂 + 𝑁2 2.14 

Since then, many studies and patents regarding the utilization of 

hydrocarbons in removing NOx have been published. These reactions are also 

fundamental to the three-way catalysis used in the vehicle emission control 

under stoichiometric conditions. In addition, in a SNCR, hydrocarbon (HC) and 

carbon monoxide (CO) are used as additives to improve the performance of 

the system. For instance, the addition of methane (CH4-to-NH3 ratio of 1) 

reduced the maximum temperature from 1200 to a window of 735-800 °C for 

the maximum 60 % NOx conversion while increasing the amount of CO up to 
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1000 ppm in the system reduced the temperature window by 110 °C (Tahir et 

al., 2013).  

Theoretically, the presence of a catalyst could further lower this 

effective temperature window; this is where the SCR system is applied. 

Utilizing the intrinsic carbon monoxide and unburned hydrocarbon in the 

exhaust gases both from mobile and stationary sources to reduce NOx in the 

presence of oxygen is a sustainable alternative to NH3-SCR. Therefore, efforts 

have been made to find the optimum pair of reductant and catalyst that is 

effective at lower temperature. 

The generalized reactions for HC oxygenation and HC-SCR are shown 

in equations 2.15 and 2.16 respectively, where CxHyOz represents the 

oxygenated hydrocarbon (Łamacz, Krztoń, & Djéga-Mariadassou, 2013);  

𝐻𝐶 + 𝑁𝑂2 → 𝑁𝑂 + 𝐶𝑥𝐻𝑦𝑂𝑧 
2.15 

𝐶𝑥𝐻𝑦𝑂𝑧 + 𝑁𝑂2 → 𝑁2 + 𝐶𝑂2 + 𝐻2𝑂 
2.16 

 A review of the patents of HC-SCR catalysts revealed that many HC 

have been used, including methane, propene and propane, as well as the 

oxygenated HC such as aliphatic alcohol. The maximum temperature lies 

between the onset temperature of equation 2.16 and the combustion 

temperature of the HC (without NOx presence), and higher selectivity can 

usually be achieved when these two temperatures have greater difference. 

Precious metals such as Pt are known to be reactive but HC combustion 

temperatures are normally low over these catalysts lowering the selectivity 

(Tabata, Kokitsu, & Okada, 1994). Besides, the formation of N2O over precious 

metals is significant, especially at low temperature. However, the bimetallic 

catalyst Pt-Sn supported over silica showed total N2 selectivity attributed to the 

oxygen-deficient SnOx species. In addition, rhodium and ruthenium-based 

catalysts were reported to give higher selectivity compared to platinum 

catalysts but are susceptible to deactivation by sulfur dioxide and limited to 

reducing condition as in the three-way catalyst (Mrad et al., 2015; Pârvulescu, 

Grange, & Delmon, 1998).  

Many studies using metal ion-exchanged zeolites have established that 

the selectivity of the catalyst to reduce NOx depends on the HC used. For 

instance, Co, Mn, Ni, Ga and In are selective with methane, while Cu and Ce 



34 
 

are selective with C2+ hydrocarbons. However generally, CH4 and C2H6 are 

considered as non-selective while most alkenes and alkynes such as ethene, 

propene and acetylene were found to be selective. In fact, C2H4 was proven 

to have higher selectivity compared to NH3 even in the presence of excess 

oxygen (Pârvulescu, Grange, & Delmon, 1998). Furthermore, the reactivity of 

the saturated HC was ranked as follows: i-C4H10 > n-C5H12 > 2,2,4-tri-

methylpentane > neo-C5H12 > 3,3-dimethylpentane > methane > C3H8 > 3,3-

diethylpentane. Meanwhile, the reactivity of soluble oxygenated HC such as 

alcohols, aldehydes, ketone and ethers were comparable to that of propene 

(Mrad et al., 2015). 

Table 2.1 shows the performance of novel catalysts that have been 

studied on HC-SCR. Bimetallic catalyst Cs-Co supported over zeolite showed 

high N2 selectivity in HC-SCR as each metal plays important roles – Cs 

improved toluene adsorption while Co acted as the reactive site. The zeolite 

support was reported to lose the adsorption capacity for HC as Ce was 

exchanged over the surface which is the reason Cs was incorporated (Serra 

et al., 2015). Another study using activated carbon as the support for Ce 

catalyst showed similar conversion but achieved at lower temperature due to 

the presence of oxygenated functional groups and oxygen storage and supply 

over the metal surfaces. However, the maximum oxygen content in the 

reaction gas was reported not to exceed 3 % due to the exacerbated support 

combustion (Chu et al., 2015).  

Overall, unsaturated hydrocarbon supplies more electrons than 

ammonia making it easily forming oxygenates as reactive species but it is less 

polar compared to NH3 causing weak adsorption with the metal surface that 

affects N2 selectivity (Busca et al., 1998). Even with satisfying conversion and 

selectivity in the HC-SCR, the unreacted HC and nitrite-nitrate complexes still 

remain in the flue gas (Pârvulescu, Grange, & Delmon, 1998). 

CO and H2 are also employed in the reduction of NO from automotive 

exhaust gas but are not considered as selective due to the formation of by-

product including N2O or NH3. However in a lean flue gas treatment at high 

temperature, such as that in a fluid catalytic cracking regenerator where the 

concentration of CO is usually higher than O2, carbon monoxide is favoured 

for use as a reductant due to its ability to consume the excess oxygen which 
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retards the reduction of NO (Hamada & Haneda, 2012). Various catalysts have 

been investigated to increase the selectivity towards N2 formation. By using 

the base metal oxides Fe2O3 and Cr2O3, the CO-NO reaction (equation 2.17) 

superseded CO-O2 reaction (equation 2.18).  This was due to the poisoning 

effects of oxygen by the active site preventing CO combustion (Pârvulescu, 

Grange, & Delmon, 1998).  

2𝑁𝑂 + 2𝐶𝑂 → 𝑁2 + 2𝐶𝑂2 2.17 

𝑂𝑎𝑑𝑠 + 𝐶𝑂 → 𝐶𝑂2 + ∗ 2.18 

Patel et al. (2014) compared the activity of various MSM-41-supported 

base metal oxides with a precious metal (i.e. Ru) and found the latter to be the 

most reactive (total conversion at 300 °C) in a 250 ppm NO + 750 ppm CO 

gas flow at 80 mL/min over 0.1 g catalyst, followed by copper. It was also found 

from the characterization that Ru/MCM-41 possessed the highest reducibility 

(1/Tred, Tred being the first temperature peak in the TPR experiment), whereas 

the metal-oxygen bond strength in RuO2 is the lowest. A relationship plot 

between these two parameters for the studied catalyst is shown in Figure 2.5 

which suggests that a catalyst to the right-hand side of the graph should be 

reactive in SCR. 

 

Figure 2.5: Relationship plot between M-O bond strength and reducibility of 
metal oxides. Reprinted with permission from (Patel et al., 2014). Copyright 

(2014) Elsevier.  
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The performance of selected catalysts in CO-SCR is shown in Table 

2.1. Among other precious metals used were gold and iridium, both showing 

total conversion at low temperature (Ilieva et al., 2015; Haneda et al., 2005). 

Ilieva et al. (2015) attributed the improved conversion from using Au/Ce to 

using Au/FeCe (from 75 to 100 % at 250 °C) to the participation of Fe2O3 in 

oxidizing CO and thus reducing NO by Fe3O4. A similar conclusion on the role 

of Fe2O3 has also been published by Li et al. (2014).  

Non-precious metals such as Mn and Cu have also shown great 

performance when supported over metal oxides. When comparing Cu, Ni, Fe, 

Mn and Cr supported over TiO2, Sreekanth and Smirniotis (2008) found that 

the NO conversion decreased as Mn > Ni > Cu > Cr > Fe. The high Mn 

reactivity was ascribed to the multiple Mn phases presence on the TiO2 

surface as indicated via a temperature-programmed reduction (TPR) 

experiment (MnO2, Mn2O3 and Mn3O4). Meanwhile, Cu supported over 

amorphous AlPO4 has been proven to give 100 % NO conversion and N2 

selectivity in CO-SCR. The ion exchange over the support yielded well-

dispersed copper (II) amino species was claimed to be responsible for this 

activity (Kacimi, Ziyad, & Liotta, 2015). 
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Table 2.1: Review on catalysts performance used in recent HC and CO-SCR studies. 

Catalyst 
 

Preparation method 
(calcination temperature) 

Feed gas composition 
(space velocity/flow rate) 

Highest NOx 
conversion 

(temperature) 

Highest N2 
Selectivity 

(temperature) 

Other 
performance 

Ref 

2wt.%Cs-2.9wt.% 
Co/Mordenite 

Ion exchange of Na-mordenite with 
Co(CH3COO)2 and CsCH3COO 
(500oC, 8h in air) 

1000ppm NO + 2% O2 + 286ppm C7H8 + 
2% H2O + He  
(20,000h-1) 

~80% 
(525oC) 

- 0.27 toluene 
retention capacity 

(Serra et al., 2015) 

7wt.%Ce/activate
d carbon 

Activated with HNO3 and impregnated 
with Ce(NO3)3·6H2O  
(400oC, 2h in N2) 

0.1% NO + 0.1% C3H6 + 3% O2 + N2 
(600mL/min) 

~70%  
(300oC) 

- ~80% C3H6 

conversion 
(300oC) 

(Chu et al., 2015) 

0.53wt.%Rh/Ce0.62

Zr0.38O2 
Incipient wetness with rhodium (III) 
nitrate over Ce0.62Zr0.38O2  
(550oC, 2h in air) 

250ppm NO + 247ppm HC (50ppm 
C3H8, 133ppm C3H6 and 64ppm C7H8) + 
5% O2 + Ar  
(30,000h-1) 

~60% 
(280oC) 

~50% 
(280oC) 

~100% HC 
conversion 

(280oC) 

(Adamowska-
Teyssier et al., 

2015) 

1wt.%Au-
1wt.%Ag/Al2O3 

HAuCl4 and AgNO3 co-precipitated over 
Al2O3 using urea  
(500oC, 6h) 

300ppm NO + 300ppm CO + 300ppm 
C3H6 + 2000ppm H2 + 100ppm C10H22 + 
10% CO2 + 10% O2 + 5% H2O + He  
(50,000h-1) 

~100% 
(350oC) 

~90% 
(350oC) 

- (More et al., 2015) 

Cu3Ti1 Titanium sulfate and copper nitrate co-
precipitated using urea  
(450oC, 6h) 

1000ppm NO + 1000ppm C3H6 + 10% 
O2 + He 
(20,000h-1) 

~80% 
(260oC) 

- ~65% N2 yield 
(270oC) 

~100% C3H6 
conversion 

(250-300oC) 

(Yuan et al., 2014) 

4wt.%Pd/SBA Incipient wetness with Pd(NH3)4(NO3)2 
over mesoporous silica SBA-15  
(500oC, 2h in air) 

1500ppm NO + 1500ppm CH4 + 7% O2 
+ Ar 
(22,100h-1) 

~100% 
(300oC) 

- ~100% CH4 
conversion 

(550oC) 

(Boutros et al., 
2014) 

4wt.%Ag/Al2O3+6
wt.%Ba/ZSM5 

Wet impregnation of Al2O3 with AgNO3 
and ZSM5 impregnated with Ba(NO3)2  
(600oC, 3h in air) 

500ppm NO + 5% O2 + 200ppm C10H22 + 
6% H2O + 1ppm SO2 + He 
(60,000h-1) 

~55% 
(450oC) 

- - (Sultana et al., 
2013) 

5wt.%Cu/AlPO4 Ion exchange of AlPO4 with 
Cu(NO3)2.4H2O  
(500oC in air) 

0.2%  NO + 0.65% O2 + 1.5% CO + He 
(200mL/min over 100mg catalyst) 

~100% 
(325oC) 

~100% 
(325oC) 

- (Kacimi, Ziyad, & 
Liotta, 2015) 

3wt.%Au/FeCe Deposition-precipitation of 5%Fe2O3-
loaded ceria with  HAuCl4.3H2O   
(400oC, 2h in air) 

3000ppm NO + 5% O2 + 3000ppm CO + 
1000ppm H2 + He 
(60,000mL/g.h) 

~100% 
(250oC) 

~100% 
(250oC) 

0% N2O formation 
(250oC) 

(Ilieva et al., 2015) 

4wt.%Ru/MCM-41 Ru precipitation over MCM-41 
(500oC, 5h in air) 

250ppm NO + 750ppm CO + He 
(80mL/min over 100mg catalyst) 

~100% 
(450oC) 

- - (Patel et al., 2014) 

3wt.%Cu/MCM-41 Cu(NO3)2 precipitation over MCM-41 
(500oC, 5h in air)  

250ppm NO + 750ppm CO + He 
(80mL/min over 100mg catalyst) 

~75% 
(450oC) 

- - (Patel et al., 2014) 

3wt.%Fe-
Mo/Al2O3 

Al(NO3)3.9H2O co-precipitated with 
molybdemum and Fe(NO3)3  
(400oC, 4h in air) 

1000ppm NO + 1% O2 + 4% CO + He 
(8,000h-1) 

~80% 
(700oC) 

- ~100% O2 
consumption 

(700oC) 

(Li et al., 2014) 

5wt.%Ir/SiO2 Wet impregnation of SiO2 with 
H2IrCl6.6H2O  
(600oC, 8h in air) 

1000ppm NO + 6000ppm CO + 6% H2O 
+ He 
(75,000h-1) 

~80% 
(500oC) 

- ~100% N2 
selectivity 
(500oC) 

(Haneda et al., 
2005) 
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2.2.3 Hydrogen-SCR 

The presence of hydrogen has also been shown to improve the HC- 

and CO-SCR efficiency due to its involvement in the NO adsorption activity, 

direct gas-phase reaction with the reactants, and facilitation in HC/CO 

oxidation. The intrinsic content of hydrogen in the vehicle exhaust has also 

been utilized as a three-way catalytic reductant. Therefore, studies on the 

utilization of hydrogen as an SCR reductant has attracted special interest. 

Hydrogen can react with NO to produce NH3 that reduces the other NOx 

species. This reaction is usually carried out at very high temperature (more 

than 800 °C) and with limited amount of oxygen (Hamada & Haneda, 2012). 

However, it has been demonstrated that some catalysts can promote deNOx 

using hydrogen at lean-burn combustion and low temperature according to 

equation 2.19 (Costa et al., 2002). Equations 2.20 and 2.21 also occur as side 

reactions, giving undesired products (Chiarello et al., 2007; Costa et al., 2002). 

2𝑁𝑂 + 4𝐻2 + 𝑂2 → 𝑁2 + 4𝐻2𝑂 
2.19 

2𝑁𝑂 + 3𝐻2 + 𝑂2 → 𝑁2𝑂 + 3𝐻2𝑂 
2.20 

2𝐻2 + 𝑂2 → 2𝐻2𝑂 
2.21 

Noble metals are commonly used in a H2-SCR studies due to their 

known ability to activate hydrogen, as well as to increase the acidity and 

reducibility of the catalyst which is preferable in reducing NOx gases.  Several 

studies have compared the performance between noble metals in H2-SCR and 

selected ones are listed in Table 2.2. Though it is difficult to compare across 

studies due to the variation in the experimental conditions, it is certain that Pt 

and Pd are active in converting NO at low temperatures (below 150 °C), while 

Ru and Rh can give higher N2 selectivity especially at higher temperature. 

Shelef and Gandhi (1972) reported the “unfixed” products selectivity for the 

catalysts, which refers to the selectivity towards N2 and N2O that has a stable 

N≡N bond, and found the selectivity for Pt and Pd fell below 50 % between 

200 – 600 °C.  
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Table 2.2: Performance comparison between noble metal catalysts in H2-

SCR in selected studies. 

Reference Condition Conversion Other performance 

(Shelef & 
Gandhi, 
1972) 

20,000h-1 
1000ppm NO 
+ 1.4% H2 
 

Temperature (°C) at 90% 

NO conversion; 
Pd(143) < Ru(215) < 
Pt(280) < Os(485) 

Unfixed products selectivity (%) 
at 350°C; 
Ru(85) > Os(65) > Pt(20) > 
Pd(5) 

(Stenger & 
Hepburn, 
1987) 

8,820 to 
15,420h-1 
1.8 to 3.2kPa 
NO + 63.4 to 
74.6kPa H2 in 
near-ambient 
pressure 
 

Temperature (°C) at 90% 
NO conversion; 
Pt(114)< Pd(128) < 
Rh(186) 

Highest rate of product N2 
formation (s-1@°C); 
Ru(0.8@240) > Pd(0.7@170) > 
Pt(0.2s@130) 

(Nanba et 
al., 2003) 

0.12gs/cm3 
1000ppm NO 
+ 1% H2 + 
2% O2 

Temperature (°C) at 50% 
NO conversion; 
Pt(40) < Pd(90) < Ir(150) < 
Rh(200) 
 

- 

(Mihet et 
al., 2012) 

4,500h-1 
0.5% NO + 
0.6% H2 

Temperature (°C) at 50% 
NO conversion; 
Pt(62) < Pd(72) < Rh(162) 

N2 selectivity (%) at 150°C; 
Pd(80) > Rh(60) > Pt(40) 
N2 yield (%) at 150°C; 
Pd(80) > Pt(40) > Rh(10) 

 

Mihet et al. (2012) concluded that Pd was the most efficient noble metal 

catalyst supported over alumina due to the low formation of N2O and negligible 

NH3 and NO2 production. A nitric oxide temperature-programmed desorption 

experiment (NO-TPD) showed that NO was highly adsorbed over all three 

catalysts with dissociative adsorption (based on the evolution of N2 signal) 

being preferred over Pt and Pd, while competitive molecular NO adsorption 

was observed over Rh. In addition, hydrogen-TPD indicated that Pd has 

moderate H2 adsorption capacity but possessed the lowest desorption peak 

below 300 °C. These two characteristics could be evidence that NO and H2 

chemisorption determine the reactivity of the catalysts. 

The performance of Pd-based catalysts is also dependent on the 

support. Qi, Yang and Rinaldi (2006) studied the performance of Pd supported 

over mixed oxides (V2O5, TiO2 and Al2O3) and found that 1 wt.% Pd/V2O5-TiO2-

Al2O3 has the highest NO conversion (98 % at 150 °C) and the widest 

temperature window (>80 % between 140 to 250 °C) as compared to Pd 

supported over TiO2-Al2O3. This was attributed to the formation of 𝑁𝐻4
+ over 

the vanadia-containing catalyst especially above 200 °C as seen under 

Fourier-Transform infra-red (FTIR) spectroscopy at peaks around 1460 and 
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1680 cm-1. This species is commonly observed on vanadia catalysts in NH3-

SCR and is believed to be the adsorption species of ammonia over Brønsted 

acid sites (Gruber & Hermann, 2013). Among other catalysts reported to 

possess this active species are bimetallic catalysts Mn-Fe, Mn-Zn and Mn-Zr 

supported over TiO2 (Thirupathi & Smirniotis, 2011), as well as mixed oxides 

MnOx-CeO2-ZrO2/γ-Al2O3 (Cao et al., 2014). In fact, Zhang et al. (2016) 

incorporated ammonium ions into a Mg/Al/Cu hydrotalcites network and 

obtained up to 85 % NOx storage and decomposition which is 75 % higher 

than those without this ion. Other catalysts recently studied in the literature are 

listed in Table 2.3. 

In addition, the effect of using mesoporous silica as the Pd support has 

also been studied since silica showed higher surface diffusivities that 

contributed to the higher hydrogen spillover. 1 wt.% Pd supported over silica 

SBA-15 showed higher NOx conversion compared to silica MCM-41-supported 

Pd (56 and 29 % respectively) at very low NO concentration (50 ppm) and low 

H2/NO ratio (10:1). Wang, Yin and Yang (2016) supported these findings with 

the amount of stored hydrogen over Pd on the two different supports from a 

transient kinetic experiment and hydrogen adsorption isotherms. It was 

determined that SBA-15 and MCM-41-supported Pd stored 7.3 and 2.1 

μmolH2/g catalyst, respectively.   

Pt catalysts have also been known to convert a higher amount of NOx 

among other noble metals, especially in the substantial presence of oxygen. 

The performance of Pt and Pd supported over Al2O3 and TiO2 in a net-oxidizing 

condition was reported by Ueda et al. (1998). Both supported Pt showed high 

activity at low temperature while only Pd supported over TiO2 showed 

tolerance against a high concentration of oxygen. However, at higher 

temperature, 1 wt.% Pd/TiO2 has the highest activity due to the ability to 

reduce NO2 generated in situ. Moreover, Burch and Coleman (1999) reported 

that only Pt catalysts (as compared to Pd, Rh and Ir supported over Al2O3 and 

SiO2) were reactive in a H2-SCR with gas mixture of 500 ppm NO + 2000 ppm 

H2 + 6 % O2 where about 75 % NO conversion was achieved at 90 °C. 

However, at this temperature, the formation of N2O is so high that the 

selectivity towards N2 fell below 30 %. It was found that the formation of this 
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toxic by-product is preferred at low temperature and increased with hydrogen 

and water concentration.  

The improvement of Pt-based catalysts has since been focused on 

increasing the selectivity towards N2 formation. Shibata et al. (2004) reported 

that N2 selectivity was highly affected by the acidity of the support. By using 

different supports (zeolitic materials MFI, Y and BEA, and non-zeolitic 

materials SiO2 and Al2O3), it was found that zeolites which have high acidic 

strength provided more N2 formation due to the capacity for ammonium ion 

storage. The rate of N2 formation was correlated to the intensity of 𝑁𝐻4
+ 

adsorption on Brønsted acid sites (determined during an in-situ IR experiment 

at bands between 1404 and 1447 cm-1) for the catalysts and was found to be 

strongly proportional as shown in Figure 2.6. In the same figure, it can be 

observed that the mixed oxides SiO2-Al2O3 supporting Pt catalyst possessed 

more 𝑁𝐻4
+ intermediates compared to the single oxides, which suggests the 

presence of synergistic effects between the oxides that contributed to the N2 

formation.  

Noble metals have also been incorporated into perovskites, which show 

competitive N2 selectivity. The performance was said to be dependent on the 

composition of the perovskite structure. For instance, Pt supported over 

La0.7Sr0.2Ce0.1FeO3 had a consistent N2 selectivity of 90 % at low temperature 

range while Pt/La0.5Ce0.5MnO3 had a varied N2 selectivity between 80 to 95 % 

(Liu, Li, & Woo, 2012).The formed oxygen vacancies adjacent to the metals 

(i.e. Pt), due to the interaction between perovskite and noble metals, are 

attributed as the O-anchoring sites for NO adsorption with N atom attached to 

the Pt (Roy, Hegde, & Madras, 2009).  
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Table 2.3: Review on catalysts performance used in recent H2-SCR studies. 

Catalyst 
 

Preparation method (calcination 
temperature) 

Feed gas composition 
(space velocity/flow rate) 

Highest NOx 
conversion 

(temperature) 

Highest N2 
Selectivity 

(temperature) 

Other 
performance 

Ref 

8%Pt/C Hydrothermal method at 250°C of 
carbon black powder and H2PtCl6 

1000ppm NO + 1.5% H2 + 2% O2 + N2 
(32,000mLh-1g-1) 

~90% 
(160°C) 

- - (Tu et al., 2017) 

0.2%Pd/Al2O3-
ZSM5-TiO2 

Incipient wetness with Pd(NO3)2 over 
Al2O3-ZSM5-TiO2  
(500°C, 6h in air) 

500ppm NO + 5% O2 + 5% H2O + 0.3% 
H2 + 0.1% CO + Ar  
(95,000h-1) 

~90% 
(150°C) 

~90% 
(150°C) 

- (Caravaggio, 
Nossova, & Burich, 

2016) 

1%Pd/SiO2 
 

Incipient wetness with Pd(NH3)4Cl2.H2O 
over SiO2 
(500°C, 6h in air) 

50ppm NO +2000ppm H2 + 1.5% O2 + 
17.5% H2O + He 
(100mL/min over 0.2g catalyst) 

~65% 
(150°C) 

- - (Yin et al., 2015) 

10%Ni-
0.5%Pd/Al2O3 

Incipient wetness with Pd(NO3)2.xH2O 
and Ni(NO3)2.6H2O over Al2O3 
(550oC, 3h in Ar) 

0.5% NO + 0.6% H2 + Ar 
(4,500h-1) 

~100% 
(200oC) 

~90% 
(200oC) 

~90% H2 
conversion 

(200oC) 
~90% N2 yield 

(200oC) 

(Mihet & Lazar, 2014) 

3wt.%W/ZrCe Wet impregnation with 
(NH4)6H2W12O40.xH2O over ZrCe at 
50°C overnight 
(150oC, 1h; 350oC, 2h; 600oC, 1h in 
static air) 

520ppm NOx (NO:NO2∼9:1) + 1.0% H2 + 
5% O2 + 10% CO2 + He 
(51,000h-1) 

~55% 
(300oC) 

~90% 
(300oC) 

~70% H2 
conversion 

(500oC) 

(Väliheikki et al., 
2014) 

2wt.%Pt/SiO2 Incipient wetness with H2PtCl6.xH2O 
over SiO2 
(500oC, 4h)  

480ppm NO + 5% O2 +0.8% H2 + He 
(100mL/min over 0.1g catalyst) 

~100% 
(50-200oC) 

~20% 
(50oC) 

- (Park et al., 2011) 

2wt.%Pt/MnOx Incipient wetness with H2PtCl6.xH2O 
over MnOx 
(500oC, 4h) 

480ppm NO + 5% O2 +0.8% H2 + He 
(100mL/min over 0.1g catalyst) 

~90% 
(200oC) 

~20% 
(50oC) 

- (Park et al., 2011) 

0.5%Pt/ZSM-35 Incipient wetness with K2PtCl6 over 
ZSM-35 
(500oC, 3h in air) 

0.1% NO + 0.5% H2 + 6.7% O2 + He 
(80,000h-1) 

~80% 
(110oC) 

~70% 
(140oC) 

~50% H2 
conversion 

(120oC) 

(Yu et al., 2010) 

2wt.%Cr-
0.5wt.%Pt/ZSM-35 

Incipient wetness with Cr(NO3)3 over 
0.5wt.%Pt/ZSM-35 
(500oC, 3h in air) 

0.1% NO + 0.5% H2 + 6.7% O2 + He 
(80,000h-1) 

~90% 
(140oC) 

~80% 
(180oC) 

~60% H2 
conversion 

(140oC) 

(Yu et al., 2010) 

1wt.%Pd/TiO2-
Al2O3 

Wet impregnation with Pd(NH3)4Cl2 
over TiO2-Al2O3  
(500oC, 6h in oxygen) 

500ppm NO + 4000ppm H2 + 5% O2 + 
He  
(100,000h-1) 

~100% 
(150oC) 

- ~100% H2 
conversion 

(250oC) 

(Qi, Yang, & Rinaldi, 
2006) 

5wt.%V2O5/TiO2-
Al2O3 

Wet impregnation with NH4VO3 over 
TiO2-Al2O3  
(500oC, 12h in oxygen) 

500ppm NO + 4000ppm H2 + 5% O2 + 
He  
(100,000h-1) 

~70% 
(250oC) 

- ~100% H2 
conversion 

(130oC) 

(Qi, Yang, & Rinaldi, 
2006) 

1wt.%Pd-
5wt.%V2O5/TiO2-
Al2O3 

Wet impregnation with NH4VO3 and 
Pd(NH3)4Cl2 over 5wt.%V2O5/TiO2-
Al2O3  
(500oC, 6h in oxygen) 

500ppm NO + 4000ppm H2 + 5% O2 + 
He  
(100,000h-1) 

~100% 
(150oC) 

~95% 
(170oC) 

~100% H2 
conversion 

(130oC) 

(Qi, Yang, & Rinaldi, 
2006) 
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Figure 2.6: Correlation between N2 rate of formation and intensity of 
ammonium ions on Brønsted acid sites. (□) Pt/MFI, (∆) Pt/BEA, (○) Pt/Y, (■) 
Pt/SiO2-Al2O3, (♦) Pt/SiO2, and (●) Pt/Al2O3. Reprinted with permission from 

(Shibata et al., 2004). Copyright (2004) American Chemical Society. 

 

Alongside the catalyst support, the metal oxidation state is also an 

important factor in N2 selectivity (Pârvulescu, Grange, & Delmon, 1998). A 

relationship between Pt oxidation states and turnover frequency regardless of 

the catalyst support has been established. The Pt oxidation states were 

measured using X-ray absorption near edge spectroscopy (XANES) where the 

white line intensity indicates the electronic state of Pt – the higher intensity, 

the more oxidized the Pt. Figure 2.7 shows that higher TOF was obtained over 

reduced Pt (Shibata et al., 2004). 

 

Figure 2.7: Correlation between NO TOF and Pt white line intensity 
estimated from Pt LIII-edge XANES. (◊) Pt/MOR, (□) Pt/MFI, (∆) Pt/BEA, (○) 
Pt/Y, (■) Pt/SiO2-Al2O3, (♦) Pt/SiO2, (●) Pt/Al2O3, and (▲) Pt/MgO. Reprinted 

with permission from (Shibata et al., 2004). Copyright (2004) American 
Chemical Society. 
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The classical mechanism reported for Pd was that of dual-site reaction 

where both NO and H are adsorbed prior to conversion (Qi, Yang, & Rinaldi, 

2006). Recently, Huai et al. (2015) published a microkinetic model of H2-SCR 

over Pd(111) catalyst which stated that H adsorbed on the surface reduces 

the energy barriers of NO dissociation via equations 2.22 and 2.23 which 

become the precursors to NH3 responsible for reduction of NOx gases. It is 

also said to effectively remove O molecule from catalyst surfaces which 

contribute to the surface poisoning (Huai et al., 2015).   

𝑀 − 𝑁𝑂 + 𝑀 − 𝐻 → 𝑀 − 𝑁 + 𝑀 − 𝑂𝐻 
2.22 

𝑀 − 𝑁𝑂 + 𝑀 − 𝐻 → 𝑀 − 𝑁𝐻 + 𝑀 − 𝑂 
2.23 

The reaction mechanism on a platinum via the formation of ammonia 

can be described as either Eley-Rideal (ER) or Langmuir-Hinshelwood (LH) 

types. The former refers to the reaction taking place when only one of the 

reactant is being adsorbed while the other in the gaseous phase, while the 

latter is a mechanism involving the adsorption of all the reactant species over 

the catalyst surface prior to the reaction (Wilkinson, 1980). In this case, ER 

has been reported to lead to the formation of water and ammonia while the 

latter only of ammonia, as shown in equation 2.24-2.25 and 2.26-2.27, 

respectively. Therefore, the formation of ammonia, which is an important 

intermediate, depends highly on the dissociation of NO molecule on the metal 

surface and the interaction with molecular hydrogen or dissociated atomic 

hydrogen on the metal surface. The dissociation of hydrogen could prevent 

the formation of more water that is usually unwanted in a product stream. The 

onset of hydrogen dissociation is associated with the polycrystallinity of the 

metal and the partial pressure of the gas (Pârvulescu, Grange, & Delmon, 

1998). 

𝑀 − 𝑂 + 𝐻2 → 𝑀 + 𝐻2𝑂 
2.24 

𝑀 − 𝑁 + 3
2⁄ 𝐻2 → 𝑀 + 𝑁𝐻3 

2.25 

𝐻2 + 2𝑀 → 2𝑀 − 𝐻 
2.26 

𝑀 − 𝑁 + 3𝑀 − 𝐻 → 4𝑀 + 𝑁𝐻3 
2.27 
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The reaction order in NO-H2-O2 system has been scarcely reported, 

with microkinetics being more of recent interest, incorporating density 

functional theory studies. Some of the reported rate equations and apparent 

activation energies are summarized in Table 2.4, additionally enlisting those 

from the conventional NH3-SCR system. It can be seen that the activation 

energy for H2-SCR system is comparable to conventional SCR. However, NO 

adsorption is much stronger with precious metals in H2-SCR (chemisorption) 

as opposed to the transition metals in NH3-SCR system. The adsorption of the 

reductant, on the other hand, is stronger in NH3-SCR, which is dependent on 

the adsorption and activation of ammonia at the active sites (Forzatti, 2001). 

 

Table 2.4: Selected rate equations and the apparent activation energy in 
SCR studies. 

System Rate equations Parameter 
values 

Ref 

Pt/MgO-CeO2 
catalyst in NO-
H2-O2 reaction 

𝑟𝑁𝑂 ∝ 𝑝𝑁𝑂
−0.97𝑝𝐻2

1.34𝑝𝑂2

−0.17 Ea = 87.4 
kJ/mol 
 

(Costa 
et al., 
2007) 

Pt-Mo-Co/α-
Al2O3 catalyst in 
NO-H2-O2 
reaction 

𝑟𝑁𝑂

= 2(𝑘𝑁2

+ 𝑘𝑁2𝑂) [
𝐾𝑁𝑂𝑝𝑁𝑂 × 𝐾𝐻2

(𝑝𝐻2
− 𝑝0)

(1 + 𝐾𝑁𝑂𝑝𝑁𝑂 + 𝐾𝐻2
(𝑝𝐻2

− 𝑝0) + 𝐾𝑂2
𝑝𝑂2

)
2] 

Ea = 63.16 
kJ/mol 
∆Hads,NO = -
77.2 kJ/mol 
∆Hads,H2 = -
58.6 kJ/mol 

(Frank, 
Emig, & 
Renken, 
1998) 

V2O5-WO3/TiO2 
honeycomb 
monolith in NO-
NH3-O2 reaction 

𝑟𝑁𝑂 = 𝑘1𝐶𝑁𝑂 Ea = 27 kJ/mol 
 

(Yang et 
al., 
2013) 

Commercial 
catalyst 
containing TiO2. 
WO3, SiO2, 
CaO, Al2O3 and 
V2O5 in NO-
NH3-O2 reaction 

𝑟𝑁𝑂 = 𝑘1𝑐𝑁𝑂

𝐾𝑁𝐻3
𝑐𝑁𝐻3

1 + 𝐾𝑁𝐻3
𝑐𝑁𝐻3

 

𝑟𝑁𝑂 = 𝑘𝑁𝑂

𝐾𝑁𝑂𝑝𝑁𝑂

1 + 𝐾𝑁𝑂𝑝𝑁𝑂

 

Ea = 69-86 
kJ/mol 
∆Hads,NO = -
21.3 kJ/mol 
∆Hads,NH3 = -
137 kJ/mol 

(Koebel 
& 
Elsener, 
1998) 
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Furthermore, the effects of Pt loading and reaction temperature on the 

mechanism have also been investigated. Selectivity towards N2 formation 

decreased from 85 to 67 % from using 0.1 to 1.0 wt.% Pt loading, which may 

be attributed to the different reduction kinetics by hydrogen on the active 

species. Despite being similar under a wide range of Pt loading (0.1 to 

1.0 wt.%) on MgCeO support, the adsorption species vary on temperature. For 

example, between 120 and 200 °C, unidentate or bidentate nitrates and 

nitrosyls are the active intermediates while from 200 to 300 °C, the formation 

of chelating nitrite was more apparent than unidentate or bidentate nitrates 

(Savva & Costa, 2011). Figure 2.8 shows an illustration of the adsorption 

species suggested in most of the H2-SCR. 

 

Figure 2.8: Structure of adsorbed NOx species in H2-SCR. Adapted with 
permission from (Savva & Costa, 2011). Copyright (2011) Taylor & Francis. 

 

2.3 Precious Metals Replacement in NOX Treatment Studies 

The application of precious metals are usually limited to mobile NOx 

sources due to the high cost, low-range temperature window, oxygen inhibition 

and sensitivity to poisons such as SO2 (Gao et al., 2017). Even then, the 

search to replace precious metals in the three-way catalytic converter catalyst 

is still an interest. This catalyst consists of the oxidation catalysts Pt and Pd, 

which consume the unburned hydrocarbons and carbon monoxide, and the 

reduction catalyst, Rh to convert NOx gases. Rh, as the scarcest element 

among the three, was the main focus for replacement. Different bimetallic 

systems have been investigated, such as Pt-Mo, Pd-Mo and Pd-W, but these 

have been found to be inferior in terms of NOx reactivity (as compared to the 

Rh-containing catalyst) though the hydrocarbon oxidation improved (Adams & 

Gandhi, 1983). 
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Growing industrialization and demand for vehicles worldwide would 

increase the consumption of the depleting precious metals. World production 

of platinum and palladium increased by 11 and 29 %, respectively from 2014 

to 2015, while the recycling rate of the platinum-group metals (PGM) was only 

30 % in 2014. The primary source of recycled PGM is catalytic converters, as 

this accounts for 45 and 65 % of the application of Pt and Pd, correspondingly 

(Loferski, 2014).  

Precious metals are usually preferable in the catalysis market due to 

their high selectivity, simple catalyst design and low metal loading 

requirements. It is typical to obtain similar performance between platinum-

group metals and cheaper metals with higher loading and more complex 

ligands of the latter. Therefore, there has been a lack of studies focusing on 

replacing precious metals especially in industries where the precious metals-

based catalyst is not the cost-determining factor such as in the pharmaceutical 

industry due to the low usage of the catalysts. In NOx treatment from both 

mobile and stationary sources, increasing NOx emission regulation worldwide 

demands larger production of NOx removal catalysts which could impose a 

great threat on the availability of precious metals (NRCCSR, 2012). Continuing 

efforts to develop cheaper and more sustainable NOx-removal catalysts allows 

the exploration of non-precious metals (NPM). In the industrial context, NPM 

includes the major industrial metals and rare earth elements which are at least 

200 times more abundant than precious metals, as depicted in Figure 2.9 

(Haxel, Hedrick, & Orris, 2002).  
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Figure 2.9: Classification of metals based on the elemental abundance 
(Haxel, Hedrick, & Orris, 2002). 

 

In 2012 it was reported that mullite, a natural silicate mineral discovered 

on the Scottish Isle of Mull, is the most promising alternative to Pt used in 

catalytic converter. Nanostellar Inc. has since developed a synthetic material 

based on mullite and studied its performance in reducing NOx (Canter, 2012). 

The Mn-mullite (Mn7SrSmCeO14.83) was reported to better oxidize NO into NO2 

as compared to Pt by 20 %. This is attributed to the synergistic effects 

contributed by the mixed components – Ceria dissociatively adsorbs oxygen 

to supply atomic oxygen to the Mn-Mn dimers, Sr increases the surface area 

to expose more active sites and Mn3O4 stabilizes the catalyst activity at high 

temperature up to 350 °C (Wang et al., 2012).  The formation of NO2 from NO 

is essential, as NO2 is used to oxidize soot formed in an exhaust system and 

is easily reduced to N2 by a subsequent SCR catalyst.  

Transition metals have quickly replaced the role of precious metals in 

NH3-SCR because of the superiority in inhibiting NH3 oxidation at high 

temperature (Gao et al., 2017; Liu, Yu, & He, 2014; J. Li et al., 2011; Thirupathi 

& Smirniotis, 2011; Consul et al., 2004; Forzatti, 2001; Busca et al., 1998). 

Therefore, this group of metals have been studied in a wide range of 
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applications, from NO decomposition to reduction with hydrogen. Shelef and 

Ghandi (1972) studied the NO-H2 reaction for both LPM and noble metals, and 

the selectivity towards unfixed nitrogen products are shown in Figure 2.10. 

Most of the tested metal oxides were able to achieve more than 90 % 

selectivity and the activity threshold for the catalysts are comparable to the 

noble metals, for instance MOD (undisclosed metal types and composition) 

and Pd, which started at about 100 °C. The minima for the base metal oxides 

started at higher temperature than the noble metals (350 as compared to 250 

°C). In their study, they ranked the reactivity of base metal oxides as MOD > 

copper chromite = copper oxide >> nickel oxide > iron oxide. The reduced 

selectivity is attributed to the increasing formation of NH3 over the catalysts at 

increasing temperature. However, it was shown in the same studies that the 

addition of oxygen up to 0.27 % in the inlet gas affected the selectivity over 

noble metals only slightly, while the maximum NO conversion and NH3 

formation over the LPM shifted to a higher temperature.  

 

 

Figure 2.10: Selectivity for unfixed nitrogen-products in 1000-1200 ppm NO + 
1.4 % H2 over base metal oxide and noble metal catalysts. Reprinted with 

permission from (Shelef & Gandhi, 1972). Copyright (1972) American 
Chemical Society. 
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Copper is known to be reactive in NOx decomposition and reduction, 

making it one of the most studied transition metals. Supported copper over 

zeolite has been extensively used in NOx reduction, which is attributed to the 

strongly stabilized Cu+ ions in the ZSM5 structure. In addition, the redox 

properties of the supported copper are also believed to play important roles in 

the catalytic activity. Therefore, the performance levels of copper over different 

supports should also be explored. Aritani et al. (1997) found that TiO2-

supported Cu had the highest performance compared to other supports (Al2O3, 

SiO2, MgO and ZnO), also showing that pre-treating 8 wt.% copper supported 

over TiO2 in 100 torr of H2 at 473 K for 1 h could give a superior performance 

(83 % conversion and 95 % N2-selectivity). The co-existence of Cu0 and Cu2+ 

has been reported to be responsible for this high activity. In addition, CuO in 

its oxidized state is not preferable for a sulfur-containing exhaust gas treatment 

even for its high sorption capacity, as it consumes SO2 to form CuSO4 

(Gomez-Garcia, Pitchon, & Kiennemann, 2005). 

 Several attempts have been made to evaluate the performance of 

singularly supported transition metals in NOx reduction with hydrogen. Wang 

et al. (2014) tested impregnated zinc on ZMS5 and compared the performance 

to the catalysts containing Pd and Ru, with the results shown in Figure 2.11. 

This study revealed that monometallic zinc supported over the zeolite structure 

is active in reducing NO and the selectivity towards N2 formation is competitive 

to those of noble metals. In fact, coupling of zinc with palladium produced 

better selectivity (~100 % in a wider range of temperature) compared to Pd-

Ru catalyst. In a separate study, Qi, Yang, & Rinaldi (2006) compared the 

performance of Pd and V in H2-SCR and found that 5 wt.% V2O5 supported 

over TiO2 was able to consume NO and hydrogen at a high percentage at over 

250 °C (results are shown in Table 2.3). Even though no N2-selectivity was 

reported for the catalyst, it was found via FTIR studies that the formation of 

NH+ over the catalyst surface contributed to the removal of NO.  

Further studies comparing the performance between LPM and noble 

metals evidently should be published in order to explore the sustainability of 

non-ammoniacal SCR. Some researchers have argued that the LPM oxidation 

by the presence of oxygen is a limitation to its application (Gomez-Garcia, 
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Pitchon, & Kiennemann, 2005) but some reported the reaction does happen 

but via Mars-van Krevelen mechanism which utilizes redox sites (Busca et al., 

1998). As redox sites are also contributed by the catalyst support, the detailed 

interaction between transition metals supported over different kind of materials 

should also be explored. 

 

 

Figure 2.11: Catalysts performance in 50 ppm NO + 2000 ppm H2 + 1.5 % O2 
at 200 mL/min for (∆) 0.25 g 0.8 wt.% Pd/0.11 wt.% Ru/W-(ZrO2-SiO2)SO4, 

(○) 0.2 g 1 wt.% Pd/2 wt.% Zn/ZMS5 and (□) 0.2 g 2 wt.% Zn/ZMS5. 
Reprinted with permission from (Wang et al., 2014). Copyright (2014) 

Elsevier. 
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2.4 Carbon-based Catalysts and Sorbents for NOX Treatment 

Carbon materials are known to possess excellent characteristics as 

sorbents and catalyst supports. They can be synthesized via carbonization of 

carbonaceous materials, or through the preparation of ordered mesoporous or 

nano-structured materials. Examples of carbon polymorphs can be classified 

as in Figure 2.12. 

 

Figure 2.12: Carbon polymorphs for application as sorbent and catalyst 
support. Adapted with permission from (Yang, Chiang, & Burke, 2011). 

Copyright (2011) Elsevier. 

 

The simplest form of carbon support is activated carbon, which can be 

either powdered or granular. The basic structural unit comprises of 

microtextured carbon, and the ligands bonded at the edge of the microtexture. 

The pores of the activated carbon are made of the interstices and irregularities 

of the microtexture, formed during the combustion, activation and calcination 

process (Alfarra, Frackowiak, & Béguin, 2004). Oxygen, nitrogen, hydrogen 

and sometimes inorganic elements coexist in the microtexture, influencing 

aspects of surface chemistry such as the acidity and hydrophobicity of 

activated carbon. Due to the high electronegativity of oxygen molecules, their 

presence at the edge of the structure forms important surface functional 

groups, some of which are illustrated in Figure 2.13 (N. Li et al., 2011; Marsh 

H. & Rodriguez-Reinoso F., 2006).  

In industrial applications, a packed-bed catalyst imposes considerable 

high pressure drops; a different configuration with higher voidage could solve 

this drawback. The activated carbon can be coated on a template or extruded 

to form ordered porous carbon such as honeycomb monolith. The first 

application of this structure is in treating exhaust gas of automobiles. Though 
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ceramic was the first material used, its low surface area requires the inner 

surface of the channel to be coated with other high surface area material such 

as carbon, which was then known as carbon honeycomb monolith (CHM). This 

can be prepared either by dip-coating in resin or by chemical vapour 

deposition. CHM has the monolith retaining its mechanical strength, while the 

carbon washcoat provides adsorptive and catalytic properties. Another type of 

CHM can be prepared by extruding a mixture dough of carbon, binder and filler 

(Moreno-Castilla & Pérez-Cadenas, 2010).  

 

 

Figure 2.13: Surface functional groups commonly found on activated carbon: 
red-acidic group and blue-basic or neutral group. Adapted with permission 

from (N. Li et al., 2011). Copyright (2011) Elsevier. 

 

Graphene, the basis for many nanocarbon materials, has been used as 

a catalyst support. It has been agreed that graphene sheet is superior 

compared to the other carbon supports in terms of surface-weight ratio, 

surface availability, and flexible surface doping (Taheri Najafabadi, 2015). 

Layers of graphene enveloped into a cylindrical shape have also been used 

as a catalyst support in the form of carbon nanotubes (CNT). The development 

of CNT from a tubular form in 1950, to multi-walled CNT in 1991, to the recent 

interest in single-walled CNT, are all attributed to its strong mechanical and 

electronic properties. It can be synthesized via chemical vapour deposition, 

arc discharge and laser ablation (Tan et al., 2013). Functionalised CNT 

involves the removal of impurities that grew along with the carbon network 

such as graphite and fullerene as well as modification with amino and sulfonic 

groups. It has attracted special interest as a supporting catalyst because it can 
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overcome common issues related to using conventional catalysts such as pore 

diffusion limitation, low structure stability due to organic compounds, catalyst 

leaching and high catalyst costs (Shuit et al., 2013). As graphene and CNT 

are 2D structures, carbon nanofibers (CNF) resemble 1D structures of fibrous 

material synthesized via electrospinning or catalytic thermal chemical vapour 

deposition growth. It also differs from the conventional carbon fibres, as the 

diameter is 50 – 200 nm instead of micrometres, which leads to large 

differences in their properties. In an application to remove NO and NO2, CNF 

without other embedded metallic catalysts acted as both catalyst and 

adsorbent to facilitate the reaction due to the increased redox properties 

(Feng, Xie, & Zhong, 2014; Zhang et al., 2014). 

2.4.1 NOx adsorption with activated carbon 

 One of the most common methods to separate toxic industrial 

compounds from air is adsorption. Its efficiency is influenced by the number of 

adsorption sites and the energy retaining the molecules. Larger molecules that 

can fit the pores in the sorbent surfaces at temperatures below its critical 

imposed stronger retaining energy (Bandosz, 2012). Therefore, as NOx gases 

pre-dominantly consist of NO with a critical temperature of -93 °C and N-O 

distance of 1.2 Å, oxidizing this to for example NO2 is more preferable (NO2 

critical temperature is 158 °C) (Claesson, Donohue, & Schomaker, 1948). This 

is called reactive adsorption, as an oxidation/reduction happens before the 

resulting molecules are adsorbed, as opposed to chemisorption, which refers 

to the stronger bonds of adsorbate and the sorbent sites.  

 Activated carbons have been reported to be able to oxidize NO and 

adsorb the subsequent NO2 into the pores. Neathery, Rubel, & Stencel (1997) 

tested several types of commercially available activated carbons, mostly 

produced from coal and pitch, in bench and pilot-scale rigs. The temperature 

window was reported to be 35 – 120 °C and desorption (at temperature below 

200 °C to avoid carbon consumption) showed NO2 as the primary products. 

Below this temperature range would allow competitive adsorption with CO2, 

while lower NO2 is produced above this range. Experiments using the pilot-

scale have produced similar conclusions to those from the bench-scale 

experiment. Detail mechanism of NO adsorption over activated carbon has 
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been reviewed by Shen, Ge, & Chen (2016) where it was concluded that the 

adsorption was mainly contributed by the surface functional groups and 

oxygen concentration in the gas phase.  

 The types of NO adsorbed species on activated carbon from palm oil 

shell have also been studied. Klose & Rincón (2007) showed in their study that 

the four types of adsorbed species existed in a carbon-NO-oxygen-water 

system are: 1) weakly adsorbed NO which desorbed during 12 - 15 h of 

purging at the adsorption temperature; 2) adsorbed NO2 formed via oxidation 

over the carbon surface having a desorption peak from 175 to 200 °C; 3) 

strongly adsorbed NO with a desorption peak around 250 °C; and 4) (NO)2 

dimer desorbing at temperature higher than 300 °C. The evolution of these 

adsorbed species throughout the adsorption process is shown in Figure 2.14. 

 

 

Figure 2.14: Adsorbed species evolution over activated carbon (palm oil shell 
steam activated at 850 °C) with respect to time-on-stream. Reaction 
condition: 800 ppm NO + 6 % O2 + 10 % H2O +N2, 120 °C at 692 h-1. 

Reprinted with permission from (Klose & Rincón, 2007). Copyright (2007) 
Elsevier. 
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One of the key findings from the figure is that NO was strongly adsorbed 

over the carbon from the start until a breakthrough (A-B), followed by the 

formation of (NO)2, until a maxima was reached at C. This means that during 

the high concentration of adsorbed NO, there is a higher probability for the two 

adjacent NO molecules to form a dimer (NO)2. As more of these dimers were 

formed, more sites were liberated which provided more sorption sites for NO, 

causing a minima at D. It can be seen that the strongly adsorbed NO was 

preferable to the weakly adsorbed NO. Additionally, NO2 is produced due to 

the interaction between the weakly adsorbed NO with gaseous O2, as the rate 

of the course for the two is similar until a steady-state was achieved (D-E) 

(Klose & Rincón, 2007).  

 The reduction of NO2 at the carbon active sites (C*) have also been 

studied and proposed to follow equation 2.28. The oxygenated surface groups 

formed via this reduction also react with gaseous NO2 to form nitrogen-oxygen 

functional groups on the carbon according to equation 2.29. The –C(ONO2) 

surface complexes desorb as –C(O) and NO2 at around 110 °C, to CO2 and 

NO around 200 °C, and to CO and NO2 up until 250 °C. The decomposition of 

–C(O) groups can be determined above this temperature to form both CO and 

CO2 (Jeguirim et al., 2004). 

−𝐶 ∗ +𝑁𝑂2 → 𝐶(𝑂) + 𝑁𝑂 2.28 

𝐶(𝑂) + 𝑁𝑂2 → −𝐶(𝑂𝑁𝑂2) 2.29 

The re-formation of NO over activated carbon is certainly unfavourable. 

A study performing simultaneous adsorption of NO and NO2 over coconut-

based activated carbon, pre-treated with KOH, found that the NO production 

rate decreased as more NO2 was produced via oxidation over the sorbent, as 

can be seen from Figure 2.15, where the slope is decreasing against NO2 

concentration. The same study also showed that inlet gas rich in NO2 

(115 ppm NO + 793 ppm NO2) produced more adsorbed NOx compared to the 

NO-rich mixture (973 ppm NO + 26 ppm NO2) due to the affinity towards NO2 

adsorption. The presence of oxygen increased the NOx adsorption amount, 

due to the conversion of NO to NO2 by the chemisorbed atomic oxygen on the 

sorbent surface (Lee et al., 2003).  
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In a recent study, the performance between commercial carbons and 

the ones prepared from waste was compared. Al-Rahbi et al. (2016) found that 

waste-derived carbons adsorbed NOx less than the commercial carbons by at 

least 20 %. Elemental analysis showed that all commercial carbons used in 

the study possessed higher carbon content (about 90 %), while carbon derived 

from date seeds was the highest among the waste-derived carbons (about 

70 %). This can be correlated to the similar adsorption rate of the carbons 

prepared from date to the commercial carbons. In addition, the biomass 

carbon also had high nitrogen content, which has been reported by other 

researchers to contribute to NO adsorption because it can provide basic 

properties. Deliyanni & Bandosz (2011) introduced N-containing functional 

groups over a wood-based activated carbon via exposure to dimethylamine 

vapours (DMA). A reaction between the DMA and carboxylic groups formed 

carboxylic acids salts and amides, which interacted with NO2 to form nitramine 

and nitrosoamine as indicated using FTIR spectroscopy, DTG and elemental 

analysis. These compounds are said to be strongly retained on the carbon 

surface at room temperature. 

 

 

Figure 2.15: NO production versus NO2 production with regard to the 
breakthrough time. Reaction condition: 122 ppm NO + 787 ppm NO2 + N2 at 

130 °C and 0.67 s contact time in a fixed-bed column. Reprinted with 
permission from (Lee et al., 2003). Copyright (2003) Elsevier. 
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2.4.2 NOx adsorption over metal-impregnated activated carbon 

The efficiency for NO adsorption on activated carbon can be improved 

through the incorporation of metallic catalysts. For instance, copper 

impregnated over activated carbon was reported to increase the adsorption of 

NO with the presence of oxygen at room temperature. López et al. (2007) 

recorded the findings in Figure 2.16 where the copper-carbon material 

adsorbed approximately 94 % of the inlet NO. They also postulated the two 

stages of NO adsorption over this sorbent: 1) occupation of the internal surface 

of the carbon; and 2) adsorption on the active sites on the surface, which was 

believed to be enhanced by the presence of oxygen. In addition, 

characterisation of the sorbents revealed that copper increased the oxygen 

and nitrogen surface groups over the carbon. 

 

 

Figure 2.16: NO outlet concentration profiles on (- - -) activated carbon and 

(―) 10 wt.% copper supported over activated carbon. Reaction condition: 

500 ppm NO + 5 % O2 + He at 100 mL/min over 0.1 g sample at 30 °C. 
Reprinted with permission from (López et al., 2007). Copyright (2007) 

American Chemical Society. 

  

 Levasseur et al. (2011) studied the mechanism of NO2 adsorption over 

copper doped on a wood-based activated carbon. Without the metal, they 

found that NO2 oxidized the active carbon sites to form carboxylic acids and 

lactones which were further oxidized by NO2 as NO, NO2, CO and CO2. This 

process reduced the porosity of the sorbent but incorporating copper was seen 

to reduce this effect. They suggested that oxidation mostly occurred over 

copper metals, while adsorption produced stable copper nitrates/nitrites.  
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2.4.3 NOx reagentless reduction over activated carbon 

Studying the adsorption behaviour and capacity is important for the 

design of a sorbent or NOx storage as in the lean-NOx trap system where the 

adsorbed species are released in the subsequent stage for reduction. 

Ultimately, the conversion to nitrogen, be it in one or multiple stages, is the 

goal and is preferably performed on-site to eliminate transportation cost. 

Previous sections have addressed adsorption over carbon materials without 

the report on the N2 formation even though it was not completely ruled out. 

This section includes studies that have reported the formation of NO reduction 

products over carbon materials without the use of reducing agents as required 

in SCR. 

Xue et al. (2008) investigated the formation of N2 with respect to CO2 

after NO reduction over copper supported on activated carbon prepared from 

coconut shells. In the absence of oxygen, it was found that the evolution of N2 

was proportional to CO2. As the reduction was proposed to follow equation 

2.30, the higher concentration of CO2 as compared to N2 observed in this study 

indicated the consumption of carbon by the oxygenated functional groups in 

addition to by NO. This was further supported by the findings that increasing 

the oxygen-containing groups on the carbon surface via pre-oxidation 

treatment with nitric acid or hydrogen peroxide increased the CO2 formation, 

especially at temperatures above 250 °C.  

2𝑁𝑂 + 𝐶 → 𝑁2 + 𝐶𝑂2 2.30 

The mechanism of NOx decomposition over Cu supported on carbon 

has been discussed, demonstrating the synergistic role of carbon and copper. 

As oxygen-containing groups are crucial as NO adsorption sites as well as 

metal-anchoring sites, Shi et al. (2017) proposed a synergistic effect between 

the carbon-metal species and surface anhydride group on the carbon in 

reducing NO. They impregnated iron on the oxidized graphite powder prior to 

pyrolysis at 400 °C, then exposed the catalyst to 990 ppm NO in argon gas at 

14300 h-1 GHSV. At 300 °C, anhydride and C-Fe(O) formed active sites, Cf 

and carbon-metal bonds, C-Fe with a release of CO2. Cf was responsible for 

reducing NO based on equation 2.30, while a couple of C-Fe dissociatively 

adsorbed NO. A pair of adsorbed atomic nitrogen was said to spontaneously 
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form N2 while O was being transferred to the carbon releasing CO2 while 

regenerating both Cf and Ce-Fe sites.    

2.4.4 NOx reduction with carbon-based catalysts 

SCRs operating at low temperatures are becoming an important topic 

lately due to its significant advantages in both mobile and stationary 

applications. This is true for the former, as current vehicle technology has 

adopted a low temperature combustion system which results in low exhaust 

temperature (Guan et al., 2014). Moreover, it is always accepted that 

recovering heat from the downstream process, for example in a chemical 

plant, is attractive economically due to the optimized energy utilization. Thus, 

both mobile and stationary sources of NOx now each require that the catalysts 

be reactive at low temperature. Some of these catalysts have been discussed 

in the previous sections. Maximum performance was attained at temperatures 

lower than 250 °C, but as the temperature is lowered, the catalytic activity 

dropped for almost all of the cases. A catalyst that can give high NOx 

conversion and N2 selectivity at wide and low temperature window is urgently 

needed (Fu et al., 2014).  

In a low temperature range, the use of carbon-based catalysts is 

beneficial because of the thermal stability and comparable surface properties 

to the metallic and zeolitic materials. García-Cortés et al. (2001) compared the 

performance of Pt supported over different supports including activated 

carbon, alumina and zeolites in a C3H6-SCR. The performance is summarized 

in Table 2.5, in which it is evident that the conversion over carbon-supported 

catalyst (Pt/ROXN) was competitive while the selectivity towards N2 formation 

was the highest. The characterisation of the catalysts revealed that Pt/ROXN 

has the largest surface area and is the most acidic which contributed to the 

high propene adsorption. Via C3H6-TPD experiment with a mass spectrometer, 

it was reported that propene adsorbed dissociatively into C2H2
+, C2H3

+ and 

C2H5
+ over the carbon-supported catalyst. As NO is dissociated over Pt 

surfaces, the adsorbed atomic oxygen is removed by these intermediates to 

allow the Pt surface to continue reducing NO. 
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Table 2.5: Conversion and selectivity of Pt (1 wt.%) supported over different 

supports. Reaction condition: 1000 ppm NO + 1500 ppm C3H6 + 5 % O2 + He 
balance at 12,000 mL/g.h. Reprinted with permission from (García-Cortés et 

al., 2001). Copyright (2001) Elsevier. 

Catalyst BET 
surface 

area 
(m2/g) 

pH C3H6 
adsorbed 
(µmol/g) 

T(°C) XNOx (%) SN2 (%) 

Pt/ROXN 850 2.3 40.3 200 85 30 

a-Pt/Al2O3 90 9.3 4.78 250 55 20 

c-Pt/Al2O3 90 9.3 4.78 250 60 20 

Pt/ZMS-5 385 2.5 58.5 225 80 15 

Pt/USY 800 2.8 42.7 200 95 20 

 *a and c refer to the precursor used for the Pt catalysts; anionic platinum complex (H2PtCl6) 

and cationic platinum complex ([Pt(NH3)4]Cl2), respectively. 

 

The author has reviewed various types and characteristics of carbon-

supported catalysts for the application of SCR at low temperature: (Yakub et 

al., 2013). Lázaro et al. (2008) compared the performance of vanadium 

deposited over different types of carbon support including activated carbon 

(AC), carbon briquette (CB) and carbon corderite monolith (CM). At 150 °C in 

a stream of 1000 ppm NO + 1500 ppm NH3 + 3.5 % O2 + Ar, pre-oxidized AC, 

CB and CM converted NO by 88, 79 and 72 % respectively (these values are 

based on the highest conversion achieved by each type of support among 

various preparation methods used in this study). Even though there are no 

distinct explanations as to what causes these differences, it was noted that 

both AC and CB have a mainly microporous structure while CM is 

mesoporous. Improving microporosity increased NO conversion over AC and 

CB but did not influence the activity of the CM. However, all types of catalyst 

supports described in this study showed increases in NO reduction with 

increased amount of oxygenated functional groups, which were responsible 

for the adsorption of NH3 and fixation of V catalyst on the surface. 

Table 2.6 summarizes the performance of selected activated carbon-

supported SCR catalysts. Copper was used in a NH3-SCR and compared to 

the conventional catalyst. The results are shown in Figure 2.17. At a lower 

temperature range (below 180 °C), copper-carbon catalysts converted a 

higher amount of NO even at low copper loading. However, all carbon-

supported catalysts in this experiment experienced a maxima, reportedly due 
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to: 1) the gasification of the support that changed the dispersion and structure 

of the catalyst; and 2) change of selectivity towards NH3 oxidation at higher 

temperature (based on the fact that the conversion decreased while NH3 

consumption continued, results not shown here). In addition, the formation of 

N2O has also been reported to increase up to 100 ppm at 300 °C (Singoredjo 

et al., 1990).  

 

 

Figure 2.17: NO conversion over copper-based and conventional catalysts in 
NH3-SCR. 25, 75 and 150 refer to C/M ratio. Reaction condition: 540 ppm 
NO + 680 ppm NH3 + 2 % O2 + He balance at 60,000 h-1. Reprinted with 

permission from (Singoredjo et al., 1990). Copyright (1990) Elsevier. 

 

In a separate study, Pasel et al. (1998) compared the formation of N2O 

over Cu, Fe and Cr supported over active carbons with respect to temperature. 

The results in Figure 2.18 showed that N2 yield was affected by the formation 

of N2O over all transition metals used above 220 °C, except for copper at 

280 °C. However, they concluded that Fe/AC was the best catalyst because 

of the wider temperature range of the high N2 selectivity. Though no correlation 

can be made between the catalyst characteristics and the activity, it was 

determined that Cu and Fe supported over the active carbons possessed the 

highest NO and NH3 adsorption capacity (more than 75 μmol NO/g and 

400 μmol NH3/g). 
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Figure 2.18: Nitrogen and nitrous oxide yield over Fe, Cr and Cu supported 
on active carbons. (■) N2 over Fe/AC, (□) N2 over Cr/AC, (♦) N2 over Cu/AC, 
(◊) N2 over AC, (▲) N2O over Fe/AC, (∆) N2O over Cr/AC, and (●) N2O over 

Cu/AC. Reaction condition: 800 ppm NO + 800 ppm NH3 + 3 % O2 + He 
balance at 100 mL/min over 0.4 g catalyst. Reprinted with permission from 

(Pasel et al., 1998). Copyright (1998) Elsevier. 

 

Another mono-metallic catalyst is commonly used with carbon support 

is manganese. Cha et al. (2010) found that impregnating Mn over the two 

carbon catalysts (derived from rice straw and sewage sludge) led to an 

increase in NOx removal at higher temperature (150-250 °C). This could be 

correlated with an increase in NH3 adsorption over the catalysts with the 

presence of Mn (determined from NH3-TPD), which is also a Lewis acid site. 

However, as the low-temperature NOx removal was subjected to the 

adsorption on carbon surface, Mn was observed not to contribute to any 

additional removal below 150 °C. Liu et al. (2016) reviewed Mn supported over 

carbonaceous supports and concluded that this catalyst is not yet practical, as 

it also catalyses the combustion of the support with the presence of oxygen. 

Besides, the conversion was still less than other supported Mn such as over 

Mn/alumina, which converted 98 % NOx at 200 °C (Lee, Kim, & Kwon, 2017). 
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NOx reduction at low temperature can be influenced by the presence 

and/or formation of water vapour and SO2. Deactivation due to H2O is 

reversible if NO or the reducing agent is competing with it to adsorb on the 

catalyst and it is irreversible if chemisorption occurs where a hydroxyl is 

created by H2O (Fu et al., 2014). Some studies on carbon-supported catalysts 

have shown that the catalysts can tolerate the presence of water up to 10 % 

(Santillan-Jimenez et al., 2011), but SO2 poisoning of the active sites is 

common for most metallic catalysts due to undesirable oxidation at the surface 

(Fu et al., 2014). On the other hand, Bai et al. (2015) concluded that the 

reverse is true when the catalyst used was vanadium oxide impregnated onto 

carbon nanotubes. In fact, a synergistic interaction between the vanadium and 

the carbon support further enhanced the conversion of the oxidized SO2 into 

SO4
2−, which acts as an active site for the reductant adsorption (Bai et al., 

2015).  

Table 2.6 shows that activated carbons derived from biomass waste 

have been utilized as SCR catalysts. Recently, Singh et al. (2013) and Shen 

et al. (2015) used cotton stalk as a precursor to an SCR catalyst support. They 

concluded that in addition to promoting sustainability in the catalysis industry, 

cotton stalks have promising properties to be used in SCR systems due to 

their high surface area, rich surface acidity, high metal catalyst dispersion and 

oxygen species that function as NO oxidizer, which governs the increased rate 

of NOx reduction (Shen et al., 2015; Singh et al., 2013). This offers a new 

alternative to carbon source for the application of catalyst support. 
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Table 2.6: Review on activated carbon-supported catalysts used in low-temperature SCR studies. 

Carbon support Metal catalyst 
(wt.%) 

Preparation method (calcination 
condition) 

Feed gas 
composition 

(space 
velocity/flow rate) 

Max NOx 
conversion 

(%)  

Temperature at 
max conversion 

(°C) 

Temperature 
window 

(°C) 

Reference 

Non-pitch coal-
based activated 

coke 

Mn-Ce-Fe (4,8&7) Wet impregnation with 
Mn(CH3COO)2, Ce(NO3)3.6H2O and  
Fe(NO3)3 at room temperature for 
12h 

0.04% NO + 0.04% 
NH3 + 7.2% + N2 

(1.6L/min over 15g 
catalyst) 

84 220 80-240 (Li et al., 2018) 

Sargassum 
oxidized with 

H3PO4, heated to 
500°C for 1h in N2 

flow 

Cr (2) Wet impregnation with sonication for 
2h and held at room temperature for 
1h. 
(500°C, 5h in N2 flow) 

500ppm NO + 
500ppm NH3 +5% 

O2 + N2 
(80,000h-1) 

90 125 100-250 (Li et al., 2017) 

Cotton stalk co-
activated in 1.5% 

H2PO4 for 1h, 
heated to 800°C 

for 2h in steam/N2 
flow 

Mn-Ce (4&8) Wet impregnation with nitrates of Mn 
and Ce. 
(500°C, 5h in N2 flow) 

0.06% NO + 0.06% 
NH3 + 3% O2 + N2 
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280 250-280°C (Singh et al., 2013) 

Coconut shell 
carbonized in N2 
and activated in 

steam 

K2O 
CuO 

2Cu-K 

Wet impregnation with nitrates of Cu 
and K at room temperature for 4h. 
(300°C, 2h in N2) 

0.2% NO + Ar 100 
 

430 
430 
390 

380 
330 
315 

 

(Bingnan et al., 
2011) 

Rice straw char 
activated with 

KOH for 2h and 
heated to 700°C 

for 1h 
 

Mn (3) Incipient wetness with Mn(NO3)2  
(350°C, N2 flow) 

1000ppm NO + 
1000ppm NH3 + 5% 
O2 + N2 

250 85 50-250 (Cha et al., 2010) 

Commercial 
activated carbon  

 

Pt (1) Impregnated with H2PtCl6  
(110oC, 12h) 

1000ppm NO + 
1500ppm C3H6 + 
5% O2 + He 
(12,000h-1) 

95 450 170-500 (García-Cortés et 
al., 2001) 

Commercial 
activated carbon 
oxidized with nitric 
acid at 90°C for 1h 

Fe (10) Wet impregnated with Fe(NO3)3, 
heated at 80°C till dryness 
(350oC, 2h in He) 

800ppm NO + 
800ppm NH3 + 3% 
O2 + He 
(100sccm over 0.4g 
catalyst) 

100 420 220-500 (Pasel et al., 1998) 

Peat char 
activated with 
steam 

Cu (4) Incipient wetness with 
Cu(NO3)2.3H2O 
(300oC, 3h in N2 flow) 

540ppm NO + 
680ppm NH3 + 2% 
O2 + He 
(60,000h-1) 

99 200 100-200 (Singoredjo et al., 
1990) 
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CHAPTER 3. METHODOLOGY  

3.1 Experimental Framework 

This chapter describes the theory and development of the experimental 

setup and methods of this project. The flow and the interdependencies of the 

experiments are shown in Figure 3.1. The activity of the catalyst in a simulated 

flue gas system can be studied in a fixed-bed reactor, which is the main 

equipment used in this project.  

The flow of gas mixture into the reactor was controlled via mass flow 

controllers, while the concentrations of the gases were analysed using a mass 

spectrometer. The mass and heat transfer limitation of the reactor must be 

evaluated by fulfilling the Weisz criterion, which requires the measurement of 

reaction rates under various operating conditions (Haber, Block, & Delmon, 

1995). Therefore, catalyst screening was performed prior to this experiment to 

select a catalyst that possesses the highest reactivity towards nitric oxide and 

hydrogen. However, at this stage, no oxygen was added in order to avoid 

catalyst oxidation which creates uncertainty to the conversion. After that, all of 

the catalysts that showed reactivity in the screening were further used in a 

lean-burn condition to take into account the effects of oxygen (Chapter 4). The 

catalysts from this stage were also used in studying the effects of metal 

composition in catalyst design (Chapter 5).  

The catalysts were also characterised in order to understand the 

properties that govern the reactions. Theories and standard procedures are 

outlined in this chapter. Consequently, one of the catalysts was chosen from 

Chapter 5 to study the kinetic parameters and stability in extended reaction 

time, which forms the major discussion in Chapter 6.  
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Figure 3.1: Experimental framework for this work. 

 

3.2 Experimental Set-up 

A lab-scale reactor was designed to investigate the heterogeneous 

catalytic reaction of a gas-solid system. This reactor configuration was chosen 

based on the commercialized SCR reactor and some patented test rigs, as 

summarized in Table 3.1. This reactor consists of an inlet point with a mixture 

of a carrier gas and reactant gases, a mixing bed (optional), a reaction bed, 

an exhaust gas sampling point and a purge point. To ensure appropriate heat 

transfer, a furnace and two heating sections (one upstream and another one 

downstream) are required. Reactants are introduced via the inlet point and 

mixed in an additional tube consisting of glass beads (optional), coming in 

contact with the catalyst bed in the primary bed tube, going to the outlet tube, 

and finally are released from the reactor via the product outlet.  

 

 

Chapter 4 

Experimental setup. 

 Catalytic reactor 

 Flow control 

 Gas analysis 

Monometallic catalysts. 

 Copper, manganese and iron  

 Isothermal reaction in lean-

burn condition 

Mass & heat transfer limitation 

evaluation. 

 Particle size 

 Weight hourly space velocity 

(catalyst weight & gas flow 

rate) 

Chapter 5 

Bimetallic catalyst design. 

 Effects of metal loading 

 Effects of metals co-doping 

 Effects of metals ratio  

 

Chapter 6 

Kinetic study of a selected catalyst. 

 NO inlet concentration 

 H2-O2 ratio 

 Reaction temperature 

Catalyst characterization. 

Surface properties, elemental 

analysis, reduction properties, 

oxidation properties, acidity, 

nitric oxide adsorption-

desorption 
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Table 3.1: Patents related to SCR reactor. 

Title Inventor Patent # Components 

Minitype test and 
evaluation device foe 
testing whole reaction 
performance of selective 
catalytic reduction 
(SCR) denitration 
catalyst 

Yang Zhi; Wang 
Dezhi; Lu 
Jinfeng; Xiao 
Yuting; Zhang 
Tao; Li Jianfeng; 
Jia Man; Xie Qi 

CN203941143
(U)-2014-11-
12 

Gas mixing device, 
preheating pipe, catalyst 
filling pipe, sampling 
device, flue gas 
component analysis 
system, flow controller, 
temperature controller  

Model-based controls 
for selective catalyst 
reduction system 

Robert Frank 
Hoskin 

US201101921
47A1- 2011-
08-11 

Inlet, outlet, catalyst bed, 
open-loop control 
upstream injector, mass 
flow controller, 
thermocouple, 
concentration sensor 

Selective catalytic 
reduction (SCR) reactor 
assembly to remove fine 
particles from poisoning 
or interfering with SCR 
catalyst activity in 
biomass fuel 
applications 

Joseph Edward 
Cichanowicz; 
Lawrence Muzio 

US201101949
86A1- 2011-
08-11 

Turning vane disposed in 
a plenum chamber, 
rectifier layer disposed 
downstream, catalyst 
layer, rectifier layer to 
ensure even flow 
distribution, a plurality of 
channels to promote 
turbulent flow and 
collection of aerosol 
particles.  

System and method for 
selective catalytic 
reduction of nitrogen 
oxides in combustion 
exhaust gases 

Anatoly 
Sobolevskiy; 
Joseph A. 
Rossin 

US200802990
16A1- 2008-
12-04 

Upstream unit for NOx 
reduction and 
downstream for NH3, CO 
and VOC oxidation 

Process and device for 
the purification of waste 
gases 

Christian 
Mulleder 

US201402123
49A1- 2014-
07-31 

Regenerators for post-
combustion system, 
combustion chamber, gas 
inlet, gas outlet. 

Device for SCR 
(Selective Catalytic 
Reduction) denitration 
system of coal-fired 
power plant reboiler 

Lu Zuoji; Qin 
Xudong; Zhong 
Xuejin; Chen 
Kai 

CN203829919
(U)- 2014-09-
17 

Inlet, outlet, Upper part 
rectification device, lower 
part rectification device 
(with several parallel 
catalyst layers), ammonia 
spraying device, 
temperature controller. 

Exhaust emission 
control device 

Murazaki 
Takanori 

2014-159776- 
2014-09-04 

Spiral internal urea water 
supply pipe, DPF and 
SCR compartments, 
plurality of discharge 
points, heat accumulator. 
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3.2.1 Reactor sizing and instrumentation 

Reactor sizing was based on the requirement (see the following) 

recommended by the IUPAC (Haber, Block, & Delmon, 1995) and the resulting 

specification is summarized in Table 3.2. The assembly and exploded 

dimension of the reactor are shown in Figure 3.2.  

1) Volume of the bed must be only a few cm3, 

2) Cross-sectional area of the bed must be less than a cm2, 

3) Mass of the catalyst to be tested is between 0.05 to 3 g, and 

4) Optimum size; Height(bed):Diameter(bed):Diameter(particle) = 

100:10:1 

Table 3.2: Reactor specification. 

Reactor internal diameter 7.1 mm 

Reactor outer diameter 9.5 mm 

Primary bed tube height 50 mm 

Maximum allowable temperature 600 °C 

Maximum catalyst capacity (activated carbon) 1.0 g 

Maximum WHSV (activated carbon) 45,000 h-1 

 

Figure 3.3 shows the process instrumentation of the fabricated reactor. 

The bed temperature is monitored using a type-K thermocouple inserted from 

the top of the reactor, while the pressure is measured using a pressure 

transducer. All gases introduced into the reactor are controlled by the mass 

flow controllers (MFC) installed upstream of the reactor. Thermocouple, 

pressure transducer and MFC are controlled and monitored via a data 

acquisition system. Pressure regulators are used to manually control the inlet 

pressure from the gas bottles to the MFC. The isolation valves fitted between 

the pressure regulator and MFC prevent continuous MFC pressurization and 

protect the MFC from corrosive gas when not in use, while check valves 

prevent the backflow of the gases. As the inlet pressure into the mass 

spectrometer (MS) is limited to below 10­5 torr and 10­7 torr for the Faraday 

and SEM detectors respectively, two gas sampling valves are allocated for 1) 

control of the pressure into the MS; and 2) purging to the extractor to avoid 

pressurizing the reactor and the MS.  
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Figure 3.2: Exploded-view drawing of the packed-bed reactor. 
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Figure 3.3: Process instrumentation diagram for the experimental set-up. 
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3.2.2 Mass flow controller and mass spectrometer calibration 

The mass flow controllers (MFC) work on the basis of thermal mass 

measured as differential heat transfer between heater elements, which is 

related to mass flow by the specific heat capacity of a gas (MKS Instruments, 

2013). The specification for the MFC (MKS Automation, UK) is shown in Table 

3.3. 

Table 3.3: Mass flow controller specification. 

MFC # Flow range (sccm) Accuracy 

(sccm) 

Repeatability 

(±%) 

Resolution 

(sccm) 

1 5.2 - 260 0.52 0.3 0.26 

2 5.6 - 280 0.56 0.3 0.28 

3 5.6 - 280 0.56 0.3 0.28 

 

A mass spectrometer (MS) is used for continuous concentration 

measurement of NO, NO2, N2, N2O, NH3, CO, CO2, O2 and H2. The gas 

entering the MS is ionized through thermionic emission from a hot filament, 

resulting in a mixture of ions depending on the species present. The ions are 

then extracted via a mass filter which differentiated the fragments based on 

their mass-to-charge (m/z) ratio in a vacuum environment. M/z ions are 

deflected at different trajectory before reaching the detector which then 

displays the intensity of the ions. This intensity, together with the knowledge 

of the gas fragmentation pattern, can be used to identify the compound and its 

concentration (Harris, 2010). In this study, secondary electron multiplier (SEM) 

was selected for the detector due to high sensitivity towards the very low NO 

concentration used and the faster measurements. The settings for the 

quadrupole mass spectrometer HPR20 (Hiden Analytical, UK) used in this 

study are shown in Table 3.4. 

The calibration of the MFC and MS was carried out simultaneously. The 

types of gas for each MFC was selected based on the calibrated correction 

factor available from the supplier’s library. The calibration gas (BOC, UK) was 

then allowed to flow through the valve and the partial pressure was detected 

by the MS. As only one gas bottle was used at one time, the partial pressure 

must be that of the concentration in the bottle, regardless of the valve opening. 
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Therefore, the relative sensitivity (RS) of the MS for a particular gas can be 

calculated per equation 3.1. Then, the flow rate was changed and the RS 

calculated was applied to find the true partial pressure. The deviation 

percentage of the partial pressure is the flow rate correction factor (CF), as 

illustrated in equation 3.2. The CF was applied to the MFC every time the gas 

bottle was used, as summarized in Table 3.5.  

 

Table 3.4: MS setting for SCR experiments. 

Parameter Value 

Minimum pressure, Torr 1 Х 10­13 

Operating pressure, Torr 6 Х 10­6 ± 5 Х 10­7 

Detector voltage, V 875 

Electron energy, eV 70 

Electron emission, µA 20 

 

𝑅𝑆 =
(𝑝𝑝 𝑎𝑡 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑚 𝑧⁄ − 𝑝𝑝 𝑎𝑡 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) × 100%

𝑔𝑎𝑠 𝑣𝑜𝑙% 𝑖𝑛 𝑏𝑜𝑡𝑡𝑙𝑒
 3.1 

𝐶𝐹 =
𝑣𝑜𝑙%

𝑅𝑆⁄

𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑣𝑜𝑙%
 

3.2 

 

Table 3.5: MS detection details and MFC correction factor. 

Species Bottle 

concentration (% in 

helium as balance) 

Base peak 

(m/z ratio) 

Relative 

sensitivity 

(RS) 

MFC 

correction 

factor (CF) 

NO 1 30 2.24 1.00 

N2 100 28 1.70 - 

NO2 1 30 0.37 1.00 

N2O 1 44 1.39 - 

NH3 5 17 1.30 - 

CO2 100 44 1.54 - 

H2 5 2 3.19 0.96 

O2 10 32 1.57 0.95 

H2O 0.05 18 8.48 - 

He 100 4 1.00 1.00 

- : not applicable as CF is only for feeding gases 
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3.2.3 Gas analysis 

As described in the previous section, the main gas analysis equipment 

used is the mass spectrometer. The gas fragmentation pattern was 

determined by comparing the MS signal of a particular gas with the carrier gas 

helium. The fragment intensities relative to the base peak (m/z ratio that of the 

molecular weight) was found by normalizing the signal with respect to the base 

peak. The fragmentation pattern and relative fragment intensities for each 

species are tabulated in Appendix A (Table A.1). This is useful in the 

deconvolution of a signal during the experimental analysis. The deconvolution 

was carried out by subtracting the overlapping signal based on the knowledge 

of the gases present. The unique m/z ratio of a particular gas is used as an 

indication of the gas presence, as indicated in Table A.1. Therefore, an 

algorithm for the gas analysis with the MS is developed as in Figure 3.4. 

Other methods of gas concentration measurement common in SCR 

studies include the gas chromatography-thermal conductivity detector (GC-

TCD), non-dispersive infra-red (IR) and the chemiluminescence detector (CD). 

GC-TCD separates the compounds based on the retention time in a particular 

column which are then measured at the TCD, a detector comparing the analyte 

conductivity to the reference conductivity of helium (Harris, 2010). N2, N2O, 

and CO can be separated in a molecular sieve column while CO2 is retained 

in a porous-layer open-tubular (PLOT) column. A comparison between the 

measurement of N2O and N2 by using MS and GC-TCD was reported by Costa 

et al. (2002), who found an agreement of within 3 % (Costa et al., 2002). 

Therefore, measurements of N2, N2O, CO and CO2 were cross-checked with 

GC-TCD with two different columns (details included in Table 3.6) for a 

particular experiment to ensure the formation of the by-products. The 

measurement comparison is summarized in Table 3.7; the highest error is 

~ 0.02 vol.%. Gas calibration with GC-TCD is included in Appendix A (Figure 

A.1 and A.2). 

IR and CD are the two most commonly used method to measure NOx 

concentration. While IR operates based on the fact that molecules absorb 

infra-red at discreet wavelengths, CD reacts the NOx with ozone to produce 

light emission detectable by the photomultiplier tube (Norris, 2002). In this 



 
 

75 
 
 

 
study, NO and NO2 measurement was independently analysed with a 

commercial NOx analyser, KANE 940 which uses the non-dispersive infra-red 

to detect NO and NO2. These species have distinctive absorption energies at 

about 1800 and 1600 cm-1 respectively. This analyser is equipped with a 

particulate and water trap to avoid absorbance interference at the particular 

wavelength (Kane International, 2006). The NOx analyser was factory-

calibrated. Its specifications as well as the NOx calculation procedure are 

shown in Appendix A (Table A.2 and Section A.1). Comparisons with the MS 

measurement are included in Table 3.7, where it is shown that the highest 

error is 30 ppm. 

 

Figure 3.4: MS deconvolution algorithm for species concentration calculation. 
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Table 3.6: GC columns specifications. 

GC Column Properties Analysis conditions 

Molecular sieve 5A 
capillary column (RT-
Msieve 5A, Restek, USA) 

30 m, 0.53 
mm ID 

Detector: TCD (100 °C) 
Carrier: Pure hydrogen (5 mL/min) 

Oven ramp: 30 °C for 8 mins, increase to 
300 °C at 40 °C/min and hold for 10 min 

Divinylbenzene PLOT 
column 
(Elite PLOT-Q, 
PerkinElmer, USA) 

30 m, 0.53 
mm ID 

Detector: TCD (100 °C) 
Carrier: Pure hydrogen (5 mL/min) 

Oven ramp: 30 °C for 5 min 

 

3.2.4 Conversion, selectivity and combustion rate 

The mole balance for nitrogen (as NOx is the limiting reactant) can be 

written as in equation 3.3, where F is the molar flow rate; Fp is the molar flow 

rate of the N-products including N2, N2O, NO2 and NH3; a is the number of 

nitrogen moles in the product molecule; Pads is the mole of adsorbed NOx or 

N-product which are not emitted from the reactor; and NOx,gen is the generated 

NOx during the process with the carbon catalyst. A positive mole difference 

between the measured inlet NOx and the outlet NOx, as well as the outlet N-

products, is indicative of the adsorbed species while a negative indicates the 

generated NOx. The NOx conversion is calculated as the ratio of the total NOx 

consumed to the amount of NOx introduced into and generated within the 

system as shown in equation 3.4 at steady-state condition (at least after 

60 minutes, as observed in this study). However, an efficient SCR catalyst 

should be able to convert the adsorbed NOx and release the N-products fast 

enough to avoid permanent occupancy of the active sites (Pârvulescu, 

Grange, & Delmon, 1998). This is taken into consideration when calculating 

the efficiency of a new catalyst, termed here as selectivity towards N2 

formation, which is taken as the ratio of N2 formed over the other products 

including the adsorbed species, as in equation 3.5. 

𝐹𝑁𝑂𝑥,𝑖𝑛 = 𝐹𝑁𝑂𝑥,𝑜𝑢𝑡 + ∑ 𝑎𝐹𝑝 + ∑ 𝑃𝑎𝑑𝑠 − 𝑁𝑂𝑥,𝑔𝑒𝑛 
3.3 

 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑋 (%) =
𝐹𝑁𝑂𝑥,𝑖𝑛 + 𝑁𝑂𝑥,𝑔𝑒𝑛 − 𝐹𝑁𝑂𝑥,𝑜𝑢𝑡

𝐹𝑁𝑂𝑥,𝑖𝑛 + 𝑁𝑂𝑥,𝑔𝑒𝑛
× 100% 3.4 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑆𝑁2
(%) =

2 × 𝐹𝑁2

∑ 𝑎𝐹𝑝 + ∑ 𝑃𝑎𝑑𝑠
× 100% 

3.5 
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Another important feature of a carbon catalyst is the carbon gasification 

during the application at elevated temperature. Carbon can react with NOx to 

burn off according to equation 2.30 and also with the intrinsic oxygen content 

in the flue gas. The total combustion rate in this process can be quantified from 

the sum of CO2 and CO formation (µmol/s).  

 

Table 3.7: Comparison of components measurement with MS and other gas 
analysers in a selected experiment: PKSCu20 at 7,175 h-1 WHSV and 

500 ppm NO + 4% H2 + 1.5% O2. 

Component MS NOx 

analyzer 

GC-TCD 

(Msieve 

column) 

GC-TCD 

(Plot 

column) 

Standard 

error  

Reaction temperature: 200 °C 

NO (ppm) 446 510 - - 32.4 

NO2 (ppm) 0 0 - - 0 

N2 (vol.%) 0.00340 - 0.00486 - 0.720 Х 10­3 

N2O (vol.%) 0 - 0 - 0 

CO (vol.%) 0 - 0 - 0 

CO2 (vol.%) 0.0343 - - 0.0392 2.44 Х 10­3 

Reaction temperature: 250 °C 

NO (ppm) 4 0 - - 1.75 

NO2 (ppm) 0 0 - - 0 

N2 (vol.%) 0.0215 - 0.0318 - 5.15 Х 10­3 

N2O (vol.%) 0 - 0 - 0 

CO (vol.%) 0 - 0 - 0 

CO2 (vol.%) 0.0924 - - 0.0791 6.66 Х 10­3 

Reaction temperature: 300 °C 

NO (ppm) 5 0 - - 2.70 

NO2 (ppm) 0 0 - - 0 

N2 (vol.%) 0.0249 - 0.0422 - 8.62 Х 10­3 

N2O (vol.%) 0 - 0 - 0 

CO (vol.%) 0 - 0 - 0 

CO2 (vol.%) 0.1776 - - 0.137 20.1 Х 10­3 
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3.3 Mass and Heat Transfer Limitations Evaluation 

It is important to certify that the reaction performance (i.e. NO 

conversion, equations 3.4) as measured using the fabricated reactor is not 

affected by the mass and heat transfer properties that could enhance or 

depreciate the true reaction parameters such as the conversion and reaction 

rate. For a solid-fluid system, the molecule and heat transport regions can be 

divided into two regions: external transport from the bulk fluid to the fluid-solid 

interphase, and internal transport from the interphase to the inner surface of 

the catalyst (Haber, Block, & Delmon, 1995).  

3.3.1 Internal diffusion evaluation 

A well-known method used to determine the effects of species diffusion 

into and out of a porous catalyst on the catalytic conversion is by determining 

the rate of reaction at varying particle size. Should the conversion remain 

constant at different particle sizes, the internal diffusion effects can be 

neglected (Murzin et al., 2005a). At this stage, the catalyst was prepared from 

palm kernel shell activated carbon and copper nitrate trihydrate via incipient 

wetness with approximately 10 wt% metal loading. The catalyst was calcined 

at 350 °C in helium flow for 2 h and reduced under 5 % hydrogen/helium flow 

at the same temperature for the same duration. The catalysts were then 

crushed and sieved to obtain particle sizes of 500-600 μm, 600-710 μm, and 

710-850 μm. The reaction tested for this purpose was at 130 sccm total flow 

of 330 ppm NO and 8,000 ppm H2 at 300 °C and the conversion was calculated 

as 1-h average values. The result is presented in Figure 3.5 where it can be 

seen that the conversion does not significantly change when the size is larger 

than 600 μm, but lower particle size resulted in enhanced conversion due to 

the internal diffusion effects at lower particle sizes (Murzin & Salmi, 2005)1. 

Therefore, 600-710 μm was chosen as the particle size to eliminate this 

influence. 

                                                           
1 It must be noted here that the conversion used for the purpose of evaluating mass transfer limitation 
must be lower than 20 %. 
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3.3.2 External diffusion evaluation 

External mass transport is influenced by the reactor geometry and size 

as well as the space velocity. This can be minimized by following the 

recommended reactor size discussed in Section 3.2. An experimental means 

for validating the absence of external mass transfer effects is by evaluating the 

change in NO conversion over a range of flow rates and catalyst weights. For 

a fixed residence time, constant conversion at varying flow rate implies the 

absence of external mass transfer limitation (Murzin et al., 2005a).  

Prior to this experiment, the residence time was chosen by varying the 

flow rate (from 130 to 250 sccm) at two selected catalyst weights: 0.7 and 

1.0 g. The catalyst synthesis and reaction conditions have been described in 

Section 3.3.1. The result is shown in Figure 3.6 where the change in NO 

conversion can be seen almost overlapping between weight-to-flow rate ratio 

W/F of 1.65 and 1.75 g.h/mol. Therefore, 1.7 g.h/mol was chosen in the 

succeeding experiments where the catalyst weights and total flow rates were 

varied between 0.7 – 1.0 g and 170 – 250 sccm, respectively. The result is 

shown in Figure 3.7 and it is evident that increasing the catalyst weight above 

0.85 g at this residence time does not change the NO conversion. Therefore, 

1.0 g and 250 sccm were chosen as the catalyst weight and total flow rate, 

respectively, to eliminate the external diffusion effects2. This gives a Reynold 

number of 36 (transitional region for a flow in a packed-bed column) which 

means the catalytic activity is not enhanced by a turbulent flow. 

                                                           
2 It must be noted here that the conversion used for the purpose of evaluating mass transfer 
limitation must be lower than 20 %. 
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Figure 3.5: Effects of particle size on the conversion in 330 ppm NO + 8000 
ppm H2 at 3,731 h-1 and 300 °C. 

 

Figure 3.6: Selection of a fixed W/F in 330 ppm NO + 8000 ppm H2 at 
300 °C. 
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Figure 3.7: Effects of catalyst weight on conversion in 330 ppm NO + 8000 
ppm H2 at 7,175 h-1 (equivalent to 1.65 g.h/mol) and 300 °C. 

 

3.3.3 Heat transfer evaluation 

Mears (1971) developed the diagnostic criteria for heat transfer 

limitations in fixed bed reactors for kinetic determination purpose. The 

interphase transport limitation is always expected for a fast reaction with high 

heat of reaction and low Reynold number (Mears, 1971). Though H2-SCR is 

an exothermic reaction, the amount of NO is too small for this limitation to exist 

as can be proven using equation 3.6 with the parameters explained in the 

“Note” column in Table 3.8. Referring to the calculation of values in Table 3.8, 

the criteria for the interphase transport has been satisfied. Likewise, the criteria 

for interparticle heat transport limitation evaluation (equation 3.7) were also 

fulfilled (with no heat transfer limitations).  

(−∆𝐻𝑅)𝑟𝑜𝑏𝑠𝑑𝑝𝜌𝑏

ℎ𝑇
< 0.15

𝑅𝑇

𝐸
 3.6 

(−∆𝐻𝑅)𝑟𝑜𝑏𝑠𝑑𝑝
2𝜌𝑏

𝜆𝑝𝑇
< 0.75

𝑅𝑇

𝐸
 

3.7 
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Table 3.8: Calculation for equation 3.6 and 3.7. 

Parameter Value Note 

−∆𝐻𝑅 1.44 Х 103  kJ/kmol Heat of reaction without oxygen. See 
Appendix A (Table A.3) 
 for calculation 

𝑟𝑜𝑏𝑠 3.00 Х 10­8 kmol/kg.s Highest observed reaction rate 

𝑑𝑝 7.10 Х 10­4 m Particle diameter 

𝜌𝑏 478.3 kg/m3 Bed density 

h kJ/m2.K.s Calculated heat transfer coefficient (ℎ =
𝑞

Δ𝑇
) 

where q is the heat supplied by the furnace 
and ∆T is the temperature difference 
between the furnace and the middle of the 
catalyst bed  

T 573 K Reaction temperature 

R 8.314 kJ/K.kmol Gas constant 

E 8.9 Х 104  kJ/kmol Estimated activation energy from linear 
determination at 523 – 573 K reaction 
temperature  

𝜆𝑝 0.374 kJ/s.m.K Lowest value of copper thermal conductivity 
(Touloukian et al., 1975)  

Equation  3.6 right-
hand term  

8.05 Х 10­3 Criteria for external mass transport 

Equation  3.6 left-
hand term 

1.65 Х 10­6 Lower than the criteria value 

Equation 3.7 right-
hand term  

4.02 Х 10­2 Criteria for internal mass transport 

Equation 3.7 left-
hand term 

4.87 Х 10­11 Lower than the criteria value 

   

3.4 Catalyst Synthesis 

Palm kernel shell activated carbon (PKS) was obtained from the 

Universiti Malaysia Sarawak, Malaysia. No further pre-treatment was required 

besides drying at 110 °C for 72 h to remove adsorbed water and carbon 

dioxide. The carbon was ground using a ball mill and sieved to a particle size 

of 600-710 μm (refer Section 3.3 for the particle size selection). The incipient 

wetness method was used to prepare the catalyst as this is one of the most 

established ways in producing catalysts from metal salt solution. In this 

method, the metal salts were dissolved in deionized water based on the PKS 

pore volume, instead of in excess solution volume such that in the wet 

impregnation method (Haber, Block, & Delmon, 1995). Therefore, the 

wastewater produced via this method is largely reduced. The metal salts used 

were Cu(NO3)2.3H2O, Mn(NO3)2.xH2O, and Fe(NO3)3.9H2O (Sigma Aldrich, 

UK). The material was then washed (to remove physisorbed metal nitrates) 

and filtered using deionized water and dried at 80 °C for 24 h before calcination 
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at 350, 510 and 540 °C for Cu-, Fe- and Mn-based catalysts, respectively 

(based on the decomposition temperature of the metal nitrates), under helium 

ambient (to avoid excessive carbon combustion which could lower the carbon 

mass). Two types of catalyst design were investigated: mono- and bimetallic 

catalysts. The former involved impregnating the metals individually over 

carbon while the latter was synthesized by combining two metals in a 

sequential impregnation. The synthesis was discussed in Chapter 4 for 

monometallic and Chapter 5 for bimetallic catalysts. 

3.5 Catalyst Characterisation  

Characterisation is a technique used to determine the surface and bulk 

properties of a material which are often correlated to the performance or 

behaviour of the materials in a particular application. In general, there are two 

classes of properties – physical and chemical. Physical properties are used to 

describe matter such as the appearance and size, while chemical properties 

represents the quality of the material in a particular chemical reaction such as 

toxicity and flammability (Ertl; et al., 2008). Figure 3.8 shows the types of 

characterisation technique used in this study to enable the determination of 

properties which are influential and important to H2-SCR reaction.  

3.5.1 Elemental analysis 

The composition of a carbon catalyst can be determined by performing 

elemental and metal content analysis. The former gives information on the 

carbon, hydrogen, nitrogen, oxygen and ash content while the latter on the 

metal content which is a part of the ash. Two equipment were used to quantify 

elemental composition; CHNS elemental analyser and thermogravimetric 

analyser (TGA), while metal content was determined using modified dry ashing 

coupled with atomic adsorption spectrometer, as discussed in the following 

section. Quantification for the elemental analysis is illustrated in Figure 3.9. 

The residual percentage obtained from C, H, N and S composition consists of 

the ash and oxygen. By determining the level of ash content in a 

thermogravimetric analysis, the oxygen content can be determined from the 

percentage balance. 

 



 
 

84 
 
 

 

 

Figure 3.8: Catalyst characterisation scheme in this study. Based on Ertl, et 
al., (2008). 

 

 

Figure 3.9: Elemental analysis determination of C, H, N, S, O and ash 
content by using two equipment. 

 

CHNS elemental analyser combusts the sample in a high-temperature 

chamber and filter the combustion products into carbon dioxide, water, 

nitrogen and sulfur dioxide (depending on the elements existing in the sample) 

prior to quantification by a gas analyser such as TCD and MS. These gaseous 

products are calibrated to the amount of the element by the combustion 

stoichiometric relations (Harris, 2010). Likewise, the weight of the sample is 
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closely monitored in a TGA during a combustion and the final weight is taken 

as the ash content (mass loss plateau). This equipment requires a small 

amount of sample to be placed in a combustion chamber equipped with micro-

balance sensitive enough to detect changes in weight (ASTM, 2014). 

Elemental Analyser Flash 2000 (CE Instrument, UK) was used to 

quantify the concentration of C, H, N and S. About 5 mg of samples was placed 

in an aluminium capsule and combusted at 900 °C in 50% oxygen atmosphere. 

The gaseous products were analysed by an equipped GC-TCD which was 

calibrated with a standard material, 2,5-(bis(5-tert-butyl-2-benzo-oxazol-2-yl) 

thiophene (BBOT) having a chemical formula C26H26N2O2S and 72.56 wt% C, 

6.11 wt% H, 6.49 wt% N and 7.40 wt% S. The MS calibration peak for this 

standard is shown in Appendix A (Figure A.3). 

TGA 4000 (PerkinElmer, UK) was used to measure ash content using 

a microbalance with a ± 0.01% precision and 1 μg sensitivity. 5 mg sample 

was loaded into the micro-crucible and placed on the micro-balance in the 

combustion chamber. The temperature was increased to 950 °C and held at 

this temperature until mass loss plateau was obtained (about 15 minutes) 

under 20 mL/min air flow. The final weight was taken as the ash content. 

3.5.2 Metal content determination 

The composition of metal in the carbon catalysts can be measured by 

digesting the catalyst in acidic solution for chemical element analysis such as 

atomic absorption spectroscopy (AAS) and inductively coupled plasma-mass 

spectrometry (ICP-MS). In an AAS, samples containing metals are atomized 

in air-acetylene flame to produce an analyte at an excited state which absorbs 

a specific wavelength unique to a particular element. The source of the 

wavelength emission is a hollow-cathode lamp made of cobalt-chromium-

copper-iron-manganese-nickel (depending on the element of interest) and the 

intensity of absorbance relates to the concentration of the analyte via the Beer-

Lambert law (Ball, 2006). For ICP-MS, the analyte is atomized and ionized in 

an argon plasma, inductively coupled with a high-frequency electrical field. 

These ions are transported to the MS via a sampler orifice prior to the 

separation based on the energy, momentum, and velocity of the ions 

(representative of the m/z value of an element) (Evans, 2007). 
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The modified dry ash method was chosen to be the digestion method 

because it was reported to be safer and more effective as compared to the 

conventional method, which uses high amount of aqua regia in determining 

Cu, Fe and Mn in biochar samples. This modified method can be simplified as 

follows (Enders & Lehmann, 2012):  

1) 100 mg of the sample was heated in a furnace to 500 °C in 2 h before 

kept at this temperature for another 8 h; 

2) The residue from (1) was mixed with 1.43 mL 65% HNO3 (Sigma-

Aldrich, USA) and evaporated at 120 °C; 

3) The residue from (2) was mixed with 5 mL 35% HCl (Sigma-Aldrich, 

USA) and evaporated at 120 °C; 

4) The residue from (3) was mixed with 1 mL HNO3 and 4 mL HCl and 

evaporated at 120 °C; and 

5) The residue from (4) was solubilized in 5 mL HNO3 before vortexed, 

filtered and further diluted to a suitable concentration for use in an 

Atomic Adsorption Spectrometer (AAS). 

The modified method published by Enders & Lehman (2012) used H2O2, 

but this study uses HCl, showing acceptable metals recovery from the 

activated carbon – based catalysts. As the calibration standards for the AAS 

were prepared in 1% HNO3, the sample must be diluted to the same acidic 

concentration. About 5 mL of sample was injected into the AAS AAnalyst 400 

(PerkinElmer, UK) which automatically calculate the concentration of the metal 

based on the calibration carried out prior to the sample run. The concentration 

reading by AAS was cross-checked with an ICP-MS for PKSCu(10 wt%) as 

the comparison sample and the standard difference was 1.8 wt% (refer 

Appendix A (Table A.4) for detail values obtained using ICP-MS). 

3.5.3 Surface area properties  

The surface properties of a catalyst are measured to understand the 

attributes of the material and their contributions to the chemical potential, such 

as adsorption and reaction. This includes the surface area and porosity, the 

two most important physical properties. The understanding of adsorption and 

desorption phenomenon allows the study of these properties in a single 

experiment, called gas adsorption analysis. In this experiment, a gas is used 
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as a probe molecule of known purity and properties to be adsorbed over a 

material surface while either the amount of volume adsorbed is being 

evaluated throughout the change of the relative pressure (P/P0 where P0 is the 

adsorbate saturation pressure) (Thommes et al., 2015). In this project, Surface 

Characterization 3Flex (Micromeritics, USA) was employed for this 

experiment. Prior to analysis, the samples were vacuum-dried at 150 °C 

overnight using VacPrep 061 sample degas system (Micromeritics, USA) to 

remove moisture and impurities from the catalyst surfaces. About 0.1 g of the 

sample was loaded into a quartz tube and installed in the equipment. Nitrogen 

is used as the gas probe at 77 K. The surface area was calculated using the 

Brunauer-Emmett-Teller (BET) method which assumes multilayer adsorption 

over a solid surface while the pore volume and width are evaluated using t-

plot and Barrett-Joyner-Halenda (BJH) methods respectively (Attard & Barnes, 

2001). The equipped software (3flex 4.05) calculated these parameters 

automatically upon obtaining the results. 

3.5.4 Catalyst acidity analysis 

 It has been discussed in Chapter 2 that catalyst acidity, contributed by 

the support and the metal catalyst, plays an important role in H2-SCR. 

Therefore, this property is characterised here to determine the extent of the 

acidity of the carbon catalysts. 

By exploiting the fact that acidic sites react with a base analyte, basic 

gases can be used in a chemisorption experiment to quantify the amount of 

acidic sites and then expose the chemisorbed species to a linear ramp of 

temperature to determine the acidic strength (Fadoni & Lucarelli, 2006). 

Ammonia-temperature programmed desorption (NH3-TPD) uses this method 

to quantify acidic sites, but it is unable to differentiate the nature of the acidic 

site (Brønsted or Lewis acid). Depending on the interest of a study, NH3-TPD 

could be an acceptably good and repeatable method to determine total acidic 

sites as it was reported that ammonia even adsorbs on weak Lewis acid sites 

(Hemmann, Jaeger, & Kemnitz, 2014). The calibration of the instrument with 

a known quantity of ammonia allows the calculation of the acidic site by 

integrating the area under the desorption curve.  
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In this study, NH3-TPD was carried out in a Chemisorb 2720 Pulse 

Chemisorption System (Micromeritics, USA) equipped with a TCD, diagram 

shown in Figure 3.10. The general procedure for a NH3-TPD experiment 

consists of catalyst pre-treatment, ammonia adsorption and ammonia 

desorption: 

1) Pre-treatment – About 50 mg of samples was dried at 110 °C for 

10 min under helium flow;  

2) Ammonia adsorption – The flow was switched to 20 mL/min 

5 % NH3/He for 1 h to achieve adsorption equilibrium; and 

3) Ammonia desorption – The flow was switched back to helium to 

purge the system from physisorbed NH3 for 1 h prior to increasing 

the temperature to 600 °C at 10 °C/min. 

 

Figure 3.10: Chemisorb 2720 Pulse Chemisorption system. TCD: Thermal 
conductivity detector; V-1,2,3: Switch valves. 

 

As the acidity of a carbon catalyst can also be attributed to the surface 

functional groups of the activated carbon as the support, attenuated total 

reflection Fourier-Transform infra-red spectroscopy (ATR-FTIR) was also 

utilized to observe the microtexture properties of the catalyst surface. This 

analysis has been made easier with the capability of the ATR to extend the IR 

wave directly onto the specimen surface with less sample preparation. The 

powdered sample was pressed against the ATR crystal that receives and 
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reflects a beam of IR light which propagates the evanescent waves into up to 

2 m in depth over the specimen surface. The beam exiting the crystal was 

collected at a detector to record the transmittance of light over a wide range of 

wavenumber. FT is used to convert the raw data (in the form of cosine waves) 

into spectra. These spectra are used by chemists to identify chemical bonds 

and structures, but complex specimens require experience to interpret (Harris, 

2010). In this project, IRAffinity-1S FTIR spectrophotometer (Shimadzu, UK) 

was used to perform this analysis. 

3.5.5 Redox properties 

 The interaction in a supported catalyst and bimetallic catalyst is often 

observed as a bulk phenomenon because of the accumulative effects between 

the support and the catalyst, or between the two catalysts. Robertson et al. 

(1975) first used temperature-programmed reduction (TPR) to evaluate the 

alloying effect of nickel-copper supported over silica as opposed to the 

unsupported and monometallic systems (Fadoni & Lucarelli, 2006).  

In a TPR experiment, hydrogen mixed in inert gas is usually used as 

the reducing gas and flowed over the catalyst at increasing temperature of 

constant ramp rate. The concentration of hydrogen in the outlet gas, detected 

using a detector such as TCD, can be used to determine the consumption of 

a gas at the reduction sites of a catalyst at a particular temperature (when 

plotted against temperature). Hence, the area under the peak can be 

correlated to the amount of hydrogen consumed at a particular site (Fadoni & 

Lucarelli, 2006). There are also known peak temperatures (temperature at 

which hydrogen is consumed) published in the literature which give knowledge 

of the metal phases present on the catalyst (Regalbuto & Ha, 1994). 

 In this study, TPR was carried out using a Chemisorb 2720 Pulse 

Chemisorption System (Micromeritics, USA), diagram shown in Figure 3.10, 

and the general procedure used to determine the catalysts reducibility is as 

follows; About 60 mg of the dried sample was loaded into a quartz tube. The 

tube was then electrically heated to 110 °C to dry off the sample in argon flow 

before ramping the temperature at 10 °C/min to 450 °C in 5% H2/Ar. Hydrogen 

consumption was recorded by the equipped thermal conductivity detector 

(TCD) and plotted against temperature. 
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In similar sense, temperature-programmed oxidation (TPO) can be 

used to determine the oxidation sites, or as a bulk property, the catalyst 

oxidizability (Fadoni & Lucarelli, 2006). The interpretation from these data 

must be carefully applied, as a system such as a carbon catalyst would imply 

additional phenomena related to the gasification of the carbon support. As the 

interest in this study is to characterise the total oxidizability of the catalyst in 

terms of the catalyst stability under oxidative operating conditions which can 

be related to the combustion rate during the reaction (explained in section 

3.2.4), TPO was carried out using a thermogravimetric analyser TGA 4000 

(PerkinElmer, UK) and the general procedure is as follows; About 5 mg of 

samples was dried at 110 °C for 10 min under nitrogen flow. Then, the flow 

was switched to 20 mL/min air at increasing temperature at 10 °C/min until 

600 °C. The derivative of the sample weight change with temperature (DTG) 

was automatically calculated by the machine and plotted against increasing 

temperature. The offset-temperature, defined as the temperature at which the 

material combustion starts, was determined using onset-of-slope package in 

OriginPro 2017. This software application finds an intersection between two 

straight lines on the TGA curve. An example is shown in Appendix A (Figure 

A.4). 

3.5.6 NO-temperature-programmed desorption experiment  

 The nature of NO adsorption could either be dissociative or non-

dissociative, where the former could lead to the formation of different species 

over the catalyst surface (refer Section 2.2.1). These products can be 

identified by desorbing those species at increasing temperature and monitored 

using a detector such as TCD or MS (the latter is preferred to differentiate a 

complex mixture of products). Prior to this stage, a significant amount of NO 

must be adsorbed over the catalysts surface, usually at room temperature. 

0.2 g of the samples was exposed to 1 % NO/He at 100 mL/min for 30 mins 

(at this duration the system has reached equilibrium where the outlet NO is 

equal to the inlet NO). Then, pure helium was used to remove the physisorbed 

NO for 1 h prior to ramping the temperature at 3 °C/min until 400 °C in pure 

helium flow.   
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CHAPTER 4. Catalytic Reduction of Nitric Oxide with Hydrogen 

using Carbon-supported d-metal Catalysts  

4.1 INTRODUCTION 

Selective catalytic reduction is one of the best available technologies 

used to remove nitrogen oxides (NOx) from flue gases. As the common method 

utilizes ammonia or urea (Piumetti et al., 2015), an alternative to this reducing 

agent may be applied to avoid safety and environmental issues. Using 

hydrogen as the reductant ensures no ammonia slip, which is unacceptable in 

many countries (Tu et al., 2017).  However, H2-SCR currently requires noble 

metals such as Pt, Pd and Rh to be used as a catalyst. As the NO 2π* orbital 

consists of an unpaired electron and the transition metals have valence 

electrons in the d-subshell, the metal-NO backbonding takes place from metal 

d-orbital to NO 2π* orbital which is stronger than the N-O bond (Roy, Hegde, 

& Madras, 2009). Many transition metals have been studied and showed 

promising results, but some lead to health and environmental issues, such as 

Cr, Co and Ni. In fact, Ni is known to react with CO in the exhaust gas to form 

nickel tetracarbonyl, a product more toxic than CO (Mondt, 2000). Among 

other transition metals, Cu, Fe and Mn showed promising and practical use as 

H2-SCR catalysts. These d-metals are also abundant in the earth’s crust as 

compared to the precious metals belonging to the same group. For instance, 

copper is at least 4000 times cheaper than palladium, while iron is 2000 times 

cheaper than ruthenium (NRCCSR, 2012). Furthermore, the supported metal 

oxides catalyst also showed enhanced performance due to the surface 

chemistry of the support and synergistic effects imposed by the support-metal 

bonding. Activated carbon is one of the catalyst supports studied in SCR. Its 

high surface area and rich surface functional groups are expected to contribute 

to the reduction of NO. However, the utilization of d-metals supported over 

activated carbon has not yet been extensively explored in H2-SCR. Therefore, 

this chapter explores the potential utilization of these catalysts in terms of the 

conversion and selectivity, given by equations 3.4 and 3.5. The characteristics 

of the monometallic oxide catalysts are also determined based on the 

adsorption-desorption behavior of NO over the catalyst.  
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4.2 MATERIALS AND METHODS 

4.2.1 Catalysts preparation 

Monometallic oxide catalysts were prepared via incipient wetness as 

described in Section 3.4. As the pore volume of the PKS is about 0.5 ml/g 

(refer Table 4.1), 1 mL of deionized water was used for impregnation of every 

2 g of PKS. The hypothetical metal loading chosen at this stage was 10 wt.%. 

The resulting catalysts were designated as PKSM where M = Cu, Fe and Mn. 

4.2.2 Catalyst characterisation 

 The carbon support (i.e. PKS) and the derived catalysts (PKSM) were 

characterised based on the elemental composition, surface area and pore 

volume, catalyst acidity, redox properties, and nitric-oxide adsorption-

desorption. 

Carbon, hydrogen, and nitrogen content were determined using a 

CHNS Flash elemental analyser and the oxygen content was obtained by the 

difference between the balance of the mass in this analysis and the ash 

content determined from TGA (refer Section 3.5.1). The metal loading on all 

synthesized catalysts were measured in comparison to the hypothetical 

loading using an AAS. The digestion of the solid catalysts was performed 

according to the modified dry ash method, as explained in Section 3.5.2. The 

surface area properties for the PKS and the derived catalysts were determined 

using nitrogen adsorption-desorption method in a surface characterization 

equipment (refer Section 3.5.3).  

The catalyst acidity was analysed from the desorption profile of NH3 

gas (NH3-TPD) at elevated temperature. NH3 was pre-adsorbed on the 

catalyst surface prior to the experiment as a basic probe (refer Section 3.5.4). 

The type of the metal species (oxidation states) on the catalyst and the catalyst 

reducibility were determined using temperature-programmed reduction (H2-

TPR) analysis (refer Section 3.5.5). In addition, the nature of NO adsorption 

over the catalyst was also investigated to identify the types of adsorption 

species formed over the different metal species supported over carbon. This 

was achieved via a NO-temperature-programmed desorption (NO-TPD) 

experiment (refer Section 3.5.6).  
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4.2.3 Catalyst activity testing 

 For determination of the conversion and selectivity, an isothermal 

reaction was performed on the catalysts at selected temperatures. 1 g of the 

pre-dried catalyst was loaded into the fixed-bed reactor (refer Figure 3.3), and 

purged using helium prior to any reaction. The catalyst was reduced in-situ at 

250 °C under 5 % H2/He at 250 sccm (equivalent to 7,175 h-1). Then, the 

system was purged and cooled under pure helium flow to 40 °C. After 

increasing the temperature to a desired value, a gas mixture of 500 ppm NO 

+ 4 % H2 + 1.5 % O2 in helium (see Table 2.3 for the range of gas composition 

used in H2-SCR studies) at 250 sccm was fed into the reactor and the reaction 

was allowed to reach steady-state at the reaction temperature for at least 2 h. 

The effluent was analysed continuously using a MS (Hiden HPR-20, UK) and 

the quantification method used was discussed in Section 3.2.3. On top of the 

NO conversion and N2 selectivity, the combustion rate was also calculated 

based on the cumulative production of CO and CO2. 

4.3 RESULTS AND DISCUSSION  

4.3.1 Characteristics of the carbon catalysts 

 The surface properties of the catalyst support (PKS) and the derivative 

catalysts are included in Table 4.1.  The surface area of PKS was more than 

1000 m2/g (common value for activated carbon as reported by Yahya et al. 

(2018)) in which 80 % was contributed by micropores – apertures of less than 

2 nm in diameter including the walls of the cracks, pores and cavities which 

are deeper than they are wide. The total pore volume was approximately 0.5 

cm3/g. In addition, the nitrogen adsorption-desorption curve hysteresis loop 

(included in Appendix B (Figure B.1)) indicated that the pores were mostly 

narrow slit-like (Sing et al., 1985) which can also be observed in the SEM 

image (insert image of Figure B.1). The surface area of the resulting catalysts 

can be seen to reduce due to the incorporation at the PKS surface by the metal 

oxides. It was evident that the metal oxides were doped over the external 

surfaces, as all catalysts showed a reduction in the external surface of about 

90 %, while the micropore volume remained constant (as compared to the PKS 

as the precursor). 
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Table 4.1: Surface properties for PKS and the derivative catalysts. 

Properties (unit) PKS PKSCu PKSFe PKSMn 

BET surface area (m2/g) 1126 850 715 800 

t-plot micropore area (m2/g) 910 830 697 777 

t-plot external surface area (m2/g) 216 20 18 23 

t-plot micropore volume (cm3/g) 0.361 0.421 0.360 0.401 

BJH adsorption average pore width (Å) 64 4 4 4 

 

The elemental composition of PKS and the derivative catalysts are 

summarized in Table 4.2. The carbon support possesses high carbon content 

(~90 %) which is comparable to the commercial activated carbon reported by 

Al-Rahbi et al. (2016).  As metal was impregnated, the C, H, N and O content 

of the PKS lowered mainly due to liberation during high-temperature 

calcination stage of the catalyst synthesis. Meanwhile, ash content increased 

due to the presence of metals and incombustible matters after catalyst 

synthesis. It can be reported here that the incipient technique employed in this 

study successfully impregnated the theoretical amount of metal over the 

activated carbon evident by the close metals wt% values obtained via 

elemental analysis.  

 

Table 4.2: Elemental composition for PKS and the derivative catalysts. 

Element 

Mass percentage (%) ± standard deviation (%) 

PKS PKSCu PKSFe PKSMn 

C 82 ± 4 78 ± 2 75 ± 1 80 ± 1 

H 1.15 ± 0.44 0.45 ± 0.01 0.52 ± 0.08 0.34 ± 0.02 

N 0.89 ± 0.04 0.54 ± 0.03 0.49 ± 0.01 0.51 ± 0.05 

O* 14.97 10.81 14.00 7.81 

Ash 1.2 ± 0.8 10.6 ± 0.7 10.3 ± 1.3 11.3 ± 1.3 

Doped metal 
percentage (%) 

- 8.3 ± 0.2 7.6 ± 1.2 6.1 ± 0.1 

*From balance.  

 

The chemical properties of the catalysts and the support were also 

investigated and are summarized in Table 4.3. Generally, the PKS has an 

intrinsic acidity contributed by the ash content and surface functional groups 

(as determined using FTIR spectroscopy). However, impregnating the metal 



 
 

95 
 
 

 
oxides reduced the acidity of the carbon support due to the heat treatment that 

destroyed the acidic sites (Yahya et al., 2018). On the other hand, the 

presence of metal oxides increases the hydrogen consumption which is useful 

in H2-SCR reaction, but the offset temperatures were largely reduced because 

the metal oxides catalysed the carbon gasification. Therefore, the utilization of 

the catalysts beyond this temperature should be performed with caution as the 

performance might be deteriorating at the loss of the carbon mass.  

 

Table 4.3: Chemical properties for PKS and the derivative catalysts. 

Properties (unit) PKS PKSCu PKSFe PKSMn 

Acidity 
Concentration of desorbed 

NH3 (mmol/g) 

 
8.02 

 
8.15 

 
1.44 

 
4.35 

Redox properties 
Total H2 consumption 

(mmol/g) 
Reducibility (X10-3/°C) 

Offset temperature (°C) 

 
 
0 
- 

500 

 
 

2.34 
5 

350 

 
 

0.38 
2.9 
370 

 
 

0.27 
4.5 
335 

 

To observe the contribution of the surface functional groups to the 

acidity-basicity of a catalyst, FTIR spectra for the PKS and the carbon catalysts 

are obtained and displayed in Figure 4.1. The spectra are divided into three 

regions (this is shown by the dotted line in Figure 4.1a); 3500 to 2500 cm-1 for 

the single bond stretch functional groups, 2500 to 1400 cm-1 for the double and 

triple bonded groups and the compounds fingerprints from 1400 to 500 cm-1. 

The detailed stretch indexing in these regions are shown separately at the 

bottom part of the figure. The presence of carboxylic acid () can be observed 

at stretches around 2660 cm-1 for the O-H stretch, broad stretches from 1970-

1620 cm-1 for the C=O bond and stretches around 900 cm-1 for the bending O-

H bond (White, 1971). Carboxylic acids are known as Brønsted -Lowry acids 

because of their tendency to donate protons (H+). The other functional groups 

generally presence on the catalysts include various sharp stretches from 2380 

to 2000 cm-1 belonging to alkyne (), stretches around 1550 cm-1 assigned for 

aromatic compounds (), N-containing functional groups such as aliphatic 

amines () were observed at around 1200 cm-1 and alkene () was observed 

at around 670 cm-1 (White, 1971). 
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Figure 4.1: FTIR spectra for PKS and the derivative catalysts. : carboxylic 

acids, : alkyne, : aromatics, : aliphatic amines and : alkene. 

  

As the intensity of the transmittance in FTIR is the amount of photons 

at a particular stretching frequency, the change of the intensity could imply a 

change in the compound concentration. Overall, carboxylic acid can be seen 

to be enhanced in PKSCu and PKSFe as compared to PKSMn that has similar 

peak intensity with the unsupported PKS. On the other hand, the other 
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functional groups can be seen to reduce if not remain the same over PKSCu 

and PKSFe as compared to the PKS. Therefore, it can be claimed that 

carboxylic acids may play a role in the acidity of the catalysts, as determined 

via NH3-TPD.  

NH3-TPD profiles for the PKS and the carbon catalysts are shown in 

Figure 4.2. The TCD signal represents NH3 concentration and increasing the 

temperature of the sample showed desorption of NH3 that was pre-adsorbed 

by the samples prior to this stage. PKS exhibited the largest NH3 desorption 

(area under the peak) implying the largest NH3 adsorption due to the high 

acidity of the activated carbon. The acidic property of activated carbon has 

been reported in the literature as due to the oxygenated functional groups 

(Chen et al., 2015). The one large peak on the PKS NH3-TPD profile indicates 

the acidic site is exclusively that of the carbon surface. 

 

Figure 4.2: NH3-TPD profiles for PKS and the derivative catalysts in 20 sccm 
pure helium and 10 °C/min. 

 

Multiple desorption peaks can be observed on the derivative catalysts, 

especially for PKSCu, which has two distinct peaks centred around 220 and 

410 °C. A study on the acidity of copper supported over SAPO-34 showed the 

desorption peaks had shifted to lower temperature. The two peaks around 150 

and 450 °C originally found on the support material had shifted to 140 and 
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320 °C respectively (Yu et al., 2014).   Therefore, it can be reported here that 

the first peak is due to the shifting effect of the TPD peak for PKS by the 

presence of copper, while the second one is due to an additional stronger 

acidic site promoted by copper oxide.   

The acidity of PKS was reduced after impregnation with iron and 

manganese due to the high calcination temperature used (higher than copper, 

refer Section 3.4). This was also reported by Lee et al. (2012) that the 

manganese TPD peaks decreased when increasing the calcination 

temperature from 300 to 700 °C. On the NH3-TPD curve for PKSFe, only a 

wide and low desorption peak can be seen on PKSFe stretching from 100 to 

350 °C which is a similar range to the peak found on raw PKS. The desorption 

peak for Fe supported over ZSM-5 was reported in the literature to be around 

300 °C (Lindholm, Sjövall, & Olsson, 2010; Long & Yang, 2001). This means 

Fe may have partially contributed to the adsorption of NH3 at this site alongside 

the carbon surface functional groups.  

However, manganese showed the appearance of three NH3 desorption 

peaks at 120, 220 and 420 °C. The first peak could be due to the physisorbed 

NH3, which is very weakly attached to the catalyst surface and can be 

disregarded as an acidic site (Lee et al., 2012). Meanwhile, Deng et al. (2016) 

examined MnOx/TiO2 catalyst in a NH3-TPD experiment and found two peaks 

associated with MnOx acidic sites at 220 and 360 °C indicating the weak and 

strong acidic sites. This means the second peak in the NH3-TPD curve for 

PKSMn could be assigned to both PKS and Mn acidic property while the third 

one to the strong acidic MnOx sites. 

The reducibility of the catalyst was determined via TPR experiment. 

Figure 4.3 shows the TPR profiles for the PKS and the carbon-supported metal 

oxides. TCD signal in the figure is an inverse of hydrogen concentration 

detected which means increasing signal implies the consumption of hydrogen 

by the samples. Over all temperature ranges, PKS is not readily reducible 

without the presence of a metallic catalyst which is the reason for no hydrogen 

consumption. As reducibility is defined as 1/Tfirst (reciprocal of the first 

reduction temperature) (Patel et al., 2014), PKSCu is the most reducible 

catalyst, followed by PKSMn and PKSFe. However, based on the amount of 
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hydrogen consumption (area under the curve), PKSCu used up the most 

hydrogen followed by PKSFe and PKSMn. Note that the stoichiometric amount 

of metals based on the consumed hydrogen over the three catalysts is different 

from the values obtained via metal content determination experiment. This is 

because the peak height in TPR depends highly on the heating rate and flow 

rate used in the experiment, as opposed to a pulse chemisorption experiment 

which is preferably performed for metal content/surface area determination .  

 

Figure 4.3: H2-TPR profiles for the PKS and carbon catalysts in 5 % H2/He at 
20 sccm and 10 °C/min. 

 

Furthermore, the presence of metal and the oxidation states can also 

be determined from a TPR profile. The reduction of H2 over PKSMn resulted 

in two peaks at 220 and 410 °C. According to Deng et al. (2016), the reduction 

of pure manganese oxide can be observed at two temperatures – 350 °C for 

MnO2 to Mn2O3, and 520 °C for the successive Mn2O3 to MnO reduction. 

Therefore, upon impregnation over PKS, both reduction temperature shifted 

to lower values and because more hydrogen was consumed at the second 

peak, this means that some Mn2O3 was already present on the catalyst due to 

the calcination process. 
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Reduction over PKSFe showed only one peak at 340 °C which can be 

attributed to the reduction of Fe2O3 to Fe3O4. This is based on a TPR 

experiment carried by Patel et al. (2014) over Fe/MCM-41 which exhibited 

peaks at 390 and 590 °C for the reduction of Fe2O3 to Fe3O4 and Fe3O4 to 

FeO, respectively. 

Generally, for copper oxide, a reduction temperature of below 300 °C 

is attributed to the reduction of highly dispersed Cu2+ to Cu+ while the higher 

temperature is due to the direct reduction of agglomerated CuO to Cu metal 

(Patel et al., 2011). Li et al. (2012) studied copper species when impregnating 

copper nitrate over activated carbon via TPR experiment and assigned the 

reduction peaks around 240 and 550 °C to the reduction of isolated Cu2+ to 

Cu+, and Cu+ to Cu0 respectively. An intermediate peak at around 430 °C was 

attributed to the direct reduction of CuO to Cu metal. However, Moreno-Piraján 

et al. (2010) reported a lower reduction temperature for copper species when 

impregnating copper nitrate over coconut shell activated carbon. The range of 

the reduction peaks was 150-300 °C with stepwise CuO reduction (Cu2+→ 

Cu+→ Cu0). Upon deconvoluting of the TPR curve for PKSCu, three peaks can 

be observed (see Figure 4.4).  

The two consecutive peaks (the curve for Peak 3 starts after the curve 

for Peak 1) can therefore be assigned to the reduction of Cu2+ to Cu+ and Cu+ 

to Cu0 respectively. Meanwhile, the intermediate peak can be assigned to the 

direct reduction of CuO to Cu, encompassing the dominant species according 

to the area under the curve (about 63 % of the total integrated area). The 

assignment of metal species from TPR experiment should be corroborated 

with other analyses, such as WAXS or XRD. 
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Figure 4.4: H2-TPR peak deconvolution for PKSCu using OriginPro 2017 with 
Gaussian peak model and Levenberg Marquardt iteration algorithm. 

 

The behaviour of the catalysts under oxidizing conditions can be 

observed via a differential thermogravimetric analysis (DTG) which shows the 

rate of weight change over temperature. This is displayed in Figure 4.5. The 

change of weight (negative) implies that carbon was gasified, and the 

temperature at which this occurs the most is called the inflection point 

(Dollimore et al., 1992). The inflection point for the PKS is beyond 600 °C 

which is typical for carbon gasification temperature in air (Radic et al., 2017). 

With the presence of the transition metals, the inflection point was lowered to 

about 400, 410 and 450 °C for PKSMn, PKSCu and PKSFe respectively. This 

shows that the reactivity of the metal oxides present on the catalysts in 

oxidizing condition decreases in that particular order. 
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Figure 4.5: DTG curves for PKS and the derivative catalysts in 20 sccm air 
and 10 °C/min. 

  

The characterisation of d-metals supported over PKS revealed that the 

catalysts synthesis altered the properties of the carbon support. Different metal 

oxide catalysts with different calcination temperatures have different chemical 

properties. Even the presence of carboxylic acids on the carbon support was 

retained in all catalysts; the acidity changed depending on the acidity at the 

metallic sites. Furthermore, the presence of the metallic species in the 

catalysts can be determined via elemental analysis and H2-TPR. The 

corroboration of these characterisation techniques indicates that the metal 

species influenced both the hydrogen consumption and acidity of these 

catalysts.  

4.3.2 Nitric oxide adsorption-desorption experiment 

 NO-TPD experiments were performed both on the bare carbon support 

(without metal oxide) and the d-metal supported catalysts. After exposure of 1 

% NO/He until equilibrium, PKS was purged for at least 1 h to remove the 

physisorbed and trapped NO in the system. Upon desorption at increasing 

temperature, the evolved gases were detected by a mass spectrometer. For 
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PKS, two types of gases can be detected – nitric oxide and nitrogen dioxide. 

The evolution of NO and NO2 curves for PKS are shown in Figure 4.6a and b, 

respectively. The curve deconvolution was performed separately for NO and 

NO2 using Gaussian distribution method in OriginPro 2017 (refer Appendix B 

(Table B.1)).  

It was evident that NO was readily adsorbed by the carbon at room 

temperature. However, no other N-products such as nitrogen and nitrous oxide 

were detected during the desorption stage indicating the non-dissociative 

adsorption of NO on the carbon support. This is similar to the findings by López 

et al. (2007) using pyrolyzed sub-bituminous coal as NO sorbent. NO was 

reported to desorb with a wide peak centred at 300 °C and a shoulder at 

400 °C. However, for PKS (Figure 4.6a), the curve deconvolution revealed two 

peaks of NO desorption on the carbon support; a sharp peak at 165 °C and a 

wide peak at 270 °C. The former can be associated with the desorption of 

“adsorbed NO2”, formed via oxidation over activated carbon while the higher 

temperature peak can be assigned to the “strongly bonded NO” (Klose & 

Rincón, 2007). 

The desorption of NO2 at a peak around 130 °C also showed the 

oxidation ability of the carbon support. It has been discussed in Section 2.4.1 

that the desorption of NO2 around 110 °C is due to the decomposition of 

– C(ONO2) surface complexes. It is noteworthy to report here that CO2 and 

CO also evolved during NO-TPD for PKS (curves not shown). As carbon is not 

readily oxidized in the absence of oxygen at low temperatures, it can be 

confirmed here that it was a result of the surface complex decomposition 

according to equations 4.1-4.3, as proposed by Jeguirim et al. (2004). 

−𝐶(𝑂𝑁𝑂2) → 𝐶𝑂2 + 𝑁𝑂 4.1 

−𝐶(𝑂𝑁𝑂2) → 𝐶(𝑂) + 𝑁𝑂2 4.2 

−𝐶(𝑂𝑁𝑂2) → 𝐶𝑂 + 𝑁𝑂2 4.3 
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Figure 4.6: NO-TPD peak deconvolution for PKS showing evolved; a) NO 
and b) NO2 in 20 sccm pure helium and 10 °C/min.  

   

The high NO adsorption on the carbon support can be attributed to the 

high carbon and nitrogen levels that provide basic sites on the surface. Figure 

4.7 shows the NO signal obtained during NO-TPD of the carbon supported d-

metal catalysts. In all cases, the amount of adsorbed NO reduced at least 3-
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fold compared to the area under the peak of NO-TPD of PKS. Additionally, no 

other N-products can be observed during desorption stage other than NO. This 

means, incorporating the d-metals onto activated carbon reduced the capacity 

for NO adsorption by the carbon support. The main reason for this was the 

losses of carbon and nitrogen content, which contributed to the adsorption 

sites for NO and the bond between NO and d-metals was not as strong as NO 

with the carbon support. The latter can be proven by evaluating the desorption 

temperature peaks of each catalyst. The peak properties obtained from 

Gaussian deconvolution are summarized in Table B.1, where the full width at 

half maximum (FWHM) was used as the peak characteristic.   

For PKSCu, NO was desorbed at peaks of around 85, 115 and 160 °C 

(Figure 4.7a). Wang et al. (2015) reported a desorption peak around 100 °C 

over Cu/CeO2 catalysts designating the presence of nitrosyls species bonded 

with copper. Thus, the first two peaks can be assigned to the bonds between 

NO and the impregnated copper. The third peak which has similar peak 

characteristic with the peak at the same temperature in Figure 4.6a can be 

assigned to the “adsorbed NO2”.  

As for PKSFe and PKSMn, each possessed an additional low-

temperature peak at 90 and 70 °C, respectively. This is attributed to the 

physisorbed NOx with the metal oxides as being reported by Long & Yang 

(2001) and Lee et al. (2012) for the peaks at 75 and 100 °C over Fe/ZSM-5 

and Mn/TiO2 respectively. As for the peak assigned to –C(ONO2) on PKS, 

taking FWHM ± 10 would infer that this peak shifted to lower temperature for 

PKSMn, for a desorption temperature of 115 °C. The second peak in Figure 

4.7b resembles the “strongly adsorbed NO” peak in Figure 4.6a (FWHM ± 10) 

more than the “adsorbed NO2” peak (FWHM ± 30).  
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Figure 4.7: NO-TPD peak deconvolution for; a) PKSCu, b) PKSFe and c) 
PKSMn in 20 sccm pure helium and 10 °C/min.  
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There is a high-temperature peak observed for PKSMn at 210 °C 

(Figure 4.7c), which can be postulated to be either the shifted “adsorbed NO” 

peak (from Figure 4.6a), or the strong NOx-Mn bond as reported by Kijlstra et 

al. (1997) at a peak of around 207 °C when studying NO-TPD over MnOx/Al2O3 

catalyst. Lower desorption temperature is known to possess lower adsorption 

energies which means C-N surface complexes possessed lower adsorption 

energy over metal-impregnated catalysts as compared to the bare carbon 

support. 

In addition, there were no NO2 gases evolved during NO-TPD for all 

three catalysts. This suggests that the desorption of the formed NO2 was 

reductive due to the presence of reductive sites (Sred), according to equations 

4.4 and 4.5, based on Klose & Rincón (2007). 

(𝑁𝑂2)𝑎𝑑𝑠 + 𝑆𝑟𝑒𝑑 → 𝑁𝑂 + 𝐶𝑂 4.4 

2(𝑁𝑂2)𝑎𝑑𝑠 + 𝑆𝑟𝑒𝑑 → 𝑁𝑂 + 𝐶𝑂2 4.5 

 The area under the peak indicates the amount of NO adsorption 

species at a particular site. By taking the amount of nitrosyls formed per gram 

of metal, it can be inferred that the formation of this species is most 

pronounced over PKSCu, followed by PKSFe and PKSMn. This is not 

correlated to the order of decreasing acidity even for the fact that NO is 

reported to adsorb at Brønsted acid sites. Therefore, the formation of nitrosyls 

over carbon-supported catalyst is rather complex; its contributions as a 

reaction intermediate are not the focus of this project. 

However, it is conclusive that NO was readily adsorbed over PKS. The 

bond was stronger than the nitrosyls species formed over d-metals catalysts. 

The weak nitrosyls bond would allow further dissociation with a reductant in 

gaseous phase, and avoid permanent occupation of the adsorption sites (ease 

of regeneration).  

4.3.3 Gasification of catalysts in NO-H2-O2 system 

An important feature of a carbon-supported catalyst is the rate of carbon 

combustion due to oxidation by intrinsic oxygen content in the flue gas and/or 

oxides of nitrogen. This is because the catalyst could experience deteriorating 

performance over the loss of carbon that serves as the basic structure of the 
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catalyst. It was shown previously that the offset temperature of the carbon 

catalysts reduced considerably with the impregnation of metals. In this 

experiment, the gasification of carbon was calculated based on the 

accumulative rate of CO2 and CO formation in μmol/s during the H2-SCR 

reaction. Figure 4.8 shows the combustion rate over the catalysts in H2-SCR. 

Generally, the combustion rate for all catalysts increased with increasing 

temperature. 

 

Figure 4.8: Combustion rate by the catalysts in 500 ppm NO + 4 % H2 + 1.5 
% O2 at 7,175 h-1. 

 

As the offset temperature for all the catalysts is near 300 °C, the 

combustion rate between the catalysts can be compared at this temperature. 

The order of decreasing combustion rate at 300 °C is PKSMn ≈ PKSFe > 

PKSCu3. This may be correlated to the decreasing electropositivity of the 

reduced metal states (as the catalysts were reduced in hydrogen flow prior to 

this experiment) in that particular order. Castoldi et al. (2009) explained this 

                                                           
3 Note the standard deviation for PKSFe is only significant at high temperature 300 °C. This might be 
due to another factor, such as catalyst dispersion, contributing to the combustion rate. This was not 
investigated further due to the absence of this effect in other samples. 
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phenomenon as follows: high electropositivity indicates a higher tendency for 

the metal to donate electrons which increases the electron density of 

neighbouring carbon sites (C). This leads to the increased affinity of this site 

for binding an oxygen atom, denoted as Cf. As a result, C-Cf bonds are 

weakened and carbon gasification is promoted. The information provided by 

the combustion rate can be a determining factor for the catalyst application in 

a particular oxidizing condition.  

4.3.4 Catalyst activity 

 Prior to quantification of the catalyst activity, a control experiment was 

carried out using the bare PKS in the same condition stated in Section 4.2.3. 

Figure 4.9 shows the evolution of NO in a wide range of temperature. The 

formation of a product is negligible because the carbon support did not induce 

NO reduction/decomposition without the presence of metal oxides. However, 

at low temperature, (below 150 °C), there was a decrease in NO signal, 

indicating adsorption over carbon surfaces. Therefore, to discount adsorption 

at low temperature and further explore the activity at higher temperature, the 

selected temperatures for the isothermal reaction experiments were 120, 160, 

200, 250 and 300 °C. 

 

Figure 4.9: Temperature-programmed reactions for PKSblank at 7,175 h-1 
and 1 °C/min in; 500 ppm NO + 4 % H2 + 1.5 % O2. (■) Nitric oxide, (●) 

nitrous oxide, (♦) nitrogen, (◊) ammonia, (○) nitrogen dioxide, (▲) carbon 
dioxide, and (▼) carbon monoxide. 
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Figure 4.10 shows the NO conversion over the three catalysts in a NO-

H2-O2 system. All catalysts can be seen to achieve higher conversion at 

elevated temperatures, but only PKSCu was able to totally convert NO below 

300 °C. PKSMn has the lowest conversion activity at low temperature until at 

least 250 °C, with a perceptible rate of 9 %. PKSCu and PKSFe showed similar 

and constant conversion (~10 %) until at the same temperature where the 

conversion caused by PKSCu peaked to 100 %. These findings indicate that 

the d-metals supported over activated carbon are able to facilitate the 

reduction of NO using hydrogen as the alternative reducing agent but at 

varying levels of efficiency.  

 

Figure 4.10: Nitric oxide conversion by the catalysts in 500 ppm NO + 4 % H2 
+ 1.5 % O2 at 7,175 h-1. 

  

Above 200 °C, PKSCu gave the most NO conversion followed by 

PKSFe and PKSMn but at 300 °C, the activity of the catalysts decreased as 

follows; PKSCu > PKSMn ≈ PKSFe. This is consistent with the findings on the 

catalysts’ reducibility order discussed previously. It is known that catalyst 

reducibility is an important factor in NOx reduction. As oxygen mobility is 

increased on a reducible metal surface, oxygen vacancies are easily 
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generated (Cheng et al., 2017; Ji et al., 2017). This is required for the 

dissociation of adsorbed NO over metal surfaces. The removal of oxygen from 

this vacancy will keep the metal reduced for the next reaction cycle (Ilieva et 

al., 2015).  

In addition, this trend may also correspond to the acidity of the catalysts 

as shown by NH3-TPD analysis and the amount of nitrosyls formation as 

shown by NO-TPD. As NH formation during NO-H2 reaction over metallic 

surfaces is a well-known mechanism (as discussed in Section 2.2.3), PKSCu 

which showed the highest amount of adsorbed ammonia among the three 

catalysts in NH3-TPD provided more sites for the intermediates to be adsorbed 

and consumed. In the meantime, PKSCu exhibited the highest nitrosyl 

formation (NO adsorbed over metal oxides) which also contributed to the high 

conversion.  

 Figure 4.11 shows the variation of N2 selectivity over the catalyst. The 

decrease in selectivity was due to the release of ammonia in the outlet where 

ammonia is known to be an important intermediate in H2-SCR. The formation 

of NO2 and N2O is negligible across the entire experiment (not shown). As can 

be seen from the graph, PKSCu showed the formation of NH3 the most and 

followed by PKSFe. The selectivity towards N2 formation over PKSCu peaked 

to about 100 % at 200 °C and reduced at 250 °C. However, at 300 °C, 

selectivity for PKSCu increased and achieved almost 100 %. PKSFe followed 

a similar trend, except that beyond 250 °C the selectivity was constant.  

The high selectivity achieved by PKSMn throughout the temperature 

range does not implicate the high reactivity in H2-SCR compared to the other 

catalysts, as the conversion rate is very low below 300 °C. It probably does 

not produce enough NH intermediate which prevents the release of excess 

NH considering the low nitrosyl formation. Therefore, selection of a catalysts 

in terms of the selectivity must be made with caution. In fact, it must solely be 

used to make sure the catalysts do not produce additional toxic gases in 

addition to NOx.  
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Figure 4.11: Nitrogen selectivity by the catalysts in 500 ppm NO + 4 % H2 + 
1.5 % O2 at 7,175 h-1. 

 

4.4 CONCLUSIONS 

 Carbon-supported d-metal catalysts were synthesized using palm 

kernel shell activated carbon as the support and copper, iron and manganese 

as the catalysts. NO was found to adsorb over the carbon support as the 

“adsorbed NO2” and the “strongly adsorbed NO” species. Upon impregnating 

the carbon with metal oxides, the extent of NO adsorption reduced as does 

the extent of NO oxidation, while the formation of nitrosyl species over the 

metal surfaces was evident. The impregnation and calcination in the synthesis 

stage produced Cu, Cu2O and CuO species over PKSCu, MnO2 and Mn2O3 

species over PKSMn and Fe2O3 species over PKSFe as determined from 

TPR. PKSCu was the easiest to be reduced followed by PKSMn and PKSFe 

which was related to the increased in NO conversion. The catalyst acidity and 

the amount of nitrosyls formation were also seen to affect the activity in H2-

SCR. High catalyst acidity (as found in PKSCu) provided more sites for NH 

(an intermediate in H2-SCR) adsorption and reaction with the formed nitrosyls 
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over the catalyst surface. In addition, PKSMn showed the highest carbon 

combustion activity due to high electropositivity compared to the other two d-

metals. This information is useful to achieve the second objective of this 

project that is to develop structure-performance relationship in H2-SCR. 

Moreover, copper will be used as the core catalyst in the next chapter in order 

to optimize the performance of the catalyst. Improvements such as increasing 

metal loading and co-catalyst must be explored before the kinetics of the 

reaction can be evaluated in detail. 
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CHAPTER 5. Bimetal Oxides Effects of Copper Co-doped with 

Manganese or Iron Supported over Activated Carbon in 

Reduction of Nitric Oxide with Hydrogen 

5.1 INTRODUCTION 

Multicatalysis is a technique employed in a catalytic reaction to achieve 

what would be a difficult transformation by a mono-catalytic system. Bimetallic 

catalysis is an example of such a system which involves the application of two 

metal catalysts in one system which can act either in double activation (both 

catalysts are required to activate a reagent) or cascade (activation of a reagent 

is sequential between the two catalysts) or synergistically (each catalyst 

activates different reagent) in a reaction (Allen & Macmillan, 2012). Oh & 

Carpenter (1986) discovered an improvement of the catalyst activity in an 

exhaust treatment (NO + CO + O2) when using bimetal Pt-Rh, compared to 

using physically mixed Pt and Rh catalysts supported over silica. It was found 

that the 50 % CO conversion temperature for the bimetal catalyst prepared via 

stepwise impregnation reduced by 30 °C at CO concentration higher than 2 % 

compared to the physically-mixed Pt and Rh catalysts. This is due to the 

increased probability of reaction between surface CO (adsorption affinity on 

Pt) and adsorbed oxygen (readily forms oxides with Rh) in a randomly 

distributed Pt and Rh over the catalyst surface. This is an example of 

synergism as each metal activated different reagent.   

Studies of the effect of bimetallic catalysts in NOx treatment are 

important to develop a catalyst with optimum performance. Most of these 

studies however focused on the application in NH3-SCR. The application of 

hydrogen as the reductant and biomass activated carbon as the catalyst 

support could change the means of bimetallic effects between the catalysts, 

which of interest in this chapter. For a pair of catalysts to be synergistic, the 

total effect needs to be better than the individual effects. As it was shown in 

Chapter 4 that all three carbon-supported metallic catalysts demonstrated 

considerable NO conversion and selectivity in H2-SCR in a wide temperature 

range, all metallic catalysts will be further investigated in this chapter in terms 

of the compositional effects and characteristics of the bimetallic system.  
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5.2 MATERIALS AND METHODS 

5.2.1 Catalyst preparation 

 The preparation of the catalyst using PKS as the catalyst support was 

performed as described in Section 3.4. The investigation of the bimetallic 

effects can be performed in a sequence shown in Figure 5.1. Since copper 

showed the best monocatalytic performance in Chapter 4, it was chosen as 

the principle catalyst. The total metal loading using copper supported over 

PKS was examined at 10, 20 and 30 wt% prior to observing the effect of adding 

another metal oxide in the catalyst system. The catalysts are denoted as 

PKSCuy, with y representing the hypothetical metal loading. A fixed total metal 

loading was chosen after this stage to study the effect of pairing copper with a 

different catalyst – iron and manganese which were then termed as 

PKSFexCuy and PKSMnxCuy, respectively with x and y representing the 

hypothetical metal loadings. The bimetallic oxide catalysts were synthesized 

via sequential impregnation, which involves impregnation-calcination of one 

metal oxide after another. Finally, the effect of metals ratio on the 

characteristics and performance of the catalysts were studied by preparing the 

catalysts based on the hypothetical composition listed in Table 5.1. 

 

Figure 5.1: Sequence for studying bimetallic effects in H2-SCR. 

Table 5.1: Values for preparation of bimetallic catalysts with different ratio. 

No. Metal 1 wt.% 

(M1) 

Metal 2 wt.% 

(M2) 

Total metal 

loading 

Designation 

1 10 10 20 PKSM110M210 

2 10 20 30 PKSM110M220 

3 10 30 30 PKSM110M230 

4 20 10 40 PKSM120M210 

5 30 10 40 PKSM130M210 

Effects of 
total metal 

loading

Effects of 
metal 

loading and 
pairing at 
1:1 ratio

Effects of 
metal ratio



 
 

116 
 
 

 
5.2.2 Catalyst characterisation 

 The derived catalysts were characterised based on the elemental 

composition, catalyst acidity, and redox properties. The methods and 

procedures used are described in Section 4.2.2. 

5.2.3 Catalyst activity testing 

The method and procedure used are similar to the ones in Section 4.2.3. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Effects of metal loading 

 Prior to studying the effect of the bimetal oxides approach, the effect of 

increasing the mono-metal oxide content in the catalyst was evaluated to 

understand the contribution of the total metal loading on the performance and 

characteristics of the catalysts. The concentration of copper was increased to 

20 and 30 wt% and the chemical properties have been summarized in Table 

5.2.  

 

Table 5.2: Physical and chemical properties of Cu-impregnated PKS at 
increasing copper loading. 

Properties (unit) PKSCu10 PKSCu20 PKSCu30 

Elemental analysis (%) 
C 
H 
N 
O 

Ash content 
Metal content 

 
78 

0.45 
0.54 

10.81 
10.6 
8.3 

 
60 

0.59 
0.44 

18.56 
20.3 
13.4 

 
56 

0.41 
0.57 

17.58 
25.4 
14.5 

Acidity 
Concentration of desorbed NH3 

(mmol/g) 

 
8.15 

 
12.49 

 
11.67 

Redox properties 
Total H2 consumption (mmol/g) 

Reducibility (X10-3/°C) 
Offset temperature (°C) 

 
2.34 

5 
350 

 
4.59 

5 
360 

 
4.81 

5 
360 

 

 The carbon content decreased with the increase in metal loading due 

to the replacement of the carbons for the metal oxides as also can be seen 

from the increase in the ash content. All catalysts were calcined at the same 

temperature and duration, so the effect of high temperature treatment could 

be ruled out, except that Chapter 4 has shown copper to accelerate carbon 

combustion, also contributing to the loss of more carbon at the same 
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temperature. However, the successful rate of metal loading decreased at 

higher concentrations, as preparing the catalysts for 20 and 30 wt% only 

impregnated about 13 and 14 wt%, respectively. This phenomenon can be 

explained at the microscopic level as pore size, adsorption capacity and 

solubility of the metal precursors in water (used in the incipient wetness) play 

important roles, which are however not of interest in this study. Therefore, the 

catalysts are still denoted with the intended concentration value because the 

preparation condition (including moles of nitrates involved) might affect the 

chemical properties of the catalysts such that can be seen for the increasing 

ash content.  In the meantime, the acidity in terms of the adsorbed NH3 and 

the offset temperature improved at high copper loading whereas the 

reducibility remained constant. Similarly, copper concentration has no effect 

on the total hydrogen consumption by the catalyst when increasing loading 

from 20 to 30 wt%. 

The effects of increasing copper loading on CuO species can be studied 

via TPR experiment. Figure 5.2a shows the TPR profiles for the copper 

impregnated over PKS at increasing loading. It is evident that all three peaks 

(200, 230 and 330 °C) originally observed over PKSCu10 (refer Chapter 4) can 

be found at the same temperatures for PKSCu20 and PKSCu30, indicating 

similar copper species. However, an additional peak appeared for PKSCu30, 

as determined from the deconvolution of the TPR curve shown in Figure 5.2b. 

As it is known that the intermediate-temperature peak in TPR for copper 

species is an indicative of the direct reduction of CuO to Cu (Li et al., 2012), it 

is reasonable to assign this species to the new peak found at around 280 °C 

over PKSCu30. The deconvoluted area-under-the-peak for each species in the 

TPR profiles are correlated with the hydrogen consumption and summarized 

in Table 5.3. The third peak which was assigned to Cu2O (refer Chapter 4) 

showed an increase in the magnitudes as the copper loading increased. 
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Figure 5.2: a) TPR profiles for Cu-impregnated catalysts at increasing copper 
loading; and b) deconvoluted TPR profile for PKSCu30 using OriginPro 2017. 

  

Table 5.3: H2 cosumption at each peak for TPR experiment of Cu-
impregnated catalysts at increasing copper loading. 

(mmol/g) Peak 1 Peak 2 Peak 3 Peak 4 

PKSCu10 0.60 1.78 0.39 - 

PKSCu20 0.63 2.09 1.86 - 

PKSCu30 0.66 2.42 1.23 0.53 
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Changes in the catalyst acidity with respect to metal loading were also 

observed via FTIR spectroscopy and NH3-TPD, showed in Figure 5.3 and 

Figure 5.4, respectively. Figure 5.3 shows the regional analysis of FTIR 

spectra for the catalysts at increasing metal loading. By evaluating the peak 

intensity (by using Curve Translate function in OriginPro 2017), PKSCu20 

exhibited a reduction in the carboxylic acid stretch at around 2660 cm-1 and 

the broad peak from 1970 to 1620 cm-1 while peak at 900 cm-1 disappeared. 

However, the peaks attributed to the alkyne groups also decreased. 

Meanwhile, PKSCu30 showed an improved carboxylic acids peak intensity at 

2660 cm-1 and from 1970 to 1620 cm-1.  

 

Figure 5.3: FTIR spectra for Cu-impregnated catalysts at increasing copper 

loading. : carboxylic acids, : alkyne, and : aromatics. 

 

As discussed in Chapter 4 for NH3-TPD, the two important sites for 

PKSCu are denoted as the low-temperature peak (LTP) contributed by the 

carbon support – copper interaction and the high temperature peak (HTP), 

assigned to coper oxides. The TPD curve can be deconvoluted to determine 

the contribution to the adsorption of NH3 by each acidic site. In this case where 

the sites are referred to as LTP and HTP, the area under each curve was 

determined based on the minima that occurs at the curve, where desorption 
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at the LTP changed to the desorption at the HTP, as shown by a straight line 

in Figure 5.4. 

 

Figure 5.4: NH3-TPD profiles for Cu-impregnated catalysts at increasing 
copper loading in 20 sccm pure helium and 10 °C/min. 

 

The peaks deconvolution of NH3-TPD (not shown) revealed that 

increasing the copper loading from 10 to 20 wt% increased the amount of NH3 

desorbed at LTP twofold while further increasing to 30 wt% only changed the 

amount slightly (from 5 mmol/g to 7 mmol/g). This contradicts the FTIR findings 

that showed lower carboxylic acid (pKa 4) concentration in PKSCu20 but is in 

agreement with the higher carboxylic acids peaks on PKSCu30. The 

contradiction might be due to the increased Cu2O crystallinity as shown in TPR 

(as the LTP is contributed by both PKS and copper). Additionally, the 

disappearance of an alkyne (pKa 25) group stretch in PKSCu20 (from FTIR 

spectra) might have compensated for the total degree of acidity.  However, the 

area under the HTP was halved when increasing the loading from 10 to 20 

wt% while increasing by half upon higher loading of 30 wt%. This informed the 

negative effects of metal agglomeration on the acidity at HTP when increasing 

the copper loading from 10 to 20 wt%. On the other hand, for PKSCu30, the 

successful metal loading was 14 wt% which is almost twice that of PKSCu, 

explaining the increased in the HTP concentration due to the increase in metal 
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loading. However accumulatively, the NH3 desorption concentration increased 

with increasing copper loading. 

The isothermal conversion, selectivity and carbon combustion rate for 

the higher copper loading are shown in Figure 5.5, in comparison to the 10 

wt% copper-loaded catalyst. The NO conversion did not show significant 

enhancement over the temperature range, but the low-temperature reaction 

showed a slight improvement when increasing the metal loading. However, 

the selectivity towards nitrogen formation exhibited mixed effects. At 

temperatures lower than 200 °C, the selectivity typically decreased with 

increasing copper loading while increased at higher temperature. However, at 

300 °C, selectivity remained constant. As for the combustion rate, it was 

almost constant until 300 °C, at which a significant increase of 50 % can be 

observed for PKSCu20 as compared to PKSCu10. 

 

Figure 5.5: Conversion, selectivity and combustion rate for Cu-impregnated 
catalysts at increasing copper loading in 500 ppm NO + 4 % H2 + 1.5 % O2 at 

7,175 h-1. 
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The retained capacity for NOx conversion by all catalysts is attributed 

to the identical reducibility factor, as shown in Table 5.2. This strengthens the 

dependency of NO conversion in H2-SCR to the catalyst reducibility. As for the 

selectivity at low temperature, it was observed that the formation of nitrous 

oxide became detectable at higher copper loading (not shown) even though 

the signal for ammonia disappeared. The formation of N2O is known to occur 

over many metal oxides, especially precious metals, at temperatures as low 

as 90 °C (Burch & Coleman, 1999). This effect vanished starting at 200 °C for 

PKSCu10 and PKSCu30 and at 300 °C for PKSCu20. The low in selectivity for 

PKSCu10 at 250 °C was caused by the undesorbed NO or products which have 

been taken into account by equation 3.5. Increasing copper loading reduced 

this effect which makes the higher loading metals preferable. However, for 

carbon-based catalysts under oxidizing conditions, carbon combustion places 

a limitation on this application. Figure 5.5 shows the combustion rate increased 

with increasing metal loading and become prominent at higher temperature. 

The combustion rate of 0.4 µmol/s would mean that a 1 g catalyst with 60 % 

carbon content could lose the entire carbon mass in only about 35 h.  It can 

be shown that the enhanced carbon gasification was due to the reaction of 

carbon with NOx, because as determined by TGA experiment, the stability of 

the catalysts remained approximately the same as the copper loading was 

increased. This is shown by the nearly constant offset temperature in Table 

5.2 and the inflection points in Figure 5.6. 
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Figure 5.6: DTG curve for Cu-impregnated catalysts at increasing copper 
loading in 20 sccm pure helium and 10 °C/min. 

 

5.3.2 Effects of metals pairing and loading  

 The effect of bimetal oxide catalysts on the characteristics and 

performance in NOx reduction was investigated by co-impregnating the metals 

at 1:1 ratio. Chapter 4 showed the potential of singly-impregnated copper, iron 

and manganese oxide in H2-SCR at varying degree of performance and 

Section 5.3.1 has explored the possibility of improving the performance by 

increasing metal loading with certain limitations. Co-impregnating iron and 

manganese with copper would theoretically induce different effects on the 

characteristics and performance which motivates this chapter. The chemical 

properties of the monometallic copper oxide and the bimetallic Cu-Fe and Cu-

Mn oxides supported over PKS are summarized in Table 5.4.  
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Table 5.4: Physical and chemical properties of PKSCu20 and the bimetallic 

oxide catalysts. 

Properties (unit) PKSCu20 PKSFeCu PKSMnCu 

Elemental analysis (%) 
C 
H 
N 
O 

Ash content 
Cu 
Fe 
Mn 

 
60 

0.59 
0.44 
18.56 
20.3 
13.4 

- 
- 

 
48 

0.46 
0.53 

29.94 
20.6 
7.0 
5.7 
- 

 
49 

1.14 
0.01 

32.58 
16.9 
5.4 
- 

4.5 

Acidity 
Concentration of desorbed NH3 

(mmol/g) 

 
12.49 

 
15.74 

 
9.56 

Redox properties 
Total H2 consumption (mmol/g) 

Reducibility (X10-3/°C) 
Offset temperature (°C) 

 
4.59 

5 
350 

 
3.07 

5 
350 

 
2.61 

5 
340 

 

 The similar ash content between PKSCu20 and PKSFeCu indicated the 

similar amount of total metals in the catalyst as also can be proven by the 

metal content obtained from AAS analysis. PKSMnCu showed less ash 

content because of the low metal content but the carbon loss due to the 

preparation method was similar to that of PKSFeCu. Even when reducibility 

remains constant, the total hydrogen consumption in TPR analysis decreased 

when using two different metal oxides. The acidity in terms of NH3 adsorption 

increased when incorporating Cu and Fe oxides, but reduced with Cu-Mn 

oxides couple.  The latter also showed lower offset temperature indicating 

lowered stability in oxidizing condition.  

 The presence of different metal species can be investigated via TPR 

experiments, and the profiles shown in Figure 5.7 and Table 5.5 for the 

hydrogen consumption at each peak. It can be seen that the peaks related to 

CuO (1 and 2) are retained in all catalysts. The first peak increased when using 

PKSFeCu but decreased for PKSMnCu. Meanwhile, the second peak, which 

is related to the direct reduction of CuO to Cu, showed decreasing H2 

consumption when co-impregnating copper oxide with iron or manganese 

oxide. The third peak, associated with further reduction of Cu2O to Cu, 

disappeared in both bimetallic oxide catalysts. The reduction peaks originally 

found over the monometallic oxides PKSFe and PKSMn (refer Chapter 4) are 
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noticeable at approximately the same temperature in the bimetallic oxide 

catalysts (peak 4 for Fe2O3, 5 for MnO2 and 6 for Mn2O3).  

 

Figure 5.7: TPR profiles for monometallic and the bimetallic oxide catalysts in 
5 % H2/He at 20 sccm and 10 °C/min. 

 

Table 5.5: Hydrogen consumption for monometallic and the bimetallic oxide 
catalysts. 

mmol/g Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 

*PKSCu10 0.60 1.78 0.39 - - - 

*PKSFe10 - - - 0.38 - - 

*PKSMn10 - - - - 0.01 0.26 

PKSCu20 0.63 2.09 1.86 - - - 

PKSFe10Cu10 1.41 1.52 - 0.24 - - 

PKSMn10Cu10 0.84 0.45 - - 1.50 0.37 

*TPR profiles shown in Chapter 4 

   

 Despite the lower copper content in the bimetallic oxide catalysts, the 

integrated area under the first peak was larger than PKSCu20, with double the 

copper loading. However, the total area under the peaks related to copper is 

lower compared to the PKSCu20, mostly due to the loss of the third peak which 
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is the reduction of Cu+ to Cu. By comparing peak 4 over PKSFe and PKSFeCu, 

the hydrogen consumption almost halved, due to the dominance of peaks 1 

and 2 in PKSFeCu. Meanwhile, the increased in hydrogen consumption under 

the peaks related to manganese species (5 and 6) showed the enhancement 

effects by the Cu-Mn oxides interactions. 

The effect of bimetallic oxides behavior can be further investigated in 

terms of the change in the catalyst acidity-basicity properties. By evaluating 

the FTIR spectra with Curve Translate feature in OriginPro 2017, as shown in 

Figure 5.8, PKSFeCu showed increased in carboxylic acid () transmittance 

at 2660 cm-1 and at the broad peak from 1970 to 1620 cm-1 while PKSMnCu 

exhibited otherwise. In addition, the peak associated with alkyne () from 2400 

– 2000 cm-1 can be seen to decrease on PKSFeCu while strongly increasing 

for PKSMnCu. Meanwhile, the aromatics peak () centered around 1550 cm-1 

increase for both bimetallic oxide catalysts as compared to PKSCu20. 

 

Figure 5.8: FTIR spectra for PKSCu20 and the bimetallic oxide catalysts. : 

carboxylic acids, : alkyne, and : aromatics. 
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To evaluate the effect of changing in the surface functional groups to 

the acidity of the catalysts when co-impregnating the metal oxides, NH3-TPD 

was performed. The NH3-TPD profile is shown in Figure 5.9, with the minima 

point indicated by the straight line. All three curves show the occurrence of two 

distinct peaks: one at the low temperature range and the other at the higher 

temperature range.   

 

Figure 5.9: NH3-TPD profiles for PKSCu20 and the bimetallic oxide catalysts 
in 20 sccm pure helium and 10° C/min. 

  

Integration under each peak deconvoluted from the NH3-TPD curves 

(based on the minima point) showed that the magnitude of the concentration 

at the LTP decreased in the order PKSFeCu (11 mmol/g) = PKSCu20 > 

PKSMnCu (7.8 mmol/g) while at HTP, the decreasing order is PKSFeCu 

(4.7 mmol/g) > PKSMnCu (1.7 mmol/g) = PKSCu20. As LTP is also contributed 

by the acidity of the carbon surface functional groups, the order of the highest 

to the lowest magnitude at this peak is in agreement with the changing of the 

carboxylic acid transmittance obtained via FTIR spectroscopy, even though 

the increased effect (on PKSFeCu as compared to PKSCu20) is not very 

significant.  
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 The performance of the bimetallic oxide catalysts was also compared 

to PKSCu20 as the monometallic oxide catalysts with similar total metal 

loading. Figure 5.10 shows the conversion, selectivity, and carbon combustion 

rate for PKSCu20, PKSFeCu and PKSMnCu. The conversion over both 

catalysts is comparable to PKSCu20 over most of the temperature range of 

study. This can be attributed to the similar reducibility of the catalysts as can 

be seen from Table 5.4. However, the conversion of NO over PKSMnCu at a 

temperature lower than 250 °C can be seen to be slightly lower.  

 

Figure 5.10: Performance of PKSCu20 and the bimetallic oxide catalysts in 
500 ppm NO + 4 % H2 + 1.5 % O2 at 7,175 h-1. 

 

As the conversion of PKSMnCu is low, the selectivity is 100 %, 

indicating less reactivity of the catalysts in H2-NO-O2 system at low 

temperature. The formation of N2O can be seen to decrease when co-

impregnating iron with copper, as compared to using copper alone. This effect 

can be seen in the increased selectivity of PKSFeCu at a low temperature 

window. At temperature higher than 200 °C, the selectivity of PKSMnCu was 

lower than the other two catalysts due to the undesorbed NO or products over 
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the catalyst surface (not shown). Slow desorption of products from the catalyst 

surface is undesirable, due to poisoning effects and fewer vacant sites for 

continuous reaction (Pârvulescu, Grange, & Delmon, 1998).  

The improvement in the conversion and selectivity by the bimetallic 

oxide catalysts as compared to monometallic oxide catalysts can be illustrated 

in Figure 5.11. Note that only data at temperature lower than 250 °C were used 

to accommodate low-temperature H2-SCR system and to disregard complete 

conversions. As can be seen from the figure, monometallic oxide catalysts 

suffered from low selectivity and conversion especially PKSMn and PKSCu 

(located to the left and bottom part). As the catalysts were co-impregnated 

(PKSMnCu and PKSFeCu), the selectivity and conversion moved to the top 

right of the figure indicating an improvement in the selectivity-conversion 

performance.    

 

Figure 5.11: Selectivity as a function of conversion for mono- and bimetallic 
oxide catalysts in 500 ppm NO + 4 % H2 + 1.5 % O2 at 7,175 h-1 and 120 – 

200 °C 
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The combustion rate of PKSMnCu is higher in most of the temperature 

range compared to the other two catalysts, resembling a similar effect on 

PKSMn. This is attributable to the high electropositivity of manganese. 

However, at 300 °C, the combustion rates of both bimetallic oxide catalysts 

are lower than PKSCu20, showing the improvement by the co-impregnation on 

the stability of the catalyst in H2-O2-NO system. This is because under 

oxidizing conditions without the presence of NO, PKSMnCu would decompose 

more easily compared to PKSCu20. This is shown by the DTG curve in Figure 

5.12 obtained during a TG analysis of the catalysts, where the inflection point 

shifted to a lower temperature, indicating the maximum loss of mass at lower 

temperature. 

 

Figure 5.12: DTG curve for PKSCu20 and the bimetallic oxide catalysts in 20 
sccm pure helium and 10 °C/min. 

  

5.3.3 Compositional effects of Fe-Cu on N2 selectivity 

Cooperation between copper and iron oxides in NOx reduction was 

reported by Ma et al. (2012), who reported that bimetallic catalysts increased 

the NO oxidation to NO2 as well as the adsorption of NO2 and NH3, which 

accelerated the reaction. However, the dependency of the performance of this 
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bimetallic oxides catalyst (Fe-Cu-Ox) supported over activated carbon in H2-

SCR on the composition of the two metals has not been reported in the 

literature. This sub-chapter will reveal the effects of different combination of 

Fe-Cu impregnation loading on the performance of the catalyst. The catalysts 

were prepared as per Table 5.1 but the ratio was taken based on the metal 

content obtained via metal loading determination experiment (explained in 

Section 3.5.2).  

 The evaluation of all of these catalysts with different Fe/Cu ratio in H2-

SCR system revealed that the conversion performance (not shown) is 

unaffected especially at temperature higher than 200 °C where total 

conversion was achieved. However, selectivity can be lowered by the 

production of by-product that is N2O at low temperature and the undesorbed 

products from the catalyst surface at high temperature4. The selectivity of the 

catalysts can thus be seen to vary depending on the composition of iron and 

copper in the catalysts. Therefore, the performance of the catalysts with 

different Fe-to-Cu ratios is observed in terms of the selectivity towards N2 

formation as a collective term for the formation of by-products and the 

occurrence of undesorbed products. This is shown in the 3-D graph in Figure 

5.13, taking into account the metals ratio and the temperature as the 

independent variables. 

                                                           
4 The latter phenomenon was proven to occur by heating the used catalysts after reaction to a higher 
temperature in pure helium flow and measuring the desorbed species with MS as discussed in Section 
4.2.3. The desorption profile for an example is included in Appendix C (Figure C.1). 
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Figure 5.13: Compositional effects of Fe/Cu ratio at different temperature in 
in 500 ppm NO + 4 % H2 + 1.5 % O2 at 7,175 h-1. Perspective view from the 

right top. 

  

The selectivity towards N2 formation generally increased with 

increasing temperature and the release of N2O can be avoided at 

temperatures higher than 200 °C. There appeared to be a local minima that 

the selectivity falls below 80 % which is undesirable due to the poisoning 

effects of the undesorbed products – at metal ratio between 0.5 to 0.8 and 

around 240 °C. On the other hand, at temperature below 160 °C, the selectivity 

is low at ratio lower than 0.5 and higher than 0.8. This implicates the formation 

of N2O could be avoided at low temperature with Fe/Cu ratio between 0.5 and 

0.8. In H2-SCR over Pt-based catalyst, Savva & Costa (2011) reported a 

decrease in N2 selectivity with increasing Pt particle size. However, they 

explained that this phenomenon was not due to the geometrical effect of the 

catalyst on the chemisorption of reactants or intermediates, but rather the 

influence it has on the rate of hydrogen spillover from Pt to the active sites 

where adsorbed NOx is located. 
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5.4 CONCLUSIONS 

The effects of co-impregnating copper oxide with iron or manganese 

oxide over activated carbon to produce bimetallic oxide catalysts have been 

studied. Generally, the conversion of NOx with hydrogen as the reducing agent 

was provided mostly by copper due to the low reducibility factor. Increasing 

copper loading increased conversion at low temperature but lowered N2 

selectivity due to the formation of N2O. Additionally, the gasification of carbon 

at high copper loading was also enhanced. TPR analysis showed that 

increasing Cu loading increased the hydrogen consumption. At 20 wt% copper 

loading over PKS, NH3-TPD shows the weak acidic sites (LTP) increased even 

the reduced in carboxylic acid as shown by FTIR spectroscopy confirming the 

contribution of the additional copper species on the acidity. However, the 

strong acidic sites (HTP) were reduced due to agglomeration effects at high 

copper loading. The agglomeration is also observable when co-impregnating 

Cu with Mn or Fe at the same total metal loading, which means that copper 

loading was half that of PKSCu20. Nevertheless, the acidity for both weak and 

strong sites increased for PKSFeCu. For PKSMnCu, the acidity at LTP was 

decreased with an increasing HTP. The change in the magnitude at LTP is 

directly related to the change in the carboxylic acid, as determined via FTIR 

spectroscopy, and the change at HTP with the appearance of copper oxides 

species over PKSFeCu and PKSMnCu as shown via TPR. This also lowered 

the hydrogen consumption by the bimetallic oxide catalysts even though the 

reducibility remains unchanged. Evidently, these properties contributed to 

lower N2O formation at low temperatures (increasing N2 selectivity), especially 

for PKSFeCu. The carbon combustion at higher temperature was also reduced 

as compared to the monometallic oxide catalyst. This demonstrated the 

occurrence of synergistic effects between copper and iron oxides in H2-SCR 

which is a significant finding of this chapter. Further examination of the effect 

of Fe/Cu ratio revealed that the ratio of Fe/Cu loading in the bimetallic oxides 

system affects the formation of N2O and desorption rate of the products.  
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CHAPTER 6.  Kinetics and Stability Studies of NOx Reduction 

using Hydrogen over Iron-Copper Oxides Catalyst Supported 

over Activated Carbon 

6.1 INTRODUCTION 

Chapters 4 and 5 have shown the potential of using activated carbon 

and earth-abundant metals as catalysts to reduce NOx, with hydrogen as the 

reducing agent. The kinetics and mechanism for H2-SCR over precious metals 

(i.e. Pt and Pd) supported over mixed-oxides (such as LaCoO3 and TiO2-

Al2O3) have been established in the literature (Section 2.2.3). Furthermore, 

Aarna & Suuberg (1997) compiled kinetic parameters available in the literature 

on the NO-carbon system. This includes the use of activated carbon and 

coconut char as the carbon catalysts (and in some cases a reactant as carbon 

was consumed in the reaction) in treating NOx gases at temperatures between 

200 and 900 °C. It was concluded that the reaction is generally first order, even 

though some have also reported values from 0.22 (Rodriguez-Mirasol et al., 

1994) to 1.0 (Chan, Sarofim, & Beér, 1983) with respect to NO while the 

activation energy between 40 (Aarna & Suuberg, 1997) to 200 kJ/mol 

(Johnsson, 1994) in the low temperature regime. However, the reaction 

kinetics of NO-carbon with hydrogen as the reductant in oxidizing condition 

have not been reported. The addition of hydrogen (as reductant) and transition 

metals (as catalysts) could enhance the rate of NO consumption as compared 

to the NO-carbon system. This is because those elements would induce 

different mechanisms and kinetics due to the different nature of the gas-solid 

interactions. The presence of oxygen has also been known to affect the 

performance of a catalyst in H2-SCR (Liu, Li, & Woo, 2012). Therefore, it is 

important to study the kinetics of these newly developed catalysts in an 

unconventional system. Finally, the stability of the newly developed catalyst is 

presented for future improvement and the consideration of applications. 
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6.2 MATERIALS AND METHODS 

6.2.1 Catalyst preparation 

 Copper and iron were impregnated over PKS via the incipient wetness 

method described in Section 4.2.1 at 1:1 ratio and 20 wt% total loading. The 

catalyst is denoted as PKSFeCu. 

6.2.2 Transient and kinetic studies 

A transient experiment was carried out to examine the general 

mechanisms of the reaction over PKSFeCu. The fixed-bed reactor used is 

shown in Figure 3.3. Approximately 1 g of catalyst was pre-reduced under 5 % 

H2/He at 250 °C for 2 h. Then, the reactor temperature was set to 200 °C prior 

to feeding a gas or gas mixture in helium at 7,175 h-1. Each gas was introduced 

into the stream stepwise, while the effluent was analysed continuously using 

an MS (Hiden HPR-20, UK). The component quantification method was as 

discussed in Section 3.2.3. For the kinetic studies, the reaction was allowed to 

reach steady-state for at least 2 h. The effects of oxygen on the kinetics 

parameters were also investigated. This was performed by varying the 

concentration of oxygen while adjusting the hydrogen feed to keep the 

volumetric flow rate at STP constant that gave 7,175 h-1 WHSV.  

6.2.3 Stability test 

 The catalyst was exposed to the highest reaction temperature (300 °C 

in this study) for approximately 36 h in 500 ppm NO + 4% H2 + 1.5% O2 in 

helium at 7,175 h-1 WHSV. The characteristics of the catalyst before and after 

the reaction are compared to observe the changes to the properties after a 

long reaction time. The methods and procedures used for this characterization 

are as explained in Sections 4.2.2 and 4.2.3. 

6.3 RESULTS AND DISCUSSION 

6.3.1 Transient experiment and reaction order 

 A transient experiment is used to determine the behavior of a system 

during start-up, transition state and upon shut-down (important for determining 

time to reach equilibrium). It also has been interpreted as indicative of the 

nature of the reactants-catalyst interaction and the sequence of the steps in a 

global reaction (O.Bennett, 1999). The isothermal temperature chosen for this 
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experiment was 200 °C, because at temperatures higher than this, NO might 

experience total conversion as the MS signal is unobservable. Meanwhile, too 

low of a temperature (below 100 °C) would only exhibit an adsorption process 

rather than the reduction by hydrogen. 

 Once the reaction temperature was achieved and the MS signal under 

helium flow was stabilized, a step input of hydrogen was initiated. This is 

shown in Figure 6.1a, while Figure 6.1b shows the response signal when step 

input of NO was started. Reaction kinetics are discussed in Section 6.3.2. 

Finally, oxygen was introduced stepwise and the response is shown in Figure 

6.1c. The effects of oxygen concentration in H2-SCR are discussed in Section 

6.3.3.    

It was observed that the hydrogen signal responded closely to the 

positive step change, with a slight delay of about 100 ms. This suggests that 

hydrogen is not readily adsorbed over the catalyst. It is therefore adequate to 

accept that at this level of concentration (4 %) and temperature, hydrogen 

adsorption is negligible.  

NO, on the other hand, took longer to be detectable at the outlet, with 

a time of ~ 20 mins. This was due to adsorption, because no N-products such 

as nitrogen appeared. The NO adsorption phenomena over PKS-supported 

catalysts have been shown in Section 4.3.2. The occurrence of a breakthrough 

curve (or simply called a knee) approaching a limiting value indicates that the 

adsorption took place over a microporous material and the adsorption was 

governed by the accessible micropore volume (Thommes et al., 2015). After 

NO was introduced into the reactor, hydrogen was seen to decrease in 

concentration and quickly achieve steady-state. As there were no products 

besides water, the decreased hydrogen signal can be attributed to H2 

consumption via the reduction of the metal species that have been re-oxidized 

by NO and achieved equilibrium on the catalyst surface. Ström et al. (2018) 

also reported the oxidation of Ag/Al2O3 by NO upon analyzing the active 

species under diffuse reflectance UV-vis spectroscopy. The reaction was 

carried out in 500 ppm NO + 500 ppm NH3 at 300 °C and 33,400 h-1. 
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Figure 6.1: Transient response for: a) 4 % H2 step; b) 500 ppm NO step; and 
c) 1.5 % O2 step at 7,175 h-1 and 200 °C over PKSFeCu. 
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The transient response of oxygen is similar to NO with the delayed time 

of a few minutes earlier. There were no signs of competitive adsorption at the 

early stage by NO and O2, because NO was still being adsorbed after oxygen 

was fed into the system. At exactly the point at which O2 breakthrough 

occurred, NO can also be observed to desorb from the catalyst surface. It is 

well-known that O2 oxidizes the metal surface and alters the carbon surface 

for NO2 (after NO oxidation) adsorption as nitrates/nitrites (Klose & Rincón, 

2007; Spivey, 1994). Therefore, this point indicates the saturation of 

nitrates/nitrites formation over the PKSFeCu surface. Additionally, the 

stretched knee on oxygen breakthrough curve indicates that physisorption 

occurred with a significant amount of multilayers (Thommes et al., 2015). 

Additionally, NO reached a new steady-state, showing that there were two 

types of sites – one that saturates in the first equilibrium, with the second 

susceptible to desorption in the presence of oxygen. Figure 6.2 illustrates the 

different types of adsorbed species without (a) and with (b) the presence of 

oxygen. 

 

 

Figure 6.2: Proposed adsorbed species over PKSFeCu in: a) NO-H2 system; 
and b) NO-O2-H2 system. c) Illustration of reduction and regeneration of 

metal catalysts by hydrogen. 
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In the meantime, H2 experienced an instantaneous decrease in 

concentration upon a positive oxygen step change that created a minimum 

before attaining steady-state condition. The point of NO and O2 breakthrough 

also saw the starting point of H2 approaching steady-state. This means that 

the minimum was due to the reduction of the re-oxidized metal (water 

formation is not shown in Figure 6.1c) and reaction with NO to form N2 in the 

presence of O2. A sharp peak of the N2 signal was due to the release of air 

trapped in the valve. Despite several attempts were made to avoid this 

disturbance, it persisted. The interpolated N2 signal is shown Figure 6.1c 

where instantaneous formation can be observed. The formation of N2 is known 

to generate oxidized metal surface as the N-species decreases and depending 

on the degree of reduction of H2 at a particular reaction temperature, some 

regenerated metal surfaces (as depicted in Figure 6.2c) (Pârvulescu, Grange, 

& Delmon, 1998). This is also evident as the reaction can reach equilibrium 

with a decreased NO signal (as compared to the inlet signal) and formation of 

N2, which signified the continuing reaction. This also suggests that only NO 

was required to be adsorbed on the catalyst for the reaction to occur, implying 

an Eley-Rideal mechanism. 

The reaction between H2 and O2 over this catalyst could not be totally 

ruled out because it has been reported that the formation of water via this route 

is a side reaction for H2-SCR (refer Section 2.2.3). It is therefore interesting to 

investigate the selectivity of hydrogen towards reacting with NO and O2. In a 

separate experiment, NO was introduced after the H2-O2 system have reached 

an equilibrium (shown in Figure 6.3). With 4 % H2 and 1.5 % O2, almost 

complete consumption of oxygen can be seen at the system’s equilibrium. 

However, upon NO injection, MS signal for oxygen can be seen to gradually 

increase towards its feed value (5.5). Signal for hydrogen immediately 

decreased upon NO injection due to an instantaneous reaction with NO (signal 

for NO is absent due to a complete reduction at 300 °C). This means, hydrogen 

is being highly selective in reacting with NO instead of O2 over PKSFeCu. 
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Figure 6.3: Transient response after injection of 500 ppm NO in a 4 % H2 + 
1.5 % O2 system at  at 7,175 h-1 and 300 °C over PKSFeCu. 

    

6.3.2 Kinetics of NO reduction using hydrogen over PKSFeCu 

Based on the transient experiment, the heterogeneous rate equation 

per unit volume for NO consumption can be written as in equation 6.1 where 

NO concentration, [NO] being the only limiting factor with an order of α and k’ 

as the apparent rate constant (cm3/g.s). The reaction rate can be 

experimentally quantified with equation 6.2 at a steady-state reaction condition 

where; XNO is NO conversion; FNO is flow rate (L/s); mcat is catalyst mass (g); 

and taking 24.5 L/mol as molar volume at STP. This allows the determination 

of the reaction order by varying the inlet NO concentration while keeping 

hydrogen at excess (Murzin et al., 2005b). 

𝑟𝑁𝑂(𝑚𝑜𝑙/𝑐𝑚3. 𝑔. 𝑠) = −
1

𝑚𝑐𝑎𝑡

𝑑𝑛𝑁𝑂

𝑑𝑡
= 𝑘′[𝑁𝑂]𝛼 6.1 

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒, 𝑟𝑜𝑏𝑠 (𝑚𝑜𝑙/𝑔. 𝑠) =
𝑋𝑁𝑂  × 𝐹𝑁𝑂

𝑚 × 24.5 
 

6.2 
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 By evaluating the reaction rates from 200 to 1200 ppm NO, the plot in 

Figure 6.4a was obtained. This is a typical intermediate Langmuir plot 

(between first-order and zero-order) where a reactant is adsorbed on the 

catalyst surface during reaction (House, 1997). Linearization of this curve 

gives Figure 6.4b in which the order of reaction,  can be found from the slope. 

The value of 0.82 is well within the range of NO order of reaction (from 0.22 to 

1.0) over activated carbon and biochars reported by Aarna & Suuberg (1997). 

However, all of the reactions were achieved at least at 400 °C without the 

presence of reducing gas, while the temperature used in this H2-SCR study 

was 200 °C. Most of the reaction orders in H2-SCR were reported to be first 

order over commercial vanadia-based catalysts (Yang et al., 2013), but Costa 

et al. (2007) also reported a negative order (-0.97) over Pt/MgO-CeO2 catalyst 

at 140 °C indicating the poisoning effect of NO. In NH3-SCR, Tufano & Turco 

(1993) reported a decreasing order of reaction (with respect to NO) with 

decreasing temperatures. Using V2O5/TiO2, the reaction order was first order 

at 300 °C and 0.85 at 200 °C.  

The y-intercept from Figure 6.4b gives the apparent reaction constant, 

k’ of about 0.027 cm3/g.s, which is very slow compared to the industrial 

catalysts in NH3-SCR. The linearized reaction rate plot also gave an order of 

0.82, but a slightly lower rate constant (0.023 cm3/g.s) at reaction temperature 

of 170 °C (plots are not shown). This suggests the applicability of the power 

rate law to the temperature range of the study (House, 1997). 

Considering the contribution of the reactant adsorption, the rate of 

reaction can be written as in equation 6.3, where f is the fraction of the surface 

covered by the adsorbed reactants, as given by equation 6.4 for the Langmuir 

isotherm. The adsorption constant K can be estimated by numerical methods 

upon plotting reaction rates against reactant partial pressure (House, 1997).  

𝑟𝑁𝑂 = 𝑘𝑁𝑂𝑓𝑁𝑂 6.3 

𝑓𝑁𝑂 =
𝐾𝑁𝑂𝑝𝑁𝑂

1 + 𝐾𝑁𝑂𝑝𝑁𝑂
 6.4 
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Figure 6.4: Determination of reaction order via initial concentration method 
from 200 to 1200 ppm NO in 4 % H2 + 1.5 % O2 at 7,175 h-1 and 200 °C over 
PKSFeCu. a) Reaction rate plot against concentration and b) linearized plot. 

(■) experimental data and ( ̶ ) fitted curve. 
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Substituting equation 6.4 into 6.3 gives equation 6.5, which resembles 

that of Michaelis-Menten. This allows the determination of the kinetics 

parameters via Lineweaver-Burk plot shown in Figure 6.5. Note that the unit 

for kNO is mol/g.s instead of cm3/g.s (as in k’), indicating that the adsorption 

attribute is now embedded into the equilibrium constant, KNO (Pa-1) (Koebel & 

Elsener, 1998).  As NO pressure approaches zero, the term KNOpNO << 1 can 

be neglected but the approximation would overestimate the reaction rate by 

10 % due to non-unity reaction order. However, this parameter is useful in 

determining the heat of adsorption by plotting KNO in a linearized plot against 

temperature (not shown):  

𝑟𝑁𝑂 = 𝑘𝑁𝑂

𝐾𝑁𝑂𝑝𝑁𝑂

1 + 𝐾𝑁𝑂𝑝𝑁𝑂
 6.5 

When evaluated between 170 and 200 °C, the estimated heat of 

adsorption was -240 kJ/mol. This is highly exothermic chemisorption 

compared to the reported values for NO adsorption over other types of 

catalysts such as -51 kJ/mol for molecular sieve 13 X in 250 – 400 °C (Rezaei 

et al., 2015), -63 kJ/mol for Pt-Mo-Co/α-Al2O3 in 140 – 160 °C (Frank, Emig, & 

Renken, 1998) and -21 kJ/mol for commercial catalyst in 225 – 250 °C (Koebel 

& Elsener, 1998). The known ∆Hads for NO adsorption over iron oxide and 

copper oxide are -21 kJ/mol (Otto & Shelef, 1970) and -10 kJ/mol (Gandhi & 

Shelef, 1973), correspondingly. The increased heat of adsorption in this study 

indicates that enhanced adsorption energy is supplied by the bimetallic oxides 

catalyst. 
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Figure 6.5: Lineweaver-Burk plot for equation 6.5 determining kinetic 
parameters of H2-SCR over PKSFeCu from 30 to 200 Pa NO in 4 % H2 + 1.5 

% O2 at 7,175 h-1 and 200 °C. (■) experimental data and ( ̶ ) fitted curve. 

 

The activation energy, Ea can be determined from an Arrhenius plot of 

rate constants against temperature (see equation 6.6). At this stage, the 

temperature ranged from 110 to 215 °C, in which the conversion of NO is at 

least 10 % but less than 20%. Lower conversions at low temperature would 

only imply the adsorption of NO instead of conversion, as observed in previous 

studies (refer Section 4.3.4). Conversely, at higher conversion, the heat of 

reaction resulting from the high amount of NO converted would underestimate 

the activation energy. This limits the evaluation of the rate equation over the 

reaction temperature studied. Figure 6.6 shows the Arrhenius plots at 250, 500 

and1000 ppm NO. 

𝑘 = 𝐴0𝑒−𝐸𝑎/𝑅𝑇 6.6 
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Figure 6.6: Arrhenius plots at: a) 250 ppm NO; b) 500 ppm NO; and c) 1000 
ppm NO in 4 % H2 + 1.5 % O2 from 110 to 215 °C at 7,175 h-1 over 

PKSFeCu. (■) experimental data, ( ̶ ) fitted curve for the first region and ( ̶   ̶ ) 
fitted curve for the second region. 
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 It is evident that two regions of linear Arrhenius plots exist over the 

carbon catalyst below 1000 ppm. This break in the Arrhenius plot is commonly 

reported in the literature, as reviewed by Aarna & Suuberg (1997), for the 

reaction of NO with carbons. The temperature at which this splitting occurred 

was calculated by solving simultaneous equations between the two regions. It 

can be seen that the temperature shifted to a lower temperature when 

increasing the NO concentration (from 200 °C at 250 ppm NO to 180 °C at 

500 ppm). This effect seemed to disappear at higher NO coverage when the 

activation energy was low. The kinetic parameters from the Arrhenius plots are 

summarized in Table 6.1.  

 

Table 6.1: Summary of kinetic parameters form Arrhenius plots in Figure 6.6. 

Parameter 250 ppm NO 500 ppm NO 1000 ppm NO 

Region 1 

A0 (cm3/g.s) 

Ea (kJ/mol) 

 

3 X 105 

50 

 

1080 

30 

 

30 

15 

Region 2 

A0 (cm3/g.s) 

Ea (kJ/mol) 

 

33 

15 

 

1.5 

3 

 

N/A* 

*Not available. 

  

All of the kinetic parameter values decreased with increasing NO 

concentration. At 250 ppm, the reaction is active (based on the pre-exponential 

factor), but the activation energy is higher, which was the reason for the very 

low and absence of conversion below 175 °C. The decrease in A as the 

concentration increased to 1000 ppm, or as the reaction temperature 

decreased to lower temperature (region 2), indicates that the reaction was 

easily achieved at low temperature, but at a perceptible rate, whereas a higher 

energy barrier needs to be overcome at higher temperature with higher 

activity. 

6.3.3 Influence of oxygen concentration  

 The transient experiment has shown that oxygen was also adsorbed 

over the catalyst surface and was involved in desorption of NO, which allowed 

the conversion to N2 to increase. Therefore, it is important to study the 
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influence of oxygen concentration on the reaction. This was denoted as the 

ratio of hydrogen volume as a reductant to that of oxygen as an oxidant. Figure 

6.7 shows the performance of PKSFeCu at different H2:O2 ratios. 

The conversion of the reaction in the absence of oxygen can be seen 

to always be very high (~ 100 %). However, the formation of nitrogen was only 

observed over a narrow temperature window (100-150 °C). This has also been 

shown via the transient experiment in Section 6.3.1 which was performed at 

200 °C. Furthermore, the temperature at which NO conversion exceeded 20 % 

was about 200 °C for 1:1 H2-to-O2 ratio, and higher (above 250 °C) for higher 

oxygen concentrations. In addition, the reaction in which the highest O2 

concentration was used (4.5 % O2 in the 1:2 H2-to-O2 ratio) did not experience 

total conversion over the temperature range studied. This is proposed to be 

due to the fact that at this concentration, metal oxidation is faster than metal 

reduction. Similar findings were reported by Lindholm, Sjövall, & Olsson 

(2010), who compared the performance of a hydrogen-deficit system 

(2000 ppm H2 + 8 % O2) and hydrogen-rich system (16000 ppm H2 + 8 % O2); 

the former was reported to unable to regenerate the Pt/Ba/Al catalyst at 

200 °C. 

However, N2 selectivity at high oxygen concentration increased with 

temperature, and no formation of NO2 or N2O was detected. This may be due 

to the low reactivity resulting from the low NH intermediate formed during the 

reaction as also has been pointed out by Lindholm, Sjövall, & Olsson (2010). 

The low selectivity in the reaction at lower oxygen concentration was 

accompanied by the formation of N2O which was also observable at low 

temperature. This showed that the formation of N2O not only is preferable at 

low temperature but also in oxygen-poor condition. Väliheikki et al. (2014) also 

reported the reduced formation of N2O in a high O2 content (up to 10 %) in H2-

SCR over W/CeZr catalyst. 
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Figure 6.7: Influence of H2:O2 ratio in H2-SCR of 500 ppm NO at 7,175 h-1 
with PKSFeCu. a) NO conversion, b) N2 selectivity and c) combustion rate. 

 

 There was no combustion observed for the reaction in the absence of 

oxygen over all temperature range studied even during the formation of N2, 

showing that the reduction to N2 was solely that of H2-NO reactivity over 

PKSFeCu. This differs from the conventional reactions using NH3 as a 
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reductant (Shi et al., 2017) or decomposition at high temperatures (Singoredjo 

et al., 1990) involving the carbon molecule in the reduction mechanism. 

Therefore, using hydrogen as a reductant in a non-oxidizing SCR makes it 

preferable that the carbon mass be conserved while NO is reduced at low 

temperature. Meanwhile, the combustion rate in the reaction with equimolar 

H2 and O2 showed more dramatic increase at higher temperature compared 

to the reaction with the highest O2 concentration. This may indicate that the 

1:1 H2:O2 ratio is the optimum gasification condition in H2-SCR over PKSFeCu, 

resembling the effect of oxidant enrichment in industrial carbon gasification. 

 The Arrhenius plots for the different H2:O2 ratios are shown in Figure 

6.8. Note that there is no plot for the reaction without oxygen due to the very 

high NO conversion over all temperature range investigated in this project. The 

plot for 1:0.5 can be found in Figure 6.6b. The dissecting temperature for the 

plots in the reaction with 1:1 H2:O2 ratio was 220 °C which is higher than when 

using 1:0.5 ratio. This temperature could not be obtained at higher oxygen 

concentration because of the absence of conversion at temperature lower than 

220 °C. Aarna & Suuberg (1997) determine that Ea is high beyond this 

temperature; typically, gasification occurs in this high-temperature region (no 

general value for this threshold). From this experiment, the phenomenon of 

disappearance of this temperature appears highly dependent on the levels of 

O2 and NO; doubling NO concentrations reduced the temperature by 20 °C, 

while doubling oxygen concentrations increased the temperature by 40 °C. 

However, further increasing the O2 concentration to a 1:2 ratio with respect to 

H2 and higher NO concentration removed this effect.   

 

 



 
 

150 
 
 

 

 

 

Figure 6.8: Arrhenius plots for: a) 1:1 ; and b) 1:2 H2-to-O2 ratio of 500 ppm 
NO at 7,175 h-1 with PKSFeCu. (■) experimental data, ( ̶ ) fitted curve for the 

first region and ( ̶   ̶ ) fitted curve for the second region. 

 

   



 
 

151 
 
 

 
The activation energy for the first region in Figure 6.8 is about 64 kJ/mol 

and 42 kJ/mol for reactions with 1:1 and 1:2 ratios, respectively. The pre-

exponential factor was also larger (3.2 X 106 versus 1.3 X 104 cm3/g.s) with a 

1:1 ratio in the reaction condition, showing the higher activity in H2-SCR. This 

is why the catalyst in this condition surpassed the reaction with higher O2 

content in terms of conversion and selectivity especially at higher temperature 

(above 220 °C).  However, gasification in this condition also increased (see 

Figure 6.8c), creating a trade-off to stability when using this catalyst under 

these conditions. Further analysis was performed to determine the stability 

factor. 

6.3.4 Stability of PKSFeCu over extended reaction period 

 It has been shown that the condition used in Chapter 4 and 5 is an 

intermediate case with high NO conversion and N2 selectivity, and 

considerably low carbon combustion. However, the performance of the 

catalyst (PKSFeCu) could vary with a longer reaction period. Stability in this 

case refers to both the long-time performance and the catalyst structure 

against the oxidizing condition. The duration of a stability test varied from 5 h 

(Yoshinari et al., 2003) to 167 h (Shen, Ge, & Chen, 2016), but a more practical 

approach would include a disturbance in the gas composition during this 

period, which is lacking in the literature. This disturbance mimics the 

fluctuation of oxygen concentration in flue gas (Liu et al., 2010). Figure 6.9 

shows the conversion, selectivity and by-products formation over PKSFeCu in 

a selected H2-SCR condition. The highest temperature in the study was used 

(300 °C) to accelerate the effects of carbon combustion. It can be seen that 

the first 2 – 3 h demonstrated that a nearly ideal steady-state was reached, 

implicating the duration used to obtain data of studies in Chapter 4, 5 and 6 

(except this section). Thus, N2 selectivity can be seen to decrease by 10 % 

from the 4th to 10th hour, with NO conversion remained total. By reducing O2 

concentration gradually at 1 %/s at the 10th hour (a), the conversion and CO2 

production exhibited reductions of 10 and 80 %, respectively. The selectivity 

showed high disturbance due to the complex formation of by-products such as 

NO2 (with a peak from 10th to 20th hour). Feeding in O2 at the 10th hour at 

100 %/s (b) brought the conversion back to around 100 %, but the selectivity 
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and carbon combustion remained low, though some increased in N2 selectivity 

can be seen at about the 33rd hour.   

 

 

Figure 6.9: Performance of PKSFeCu in 500 ppm NO + 4 % H2 + 1.5 % O2 at 
300 °C and 7,175 h-1. a) Gradual decrease of O2 concentration at 1 %/s and 

b) Step increase of O2 concentration. 

 

The physical properties were reported to be changed throughout the 

reaction period, which would also affect the chemical properties. Wang et al. 

(2015) studied the stability of copper-coupled catalysts supported over CeO2 

for 20 h and found significant changes in physical properties, including surface 

composition. Therefore, comparisons of the physical properties before and 

after the reaction are summarized in Table 6.2. The carbon burn-off was 70 % 

where the loss was contributed mostly by carbon and oxygen. The ash 

percentage content increased due the adjustment of the composition with the 

lowered carbon and oxygen portions. However, the mass of copper and iron 

loaded was conserved. The parameters in the surface properties can also be 

seen to reduce by 50 % except for the external surface area and average pore 
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size width that were greatly enlarged. These changes can be attributed to the 

pro-longed effect of exposure at 300 °C. 

 

Table 6.2: Comparison of the physical properties for PKSFeCu before and 
after 36 h reaction in 500 ppm NO + 4 % H2 + 1.5 % O2 at 300 °C and 7,175 

h-1. 

Properties (unit) Fresh PKSFeCu Used PKSFeCu 

Mass in reactor (g) 1.0 0.30 

Elemental analysis (%) 
C 
H 
N 
O 

Ash content 
Metal content (%) 

Cu 
Fe 

 
48 

0.46 
0.53 

29.94 
20.6 

 
7.0 
5.7 

 
32 

1.38 
0.29 
6.53 

59.56 
 

25.7 
18.6 

Surface properties 
BET surface area (m2/g) 

t-plot micropore area (m2/g) 
t-plot external surface area (m2/g) 

t-plot micropore volume (cm3/g) 
BJH adsorption average pore width (Å) 

 
767 
763 

4 
0.379 

3 

 
443 
397 
46 

0.197 
4 

  

6.4 CONCLUSIONS 

 A transient experiment was performed prior to kinetic experiment 

analysis to evaluate the general mechanism of H2-SCR over PKSFeCu. 

Apparently, the reaction obeys Eley-Rideal mechanism; only NO was 

adsorbed over the catalyst surface while H2 reacted in the gaseous phase. NO 

showed strong adsorption with two distinguishable sites: one over the 

microporous surface and another over the metal oxide or the external surface. 

The latter is prone to formation of nitrites/nitrates species in the presence of 

O2. Oxygen adsorption was weaker (physisorption) in which upon contacting 

with metals oxidizes the surfaces. Hydrogen played two roles – reducing 

nitrates/nitrates species into N2, and regenerating oxidized metal surfaces for 

continuing bonding with O2 and NO. Kinetic experiments revealed that a power 

rate law is adequate in expressing the reaction rate that has the order of 0.82. 

A Langmuir isotherm was also adequate in expressing the adsorption 

coverage fraction, revealing that the nature of NO adsorption was that of 

chemisorption (-240 kJ/mol). The dependency of the rate constants on 

temperature was also examined via Arrhenius plots. It was shown that a break 
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in Arrhenius plots separates the low and the high temperature regime. At low 

temperature, the activation energy is as high as 50 kJ/mol, but this decreases 

with increasing NO concentration. Similarly, in the high temperature region, Ea 

decreased to a point that it disappeared (at 1000 ppm NO). Furthermore, high 

O2 content reduced gasification (based on 1:1 H2:O2 ratio), but a lack of 

oxygen induced the formation of N2O, especially at low temperatures. The 

stability test for PKSFeCu under oxidizing conditions showed that the physical 

properties changed after 36 h in H2-SCR operation. The disturbance in the 

oxygen content in the feed lowered the selectivity and carbon combustion. It 

has been proven that this happened due to changes in physical properties, 

and the carbon burn-off was about 70 %. This means that this catalyst has yet 

to be industrially ready. Further development should be made in terms of the 

stability of the catalyst.  
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CHAPTER 7. GENERAL CONCLUSIONS AND FUTURE WORK 

7.1 General Conclusions 

 This study aims to explore an SCR system using hydrogen as a 

renewable reductant, a sustainable catalyst support (activated carbon 

developed from biomass waste), and earth-abundant and less precious metals 

(copper, iron and manganese) as catalysts. The NO conversion, selectivity 

towards nitrogen formation and carbon combustion in the system were 

investigated. The catalysts were also characterised in terms of the elemental 

composition, surface area and porosity, acidity, surface functional groups, 

redox properties and NO adsorption-desorption behavior.   

 Two types of catalyst design have been synthesized and investigated 

in H2-SCR – mono- and bimetallic oxide catalysts supported onto activated 

carbon (developed from palm kernel shell).  For monometallic catalysts, 

copper, iron and manganese were impregnated (via incipient wetness method) 

over carbon at 10 wt% metal loading and calcined at 350, 510 and 540 °C for 

copper, iron and manganese, respectively, giving catalysts denoted as 

PKSCu, PKSFe and PKSMn. In 500 ppm NO + 4 % H2 + 1.5 % O2 and helium 

as balance flow of 7,175 h-1, PKSCu showed the highest NO conversion (100 

% above 250 °C). However, the catalysts were not able to achieve 20 % 

conversion at temperatures lower than 250 °C. Increasing copper content to 

20 wt% improved the NO conversion at low temperature (25 % at 200 °C). 

However, selectivity towards N2 formation decreased due to the formation of 

N2O. Carbon combustion was enhanced at high copper loading. Co-

impregnating of copper and either iron or manganese (PKSFeCu and 

PKSMnCu) at 20 wt% total metal loading and a 1:1 mass ratio was seen to 

eliminate this effect. PKSFeCu showed better performance in a wide 

temperature window, with high N2 selectivity (80 to 100 % over 120 to 300 °C) 

and low carbon combustion (0.2 µmol/s at 300 °C). The low selectivity at low 

temperature was attributed to the formation of N2O, while at high temperature 

this was caused by the undesorbed NO and reaction products. To understand 

the factors governing these performances, the catalysts were physico-

chemically characterized.  
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 The extent of NO conversion was found to be correlated with the 

reducibility of the catalysts. This was measured using the hydrogen-

temperature programmed reduction (TPR); PKSCu showed the lowest 

reduction temperature. High reducibility means that the metal species over the 

catalyst surface are easily regenerated for the continuing conversion of NO. 

Increasing the copper content and co-impregnation with iron or manganese do 

not change the reducibility factor. Additionally, TPR revealed the types of metal 

species present on the catalyst surface that contributed to the hydrogen 

consumption. It was evident that Cu, Cu2O and CuO existed on PKSCu, Fe2O3 

over PKSFe, and MnO2 and Mn2O3 over PKSMn. Higher copper content and 

bimetallic oxide catalysts showed an agglomeration effect. This lowered the 

hydrogen consumption but the conversion was improved, which means there 

is another factor that is governing the conversion and selectivity.  

Acidity of the catalysts is known to provide adsorption sites for the NH 

as an intermediate in H2-SCR. It was determined via ammonia-temperature-

programmed desorption (NH3-TPD), in which high ammonia desorption is 

correlated to high acidic sites. Doubling the copper concentration increased 

the NH3 desorption at low-temperature region (LTP) while decreasing the high-

temperature peak (HTP); PKSMnCu showed the opposite effect. Conversely, 

PKSFeCu showed an increase in desorption at both regions. This is highly 

related to the change in ammonia desorption intensity where the LTP affects 

the selectivity at high temperature while HTP affects the selectivity in a low 

temperature reaction.  By corroborating NH3-TPD with FTIR spectroscopy 

data, it is evident that LTP was contributed to by the carbon support functional 

groups and the interaction with copper. Therefore, this property is proposed to 

be responsible for the desorption of N-containing products, as the low 

selectivity at high temperatures was due to the undesorbed products (including 

NO). These structure-performance relationships may indicate the synergistic 

effects of the bimetallic oxide system. Further investigation into the effects of 

metal ratio on PKSFeCu has shown that the formation of N2O and desorption 

of N-products are rather complex depending both on temperature and Fe-Cu 

loading ratio over PKS. Ratio between 0.5 and 0.8 reduced the formation of 

N2O at low temperatures (below 160 °C), while abstaining the desorption of N-
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products at high temperatures. At this point, PKSFeCu has shown promising 

performance. Its applicability has thus been evaluated. 

 The kinetic experiments revealed that the rate of reactions for H2-SCR 

over PKSFeCu is in the order of 0.82 with respect to NO concentration. Only 

NO was required to be adsorbed while H2 reacts in gaseous phase, suggesting 

an Eley-Rideal mechanism. The heat of adsorption was ~ -240 kJ/mol which 

is the most exothermic among the values ever reported in the literature 

indicating the high chemisorption bonding energy with PKSFeCu. This is 

beneficial when a system is able to regenerate the catalyst, but becomes a 

drawback when NO poisons the active sites against the further conversion and 

formation of N2. Additionally, the effects of temperature, NO concentration and 

oxygen content were studied via Arrhenius plots. It was shown that the 

activation energy is high at low temperatures and decreases with increasing 

NO concentration.  Increasing oxygen content (H2:O2 ratio of 1:1 and 1:2) 

increased the activation energy with 1:1 ratio having the highest (Ea = 

64 kJ/mol). The increase in activation energy lead to an increase in the 

temperature window as indicated by the break in Arrhenius plots.  

The combustion of the catalyst under reaction conditions has also been 

evaluated. Thermogravimetric analysis (DTG) revealed the offset temperature 

of PKSMn to have the lowest offset temperature and inflection point, indicating 

its highly combustible character. This is most likely due to the high 

electropositivity of manganese making it a challenging metal to apply with a 

carbon support. The combustion rate in terms of CO2 production was also 

measured, taking into account the effect of oxidation by NOx. Increasing the 

copper content increased CO2 production, but co-impregnating the copper with 

iron reduced this shortcoming. Additionally, the stability test was also 

performed on PKSFeCu at 300 °C in 500 ppm NO + 4 % H2 + 1.5 % O2 at 

7,175 h-1 for 36 h. The disturbance in the oxygen content for about 5 h lowered 

the selectivity by ~ 20 %. This is due to change in the physical properties (such 

as reduced in carbon and oxygen content, BET surface area, micropore area 

and volume). This indicates that further improvement on the stability of the 

catalyst in oxidizing condition is required prior to application in industry. 
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 In conclusion, an H2-SCR with carbon-supported Fe-Cu catalyst is able 

to reduce NO under oxidizing conditions with promising performance. 

However, future work is urgently needed to develop a durable catalyst from 

sustainable resources to attract industrial interest in adapting such a system. 

7.2 Future Work 

7.2.1 Methods 

It was proven that the catalyst crystallinity is an important factor. 

Therefore, the synthesis of the catalyst should be able to grow crystals of 

desired size over carbon surface. For instance, Gong et al. (2015) 

demonstrated that atomic layer deposition method can be applied to activated 

carbon with the presence of various functional groups in order to specifically 

grow a controlled size of Pd nanoparticles over the carbon surface. This 

method involves flowing the catalyst precursors in vapor form over the catalyst 

surface. 

The detailed mechanism in the NO-H2-O2 system over platinum-based 

catalysts can be investigated using a steady-state transient kinetic analysis 

(SSTIKA). In the experiment, the molecule sources are switched using its 

different stable isotopes, for instance from 14NO to 15NO, after an initial steady-

state was reached. This reveals the knowledge on which N atoms (adsorbed 

or gaseous) reacts together to form N2. The dominant route of N2 formation is 

known to be formed by two different N species, which is called the “impact” 

route. Burch, Shestov and Sullivan (1999) utilized this method and reported 

that about 85 % of the N2 generated over a 5 wt.% Pt/SiO2 was via the 

interaction between physisorbed NO with the reduced N-containing species 

on the metal surface, while the rest resulted from the combination of two 

similar N-species on the surface. In addition, Costa and Efstathiou (2004) 

stated that one of the species involved in the impact route should be reversibly 

chemisorbed. With the corroborative experiments of temperature-programmed 

surface reaction (TPSR) and in situ FTIR spectroscopy, the authors concluded 

that this species is exclusively that of nitrosyls on metal (Savva & Costa, 2011).  

Mechanistic studies have also explained the formation of one toxic by-

product in this reaction, namely nitrous oxide. In a lower temperature 

experiment (below 100 °C) and lower Pt dispersion (30 %), N2O is formed via 
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the generation of a dimeric (NO)2 from two identical adsorbed N-species while 

higher temperature and Pt dispersion lead the nitrosyls and unidentate nitrates 

to react quickly with the gaseous NO to form N2O (Savva & Costa, 2011). 

Therefore, it is interesting to apply this method on carbon-supported catalyst 

that possessed different functional groups contributing to different types of 

nitrates/nitrites species. 

As for the characterization, it is interesting to quantify the metal/metal 

oxides particle size, oxidation state and contribution of metals and activated 

carbon in the acidity of the catalyst. The particle size can be determined using 

transmission electron microscope (TEM) as being performed by Su et al. 

(2015) for MnOx particle size distribution over TiO2-graphene oxide support, 

and Santillan-Jimenez et al. (2011) for Pt over carbon nanotubes. The 

oxidation state of the metal/metal oxides presence on the catalyst can be 

found using X-ray absorption near edge spectroscopy (XANES) (refer page 

43). Furthermore, the contribution of metals and activated carbon in the total 

acidity of the catalyst can be determined by varying the acidity of the carbon 

support. This can be achieved by varying the calcination temperature as higher 

temperature resulted different surface functional groups which affected the 

acidity (refer page 95). The resulting variant of catalysts can be evaluated 

using NH3-TPD and FTIR that could show the contribution of the carbon acidity 

while taking the balance as the acidity contributed by the metal species.  

7.2.2 Stability improvement 

The study on ceria-containing materials have shown that NO reduction 

occurred at the reduced ceria sites. The NO consequently oxidizes the sites 

and the lattice oxygen of the CeO2 moves freely between the ceria and 

adjacent metals (such as Pt and Pd) completing the oxidation-reduction cycle. 

The dissociated N atoms are then released as N2 or N2O even at room 

temperature, as observed in a Ce-Pd system (Cordatos & Gorte, 1996). This 

is an example of a material that governs the oxygen mobility on catalyst which 

can be applied to prevent carbon combustion.   

In a separate study by Illán-Gómez et al. (2000), comparing the activity 

of copper, cobalt, iron and nickel coupled with potassium-impregnated carbon, 

concluded that the alkali metal imposed synergistic effect with the transitional 
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metals because of increased NOx conversion as compared to the 

monometallic catalysts. K-Ni showed the most interesting effects, because 

despite a similar starting NOx decomposition temperature of 200 °C with Cu 

and Co, the carbon burn-off at this temperature is half than those of its 

counterparts. However, as the concentration of oxygen is increased to 5 %, 

the carbon burn-off of K-Ni/AC increases from 23 to 32 %. Nevertheless, it is 

worth studying the multimetallic effects of Cu-Fe-K supported over activated 

carbon in a pursuit to develop a durable catalyst. 

Transitional metals were also used as additives including W, Mo, Ag, 

Cr and V. Tungsten was reported to activate Pt by increasing the electron 

density over the surface, molybdenum to reduce the oxygen affinity of the 

catalyst, and silver to provide higher antioxidant capacity, hence keeping the 

noble metals in a reduced states even in high oxygen concentration, while 

chromium and vanadium to promote the formation of ammonium ions as the 

intermediate species (Liu, Li, & Woo, 2012). 

7.2.3 Other less precious metals 

Potassium was also studied and found to increase N2 selectivity over 

Pd/TiO2 by about 100 % (40 to 80 % N2 selectivity over PdTiO2 and Pd/K2O-

TiO2 respectively at 175 °C). It was observed under DRIFTS that the intensity 

of Pd0-NO increased which is believed to be the key intermediate in this H2-

SCR (Li et al., 2008).  

Sodium has been reported to be one of the best among alkali metals 

promoted on Pt-ZSM5. In a 0.08 % NO + 0.28 % H2 + 10 % O2 gas inlet mixture 

at 0.24 gscm-3 catalyst weight-to-flowrate ratio, 15 wt.% Na was found to be 

the optimal addition, producing up to 50 % N2 selectivity as compared to below 

20 % over non-promoted catalyst at temperatures below 110 °C. This was 

claimed to be due to the increased 𝑁𝑂2
− formation, as observed under the 

diffusive reflectance infrared Fourier Transform spectroscopy (DRIFTS) 

(Machida & Watanabe, 2004).  

Furthermore, Co3O4 was thought to be one of the best single-

component decomposition catalysts, but Haneda et al. (2003) clarified that the 

interaction of cobalt with the residual Na left upon the preparation of the 

catalyst is what govern the reaction. Singular cobalt oxide only produces 
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0.01 μmolN2 min-1g-1 at 873 K, while the presence of 0.032 Na-to-Co ratio 

increased the reaction rate to 1.72 μmolN2 min-1g-1. The alkali metals have 

been suggested to increase the rate of oxygen desorption from cobalt oxide 

by weakening the Co-O bond, rather than providing a synergistic effect via 

composite metal oxides.   

7.2.4 Other components in flue gas 

 An SCR system is often exposed to other components in flue gas 

depending on the location of the reactor. PKSFeCu is suitable for the 

applications at the tail-end configuration (refer Section 2.1.1) when poisonous 

gases such as SO2 are absent. However, water vapor, carbon monoxide and 

carbon dioxide may still be present at concentrations that could affect the 

performance of the catalyst. 

 The presence of H2O at 0 – 10 % in H2-SCR over Ir/WO3/SiO2 did not 

affect adversely NO conversion. It was claimed that H2O even aided the 

stabilization of reduced Ir sites by producing H2 in-situ via water-gas shift 

reaction (Hamada & Haneda, 2012). Tu et al. (2017) explained that over a dry 

Pt/carbon catalyst, water adsorption limits NO adsorption on both Pt and 

carbon surfaces, but promotes H2 adsorption to react with adsorbed NO. The 

water concentrations used were 1 - 3 % at 150 °C, leading to an increase in 

NOx conversion by 10 %. On the other hand, the presence of H2O at about 

5 % was reported to decrease 10 % NOx conversion over 1wt%Pt/Al2O3 due 

to NO-H2O competitive adsorption. This is especially true at temperature as 

low as 200 °C (Liu, Li, & Woo, 2012). 

 The presence of CO in flue gas due to incomplete combustion was also 

reported in the literature on its effects towards NOx conversion. Negative 

effects were observed with a Pt/MgCeO catalyst below 200 °C with increasing 

CO concentration of up to 3 %. This was attributed to the competitive 

adsorption between CO and H over Pt sites (Costa et al., 2007). On the 

contrary, CO had positive effects on Pd/Al2O3, as a maximum NOx was 

achieved at an optimum CO-to-H2 ratio of 3:1 and at 150 °C. However, a higher 

ratio would decrease the NOx conversion and N2 formation (Savva & Costa, 

2011).  There is lack of reports on the effects of CO2 in H2-SCR, but generally, 

Savva & Costa (2011) claimed that CO2 has no significant effects (with 
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concentration in flue gas of up to 10 %) on NOx conversion over metal oxide 

supported catalysts such as Pt/MgCeO. However, as CO2 is readily adsorbed 

over activated carbon at room temperature (Zulkurnai et al., 2017), it is 

expected that it would compete with NO for adsorption sites. The accumulative 

effects of multi-components in flue gas are therefore a specific study pertinent 

to a particular flue gas of a specific composition.  
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Appendix A: Supplementary information for Chapter 3 (Methodology) 

Table A.1: Fragmentation and relative fragment intensities (RFI). 

 RFI as found in MS library % RFI from calibration experiment % 

Species 47 46 45 44 34 33 32 31 30 29 28 22 20 19 18 17 16 15 14 13 12 4 2 1 

He                      100 10  

                      100 0.02 4.93 

NO       0.2 0.4 100        1.5 2.4 7.5      

       0.41 0.36 100        1.40 2.53 5.34      

NO2 1 37.0       100.0        22.3  9.6      

 0 11.7  6.6   12.9 0.4 100.0        4.7 6.4 4.4      

CO2  0.4 1.3 100      0.1 11.4 1.2     8.5   0.1 6.0    

  0.37 1.11 100      0.08 10.78 1.60     17.55   0.04 7.98    

N2O  0.2 0.7 100    0.1 31.1  10.8      5  12.9    0.1  

  0.25 0.83 100   1.60 0.16 27.76  11.98      7.61  14.16    1.45  

N2          0.8 100        7.2      

          0.7 100        9.28      

CO         0.2 1.1 100      0.9  0.6  4.5    

           100              

O2     0.4 0.1 100          11.4        

     0.39 0.08 100          11.97        

NH3               0.4 100 80.0 7.5 2.2      

         2.2      6.3 100 78.1 3.1 0.9    0.7  

H2                       100 10.0 

                       100 28.96 

H2O             0.3 0.1 100 23 1.1      0.7  

           1.44  0.00 5.08 100 25.97 2.13      0.00  

Highlighted green RFI – overlapped base peak 
Highlighted yellow RFI – unique indicator of gas present 
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Figure A.1: Calibration curve for GCTCD molecular sieve column. Detector: TCD 

(100 °C), carrier gas: pure hydrogen (5 mL/min), oven ramp: 30 °C for 8 mins, 

increase to 300 °C at 40 °C/min and hold for 10 min. 

 

Figure A.2: Calibration curve for GCTCD PLOT column. Detector: TCD (100 °C), 

carrier gas: pure hydrogen (5 mL/min), and oven ramp: 30 °C for 5 min. 
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Table A.2: Calibration certificate for KANE 940 combustion analyser of the 

following accuracy: ±2ppm NO for < 30 ppm, ±5ppm NO for > 30 ppm and 

±5ppm < 100 ppm NO2. 

Gas value: 
O2 5.08% 

NO 995 ppm 
CO 977 ppm 

Instrument reading 
5.2% 

1000 ppm 
972 ppm 

Applied value for NO (ppm) 
0 

10 
25 
50 
75 

100 
500 

Instrument reading 
0 
9 

24 
49 
74 

100 
499 

 

Section A.1: Sample calculation for NOx at reference condition. 

Oxygen correction factor, 𝑓𝑜𝑥𝑦 =
21−𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑥𝑦𝑔𝑒𝑛

21−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑜𝑥𝑦𝑔𝑒𝑛
 

Concentration at reference conditions = measured concentration X foxy 

In the case for using catalyst PKSCu20 in 500 ppm NO + 4% H2 + 1.5% O2 at 200 °C, 

Reference oxygen = 1.5% 

Measured oxygen with KANE940 = 2.7% 

NO measured concentration with KANE940 = 479 ppm 

Therefore, the corrected NO concentration = 510 ppm 

Table A.3: Calculation of heat of reaction at 300 °C. 

Component 

∆Hr(298) Cp (J/mol.K) 

kJ/mol 298 573 

NO 91.2 29.86 30.51 

H2 0 28.84 29.32 

N2 0 29.12 30.1 

N2O 81.6 38.6 48.38 

NH3 -45.9 35.64 45.26 

H2O -241.8 75.38 36.48 

 

prod - react -1387.5 96.96 -44.15 

 

∫ 𝐶𝑝𝑑𝑇
573

298

 
-54.192 

∆Hr(573) -1441.69 

2𝑁𝑂 + 2𝐻2 → 𝑁2 + 2𝐻2𝑂 

2𝑁𝑂 + 𝐻2 → 𝑁2𝑂 + 𝐻2𝑂 

𝑁𝑂 +
5

2
𝐻2 → 𝑁𝐻3 + 𝐻2𝑂 

∆𝐻𝑅(𝑇) = ∆𝐻𝑅(298𝐾) + ∫ 𝐶𝑝𝑑𝑇
573

298

 

∫ 𝐶𝑝𝑑𝑇
573

298

= (𝐶𝑝,573)(573 𝐾)

− (𝐶𝑝,298)(298 𝐾) 
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Figure A.3: GC-TCD calibration peak for  2,5-(bis(5-tert-butyl-2-benzo-oxazol-2-
yl) thiophene (BBOT) with the area-under-the-peak in PTFE Porapaq Q 

(6x5mmx2m) column. Detector: TCD (65 °C), carrier gas: pure nitrogen (200 
mL/min). 

Table A.4: Inorganic content of PKS and PKSCu as obtained using ashing 

method coupled with ICPMS. 

Element 
PKS PKSCu 

Element 
PKS PKSCu 

mg/kg mg/kg mg/kg mg/kg 

Cu 6.3 110535.4 Tl 0.1 1.1 

Ca 553.1 345.5 As 1.1 0.7 

Mg 301.8 199.2 Mo 0.0 0.6 

Fe 229.1 49.6 Ag 0.0 0.5 

Al 235.9 34.5 Be 0.0 0.4 

Zn 3.5 19.2 Ce 15.7 0.4 

W 9.1 13.1 Te 0.0 0.2 

Rb 21.5 7.8 Ga 2.0 0.2 

Mn 6.2 5.9 Cr 0.9 0.1 

Sr 10.3 5.8 Co 0.1 0.1 

Pb 0.2 4.5 Cd 0.0 0.1 

Li 0.5 3.2 U 0.0 0.0 

Ba 4.3 3.0 Nd 0.0 0.0 

V 3.8 2.9 Bi 0.0 0.0 

B 13.9 2.6 Cu (wt%) 0.000626 11.05354 

Ni 1.6 1.5    
Se 0.2 1.4    
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Figure A.4: An example of offset-temperature determination from TGA curve 
(for PKSCu20) using OriginPro 2017. 5 mg sample was held at constant 

temperature of 30 °C for 4 minutes, heated to 110 °C at 40 °C/min and held 
at this temperature for 6 minutes, and further heated to 600 °C at 80 °C/min.  
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Appendix B: Supporting information for Chapter 4 

 

Figure B.1: Nitrogen adsorption-desorption isotherm over 0.1 g sample and 77 K, 

and (insert) SEM image at 1000 magnifications and 20 kV for PKS. 
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Table B.1: Peak properties obtained from OriginPro 2017 using Gaussian 
deconvolution method. 

Species 

 

 

 

Sample 

Adsorbed NO2 Adsorbed NO Nitrosyls 

Peak 
(°C) 

FWHM 
Area 

(Х 10-9) 
Peak 
(°C) 

FWHM 
Area 

(Х 10-9) 
Peak 
(°C) 

FWHM 
Area 

(Х 10-9) 

PKS 166 79.1 9.59 273 117.0 6.02 -   

 128* 56.9 0.06       

PKSCu 160 92.2 3.43 -   85 58.6 2.10 

       115 30.7 0.27 

PKSFe -   134 109.3 1.22 87 67.0 0.85 

PKSMn 117 88.2 1.17 210 123.8 0.70 73 58.0 0.70 

FWHM =  Full width at half maximum 
*From desorption of NO2 
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Appendix C: Supplementary information for Chapter 5 

 

Figure C.1: Desorption profile for the undesorbed products from 

PKSFe30Cu10 in 500 ppm NO + 4% H2 + 1.5% O2 at 7,175 h-1. The reaction 

was carried out at 300 °C for 2 h and cooled to 100 °C with the gas flow 

switched to pure helium at the same flow rate. After reaching 100 °C, the 

temperature was ramped at 5 °C/min until no more peak appeared. 

 

Figure C.1 shows that the undesorbed products include nitrous oxide 

(N2O), nitrogen dioxide (NO2), nitric oxide (NO), and nitrogen (N2). At 

temperature below 200 °C, N2O was one of the products detected but it 

seemed that some of this gas was not completely desorbed due to the slow 

desorption constant. At about 200 °C, NO was also released making 

conversion low at this temperature, while at higher temperatures, NO 

experienced decomposition into nitrogen and oxidation to NO2 (reaction with 

metal oxides or carbon surface functional groups).   


