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Abstract 

Acute inflammation is the innate immune defence against environmental disturbances. 

Macrophages are one of the central immune cells that react to infections and maintain 

tissue homeostasis, and they exhibit their functions via numerous inflammatory 

signalling regulators. In addition to previously identified immune mediators, novel 

proteins involved in inflammation continue to emerge. 

 

A previous cDNA functional screening in murine macrophages has identified a novel 

protein named transmembrane protein 203 (Tmem203) displaying pro-inflammatory 

characteristics. Tmem203-promoted inflammatory activities were found to be TLR 

independent but dependent on STING, a cytosolic innate immune adaptor for DNA 

detection. STING responds to upstream DNA sensors and microbial cyclic 

dinucleotides, and instigates type I interferon response via TBK1-IRF3 axis.  

 

The work in this thesis investigated the function of TMEM203 in STING-dependent 

type I interferon responses. TMEM203 has been found to colocalise, interact and 

migrate with STING. Further studies revealed a critical role for TMEM203 in STING-

dependent type I interferon response in both human and mouse primary macrophages. 

We showed that TMEM203-STING association was highly dependent on STING’s N-

terminal transmembrane domains. Finally, TMEM203 showed a distinct regulation of 

STING-interferon signalling between stimulation by natural and synthetic STING 

ligands, and this difference was also reflected in TMEM203-STING interaction. Thus, 

this novel mechanism of TMEM203-dependent STING regulation has brought new 

insights to better understand critical regulators of pathogen infections and interferon-

associated autoimmune diseases.   

 

Additionally, a brief research was conducted to explore STING regulation in flavivirus 

infected primary macrophages. Flaviviruses Dengue virus and Zika virus infect 

humans to cause global pandemics. Dengue virus is known to specifically and potently 

interrupt STING-interferon pathway. The emerging flavivirus Zika virus is genetically-
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closely related to Dengue virus and thus it has been hypothesised to adopt similar 

strategies in STING antagonism. We have investigated Dengue and Zika virus-

induced type I interferon stimulated ISG response in the M-CSF differentiated primary 

macrophage model, and tested the role of STING in such conditions. Contradictory to 

previous report, our experiments showed a potent and persistent ISG induction in 

virus-infected macrophages. Prior virus infections were unable to intercept ISG 

induction cause by STING ligands, whereas the downregulation of STING dampens 

virus-induced ISG response. Therefore, this primary macrophage model highlights 

alternative regulatory mechanisms via STING in response to Dengue and Zika virus.  
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Chapter 1: Introduction  
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1.1 Inflammation  

Inflammation is the response of the immune system to a variety of physiological 

disturbances, such as metabolic stress, damage, pathogen invasions, and 

senescence-associated cell and tissue failure. Our understanding of inflammation 

evolves with the discovery of novel diseases and the manifestations associated with 

them. Although inflammatory responses often result in irritations such as heat, pain, 

swelling, and sometimes the loss of mobility, it nonetheless has crucial roles in 

detecting, acting and restoring host immune homeostasis. The process of 

inflammation is evolved for two major functions, one is to limit infection by pathogens, 

predominantly bacteria and viruses, and another is to facilitate wound healing. The 

dysregulation of inflammatory response in diseases helped us to identify cellular and 

molecular components that composed the immune system and to understand how 

they are coordinated during disorders. Not only that the immune cells are capable of 

inflammatory activation, a variety of somatic cells are also able to respond to innate 

immune stimuli, including for instance endothelial and epithelial cells [1, 2]. 

 

The immune system can mount both the immediate innate response against stimuli 

encountered for the first time and the adaptive response to a recurrent challenge, both 

have been extensively reviewed in the past [3–6]. In comparison to adaptive immunity 

which protects host from a specific recurrent stimulus, innate immunity acts on a wide 

spectrum of antigens and the response is rapid and dynamic. Therefore, cells and 

molecules involved in an inflammatory response are diverse. 

 

Myeloid cells are important regulators of inflammation, amongst which the neutrophils, 

monocytes, dendritic cells and macrophages, are the most predominant contributors. 

Not only do they express and secrete inflammatory signals (mostly cytokines) during 

the response, their responses also help alerting the surrounding tissue and cells when 

danger and damage appears. Some myeloid cells are specialised in certain 

environment or a period of inflammation, such as the immediate and short-lasting 

action of neutrophils to early infections, but macrophages are present throughout most 

inflammatory activities. These cells can engulf invading bacteria, present antigens to 

cytotoxic effector cells, release cytokines to induce or suppress further inflammatory 
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responses, and even regulate lipid and nutrients metabolism to adapt to the changing 

environment [7, 8]. Thus, comprehending the role of macrophages in vivo enables us 

to study a number of human pathologies and to develop novel therapeutics. 
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1.2 Macrophages 

 

1.2.1 Macrophage Lineages 

The macrophage is a cell of complex origins. Contrary to the traditional view that 

macrophages combat infections in situ and therefore are supplied from the 

differentiating monocytes in the circulation, recent observations showed that there are 

two lineages of macrophages. One adopts the known mechanism of replenishing “old” 

macrophages from monocytes produced from the bone marrow, while some 

macrophages emerged with the tissue during embryonic development and their 

survival is independent of monocyte-derived macrophages [9, 10]. Tissue-resident 

macrophages adapt to the niche-specific environment and predominantly respond to 

on-site infections and the homeostasis of the tissue [7, 11]. For instance, the central 

nerve system macrophage microglia combat infections in the brain and are actively 

involved in neuroinflammation and the removal of degenerated or damaged neurons 

[12, 13]. A summary of macrophage development is shown in Figure 1. 
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Figure 1. Macrophage development.  

Macrophages are categorised as monocyte-derived macrophages (yellow box) or tissue 

resident macrophages (green box). A pool of replenishing macrophages arises from precursor 

monocytes generated from human bone marrows. During embryonic development, a pool of 

progenitor cells in tissues and organs have committed into macrophage development and 

become tissue resident.  



22 
 

Although microglia are a particular example to indicate the importance of tissue-

resident macrophages as the blood-brain barrier protects against acute inflammation 

and leukocyte infiltration, other tissue resident macrophages also acquired specific 

characteristics during evolution in the tissue environment. The skin macrophage 

Langerhans cell (LC) forms a “web of immunity” across the epidermis of the skin and 

connects the lymph nodes. Their functions include but are not limited to the 

surveillance and defence against pathogen invasions, immediate recruitment of 

immune cells, priming and differentiation of lymphocytes at the lymph nodes, and most 

importantly antigen uptake via LC migration between keratinocytes and the lymph 

node has been described [14–16]. Furthermore, the most abundant tissue-resident 

macrophage Kupffer cells in the liver sinusoids are highly responsive to release 

proinflammatory factors against infections in the digestive tract and have acquired a 

unique role in liver regeneration and scavenging malformed haemoglobin [17]. Other 

tissue-resident macrophages such as Osteoclasts in the bone and alveolar 

macrophages have additional functions in bone remodelling and surfactant clearance, 

respectively [18, 19]. Contributed by these resident macrophages, our tissues and 

organs can respond to danger signals rapidly and appropriately in physiological 

conditions. 

 

Apart from the well-portrayed tissue-resident macrophages, there are the type of 

“replenishing” macrophages which act in need and throughout human body. These 

macrophages are originated from the bone marrow –derived precursor monocytes in 

the blood circulation, which were differentiated into macrophages near the site of 

infection or injury. Human monocyte subsets are classified by their variation of CD14 

and CD16 expressions, as the classical type is CD14 positive CD16 negative 

(CD14++CD16-), intermediate is CD14++CD16+, and non-classical is 

CD14dimCD16++ [20]. In mouse, monocyte subpopulations are divided upon the 

expression of Ly6C (Lymphocyte antigen 6C) and CD43 (leukosialin), equivalent to 

the human markers CD14 and CD16 [21]. The population orthologues are the classical 

LyC6++CD43-, the intermediate LyC6+CD43++, and the non-classical LyC6+CD43++. 

Although all these monocytes can be differentiated into macrophages, the classical 

monocytes, comprise the large majority of total population (87%), are mainly 

responsible for replenishing macrophages in rapid response to inflammation and injury 
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[22–25], while the intermediate monocytes facilitate later inflammatory responses, and 

the CD16-high nonclassical monocytes aid immune surveillance [26].  

 

Whilst monocyte/macrophage development is affected by a mixture of stimulating 

factors, this transition predominantly relies on the presence of macrophage colony-

stimulating factor (M-CSF, also known as CSF-1) that is secreted by the blood/tissue 

stromal cells [27]. In contrast to the alternative method of GM-CSF macrophage 

differentiation which renders cells ability to activate the inflammasome complex and 

release interleukins and other proinflammatory cytokines [28], M-CSF differentiation 

method is widely applied in vitro for its advantage of yielding a consistent population 

of resting macrophages that uniformly express type I interferons to viral challenges 

[29]. Upon M-CSF -induced cell fate commitment, a negative feedback loop is initiated 

to reduce CSF receptor expression and the consequent cell proliferation [30–32]. 

However, macrophage proliferation is not completely abolished and its aberrancy is 

often associate with pathologies. A typical example of this is the chronic inflammatory 

disease atherosclerosis, where monocyte-derived macrophages (MDM) recruited to 

the damaged endothelial site continue to proliferate, uptake oxidised lipids and 

become foam cells in the atherosclerotic plagues [33–35]. 

 

Similar to human cells, mouse macrophages maintain the two lineages. While the 

tissue-resident macrophages arise during embryonic development, the circulating 

macrophages are differentiated from bone marrow -released monocyte-macrophage 

progenitor cells upon exposure to murine M-CSF. The Fibroblast L929 cells are a 

widely-applied model to produce M-CSF –containing medium for bone marrow-

macrophage differentiation in the laboratory [36].   
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1.2.2 Macrophage Phenotypes 

Independent of monocyte differentiation, macrophages also display pleiotropic 

functions during their activities in tissue homeostasis and are thus further categorised 

into physiological subsets or phenotypes. In a broader classification method, 

macrophages are either a cytotoxic/killing character (M1) or a repairing/growth 

character (M2) [37]. This “Fight or Fix” switch is achieved predominantly by metabolic 

modulation of arginine, where the inducible nitric oxide synthase (iNOS) is more active 

in M1 phenotype and arginase is more active in M2 (at least in murine models), 

therefore promoting the respective Th1 and Th2 inflammatory response [38]. While 

the metabolic pathway of M1/M2 transition discussed in reviews helps to identify the 

nature of macrophage [38–41], it is the associated gene expression profile that is most 

critical to our study of pathology. 

 

In the Th1 or “Fight” response, M1 macrophages respond to interferon-gamma (IFN-

γ), lipopolysaccharide (LPS), tumour necrotic factor-α (TNF), viral nucleic acids, and 

promote iNOS-dependent NO production and proinflammatory activation [42]. 

Establishment of M1 phenotype is indicated by the enhanced expression of cell 

surface receptors CD86, CD80, CD68, major histocompatibility complex II (MHC II), 

TLR2 and TLR4 [43]. In addition to these stimulants, M1 phenotype is mostly induced 

by microbial infections and aberrant cell death as a defence mechanism for biological 

threats. A wide spectrum of pattern-recognition receptors expressed by macrophages 

detect pathogen or danger –associated molecular patterns named PAMPs or DAMPs. 

Cellular dysfunction may give rise to DAMP signals by releasing intracellular 

molecules such as ATP and DNA which are detected by purinergic receptors on 

macrophage surface [44], or are internalised and recognised by cytoplasmic receptors 

such us Stimulator for Interferon Genes (STING) [45]. In terms of pathogens, a variety 

of macrophage PRRs detects pathogenic proteins, lipoproteins, nucleic acids, as well 

as antibody/complement-labelled or opsonised bacteria to intercept infections. From 

the literature, M1 macrophages are significantly affected and activated by the well-

known microbial infections including Mycobacterium tuberculosis, Listeria 

monocytogenes, Salmonella typhimurium, Staphylococcus aureus, Influenza virus, 
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Herpes simplex virus and Dengue virus [46–52], and their functions have recently 

been addressed in Zika virus pandemic [53, 54].  

 

Alternatively, the Th2 or “Fix” phenotype of M2 macrophages is responsible for 

repairing tissue damage and resolution of inflammation. Despite the debate on M2 

sub-classifications based on their functional statues, there are 4 agreed subtypes of 

M2 as group according to their gene expression profiles. M2a is stimulated by 

interleukin-4 (IL-4) and IL-13 (M2a), M2b is induced by IL-1 receptor ligands, immune 

complex and LPS, M2c is induced by glucocorticoids, IL-10 and transforming growth 

factor-β (TGF-β), and M2d is induced by IL-6 and adenosine [42, 55, 56]. These 

reviews have summarised the current findings on M2 phenotypes and the associated 

regulatory and anti-inflammatory mediators and responses, amongst which IL-10, 

TGF-β and mannose receptor CD206 are ubiquitously expressed. 

 

The current classification of macrophage phenotypes by protein marker expression is 

still incomplete. An advanced approach is by RNA-seq (RNA sequencing) analysis of 

transcriptomic signatures of polarised macrophages to identify significantly induce or 

repressed genes. At this resolution, phenotypes can be associated with additional 

gene regulation mechanisms such as promoter activities, alternate transcription 

splicing, and untranslated region (UTR) regulation [57, 58]. To note, gene profiles of 

different phenotypes are constantly changing according to the microenvironment. For 

instance, while the classic M1 and M2 macrophages maintain their specific gene 

expression profiles, in atherosclerotic plaques, a rich signal of oxidised phospholipids 

is added to these cells which can induce additional transcription of antioxidant 

enzymes that helps limiting lipid accumulation [59]. Transcriptomic analysis of 

macrophage phenotypes more accurately reflects the change of environmental 

adaptations of different sub-populations, and it is an advanced tool with considerable 

clinical potential to diagnose and predict macrophage-associated pathologies [60]. 

 

Although it has been a general understanding that the naïve macrophages can switch 

between the major M1 and M2 phenotypes based on signalling transduction, and such 



26 
 

M1/M2 counteraction is a safety mechanism to prevent chronic inflammation and 

immunosuppression exhibited by each phenotype. However, the complexity of 

macrophage phenotypes has been built up throughout research, with the addition of 

numerous sub-phenotypes. The interplay between signalling pathways gives 

macrophages the plasticity to readily alter between phenotypes, and this certainly 

reflects the flexibility and broadness of macrophage response to modulate host 

immunity [61, 62].  Therefore, phenotypes may not be the most accurate method to 

describe the role of macrophages, their responses to the immune challenge are more 

essential to determine the phenotype in a specific condition. 
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1.2.3 Macrophage Functions  

Macrophages exhibit two critical immune functions: phagocytosis and antigen 

presentation. Phagocytosis is a process employed by macrophages to scavenge 

“biological waste or stimuli”. By recognition of targets via cell surface Fc receptors, 

complement receptors, mannose receptors, scavenger receptors and lectin receptors, 

targets including apoptotic and necrotic cell debris, excessive proteins and lipids and 

incoming microorganisms which are vesicle-enwrapped and engulfed by 

macrophages [63–66]. Although most pathogens are digested by the acidic and 

enzymatic environment of phago-lysosomes, this antimicrobial exercise can 

sometimes be resisted. These evasion mechanisms are exemplified by internalised 

Mycobacteria which have evolved an anti-digestive cell wall and the ability to inhibit 

the vacuolar proton-ATPases to protect against phagolysosomal breakdown, so that 

it can persist until a chance for escape [67–69]. While phagocytosis is beneficial to 

restoring host physiology, it also contributes to pathogenesis when an excessive 

amount of waste is scavenged. One example is the generation of atherosclerotic 

plaques where macrophages are recruited to the site of lipid accumulation in the wall 

of blood vessels and later become the proinflammatory and pro-atherogenic “Foam 

cells” when their scavenging limits are exceeded [34, 35]. This process can be viewed 

as a double-edged sword, protecting the host from infections and biological wastes 

but becoming pathogenic once their functions are overwhelmed by stimuli. Thus, 

precise control of macrophage function is critical and is achieved via a tight regulation 

of intracellular inflammatory signalling networks. 

 

Macrophages also act as professional antigen presenting cells (APC) together with 

dendritic cells and B cells [70]. Macrophages process the engulfed pathogens or 

cellular breakdown products to antigens which are complex with surface expressed 

major histocompatibility complex class II molecules (MHC II) to be presented to T cells. 

This helps to activate naïve T cells to become either CD8 positive cytotoxic T cells or 

CD4 positive helper T cells. Macrophages requires IFN-γ signal from memory T 

lymphocytes to express MHC II molecules [71]. MHC II complex were not expressed 

on the plasma membrane at abundance until immune challenge occurs. In Listeria 

monocytogenes-infected macrophages, they were initially found in lysosomes and 

were rapidly induced to the surface with bacterial antigens [72] where T cell receptors 
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can recognise and respond. The crosstalk between macrophages and the adaptive 

immunity critically underlies a sustained and secondary inflammatory response that 

secures the elimination of pathogens. 

 

To orchestrate macrophage functions, a number of inflammatory proteins and 

signalling pathways have been studied to enable such precise actions at the 

appropriate time and duration.  
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1.3 Inflammatory signalling 

Macrophages and dendritic cells are the critical players in host innate immunity while 

other immune cells support and compensate their functions at different stages and in 

different immune environments. Innate immunity predominantly contributes to the 

acute inflammatory response against physiological disturbances, during which cells 

frequently communicate via molecular signals named cytokines [73]. Post cellular 

interaction and PRR recognition, a complex network of signalling cascades is activated 

to facilitate the generation of correct and corresponding cytokine response 

downstream of PRRs. While the canonical PRRs such as TLRs, C-type Lectin 

receptors (CLRs), NLRs and the Retinoic acid-inducible gene (RIG)-I-like receptors 

(RLRs) have been well studied in the past [74], a number of novel inflammatory 

regulators have been characterised in the recent years and have demonstrated 

indispensable roles in regulating host immunity.  
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1.3.1 Canonical inflammatory regulators 

TLR family receptors form the most well-established PRR system in innate immunity. 

Similar to the plasma membrane receptors of the CLR family including Dectin, 

MINCLE and mannose receptors [75], most TLRs are exposed on plasma membranes 

yet some are also present in endo-lysosomal structures [76]. For a wide spectrum of 

antigen recognition, each TLR detects a specific ligand and their signalling pathways 

crosstalk to respond to infections. The cell surface receptor TLR2 recognises microbial 

lipoproteins and TLR4 recognises bacteria endotoxin LPS, endosomal receptor TLR3 

recognises viral double-stranded (ds)RNA and TLR7 recognise single-stranded 

(ss)RNA from microorganisms [77]. Activation of TLRs ignites the signalling 

transduction from the major adaptor proteins MyD88 and its accessory facilitators 

TRAM, TIRAP, Mal, and finally induces the proinflammatory pathways via mitogen-

activated protein kinase (MAPK) / activator protein-1 (AP-1) and IKK (IκB kinase) / 

nuclear factor kappa-light-chain-enhancer of B cells (NF-κB). These two transcription 

factors coordinate the secretion of proinflammatory cytokines and chemokines such 

as IL-1, IL-6, IL-8, CCL3 and TNF-α [74, 78]. Alternatively, endosomal receptor TLR3 

and the “late signalling” events of internalised TLR4 induce the TRIF/TRAM mediated 

response and activates interferon regulatory factor 3 (IRF3) [74, 79]. IRF3-dependent 

action elicits the type I interferon response which is antiviral, immune regulatory, pro-

haematopoietic regeneration, and pro-apoptotic for infected and damaged cells [80, 

81]. Dysregulation of type I interferons is associated with chronic inflammation and 

autoimmune diseases. Amongst all PRR ligands, LPS is capable of activating multiple 

inflammatory pathways and thus is a model immune stimulus for exploring novel 

inflammatory mediators involved in both the direct and late-signalling activation (Figure 

2).   
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Figure 2. Overview of LPS activated TLR4 pathways.  

Bacterial endotoxin LPS is recognised by TLR4 and the co-receptors CD14, LBP and MD-2 at 

the plasma membrane surface. TLR4 receptor couples to TIRAP and Mal and induces MyD88-

dependent signalling through the IRAK-TRAF6-TAK axis, which then signals to IKKs and 

MAPK for activation of transcription factors NF-κB and AP-1, respectively. This results in the 

expression of classical proinflammatory cytokines. Alternatively, “late signalling” events cause 

LPS-bound TLR4 internalisation and activate TRAM/TRIF –dependent induction of TRAF3 

and TBK1, which finally induces the transcription factor IRF3. TRAM/TRIF activation 

additionally induces the common signalling through TRAF6-TAK, and together with the 

product NF-κB, IRF3 upregulation of type I interferon expression. Abbreviations: LPS= 

lipopolysaccharide; TLR4= Toll-like receptor; LBP= LPS binding protein; TIRAP= 

Toll/interleukin-1 receptor domain-containing adaptor protein; Mal= MyD88 associated protein; 

MyD88= myeloid differentiation primary response 88; IRAK= interleukin-1 receptor-associated 

kinase 1; TRAF= tumour necrosis factor (TNF) receptor-associated factor; TAK1= 

transforming growth factor (TGF) beta-activated kinase 1; TAB= TGF-beta activated kinase; 

MAPK= mitogen-activated protein kinase; AP-1= activator protein 1; IKKs= IκB kinase; TRIF= 

TIR-domain-containing adaptor-inducing interferon-β; TRAM= translocating chain-associated 

membrane protein 2; TBK1= Tank-binding kinase; IRF3= interferon regulatory factor 3.  
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Pathogen induced proinflammatory cytokine production also instigates a positive 

feedback loop which leads to further cytokine amplification. For instance, NF-κB 

mediated cytokine expression can be enhanced by TNF and its receptor through a 

TRAF2-containing adaptor cascade [82]. Particularly, IL-1 secretion induced by the 

TLR4 recognition of LPS promotes further inflammation through a signalling cascade 

that highly resembles LPS-TLR4 signalling. Upon induction, IL-1 precursors are post-

translationally processed by proteases (mostly calpain and granzyme B) or caspase-

1 to release the mature IL-1α and IL-1β, respectively. The activation of receptor dimer 

by IL-1 proteins assembles intracellular adaptors including MyD88 and IRAK4, and 

these in turn initiate the IRAK1/TRAF6-dependent signalling to both NF-κB and AP-1 

transcription factors which enhance proinflammatory cytokine production [Reviewed 

in [83]]. These feedback mechanisms can be beneficial to sustain inflammatory 

response throughout infections and immune regulations; however, it can also be 

associated with chronic inflammation and autoimmune diseases. Rheumatoid arthritis 

(RA) is a typical autoimmune disease resulted from chronic release of IL-1 and TNF-

α (amongst other proinflammatory cytokines such as IL-17, IL-18 and RANKL) in an 

unresolved joint inflammation [84, 85]. Not only that chronic inflammation affects the 

local region, in recently identified cases of RA, patients were also found with cognitive 

impairment which was likely caused by the reduced life quality associated with disease 

management (use of glucocorticoid, income, mobility and other social aspects) [86]. 

Therefore, the feedback mechanism must also be exhibited in a tightly controlled 

manner to prevent adverse effects on immune resolution. 

 

A limitation for the functioning of cell membrane-embedded receptors is the lack of 

surveillance in the cytoplasm. Molecules such as nucleic acids and proteins originating 

from microorganisms and cellular stress can bypass membrane PRR recognition, and 

thus necessitate the additional defence provided by the cytoplasmic PRR families 

NLRs and RLRs. NLR-mediated activities involve inflammasome formation and 

caspase activation and recruitment domain (CARD)-dependent activation of caspase-

1 and IL-1β/ IL-18 processing [87, 88]. The well-studied members of NLR family NOD-

1 and NOD-2 respond to peptidoglycan in the cytosol as a result of microbial 

breakdown or division [89]. As a result of cytosolic detection, NLR pathways commonly 
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crosstalk with other PRR families such as TLR and RLR, such as the TLR4 / NF-κB 

activation priming NLRP3 inflammasome assembly [90]. 

 

It is well appreciated that RNA and DNA molecules are potent immune stimulants. In 

addition to the NLR, another family of cytoplasmic receptors RLRs are responsible for 

detecting virus-released RNA [91]. These receptors were identified when the loss of 

TLR3, -7, -8 and -9 was unable to abolish type I interferon response upon certain viral 

infections [92–94]. RLRs receptors include the RNA helicases RIG-I and melanoma 

differentiation associated factor 5 (MDA5), which recognise 5’ triphosphate-tagged 

ssRNA and dsRNA molecules released by viruses such as Rotavirus, West Nile 

viruses and Dengue virus [95–98]. A third RLR member named laboratory of genetics 

and physiology 2 (LGP2) lacks the RLR signature CARD domain yet it still recognises 

dsRNA termini, and has regulatory functions for RIG-I and MDA5 –dependent antiviral 

activities [99–102]. RIG-I and MDA5 signal through the intracellular adaptor 

mitochondrial antiviral signalling protein (MAVS) which induces NF-κB and IRF3-

dependent type I interferon response [98, 103].  
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1.3.2 Non-canonical inflammatory regulators 

Further to these categorised PRRs, several non-canonical immune sensing pathways 

have been described. Pathogen-derived nucleic acids are detected by additional 

cytosolic proteins including RNA sensors RNase L, protein kinase R (PKR) and 

oligoadenylate synthase (OAS) family proteins [104–106]. Although these sensors 

lead to type I interferon response upon encountering cytoplasmic RNA, their 

interferon-inducing events are independent of TRIF and MAVS. For instance, RNase 

L and OAS are nucleases that inhibit infections by cleaving ssRNA and dsRNA, 

respectively, into smaller products which subsequently induce RIG-I/MDA5/MAVS 

axis for interferon augmentation [106, 107]. Type I interferon signalling also induce 

further inflammatory gene expression including OAS as a positive feedback 

mechanism to maximise antiviral response. Distinct from these nucleases, PKR is a 

dsRNA-recognising kinase that phosphorylates and inactivates translation factor 

eIF2α when it has been hijacked for microbial protein expression [105, 108, 109]. PKR 

is also involved in the regulation of IFN-α/-β mRNA integrity, where the loss of PKR 

functionality did not impair type I interferon expression but caused the absence of 

terminal polyadenylation of mRNA which prevents transcription degradation [110, 111].  

 

Additionally, absence in melanoma 2 (AIM2), DEAD-Box helicase 41 (DDX41), cyclic 

di-GMP-AMP synthase (cGAS), interferon (IFN)-gamma inducible protein 16 (IFI16) 

[112–115] and the endonucleases such as TREX1 and MUS81 act as DNA sensors 

in the cytoplasm [116, 117]. DNA molecules are confined in the host nucleus and 

mitochondria unless cellular stress induces DNA leakage or pathogens introduce their 

genes into the cytoplasm. Therefore, cytoplasmic dsDNA are potent immune 

activators. Despite that AIM2 is activated by dsDNA to induce caspase-1 

inflammasome assembly [112], all the other described DNA nucleases and sensors 

signal though an endoplasmic reticulum (ER) adapter protein Stimulator of Interferon 

Genes (STING), which has been reviewed by Barber [118] and later in Chapter 1.5 

[119].  STING signalling not only forms a cytosolic DNA defence mechanism, its 

dysregulation is highly associated with autoimmune diseases [120–122], and its value 

as antiviral and anti-tumour adjuvant is a prominent focus in clinical laboratories [123–

127].  
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1.3.3 Summary of inflammatory regulators 

Immune cells, most importantly macrophages, exhibit inflammatory stimuli through the 

activation of the innate immune receptors PRRs which recognise PAMP and DAMP 

derived from pathogens and cell/tissue stress. The major PRR families TLRs, CLRs, 

NLRs and RLRs have adopted their specific recognition characteristics into a system 

for inflammatory signalling of cytokines, chemokines and type I interferons. These 

well-studied receptors are known as the canonical inflammatory regulators. 

Additionally, some of the un-categorised immune receptors are found to complement 

the canonical PRR activities, most of which are sensors for intracellular nucleic acids. 

Although these sensors differ in the nature of detection mechanisms, most of the RNA-

induced signalling events are mediated by MAVS in the mitochondria and the DNA 

sensing pathways act through STING in the ER. Nucleic acid detection leads to 

adaptor activation which subsequently recruit interferon regulatory factors to induce 

type I interferon response, which is indispensable for antiviral immunity. 
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1.4 TMEM203 – a novel proinflammatory mediator  

Our knowledge of pattern recognition receptors and components of the innate immune 

sensing pathways is continuously evolving. MAVS and STING were discovered only 

in the last 15 years, yet research has expanded rapidly in their role in antiviral, anti-

tumour and autoimmune responses. Their significance in supporting inflammation and 

its regulatory mechanisms have become the focus for therapeutic targeting for their 

potential. To link nucleic acid sensing pathways to the previously identified immune 

regulators or to identify novel regulators are priorities to identify potential drug 

candidates.  

 

Macrophages are central cellular regulators of inflammation, exhibiting potent anti-

microbial effects, linking the innate and adaptive immunity, and coordinating 

cellular/tissue inflammatory dynamics. To identify novel inflammatory mediators, we 

activated murine macrophages RAW 264.7 cell line with LPS, a bacterial endotoxin 

that induces both classical inflammatory pathways and type I interferon response [128, 

129]. In the functional screen of cDNA library of LPS-activated macrophages, 34 novel 

proinflammatory genes were identified [130, 131]. Amongst these, a protein named 

Tmem203 (transmembrane protein 203, TMEM203 in human) was shown to be 

upregulated Cxcl2 chemokine promoter activities upon LPS challenge. Preliminary 

studies on Tmem203 showed that the LPS-induced Cxcl2 promoter activity in RAW 

264.7 cells was enhanced by Tmem203 overexpression and it is impaired by 

Tmem203 knockdown (Chapter 2, Fig. 1D-E). However, Tmem203 overexpression-

induced Cxcl2 promoter activation was not reduced by the expression of dominant 

negative forms of the canonical LPS signalling components, such as MyD88 and TRIF 

(Chapter 2, Fig. F-G). Thus, we tested that whether TMEM203 could signal through 

an alternative immune regulator. Expression of Tmem203-mCherry showed a 

localisation pattern in punctate membrane structures (Chapter 2, Fig. 3A) and LPS 

stimulation causes Tmem203 translocation to LAMP1 positive endosomal membranes 

(Chapter 2, Fig. 3B). In 2015, Shambharkar et al., reported that TMEM203 

predominantly expressed on the ER membranes and it is essential in modulating 

calcium homeostasis by co-regulation and interaction with IP3R (inositol 1, 4, 5-

triphosphate receptor), SERCA (sarcoplasmic/endoplasmic reticulum calcium ATPase) 

and the calcium sensor STIM1 (stromal interaction molecule 1) [132]. To search for 
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potential candidate co-regulators for TMEM203, we considered the two intracellular 

signalling adaptors MAVS and STING. Considering its ER localisation, TMEM203 is 

likely to coordinate signalling events via nearby immune regulators, and a logical 

candidate would be the ER resident antiviral adaptor STING [132, 133]. STING is 

ubiquitously expressed in the ER and responds to DNA sensors and microbial 

secreted cyclic dinucleotides. It signals through the TBK1-IRF3 axis which specifies 

type I interferon activation and later an amplified interferon-stimulated response, 

including the expression of proinflammatory chemokines. Due to the close localisation 

in the ER, TMEM203 and STING are likely to interact directly and complex in a number 

of signalling activities. Thus, we tested the potential of TMEM203 signalling through 

STING. Knockdown of Sting and its signalling effectors Tbk1 and Irf3 can strongly 

suppress Cxcl2 promoter activation caused by Tmem203 overexpression (Chapter 2, 

Fig. 1H). Not only that co-expression of STING-GFP and TMEM203-mCherry showed 

strong colocalisation pattern in HeLa cells (Chapter 2, Fig. 2D), these two proteins 

form a stable complex in co-immunoprecipitation (Chapter 2, Fig. 2E). From these 

evidences, the novel inflammatory mediator TMEM203 is of significant interest for the 

characterisation of immune functions and it is likely to associate with STING signalling 

components.  
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1.5 Regulating STING in health and disease 

Paper 1, Review – STING regulation in Health and Disease 
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Abstract 

The presence of cytosolic double-stranded DNA molecules can trigger multiple 

innate immune signalling pathways which converge on the activation of an ER-

resident innate immune adaptor named “STimulator of INterferon Genes (STING)”. 

STING has been found to mediate type I interferon response downstream of cyclic 

dinucleotides and a number of DNA and RNA inducing signalling pathway. In 

addition to its physiological function, a rapidly increasing body of literature highlights 

the role for STING in human disease where variants of the STING proteins, as well 

as dysregulated STING signalling, have been implicated in a number of inflammatory 

diseases. This review will summarise the recent structural and functional findings of 

STING, and discuss how STING research has promoted the development of novel 

therapeutic approaches and experimental tools to improve treatment of tumour and 

autoimmune diseases. 

 

Keywords: Stimulator of Interferon Genes (STING), double-stranded DNA sensor, 

cyclic dinucleotide, cGAS 
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Background 

Cellular stresses or infections lead to the release of DNA molecules into the 

cytoplasm which may threaten the stability of the host genome [1]. The intracellular 

appearance of naked DNA molecules triggers a double-stranded (ds)DNA sensing 

mechanism which consequently induces innate immune responses including the 

production and release of type I interferons (IFN-I). This response is central to the 

resolution of DNA-induced cellular stress [2–4] and prevents the emergence of 

autoimmunity [4, 5]. A recently described protein named STING (Stimulator of 

Interferon Genes, also known as TMEM173, ERIS, MITA and MPYS) is a critical 

regulator of these innate immune responses [6–9].  

 

STING is an endoplasmic reticulum (ER)-resident transmembrane protein and was 

first recognised as part of the ER translocon system [6, 10]. Suppression of 

components of the translocon-associated protein (TRAP) complex such as TRAP-β 

and Sec61 β have been found to impair DNA-induced type I interferon (IFN-I) signals 

downstream of STING [11]. The TRAP complex has been shown to be involved in 

two of the ER’s major responses: protein N-glycosylation [12] and endoplasmic 

reticulum-associated degradation (ERAD) [13]. Although the functional relevance of 

STING in the ER translocon system has not yet been fully elucidated, it has been 

proposed that STING can interact with TRAP component Ssr2/TRAPβ to enable its 

migration from the ER to perinuclear membranes, a process key to IFN-β promoter 

activation [6, 14].  

 

Recent reports have demonstrated that cytoplasmic DNA released by microbes and 

viruses can trigger dsDNA-sensing pathways which activate STING [6, 15–17]. 

STING then signals to the TANK binding kinase 1 (TBK1) / interferon regulatory 

factor-3 (IRF3) axis to upregulate type I interferon production [11, 18]. As an IKK (IκB 

kinase) –related kinase, TBK1 can also interact with IκB kinases to induce 

phosphorylation and thus degradation of IκB, thereby liberating NF-κB (nuclear factor 

kappa B) subunits allowing their nuclear translocation resulting in upregulation of 

type I interferon and other pro-inflammatory cytokines such as IL-6 (interleukin-6), 

CXCL10 (C-X-C motif chemokine 10), CCL5 (C-C motif chemokine ligand 5) and 
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CCL2 [19]. Table 1 summarises the pathogens that have been shown to activate 

STING [6, 20–37]. Of note, STING knockout mice generated by Ishikawa and Barber 

were highly susceptible to infection by the single stranded RNA viruses vesicular 

stomatitis virus (VSV) and Sendai virus [6], suggesting STING activation pathways 

may overlap with RNA sensing mechanisms or reverse transcription of viral RNA [6, 

24, 38]. 
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Table 1. STING is activated by a range of pathogens. 

The type I interferon signal adaptor protein STING is responsible for mediating double-stranded DNA 

sensing responses and the detection of bacterial cyclic dinucleotides c-di-AMP, c-di-GMP, and 3’-3’ 

cGAMP. Many DNA viruses, RNA viruses and bacteria have been implicated in the activation of 

STING. Abbreviations: dsDNA = double-stranded DNA; ssRNA = single-stranded RNA. 
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Name Type of Pathogen Mechanism of STING activation References 

Adenovirus Non-enveloped linear 
dsDNA virus 

dsDNA activates cGAS-STING pathway 
(cytoplasmic) 

[20] 

Kaposi’s sarcoma-
associated 
herpesvirus  

Enveloped dsDNA virus dsDNA activates cGAS-STING pathway 
(cytoplasmic) and IFI16-STING pathway (nuclear)  

[21] 

Herpes simplex virus Enveloped dsDNA virus dsDNA activates cGAS-STING pathway 
(cytoplasmic) and IFI16-STING pathway (nuclear)  

[22] 

[23] 

Epstein-Barr virus dsDNA virus dsDNA activates IFI16-STING pathway (nuclear) [24] 

Human 
cytomegalovirus 

dsDNA virus dsDNA activates cGAS-STING pathway 
(cytoplasmic), DAI-STING (cytoplasmic), and 
IFI16-STING pathway (nuclear) 

[25] 

[26] 

[27] 

Sendai virus Negative strand ssRNA 
virus 

Possibly via RIG-I –dependent RNA detection 
which may in turn induce STING 

[6] 

Vesicular stomatitis 
virus 

Negative strand ssRNA 
virus 

Unknown [6] 

Human 
immunodeficiency 
virus 

Negative strand ssRNA 
virus 

dsDNA reverse transcribed from viral RNA 
induces cGAS-STING pathway 

[28] 

Influenza A virus Negative strand ssRNA 
virus 

Possibly via membrane fusion or unknown 
mechanism independent of DNA recognition 

[29] 

Mycobacteria 
tuberculosis 

Bacteria producing c-di-
GMP 

c-di-GMP [30] 

[31] 

Streptococcus 
pneumoniae 

Bacteria dsDNA Bacterial dsDNA [32] 

Streptococcus 
pyrogenes 

Bacteria dsDNA Bacterial dsDNA [33] 

Staphylococcus 
aureus 

Bacteria producing c-di-
AMP 

c-di-AMP [34] 

Listeria 
monocytogenes 

Bacteria producing c-di-
AMP 

c-di-AMP [35] 

Vibrio cholera Bacteria producing 3’-3’ 
cGAMP 

3’-3’ cGAMP [36] 

[37] 
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Whilst the STING-mediated dsDNA-sensing mechanism is critical for successful 

cellular protection against infections and disease progression, dysregulated STING 

activity leads to the excessive production of inflammatory mediators with potentially 

detrimental effects on surrounding cells and tissues. Recent studies revealed some 

important functions for STING in autoinflammatory diseases [39–41], cancer [41–44] 

and lipid regulations [45, 46], highlighting the importance of this protein in health and 

disease. Here we review the recent insights into STING function in human 

pathologies and discuss the potential of STING-targeted therapies which are of 

considerable scientific and clinical interest. 

 

Main text 

STING Mediated Signalling 

Canonical STING Activators 

Whilst STING acts as an adaptor protein in the dsDNA sensing pathway, it is not 

activated directly by DNA molecules. Instead, STING responds to DNA sensing 

proteins and molecules known as cyclic dinucleotides (CDNs) [35, 47–49] (Figure 

1). CDNs are derived from infectious agents exogenously, or are produced by the 

mammalian dsDNA sensor cGAS (cyclic guanosine monophosphate – adenosine 

monophosphate synthase; cyclic GMP-AMP synthase). The canonical CDNs, or 

microbial secretory CDNs, are molecules made of 3’-5’ phosphodiester bonds joining 

two adenosines (A) – cyclic di-AMP [35, 50], two guanosines (G) – cyclic di-GMP 

[47] or one of each – cyclic GMP-AMP [37]. One of the STING-activating universally 

expressed DNA sensors, cGAS, is capable of catalysing a unique form of CDN 

endogenously upon DNA recognition [51]. This molecule is comprised of one 3’-5’ 

phosphodiester bond and a non-canonical 2’-5’ linkage between adenosine and 

guanosine, and is thus named 2’-3’ cGAMP to distinguish from the secretory cyclic 

dinucleotide cGAMP (3’-3’ cGAMP) which contains two 3’-5’ bonds [37]. Previous 

literature [52–54] has suggested that 2’-3’ cGAMP is ten- to a thousand-fold more 

potent than 3’-3’ cGAMP in activating STING. A number of studies reported that the 

change of phosphodiester linkage in 2’-3’ cGAMP results in a higher binding affinity 

to STING and thus leads to an augmented type I interferon response [55, 56]. It is 
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also possible that hydrophilic secretory cyclic dinucleotides are excluded by the 

selectively permeable plasma membrane [57], and thus cannot be recognised by 

STING.  

 

Alternative STING activators 

In addition to being activated by cyclic dinucleotides, STING also mediates antiviral 

responses downstream of DNA sensors including DNA-dependent activator of IFN-

regulatory factor (DAI) [17], IFNγ-inducible protein 16 (IFI16) [15], DEAD-Box 

Helicase 41 (DDX41) [16], and components of the RNA-sensing pathways [23, 38] 

(Figure 1). The Z-form DNA sensor DAI was the first identified activator for STING, 

whose expression is highly cell-type and tissue-specific and therefore could not fully 

account for the widespread IFN-I induction during viral infection [17, 58]. Further 

research identified that the DNA sensor DDX41 could interact with bacterial cyclic 

dinucleotides, in addition to DNA molecules [16], prior to activating STING signalling 

[59].  
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Figure 1. STING activation pathways. 

The endoplasmic reticulum (ER) adaptor STING is activated via recognition of bacteria-secreted 3’-5’ 

bond cyclic dinucleotides or DNA sensor cGAS-catalyzed 2’-5’ cGAMP. Cytoplasmic DNA, released 

from DNA viruses or reverse transcribed from the RNA viral genome, can induce direct interaction 

between STING and DNA sensors (in red) such as DDX41, IFI16, and DAI. Alternatively, RNA 

viruses also induce the RIG-I dependent MAVS activation which alters mitochondrial dynamics and 

indirectly induce STING activation. Mitochondrial stress can result in the release of mitochondrial 

DNA (mtDNA) which also induces DNA sensor activation (not shown) and STING-mediated 

signalling. RNA polymerase III (RNA Pol III) can convert dsDNA into dsRNA which activates RIG-

I/ MAVS axis which has been shown to induce STING activation. 
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Another interferon-inducible DNA sensor IFI61 is a pyrin-containing protein which 

also induces STING activation downstream of DNA detection. IFI16, as well as its 

mouse orthologue p204, is a universally expressed DNA sensor, which forms 

multimers prior to STING activation in response to HSV viral infections [15, 60]. 

Evidence shows that IFI16 is responsible for detecting foreign DNA both in the 

cytoplasm and in the nucleus and therefore it is capable of combating nuclear-

replicating viruses such as Kaposi’s Sarcoma associated herpesvirus [61, 62] and 

human cytomegalovirus (HCMV) [27, 63], implying an ability to discriminate between 

“self” and “non-self” DNA molecules. A recent report by Diner and colleagues 

showed dynamic regulation of IFI16 oligomers at different cellular compartments in 

response to altered viral infections [64]. Throughout HCMV infection, IFI16 oligomers 

are densely gathered nuclear “punctate” structures, whereas in Herpes simplex 

virus-1 (HSV-1) infection these “puncta” become gradually dispersed across the 

whole nucleoplasm and are eventually degraded. In contrast to previous studies, 

Diner et al. also found that IFI16 knockout cells do not impede TBK1 activation upon 

immune stimulation, whereas both STING and cGAS knockout cells will strongly 

suppress TBK1 activity, suggesting that nuclear DNA detection mediated by IFI16 is 

independent of the STING/TBK-1/IRF3 axis. Other studies indicate that antiviral 

cytokine production occurs in the absence of IFI16 via an unknown mechanism [64].  

 

Recent reports have revealed an interesting relationship between IFI16 and cGAS 

during DNA detection. It was shown that HSV infection can induce both DNA 

sensors in various cell types, and that cGAS is partially nuclear, thus is able to 

regulate the stability of nuclear IFI16 oligomers during detection of viral DNA [65]. 

This provides a molecular mechanism by which cGAS regulates nuclear DNA 

sensing. Further evidence also suggests a DNA dose-dependent interaction between 

IFI16 and cGAS in keratinocytes [66]. Although this interaction does not affect 

cGAS’s ability to generate cyclic dinucleotides, evidence indicates that IFI16 can 

facilitate the detection of these ligands by STING, and the loss of IFI16 can 

significantly impair downstream type I interferon and pro-inflammatory signalling [66]. 

Therefore, IFI16 and cGAS are not redundant during DNA infections, but instead 

cooperate and regulate each other’s activities. 
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RNA-induced STING activation 

Interestingly, several RNA viruses such as human immunodeficiency virus (HIV) [28, 

67], influenza A virus [29], Sendai virus and vesicular stomatitis virus [6] have been 

found to activate STING signalling, via mechanisms both dependent and 

independent of DNA detection. Complementary DNA (cDNA) produced from reverse 

transcription of negative-stranded RNA in retroviruses such as HIV, murine leukemia 

virus (MLV) and Simian immunodeficiency virus (SIV) can induce a cGAS-dependent 

DNA sensing pathway and STING activation [28, 68] (Figure 1). However, HIV, in 

particular, is capable of inhibiting transcription of immediate anti-retroviral factors [69] 

and exploits the host STING blocker NOD-like receptor NLRX1 to aid the 

establishment of virus latency [67, 69]. It was also reported that cationic liposomes 

and nucleic acid-free herpesvirus-derived virus-like particles can directly induce 

STING/TBK1 relocation regardless of DNA sensing pathways, suggesting that the 

membrane fusion mechanism may be an alternative route for enveloped DNA and 

RNA viruses to activate STING. Enveloped RNA virus Influenza A virus has been 

shown to release haemagglutinin fusion peptide which induces STING but not cGAS 

activation [29], thus indicating another  STING activation mechanism independent of 

cyclic dinucleotide recognition. It remains unclear whether the fusion particles alone 

are direct STING ligands or if activity requires facilitation by unidentified co-

regulator(s). 

 

The RNA-inducing adaptor MAVS (mitochondrial antiviral signalling protein; also 

known as VISA, Cardif, IPS-1) can also interact with and activate STING [6, 8] 

(Figure 1). The mitochondria-resident adaptor MAVS is the major molecular platform 

through which the RLR-dependent RNA sensing pathway elicits the type I interferon 

response. MAVS responds to the cytoplasmic RNA sensors RIG-I (the retinoic acid-

inducible gene I) and MDA5 (melanoma differentiation-associated protein 5) [70], 

and in turn induces proinflammatory transcription factors NF-κB (nuclear factor 

kappa-light-chain-enhancer of activated B cells), IRF1, IRF3, IRF5 and IRF7 [70–73]. 

Castenier and colleagues [74] found that RIG-I induced MAVS activation can 

modulate mitochondrial dynamic changes promoting signalling to STING at MAMs, 

“mitochondria-associated membranes”, where mitochondria and ER are closely 
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associated [75]. This adaptor interaction was found to be dependent on a 

mitochondrial fusion mechanism which induces mitochondrial elongation towards the 

ER, and hence MAM formation. Virus-induced mitochondria fragmentation disrupts 

membrane association and hence abolishes MAVS activation and secondary STING 

signalling [74]. Another report also suggests that RNA virus-induced release of 

stress-associated mitochondrial (mt)DNA activates the STING-dependent dsDNA 

sensing pathway [76]. This process, which is also likely to involve mitochondrial 

stress-induced apoptosis, may provide an effective means to remove damaged cells 

for infection control.  

 

Ablasser [77] and Chiu [78] noted that the STING inducer and a B-form dsDNA 

sensor RNA polymerase III (Pol III) activate the RIG-I –dependent RNA sensing 

pathways (Figure 1). RNA Pol III reversely transcribes dsDNA into dsRNA 

molecules that are activators of RIG-I. However, it is unclear how STING is involved 

in this process. 

 

 

Post activation trafficking of STING 

Activation of STING induces adaptor dimerization [7] and subsequent migration from 

ER membranes to punctate membranes of the Golgi by mechanisms similar to 

autophagy [11]. It remained difficult to identify the role of STING in autophagy 

regulation as little evidence was found to link STING with the recycling process 

during cell starvation. Yet many autophagy-related proteins such as autophagy-

related gene (Atg) 9a and Vps34 are key to STING inter-organelle trafficking [79], 

and that the loss of early autophagy marker LC3 II can significantly impair the 

STING-dependent innate response to viral and bacterial infections [79–81]. This 

autophagy-like behaviour could also be related to the ER-originated pre-

autophagosome formation, where STING is located [41].  
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Signalling Downstream of STING 

The STING-dependent cellular responses are mainly dependent on two transcription 

factors, IRF3 and NF-κB (Figure 2). STING activation first induces adaptor 

dimerisation [82] and TRIM56-dependent ubiquitination to enable TBK1 docking [83]. 

Together, STING and TBK1 migrate to the perinuclear membranes of the Golgi via 

autophagy-like processes [6, 18, 79]. The association between STING-TBK1 leads 

to auto-phosphorylation of TBK1 at S172, a residue known to induce TBK1 activation 

[84, 85]. This further allows TBK1 to phosphorylate STING at S358 and S366 (S357 

and S365, respectively, in mouse STING). Phosphorylated S366, together with L374, 

are important for the recruitment of IRF3 in close proximity to TBK1 at the C-

terminus of STING, thereby enabling TBK1 to phosphorylate and activate IRF3 by 

exposing its nuclear localisation signal [18]. Activated IRF3 then translocates into the 

nucleus and promotes expression of type I interferons. Via a rapid feedback 

mechanism, IFN-I is released and binds to cell surface interferon receptors 

(IFNαRs), which then induces the expression of interferon-stimulated genes (ISGs) 

via Tyk2/JAK1 [86–88] and STAT1-STAT2 dimers [89, 90]. 
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Figure 2. STING activated signalling pathways. 

STING activation leads to translocation from ER membranes to the perinuclear vesicles where it 

induces the signalling of two major pathways: the NF-κB -dependent proinflammatory response and 

the IRF3-dependent type I interferon response. The activation of mitochondrial antiviral adaptor 

MAVS also results in the activation of STING and recruitment of TBK1, which upregulates the 

transcription of antiviral chemokines via STAT6. 
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STING ligands have also been shown to activate the canonical NF-κB pathway 

(Figure 2), leading to the production of pro-inflammatory cytokines including IL-1α, 

TNF-α (tumour necrosis factor-α), IL-6, and numerous chemokines such as CXCL10 

and CCL-2 [9][19]. The mechanism of this was found to be dependent on STING-

TBK1 activation, which in turn regulates the activation loop of IKKα/β releasing p65 

to form active dimers with p50. Hence, the functional NF-κB complex can translocate 

into the nucleus and promote transcription of pro-inflammatory genes. Abe and 

Barber also suggested that TRAF6 may be involved upstream of TBK1, which likely 

facilitates NF-kB activation [19]. However, the IFI16-dependent STING pathway can 

only induce IRF3 but not NF-κB activation, which would serve to preserve the 

survival activities regardless of the antiviral response during infection [91]. 

 

Regulatory Motifs of STING Activity 

The sequence and topology of STING has been studied in parallel to its function. It is 

known that STING is a 379 amino acid long ER transmembrane protein encoded by 

the human TMEM173 gene (Accession NP_938023, XP_291127) and homologous 

genes in other mammalian species. The STING structure is highly conserved 

between mammalian species, with the N-terminal forming a putative multi 

membrane-spanning region, a middle CDN-recognition domain, and a cytoplasmic 

tail (Figure 3).  
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Figure 3. The domain structure of human STING protein.  

Human STING is a 379 amino-acid long ER-resident protein. The N-terminal contains 5 membrane-

embedded domains (dark blue) including 4 transmembrane domains and Helix α1 responsible for 

ligand sensing and protein dimerisation. The C-terminal is mainly cytoplasmic (pale blue). It contains 

the cyclic dinucleotide (CDN) binding domain and interaction sites for TBK1 and IRF3 at the tail. 

Numbers above STING sequence indicate the amino acids comprising the functional domain.  
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It is understood that the N-terminal 130 amino acids of STING form four 

transmembrane helices [92, 93] that are mainly responsible for membrane 

anchorage and inter-organelle trafficking [94] (Figure 3). An additional helix, named 

helix α1, was previously considered as the fifth transmembrane domain [6, 8, 95, 96] 

but has more recently been proposed to form a distinct domain with different 

functions [97]. Helix α1 is formed between residues 153-177 and has been reported 

to play an essential role in protein folding and dimerisation. Compromising the 

integrity of helix α1 causes STING precipitation in the cytoplasm and abolishes the 

homo-dimeric structure due to the loss of abundant hydrophobic interactions 

between dimers [97]. Ouyang’s group reported that helix α1 also supports strong 

hydrogen force between STING dimers and cyclic di-GMP, suggesting its importance 

in multiple STING functions [98]. 

 

In addition to helix α1, the rest of the cytoplasmic tail also contributes to STING 

dimerisation [7], cyclic dinucleotide recognition [99], and TBK1 and IRF3 recruitment 

[18, 100] (Figure 3). In the absence of ligands, STING dimers show an open 

structure susceptible to cyclic dinucleotides [98]. Upon recognition of cyclic di-GMP, 

residues 139-344 are rearranged to expose a docking site for TBK1 [98], enabling 

TBK1 to phosphorylate STING at serine 358 [8]. This phosphorylation in turn 

enhances TBK1-STING attachment. Tanaka’s group found that a 39-residue 

fragment at the carboxyl end of the STING protein was sufficient to activate IRF3 

signalling in response to DNA challenge [18], and the loss of this tail region, encoded 

by exon 7, creates a dominant negative STING isoform for TBK1-IRF3 signalling 

[101]. Further truncation of the STING C-terminal fragment revealed that S366 and 

L374 are the key residues for IRF3 recruitment and activation [18]. Therefore, TBK1 

and IRF3 are recruited to STING in a 20 amino acid –spanning region to facilitate 

their interaction by close proximity. 

 

Crystallisation of the STING protein has revealed that key residue substitutions or 

segment deletions significantly alter its structure, resulting in a dysfunctional protein 

[6, 7, 53, 97, 98, 102]. Mutations of single or multiple amino acids of STING have 

been found to influence its dimerisation capability [39, 103–105], ligand binding 
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capacity [39, 104–106], or the ability to be post-translational modified by regulatory 

proteins [102, 107]. Some of these mutations occur naturally in humans to cause 

lethal autoinflammatory diseases [39, 105, 108], and some were generated 

experimentally in order to understand the structure-function relationship of STING 

[53, 96, 97, 102]. 

 

 

STING Variants 

STING variations exist between mammalian species; the amino acid sequences of 

human and mouse STING are 68% identical and 81% similar [54]. Whilst this may 

not lead to dramatic differences in their three-dimensional structures, the structural 

differences at certain amino acid residues may be responsible for species-specific 

immune responses to some viral infections. For instance, Dengue virus (DENV) can 

inhibit STING signalling in human but not in mouse [107, 109]. DENV encodes for 

the protease NS2B3 that cleaves human STING at a highly-conserved putative 

cysteine motif (C88XXC91) to disable the adaptor. The equivalent cleavage target in 

mouse STING (mSTING) harbours a mutation that prevents NS2B3 cleavage, thus 

mouse STING can avoid DENV evasion. Mutant mouse embryonic fibroblasts 

transfected with hSTING re-constructed with a mouse NS2B3 cleavage site 

sequence blocks the type I interferon response against DENV. Specifically, a 

substitution of S135A in hSTING sequence results in inhibition of NS2B3 cleavage, 

suggesting that protecting STING at this residue may provide the basis for a novel 

anti-Dengue treatment [107].  

 

In humans, single nucleotide polymorphisms (SNP) of STING were found to result in 

different levels of IFN-I signalling modulation (Table 2). Substitution at R284M can 

greatly stabilize the STING dimer, indicating its strong potential to cause chronic 

STING-dependent autoimmunity [103]. Substitution at R293Q can strongly reduce 

the c-di-GMP –induced IFN-I signals and completely abolishes the signals induced 

by other 3’-5’ bond cyclic dinucleotides [104]. Other single residue polymorphisms 

such as R232H and G230A may affect the ligand binding pocket of STING, thereby 

reducing its response to bacterial ligands [104]. In particular, a loss-of-function triple 
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STING mutant, R71H-G230A-R293Q (named HAQ), abolishes almost 90% of the 

interferon response to all cyclic dinucleotides [110]. The HAQ mutant occurs in one-

fifth of the population from a thousand genome screen [104]. Homologous HAQ 

mutant knock-in mice have demonstrated that a variety of immune cells, including 

lymphocytes and Ly6Chi monocytes, express significantly less STING protein 

compared to the wildtype, and the mutant animals completely failed to respond to 

CDN challenge [106]. This suggested that the HAQ mutant may be a de facto null 

allele of STING, thereby reducing the availability of the STING protein to mediate a 

dsDNA sensing response. 
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Table 2. Mammalian STING variants and mutants. 

Single nucleotide polymorphisms of STING have been discovered in human and mouse which are 

implicated in dysregulation of type I interferon signalling and the proinflammatory innate immune 

response. STING mutations highlighted in green manifest as loss-of-function characteristics, 

mutations highlighted in red manifest as gain-of-function characteristics, and mutation in black lacks 

any gain-of-function or loss-of-function characteristic of STING. Gain-of-function mutations of 

V155M, N154S and V147L have been identified in human autoinflammatory disease called STING-

associated vasculopathy with onset in infancy (SAVI), and substitution of G160E is the major cause 

of another human autoimmune disease known as familiar chilblain lupus (FCL). The most 

predominant loss-of-function STING mutant named HAQ is considered to compromise host innate 

response against infection, yet no clinical evidence is available for further discussion. Others STING 

mutations are experimentally created to study type I interferon signalling pathways, but they are 

potentially pathological. 
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The function of several STING residues has been characterised using experimental 

point mutations (Table 2), some of which were also found to occur naturally in 

mammals. A C57BL/6 –derived, Goldenticket (Gt) mouse strain harbouring a single 

I199N mutation in STING leads to the complete abolishment of IFN-I activity to 

Listeria monocytogenes infection or stimulation of cyclic di-GMP and cyclic di-AMP 

[111]. The human equivalent mutation I200N was also considered to have the same 

effects, but no such spontaneous mutant has been discovered. Only a few gain-of-

function hSTING mutants have been identified clinically [39, 105] (Table 2). Patients 

with these STING mutations showed early on-set of severe systemic inflammation in 

blood vessels and various organs, displaying chronic inflammatory symptoms that 

are highly similar to pathologies of SLE (systemic lupus erythematous) and AGS 

(Aicardi-Goutières Syndrome) [39, 105]. All of these STING mutants have shown 

considerable structural resemblance to the active conformation, presumably leading 

to constitutive adaptor dimerization and signalling to type I interferon production. 

Both Liu and König’s groups suggested that inhibition of the interferon signalling 

adaptor JAK could significantly dampen IFN-I over-expression as measured in 

biopsy samples from these patients, indicating that JAK inhibitors could be a 

promising avenue to therapeutically control disease progression.  

 

As evidenced by the above studies, STING variants are likely to be associated with 

increased susceptibility to certain infections and autoimmune diseases, emphasising 

the value of genetic analysis of individual mutations to reveal novel targets for 

developing personalised therapy and immunisations. 

 

STING Regulations 

As a critical coordinator of the innate immunity, STING is tightly regulated by a 

variety of signalling molecules. Except that STING is post-translationally modified to 

enable dimerisation and activation, some regulators are essential for the prevention 

of constitutive type I interferon signalling which have been shown to cause 

autoimmunity both in animal models [6, 112] and in human [39, 108]. Negative 
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regulation of STING signalling is necessary for the resolution of inflammatory 

responses post infection (Figure 4). 
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Figure 4. Negative regulation of STING-mediated response. 

STING-mediated signalling can be negatively regulated via multiple mechanisms, including E3 

ubiquitin ligase TRIM30α- and TRIM21- mediated degradation of STING and its upstream DNA 

sensor DDX41, respectively. Certain phosphodiesterases (PDEs) also specifically hydrolyse bacterial 

cyclic dinucleotides to prevent them being sensed by STING. Akt kinase is also capable of inhibiting 

cGAS detection of cytoplasmic DNA. Activated cGAS produces 2’-3’ cGAMP to release AMPK-

mediated inhibition of ULK1, which in turn blocks IRF3 recruitment downstream of STING 

activation. 2’-3’ cGAMP produced by cGAS can also activate Beclin-1 which can sequester cGAS as 

well as induce degradation of dsDNA. In a negative feedback loop, the product of the IRF3-dependent 

antiviral response, microRNA-576-3P (miR-576-3P), can prevent further STING activation. Some 

viruses can encode proteases or protein inhibitors to interfere in STING signalling, while others may 

enhance the activity of inflammasome complexes NLRC3 and NLRX1 to block STING/ TBK1 

interaction. 
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Post-translational regulators 

Post-translational modifications contribute to the spatio-temporal regulation of STING 

signalling. STING is commonly modified by ubiquitination and phosphorylation. Upon 

ligand binding, the E3 ubiquitin ligase TRIM56 is recruited to initiate K-63 linked 

ubiquitination on STING, a prerequisite for STING dimerisation and activation [83]. 

Another E3 ligase AMFR (Autocrine motility factor receptor), together with its 

interacting partner INSIG1 (insulin-induced gene 1), catalyses K-27 linked poly-

ubiquitination, which is critical for TBK1 recruitment [113]. In contrast, TRIM30α-

dependent K275 ubiquitination [112] and RNF5 (RING finger protein 5) -dependent 

K150 ubiquitination [114] degrade STING dimers and negatively regulate antiviral 

signalling (Figure 4). This process is likely to involve the antiviral adaptor protein 

MAVS on mitochondria at the MAMs where the closely associated ER and 

mitochondrial membranes bring STING and MAVS in close proximity [115, 116]. 

Since ubiquitination is critical to STING regulation, some viruses can secrete 

proteases to specifically disrupt this process to suppress innate immune recognition, 

as summarised below (Table 3). 
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Table 3: STING-mediated evasion of antiviral immunity. 

A number of DNA and RNA viruses have been found to encode and secrete STING-targeted 

proteases or inhibitors to prevent innate immune detection to help establish the of latent phase of 

infection. Viruses of the same family tend to adopt similar strategies/mechanisms to block STING 

activation. Some viruses also express multiple inhibitors to target both DNA sensors and STING, or 

release viral oncogenes in parallel to further compromise immunity, which consequently increases 

their chance of survival in the host. 
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Pathogen Mechanism of Action References 

Yellow fever virus 

Dengue virus 

NS4B interrupts STING activation [11] 

Hepatitis C virus NS3/4A, NS4B proteases interrupt STING activation [137] 

[138] 

Herpes simplex virus-1 Release ICP0 E3 ubiquitin ligase to degrade IFI16  

Viral protein ICP27 binds to STING-TBK1 complex to 

prevent IRF3 signalling 

[139][140] 

[147] 

Coronaviruses SARS 

and NL63 

Disrupt K63-linked ubiquitin-mediated STING dimerisation [140] 

Human papillomavirus E2 protein inhibits STING transcription 

E7 oncogene blocks cGAS/STING signalling 

[141] 

[142] 

Adenovirus E1A oncogene blocks cGAS/STING signalling [142] 

Hepatitis B virus Disrupts K63-linked ubiquitin-mediated STING 

dimerisation 

[143] 

Kaposi’s sarcoma-

associated herpesvirus 

ORF52 proteins bind to and inhibit cGAS 

Targets IFI16 degradation during lytic reactivation 

[62] 

Epstein-Barr virus,  

Murine 

gammaherpesvirus 68,  

Rhesus monkey 

rhadinovirus 

ORF52 proteins bind to and inhibit cGAS [144] 

[145] 

Human 

immunodeficiency 

virus 

Enhance STING suppressor NLRX1 

Enhance TREX1 to degrade excessive cDNA 

Viral Capsids prevent innate sensing of cDNA 

[67] 

[65][68] 

[146][148] 

Human 

cytomegalovirus 

Tegument protein pUL83 disrupts IFI16 oligomerization 

and activation 

[63] 
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Some STING activities are also critically dependent on its phosphorylation. One such 

example is the phosphorylation of S366 on the C-terminal domain to provide docking 

sites for IRF3 prior to its phosphorylation by TBK1 [6, 100, 117]. ULK1-dependent 

phosphorylation on S366 post Golgi trafficking blocks IRF3 binding to STING and 

thus prevents chronic STING activation [102] (Figure 4). ULK1 acts upon release 

from its repressor AMPK (adenosine monophosphate activated protein kinase) which 

is induced by production of 2’-3’ cGAMP from cGAS. Interestingly, both loss-of-

function (S366A) and gain-of-function (S366D) mutations can abrogate IRF3 

signalling [18], suggesting that either the phosphorylation of S366 is temporally and 

spatially regulating IRF3 docking, or that alternative post-translational modifications 

are responsible for this functional regulation. In particular, S366-dependent inhibition 

of IRF3 does not impair the NF-κB pathway, indicating that these two pathways act 

independently of each other, which has likely evolved to prevent dysregulated 

antiviral responses from affecting survival activities [102]. 

 

 

STING can be negatively regulated by the NLR family inflammasome components 

NLRC3 [118] and NLRX1 [67] (Figure 4). Both of these have been shown to 

sequester STING to prevent TBK1 recruitment; in particular the latter is strongly 

enhanced in HIV infection to suppress STING-dependent recognition of reverse-

transcribed dsDNA [67]. Depletion of NLRX1 not only impedes nuclear transportation 

of viral DNA, but also restores the STING-mediated interferon response to stall 

progression of infection. This suggests that pharmacological suppression of intrinsic 

STING inhibitors could potentially support the re-establishment of STING-mediated 

innate immunity against RNA viruses, and thus may offer promising adjuvant therapy 

to combat retrovirus infection. However, Guo and colleagues also noted that such 

suppression must be finely controlled to avoid excessive inflammatory responses 

that may lead to autoimmunity [67].  

 

Post-transcriptional regulation 

A primate specific microRNA (miR)-576-3p has been identified as a novel STING 

regulator that promotes virus replication [119] (Figure 4). Over expression of this 
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microRNA promotes the spread of vesicular stomatitis virus, whereas its inhibition 

protects against virus growth. Further studies show that miR-576-3p is an IRF3-

induced gene that can target multiple genes of interferon-stimulators, including 

STING, MAVS, TRAF3 and STAT6, thereby reducing their levels [119]. Since IRF3 is 

a downstream signalling molecule in the STING-TBK1 axis, upregulation of miR-576-

3p serves as a negative feedback loop to prevent sustained inflammatory response 

during and post infections.  

 

Alternative mechanism of STING downregulation 

A recent discovery suggests that certain phosphodiesterases (PDEs) may 

specifically degrade bacterial cyclic dinucleotides to halt excessive STING activation 

[120–123] (Figure 4). The pathogen Mycobacterium tuberculosis secretes 

phosphodiesterases MtbPDE (Rv3586), cnpB and CdnP to remove cytosolic CDN, 

thus avoiding STING mediated detection [124–126]. Although this may appear to 

undermine bacterial virulence and growth signals that are critical to infection [124], it 

can also significantly reduce early type I interferon induction. In particular, the 

enzyme CdnP can degrade both bacterial-derived and host-derived cyclic 

dinucleotides, critically promoting survival of M. tuberculosis at early stages of 

infection [125].  

 

In addition to the above regulatory mechanisms, Akt kinase (or protein kinase B, 

PKB) has been shown to phosphorylate cGAS at residues S291 or S305 to stall 

signalling via STING [127], while the E3 ubiquitin ligase TRIM21 can specifically 

target the DNA sensor DDX41 at residues K9 and K115 for proteasome degradation 

and hence prevent recognition of DNA and STING-dependent type I interferon 

expression [128] (Figure 4). The autophagy protein Beclin-1 may also terminate 

STING-dependent immunity by sequestering cGAS and promoting autophagy-

dependent digestion of dsDNA [129] (Figure 4). This is thought to prevent prolonged 

DNA recognition, which could lead to autoimmunity. 
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STING in parasitic infection 

Immune responses to malaria infection are highly strain specific; the lack of 

understanding linked to these strain specific responses makes the disease clinically 

difficult to manage [130–132]. Recent studies on host-parasite interaction have 

revealed distinct roles for STING-dependent type I interferon responses during 

crosstalk with other pro-inflammatory pathways. CD40 receptors expressed on 

antigen-presenting cells are understood to initiate the cellular and humoral response 

of the adaptive immunity, specifically enhancing the generation of immunoglobulins 

against pathogens [133, 134]. Mice infected with Plasmodium yoelii nigeriensis, 

infected red blood cells, TLR ligands or parasitic DNA/RNA upregulate both CD40 

and type I interferon expression, whereas the loss of CD40 can reduce the level of 

STING further impairing the early type I interferon response in macrophages and 

dendritic cells [135]. Although CD40-induced STING upregulation leads to reduced 

CD40 levels and thus downstream NF-κB signalling, type I interferon immunity has 

been suggested to be highly inducible in certain strains of parasitic infection [135]. 

 

The establishment of malaria infection in the host is critically dependent on early 

innate immune mechanisms. Yu et al. suggested that depletion of plasmacytoid 

dendritic cells, rather than canonical dendritic cells and macrophages, can 

significantly impair type I interferon signalling at 24 h post Plasmodium yoelii 

infection [136]. The ubiquitous STING-cGAS pathway has been shown to enhance 

type I interferon production, and also potently induces SOCS1 to inhibit the MyD88 / 

IRF7-dependent type I interferon production which specifically acts on pDCs to 

protect against early malaria infection. The loss of STING and cGAS in mice 

augments the immediate type I interferon response from pDCs following malaria 

infection, and therefore protects the animal against early mortality [136]. Therefore, 

STING’s activity and its crosstalk with other proinflammatory pathways may be 

variable in complex diseases such as malaria, and thus the manipulation of STING 

signalling axis for therapeutic benefits may be difficult to achieve. 

 

 



73 
 

Viral Evasion of STING 

It is evident that many viruses can evade STING signalling to establish a biological 

niche in mammalian cells, and that those within the same family tend to adopt similar 

evasive strategies [11, 62, 63, 65, 67, 68, 137–148] (Table 3). For instance, several 

members of the Gammaherpesviridae family were found to express ORF52 protein 

homologs to disrupt cGAS activities, preventing subsequent production of 2’-3’ 

cGAMP [48]. Species of the Flaviviridae and Coronaviviridae families tend to secrete 

proteases that directly cleave or block STING [140]; typical examples include the 

NS2B/3 and NS4B proteases released by flaviviridae Dengue virus and hepatitis C 

virus, respectively, which can both degrade hSTING. In particular, NS4B protease 

shows strong homology to the ER-embedded N-terminal domains of STING, leading 

to colocalisation and direct protein-protein interactions with STING [11]. It has also 

been suggested that tumour associated viruses such as human papillomavirus and 

adenovirus could potentially release oncogenic proteins to block cGAS/STING 

interactions with tumour suppressors, hence compromising innate immunity and 

supporting cancer progression [142]. 

 

The impairment or absence of interferon responses often seen in HIV infection has 

been proposed as one of the mechanisms by which this virus is capable of 

suppressing host immunity [148–151]. Recent research suggests that HIV-1 

enhances the action of NLRX1 to dampen STING activity [67] and recruits host 3’ 

exonuclease TREX1 to degrade excessively produced, reverse-transcribed, viral 

DNA thereby avoiding detection by the cGAS/STING pathway [68, 152]. The capsid 

of HIV also regulates its association with host protein cyclin A, which controls the 

masking of viral cDNA from cGAS recognition in the cytoplasm and its exposure in 

the nucleus to facilitate genome integration [146]. Mutations in the HIV-1 capsid 

sequence enhance its binding to cyclin A prematurely in the cytoplasm enabling DC 

sensing of double-stranded DNA and a potent innate immune response against viral 

infection [146].  
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STING Related Autoimmunity 

Type I interferons are key cytokines induced by antimicrobial and antiviral immunity. 

This family of cytokines consists of the predominantly produced interferon-α and 

interferon-β, and the less abundantly expressed subtypes such as IFN-ε, -κ, -τ, and –

ζ [153]. Type I interferons are ubiquitously expressed by a variety of cells including 

macrophages, lymphocytes, dendritic cells, fibroblasts and haematopoietic 

plasmacytoid dendric cells, with a widespread role in cellular biology [153, 154]. 

 

“Basal” expression of type I interferons is regulated via an autocrine mechanism 

[155], whereas the activation of interferon-inducing regulators such as STING can 

significantly boost their expression by activating the transcription factor IRF3. Type I 

interferons are released extracellularly for detection by self or nearby interferon 

receptors, IFNαRs, which are coupled to JAK1 (Janus kinase 1) and TyK2 (tyrosine 

kinase 2) [86, 87]. This activation further promotes the formation of STAT1-STAT2 

heterodimers [23, 89, 90] and the subsequent recruitment of IRF9 to assemble the 

transcription complex ISGF3 to upregulates the expression of a series of interferon-

stimulated genes (ISGs) [154]. A broad range of ISGs have been found to control 

chemotaxis, cell migration, apoptosis, cell proliferation, and to regulate immune 

detection and defence against infection; many of which have been thoroughly 

reviewed previously [156–160] (Table 4). Thus, dysregulation of type I interferon 

signalling can cause an excessive production of ISGs, in turn over-activating the 

immune system. 
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Table 4. Summary of interferon-stimulated genes (ISGs). 

Expression of ISGs are induced by type I interferon via the JAK-STAT signalling pathway. ISGs are 

involved in a wide spectrum of cellular activities including apoptosis, immune modulation, cell 

migration and adhesion, and antiviral responses. Some ISGs have multiple roles in immune regulation 

but are not repeatedly indicated in the table. 
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The persistent or excessive presence of cytoplasmic DNA is one of the major causes 

for chronic inflammation and autoimmune diseases. Chronic production of type I 

interferons, termed “type I interferonopathy”, is a key indication of immune 

dysregulation predominantly associated with DNA-induced autoimmunity. The 

overactive IFN-I response alerts cytotoxic immune cells systemically via ISG 

production. This in turn promotes sustained release of proinflammatory cytokines 

including IL-1α/β, IL-12, and TNF-α, causing excessive inflammation and tissue 

damage [161–163]. Autoimmunity also induces aberrant cell death, which releases 

cellular components to T and B lymphocytes and leads to the production of self-

reacting antibodies that congest in capillaries [164]. Unresolved B cell activation 

predisposes individuals to the development of systemic lupus erythematosus (SLE) 

that is clinically challenging to treat [152, 165, 166]. 

 

 

Systemic lupus erythematosus is a systemic chronic autoimmune disease. [152, 165, 

166] (Figure 5). SLE is often diagnosed by the accumulation of serological 

antinuclear antibodies (ANA) against nucleic acids released from dead cells, which 

cause multiple tissue and organ damage [167]. Chronic activation of DNA and RNA 

sensing pathways triggered by infection and cell death can contribute to the type I 

interferonopathy that predisposes individuals to SLE [166]. Mutations in nucleic acid 

sensors (such as endosomal Toll-like receptors [168], RIG-I [169], and DAI [170]), 

interferon regulatory factors [171] and DNases [172, 173] can also increase SLE 

susceptibility. Recently, Ding and colleagues proposed that the cGAS-STING axis 

could be another pathway potentially exacerbating SLE, via the upregulation of type I 

interferon production downstream of cytoplasmic DNA sensing cascades [174]. 

However, STING deficiency in macrophages in fact renders hyper-responsiveness to 

endosomal TLR ligands, and STING knockout mice have shown accelerated 

lymphocyte accumulation and expansion of an IFN-α -responding cell population 

[175]. This therefore suggests inhibitory roles for STING in SLE development. 

Sharma et al. also showed that STING suppression can restrict the expression of 

regulatory T cell activation factor IDO-1 and TLR negative regulators such as A20, 

SOCS1 and SOCS3, contributing to uncontrolled systemic inflammation [175]. Since 
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this effect is not seen in cells lacking IRF3, the transcription factor mediating most of 

DNA sensing responses downstream of the STING-TBK1 axis, it is possible that 

STING is immunosuppressive in inflammatory pathways independent of cytoplasmic 

DNA recognition. Therefore, autoimmune therapies targeting the STING pathway 

should be considered with caution and an awareness of the resultant STING down-

regulation, which may have opposing effects in certain diseases. 
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Figure 5. Cells and cytokines involved in STING-associated autoimmune diseases.  

Unresolved accumulation of cytoplasmic DNA can potentially trigger chronic inflammatory responses 

which result in autoimmune diseases, including (A) systemic lupus erythematosus (SLE) and (B) 

Aicardi-Goutières Syndrome (AGS). Both diseases are strongly associated with persistently enhanced 

type I interferon upregulation named type I interferonopathy and subsequent B and T lymphocyte 

activation that potentiates systemic tissue and organ damage. Though STING dysregulation has been 

suggested to play an essential role in the development of these diseases, current treatment of SLE and 

AGS still relies heavily on anti-inflammatory therapies and DNA resolving methods to ameliorate 

symptoms. Gain of function mutations of STING can cause two autoimmune diseases named (C) 

STING-associated vasculopathy with on-set in infancy (SAVI) and (D) familial chilblain lupus (FCL). 

Both diseases show similar manifestations to SLE and AGS and are much less responsive to STING 

ligands than other immune stimuli. Treatments for SAVI and FCL are limited but JAK inhibitors have 

been shown to ameliorate symptoms in patients with these two diseases. 
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AGS (Aicardi-Goutières Syndrome) is another genetically-based autoimmune 

disease, characterised by DNA-triggered type I interferonopathy [176] (Figure 5). 

Patients with AGS often carry mutations in DNA restriction factors including the 3’ 

exonuclease TREX1 [177, 178], dNTP restriction factor SAMHD (SAM domain and 

HD domain) [179, 180], RNase H2 (ribonuclease H2) [181, 182], dsRNA sensor 

IFIH1 (IFN-induced helicase C domain containing protein 1) [183, 184], and the 

dsRNA-specific adenosine deaminase ADAR1 [185]. These regulators maintain a 

balance between the production and degradation of nucleic acids, providing intrinsic 

protection against immune activation due to “self-recognition”. Mutations of DNA or 

RNA restricting factors cause nucleic acids to accumulate in the cytoplasm leading to 

SLE and AGS. Recent studies show that the type I interferonopathy associated with 

SLE and AGS is potentially cGAS-STING dependent, and that the aberrant IFN-I 

response can be suppressed by the loss of DNA sensor or STING in cells or animals 

expressing mutated Trex1 or Samhd [180, 186].  

 

Gain-of-function mutations in STING have been identified in infants who suffer from 

severe and chronic vasculopathy and pulmonary inflammation, a condition known as 

STING-associated vasculopathy with onset in infancy (SAVI) [39] (Figure 5). 

Mutations of STING V147L, N154S, V155M, and V155R were found to direct it to an 

active conformation enhancing dimerisation and inducing TBK1-IRF3 signalling 

(Table 2). This results in an excessive IFN-I response in fibroblasts, keratinocytes 

and immune cells to attract and amass proinflammatory cells and regulators in 

capillaries and tissues, ultimately causing lesions in these regions. Sustained IFN-I 

signals activate interferon receptors and promote expression of interferon-stimulated 

genes via JAK1-Tyk2 signalling and STAT1-STAT2 dimers. In vitro experiments and 

pioneering clinical studies suggest that JAK adaptor inhibition effectively dampens 

STING-mediated IFN-I over-activity. For instance, the elevated IFN-I levels in biopsy 

samples from SAVI patients can be restored close to that of the normal controls with 

treatment using the JAK inhibitor, tofacitinib [39]. Further investigation is required to 

examine the potential adverse effects of interferon suppression, which is likely to 

increase host susceptibility to infection.  
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Gain-of-function mutations of STING (Table 2) have also been linked to the 

autoimmune disease familial chilblain lupus (FCL) [105, 108], a rare hereditary form 

of SLE commonly associated with cytoplasmic DNA accumulation in monogenic 

mutations of exonucleases TREX1 [187, 188] or SAMHD [189] (Figure 5). A recent 

discovery reports FLC in five members of a four-generation family sharing the same 

TMEM173 (STING) variant that encodes a single polymorphism of G166E. Structural 

analysis of mutated STING dimers reveals strong hydrogen attractions between 

E166 on one monomer and two threonine residues on the associating monomer, 

hence leading to enhanced adaptor dimerization and constitutive IFN-I -activated 

signalling [105]. Although limited treatment data is currently available for FCL, the 

authors showed that continuous administration of the JAK inhibitor tofacitinib can 

markedly ameliorate type I interferonopathy and associated symptoms in two 

patients. A similar therapeutic strategy was previously proposed by Liu and 

colleagues for treatment of STING-associated vasculopathy with onset in infancy 

(SAVI) [39]. Therefore, this therapeutic approach, based on mechanistic data, could 

be adapted to treat type I interferonopathy found in various diseases. 

 

STING Regulates Lipid Metabolism 

A new insight into STING research was recently provided by York and colleagues 

who suggested that this protein is a crucial element of cholesterol metabolism [45]. 

Previous studies indicate that high cholesterol levels in the plasma membrane 

correlate with viral loads and host susceptibility to infections [190, 191]. Virus and 

microbial infections have been shown to modulate lipid metabolism in the plasma 

membrane to facilitate infectivity. For instance, influenza virus encodes fusion protein 

haemagglutinin that is specialised in manipulating membrane lipid to permit 

penetration into the cytoplasm, a central step to viral infectivity and survival [192]. In 

addition, membrane lipids can also form signalling microdomain named lipid rafts 

which are frequently hijacked by HIV for attachment, signalling and budding to 

further promote infection [193, 194]. The antiviral type I interferon response reduces 

cholesterol availability in membranes to prevent viral infection; however the 

underlying mechanism remains largely unknown [195–197]. York’s group recently 

identified that STING/TBK1 signalling is critical to the production of type I interferons 

to reprogram lipid biosynthesis in pathogenic infection [45]. They demonstrated that 
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the shift from lipid biosynthesis to lipid uptake not only affects the plasma membrane 

but also ER membranes, a cue to activate STING, bypassing the dsDNA sensing 

pathway. However, since STING is not the only adaptor for innate immunity against 

pathogenic DNA in the cytoplasm, it is conceivable that additional DNA sensors may 

further enhance STING actions to modulate cholesterol metabolism and promote 

antiviral processes. In light of the membrane fusion theory that potentially mediates 

STING activation [198], virus-host lipid regulation at the plasma membrane offers a 

promising  and novel future research direction. 

 

Therapeutic Targeting of the STING Pathway 

Studies on STING regulatory pathways provide novel insights into antiviral and anti-

inflammatory therapies. Activating STING-dependent pathways has been developed 

therapeutically for antiviral and, more recently, anti-tumour benefit. The predominant 

approach taken has been to introduce STING ligand cyclic dinucleotides to promote 

the IFN-I response, to combat infection or to prevent tumour progression. In contrast, 

type I interferonopathy associated with STING over-activity represents another set of 

pathologies underlying autoimmunity. Counteracting these disease processes 

requires potent suppression of STING signalling; attenuation of the interferon 

receptor adaptor JAK is used as a current target, whilst inhibiting immune cell 

activation may also help ameliorate symptoms.   

 

Anti-tumour Immunotherapies 
Certain types of cancer cells express molecular structures specifically recognised by 

CD8α+ dendritic cells (DCs), which subsequently interact with cytotoxic T cells to 

induce cancer cell death. This event, known as T cell priming, is a prerequisite for 

anti-tumour adaptive immunity relying on activation of CD8α+ dendritic cells to 

promote IFN-I signaling in immature T cells [199]. However, cancer cells also boost 

anti-inflammatory immune cells and regulatory T cells (Treg) to restrict CD8α+ DC 

activity thereby attenuating the activation of tumour-suppressive T cells [200, 201]. 

Therefore, a potent and long-acting adjuvant that can promote CD8α+ DC activities 

is highly desirable to enhance T cell priming and subsequent anti-tumour immunity.  
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It has been reported that the IFN-I response critical to T cell priming during 

tumourigenesis is dependent on the cGAS / STING pathway [42, 43]. Loss of STING 

in dendritic cells abolishes antigen cross-presentation from CD8α+ DC to T cells, 

whereas neither MyD88 nor TRIF knockouts can significantly affect DC IFN-I 

signalling, suggesting that STING may be the only adaptor central to this process 

[43]. In both immunogenic and irradiation-induced tumour models, tumour-derived 

DNA was engulfed and recognised by the universal DNA sensor cGAS prior to 

STING activation [42, 43]. However, direct stimulation with STING ligands also 

enhanced DC production of type I interferons, suggesting that STING-inducing 

therapies may offer potential as anti-tumour adjuvants.  

 

Preclinical studies published recently suggest that DMXAA-derived cyclic 

dinucleotides have been successfully applied in established mouse models of 

malignant tumours achieving sustained tumour regression [202]. In malignant tumour 

B cells, STING also induces an ER stress response through the IRE-1 / XBP-1 (X-

Box binding protein 1) pathway [203]. In the presence of 3’-3’ cGAMP STING dimers 

are phosphorylated and aggregate, rather than undergoing degradation. This 

consequently enables prolonged STING signalling to induce apoptosis of tumour 

cells. Similarly, Tang et al. showed administration of 3’-3’ cGAMP induces rejection 

of chronic lymphatic leukemia in mouse models [203]. Another promising vaccine 

candidate is the recently developed STINGVAX which combines granulocyte-

macrophage colony-stimulating factor (GM-CSF) and formulated 2’-5’ – 3’-5’ linked 

cyclic dinucleotide [204]. In various established in vivo tumour models, STINGVAX 

has shown notable positive effects on dendritic cell activation and in promoting 

tumour-infiltrating T cells. Interestingly, activated cytotoxic T cells also upregulate the 

expression of PD-L1 (programmed death ligand 1), which enhances the therapeutic 

action of pro-apoptotic ligand PD-1 to promote tumour cell death. Although these 

STING-based vaccines have recently been developed and have been tested in 

mouse models, the synergistic effect of the combined STING agonist and immune 

promoting therapy represents a novel strategy to combat tumours by reinforcing both 

adaptive immunity and anti-tumour targets. 
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JAK Inhibitors Ameliorate STING Mutated Autoimmunity 

Inhibition of STING signalling can be achieved by targeting interferon receptors. As 

previously mentioned, gain-of-function mutations in TMEM173 (the gene encoding 

STING) underlie type I interferonopathies that manifest in the autoimmune diseases, 

SAVI [39] and FCL [105]. Constitutive STING signalling was detected in both of 

these diseases resulting in dysregulated IFN-I signalling via interferon receptors and 

the adaptors JAK and Tyk. This leads to the accumulation of activated STAT1/2 

dimers in the nucleus, promoting transcription of interferon-stimulated genes. Both 

Liu and König’s groups demonstrated that treatment with the JAK1/3 inhibitor 

tofacitinib in patient biopsy samples suppresses STAT activation and restores the 

STING response to immune stimuli similar to healthy control cells [39, 105] (Figure 

5).   

 

Following the work of Liu and colleagues, Fremond’s group conducted an 18-month 

clinical investigation on three patients expressing STING-mutations to assess the 

efficacy of the JAK1/2 inhibitor ruxolitinib [205] (Figure 5), which was previously 

found to partially inhibit STAT activation in in vitro studies of STING mutants [39]. 

Marked amelioration of systemic inflammation and reduction of interferon-stimulated 

gene expression was consistently observed in all three patients and in the 

subsequently recruited additional four patients with STING gain-of-function 

mutations. However, suspension of JAK inhibition in one patient resulted in a 

dramatic inflammatory relapse, though rescued by re-introducing ruxolitinib, 

demonstrating that this approach may be unsustainable and requires continuous 

monitoring [205–207]. Nonetheless, it is arguable that the partial inhibition of JAK-

STAT pathway has the advantage of preserving STING-dependent immune 

protection against infection in these patients, since no excessive infection incidents 

were observed during these clinical trials [205]. Thus, it is timely to determine 

whether such JAK inhibitors can be modified and adapted for future treatment of type 

I interferonopathy. 
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Anti-inflammatory Biologics 

Anti-inflammatory biologics represent a further opportunity to suppress interferon 

responses in order to control type I interferonopathy in autoimmune diseases, 

including but not limited to SLE, a major manifestation linked to STING over-activity. 

For instance, the anti-IFN-α drug sifalimumab is effective in controlling cutaneous 

and joint pain in SLE patients [208] (Figure 5).  

 

Another approach to control SLE in STING gain-of-function mutations is to deplete or 

inhibit B-cell responses to prevent the over-production of auto-antibodies. The 

effective anti-SLE biologics, belimumab, targets the BLyS protein of B lymphocytes, 

preventing B cell activation and expansion critical to the production of autoantibodies 

and downstream activation of T lymphocytes [209, 210] (Figure 5). A series of stage 

II and stage III clinical trials have shown effective B-cell inhibition and significant 

improvement of clinical symptoms in combination with traditional care therapy of SLE 

in the treatment group compared to placebo control, whilst drug tolerance and 

immunosuppression-induced infection susceptibility were not markedly increased 

[210–212]. This suggests an effective drug efficacy and safety of belimumab over 

another B-cell depleting drug rituximab, which failed to ameliorate SLE symptoms in 

phase II and III trails [213]. Unlike JAK inhibitors and anti-IFN biologics, B-cell 

targeted therapies are much less effective in controling type I interferonopathy that 

consequently cause complex inflammatory responses in STING mutant patients. 

However, they are still commonly used to treat the SLE-related consequences of 

STING over-activation to stall symptom deterioration, while they have also been 

considered suitable adjuvant candidates for STING-targeted therapeutics.   

 

Delivery of STING ligands 

Accumulating evidence link STING-mediated IFN-I signaling to anti-tumour activity, 

and thus STING ligands have been proposed to offer promising immune-enhancing 

therapies to defend against DNA infections and tumourigenesis [41, 214]. However, 

targeting intracellular proteins such as STING remains challenging as the plasma 

membrane is a highly hydrophobic and size-selective barrier that resists passive 

entry of chemicals [57]. In contrast to the de novo STING ligand 2’-3’ cGAMP [48], 
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other cyclic dinucleotides are produced exogenously by pathogens and introduced 

into the cytoplasm by active transport or particle fusion [47, 50, 215]. Since the 

hydrophilic phosphate groups in dinucleotide compounds are strongly repelled by 

membrane lipid bilayers, designing an effective delivery system for cyclic 

dinucleotides would provide a significant step forward in the development of STING-

specific therapeutics. 

 

Under in vitro studies, transfection of microbial cyclic dinucleotides is aided by 

digitonin [35, 39, 50, 104] or liposomal-based systems such as Lipofectamine® [47, 

102] (Figure 6). The former method, first described by Woodward’s group [35], aims 

to achieve reversible permeabilisation of cellular membranes to increase uptake of 

chemicals [216–218], but is limited to in vitro studies due to high toxicity in vivo. In 

contrast, the liposomal-based delivery system is based upon the principle of 

encapsulating drugs in artificial double-layered liposomes for cytoplasmic delivery via 

liposomal fusion. The system is highly adapted for a variety chemicals and has been 

used in both laboratory studies and clinical practice [219].  
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Figure 6. In vitro and in vivo delivery of STING agonists. 

The plasma membrane is a selectively permeable barrier that prevents cytoplasmic entry of large or 

hydrophilic molecules, including naked cyclic dinucleotides (CDNs) (1). In vitro (blue background) 

delivery of dinucleotide compounds could be achieved by the liposomal delivery system (2), or via 

reversible permeabilisation of plasma membrane to allow diffusion of naked CDNs into the cytoplasm 

(3). Recently designed YSK05-containing liposomes (4) could carry c-di-GMP across plasma 

membranes to induce DDX41-mediated STING activation as well as enhance the expression of MHC 

class I molecules and T cell co-stimulatory receptors (not demonstrated), and thus it is considered to 

be a potential adjuvant for cancer immunotherapy. In addition, the polyethyleneimine/ hyaluronic acid 

(LH) hydrogel-based vesicles use phagocytosis to deliver both STING ligands and antibody-

stimulating agents such as ovalbumin (dark triangles) to cells (5), and enhance both STING-

dependent innate immunity and MHC class II-activated adaptive immunity to suppress cancer growth. 

Both YSK05 particles and LH hydrogel-based particles have been tested in vivo (green background) 

to stall tumour progression in mice (6). 
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In light of the liposome-based designs, Miyabe’s group has reported that the YSK05-

based lipid particles were able to entrap and deliver cyclic di-GMP into the RAW 

264.7 macrophage cell line [220] (Figure 6). These particles induced cellular 

expression of type I interferon genes which were effectively blocked by the TBK1 

inhibitor BX795, suggesting that the interferon response was specifically induced via 

the STING/TBK1 pathway. Furthermore, the YSK05-based particles also express 

high levels of the antigen-presenting molecule MHC class I and T cell co-stimulating 

molecules CD80 and CD86 that are a prerequisite of T lymphocyte activation; all of 

these characteristics suggest they offer potential as adjuvants in anti-tumour 

therapies. Preliminary tests carried out by Miyabe and colleagues showed that mice 

immunized with cyclic di-GMP containing YSK05-liposomes reject tumour 

implantation compared to matched controls [220]. Subsequently, Nakamura’s group 

demonstrated that in vivo injection of these particles greatly enhances the 

expression of IFN-I and MHC class I molecules in tumourigenic mice, resulting in 

augmented NK cell activation and potent innate immune protection against lung 

melanoma metastasis [221]. Therefore, the YSK05 liposomes offer a potential 

vehicle to assist delivery of STING ligands and to develop STING-based adjuvants 

for cancer immunotherapy. 

 

As an alternative approach, a nanoparticle-based delivery system developed by Lee 

and colleagues also enables in vitro delivery of cyclic dinucleotides to target STING 

pathways for anti-tumour effects [222] (Figure 6). This method employs 

polyethyleneimine / hyaluronic acid (LH) -based hydrogels to enclose dinucleotide 

drugs into micron size spheres, which are selectively taken up by phagocytic cells 

such as RAW 264.7 macrophages, L929 fibroblasts and bone marrow-derived 

macrophages (BMDMs), but not by non-phagocytic fibroblasts. Thus, the micron-

sized particles appear to target phagocytosis specifically to gain entry into the 

cytoplasm. Furthermore, Lee et al. showed that LH-cGAMP hydrogel can induce 

IFN-I spikes in RAW264.7 macrophages, which were more than twice the magnitude 

of that induced by lipofectamine-delivered cGAMP at the same dose [222]. 

Administration of ovalbumin-containing LH-cGAMP particles in mice activates both 

the type I interferon response and humoral production of IgG to protect against 

ovalbumin challenge. Taken together, Miyabe and Lee’s work indicates that the 
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modified liposome-based delivery systems can markedly enhance in vitro and in vivo 

delivery of cyclic dinucleotide to cytoplasmic STING, and this success will promote 

the development of novel cancer vaccination and immunotherapies dependent on 

STING signalling.  

 

Conclusions 

Cytoplasmic DNA has been implicated in many human pathologies, many associated 

with chronic inflammation. Research has revealed that the ER transmembrane 

protein STING is a crucial player in dsDNA pathogen -sensing pathways whose 

dysregulation contributes to the development of several diseases. By responding to 

DNA sensors and cyclic dinucleotides, STING induces IRF3- and NF-κB –dependent 

pathways to elicit proinflammatory responses against infection and cancer 

progression. STING also directly cross talks with several other regulators to 

modulate critical biological processes including autophagy and cholesterol 

biosynthesis. It is evident that activating STING results in the type I interferon 

response to protect against infection and tumour formation, while dysregulated gain-

of-function STING mutations lead to detrimental consequences of autoimmunity. 

Understanding the molecular signalling mechanisms of STING activation has 

provided new insights to advance therapeutic strategies in treating infection, cancer 

and autoimmune diseases. It has also prompted the development of intracellular 

delivery systems to administer STING agonists. Despite the fact that STING has only 

been studied for a decade, this adaptor protein will continue to attract attention in 

immunology research and clinical practice into the future. 

 

List of Abbreviations: 

 

STING: STimulator of INterferon Genes 

ER: Endoplasmic reticulum 

DNA: deoxyribonucleic acid 

RNA: ribonucleic acid 

dsDNA: double-stranded DNA 
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ssRNA: single-stranded RNA 

cDNA: complementary DNA 

mtDNA: mitochondrial DNA 

TRAP: Translocon-associated protein 

ERAD: Endoplasmic Reticulum-associated degradation 

Type I interferon/ interferon: IFN-I/ IFN 

TBK1: TANK binding kinase 1 

IRF: Interferon regulatory factor 

VSV: Vesicular stomatitis virus 

CDN: cyclic dinucleotide 

cGAS: cyclic guanosine monophosphate – adenosine monophosphate synthase; 

cyclic GMP-AMP synthase 

cGAMP: cyclic guanosine monophosphate – adenosine monophosphate; cyclic 

GMP-AMP 

DAI: DNA-dependent activator of IFN-regulatory factor 

IFI61: IFNγ-inducible protein 16 

DDX41: DEAD-Box Helicase 41 

HCMV: Human cytomegalovirus 

HSV: Herpes simplex virus 

HIV: Human immunodeficiency virus 

MLV: Murine leukemia virus 

SIV: Simian immunodeficiency virus 

NLR: NOD-like receptor; nucleotide-binding oligomerization domain-like receptor 

MAVS: Mitochondrial antiviral signalling protein 

RLR: RIG-I like receptor; retinoic acid-inducible gene I –like receptor 

MDA5: Melanoma differentiation-associated protein 5 

NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells 

MAMs: Mitochondria-associated membranes 

Pol III: RNA polymerase III 

Atg: Autophagy-related gene 

ISG: Interferon-stimulated gene 
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Tyk: Tyrosine kinase 

JAK: Janus kinase 

STAT: Signal transducer and activator of transcription 1 

IL-1α: Interleukin-1α 

TNF-α: Tumour necrotic factor-α 

IKKα/β: IκB kinase α/β subunits 

DENV: Dengue virus 

hSTING / mSTING: human STING / mouse STING 

SNP: single nucleotide polymorphism 

HAQ mutant: R71H-G230A-R293Q mutant 

SLE: Systemic Lupus Erythematous  

AGS: Aicardi-Goutières Syndrome 

TRIM56: Tripartite motif containing 56 

AMFR: Autocrine motility factor receptor  

INSIG1: Insulin-induced gene 1 

RNF5: RING finger protein 5 

AMPK: Adenosine monophosphate activated protein kinase 

microRNA: miR 

PDE: phosphodiesterase 

TREX1: 3’ repair exonuclease 1 

ISGF3: Interferon-stimulated gene factor 3 

ANA: Antinuclear antibody 

SAMHD: SAM domain and HD domain 

RNase: Ribonuclease 

IFIH1: IFN-induced helicase C domain containing protein 1 

ADAR1: Adenosine deaminase acting on RNA 1 

FCL: Familial Chilblain Lupus 

SAVI: STING-associated vasculopathy with onset in infancy 

DC: Dendritic cell 

Treg: Regulatory T cells 



93 
 

XBP-1: X-Box binding protein 1 

GM-CSF: Granulocyte-macrophage colony-stimulating factor 

PD-L1: Programmed death ligand 1 

MHC class I: Major histocompatibility complex class I 

LH: Polyethyleneimine / Hyaluronic acid 

BMDM: Bone marrow-derived macrophage 
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1.6 Interferon signalling 

STING is an indispensable regulator of type I interferon signalling as initially described 

by Ishikawa and Barber. In the next section, I summarise the interferon signalling and 

the importance of type I interferon in immune regulation and pathogenesis.  
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1.6.1 Interferons 

The term “interferon” was first proposed by Isaaca and Lindenmann to describe a type 

of secretory protein produced in chick embryonic culture (chorio-allantoic membrane) 

that could interfere influenza virus infection in other cells [134]. After 60 years of 

research on these proteins, our knowledge of interferons has expanded with regard to 

their classifications, actions, and the physiological changes that are associated with 

either their activation or dysregulation. Interferon release is central to the activation of 

cellular and molecular responses against infections, tumourigenesis, and neurological 

disorders [135]. They are ubiquitously produced by many tissues and cells including 

monocytes, macrophage, dendritic cells, lymphocytes, leukocytes, fibroblasts, and 

natural killer cells to regulate immune and proliferative functions and to enhance 

further immune activations [128, 135–138].  

 

Interferons (IFN) belong to the super family of class II α-helical cytokines which are 

further categorised into three subtypes, I, II and III (IFN-I, IFN-II and IFN-III) [139]. 

Interferon signalling is initiated by cytokines binding to heterodimeric interferon 

receptors on the plasma membrane to trigger the intracellular Janus kinase - signal 

transduces and activators of transcription (JAK – STAT) pathways, leading to the 

phosphorylation and assembly of STAT dimers [140]. This complex recruits IRF9 to 

form a trimeric transcriptional complex ISGF3 (STAT1-STAT2-IRF9) which migrates 

to the nucleus and promote the expression of interferon-stimulated genes. Although 

interferons engage distinct sets of receptors and activate specific DNA promoter 

regions, their signalling process is highly conserved, facilitating a rapid antiviral and 

immune regulatory response. 
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1.6.2 Type II and Type III interferon signalling 

The type II and the type III interferon families consist of fewer members in comparison 

to the type I interferons. The IFN-γ is encoded by multiple genes and is largely 

released by T lymphocytes and natural killer cells. It binds to a distinct receptor 

complex the interferon-γ receptor (IFNGR or IFN-γR) which promotes MHC II -

dependent pathogen eradicating mechanisms [141–143]. A crucial function of IFN-γ 

is to program macrophage proinflammatory polarisation (Th1 or M1 activation) [42, 

144] which has been discussed in Chapter 1.2.2.2. Whilst IFN-γ has similar, albeit less 

significant function in direct host microbial/stress defence, it strongly promotes 

adaptive immune activation and potentiates antigen-specific immune response and 

cytotoxic cytokine secretion [144–148]. IFNGR activation induces JAK1/2 - TyK2 

(Tyrosine kinase 2) which assembles STAT1 homodimers [149]. STAT1 promotes 

nuclear accumulation of gamma-interferon activating factor (GAF) and binding to 

interferon-γ -specific promoter site (GAS), which controls the expression of interferon-

stimulated genes (ISG) [150, 151].  

 

IFN-III is a family of IL-10 related proteins consist of IFN-λ1, -2, -3 (also known as IL-

29, IL-28A and IL-28B, respectively), and a recently identified and poorly characterised 

IFN-λ4 [152–154]. These cytokines signal through the heterodimeric interferon-λ 

receptors (IFNLR) complex made up of interferon-lambda receptor 1 (IFN-λR1 or 

CRF2-12) and IL-10 receptor 2 (or CRF2-4). In addition to the STAT1 dimer-GAS axis, 

IFN-λ signalling also assembles STAT1-STAT2 heterodimer which further recruits 

IRF9 to form ISGF3. This complex recognises the DNA promoter interferon-stimulated 

response element (ISRE) to induce expression of interferon-stimulated genes (ISG) 

[155–157]. IFN-λ has also been shown to activate STAT3, STAT4 and STAT5 in a cell 

specific manner [158]. Since type I and type III interferons activate the same kinase 

cascades and both GAS and ISRE promoted gene expression, their biological 

activities are largely similar. Viruses including vesicular stomatitis virus, Dengue virus, 

Sindbis virus, encephalomyocarditis virus and rotavirus can activate both IFN-I and 

IFNIII [145,151]. IFN-λ is preferentially induced over type I interferons by certain 

viruses such as influenza A virus and respiratory syncytial virus as an mechanism of 

immune redundancy, potentially to protect local cell/tissue environment [160–162].  
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1.6.3 Type I interferon signalling 

The IFN-I family includes the abundantly expressed IFN-α and IFN-β and numerous 

less-widely expressed cytokines such as IFN-ε, -κ, -τ, and –ζ [139]. In humans, IFN-α 

is transcribed by 12 different genes whereas IFN-β is encoded by a single transcript 

[163]. The type I interferons are stimulated in macrophages, myeloid and plasmacytoid 

dendritic cells amongst a wide spectrum of infected cells. The type I interferon 

response is triggered in response to RNA and DNA sensing by TLRs, RLRs and 

cytosolic DNA sensors. These PRR receptors mediate signal transduction through 

adaptor proteins TRIF, MAVS and STING, where their activities converge at the 

induction of TANK-binding kinase 1 (TBK1) and IκB kinase (IKK), which further recruit 

and activate IRF3 and NF-κB [164–167]. These transcription factors then accumulate 

into the nucleus and initiate the expression of type I interferons [Reviewed in [81]]. 

IRF3, NF-κB and other IRFs (IRF1, IRF4, IRF5, IRF7 and IRF8) bind to different sets 

of the positive regulatory domains (PRD) of interferon promoters [168–171]. TNF also 

weakly activates type I interferons due to its induction of IRF1 rather than IRF3 and 

IRF7 [172, 173]. All transcription factors other than IRF3 and IRF7 have lower and 

different affinities for interferon promoters and hence these two IRFs are the most 

critical regulators of interferon expression [81]. The type I interferon response not only 

provides early defence against infection and immune dysfunction, it also induces a 

secondary and higher amplitude of interferon-stimulated response. A schematic 

summary of type I interferon / ISG signalling cascade is shown in Figure 3. 
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Figure 3. Schematic summary of Type I interferon signalling/ ISG feedback pathway. 

Pathogen-derived molecules and nucleic acids are recognised by transmembrane and 

cytoplasmic pattern-recognition receptors (PPRs) and induce signalling activation of NF-κB 

and IRF3 –dependent transcription of type I interferons (predominantly IFN-α and IFN-β). 

These cytokines are released to the extracellular interferon receptors IFNARs and respond in 

both autocrine and paracrine manners. These receptors couple to the adaptor protein Tyk2 

and JAK1 which activates three transcriptional complexes: ISGF3 (consists of STAT1-STAT2-

IRF9), STAT1 homodimer, and STAT3 homodimer. These factors bind to and activate GAS 

or ISRE promoter-containing interferon-stimulated genes (ISGs), including the ones indicated 

in the figure. STAT3-dependent ISG production negatively feeds back to STAT1 activation 

and hence suppresses further ISG response. ISGs are responsible for various cellular 

response against microbial infections and immune regulatory activities. Figure summarised 

from [174–177]. Abbreviations: ER= endoplasmic reticulum, JAK1= Janus kinase 1, IFNAR= 

Interferon-alpha/beta receptor, TyK2= Tyrosine kinase 2, STAT= signal transducer and 

activator of transcription 1,  GAS= gamma-interferon-activation site, ISRE= interferon-

stimulated response element, IP-30= gamma-interferon-inducible protein 30, GBP1= 

guanylate-binding protein 1, OAS= 2’-5’-oligoadenylate synthase, MxA= Myxovirus resistance 

protein 1, IFIT1= interferon-induced protein with tetratricopeptide repeats 1, ISG15= 

interferon-stimulated gene 15.  
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IFN-I signals through the heterodimeric IFNAR1/IFNAR2 receptor complex named 

IFNAR (interferon-α/ β receptor) [156]. The receptor complex shows little architectural 

change when binding to cytokines; however, the receptor affinity to IFN-β was ten to 

twenty-fold higher than that to IFN-α, and the former is reflectively more capable of 

activating downstream signalling effects [178]. Following IFNAR activation, kinases 

JAK1/2-TyK2 are activated and in turn induce ISGF3 formation (STAT1-STAT2-IRF9) 

[140, 179] which promotes ISRE-regulated gene transcription [155–157]. Unlike IFN-

γ which recruits STAT1 homodimers, IFN-I activates both GAS and ISRE promoters 

via STAT1 homodimers or ISGF3 [Reviewed in [174]], exhibiting an overlapping but 

much broader antiviral response compared to IFN-γ. IFN-I/IFNAR also recruit STAT3 

homodimer to antagonise STAT1 dimer assembly but it supports ISGF3-dependent 

antiviral ISG expression [180, 181]. The competition between STAT1 and STAT3 

controls an appropriate cellular response. 

 

Gene CHIP (chromatin immunoprecipitation) analysis of type I (α and β) and type II (γ) 

interferon-activated human fibrosarcoma cells revealed that STAT1 and gamma-

interferon inducible GTPase guanylate-binding protein (GBP) are universally induced 

by all three interferons, whereas IRF1 and gamma-interferon-inducible protein (IP-30) 

are preferentially stimulated by IFN-γ [182]. Furthermore, IFI16, STAT1 and GBP-2 

are preferentially induced by IFN-β over IFN-α. This selective ISG induction is likely 

regulated by STAT1 C-terminal transcriptional activation domains (TAD, or 

transactivation domain) where multiple serines are available for targeting by JAK, TyK, 

and other kinases (p38, CaMKII, PKCδ and others) [183–187].  
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1.6.4 Interferon-stimulated genes (ISG) 

More than a hundred ISGs have been found to control cellular processes including but 

not limited to chemotaxis, apoptosis, cell proliferation, infection detection and defence, 

and some ISGs obtain redundant functions to others [188]. Some ISGs have been 

characterised with specific functions, such as the RNA sensors OAS1 and PKR, 

whereas others are multifunctional, such as the pro-apoptotic factors of the caspase 

family. One of the most important ISG is IRF7. This interferon-activating transcription 

factor has high affinity for interferon promoters yet it is only expressed at high levels 

during ISG production to exhibit and sustain further antiviral response [81, 189, 190]. 

Chapter 1.5 (Table 4) summarises some of the ISGs involved in apoptosis, immune 

modulation, cell adhesion and motility, and antiviral responses, although many more 

ISGs are being identified to have physiological importance in enhancing innate 

immunity [176, 191, 192].  
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1.6.5 Mechanisms of activating type I Interferons  

Despite the similarity between type I and type III interferons, the antiviral response is 

a lot potent in the former [193]. IFN-α and IFN-β are the most highly expressed 

cytokines of the interferon superfamily. Rapid release of type I interferons underpins 

the success of anti-pathogenic defence. Apart from the TRIF-dependent signalling, 

other intracellular TLRs also contribute to interferon release through MyD88 and the 

transcription factors IRF1, IRF3 and IRF7 [164, 194]. The depletion of RNA-

recognising TLR3, TLR7, and TLR8 in combination has not fully abolish the IFN-I 

release, nor did the depletion of the CpG motif-containing DNA sensor TLR9 impair 

the recognition of DNA challenge. This evidence highlights the necessity and 

importance of TLR receptor redundancy in nucleic acid sensing mechanism.  

 

As previously mentioned (Chapter 1.3), the mitochondrial adaptor protein MAVS and 

the ER adaptor STING are the two TLR-independent platforms downstream of nucleic 

acid sensing mechanisms [Reviewed by [118, 195]]. These two adaptors are central 

in complementing the canonical PRR recognition paradigms, where MAVS facilitates 

RNA activated RLR receptors and RNA sensor such as OAS and RNAse L, and 

STING regulates DNA-activated sensor dynamics. Signalling though these two 

proteins results in distinct IFN-I induction mechanisms. Upon interacting with RNA 

sensors via the N-terminal CARD domain, MAVS polymer transforms into prion-like 

filaments and complexes with multiple TRAFs (tumour necrotic factor (TNF) receptor-

associated factors) to activate the TBK1 – IRF3 axis [165, 196–198]. TBK1 and IKK 

trigger IRF3 and NF-κB - dependent signalling events respectively, and together they 

upregulate type I interferon gene expression. MAVS has been found on both 

peroxisomal and mitochondrial membranes, especially at mitochondria-associated 

membranes (MAM) [103, 199].   

 

The discovery of DNA sensing adaptor protein STING by Ishikawa and Barber led to 

a new paradigm of understanding virus infection and autoimmunity [133]. As 

mentioned in Chapter 1.3.2 and reviewed in the Chapter 1.5 [119], STING responds 

to a number of DNA sensors and signalling messengers named cyclic dinucleotides 

(CDN) [119]. CDNs consist a chemical made of two purine nucleotides GMP 
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(guanosine monophosphate) and AMP (adenosine monophosphate). These 

molecules are either directly released into the cytoplasm by bacteria such as Listeria 

monocytogenes, Vibrio cholerae, Streptococcus pyrogenes and Staphylococcus 

aureus [200–202] or endogenously produced from ATP and GTP by the DNA sensor 

cyclic-GMP-AMP synthase (cGAS) [114, 203, 204]. Bacteria-secreted STING ligands 

c-di-AMP, c-di-GMP and c-GMP-AMP (cGAMP or 3’-3’ cGAMP) are joint by two 3’-5’ 

phosphodiester bonds between the nucleotides whereas the endogenous cGAMP 

contains a combination of canonical 3’-5’ bonds and a unique 2’-5’ link between GMP 

and AMP, giving its name 2’-3’ cGAMP (cyclic[G(2’-5’)pA(3’-5’)p]). Ligand recognition 

activates STING dimers which signal though the TBK1-IRF3/NF-κB –dependent 

interferon signalling cascade [165–167]; a pathway that is common to both MAVS and 

intracellular TLRs. 

 

Both MAVS and STING protect the host by recognising viral and bacterial genomes 

or their products. RIG-I/MAVS and cGAS/STING pathways not only converge at the 

induction of IRF3-mediated interferon response, they also directly collaborate in 

antimicrobial defence. RIG-I -engaged MAVS at the MAM of mitochondrial and ER 

membranes can transduce activation signal via STING, displaying an amplification 

antiviral response to ssRNA viruses, such as Japanese encephalitis virus, Sendai 

virus, Hepatitis C virus and vesicular stomatitis virus [133, 205, 206]. The DNA virus 

herpes simplex virus-1 (HSV-1) can directly activate both STING and MAVS by either 

the DNA-sensing mechanism and Pol III –catalysed DNA breakdown to generated 

ssRNA for RIG-I/MAVS recognition [207, 208]. In contrast, single-stranded retrovirus 

HIV can be detected by RIG-I while its cDNA, produced by reverse transcription, can 

be processed and recognised by DNA sensors TREX1 and cGAS which activate 

STING [116, 209–211]. MAVS, STING and nucleic acid sensing redundancy not only 

broadens detection spectrum but also prevents viral antagonism of interferon 

response, providing alternative sources for antiviral defence. 
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1.6.6 Mechanisms of type I interferon inhibition 

Type I interferons are regulated at various levels, from the detection of pathogens to 

the production of interferon-inhibitory ISG. The need for downregulating type I 

interferon signalling is mainly to restricting the amount and duration of proinflammatory 

response [174]. Intercepting IFN-I signalling can be achieved by E3 ubiquitin ligase 

SCF(HOS) (Skp1-Cullin1-HOS-Roc1)-dependent degradation of IFNAR or via 

clathrin-dependent receptor endocytosis [212, 213]. Furthermore, IFNAR activity is 

also regulated by Jak and TyK through USP18 (Ubiquitin specific protease 18) and 

SOCS (suppressor of cytokine signalling) proteins via IFN-I promoted negative 

feedback loops. USP18 competitively associates with IFNAR and hence dissociating 

Jak1 from the receptor as well as blocking the recognition site for IFN-α2 [214, 215]. 

Similarly, SOCS1 indirectly reduces the level of active IFNAR by phosphorylating and 

associating with TyK2, hence blocking its activation capacity [216]. Persistent infection 

also induces interferon-inhibitory ISG release, such as ISG56, which is induced by 

VSV (vesicular stomatitis virus) that disrupts STING - TBK1 communication and 

consequent in a reduced IRF3-mediated ISG production [217]. The regulation of IFN-

I signal protects against chronic inflammation and yet can be hijacked by viruses to 

evade antiviral response. 
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1.6.7 Virus inhibition of STING-dependent type I interferons 

Type I interferon responses are readily induced by viral and bacterial infections and 

therefore numerous PRRs are limited by microbial evasion techniques as reviewed in 

the literature [218–220]. The two intracellular antiviral adaptors STING and MAVS are 

heavily suppressed in favour of establishing infection. As these central adaptors 

mediate the majority of intracellular pathogen detection, antagonising them in addition 

to the upstream sensors would be an effective approach to intercept interferon 

activation. As reviewed in Chapter 1.5 [119], several viruses are known to specifically 

degrade DNA sensors and STING by secreting protease complexes, and members of 

the family Flaviviridae are the most renowned culprits [221].  

 

Flavivirus has the most abundant members compared to the other three genera of the 

family (Hepacivirus, Pegivirus, and Pestivirus). This genus is comprised of arthropod-

borne viruses (arboviruses) that encode the positive-sense single stranded (ss)RNA 

genome with a 5’ G7 cap [221]. This group contains Dengue virus (DENV), Yellow 

Fever virus (YFV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and Zika 

virus (ZIKV). These pathogens are known to cause severe diseases including 

haemorrhagic, fever, and various neurological disorders such as encephalitis (brain 

inflammation) and microcephaly (a birth defect associated with a reduced head 

circumference) [222, 223]. Through insect vectors, these viruses penetrate 

mammalian cells and introduce their RNA molecules, containing a single, 9.5 to 12.5 

kb long open reading frame, into the host cytoplasm where they hijack the de novo 

molecular machineries to translate a single polyprotein. The protein is processed by 

viral and cellular enzymes and released as three structural (S) and seven non-

structural (NS) proteins [224]. The structural proteins capsids (C), pre-membrane 

proteins (prM) and envelop glycoproteins (E) support the virion structure [225], and 

the non-structural proteins form the RNA polymerases, helicases, proteases, and 

nucleoside phosphatases and together functions as the replicative complex [224]. 

Compared to the other five non-structural proteins (NS1, NS2a, NS2b, NS4a and 

NS4b), the functions of NS3 helicase and NS5 RNA polymerase are pivotal for viral 

replication [226, 227]. Due to these features, anti-replication drugs often target NS3 

activation and binding to co-factor NS2B or NS5-dependent RNA-capping 

methyltransferase activity and RNA polymerisation [228, 229]. Furthermore, the 
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structural C and E proteins are also common targets to block attachment, folding and 

spreading of flaviviruses. Examples are C protein inhibitor ST-148 and E protein 

inhibitors NITD-448 and Compound 6 [230, 231]. 

 

Chapter 1.5 (Viral Evasion of STING, Page 73) [119] has reviewed the key strategies 

used by flaviviruses to inhibit and evade STING activation. However, Dengue virus 

amongst other flaviviruses can inhibit only human but not mouse STING [232, 233]. 

The principle of inhibition lies at residue 78R/79G within the third transmembrane 

domain which is a cleavage target for dengue-secreted NS2B/3 protease complex 

specifically present in human and closely related species [234]. STING in Rodents and 

several primates contains different sequences in the Dengue cleavage site and are 

thus remain immune responsive to dengue infection.  

 

Studies of STING-targeted type I interferon inhibition are also considered critical for 

characterising novel flaviviruses, one of which is Zika virus. ZIKV is emerging as an 

important pathogen around the globe [235–237]. ZIKV and DENV are closely related 

species and can induce similar and cross-reactive serological responses in human, 

suggesting similarity between their envelope protein structures [238, 239]. This 

characteristic is likely to impact on their pathogenesis in human and animals and thus 

it is of intense interest whether these two viruses adopt the same STING blocking 

strategies. ZIKV is most devastating in mother-to-child transmission and causing 

microcephaly and other neurological defects in the new born [240, 241]. In human, this 

transmission is highly dependent on the placental macrophages which substantially 

facilitate ZIKV replication and spread [54]. Although type I interferon signalling was 

detected in these cells, limited viral restriction and cell death was observed. It has 

been established that early ZIKV invasion in murine placenta can induce type I 

interferons which lead to tissue remodelling and fetal resorption [242]. Furthermore, 

ZIKV also expresses NS5 protease to intercept interferon-activated STAT1 and 

STAT2 in human cells [243, 244], a strategy also observed by DENV-secreted NS5 

[245, 246]. I therefore wanted to test whether the ZIKV-secreted NS2B/3 protease 

homolog is capable of degrading STING, and whether macrophages are essential 

regulators of ZIKV infection. Addressing these questions will help us reveal novel 
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functions of STING and to compare and contrast the physiological regulation of key 

immune mediators that can distinguish flaviviruses. Understanding virus-mediated 

interferon inhibitory mechanism is critical to innovate antiviral therapeutic development. 
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1.6.8 Type I interferon -associated pathologies 

Dysregulation of type I interferons and the stimulated ISG response is implicated in a 

variety of pathologies, ranging from immunodeficiency to autoimmunity.  

 

Signalling in both autocrine and paracrine manners, type I interferons form one of the 

broadest acting signalling networks across the host system, involving almost every 

cell type and tissue, and exhibiting their pivotal role in early pathogen defence. The 

role for IFN-I in bacterial and viral infections has been extensively reviewed [175, 247, 

248]. Deficient IFNAR expression in mice reduces early viral interference as observed 

by an elevated and extended vaccinia virus accumulation in the liver and spleen 

compared to wildtype (WT) mice [249]. Also, both the individual and combined 

knockout of IRF3 and IRF7 can significantly enhance infection susceptibility to HSV-1 

[250]. Additionally, RIG-I deficient variants render higher severity of influenza virus 

infection in patients [251] and loss-of-function STING allele HAQ (R71H-G230A-

R293Q) leads to a defective type I interferon response and an enhanced 

Streptococcus pneumoniae and Legionella pneumophila infection [252, 253]. 

Furthermore, cytotoxicity and antigen presentation on CD8+ T cells, macrophages and 

CD8α+ dendritic cells also rely on the appropriate IFN-I signature, and it potentiates B 

cell-associated humoral immunity [254–256]. Breast cancer, melanoma and 

gastrointestinal cancer patients also displayed downregulated IFN-I (IFN-α) immunity 

in peripheral blood lymphocytes, suggesting an possible role for type I interferon signal 

in cancer progression and immunotherapies [257]. 

 

Excessive IFN-I production, termed type I interferonopathy, also drives pathological 

processes. Non-resolving inflammatory activation is a major cause of disease. In 

chronic infection, viruses can persist in the host system and continuously stimulate 

type I interferon that damage the infected tissues and organs. Human 

immunodeficiency virus (HIV), Hepatitis C virus (HCV) and the mouse chronic infection 

model lymphocytic choriomeningitis virus (LCMV) have been shown to induce and 

exacerbate chronic IFN-I release, leading to a dysregulated and prolonged immune 

response that stimulates cell apoptosis [258, 259]. Although IFN-I is often suppressed 

by viruses to establish a stable niche in the host, during the pathogenic stage of 
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infection, type I interferons are highly active and they can induce aberrant proliferation 

and activations of CD4+ T cells and antibody-producing B cells. Although IFN-I initially 

promotes viral clearance and cellular activations, a prolonged presence of IFN-I signal 

drives immune exhaustion, and a proportion of patients with established chronic 

infection show IFN-α unresponsiveness potentially due to immunosuppression via an 

IFN-I blocking negative feedback loop [Reviewed in [260, 261]]. IFN-I signalling can 

then become a double-edged sword in specific viral infections. For instance, LCMV 

takes advantage of the negative feedback mechanism that suppresses B cell-

mediated humoral response and CD4+ T-cell replenishment, enabling their survival in 

a dampened immune environment [262]. Similarly, CD4+ T-cell depletion was seen in 

HIV-1 –induced IFN-I hyperactivation, which can be rescued by administrating an 

IFNAR blocker [263]. 

 

Over-activated type I interferon response is one of the critical factors contributing to 

and amplifying autoimmunity. Autoimmune diseases arise when type I interferon 

responses overcome the limit of immune tolerance directed by B cells and T cells [264, 

265]. This can be caused by chronic infections, injuries and natural mutants that 

constitutive activate IFN-I inducing pathway. This may result in an excessive leukocyte 

infiltration and cytotoxicity which cause aberrant cell apoptosis and necrosis, 

processes that break down cells and expose the intracellular contents. The DNA 

molecule is one of the most potent stimulant of immune response and the extracellular 

release will induce B cells to produce autoantibodies [266]. Additionally, autoantigens 

activate a number of additional PRRs which further augment IFN-I signalling [267, 268]. 

A growing literature reports that type I interferonopathy is observed in patients with 

type I diabetes, multiple sclerosis, myositis, rheumatoid arthritis, and the prototypical 

systemic disease SLE [269, 270]. The “IFN signature”, an overexpression of type I 

interferon transcripts (normally IFN-α and IFN-β) in the circulating peripheral blood and 

multiple organs, reflects disease severity and the level of anti-dsDNA autoantibodies 

amongst other disease parameters [271, 272].  In particular, IFN-α therapies 

administered to HCV infected patients sometimes leads them to develop spontaneous 

and de novo lupus-like symptoms, indicating the complexity of IFN-I regulation at 

different stages of infection-immunity balance [273, 274].  
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1.7 Background summary 

Macrophages are a potent defender of pathogenic infection and a critical regulator of 

tissue homeostasis. Macrophages exhibit their immune functions via signalling 

networks coordinated by numerous pattern recognition receptors. In addition to the 

canonical inflammatory receptors TLRs, CLRs, NLRs and RLRs, a non-canonical 

inflammatory signalling network makes a substantial contribution to innate immunity. 

To reveal novel inflammatory mediators, a functional cDNA screen was undertaken in 

murine macrophage RAW 264.7 cell line. One of the “hits” from this screen was a 

protein with unknown biological properties. This gene, Tmem203, encodes a 

transmembrane protein TMEM203, known to maintain ER calcium store homeostasis 

yet with unknown functions in immunity. Based on some unpublished pilot data (2014) 

from our group, we speculate that TMEM203 is a potential co-regulator for the antiviral 

adaptor protein Stimulator of Interferon Genes (STING). STING is ubiquitously 

expressed in the ER and responds to DNA sensors and microbial secreted cyclic 

dinucleotides. It signals through the TBK1-IRF3 axis which specifies type I interferon 

activation and later an amplified interferon-stimulated response. Due to the close 

localisation in the ER, TMEM203 and STING are likely to interact directly and complex 

in a number of signalling activities. To facilitate our research, we reviewed the recent 

findings for STING and type I interferon signalling to explore the potential areas that 

can relate to TMEM203 characterisation [119]. Type I interferon signals through the 

JAK-STAT axis and mediates ISG feedbacks. Both Type I interferons and ISGs are 

indispensable for antiviral and antibacterial response in human. Viruses often adopt 

evasive strategies to inhibit type I interferon activation and STING is a critical target 

for such inhibition. The Flaviviridae family is particularly renowned for blocking STING-

interferon signalling, and the two close-related members Dengue virus and Zika virus 

have shown similarity in the mechanism of STING antagonism. Due to the profound 

influence of STING research that identified its value in anti-tumour, anti-microbial, and 

auto-inflammation regimes, novel studies on STING regulation will be innovative to 

scientific and clinical advancement.  
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1.8 Hypotheses 

 

1.8.1 Chapter 2 (Paper 2): TMEM203 is a novel binding partner and regulator of 

STING mediated inflammatory signalling in macrophages. 

Hypothesis: TMEM203 interacts directly with STING to regulates its type I interferon 

response in macrophages.  

 

Figure 4. Hypothesis for paper 2. 

A schematic describing the hypothesis of this research. The novel proinflammatory protein 

TMEM203 regulates the STING-mediated immune detection of bacterial cyclic dinucleotides 

(CDN) and the DNA sensor cGAS-catalysed 2’-3’ cGAMP. STING and TMEM203 interact and 

together they promote TBK1-IRF3 axis which upregulates type I interferon expression. STING 

exists as a dimer yet a monomeric structure is shown here for simplicity.  
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1.8.2 Chapter 4 (Paper 3): STING mediates responses to Zika virus and Dengue 

virus infection in human primary monocyte-derived macrophages. 

Hypothesis: STING regulates type I interferon stimulated gene expression upon 

infection of Zika virus (ZIKV) and Dengue virus (DENV) in human monocyte-derived 

macrophages.  

 

Figure 5. Hypothesis for paper 3.  

ZIKV and DENV attach to, enter and replicate in human macrophages. Accumulation of ZIKV 

activates STING via unknown mechanism whereas DENV induces mitochondrial dsDNA 

leakage which is recognised by DNA sensor cGAS. This enables the production of 2’-3’ 

cGAMP and activation of the STING-dependent TBK1-IRF3 axis, which in turn upregulates 

type I interferon expression. The type I interferons can then activate IFNAR receptors and 

induce the JAK/TyK-STAT pathway and express interferon-stimulated genes. 

  



129 
 

1.9 Aims and objectives: 

Chapter 2 (Paper 2) contains the PhD research work addressing the hypothesis stated 

in Chapter 1.8.1. My experiments, determined in Authors’ Contributions, aim to 

investigate the following points: 

1. To understand if TMEM203 is critical to STING-activated type I interferon 

expression in macrophages. 

2. To identify if a direct interaction exists between TMEM203 and STING. 

3. To identify the immunological challenge that alters TMEM203-STING 

interaction. 

4. To identify the molecular determinant of TMEM203-STING interaction. 

 

Chapter 4 (Paper 3) resulted from the EMBO-funded collaborative work between our 

lab and Dr Marlene Dreux’s lab. This report addresses the hypothesis stated in 

Chapter 1.8.2 and aims to elucidate the following points: 

1. To investigate how Zika virus (ZIKV) and Dengue virus (DENV) infection in M-

CSF differentiated primary monocyte-derived macrophages. 

2. To compare and contrast the dose and time-dependent ISG response caused 

by ZIKV/DENV infections. 

3. To investigate whether STING is regulated by or regulating the infection of 

ZIKV/DENV in primary macrophages. 
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Authors’ Contributions:  

This work was the result of collaboration between Zhang’s lab at Singapore and Kiss-

Toth lab at Sheffield. I conducted experiments presented in Figure 2 G-I, Figure 3 C-

E, all of Figure 4, all of Figure 6 except for C-E, and all of Figure 7. I supervised my 

Master student Katherine Pye for experiment in Figure 6C. I also contributed to the 

experiments and result analysis of Supplementary Figure S2 A-E and G and all of S4. 

I wrote the manuscript with my supervisor Dr Heather Wilson and Prof. Endre Kiss-

Toth, and it was reviewed, edited and approved by all authors. Please refer to PNAS 

(2019) for the revised manuscript version. 

 

Further experiments that facilitated the production of this paper is presented in 

Appendix 1.  

1) Relative mRNA expression level of TMEM203, STING and MAVS in human 

MDMs. 

2) siRNA transfection does not activate IFN-β and IL-8 mRNA upregulation in 

MDMs. 

3) Optimising siRNA-directed knockdown in human MDMs 

4) Site-directed mutagenesis for the generation of Sting truncation mutants 

5) Optimising organelle staining and co-transfection of protein complementation 

fluorescence for confocal imaging 

Detailed materials and methods regarding my contributions to this paper and 

additional data listed above are presented in Appendix 2 and 3.  
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Summary: 

Regulation of interferon signalling is critical in host recognition and response to pathogens, 

whilst its dysregulation underlies the pathogenesis of several chronic diseases.  STimulator of 

INterferon Genes (STING) has been identified as a critical mediator of Interferon inducing 

innate immune pathways, but little is known about direct co-regulators of this protein. We 

report here that TMEM203, a conserved putative transmembrane protein, is a novel 

intracellular regulator of STING-mediated signalling. We show that TMEM203 binds to, co-

migrates to the lysosome and functionally cooperates with STING following cell stimulation, 

which in turn controls the activation of TBK1, IRF3 and the induction of target genes in 

macrophages, including interferon-β. Using Tmem203 knockout bone marrow-derived 

macrophages and transient knockdown of TMEM203 in human monocyte-derived 

macrophages, we show that this protein is required for cGAMP induced STING activation. 

Unlike STING, TMEM203 mRNA levels are elevated in T cells from patients with SLE, a 

disease characterised by the overexpression of type I interferons. Moreover, TMEM203 

mRNA levels are associated with disease activity, as measured by C3 serum levels.  

Identification of TMEM203 sheds new light into the control of STING mediated innate immune 

responses, providing a potential novel mechanism for therapeutic interventions in STING 

associated inflammatory diseases. 

 

Keywords: 

TMEM203, STING, cGAMP, type I interferon 

Introduction: 

Innate immune sensing of microbial infections involves pathogen pattern recognition receptors 

(PPRs), such as Toll-like receptors (TLRs). Many TLR-dependent and –independent innate 

signalling systems, including NOD-like receptors and systems recognising intracellular DNA 

(1, 2) activate the TBK1/IRF3 axis, a pathway of fundamental importance in immune defence 

in both bacterial and viral diseases (3). Activation of this pathway, which is of great 

phylogenetic antiquity (4), results in the production of interferon-β, a cytokine critical for host 

defence against both viruses and bacteria. As increasing evidence links the PPR/TBK1/IRF3 

axis to autoimmune disease (including SLE) (5, 6), vaccine responses (7) and the 

development of malignancy (8–10), the identification of regulators of this pathway may reveal 

novel therapeutic targets. 
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One important component mediating the activation of the TBK1/IRF3 pathway is the 

endosomal multi-transmembrane protein, STimulator of INterferon Genes (STING) (2, 11). 

STING is activated by the double-stranded DNA (dsDNA) sensor IFI16, or by direct binding to 

bacteria-secreted cyclic dinucleotide c-di-AMP, c-di-GMP and 3’3’-cGAMP, as well as cGAS-

catalysed (12, 13) mammalian ligand 2’3’-cGAMP. Its critical role is proven both by the lack of 

interferon induction following viral, bacterial or synthetic DNA stimulation in STING deficient 

cells (2, 14), and by the increased sensitivity of STING deficient mice to DNA viruses such as 

HSV-1 (2). Constitutively-activated STING variants have been found in patients diagnosed 

with severe symptoms of type I interferonopathy and leading to diseases such as STING-

associated vasculopathy with onset in infancy (SAVI) (15), systemic lupus erythematosus 

(SLE) (5, 6, 16), and familial chilblain lupus (FCL) (17). The importance of STING activity in 

health and disease has also been the subject of several recent reviews (3, 18, 19). 

Following STING activation, the serine/threonine kinase TBK1 is recruited to the cytosolic face 

of the endo-lysosome/endoplasmic reticulum (ER) (20). At these intracellular vesicles, STING 

is targeted for K27-linked ubiquitination by AMFR, triggering its activation and the subsequent 

phosphorylation of the transcription factor IRF3 (21). Once phosphorylated, IRF3 dimerises 

and translocates to the nucleus where it drives the expression of genes containing IRF binding 

sites in their promoter, predominantly the type I interferons IFN-α and IFN-β (20). Post-

activation, STING is sorted to the endo-lysosomes where it is targeted by LC3 and autophagy-

related protein 9a (Atg9a) to attenuate its functions (22, 23). 

Whilst most studies have described STING as a critical component in cytosolic nucleic acid 

recognition, STING has also been shown to play a role in augmented IRF3 activation and type 

I interferon (IFN-I) induction upon concomitant ER stress and LPS stimulation (2, 24) via late-

TLR4 signalling (25). Despite the fundamental importance of STING in both anti-bacterial and 

anti-viral immunity, its partners remain largely unknown, with many aspects of its mechanism 

of action still being poorly understood. 

In previous functional screens discovering novel regulators of inflammation (26, 27), we 

reported the identification of TMEM203 as a previously unknown proinflammatory gene in 

mouse macrophages (26). Here we demonstrate that TMEM203, a protein that was recently 

shown to be endosomal and interacts with the pleiotropic inositol phosphate signalling 

pathway protein IP3R (28), is associated with SLE disease activity, forms a functional and 

ligand-dependent complex with STING and is a novel regulator of signalling pathways 

activated in response to diverse bacterial and viral stimuli, including cyclic dinucleotides.  
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Results: 

TMEM203 is an evolutionarily conserved putative transmembrane protein, regulated by 

inflammatory stimuli 

We have previously identified multiple regulators of inflammatory signalling in macrophages 

by genome-wide expression screening for genes which drove Cxcl2 expression when 

transfected into RAW 264.7 cells (26); TMEM203 was one such protein. Multiple alignment of 

TMEM203 orthologues from a wide range of species demonstrated that TMEM203 is an 

evolutionally highly conserved gene (Fig. 1A) encoding a 136 amino acid protein, with the 

mouse and human orthologues being 98% identical. Interestingly, a survey of the GenBank 

database revealed that only a single copy of this gene is present in both invertebrate and 

vertebrate species; with TMPred (29) predicting four putative membrane-spanning helices 

(Fig. 1A, TM1-4). One distantly related homologue of TMEM203 has been described so far, 

the 133 amino acid protein TMEM60 with about 21% identity (30). 

Dysregulated expression of key innate immune signalling molecules has previously been 

linked to the development of human pathologies, including systemic lupus erythematous (SLE), 

an inflammatory disease often characterised by the recruitment of immune cells, including T 

lymphocytes and their excessive type I interferon production in the affected tissues. Thus, we 

have analysed the mRNA levels of two well characterised intracellular signalling regulators, 

MAVS (mitochondrial antiviral signalling protein) and STING (Stimulator of Interferon Genes), 

as well as TMEM203 in T cells isolated from the blood of recently diagnosed, treatment naïve 

SLE patients. Both MAVS and STING have previously been implicated in driving interferon 

production in SLE (5, 31, 32). We found significantly reduced, almost abolished MAVS 

expression, with marked upregulation of TMEM203 (Mean 13.83 ± SD 6.52 fold induction, 

lower:upper interquartile = 8.59:18.84) (Fig. 1B). Further, TMEM203 mRNA levels inversely 

correlated with the plasma levels of complement factor C3, a clinically used marker of 

activated innate immunity. Taken together, this suggests that TMEM203 may play a role in the 

development of this disease (Fig. 1C) and that this activity might be coupled to excessive 

production of type I interferon. 

A search in the transcriptome database thebiogps.org (33) indicated that TMEM203 is highly 

expressed in myeloid cells, including macrophages. Since our expression screen showed that 

TMEM203 may act as a signalling regulator in myeloid cells (26), we first tested how 

chemokine expression in murine macrophages is controlled by TMEM203. Compared to 

controls, Cxcl2 promoter activity in LPS stimulated RAW 264.7 cells was enhanced by the 

overexpression of Tmem203 (Fig. 1D), whilst being impaired by the siRNA-mediated 
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downregulation of Tmem203 (Fig. 1E), suggesting that TMEM203 is likely to act downstream 

of Toll-like receptors (TLRs) and/or other innate immune sensors.  

We next characterised the molecular pathways for Tmem203 action, using Cxcl2 promoter 

activity as a surrogate of the activation of canonical TLR pathways (34). Whilst LPS-induced 

activation of a Cxcl2-luciferase reporter in RAW 264.7 cells is blocked (Fig. 1F), the 

Tmem203-induced Cxcl2 activation is not inhibited by the expression of the dominant negative 

forms of Irak1, Trif, MyD88, Tram, Mal and Traf6 (Fig. 1G). Similarly, pharmacological MAPK 

inhibitors impair LPS-, but not overexpressed (OE) Tmem203-induced Cxcl2 promoter 

activities (Fig. S1). Therefore, we concluded that whilst TMEM203 is a novel pro-inflammatory 

mediator/effector, it is likely to act independently from the canonical TLR and MAPK networks. 

We therefore explored whether TMEM203 acts on the non-canonical inflammatory pathway, 

since LPS also induces the TRIF-TRAM/TBK1/IRF3 pathway via endosomal “late signalling”, 

leading to activation of multiple inflammatory cytokines, including interferons (35–37). The 

TBK1/IRF3 axis is known to couple to the adaptor protein STING, a critical regulator of 

cytosolic double-stranded DNA detection mechanism (38–40), and whose activities are mostly 

independent of MAPK and canonical TLR mediators (20, 39, 41). Activation of STING induces 

TBK1 phosphorylation (20) which subsequently induces IRF3 or NF-κB to elicit the type I 

interferon response and a variety of pro-inflammatory genes including TNF, IL-6, and several 

chemokines (12, 20, 42).  

Since Shambharkar et al (28) previously reported that TMEM203 is localised on ER 

membranes, and that our above data suggested that TMEM203 is closely related to 

chemokine expression and SLE disease indications, we hypothesised that TMEM203 may 

regulate STING-mediated signalling events. Therefore, a Tmem203 overexpressing plasmid 

construct and siRNA against the individual STING signalling effectors were co-transfected into 

RAW 264.7 cells, followed by the measurement of Cxcl2 promoter activities. As Tmem203 

overexpression resulted in elevated Cxcl2 activity and the simultaneous suppression of Sting 

or its downstream regulators significantly reduced it (Fig. 1H), we concluded that TMEM203 

potentially acts upstream or in parallel to a STING-dependent signalling pathway. 
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Figure 1: TMEM203 is an evolutionarily conserved, SLE associated signalling mediator. 

1A. Alignment of TMEM203 orthologues: Vertebrate and invertebrate homologues of the 

mouse Tmem203 proteins were identified by BLAST search in the GenBank database. The 

collected sequences were aligned using the Clustal W algorithm. Four transmembrane regions 

(TM1-4) were predicted by TMpred (29). Abbreviations: H.h.: Homo sapiens, P.t.: Pan 

trogloides, M.m.: Mus musculus, G.g.: Gallus gallus, X.l.: Xenopus laevis, T.n.: Tetraodon 

nigroviridis, D.r.: Danio rerio, B.f.: Branchiostoma floridae, S.p.: Strongylocentrotus purpuratus, 

D.m.: Drosophila melanogaster, A.e.: Aedes aegypti, B. m.: Bombyx mori, C.c.: Caligus 

clemensi, L.s.: Lepeophtheirus salmonis, A.m.: Apis mellifera, C.f.: Camponotus floridanus, 

H.m.: Hydra magnipapillata, C.i.: Cionia intestinalis.  

1B. C. TMEM203 level is elevated in a cohort of SLE patients. (B) MAVS, TMEM203 and 

STING mRNA levels in PHA-L -activated T cells were assessed by RT-qPCR from a cohort of 

treatment-naïve systemic erythematous lupus (SLE) patients in comparison to cells from 

healthy individuals. (C) Spearman correlation coefficient of C3 complement plasma level was 

assessed against fold TMEM203 mRNA induction in SLE patients (95% confidence interval: 

dash lines). Data is presented as mean ± SD, one dot per person. 

1D. Overexpression of Tmem203 augments LPS-induced Cxcl2 activation. RAW 264.7 

cells were transfected with the Cxcl2-pLuc and EF1-rLuc reporters, and with Tmem203 

expression plasmid (dashed line) or empty control vector (solid line). Cells were stimulated 

with the stated concentration of LPS for 6 hours. Two-way ANOVA with Sidak correction was 

performed to ascertain the impact of Tmem203 overexpression on LPS induced cxcl2 

activation (****: p< 0.0001). Data is presented as mean ± SEM, n=3. 

1E. Knockdown of Tmem203 impairs LPS-induced Cxcl2 activation. RAW 264.7 cells 

were transfected with the Cxcl2-pLuc and EF1-rLuc reporters, and with siRNA against 

Tmem203 (dashed line) or non-targeting si-scrambled (solid line). Cells were stimulated with 

the stated concentration of LPS for 6 hours. Two-way ANOVA with Sidak correction was 

performed to ascertain the impact of siTmem203 treatment on LPS induced cxcl2 activation 

(**: p<0.01, ***: p<0.001). Data is presented as mean ± SEM, n=3. 

1F. Dominant negative signalling molecules impair LPS-induced Cxcl2 promoter 

activity. RAW 264.7 cells were transfected with the Cxcl2-pLuc and EF1-rLuc reporters, and 

the indicated expression plasmids encoding for dominant negative (DN) mutants of known 

pro-inflammatory molecules (mouse Irak1, Trif, MyD88, Tram, Mal and Traf6, respectively). 

LPS (100 ng/ml, 6 hours) was used as a positive control to test for the inhibitory activity of the 

DN constructs. Data is presented as mean ± SD, n=2. 
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1G. Dominant negative signalling molecules fail to inhibit Tmem203 induced Cxcl2 

promoter activity. RAW 264.7 cells were transfected as in F and the ability of the DN 

constructs to block overexpressed Tmem203 -induced Cxcl2 activation was tested. Data is 

presented as mean ± SD, n=2. 

1H. Tmem203 induces Cxcl2 promoter via the Sting/Tbk1/Irf3 pathway. RAW 264.7 cells 

were transfected with the Cxcl2-pLuc, TK-rLuc reporters and Tmem203 expression plasmid, 

together with scrambled siRNA (siNC) or an siRNA against Irf3, Tbk1 or Sting. Data was 

analysed by one-way ANOVA (p<0.05: *, p<0.01: **, p <0.001: ***). Data is presented as mean 

± SEM, n=3. 
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TMEM203 co-localises and interacts with STING 

To establish whether TMEM203 co-regulates STING, Tmem203 expression levels were 

examined in mouse bone marrow-derived macrophages (isolated from C57/BL6 mice) after 

stimulation with LPS, endogenous STING ligand 2’3’-cGAMP (38) or microbial secreted 

STING ligand 3’3’-cGAMP (43). Each tested stimuli rapidly induced Tmem203 mRNA levels, 

albeit with different kinetics (Fig. 2 A, B, C).  

Based on our observation that suppression of STING expression impaired TMEM203 induced 

Cxcl2 activation (Fig. 1H) and that STING and TMEM203 are both localised in intracellular 

membranes (28, 44), we questioned whether STING and TMEM203 directly interact and co-

regulate the activation of an inflammatory response. Co-localisation of STING and TMEM203 

within punctate, intracellular structures was detected in HeLa cells co-transfected with GFP-

Sting and mCherry-Tmem203, respectively (Fig. 2D). The observed interaction between 

TMEM203 and STING was further confirmed by co-immunoprecipitation of Myc-Sting and 

Flag-Tmem203 in HEK293T cells (Fig. 2E), indicating that a stable molecular complex is 

formed upon the contact of these two proteins.  

To further validate the association of TMEM203 and STING, we used the Yellow Fluorescence 

Protein (YFP, Venus derivative) fragment complementation assay (PCA), which is based on 

expressing each putative binding partner in fusion with either the N-terminal (V1) or C-terminal 

(V2) portion of YFP (45–47) (Fig. 2F). When the two test proteins interact, the V1 and V2 parts 

of YFP fluorophore self-assembles in a cyclisation reaction which is essentially irreversible 

(48). This stable fluorescent signal can be detected by flow cytometry or fluorescence 

microscopy. We used this technique to ask whether TMEM203 and STING can interact 

intracellularly (Fig. 2F). As expected from the distribution of TMEM203 and STING alone, a 

punctate membrane / vesicular distribution of fluorescence was observed by confocal 

microscopy (Fig. 2G). Interestingly, a similar distribution of TMEM203 dimer (or oligomer) was 

also observed (Fig. 2H). As TMEM203 and STING are each predicted to contain four 

transmembrane domains, the positioning of the V1 or V2 PCA tags enabled us to map the 

relative orientation of the C- and N-termini of these proteins. In agreement with the proposed 

schematic model in Fig. 2F, TMEM203 and STING with either N-terminus and C-terminus 

tags were transfected into HEK293 cells and mean GFP signal was analysed by FACS. 

TMEM203 and STING can lead to the formation of a fluorescent complex (Fig. 2I, 2nd & 3rd 

bar), while a strong signal was also seen by TMEM203 dimerisation (Fig. 2I, 4th bar). 
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Figure 2. TMEM203 co-localises and interacts with STING. 

2A. B. C. Tmem203 expression is transiently induced by inflammatory stimuli. Murine 

bone marrow-derived macrophages were stimulated with LPS (A), 2’3’-cGAMP (B) or 3’3’-

cGAMP (C) for the time indicated. The expression of Tmem203 was determined by RT-qPCR. 

(Data is presented as mean ± SD for 2 independent experiments). 

2D. Tmem203 co-localises with Sting. HeLa cells were co-transfected with Sting-GFP and 

mCherry-Tmem203 expression plasmids and their localisation was visualised by fluorescence 

microscopy under 63X magnification. n=15 images (total>30 cells) from 2 independent 

experiments were processed, a set of representative images is shown here.  

2E. Tmem203 co-precipitates with Sting. HEK293 T cells were transfected with either empty 

vector, Flag-Tmem203 or Myc-Sting. Tmem203-containing complexes were immuno-

precipitated (IP) using anti-Flag coated beads and blotted for Myc and Flag, as indicated. 

Lysates were also immunoblotted for Myc and Flag. Immunoblots (IB) shown are from a single 

experiment and are representative of two independent experiments. 

2F. Illustration of Tmem203-Sting interaction by PCA. Tmem203 was tagged at its N 

terminus with the V1 fragment of Venus yellow fluorescent protein, whilst Sting was tagged at 

its N-terminus with the V2 Venus fragment to test for a molecular interaction between these 

proteins in live cells. Both Tmem203 and Sting proteins were predicted to encode for four 

transmembrane domains (28, 76). Thus, this arrangement was predicted to localise the V1 

and V2 tags to the same side of the lipid membrane.  

2G. H. Tmem203 and its complex with Sting is located in the cytoplasm, in perinuclear 

structures. HeLa cells were transfected with the above-described Venus fusion protein 

expression plasmids. The ‘Venus’ fluorescent signal, demonstrating TMEM203-STING 

interaction (G) or TMEM203 dimerisation (H) was visualised in live cells at 80X magnification, 

scale bar = 20 µm. Two experiments, 30 cells each. 

2I. Tmem203 forms dimers and interacts with Sting in live cells. HEK293 T cells were co-

transfected with the indicated fusion protein expression vectors; Venus fluorescence signal 

generated by Tmem203 and Sting interaction was detected by flow cytometry. Relative 

geometric mean fluorescence intensity was plotted compared to the control single transfection 

of V2 construct (V2_ZIP). Data is presented as mean ± SEM, n=4. 
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The TMEM203-STING complex is localised in the ER and lysosomes 

To further study the localisation of TMEM203, HeLa cells were transiently transfected with 

mCherry-Tmem203. TMEM203 was predominantly found in perinuclear membrane structures 

in accordance with a previous report of ER localisation (Fig. 3A) (28). Stimulation with LPS 

led to TMEM203 translocation to perinuclear, punctate membranes or vesicles (Fig. 3A). A 

more detailed analysis revealed a transient co-localisation between TMEM203 and the 

lysosomal marker LAMP1 at 30 mins stimulation with LPS in HeLa cells (Fig. 3B). This rapid 

ER-to-vesicle translocation of TMEM203 correlates with the kinetics of translocation seen for 

STING during activation (49). To study the localisation of the TMEM203-STING complex, we 

co-transfected the previously described Venus PCA constructs of these two proteins (Fig. 2F) 

into HeLa cells and co-stained with either cell permeable, lysosome- or ER- specific 

fluorescent dyes. The STING-TMEM203 complex was mainly expressed on lysosomal 

membranes rather than the ER (Fig. 3C-E), a distribution consistent with the previously 

described localisation pattern of activated STING (44). We therefore speculated that co-

expression of TMEM203 and STING may pre-activate or sensitise the STING pathway, thus 

leading to a lysosomal translocation, even in the absence of ligands. In HeLa cells, which 

express lower levels of STING than the RAW 264.7 cells used in initial screening (26), 

overexpression of TMEM203 alone did not elevate proinflammatory activities, as measured 

by the activation of a previously described (50) luciferase reporter, but it augmented 

overexpressed STING-induced responses (Fig. 3F). Constitutive overexpression of Tmem203 

(Fig 3 - S1) in RAW 264.7 cells potentiated STING-ligand induced interferon activation (Fig. 

3G). In summary, our data demonstrate that TMEM203 accompanies STING to transiently 

translocate to the lysosomes and that this co-expression sensitises cells to interferon and 

chemokine activation. 
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Figure 3. Inflammation induces TMEM203 trafficking and augments STING activity. 

3A. LPS induced perinuclear translocation of Tmem203. HeLa cells were transfected with 

Tmem203-mCherry fusion protein expression plasmid and stimulated with 1 µg/ml LPS for the 

stated length of time. Two independent experiments, 20 cells each. 

3B. Tmem203 transiently co-localises with LAMP1 in LPS induced cells. HeLa cells were 

transfected with Tmem203-mCherry fusion protein expression plasmid and stimulated with 1 

µg/ml LPS for indicated time. LAMP1 localisation was visualised using Alexa Fluor® 488 

conjugated anti-mouse secondary antibody. Images were taken under oil immersion at 63X 

magnification. Three independent experiments, 15 cells each. 

3C-E. Co-expressed Sting – Tmem203 localises to lysosomes. HeLa cells were co-

transfected with the V1_Sting WT and V2_Tmem203 WT prior to ER (C) or lysosome (D) 

staining; fluorescence signal was detected under confocal microscopy at 80X. Images are 

representative of two independent experiments. (E) Overlay of Tmem203-Sting signals and 

organelle signals were quantified with Fiji and co-localisation was calculated as the percentage 

of organelle with positive Tmem203-Sting detection. One dot per cell analysed from two 

independent experiments. Data is presented as mean ± SEM, scale bar = 20 µm. 

3F. Tmem203 augments Sting induced IL-8 activation. HEK293 T cells were co-transfected 

with IFN-β reporter and plasmids expressing Sting, Tmem203, or controls. Data are expressed 

as fold change in reporter induction relative to the control plasmid, with (grey bars) or without 

(black bars) stimulation of DMXAA (100 µg/ml, 6 hrs). Data was analysed by 2-way ANOVA 

(p<0.0001: ****). Data is presented as mean ± SEM, n=3. 

3G. Tmem203-overexpression augments Ifnb activation in RAW 264.7 cells. Vector or 

Tmem203 overexpression (OE Tmem203) transfected RAW 264.7 cells were stimulated with 

3’3’-cGAMP for the time indicated. The expression of Tmem203 and Ifnb was determined by 

quantitative RT-qPCR. Data is presented as mean ± SD for 2 independent experiments. 
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TMEM203 downregulation impairs cGAMP-induced STING-mediated type I interferon 

expression 

STING predominantly mediates type I interferon activation in response to pathogen-

associated cyclic-dinucleotide production in the cytoplasm (38–40, 51).  Building on these 

findings, we investigated the importance of TMEM203 in mediating STING activation in human 

monocyte-derived macrophages (MDMs). CD14 positive human monocytes (Fig. S2 A) were 

isolated from whole blood and differentiated into MDMs (Fig. S2 B) by M-CSF. MDMs were 

transfected with control or TMEM203 targeting siRNA, followed by a 3-hour stimulation of 

these cells with 2’3’-cGAMP or 3’3’-cGAMP, 48 hours post-transfection. RT-qPCR analysis of 

TMEM203 mRNA levels confirmed a highly robust (>70%) knockdown in siTMEM203-targeted 

MDMs (Fig. 4A & 4B), which was accompanied by a significant inhibition of cGAMP-induced 

IFN-I expression in human MDM samples obtained from a cohort of healthy individuals (Fig. 

4C & 4D, IFN-β). Whilst the amount of IFN-β mRNA produced in these samples showed 

donor-specific variation upon ligand stimulation (Fig. S2 C&D), siTMEM203 treatment in each 

case reduced 2’3’-cGAMP and 3’3’-cGAMP -induced IFN-β mRNA levels by approx. 50% (Fig. 

4C & 4D). In contrast, IL-8 mRNA was not induced under both stimulation conditions (0-3 fold, 

depending on the specific donor or MDM isolation, not shown); although its levels were also 

reduced by TMEM203 suppression in response to 2’3’-cGAMP treatment (Fig. 4C). 

To expand on the above findings from primary human macrophages, we investigated whether 

TMEM203 displays similar STING regulatory behaviour in mouse macrophages. siRNA 

knockdown of Tmem203 or Sting was performed in immortalised bone marrow-derived 

macrophages (iBMDMs) followed by 3 h stimulation with the physiological STING ligand 2’3’-

cGAMP or the synthetic ligand DMXAA (52, 53), that selectively targets the mouse but not the 

human protein. Efficient suppression of both Tmem203 and Sting was confirmed by RT-qPCR 

analysis (Fig. 4E-F). Similarly to MDMs, 2’3’-cGAMP robustly induced IFN-I expression in 

iBMDMs (Fig. S2 E) and this was impaired by Tmem203 or Sting knockdown (Fig. 4G). 

However, IFN-I induction by DMXAA was only reduced by the knockdown of Sting but not 

Tmem203 (Fig. 4G), suggesting that Tmem203 regulation of Sting may be ligand dependent. 

To further test this, we used primary bone marrow-derived macrophages (BMDMs) isolated 

from WT or CRISPR-Cas9 –targeted Tmem203 knockout mice (Fig. S2 F) and stimulated 

them with DMXAA or 2’3’-cGAMP. In controls, both STING ligands induced a marked Ifnb1 

upregulation (Fig. S2 G), but only 2’3’-cGAMP and not DMXAA -mediated Ifnb1 expression 

was reduced by Tmem203 deficiency (Fig. 4H). From the above data we conclude that 

TMEM203 is a critical regulator of STING-induced type I interferon production and that its 

suppression impedes this process in response to specific STING ligands. 
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Figure 4. TMEM203 downregulation impairs cGAMP-induced STING-mediated type I 

interferon expression. 

4A. B. Efficient TMEM203 knockdown in human monocyte derived macrophages 

(MDMs). MDMs were transiently transfected by scrambled control (siCtrl) or TMEM203 

targeting siRNA. Post transfection, MDMs were left stimulated with +/- 4 µg/ml 2’3’-cGAMP (A) 

or 1 µg/ml 3’3’-cGAMP (B) for 3 hours. TMEM203 knockdown was quantified by RT-qPCR. 

Multiple Student’s t-tests with Holm-Sidak corrections were performed to ascertain the impact 

of siTMEM203 treatment on TMEM203 mRNA levels (p <0.0001: ****). Data is presented as 

mean ± SEM, n=10 (A) and n=4 (B). 

4C. D. TMEM203 knockdown impairs 2’3’-cGAMP (C) and 3’3’-cGAMP (D) induced IFN-

β production in MDMs. 2’3’-cGAMP (4 µg/ml) or 3’3’-cGAMP (1 µg/ml) –stimulated (3h) IFN-

β production of siCtrl vs. siTMEM203 transfected MDMs from 4 donors was compared by 

normalizing IFN-β levels of siTMEM203 treated cells to the siCtrl treatment for each individual. 

Student’s t-test was performed to ascertain the impact of siTMEM203 treatment (p <0.01: **, 

p <0.001: ***, p <0.0001: ****). Data is presented as mean ± SEM, n=4. 

4E. F. Efficient Tmem203 (E) and Sting (F) knockdown in immortalised mouse bone 

marrow-derived macrophages (iBMDMs). iBMDMs were transiently transfected by 

scrambled control (siCtrl), Tmem203, or Sting targeting siRNA. Post transfection, cells were 

left stimulated with +/- 25 µg/ml DMXAA or 20 µg/ml 2’3’-cGAMP for 3 hours. Tmem203 and 

Sting knockdown was quantified by RT-qPCR. Multiple Student’s t-tests with Holm-Sidak 

corrections were performed to ascertain the impact of siTmem203 and siSting treatment on 

Tmem203 and Sting mRNA levels, respectively (p <0.01: **, p <0.0001: ****). Data is 

presented as mean ± SEM, n=4. 

4G. 2’3’-cGAMP, but not DMXAA, -induced Ifnb1 expression is impaired by Tmem203 

knockdown in iBMDMs. IFN-β induction by DMXAA (25 µg/ml) or 2’3’-cGAMP (20 µg/ml) 

stimulation (3h) in the siTmem203 or siSting transfected iBMDMs was compared to that in the 

siCtrl treated cells. One-way ANOVA test was performed to ascertain the impact of 

siTmem203 / siSting treatment on Ifnb1 mRNA levels compared to the siCtrl group (p <0.05: 

*, p <0.001: ***, p <0.0001: ****). Data is presented as mean ± SEM, n=4. 

4H. 2’3’-cGAMP, but not DMXAA, -induced Ifnb1 expression is impaired by Tmem203 

knockout in bone marrow-derived macrophages (BMDMs). BMDMs derived from WT or 

Tmem203 knockout C57BL/6 mice were stimulated with DMXAA (50 µg/ml) or 2’3’-cGAMP 

(10 µg/ml) for 3 h before Ifnb1 expression levels were analysed by RT-qPCR. Multiple 

Student’s t-tests with Holm-Sidak corrections were performed to ascertain the impact of 
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Tmem203 knockout on IFN-β mRNA levels (p <0.05: *, one dot per mouse). Data is presented 

as mean ± SEM, n=6 
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TMEM203 levels regulate TBK1/IRF3 activation downstream of STING 

To further characterise the functional contribution of TMEM203 to cGAMP-induced STING 

signalling events, activation of TBK1 and IRF3 were compared between control and 

TMEM203-overexpressing or knockout RAW 264.7 cells. Each of these signalling molecules 

have previously been shown to be phosphorylated (and thus activated) in a STING-dependent 

manner, including responses to cytosolic dsDNA sensing (20, 54). Whilst CRISPR/Cas9-

mediated Tmem203 knockout in RAW 264.7 cells (Fig. S3 A) resulted in an impaired Tbk1/Irf3 

phosphorylation (Fig. 5A), Tmem203 overexpression (Fig. S3 B) augmented Tbk1/Irf3 

activation after 3’3’-cGAMP stimulation (Fig. 5B). Similar TMEM203-dependent changes were 

seen in these cells after human simplex virus-1 (HSV-1) infection (Fig. 5C), a dsDNA virus 

known to activate the STING/TBK1/IRF3 signalling axis (55–58). Considering that the 

phosphorylation level of Tbk1 and Ifr3 only signatures the initiation of type I interferon 

expressions, we further quantify Sting activation by analysing Ifnb1 secretion level in the 

Tmem203 overexpressing and knockout cells. Consistently, HSV-1 stimulated Ifnb1 secretion 

is enhanced in Tmem203 overexpressing cells (Fig. 5D right) while it is impaired in Tmem203 

knockout cells (Fig. 5D left), confirming the functional significance of Tmem203 in the 

regulation of STING-interferon signalling. 

Finally, we analysed IRF3 activation downstream of STING by measuring the nuclear 

localisation of IRF3 in control and Tmem203-overexpressing macrophages. Activated STING 

induces TBK1-IRF3 activation leading to nuclear translocation of IRF3 that is critical for the 

initiation of transcription of the type I interferon genes (20). Elevated Tmem203 expression in 

RAW 264.7 cells indeed led to an enhanced, 3’3’-cGAMP induced IRF3 nuclear localisation 

(Fig. 5E & 5F) in line with the timeframe observed for IRF phosphorylation (Fig. 5B).  
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Figure 5: TMEM203 level regulates TBK1/IRF3 activation downstream of STING. 

5A. CRISPR/Cas9-mediated Tmem203 knockout resulted in reduced TBK1 and IRF3 

phosphorylation upon STING stimulation. Vector or CRISPR/Cas9-mediated Tmem203 

knockout (KO Tmem203) RAW 264.7 cells were stimulated with 3’3’-cGAMP (1 µg/ml) for the 

time indicated. Activation of Tbk1 and Irf3 was examined by western blot analysis. Membranes 

were blotted with anti-phospho-Tbk1 (-Tbk1), anti-total Tbk1 (tTbk1), anti-phospho-Irf3 (p-Irf3) 

and anti-total Irf3 (t-Irf3) as indicated (n=3). 

5B. Increased TBK1-IRF3 activation in Tmem203-overexpressing RAW 264.7 cells in 

response to STING stimulation. Vector- or Tmem203-overexpressing (OE Tmem203) RAW 

264.7 cells were stimulated with 3’3’-cGAMP (1 µg/ml) for the time indicated. Activation of 

Tbk1 and Irf3 was examined by western blot analysis. Membranes were blotted with anti-

phospho-Tbk1 (-Tbk1), anti-total Tbk1 (tTbk1), anti-phospho-Irf3 (p-Irf3) and anti-total Irf3 (t-

Irf3) as indicated (n=3). 

5C. Increased TBK1-IRF3 activation in Tmem203-overexpressing RAW 264.7 cells in 

response to HSV infection. Vector- or Tmem203-overexpressing RAW 264.7 cells were 

infected with HSV-1 for the time indicated. Activation of Tbk1 and Irf3 was examined by 

western blot analysis. Membranes were blotted with anti-phospho-Tbk1 (-Tbk1), anti-total 

Tbk1 (tTbk1), anti-phospho-Irf3 (p-Irf3) and anti-total Irf3 (t-Irf3) as indicated (n=3). MOI=0.2. 

5D. Ifnb cytokine secretion is impaired in Tmem203 knockout RAW 264.7 cells (left) and 

is enhanced in Tmem203-overexpressing cells (right) in response to HSV infection. 

CRISPR/Cas9-mediated Tmem203 knockout (or Vector) and Tmem203-overexpressing (or 

Vector) RAW 264.7 cells were infected with HSV-1 for 6 hours and Ifnb1 secretion was 

measured by ELISA. Data is presented as mean ± SEM, n=3. 

5E & F. Tmem203 overexpression enhances IRF3 nuclear accumulation in 

macrophages in response to STING stimulation. Vector- and Tmem203-overexpressing 

RAW 264.7 cells were stimulated with 1 µg/ml 3’3’-cGAMP for 6 hours. Subcellular localization 

of Irf3 was determined by Irf3 intracellular staining, and confocal fluorescence images were 

captured (F). Scale bar is 10 µm. Average Irf3 nuclear fluorescence intensity of 50-200 cells 

was quantified using ImageJ (F). Data is presented as mean ± SEM. 
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Transmembrane domains of STING are required for the formation of its complex with 

TMEM203 

Having demonstrated the functional significance of TMEM203-mediated regulation of STING, 

we sought to further explore the mechanisms by which these two proteins interact and 

investigate the underlying mechanisms of selective TMEM203-mediated regulation of STING 

activation. Since TMEM203 regulates cGAMP-, but not DMXAA-induced STING activation in 

macrophages, we proposed that these ligands may differentially influence the physical contact 

between TMEM203 and STING. We established the Renilla fragment complementation assay 

(Renilla PCA), which is based on expressing Tmem203 or Sting in fusion with either the small 

part (1.1) or the large part (2.1) of an engineered Renilla luciferase, NanoBit (Fig. 6A). The 

association of TMEM203 and STING causes a reversible assembly of Renilla formation, which 

then catalyses the breakdown of a luciferase substrate. A robust interaction between 

TMEM203 and STING was observed upon co-transfecting the Renilla PCA fusion constructs, 

and their strong association was demonstrated by comparison to the Rel A-IκBa complex 

which has been reported to form a stable complex in resting cells (Fig. 6B). Next, we co-

expressed 2.1 N Sting and 1.1 C Tmem203 in HEK293 T cells that were stimulated with either 

2’3’-cGAMP or DMXAA. We detected a rapid, time-dependent reduction of the TMEM203-

STING complex following cGAMP treatment, in contrast to an enhanced association of these 

proteins upon DMXAA treatment (Fig. 6C). This opposing effect of the two STING ligands on 

STING-TMEM203 association is likely to underlie the differential regulation of STING 

signalling by TMEM203 as demonstrated in BMDMs (Fig. 4G & H). The different association 

of TMEM203-STING by the two ligands may potentially affect the binding of STING’s signalling 

effector TBK1 to this complex. However, further experiments are required to understand the 

mechanism of this opposite structural change and how it reflects on immune regulation of 

STING-TMEM203 complex.  

TMEM203 is a 136 amino acid transmembrane protein with no obvious regulatory domains at 

the exposed short cytoplasmic regions. The protein sequence is highly conserved across 

vertebrates with only a three amino acid difference in the sequence between the human and 

the mouse genes (28) (Fig. 1A). Thus, we speculated that the interaction between STING and 

TMEM203 is likely to be coordinated by STING, which contains complex regulatory domains. 

Although human and mouse STING are only 81% similar in primary sequence and 68% similar 

in amino acid composition (13), functional domains in STING are nonetheless spatially and 

structurally conserved across the two species. Previous studies on the structure of STING 

have identified the C-terminal cytoplasmic domain as the site for protein-protein interactions 

and ligand binding, whereas the N-terminal transmembrane (TM) domains are mainly thought 
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to be responsible for membrane anchorage (59). The cytoplasmic region of STING 

(approximately amino acids 153-378 in mouse) comprises of three domains: the dimerization 

domain (DD) (or helices α-5/α-6) formed by amino acids ~155-180; the cyclic dinucleotide 

binding domain (CBD) formed by amino acids ~153-340; and the cytoplasmic-terminal tail 

domain (CTT) formed by amino acids ~340-378 (amino acids ~340-379 in human) (4, 60). The 

CTT is involved in TBK1 / IRF3 binding and activation and is essential for type I interferon 

induction (20). To identify the molecular domains of STING required for its interaction with 

TMEM203, we created mutant Sting constructs that contain deletions of TM, CBD, or the CTT 

domain (Fig. 6D). Co-immunoprecipitation of HA-tagged WT or mutant Sting with Flag-

Tmem203 from HEK293 T lysates showed that the STING – TMEM203 complex is formed in 

the presence of STING’s TM domains (Fig. 6E, lines 1-3, 5), whereas the presence of CBD 

alone led to a very weak STING – TMEM203 interaction (Fig. 6E, lines 4, 6). 

To substantiate these findings, 141A, 184L, 243V and 344A Sting truncations were created 

(Fig. 6F), expressing TM domains only (TM), TM and dimerisation domain (TM+DD), a 

disrupted cyclic dinucleotide binding domain (d-CBD), or CTT deleted STING (ΔCTT), 

respectively. Both the mutant and WT Sting were fused with the YFP expression plasmids and 

their expression was tested by Western blot. Compared to the WT Sting, TM and ΔCTT 

mutants (Fig. 6G, line 3 & 6) showed enhanced protein expression whereas the TM+DD and 

d-CBD mutants showed reduced expression (Fig. 6G, line 4-5). Next, we fused the mutants 

and WT Sting with V1 fragment of the previously described split YFP (Fig. 2F) which were co-

transfected with the complementary V2-tagged Tmem203 expression plasmid into HEK293 T 

cells; fluorescent signal was quantified by flow cytometry (Fig. 6H). To ensure the 

overexpression of Tmem203 or Sting does not induce a non-specific ER stress response (61), 

the level of spliced XBP1 gene was assessed in HEK293 T cells, transfected with 

pcDNA3.1(control) or Tmem203 - Sting PCA constructs. No significant increase of XBP1 

splicing was detected by RT-qPCR in Tmem203 and Sting expressing cells (Fig. S4 A-C). 

Compared to the WT Tmem203 – WT Sting interaction, a stronger protein interaction was 

observed between Tmem203 and Sting TM, TM+DD, and ΔCTT, respectively (Fig. 6F). 

However, d-CBD Sting showed an impaired interaction with Tmem203 due to reduced protein 

expression levels (Fig. 6F & 6G, d-CBD), potentially caused by degradation of dysfunctional 

Sting protein. Of note, while the enhanced interaction between Tmem203 and Sting TM mutant 

was paralleled with high expression of this truncated Sting protein, the TM+DD mutant 

exhibited similar association at a much lower Sting protein expression level (Fig. 6F & 6G, 

TM+DD). Furthermore, the Tmem203 – Sting TM complex showed a more equal localisation 

between the ER and lysosomes (Fig. 7 A-C), compared to the Tmem203 – WT Sting complex 

(Fig. 3 C-E), likely due to the loss of STING’s regulatory site for post-translational modification 
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required to direct its trafficking. This also suggests that TMEM203 may rely on STING to 

relocate from the ER to other intracellular structures. Therefore, we conclude that interaction 

with TMEM203 is dependent on the N-terminal transmembrane domain of STING and its 

dimerisation domain is potentially a significant regulator of their interaction.  
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Figure 6: Molecular determinants of Tmem203-Sting complex formation. 

6A. Detection of Tmem203-Sting interaction by Renilla PCA. Tmem203 was tagged at its 

C terminus with the 1.1 (small) fragment of Renilla luciferase reporter, whilst Sting was tagged 

at its N-terminus with the 2.1 (large) Renilla fragment to test for a molecular interaction 

between these proteins in live cells.  

6B. Tmem203 and Sting interact in live cells. HEK293 T cells were co-transfected with the 

indicated fusion protein expression vectors; Renilla luciferase signal was detected by Nano-

Glo live cell luciferase assay. Relative luminescence intensity was plotted compared to the 

negative control transfection of Nano-BIT construct. Data is presented as mean ± SEM, n=3. 

6C. Tmem203-Sting interaction is differentially regulated by DMXAA and 2’3’-cGAMP. 

TMEM203 and STING were tagged at its N terminus with the 1.1 and 2.1 fragment of Renilla 

luciferase, respectively, to test for a molecular interaction between these proteins in live cells 

(upper). Tmem203 and Sting were transfected into HEK293 T cells for 24 h and were then 

stimulated with DMXAA (50 µg/ml) and 2’3’-cGAMP (10 µg/ml) for the indicated time. Relative 

luciferase activity was assessed according to Hoechst (cell numbers) and calculated relative 

to early 2.5 stimulation time point. Data is presented as mean ± SEM, n=4. 

6D. E. Tmem203 co-precipitates with Sting N terminal transmembrane region. (D) WT 

and five mutant Sting constructs were created as indicated and fused with HA tags. WT Sting, 

aa 1-378; TM = transmembrane domain, aa 1-153; ΔCTT = Sting without cytoplasmic tail, aa 

1-340; ΔTM = Sting without transmembrane domain, aa 147-378; ΔCBD = Sting without cyclic-

dinucleotide binding domain (CBD), aa 1-153 & 340-378; CBD = CBD domain of Sting, aa 

147-340. (E) HEK293 T cells were transfected with either empty vector, Flag-Tmem203 or 

HA-Sting (WT / mutants). Tmem203-containing complexes were immuno-precipitated (IP) 

using anti-Flag coated beads and blotted for Flag and HA, as indicated. Lysates were also 

immunoblotted (IB) for Flag and HA. Immunoblots shown are from a single experiment and 

are representative of two independent experiments. 

6F. Sting truncation mutants. 4 serial truncation mutants were individually created on the 

WT Sting after the N-terminal transmembrane domains (TM), after the dimerisation domain 

(TM+DD), inside the cyclic dinucleotide binding domain (d-CBD), and before the C-terminal 

cytoplasmic terminal tail (ΔCTT).  

6G. C-terminal truncations alter Sting protein expression. HEK293 T cells were 

transfected with the YFP fusion vectors expressing Sting WT and mutants as indicated. YFP-

Sting protein levels were examined by western blot analysis. Membranes were blotted with 
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anti-GFP and anti-PDHX (housekeeper) as indicated. Relative expressions of mutant Sting 

were compared to the WT expression. Data is presented as mean ± SEM, n=5. 

6H. Tmem203-Sting association is not eliminated by C-terminal truncations of Sting. 

HEK293 T cells were co-transfected with the Tmem203 and Sting WT/mutants cloned into the 

Venus vector system as described in Figure 2F; Venus fluorescence signal was detected by 

flow cytometry. Relative mean fluorescence intensity was plotted compared to the control 

Sting WT – Tmem203 interaction. Data is presented as mean ± SEM, n=4-7. 
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Figure 7: C-terminal region of STING is required for preferential localisation of the 

STING-TMEM203 complex to the lysosome. 

7A-C. Localisation of TM Sting – WT Tmem203. HeLa cells were co-transfected with the 

V1_TM Sting and V2_WT Tmem203 prior to ER (A) or lysosome (B) staining; fluorescence 

signal was detected under confocal microscopy at 80X. Images are representative of two 

independent experiments. (C) Overlay of Tmem203-Sting signals and organelle signals were 

quantified with Fiji and co-localisation was calculated as the percentage of organelle with 

positive Tmem203-Sting detection. One dot per cell analysed from two independent 

experiments. Data is presented as mean ± SEM, scale bar = 20 µm. 

7D: Proposed molecular model for TMEM203 action. In the absence of immune stimuli, the 

type I interferon promoter has no transcriptional activity. Pathogen-released 3’3’-cGAMP or 

cGAS-produced 2’3’-cGAMP can induce the canonical STING pathway, resulting in TBK1-

IRF3 interaction and subsequent type I interferon expression. Internalised LPS-bound TLR4 

activates the “late signalling” events which induce TMEM203-STING interaction in the ER, 

leading to STING-TBK1-IRF3 activation and type I interferon expression. CDN = cyclic 

dinucleotide; cGAMP = cyclic GMP-AMP; cGAS = cyclic GMP-AMP synthase; ER = 

endoplasmic reticulum; IRF3 = interferon regulatory factor 3; LPS = lipopolysaccharide; 

STING = Stimulator of Interferon Genes; TLR4 = Toll-like receptor 4; TBK1 = TANK binding 

kinase; TMEM203 = transmembrane protein 203. 
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Discussion: 

In this study, we show that a novel inflammatory regulator, TMEM203 forms part of a functional 

signalling complex with STING, thus regulating the activity of the effector kinase TBK1 and 

the transcription factor IRF3, leading to activation of type I interferon expression. TMEM203 

acts independently of the canonical PRR systems and the STING/TMEM203 complex 

localises in cytoplasmic punctate membranes. Our experiments aiming to further dissect the 

underlying molecular mechanisms in human and mouse macrophages revealed that 

TMEM203 regulates STING in a ligand-dependent manner. Upon STING activation by cyclic 

dinucleotides and HSV-1 but not by DMXAA, TMEM203 promotes the activation of TBK1 and 

IRF3. Finally, our data on different truncated forms of STING reveal that its N-terminal 

transmembrane domain itself is sufficient to form a complex with TMEM203 and that this 

interaction is regulated by the α-helix / dimerisation domain on STING. Supported by the 

mechanistic studies presented here, we propose a model (Fig. 7D) by which TMEM203-

STING acts and promotes the TBK1-IRF3-interferon activation.  

Whilst detailed structural studies will be required to shed light on the exact molecular 

mechanisms by which TMEM203 regulates STING activity, our data demonstrates the first 

time the important role for TMEM203 in ligand-dependent STING activation. In three primary 

and established macrophage systems, immuno-stimulation by cGAMP was impeded by the 

reduction/loss of TMEM203, whilst DMXAA induced IFN-β expression only changed in parallel 

to Sting but not Tmem203 RNA levels. The mouse-specific ligand DMXAA binds to STING via 

mechanisms similar to cGAMP but different amino acids are involved. Point mutations of 

hSTING S162A and E260I render it sensitive to DMXAA (64, 65). Upon ligand binding, STING 

dimer switches from an open-inactive to a close-active conformation, the binding pocket being 

much tighter in the presence of 2’3’-cGAMP versus DMXAA (64). This model is further 

supported by our finding that DMXAA strengthens TMEM203-STING association while 

cGAMP weakens it. 

Our data also highlights the role for TMEM203 in directing STING between intracellular 

compartments. Whilst TMEM203 overexpression alone did not strongly enhance type I 

interferon expression in the mechanistic studies presented here, it has nevertheless promoted 

vesicular translocation of STING and its downstream IFN-β transcriptional activities. Recent 

literature suggests that the N-terminal of STING is indispensable for its translocation from the 

ER to other membranes during stimulation (59). Thus, the association of this domain with 

TMEM203 may provide a mechanistic explanation for the importance of this STING domain.  
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Host innate immunity is governed by a complex network of proteins cooperating in response 

to a variety of pathogens and autoimmune stimuli. Apart from the four well-established PRR 

systems controlled by TLR, C-type lectin receptors, NOD-like receptors and RIG-I-like 

receptors, innate immune signalling also utilises a range of accessory/adaptor proteins to 

maintain the homeostasis of inflammation. STING is one of the major intracellular sensors of 

cytoplasmic double-stranded DNA and is a critical switch to initiate type I interferon production. 

Recent work in mouse models of SLE have demonstrated that STING is required for 

homeostatic expression of negative regulators of immune activation (6); whilst analysis of 

human monocytes from SLE patients revealed a hyperactive STING signalling that is 

regulated by the interferon induced gene, IFIT3 (31). Analysis of T cells (a critical source of 

Type I interferon in this disease (62, 63)) from a cohort of SLE positive, treatment naïve 

patients revealed unaltered STING and an elevated level of TMEM203 with a concurrent 

suppression of MAVS RNA levels, suggesting that TMEM203 may be an important, novel 

player in the pathology of SLE. 

The physiological significance of STING has been demonstrated during HSV, adenovirus 

(ADV), human papillomavirus (HPV) and negative-stranded RNA viruses such as vesicular 

stomatitis virus (VSV) infections (2, 44, 66). Gain-of-function STING variants lead to auto-

immune, inflammatory diseases such as SAVI and FCL, manifesting symptoms of type I 

interferonopathy (15, 17). STING mediated signalling is known to involve TBK1/IRF3 and NF-

κB; targeting STING activity for therapeutic purposes nonetheless thus far focussed on 

inhibiting downstream interferon receptors, and JAK/STAT (15, 17, 67). Several cancer 

adjuvants showed promising anti-tumour effects in early clinical trials but none has yet 

progressed to the clinic (68, 69). Therefore, revealing TMEM203 as a novel STING-centred 

signalling regulator is of significant interest to both basic research to the understanding of 

diseases of interferon dysregulation, and to the development of therapeutics and adjuvants 

modifying interferon induction.  
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Methods: 

Plasmids: 

- Expression vectors 

Tmem203 expression constructs were generated using standard molecular biological 

techniques. For details of other inserts used, see (50). 

- Reporter vectors 

pGL4.cxcl2 reporter vector, which contain the mouse cxcl2 promoter in pGL4 (Promega) have 

been previously described (50). Similarly, the IL8-luc has previously been reported (70). As an 

internal control, pGL4.EF1.rLuc was used; this was constructed by PCR amplification of the 

human EF1 promoter from pEF-BOS (71) and inserted into pGL4 at the Nhe I site. Sequences 

of all vectors used were confirmed by sequencing. Plasmid vectors for studies of the 

TMEM203/STING complex by EYFP-PCA have been reported previously (72). For Renilla-

PCA, plasmids from the NonBIT-PPI (Promega) were used. Plasmids used in co-

immunoprecipitation were cloned into pXJ40 vector (73) which contains CMV enhancer/ 

promoter. HA tag sequence is MVPYDVPDYAGS, Flag tag sequence is MDYKDDDDKG, Myc 

tag sequence is EQKLISEEDL. Sequences of all vectors used were confirmed by sequencing.  

SLE cohort 

A cohort of patients diagnosed with SLE on the basis of the 1997 updated criteria of the 

American College of Rheumatology (74) were examined in this study and patient samples 

were followed-up at the Department of Rheumatology and Immunology, University of Szeged, 

Hungary. Patients aged 18-80 years with clinical disease activity in at least one organ system 

were eligible for the study. Exclusion criteria included the presence of an overlapping 

connective tissue disease, an infectious or other inflammatory process, and corticosteroid 

treatment with a prednisolone dose higher than 10 mg/day. The most important demographic 

characteristics and disease activity parameters of the cohort are presented in Table S1. All 

subjects gave informed consent to donate blood for research purposes prior to starting 

treatment of SLE. SLEDAI2K, anti-DNA, C3 and C4 complement levels in the patient serum 

were measured as part of the assessment of disease activity during lupus flare. The study was 

approved by the Human Investigation Review Board of the University of Szeged, Albert Szent-

Györgyi Health Centre (reference number 2833/2011). 

Study Ethics 

All human tissue samples were collected under protocols approved by the University of 

Szeged Review Board (Ref No 2833/2011) and conformed to the declaration of Helsinki 

(World Medical Association. 1964. Declaration of Helsinki). Human blood was taken and used 
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under protocols approved by the University of Sheffield Research Ethics Committee (UREC) 

(Ref. SMBRER310). All participants gave written informed consent. 

 

Isolation of primary macrophages 

Peripheral blood mononuclear cells (PBMCs) were isolated from total blood using standard 

Ficoll-Pague gradient (GE Healthcare). Monocytes were isolated by positive selection using 

CD14-targeting magnetic microbeads (Miltenyi Biotec) according to manufacturer’s 

instructions. The purified cell population was found to contain over 90% CD14-positive 

monocytes. To differentiate human monocytes into human monocyte-derived macrophages 

(MDMs) 250,000 cells were seeded in a 12 well plate in 1.5 ml complete RPMI (1% PS, 1% 

L-G and 10% LE HI FBS) supplemented with 100 ng/ml human recombinant M-CSF 

(PeproTech). MDMs were fully differentiated at the seventh day of incubation (37 ℃ 5% CO2) 

and used for further experimental purposes. At day 7 of M-CSF incubation, fresh complete 

RPMI medium was supplied before further treatment.  

Mice hind limbs were a gift from MRC Harwell, Oxford. Bone marrow were eluted from 

mice bones are were cultured in DMEM (10% low endotoxin FCS (Biowest); 1% Penicillin-

Streptomycin; 10% L929 conditioned medium) for 5 days to be differentiated into primary bone 

marrow-derived macrophages (BMDMs). Cells were seeded in 12 well plates for further 

experiments.  

 

Isolation and analysis of T cells: 

PBMCs were isolated from SLE and healthy donors using Ficoll (GE Healthcare) gradient 

centrifugation. PBMCs were stimulated with 1 μg/mL Phytohaemagglutinin (PHA-L, Sigma-

Aldrich) and were cultured for 72 hours in RPMI-1640 medium (Gibco®) supplemented with 

10% fetal bovine serum (FBS) (Gibco®), 2 mM L-glutamine (Gibco®) and penicillin-

streptomycin (Sigma-Aldrich). Total RNA was extracted from activated T cells (1-3 × 106 cells) 

using PerfectPure RNA Cultured Cell kit (5 Prime) according to the manufacturer’s instructions 

with on-column DNase digestion. For cDNA synthesis, 1 μg of total RNA / reaction was reverse 

transcribed using RevertAid Reverse Transcriptase (Thermo Fisher Scientific Inc.) in the 

presence of 1.66 µM of oligo(dT)18 and random hexamer primers, 0.5 mM dNTP, 10 U 

RiboLock RNase Inhibitor and 200 U RevertAid H Minus Reverse Transcriptase for 60 min at 

42°C then heated for 10 min at 70°C. Quantitative PCR was carried out using TaqMan 

Universal mastermix II (Applied Biosystems®) in 10 µl reaction volumes in duplicates using 

Roto-Gene Q real-time PCR cycler (Qiagen). The following Taqman® Gene Expression 
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Assays (Applied Biosystems®) were used: (Hs01060665_g1 for ACTB, Hs01057884_s1 for 

TMEM203, Hs00736955_g1 for TMEM173, Hs00920075_m1 for MAVS with a Roto-Gene Q 

instrument (Qiagen). Quantitative real-time PCR data were analysed using the Rotor Gene 

software (v6.1 build 93). 

 

Cell cultures, transient transfection 

RAW 264.7 cells were purchased from ATCC (Cat. No: TIB-71). RAW 264.7 cells were 

plated overnight and the next day transfected using DharmaFECT transfection reagents 

(Dharmacon, GE Healthcare) according to the manufacturer’s guidelines. Cells were further 

treated 24 h post plasmid transfection or 48 h post siRNA transfection. All transfections were 

performed in 96-well plates, unless stated otherwise.  

Differentiated human monocyte-derived macrophages (MDMs) were transfected with On-

target Plus siRNAs smartpool (Dharmacon, GE Healthcare) against human TMEM203 or non-

targeting control siRNA using Viromer green transfection reagent (Lipocalyx) at a final 

concentration of 12.5 nM. Transfection lasts 48 h before cells are used for other purposes.  

Immortalised bone marrow-derived macrophages (iBMDMs) cell line was generated by 

David Brough’s lab (University of Manchester) using the method described by (75). Cells 

(75,000 in 0.5 ml) were seeded overnight to allow attachment and were transfected with siRNA 

pool (Dharmacon, GE Healthcare) against mouse Tmem203 or Sting or non-targeting control 

siRNA using the same Viromer green transfection method as described for MDMs. Cells were 

assayed 48 h post transfection. 

HeLa cells (200,000) were plated in 35mm glass-bottom petri dish to attach overnight and 

the next day were transfected with Lipofectamine 3000 according to the manufacturer’s 

protocol. Cells were used 18-24 h post plasmid transfection. 

For Renilla and Venus protein complementary assay, HEK293 T cells were transfected 

using PolyFECT (Qiagen) according to manufacturer’s guidelines. Equal quantities were used 

for co-transfecting plasmids. Transfection lasts 18-24 h before cells are used in further 

treatments.  

RAW 264.7 and iBMDMs were maintained in Dulbecco’s Modified Eagle’s medium 

(DMEM) supplemented with 1% Penicillin-Streptomycin (PS) (Gibco), 1% L-glutamine (L-G) 

(Gibco) and 10% low-endotoxin heat-inactivated fetal bovine serum (LE HI FBS) (Biowest). 

Human MDMs were maintained in RPMI-1640 medium supplemented with 1% PS, 1% L-G 

and 10% LE HI FBS. HeLa cells were maintained in DMEM supplemented with 1% PS, 1% L-

G, 1% non-essential amino acids and 10% HI FBS. HEK293 T cells were maintained in DMEM 
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supplemented with 1% PS, 1% L-G and 10% HI FBS. All cells were kept at 37 ℃ and 5% CO2; 

all established cells were used at 30 or lower passages.  

 

Generation of CRISPR/Cas9 Tmem203 Knockout RAW 264.7 cells 

Four suitable sgRNA oligos were designed and used in the generation of pGL3-U6 

sgRNA-Puromycin expression vectors. Vectors were transformed into E.coli DH5α and 

positive clones were screened on Ampicillin selection plates. Identified clones containing 

correct insertion of sgRNA oligos were further confirmed by sequencing using the primer: 5’-

cgattagtgaacggatctcgacg-3’. Transfection of RAW 264.7 with pGL3-U6 sgRNA expression 

vectors was carried out using Lipofectamine 2000 according to the manufacturers’ instructions. 

6h post-transfection, media was replaced with RPMI complete medium. Antibiotic selection 

using Puromycin (2 μg/ml) and Blasticidin (10 μg/ml) was started at 24 hours (h) post-

transfection and continued for a total of 72 h before passaging cells for downstream 

applications. Clonal isolation was performed, and successful clones that consistently showed 

3-4 folds decrease in Tmem203 expression determined by quantitative real-time PCR. These 

colonies were selected for establishment of a stable cell lines along with CRISPR-Cas 9 

control group using selective medium containing Puromycin (2 μg/ml) and Blasticidin (10 

μg/ml). 

 

Generation of Tmem203 Stably Expressing RAW 264.7 cells 

Mouse Tmem203 cDNA was cloned into the pcDNA 3.0 vector between the Hind III and 

BamHI restriction sites. The construct was then transfected into RAW 264.7 cells using 

Lipofectamine (Invitrogen) according to the manufacturer’s instruction. 18-24h after the 

transfection, RPMI-1640 medium supplemented with 10% FCS, Penicillin/ Streptomycin and 

500μg/ml G418 was added to initiate the selection of stably expressing Tmem203 cells. 

Clones were selected for further culture after two weeks of selection. qPCR was carried out to 

confirm the level of overexpression.  

 

STING ligand stimulation: 

RAW 264.7 cells were transfected with 1μg 3’3’-cGAMP using Lipofectamine LTX 

(Invitrogen) according to the manufacturer's instructions. 
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For MDM, immortalised BMDM (iBMDM) and BMDM stimulation, macrophages were 

stimulated with 2’3’-cGAMP, 3’3’-cGAMP or DMXAA at the indicated doses and time. 2’3’-

cGAMP was delivered with fresh medium (control treated with fresh DMEM only); 3’3’-cGAMP 

was delivered with 20 mins incubation of reversible Digitonin permeabilisation method as 

described in by Woodward and colleagues (2010 Science 328(5986): 1703-5) (control treated 

with ligand free Digitonin buffer); DMXAA is reconstituted in DMSO and delivered to cells with 

fresh medium (control treated with DMSO only medium). All ligands were purchased from 

Invivogen. 

 

HSV-1 infection 

RAW264.7 cells (control and Tmem203-overexpression / CRISPR-Tmem203 knockout) 

were grown in RPMI 1640 medium (Hyclone) supplemented with 10%(v/v) FBS (Sigma) and 

seeded to 50% confluency in 6 well plates and allowed to rest overnight. Cultures were then 

replaced with antibiotic free media before infection with HSV-1 virus at MOI of 0.2. Cell lysates 

were obtained at 0, 1, 3 and 6 hr post infection for western analyses. Cells were harvested at 

0 and 6hr post infection for RNA extraction and cell culture supernatants were subjected to 

ELISA. 

 

Enzyme-linked immunosorbent assay (ELISA) 

IFN-β ELISA kit (PBL Interferon Source) were used for the measurement of IFN-β 

concentrations according to the manufacturer’s protocol. The concentration was determined 

by reading the absorbance at 450 nm using the BioTek® Microplate Reader. 

 

Standard and quantitative real-time PCR 

Following experiments, RAW 264.7 cells were lysed using Isol (5 prime) and then 

chloroform extracted prior to RNA isolation on RNeasy Mini columns, including DNase 

digestion (Qiagen). cDNA was made from total RNA with Maxima First Strand cDNA Synthesis 

Kit for RT-qPCR (Thermo scientific) according to the manufacturer’s protocol. Quantitative 

real-time PCR (qPCR) was performed with the PerfeCTa qPCR FastMix (Quanta Biosciences) 

in 20 μl reaction volumes in duplicate wells and cycled in a StepOnePlus™ Real-Time PCR 

cycler. The following TaqMan® Gene Expression Assays (Applied Biosystems®) were used: 

IFN-β (Hs01077958_s1), TNF (Hs00174128_m1). 
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For analysis of mRNA levels in MDM, BMDMs, iBMDMs, and ER stress response in 

HEK293 T cell: Following treatment, cells were washed with PBS and harvested for total RNA 

extraction on ReliaPrep Cell Isolation columns (Promega) following the manufacturer’s 

instructions. Complementary DNA was made from 500 ng total RNA (Biorad iScript cDNA 

synthetic kit) for gene expression analysis. Real-time quantitative PCR was performed using 

Primerdesign SYBR green mastermix in 10μl reaction volume in triplicate wells and quantified 

in Biorad CFX384 TouchTM real-time PCR cycler. Primers for amplification of human genes 

were as follows (Forward and Reverse):  

Human:  

IFN-β: 5’-AAGCAGCAATTTTCAGTGTCAGA–3’ and 5’-CCTCAGGGATGTCAAAGTTCA–3’; 

IL-8: 5’-TGCCAAGGAGTGCTAAAG–3’ and 5’-CTCCACAACCCTCTGCAC–3’; TMEM203 5’-

GTCTTCGAGATGCTGTTGTGC–3’ and 5’-ACGTAATGAGGCCGAACCAG–3’; Total XBP1 

5’-TGGCCGGGTCTGCTGAGTCCG–3’ and 5’-ATCCATGGGGAGATGTTCTGG–3’; Spliced 

XBP1 5’-CTGAGTCCGAATCAGGTGCAG–3’ and 5’-ATCCATGGGGAGATGTTCTGG–3’; 

Non-spliced XBP1 5’-CAGCACTCAGACTACGTGCA–3’ and 5’-

ATCCATGGGGAGATGTTCTGG–3’; β-actin 5’-GGATGACAGAAGGAGATCACTG–3’ and 5’-

CGATCCACACGGAGTACTTG–3’. 

Mouse: 

Sting: 5’- GCTGGCATCAAGAATCGGGT–3’ and 5’- TACTCCAGGATACAGACGCC–3’; 

Tmem203: 5’- CCCTGTTGGTGTTCTCCGTA–3’ and 5’- GCACAAAGACGTTCCACCAG–3’; 

Ifnb1: 5’- TGTCCTCAACTGCTCTCCAC–3’ and 5’- CATCCAGGCGTAGCTGTTGT–3’; Cxcl2: 

5’- ATCCAGAGCTTGAGTGTGACG–3’ and 5’- TTTGACCGCCCTTGAGAGTG–3’; β-actin: 

5’-GGGACCTGACAGACTACCTCATG–3’ and 5’-GTCACGCACGATTTCCCTCTCAGC–3’; 

 

Site-directed Mutagenesis and molecular cloning 

Single-amino acid mutation was performed using Agilent QuikChange Mutagenesis kit 

following the manufacturer’s protocol. Forward and reverse primers were designed to 

substitute the target tri-nucleotide with a stop codon to generate truncation mutations in Sting 

coding region (ENSMUSG00000024349; NP_082537.1, Q3TBT3). Reverse primers are 

complementary to the forward primers. Primers were purchased from Sigma Aldrich. Sting 

mutants used in co-immunoprecipitation were generated by standard PCR with respective 

primers using AccuPrime™ Taq DNA Polymerase system from Thermo Scientific following 

manufacturer’s instructions. EcorV site was introduced to facilitate ligation between internal 

deletion sites. Fidelity of the constructs were confirmed by Sanger sequencing. 
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Mutations and primers are described below: 

Sting mutants for co-immunoprecipitation: 

Gene Mutation Mutagenesis Primer Sequences 

Sting 

WT 

WT 

aa 1-379 

Forward: 5’-

AAAAAGCTTATGCCATACTCCAACCTGCATCCAGCCATCCCACGGC-3’ 

Reverse: 5’AAACTCGAGTCAGATGAGGTCAGTGCGGAGTGGGAGAGGCTGA-3’ 

TM TM1 – TM4 

aa 1-146 

Forward: 5’-

AAAAAGCTTATGCCATACTCCAACCTGCATCCAGCCATCCCACGGC-3’ 

Reverse: 5’-AAACTCGAGTCAGACTGCAGAGACTTCCGCTGG-3’ 

ΔCTT TM1 – CBD 

aa 1-338 

Forward: 5’-

AAAAAGCTTATGCCATACTCCAACCTGCATCCAGCCATCCCACGGC-3’ 

Reverse: 5’-AAACTCGAGTCACTCCTTTTCTTCCTGACGAATGTGCC-3’ 

ΔTM CBD – CTT 

Aa 147-379 

Forward: 5’-GGGAAGCTTATGTGTGAAGAAAAGAAGTTAAATGTTGCCCACGG-3’ 

Reverse: 5’-AAACTCGAGTCAGATGAGGTCAGTGCGGAGTGGGAGAGGCTGA-

3’ 

ΔCBD Internal 

deletion of 

CBD 

Aa 1-146, 

340-379 

Forward: 5’-AAGATATCGAGGTTACCATGAATGCCCCCATGACCTCAGTGGCA-3’ 

Reverse: 5’-

AAGATATCGACTGCAGAGACTTCCGCTGGAGTCAAGCTCTGAAGG-3’ 

CBD CBD only 

Aa 147-379 

Forward: 5’-GGGAAGCTTATGTGTGAAGAAAAGAAGTTAAATGTTGCCCACGG-3’ 

Reverse: 5’-AAACTCGAGTCACTCCTTTTCTTCCTGACGAATGTGCC-3’ 

 

Sting truncation mutants used in protein complementation assays and Western blotting 

were generated using QuikChange II Site-Directed Mutagenesis kit following the 

manufacturer’s guidelines. Gateway Entry clones were used in mutagenesis reaction to induce 

point mutations and the correct gene-encoding sequence were fused into desired EYFP-PCA 

(as described above) or EYFP expression clones to express the gene of interests. Plasmids 

were transformed into NEB® 5-alpha Competent E. coli (high efficiency) cells and selected by 

50 µg/ml Kanamycin (Entry clones) or 100 µg/ml Ampicillin (Destination clones) during 

amplification. Plasmid were isolated from bacteria cultures on GenElute plasmid DNA 

midiprep kit (Sigma Aldrich) according to the manufacturer’s protocol. Mutagenesis were 

confirmed by Sanger sequencing (Source Bioscience, Birmingham). 
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Sting truncation mutants: 

Gene Mutation Mutagenesis Primer Sequences 

 

141A 

GCG->TGA 

A -> STOP 

Forward 5’ CAGAGCTTGACTCCATGAGAAGTCTCTGCAGTC 3’ 

Reverse 5’ GACTGCAGAGACTTCTCATGGAGTCAAGCTCTG 3’ 

 

184L 

CTA->TGA 

L -> STOP 

Forward 5’ CGAATGTTCAATCAGTGACATAACAACATGCTC 3’ 

Reverse 5’ GAGCATGTTGTTATGTCACTGATTGAACATTCG 3’ 

 

243V 

GTC->TGA 

V -> STOP 

Forward 5’ GTTTATTCCAACAGCTGATACGAGATTCTGGAG 3’ 

Reverse 5’ CTCCAGAATCTCGTATCAGCTGTTGGAATAAAC 3’ 

 

344A 

GCC->TGA 

A -> STOP 

Forward 5’ GAGGTTACCATGAATTGACCCATGACCTCAGTG 3’ 

Reverse 5’ CACTGAGGTCATGGGTCAATTCATGGTAACCTC 3’ 

 

Protein complementary assay 

To determine protein interaction using split Venus protein complementary assay (PCA), 

125,000 HEK293 T cells were seeded in 24 well plates and transfected with 500 ng total 

plasmid per well. Post transfection, cells were harvested in FACS buffer (5% (v/v) FBS-PBS) 

and assessed by flow cytometry (BD Bioscience LSRII). Cell viability was determined by TO-

PRO-3 (0.002 nM, Thermo Fisher) negativity. Geometric means of GFP determined in the 

alive cells were compared to the selected control samples.  

For split Renilla PCA, 25,000 HEK293 T cells were seeded in 96 well plates and 

transfected with 100 ng total plasmid per well. Post transfection, Renilla signal was analysed 

using Nano-Glo® Luciferase Assay System (Promega). Cells were stimulated with STING 

ligands for indicated time when Renilla activities were measured accordingly. Cells were also 

stained with Hoechst33324 (0.002 nM, ThermoFisher) to indicate cell number for 

normalisation. Cells were maintained at 37℃ throughout the experiment. 

Immunostaining and confocal microscopy: 

HeLa cells were transiently transfected with 2 μg of Tmem203-mCherry for 48 hours 

using Metafectene™ (Biontex) according to the manufacturer’s recommendations. HeLa cells 

were then seeded onto UV-irradiated coverslips in a 6-well plate (2ml at 2 × 105 per ml) and 

treated with 1μg/ml LPS for 30 and 60 minutes as indicated. Cells were fixed with 

methanol/acetone at a 1:1 ratio and stained with an anti-TBK1 (Alexis Biochemicals) antibody 

or an anti-IRF3 (C20, SC-15991, Santa Cruz) antibody as indicated. Localisation of TBK1 and 

IRF3 was visualised using Alexa Fluor 488 conjugated anti-mouse and anti-goat secondary 

antibodies respectively (Molecular Probes). LAMP1, (H5G11, SC-18821, Santa Cruz) 

localisation was visualised using Alexa Fluor 488 conjugated anti-mouse secondary antibody 

(Molecular Probes).  
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For live cell imaging of Tmem203-Sting organelle localisation, attached HeLa cells were 

transfected with 750 ng of each V2_Tmem203 and V1_Sting (WT or mutant) for 18-24 hours 

using Lipofectamine 3000 according to the manufacturer’s guidelines. Post transfection, 

samples were washed three times with PBS and were stained for 10 mins with ER or lysosome 

Cytopainter staining kit (Abcam) at 1/5 and 1/3 of manufacturer’s recommended 

concentrations, respectively. Cells were then washed three times with PBS and were 

maintained in colourless DMEM medium (1% PS and 10% HI FBS) until imaging. Images were 

acquired by confocal microscopy on a Zeiss LSM 510 META with 40X inverted water-lens 

(Molecular Probes). Images were analysed by Fiji. ROI was selected around the organelles to 

calculate the number of pixels of the organelle, Sting-Tmem203 fluorescence and co-localised 

signals. The percentage of localisation was calculated as the ratio of number of co-localised 

pixels to number of pixels occupied by the organelle.  

RAW 264.7 macrophages stably expressing Tmem203 or empty vector were grown on 

coverslips and transfected with 1 µg 3’3’-cGAMP for 6h, along with controls. Cells were fixed 

with 3.7% (v/v) formaldehyde for 15 minutes (min) at 37°C. Fixed cells were washed twice 

with PBS, twice with 4mM NH4Cl in PBS, twice with PBS and then permeabilised with 0.2% 

(v/v) Triton X‐100 (BioRad) in PBS for 15 min at room temperature. Blocking was carried out 

with 2% (w/v) bovine serum albumin and 7% (w/v) FBS in PBS for 60 min at room temperature. 

Cells were incubated with rabbit anti‐IRF3 antibody (Cell Signaling Technology) in blocking 

solution overnight. Samples were washed three times with 0.1% (v/v) Triton X‐100‐containing 

PBS before incubation with Alexa Fluor 546‐conjugated donkey anti‐rabbit IgG for 60 min, 

washed three times with 0.1% (v/v) Triton X‐100‐containing PBS and incubated with DAPI for 

5 min, washed twice and mounted using Fluorsave. Confocal fluorescence images were 

captured on a Zeiss LSM510 META microscope. 

Human MDMs were seeded in 8 well chamber slides (40,000) and were washed twice 

with PBS and fixed with 4% (v/v) formaldehyde for 30 min at 37°C. Fixed cells were washed 

3 times with PBS and then permeabilised with 0.1% Triton X-100 – PBS for 15 mins. Cells 

were then washed 3 times with PBS and blocked with 2% bovine serum albumin (BSA)-PBS 

for 1 h at room temperature. Cells were washed with PBS and incubated with mouse anti- 

human CD68 (Dako) (1:100 in 1% BSA-PBS) at 4°C overnight. Cells were then washed 3 

times with PBS and reacted with AlexaFluor 488-conjugated goat anti-mouse secondary 

antibodies. Nuclei were visualised with DAPI (1:1000 PBS) (ThermoFisher). Cells were 

imaged on a LEICA AFI6000 Time-Lapse microscope at 10X magnification. 

 

Western-blotting and immunoprecipitation analysis 
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Post treatment, cells were washed twice with PBS and harvested in RIPA buffer (Sigma 

Aldrich) and phosphatase inhibitors (Roche). The samples were vortexed on ice and sonicated 

for 15 mins in ice cold water. Protein concentrations were determined by Pierce BCA assay 

(Thermo Fisher). 10 μg proteins were diluted with equal volume of 2x Laemmli reducing buffer 

(4% SDS (w/v), 10% (v/v) 2-mercaptoethanol, 20% (v/v) glycerol, 0.0004% (w/v) bromophenol 

blue, 0.125M Tris-HCl, pH 6.8) to separate on 4-12% NuPAGE gels (Life Technologies), then 

transferred on nitrocellulose or PVDF membrane.  

TBK1 protein and its phosphorylated form were blocked with TBST (TBS + 0.05% (v/v) 

Tween-20) and 3% (w/v) cold fish gelatin (Sigma), then reacted with specific rabbit antibodies 

(Cell Signalling #3013 and #5483, respectively) followed by anti-rabbit Ig-HRP (DAKO). All 

antibodies were diluted in 1.5% (w/v) cold fish gelatin-TBST. The chemi-illuminescent signal 

of EZ-ECL (Biological Industries) was detected on ChemiDoc™ XRS imager (Bio-Rad), and 

the band densities were quantified using the Image Lab™ Software. The relative pTBK1 levels 

were calculated by dividing the intensity of pTBK1 form by the intensity of total TBK1 in each 

sample. Western blot analysis was carried out with anti-pIRF3 (Ser396) (Cell Signalling 

Technology) for IRF3 phosphorylation, or anti-pTBK1 for TBK1 phosphorylation respectively.  

For detection of YFP-STING WT and mutants, membranes were blocked with TBST 

containing 10% (w/v) skimmed milk, then reacted with mouse monoclonal anti-GFP antibodies 

(Cusabio, CSB-MA000283) or mouse monoclonal anti-PDHX (housekeeper, Santz Cruz #Sc-

377255), followed by anti-mouse IgG-HRP (DAKO). All antibodies were diluted in 5% (w/v) 

milk-TBST. The chemi-illuminescent signal of EZ-ECL (Biological Industries) was detected on 

a Li-COR c-digit blot scanner and protein bands were quantified using Image Studio Digit 

software Ver 5.0. Band intensities were normalised against PDHX in the same sample. 

For immunoprecipitation experiments, HEK293 T cells were seeded at 5 × 105 per ml, 

in 10 ml, in 10 cm2 dishes and transfected with a total of 2g of plasmid for 18-24 hours. Cells 

were lysed on ice in radioimmunoprecipitation lysis buffer (1× PBS, 1% (v/v) Nonidet P-40, 

0.5% (w/v) Na-deoxycholate, 0.1% (w/v) SDS, 1 mM KF, 1 mM Na3VO4, 10 g/ml leupeptin, 

and 1 mM PMSF) followed by immunoprecipitation with anti-Flag (M2, F1804, Sigma) pre-

coupled to protein-G Sepharose beads (Sigma). Both immunoprecipitate samples and lysates 

were immunoblotted for Flag and Myc (Ab18185, Abcam). 
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Supplementary figure/table titles and legends: 

Figure S1 (relate to Figure 1): Tmem203 induced Cxcl2 activation is independent of 

MAPK pathways. The impact of MAPK inhibition on Tmem203 overexpression vs. LPS 

induced cxcl2 expression was investigated in RAW 264.7 cells transfected with the cxcl2-pLuc 

and EF1-rLuc reporters. LPS (100 ng/ml) was added for 3 hours and used to induce cxcl2 

luciferase reporter. Data is presented as mean ± SEM, n=3. 
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Figure S2 (relate to Figure 4): Interferon response in human and mouse macrophages. 

A. Assessment of high purity primary human monocyte isolated from whole PBMC. Post 

monocyte isolation, monocytes, B cells and T cells were stained with fluorescence-conjugated 

CD14, CD19 and CD3 antibodies, respectively. Over 90% purity of CD14 positive human 

monocytes were assessed by flow cytometry.  

B. Human monocyte-derived macrophages express CD68. CD14 positive monocytes were 

differentiated into macrophages with M-CSF incubation and purity was examined by blotting 

with anti-human CD68 and detected with Alexa Fluor® 488 conjugated goat anti-human. Scale 

bar = 100 µm. 

C. & D. TMEM203 knockdown reduces 2’3’-cGAMP (C) and 3’3’-cGAMP (D) induced IFN-

β expression in MDMs. IFN-β production of control vs. stimulated MDMs was compared in 

individual blood donor MDMs. Mean IFN-β mRNA levels (relative to β-actin) ±SEM are plotted 

from 3 biological replicates for each MDM culture.  

E. DMXAA (dark) and 2’3’-cGAMP (light) induces potent IFN-β mRNA increase in 

iBMDMs. IFN-β production of control vs. stimulated iBMDMs was compared. Mean Ifnb1 

mRNA levels (relative to b-actin) ± SEM are plotted from n=3. 

G. Genotype of Tmem203 gene in the WT and Tmem203 knockout mice. CRISPR-Cas9 

induced deletion mutation of 11 nucleotides of exon ENSMUSE00000665152 (WT Tmem203) 

to generate a knockout allele (H-Tmem203-DEL11-EM1-B6N) of C57BL/6 background mice. 

Genotyping information confirmed by Sanger sequencing, MRC Harwell Institute, Oxford. 

H. IFN-β response in BMDM stimulated with STING ligands. BMDM isolated from WT mice 

were stimulated with DMXAA (50 µg/ml) (dark) or 2’3’-cGAMP (10 µg/ml) (light) for 3 h. Mean 

IFN-β mRNA levels (relative to unstimulated controls, not shown) ± SEM are plotted from 3 

biological replicates for each BMDM culture. 
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Figure S3 (relate to Figure 5) – Establishing Tmem203 knockout and Tmem203 

overexpressing RAW 264.7 cell lines. 

A. CRISPR/Cas9 TMEM203 Knockout RAW 264.7 cell line. CRISPR-Cas9 –directed 

Tmem203 knockout in RAW 264.7 cell line (KO Tmem203) showed a 3-4 -fold decrease in 

Tmem203 (against β-actin mRNA) expression determined by RT-qPCR and the cell line was 

established for further experiments.  

B. Stable Tmem203 overexpression in RAW 264.7 cell line. Stable Tmem203 

overexpression in RAW 264.7 cell line (OE Tmem203) showed a robust 8-fold increase in 

Tmem203 (against β-actin mRNA) expression determined by RT-qPCR and the cell line was 

established for further experiments.  
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Figure S4 (relate to Figure 6): Overexpression of Tmem203 and Sting does not induce 

ER stress. 

S4. A-C. Venus PCA Tmem203 and Sting co-expression does not induce ER stress in 

HEK293 T cells. Co-transfection of Tmem203 (A) and Sting (B) Venus PCA constructs 

resulted in high expression of both genes but only little increase of XBP1 mRNA splicing (C). 
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Table S1 (relate to Figure 1): Clinical description of SLE patient cohort. A cohort of 20 patients 

were diagnosed with SLE and clinical data were acquired. Asterisks denote data being presented as 

Mean±SD (Lower:Upper interquartile range). Abbreviation: F=female; M=male; SLEDAI-2K=systemic 

lupus erythematosus disease activity index 2000; Anti-DNA=serum level of antibody to double-

stranded DNA; C3=serum C3 complement level; C4=serum C4 complement level; NA=not available. 
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Age at 
Sampling 

(Years) 

Gender SLEDAI-2K Anti-DNA 

IU/ml 

C3 

mg/dL 

C4 

mg/dL 

18 F 9 151 82 10 

42 F 23 151 84 11 

25 F 18 220 63 7 

46 F 12 12 141 29 

20 F 9 45 103 7 

63 F NA 74 131 11 

37 M 16 220 80 15 

36 F 16 220 59 15 

35 F NA 13 111 18 

49 M 16 18 135 23 

56 F 30 200 75 10 

54 F 15 200 53 11 

35 F 30 200 21 3 

31 F 18 NA NA NA 

45 F 8 14 41 10 

59 F 2 10 90 20 

37 F 19 220 67 12 

52 F 17 200 63 15 

38 F 6 41 116 23 

30 F NA NA NA NA 

N=20 F:18 

M:2 

*15.53±7.62 

(9:18) 

*122.72±87.63 

(29.5:200) 

*84.17±32.39 

(63:107) 

*13.89±6.41 

(10:16.5) 

      Normal range: 

 0-20 

Normal 
range: 

90-180 

Normal 
range: 

10-40 
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Chapter 3: Discussion and future work for TMEM203 

3.1 Discussion 

Maintaining tissue homeostasis relies on the complex network of inflammatory 

signalling events which respond to a wide spectrum of stimuli. Since the description of 

Toll-like receptors a century ago [275], numerous proteins have been identified in 

immune regulation and thus completing our knowledge of human physiology. Novel 

inflammatory mediators are continuing to be discovered for their potential in 

therapeutic development and academic interest. Unlike the TLR-dependent pathways, 

other pattern recognition receptors are less well-characterised and yet of significant 

physiological importance. For instance, the intracellular nucleic acid sensing adaptors 

MAVS and STING have become the centre of research since their discovery in 2005 

and 2008, respectively [276, 277]. These emerging inflammatory mediators have 

provided strong evidence supporting the endosomal TLRs and the cytosolic NLR-

inflammasome independent sensor of cytoplasmic nucleic acids, while it also 

emphasises the role for mitochondria and the ER in immune regulation. This also 

refined the function of Golgi vesicles and lysosomes which are indispensable 

signalling platforms downstream of MAVS and STING in addition to the role as 

transport for protein and enzyme cargos [278–280]. 

 

The initial purpose of the cDNA functional screen in LPS-induced RAW 264.7 murine 

macrophages was to identify novel inflammatory proteins with unclear roles in 

controlling innate immune response, which may mediate distinct impacts of TLR 

activation [131]. From the screen, Tmem203 was identified as an activator of the Cxcl2 

chemokine. At the beginning of Chapter 2, our preliminary study aimed to link 

Tmem203 to the canonical MyD88 or TRIF dependent pathways downstream of TLR4 

activation. However, our results suggested an alternative mechanism for Tmem203 

action. Tmem203 is a small protein with 4 transmembrane domains and no obvious 

N-terminal and C-terminal cytoplasmic regions, and therefore generating a specific 

and high affinity antibody for immunofluorescence studies was a challenge. Despite 

this limitation, we constructed the mCherry-fusion protein for Tmem203 and visualised 

its localisation in the punctate membrane structures in HeLa cells. These structures 
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highly resemble the endoplasmic reticulum. As our research continued, a paper 

published by Shambharkar and colleagues has confirmed the ER residency of 

Tmem203, yet the roles for this protein was mainly discussed in the context of calcium 

signalling and implications for spermiogenesis [132]. Although the paper did not 

discuss the relevance to immune regulation, it confirmed our findings of Tmem203 ER-

localisation, thus the potential to colocalise and interact with the nearby ER resident 

inflammatory mediators. We hypothesised that STING would demonstrate direct 

association with TMEM203. Although we considered MAVS as co-regulator for 

TMEM203, several publications have suggested that MAVS and STING crosstalk is 

not indispensable for their individual activation, suggesting that an interaction between 

mitochondria and the ER was not critical to MAVS’s activation, and it was very limited 

at the mitochondria-associated membrane regions [206]. Even though TMEM203 

could be part of signalling transduction between MAVS and STING, the role for 

TMEM203 in MAVS regulation could be minimal.  

 

We have used human primary monocyte-derived macrophages as a comparable cell 

model to study STING activation in human. However, we were aware that donor-

variation may exist in the expression level of TMEM203, STING and MAVS in primary 

cells isolated from different people. By analysing mRNA expression of these genes in 

MDMs from 9 individuals, a strong correlation was found between TMEM203 and 

STING but not with TMEM203-MAVS, although further studies of a large n>30 

population is required to understand the expression relation between these genes 

(Appendix A1.1, page 268).  Because of this donor-variation, we have also tested if 

siRNA transfection alone could induce immune response prior to further immune 

stimulations. For this, we have shown that non-specific siRNA transfection into MDMs 

does not induce potent type I interferon and IL-8 mRNA upregulation (Appendix A1.2, 

page 269), and the dose of siRNA transfection has been optimised in this primary cell 

type to ensure an even distribution of siRNA delivery in every cell (Appendix A1.3, 

page 270).  

 

In addition to the macrophages, we have used a number of other cell models for 

various purposes. HeLa cells were used for all imaging STING and TMEM203 
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expression and colocalization for their advantage of flat morphology. We have also 

optimised the staining concentration of ER and lysosome and doses of 

V1_Sting/V2_Tmem203 co-transfection to obtain an optimal fluorescent signal and 

cell viability in microscopy (Appendix A1.5-1.7, page 272-274). HEK293 cells were 

used to study STING wildtype and mutant interaction with Tmem203 as this cell line 

is known to express extremely low level of STING and cGAS [281], and thus avoiding 

the trouble of overexpressing this gene. Although both HeLa cells and HEK293 cells 

were sufficient models to study protein interactions, neither of these cells were well-

known to exhibit strong immune response as compared with immune cells, and 

therefore the studies involving STING-mediated immune response were conducted in 

macrophages.  

 

Our research has repeatedly revealed that TMEM203 enhances type I interferon 

expression via STING but not directly. As demonstrated in Chapter 2, Fig. 3G, Fig. 5B-

F, overexpression of Tmem203 only amplifies Ifnb1 expression and TBK1/IRF3 

activation in the presence of STING activation, and thus identified it as an enhancer 

but not an upstream activator for STING. The structure of TMEM203 does not possess 

functional domains to support ligand recognition and effector binding. Although data 

suggested that a multimeric TMEM203 structure exists, this does not rectify a lack of 

cytoplasmic region for functional interaction. This is also a potential reason that 

TMEM203 binds preferentially to the N-terminal transmembrane domains of STING, 

with STING acting as a signalling platform for TMEM203. However, TMEM203 

overexpression primes STING trafficking to lysosomal vesicles, which is a signal for 

STING activation and post-activation processing [280, 282, 283]. Although it was 

previously reported that STING translocation can be achieved in the absence of TBK1 

and IKK, a dsDNA stimulation was required to induce such dynamic [283]. Our 

evidence suggests a ligand-free, TBK-free translocation of STING-TMEM203 complex 

from the ER to lysosomal vesicles, being solely induced by the upregulation of 

TMEM203. It is unclear how an almost completely membrane-embedded protein is 

capable of directing the movement of protein complexes; the answer may relate to 

additional signalling cascades providing the trafficking machinery to facilitate their 

migration.  
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One possibility is related to calcium spikes which are strongly perturbed by TMEM203 

overexpression [132]. A novel area was explored by Kim et al. demonstrating a role 

for STING in regulating calcium response [284]. The experiments identified a calcium 

spike upon DMXAA and 3’-3’ cGAMP stimulations in RAW 264.7 cells. Whereas 

STING downregulation impairs calcium pulses induced by the ligands, the intracellular 

calcium chelator BAPTA-AM also inhibited DMXAA-induced STING activation. 

However, calcium mobilisation was not essential for cGAMP-induced STING 

activation, and distinct regulatory mechanisms between the two STING ligands was 

also indicated in our work (Chapter 2, Fig. 2G-H and Fig. 6C). Further to the authors’ 

suggestions that cGAMP more likely activates calcium-independent STING signalling, 

TMEM203 obtains a high potential to link calcium transients to the type I interferon 

activation, opening an area to explore in relation to STING activation and trafficking in 

ligand-free conditions. 

 

An alternative hypothesis for TMEM203-enhanced STING activation relates to with the 

confirmation change of the receptor. Several groups have reported the change of 3D 

structure of STING when in contact with different ligands [285–287]. STING 

conformation is switched between the “open-inactive” and a “close-active” forms. The 

contact of ligands with the dimeric ligand binding pocket alters the open structure to a 

closed conformation which enabled the rearrangement of C-terminal cytoplasmic tail 

to expose the docking sites for TBK1 and IRF3 [286, 288]. The “lid” region of STING 

aa 224 - 244 positions adjacent to the ligand binding site, and it was predominantly 

tightened by ligand recognition and highly affected by the different affinities of ligand 

binding [288]. This is why DMXAA can activate mouse but not human STING, and the 

mutation G230I renders hSTING sensitive to DMXAA binding [286]. However, ligand-

independent activation of STING was observed in Sendai virus (a RNA virus) infection 

where activated RIG-I induce mitochondrial elongation which translates to the nearby 

ER membranes and promotes ER de-reticulation, a mechanism found to induce 

STING-mediated antiviral response [212]. The study of natural STING mutants 

revealed a further ligand-free activation mechanism through mutations in-between the 

transmembrane domains and the “lid” region. Four gain-of-function mutations, V147L, 
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N154S, V155M, and V155R, showed significantly enhanced ability to sustain the 

“close-active” conformation of STING dimer and they are constitutively phosphorylated 

by TBK1, promoting type I interferon signalling in the absence of ligand challenge [120]. 

Moreover, further cGAMP stimulation does not induce or alter the existing interferon 

signalling, suggesting that a conformational change is sufficient to activate STING. A 

prevalent loss-of-function STING variant was also identified in 20.4% human 

population [289]. This HAQ mutant, R71H-G230A-R293Q, showed a lower intrinsic 

NF-κB promoter activity and a reduced IFN-I response to bacterial cyclic dinucleotides. 

These three mutations individually lie within the transmembrane domain, “lid” region, 

and the ligand binding domain, was proposed to alter C-terminal conformation that 

clamps c-di-GMP, thus incurring the impaired interferon signalling functions. All the 

evidence supports the idea that conformation change critically regulates STING 

activation, and the specific STING ligands can induce such changes.  

 

To address how TMEM203 may impact on this STING activation, our protein 

complementary assays and co-immunoprecipitation experiments shown in Chapter 2, 

Fig. 6E and 6H have demonstrated a strong association between TMEM203 and the 

N-terminal domain of STING. The addition of STING’s dimerisation domains (DD) to 

its transmembrane domains (TM) enhanced its interaction with TMEM203 even though 

the protein level of STING is impaired. As described above, this region is involved in 

the reorganisation of the cytoplasmic domains and STING activation. It is speculated 

that our over-expansion of TMEM203 could be facilitating the “close-active” 

conformation of STING. Nonetheless overexpression of TMEM203 alone did not 

induce type I interferon activation (Chapter 2, Fig. 3G & 5D), we believe that it is more 

likely to help stabilise ligand-bound STING, and thus sustain and prolongate the 

downstream interferon activation. On the other hand, reduced TMEM203 level may 

affect STING structural stability which does not abolish the type I interferon expression 

but significantly impaired the amplitude (Chapter 2, Fig. 4), and potentially also incurs 

early signalling attenuation.  



195 
 

3.2 Future work 
Our work has demonstrated that STING-dependent type I interferon expression is 

regulated by the novel proinflammatory mediator TMEM203. The function of 

TMEM203 was previous reported to relate to calcium signalling, while our data strongly 

support a previously unidentified immune regulatory role. As my project mainly 

investigated the role for TMEM203 and STING IFN-I induction, a number of areas 

could be explored regarding the additional functions of TMEM203. 

 

One area to expand is the LPS-induced TMEM203 upregulation, initially discovered in 

the cDNA functional screen in RAW 264.7 cells. As the project evolved, STING 

became the priority area of research, but questions remain as to how TMEM203 

expression is upregulated by LPS stimulation and whether TMEM203 acts as the 

intermediate platform for crosstalk between LPS/TLR and STING pathways. There is 

a lack of strong evidence for STING and TLR signalling communication, although an 

intact microbe presents multiple PAMPs that can be recognised by several PRRs. For 

example, the bacterium Brucella abortus is able to activate both TLR/MyD88 and RNA 

polymerase III/STING pathways [290]. Further experiments could explore the function 

of TMEM203 in the context of LPS-induced inflammation and address the mechanistic 

pathways of STING regulation. This area is of significant interest to link complex 

antimicrobial immune signalling between STING and TLR. 

 

Commercial purified STING ligands (Invitrogen) were used throughout experiments as 

the focus was to identify and monitor the interaction between TMEM203 and STING, 

and thus the use of complex microorganism was not required. However, human 

physiology almost never encounters clean bacterial molecules, but rather as 

biologically active organisms that can change and interact with host system. It is yet 

unclear whether complex immune stimuli may induce alternative TMEM203 activation 

other than pathway via STING. The aspect of TMEM203-dependent chemokine 

upregulation by LPS challenge was under-addressed, and questions arise as whether 

TMEM203 can switch between signalling routes in response to different immune 

challenges. Furthermore, the mechanism underlying re-localisation of TMEM203 

induced by LPS was unclear (Chapter 2, Fig. 3A-B). Whether LPS or other bacterial 
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ligands could promote TMEM203 translocation to lysosomes and thus potentiates 

STING activation will require further investigation.  

 

In Chapter 2, we have extensively investigated the localisation and translocation of 

TMEM203 and TMEM203-STING complex to provide reason for their interaction in 

immune activation. However, limited by the little cytosolic exposed region in TMEM203, 

our investigation on TMEM203 relies solely on the expression of fusion plasmids which 

inevitably resulted in the overexpression of this gene. Overexpression of ER proteins 

has been implicated in unfolded protein stress response which disturbs the 

physiological condition of the organelle, creating an additional variable in the 

experiment system [291, 292]. To eliminate the possibility, we have measured the 

transcriptional splicing of XBP1 as an indicator of ER stress unfolded protein response 

(UPR), and little stress event was detected (Chapter 2, Fig. S4). Despite this, 

TMEM203 upregulation could possibly induce calcium perturbation and showed an 

intracellular localisation pattern of its post-activated state [132]. A specific anti-

TMEM203 antibody will be required to solve this problem, as well as to quantify the 

protein levels in TMEM203 knockdown experiments in human monocyte-derived 

macrophages (Chapter 2, Fig. 4A-B). More importantly, the time and spatial regulation 

of TMEM203 will be better characterised with antibody labelling which may reveal 

differential trafficking strategies to various immune challenges. 

 

Protein complementation assay was frequently used in this project to investigate 

protein-protein interaction. This technique shown in Chapter 2 Fig. 6A-C has helped 

us to quantify molecular interaction in living cells. Although cells are monitored in a 

short 30-minute period under restricted CO2-free condition, we were able to capture 

the association of proteins at 2.5 to 5-minute time points. Such assays can be 

developed into tools for in vitro drug screen [293, 294]. The advantage of this 

experiment was to compensate the unspecific false positive protein interactions reveal 

by a protein-only screen test, as live-cell drug screen ensures that proteins are 

available in the native cellular environment with all potential influence of natural 

inhibitors and scaffolding proteins, and it also assesses the permeability of drugs 

across the plasma membrane. Combining this live-cell assay with hi-throughput 
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analysis [294] can be both effective and accurate in validating pharmacological 

influence on protein association in a real physiological setting. Similar live-cell based 

PCA has already been used to screen protein interactions using the reporter of 

dihydrofolate reductase (DHFR) to reflect protein interactions by yeast growth under 

different chemical conditions [295]. In comparison, our system is superior in rapid 

detection of protein interactions via luciferase reporter, and hence it can precisely 

distinguish both the strength and duration of interaction.  

 

Although the interaction and functional relevance between STING and TMEM203 has 

been established, we have to acknowledge that much is unknown about the activities 

of TMEM203 in regulating inflammation. It is still unclear whether TMEM203 is a 

stabiliser of STING dimerisation and functional conformation, whether TMEM203 also 

couples to additional receptors or ion channels (most likely calcium channels), and 

whether TMEM203-STING interaction is a promising therapeutic target for STING 

deficiency or over-activation. Although we have analysed the level of TMEM203, 

STING and MAVS in T cells isolated from a cohort of treatment naïve patients, it still 

remains unclear how these genes contribute to or affected by this pathology, or if there 

are other cell types that can better represent the roles of these interferon regulators. 

Particularly, patient-derived T cells were activated by PHA (phytohaemagglutinin) prior 

to TMEM203 and STING mRNA measurement, and its potentially impact to T cell 

characteristics and interferon response should be addressed in future. Although we 

have demonstrated the role for TMEM203 and STING in a variety of macrophage 

models, it is crucial to ascertain whether they have similar functions in other type I 

interferon-producing cells, particularly T cells which largely contribute to SLE [139]. 

Furthermore, a loss-of-function STING HAQ (R71H-G230A-R293Q) variant has been 

identified to show 90% reduction in the ability to activate IFN-β signal in response to 

Legionella pneumophila and bacterial STING ligands [296]. The series of mutations 

occurs in the transmembrane domain and ligand binding domain of STING which 

impairs but not completely abolishes STING’s ability to become activated. Thus, the 

HAQ mutant would likely alter STING’s ability to dimerise and interact with TMEM203. 

Questions also remain to the potential of single nucleotide polymorphisms (SNPs) in 

TMEM203 gene, nevertheless there was none discovered at present, this would be 

worth investigating in future.  
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Particularly, since STING overactivation can cause autoimmunity and its deficiency 

increases infection susceptibility, the challenge for targeting STING therapeutically is 

to identify the fine balance for its activation and inactivation. Based on our evidence, 

TMEM203 has the potential to be a surrogate for STING intervention because of its 

ability to alter but not complete abolish STING signalling. This can ideally prevent 

excessively immunodeficiency and renders the host certain ability to exhibit interferon 

response. Further studies on the human and mouse STING orthologues can also 

inform us how the TMEM203-dependent regulation in these two species will likely be 

comparable or distinct in antiviral response. In general, the discovery of TMEM203 

has widened our knowledge on inflammatory signalling and has added a substantial 

piece of evidence to address the importance of STING-regulated immunity. 
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Abstract: 

Dengue virus (DENV) is a member of the family Flaviviridae which poses major health threats. 

The signalling by the DNA sensor cGAS and adaptor Stimulator of Interferon Genes (STING) 

is critical for the host antiviral response against DENV, notably via the production of type I 

interferon (IFN) and IFN stimulated genes (ISG). Nonetheless, this signalling is targeted by 

the viral proteases, leading to immune evasion. Zika virus (ZIKV) is an emerging flavivirus that 

causes neurological disorders in foetus and adults. As ZIKV and DENV are genetically closely 

related, ZIKV is predicted to share similarities with DENV for its interaction with host factors. 

ZIKV can infect placental tissue macrophages and this greatly contributes to in utero 

transmission and foetus disease. Thus, we investigated whether ZIKV and DENV infect human 

primary monocyte-derived macrophages and addressed the potential involvement of STING. 

Our results revealed that active viral replication of both viruses induces a potent type I IFN/ISG 

response and that the level of STING can impact the degree of virus-mediated ISG 

upregulation.  
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Introduction: 

Members of the Flavivirus including Zika virus (ZIKV) and Dengue virus (DENV) cause human 

pathologies globally. These genetically closely related viruses belong to the flavivirus genus 

and are both transmitted by mosquito bites. In its severe form, DENV induces severe 

hemorrhagic fever and shock syndrome. In contrast, ZIKV infection was thought to be primarily 

asymptomatic; however, recent epidemics have led to foetal demise and detrimental 

neurological development, i.e., microcephaly in newborns and Guillain–Barré syndrome in 

adults (rapid-onset of muscle weakness caused by immunological damage on the peripheral 

nerve system) [1–3]. Seeking mechanisms of protection against these viral infections is of 

significant medical demand.  

 

Type I interferons (IFNs) are potent antiviral host effectors against viral infections [4]. 

Stimulator of Interferon Genes (STING) and its downstream effectors TANK-binding kinase 

(TBK1) and interferon regulatory factor 3 (IRF3) form a key antiviral signalling cascade that 

notably regulates type I IFN response [5–7]. The upstream DNA sensor cyclic GMP-AMP 

synthase (cGAS) and STING mediate an immune response dependent on the recognition of 

mitochondrial DNA released in the cytosol upon DENV infection [8]. Nonetheless, DENV has 

evolved mechanisms to inhibit and evade this host response, including the proteolytic 

cleavage of STING and cGAS by the viral NS2B/3 protease complex, leading to blunted type 

I IFN induction [9, 10]. STING inactivation is critical to ensure viral replication in the host cells 

[9, 10] and might contribute to host species restriction [11]. Reversing or blocking STING 

inhibition could, therefore, offer a potential therapeutic approach to combat DENV and other 

related flavivirus infections. 

 

Interestingly, the cGAS/STING pathway is known as a critical antiviral signalling mechanism 

in monocytes/macrophages [11–15]. Previous reports suggested that placental tissue 

macrophages contribute to ZIKV transmission from mother to foetus [12, 16]. Owing to the 

high level of sequence homology between DENV and ZIKV genome, their known interactions 

with host factors and the viral replication cycle also display high similarities [17–19]. Along this 

line, a recent report demonstrated that ZIKV cleaves STING in fibroblasts in a species-

restricted manner [20]. This study has also pointed out the conservation between ZIKV and 

DENV in the cleavage target of human STING and the mechanism of action of their NS2B/3 

protease complexes, suggested it was logical to compare ZIKV with DENV in virus research.  
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Abundant recent research on Dengue virus have focused on its infectivity and regulation in 

primary human T cells, dendritic cells (DC) and plasmacytoid DCs [21–23] whereas few has 

investigeted how human macrophages contribute to viral pathology. This is potentially due to 

that macrophages produce less interferons than the previously mentioned cell types [22]. 

Macrophages are also plastic cells that show heterogeneous response to stimuli when they 

are in different tissue environments. The most well described M1 and M2 phenotypes 

distinguish macrophage subsets into the “pro-inflammatory” or the “pro-resolution” states, 

respectively, which often impact differently on the cellular response to microbial infections [24, 

25]. In contrast to various of macrophage differentiation techniques, macrophage colony-

stimulating factor (M-CSF) is most well-known for its role in consistent monocyte-macrophage 

differentiation in vitro compared to that by granulocyte-macrophage colony-stimulating factor 

(GM-CSF) [26, 27]. Differentiation by these two cytokines does not clearly polarise the cells to 

a well-defined M1 or M2 phenotype. Whilst it has been discovered that both growth factors 

cause similar level of type I interferon secretion in DENV-infected cells, GM-CSF can 

additionally activate potent inflammasome-mediated interleukin-1 response [27, 28]. Although 

GM-CSF promotes macrophage sensitivity to Dengue virus, it also causes more complex 

immune crosstalk between macrophages and multiple cytokine-stimulating pathways are 

involved in the regulatory process. For an accurate characterisation of the role of type I 

interferon signalling in Dengue-infected human macrophages, M-CSF has the advantage of 

creating a simple cell model that best depicts this biological event. 

 

Therefore, we here investigated the importance of ZIKV-induced host response in human 

monocyte-derived macrophages differentiated by M-CSF. We aim to define the potential 

interplay between ZIKV and the cGAS/STING-induced antiviral response that shapes viral 

replication in this cell model. We will also address the susceptibility of M-CSF -MDMs to DENV 

and ZIKV infection and to compare and contrast the infection-induced type I interferon 

stimulated response. These assessments will be used to understand the antiviral activation of 

cGAS/STING signalling against these viral infections.  
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Results: 

ZIKV/DENV infection in human monocyte-derived macrophages (MDMs) induce a 

potent ISG response 

Myeloid cells / monocytes are known to efficiently respond to different viruses and other stimuli 

via the cGAS/STING pathway [11–15, 33, 34] and they represent key cellular targets for 

ZIKV/DENV infection. We thus first aimed to validate a cell system for infection by ZIKV and 

DENV and for subsequent assessment of host responses (Fig. 1A). Human blood isolated 

monocytes were cultured ex vivo in the presence of M-CSF, which is known to induce their 

differentiation to macrophages (MDMs). These naïve macrophages do not exhibit clearly 

defined M1/M2 phenotypes in the absence of IFN-γ and IL-4 [35]; although literature shows 

that M-CSF derived macrophages become IFN promoting [36, 37] and display cGAS/STING 

activation upon human cytomegalovirus infection [38]. After 6 days of culture, cells were 

infected by ZIKV at different multiplicity of infections (MOIs). Our results demonstrate that ZIKV 

RNA levels increased over-time in MDMs, thus reflecting viral replication (Fig. 1B). The levels 

of ZIKV RNA amplification were in keeping with the MOI applied. Interestingly, ISG15 and MxA 

expression was potently induced upon ZIKV infection, as detected as early as 24 hpi and 

persisting at 72 hpi. (Fig. 1C-D).  

 

Next, we compared the viral infectivity and the host response to ZIKV versus DENV infection 

(MOI of 1) and assessed the level of ISG expression in a 3 day-kinetic analysis post-infection. 

For this donor, ZIKV and DENV replication levels in MDMs were similar (Fig. 1E-F) with a peak 

of viral RNA detected at 24 hours and decreased at 72 hpi. However, the kinetics of viral 

replication in this donor (Fig. 1B-C) were different from that detected in the previous donor 

(Fig. 1E-F at MOI of 1), the difference was likely due to the variation of infection susceptibility 

between different primary macrophages. Nonetheless, marked ISG induction was consistently 

observed upon ZIKV and DENV infection in MDMs and maintained over time despite the 

decrease of viral RNA load observed at 72 hpi (Fig. 1G-H). M-CSF differentiated human 

macrophages have been reported to exhibit a potent interferon response to Dengue infection 

[39] whereas other macrophage cultures were less permissive for Dengue [9, 10]. Together 

our results suggest that this cell model is susceptible to ZIKV and DENV infections and 

constitute a stable human cell model to study type I interferon-mediated ISG induction in 

primary human macrophages due to these viral infections. 
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Figure 1: ZIKV/DENV infections in human monocyte-derived macrophages (MDMs) 

induce a strong ISG response.  

A. Schematic representation of experiment timeline.  

B. At day 6 post isolation from a healthy donor, MDMs were infected or not with ZIKV at 

multiplicity of infection (MOI) of 0.2, 1 and 2, and cells were assessed for ZIKV intracellular 

RNA levels by RT-qPCR at 2, 24 and 72 hours post infection (hpi).  

C, D. Interferon-stimulated genes (ISG) ISG15 (B) and MxA (C) induction was assessed in 

MDMs upon ZIKV infection at the indicated MOIs and times post-infection. The mRNA 

expressions were compared to the uninfected control cells. Gene mRNA expression levels 

were assessed by RT-qPCR and presented as in A.  

E, F. MDMs isolated from a healthy donor were mock infected or infected with ZIKV (E) or 

DENV (F) at MOI of 1 and viral RNA levels were assessed by RT-qPCR at 2, 24 and 72 hpi.  

G, H. MDMs were infected as in Fig. 1E&F and ISG15 (G) and MxA (H) mRNA levels were 

assessed in ZIKV and DENV infected MDMs at 2, 24 and 72 hpi by RT-qPCR. ISGs mRNA 

expressions were compared to the uninfected control cells. Data is presented as Genome 

equivalent (GE) per µg of total RNA. All figures were plotted from n=1 donor, 2 technical 

repeats, mean±SD. 
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ISG activation in MDMs is induced upon replication of ZIKV/DENV.  

Since previous reports indicated that the cGAS/STING/JAK/STAT axis is induced upon 

modification of the mitochondria [8, 40], we next asked whether active viral replication is 

required to induce antiviral responses in MDMs. Human macrophages were infected with 

active or UV-inactivated ZIKV/DENV (Fig. 2A). UV radiation is widely used to abolish viral 

activities by permanently and chemically damage their genome [41].  As expected, UV-

inactivated ZIKV and DENV viruses have demonstrated limited ability to replicate (Fig. 2 B-C) 

and were unable to induce ISG expressions in MDMs compared to the replication competent 

viruses (Fig. 2D-E). Therefore, this study reveals that the replication of ZIKV and DENV is 

required for the stimulation of type I interferon–mediated response in MDMs, in agreement 

with the proposed activation mechanism of cGAS/STING signalling. 
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Figure 2. The induction of ISG is dependent on viral replication.  

A. Schematic representation of experiment timeline.  

B, C. MDMs isolated from a healthy donor were infected with mock, UV-inactivated or 

replication-active ZIKV (B) and DENV (C) at MOI of 2 for 2 h and viral replication was assessed 

by RT-qPCR at 24 hpi.  

D, E. MDMs were infected with ZIKV or DENV as above and the mRNA inductions was 

assessed for ISG15 (D) and MxA (E) by RT-qPCR at 24 hpi. Data is presented as Genome 

equivalent (GE) per µg of total RNA. All figures were plotted from n=1 donor, 2 technical 

repeats, mean±SD. 
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ZIKV/DENV infection does not impair STING activation by cGAMP 

Given the previous evidence indicating that the DENV-secreted NS2B/3 protease complex 

targets the STING-cGAS axis and thus type I interferon signalling [9, 10], we next addressed 

whether ZIKV, similar to DENV, inhibits STING-activated ISG expression in primary 

macrophages. We infected MDMs with ZIKV for 24 hours followed by 6 hours of STING 

stimulation with 2’3’-cGAMP (Fig. 3A), the level of viral replication and ISG induction were 

assessed by RT-qPCR. Upon ascertaining the replication of ZIKV (Fig. 3B), STING-dependent 

ISG expression was found not impaired by the prior ZIKV infection (Fig. 3C-D). Nonetheless, 

2’3’-cGAMP was able to promote ISG expression to a seemingly saturated level, which could 

potentially cover/outcompete the underlying viral antagonism of the interferon response. This 

result was validated in MDMs isolated from a different donor to that of the DENV infection (Fig. 

3E-J). After assessing the same parameters, we reached the same conclusion that the 

competent replication of both ZIKV/DENV (Fig. 3E&H) did not result in suppression of cGAMP-

STING –mediated ISG expression (Fig. 3F-G & I-J). We therefore suggest that STING 

activation in M-CSF-treated macrophages was unaffected by pre-infection of ZIKV and DENV, 

at this time point post-infection. Possibly, the absence of virus-mediated STING antagonism 

could be due to an insufficient infection establishing period, and/or a restricted number of 

infected cells in the total MDM population or alternatively due to an alternative ISG signalling 

mechanism being activated by 2’3’-cGAMP. 
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Figure 3: The activation of ISG expression by cGAMP was not inhibited by ZIKV and 

DENV infection.  

A. Schematic representation of experiment timeline.  

B. MDMs isolated from a healthy donor were mock infected or infected with ZIKV at MOI of 2 

for 24 h and further treated with 4 µg/ml 2’3’-cGAMP for 6 h before being assessed for ZIKV 

replication by RT-qPCR at 30 hpi.  

C, D. MDMs were treated as in Fig. 3A and ISG15 (B) and MxA (C) mRNA levels were 

assessed by RT-qPCR post treatment.  

E-G. In another donor, MDMs were treated as in Fig. 3A and the gene level of ZIKV (E), ISG15 

(F) and MxA (G) levels were assessed by RT-qPCR post treatment Data is presented as 

Mean±SD, n=2.  

H-J. MDMs isolated from a healthy donor (same as in Fig. 3E) were mock infected or infected 

with DENV at MOI of 2 for 24 h and further treated with 4 µg/ml 2’3’-cGAMP for 6 h before 

being assessed for DENV replication by RT-qPCR at 30 hpi (H). ISG15 (I) and MxA (J) mRNA 

inductions were assessed by RT-qPCR. Data is presented as Genome equivalent (GE) per 

µg of total RNA. All figures were plotted from n=1 donor, 2 technical repeats, mean±SD. 
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STING regulated ZIKV/DENV infection in MDMs 

Next, we investigated how STING contributes to the regulation of virus-induced ISG response. 

To address this, MDMs derived from two donors were transfected with STING suppressing 

siRNA (or control siRNA) followed by 24 h and 72 h of infection with either ZIKV or DENV virus 

(Fig. 4A). Due to the 48 h extension to the culture time for the siRNA treatment, an ISG 

response stimulated by 2’3’-cGAMP was tested in MDMs as a positive comparison to ascertain 

the induction of interferon response and the efficiency of siSTING (Supplementary Fig. 1A-B). 

Both ISG15 and MxA mRNA levels were induced by the ligand and were inhibited by STING 

downregulation, indicating that MDMs at day 8 post M-CSF incubation remain responsive to 

immune stimuli. Next, we investigated how siSTING impacts ISG expression. From our 

observation, we revealed that the downregulation of STING suppressed ISG expression of 

virus-infected macrophages in Donor 1 (Fig. 4B-C) but not in the donor 2 (Fig. 4D-E). This 

result suggests that cGAS/STING signalling might contribute to the induction of ISG response 

upon ZIKV/DENV infection, yet other pathways may still have a role depending on the donor 

and/or differentiation state of the MDMs and/or the level of viral replication. Moreover, 

consistent responses were found between the two viruses in terms of the induction of STING-

ISG axis and the response to STING downregulation, indicating that these two viruses might 

similarly induce the antiviral host pathway.  
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Figure 4: STING regulated ZIKV/DENV infection in MDMs. 

A. Schematic representation of experiment timeline.  

B, C. MDMs isolated from Donor 1 were transfected with Control or siSTING and then mock 

infected or infected with ZIKV/DENV at MOI of 1 and ISG15 (B) and MxA (C) were assessed 

by RT-qPCR at 24 hpi and 72 hpi.  

D, E. MDMs isolated from Donor 2 were transfected with Control or siSTING and then mock 

infected or infected with ZIKV/DENV at MOI of 1 and ISG15 (B) and MxA (C) were assessed 

by RT-qPCR at 24 hpi and 72 hpi. Data is presented as Genome equivalent (GE) per µg of 

total RNA. All figures were plotted from n=1 donor, 2 technical repeats, mean±SD. 
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Discussion: 

Species of the Flavivirus family pose a major infectious threat to the tropical world. Unlike 

Dengue and Yellow fever viruses, Zika virus is an emerging member of the family that came 

to the center of research due to its ability to uniquely invade the nerve system and to transmit 

in utero. From literature, type I interferons are critical for innate immune protection against 

viral infection, which are induced by the cytoplasmic sensing mechanism of viral nucleic acids 

or mis-localised host DNAs (in the context of cGAS/STING) [5–8]. Notably, the type I 

interferons (IFN-I) response acts against virtually all viruses and is often inhibited/manipulated 

by viruses to enhance their replication. One of the critical type I interferon-inducing pathway 

is mediated by the adaptor protein Stimulator of Interferon genes (STING) and its upstream 

cytosolic DNA sensor GMP-AMP synthase (cGAS). Since DENV is known to evade host 

response by targeting cGAS-STING for degradation, it is logical to assess whether the related 

Zika virus also regulates or is being regulated by STING activities.  

 

DENV is known to infect a variety of myeloid cells, especially monocytes and T cells, whereas 

little was studied on ZIKV’s infectivity in haematopoietic cells, except that it was discovered to 

invade human placental macrophages [16]. A number of DENV infection model adopt 

differentiation method using GM-CSF to enable macrophages to be more permissive to virus 

infection [9, 10, 27, 42]. However, the complexion of type I interferon and inflammasome 

signaling in this cell model [27, 28] can potentially influence with each other and thus interfere 

our analysis of STING activation and ISG response. In contrast, M-CSF is critical for the 

homeostasis of macrophage functions and it maintains the resting state of macrophages until 

immune challenge [26, 27]. Most importantly, M-CSF regulation is at the heart of maintaining 

placental development and the formation of immune defense by the local macrophages [43–

45]. Therefore, to best address the role of STING regulation in DENV/ZIKV infected human 

macrophages, M-CSF has the superiority over the GM-CSF culture condition to address this 

question. 

 

Given that M-CSF differentiated macrophages were used in few DENV studies [28], our work 

first aimed to characterise that these cells are permissive and sensitive to DENV and ZIKV 

infections, and they elicit considerable amount of type I interferon stimulated genes. We tested 

the dose and time upon which ZIKV infects MDMs and showed that the viral replication has 

rapidly occurred within 24 hours post infection. Resolution of infection was observed at 72 hpi 

but a high ISG mRNA level was maintained over this period. However, our observation of a 

potent induction of ISG expression was contradictory to previous research that suggested 
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STING inhibition by DENV [9, 10], still the MDM culture conditions by the different colony 

stimulating factor could largely influence the cells’ ability to respond to virus infections. Thus, 

our method seemed to render macrophages DENV/ZIKV susceptibility for a longer period of 

time compared to Aguirre’s model [9].  

 

Secondly, we identified that the activation of ISG response by both ZIKV and DENV 

predominantly depends on active replication. Aguirre and Yu have reported that DENV 

antagonizes and evades STING and the subsequent type I interferon signaling [9, 10, 46] 

whilst other groups also showed that Dengue virus can induce the interferon axis in 

macrophages [27, 47].  In our study, at 24 hpi, neither ZIKV and DENV were able to intercept 

STING activation by its endogenous ligands, and consequently the ISG production remained 

significant with or without viral infection. Again, these observations contradicted to the STING 

cleavage model by DENV infection [9, 10] and thus confirmed that our M-CSF / MDM model 

has allowed the macrophages to be immune responsive to both virus infections. Additionally, 

evidence suggests that DENV and ZIKV block multiple components of the cGAS/STING/IFN 

cascade [9, 10, 20, 48–50], potentially because a single inhibition can be easily overcome by 

our immune amplification. Our challenge with cGAMP is a precise and potent activation 

mechanism of STING which bypasses the viral protease degradation of cGAS, which may 

thus counteract the prior viral antagonism. As a result, STING ligands is a highly effective tool 

of viral protection. However, degradation of STING by ZIKV may still occur at the protein level, 

which could be assessed as viral load establishes further. 

 

Thirdly, our testing on STING downregulation in virus-infected MDMs showed a difference in 

donor responses to viral treatment as assessed by ISG expression. This difference may 

potentially be technical as a result of different efficiency of siSTING transfection or virus 

infection. Alternatively, evidence shows that a number of Toll-like receptors [51–53] and the 

RIG-I like receptor [54, 55] also interact and respond to Dengue virus, implying that immune 

signaling crosstalk and alternative interferon activation could give rise to this donor-variable 

interferon response. Nonetheless, this experiment has indicated that STING has a potential 

role in regulating ISG response to DENV and ZIKV, and that these two closely-related species 

are highly similar in their kinetics of immune activation. This may inform further investigations 

to compare their mechanisms of interaction with the host immunity.   
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In summary, even though our study has presented seemingly contradictory results to the 

report of DENV-mediated inhibition of STING-interferon signalling, we were pioneering in 

testing ZIKV and DENV infections in a M-CSF-cultured primary macrophage model. The 

observations showed a surprising activation of ISG response in MDMs stimulated by 

ZIKV/DENV viral nucleic acids. Following our work, two groups have published that non-

structural proteins of ZIKV target cGAS, STING, TBK1, and Jak1-STAT pathways in multiple 

cell types [20, 50, 56]. These reports imply that both Dengue and Zika viruses induce STING-

dependent interferon / ISG response, and possibly employ a conserved STING evasion 

strategy. Our research has revealed a basic similarity between ZIKV and DENV pathogenesis 

in the M-CSF –differentiated macrophages. This cell model has shown the advantage of 

displaying potent interferon-activated characteristics and thus could be expanded to study 

flavivirus infectivity and host-pathogen response in a wider donor population. The question of 

whether STING is similarly antagonized by ZIKV infection should also be address in future 

studies. 
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Material and Methods: 

Cell cultures 

Cytapheresis units from healthy adult human volunteers were obtained according to 

procedures approved by the “Etablissement Français du sang” (EFS) Committee. Peripheral 

blood mononuclear cells (PBMCs) were isolated from blood using Ficoll-PagueTM density 

centrifugation method (GE Healthcare). Human CD14+ monocytes were isolated by positive 

selection using CD14+ microbeads (Miltenyi Biotech) according to the manufacturer’s 

guideline. CD14+ monocytes were differentiated into macrophages in complete RPMI 1640 

(1% Pen-Strep, 1% L-glutamine, 10% low endotoxin fetal bovine serum) supplemented with 

100 ng/ml human recombinant macrophage-colony stimulating factor (hr M-CSF, Peprotech) 

for 6 days.  

Transfection & stimulation 

Post M-CSF incubation, MDMs were transfected with hSTING ON-TARGETplus SMARTPool 

siRNA (Dharmacon #L-024333) to suppress STING expression, or with non-targeting siRNA 

pool (Dharmacon #L-001810) as negative control. 12.5 nM siRNA were delivered to MDMs 

using Viromer green (Lipocalyx, Germany) according to the manufacturer’s protocol.  48 hours 

post transfection, cells were further treated or harvested for gene expression assessment by 

RT-qPCR. MDMs were stimulated with 2’3’-cGAMP at 4 μg/ml in MDM culture medium to 

compare to the unstimulated control. Medium for MDMs was changed before each treatment. 

Virus Preparation and Infection 

Viral stocks of DENV-2 New Guinea C (NGC) strain (AF038403) [29] were produced as 

previously described [30].  The clinical isolate of epidemic strains of ZIKV including from Brazil 

(PE243_KX197192) [31] was kindly provided Alain Kohn (MRC-University of Glasgow Centre 

for Virus Research, UK) and Rafael Freitas de Oliveira Franca (FIOCRUZ, Recife, Brazil) and 

amplified using Vero cells (ATCC) by Décembre E using the same method as DENV-NGC 

[30]. All people involved in virus infection work have vaccine protection against various 

flavivirus species and virus stocks were kept in contained and isolated freezers to avoid 

damage to laboratory staffs. 

Viruses were inactivated by UV radiation (4.75 J/cm2) for 10 mins at a distance of 10 cm. 

Inactivation of viruses was carried out by Grass V. Monolayer of MDMs were infected with 

either DENV or ZIKV (active or UV-inactivated as indicated) for 2 hours at the indicated 

multiplicity of infection (MOI) in RPMI medium before being washed with PBS. MDMs were re-

supplied with fresh culture medium and left for the indicated culture periods. For these 

experiments, mock control cells were replaced with fresh RPMI medium. By the end of 
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experiments, MDMs were washed twice with PBS and cells were harvested in guanidinium 

thiocyanate citrate (GTC) buffer for gene expression analysis as described below.  

RNA, standard and Real-Time quantitative PCR 

At the end of treatment, cells were washed with PBS and were lysed in guanidinium 

thiocyanate citrate (GTC) buffer for RNA isolation using the phenol/chloroform RNA isolation 

method [32]. 100 ng RNA was used to synthesis cDNA in 20 µl reaction volume using dNTPs 

and reverse transcriptase (life technologies). ZIKV, DENV, ISG15, MxA and glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) mRNA levels were determined by RT-qPCR using a 

Real-Time PCR SYBR Green Master Mix (Life Technologies). mRNA levels were normalised 

to GAPDH levels. The sequences of primers used in RT-qPCR are detailed below: 

Genes Primers (Forward / Reverse) 

GAPDH 5’-AGGTGAAGGTCGGAGTCAACG-3’ 

5’-TGGAAGATGGTGATGGGATTTC-3’ 

ISG15 5’-GACAAATGCGACGAACCTCT-3’ 

5’-CGGCCCTTGTTATTCCTCA-3’ 

MxA 5’-ACAGGACCATCGGAATCTTG-3’ 

5’-CCCTTCTTCAGGTGGAACAC-3’ 

ZIKV-Brazil 5’-ATTGTTGGTGCAACACGACG-3’ 

5’-CCTAGTGGAATGGGAGGGGA-3’ 

DENV-NGC 5’-ACCTGGGAAGAGTGATGGTTATGG-3’ 

5’-ATGGTCTCTGGTATGGTGCTCTGG-3’ 

 

To calculate Genome equivalent (GE) number of mRNA expression, a stock of calibrator 

plasmid DNA at 10E9 copies per l was diluted multiple times by ten folds to 10E8, 10E7, 

10E6, 10E5, 10E4, 10E3, 10E2 and 10 copies per l concentration. These standard DNA 

samples contain specific sites for each primer pairs to bind to and they were reacted in the 

same plate as the experiment samples. Each diluted standard DNA generates a Ct value 

which can form a linear relationship to calculate the copy number of genes in samples with a 

qPCR Ct value. GE is calculated as 2 copies (6.6 pg) /l for a diploid genome. 
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Supplementary figure 1: STING knockdown impairs 2’3’-cGAMP –induced ISG 

expressions. 

A.&B. ISG15 (A) and MxA (B) inductions were assessed in control or siSTING transfected 

MDMs treated with +/- 6 h of 2’3’-cGAMP stimulation. Gene mRNA expression levels were 

assessed by RT-qPCR. Data is presented as Genome equivalent (GE) per µg of total RNA. 

All figures were plotted from n=2 donors, mean±SD. 
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Chapter 5: Discussion and future work for STING 

regulation in response to Zika and Dengue virus 

infection. 

 

Type I interferons, by name, have the primary function in interfering virus [134]. Most, 

if not all, viruses induce type I interferon response upon detection of their nucleic acid 

by the cytosolic sensors [233, 234, 281, 297–300]. These genetic materials are 

important for viruses to establish virulence in the host, and the survival and infectivity 

of a virus highly relies on its ability to minimise and block host immune reactions [301].  

 

Members of the Flaviviridae family are a major threat to human health mainly due to 

their strong infectivity through mosquitos [302] and their widely known ability to evade 

immune defence via STING [232, 234, 300] and other antiviral adaptors [97, 303]. 

Dengue virus (DENV) is one of the most well-studies species of this family. Only 

humans and a few primates are susceptible to DENV infections whereas most rodents 

and primates can resist this virus predominantly because of the variations in the 

adaptor protein STING [232, 234, 304]. A mutation that resides in the third 

transmembrane domain of human STING is uniquely targeted by DENV-released non-

structural (NS) protein/protease complex NS2B/3 [232, 305]. Particularly, the NS 

proteins are a potent weapon for flaviviruses to combat against human immune 

machineries. Flaviviruses release a variety of NS proteins to degrade multiple factors 

along the type I signalling axis, and these mechanisms of antagonism have been 

summarised in Chapter 1.5 [119]. Despite that these viruses have their specialties in 

infection, they share similarities in their interaction with the host and thus hypothesis 

can be made to research novel flavivirus species according to the knowledge of 

previous known viruses.  

 

Zika virus (ZIKV) is a recently emerged flavivirus with its discovery in the 1940s and a 

notable outbreak after 2007 [306]. ZIKV is genetically close-related to DENV despite 
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that their symptoms of infection are different [236, 307]. DENV-infected patients are 

characterised by the flu-like “Dengue fever” [308] whereas ZIKV usually causes a self-

resolving mild flu that will soon become asymptomatic [309]. However, ZIKV can 

reside in the host for more profound influence where it has been shown that the 

infection in pregnant women can transmit the virus to the foetus, which are often born 

with severe neurological defects such as microcephaly (reduced head circumference) 

and the Guillain–Barré syndrome (immune attack on the peripheral nerve system that 

causes rapid-onset of muscle weakness) [310–312]. Current research urgently seeks 

to identify host factors that respond to ZIKV establishment and in utero transmission. 

Due to the close relationship between ZIKV and DENV, a logical approach was to 

compare and contrast the infection machineries between these two flaviviruses, which 

may reveal some conserved targets for therapeutic design. 

 

ZIKV is unique in its ability to transmit from mother to child during pregnancy [ref] 

potentially due to its long dormancy in the host to allow virulence to build up in the 

placental tissues. This also reflects that the virus can reside silently in certain cells and 

tissues without being detected. Quicke and colleagues [313] have reported that the 

placental tissue macrophages are the major target and niche for ZIKV to invade the 

foetus, although these cells were not previously identified as highly susceptible to 

flavivirus infection. One potential reason could be that the other flaviviruses such as 

DENV are more reactive to circulating dendritic cells and plasmacytoid cells [314–316], 

whereas ZIKV are more likely to “hide” longer to infect tissue-resident and resting 

immune cells like macrophages. Still, these two viruses may nonetheless induce the 

same immune regulator on initial encounter of host immunity and later inhibit it. As it 

is known that STING is a major regulator and degradation target of DENV [232, 234, 

304], we thus wonder if it is the same for ZIKV, and most importantly whether such 

reaction occurs in macrophages. 

 

Since live virus infection in human macrophages were analysed at 24h and days post 

infection, the first spike of type I interferon cannot be observed, and thus we have used 

type I interferon genes MxA and ISG15 as experimental readouts. Both genes are 

potently induced by virus-induced interferon signal and ISG15 is particularly known to 
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maintain the expression and functioning period of other ISG, such as RIG-I, PKR and 

MxA [317]. In our study, both ZIKV and DENV infects human primary macrophages at 

low MOI (multiplicity of infection = 1) and the replication could be detected as early as 

24 hpi (hour post infection) (Paper 3 Fig. 1). This was in contrast to the result of Aguirre 

et al., [232] which not only showed that DENV induced little IFN-α production in their 

GM-CSF – macrophages but also the cleavage of STING protein at 48 hpi in STING-

transfected HEK 293T cells. Although our study lacks a large population size and the 

result could be only representative of a single donor, still the major difference of 

interferon activation between our experiments could be the outcome of the culture 

conditions of macrophage differentiation. The growth factor GM-CSF (granulocyte-

macrophage colony-stimulating factor) was used by Aguirre’s group [232] in contrast 

to the M-CSF (macrophage colony-stimulating factor) condition used in our 

macrophage differentiation was a possible reason for this distinct result of virus-

induced immune activation. The reason we have chosen M-CSF over GM-CSF in 

research was due to the fact that GM-CSF primes macrophages to activate both type 

I interferons and inflammasome-interleukin 1 pathways, whereas M-CSF – cultured 

macrophages predominantly release type I interferons upon viral challenges [28, 29]. 

Additionally, M-CSF tends to produce a more uniform and stable population of resting 

macrophages whereas GM-CSF (together with IL-4) is also used in differentiation of 

monocytes to dendritic cells [318, 319].  

 

The effect of macrophage differentiation protocol should be investigated in future virus 

study with a large population size. This limitation of our study subject was mainly 

because that the white blood cells were eluted from 500 ml of blood donated in a 

hospital which was acquired only once each week. Thus, the small n number was 

inevitable in this time-limited project. In contrast, MDMs used in Paper 2 were isolated 

from 80 ml of whole blood from each donor so the isolation process can accommodate 

up to 3 donors a day. Therefore, a study population must be increased to understand 

the role of STING and MDMs in DENV/ZIKV infections. 

 

In this preliminary study, we have also observed another distinction to the previous 

literature, the absence of ISG antagonism by DENV infection [232]. Again, this 
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difference is found in a single donor and it would not accurately represent the MDMs 

response in a large population. Additionally, we have tested virus infection for up to 72 

h and it is likely that a longer period may be required by the viruses to establish STING 

antagonism. Although the reduction of ISG was not immediately seen at our designed 

time points, degradation of STING, or even cGAS, might still occur at the protein level.  

 

Taken together, our M-CSF differentiated primary macrophage model presents a novel 

system in virus infection research due to its ability to show potent ISG inductions. 

Although our research was conducted in a limited population, we have observed a 

clear ISG response in macrophages infected with ZIKV and DENV, and that STING 

cleavage or ISG inhibition reported in previous research was absent in our studies. All 

these results should be repeated in more donors, and since ZIKV tend to reside in the 

host for a longer period of time, further time points could be looked into using our 

macrophage model. As viruses tend to induce type I interferons rapidly upon infection, 

a lower infection MOI (perhaps MOI=0.1) may potentially facilitate ZIKV/DENV to 

evade immune response and establish virulence better in cells. In addition to STING 

degradation, its upstream sensors (such as cGAS) and the downstream effectors 

(TBK1 and STAT) are also likely to be targeted by flaviviral proteases [304, 320, 321]. 

Even though macrophages are not as highly interferon-inducing to viruses as dendritic 

and plasmacytoid cells [322, 323], their signalling pathways are active and are perhaps 

even crucial for ZIKV to interact with to enable its survival in the host. 
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Chapter 6: Main conclusions 

6.1 Paper 2: TMEM203 regulates the innate immune Type I interferon 

response via STING.  

The novel proinflammatory mediator TMEM203 is a critical co-regulator of STING-

activated type I interferon expression in human and mouse primary macrophages and 

murine macrophage cell lines. TMEM203 overexpression promotes STING 

translocation to lysosomes which resembles its active states. TMEM203 trafficking to 

lysosome membranes is likely to potentiate and promote ligand-independent STING 

translocation and activation. TMEM203 directly interacts with the N-terminal 

transmembrane domains of STING and such association can be further strengthened 

by STING’s dimerization domain. TMEM203 selectively regulates cGAMP but not 

DMXAA -induced STING activity and these two ligands can distinctly alter TMEM203-

STING association. Future research should aim to address the potential involvement 

of calcium signalling in the regulation of STING- type I interferon response via 

TMEM203. Additionally, LPS-induced TMEM203 signalling and TMEM203 

polymorphism are areas to expand. 

 

6.2 Paper 3: STING regulates type I interferon stimulated gene 

expression upon infection of Zika virus (ZIKV) and Dengue virus 

(DENV) in human monocyte-derived macrophages. 

In our preliminary study, Zika virus and Dengue virus induce potent ISG expression in 

M-CSF differentiated human primary monocyte-derived macrophages. ISG induction 

in MDMs were viral replication dependent. Prior infection of ZIKV/DENV cannot impair 

cGAMP-induced STING activation at the tested dose and time, although STING-

downregulation was associated with ISG reduction in ZIKV/DENV infected MDMs 

isolated from one donor. 
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Appendix 1: Supplementary data for Paper 2 

A1.1 Relative mRNA expression levels of TMEM203, STING, and 

MAVS in human monocyte-derived macrophages (A-C); Linear 

correlation was discovered between STING vs TMEM203 but not 

between MAVS vs TMEM203. 

 

  

Figure A1. A strong correlation of mRNA levels was identified between TMEM203 and 

STING but not TMEM203 and MAVS in primary monocyte-derived macrophages. Basal 

mRNA expression level of TMEM203 (A), STING (B), and MAVS (C) in primary human 

monocyte-derived macrophages isolated from 9 donors (letter coded identities). Spearman 

correlation coefficient of STING mRNA expression (D) and MAVS mRNA expression (E) were 

measured against TMEM203 mRNA expression in donors (95% confidence interval: dash 

lines). Sample macrophages isolated from each donor were analysed by qPCR in duplicates. 

Data is presented as mean ± SD, n=2 technical replicates.  
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A1.2 siRNA transfection does not activate IFN-β and IL-8 mRNA 

upregulation 

 

Figure A2. Control siRNA transfection does not induce significant inflammatory 

activation in primary monocyte-derived macrophages. MDMs were left untransfected or 

transfected with scrambled siRNA sequences at 12.5 nM using Viromer green transfection 

method. 48 hours post transfection mRNA expressions of IFN-β and Cxcl8 (IL-8) were 

assessed by RT-qPCR. Data is presented as mean ± SEM with n=7 donors.   
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A1.3 Optimising siRNA-directed knockdown in human MDMs 

 

 

Figure A3. Assessment of cell viability and siRNA transfection efficiency in primary 

monocyte-derived macrophages. The lowest dose of siRNA transfection showed consistent 

siGlo signal in cells and no significantly reduction of cell numbers. Representative images 

were taken 48 hrs post-transfection of green transfection indicator siGlo in MDMs isolated 

from Donor #94, and visualised under green fluorescent microscope (magnification x20). 

Concentration of siRNA for each transfection was indicated below each graph. Scale bar 25μm.  
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A1.4 Site-directed mutagenesis for the generation of STING 

mutants 

 

 

Figure A4. Sequence confirmation of Sting mutagenesis. Site-directed mutagenesis of 

Sting truncations at (A) 141A, (B) 184L, (C) 243V, and (D) 344A were confirmed by both 

forward and reverse Sanger sequencing. Amino acid residues were replaced with a stop 

codon in the sense transcription strand to result in truncations.   
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A1.5 Optimising ER staining in HeLa cells. 

 

Figure A5. ER staining in HeLa cells. Adherent HeLa cells were stained with ER Cytopainter 

dyes (Abcam) reconstituted in staining buffer according to the manufacturer’s protocol. The 

staining reagent was further diluted by mixing the recommended dose with 1xPBS. Hoechst 

33342 was mixed with ER staining buffer at 1:1000 dilution to counterstain the nuclei, and the 

control was incubated with dye-free staining buffer diluted 1:4 with PBS. Cells were imaged 

under the Leica AFI6000 Time-Lapse microscopy at 40X magnification. Scale bar is 50 µm.  
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A1.6 Optimising lysosome staining in HeLa cells. 

 

Figure A6. Lysosome staining in HeLa cells. Adherent HeLa cells were stained with 

Lysosome Cytopainter dyes (Abcam) reconstituted in staining buffer according to the 

manufacturer’s protocol. The staining reagent is further diluted by mixing 1:3 with 1xPBS and 

this concentration was tested by Bukhari A to be the optimal dose for lysosome visualisation. 

Hoechst 33342 was mixed with lysosome staining buffer at 1:1000 dilution to counterstain the 

nuclei, and the control was incubated with dye-free staining buffer diluted 1:3 with PBS. Cells 

were imaged under the Leica AFI6000 Time-Lapse microscopy at 63X magnification. Scale 

bar is 25 µm.  
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A1.7 Optimising co-transfection of protein complementation 

fluorescence for confocal imaging. 

 

Figure A7. Protein complementation transfection in HeLa cells. Adherent HeLa cells were 

(co) transfected with plasmids designed for V1 and V2 reporter protein complementation assay 

for Tmem203 and Sting interaction. The total amount of V1_Sting and V2_Tmem203 plasmids 

transfected into 20,000 cells in 100 µl culture medium were indicated. The negative control 

was transfected with 100 ng of V2_Tmem203 plasmid only. 24 hours post transfection, HeLa 

cells were stained with Hoechst 33342 (1:1000) and were imaged under the Leica AFI6000 

Time-Lapse microscopy at 40X magnification. Scale bar is 50 µm. 
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A1.8 Summary of assay development 

The following work has helped to develop assays to complete the work presented in 

paper 2, although these did not produce displayable data. 

1. Adjusting voltage for analysing HEK293 and monocyte population by FACS. 

Testing TOPRO-3 staining concentration to indicate cell viability. 

2. Adjusting cell concentration for HeLa cells imaging using 10mm/35mm glass 

bottom culture dish. We tested cell density from 300,000 / 100 µl to 150,000 / 

100 µl and the best concentration was the highest, which gives a monolayer of 

HeLa cells for microscopy after plasmid DNA transfection.  

3. Testing concentrations for DMXAA, 3’-3’ cGAMP and 2’-3’ cGAMP stimulation 

in primary macrophages. We tested 2’-3’ cGAMP at 1 µg/ml, 2 µg/ml and 4 

µg/ml and the highest concentration gave the maximal IFNβ response. 3’-3’ 

cGAMP was used at 1 µg/ml in consistent to our colleagues in Singapore. 

DMXAA was used at 4 µg/ml and 10 µg/ml and the high concentration gave the 

optimal response. 

4. Testing transfection method for 3’-3’ cGAMP stimulation in MDMs. Digitonin-

permeabilization buffer was used to incubate MDMs with and without 3’-3’ 

cGAMP for 15 mins to 30 mins. Incubation longer than 20 mins gives excessive 

cell death.  

5. Optimising the annealing temperature (Tm) for each site-directed mutagenesis. 

Tm for each PCR reaction is determined by the predicted Tm of each primer 

pair.  

6. Optimising antibody concentration for protein detection in Western blots. 

7. Testing and optimising NonBIT live cell luciferase assay system (Promega), 

including substrate concentrations, 1.1/2.1 gene tagging orientations 

(1.1_Tmem203 + 1.2_Sting, 1.1_Tmem203 + Sting_1.2, Tmem203_1.1 + 

1.2_Sting, and Tmem203_1.1 + Sting_1.2), Hoechst 33342 staining 

concentration, and plating strategy. Katherine Pye was also involved in the 

optimisation process. 
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Appendix 2: Materials for Paper 2 

A2.1 List of Reagents 

Reagent Catalog Number Company 

Agarose 1.01236 Sigma Aldrich 

ATP (Adenosine 5’-triphosphate 

disodium salt hydrate) 

A26209 Sigma Aldrich 

Anhydrous Ampicillin A9393 Sigma Aldrich 

Anhydrous DMSO 276855 Sigma Aldrich 

Bovine Serum Albumin A7906 Sigma Aldrich 

CD14 Microbeads, human 130-050-201 Miltenyl Biotec 

CytoPainter ER staining kit – 

red fluorescence 

Ab139482 Abcam 

CytoPainter Lysosomal staining 

kit – red fluorescence 

Ab112137 Abcam 

DAPI (4’,6-Diamidino-2-

2Phenylindole, Dihydrochloride) 

D1306 Thermo Fisher 

DharmaFECT 1 Transfection 

Reagent 

T-2001-03 Dharmacon, Horizon - 

Discovery 

Digitonin Ab141501 Abcam 

DMXAA (5,6-

dimethylxanthenone-4-acetic 

acid) 

tlrl-dmx Sigma Aldrich 

DTT (DL-Dithiothreitol) 3154 Tocris 

ECL Select Western Blotting 

detection reagent 

RPN2235 GE-Healthcare 

EDTA (Ethylenediamine 

Tetraacetate acid) 

BP2482-500 Thermo Fisher 

Ethidium Bromide 46067 Sigma Aldrich 

FBS (Fetal Bovine Serum) 10500 Life Technologies 

FBS Ultralow endotoxin S1860-500 VWR 

Ficoll-Pague PLUS 17-1440-03 GE Healthcare 
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GatewayTM LR ClonaseTM II 

Enzyme mix 

11791100 Thermo Fisher 

GenEluteTM Plasmid Miniprep kit PLN350-1KIT Sigma Aldrich 

GenEluteTM HP Plasmid 

Midiprep kit 

NA0200 Sigma Aldrich 

GeneRuler 100bp plus DNA 

ladder 

SM0321 Thermo Fisher 

Glycerol G5516 Sigma Aldrich 

GTP (Guanosine 5’-

trophosphate sodium salt 

hydrate) 

G8877 Sigma Aldrich 

Hoechst 33342 Trihydrochloride 

nuclear stain 

H3570 Thermo Fisher 

iScript cDNA Synthesis kit 170-8891 Biorad 

Kanamycin sulfate 60615 Sigma Aldrich 

L-glutamine BE17-605E Lonza 

LipofectamineTM 3000 

Transfection reagent 

L3000008 Thermo Fisher 

LPS from E.coli, Serotype R515 ALX-581-007-L002 Enzo 

LS columns 130-042-401 Miltenyl Biotec 

MEM Non-essential amino acids 

solution (100X) 

1114050 Thermo Fisher 

Nano-Glo® Live Cell Assay 

System 

N2012 Promega 

NEB 5-alpha Competent E.coli 

(High Efficiency) 

C2987/ Lot 205 New England Biolabs 

NuPAGETM Antioxidant NP0005 Life Technologies 

NuPAGE MES running buffer 

(20X) 

NP0002 Life Technologies 

NuPAGE Transfer buffer (20X)  NP0006-1 Life Technologies 

NuPAGE® Novex® 4-12% Bio-

Tris Protein Gels, 1.0mm, 10 

well 

NP0321BOX Life Technologies 
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ON-TARGETplus Non-targeting 

Pool control siRNA 

D-001810-10 Dharmacon 

ON-TARGETplus SMARTpool 

TMEM173 (STING) siRNA  

L-024333-02 Dharmacon 

ON-TARGETplus SMARTpool 

Tmem173 (mouse Sting) siRNA 

L-055528-00 Dharmacon 

ON-TARGETplus SMARTpool 

TMEM203 siRNA 

L-015191-01 Dharmacon 

ON-TARGETplus SMARTpool 

Tmem203 (mouse) siRNA 

L-057116-01 Dharmacon 

Penicillin / Streptomycin 15140-122 Life Technologies 

PierceTM BCA Protein Assay kit 23227 Life Technologies 

PolyFECT Transfection reagent 301105 Qiagen 

PrecisionPLUS SYBR 

mastermix 

PrecisionPLUS-iC-SY Primerdesign 

Protease inhibitor cocktail 

(100X) 

P8340 Sigma Aldrich 

QuikChange II Site-Directed 

Mutagenesis kit 

200523 Agilent 

ReBlot Plus Strong Antibody 

Stripping Solution, 10X 

2504 Merk Millipore 

Recombinant human M-CSF 300-25 Peprotech 

ReliaPrepTM RNA Minoprep 

system 

Z6012 Promega 

RIPA Lysis buffer R0278 Sigma Aldrich 

Restriction Endonucleases NA Promega 

Restriction buffers NA Promega 

RPMI-1640 media 31870-025 Life Technologies 

siGLO Green Transfection 

indicator 

D-001630 Thermo Fisher 

Thapsigargin T9033 Sigma Aldrich 

TO-PRO®-3 Iodide T3605 Life Technologies 
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Tris Acetate-EDTA (TAE) Buffer 

50X concentrate 

SRE0033 Sigma Aldrich 

Triton X-100 T8787 Sigma Aldrich 

Trypsin-EDTA 25200056 Life Technologies 

Viromer Green Transfection 

reagent 

VG-01LB-01 Lipocalyx 

Β-mercaptoethanol M3701 Sigma Aldrich 

2’-3’ cGAMP tlrl-nacga23 Invivogen 

3’-3’ cGAMP tlrl-nacga Invivogen 
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A2.2 List of Antibodies 

Antibody Target / Clone Catalog number Company 

CD3 monoclonal antibody, 

PE 

SK7 12-0036-42 eBioscienceTM 

CD14 anti-human Alexa 

Fluor®700  

61D3 56-0149 Affymetrix 

eBioscience 

CD14 anti-human FITC  M5E2 301803 BioLegend 

CD19 monoclonal 

antibody, PE-Cyanine7 

HIB19 25-0199-41 eBioscienceTM 

CD62L (L-Selectin) anti-

human APC  

DREG56 17-0629 Affymetrix 

eBioscience 

CD68 monoclonal antibody 

unconjugated  

PG-M1 MA5-12407 eBioscienceTM 

TMEM173 anti-human 

rabbit monoclonal 

unconjugated  

TMEM173 aa 

250 to the C-

terminus 

Ab181125/ 

EPR13130 

Abcam 

GFP/YFP mouse 

monoclonal antibody 

unconjugated 

Whole protein CSB-MA000283 Cusabio 

PDHX (E3BP) mouse 

monoclonal antibody 

unconjugated 

H-6 Sc-377255 Santa Cruz 

Polyclonal goat anti-mouse 

IgG-HRP 

NA P0447 Dako 

Polyclonal goat anti-rabbit 

IgG-HRP 

NA P0448 Dako 
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A2.3 List of plasmid DNA 

The list below describes plasmid DNA used by the primary author (myself). Additional 

plasmid DNA used in paper 2 can be found in the new manuscript in PNAS, 2019. 

Site-directed mutagenesis were carried out by myself using gene-carrying entry 

vectors as input backbones. After mutation, genes were gateway cloned into 

pcDNA3.1-DEST vectors or NonBIT Renilla vectors containing either N or C terminal 

tags. 

Vector Source 

pcDNA3.1 

gateway 

destination vector 

Empty vector acquired from Invitrogen. Split Venus tag and YFP 

tag insertions at the N or C terminal of attR cloning sites were 

produced by E. Kiss-Toth. The WT Tmem203 and Sting were 

inserted into V1, V2, YFP tagged pcDNA3.1 vector by E. Kiss-

Toth. Gateway cloning of mutant Sting insertions into these 

vectors were made by myself. 

pENTR/D 

entry vector 

Empty vector acquired from Invitrogen. The WT Tmem203 and 

Sting insertions were produced by D. Wyllie. pE-Sting mutants 

were made by myself. 

1.1/2.1 BIT Empty vector acquired from Promega, NonBIT PPI system, by E. 

Kiss-Toth. The WT or mutant Tmem203 and Sting insertion 

between the attR sites were produced by myself and with help 

from Vera Kiss-Toth. 

pEGFP-N2 Plasmid DNA acquired by E. Kiss-Toth. 
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Appendix 3: Methodology for Chapter 2 
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A3.1 Bioinformatics 

Nucleotide sequences for TMEM203 (human), TMEM173 (human STING), Tmem203 

(mouse), Tmem173 (mouse STING) and Tbk1 (mouse TANK-binding kinase, mTBK1) 

were obtained from GeneBank, NCBI (National Center for Biotechnology Information).  

Gene and protein accession numbers were obtained from Ensembl and Uniprot, 

respectively. DNASTAR® Lasergene 14 SeqBuilder was used to create gene maps, 

predict amino acid sequences, identifying endonuclease restriction sites and design 

primers for single amino acid mutations. The program SeqMan Pro 14 was used to 

align nucleotide sequences to verify mutations of plasmids. Uniprot was used to 

identify the predicted molecular weight of proteins. Genes are listed below in Table 1. 

 

Table 1. List of genes. 

Gene Species Gene ID mRNA ID Protein ID 

TMEM203 Human ENSG00000187713 NP_444273.1 Q969S6 

TMEM173 / 

STING 

(Canonical) 

Human ENSG00000184584 NP_938023.1 Q86WV6 

Tmem203 Mouse ENSMUSG00000078201 NP_796318.2 Q8R235 

Tmem173 / 

Sting 

(Canonical) 

Mouse ENSMUSG00000024349 NP_082537.1 Q3TBT3 
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A3.2 Established cell line cultures 

RAW 264.7 mouse macrophage cell line is maintained in Dulbecco’s Modified Eagle 

medium (DMEM) supplied with 1% Penicillin-Streptomycin (100 U/ml, P-S), 1% L-

Glutamine ( 0.05 mM, L-G), 10% low endotoxin heat-inactivated fetal bovine serum 

(LE-HI-FBS); HeLa human cervical cancer cell line is maintained in DMEM supplied 

with 1% P-S, 1% L-G and 10% HI-FBS; HEK293 T human embryonic kidney cell line 

is maintained in DMEM supplied with 1% PS, 1% nonessential amino acids (NEAA) 

and 10% HI-FBS; immortalised bone marrow derived macrophage (iBMDM) cell line 

is maintained in DMEM supplied with 1% PS, 1% L-G and 10% LE-HI-FBS. All cells 

lines were purchased from ATCC except for the iBMDM cell line (C57BL/6 background) 

which was generated as described in [324] and kindly given by David Brough’s lab 

(University of Manchester). All cell lines were maintained in a 37℃ incubator with 5% 

CO2. Cells were plated at densities listed below (Table 2) on the day before 

transfection or treatment to allow attachment. 

 

Table 2. Cell plating format. 

Cell line Cell density Volume of medium (ml) Plate format 

RAW 264.7 

HeLa 

HEK293 T 

500,000 2 6 

250,000 1 12 

125,000 0.5 24 

25,000 0.1 96 

iBMDM 200,000 2 6 

100,000 1 12 

50,000 0.5 24 

10,000 0.1 96 
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A3.3 Human primary cell isolation and culture 

 

A 3.3.1 Isolation of PBMC 

Healthy and unrelated adult donors (aged 20 to 50 years old) were recruited to provide 

blood for isolation of peripheral blood mononuclear cells (PBMCs). All blood donors 

were given written and informed consent under regulation stated in the ethical 

approval SMBRER310 and in accordance to the Declaration of Helsinki.  

 

PBMC and CD14+ monocyte isolation protocol follows method stated by Hadadi E 

(PhD Thesis submitted in 2015, University of Sheffield). In essence, blood was 

collected in 50ml tubes with sterile sodium citrate in a ratio of 9:1 to prevent clotting, 

and was then carefully transferred into 50 ml tube in 2:1 ratio to and on top of Ficoll-

PagueTM Plus (GE Healthcare, Life Sciences). Overlaid blood-Ficoll gradient was 

centrifuged for 20 min at 900 x g with low acceleration and deceleration rates to 

separate PBMC layer by buoyancy. The PBMC layer which appears just below the top 

plasma layer was collected into a clean 50 ml tube and washed with 50 ml cold 1x 

phosphate-buffered saline (PBS)-ethylenediaminetetraacetic acid (EDTA, 2 mM) 

(PBS-EDTA; PBSE). The cells were centrifuged (5 mins 1500 rpm) and the pellet was 

resuspended and incubated for 5 mins at room temperature in 10 ml 1x red blood cell 

(RBC) lysis buffer (155 mM NH4Cl, 10 mM KHCO3 and 0.1 mM EDTA) to lyse the 

erythrocytes by hypotonic pressure. After incubation, cells were washed in 50 ml 1x 

PBSE and centrifuged for 5 mins at 1500 rpm. The supernatants containing RBC 

debris was removed and the cells were resuspended in 30 ml 1 x PBSE. Cell number 

was counted using a haemocytometer (C-Chip, Digital Bio) and the cells were then 

centrifuged for 5 mins at 1500 rpm to acquire the PBMC pellet for further purification 

steps. 

 

A3.3.2 Isolation of CD14 positive (+) monocytes 

CD14 proteins are abundantly expressed on the cellular surface and are vital for the 

activation of innate immune responses in mammalian myeloid cells typically 

monocytes. Thus, they are often used as selection markers for monocyte purification. 

To isolate monocytes from PBMCs, positive selection was used to tag CD14-

expressing monocytes with magnetic microbeads (Miltenyi Biotec). To do so, every 10 
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million pelleted PBMCs were resuspended in 90 μl magnetic cell sorting (MACS) buffer 

(1 x PBS, 2% (w/v) low endotoxin bovine serum albumin (BSA), 2 mM EDTA) 

supplemented with 10 μl CD14 microbeads (Miltenyi Biotech), and incubated for 15 

mins at 4 °C to allow microbeads binding to CD14+ cells. The PBMCs were washed 

in 2 ml additional MACS buffer, centrifuged (5 mins at 1200 rpm), and resuspended in 

500 μl MACS buffer to be added to pre-washed (3ml MACS buffer) LS column (Miltenyi 

Biotec). For magnetic selection, the column was washed with 3 x 3 ml MACS buffer to 

remove non-magnetic bound cells, and the microbeads-bound cells were immediately 

flushed down the column with 5 ml cold MACS buffer into a clean collection tube. Cell 

number was counted again using a haemocytometer and spun down (5 mins 1500 

rpm) to acquire a cell pellet for further experimental purposes. 

 

A3.3.3 Determine monocyte purity and viability by FACS 

To assess the purity of CD14+ monocytes after isolating all CD14+ cells, samples 

were prepared in MACS buffer. A sample of 750,000 cells was taken for analysis by 

fluorescence-activated cell sorting (FACS) using a LSR II flow cytometer (BD 

Bioscience), and data was analysed by FlowJo_V10 software. Both pre-purified PBMC 

samples and post-purified CD14+ selected cells were prepared as described in Table 

3. Pre-purification PBMCs were singly stained with anti-human CD3-PE (, clone SK7), 

anti-human CD19-PECyanine7 (eBioscience, clone HIB19), or anti-human CD14-

Alexa Fluor®700 (eBioscience, clone 61D3), For each sample, 10,000 cell events 

were recorded on an arbitrary gate created on a bivariate scatterplot of forward (FSC) 

vs. side (SSC) to separate cells by sizes and granularities, respectively. The forward 

and side scattered lights were both adjusted to 275 volts to allow best display of 

subpopulations of CD14+ cells. Gates were drawn around the subpopulations close to 

the population boundaries and monocyte population was identified according to gating 

strategies suggested by Hadadi E (PhD Thesis submitted in 2015, University of 

Sheffield). An average of over 90% monocytes were identified in total CD14+ 

population with minor proportions of cell debris, lymphocytes, granulocytes and 

CD14+ monocyte doublets (Fig. 13). Monocyte responsiveness to immune challenge 

was tested by phorbol 12-myristate 13-acetate (PMA) treatment which indicates the 

ability to become active and induce shedding of L-selection (Fig. 14) [325]. 
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Table 3. PBMC and monocyte staining. 

Samples Staining Antibodies Clone Fluorophore 

Figure 13/ Monocyte purity assay 

Total population Unstained N/A N/A 

Dead cells Hoechst 33342 N/A Hoechst 33342 

T lymphocytes Anti-CD3 SK7 PE 

B lymphocytes Anti-CD19 HIB19 PE- Cyanine7 

Canonical 

monocytes 

Anti-CD14 61D3 Alexa Fluro® 700 

Figure 14/ Monocyte activation assay 

Total population Unstained N/A N/A 

Dead cells Hoechst 33342 N/A Hoechst 33342 

Canonical 

monocytes 

Anti-CD14 M5E2 FITC 

L-selectin Anti-CD62L 

(L-selectin) 

DREG56 APC 

 

 

 

 

 

 

 

  



288 
 

 

Figure A8. Monocyte identification in peripheral blood mononuclear cells (PBMCs). 

PBMCs pre (A) and post (B) CD14 positive column selection were analysed by flow cytometry 

to indicate monocyte purity. PBMCs were left unstained or stained with Hoechst 33342 

(UV_450nm activated) to indicate cell death. Hoechst negative (viable) cells were stained with 

fluorescence-conjugated antibodies against CD14, CD19 and CD3 to identify populations of 

monocytes, B lymphocytes and T lymphocytes, respectively. Green colour indicates the 

monocyte population in the forward (FSC) and side (SSC) scatter plot. (C) Frequency of 

subpopulation of cells were calculated and a reduced ratio of T and B lymphocyte in PBMCs 

has resulted in over 90% of monocyte purity post CD14 selection. Experiments conducted in 

monocytes isolated from two donors and the result is representative from a healthy Donor. 
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Figure A9. PMA-activated human primary monocytes.   

Post CD14 selection, viable monocytes (Hoechst negative) were tested by CD62L (L-selectin) 

shedding to indicate the ability of activation. (A) Fluorescence minus one (FMO) control: 

Fluorescence-conjugated CD14 antibodies (Yellow) identifies the total monocyte population 

(Red) which is CD62L negative (unstained). (B) Total monocyte population (Red) was stained 

with anti-CD62L (Dark Blue) before PMA treatment; PMA stimulation was able to induce 

CD62L shedding/reduction in monocytes (Dark Blue to Light Blue), suggesting monocyte 

activation post CD14 column selection. Experiment conducted in collaboration with Kajus 

Baidzajevas using monocytes isolated from two donors and the result is representative from 

a healthy Donor.  
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A3.3.4 Monocyte maintenance and macrophage differentiation 

Primary CD14+ monocytes were temporarily cultured in complete RPMI-1640 medium 

supplemented with 10% (v/v) LE-HI-FBS (Biowest), 1% PS (Gibco) and 1% L-

glutamine before differentiation. Primary monocytes were seeded in 12 well plates at 

250,000 ± 5% cells (1.5 ml) per well density to be differentiated into monocyte-derived 

macrophages (MDMs). Monocytes were differentiated into human monocyte-derived 

macrophages (MDMs) with RPMI-1640 monocyte medium supplied with 100 ng/ml 

human recombinant macrophage-colony stimulating factor (hrM-CSF; PeproTech) for 

7 days (medium was not changed during incubation). Fresh medium was supplied 

before further cell treatment. 
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A3.4 Mouse primary cell isolation and culture 

WT and Tmem203 knockout (-/-) C57BL/6 mice were generated by Harwell Institute 

(Oxford) by CrispR-Cas9 method, and the hind limbs were given to our lab. Genome 

of Tmem203 was confirmed by Sanger sequencing indicated by MRC Harwell 

(indicated in Paper 2, Fig. S2F). Femur and Tibia of mouse hind limbs were cleared 

out from muscles and were truncated at both end so that bone marrow can be eluted 

and collected using RPMI (10% LE-HI-FBS and 1% P-S) without Phenol Red for 

visualising in the tube. Bone marrow was centrifuged and replaced with fresh complete 

DMEM medium (10% LE-HI-FBS, 1% P-S and 10% L929 conditioned medium) to grow 

for 5 days in T75 flasks in a humid 37 ℃ incubator containing 5% CO2. Bone marrow-

derived macrophages were re-seeded in cell culture plates containing fresh medium 

before further treatments. BMDMs were seeded at a density of 100,000 cells in 1 ml 

medium in 12 well plates. Experiments were conducted in duplicate or triplicate wells. 
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A3.5 STING stimulation 

 

A3.5.1 2’-3’ cGAMP 

The endogenous STING ligand 2’-3’ cGAMP was reconstituted in 1xPBS to a 

concentration of 1µg/µl. Stimulation was performed by mixing the indicated 

concentrations of ligand with fresh cell culture medium and incubate for indicated 

periods. Unstimulated control was replaced with fresh medium without 2’-3’ cGAMP.  

 

A3.5.2 3’-3’ cGAMP 

the bacterial STING ligand 3’-3’ cGAMP was reconstituted in 1xPBS to a concentration 

of 1µg/µl. Bacterial cyclic dinucleotides carry two negatively-charged phosphate 

groups that reduce their ability to penetrate the plasma membrane [326], and thus 3’-

3’ cGAMP was aided with the previously suggested Digitonin-permeabilisation method 

[120, 286, 289, 327]. Stimulation procedure was performed according to Woodward 

JJ. et al [328]. Post differentiation, macrophages were washed twice with ice-cold PBS 

and pre-incubated with 10 x Digitonin permeabilisation buffer (50 mM HEPES pH 7.0, 

100 mM KCl, 3 mM MgCl2, 0.1 mM DTT, 85 mM sucrose, 0.2% BSA, 1 mM ATP, 0.1 

mM GTP, with or without 10 μg/ml digitonin) with or without 1 μg/ml 3’-3’ cGAMP for 

15-20 mins. Digitonin buffer was thoroughly washed twice with PBS and cells were 

then supplemented with fresh complete medium and incubated for indicated period of 

time since initial addition of ligand. Incubation of cells was always at 37°C with 5% 

CO2. 

 

A3.5.3 DMXAA 

The synthetic STING ligand DMXAA was reconstituted by mixing 10 mg DMXAA in 1 

ml solvent 100% dimethyl sulfoxide (DMSO). Stimulation was performed by mixing 

DMXAA/DMSO in complete cell culture medium and apply to cells. Unstimulated 

control was replaced with fresh medium containing only DMSO at the same dose as 

DMXAA stimulation complex.  
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A3.6 Transfection and stimulation 

Each cell type transfection was performed by a specific protocol which has been 

optimised by our precious laboratory members or myself.  

 

A3.6.1 siRNA Transfection into MDMs and iBMDMs  

As STING is an anti-viral adaptor protein, all the virus-derived transfection methods 

can likely induce STING-dependent antiviral response prior to our investigations, we 

therefore choose non-microbial derived delivery method that is potent nucleic acid 

vehicle and is less likely to induce type I interferon response. Delivery of small-

interfering RNA (siRNA) into MDMs uses the transfection reagent Viromer Green 

(Lipocalyx) according to the manufacturer’s guidelines. For optimisation of siRNA 

transfection, siGlo green transfection indicator (Dharmacon, #D-001620-01) was used 

at the indicated concentrations (Chapter 2 Fig. 4 & Appendix 1.3, page 270). ON-

TARGETplus smartpool control non-targeting siRNA and siRNA against human and 

mouse TMEM203 / Tmem203 and STING (TMEM173 / Tmem203) were purchased 

from Dharmacon. siRNA was diluted to 20µM before being used to transfect cells. For 

optimised siRNA transfection in MDMs and iBMDMs the concentration was 12.5 nM. 

For this, 1.4 µl siRNA (20 µM) was mixed with 8.6 µl and added to Viomer green 

mixture (Buffer green 90 µl added to Viromer green 1 µl) and incubated for 15 mins at 

room temperature. The transfection complex was applied to 1 well of 2 ml cell culture 

in 6 well format and the transfected cells are maintained at 37°C in humid 5% CO2 

incubator for 48 hrs before being used in further experiments. 

 

A3.6.2 RAW 264.7 cells 

RAW 264.7 macrophages were transfected with plasmids or siRNA using 

DharmaFECT reagent according to the manufacturer’s guidelines. 0.4 µl of 

DharmaFECT was required to deliver 100 ng plasmid DNA into 25,000 cells in 100 µl 

transfection volume in a 96 well plate format.  The same protocol delivers 20 µM siRNA 

into RAW 264.7 cells. 
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A3.6.3 HEK293 cells 

HEK 293 cells were transfected with plasmids using PolyFECT reagent according to 

the manufacturer’s guidelines. 1 µl of PolyFECT was required per 100 ng plasmids for 

transfection into 25,000 cells in 100 µl transfection volume in a 96 well plate format.   

 

A3.6.4 HeLa cells 

HeLa cells were seeded in the centre of glass-bottom imaging dish (35 mm diameter, 

glass area 10 mm diameter) at 300,000 cells in 100 µl DMEM medium (10% LE-HI-

FBS and 1% P-S) and incubated for 1 h to allow adherence. After this, cells were 

further supplied with 1.5 ml complete medium and leave overnight before transfection. 

A total of 1.5 µg of plasmid DNA was resuspended in 490 µl of serum-free medium 

and incubated with 10 µl P3000 and 3 µl 3000 Reagent, provided in 

Lipofectamine3000 transfection kit, for 30 mins at room temperature. The mixture was 

supplied with 1 ml complete medium to transfect HeLa cells for 24 hrs before further 

studies.  
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A3.7 Gene expression analysis 

 

A3.7.1 RNA isolation 

Total RNA isolation from cells was preformed using ReliaPrepTM RNA Cell miniprep 

system (Promega). Post treatment, cell medium was aspirated and cells were washed 

twice with PBS before being lysed with BL-TG buffer and isolated according to the 

manufacturer’s protocols. RNA concentrations were determined using NanoDropTM 

1000 microvolume Spectrometer (Thermo Fisher).  

 

A3.7.2 Complementary (c)DNA synthesis 

Complementary DNA was produced from total RNA using iScriptTM cDNA synthesis 

kit (Biorad).  500 ng total RNA was mixed with 1 µl Reverse Transcriptase and 4 µl 

reaction master mix in a total volume of 25 µl. The mixture was reacted on a Bioer 

LifeECOTM PCR Thermal Cycler at 25℃ for 5 mins, 46℃ for 20 mins, 95℃ for 1 min 

and maintained at 4℃ until it is used for further treatment. 

 

A3.7.3 Quantitative Real-Time Polymerase Chain Reaction (qPCR) 

Quantitative PCR was performed in triplicate wells and quantified in CFX384 TouchTM real-

time PCR iCycler (Biorad). Reaction mixture contains 4.4 μl cDNA (0.5 ng/ml), 5 μl 

mastermix, 0.3 μl forward primer (10 µM) and 0.3 μl reverse primer (10 µM).  Mixture was 

reacted with hot start (95℃ 2 mins) followed by 40 cycles of amplification (95℃ 10 secs + 

60℃ 60 secs), and a final melt curve was determined by an additional amplification 

process. The primer sequences used for mRNA level quantification were shown in Table 

4. Primers are designed with Blast primer design tool (NCBI) and all sequences were 

generated by Sigma-Aldrich unless otherwise specifies.  

 

For analysis of relative gene expressions, Ct values of interest genes were normalised to 

the Ct values (expression levels) of β-actin and were calculated using the 2(-Ct) method. 

Gene expressions were compared to the indicated control group designed for each 

experiment. Analysis of gene expression by genome equivalent method is described in 

Chapter 4, Material and Methods, RNA, standard and Real-Time quantitative PCR.  
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Table 4. List of primers used in qPCR reaction. 

Human Gene  Primer sequences 

β-ACTIN Forward 5’ - GGATGACAGAAGGAGATCACT G – 3’ 

Reverse 5’ - CGATCCACACGGAGTACTTG – 3’ 

Cxcl8 (IL-8 

gene) 

Forward 5’ - TGCCAAGGAGTGCTAAAG – 3’ 

Reverse 5’ - CTCCACAACCCTCTGCAC – 3’ 

IFN- β Forward 5’ - AAGCAGCAATTTTCAGTGTCAGA – 3’  

Reverse 5’ - CCTCAGGGATGTCAAAGTTCA – 3’ 

TMEM203 Forward 5’ - GTCTTCGAGATGCTGTTGTGC – 3’ 

Reverse 5’ - ACGTAATGAGGCCGAACCAG – 3’ 

STING Forward 5’ - TCTCGCAGGCACTGAACATC – 3’ 

Reverse 5’ - GGGCCACGTTGAAATTCCCT – 3’ 

MAVS Forward 5’ - TGCCTCACAGCAAGAGACCA – 3’ 

Reverse 5’ - CCGCTGAAGGGTATTGAAGAGA – 3’ 

 

Mouse Gene Primer Sequences 

β-actin Forward 5’ - GGGACCTGACAGACTACCTCATG - 3’ 

Reverse 5’ – GTCACGCACGATTTCCCTCTCAGC – 3’ 

Tmem203 Forward 5’ – CCCTGTTGGTGTTCTCCGTA - 3’ 

Reverse 5’ – GCACAAAGACGTTCCACCAG - 3’ 

Sting Forward 5’ – GCTGGCATCAAGAATCGGGT - 3’ 

Reverse 5’ – TACTCCAGGATACAGACGCC - 3’ 

Ifnb1 Forward 5’ – TGTCCTCAACTGCTCTCCAC - 3’ 

Reverse 5’ – CATCCAGGCGTAGCTGTTGT - 3’ 

Cxcl2 Forward 5’ – ATCCAGAGCTTGAGTGTGACG - 3’ 

Reverse 5’ – TTTGACCGCCCTTGAGAGTG - 3’ 
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A3.8 Western blot 

 

A3.8.1 BCA protein concentration assay 

To prepare protein samples, cells were washed with 1x PBS and lysed with RIPA 

buffer (Sigma Aldrich) containing 10% protease inhibitor. Every 250,000 cells were 

then lysed by 200µl RIPA-protease inhibitor mixture on ice for >30 mins with multiple 

vigorous vortexing, and 15 min sonication. Samples were centrifuged for 10 mins 

(14,000 rpm at 4℃) to remove membrane debris and supernatants were collected for 

protein assay. Pierce BCA protein assay (Thermofisher) was performed to determine 

protein concentration in the lysate according to the manufacturer’s guideline. Lysates 

were diluted to a concentration of 5 µg per 10 µl with 1x Laemmli buffer (4% SDS, 10% 

2-mercaptoethanol, 20% glycerol, 0.004% bromophenol blue, 0.125 M Tris-HCl, pH 

6.8).  

 

A3.8.2 SDS-PAGE 

Total protein separation was performed by SDS-PAGE (Sodium Dodecyl Sulfate 

PolyAcrilamide Gel Electrophoresis). 5 µg (in 10 µl) of each protein sample or 5 ul of 

protein ladder was loaded into each well of the pre-cast NuPAGE 4%-12% Bis-Tris 

Protein Gels, 1.0 mm, 12-well (Thermo Fisher). Empty wells were filled with 10 µl of 

1x Laemmli buffer. The gel was transferred to the electrophoresis tank filled with 1x 

NuPAGE MES SDS Running Buffer to run for 1.5 - 2 h at 150-200 V. 

 

A3.8.3 Western blot 

Following electrophoresis, proteins were transferred to methanol-activated positively 

charged PVDF nylon membrane followed by antibody detextion. Protein-blot transfer 

sandwich (negative electrode – 2 sponges / 2 filer papers / Gel / PVDF membrane / 2 

filter papers / 5 sponges – positive electrode) was placed in the Western blot tank filled 

with 1x NuPAGE Transfer Buffer supplemented with 10% (v/v) methanol and 1 ml 

NuPAGE antioxidant. Proteins were transfer for 1 h at 40 V.  

 

To blot for specific proteins, membranes were rinsed with 1X Tris buffered saline (TBS) 

– 0.1% (v/v) Tween-20 (TBST) and then blocked with 10% (w/v) skimmed milk in TBST 

for 1 h at room temperature. Post blocking, membrane was rinsed 4 times with TBST 
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for 5 mins and then incubated with primary antibodies diluted in 5% milk-TBST on 4°C 

overnight. Primary antibodies were rinse off the next day with 5 mins – 4 times TBST, 

and the HRP conjugated secondary antibodies were applied in 5% milk-TBST to 

incubate the membrane at room temperature for 1 h. At the end, secondary antibodies 

were rinsed by 5 mins - 4 times with TBST. Antibody concentrations were listed in 

Table 5. 

 

To detect proteins, the membrane was incubated for 2 mins with chemiluminescence 

followed by visualisation under a C-DiGit ® Western Blot Scanner (LI-COR). Signal of 

secondary antibodies can be strapped off by incubation in 1x ReBlot Plus Strong 

antibody stripping solution (Merk Millipore) for 10 mins at room temperature. The 

membrane can be re-blocked and blotted with another primary and secondary 

antibody to detect different proteins. Protein bands were quantified using Image Studio 

Digit Version 5. Data were normalised to the loading control. 
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Table 5. Antibody concentrations used in Western blotting. 

Antibody Concentration 

GFP/YFP mouse monoclonal antibody 

unconjugated 

1:4000 

PDHX (E3BP) mouse monoclonal 

antibody unconjugated 

1:8000 

Polyclonal goat anti-mouse IgG-HRP 

For YFP detection 

1:2000 

Polyclonal goat anti-mouse IgG-HRP 

For PDHX detection 

1:4000 
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A3.9 Molecular cloning 

 

A3.9.1 Site-directed mutagenesis 

Single-amino acid mutation was performed using QuikChange II Site-Directed 

Mutagenesis kit (Agilent) following the manufacturer’s protocol. The Wildtype gene 

has already been cloned into pENTR/D-TOPO® vector (Thermo Fisher) between the 

attL1/attL2 region. The entry clone also contains Kanamycin resistance gene for 

bacterial selection. In brief, each mutagenesis was reacted with 100 ng entry plasmid 

vector, 125 ng of each oligonucleotide primer, and the rest of the reagents provided 

by the kit. Forward and reverse primers were designed for each mutation with the tri-

nucleotide substitution in the middle to change single amino acid, and 15-nucleotide 

long sequence at each side of mutation (total 33 bp in length). Primers were generated 

by Sigma Aldrich and were used at the recommended concentration as according to 

the Mutagenesis kit protocol. Primer sequences for Sting truncation mutants were 

stated in Chapter 2 Materials and Methods: Site-directed Mutagenesis and molecular 

cloning. Polymerase chain reaction (PCR) cycling condition is detailed in Table 6 

(modified from the manufacturer’s protocol). The resulting plasmid products were 

transformed into XL10-Gold ultra-competent cells following the manufacturer’s 

instructions (Agilent). Mutations of Sting was confirmed by Sanger sequencing as 

shown in Appendix 1.4 (page 271). 
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Table 6. Agilent site-directed mutagenesis guideline protocol for polymerase chain 

reaction. 

 

Segment Cycles Temperature Time 

1 1 95℃ 2 mins 

2 25-30 95℃ 20 sec 

60℃ 10 sec 

68℃ 1 min/ kb of plasmid length* 

3 1 68℃ 5 mins 

 

*For example, a 5 kb plasmid requires 5 mins per cycle at 68℃. The temperature of 

this step can be optimised to help the amplification of desired plasmids. 
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A3.9.2 Ligase recombination  

Mutated genes inside the Gateway Entry clones were further cloned into a Gateway 

Destination vector [329] containing split Venus tag, or Yellow Fluorescence Protein 

(YFP) tag [330], or split Renilla BIT tags (modified from the commercially available BIT 

system, Promega) which are later used for expression in mammalian cells. Ligase 

recombination of gene cloning into Gateway Destination vectors uses GatewayTM LR 

ClonaseTM II Enzyme Mix (Invitrogen). Reaction was performed according to the 

manufacturer’s protocol. In brief, 10 ng (1 µl) of entry clone plasmid carrying the 

designed gene was mixed with 100 ng (1 µl) Gateway Destination vector and 0.5 µl of 

LR Clonase II to incubate for 1 h at 25 °C. Reaction was terminated by mixing with 1 

µl proteinase K and incubating for 10 mins at 37 °C. Destination vectors were 

transformed into one vial of 45 µl of NEB 5-alpha Competent E. coli (High Efficiency) 

(New England Biolabs) according to the manufacturer’s (New England Biolabs) 

protocol.  

 

A3.9.3 Bacteria transformation and plasmid preparation 

To transform Gateway Entry Clones into XL10-Gold ultracompetent cells, a vial of 45 

µl E.coli was taken out of -80°C freezer and immediately and gently thawed on ice. 

Cells were treated with 2 µl of β-mercaptoethanol (provided with the kit) for 10 mins, 

and were further added 2 µl of Dpn I-treated plasmid products (enzyme provided with 

the kit, 1µl Dpn I was used to digest 1 tube of PCR reaction for 15 mins at 37 °C). 

Mixture was gently swirled and incubated on ice for 30 mins followed by an exact 30 

sec heat-shock at 42°C before being recovered on ice for 2 mins. Mixture was then 

transferred to a 15 ml Falcon tube containing 0.5 ml of warm SOC growth medium 

(Super Optimal Broth, Invitrogen) and incubated at 37 °C for 1 hour with shaking at 

240 rpm. By the end, 100 µl of bacterial culture was plated onto a warm LB-Kanamycin 

(50 µg/ml) agar plate and incubated upside down (to avoid drying the agar by water 

evapouration) at 37 °C for a further 16-20 hours before colonies were selected for 

further use.  

 

To transform Gateway Destination clones into NEB 5-alpha Competent E.coli (High 

Efficiency), plasmids were mixed and incubated with one unit (45 µl) of bacteria pre-

thawed on ice. This is followed by exactly 30 sec of heat-shock at 42 °C and 2-5 mins 
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recovery on ice. Cells were then supplemented with 1 ml warm SOC growth medium 

and cultured at 30℃ for 90 mins. 150 µl of bacteria were evenly spread on a warm LB-

Ampicillin agar plate (100 µg/ml) and incubated upside down at 30 °C for 16 – 20 hours 

before bacteria colonies were selected for further use. 

 

Post transformation, six colonies per mutation were selected for amplification in 3 ml 

SOB broth (Super Optimal broth, 32 g Tryptone + 20 g Yeast extract+ 5 g NaCl heat-

dissolved in 1 L ddH2O) containing the appropriate antibiotics) at 30 °C for 18-24 hours 

to obtain enough cells for plasmid isolation (Sigma Aldrich).  

 

A3.9.4 Plasmid sequence verification 

To ascertain the correct plasmids were amplified, plasmid DNA was digested with 

restriction endonucleases (Promega) in the suggested digestion buffer for 1 to 1.5 

hours at 37 °C. Briefly, 5 µl of plasmids (over 500 ng) were used in each digestion with 

1 or multiple enzymes at a total volume of 10 µl or 15 µl according to the 

manufacturer’s suggestions. Plasmid digestion was checked by DNA gel 

electrophoresis. Plasmid samples were diluted 1:5 with sample loading dye (0.25% 

bromophenol blue, 30% glycerol in ddH2O) and loaded into the wells of a 10% agarose 

gel (1:50 ddH2O diluted 50x TAE (Tris Acetate-EDTA) with 10% w/v agarose powder, 

both Sigma Aldrich) containing 0.5 µg/ml ethidium bromide, with 1x TAE as the running 

buffer. The GeneRuler 100bp plus DNA ladder was used to indicate the size of the 

digested DNA products. DNA was separated at 80-90 V for 40 to 50 mins and the gel 

was visualised and captured under the UV lamp in InGenius3 gel imaging and analysis 

system (SYNGENE). Once DNA fragments were confirmed at the expected lengths, 

plasmid samples were sent for sequence confirmation at Sanger sequencing labs of 

Source Bioscience (Nottingham). Reaction primers were provided by the sequencing 

lab according to the construct. Specific primers designed for plasmids constructed for 

split-Renilla protein complementary assay were purchased from Sigma Aldrich.  

 

Primer used for sequencing genes in the Entry Clones were (5’-3’): 

Forward: M13F, TGT AAA ACG ACG GCC AGT 

Reverse: M13R, CAG GAA ACA GCT ATG ACC 
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Primers used for sequencing genes in the V1 and YFP fusion Destination Clones were 

(5’-3’): 

Forward: CMVF_pCDNA3, CAA CGG GAC TTT CCA AAA TG 

Reverse: BGH Reverse, TAG AAG GCA CAG TCG AGG 

 

Primers used for sequencing genes in the BIT fusion Destination clones were (5’-3’): 

Forward: CCC TGT TGG TGT TCT CCG TA 

Reverse: GCA CAA AGA CGT TCC ACC AG 

 

One correct Entry Clone per mutation was selected for further cloning process and 

one correct Destination Clone per mutation was selected for transformation and 

amplification. 

 

A3.9.5 Bacteria amplification and stock 

To maintain bacteria culture for further use, 0.5 ml of overnight bacteria culture is 

thoroughly mixed with 40% glycerol and kept at -80 °C for later use. 

 

To amplify plasmids, bacteria colonies or glycerol stock (20% glycerol in growth 

medium) were added to 3-5 ml SB buffer for small quantity plasmids preparation or to 

50 ml LB buffer (10 g Tryptone + 5 g Yeast extract + 5 g NaCl heat-dissolve in 1 L 

ddH2O) for medium quantity plasmid preparation. All bacteria cultures were supplied 

with 50 µg / ml Kanamycin or 100 µg / ml Ampicillin according to the plasmid antibiotics 

selection condition and cells were incubated at 30℃ for 18 – 24 h.  

 

A3.9.6 Plasmid isolation 

Small quantity plasmid purification was carried out using GenEluteTM plasmid Miniprep 

kit and medium quantity plasmid purification was carried out using GenEluteTM HP 

Plasmid Midiprep kit, both from Sigma Aldrich. Plasmid concentration was determined 

using NanoDropTM 1000 microvolume Spectrometer (Thermo Fisher) and were at least 

80 ng/ml. 
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A3.9.7 Plasmid maps 

Plasmid maps are shown in Figure 15. The split Renilla fusion plasmids were constructed 

using NanoBiT ® PPI MCS Starter system vectors (Promega, UK) which allowed the 

Tmem203 and Sting genes in the entry clones to recombine into the multiple cloning sites by 

LR Recombinase reaction (Invitrogen), creating either the N terminal or C terminal fusion of 

LgBiT (2.1) or SmBiT (1.1). The plasmids were selected on 100 µg / ml Ampicillin according 

to the manufacturer’s protocol.  
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Figure A10. Circular map for (A) pENTR/D-TOPO1 clone and (B) Venus and Yellow 

fluorescence protein fusion Gateway Destination clones.  

Desired genes such as Tmem203 and Sting are cloned from pENTR/D vectors into the 

pENTR/D insertion site in the Gateway Destination vector.  
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A3.10 Protein complementation assay (PCA) 

 

A3.10.1 Split Venus fluorescence system 

Venus protein is a derivative of Green Fluorescent Protein (GFP) with enhanced 

fluorescence. The Venus is split into a large part V1 and a small part V2. Each tag was 

expressed in the Gateway Destination vectors which are clones with the desirable 

genes to create fusion proteins. For Venus-reporter PCA, HEK293 T cells were plated 

and transfected with the indicated methods described in Appendix 3.6.3. Cells were 

transfected with the recommended amount of a single plasmid per well, or half amount 

of each plasmid for co-transfections. A single transfection of V1 fusion protein was 

used as control transfection. 18 - 24 h post transfection, cells were washed with 1x 

PBS before further treatment.  

 

Flow cytometry was performed to identify Venus fluorescence-positive cell population. 

Post treatment, HEK293 cells were gently and thoroughly washed with PBS and 

detached by resuspending in 0.5 ml FACS buffer (5% (v/v) FBS in PBS). Samples 

were maintained on ice until process. Samples were run on a bivariate forward (FSC) 

vs. side (SSC) scatterplot using BDTM LSRII Flow Cytometer (BD Bioscience). After 

identifying the major cell population, 2 µl of the nuclear dye TO PRO-3 (0.2mM, Red 

660nm laser, Thermo Fisher) was added to 0.5 ml cells to identify cell death (TO PRO-

3 positivity). Blue 530nm laser was used to excite Venus fluorescence expressed in 

cells. Successful interaction between proteins would result in the formation of GFP 

signal from V1 and V2 tags, and should result in a positive shift of GFP signal in the 

histogram. 10,000 cell events were recorded for each sample. Geometric mean for the 

histogram of GFP expression was used to determine signal strength. 

 

Venus PCA transfected into HeLa cells for imaging Tmem203-Sting localisation on 

intracellular organelles were transfected as described in Appendix 2.6.4, and the 

images were acquired and analysed by confocal microscopy as described below 

(Appendix 3.11.2). 
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A3.10.2 Split Renilla luciferase reporter system 

Renilla signal is split into a large part named 2.1 and a small part named 1.1. For split 

Renilla-reporter PCA, HEK293 T cells were seeded at a density of 25,000 cells per 

100 µl in 96 well plates the day before transfection to allow attachment. Cells were 

transfected with a total of 100 ng of plasmid DNA per well, or 50ng each for co-

transfections using PolyFECT transfection method as described in Appendix 3.6.3. 

Empty vector Nano-BIT was used as negative control plasmid. 2.1 N RelA and 1.1 C 

IκBα was transfected as positive control. Cells were used in experiments 18 - 24 h 

post transfection.  

 

To assess protein interaction from Renilla PCA, old medium was aspirated from the 

cell culture and the plate was washed with 50 µl of PBS. Each well was detached by 

resuspension in 50 µl of colourless sterile trypsin-EDTA (0.25% in PBS) and were 

transferred to a non-transparent white 96 well plate. Plate was sealed and centrifuged 

at 1000 rpm for 3 mins, and PBS was replaced with 50 µl colourless DMEM (10% HI-

FBS) to attach cells to the bottom. To measure Renilla activity, 25 µl of Renilla 

substrate mixture (1:19 Substrate to buffer ratio as suggested by Nano-Glo live assay 

system, Promega) was added to each well with 5 mins incubation at 37℃ prior to 

stimulation and luciferase assessment. Renilla-catalysed substrate breakdown and 

luminescence was measured by 37℃ -controlled Varioskan plate reader (Thermo 

Fisher, version: 4.00.53) in the absence of ligands and were measured repeatedly with 

stimulations at the indicated times. DMXAA and 2’-3’cGAMP were added in 5 µl 

volume per well to achieve the total concentration of 50 µg/ml and 10 µg/ml, 

respectively. Interaction between 2.1 N RelA and 1.1 C IκBα was measured at the time 

points to indicate the rate of signal deterioration. By the end, cells were stained with 

Hoechst 33342 (0.002 nM) for 5 min to indicate cell numbers, which is used for Renilla 

normalisation. Measurement lasts a maximum of 30 mins to prevent extensive cell 

death.  

 

To calculate Renilla luciferase activity of each well: 

Renilla luciferase activity =  
(luminescence of treatment − luminescence of NanoBIT)

(Hoechst of treatment − Hoechst of unstained cells)
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A3.11 Fluorescent microscopy 

 

A3.11.1 Fluorescent imaging for human macrophages 

To determine green indicator siGlo transfection efficiency into human primary 

monocyte-derived macrophages (MDM), macrophages were transfected with the 

indicated amount of siGlo (Dharmacon, GE Healthcare) using Viromer Green 

transfection reagent as instructed by the manufacturer (Lipocalyx). 48 hours post 

transfection, culture medium was aspirated and replaced with warm colourless RPMI 

(1% PS and 10% LE-FBS). MDMs were imaged using a Leica AF6000 time lapse 

fluorescent microscope with 37℃ temperature control. 

 

To identify macrophage marker CD68 expression, primary monocytes were seeded in 

8 well chamber slides at a density of 200,000 cells per 400μl RPMI-1640 (1% PS and 

10% LE-FBS) and differentiated into macrophages with 100 ng/ml human recombinant 

M-CSF as described previously. Differentiated MDMs were washed twice with PBS 

and fixed with 4% formalin for 30 mins at 37℃. Cells were again washed three times 

with PBS and permeabilised with 0.1% Triton x100 in PBS for 15 mins. Cells were 

washed five times with 1x PBS to thoroughly remove Triton, and then blocked with 2% 

BSA-PBS for 45 mins at room temperature. After blocking, macrophages were 

changed into 1% BSA-PBS mixed with either 2 μg/ml primary mouse anti-CD68 (Dako) 

for specific binding, or 2 μg/ml anti-CD68 isotype (Dako) for non-specific binding 

control, or 1% BSA-PBS only for secondary antibody only control. Macrophages were 

incubated at 4℃ overnight. On the next day, cells were washed 3 times with PBS and 

incubated with 2 μg/ml goat anti-mouse secondary antibodies in 1% BSA-PBS for 1 h 

at room temperature. Macrophages were washed five times with PBS, mounted with 

vector shield containing DAPI, and dried at room temperature in dark for at least 30 

mins before imaging. Samples were imaged under Leica AF6000 time lapse 

fluorescent microscope. 

 

Images of each experiment were acquired at the indicated and consistent 

magnification, light exposure, gain and intensity. 
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A3.11.2 Imaging for protein complementation assay 

For organelle staining, HeLa cells were plated into glass-bottom petri dish and 

transfected with plasmids as stated in Appendix 3.6.4. Post transfection, cells were 

washed three times with PBS and incubated with either CytoPainter ER staining kit – 

red fluorescence (Abcam) or CytoPainter Lysosomal staining kit – red fluorescence 

(Abcam) for 10 min at 1:5 and 1:3 dilutions (with 1x PBS), respectively. Cells were 

then washed three times with PBS and recovered at 37℃ for 30 mins in warm 

colourless DMEM (1% PS and 10% HI-FBS). Control cells were maintained in warm 

colourless DMEM until imaging. Cells were then imaged with confocal microscopy on 

a Zeiss LSM 510 META with 40X inverted water-lens (Molecular Probes) with 30℃ 

temperature control. Both ER and lysosomal staining were excited at light wavelength 

of 565/615 nm, and Venus fluorescence obtained from Tmem203-Sting interaction 

PCA expression was excited at 500/520 nm. 

 

To image Tmem203-Sting localisation on the ER and lysosomes, HeLa cells were 

attached, transfected with plasmids, and stained with organelle dyes as described in 

Appendix 3.6.4 and 3.10.1. HeLa cells were imaged with confocal microscopy on a 

Zeiss LSM 510 META with 40X inverted water-lens (Molecular Probes) with 30℃ 

temperature control. A tilescan of GFP signal (Venus reconstitution) was produced for 

each sample so that 12 to 15 areas could be selected for better analysis (a 

demonstration of a tilescan is shown in Figure 16). Fifteen images were captured per 

sample and two independent experiments were carried for each condition. Images 

were analysed with Fiji_ImageJ [331]. Individual cells were analysed as shown in 

Figure 17. 
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Figure A11. Area selection for confocal microscopy of split Venus protein 

complementation assay of Sting - Tmem203 interaction.  

Glass-bottom culture dish with HeLa cells was scaned under a Zeiss confocal microscope. A 

5x5 area was selected for tilescan to produce a map of cells with weak but clear GFP signal. 

Transmission light phase was omitted to avoid fluorescence bleaching for later steps. Little 

and non-specific GFP signal shown in a. demonstrates a negative V1_Sting single transfection 

whereas positive GFP generated from V1_Sting and V2_Tmem203 interaction was shown in 

b. To prevent bias of result interpretation, 12 – 15 non-overlaping areas per dish were selected 

to be analysed in higher magnifications and resolutions, such as in c. Each selection area 

provides a view of 10-20 HeLa cells (although some were on the edge of view) which were 

captured for image analysis as shown in Figure 17. Scale bar is 100 µm.  
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Figure A12. Demonstration of imaging analysis using Fiji.  

① After acquiring images, the transmission (Cell), green (Tmem203-Sting), red (Lysosome) 

and the merged images were created. Convert the green and red channels to Black/White for 

analysis. ② Calculate the common (Both) pixels of the green and red channels. ③ Analyse 

cells individually. Select the region of interest (ROI) around the boundary of green 

fluorescence (Tmem203-Sting co-expression) of a cell and add the selection to ROI manager. 

④ Calculate the number of pixels for each channel and the Both pixels in the ROI. ⑤ 

Calculate the ratio of Tmem203-Sting expression on the lysosome (Both)) over the detection 

of lysosome to obtain the percentage of lysosomal expression of Tmem203-Sting. Only the 

whole-bodied cells were analysed to avoid generation of false-positive results and over-

calculation. 


