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Abstract
This Thesis contains three separate parts. The first part is a monograph, where we

present the history and novel developments to the family of Regression Monte Carlo

algorithms applied to stochastic control problems. The second part explores different

applications and experiments where we show the behaviour, and some interesting

characteristics, of the methods presented in part I. The third, and last part of

the thesis deals with the current energy systems and features a study of optimal

design and management of a microgrid system inspired by the facility installed in

Huatacondo, Atacama desert, Chile.



iii

To my parents, without who none of this would have been

possible

and to Roberta, who has always been on my side despite long

weekends of typing.



iv



v

Chentu concas, chentu berrittas
Popular Sardinian proverb. “hundred heads, hundred hats”



vi



vii

Acknowledgements
This research features the outcome of different projects that have been carried out

by a team which has included C. Alasseur (FIME director EDF, [1]), S.B. Aziza

(LAMSIN, [1]), C. Hure (University Paris Diderot, [5]), M. Laurière (NYU Shanghai,

[5]), M. Ludkovski (UC Santa Barbara, [6]), A. Maheshwari (UC Santa Barbara,

[1, 6]), J. Palczewski (University of Leeds, [3, 4, 6]), H. Pham (University Paris

Diderot, [5]), I. Pimentel (Ecole Polytechnique, [5]), P. Tankov (ENSAE ParisTech,

[1]) and X. Warin (FIME EDF, [1]). My contribution to these works has been

different in each project, however, it has mostly involved the design, implementation,

tuning and analysis of convergence of Regression Monte Carlo algorithms employed

in aforementioned papers.

I am deeply grateful to the people who accompanied me during this journey. First

and foremost my supervisor Jan Palczewski, who inspired me to enter the academic

world, and has offered me constant personal and professional support and advice. I

am also thankful to Elena Issoglio and Tiziano De Angelis, for the example they set

for me, but mostly for their friendship. I feel lucky to have met Dario Domingo and

Fabio Peruzzo, along with all the fellow Ph.D. students with whom I shared this

journey, and who have been an invaluable company to share ideas and thoughts of

all kinds. Mousa Huntul, Shambo Bhattacharjee and Fatima Almulhim have made

the days spent at the desk as pleasant as they could have been, and I thank them

for this. I am also very grateful to the whole stochastic control group in Leeds, who

has offered me, during seminars and tea-time discussions, an invaluable insight on

topics that I only marginally explored in my personal research activity. Finally, I

am in debt with all the people, mentioned and unmentioned in this paragraph, who

have contributed to make this journey one of the best experiences in my life, as well

as shape my character during the past four years, producing the best myself I have

ever been.



viii



ix

Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Quote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I Regression Monte Carlo 5

1 Roadmap 7

1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Optimal control process . . . . . . . . . . . . . . . . . . . . . 9

1.2 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Optimal switching problems . . . . . . . . . . . . . . . . . . . 11



CONTENTS x

1.2.2 Inventory problems . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Optimal stopping problems . . . . . . . . . . . . . . . . . . . 15

1.3 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 General Markov processes . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.3 Optimal stopping and switching . . . . . . . . . . . . . . . . . 20

1.4 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Continuous time problems . . . . . . . . . . . . . . . . . . . . . . . . 22

2 RMC for control of Markov processes 27

2.1 Regression Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 How it works . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2 Regression Monte Carlo in literature . . . . . . . . . . . . . . 32

2.1.3 Regress Now and its limitations . . . . . . . . . . . . . . . . . 35

2.1.4 Regress Later approximations of conditional expectations . . . 37

2.2 A framework for Regress Later projections . . . . . . . . . . . . . . . 39

2.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 Random projection operator . . . . . . . . . . . . . . . . . . . 41

2.2.3 Extension of the random projection operator . . . . . . . . . . 42

2.2.4 Useful bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



CONTENTS xi

2.3.2 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Forward Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.1 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.2 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5 Performance Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5.1 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5.2 Projection operator in bigger spaces . . . . . . . . . . . . . . . 61

2.5.3 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . 65

3 RMC for inventory problems 73

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Regression Monte Carlo numerical algorithms . . . . . . . . . . . . . 76

3.2.1 Grid discretisation of inventory levels . . . . . . . . . . . . . . 77

3.2.2 Quasi-simulation of the inventory . . . . . . . . . . . . . . . . 80

3.2.3 Control Randomisation . . . . . . . . . . . . . . . . . . . . . . 81

3.3 Regress Later Monte Carlo: a decoupling approach . . . . . . . . . . 82

3.3.1 Comparison with the control of stochastic dynamics . . . . . . 84

3.3.2 Comparison with other methods . . . . . . . . . . . . . . . . . 85

4 RMC for optimal stopping and switching 87

4.1 A simpler framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.1 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 88



CONTENTS xii

4.1.2 Performance Iteration . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Early results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.2 Pseudo regression . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Tuning and considerations 95

5.1 Value vs. Performance Iteration . . . . . . . . . . . . . . . . . . . . . 96

5.1.1 Error propagation . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Training measure and choice of basis functions . . . . . . . . . . . . . 99

5.2.1 Choice of training measure µ . . . . . . . . . . . . . . . . . . . 100

5.2.2 Choice of basis functions . . . . . . . . . . . . . . . . . . . . . 103

5.3 Fast maximisation through gradient descent . . . . . . . . . . . . . . 107

5.3.1 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.2 Performance Iteration . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Backward construction of inventory levels for Performance Iteration . 110

5.4.1 A fix point problem . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

II Applications and Numerical Experiments 115

6 Inventory management 119

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



CONTENTS xiii

6.2 Price arbitrage problem . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . 120

6.2.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 System of pumped hydro-reservoirs . . . . . . . . . . . . . . . . . . . 123

6.3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 Portfolio liquidation under drift uncertainty . . . . . . . . . . . . . . 127

6.4.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . 129

6.4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Fully controlled problems 133

7.1 Univariate linear-quadratic maximisation . . . . . . . . . . . . . . . . 134

7.1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.1.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . 134

7.2 Control of a robot through a set of doors . . . . . . . . . . . . . . . . 135

7.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . 137

7.2.3 Exploration vs. exploitation . . . . . . . . . . . . . . . . . . . 138

7.2.4 Value vs. Performance . . . . . . . . . . . . . . . . . . . . . . 138

7.3 A model of interbank systemic risk with partial observation . . . . . . 139



CONTENTS xiv

7.3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . 143

7.3.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

III Sustainable Energy Systems 147

8 The current energy landscape 151

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.2 Renewable generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.2.1 Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.2.2 Solar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.2.3 Other sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.3 Energy storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.3.1 Natural gas storage facilities . . . . . . . . . . . . . . . . . . . 157

8.3.2 Pumped hydro storage . . . . . . . . . . . . . . . . . . . . . . 158

8.3.3 Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.3.4 Flexible alternatives . . . . . . . . . . . . . . . . . . . . . . . 160

8.4 Challenges and solutions . . . . . . . . . . . . . . . . . . . . . . . . . 161

9 Microgrid modelling 165

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



CONTENTS xv

9.2.1 Residual demand . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.2.2 Diesel generator . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.2.3 Dynamics of the battery . . . . . . . . . . . . . . . . . . . . . 170

9.2.4 Management of the microgrid . . . . . . . . . . . . . . . . . . 171

9.3 Stochastic optimisation problem . . . . . . . . . . . . . . . . . . . . . 172

9.4 Relaxing the no-blackout constraint . . . . . . . . . . . . . . . . . . . 175

10 Guidelines for optimal microgrid management 179

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10.2 System behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10.2.1 Battery capacity . . . . . . . . . . . . . . . . . . . . . . . . . 182

10.2.2 Renewable penetration . . . . . . . . . . . . . . . . . . . . . . 183

10.2.3 Switching and curtailment . . . . . . . . . . . . . . . . . . . . 186

10.3 Comparison with deterministically trained policy . . . . . . . . . . . 187

10.4 Probabilistic constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.4.1 Admissible set estimation . . . . . . . . . . . . . . . . . . . . 193

10.4.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . 194

10.4.3 Stationary net-demand . . . . . . . . . . . . . . . . . . . . . . 194

10.4.4 Calibration on real data . . . . . . . . . . . . . . . . . . . . . 196

10.5 Non-islanded mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.5.1 Modelling choices . . . . . . . . . . . . . . . . . . . . . . . . . 202

10.5.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 204



CONTENTS xvi

10.5.3 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . 206

10.6 Managing a microgrid: final guidelines. . . . . . . . . . . . . . . . . . 209

Bibliography 210



xvii

List of Figures

2.1 Approximation of conditional expectations . . . . . . . . . . . . . . . 40

2.2 Square integrable spaces . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Training measure experiment: fitting . . . . . . . . . . . . . . . . . . 102

5.2 Training measure experiment: control policy . . . . . . . . . . . . . . 102

6.1 Price arbitrage: trade-off between time and performance . . . . . . . 124

6.2 Price arbitrage:gradient descent . . . . . . . . . . . . . . . . . . . . . 124

6.3 Hydro-reservoirs diagram . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 Hydro-reservoirs: system behaviour . . . . . . . . . . . . . . . . . . . 126

6.5 Portfolio liquidation: estimated value function . . . . . . . . . . . . . 132

7.1 Univariate linear-quadratic: relative error . . . . . . . . . . . . . . . . 135

7.2 Univariate linear-quadratic: convergence to continuous time solution . 136

7.3 Control of a robot: room scheme . . . . . . . . . . . . . . . . . . . . 136

7.4 Control of a robot: estimation comparison . . . . . . . . . . . . . . . 140

7.5 Control of a robot: control policy . . . . . . . . . . . . . . . . . . . . 141



LIST OF FIGURES xviii

7.6 Systemic risk problem: path simulation . . . . . . . . . . . . . . . . . 146

9.1 Microgrid topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.2 Diesel generator efficiency . . . . . . . . . . . . . . . . . . . . . . . . 170

9.3 Huatacondo microgrid layout . . . . . . . . . . . . . . . . . . . . . . 173

9.4 Minimum admissible diesel output . . . . . . . . . . . . . . . . . . . . 177

10.1 Battery capacity analysis . . . . . . . . . . . . . . . . . . . . . . . . 182

10.2 Optimal battery capacity . . . . . . . . . . . . . . . . . . . . . . . . 184

10.3 Renewable penetration: diesel cost . . . . . . . . . . . . . . . . . . . 185

10.4 Renewable penetration: path simulation . . . . . . . . . . . . . . . . 185

10.5 Switching and curtailment analysis . . . . . . . . . . . . . . . . . . . 187

10.6 Switching and curtailment: control map . . . . . . . . . . . . . . . . 188

10.7 Deterministic model: path simulation . . . . . . . . . . . . . . . . . . 190

10.8 Deterministic model: cost comparison . . . . . . . . . . . . . . . . . 191

10.9 Deterministic model: path comparison . . . . . . . . . . . . . . . . . 192

10.10 Probability constraint evaluation . . . . . . . . . . . . . . . . . . . . 197

10.11 Microgrid: real parameter calibration . . . . . . . . . . . . . . . . . 198

10.12 Control policies comparison . . . . . . . . . . . . . . . . . . . . . . . 200

10.13 Connected microgrid diagram . . . . . . . . . . . . . . . . . . . . . . 204

10.14 Connected microgrid: performance . . . . . . . . . . . . . . . . . . . 207

10.15 Connected microgrid: system behaviour

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



xix

List of Tables

1.1 Stochastic control problems . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Regression Monte Carlo algorithms . . . . . . . . . . . . . . . . . . . 32

2.2 Summary of the L2 spaces . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1 Hydro-reservoirs: performance of estimated policies . . . . . . . . . . 127

6.2 Portfolio liquidation: results comparison . . . . . . . . . . . . . . . . 132

7.1 Univariate linear-quadratic: convergence to the continuous time

solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Systemic risk problem: results comparison . . . . . . . . . . . . . . . 145

10.1 Comparison between stochastic and deterministic policy: switching

costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10.2 Microgrid example parameters . . . . . . . . . . . . . . . . . . . . . . 195

10.3 Cost of running the microgrid . . . . . . . . . . . . . . . . . . . . . . 199





1

Preface

I started working on this project with a clear goal in mind. I wanted to contribute

with my research to the fight against pollution and climate change. From my

position the best way of doing so was to investigate the causes hindering an

increasing penetration of renewable energy generation. One of the most challenging

obstacles to a conversion to a fully sustainable energy system is represented by

the unpredictability and lack of control over the energy produced by renewables.

Electricity demand is growing rapidly in the less developed countries, while in

the old world the increasing electrification is changing the historical patterns of

consumption on which the design of the power system had been based when it

was built decades ago. At the same time, the diminishing share of dispatchable

power decreases the ability of the grid operator to react to fast changes in the

power production/consumption. To better understand the dynamics driving the

difficulties just mentioned, and to devise possible remedies, we turned to problems of

stochastic control, whose solutions were very difficult to approximate precisely with

the available numerical techniques. For this reason, in this project, we developed an

efficient algorithm to solve general stochastic control of discrete Markov processes

problems and prove the convergence to the true, optimal solution.

This project addresses the problems highlighted in the previous paragraph, focusing

on the role of energy storage in the modernization of the electrical grid. Energy

storages are studied, in particular, using tools and techniques developed in the



Preface 2

field of stochastic analysis, which is the branch of mathematics that investigates

the properties of random movements and evolution through time. The aim of

the project is to develop robust and efficient numerical techniques to analyse and

evaluate the optimal control of a network comprising storage devices and renewable

forms of energy production, along with traditional generation and different nodes of

demand. The model of power network which will be studied is called microgrid.

Microgrids contain all elements present on a full-scale national grid but on a smaller

scale. The microgrid concept is gaining much attention today as more distributed

generation is being installed, and this configuration allows to exploit their potential

at best, avoiding curtailments of production. In order to manage the operation of the

microgrid, a controller device usually exploits the flexibility of the electricity storages

to increase the dispatchability of the renewable generation and to support the system

during hours of low generation. Microgrids, however, are not just islanded systems;

they can rather be pieces of a larger system, which dynamically controls topology

and connectivity of its components in order to guarantee reliability and quality of

service in a scenario of increasing electricity demand and renewable penetration.

In the thesis that follows, we will delve first into Markov processes and stochastic

control problems, and describe the dynamic programming equation which inspires

the class of numerical methods that we want to explore. In the second chapter, we

will introduce approximations of conditional expectations via empirical projections

and present two algorithms based on such approximation to solve general stochastic

control problems. In addition, we prove the convergence of the scheme to

the analytical solution in three theorems that represent the main mathematical

contribution of the thesis. In the two chapters that follow, we will explore three

interesting problems in detail: inventory, stopping and switching. We conclude

the first part of the thesis with a chapter that investigates practical aspects of the

implementation and the differences between the two algorithms introduced. The

second part of the thesis features two chapters that present a number of examples of
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inventory and full control problems that are used to highlight particular aspects of

the algorithms. In the third part of the thesis, we will come back to energy systems

and describe some of the steps necessary to transform microgrids into “smart-

grids”. We begin with an overview of the current energy landscape, challenges and

possible solutions, and a description of the most representative technologies. The

chapter that follows introduces our mathematical modelling of a microgrid and the

description of the numerical experiments. A collection of management and design

advice concludes this thesis.



Preface 4



5

Part I

Regression Monte Carlo
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Chapter 1

Roadmap

In this chapter, we present the framework of stochastic control of Markov processes

and provide an introduction to the different problems we will deal with in the rest

of the Thesis. Recall that, as explained in the preface, our main contribution resides

in developing, and providing convergence results for, the Regress Later Monte Carlo

algorithm employed to solve stochastic control problems of the kind listed in this

chapter.

The structure of the chapter is as follow: we open by explaining what a control

problem of discrete stochastic Markov processes involves, and then present some

special cases of the general formulation that are worthwhile discussing given the

popularity they enjoy in the community. We will continue by discussing the dynamic

programming principle that allows the reduction of these very high dimensional

problems into a sequence of lower dimensional ones, thereby allowing us to solve

them. We will conclude introducing the difficulties and possible approaches to solve

these problems numerically and then, finally, we show how continuous time problems

can be approximated within our framework too.
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1.1 Problem formulation

Let us consider a controlled Markov process (Xn)Nn=0 in discrete time, on a domain

D ⊆ Rd × {0, . . . , N}, to which we sometimes refer to as state space, specified as

follows:

Xn+1 = ϕ(n,Xn, ξn, un), X0 = x, (1.1.1)

where ϕ is a Borel-measurable function and {ξn}Nn=0 is a collection of i.i.d. uniformly

distributed random variables on [0, 1]. Define by (Fn), n > 0 the filtration generated

by the sequence of r.v. ξ0, . . . , ξn−1, i.e. Fn = σ{ξk : k < n}. The process

{us}Ns=0 ∈ Du ⊆ Rp × {0, . . . , N}, the action space, is called the control, and we

require that at time n it is adapted to (Fn) or, in other words, no future information

should be used to determine its value. We further postulate that the control process

can always be given in feedback form as us = u(s,Xs), which corresponds to an

assumption of Markovianity on the system. We can see from Hernandez-Lerma

and Lasserre [40] that (1.1.1) represents a general description of controlled Markov

processes.

In this setting, we define a pathwise performance measure

J(n, (Xs, us)Ns=n) =
N−1∑
s=n

f(s,Xs, us) + g(XN), n = 0 . . . N, (1.1.2)

where the functions f and g represent the current and the terminal reward. The

functional J provides us with a way of assessing the goodness of the control process

{us}Ns=0 on a realised path {Xs}Ns=0. Notice that we used uN as a dummy variable

that does not influence the state of the system but eases notation.

Define the control problem as the problem of finding the control process u that

optimises the average performance measure, equivalently, the optimal control

problem can be stated in terms of computing the maximal (minimal) average value,

called value function, of the performance measure with respect to the choice of the
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control process:

V (n, x) = sup
u∈U{n:N}(x)

E
[
J(n, (Xs, us)Ns=n)

∣∣∣Xn = x
]
, (1.1.3)

where we define the set of admissible control processes from time n to N as

U{n:N}(x) = {(us)Ns=n : us ∈ Ws(Xs) ∩ Du, a.s. s = n, . . . , N − 1}, Xn = x

and Ws represents a set of problem specific constraints that might be given either

implicitly or explicitly.

Numerical solution of this class of problem is presented in chapter 2.

1.1.1 Optimal control process

We denote by (u∗s)Ns=0 the optimal control that maximises the performance measure

(1.1.2) and defines the value function in (1.1.3). The existence and uniqueness of

such process have been long established for the class of problems we are interested

in; in the following, we provide a brief discussion. For more details we refer to

Hernandez-Lerma and Lasserre [40].

Recall that we decided to limit ourself to control processes that can be expressed in

a feedback form. It turns out, however, that the optimal control processes, solutions

to the problems introduced in this chapter, belong to the family of feedback controls.

Feedback controls are processes that can be described in terms of a function of the

current value of the state space variables, i.e (us)Ns=0 = u(s, x). In order to guarantee

the existence and uniqueness of the optimal control process in our setting, we need to

guarantee the existence and uniqueness of a maximiser to the dynamic programming

equation (1.3.12), that we introduce later, independently at each time step. The set

of conditions under which the optimum is attained are usually called measurable

selection conditions and include assumptions on the compactness of the admissible
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control space and the semi-continuity or boundedness of the reward function . For

further details refer to section 3.2 in Hernandez-Lerma and Lasserre [40]. Notice

that, even though outside the scope of this Thesis, results presented in the following

chapters might be extended to ε-optimal controls whenever the actual maximum

cannot be achieved.

Example 1.1.1. Control of a robot In this example, we show how a very tangible

real-world problem can be cast in the framework introduced so far. Consider a robot

operating on a disrupted surface such that the movement inputs provided by the

controller translate in a stochastic movement of the robot. We consider the case of

controlling a rescuing robot operating on debris which influences the movement of

the robot as it passes over them with its wheels. We can assume the dynamics:

Xn+1 =
(
Xn + un

100 + 1
10ξn

)
∨ −2 ∧ 2, n = 0, . . . , N

which corresponds to the case where the robot is moving inside a building (the

external walls are −2, 2 and 0, N). The controller wants to move the robot from

one room to another avoiding hitting the walls, which would damage the machine.

It is therefore the role of the controller to find the best controlling policy to move

the robot from its starting point to the terminal one, passing through the doors that

connect the different rooms. Notice that the charge that allows the robot to move is

finite and therefore the controller also wants to minimise the use of control:

V (n, x) = min
u∈U{n:N}(x)

E
[ N∑
s=n

a1{us 6=0}+b(us)2+c1{s=τs}1{Xs /∈[d−τs ,d
+
τs ]}

∣∣∣∣Xn = x
]
. (1.1.4)

We will discuss this problem at length in Part 2 of the thesis.

1.2 Special cases

We describe now different classes of stochastic control problems which can be

formulated as special cases of problem (1.1.3) but, nonetheless, deserve a separate
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X I

Stopping uncontrolled {0, 1}

Switching uncontrolled {1, . . . , R}

Inventory uncontrolled [0, Imax]

Control controlled N/A

Table 1.1: The ”X” column shows whether the process with stochastic dynamics is

controlled, the ”I” column shows the domain of the controlled process.

discussion for both historical and technical reasons. All problems that follow can

be described by means of an additional process I, where I stands for index or

inventory, which can be regarded as additional deterministic dimensions of the

process X = (X, I). For convenience, we use the same notation, whenever it does

not cause confusion, for the exogenous dimension as well as its first set of dimensions.

For reference, we display the main differences between the special cases discussed in

this section in table 1.1.

1.2.1 Optimal switching problems

A well known special case of the general problem presented in the previous section is

given by those problems where the control only takes values in a discrete set with low

cardinality. The implications of this characteristic make the problem considerably

easier to solve numerically. Notice that, by construction, the problem can always

be rewritten with Du ∈ R simply by enlarging the set or regimes, to account for all

possible combinations of regimes per dimension.

Enlarge the state space with an index process I taking values in a set of R different

regimes to each of which a running reward function f(n, x, u) = fu(n, x) , u = 1 . . . R

is associated. The switching problem is to decide from which regime to profit at



Chapter 1. Roadmap 12

a given point in space-time characterized by the triple (n,Xn, In). In order to

choose the regime we want to switch to, we use the control process at time n,

un ∈ {0, . . . , R}, while the index process I ∈ {0, . . . , R} records the current regime

by In+1 = un. In the following, we will focus on a subclass of such problems to which

most of the attention from literature has been devolved, namely the case where the

regime does not influence the dynamics of X.

In general, some state-dependent switching costs will be associated to the problem:

define ci,j(x) the cost of switching from regime i to regime j when in state x. Notice

that in our discrete time framework, where only one switching decision per time

step is allowed, we do not need to make any assumption (except for boundedness)

about the switching costs. It is however common in literature and applications, and

of fundamental importance in continuous time or when multiple switching decisions

are allowed at one instant of time, to assume that (while dropping the explicit

dependence from x in notation): not switching does not bring any cost, ci,i = 0∀i =

1 . . . R; switching directly between two regimes is the cheapest choice, ci,k + ck,j >

ci,j ∀i, j, k = 1 . . . R, i 6= j; switching back and forth brings a cost, ci,j + cj,i >

0∀i, j = 1 . . . R. The previous set of assumptions is necessary to preserve existence

and uniqueness and avoid infeasible control policies (switch an infinite number of

times in a finite time horizon), but it is not strictly required in our setting where

the number of possible switches is finite and bounded by N .

The general form for the performance measure in optimal switching problems is

given as follow:

J(n, (Xs, Is, us)Ns=n) =
N−1∑
s=n

[f(s,Xs, us)− cIs,us ] + g(XN , uN). (1.2.5)

The optimal switching problem aims to find the optimal strategy u∗(n, x, i) ∈

{0, . . . , R} to which the value function is associated:

V (n, x, i) = sup
u∈U{n:N}(x)

E[J(n, (Xs, Is, us))|Xn = x, In = i]. (1.2.6)
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Classical formulations define a collection of value functions {V j(n, x)}Rj=1 while in

our approach we consider the current regime to be part of the state space, allowing

us to define only one value function and remain within the framework introduced

at the beginning of the chapter.

Example 1.2.1. Gas-powered Turbines Control Consider the controller of a

Gas-fueled power plant whose job is to decide the operative regime of the plant in

order to maximise profits on selling electricity. Consider a set of turbines with

different characteristics; they can be operated separately or combined, producing R

different regimes. Each regime is characterised by a different conversion coefficient

{Hi, Qi}Ri=1 between gas burnt and electricity produced. Define the switching problem

faced by the controller of the gas turbines as follow:

J(n, (Ps, Fs, Is, us)Ns=n) =
N∑
s=n

(QusPs −HusFs − CIs)+ − k − cIs,us ,

where some switching costs ci,j are paid every time a different set of turbines is

shut off and turned on to switch from regime i to regime j. We indicate by Cj a

deterministic carbon price paid according to the set of turbines in use, fix costs are

represented by k and are not affected by the regime we select; P and F represents

the exogenous processes for electricity and fuel price respectively.

The controller wants, therefore, to find the optimal control process u∗(p, f) which

defines:

V (n, p, f, i) = sup
u∈U{n:N}

E[J(n, (Ps, Fs, Is, us)Ns=n)|Pn = p, Fn = f, In = i]

Numerical solution of this class of problem is presented in chapter 4.

1.2.2 Inventory problems

Inventory problems originated from the early works of Benes et al. [10] and Jacka [44]

in a more restrictive framework of finite fuel problems, i.e. the inventory cannot be
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replenished, and only a certain amount of “energy” is available for the control. We

are motivated by problems inspired by real-option valuation, where the optionality

comes from managing the inventory level over time. For further reference see Balata

and Palczewski [4].

Consider an inventory process In+1 = ϕI(n, In, un), along with the process Xn+1 =

ϕX(n,Xn, ξn), living in a compact domain [0, Imax] which can be depleted or

replenished by the control u. The latter, we assume, can take values in a set Du
which might be continuous or discrete.

Remark 1.2.2. When the control process is discrete, it is possible to rewrite

the Inventory control problem as an Optimal Switching problem, without loss of

generality. In the following, however, we will focus on the original inventory control

forumlation.

A typical optimal inventory problem reads:

V (n, x, i) = sup
u∈U{n:N}(x,i)

E
[ N∑
s=n

f(s,Xs, Is, us)
∣∣∣Xn = x, In = i+ g(XN , IN)

]
, (1.2.7)

with its main peculiarity being the set of state dependent admissible controls

U{n:N}(x, i) =
{

(us)Ns=n : us ∈ Du : Is+1 = ϕI(s, Is, us) ∈ [0, Imax], s ∈ [n,N−1]]
}
, Xs = x, Is = i.

Example 1.2.3. Battery charge management A classic inventory type problem,

which will be thoroughly discussed in the following chapters, is represented by the

optimal control of the charging and discharging operations of a battery. Assume we

are given a system where the controller has a reward associated with different levels

of output/input from/to the battery. Consider, for example, the price arbitrage

case discussed in chapter 6, where the controller profits from selling electricity

to the grid when prices are high and buying electricity back when prices are low.

Regardless of the specific reward function, however, one peculiarity of inventory

management problems is that they could be formulated in terms of optimal inventory
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level, rather than optimal charging/discharging policy, redefining the control to be

the current inventory level. This characteristic is due to the deterministic nature of

the inventory, which guarantees a one-to-one correspondence between the values of

(un, In) and In+1. Managing the charging operations of a battery can, therefore, be

seen as a problem of finding the optimal state of charge (SoC) in order to be prepared

for intense charging or discharging operations in the future, at times of favourable

electricity prices.

Numerical solution of this class of problem is presented in chapter 3.

1.2.3 Optimal stopping problems

Optimal stopping problems have been introduced in the literature by the early work

of Wald [77] and Snell [71] in a discrete time setting, in connection with sequential

analysis. A complete analysis of optimal stopping problems for Markov processes can

be found in Shiryaev [70]. The stopping problem is classically formulated through

the following performance measure:

J(n, (Xs, τ)Ns=n) =
τ∑
s=n

f(Xs) + h(Xτ ) (1.2.8)

where τ ∈ [n,N ] is the stopping time at which we decide to stop profiting from f(Xt),

to get the instantaneous terminal reward h(Xτ ). The optimal stopping problem

requires to find the optimal stopping time τ ∗ for which the expected value of the

reward is maximal; we call such optimal expected reward the value function of the

optimal stopping problem. The value function can be written as:

V (n, x) = sup
τ∈[n,N ]

E
[
J(n, (Xs, τ)Ns=n)

∣∣∣Xn = x
]
. (1.2.9)

In order to fit (1.2.9) within our framework in (1.1.3), we identify the class of optimal

stopping problems as a subclass of optimal switching problems, where only two
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regimes are available and only one switching opportunity is allowed. In order to

formalise the possibility of switching only once, we can introduce a switching cost

c1,0 = −∞ (respectively +∞ for minimisation problems) or alternatively, define

ϕI(n, i, u) = i + u and the set of admissible controls as {us ∈ {0, 1} : Is+1 ∈

{0, 1} and IN = 1}. In addition, we set f(n, x, 1) = 0 = g(x, ·), while we can regard

the function h to be the switching cost from the regime I = 0 to the regime I = 1,

i.e. c0,1(·) = h(·). In our framework we define therefore τ = min{s : us = 1}.

The equation for the value function associated with this framework is given by:

V (n, x, 0) = sup
u∈U{n:N}

E
[N−1∑
s=n

f(s,Xs, Is) + cIs,Is+us

∣∣∣∣Xn = x, In = 0
]
. (1.2.10)

Example 1.2.4. Bermudan options A classic example, see McKean [55], of

optimal stopping problem is represented by the American option pricing problem.

This derivative contract grant the owner with the right, but not the obligation,

to enter a long or short position on the underlying asset (usually a stock) at a

predetermined fix price, called strike price K, over a time horizon (maturity).

Contrary to a future contract, the payoff of these derivatives is usually asymmetric,

implying that at the writing time, the contract has a value, or price, which the

writer will charge to the buyer. This price is represented by the value function of the

optimal stopping problem (which determines the best time to exercise the option). By

their very nature, however, American option pricing problems should be formulated

in continuous time, as the right to exercise the option, and therefore entering the

position on the stock, can happen at any time from the writing to the maturity. Let

us consider therefore a variant of American options called Bermudan, which offers

exercise rights only at some prescribed dates during the life of the contract. The

name of this contract comes from the geographical position of the Bermudan islands,

situated “halfway” between Europe and America. Recall that European options are

contracts that can only be exercised at maturity. The discrete set of exercise dates

for a Bermudan option allows us to formulate our problem in discrete time. Let X
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represent a dynamic model for the price of the underlying, which we might think of as

a stock. The payoffs of vanilla options are either of call (long) type or put (short) type

and given, at time n, by
(
Xn−K

)+
and

(
Xn−K

)−
respectively. In general, option

contracts might exhibit more complex payoffs, and we might write a more general

expression for the payoff as c0,1(x), where we require c0,1 to be square integrable

with respect to the conditional measure Xn|X0 ∀n. Recalling that at maturity the

optionality expires, and the payoff obtained is c0,1, we can compute the price of the

option at a given time n < N by computing the value of the contract for the buyer

at that time:

V (n, x) = sup
u∈U{n:N}

E[
N∑
s=n

cIs,Is+us(Xs)|Xn = x].

Computing the price of a Bermudan option is, therefore, equivalent to finding the

optimal stopping time for collecting the reward c0,1.

1.3 Dynamic programming

A convenient equivalent representation of the value functions introduced in the

previous section can be given by the dynamic programming principle, which states

that the current value of the optimisation problem is given by the sum of the current

reward function and the expectation of all future profits conditional on the present

state. More rigorously, and using the words of Richard Bellman about his principle

of optimality : “An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute an optimal policy

with regard to the state resulting from the first decision” (See Bellman, 1957, Chap.

III.3.).

Recall that we limited ourselves to work with feedback controls. In such instance

we can formalise Bellman’s words by considering the following equation associated
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with the dynamic programming optimality principle for problem (1.1.3):

V (n, x) = E
[ N∑
s=n

f(s,Xs, u
∗
s) + g(XN)

∣∣∣∣Xn = x
]

= E
[ n+t∑
s=n

f(s,Xs, u
∗
s) +

N∑
s=n+t+1

f(s,Xs, u
∗
s) + g(XN)

∣∣∣∣Xn = x
]
,

= E
[ n+t∑
s=n

f(s,Xs, u
∗
s) + E

[ N∑
s=n+t+1

f(s,Xs, u
∗
s) + g(XN)

∣∣∣Xn+t+1
]∣∣∣∣Xn = x

]

= E
[ n+t∑
s=n

f(s,Xs, u
∗
s) + V (n+ t+ 1, Xn+τ+1)

∣∣∣∣Xn = x
]
, t ∈ [0, N − n− 1],

(1.3.11)

where we indicated the optimal control u∗(n, x) by u∗n. Notice that in the expression

above, second to third line, we used the tower property of conditional expectations.

Let us now introduce a shorthand notation that will be used throughout the thesis.

Definition 1.3.1. We define the following notation to represent conditional

expectations:

En,x,u [f(Xn+1)] = E
[
f(Xn+1)

∣∣∣Xn = x, un = u
]

=
∫
D
f(y) dν(y)

where ν is the density of (Xn+1|Xn). The values {n, x, u} might, where relevant,

be replaced by {n, x, i, u} or other variables we need to condition upon. When

the conditional expectation is applied to the value function, we will refer to it as

the continuation value. For a formal definition of conditional expectation refer to

chapter 4 in Rogers and Williams [67]

In the following subsections we will present the one-step dynamic programming

equations (DPE, t = 0), for the different problems introduced before, and discuss

the consequences that follow from this formulation.
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1.3.1 General Markov processes

By setting t = 0 in the dynamic programming equation (1.3.11), we obtain the

following representation of the value function, which offers a convenient separation

between the immediate effect of the control and its influence on the state of the

system:

V (n,Xn) = max
u∈U{n:n}(Xn)

{
f(n,Xn, u) + En,Xn,u

[
V (n+ 1, Xn+1)

]}
, (1.3.12)

where the conditional expectation En,Xn,u[V (n + 1, Xn+1)] represents the most

challenging expression to compute at each step of the Bellman dynamic equation.

Intuitively, the DPE shows that at each time step the controller faces a trade-off

between maximising the deterministic instant reward f(n,Xn, u) and driving the

controlled process X towards areas of the state space where the reward in the future

will be higher. As future performance are intrinsically random, to make decisions,

the controller can only use its expectation of future rewards given the control chosen

at present time, i.e. En,Xn,u
[
V (n+ 1, Xn+1)

]
. Notice the implicit dependence of the

measure Xn+1|Xn on the control u. The optimal control at time n is therefore given

by the expression:

u∗n = u∗(n,Xn) = argmax
u∈U{n:n}(Xn)

{
f(Xn, u) + En,Xn,u

[
V (n+ 1, Xn+1)

]}

= argmax
u∈U{n:n}(Xn)

{
f(Xn, u) + Eξn

[
V
(
n+ 1, ϕ(n,Xn, ξn, u)

)]}
,

(1.3.13)

where Eξn represents the expectation with respect to the law of the random variable

ξn, introduced in (1.1.1).

In the following subsections, we present the dynamic programming equation

associated with the classes of problems introduced before: inventory, switching and

stopping. The common characteristic of these problems is that they are easier to
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solve than the general problem (1.1.3). In particular, the ease for switching problems

comes from the set of admissible controls being discrete, for inventory problems from

the control process not affecting the random dynamics of X, while for stopping both

characteristics are present: the control takes discrete values (only two, in particular),

and it does not affect random dynamics.

Remark 1.3.2. In the following, for simplicity of notation, we will indicate

U{n:n}(x) by Un(x).

1.3.2 Inventory

When we consider the problems of optimal control of inventory, the resulting DPE

shows why they are considered to be easier to solve than the general case and worth

of separate analysis:

V (n, x, i) = max
u∈Un(x,i)

{
f(n, x, i, u) + En,x,i,u[V (n+ 1, Xn+1, In+1)]

}
= max

u∈Un(x,i)

{
f(n, x, i, u) + Eξn

[
V
(
n+ 1, ϕX(n, x, ξn), ϕI(n, i, u)

)]}
.

(1.3.14)

The second line of (1.3.14) shows that the effect of the control u on the conditional

expectation can be decoupled from the effect of the noise ξ allowing us to compute

an explicit dependence on known values of i and u. We will see in the following how

this becomes very helpful for the Regression Monte Carlo family of algorithms.

1.3.3 Optimal stopping and switching

Whenever the problem features discrete controls, we can formulate it in terms of

optimal switching problem whose dynamic programming equation reads as follows:

V (n, x, i) = max
u∈Un(x)

{
f(n, x, u)− ci,u + En,x[V (n+ 1, Xn+1, u)]

}
, (1.3.15)
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where we leave x 7→ En,x[V (n+ 1, Xn+1, u)] described implicitly.

The Bellman equation is telling us that the optimal policy is given by the rule:

switch from i→ j whenever max
j 6=i

(f(n, x, j)−ci,j + En,x[V (n+ 1, Xn+1, j)]

≥ f(n, x, i) + En,x[V (n+ 1, Xn+1, i)].

The switching rule prescribes that at each time step we choose the best regime to

stay in, comparing the alternatives of not switching and keep profiting from the

regime we are currently in, and to switch to the best possible alternative, paying

the switching cost and then continuing into the new regime for the next time step.

The most striking simplification compared with the general case and the inventory

problems is that only a finite set of conditional expectations, taken as a function of

the state only, needs to be estimated, i.e.
{
En,x,i[V (n+ 1, Xn+1, u)]

}uR
u=u1

.

In the particular case of optimal stopping problems, where only two controls are

available, the DPE reduces to an optimization problem in which we are left with

the binary choice of stopping or continuing to the next time period:

V (n, x, i) = max
u∈{0,1}:i+u≤1

{
f(n,Xn, u) + ci,i+u + En,x[V (n+ 1, Xn+1, i+ u)]

}
= max

{
f(n,Xn, 0) + En,x[V (n+ 1, Xn+1, 0)], c0,1(n,Xn)

}
.

(1.3.16)

The optimal decision for the optimal stopping problem at each time step is given by

the following rule:

stop whenever c0,1 ≥ f(n,Xn, 0) + En,x[V (n+ 1, Xn+1, 0)].

that means we are left with a sequence of problems in which we chose the most

profitable option between stopping the process and obtaining the terminal reward

c0,1, or taking the running reward f0 and continuing optimally from time n + 1

onward.
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1.4 Numerical solution

We will focus our attention now on the numerical techniques that can be used to solve

the problems introduced so far. Thanks to the formulation provided by the Bellman

equation, we can tackle our problems in a probabilistic way, iteratively backward

in time starting from a given terminal condition at time N . The simplicity of the

control rules highlighted in the previous sections allows us to quickly determine the

optimal policy, provided that we are able to compute the effect of choosing any given

control on the system. As we work in a stochastic environment, the effect of the

control can only be assessed in expectation; we show in the next chapter how to apply

linear regression to samples from Monte Carlo simulations to approximate these

expectations. Notice, in fact, that the conditional expectation En,x[V (n+ 1, Xn+1)]

in (1.3.12) is not known analytically (we would need to know the value function)

nor numerically as, proceeding backwards on simulated trajectories, we only have

samples from V (n + 1, ·) available. We will invest the next chapters in explaining

how to efficiently transform these samples in estimates of the continuation value

(conditional expectation of the value function) for the three classes of problems:

general control of MPs, inventory and stopping and switching.

1.5 Continuous time problems

In this first chapter, we have described the mathematical framework within which

we want to work and we specified that we were interested in looking at the system

only at discrete moments in time. This choice is motivated by real-life applications

in which it is not possible to observe the system too often, or perhaps the continuous

dynamics are unknown. In other situations, on the other hand, we might require

to have very frequent observations of the system and a natural description of the
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phenomenon of interest is available in continuous time.

Similarly to the discrete case, let X be a Markov process and, for clarity, assume

(but we don’t have to) that X admits a representation as a solution of an SDE:

dXt = b(t,Xt, ut)dt+ σ(t,Xt, ut)dWt (1.5.17)

where Wt is a Brownian motion with respect to P and b and σ are bounded and

Lipschitz. Previous notation stays in place, Ft is the sigma algebra generated by

the process X up to time t, i.e. by (Ws)s≤t, and the control process u is adapted to

such filtration.

A general representation of value function in continuous time can be given as follow

V (t, x) = sup
u∈U{t:T}(x)

{
E
[ ∫ T

t
f(s,Xs, us) ds+ g(XT )

∣∣∣Xt = x
]}
, (1.5.18)

while the DPE suggests that we have

V (t, x) = sup
u∈U{t:θ}(x)

{
E
[ ∫ θ

t
f(s,Xs, us)d s+ V (θ,Xθ)

∣∣∣Ft]} , θ ∈ (t, T ). (1.5.19)

At this point, if we want to keep working in continuous time, we might decide

to study (1.5.19) as θ → t. We can expect, intuitively, that this operation will

provide us with a differential equation whose solution is the value function. Set first

θ = t+ dt, dt ≈ 0

V (t, x) = sup
u∈Ut(x)

{
E
[
f(t,Xt, ut)dt+ V (t+ dt,Xt+dt)

∣∣∣Ft]} .
⇒ sup

u∈Ut(x)

{
E
[
f(t,Xt, ut)dt+ V (t+ dt,Xt+dt)− V (t, x)

∣∣∣Ft]} = 0,

and then approximate the integral with a discrete sum

sup
u∈Ut(x)

{
E
[
f(t,Xt, ut) + V (t+ dt,Xt+dt)− V (t, x)

dt

∣∣∣∣Ft
]}

, as dt→ 0

sup
u∈Ut(x)

{
E
[
f(t, x, u) + ∂V (t, x)

∂t
+ LV (t, x, u)

∣∣∣∣Ft
]}

= 0,
(1.5.20)
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where, from second to third line, we used Itô’s formula, and L is the differential

operator (generator) associated with the SDE (1.5.17) and given by Lh(t, x, u) =

b(t, x, u)∂h(z)
∂z

+ 1
2σ(t, x, u)2 ∂2h(z)

∂z2 . For a more rigorous derivation refer to [72].

The PDE in (1.5.20) can be solved by means of numerical techniques, usually,

by discretising both time and space dimension. Finite difference and finite

element approaches heavily suffer from the underlying dimension of the state space,

preventing the application to problems where the dimension of X is greater than

three. Further discussion is however outside the scope of this thesis.

An alternative formulation of the optimality condition for the value function in

(1.5.18) can be given in terms of Pontryagin’s maximum principle [75], leading to a

system of Forward-Backward stochastic differential equations (FBSDE) that can be

solved by means of probabilistic as well as deterministic techniques. The literature

in this area is vast; note the French school in particular, with Gobet et al. [34] for

example, and the review given in Bender and Steiner [9].

Another approach is to apply time discretisation earlier, to equation (1.5.19) rather

than (1.5.20). Consider a uniform discretisation of the interval [0, T ] into N sub-

intervals delimited by the points {t0 = 0, t1, . . . , tN = T}, where ti+1− ti = T/N =:

∆t. The first step to approximate a continuous time problem on such time grids, is

to establish whether a closed form expression is available for the transition density

of the process X, in which case we can just simulate its value at the points {t0 =

0, t1, . . . , tN = T}. When this is not the case we need to rely on approximation

schemes that allow us to simulate any value Xn given the predecessor Xn−1 and

the control un−1. We approximate the effect of the reward function f over [t, θ),

originally expressed as an integral
∫ θ
t f(s,Xs, us)d s, by holding f constant over this

interval and computing f(t,Xt, ut)(θ − t). Using the previous approximations we
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can define a new control problem in discrete time as follow:

V (tn, x) = sup
u∈Utn (x)

{f(tn, Xtn , u)∆t+ E[V (tn+1, Xtn+1)|Xtn = x, utn = u]}, (1.5.21)

where we have set θ = tn + ∆t. Notice that the optimal control u associated

with the discrete time approximation (1.5.21) is not a discretisation of the optimal

control process associated with the continuous time problem (1.5.19) but rather the

solution of the newly defined discrete time one. Results about the convergence of

the approximate value function to the continuous time one can be found in Kushner

and Dupuis [48].

We can notice that (1.5.21) has brought us back to the more familiar discrete time

setting presented at the beginning of the chapter. Results therein extend here by

redefining the different functions in order to account for the multiplicative term ∆t.

In this chapter we presented a roadmap of the topics in stochastic control that we

intend to discuss in this Thesis: we introduced the general formulation of a controlled

Markov process and stochastic control problem; we described the special cases of

inventory, switching and stopping problems, all sharing the feature that the control

does not affect the distribution of the stochastic component of the controlled process.

We presented the dynamic programming principle and its one step formulation,

commonly known as the dynamic programming equation, which provides us with

a clear intuition on how to develop a numerical scheme to solve such problems.

We shortly introduced the algorithms that are the central theme of this thesis and,

finally, we touched upon the continuous time case.

In the next chapter, we introduce a numerical approximation of the conditional

expectation appearing in (1.3.12), and describe two full algorithms that produce a

control policy that approximates the optimal one for the general case of controlled

Markov process. Additionally, we propose a framework to describe such algorithms

that allow us to prove the convergence of the scheme, thereby providing the first
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example in literature of proof of convergence for Regression Monte Carlo applied to

this class of problems.
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Chapter 2

RMC for control of Markov

processes

In this chapter, we introduce the numerical approximation underpinning the whole

Regression Monte Carlo family of algorithms: the regression approximation of

conditional expectations. We first provide a high-level description of this technique,

followed by a summary of the relevant literature on the topic where we underline

the need for a framework that can allow us to prove the convergence of such

algorithms. We then proceed by formulating the aforementioned framework by

presenting some assumptions and useful lemmas. The three sections that follow,

our main mathematical contribution to the literature, present a detailed description

of three convergence theorems.

Let us recall the setting introduced in chapter 1. We consider a controlled Markov

process (Xn)Nn=0 on a domain D ⊆ Rd specified by the transition equation (1.1.1):

Xn+1 = ϕ(n,Xn, ξn, un), (2.0.1)

where {ξn}N−1
n=0 is a collection of i.i.d. uniformly distributed random variables on

[0, 1]. Recall that in the previous chapter we assumed that the optimal control (u∗n)
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can be represented in a feedback form, i.e. the value of the process u∗ at time n

and state x can be computed as u∗n = u∗(n, x), we therefore limit ourself to search

among the class of control processes that can be described in such a way.

We want to study the problem of computing the value function defined in (1.1.3)

as:

V (n, x) = sup
u∈U{n:N}(x)

E
[N−1∑
s=n

f(s,Xs, us) + g(XN)|Xn = x
]
,

which can be written in terms of dynamic programming equation (1.3.12):
V (N, x) = g(x)

V (n, x) = max
u∈Un(x)

{
f(n, x, u) + E

[
V (n+ 1, Xn+1)|Xn = x, un = u

]}

Remark 2.0.1. For simplicity of notation, in the following, we will drop the

dependence of the admissible control set Un(x) on its argument x and simply write

Un.

2.1 Regression Monte Carlo

Notably, Monte Carlo methods are mostly known in their static version, in which

a large number of samples is generated directly from a probability law, and

expectations are computed with respect to the empirical measure induced by the

simulations. The law of large numbers assures that for growing sample size, the

Monte Carlo average will converge to the true mean of the distribution from which

the data have been simulated. In fact, the empirical distribution itself will converge

to the true one.

When a temporal dimension is included in the problem, the Monte Carlo method

is usually called dynamic Monte Carlo; its main feature is that the sample average,

classically computed by the method, is obtained from a sample of simulated paths



Chapter 2. RMC for control of Markov processes 29

rather than single points (which nonetheless might be seen as higher dimension,

correlated, r.v.s). Dynamic Monte Carlo simulations are usually started from an

initial value X0 and, from there, M simulated path are generated from the transition

density of the process X. More formally:

Definition 2.1.1. We denote by “training points”, the set of d dimensional points

{Xm
s }

N,M
s=0,m=1. We use double indexing to distinguish between different time steps

(bottom index s ∈ [0, N ]) and simulations (top index m ∈ [1,M ]). Practically we

might generate successors {Xm
1 }Mm=1 either directly from the conditional distribution

of Xn|X0 or from the dynamics of X as described by its transition function, starting

from a set of initial values {Xm
0 }Mm=1. Iterating the process for N steps we obtain a

collection of M paths {Xm
s }

N,M
s=0,m=1.

2.1.1 How it works

To solve (1.1.3) we can intuitively assign to each simulated path (started from a

common initial point Xm
0 = x, ∀m) the value J(0, (Xm

s , u
∗
s)Ns=0) so that a sample

average over the paths will provide us with an estimation of the value function at

the point (0, x). Notice that, even though the method might not involve random

simulations at all ( paths might be generated deterministically for example) it is still

called Monte Carlo for historical reasons.

For a given controlled path {Xm
s }Ns=1 the quantity J(0, (Xs, u

∗
s)Ns=0) can only be

computed provided that we know the function u∗(·), which, in turn, allow us to

compute the value of the control for each state visited by the process X. In order

to estimate the control (u∗s)Ns=0 we need to refer to (1.3.12) that shows that at

every state (n, x) the function u∗(·) at that point is represented as the solution

of a maximisation problem involving the running reward f and the continuation

value E[V (n + 1, Xn+1)|Xn = x]. There exists a number of algorithms that can be
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employed to approximate the solution of this maximisation problem (provided that

the continuation value is known) but this lies outside the scope of this thesis. In the

following, we will, instead, focus on the hurdle of approximating the continuation

value. Such conditional expectation is, in general, not easily computable both

analytically and numerically.

Following (1.3.12) we start from the known terminal condition and set V (N,Xm
N ) =

g(Xm
N ) ∀m, which provides us with a starting value for the the backward iterative

procedure where, at each time step, the value function is computed applying the

one-step Bellman equation. To proceed to the next step of the iteration we have to

maximise a function involving the continuation value. Naively, as Monte Carlo is

the tool used to compute expectations, we could decide to run additional one-step

simulations to compute each of the expectations needed during the main backward

procedure, i.e. given a number of simulations L, E[V (n + 1, Xn+1)|Xn = xm] ≈
1
L

∑L
l=1 V (n+1, Y l), Y l = ϕ(n, xm, u, ξl) ∀m. However, as it can be understood, the

nested simulations used to compute sample averages bring a burden of computational

complexity that precludes practical implementation. The already high complexity of

O(MNd) simulated values (in the d-dimensional case) would increase to O(MNdL),

where L is the number of simulations used for each approximation of conditional

expectations.

An alternative approach, within the simulation setting introduced so far, makes use

of the cross-sectional responses {V (n + 1, Xm
n+1)}Mm=1 (where Xm

n+1 are generated

from potentially different starting points Xm
n , hence cross-sectional), available when

the backward procedure has reached time n, to approximate the continuation value.

Recall that a conditional expectation of a random variable Z given another random

variable Y , E(Z|Y ), might be regarded as a projection of Z from σ(Z) to σ(Y ), where

σ(Y ) represent the sigma algebra generated by Y . Under this interpretation we can

then approximate the continuation value (projection) via linear regression of the
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samples {V (n+ 1, Xm
n+1)}Mm=1 over some transformations of the features {Xm

n }Mm=1.

This procedure will compute a sample approximation of the projection from σ(Xn+1)

to σ(Xn). We can see that if the control affects the distribution of X, we need

samples of V (n + 1, ·) at points X ∼ (Xn+1|Xn, u
∗
n) which, a priori, are available

only after the problem has been solved. In other words, it is unclear how to sample

from the distribution of V (n+1, ·) without knowing the value of the optimal control.

Contrary to the case of optimal stopping and switching, or uncontrolled dynamics

in general, in which the conditional law of V (n + 1, Xn+1)| (Xn = x, un = u)

can be estimated from the cross-sectional information contained in the simulated

trajectories, in the case of controlled Markov processes such trajectories depend

on the control process (un) and cannot, therefore, be simulated beforehand. In

particular, given that the forward trajectories can be computed only by fixing

the control, the estimated conditional expectation will be relevant only for that

particular choice of the control.

In the following, we present an overview of the history of Regression Monte Carlo

in literature, from its first appearances at the beginning of the 2000s, until the most

recent developments (as of 2018). For the convenience of the reader, we display table

2.1 where we introduce the 4 main different specifications of the Regression Monte

Carlo algorithm obtained by combining 2 possibilities for the projected function and

2 possibilities for projection space. More in detail, we will discuss Regress Now (RN

- which has served as example so far), where we regress over functions evaluated

at sample points {Xm
n }Mm=1, as well as Regress Later (RL), where we regress over

functions evaluated at sample points {Xm
n+1}Mm=1. Similarly, we can project samples

of the value function {V (n + 1, Xm
n+1)}Mm=1 in the Value Iteration (VI) approach,

as well as samples {J(n+ 1, (Xm
s , u

m
s )Ns=n+1)}Mm=1 in the Performance Iteration (PI)

approach. In the following, we will discuss each separately and prove the convergence

of RLV I and RLPI.
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projected variable

VI PI

basis

functions

RN RNVI RNPI

RL RLVI RLPI

Table 2.1: Summary of the different specifications of Regression Monte Carlo algorithms.

Different variables might be projected, VI for Value Iteration and PI for Performance

Iteration (projecting V and J respectively). Regressors can be of two types too, RN for

Regress Now and RL for Regress Later (evaluate basis functions at time n and n + 1

respectively).

2.1.2 Regression Monte Carlo in literature

Regress Now approximations represent the hallmark of the first publications in the

Regression Monte Carlo literature. The paternity of the idea is generally attributed

to Carriere [19], who introduced a backward iterative scheme where conditional

expectations were represented as non-parametric functions. On the other hand,

Regression Monte Carlo as we know it today was introduced, in its main variations

of Value and Performance Iteration, by Tsitsiklis and Van Roy [76] and Longstaff

and Schwartz [51] respectively.

The initial papers have been focused exclusively on optimal stopping problems,

and American option pricing in particular. This was due to the method being

initially conceived in its (as it is known nowadays) Regress Now specification, thereby

proving challenging to generalise to more general control problems, as explained in

the next section. The interest in the method picked up relatively quickly, with

a number of papers addressing some complementary issues: Clement et al. [21]

showed the convergence rate of the scheme introduced in Longstaff and Schwartz

[51], Moreno and Navas [58] compared different choices of parametric basis functions
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to approximate conditional expectations, Glasserman and Yu [32] studied the trade-

off between increasing the number of basis functions against the computational

budget required for a good fitting, among others. A number of additional papers

appeared during the years introducing more in-depth analysis or improvements on

the standard approach. Note for example Egloff [27], that sharpened the results in

Clement et al. [21] in a higher dimensional setting or Stentoft [73] who, in a similar

setting, showed the increased efficiency over finite difference and binomial tree

numerical schemes. Notice that we exclude from this discussion, and barely touch

upon in the thesis, the numerous works involving the application of Regression Monte

Carlo to the solution of systems of forward-backward stochastic differential equations

(FBSDE), even though many control problems may be cast in such framework.

The Regress Later algorithm, a non-standard variation of Regression Monte Carlo,

can be traced back to Broadie and Glasserman [14], Broadie et al. [15], Glasserman

and Yu [31] and recently studied in Beutner et al. [11], Jain and Oosterlee

[45], Nadarajah et al. [60]. In those papers, the regress-later approach is regarded as a

tool to reduce the approximation error when applied to optimal stopping problems

(e.g., American option pricing). Beutner et al. [11] demonstrated that it has a

potential for significant improvement in the convergence rate of the approximations

to the true value function. To the best of our knowledge, its ground-breaking

potential for problems with controlled state variables has not been recognised yet,

and it is discussed in this thesis. A recent application to the solution of systems

of FBSDEs can be found in Briand and Labart [13] and Gnameho et al. [33].

In applications, Nadarajah et al. [60] compare Regress-Now and Regress-Later

estimates in the context of energy real options, while Nadarajah and Secomandi

[59] explore the links between Regression Monte Carlo and Approximate Dynamic

Programming, a branch of Operational Research that focuses on the solution of

control problems, for more details see Powell [64].
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For the first 7-8 years, the literature on Regression Monte Carlo has been limited

mostly to stopping and simple switching problems; noteworthy Carmona and

Ludkovski [16]). Only after 2008 the first papers applying this algorithm to more

general problems started to appear. The first field of application has been energy

markets, where among others Boogert and de Jong [12] and Carmona and Ludkovski

[17] introduced two distinct variations of the original to deal with control of noise-less

processes (Inventory). See chapter 3 for more details.

The first methodological contribution aimed at generalising the standard Regression

Monte Carlo method to problems of control of Markov processes has been the control

randomisation approach proposed in Kharroubi et al. [46] and Langrené et al. [49],

which will be presented in the case of inventory problems in section 3.2.3. The

technique makes up for the limitations of the traditional Regress Now approach

by explicitly introducing dependence on the control in the basis functions, in turn

obtaining an estimated conditional expectation that depends on the choice of the

control. In order for the regression approximation to have the correct statistical

properties, an initial set of random trajectories of the control should be simulated

and then used in the estimation of the projection coefficients. Notice that proof of

convergence for this scheme is currently not available.

The first proof of convergence for a Regression Monte Carlo algorithm in a

general setting was our contribution and appeared in Balata and Palczewski [3],

to which this chapter is inspired. A comparison between Regress Later and Control

Randomisation can be found in Balata et al. [5], however, the general conclusion

was that Regress Later is easier to tune than Control Randomisation which is highly

dependent on the choice of the initial randomised control. Further discussion can

be found in Part II.

The contribution of this chapter is twofold: we give a systematic description of a

powerful but simple algorithm to solve problems of stochastic control of Markov
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processes, as well as provide theoretical and heuristic results. The Regress Later

approach relies on the choice of basis functions and training measure, and we provide

guidance on the different choices. We prove convergence of the Regress Later scheme,

enriching the literature with both a new, effective numerical scheme with a proof of

convergence and a new framework within which convergence of different Regression

Monte Carlo schemes could be proved.

2.1.3 Regress Now and its limitations

In this section we describe one of the regression procedures used to approximate

conditional expectations. Notice that, for square integrable functions h, the

conditional expectation E[h(Xn+1)|Xn = x] is a square integrable function of x which

therefore admits (for a basis {φ1, φ2, . . . }) a series representation ∑∞
k=1 αkφk(x),

where the coefficients {αk}∞k=1 are such that the norm with respect to a measure µ,

denoted by ‖h(Xn+1)−∑∞k=1 αkφk(x)‖µ, is zero. Recall, in fact, that the conditional

expectation of a random variable, is the minimiser of the square distance from

such random variable. This fact inspired the regression approximation which is

the central subject of this thesis, for further reference see Emmanuel Gobet [28].

Before proceeding, let us set the notation. We will indicate by νn ∼ (Xn+1|Xn) the

conditional distribution of samples Xn+1 and by L2
νn the space of square integrable

functions f : D 7→ R with respect to νn. More explicitly, we define the L2 norm of

a random variable Z on D, denoted by ‖ · ‖µ, as the integral
√∫
D(Z)2dµ. Random

variables Z ∈ D such that
∫
D(Z)2dµ <∞ are called square integrable, and define a

space denoted by L2
µ.

Definition 2.1.2. A family of K linearly independent functions {φk(·)}Kk=1 : D → R

generating a linear subspace of L2
ν is called a family of basis functions.

Due to practical reasons that will become clear later on, we will neither assume that
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the functions are orthogonal, nor that their norm is 1. In the following, for ease of

understanding, the basis functions can be taken to be φk(z) = zk.

The Regress Now approximation of conditional expectation can therefore be written

as

E
[
h(Xn+1)|Xn = x

]
≈

K∑
k=1

αkφk(x)

where the coefficients {αk}Kk=1 minimise the sum of the square distance between

samples of {h(Xm
n+1)}Mm=1 and samples of {∑K

k=1 αkφk(Xm
n )}Mm=1. Denote by ααα the

vector (α1, . . . , αK) and by φφφ the vector of functions (φ1, . . . , φK), then we have:

ααα = argmin
a

{ 1
M

M∑
m=1

(
h(Xm

n+1)−
K∑
k=1

akφk(Xm
n )
)2
}
. (2.1.2)

Denoting by ` the loss function such that ααα = argmina
{
`({Xm

n , X
m
n+1}Mm=1; a)

}
, in

(2.1.2), we can compute the regression coefficients by

∂`
(
{Xm

n , X
m
n+1}Mm=1;α

)
∂α

= 2
M

M∑
m=1

(
h(Xm

n+1)−αααφφφ(Xm
n )
)
φφφ(Xm

n ) = 0

⇔

ααα = (A)−1 1
M

M∑
m=1

h(Xm
n+1)φφφ(Xm

n ),

(2.1.3)

where A is the matrix with entries Ai,j = φi(Xm
n )φj(Xm

n ), ∀ i, j.

Notice that this representation of the conditional expectation using basis function,

obtained through samples of h(Xn+1) and Xn, corresponds to two subsequent

projections: the first one with respect to the distribution of Xn+1 conditional on

Xn, i.e. νn, to represent the conditional expectation; the second one, with respect

to the distribution of Xn, to provide a representation in terms of the weighted sum

of basis functions {φk}Kk=1.

The approach presented in this section is known as Regress Now, because it

regresses samples of future values h(Xn+1) onto current values Xn or, in other
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words, projects h(Xn+1) with respect to the measure ν onto the space generated by

{φ1(Xn), . . . , φK(Xn)}. This nomenclature will feel more natural once we introduce

Regress Later.

The main limitations of the Regress Now method lie in the concatenation of two

projections mentioned above, a procedure that uses the same set of sample points to

fit the basis functions and approximate the measure νn. The need to approximate

the measure νn through samples {Xm
n+1, X

m
n }Mm=1 makes the algorithm viable as long

as the trajectories of the process X are not controlled by the process u. Whenever

they are, the measure ν depends on the control process itself, preventing to simulate

Xn+1 from Xn without knowing in advance the function u∗(n, ·). In practical terms,

this would require redoing the regression step for each choice of the feedback function

u(n,Xn), n = 1, . . . , N − 1 by simulating the appropriate samples.

Given the limitations that characterise Regress Now, in the rest of the chapter, we

will focus on the Regress Later technique only, and provide convergence theorems

for the Value Iteration and Performance Iteration approaches. Notice, however, that

the output of the former requires additional iterative computations before obtaining

an unbiased estimation of the value of the control policy; more details will follow in

the relevant section.

2.1.4 Regress Later approximations of conditional

expectations

Contrary to Regress Now, the regression approximation in Regress Later does

not rely on the distribution of the training points to approximate the conditional

expectation but rather on analytical formulas, thereby allowing to account for the

effect of the control seamlessly.

Denote by µ a probability measure on D, we will sometimes refer to it as the training
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distribution, and by L2
µ = L2(D, µ) the Hilbert space of square integrable functions

f : D 7→ R with respect to µ. Notice that the measure µ can be chosen freely and

has no direct relation with the randomness ξ driving the process X.

Definition 2.1.3. Denote by φ̂nk , k = 1, . . . , K, n = 0, . . . , N − 1 the conditional

expectation of the basis functions with respect to the density of Xn+1|Xn:

φ̂nk (x, u) = E [φk (Xn+1) |Xn = x, un = u] .

In the Regress Later algorithm, conditional expectations are approximated in

two steps: first the function h(Xn+1), where Xn+1 ∼ µ, is represented as∑K
k=1 αkφk(Xn+1), then the conditional expectation is computed exploiting linearity

and definition 2.1.3:

En,x,u[h(Xn+1)] = E[
K∑
k=1

αkφk(Xn+1)|Xn = x, un = u] =
K∑
k=1

αkφ̂k(x, u). (2.1.4)

In formulas, the regression coefficients can be written as

ααα = argmin
a

{ M∑
m=1

(
h(Xm

n+1)−
K∑
k=1

akφk(Xm
n+1)

)2
}

= A−1 1
M

M∑
m=1

h(Xm
n+1)φφφ(Xm

n+1).

(2.1.5)

We can notice that Regress Later deserves its name from the regression

being performed “in the future”, when values of h(Xn+1) are projected with

respect to a measure µ onto the space generated by the basis functions

{φ1(Xn+1), . . . , φK(Xn+1)}. The computation of conditional expectations with

respect to (Xn+1|Xn, un) is therefore decoupled from the projection, allowing us

to tackle stochastic optimisation problems with full control of the system dynamics.

Remark 2.1.4. Notice that in RNMC the density of (Xn+1|Xn, un), underpinning

the conditional expectation, is recovered in the regression procedure through the use of

samples of Xn+1 distributed accordingly. The distribution of the samples Xn, is then

accounted for when computing the expectations (or sample averages). In RLMC,
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on the other hand, the distribution (Xn+1|Xn, un) is used explicitly to compute

analytically the result of conditioning h(Xn+1) onto Xn.

Example 2.1.5. Consider the function h(x) = x4 and the random variable

X ∼ N (z, 1/25) (to be compared with Xn+1), we consider the two approximations

introduced before, Regress Now and Regress Later, and a simpler interpolation of

sample averages computed on a grid. Notice that in order to increase the error and

improve the visibility (in particular for Regress Later) we consider only polynomial

basis functions up to order 2, i.e. {1, x, x2}. The different approximations obtained,

along with the error on the true conditional expectation for z ∈ [0, 1] (to be compared

with Xn), and the training points employed are shown in Figure 2.1. Notice the high

precision displayed by Regress Later compared to Regress Now.

2.2 A framework for Regress Later projections

In the following, before introducing the projection framework and proving three

useful bounds, we introduce some standing assumptions that will be valid throughout

this thesis.

2.2.1 Assumptions

Assumption 1. We assume that the process X has a transition density with respect

to the measure µ, i.e.,

P
(
Xn+1 ∈ A|Xn = x, un = u

)
=
∫
A
r(n, x, u; y)µ(dy), ∀A ⊆ D

and, in addition, this density is uniformly bounded

r(n, x, u; y) ≤ R̄2 ∀n, x, u, y.
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Figure 2.1: The three panels above show, from left to right and with a solid line, the

approximations of conditional expectations obtained by Regress Later, Regress Now and

the interpolation of sample averages. For comparison, a dashed line corresponding to the

two remaining methods in each panel, and the true conditional expectation (blue dotted

line), have been added. On the bottom each panel displays the relative error in logarithmic

scale. Notice that the same picture, with a different style, is repeated in each panel, with

the exception of the training points used to fit the approximations (blue circles), which

corresponds to the method highlighted in each panel.
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Remark 2.2.1. Assumption 1, in most cases, is satisfied only when compact

domains are considered. Therefore, even though we do not need to explicitly assume

compactness of the domain D in our proofs, in practical applications truncation could

be necessary.

Assumption 2. The reward function f and the terminal condition g are bounded,

i.e. ‖f‖∞ + ‖g‖∞ <∞, and upper-semi continuous on {0, 1, . . . , N − 1} ×D ×Un
and D respectively.

Remark 2.2.2. The value function V (n, x) is bounded, i.e. V (n, x) < Γ for all

n = 0, . . . , N and x ∈ D. A trivial bound follows from the boundedness of f and g:

Γ ≤ Γ̄ := (N − 1)‖f‖∞ + ‖g‖∞.

2.2.2 Random projection operator

Let us introduce now the exact projection operator ΠK on L2
µ which acts projecting

its argument onto the space generated by the basis functions, i.e. lin(φ1, . . . , φK) ⊂

L2
µ. For h ∈ L2

µ, we have ΠK : L2
µ 7→ L2

µ :(ΠKh)(x) = ∑K
k=1 αkφk(x) with the

coefficients ααα = (α1, . . . , αK)T given by

ααα = A−1
K

〈
h,φφφ

〉
L2
µ

, (2.2.6)

where φφφ = (φ1, . . . , φK)T and AK =
〈
φφφ,φφφT

〉
L2
µ

. The scalar product in L2
µ can be

written as an expectation with respect to µ, in the sense that:

〈
h,φφφ

〉
L2
µ

= EX̃∼µ
[
h(X̃)φφφ(X̃)

]
, and AK = EX̃∼µ

[
φφφ(X̃)φφφ(X̃)T

]
. (2.2.7)

This guides us to a Monte Carlo estimator ofααα. We draw M i.i.d. copies X̃1, . . . , X̃M

of X̃ ∼ µ which we call the training points. For h ∈ L2
µ we approximate ααα by

α̂αα = A−1
K

1
M

M∑
m=1

[
h(X̃m)φφφ(X̃m)

]
(2.2.8)
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and define the random projection operator Π̂K : L2
µ 7→ L2

M such that Π̂Kh =∑K
k=1 α̂kφk.

Denote by L2
M the space linked to the training points, L2

M = L2(DM , µM), where we

indicate by DM = D×· · ·×D and µM = µ⊗· · ·⊗µ. We also denote the ”extended”

space L2
e = L2

M × L2
µ = L2(DM+1, µM+1). Notice that we could regard Π̂Kh as an

element of L2
M × lin(φ1, . . . , φK) ⊂ L2

e because the random projection coefficients

are functions of (X̃1, . . . , X̃M), i.e. α̂αα = α(X̃1, . . . , X̃M) ∈ L2
M .

Remark 2.2.3. In formula (2.2.8), we assume that AK can be evaluated exactly

(or precomputed with a very high precision) as it depends only on our choice of

basis functions and the measure µ. This compares favourably (in terms of speed and

accuracy) to Regress Now Monte Carlo in which AK needs to be approximated from

the training data.

2.2.3 Extension of the random projection operator

We extend the projection operator introduced above to functions living in spaces

bigger than L2
µ. This is to introduce the notation which we will need later with

no further mathematical complications. Define the space L2
M,n = L2(DMn, µMn)

generated by n collections of M training points, n = 1, . . . , N , denoted by

{X̃m
s }

M,N
m=1,s=N−n+1. The unusual indexing is related to times at which training points

are placed while iterating backwards through the dynamic programming equation

(1.3.12). We will write the set of n layers of training points L2
e,n = L2

M,n × L2
µ.

Let L2
e,n 3 h = h({X̃m

s }
M,N
m=1,s=N−n+1; X̃). For the brevity of notation, we will write

X̃n = {X̃m
s }

M,N
m=1,s=N−n+1, L2

e,1 = L2
e, L2

e,0 = L2
µ, and X̃0 = {∅}. For a function

h ∈ L2
e,n = L2

M,n × L2
µ we will identify the argument X̃n with the first set of

coordinates corresponding to L2
M,n and X̃ with the remaining coordinate of L2

µ.
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Define an extended projection operator as

ΠN−n
K : L2

e,n 7→ L2
e,n :

(
ΠN−n
K h

)
(X̃n ; ·) =

K∑
k=1

αN−nk φk(·),

where

L2
M,n 3 αααN−n = αααN−n

(
X̃n

)
= A−1

K EX̃∼µ
[
h(X̃n; X̃)φφφ(X̃)

]
.

Notice that ΠN−n
K h ∈ L2

e,n since the coefficients αααN−n still depend on the randomness

contained in X̃n = {X̃m
s }

M,N
m=1,s=N−n+1. The superscript N − n in ΠN−n

K h indicates

the dependence on X̃n. However, from a mathematical perspective, for fixed X̃n the

operator ΠN−n
K is identical to ΠK , and, indeed, it can be defined pointwise for each

X̃n. In fact, when X̃n is given and h ∈ L2
e is evaluated on X̃n, the remaining function

x 7→ h(X̃n, x) ∈ L2
µ, effectively making the operators ΠN−n

K and ΠK identical.

Similarly as above, we define the “random projection operator” acting on h ∈ L2
e,n

by

Π̂N−n
K : L2

e,n 7→ L2
e,n+1 :

(
Π̂N−n
K h

)
(X̃n ; ·) =

K∑
k=1

α̂N−nk φk(·),

where

α̂ααN−n = α̂(X̃n, {X̃m
N−n}Mm=1) = A−1

K

1
M

M∑
m=1

h(X̃n; X̃m
N−n)φφφ(X̃m

N−n),

and {X̃m
N−n}Mm=1 are i.i.d. random variables with the distribution µ. It follows that

Π̂N−n
K h ∈ L2

e,n+1. We can notice then that the Monte Carlo projection operator

produces projections which live in a bigger space than the space where h lives, in

particular, every projection adds one layer of training points so that the original

space is enlarged by the addition of L2
M . For a graphical representation of the

spaces introduced in this section, see Figure 2.2 and Table 2.2. In the following

section we will also use a corresponding notation for mathematical expectations,

where we indicate by EM and Ee expectation with respect to the measure µM and

µM × µ respectively.
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Space Definition

L2
µ L2({D}, µ)

L2
M L2

µ, . . . , L
2
µ, M times

L2
e L2

M × L2
µ

L2
M,n L2

M , . . . , L
2
M , n times

L2
e,n L2

M,n × L2
µ

Table 2.2: Sumary of the space of square integrable functions introduced so far.

Figure 2.2: In the figure above we give, for the convenience of the reader, a graphical

representation of the square integrable spaces introduced so far. Notice that every element

is given by the measure µ, a different number of them is considered in the different spaces.

L2
µ in orange, L2

M in green, L2
M,6 in red and L2

e,7 all together.
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Remark 2.2.4. Intuitively, we can think of the random projection operator with

superscript N−n as acting on a function h(N−n+1, ·) that depends on the previous

n layers of approximations, each comprising M training points and each distributed

as µ. The effect of the random operator is a projection on the space generated by K

basis functions and dependent on M i.i.d. training points with distribution µ. The

rigorous description offered in this section, and the use of the measure µ to decouple

the distribution of the training points from one time step to the next, is what allows

us to prove the convergence of two iterative schemes based on the approximation of

conditional expectation presented in section 2.1.4.

2.2.4 Useful bounds

We present now two useful results relating the exact and random projection

operators introduced above.

Lemma 2.2.5 (Projection error). Fix X̃n ∈ L2
M,n, then for h ∈ L2

e,n, the error of

the random projection operator with respect to the projection operator is bounded as

follows:

∥∥∥∥Π̂N−n
K h(X̃n; ·)− ΠN−n

K h(X̃n; ·)
∥∥∥∥
L2
e

≤
∥∥∥A−1

K

∥∥∥
2

1√
M
SDevX̃∼µ

(
h(X̃n ; X̃)φφφ(X̃)

)
,

where

SDevX̃∼µ

(
h(X̃n ; X̃)φφφ(X̃)

)
:=
(

K∑
k=1

V arX̃∼µ

(
h(X̃n ; X̃)φk(X̃)

))1/2

,

and ‖A−1
K ‖2 = max{‖A−1

K x‖2 : x ∈ RK , ‖x‖2 = 1} is the matrix operator norm of

A−1
K .
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Proof. By the definition of projection operators we have∥∥∥∥Π̂N−n
K h(X̃n; ·)− ΠN−n

K h(X̃n; ·)
∥∥∥∥
L2
e

=
∥∥∥∥ K∑
k=1

α̂nkφk(·)−
K∑
k=1

αnkφk(·)
∥∥∥∥
L2
e

=
∥∥∥∥(A−1

K ( 1
M

M∑
m=1

h(X̃n; X̃m)φφφ(X̃m)− Ez∼µ
[
h(X̃n; z)φφφ(z)

]
)
)T
φφφ(·)

∥∥∥∥
L2
e

=
∥∥∥∥( 1
M

M∑
m=1

h(X̃n; X̃m)φφφ(X̃m)− Ez∼µ
[
h(X̃n, z)φφφ(z)

])T
A−1
K φφφ(·)

∥∥∥∥
L2
e

=
∥∥∥∥βββTnA−1

K φφφ(·)
∥∥∥∥
L2
e

,

where βββn = 1
M

∑M
m=1 h(X̃n; X̃m)φφφ(X̃m) − Ez∼µ

[
h(X̃n; z)φφφ(z)

]
and we used that AK

is symmetric. We have∥∥∥∥βββTnA−1
K φφφ(·)

∥∥∥∥2

L2
e

= Ee
[
βββTnA−1

K φφφ(·)φφφ(·)TA−1
K βββn

]
= EM

[
βββTnA−1

K Eµ[φφφ(·)φφφ(·)T ]A−1
K βββn

]

= EM
[
βββTnA−1

K βββn

]
≤
∥∥∥A−1

K

∥∥∥2

2

∥∥∥∥βββTnβββn∥∥∥∥2

L2
M

=
∥∥∥A−1

K

∥∥∥2

2

1
M
V arX̃∼µ

(
h(X̃n ; X̃)φφφ(X̃)

)
,

where in the last equality we used that {X̃m}Mm=1 are independent and distributed

as µ.

Remark 2.2.6. With the dot notation · we often refer to the dependence of a

function over a variable X̃ ∼ µ.

Lemma 2.2.7 (Standard Deviation). For a bounded function h ∈ L2
µ we have:

SDevX̃∼µ

(
h(X̃)φφφ(X̃)

)
≤
√
K‖h‖∞ max

k=1, ...,K
‖φk

∥∥∥
L2
µ

Proof. Recall from Lemma 2.2.5 that

SDevX̃∼µ

(
h(X̃)φφφ(X̃)

)
=
( K∑
k=1

V arX̃∼µ

[
h(X̃)φk(X̃)

]) 1
2
.

We bound now the variance with the second moment, and, using Jensen inequality,

we have

V arX̃∼µ

[
h(X̃)φk(X̃)

]
≤ Eµ

[(
h(X̃)φk(X̃)

)2
]
≤ ‖h‖2

∞

∥∥∥∥φk∥∥∥∥2

L2
µ

.
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We can now compute a bound for the full expression,

SDevµ

(
h(·)φφφ(·)

)
≤
( K∑
k=1
‖h‖2

∞

∥∥∥∥φk∥∥∥∥2

L2
µ

) 1
2

≤ ‖h‖∞
(
K max

k=1, ...,K
‖φk‖2

L2
µ

) 1
2

= ‖h‖∞
√
K
(

max
k=1, ...,K

(
‖φk‖L2

µ

)2
) 1

2
,

which leads to the statement of the Lemma. The last equality follows from the fact

that ‖φk‖L2
µ
≥ 0.

Remark 2.2.8 (Norm of the true projection operator). Let h be an element of L2
e,n.

The true projection operator ΠN−n
K admits the following bound:

∥∥∥∥ΠN−n
K h(X̃n; X̃)

∥∥∥∥
L2
e,n

≤
∥∥∥∥h(X̃n; X̃)

∥∥∥∥
L2
e,n

.

Lemma 2.2.9 (Bound on conditional expectation). Under Assumption 1, i.e. the

process X has a transition density with respect to the measure µ, and for any

measurable function û(X̃n, X̃) : L2
e,n 7→ Un and h ∈ L2

e,n, we have the following

bound on the norm of the conditional expectation

∥∥∥∥E[h(X̃n;Xn+1)
∣∣∣Xn = X̃, un =ûn(X̃n, X̃)

]∥∥∥∥
L2
e,n

≤ sup
u∈Un

∥∥∥∥E[h(X̃n;Xn+1)
∣∣∣Xn = X̃, un = u

]∥∥∥∥
L2
e,n

≤ R̄‖h‖L2
e,n
,

where

E
[
h(X̃n;Xn+1)

∣∣∣Xn = x, un = ûn(X̃n, X̃)
]

=
∫
D
h(X̃n; y) r(n, x, ûn(X̃n, x); y)µ(dy).
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Proof. Using Jensen inequality and Assumption 1:∥∥∥∥E[h(X̃n;Xn+1)
∣∣∣Xn = X̃, un =ûn(X̃n, X̃)

]∥∥∥∥2

L2
e,n

= EM,n

( ∫
D
r(n, X̃, û(X̃n, X̃); y)h(X̃n; y)µ(dy)

)2

≤ sup
u∈Un

EM,n

( ∫
D
r2(n, X̃, u; y)h2(X̃n; y)µ(dy)

)

≤ R̄2
∥∥∥∥h(X̃n; X̃)

∥∥∥∥2

L2
e,n

,

where EM,n is the expectation with respect to the measure underlying the space

L2
M,n.

In the following three sections we will present three iterative procedures: Value

Iteration, Forward Evaluation and Performance Iteration. Each section will conclude

with a theorem establishing the convergence of the quantity estimated to the

real one. The two methods, Value Iteration and Performance Iteration, produce

approximations of different quantities. The former estimates the value function,

the latter the expected performance of the control policy. In order to compare the

two methods, we use the Forward Evaluation procedure to compute an unbiased

estimator of the average value of the control policy estimated by RLVI through

Monte Carlo simulations.

2.3 Value Iteration

In this section we introduce the Value Iteration scheme and exploit our framework

to prove the convergence of the algorithm for a general control problem.

Notice that some communities working on Markov decision process and operational

research, when talking about Value Iteration, often refer to a different iterative

appraoch than the one described in this section. Conscious of the confusion this
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might cause, we respect the convention in the Regression Monte Carlo literature

and use the term Value Iteration throughout the thesis with the meaning explained

in the following paragraphs.

2.3.1 The method

Value Iteration is the most intuitive scheme inspired by the dynamic programming

equation (1.3.12), and it has indeed been the model we had in mind when we

introduced the iterative procedure that characterises Regression Monte Carlo, in

section 2.1.1.

We start the backward procedure from time N , when the terminal condition is

known, and we set V̂ (N, x) = V (N, x) = g(x), ∀x ∈ D. We move now to

time N − 1. The dynamic programming equation (1.3.12) requires us to compute

E[V (N,XN)|XN−1 = x, uN−1 = u]; in order to do so we generate M samples

{X̃m
N }Mm=1 from the distribution µ. These are used for the estimation of the projection

coefficients α̂N in the random projection operator Π̂K V̂ = Π̂N
K V̂ ∈ L2

e, i.e., we

compute conditional expectations by first projecting V̂ (N, ·) ∈ L2
µ over the basis

functions {φk}Kk=1. Then, we compute analytically conditional expectations of the

obtained linear combination of basis functions:

EN−1,x,u[V (N,XN)] ≈ EN−1,x,u[Π̂N
K V̂ (N,XN)] =

K∑
k=1

α̂Nk EN−1,x,u[φk(XN)]

=
K∑
k=1

α̂Nk φ̂
N−1
k (x, u) .

We then set

V̂ (N − 1, x) = sup
u∈Un

{
f(N − 1, x, u) +

K∑
k=1

α̂Nk φ̂
N−1
k (x, u)

}
,

and we move to the next time step N − 2 with the function V̂ (N − 1, x) ∈ L2
e =

L2
e,1 (due to the randomness in α̂N introduced by the training points {X̃m

N }Mm=1).
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Similarly to the previous time step, we project the value function using the random

projection operator, obtaining Π̂N−1
K V̂ (N −1, x) ∈ L2

e,2, from which we can compute

an estimator of the conditional expectation. Iterating this process allows us to

compute the approximate value function V̂ (n, X̃) ∈ L2
e,N−n:

V̂ (N, x) = g(x),

V̂ (n, x) = sup
u∈DU

{
f(n, x, u) + E

[
Π̂n+1
K V̂ (n+ 1, ·)|Xn = x, un = u

]}
= sup

u∈DU

{
f(n, x, u) +∑K

k=1 α̂
n+1
k φ̂nk(x, u)

}
,

(2.3.9)

to which it corresponds the estimated control map

û(n, x) = argsup
u∈DU

{
f(n, x, u) +

K∑
k=1

α̂n+1
k φ̂nk(x, u)

}
.

Notice that the random coefficients α̂n+1 are independent from {X̃m
n }Mm=1 and also

from the law of (Xn+1|Xn = X̃m
n , un = u). Therefore we can compute the conditional

expectation in (2.3.9), exploiting linearity, as

E
[
Π̂n+1
K V̂ (n+ 1, ·)|Xn = x, un = u

]
=

K∑
k=1

α̂n+1
k φ̂nk(x, u).

This decomposition enables our approach for optimal control of Markov processes.

Both the value function V̂ (n, x) and the regression coefficients α̂n+1 depend

implicitly on all the training points used at times n+ 1, . . . , N , i.e., on X̃N−n. This

dependence will be omitted in notation and only indicated in the proof by applying

appropriate projection operators ΠN−n
K and Π̂N−n

K .

Remark 2.3.1. Recall that the estimation of the continuation value in Value

Iteration reuses the parametric value function estimated at the future time step,

which does not preserve the boundedness property of the true value function. For

this reason, and thanks to the bound in Assumption 2, we truncate the Monte Carlo

estimation V̂ obtaining ‖V̂ (n, X̃)‖L2
e,n

< Γ. In particular, with abuse of notation,

we redefine V̂ (n, x) in (2.3.9) as V̂ (n, x) ∧ Γ ∨ −Γ ∀ n, x.
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Details of implementation are collected in Algorithm 1.

Algorithm 1 Regress-later Monte Carlo algorithm (RLMC) - Value iteration
input: M, K, µ, {φ}Kk=1

1: Pre-compute the inverse of the covariance matrix AK
2: Generate i.i.d. training points {X̃m

N }Mm=1 accordingly to the distribution µ.

3: Initialise the value function V̂ (N, X̃m
N ) = g(X̃m

N ), m = 1, . . . ,M.

4: for n=N-1 to 0 do

5: α̂n+1 = A−1
K

1
M

∑M
m=1

[
V̂ (n+ 1, X̃m

n+1)φ(X̃m
n+1)

]
6: Generate a new layer of i.i.d. training points {X̃m

n }Mm=1 accordingly to the

distribution µ.

7: for m=1 to M do

V̂ (n, X̃m
n ) =

 sup
u∈Un

{
f(n, X̃m

n , u) +
K∑
k=1

α̂n+1
k φ̂nk(X̃m

n , u)
} ∧ Γ ∨ (−Γ)

output: {α̂kn}
N,K
n,k=1

Remark 2.3.2. Note that as the matrix AK in line 5 of the algorithm is computed

with respect to the measure µ, we do not need to estimate it and invert it at every

time step as it is required in traditional Regression Monte Carlo methods. Rather, we

can pre-compute it with high precision before starting the backward procedure saving

computational time and improving the quality of estimations.

2.3.2 Convergence results

We now present a theorem that estimates the error between the estimated and

the true value function. Recall that we indicate by R̄ the uniform bound on the

transition density of X with respect to the measure µ, and by Γ the upper bound

of the value function.
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Theorem 2.3.3. Under Assumptions 1 and 2, for all n = 0, 1, . . . , N , we have:
∥∥∥∥V̂ (n, X̃)− V (n, X̃)

∥∥∥∥
L2
e,N−n

≤ R̄
R̄N−n − 1
R̄− 1

(
εK +

√
K√
M

Γ‖A−1
K ‖2 max

n=1, ..., N
‖φk‖L2

µ

)
,

where εK = maxn=1,...,N

∥∥∥∥ΠKV (n, X̃)− V (n, X̃)
∥∥∥∥
L2
µ

.

In the proofs we will use the following shorthand notation Eun(x)[ · ] := E[ · |Xn =

x, un = u(n, x)]. For convenience, denote

ˆ̂V (n, x) = f(n, x, û(n, x)) + Eû(n,x)
[
Π̂K V̂ (n+ 1, ·)

]
,

where ûn(x) = ûn(X̃n, x) is the estimated optimal policy which in practice is

represented by the maximiser in (2.3.9).

Proof of theorem 2.3.3. Recall that V̂ (n, X̃) ∈ L2
e,N−n and further notice that

∥∥∥∥V̂ (n, X̃)− V (n, X̃)
∥∥∥∥
L2
e,N−n

=
∥∥∥∥ ˆ̂V (n, X̃) ∧ Γ ∨ (−Γ)− V (n, X̃)

∥∥∥∥
L2
e,N−n

≤
∥∥∥∥ ˆ̂V (n, X̃)− V (n, X̃)

∥∥∥∥
L2
e,N−n

.
(2.3.10)

Now consider that, given the definition of ˆ̂V ,

ˆ̂V (n, X̃)− V (n, X̃) = f
(
n, X̃, ûn(X̃)

)
+ Eûn(X̃)

[
Π̂n+1
K V̂ (n+ 1, Xn+1)

]
− f

(
n, X̃, u∗n(X̃)

)
− Eu∗n(X̃)

[
V (n+ 1, Xn+1)

]
≥ Eu∗n(X̃)

[
Π̂n+1
K V̂ (n+ 1, Xn+1)− V (n+ 1, Xn+1)

]
,

where the inequality is given by the substitution of û(n, x), which realises the

maximum in ˆ̂V , with the true optimal control u∗(n, x). Similarly replacing u∗(n, x)

by û(n, x) we obtain an upper bound

ˆ̂V (n, X̃)− V (n, X̃) ≤ Eûn(X̃)

[
Π̂n+1
K V̂ (n+ 1, Xn+1)− V (n+ 1, Xn+1)

]
.
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Therefore, using Assumption 1 and Lemma 2.2.9 we have the following bound:∥∥∥∥ ˆ̂V (n, X̃)− V (n, X̃)
∥∥∥∥
L2
e,N−n

≤
∥∥∥∥ sup
u∈DU

Eu
[
Π̂n+1
K V̂ (n+ 1, Xn+1)− V (n+ 1, Xn+1)

]∥∥∥∥
L2
e,N−n

≤ R̄

∥∥∥∥Π̂n+1
K V̂ (n+ 1, X̃)− V (n+ 1, X̃)

∥∥∥∥
L2
e,N−n

.

(2.3.11)

We split now the term
∥∥∥∥Π̂n+1

K V̂ (n+1, X̃)−V (n+1, X̃)
∥∥∥∥
L2
e,N−n

into three components:
∥∥∥∥Π̂n+1

K V̂ (n+ 1, X̃)−V (n+ 1, X̃)
∥∥∥∥
L2
e,N−n

≤
∥∥∥∥Π̂n+1

K V̂ (n+ 1, X̃)− Πn+1
K V̂ (n+ 1, X̃)

∥∥∥∥
L2
e,N−n

+
∥∥∥∥Πn+1

K V̂ (n+ 1, X̃)− Πn+1
K V (n+ 1, X̃)

∥∥∥∥
L2
e,N−n

+
∥∥∥∥Πn+1

K V (n+ 1, X̃)− V (n+ 1, X̃)
∥∥∥∥
L2
e,N−n

.

(2.3.12)

For the first term in (2.3.12) we have, using Lemma 2.2.5, Lemma 2.2.7 and the

bound Γ for V̂ :∥∥∥∥Π̂n+1
K V̂ (n+ 1, X̃)− Πn+1

K V̂ (n+ 1, X̃)
∥∥∥∥
L2
e,N−n

=
∥∥∥∥∥∥∥Π̂n+1

K V̂ (n+ 1, X̃)− Πn+1
K V̂ (n+ 1, X̃)

∥∥∥
L2
e

∥∥∥∥
L2
M,N−n−1

≤
√
K√
M

Γ
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk
∥∥∥
L2
µ

.

(2.3.13)

The second term in (2.3.12) represents the backward propagation of the error and,

using remark 2.2.8, can be used to set up a recursive relation between errors at

different time steps:∥∥∥∥Πn+1
K V̂ (n+ 1, X̃)− ΠKV (n+ 1, X̃)

∥∥∥∥
L2
e,N−n

=
∥∥∥∥Πn+1

K V̂ (n+ 1, X̃)− ΠKV (n+ 1, X̃)
∥∥∥∥
L2
e,N−n−1

≤
∥∥∥∥V̂ (n+ 1, X̃)− V (n+ 1, X̃)

∥∥∥∥
L2
e,N−n−1

.
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The last term in equation (2.3.12) is bounded by εK (defined in the statement of

the theorem):

∥∥∥ΠKV (n+ 1, X̃)− V (n+ 1, X̃)
∥∥∥
L2
e,N−n

=
∥∥∥ΠKV (n+ 1, X̃)− V (n+ 1, X̃)

∥∥∥
L2
µ

≤ εK .

Collecting these results together we find that∥∥∥∥Π̂n+1
K V̂ (n+ 1, X̃)− V (n+ 1, X̃)

∥∥∥∥
L2
e,N−n

≤
∥∥∥∥V̂ (n+ 1, X̃)− V (n+ 1, X̃)

∥∥∥∥
L2
e,N−n−1

+ εK +
√
K√
M

Γ
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk‖L2
µ
.

(2.3.14)

Combining this result with (2.3.11) and (2.3.10), and denoting βn :=
∥∥∥∥V̂ (n, X̃) −

V (n, X̃)
∥∥∥∥
L2
e,N−n

, leads to the following recursion:

βn ≤ R̄βn+1 + R̄
(
εK +

√
K√
M

Γ
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk‖L2
µ

)

≤ R̄
N−n−1∑
s=0

R̄s
(
εK +

√
K√
M

Γ
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk‖L2
µ

)

= R̄
R̄N−n − 1
R̄− 1

(
εK +

√
K√
M

Γ
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk‖L2
µ

)
,

(2.3.15)

where we used that V̂ (N, ·) = V (N, ·), i.e. βN = 0.

Remark 2.3.4. Notice that even though the number of basis functions K is constant,

we have it explicitly in the expression of theorem 2.3.3 because our result can be used

to assess the convergence of the scheme as K,M →∞.

Corollary 2.3.5. If, in addition, we assume that AK = Id, i.e. the family {φk}Kk=1

is orthonormal, then the following bound holds:
∥∥∥∥V̂ (n, X̃)− V (n, X̃)

∥∥∥∥
L2
e,N−n

≤ R̄
R̄N−n − 1
R̄− 1

(
εK +

√
K√
M

Γ
)
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Proof. For an ortonormal family in L2
µ, we have AK = Id, so A−1

K = Id and therefore

‖A−1
K ‖2 = 1. Since the basis functions are normalised, ‖φk‖L2

µ
= 1 for all k =

1, . . . , K. Plugging these estimates in the bound obtained in theorem 2.3.3 leads

to the statement of the corollary.

2.4 Forward Evaluation

Recall that the Value Iteration procedure described above provides not only an

approximation of the value function, but also an approximation of the optimal policy;

in order to find the control at time n and in state x, it is sufficient to solve the

optimization problem in the last line of (2.3.9). In practical applications, it is often

the control policy, and not only the value, that is of interest. In this section, we,

therefore, assess the value (performance) implied by the estimated policy.

2.4.1 The method

The only output from the backward procedure that we need is the matrix of

projection coefficients {α̂nk}
N,K
n,k=1 which we employ in a forward scheme to take

decisions. Recall that those projection coefficients are functions of X̃n, but this

dependence is suppressed below for the sake of clarity of notation. For a matrix

{ξmn }
M ′,N
m,n=1 of i.i.d. U(0, 1) variables, and a fixed initial condition x, we perform a

Monte Carlo simulation as follows:
Xm

0 = x,

Xm
n+1 = ϕ(n,Xm

n , ξ
m
n , ν

m
n ), m = 1, . . . ,M ′, n = 0, . . . , N − 1,

(2.4.16)

where the estimated optimal control νmn is computed as:

νmn = argmax
u∈DU

{
f(n,Xm

n , u) +
K∑
k=1

α̂n+1
k φ̂nk(Xm

n , u)
}
. (2.4.17)
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We then set:

v(x) = 1
M ′

M ′∑
m=1

( N∑
n=1

f(n,Xm
n , ν

m
n ) + g(Xm

N )
)
.

In the following we use the notation “Evaluate the policy” to refer to the routine

specified by equations (2.4.16)-(2.4.17).

The above Monte Carlo evaluation of the policy approximates Ṽ (0, x), where the

valuation function Ṽ is defined as follows:
Ṽ (N, x) = g(x)

Ṽ (n, x) = f(n, x, û(n, x)) + E
[
Ṽ (n+ 1, Xn+1)

∣∣∣Xn = x, un = û(n, x)
]
,

(2.4.18)

where

ûn(x) = argmax
u∈DU

{
f(n, x, u) +

K∑
k=1

α̂n+1
k φ̂nk(x, u)

}
.

Indeed, it is easy to see that (2.4.18) has a representation

Ṽ (n, x) = E
[
N∑
t=n

f
(
t,Xt, ût(Xt)

)
+ g(XN)

]
.

Using (2.4.18) has advantages for proving convergence over the above forward

running representation or its Monte Carlo estimate (2.4.16)-(2.4.17).

2.4.2 Convergence results

We now present a theorem that estimates the error between the estimated (V̂ ) and

the true (V ) average performance of the control policy. Recall that we indicate by

R̄ the uniform bound on the transition density of X with respect to the measure µ,

and by Γ the upper bound of the value function.

Theorem 2.4.1. Under Assumptions 1 and 2, for all n = 0, 1, . . . , N , we have:∥∥∥∥Ṽ (n, X̃)− V (n, X̃)
∥∥∥∥
L2
e,N−n

≤ 2R̄
(R̄− 1)2

(
(N − n)R̄N−n+1 − (N − n+ 1)R̄N−n + 1

)

×
(
εK +

√
K√
M

Γ
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk
∥∥∥
L2
µ

)
.
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where εK = maxn=1,...,N

∥∥∥∥ΠKV (n, X̃)− V (n, X̃)
∥∥∥∥
L2
µ

.

Proof of theorem 2.4.1. The proof will follow by induction. Notice that V (N, x) =

Ṽ (N, x) for all x ∈ D. For n < N we have

Ṽ (n, x)− V (n, x) = f(n, x, ûn(X̃)) + Eû(n,x)[Ṽ (n+ 1, Xn+1)]− V (n, x)

+ Eû(n,x)[Π̂n+1
K V̂ (n+ 1, Xn+1)]− Eû(n,x)[Π̂n+1

K V̂ (n+ 1, Xn+1)]

= ˆ̂V (n, x)− V (n, x) + Eû(n,x)[Ṽ (n+ 1, Xn+1)]−

Eû(n,x)[Π̂n+1
K V̂ (n+ 1, Xn+1)],

where we added and subtracted Eûn(X̃)

[
Π̂n+1
K V̂ (n+1, Xn+1)

]
and used that ˆ̂V (n, x) =

f(x, û(n, x)) + Eû(n,x)
[
Π̂n+1
K V̂ (n+ 1, Xn+1)

]
. Using the triangular inequality

∥∥∥∥Ṽ (n, X̃)− V (n, X̃)
∥∥∥∥
L2
e,N−n

≤
∥∥∥∥ ˆ̂V (n, X̃)− V (n, X̃)

∥∥∥∥
L2
e,N−n

+
∥∥∥∥Eû(X̃)

[
Ṽ (n+ 1, Xn+1)− Π̂n+1

K V̂ (n+ 1, Xn+1)
]∥∥∥∥
L2
e,N−n

.

(2.4.19)

The first term in (2.4.19) has been bounded in theorem 2.3.3, (2.3.11)-(2.3.14), as

follows

∥∥∥∥ ˆ̂V (n, X̃)− V (n, X̃)
∥∥∥∥
L2
e,N−n

≤ R̄

∥∥∥∥V̂ (n+ 1, X̃)− V (n+ 1, X̃)
∥∥∥∥
L2
e,N−n−1

+ R̄εK

+ R̄

√
K√
M

Γ
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk‖L2
µ
.

(2.4.20)

The second term in (2.4.19) can be bounded making use of Assumption 1 and Lemma
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2.2.8: ∥∥∥∥Eû(X̃)

[
Ṽ (n+ 1, Xn+1)− Π̂n+1

K V̂ (n+ 1, Xn+1)
]∥∥∥∥
L2
e,N−n

≤ R̄

∥∥∥∥Ṽ (n+ 1, X̃)− Π̂n+1
K V̂ (n+ 1, X̃)

∥∥∥∥
L2
e,N−n

≤ R̄
∥∥∥∥Ṽ (n+ 1, X̃)− V (n+ 1, X̃)

∥∥∥∥
L2
e,N−n−1

+ R̄

∥∥∥∥V (n+ 1, X̃)− Π̂n+1
K V̂ (n+ 1, X̃)

∥∥∥∥
L2
e,N−n

,

(2.4.21)

where the second inequality has been obtained using triangular inequality with the

aim of highlighting the term representing the propagation of the error. The second

term in (2.4.21) has been estimated in (2.3.14):∥∥∥∥V (n+ 1, X̃)− Π̂K V̂ (n+ 1, X̃)
∥∥∥∥
L2
e,N−n

≤ εK +
∥∥∥∥V (n+ 1, X̃)− V̂ (n+ 1, X̃)

∥∥∥∥
L2
e,N−n−1

+
√
K√
M

Γ
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk‖L2
µ
.

(2.4.22)

Combining estimates (2.4.20)-(2.4.22) we obtain∥∥∥∥Ṽ (n, X̃)− V (n, X̃)
∥∥∥∥
L2
e,N−n

≤ R̄
∥∥∥∥Ṽ (n+ 1, X̃)− V (n+ 1, X̃)

∥∥∥∥
L2
e,N−n−1

+ 2R̄Z

+ 2R̄
∥∥∥∥V (n+ 1, X̃)− V̂ (n+ 1, X̃)

∥∥∥∥
L2
e,N−n−1

,

(2.4.23)

where

Z := εK +
√
K√
M

Γ
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk‖L2
µ
.

From theorem 2.3.3 we have
∥∥∥∥V (n+ 1, X̃)− V̂ (n+ 1, X̃)

∥∥∥∥
L2
e,N−n−1

≤ R̄
R̄N−n−1 − 1

R̄− 1
Z.
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Denote γn :=
∥∥∥∥Ṽ (n, X̃) − V (n, X̃)

∥∥∥∥
L2
e,N−n

. Solving the recursion for γn in (2.4.23)

yields:

γn ≤ R̄γn+1 + 2R̄Z
(
R̄N−n − R̄
R̄− 1

+ 1
)

≤ 2R̄
(R̄− 1)2

Z
(

(N − n)R̄N−n+1 − (N − n+ 1)R̄N−n − 1
)
,

(2.4.24)

where we used that γN = 0 and V̂ (N, x) = V (X, x). The statement of the theorem

follows.

2.5 Performance Iteration

In order to discuss the case of Performance Iteration, let us introduce an extension

of the random projection operator suitable to work in the more involved setting

required by this algorithm. In short, notice that this approach might be seen as

a combination of Value Iteration and Forward Iteration, where at each step an

assessment of the performance of the control policy on one simulated path is used

as dependent variable in the regression approximation. In order to extend our

framework we need therefore to introduce a more general projection operator but,

before doing so, let us describe the method more in detail.

2.5.1 The method

Policy iteration of Longstaff and Schwartz [51] (here called Performance Iteration

to distinguish it from classical policy iteration methods in control of Markov chains

[48]) improved upon Tsitsiklis and Van Roy [76] by reducing the propagation of the

error caused by the estimation of the continuation value in the recursive formula for

value function of an optimal stopping problem. In their algorithm, at each step of
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the dynamic programming backward procedure the continuation value is computed

as a conditional expectation of realised payoffs obtained by following the estimated

optimal strategy. This approach relies on the fact that the control (stopping time)

manifests itself through the objective functional but does not affect the dynamics of

the underlying process.

Our iterative procedure is based on the dynamic programming equation for the

performance measure (instead of that for the value function):
J(N,XN) = g(XN)

J
(
n, (Xs, u

∗
s)s=n+1,...,N

)
= f(n,Xn, u

∗
n(Xn)) + J

(
n+ 1, (Xs, u

∗
s)s=n+1,...,N

)
,

(2.5.25)

where the control is given by

u∗n(x) = argmax
u∈DU

{
f(n, x, u) + E

[
J(n+ 1, (Xs, u

∗
s)s=n+1,...,N)

∣∣∣Xn = x, un = u
]}

(2.5.26)

and, with an abuse of notation (as the control is not defined at N), (Xs, u
∗
s)s=n+1,...,N

denotes the process (Xs)s=n,...,N controlled by the process (u∗s)n,...,N−1, i.e.,

Xs+1 = ϕ(s,Xs, ξs, u
∗
s(Xs)), s = n, . . . , N − 1.

The value function is recovered by conditioning the performance measure on Xn = x,

V (n, x) = E
[
J
(
n, (Xs, u

∗
s)s=n,...,N

)
|Xn = x

]
. (2.5.27)

The above conditioning can be viewed as a projection which will be particularly

useful when assessing V (n, X̃) with X̃ ∼ µ as an element of L2
µ. Note that even

though the conditional expectations in (2.5.26) and (2.3.9) seem different, by the

tower property for conditional expectations

E[V (n+ 1, Xn+1)|Fn] = E[E[
N∑

s=n+1
f(Xs, us) + g(XN)|Fn+1]|Fn]

= E[J(n+ 1, (Xs, us)Ns=n)|Fn],
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which implies that even though we iterate over Js rather than V s, the regression

approximation will be targeting the same object En,x,u [V (n+ 1, Xn+1)].

Looking at the update rule that characterises the Performance Iteration approach

it can be immediately seen that its main advantage compared to Value Iteration is

that the error committed in the estimation of the conditional expectation in (2.5.26)

is not directly propagated to the following time step (i.e. from n+ 1 to n). We will

further discuss this in chapter 5.

A direct implementation of equation (2.5.25) allows to iterate over J ’s rather than

V ’s but requires the computation of

J(n, (Xs, u
∗
s)s=n,...,N) =

N−1∑
s=n

f(s,Xs, u
∗
s(Xs)) + g(XN)

after u∗n is established, which numerically means resimulating the path from time n

to the terminal time for each training point, incurring a computational cost. For

details see Algorithm 2.

Remark 2.5.1. For all points (X̃m
n ) at time n, the trajectories {Xm

j }Nj=n+1 must be

recomputed as it is unlikely that the controlled process governed by un(X̃m
n ) matches

exactly Xm
n+1.

2.5.2 Projection operator in bigger spaces

In order to assess the convergence of the Performance Iteration algorithm, we need

to extend the notation used in the previous sections. As with each training point

Xm
n we need to simulate a controlled path up to time N , we consider spaces

L2
ξ,n = L2

µ × L2
(
(0, 1)N−n, λN−n

)
, n < N,

where λ is the Lebesgue measure on (0, 1). The elements of this space will be

denoted (X̃, ξnn , . . . , ξnN−1), where ξ’s correspond to uniform random variables driving
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Algorithm 2 Regress-later Monte Carlo algorithm (RLMC) - Performance Iteration
input: M, K, µ, {φ}Kk=1

1: Pre-compute the inverse of the matrix AK
2: Generate i.i.d. training points {X̃m

N }Mm=1 accordingly to the distribution µ.

3: Initialise the performance measure Ĵ(N,m) = g(X̃m
N ), ∀m

4: for n=N-1 to 0 do

5: α̂n+1 = A−1
K

1
M

∑M
m=1

[
J(n+ 1, X̃m

n+1)φ(X̃m
n+1)

]
6: Generate a new layer of i.i.d. training points {X̃m

n }Mm=1 accordingly to the

distribution µ.

7: Compute the control mapping ûn(x) = argmaxu∈DU
{
f(j, x, u) +∑K

k=1 α̂
n+1
k φ̂nk(x, u)

}
8: for m=1 to M do

9: Generate (ξmn , . . . , ξmN−1) ∼ U(0, 1)

10: Xn = X̃m
n

11: for j=s to N-1 do

12: Xs+1 = ϕ
(
s,Xs, ξ

m
s , ûj(Xm

s )
)

13: Set Ĵ(n,m) = ∑N−1
s=n f

(
n,Xs, ûs(Xs)

)
+ g(XN)

output: {α̂nk}
N,K
n,k=1

the dynamics of the controlled Markov process (2.0.1). To streamline notation, we

also set L2
ξ,N = L2

µ. The space L2
M,n = (L2

µ)Mn which collects all the randomness

involved in computation of α̂n in the Value Iteration case, gets a counterpart L2
χ,n

defined by induction as follows:

L2
χ,N =

(
L2
µ

)M
as no path is generated at time N , and

L2
χ,n = L2

χ,n+1 ×
(
L2
ξ,n

)M
.
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In parallel, we define arguments of the functions in the above spaces L2
χ,n: ỸN =

(X̃1
N , . . . , X̃

M
N ) and, for n < N − 1

Ỹn = Ỹn+1 ×
(
X̃m
n , ξ

n,m
n , . . . , ξn,mN−1

)M
m=1

.

Finally, we introduce two counterparts of L2
e,n. The first one to assess performance

of strategies:

L2
F,n = L2

χ,n+1 × L2
ξ,n (2.5.28)

as the output of the algorithm is the control strategy which must be assessed by

applying it between time n and N with initial value Xn = X̃ ∼ µ and the remaining

randomness used to obtain the trajectory until time N . The second counterpart of

L2
e,n is a subspace of L2

F,n which is used in assessing an estimated value function and

regression coefficients α̂n:

L2
f,n = L2

χ,n+1 × L2
µ.

In the Value Iteration case, the estimated control ûn depends on all the training

points at future times, i.e., on X̃n+1. Here, these controls involve further random

variables associated with simulation of the trajectory starting at every training point,

which is indicated in Ỹn+1. With an abuse of notation, we will write

(Xs, ûs)s=n,...,N (2.5.29)

to mean the sequence of random variables dependent on Ỹn+1 in the following way

Xs+1 = ϕ
(
s,Xs, ξs, ûs(Ỹs+1;Xs)

)
(2.5.30)

with Xn given and (ξs)N−1
s=n a sequence of i.i.d U(0, 1) random variables independent

from Ỹn+1. Therefore, J
(
n, (Xs, ûs)s=n,...,N)

)
∈ L2

F,n, where (Xn, ξn, . . . , ξN−1)

are variables corresponding to the space L2
ξ,n. Notice that J

(
n, (Xs, ûs)s=n,...,N)

)
is a pathwise evaluation of the control policy, and depends therefore on Ỹn+1

only through û; this is in contrast with the Value Iteration case, where the error

propagates in time also directly through the value function approximation V̂ (n+1, ·).
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We extend the projection operator as follows: for h(Ỹn+1;x, ξn, . . . , ξN−1) ∈ L2
F,n we

set

Πn
Kh(Ỹn+1;x, ξn, . . . , ξN−1) :=

K∑
k=1

αnkφk(x),

where

L2
χ,n+1 3 α̂ααn = αααn(Ỹn+1) = A−1

K Eξ,n
[
h(Ỹn+1; X̃, ξn, . . . , ξN−1)φφφ(X̃)

∣∣∣Ỹn+1
]

and Eξ,n is the expectation linked to the space L2
ξ,n. This is an orthogonal projection

in L2
F,n = L2

χ,n+1×L2
ξ,n on the space lin

(
φ1(X̃), . . . , φK(X̃)

)
, where X̃ is the variable

corresponding to the L2
µ part of L2

ξ,n.

The Monte Carlo projection operator is defined as follows. For a sequence of i.i.d

random variables (X̃1
n, . . . , X̃

M
n ) and i.i.d (ξn,mj )j=n,...,N−1; m=1,...,M ∼ U(0, 1), we set

Π̂n
Kh(Ỹn+1;x, ξn, . . . , ξN−1) :=

K∑
k=1

α̂nkφk(x), (2.5.31)

where

L2
χ,n 3 α̂ααn = A−1

K

1
M

M∑
m=1

h(Ỹn+1; X̃m
n , ξ

n,m
n , . . . , ξn,mN−1)φφφ(X̃m

n ). (2.5.32)

Notice that Π̂n
Kh(Ỹn+1; ·) ∈ L2

f,n−1.

We introduce now an extension of lemma 2.2.5 and 2.2.8 for functions living

in the relevant spaces for Performance Iteration. Proofs of these lemmas are a

straightforward generalisation of those in section 2.2.4 and will not be presented.

Lemma 2.5.2 (Projection error). For h ∈ L2
F,N−n, the error of the random

projection operator is bounded as follows:∥∥∥∥Π̂N−n
K h(X̃n; ·)− ΠN−n

K h(X̃n; ·)
∥∥∥∥
L2
F,N−n

≤
∥∥∥A−1

K

∥∥∥
2

1√
M
SDev X̃∼µ,

ξn+1, ..., ξN∼λ

(
h(X̃n ; X̃)φφφ(X̃)

)
,

where

SDev X̃∼µ,
ξn+1, ..., ξN∼λ

(
h(X̃n ; X̃)φφφ(X̃)

)
:=
(

K∑
k=1

V ar X̃∼µ,
ξn+1, ..., ξN∼λ

(
h(X̃n ; X̃)φk(X̃)

))1/2

,
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and ‖A−1
K ‖2 = max{‖A−1

K x‖2 : x ∈ RK , ‖x‖2 = 1} is the matrix operator norm of

A−1
K .

Lemma 2.5.3 (Bound on conditional expectation). For any measurable function

û(Ỹn+1, X̃) : L2
f,N−n × L2

µ 7→ Un and h ∈ L2
F,N−n, we have the following bound on

the norm of the conditional expectation∥∥∥∥E[h(X̃n;Xn+1)
∣∣∣Xn = X̃, un =ûn(X̃n, X̃)

]∥∥∥∥
L2
F,N−n

≤ sup
u∈Un

∥∥∥∥E[h(X̃n;Xn+1)
∣∣∣Xn = X̃, un = u

]∥∥∥∥
L2
F,N−n

≤ R̄‖h‖L2
F,N−n

,

where

E
[
h(Ỹn+1;Xn+1)

∣∣∣Xn = x, un = û(n, x)
]

=
∫
D
h(Ỹn+1; y) r(n, x, û(x); y)µ(dy).

2.5.3 Convergence results

We now present a theorem that estimates the error between the estimated and

the true value function. Recall that we indicate by R̄ the uniform bound on the

transition density of X with respect to the measure µ, and by Γ the upper bound

for the value function.

Consider the exact performance of the estimated optimal strategy ûn computed in

Algorithm 2:

Ṽ (n, x) =E
[
J
(
n, (Xs, ûs)Ns=n

)∣∣∣∣Xn = x
]

=E
[ N∑
s=n

f(s,Xs, ûn(Xs)) + g(XN)
∣∣∣∣Xn = x

]
=f(n, x, û(n, x)) + E

[
Ṽ (n+ 1, Xn+1)

∣∣∣∣Xn = x, un = ûn(x)
]
.

This is an analogous quantity as studied in the previous section concerned with the

forward evaluation of a strategy extracted in the Value Iteration scheme. Note that

Ṽ (n, ·) ∈ L2
f,n due to the random points used in computing the strategy ûn.
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Theorem 2.5.4. Under Assumptions 1 and 2, for all n = 0, 1, . . . , N , we have:

∥∥∥∥Ṽ (n, X̃)− V (n, X̃)
∥∥∥∥
L2
f,n

≤ 2R̄(3R̄)N−n − 1
3R̄− 1

(
εK +

√
K√
M

Γ
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk‖L2
µ

)

where εK = maxn=1,...,N

∥∥∥∥ΠKV (n, X̃)− V (n, X̃)
∥∥∥∥
L2
µ

.

Proof of theorem 2.5.4. We have

Ṽ (n, X̃)− V (n, X̃)

= f(n,Xn, ûn(X̃)) + Eûn(X̃)

[
Ṽ (n+ 1, ·)

]
− f(n, X̃, u∗n(X̃))− Eu∗n(X̃)

[
V (n+ 1, ·)

]
+ Eûn(X̃)

[
Π̂n+1
K J

(
n+ 1, (Xs, ûs)Ns=n+1

))]
− Eûn(X̃)

[
Π̂n+1
K J

(
n+ 1, (Xs, ûs)Ns=n+1

))]
,

where we have added and subtracted Eûn(X̃)

[
Π̂n+1
K J

(
n+ 1, (Xs, ûs)Ns=n+1

)]
. Since

û(n, x) = argmax
u∈Un

{
f(n, x, u) + En,x,u

[
Π̂n+1
K J

(
n+ 1, (Xs, ûs)Ns=n+1

)]}
,

then:

Ṽ (n, X̃)− V (n, X̃) ≥ Eûn(X̃)

[
Ṽ (n+ 1, Xn+1)− Π̂n+1

K J
(
n+ 1, (Xs, ûs)Ns=n+1

)]
+ Eu∗n(X̃)

[
Π̂n+1
K J

(
n+ 1, (Xs, ûs)Ns=n+1

)
− V (n+ 1, Xn+1)

]
.

Similarly, since u∗(n, x) = argmaxu∈Un
{
f(n, x, un) + En,x,u

[
V (n + 1, Xn+1)

]}
, we

have:

Ṽ (n, X̃)− V (n, X̃) ≤ Eûn(X̃)

[
Ṽ (n+ 1, Xn+1)− Π̂n+1

K J
(
n+ 1, (Xs, ûs)Ns=n+1

)]
+ Eûn(X̃)

[
Π̂n+1
K J

(
n+ 1, (Xs, ûs)Ns=n+1

)
− V (n+ 1, Xn+1)

]
.

Collecting the previous two inequalities we can conclude, using the triangular
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inequality, that:∥∥∥∥Ṽ (n, X̃)−V (n, X̃)
∥∥∥∥
L2
f,n

≤
∥∥∥∥Eûn(X̃)

[
Ṽ (n+ 1, Xn+1)− Π̂n+1

K J
(
n+ 1, (Xs, ûs)Ns=n+1

)]∥∥∥∥
L2
f,n

+
∥∥∥∥ sup
u∈DU

{
En,X̃,u

[
Π̂n+1
K J

(
n+ 1, (Xs, ûs)Ns=n+1

)
− V (n+ 1, Xn+1)

]}∥∥∥∥
L2
f,n

.

(2.5.33)

Using Assumption 1 and Lemma 2.5.3, (2.5.33) reads∥∥∥∥Ṽ (n, X̃)− V (n,X̃)
∥∥∥∥
L2
f,n

≤R̄
∥∥∥∥Ṽ (n+ 1, X̃)− Π̂n+1

K J
(
n+ 1, (Xs, ûs)Ns=n+1

)∣∣∣
Xn+1=X̃

∥∥∥∥
L2
f,n+1

+ R̄
∥∥∥∥Π̂n+1

K J
(
n+ 1, (Xs, ûs)Ns=n+1

)∣∣∣
Xn+1=X̃

− V (n+ 1, X̃)
∥∥∥∥
L2
f,n

≤ R̄
∥∥∥∥Ṽ (n+ 1, X̃)− V (n+ 1, X̃)

∥∥∥∥
L2
f,n

+ 2R̄
∥∥∥∥V (n+ 1, X̃)− Π̂K J̄

(
n+ 1, (Xs, ûs)Ns=n+1

)∥∥∥∥
L2
f,n

,

(2.5.34)

where the last line exploit the triangular inequality. The first term in (2.5.34)

represents the propagation of error from future time steps. For the second we use

the triangular inequality in order to derive a series of error terms:∥∥∥∥Π̂n+1
K J̄

(
n+ 1,(Xs, ûs)Ns=n+1

)
− V (n+ 1, Xn+1)

∥∥∥∥
L2
f,n

≤
∥∥∥∥Π̂n+1

K J̄
(
n+ 1, (Xs, ûs)Ns=n+1 − Πn+1

K J
(
n+ 1, (Xs, ûs)Ns=n+1

))∥∥∥∥
L2
f,n

+
∥∥∥∥Πn+1

K J
(
n+ 1, (Xs, ûs)Ns=n+1

)
− Πn+1

K Ṽ (n+ 1, X̃)
∥∥∥∥
L2
f,n

+
∥∥∥∥Πn+1

K Ṽ (n+ 1, X̃)− Πn+1
K V (n+ 1, X̃)

∥∥∥∥
L2
f,n

+
∥∥∥∥Πn+1

K V (n+ 1, X̃)− V (n+ 1, X̃)
∥∥∥∥
L2
f,n

.

(2.5.35)



Chapter 2. RMC for control of Markov processes 68

The first term in (2.5.35) can be bounded using Lemma 2.5.3, 2.5.2 and Assumption

2:
∥∥∥∥Πn+1

K J
(
n+ 1, (Xs, ûs)Ns=n+1

)
− Π̂n+1

K J
(
n+ 1, (Xs,ûs)Ns=n+1

)∥∥∥∥
L2
f,n

≤
√
K√
M

Γ̄
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk
∥∥∥
L2
µ

.

(2.5.36)

The second term in (2.5.35) can be computed as follow:

∥∥∥∥Πn+1
K Ṽ (n+ 1, X̃)− Πn+1

K J
(
n+ 1, (Xs, ûs)Ns=n+1

)∥∥∥∥
L2
f,n

=
∥∥∥∥A−1

K Ez∼µ
[
Ṽ (n+ 1, z)φφφ(z)

]
φφφ(X̃)−A−1

K E z∼µ,
ξn+1, ..., ξN∼λ

[
J
(
n+ 1, (ϕ(s,Xs, ûs, ξs), ûs+1)Ns=n|Xn+1=z

)
φφφ(z)

]
φφφ(X̃)

∥∥∥∥
L2
f,n

=
∥∥∥∥A−1

K Ez∼µ
[
Ṽ (n+ 1, z)− Eξn+1, ..., ξN∼λ

[
J
(
n+ 1, (ϕ(s− 1, Xs, ûs, ξs), ûs+1)Ns=n

)∣∣∣
Xn+1=z

]
× φφφ(z)

]
φφφ(X̃)

∥∥∥∥
L2
f,n

=
∥∥∥∥A−1

K Ez∼µ
[(
Ṽ (n+ 1, z)− Ṽ (n+ 1, z)

)
φφφ(z)

]
φφφ(X̃)

∥∥∥∥
L2
f,n

= 0,

(2.5.37)

where we used the tower property of conditional expectations and the notation

introduced in (2.5.29)-(2.5.30). The third term in (2.5.35) can be bounded making

use of arguments similar to remark 2.2.8

∥∥∥∥Πn+1
K V (n+1, X̃)−Πn+1

K Ṽ (n+1, X̃)
∥∥∥∥
L2
f,n

≤
∥∥∥∥V (n+1, X̃)−Ṽ (n+1, X̃)

∥∥∥∥
L2
f,n

, (2.5.38)

note that we obtain an additional term representing the error propagated from future

time steps. The last term in (2.5.35) can be bounded can be bounded by εK

∥∥∥∥V (n+ 1, X̃)− Πn+1
K V (n+ 1, X̃)

∥∥∥∥
L2
f,n

≤
∥∥∥∥V (n+ 1, X̃)− Πn+1

K V (n+ 1, X̃)
∥∥∥∥
L2
µ

≤ εK ;

(2.5.39)
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Collecting the bounds we obtained for (2.5.34) and (2.5.35) we obtain∥∥∥∥Ṽ (n, X̃)− V (n, X̃)
∥∥∥∥
L2
f,n

≤ 3R̄
∥∥∥∥Ṽ (n+ 1, X̃)− V (n+ 1, X̃)

∥∥∥∥
L2
f,n

+ 2R̄εK + 2R̄
√
K√
M

Γ̄
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk
∥∥∥
L2
µ

(2.5.40)

Denoting by βn :=
∥∥∥∥Ṽ (n, X̃) − V (n, X̃)

∥∥∥∥
L2
f,n

and Z := εK +
√
K√
M

Γ̄
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk
∥∥∥
L2
µ

we conclude computing

βn ≤ 3R̄βn+1 + 2R̄Z ≤ 2R̄
N−n−1∑
s=0

(3R̄)sZ = 2R̄(3R̄)N−n − 1
3R̄− 1

Z.

Corollary 2.5.5. Under assumption of ortonormality of the basis functions

φ1, . . . , φK in L2
µ, we have:

∥∥∥∥Ṽ (n, X̃)− V (n, X̃)
∥∥∥∥
L2
f,n

≤ 2R̄(3R̄)N−n − 1
3R̄− 1

(
εK +

√
K√
M

Γ
)

Proof. Analogous to the proof of Corollary 2.3.5.

Remark 2.5.6 (Policy vs. Performance Iteration). We decided to use the

name Performance Iteration as opposed to policy iteration, in order to avoid

misunderstandings. Often in Regression Monte Carlo literature the algorithm just

presented is called policy iteration even though such name is used in the more general

approximate dynamic programming literature to describe algorithms which iterate

over controls rather than over the performance measure.

Remark 2.5.7 (Truncation). Notice that the Performance Iteration does not require

any truncation of the estimations, contrary to Value Iteration for which we need to

introduce truncation in order to obtain convergence.
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We now explore further the error bound for Performance Iteration by defining ε̃K =

maxn=1,...,N

∥∥∥ΠK Ṽ (n, X̃) − Ṽ (n, X̃)
∥∥∥
L2
µ

to be the projection error on the estimated

value function. In the following proposition we show how to sharpen the error bound

in theorem 2.5.4 by means of an assumption on the projection error ε̃K .

Proposition 1. Under Assumptions 1 and 2, and further assuming ε̃K ≤ εK, i.e.

the projection error on the approximate value function is similar to the projection

error on the true value function, we have, for all n = 0, 1, . . . , N , the following error

bound for the value function estimated by the Performance Iteration procedure:

∥∥∥∥Ṽ (n, X̃)− V (n, X̃)
∥∥∥∥
L2
f,n

≤ 2R̄(R̄)N−n − 1
R̄− 1

(
εK +

√
K√
M

Γ
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk‖L2
µ

)

Proof. The proof follows from theorem 2.5.4 which we use as reference.

With the same arguments used before we establish the inequality in (2.5.33):

∥∥∥∥Ṽ (n, X̃)−V (n, X̃)
∥∥∥∥
L2
f,n

≤
∥∥∥∥Eûn(X̃)

[
Ṽ (n+ 1, Xn+1)− Π̂n+1

K J
(
n+ 1, (Xs, ûs)Ns=n+1

)]∥∥∥∥
L2
f,n

+
∥∥∥∥ sup
u∈DU

{
En,X̃,u

[
Π̂n+1
K J

(
n+ 1, (Xs, ûs)Ns=n+1

)
− V (n+ 1, Xn+1)

]}∥∥∥∥
L2
f,n

.

Using Assumption 1 and Lemma 2.5.3, but applying the triangular inequality to

the norm involving Ṽ (n, X̃) rather than the one involving V (n, X̃), we obtain an
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alternative to (2.5.34):∥∥∥∥Ṽ (n, X̃)− V (n,X̃)
∥∥∥∥
L2
f,n

≤R̄
∥∥∥∥Ṽ (n+ 1, X̃)− Π̂n+1

K J
(
n+ 1, (Xs, ûs)Ns=n+1

)∣∣∣
Xn+1=X̃

∥∥∥∥
L2
f,n+1

+ R̄

∥∥∥∥Π̂n+1
K J

(
n+ 1, (Xs, ûs)Ns=n+1

)∣∣∣
Xn+1=X̃

− V (n+ 1, X̃)
∥∥∥∥
L2
f,n

≤ R̄
∥∥∥∥Ṽ (n+ 1, X̃)− V (n+ 1, X̃)

∥∥∥∥
L2
f,n

+ 2R̄
∥∥∥∥Ṽ (n+ 1, X̃)− Π̂K J̄

(
n+ 1, (Xs, ûs)Ns=n+1

)∥∥∥∥
L2
f,n

.

(2.5.41)

The first term in (2.5.41) represents the propagation of the error from future time

steps. The second can be bounded, as shown in (2.5.36), (2.5.39) by
∥∥∥∥Ṽ (n+ 1, X̃)− Π̂K J̄

(
n+ 1, (Xs, ûs)Ns=n+1

)∥∥∥∥
L2
f,n

≤ ε̃K +
√
K√
M

Γ
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk‖L2
µ
.

(2.5.42)

Using the bound in (2.5.42) and similarly to the proof of theorem 2.5.4 we obtain

the recursion:∥∥∥∥Ṽ (n, X̃)− V (n, X̃)
∥∥∥∥
L2
f,n

≤ R̄
∥∥∥∥Ṽ (n+ 1, X̃)− V (n+ 1, X̃)

∥∥∥∥
L2
f,n

+ 3R̄ε̃K + 2R̄
√
K√
M

Γ̄
∥∥∥A−1

K

∥∥∥
2

max
k=1, ...,K

‖φk
∥∥∥
L2
µ

,

(2.5.43)

which, along with the assumption that ε̃K ≥ εK , leads to the result presented in

proposition 1
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Chapter 3

RMC for inventory problems

3.1 Introduction

In this chapter, we study a class of problems that fall in between the class of optimal

stopping-switching and the full stochastic control of Markov processes introduced

in chapter 1. Inventory control problems are similar to switching problems with

respect to the controlled deterministic index (or inventory indeed) dimension, while

they present similarities with the full stochastic control problems with respect to the

continuous support of both dimension, which prevents the use of standard Regression

Monte Carlo techniques, and, for an efficient solution approach, it requires the use

of Regress Later algorithm described in the previous chapter.

Recall that we consider a multidimensional process (X, I), with an exogenous

(uncontrolled) p-dimensional random component (Xn), n = 0, . . . , N , and an

endogenous q-dimensional controlled component (In) with values in [0, I1
max]× · · · ×

[0, Iqmax]. We assume that (Xn) is a Markov process with transition density described

in (1.1.1) and the discrete-time dynamics of In are given by

In+1 = ϕI(n,Xn, In, un), (3.1.1)
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where ϕI is a Borel-measurable function and un is a q-dimensional control. The set of

state dependent admissible controls U{n:N} is given by feedback functions (us(x, i) =

us)Ns=n such that certain problem specific constraints Ws are satisfied and Is+1 =

ϕI(s,Xn, Is, us) ∈ [0, I1
max]×· · ·× [0, Iqmax], s ∈ [n,N−1]. Without loss of generality,

and for simplicity of presentation, we assume that the inventory and the controls are

one-dimensional, i.e., In ∈ [0, Imax] and un ∈ [u, u]. The value function of the control

problem is given by V (n, x, i) = sup(us)∈U{n:N}
E[J(n, (Xs, Is, us)Ns=n)|Xn = x, In = i],

where J(n, (Xs, Is, us)Ns=n) = ∑N−1
s=n f(s,Xs, Is, us) + g(XN , IN). Because In+1 in

(3.1.1) is a deterministic function of (Xn, In, un), the Bellman equation for V reads:
V (n, x, i) = supu∈U{n:N}

{
f(n, x, i, u) + E

[
V
(
n+ 1, Xn+1, ϕI(n, x, i, u)

)
|Xn = x

]}
,

V (N, x, i) = g(x, i),
(3.1.2)

This property will be useful for numerical methods presented in section 3.2.

Our study of inventory control problems is motivated by the management of a

limited amount of resources (which can be replenished or not), in order to maximise

a measure of performance based on possibly both the inventory level itself and

an exogenous process, which, for example could be the price or the demand for

that particular resource. Recall that one of the main characteristics of this class

of problems is that the inventory level influences the admissible controls since,

when the inventory is full, it is not possible to accumulate resources further and,

analogously, when it is empty, it is not possible to withdraw them. Examples include

management of energy storages such as batteries [35], flywheels or pump-hydro

stations for electricity production [81], underground caves for gas storage [12]; or

management of warehouse/shop stocks subject to fluctuations in price and demand

[69].

Recall that Regression Monte Carlo borrows from standard Monte Carlo methods

its independence on the dynamics, as long as these can be simulated. This
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feature prompted interest in applying Regression Monte Carlo to inventory

control problems where the exogenous process is usually multi-dimensional and

evolving on a non-compact state space preventing successful application of

Markov chain approximation methods [48]. Although similar to the pricing of

American/Bermudan options, the control in inventory problems does not affect

the random dynamics, the action of the control changes the future inventory level

making the problem significantly more difficult than just choosing among a set

of possible future regimes to switch to. The simplest and most commonly used

approach borrows from Markov chain approximations by discretising the inventory

space and applying Regression Monte Carlo independently at each point of the

discrete grid, see, e.g., Boogert and de Jong [12], Denault et al. [23], Kitapbayev et al.

[47], Nadarajah et al. [60], effectively recovering the optimal switching framework

which we discuss in chapter 4. However, due to separate regressions needed at each

discretisation level of the inventory, the method is inefficient and the computational

complexity becomes prohibitive when the dimension of the inventory space grows.

We discuss this method in section 3.2.1.

A natural improvement to the inventory space discretisation is to include the

inventory variable in the regression in order to be able to read from the resulting

regression surface all information “contained in each discretisation level” and,

without interpolating, those in-between. Algorithms in Carmona and Ludkovski

[17], Denault et al. [23] require that the set of available controls is finite and small

(in their examples, they allow for up to three values of control: increase, decrease,

hold). In particular, the approach by Denault et al. [23] is sensitive to the size of

the control set because for each possible control value it runs a separate regression

at each time step in the backward dynamic programming procedure. We discuss

this method in section 3.2.2.

Kharroubi et al. [46] treat the control as a state variable and approximate the
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continuation value in dynamic programming procedure as a function of three

variables: the state of the exogenous process, the inventory and the control. This

allows them to optimise over an infinite (or even continuous) set of controls at the

cost of adding additional dimensions to the basis functions used in the regression.

Langrené et al. [49] shows an application of this methodology to natural resource

extraction. In fact, Kharroubi et al. [46] solve a more general problem of controlling

diffusions, so that the control affects the random dynamics itself. We discuss this

method in section 3.2.3.

The contribution of this chapter is twofold: firstly, we introduce alternative

Regression Monte Carlo algorithms presented in literature and describe their

characteristics compared to the RLMC algorithm. Secondly, we compare the

implementation of the RLMC algorithm in the inventory case, with the general

case discussed in chapter 2.

3.2 Regression Monte Carlo numerical

algorithms

In this section, we present different algorithms that have been proposed in

the literature to solve inventory problems using Regression Monte Carlo based-

algorithms. In particular, we will discuss Grid Discretisation, Quasi-simulation of

the inventory and Control Randomisation.

In the case of inventory problems, compared to the most general case, it might be

easier to visualise why the plain Regress Now approach cannot be applied. Notice

that the calculation of an optimal control at time n is, in fact, a fixed point problem:

one has to find a control u∗n such that after doing a regression approximation of

the conditional expectation with In+1 determined by this control, the maximiser in



Chapter 3. RMC for inventory problems 77

(2.3.9) equals to u∗n.

The absence of stochasticity in the dynamics of the inventory, however, allow us to

circumvent the difficulties presented in section 2.1.3 and solve the control problem

by modifying the original algorithm for Regress Now projections.

3.2.1 Grid discretisation of inventory levels

This approach effectively consists of discretising the inventory domain and

computing separate regression at each level, taking the value of the inventory as

given and thereby circumventing the difficulties presented before.

Consider a discretisation {λ1 = 0, . . . , λL = Imax} of the domain of the controlled

inventory and assume that we use an uniform grid where λi = {(i − 1) Imax
L−1 : i =

1, . . . , L}. To generate training points for the exogenous process (Xs)Ns=1, on the

other hand, simulate M trajectories (Xm
s )M,N

m,s=1 using the transition density and a

given initial point. In order to compute the continuation value in (3.1.2), regress the

set of responses {V (n+ 1, Xm
n+1, λl)}Mm=1 over {φk(Xm

n )}M,K
m,k=1 for each l = 1, . . . , L

obtaining a collection of coefficients {αk,ln }
K,L
k,l=1 and approximations ∑K

k=1 α
k,l
n φk(x)

of E[V (n+ 1, Xn+1, λl)|Xn = x].

Since these approximations are for a fixed set of inventory levels, we need to extend

the approximation of the continuation value over the full inventory domain. This

is usually done in literature [12] by interpolating values ∑K
k=1 α

k,l
n φk(x)}Ll=1 between

grid points {λl}Ll=1. The interpolation procedure requires a gridded, uniform design

and, therefore, the computational complexity of this task increases exponentially

with the number of grid points and dimensions of the inventory. We define a linear

interpolation function by

I(x, i, u; {αk,ln }
K,L
k,l=1, {λl}Ll=1) = c

K∑
k=1

αk,`n φk(x) + (1− c)
K∑
k=1

αk,`+1
n φk(x),
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where ` ∈ {1, . . . , L} : ϕI(n, x, i, u) ∈ (λ`, λ`+1] and c = ϕI(n,x,i,u)−λ`
λ`+1−λ`

.

To obtain samples of the value function to use in the regression procedure at the

next time step, we solve an approximate backward dynamic programming equation

at the states (x, λl), ∀x, l = 1, . . . , L:

V (n,Xm
n , λl) = sup

u∈Un

{
f(n,Xm

n , λl, u) + I
(
Xm
n , λl, u; {αk,ln }

K,L
k,l=1, {λl}Ll=1

)}
for l = 1, . . . , L.

Algorithm 3 provides details of the implementation. Extension to performance

iteration results in a minor amendment as can be seen in the algorithm.

The inventory discretisation method is wide-spread because of the relative simplicity

of extending a traditional Regression Monte Carlo algorithm for optimal stopping

to controlled dynamics, see, e.g., Boogert and de Jong [12], Denault et al.

[23], Kitapbayev et al. [47], Nadarajah et al. [60]. However, due to separate

regressions needed at each discretisation point of the endogenous (controlled)

component, it could be prohibitive to implement this algorithm as the dimensionality

of the controlled process grows. See the second part of this Thesis, section 6.3 in

particular, to appreciate the degradation of performance already observed in a 2-

dimensional problem.

Remark 3.2.1. An alternative to the use of interpolation, to extend the

approximation of the continuation value over the full domain of the inventory,

is regression. Despite the lack of examples in literature, regression offers a way

to smooth out the noise in the approximations at different inventory levels and

can be calculated much more efficiently than interpolation when the dimension of

the inventory grows, because it is not constrained to uniformly gridded designs.

This approach practically means generating, through multiple regressions for fixed

inventory levels, training points for the continuation value which are then fit by

regression including both exogenous and inventory dimension in the basis function.
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Algorithm 3 Regression Monte Carlo algorithm with Grid Discretisation (GD)
1: Generate training points {Xm

n }
N,M
n=1,m=1

2: Initialise the value function V (N,Xm
N , λl) = g(Xm

N , λl), j = 1, . . . , L, m =

1, . . . ,M

3: for n = N − 1 to 1 do

4: for l = 1 to L do

5: αln = argmin
α∈RK

{∑M
m=1[V (n+ 1, Xm

n+1, λl)−
∑K
k=1 αkφk(Xm

n )]2}

6: if Value Iteration then

V (n,Xm
n , λl) = max

u∈Un
{f(n,Xm

n , λl, u) + I(Xm
n , λl, u; {αk,ln }

K,L
k,l=1, {λl}Ll=1)}, ∀m, l

7: if performance iteration then

8: For each m and l, compute inventory trajectories {Im,ls }Nj=n along (Xm
s )Ns=n

starting from Im,ln = λl using control

9: u∗n(x, i) = argmax
u∈Un

{f(n, z, y, u) + I(Xm
n , i, u; {αk,ln }

K,L
k,l=1, {λl}Ll=1}.

10: Set

11: V (n,Xm
n , λl) = ∑N−1

s=n f
(
j,Xm

j , I
m,l
j , u∗n

(
Xm
j , I

m,l
j

))
+ g(Xm

N , I
m,l
N )

12: Evaluate the policy
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Further analysis is necessary to comment on the overall efficiency of this approach

over interpolation, however, this lies outside the scope of the thesis.

Remark 3.2.2. There are cases when the control can only take values in a discrete

set, that the inventory process is confined to a low-cardinality set of known fix values

dependent on the initial condition I0. In such cases, separate regressions can be fitted

at each level without requiring any form of extensions over the inventory domain.

3.2.2 Quasi-simulation of the inventory

In order to include the inventory in the regression, its trajectories (In) have to be

simulated before the control is computed. However, as the control directly guides the

evolution of (In), the inventory should rather be stated at time N and then its paths

constructed backward in time as the dynamic programming procedure progresses.

The question therefore becomes, does it exist a predecessor i for the inventory level

In+1 = j such that if I am in state (n, x, i) following my control policy, I would land

onto (n+ 1, Xn+1, j)? Carmona and Ludkovski [17] and Denault et al. [23] resolved

this issue in similar ways in the framework of managing an energy storage device for

which only 3 controls are available: charge, discharge and store; i.e. u ∈ {−1, 0, 1}.

In Carmona and Ludkovski [17] the authors deal for the first time with the task

of regressing {V (n + 1, Xm
n+1, I

m
n+1)}Mm=1 over basis functions dependent on both

exogenous and inventory processes. Clearly, only three predecessors Imn are possible

and the authors suggest to test separately whether Imn+1 is an optimal successor of

one of these three. This is achieved by regressing the value function at time n + 1

over observations (Xm
n , I

m
n+1)Mm=1 and later testing whether an optimal control at

time n, for any of the three predecessors of Imn+1, drives the inventory process to

Imn+1. If there is such a predecessor in the interval [0, Imax], the trajectory (Ims )Ns=n+1

is extended to time n, otherwise, Imn is randomly placed in [0, Imax].
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The approach in Denault et al. [23] uses basis functions dependent on Xn and In, and

requires the computation of 3 separate regressions for each choice of control at step

n. This procedure does not guarantee that the trajectories constructed backward for

paths of the inventory process (Imn )N,Mn,m will remain inside [0, Imax] and they decided,

therefore, to introduce an artificial penalty term and a random replacement of the

point Imn when it is too far from the interval [0, Imax]. The small and finite size of

the set of possible controls is paramount for this method, notice how this approach

closely reflect what is done in Grid Discretisation even though, in this case, multiple

regressions are used to estimate the effect of the controls at all inventory levels, rather

than the value of different inventory levels for all controls. Reliable and thorough

tests are not available, however, our experience and the literature seem to suggest

that the grid discretisation method is preferred over quasi-simulation whenever the

dimensionality of the problem is small enough to allow its use.

3.2.3 Control Randomisation

Control Randomisation was introduced in Kharroubi et al. [46]; it differs from

the previous methods in that the control becomes a state variable and it is

simulated (according to some arbitrary model that ensures admissibility) along

trajectories of (Xs, Is)Ns=1. Data underlying the regression procedure consists of

three sets of trajectories {Xm
n , I

m
n , ũ

m
n }

N,M
n,m=1. In the case of Value Iteration (2.3.9),

{V (n + 1, Xm
n+1, I

m
n+1)}Mm=1 is regressed against basis functions evaluated at the

points {Xm
n , I

m
n , ũ

m
n }Mm=1. These regression basis functions are dependent now on

the random control ũn, in addition to Xn and In, so that the estimated continuation

value will depend on the choice of the control (which is different on each sample

trajectory). An optimal control at time n given Xn = Xm
n and In = Imn is
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approximated by the expression (if the maximum is attained)

u∗n(x, i) = argmax
u∈Un

{
f(n, x, i, u) +

K∑
k=1

αknφk(x, i, u)
}
. (3.2.3)

In general, multiple runs of the method could be needed to obtain precise estimates

because the initial choice of the dummy control could drive the training points far

from where the optimal control would have directed them. For details about the

implementation and extension to the performance iteration case refer to Algorithm

4.

Remark 3.2.3. Notice that Control Randomisation has originally been developed

to solve general control of Markov process problems; we decided, however, to discuss

this method only in this section to maintain the focus of chapter 2 on the convergence

theorems for Regress Later. For further reference see Langrené et al. [49] where the

authors apply the numerical method in the context of natural resource extraction.

3.3 Regress Later Monte Carlo: a decoupling

approach

Recall from section 2.1.4 that Regress Later approximates conditional expectations

with respect to (Xn, In) in two stages. First, a conditional expectation with respect

to (Xn+1, In+1) is approximated in a regression step by a linear combination of basis

functions of (Xn+1, In+1). Then, analytical formulas (or precomputed numerical

approximations) are applied to condition this linear combination of functions of

future values on present values (Xn, In). Using the notation introduced in chapter

2 we have

En,x,i,u[V (n+ 1, Xn+1, In+1)] ≈ En,x[Π̂K V̂
(
n+ 1, Xn+1, ϕ(n, x, i, u)

)
],
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Algorithm 4 Regression Monte Carlo algorithm: Control Randomisation (CR)
1: Generate initial points {Xm

0 , I
m
0 }Mm=1 from an initial distribution of interest.

2: Simulate the dynamics of the process (X, I) to produce the training points

{Xm
n , I

m
n }

N,M
n=1,m=1 while generating a random control {ũmn ∈ U{n:n}}N,Mn=1,m=1.

3: Initialise the value function V (N,Xm
N , I

m
N ) = g(Xm

N , I
m
N ), ∀m

4: for n=N-1 to 1 do

5: αn+1 = argmin
α∈RK

{∑M
m=1[V (n+ 1, Xm

n+1, I
m
n+1)−∑K

k=1 α
k
n+1φk(Xm

n , I
m
n , ũn,m)]2}

6: if Value Iteration then

7: For all m do

V (n,Xm
n , I

m
n ) = sup

u∈Un

{
f(n,Xm

n , I
m
n , u) +

K∑
k=1

αkn+1φk(Xm
n , I

m
n , u)

}

8: if Performance Iteration then

9: For eachm, update trajectories {Imj }Nj=n+1 using control given by equation

(3.2.3)

10: V (n, Zm
n , Y

m
n ) = ∑N−1

j=n f
(
j,Xm

j , I
m
j , u

∗
n

(
Xm
j , I

m
j

))
+ g(Xm

N , I
m
N )

11: Evaluate the policy



Chapter 3. RMC for inventory problems 84

where V̂ (n + 1, ·) is computed recursively backward in time from the terminal

condition V̂ (N, x, i) = g(x, i).

We provide now a comparison of the Regress Later algorithm with both the methods

presented above, Grid Discretisation and Control Randomisation in particular, and

the same Regress Later algorithm as implemented in the general case.

3.3.1 Comparison with the control of stochastic dynamics

The implementation of Regress Later for inventory problems features very little

difference compared to the general case. Contrary to the case of control of stochastic

processes, however, when a degenerate process I (deterministic transition function)

is part of the state space, the multidimensional process (X, I) does not satisfy

Assumption 1 in chapter 2 thereby making the theorems presented therein not

applicable to this class of problems. In particular, notice that the constant R̄, which

provides a bound on the transition density function, would be infinity. Workarounds

seem to be possible, but so far convergence of Regression Monte Carlo algorithms

for this class of problems has not been proved.

It is worth mentioning an interesting modification of the Regress Later algorithm

that combines the simplicity of Regress Now and the decoupling property of Regress

Later by using the former for the exogenous dimension and the latter for the

endogenous one. In particular we project over basis function {φk(Xn, In+1)}Kk=1

and compute conditional expectations, as explained in section 2.1.4, by defining

φ̂k(n, x, i) = φ(x, ϕI(n, x, i, u)). The advantage of this approach is that we do not

require to compute the conditional expectation of basis functions, at the cost of

having to use training points obtained by sampling simulated trajectories of X.

This solution strategy has recently been explored in Ludkovski and Maheshwari [52]

and inspired by Carmona and Ludkovski [17].
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Remark 3.3.1. Notice that, regardless of the lack of theoretical results for this

class of problems, practical implementations benefit from the structure of the problem

which offers clearer guidance on how to chose the training measures µ, compared to

the general case. Notice in fact that, as the process X is uncontrolled, we know

in advance which part of the state space is more relevant and therefore cluster more

point in that area. On the other hand, we do not know where the optimally controlled

inventory process I will be driven, conditional on a trajectory of X, and we need to

extensively explore the state space [0, Imax] in order to produce a sensible policy that

is aware of the hard constraint represented by a state of full or empty inventory. A

more detailed discussion can be found in section 5.2.

3.3.2 Comparison with other methods

Similarly to the other methods presented in this chapter, and as explained in

the previous subsection, Regress Later applied to inventory problems lacks a

proof of convergence. In this section, however, we explain why we consider it

still preferable to Grid Discretisation and Control Randomisation, the two most

established techniques in the literature.

As presented in section 3.2.1 the main drawback of Grid Discretisation is that

the computational complexity scales badly with the number of dimensions of the

controlled process I. Regress Later, on the other hand, only needs one regression to

approximate the continuation value over the whole domain. An additional benefit

of capturing the full structure of the continuation value in one regression is that the

noise in the point-wise estimations produced by Grid Discretisation is automatically

smoothed by the regression, improving the consistency of neighbouring estimates.

To a certain extent, the same argument applies also to the comparison with Control

Randomisation 3.2.3, where the increasing complexity arises from the need to include
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explicitly (as opposed to implicitly, as it is done in Regress Later) the dependence on

the control process in the basis functions. For reference, consider a one-dimensional

exogenous process X, a d dimensional inventory process I and a q dimensional

control process u along with basis functions defined as linear interactions among

all subsets of possible combinations of each dimension. In the case of Control

Randomisation this accounts for approximately O(2d+q) basis functions as opposed

to O(2d) for Regress Later; or, in other words, Control Randomisation needs to

estimate 2q times the number of coefficients Regress Later does. In addition, even

though the task of choosing a training measure µ in Regress Later is similar to that

of choosing trajectories for the randomised control in Control Randomisation, the

second problem appears to be more difficult and only partial guideline is offered in

the literature.
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Chapter 4

RMC for optimal stopping and

switching

In this chapter we discuss how to apply the regression approximation introduced

in chapter 2 to the Bellman equations (1.3.15)-(1.3.16) in order to solve optimal

stopping and switching problems. The application of regression techniques to

estimate conditional expectation in more general problems has been discussed in

chapter 2 and 3.

Notice that in this chapter we will cover exclusively known results and provide a

summary of the early literature on Regression Monte Carlo algorithms. In particular,

in section 4.1, we discuss the reasons why the stopping and switching framework is

considerably easier than the general case, while in section 4.2 we present a discussion

about the results on convergence behaviour available in literature and how they

compare to the results in our theorems in chapter 2 .
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4.1 A simpler framework

Traditional Regress Now approximations, as introduced by Tsitsiklis and Van Roy

[76] and Longstaff and Schwartz [51], can be applied to problems of stopping and

switching because of the convenient structure of the controlled second dimension

I which takes values in a set with low cardinality. This structure is exploited by

performing a number of regression approximations for each fixed value of I, so that

the effect of the control on the conditional expectations can be modelled directly by

different sets of parameters. Consider for example the case of optimal stopping: I

takes values in a set with cardinality 2, i.e. {0, 1}, and we know that V (n, x, 1) =

c0,1(x) for all time steps and states (x, 1), thereby requiring one regression only, for

the case I = 0. In the optimal switching framework, on the other hand, we consider

a small number of regimes R (the cardinality of I), therefore requiring R different

regression approximations.

4.1.1 Value Iteration

As usual, we initiate the backward estimation procedure for Value Iteration by

assigning the known terminal condition to the value function V (N, ·, i), i = 1, . . . , R.

Assume that we simulated a collection of paths from the dynamics of X, thanks

to which we know that all of our samples follow the appropriate distribution, i.e.

Xm
n+1 ∼ (Xn+1|Xn = Xm

n ) ∀n, allowing us to compute E[V (N,Xn+1, i)|XN−1 =

x] ≈ ∑K
k=1 α

n
j,kφk(x), i = 1, . . . , R. The backward procedure continues by iterating

the optimisation and regression step on the simulated paths until the initial time is

reached and the full collection of regression coefficients {αsj,k}
R,K,N
j,k,s=1 is available:

V (n, x, i) = max
u∈U{n:n}

{
f(n, x, u) +

K∑
k=1

αnu,kφk(x)− ci,u
}
,

where αααnj = A−1 1
M

∑M
m=1 V (n+ 1, Xm

n+1, j)φφφ(Xm
n ).
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In a “Later” framework, even though we could include the index dimension in the

basis functions, it is common to follow the same approach used for Regress Now and

repeat the regression procedure for all regimes. This choice is sometimes necessary

as the regimes might be categorical rather than numerical and their ordering subject

to the modeller choice. Beutner et al. [11], among others, shows that Regress Later

approximations are still preferable to Regress Now ones for their lower variance.

4.1.2 Performance Iteration

Moving into the Performance Iteration framework, one striking difference between

the problems discussed so far and optimal stopping and switching case arises. Recall

that the implementation of Performance Iteration discussed so far required the

computation of

J(n, (Xs, Is, us)s=n,...,N) =
N−1∑
s=n

f(s,Xs, us(Xs)) + g(XN),

after un has been decided, which numerically means resimulating the path from

time n to the terminal time, for each training point, incurring a considerable

computational cost. In case of optimal stopping and switching, on the other hand,

the update rule for J can be written in a much more easily computable form; it

requires, however, a pathwise interpretation of the simulations, which would force

Regress Later to adopt a time-dependent training measure µ ∼ (Xn+1|Xn). The

reason why this formulation is available, is that the dynamics of the first dimension

X, which contains all the randomness in the system, is not affected by the choice

of the control and therefore, it is guaranteed that the running cost will be equal to

the sum of the current contribution and the cost accumulated up to the previous

backward step. Or, in other words, at time n+ 1 we will land on a point for which

the performance along a path have already been computed. The following update

rules avoid the path resimulation making the Performance Iteration update as fast
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as the Value iteration one.

stopping: J(n, (Xs, Is, u
∗
s)s=n,...,N) =

f(n,Xm
n , 1) + c0,1 if c0,1 >

∑K
k=1 α

n
k φ̂k(n,Xm

n )

J(n+ 1, (Xs, Is, u
∗
s)s=n+1,...,N) + h(Xn) otherwise

(4.1.1)

switching: J(n, (Xs, Is, u
∗
s)s=n,...,N) =

J(n+ 1, (Xs, Is, u
∗
s)s=n+1,...,N) + f(n,Xm

n , u
∗)− ci,u∗ if u∗ = j

J(n+ 1, (Xs, Is, u
∗
s)s=n+1,...,N) + f(n,Xm

n , u
∗) otherwise

where u∗ = argmax
j 6=i

{f(n,Xm
h , j)− ci,j +

K∑
k=1

αnk φ̂k(n,Xm
n , j)}

(4.1.2)

Remark 4.1.1. Notice that, even though one might be tempted to apply a similar

approach when using Grid Discretisation to solve Inventory problems (section 3.2.1),

this is not possible. In the inventory case, often the control leads the inventory at a

level at which an approximation, and therefore a path, is not available. The use of

interpolation in this case is ineffective since the performance J depends on one entire

simulated trajectory. As discussed in remark 3.2.2, however, there might be cases

when the control is discrete and the direct update rule for Performance Iteration can

be effectively applied due to the finite number of states the inventory process can be

in.
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4.2 Convergence results

In this section, we present a literature review of the convergence behaviour for

optimal stopping from the origins of Regression Monte Carlo until today.

4.2.1 Early results

The first study of convergence behaviour after Tsitsiklis and Van Roy [76] and

Longstaff and Schwartz [51], was Clement et al. [21], who estimated the convergence

rate of the algorithm introduced in the latter. It is also worth noticing the error

bound estimated by Glasserman and Yu [32] shortly after, who states in Theorem

3, that the leading term behaves like 1√
M

. This bound has been obtained with

strong assumptions on the fourth-order moments of the basis and reward function.

Glasserman and Yu [32] also shows that the number of basis functions K should

grow as lnM to guarantee convergence.

Under weaker conditions than Glasserman and Yu [32], and assuming convexity of

the basis function approximation, Egloff [27] obtains a bound on the convergence

error of the order of
√

lnM
M

. The convergence analysis in Egloff [27], that makes

large use of the concept of Vapnik-Chervonekis (VC) dimensions, is wider in scope

than most discussed here, as he investigates a dynamic look-ahead algorithm, which

includes Tsitsiklis and Van Roy [76] and Longstaff and Schwartz [51] as special cases.

Zanger [79] further improves previous results by proving a bound similar to Egloff

[27], replacing the assumption on the convexity of basis functions with uniform

boundedness and finite VC dimension, for arbitrary sets of functions. Zanger

[80] then shows that the same rate of convergence holds, even when the uniform

boundedness assumption is dropped.

These results should be compared with similar estimates for Regress Later types
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of iterations, however such results are not available in general. As pointed out by

Beutner et al. [11], however, we should find Regress Later estimates to exhibit a

faster rate of convergence than Regress Now.

4.2.2 Pseudo regression

We turn now our attention to more recent results featuring a structure much

closer to our theorems in chapter 2. In Bayer et al. [8], the authors present a

Regress Now algorithm called pseudo-regression that, similarly to our approach,

pre-computes the matrix A and places training points at time n, when estimating

E
[
V (n + 1, Xn+1)|Xn = x

]
, according to a training distribution µ. For the sake of

consistency, we will now present the theorems 4.1, 4.2 and 4.5 therein, maintaining

the notation used in this thesis. Notice that, similarly to our theorems, and in

contrast with the results presented in section 4.2.1, the approximation error here is

left unspecified, and indicated by εK .

In theorem 4.1, Bayer et al. [8] studies the convergence of the estimation of the value

function when the matrix A has been precomputed and an analytical bound for its

norm is available.

Theorem 4.2.1 (Bayer et al. [8] 4.1: Accuracy when A is precomputed, V.I.).

Suppose that assumption 2.3.1 is satisfied and, in addition, assume that V
(
V̂ (n +

1, Xn+1)
∣∣∣Xn = x

)
< Var for some constant Var > 0 and ∀x ∈ D, where we indicate

by V the variance of the random variable V̂ . Further assume that the smallest and

largest eigenvalues of the matrix A are bounded by θK and θmax
K . Then it holds:

∥∥∥∥V̂ (n, X̃)− V (n, X̃)
∥∥∥∥
L2
e,N−n

≤
√
θmax
K

θK
(Var + Γ2)K

M
+ εK

A direct comparison with our theorem 2.3.3 is impossible, given the restricted scope

of Theorem 4.2.1 and the Regress Now approach they use. It is interesting to note,
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however, the identical behaviour in
√

K
M

, with a multiplicative constant dependent,

in both cases, on Γ and ‖A−1
K ‖2.

The second theorem in Bayer et al. [8] analyses the same convergence, when, on

the other hand, the regression coefficients in the estimated conditional expectations

are approximated by solving the full linear regression system, without assuming the

knowledge of A.

Theorem 4.2.2 (Bayer et al. [8] 4.2: Accuracy when A is not precomputed, V.I.).

Suppose that assumption 2.3.1 is satisfied and, in addition, assume that V
(
V̂ (n +

1, Xn+1)
∣∣∣Xn = x

)
< Var for some constant Var > 0 and ∀x ∈ D. Then it holds:

∥∥∥∥V̂ (n, X̃)− V (n, X̃)
∥∥∥∥
L2
e,N−n

≤
√
cmax{Var,Γ2}(1 + lnM)K

M
+ 8εK

The main difference with 4.2.1, which provides an evidence that placing i.i.d.

training points according to a known measure µ has desirables properties, resides in

the slower convergence (1+lnM)K
M

observed in Theorem 4.2.2.

To conclude, we present the theorem stating the convergence of the performance

iteration procedure.

Theorem 4.2.3 (Bayer et al. [8] 4.5: Accuracy when A is precomputed, P.I.).

Suppose that assumption 2.3.1 is satisfied and, in addition assume that V
(
V̂ (n +

1, Xn+1)
∣∣∣Xn = x

)
< Var for some constant Var > 0 and ∀x ∈ D. Then it holds:

∥∥∥∥V̂ (n, X̃)− V (n, X̃)
∥∥∥∥
L2
e,N−n

≤ c
(
1 +
√
R(c+ 1)

)N−n−1
(√

K

M
+ εK

)
,

where R = max0≤n≤i≤N supx∈D
µn,i(x)
µn(x) < ∞ and µn,i is the distribution of Xi

simulated from Xn.
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Chapter 5

Tuning and considerations

In previous chapters, we discussed extensively how to apply the Regression Monte

Carlo algorithm to different problems of optimal stochastic control, but we have

given little insight into practical issues that one might encounter when dealing with

the implementation.

In this chapter we will first discuss the practical difference between Value and

Performance Iteration, i.e. when it is more convenient to use one rather than

the other, then move onto the role of the training measure µ and of the basis

functions, explaining how to choose both of them in order to improve the quality

of the estimated policy. We conclude the chapter with two sections that discuss

gradient descent optimisation and backward construction of paths for inventory

problems.

This chapter is, per-se, one of the contributions of this thesis; it represents three years

of numerical experiments and fine tuning of the Regression Monte Carlo algorithms

for solving specific problems. In the second part of the thesis, we will put into

context some of these techniques within some full-scale optimisation problem.
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5.1 Value vs. Performance Iteration

In this section, we present a critical analysis of the two different iterative approaches

presented in section 2.3 and 2.5; first, we comment on the theoretical results and

then on our experience from practical implementation.

There have not been numerous studies in the literature about the characteristics of

the Performance Iteration approach outside the framework of option pricing. In the

context of controlled Markov processes, the difference between the two approaches

is paramount, as it leads to different computational complexity and accuracy for

the two algorithms. The difference in performance is caused by the evaluation step

employed by Performance Iteration.

The main reason to decide to use Performance Iteration over Value Iteration is that

the latter induces propagation of the projection error, while the former uses an

update which does not depend directly on the functional form of the estimator of

the conditional expectation and, therefore, does not propagate the error. At a first

glance, however, observing the error bound for Value and Performance Iteration

algorithms (provided in Theorems 2.3.3 and 2.5.4) one might be tempted to claim

that the former has, at least in general situations, a tighter error bound than the

latter. Recall, however, that the quantities estimated by the two algorithms are

somewhat different. Value iteration provides an estimation of the value function

(error assessed in Theorem 2.3.3) and of the control policy (whose value is assessed

by the Forward Evaluation procedure). Performance Iteration, on the other hand,

provides an estimation of the control policy and an estimation of the value of the

latter. When comparing the quality of the estimated policies (which are of interest in

most practical applications), we have to turn our attention to Theorem 2.4.1, which

indeed provides us with error bounds for the control policy estimated by the Value

Iteration algorithm. Straightforward computations show that the error bound for
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the under-performance of the policy computed by Value Iteration, compared with

the optimal control, might be up to N times higher than the bound on the error

made when estimating the value function directly. Further, denoting by ηV and ηP

the error bounds for the performance of the control policy estimated by Value and

Performance Iteration, as presented in Theorems 2.4.1 and 2.5.4, we have:

ηV
ηP

= 3R̄− 1
(R̄− 1)2

1
(3R̄)N − 1

(
(N − n)R̄N+1 − (N + 1)R̄N + 1

)
≈ O(N3−N). (5.1.1)

Equation (5.1.1) shows that, in general, the policy estimated by the Value Iteration

procedure is better than the policy estimated by Performance Iteration, for N, R̄�

1.

It should be noted, however, that in section 2.5.3, proposition 1, we introduced

a sharper bound for Performance Iteration, under a certain assumption on the

projection error for the estimated value function, ε̃K = maxn=1,...,N

∥∥∥ΠK Ṽ (n, X̃) −

Ṽ (n, X̃)
∥∥∥
L2
µ

. Under such assumption, namely that ε̃K ≤ εK , we can update the

comparison in (5.1.1) with

ηV
ηP

= (N)R̄N+1 − (N + 1)R̄N + 1
3(R̄N − 1)R̄

(R̄− 1) ≈ N, (5.1.2)

which shows that, in certain situations, the error bound for Performance Iteration

is tighter than the one for Value Iteration estimates. The difference in performance

between (5.1.1) and (5.1.2) is reflected by the empirical observation that when

Performance Iteration produces low-quality estimates, these are usually much worse

than those computed by Value Iteration. In other cases, however, Performance

Iteration can produce estimations that are more precise than those produced by

Value Iteration.

Our theoretical framework, therefore, suggests using Performance Iteration over

Value Iteration when ε̃K ≤ εK . Our practical experience suggests that this

assumption corresponds with a heuristic condition like the one we propose here:
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The basis functions can induce a sensible policy. For example, when the conditional

expectation plus the running reward is a convex function of the control, and we use

second order polynomial basis functions, the vertex of the parabola can give direction,

while the amplitude gives the urgency of moving in such direction.

It should be noted however that, in practice, the choice between Value and

Performance Iteration, depends on the interplay between the control problem we

want to solve and the error propagation and stability properties of the two methods.

Often, when a good set of basis functions and training measure cannot be found for

Value Iteration, Performance Iteration provides an alternative which, at the cost of

higher computational complexity, can provide satisfactory results.

5.1.1 Error propagation

In practice, when the following two conditions are satisfied, the effect of error

propagation is considerable:

• the value function cannot be easily represented using the basis functions,

• the value function changes shape substantially from one time step to the next.

When the effect of error propagation is assessed to be considerable, and under the

assumption that ε̃K ≤ εK , we can observe a substantial improvement in the quality

of the estimated control policy when using Performance over Value Iteration. The

greater precision is due to the ability of Performance Iteration to stop the error

propagation by using separate training points for learning and testing, thereby

improving the quality of the estimated regression coefficients. Value Iteration,

on the other hand, reuses the estimated conditional expectation to compute the

current value, propagating the approximation error at each time step. These small

contributions can build up to a considerable error.
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5.1.2 Stability

Other than the error propagation it is important to assess the stability of the

estimations, both over time and over different runs of the algorithm. Contrary

to Value Iteration, where we project a function of a random variable ξn, in

Performance Iteration we project a function of ξn, . . . , ξN−1. The latter requires

more training points for stable parameters estimation, therefore causing high inter-

temporal variance. The regression parameters estimated by Value Iteration, on the

other hand, have a smaller variance from one time-step to the next, due to the

nature of the method.

Consider also the situation where the running profit f ≈ o(g). The regression

parameters for Value Iteration are hugely influenced by the first regression

approximation at time N , and the greater sensitivity to the approximation of the

terminal condition is paid in terms of greater inter-experimental variance (variance

observed between different runs of the algorithm). Performance Iteration, on the

other hand, estimates parameters at each time step with “fresh data”, guaranteeing

consistent estimates over different experiments.

5.2 Training measure and choice of basis

functions

In this section, we analyse different choices of training measures and basis functions,

indicating the pros and cons of different alternatives, and guide the reader to balance

in the most efficient way the interplay between the two.
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5.2.1 Choice of training measure µ

As shown by Theorems 2.3.3, 2.4.1 and 2.5.4 the choice of the training measure µ is

paramount for a quick convergence of the estimations. The Theorems show that the

distribution of the training points influences the quality of the estimations mainly

through the bound on the transition density R̄ and the representation error εK .

Remark 5.2.1. In the following, we will present the consequences of choosing a

particular measure µ in two common situations. Notice, however, that R̄ and εK are

defined in terms of the training measure µ or, in other words, the training measure is

also used to assess the error, making it impossible to compare error bounds obtained

under different measures. For the sake of using the language developed so far, in

this section we will intend by R̄ and εK the constants computed under a different,

fixed, error measure, which places more relevance to areas of the state space that we

deem more interesting.

Uninformed choice

When no information about the problem is exploited, we use a uniform distribution

on D. This choice allows us to deal with any problem, regardless of our prior

understanding, at the cost of a more difficult fitting of the basis functions (see

figure 5.1). Choosing the uniform measure often results in a small value of R̄, but

produces a potentially big representation error εK , due to the lack of focus on the

area of the state space which matters most. Notice that this choice of µ always

satisfies Assumption 1.

Knowledge based

When previous knowledge about the problem is available, the training measure µ

can be chosen in order to maximise the quality of the control policy. Even though
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providing theoretical results in this direction is outside the scope of this thesis, notice

that concentrated measures µ can produce very low values of εK (see figure 5.1) at

the cost of high values of R̄.

We present now a practical example for which we can show the trade off between

exploration and accuracy that arises when choosing the training measure µ. Notice

that in the following we will use the actual estimation error on this particular

problem (available along with the optimal solution) as a proxy for the general error

bounds discussed in chapter 2.

Example 5.2.2. Consider the process X1 = −5 ∨ Z1 ∧ 5, where Z1 = Z0 + u + ξ

,ξ ∼ N (0, 1) and the stochastic control problem

V (0, z) = inf
u∈U

{
E
[u2

15 + g(X1)|X0 = z
]}
,

where g(x) = min(1, x2). We choose to test basis functions {1, x, x2} and a family of

measures µσ = N (0, σ2). In this framework the trade off between εk and R̄ is driven

by the parameter σ, which determines the width of the training distribution. The

effect of µ on the quality of the estimated conditional expectations can be assessed

from Figure 5.1 which displays, on the right, the actual values of εk and R̄ for some

choices of σ. The effect on the control policy, however, is more subtle. Figure 5.1

displays on the left an example of the effect of σ on the estimated control.

A better assessment of the effect of the measure µ, through the parameter σ, is

displayed in Figure 5.2. The graph shows the average (for different uniformly

distributed initial points x ∼ U [−5, 5]) performance of the estimated control policy as

a function of the parameter training measure. It can be noticed that in this problem,

it exists a point where the trade-off between exploration and exploitation is optimised.
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Figure 5.1: In the figure above we show an example of the impact of the measure µ on

R̄ and εK . On the right, in the top panel we show four different projections of g(x) =

min(1, x2) over {1, x, x2} produced by different measures µ. In the central panel we show

the pointwise quadratic deviation of the projection from g(x), in the lower panel the logplot

of the density function of µ. Notice that to more concentrated measures correspond lower

εK but higher R̄, vice-versa higher εK and lower R̄ are associated with wider measures.

We display on the left the same trade-off acting on the estimation of the control policy.

The graph displays the true (blue) and estimated (green, orange) expected reward from

choosing a control un. More concentrated measures overestimate the effect of the control

and tend to be myopic, achieving higher accuracy but paying a high cost for control.

Measures that allow for exploration are more conservative, tend to underestimate the

value of a given action, and therefore the control is used only when it is well worth it.

Figure 5.2: The graph shows the average performance of the estimated control policy as

a function of the parameter σ, which defines the training measure µ ∼ N (0, σ2)
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5.2.2 Choice of basis functions

In this section, we discuss the choice of basis function, which directly affects the

precision of the estimates through εK .

Many authors have tested the performance of Regression Monte Carlo with respect

to the main source of inefficiency in the method, namely, the choice of the basis

functions. The general rule for choosing the latter is that they should somehow

resemble the shape of the value function at each time period. A good choice of basis

functions predominately depends on the intuition of the modeller, however, results

presented, among others, in Moreno and Navas [58] suggest that the least squares

Monte Carlo for a simple optimal stopping problem is robust to choice of basis

function while, when the value function has complicated shapes, certain particular

functions should be present in the set of basis functions, in order for the estimation

to be consistent.

In the following paragraphs, we explore the two possible categories of basis functions:

global and local. As the name suggests the former kind uses information from the

whole state space to produce a general functional approximator “good enough” over

the whole state space. The latter only focuses on local information to produce a

collection of functional approximators for different areas of the state space. The

most common families of basis functions are:

• Monomials

• Orthogonal polynomials

• Local affine functions

• Radial basis functions
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One of the most popular choices of global basis functions when tackling a general

stochastic control problem using Regression Monte Carlo algorithms is certainly the

family of monomials up to order κ. Let us show in the following the consequences

of such choice and examine few more popular alternatives, both global and local.

Monomials

Notice that an arbitrary number of monomials, i.e. φk(j1, ..., jd)(x) = ∏d
s=1 x

js
s , js ≥ 0

and x = (x1, . . . , xd), k : (N+)d 7→ {1, . . . , K}, are never orthogonal on any domain

and under any admissible training measure. In general, we can not provide more

specific error bounds than those in Theorems 2.3.3 and 2.5.4. In order to shed

more light on the consequences of the choice of these basis functions let us consider

a typical situation encountered in practice: we assume a domain D = [0, 1] and

as training measure µ = λ([0, 1]) the Lebesgue measure on D. In the described

scenario the matrix AK is just the Hilbert matrix Hi,j = 1
i+j−2 , i, j = 1, . . . , K

while the norm of the basis functions is bounded by 1, i.e. maxj=1, ...,K{‖φj‖L2
µ
} =

maxj=1, ...,K{xj} = 1, x ∈ D. In order to obtain an explicit error bound we have to

assess the norm of the inverse of the Hilbert matrix AK ; we have ‖A−1
K ‖2 ≤ 1/θK ,

where θK is a lower bound for the smallest eigenvalue of AK . Following Wolkowicz

and Styan [78] and some calculations, we obtain the asymptotic behaviour of ‖A−1
K ‖2

being O
(
24K2−3K+1.5(πK)4K2−K

)
= O

(
KK2

)
. It is well known that the Hilbert

matrix is very ill-conditioned and difficult to precisely invert numerically, to mitigate

this problem it is advisable in practice to standardise the set of basis functions so

that they have similar mean and variance. The final consideration about monomials

is that in practical situations when the value function is truly a polynomial of small

degree, we might have εK ≈ 0 without having to take K too big, which would

otherwise cause θK ≈ 0.
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Orthonormal basis of polynomials

A straightforward generalisation of the family of monomials described in the

paragraphs above is given by the orthogonal polynomial basis of which many

examples exist on both compact and unbounded domains. In the literature,

orthogonal polynomial basis have been extensively studied in the option pricing

framework and in relation to optimal stopping Regression Monte Carlo algorithms,

see Moreno and Navas [58] among others. Through our Theorems 2.3.3 and 2.5.4

and Corollaries 2.3.5 and 2.5.5 we can assess to which extent it is preferable to chose

orthonormal polynomial functions over monomials. Notice that, in general, for low

order polynomials it is possible to compute the optimal control, in closed formula,

in terms of the projection coefficients.

Remark 5.2.3. The possibility of computing the optimal control analytically, as

a function of the regression coefficients, often influences the choice of the basis

functions. Avoiding the numerical search for the optimiser at each time step

reduces the computational complexity considerably, and allows to run more precise

simulations in the same amount of time. Notice that there are cases where, under a

reasonable time constraint, Performance Iteration gives better results when running

with quadratic basis functions and numerous training points than when more complex

basis functions are added but less training points can be used due to the lengthy search

for the optimal control.

Local affine basis

It is sometimes useful, when little is known about the structure of the value

function, to exploit the flexibility of local approximations. A very popular choice

is to take affine functions (linear in one dimension) with disjoint supports, i.e.

φk(x) = xkmod21{x∈Hbk/2c}, where Hbk/2c represents an hypercube from the partition



Chapter 5. Tuning and considerations 106

of D . By construction this family of basis functions is orthogonal and, under the

Lebesgue training measure, normalisation can be obtained with a straightforward

rescaling. Notice that for different values of K all the functions change, rather

than new ones getting added, as the same domain D is divided in a different

number of hypercubes. Corollaries 2.3.5 and 2.5.5 provide explicit error bounds

for all orthonormal functions. Notice that in practical implementations this choice

can result in higher computational time due to the evaluation of P(x ∈ Hbk/2c) =∫
Hbk/2c

r(n, x, y;u) dx, necessary to compute the conditional expectation of a general

affine function (ax+ b)1{x∈Hbk/2c}, which might not be available in closed formula.

Radial basis functions

A less popular, but certainly interesting choice of basis functions when the domain D

is high dimensional, is given by radial basis functions. This class of functions enjoys

the property that φk(x) = φk(‖x‖), making them well suited for multidimensional

settings. A drawback of this approach is that, after having identified the most

suitable class of radial functions, we still have to define two vector parameters for

each function. The parameters are two matrices, one describing the position of

the centroids while the other the bandwidths or rates of decay of the kernels. A

common choice is the Gaussian family, represented by the kernel function φk(x) =
1√

2πσk
exp∑d

δ=1
(xδ−λδ,k)2

2σ2
δ,k

, with λ ∈ (D)K and σ ∈ (Rd,K)+. Such system of functions

is clearly normal, but not orthogonal. Recalling that the Gaussian density function

is almost zero in the tails, however, it is possible to choose the parameters λ and σ

such that, numerically, A ≈ Id.

In the following two sections we discuss two techniques that improve the

computational complexity of Regression Monte Carlo. We focus in particular on

speeding up the Performance Iteration procedure, that suffers from the multiple

resimulations used to generate the samples that are projected during the regression
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step. In the following two subsections we discuss the maximisation through gradient

descent, which exploits the information available on the optimisation problem

extracted from the knowledge that it is not a stand-alone problem, but falls within

a dynamic estimation where similar problems are solved in a spatial and temporal

neighbourhood. Secondly, we describe and generalise the backward construction of

paths introduced by Carmona and Ludkovski [17] for inventory type of problems in

the Performance Iteration framework.

5.3 Fast maximisation through gradient descent

We can look at the Regression Monte Carlo algorithm as the iteration of two

fundamental operations: regression and optimisation. In the previous chapters,

we have devoted most space to the discussion of the regression step, leaving the

optimisation procedure to the reader to solve through standard techniques. In

this section, we propose an approach that exploits the existing knowledge about

the optimisation problem at one particular space-time location, gathered from

problems already solved in a temporal neighbourhood. The approach works well

with both Value and Performance Iteration, but it is in the latter that the greatest

improvements are observed.

One of the reasons why Performance Iteration is considerably slower than Value

Iteration is the bottleneck induced by the repetition of the deterministic optimisation

problem necessary to determine the control to apply at each time step. At the

same time, it can be noticed that time-step after time-step the pathwise control

changes just slightly, proportionally to the variance of the controlled process itself.

This suggests that we might be able to exploit this characteristic to speed up the

computation of the optimal control, by exploiting the knowledge of the value of the

control computed at the previous time steps (while moving backward). We turn our



Chapter 5. Tuning and considerations 108

attention to the gradient descent technique which is well known to converge very

fast if the initial guess for the solution is accurate. By noticing that at terminal time

the value function is known and equal to the terminal condition, and by computing

the optimal control by extensive search at time N − 1, we can initialise the gradient

descent procedure with a good initial condition thereby guaranteeing that few steps

of gradient descent iteration can account for the change in the optimal control from

time n + 1 to time n, caused by a change in the value of (Xn, In) and the time

dependency of the control map.

Remark 5.3.1. Notice that in Value Iteration, contrary to Performance Iteration,

the training points {Xm}Mm=1 can be kept fix at all time steps providing an easier

framework to apply the gradient descent optimisation.

5.3.1 Value Iteration

For simplicity, consider the Value Iteration case first. In particular, assume that

at time n+ 1 the control map is known at a number of locations {un+1(Xm
n+1)}Mm=1

and, at time n, we want to compute the control un(x) at one of the points Xm
n = x.

Therefore, set u0 = un+1(x) and iterate the following equation:

uτ+1 = uτ + λ
E ′(x, i, u)
E ′′(x, i, u) , τ = 0, 1, 2, . . .

where we denote the first and second derivative of the continuation value

and reward function by E ′(x, u) = ∂f(n,x,u)
∂u

+ ∑K
k=1 αk

∂φ̂k(x,u)
∂u

and E ′′(x, u) =
∂2f(n,x,u)

∂u2 +∑K
k=1 αk

∂2φ̂k(x,u)
∂u2 . We implicitly assume that derivatives of the conditional

expectation of the basis functions can be quickly computed analytically. By λ we

denote the learning parameter which should be tuned according to the nature of the

problem, for reference see Press et al. [65]. Intuitively, consider that, for a quadratic

function, λ = 1 allows to reach the global maximum (minimum) in one step. The
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iterative procedure should be stopped once the relative error tolerance γ is reached,

i.e. stop the gradient descent optimisation after N steps, where:

N = argmin
τ=1, 2, ...

{
τ :

∣∣∣∣1− f(n, x, un) +∑K
k=1 α

k
n+1φ̂k(x, un)

f(n, x, un−1) +∑K
k=1 α

k
n+1φ̂k(x, un−1)

∣∣∣∣ < γ
}

The implementation of this technique guarantees good solutions provided that the

initial guess of the control is close to the true, optimal one.

5.3.2 Performance Iteration

One might notice now that, when approaching the Performance Iteration algorithm,

the above procedure cannot be easily applied if the forward simulated paths are

resimulated every time that we make a step backward. To overcome the difficulty

of finding a suitable initial condition when simulating a new set of paths forward in

time, we approximate the control map by regressing the samples {ut+1(Xm
t+1)}Mm=1

over a new set of basis functions. When the procedure has reached time n, we have

already computed a regression approximation of the control map at time t + 1, to

be used at time t to set the initial guess of the gradient descent algorithm for all

t > n during the forward resimulation:

ux0 =
K∑
k=1

βkφk(x) , where β = argmin
b


∥∥∥∥∥u∗n(·)−

K∑
k=1

bkφk(·)
∥∥∥∥∥

2

 .
An example of the implementation of the gradient descent technique can be found

in Algorithm 6.

Remark 5.3.2. Notice that in order to increase the performance of the method, and

to account for the fast-changing control due to the effect of the terminal condition,

we compute the control via extensive search during the first backward steps and

then switch to gradient descent when we believe that the behaviour of the control is

more stable. The trade-off between computational time and precision will be further

discussed in the numerical examples presented in the second part of this thesis.
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Algorithm 5 Maximisation via Gradient Descent algorithm
input: M, K, µ, {φ}Kk=1

1: [...]

2: θ̂n = A−1
K

1
M

∑M
m=1 û

∗
n(X̃m

n )φ(X̃m
n )

3: for m=1 to M do

4: u0 = ∑K
k=1 θ̂

n
kφk(X̃m

n ), h = 1

5: while uh−uh−1
uh−1

> γ do

6: uh+1 = uh + λ E
′(X̃m

n ,uh)
E ′′(X̃m

n ,uh)

7: h = h+ 1

8: u∗n = uh

V̂ (n, X̃m
n ) = f(n, X̃m

n , u
∗
n) +

K∑
k=1

α̂n+1
k φ̂nk(X̃m

n , u
∗
n)

output: {α̂kn}Kk=1

5.4 Backward construction of inventory levels for

Performance Iteration

The primary cause of computational complexity when using Performance Iteration

for inventory problems is the need to resimulate the inventory level until maturity

after each backward step. Even though this problem is alleviated by the use

of gradient-like techniques for optimisation, as explained in 5.3, a considerable

difference is still observable between Value and Performance Iteration. When the

algorithm moves closer to the initial time, the length of trajectories that need

to be resimulated grows. Eventually, the computational effort of resimulation is

proportional to N2 compared to a linear cost of simulating the process (Xn).

Notice that in order to avoid resimulation to compute J(n, (Xm
j , I

m
j , u

∗
j)j=n,...,N), as
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explained in section 4.1, one needs to be able to reuse J(n+1, (Xm
j , I

m
j , u

∗
j)j=n+1,...,N).

Interpolation, as it was used in Grid Discretisation to connect samples of the value

function, it is not a viable alternative because J(n, (Xm
j , I

m
j , u

∗
j)j=n,...,N) cannot be

represented in terms of (Xn, In) only, as it depends on the whole future trajectory

(Xm
j , I

m
j )j=n,...,N .

5.4.1 A fix point problem

Here we propose a solution in which we aim to place points Imn in such a way that

the optimally controlled process reaches the state (Xm
n+1, In+1 = Imn+1) at time n+ 1

and therefore the existing path (Xm
j , I

m
j )j=n+1,...,N is a valid successor of (Xm

n , I
m
n )

enabling reuse of J(n + 1, (Xm
j , I

m
j , u

∗
j)j=n+1,...,N). From the optimality conditions

in section 1.2.2, we see that the pathwise optimal antecedent of a point Imn+1 is a

solution y ∈ [0, Imax], if exists, of the equation

Imn+1 = ϕ
(
n,Xm

n , y, u
∗
n(Xm

n , y)
)
. (5.4.3)

In the following lemma, we explore the existence of such y. Define two quantities

ϕn = max
u∈[u,u]

{ϕ(n, u, 0)} and ϕn = min
u∈[u,u]

{ϕ(n, u, Imax)} and assume 0 ≤ ϕn < ϕn ≤

Imax, ∀n.

Lemma 5.4.1. A solution y ∈ [0, Imax] to (5.4.3) exists if the following conditions

are satisfied:

1) Imn+1 ∈ [ϕn, ϕn],

2) the control function u∗n(Xm
n , y) is continuous with respect to y.

Moreover, if the map y 7→ ϕ(n, u∗n(Xm
n , y), y) is strictly monotone then the solution

is unique.
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Proof. Introduce the function ψ(y) = Imn+1 − ϕ(n, u∗n(Xm
n , y), y) and notice that if

condition 2) is satisfied the continuity of ψ is enforced by ϕ. Evaluate ψ it at the

boundaries of [0, Imax]:

ψ(0) =Imn+1 − ϕ(n,Xm
n , 0, u∗n(Xm

n , 0))

≥ϕn − ϕn = 0;

ψ(Imax) =Imn+1 − ϕ(n,Xm
n , Imax, u

∗
n(Xm

n , Imax))

≤ϕn − ϕn = 0.

Therefore, if condition 1) is satisfied it must exists a point y ∈ [0, Imax] such that

ψ(y) = 0, i.e., solve equation (5.4.3). In addition, if y 7→ ϕ(n, x, y, u∗n(x, y)) is

strictly monotone then, so is ψ, and hence there exists only one y which solves

equation (5.4.3).

5.4.2 Algorithm

Algorithm 6 Backward construction of paths algorithm

1: Let y be a solution to Imn+1 = ϕ
(
n, un(Xm

n , y), y
)
.

2: if solution exists and y ∈ [0, Imax] then

3: Set Imn = y

4: V (n,Xm
n , I

m
n ) = f

(
Xm
n , I

m
n , u

∗
n(Xm

n , I
m
n )
)

+ V
(
n +

1, Xm
n+1, ϕ(n, u∗n(Xm

n , I
m
n ), Imn )

)
5: else

6: Generate Imn randomly in [0, Imax]

7: Resimulate to compute V (n,Xm
n , I

m
n )

Lemma 5.4.1 ensures the existence of solution to the equation (5.4.3) even though

such solution could be found also for weaker assumptions, possibly outside the

interval [0, Imax]. Whenever this solution does not lie in [0, Imax], i.e. Imn+1 /∈ [ϕn, ϕn]
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, it is not possible to determine a step backward Imn for the inventory variable.

In such case, we propose to break the path and position the point Imn at random

in [ϕn, ϕn]. Following this step, we resimulate the path {Ims }s=n+1,...N as in the

traditional Performance Iteration algorithm. The random positioning of training

points Imn when the solution of the constrained fixed point problem (5.4.3) cannot

be found avoids the clustering of training points in certain areas of the state space.

Remark 5.4.2. The phenomenon described above that there is no solution to (5.4.3)

that satisfies the bounds on the inventory level is not unusual in many practical

examples and, in particular, does not result from approximation errors or any other

features of the numerical scheme. In section 6.2 we consider trading a commodity,

with price (Xt), subject to constraints on the size of storage. An optimal behaviour,

when the price is high, is to sell. However, if this happens, optimal trading would

never lead to a full inventory at the next time period, Imn+1 = Imax. In fact, with

high commodity prices over a period of time and a selling strategy, the backward

constructed trajectory (Ims )Ns=n would climb up (when time goes backwards) finally

hitting the level Imax.

Example. It is commonly seen in the inventory problems that the control represents

additive adjustments to the inventory level, i.e. ϕ(n, u, i) = i + u. equation (5.4.3)

simplifies to

Imn+1 = y + u∗n(Xm
n , y).

Denoting ∆y = Imn+1 − y we obtain a classical fixed point problem

∆y = u∗n(Xm
n , I

m
n+1 −∆y).

Lemma 5.4.1 implies that there exists an unique solution ∆y ∈ [u, u] for every

Imn+1 ∈ [u, Imax + u].
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Part II

Applications and Numerical

Experiments
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Introduction

In this second part of the Thesis, we will discuss more practical aspects linked

with the implementation of Regression Monte Carlo algorithms. In particular,

for the problems introduced in Part I, we will discuss a number of examples and

toy problems to benchmark the performance of Regress Later against competing

algorithms, as well as showing some characteristics of the Regression Monte Carlo

method itself, including the differences between Value and Performance Iteration

and the effect of the improvements presented in chapter 5.

We provide now an overview of the problems we deal with in this Part II of the thesis:

We open with inventory problems, first a simple price arbitrage problem where the

controller has to increase or decrease the holdings of a certain commodity which

he buys/sells according to a stochastic price. We use this problem to benchmark

Regress Later against Control Randomisation and Grid Discretisation, as well as

display the use of backward construction of paths and gradient descent (see section

5.3-5.4). We then introduce a similar problem inspired by the control of hydro

reservoirs which features a two-dimensional inventory and serves as a demonstration

of the weaknesses of the Grid Discretisation approach. We conclude this chapter

with an example from finance about the liquidation of a big portfolio of shares on

the market with price impact and partial information on the drift of the underlying

stock price. This example, introduced in Balata et al. [5], provides a benchmark for

Regress Later against Control Randomisation. We conclude with four problems of

increasing difficulty, where the control affects the dynamics of the Markov ProcessX.

The first one, is a univariate linear quadratic problem for which we show convergence

to the continuous time analytical solution as N → ∞. The following problem,

inspired by engineering applications, deals with the control of a robot in a disrupted

environment. The idea is that the controller has to steer the robot in order for it

to avoid obstacles. We exploit this problem to compare the Value and Performance
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Iteration approaches and provide some numerical evidence of the claims made in

section 5.1. The final problem in this Part of the Thesis is about systemic risk and

the optimal control of monetary reserves by a central bank. Such problem, similarly

to the portfolio liquidation example, is used to benchmark Regress Later against

Control Randomisation.

All algorithms, unless otherwise stated, are implemented in MATLAB and are

optimised in a similar fashion in order to reveal the relative differences in their

computational complexity.
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Chapter 6

Inventory management

6.1 Introduction

This chapter collects numerical results to benchmark the performance of the

algorithms introduced in Chapter 3. The first example is a “price arbitrage” problem

in the context of energy trading for which we compare the accuracy and running

time of Grid Discretisation (GD), Control Randomisation (CR) and the Regress-

Later Monte Carlo (RLMC) approach in both Value and Performance Iteration.

The second control problem features a two-dimensional inventory in the context

of managing a system of hydro reservoirs. The aim is to maximise the profit

from selling the electricity produced by a set of turbines installed in the pipes

connecting the reservoirs. The mathematical formulation is similar to the previous

problem, however, the higher dimension of the inventory highlights the impact of

dimensionality on the computational complexity of GD.

The third problem we consider is optimal portfolio liquidation under partial

information. In particular, we consider the task of selling a large number of shares,

thereby turning the price against ourselves, without knowing the drift that drives
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the dynamics of the price process. In this case, we compare RL and CR algorithms.

6.2 Price arbitrage problem

6.2.1 The model

Consider the following specification of the dynamics of a commodity price as a mean

reverting AR(1) process, along with the dynamics of the inventory levels for such

commodity: 
Xn+1 = Xn + 2(5−Xn) ∆ + 5 ξn,

In+1 = In + un ∆ , un ∈ Un, ∆ = 1
200

(6.2.1)

where Un = {un ∈ {−11.5, 0, 11.5} : 0 ≤ ϕI(n, In, u) ≤ 1 ∀t}. The trader goal is

to maximise the profits from buying the commodity at times when its price is low

and selling it when it is high. We assume that the trader has enough capital to

carry over her trades and only accounts for her constraints on the inventory space

available. The functional describing her expected profits can be written as:

E
[ N∑
s=0
−(us + ρus)Xs ∆ + 1

2XN IN |X0 = x, I0 = i
]
, (6.2.2)

where ρus introduces a transaction fee associated with each control: ρus = 1{us 6=0}2.

The value function associated with this problem can be written as:

V (t, x, i) = max
u∈Un

{
−(u+ ρu)Xn∆ + E

[
V (n+ 1, Xn+1, i+ u)|Xn = x

]}
.

6.2.2 Numerical implementation

We compute an estimation of the value function and the optimal policy associated

with it, implementing some of the algorithms introduced in chapter 3: GD, CR



Chapter 6. Inventory management 121

and RLMC. As discussed in chapter 5, before implementing these methods, basis

functions and training measures should be defined. The basis in RL algorithms are

composed by polynomials of up to order two in X and I, i.e. {1, x, i, xi, x2, i2, x2i,

xi2, x2i2}. Basis functions for CR have to also include the control variable, so

we employed a basis comprising polynomials up to order two in X, I and u,

i.e. {1, x, i, u, xi, x2, i2, u2, xu, iu}. For GD we discretised the inventory in L levels

and then used polynomial basis functions up to order two for X, i.e. {1, x, x2}. We

used uniform training measures on the relevant supports: for RL uniform price and

inventory (with price bounded in [0, 10]) , for CR the random control values are

chosen with equal probabilities of 1/3, while for GD the discretization points of the

inventory have been chosen equispaced.

6.2.3 Comparison

We run our experiments selecting various values for the number of simulated

paths and grid points (for Grid Discretisation) or simulated paths (for Control

Randomisation) or training points (for Regress Later) and evaluate the resulting

policies over a fixed set of simulations shared between all methods and runs in order

to minimise the effect of the Monte Carlo error on relative results. We record running

time and value of estimated policies and display them in Figure 6.1. The results

obtained through Value Iteration are shown on the left panel. Notice that RL is

more efficient than all other methods; it can achieve similar levels of accuracy to the

other algorithms in less time. GD, on the other hand, is the slowest method, but

it can nonetheless achieve high levels of accuracy. CR performs slower to RL as it

suffers from the need of fitting a higher number of basis functions.

In the Performance Iteration specification, see the right panel of Figure 6.1, we only

display two versions of the RL algorithm: with and without backward construction

of paths. CR and GD are less efficient than in the Value Iteration case with the latter
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requiring disproportionally long computational time due to multiple resimulations

for each discretisation point.

RL algorithm without resimulation of paths is slower, but more accurate, than the

one with backward construction of paths. This improved accuracy may be explained

by the resimulation present in the former while the latter uses the same training

points for both estimations of the optimal policy and its evaluation, introducing

bias. This phenomenon has already been observed in literature in other contexts.

The use of backward construction of the paths reduces, for this particular problem,

the number of resimulated paths to about 25% of the original value as approximately

one-quarter of paths are broken at each time step. The lower precision of the RL with

backward construction of paths combined with its lower computational complexity

makes it useful only when the time constraint is particularly tight. We observe

that for problems with continuous space of controls the improvement offered by

this backward simulation method is considerable, as the optimization problem to be

solved at each time step of the resimulation procedure is more time consuming than

in the present problem where controls can only take one out of three values.

The difference in performance of estimated policies between Value and Performance

Iteration observed in this example might be explained as follows. Firstly, the

Performance Iteration problem has been slightly modified considering shorter

timesteps ∆ = 1/1000 rather than ∆ = 1/200 in order to make the resimulation

step more burdensome and highlight the differences between the algorithms with

and without backward construction of paths. Secondly, the functional form of

the terminal condition and running reward make this optimisation problem linear

quadratic over most of the domain (non-linearities are encountered at the boundaries

of the inventory) indicating that basis function can replicate well the true value

function, limiting the propagation of the error. In these cases the use of Performance

Iteration is rarely advised as it implies higher variance of the points used to fit the
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regression parameters, reducing the estimation precision.

We try to improve our results by applying the gradient descent technique introduced

in section 5.3. We display our results in the top panel of Figure 6.2. We

repeat our estimation by increasingly using gradient descent estimation of the

optimal control from the initial time to the terminal one. It can be noticed that

Value Iteration behaves as expected, sooner we start using gradient descent in the

backward procedure, lower the computation time and the precision of the method.

Performance Iteration, on the other hand, behaves differently: by increasing the use

of gradient descent we gain precision in expectation while the results degenerate in

terms of variance. A better representation of this phenomena might be observed in

the bottom panel of Figure 6.2 where the box-plots show the performance of the

policy estimated by using gradient descent 5 steps after the terminal condition, i.e

from N−5 to initial time. Our interpretation of this result is that the representation

of the control map using regression, in order to provide the starting point to the

gradient descent routine, allows the method to gain in stability and thereby to

achieve better results in expectations. At times, however, such representation might

not provide an initial guess that is good enough and causes, therefore, the few, but

severe, observed deviations from the mean value.

6.3 System of pumped hydro-reservoirs

In this section, we extend the previous problem to a case in which the inventory is

two dimensional.
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Figure 6.1: Trade-off between estimation time and performance of policies obtained from

RL (with and without backward construction of paths), CR and GD. The horizontal axis

shows time. The vertical axis displays the performance of estimated policies computed

using a fixed set of 1000 simulations. Notice that Value Iteration uses N = 200 time steps,

while Performance Iteration uses N = 1000, to amplify the effect of resimulation.

Figure 6.2: The top panel shows the value of the policy estimated by Value and

Performance Iteration for an increasing use of gradient descent, plotted against the running

time. The bottom panel describes the variance of the estimations obtained on a fix set of

forward simulations.
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Figure 6.3: Diagrammatic representation of a system of interconnected reservoirs.

6.3.1 The model

We consider a problem of managing a system of two interconnected hydro reservoirs

with turbines and pumps, see Figure 6.3. Similarly to the previous case, we model

the electricity price as AR(1) process:

Xn+1 = Xn + α(µ−Xn) + σξn, ξn ∼ N (0, 1), i.i.d.,

where one time step represents 30 seconds. We aim to profit from buying and selling

electricity. We use the parameters σ = 1, α = 0.1 and µ = 40.

Reservoir 1 is fed with a constant water inflow equivalent to 120MW (this assumption

is reasonable given the 3 hours horizon). The connections between Reservoir 1 and

Reservoir 2 is equipped with a pump and a turbine with production/consumption

capacity of 600 MW (for simplicity of presentation but without any loss of numerical

difficulty we assume 100% round-trip efficiency). The connection of Reservoir 2 with

the river can accommodate a higher flow of water and contains a set of turbines with

the maximum generation capacity of 1.2 GW. The size of Reservoir 1 is 2 GWh,

the size of Reservoir 2 is 1 GWh. The numbers chosen for this example have been

inspired by the facilities installed in Dinorwig, UK, and in multiple locations in

Norway.
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Figure 6.4: System behaviour over 3 hours period. In the top panel we display the

electricity price; in the middle the control, u1 in green and u2 in violet, in the bottom

panel, in blue inventory 2 (1 GWh capacity) and in orange inventory 1 (2 GWh capacity).

The dynamics of the energy stored in the reservoirs follow:

I1
n+1 = I1

n + u1
n + 0.12,

I2
n+1 = I2

n − u1
n + u2

n,

where u1
n ∈ [−0.6, 0.6] is the flow between Reservoir 1 and 2, u2

n ∈ [0, 1.2] is the

flow from Reservoir 2 to the river, and 0.12 is the natural inflow to Reservoir 1. We

define the performance measure over three hours time horizon as follow:

J(n, (Xs, I
1
s , I

2
s , u

1
s, u

2
s)Ns=n) =

N∑
s=1
−Xs(u1

n + u2
n)− A(I1

N + I2
N − 1.5)2

where the terminal condition, with an arbitrary coefficient A = 50, incentivise the

controller to keep the total energy stored in both reservoirs at the terminal time at

50% of the maximum of 3 GWh. An example of the optimal strategy estimated by

RL is displayed in Figure 6.4
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Table 6.1: Performance of estimated policies evaluated on a fixed set of 1000 paths. For

comparison, the myopic (greedy, minimises current cost only) policy’s performance is 274.

Regress Later Grid Discretisation

value 340 355 357 290 328 357

time 0.2 s 0.5 s 6 s 4 s 7.5 s 35 s

6.3.2 Comparison

We extended our implementation of Grid Discretisation to this problem to show

the effect of the dimension of inventory on its performance. Consider for example

that if we take 7 discretisation points for each storage, we obtain a total of

49 possible configurations, for which the estimation of regression coefficients and

computation of the optimal control has to be repeated. This leads to significantly

lower computational efficiency compared to the Regress Later algorithm, see Table

6.1 which lists running time and values implied by the estimated policies for RL and

GD.

6.4 Portfolio liquidation under drift uncertainty

In this section, we present an additional example of inventory problem from

the field of finance. Originally this problem was solved within the project

SOCMKV initiated during CEMRACS 2017, a 5-week research retreat at CIRM

in Luminy, near Marseille, France. The project was supervised by Huyên Pham

and Mathieu Laurière. The final paper [5] features a theoretical discussion on the

Markovian Embedding of the Conditional McKean-Vlasov control problems into

finite-dimensional ones and a series of examples where the performance of RL, CR

and the Quantization algorithm (which is outside of the scope of this thesis) are
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compared. The contribution of the author in such project resides in implementing

and designing the numerical solution of the example problems using RL and CR

which will be discussed in the following.

6.4.1 The model

Consider an uncontrolled Markov process governed by the following drift-less

dynamics

Xn+1 = Xn +Xnσξn

and an inventory process In+1 = In + un representing the number of shares held in

portfolio. The control process un represents the amount of shares bought or sold at

each time step. In this context, we consider an important optimisation problem in

finance: portfolio liquidation. We consider the problem of an agent (trader) who

has to liquidate a large number i0 of shares in some asset, within a finite number of

time-steps N , and faces execution costs and market price impact.

The dynamics chosen for the process X, which is meant to represent the price of

the security we want to liquidate, have been computed to account for the non-

observability of the original price process. This model, inspired by Balata et al. [5],

has been originally cast in continuous time under partial information about the drift

of the price process P :

dPt = Pt(βtdt+ σdW 0
t ),

where Wt is a one dimensional Brownian motion, the drift βt of the asset (which is

typically a diffusion process governed by another independent Brownian motion) is

unknown and unobservable like the Brownian motion W . The agent can actually

only observe the stock prices P . In this problem, we consider the special case when

βt = β is a random variable distributed according to some probability distribution

ν: this corresponds to a Bayesian point of view when the agent’s belief about the
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drift is modelled by a prior distribution. In this case, we follow the approach in

Balata et al. [5] to embed our partial observation problem into a finite-dimensional,

full observation, Markov control problem. We call the discretised process driven by

the filtered dynamics X, and the total liquidation cost in the filtered framework

J(n, (Xs,Ws, Is, us)Ns=n) =
N∑
s=n

F (s,Ws)us(Xs + f(us)) + F (N,WN)g(IN),

where f is an increasing function, f(0) = 0, representing a temporary price impact,

g is a loss function, i.e. a convex function with g(0) = 0, penalising the trader when

she does not succeed to liquidate all her shares, the Brownian motion process is

defined as Wn+1 = Wn + ξn and the function:

F (t, w) :=
∫

exp
(bw
σ
− 1

2σ2 b
2t
)
ν(db).

6.4.2 Numerical implementation

Let us now illustrate numerically the impact of uncertain Bayesian drift on the

portfolio liquidation problem by considering a Gaussian prior distribution β ; ν =

N (b0, γ
2
0). In this case, the function F is explicitly given by:

F (t, w) = σγ0√
σ2 + γ2

0t
exp

( 1
2(σ2 + γ2

0t)
(−b2

0t+ 2b0σw + γ2
0w

2)
)
.

Let us consider a linear price impact function f(a) = γa, γ > 0, and a quadratic

loss function g(i) = ηi2, η > 0.

Remark 6.4.1. Notice that when the price process is a martingale, i.e. b0 = 0,

and in the limiting case when the penalty parameter η goes to infinity, corresponding

to the final constraint It = 0, we see that, in continuous time, u∗t converges to

−I∗t /(T−t), hence independent of the price process, and leading to an explicit optimal

inventory: I∗t = i0
T−t
T

with constant trading rate −i0/T .
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We solve the problem numerically, fixing the parameters as follows: γ=5, X0=6,

I0=1, η=100 and σ=0.4. We run two sets of forward Monte Carlo simulations for

b0 = 0.1, T = 1 and b0 = −0.1, T = 0.5 changing the value of γ0 and testing the RL

and CR algorithms.

In particular, we compare the performance of these algorithms against the control

policy (u∗n)N−1
n=0 , where u∗ is the optimal strategy associated with the continuous-

time portfolio liquidation problem (we indicate this strategy by OPT), for more

details refer to Balata et al. [5]. We also tested a benchmark strategy (we indicate

this strategy by B) which consists in liquidating the inventory at a constant rate

of −I0/N . The test consisted in computing the estimates V̂ (0, X0 = 6, I0 = 1)

associated with the different algorithms.

We display the results obtained by the different algorithms in Table 6.2 and plot

them in Figure 6.5.

6.4.3 Comparison

The implementation of Regression Monte Carlo algorithms has required intense

tuning and the use of the Performance Iteration technique in order to obtain

satisfactory results. Paramount is, in addition, the distribution chosen for the

training points in Regress Later and for the initial control in Control Randomization.

The problem of finding the best set of data to provide to the backward procedure

is similar in the two Regression Monte Carlo algorithms. However, little study is

available in the literature; for more details on this problem in the Regress Later

setting see chapter 5, [61] and [4]. In the case of RL algorithm a training measure

µn has been chosen in order to sufficiently explore the state space in the I dimension,

in particular we considered µn = U [−0.5, 0.5 + T−tn
tn

]. The proofs we presented in

chapter 2 can be adapted to the time-dependent training measure µn considering
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that the only difference is to update the bound R̄ 7→ R̄maxn
{∥∥∥dµn

dµ

∥∥∥}. Similarly, for

CR we seek a distribution of the random control such that the controlled process I

results in having a distribution similar to µn.

In order to choose the basis functions, we used the fact that we expect the value

function to be convex in the I dimension with a minimum around the optimal

inventory level and monotone in the X dimension. For RL algorithm we choose

therefore the following set of basis functions: {x, i, i2, xi, xi2}, where we take the

square function i2 as a general approximator for convex functions around their

minima (where we expect the measure µn to be concentrated). On the other hand,

CR requires that we guess what the functional form of the conditional expectation of

the value function is with respect to the control process. Considering our argument

on second order polynomials approximating general convex functions, we choose to

add the set {u, u2, ui, ux} to the set of basis functions used by RL.

Note that we observed very high volatility in the quality of the policy estimated

by control randomization. For this reason, we estimated the policy 50 times, and

report in Table 6.2 the results provided by the best performing one; increasing the

number of training points further affects the variability only marginally.
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Table 6.2: Portfolio liquidation results. Estimations of the value functions at point (x0 =

6, i0 = 1) and time 0 provided by different algorithms.

b0 = 0.1, T = 1 b0 = −0.1, T = 1/2

γ0 OPT RLMC CR B OPT RLMC CR B

0.1 -1.347 -1.356 -1.278 -1.318 3.689 3.687 3.995 4.144

0.2 -1.385 -1.390 -1.283 -1.348 3.682 3.682 3.847 4.138

0.3 -1.445 -1.446 -1.314 -1.402 3.670 3.674 4.034 4.126

0.4 -1.523 -1.524 -1.323 -1.485 3.655 3.674 4.128 4.108

0.5 -1.642 -1.637 -1.348 -1.585 3.636 3.664 4.243 4.088

0.6 -1.783 -1.777 -1.425 -1.711 3.611 3.640 4.386 4.064

0.7 -1.973 -1.927 -1.513 -1.870 3.581 3.613 4.783 4.029

0.8 -2.213 -2.003 -1.637 -2.057 3.545 3.575 5.142 3.992

0.9 -2.526 -2.457 -1.819 -2.288 3.500 3.530 5.345 3.952

1 -2.918 -2.801 -1.806 -2.560 3.453 3.513 6.765 3.903

b0 = 0.1 and T = 1. b0 = −0.1 and T = 0.5.

Figure 6.5: We display the estimated value function for the portfolio liquidation problem

at point (x0 = 6, i0 = 1) and time 0, provided by RLMC, B and OPT w.r.t. γ0. We took

γ=5, X0=6, I0=1, η=100 and σ=0.4.
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Chapter 7

Fully controlled problems

In this chapter, we discuss different examples to showcase some of the characteristics

of Regression Monte Carlo, including the differences between Value and Performance

Iteration which will be discussed at length in section 7.2. In particular, we present

3 different numerical applications, for reference, we list them here with growing

difficulty: The first example is a linear-quadratic problem in dimension 1, which

features a well known analytical solution in the continuous time case which we can

use as a benchmark; the second example similarly features linear dynamics and

quadratic cost but with a glitch, we add on the path of the controlled process

some doors and charge a significant cost whenever these are missed. We use this

problem to compare Value and Performance Iteration and offer a comment on their

differences. It is interesting to notice how such small modification makes the problem

so much harder. The third problem we present is a more realistic model inspired

by Carmona et al. [18] on the systemic risk management by a central bank who can

influence the dynamics of the cash reserve of the other banks operating under its

jurisdiction.
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7.1 Univariate linear-quadratic maximisation

In order to provide evidence of the convergence of Value and Performance Iteration

algorithms, we briefly present a linear quadratic problem in one dimension, for which

analytical solution is available for the continuous time problem (see Balata et al.

[5]).

7.1.1 The model

Consider a process X driven by the following dynamics:

Xn+1 = Xn + 1 +Xn + un
N

+ ξn
2N , X0 = x0, ξn ∼ N (0, 1)

define the cost functional J

J
(
n, (Xs, us)Ns=n

)
=

N∑
s=n

X2
s + u2

s

N
+X2

N

and the value function V (n, x) = inf
u∈U

{
J
(
n, (Xs, us)Ns=n

)}
.

7.1.2 Numerical implementation

We choose N = 100 and solve this problem using Value and Performance iteration.

We compare the value of the estimated policies with the value function of the

continuous time problem. The relative distance from the continuous time solution as

a function of the initial point x0 (hereafter, for simplicity, relative error), is displayed

in figure 7.1.

We explore further the effect of the time discretisation on the solution produced

by Value Iteration by letting N vary and studying the behaviour of the relative

error. In table 7.1 we display the estimated value of the policy and relative error for
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N value error

50 1.13 4.2%

100 1.1489 1.92%

500 1.1654 0.51%

1000 1.1676 0.32%

5000 1.694 0.17%

Table 7.1: Convergence of Value Iteration to the continuous time solution, for X0 = 0,

1.1714 as N → ∞. All experiments have been run on the same set of 50000 simulations

producing similar 95% confindence intervals 0.5% wide.

Figure 7.1: We show, in relative terms, the distance between the value function of the

Linear Quadratic continuous time problem and the value of the policies estimated by the

algorithms, Value Iteration in blue and Performance Iteration in orange, as a function of

the initial condition x0

N = 50, 100, 500, 1000, 5000. The Forward Evaluation has been run on a common

set of 50000 paths to minimise the effect of randomness on the comparison; a 95%

confidence interval of ±0.025 has been identified for all examples. Figure 7.2 offers

a graphical representation of the convergence for increasing values of N .

7.2 Control of a robot through a set of doors

In this experiment, introduced in example 1.1.1, we propose a toy problem quite

simple to understand, but whose optimal policy is difficult to learn for the
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Figure 7.2: We show the convergence of Value Iteration to the continuous time solution,

for X0 = 0, 1.1714 as N → ∞. All experiments have been run on the same set of 50000

simulations producing similar 95% confindence intervals 0.5% wide.

Figure 7.3: Graphical representation of the scheme of doors (7.2.1), which acts as a system

of doors through which we want to drive the robot. Superimposed an example of controlled

trajectory.

algorithms. Notice that this problem is mathematically very similar to the previous

one, with the addition of a discontinuous cost function at four instants of time over

the whole optimisation horizon. To help intuition, imagine we are controlling a

robot through a system of rooms connected via some doors indicated by [d−τ , d+
τ ].

The robot is advancing over some unstable debris, causing its actual movement to

be stochastic around the inputs provided by the controller.

7.2.1 The model

Consider a controlled autoregressive process

Xn+1 =
(
Xn + un

100 + 1
10ξn

)
∨ −2 ∧ 2, n = 0, . . . , N
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and the task of guiding a robot through a sequence of rooms, as illustrated in figure

7.3, minimising the use of the control. Notice that for simplicity we have modelled

the temporal dimension of the process as a spacial one, under the assumption that

the robot moves at variable speed, advancing one unit of space towards the end of

the last room (n = N) each unit of time. In order to model this problem in the

framework of chapter 1, we introduce following cost functional

J(n, (Xs, us)Ns=n) =
N∑
s=n

a1{us 6=0} + b(us)2 + c1{s=τs}1{Xs /∈[d−τs ,d
+
τs ]}, (7.2.1)

where a and b represent a fix and a quadratic-proportional cost for using the control,

while c is the penalty for hitting the wall.

7.2.2 Numerical implementation

For this problem we select the set of basis function given by {1, x, x2}, while we will

test different choices of the training measure µ. We fix the following parameters:

a = 0, b = 1, c = 100, N = 100, τs = 25, 50, 75, 100 and the doors have width 1 and

disposed as in Figure 7.3.

The purpose of this problem is to show the difference between Value and Performance

Iteration. As explained in section 5.1, it has the main characteristics to do so.

Notice that you can refer to figure 5.1 to see the effect of the measure µ on the

approximation of a function similar to the shape of the doors 1{XN /∈[d−τs ,d
+
τs ]}. We

would like to pick the training measure that induces the best policy. In order to

improve the numerical results, and given the peculiar structure of this problem, we

introduce a time-dependent training measure µn. The intuition is that the measure

we choose should guide the training points through the rooms, inducing an effective

policy. We use a heuristic technique to generate a sensible training measure µn:

we first run an iteration of the backward procedure using a stationary uniform
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training distribution µ, we then run the forward procedure and use the distribution

µn = L{Xn} estimated from it to run the following backward iteration.

7.2.3 Exploration vs. exploitation

The choice of the training measure µn, in this problem, well exemplifies the concept

of exploration and exploitation. In order to solve this problem, in fact, both

are necessary. The problem has been already discussed in section 5.1 at the

functional approximation level, where the idea of learning the value function over

a bigger portion of the state space is countered by the decreasing accuracy of the

approximation in the area where the optimally controlled process would be driven.

Contrary to most problems where we can find a good balance between exploration

and exploitation, in the case of this problem multiple runs of the algorithm are

needed as both goals are difficult to achieve simultaneously. The idea of exploration

and exploitation when multiple runs of the algorithm are available does no longer

influences the approximation of value function on a functional approximation level,

but rather, in a more subtle way, through our use of the information gathered

during previous runs of the algorithm. We use a training measure µn = N (bn, σ),

where σ controls the trade off between exploration and exploitation at the functional

approximation level, and bn is computed as an average of the process controlled by

the policy estimated at the previous iteration and accounts for our exploitation of

the knowledge gathered during the exploration undertaken at previous iterations.

7.2.4 Value vs. Performance

Our results are displayed in Figures 7.4 and 7.5. From the top panel in figure 7.4

we can observe how the two algorithms approximate the value function during the

backward procedure; as anticipated in section 5.1 Performance Iteration, contrary
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to Value Iteration, can adapt the shape of the approximation even without receiving

external inputs between one door and the other. More schematically, this can be

observed from the time-dependent position of the minima of the two estimated value

functions displayed in the bottom panel. Figure 7.5, on the other hand, displays the

control maps in the top panel, and the distribution of the pathwise performance of

the two policies, in the bottom one. From the comparison of the control maps, we

immediately see the consequences of the different estimations observed in Figure 7.4.

From the distribution of the pathwise-performance, we can conclude that the policy

estimated by Performance Iteration is of higher quality than the Value Iteration one.

It is also possible to understand the behaviour of the two: Performance Iteration

invests more on the control, avoiding frequent impacts with the wall, while Value

Iteration saves on control (the first mass of probability is at lower values than

Performance Iteration), but experiences more impacts with the wall, causing a much

higher average cost.

7.3 A model of interbank systemic risk with

partial observation

In this section, we discuss a problem originally formulated in continuous time and

in a partial information framework. Even though we focus only on the discrete

counterpart, obtained as described in Balata et al. [5], we provide a short description

of the original problem in order to help understanding its financial interpretation.

7.3.1 The model

We consider the following model of systemic risk inspired by Carmona et al. [18].

The log-monetary reserves of B banks lending to and borrowing from each other are
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Figure 7.4: On the top the value function estimated during the backward procedure, on

the left we can observe that Value Iteration produces an estimate with lower error (≈ 300

rather than ≈ 800), however, on the right, Performance Iteration seems to carry more

information about the optimal policy. Such claim is confirmed in the panel on the bottom

where we display the minimum of the two value functions at any time step, notice how

Performance Iteration captures a more responsive shape, compared to Value Iteration.
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Figure 7.5: The two panels at the top display the control policy estimated by the two

algorithms; Value Iteration on the left, Performance Iteration on the right. Notice, at

first glance, that the policy estimated by Performance Iteration seems to be more flexible

than the one produced by Value Iteration. In the bottom panel, we display the empirical

density function of the performance of the policies estimated by the two algorithms. It can

be noticed that controlling the robot with the Value Iteration policy leads to more impacts

but lower use of the control (the first and second masses of probability are at lower values

than Performance Iteration) indicating that Value Iteration estimated a myopic policy.
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governed by the system

dX i
t = κ

B

B∑
j=1

(Xj
t −X i

t)dt+ σX i
t(
√

1− ρ2dW i
t + ρdW 0

t ), i = 1, . . . , N ;

where W i, i = 1, . . . ,B, are independent Brownian motions that represent the

idiosyncratic risk of each bank; W 0 is a common noise independent of W i that

represent the systemic risk; the volatility σ > 0 is a given real parameter; ρ ∈ [−1, 1]

represents the level of concentration of the banks and their exposure to the systemic

risk. X i
0, i = 1, ...,B are i.i.d. r.v. that represent the initial level of reserves.

The mean-reversion coefficient κ > 0 models the strength of interaction between

the banks, where bank i can lend to and borrow from bank j with an amount

proportional to the difference between their reserves.

Let us now consider a central bank, viewed as a social planner, who only observes

the common noise and not the reserves of each bank, and can influence the strength

of the interaction between the individual banks, through the control process ut. In

the asymptotic regime when B → ∞, the theory of propagation of chaos implies that

the reserves X i of individual banks become independent and identically distributed,

conditionally on the common noise W 0. The reserve of the representative bank in

the asymptotic regime is then driven by

dXt = (κ+ ut)(E[Xt|W 0]−Xt)dt+ σXt(
√

1− ρ2dBt + ρdW 0
t ), X0 ∼ X1

0 ,

for some Brownian motion B independent of W 0. The objective of the central

bank is to minimize the departure of the reserve of a representative bank from

the average level along with the spending on stimulus and compliance cost for

institutions when stringent regulation applied, here assumed to be quadratic with

respect to its effectiveness. In formulas, the cost for the central bank to implement

a policy (ut)t≥n is

J(n, (Xs, us)s≥n) =
∫ T

n

(1
2u

2
t + η

2(Xt − E[Xt|W 0])2
)
dt+ c

2(XT − E[XT |W 0])2,
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where η > 0 and c > 0.

The problem described so far is a McKean Vlasov control problem under partial

observation, a problem that falls outside the scope of this thesis and range of

applicability of Regression Monte Carlo methods to the best knowledge of the

author. Notice, however, that in this particular case the problem can be embedded

into standard control problem, of the kind introduced in chapter 1. We set

X̄t = E[Xt|W 0] and Yt = E[(Xt − X̄t)2|W 0]. The cost functional is then written as

J(n, (X̄s, Ys, us)s≥n) =
∫ T

n

(1
2u

2
t + η

2Yt
)
dt+ c

2YT , (7.3.2)

where the dynamics of X̄ and Y are governed by

dX̄t = σρX̄tdW
0
t , X̄0 = x0 = E[X0]

dYt =
[(
σ2 − 2(κ+ ut)

)
Yt + σ2(1− ρ2)X̄2

t

]
dt+ 2ρσYtdW 0

t , y0 = V(X0).
(7.3.3)

We have then reduced the problem to a control problem in dimension two with state

variables (X̄, Y ).

In order to solve this problem numerically, we write a discrete approximation of

(7.3.3). Taking N = 100 time steps on a uniform grid we obtain:

X̄n+1 = X̄n(1 + σρ

10 ξn), X̄0 = x0 = E[X0]

Yn+1 = Yn +
[(
σ2 − 2(κ+ un)

)
Yn + σ2(1− ρ2)X̄2

n

]
∆t+ 2ρσYn

√
∆tξn,

Y0 = y0 = V(X0),

(7.3.4)

and define the value function as:

V (n, x, y) = min
u∈U{n:n}

{ 1
200u

2
n + η

200Yn + En,x,y,u
[
V (n+ 1, Xn+1, Yn+1)

]}

7.3.2 Numerical implementation

For the implementation of the RL algorithm, we decided to use polynomial basis

functions up to degree 2. This choice allows us to compute the optimal control



Chapter 7. Fully controlled problems 144

analytically as a function of the regression coefficients thereby gaining speed and

precision as discussed in remark 5.2.3. For CR, we used basis functions up to degree

3 in all dimensions to obtain more stable results.

The training measure in RL was initially chosen to be a normal on each dimension,

however, as we know that the dimension Y represents the conditional variance of the

original process X, we centred µ at zero and considered only training points Y m
n ≥ 0.

In CR, on the other hand, we would need to carefully choose the distribution of the

random control, so that the process Y does not become negative. Notice in fact that

the Euler approximation, contrary to the original SDE describing Y , is not bounded

to be positive and we would, therefore, need to carefully choose a control that keeps

Y positive. To simplify the implementation, we modified the Euler approximation

of (7.3.3) to feature a reflexive boundary at zero. Such a feature allows training

the estimated control policy to not overshoot when trying to drive the process Y to

zero, without having Y to become negative.

7.3.3 Comparison

For this problem, in the absence of an analytical solution, we decided to compare

the estimations of the value function at time 0 provided by our algorithms with a

numerical approximation of the continuous time solution, based on finite difference

scheme computed with the software Mathematica.

We computed V̂ (0, x0 = 10, i0 = 0) using RL and CR methods by considering a

sample of size 500 000, and using the following parameters T = 1, σ = 0.1, κ = 0.5

and X0 = 10.

In Table 7.2 we display the numerical results of two experiments: we took η = 10,

c = 100 and η = 100, ρ = 0.5 and vary the value of ρ in the first case, and vary the

value of c in the second one.
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ρ RLMC CR Bench

0.1 8.88 9.12 8.94

0.2 8.73 8.98 8.77

0.3 8.42 8.69 8.48

0.4 8.02 8.25 8.06

0.5 7.61 7.73 7.51

0.6 6.93 6.97 6.79

0.7 5.94 6.07 5.87

0.8 4.86 4.82 4.67

c = 100 and η = 10.

c RLMC CR Bench

0 7.79 7.78 7.79

1 7.88 7.87 7.88

5 8.22 8.23 8.23

10 8.63 8.64 8.62

25 9.69 9.76 9.62

50 11.08 11.27 10.97

ρ = 0.5 and η = 100.

Table 7.2: Results for the systemic risk problem. Estimations of the value function at the

point (x0 = 10) at time 0 provided by different strategies. We took T = 1, N = 100,

σ = 0.1, κ = 0.5, X0 = 10.

Figure 7.6 shows two examples of a realisation of the randomness; in each we have

a path of the original process (Xn)Nn=1 controlled by RLMC (curve “RLMC”), a

path naively controlled by u = 0 (curve “uncontrolled”), and finally a path of

the conditional expectation (X̄n)Nn=1 (curve “E(X|W )”). One can see in these two

examples that the estimated control is as follows: do nothing when the terminal

time is far, i.e., take u = 0 to avoid running costs, then catch X̄ when the terminal

time is approaching, to minimize the terminal cost.
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Figure 7.6: Two examples of a realisation of the randomness; in each we have a path of the

original process (Xn)Nn=1 controlled by RLMC (curve “RLMC”), a path naively controlled

by u = 0 (curve “uncontrolled”), and finally a path of the conditional expectation (X̄n)Nn=1

(curve “E(X|W )”).
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Part III

Sustainable Energy Systems
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Introduction

In this final part of the Thesis we present a study of sustainable energy systems

and, in particular, microgrids. Microgrids are self-sustainable systems that aim

to increase the penetration of renewable energy generation without affecting the

reliability of the power supply. In chapter 8, we present a review of the current

energy systems and introduce the reader to some of its most important components.

Particular emphasis is given to energy storage, a device that allows to smooth out the

random fluctuations in power generation caused by renewable generators. In chapter

9 we introduce a mathematical model on which we base our study of microgrid

systems, then presented in chapter 10.

Energy systems have been a central topic during my Ph.D. and have motivated the

development of the algorithms presented in Part I. As it will be discussed more in

depth in chapter 8, there is a compelling necessity for our society to transition from

fossil fuel-based energy supply to renewable generation and sustainability. This

transition, however, requires substantial investments, which can be justified only

by applying the latest techniques in modelling and optimisation, to study the best

design and management practices.

The content of this Part of the Thesis has been published in two papers [1, 6] and

presented at international conferences and meetings. The first part of this project

has also inspired a TEDx talk, as well as a presentation to MPs at the Parliament,

during STEM for Britain 2018.

The main contribution to the literature contained in this part involves the stochastic

modelling and optimisation of a microgrid system, both under an almost sure no-

blackout constraint as well as a probabilistic one. We also provide a sensitivity

analysis of the optimal policy, and the cost, with respect to the main factors

influencing the functioning of the power network.
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Chapter 8

The current energy landscape

8.1 Introduction

It is nowadays common understanding that the practices of generation and

consumption of energy embraced so far were, and still are, not sustainable, causing

the environment where we live to progressively become less suitable for life. Raises

in average temperatures, draughts and poor air quality, threaten our food supply as

well as our own settlements (see sea rise and desertification). On the other hand,

many countries are experiencing a long-awaited process of industrialisation, which

western economies have gone through one century ago, and are faced by a trade-off

between development and sustainability.

We claim that development and sustainability do not represent a trade-off, but

rather both objectives can be achieved through a well-engineered set of incentives,

pilot projects and international regulatory environment. When a country, a city, or a

village, plans for the development of their energy system, they should account for the

externalities generated by such designs. Future environmental and healthcare costs

of most fossil fuel-based energy generation are often not priced in the assessment of
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the optimal energy mix, causing to underweight the investment in renewable forms

of energy production.

Even though the costs of renewable generators has decreased considerably over time,

thanks to the scale of adoption reached by solar panels and wind turbines, their full

integration in energy system is hindered by their unpredictable and uncontrollable

nature. To compensate for times when the demand for electricity is high while supply

is low, grid operators have to maintain dispatchable generation capacity online at

all times. The lack of reliability reduces the economic value of renewable projects

motivating the research and development of managing techniques for such plants,

that should take full advantage of the zero marginal cost of generation.

At a high level, a straight forward solution to the dispatchability problem is to

shift power generated at one time, to some time in the future when it is needed.

Different technologies nowadays allow for such load shifting, but they are all very

costly, calling again for more efficient use of the available resources and a careful

evaluation of their economic potential over time.

The rest of the chapter is organised as follow: in section 8.2 we provide an overview of

different renewable energy sources, while in section 8.3 we discuss different energy

storage devices. We conclude this introductory chapter with an overview of the

challenges that are involved in the energy transition and possible solutions.

8.2 Renewable generation

In this section, we introduce some of the most common technologies used to harvest

the renewable energy available in our environment. We will focus in particular on

the two most iconic ones: wind and solar.
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8.2.1 Wind

Wind power represents the first example of sustainable energy source harnessed by

humankind. Initially used to produce mechanical energy in windmills to ground

grains and pump water, and in sail-boats to induce propulsion, it is now employed

in generators to rotate magnets within a magnetic field, thereby inducing an electric

current. The first known installation of a wind turbine to generate electricity dates

back to 1887, but it wasn’t until 1980 that commercial solutions started to appear

in the US and Europe.

In spite of the relatively recent adoption of this technology, the technological progress

has been outstanding, with both installed capacity and cost improving exponentially.

The latter for example, measured as EUR per KW of power, has dropped by 95%,

from approximately 55EUR in 1980 (adjusted for inflation) to 2.5EUR today.

The main commercial advantage of wind power, and renewables in general, is the

zero-marginal-cost of electricity produced. The possibility of generating energy at

no additional cost (except the wearing off over time) comes with the lack of control

over the power produced at any given time, that depends on the wind speed. Wind

speed is relatively constant, year on year, but it is subject to severe fluctuations in

the short term, preventing a complete transition to a wind-powered economy.

A branch of research to which considerable effort has been devoted is the modelling

of the power produced by a wind turbine. Such stochastic models rely on a precise

description of the wind speed, which is then converted in electricity generated

through a deterministic formula. For more insight on wind power modelling and

forecasting refer to Foley et al. [30]. We present a model of wind power generation

in section 10.5.1.
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8.2.2 Solar

Solar energy, under certain points of view, should be regarded as the only energy

source available. Solar radiations are used by plants to generate the energy that

sustains them and, through a process of millennia, accumulate and transform into

fossil fuels through the dead bodies of plants and animals. The direct extraction

of solar energy and conversion into electricity by mankind is relatively recent and

dates back to 1880s, with a widespread use starting from 1990s.

Two main technologies are used to convert solar radiation into electrical energy:

photovoltaic and solar concentration. While the former directly converts solar

radiation into electric current exploiting the photovoltaic effect in small and modular

silicon-based cells, the latter functions similarly to all thermal power plants, where

some fuels are used to heat up water and generate steam that in turn rotates some

turbines. In the case of solar concentration, a wide array of mirrors or lens are used

to concentrate sunlight into a beam that heats up water, or other substances.

The widespread use of solar panels can be explained by the strong incentives that

have been offered by governments around the world to promote their adoption,

as well as their distributed nature. Even though some small scale solutions are

available for harvesting wind power, it is much more common to install solar panels

on rooftops, which do not require maintenance and do not have moving parts,

guaranteeing a seemingly unnoticeable electricity generation.

8.2.3 Other sources

Nowadays, the portfolio of renewables in use is highly concentrated into

hydroelectric, wind and solar. Promising technologies, on the other hand, are not

being promoted as much as they need to achieve a more balanced range of generating



Chapter 8. The current energy landscape 155

units. Geothermal energy, ocean thermal, tidal and wave energy, residual heat from

industry, as well as new designs for harvesting solar and wind energy, can provide,

along with more developed renewables, a mix of sustainable energy sources that

complement one another. A mixed pool of energy sources allows to smooth out

the overall generation power, making it simpler for the grid operator to match the

fluctuations in demand. Further discussion on alternative energy generation is,

however, outside the scope of this thesis.

8.3 Energy storage

Energy storages can take many different forms. In the widest sense, even fossil

fuel can be seen as a medium to store solar energy released in a far past. In this

discussion we will, however, focus on storage facilities intended to transfer an amount

of energy, readily available today, to a given point in the future, might this be for

few minutes (flywheels) or months/years (hydro-reservoirs/gas caves). In particular,

the recent trend in renewable electricity generation calls for an increasing study of

management and design of electricity storages. Differently from other forms of

energy, electricity can not be stored directly, but needs to be transformed: potential

energy when stored in hydro-reservoirs, kinetic energy when stored in flywheels and

via increasing pressure when stored in compressed air/gas storages, electrochemical

energy when stored in batteries, etc.

As mentioned in the introduction, the importance of storage devices in the future

design of the electric grid cannot be understated. In order to accommodate an

increasing share of renewable generation, characterised by an intermittent and not

easily forecastable generation output, we need a buffer that allows shifting power

from times and places with high generation to times and places with high demand.

This buffer can either be provided by extending transmission lines and thermal
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generators to be used as reserves, or by increasing the total capacity of grid-

connected electricity storages. In particular, in the case of microgrids described in

chapter 9, which are attracting increasing interest from both industry and academia,

storage devices are fundamental in order to guarantee the possibility of running in

islanded mode.

Anuta et al. [2] claim that widespread use of electricity storage has been limited by

high costs, lack of deployment experience and the barriers created by the regulatory

framework. However, in the UK alone, the benefits that extensive use of storage

could bring are estimated to about 10 billion pounds by 2050. Today, 99% of

the electricity storage is represented by pumped hydroelectric storage (PHS) with

a total power of 150 GW worldwide. Anuta et al. [2] claim also that storage is

often uneconomical if used for a single application and therefore there is need to

develop a viable business model to allow the investors to exploit the potential services

that storage can provide (black start, power quality, reserves, voltage regulation,

frequency regulation, renewable smoothing dispatch, increase in asset utilisation,

peak shaving, price arbitrage).

An interesting study in Mishra et al. [57] looks at the integration of different

electricity storage technologies at different levels of the grid. In particular, the study

considers cheap compressed air electricity storages (CAES) and different types of

fast reacting batteries to be installed at home, at the distribution level, and at the

transmission level. The study found that if just one technology on one level was to

be considered then the best choice would have been lithium-ion batteries deployed at

the costumers’ houses. The optimal configuration, however, includes slow reacting

CAES deployed at higher levels. Finally, the author identifies the following as most

important characteristic of an electric storage device which determines the optimal

location and mode of use: capacity, max power, efficiency, self-discharge rate, life-

cycle, power ramp up.
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So far, the most studied kind of facilities have been gas storages, because they

are widely used around the world and because gas, differently to electricity, is much

more easily storable. However, recently, much attention has been given to electricity

storages as well, because they represent a very important asset in the future of the

electric grid.

8.3.1 Natural gas storage facilities

Differently from pure electric energy, natural gas can be stored more easily, even

though it still requires a dedicated infrastructure for transportation and large

investments for the storage facilities. So, since it is not a usual commodity, natural

gas trading nowadays heavily relies on the storage facilities, both for the winter-

summer oscillation in consumption and for the quite inelastic extraction rate of

natural gas.

In practice, natural gas is stored in huge natural caves, salt domes, emptied gas or oil

fields, and aquifers, even though many small projects have used different technologies

and solutions. It should be noted that despite the market for the liquefied natural gas

(LNG) is growing, and since after liquefaction the gas can be stored as a traditional

commodity, these problems are not of primary interest here.

An interesting problem linked to this kind of facilities, given their particular physical

characteristics and the complicated dependence on energy prices, is their economic

valuation. Swindle et al. [74] reports that most of the value is in the ability of the

gas storage to monetize short time scale mean reversion in gas price. For this reason,

the valuation heavily depends on the variance structure of gas Futures (derivatives

contracts) prices.
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8.3.2 Pumped hydro storage

Hydro-electric power plants are the source of most of the renewable electric energy

produced; these facilities use natural basins, like lakes and rivers or a system of

artificial dams, to exploit the potential energy of a big amount of water efficiently

released into turbines to generate electricity. Some of these plants are formed by

different basins located at different heights which are then connected with a system

of pipes equipped with turbines for electricity production. Pumps create load and

allow to pump the water back to a point with greater potential energy, effectively

storing electric energy.

Modelling these facilities can be difficult, the topology of the dams and the system

of pipes that connects them, makes every facility around the world unique. In

addition, as each basin has to be modelled separately, and the problem can grow in

dimensionality relatively quickly. As we discussed in chapter 3, simulation methods

for the endogenous (inventory) process are required in order to efficiently solve these

problems. In a full discretisation setting, see Felix and Weber [29] for more details

on the problem of valuing a multiple hydro reservoirs storage systems.

8.3.3 Batteries

Batteries are devices that store electricity by accumulating and releasing chemical

force generated within each of the many cells they are composed by. The widespread

adoption of batteries as energy storage in the consumer market can be justified by the

reduced size of the units. Under the point of view of power system management,

on the other hand, other characteristics have attracted the attention of industry

and academia. Batteries offer amongst the highest round-trip efficiency (energy is

consumed in the process of storing), along with high power and an amount of energy

that allows delivering such rated power for far longer than comparable solutions.
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Different technologies have been developed, offering a wide range of specification,

and are now adopted for power quality applications (along with flywheels) as well

as bridging power and energy management (along with, but at a considerably lower

scale, PHS).

The high modularity of batteries, as well as their standardized characteristics,

suggest that the modelling of a storage plant should be easier than an hydro-

reservoir, as the combination of all modules can be represented as one, unique

inventory. On the other hand, however, the electrochemical system of storage has

its own physics which involves different and challenging difficulties.

One of the most important constraints introduced by the battery is the wearing off

that manifest itself in the form of decreasing the total capacity of the inventory, as a

function of the number of complete recharge cycles and operating temperature. It is

often reported, [26] [7], that the wearing off, in addition, should not be modelled by

some throughput computation (quantity of energy charged and discharged) because

much more impact is attributable by the amount of time the battery is used at high

power. Mathematically, this means that we can not anymore keep track only of

the single information on the state of charge In, rather, we will need to know the

power injection or withdraw at any time in the past in order to take into account

the trade-off between immediate benefit and shorter lifetime.

It should be noticed here that many studies on electricity storage in the framework

of dynamic programming are technology agnostic and do not specify what kind

of facility they are considering, effectively working at a high level of abstraction.

However, in the following, we present some examples of realistic modeling of a

battery; note that these studies have been completed in collaboration with EDF

R&D and somehow represent a good insight into the state of the art in industry.

In particular, we notice the lack of interest in the price arbitrage use of the battery

and an interest in the ancillary services these devices can offer: Haessig et al. [37]
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studies aging limitation in order to find control strategies that enhance the life of the

battery; it does so effectively by creating a trade-off between profits and wearing off

of the battery. The authors model the aging process as an Ah-throughput converted

in an equivalent number of cycles. In other words, the authors assume that the

battery has a finite amount of energy which can flow through it before it comes at

the end of its lifetime. Defining then an expected calendar life for the device, the

average power the battery should use, at any time in order to live for the requested

amount of time, can be computed. The tradeoff, then, is created by defining a

parameter for a short term horizon which indicates from how far in the future you

can “borrow” excess power so that, in the end, in the short term horizon the average

planned wearing off is preserved. Haessig et al. [36] present an aging-aware model

of a NaS battery used to assist a wind energy producer in meeting her committed

generation, on which she has agreed based on a short time horizon forecast on wind

speed. The paper addresses the problem of modelling the battery by means of its

modularity describing it as a particular assembly of basic energy cells.

8.3.4 Flexible alternatives

One of the most common flexible storage solution is the so-called CHP (combined

heat and power) which is a device that receives as input gas and electricity and

provides in exchange power and heat. The device is provided with thermal storage

which can be charged at the most suitable times. Kitapbayev et al. [47], for example,

studies CHP for district heating. In particular, they use a risk-sensitive approach

where the risk aversion parameter is tuned in order to obtain a certain required

CVaR, or expected shortfall, on the costs.

A more interesting, flexible alternative to storage, is the idea of demand response

programs and load control which create virtual storage. The former acts on longer

time-scales and relies on customer adoption, who can participate in the peak shaving
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activity under some compensation scheme. The latter involves automatic short time-

scale control of particular appliances in buildings whose regulation of power could

drastically reduce the high-frequency fluctuation of the demand without affecting

the utility of the users of the building. Meyn et al. [56] shows an application in

which the rotational speed of the fans in big buildings can be regulated in order

to improve the reliability of the grid. Refrigerators and water pumps in swimming

pools could be used similarly, thanks to the inertia that these systems enjoy.

Note that an extensive discussion about energy storage under the technological,

engineering and economic point of view can be found in the recent book Huggins

[43].

8.4 Challenges and solutions

The integration of additional renewable generation, as mentioned earlier, is hindered

by the difficulties in managing the grid when the ratio of classic thermal generation to

renewables decreases. In addition to the dispatchability of traditional power plants,

which simplifies the scheduling of online plants, renewables also lack power inertia.

Power inertia is a phenomenon created by the big masses (magnets) attached to the

turbines of power plants, that induces them to keep rotating at a constant angular

speed. The frequency of rotation is directly transmitted to the electricity, whose

frequency has to remain constant in order to guarantee a safe supply of power. High

inertia guarantees that the mismatch between load and supply changes slowly, as the

rotational speed of the turbines is influenced by changes in frequency. Renewable

sources like solar panels do not have a strong magnetic field that can increase system

inertia, and wind turbines, that recently started producing synthetic inertia, are not

sufficient to replace thermal power plants, breaking down the coupling with the rest

of the electricity grid. In order to address these concerns, it has often been proposed
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the idea of creating smaller regions of the grid that are able to manage themselves,

and can be connected according to the requirements of the grid operator.

A microgrid is a network of loads and energy generating units, that often include

renewable sources like solar panels and wind turbines, alongside more traditional

forms of thermal electricity production. These microgrids can be part of the main

grid or isolated. Communities in rural areas of the world have long now enjoyed

the installation of isolated microgrid systems that provide a reliable and often

environment-friendly source of electricity to meet their power needs.

The elementary purpose of a microgrid is to provide a continuous electricity supply

from the variable power produced by renewable generators while minimising the

installation and running costs. In this kind of systems, the uncertainty of both,

the load and the renewable production are high, and its negative effect on the

system stability can be mitigated by including a battery to the microgrid. Energy

storage devices ensure power quality, including frequency and voltage regulation

(see Hayashi et al. [39]) and provide backup power in case of any contingency. A

dispatchable unit, in the form of a diesel generator for example, is also used as a

backup solution, and to provide base-load power.

In order to enable these services to be developed, a large amount of data must

be combined into a smart multi-energy system. Data from local sources (such as

smart thermostats and energy meters) are combined with data from forecasts (like

weather forecasts for wind and solar farms) and from energy markets where gas,

power and other energy forms are traded. A multi-energy market model can reduce

the costs of energy generation and distribution for society, as a consequence of more

effective coordination with the production of renewable energy. The purpose of the

hardware and software components involved is to make energy consumption within

those systems more efficient, more flexible and more cost effective. Research and

implementation of new technologies is of paramount importance to develop platforms
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that can control a fully integrated multi-energy system. We provide an example of

such control algorithms in chapter10, where we show how to combine, in the most

efficient ways, the different components of a sustainable energy system by applying

stochastic optimisation techniques. We present the mathematical modelling of a

microgrid in chapter 9.
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Chapter 9

Microgrid modelling

9.1 Introduction

In this chapter, we model a microgrid serving a small group of customers in islanded

mode, meaning that the network is not connected to the main national grid.

The system consists of an intermittent renewable generator unit, a conventional

dispatchable generator, a battery storage system and the loads. Both the load and

the intermittent renewable production are stochastic, and we use a Markov process

to model directly the residual demand, that is, the difference between the load and

the renewable production. We then set up a stochastic optimisation problem, whose

goal is to minimize the cost of using the dispatchable generator plus the cost of

curtailing renewable energy in case of excess production, subject to the constraint of

ensuring reliable energy supply. The numerical examples illustrate the performance

of the optimal policies, provide insights on the optimal sizing of the battery, and

compare the policies obtained by stochastic optimisation to the industry standard,

which uses deterministic scheduling/optimisation.

The optimisation problem arising from the search for a cost-effective control strategy
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has been extensively studied. Three recent survey papers Liang and Zhuang

[50], Olivares et al. [63], Reddy et al. [66] summarize different methods used

for optimal usage, expansion and voltage control for the microgrids. Heymann

et al. [41, 42] transform the optimisation problem associated with the microgrid

management into an optimal control framework and solve it using the corresponding

Hamilton Jacobi Bellman equation. Besides proposing an optimal strategy, the

authors also compare the solution of the deterministic and stochastic representation

of the problem. However, similarly to most PDE methods, this approach suffers

from the curse of dimensionality and, as a result, it is difficult to scale. In contrast

to existing approaches, the Regression Monte Carlo method used in this chapter is

more easily scalable and works well in moderately large dimensions.

Identifying the optimal mix, the size and the placement of different components in

the microgrid is an important challenge to its large scale use. The papers Mashayekh

et al. [53, 54] use mixed-integer linear programming to address the design problem

and test their model on a real data set from a microgrid in Alaska. In a similar work,

Olatomiwa et al. [62] studied the economically optimal mix of PV, wind, batteries,

and diesel for rural areas in Nigeria. In Haessig et al. [38], optimal battery storage

sizing is deduced from the autocorrelation structure of renewable production forecast

errors. In this paper, we propose an alternative approach for the optimal sizing of

the battery energy storage system, assuming stochastic load dynamics and a fixed

lifetime of the battery. Our in-depth analysis of the system behaviour leads to

practical guidelines for the design and control of islanded microgrids.

Finally, several authors Collet et al. [22], Ding et al. [24, 25] used stochastic control

techniques to determine optimal operation strategies for wind production/storage

systems with access to energy markets. In contrast to these papers, in the present

study, energy prices appear only as constant penalty factors in the cost functional

when an electricity generator is employed, and the main focus is on the stable
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operation of the microgrid avoiding blackouts.

The rest of the chapter is organized as follows: In section 9.2 we describe the

microgrid model and introduce the different components of the system, in section 9.3

we translate the problem of managing the microgrid into a stochastic optimisation

problem and present the dynamic programming equation that we then solve

numerically. In section 9.4 we present an extension where the blackout constraint

imposed in the original problem is probabilistically relaxed.

9.2 Model description

In this section, we will discuss the topology of the microgrid, its operation,

components, and their respective dynamics. Although we discuss a simplified

microgrid model, more complicated topologies can be studied using straightforward

generalizations of the methods presented in this thesis.

Consider a microgrid serving a small, isolated village. Most of the power supplied to

the village is generated by units whose output has zero marginal cost, is intermittent

and uncontrolled. Additional power is supplied by a controlled generator whose

operations come alongside a cost for the microgrid owner (either the community

itself or a power utility). Often the intermittent units include solar panels and wind

turbines, while the controlled unit is often a diesel generator. In order to fully

exploit the free power generated by the renewable units at times when production

exceeds the demand, microgrids are equipped with energy storage devices. These

can be represented by a battery energy storage system.

The introduction of the battery in the system not only allows for the inter-temporal

transfer of energy from times when demand is low, to times when it is higher but

also introduces an element of strategic behavior that can be employed by the system
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Figure 9.1: The figure above shows an example of microgrid topology that contains all the

elements in our model. The network is arranged as follows: photovoltaic panels and wind

turbines provide renewable generation, a diesel generator provides dispatchable power for

the village and a battery storage system is used to inject or withdraw energy.

controller, to minimize the operational costs. Without energy storage, the diesel

generator has to be run at all times when the demand exceeds production. When a

battery is installed, intensity and timing of output from the diesel generator can be

adjusted to move the level of charge of the battery towards the most cost-effective

levels.

In figure 9.1 we propose a schematic description of the system which might help the

reader to familiarize themselves with the microgrid layout, whose components are

described more in depth in the following sections.

9.2.1 Residual demand

Consider two stochastic processes Ln and Rn, the former represents the demand/load

and the latter the production through the renewable generators. Notice that

both processes are uncontrolled and they represent, respectively, the unconditional

withdrawal or injection of power in the system (constant during time step). For the

purpose of managing the microgrid, the controller is interested only in the net effect
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of the two processes denoted by the process Xn:

Xn = Ln −Rn ; t ∈ {0, 1, . . . , N}. (9.2.1)

Remark 9.2.1. The state variable Xn represents the residual demand of power at

each time n, such that for Xn > 0, we should provide power through the battery or

diesel generator and for Xn < 0 we can store the extra power in the battery.

The process Xn is driven by the following difference equation, starting from an initial

point X0 = x0:

Xn+1 = Xn + b(Λn −Xn)∆t+ σn
√

∆t ξn ; n ∈ {0, 1, . . . , N} (9.2.2)

where ξn ∼ N (0, 1), ∆t is the amount of time before new information is acquired,

b is the mean reversion speed, σn the variance of the process and Λn is the time-

dependent mean reversion level.

Remark 9.2.2. In real applications, the function Λn should represent the best

forecast available for future residual demand at the time of the estimation of the

policy.

9.2.2 Diesel generator

The Diesel generator represents the controlled dispatchable unit. The state of the

generator is represented by mn = {0, 1}. If mn = 0 then the diesel generator is

OFF, while it is ON when mn = 1. When the engine is ON, it produces a power

output denoted by dn ∈ [dmin, dmax] at time n, for dmin > 0.

Notice that, in addition, when the engine is being turned ON, an extra amount of

fuel is burned in order for the generator to warm up and reach working regime. We

model the cost of burning extra fuel with a switching cost K that is paid every time



Chapter 9. Microgrid modelling 170

the switch changes from 0 to 1. The fuel consumption of the diesel generator is

modelled by an increasing function ρ(dn) which maps the power dn produced during

one-time step into the quantity of fuel necessary for such output. Denoting by Pn

the price of diesel at time n, the cost of producing dn KW of power for one time

step, is Pnρ(dn). For simplicity, we take a constant price of the fuel Pn = p. Two

examples of efficiency functions ρ are described in figure 9.2.

ρ(d) = (d−6)3+63+d
10 ρ(d) = d0.9

Figure 9.2: The panels above show two examples of efficiency function (litres/KW), on

the left ρ(d) = (d−6)3+63+d
10 , typical of a generator designed to operate at medium regime,

on the right ρ(d) = d0.9, typical of a generator designed to operate a full capacity.

9.2.3 Dynamics of the battery

The storage device is directly connected to the microgrid and therefore its output

is equal to the imbalance between the residual demand Xn and diesel generator

output dn, when this is allowed by the physical constraint. The battery, therefore,

is discharged in case of insufficiency of power and charged when the diesel generator

and renewables provide a surplus of power.

Notice then that an energy storage has a limited amount of capacity after which it

can not be charged further, as well as an “empty” level below which no more power
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can be provided from the battery. We denote the state of charge by the controlled

process Idn which is described by the following equation:

Idn+1 = Idn −Bd
n∆t, n ∈ {0, 1, . . . , N − 1}, Id0 = w0 (9.2.3)

where Idn ∈ [0, Imax], the battery output/input Bd
n ∈ [Bmin, Bmax], Bmin < 0 and

Bmax > 0. For simplicity, we assume that the battery is 100% efficient. Notice that

we used superscript d on Bd and Id to highlight the dependence of these processes

on the controlled diesel output dn.

Let us denote the power output of the battery by Bd
n and its power rating by Bmax

and Bmin, where Bmax and Bmin represent respectively the maximum output and

input. Thus:

Bd
n = Idn − Imax

∆t ∨
(
Bmin ∨ (Xn − dn) ∧Bmax

)
∧ Idn

∆t (9.2.4)

The case where Bd
n < 0, represents that the battery is charging while the case where

Bd
n > 0, represents that the battery is supplying power.

Intuition tells us that the bigger the battery, the less diesel will be needed to run the

operations of the microgrid. This is true because a bigger battery would allow storing

for later, using a bigger proportion of the excess power produced by the renewables.

Batteries, however, are very expensive, and the cost per KWh of capacity scales

almost linearly for the kind of devices we consider in this paper (parallel connection

of smaller batteries), hence it is important to find the optimal size of battery for the

needs of each specific microgrid.

9.2.4 Management of the microgrid

The purpose of the microgrid is to provide a cheap and reliable source of power

supply to, at least, match the demand. Therefore, we search for a control policy
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for the diesel generator which minimizes the operating cost and produces enough

electricity to match the residual demand. In order to assess how well we are doing

in supplying electricity, we introduce the controlled imbalance process Sn defined as

follows:

Sn = Xn −Bd
n − dn n ∈ [0, N ] (9.2.5)

Ideally, the owner of the microgrid would like to have Sn = 0 ∀ t. This situation

represents the perfect balance of demand and generation. When Sn > 0 we observe

a blackout, residual demand is greater than the production meaning that some loads

are automatically disconnected from the system. The situation Sn < 0 is defined

as a curtailment of renewable resources and takes place when we have a surplus of

electricity and the battery is full.

We treat the two scenarios, blackout and curtailment asymmetrically. To ensure

no-blackout, Sn ≤ 0, and regular supply of power, we impose a constraint on the set

of admissible controls:

Sn ≤ 0

i.e. dn ≥ Xn −Bd
n.

(9.2.6)

However, for Sn < 0 i.e. surplus of electricity, we penalize the microgrid using

a proportional cost denoted by C. A large penalty would lead to low level of

curtailment and can be thought of as a parameter in the subsequent optimisation

problem. In section 9.4 and 10.4, we also consider a more realistic case where we

impose a constraint on the probability of blackout, rather than the hard constraint

just introduced.

9.3 Stochastic optimisation problem

We state now the stochastic control problem for the diesel generator operating in

a microgrid system as described in section 9.2. In practice, we seek a control that
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Figure 9.3: The figure above is a pictorial description of the layout of the microgrid

installed in Huatacondo, Atacama desert, Chile. The picture has been obtained by pasting

together photos taken during one of the field trips of the team following the project. Credit

to Chris Marnay, Berkeley National Laboratory, for the photos.

minimizes the cost of diesel usage pρ(d), the switching cost K and the curtailment

cost C|Sn|1{Sn<0}, under the no black-out constraint Sn ≤ 0.

Let us define the pathwise value J , given by

J(n, (Xt, It,mt; dt)Nt=n) =
N−1∑
s=n

1{ms+1−ms=1}K + πρ(ds) + C|Ss|1{Ss<0} + g(IdN).

(9.3.7)

As a consequence, we define the value function as:

V (n, x, w,m) = min
(du)Nu=n

{
E
[
J(n, (Xt, It,mt; dt)Nt=n)

∣∣∣∣Xn = x, Idn = w,mn = m
]}

(9.3.8)
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subject to dn ≥ Xn −Bd
n ∀t; (9.3.9a)

dn ∈ [dmin, dmax] ∪ {0}; (9.3.9b)

Bd
n = Idn − Imax

∆t ∨
(
Bmin ∨ (Xn − dn) ∧Bmax

)
∧ Idn

∆t ; (9.3.9c)

mn = 1dn 6=0; (9.3.9d)

where (9.3.9a) represents the black-out constraints, expressed in terms of the power

produced by the diesel generator, (9.3.9b) represents the minimum and maximum

power output of the generator, (9.3.9c) models the physical constraints of the

battery: maximum input/output power and maximum capacity and (9.3.9d) encodes

the state of the diesel generator.

From equation (9.3.8), we can write the associated dynamic programming

formulation which helps understand the structure of the problem composed of two

optimal control sub-problems: an optimal switching problem between being in the

regime ON or OFF, and another absolutely continuous control problem assuming

the regime is ON. The equation reads as follows:

V (n, x, w, 0) = min
d∈Ut

{
πρ(0) + C|Sn|1{Sn<0} + C(n, x, w, 0; d),

min
d∈Ut

(
K + πρ(d) + C|Sn|1{Sn<0} + C(n, x, w, 1; d)

)}
,

V (n, x, w, 1) = min
d∈Ut

{
πρ(0) + C|Sn|1{Sn<0} + C(n, x, w, 0; d),

min
d∈Ut

(
πρ(d) + C|Sn|1{Sn<0} + C(n, x, w, 1; d)

)}
(9.3.10)

where

C(n, x, w,m; d) = E[V (n+ 1, Xn+1, In+1,mt+1)|Xn = x, In = w, dn = d,mn = m],

is the conditional expectation of the future costs and Un is the collection of admissible
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controls d at each time step t, i.e.

Un := {dn : equations (9.3.9a) - (9.3.9c) are satisfied and dn is adapted to Fn}.

(9.3.11)

In order to ensure that the set of admissible controls is nonempty we introduce the

following assumption:

Assumption 3. The diesel generator is powerful enough to supply demand at all

times, i.e there is always a control d that satisfies the blackout constraint.

Remark 9.3.1. We enforce assumption 3 by redefining the residual demand process

with a truncated version of (9.2.1), such that X̃n = min(Xn, Xmax) is the residual

demand. In practice, this is reasonable because the maximum power that could be

required from the microgrid is known apriori and the diesel generator is generally

sized to the maximum capacity installed on the system. For the sake of notational

simplicity, we will drop the tilde on the variable X̃n from the following sections.

Note that (9.3.10) provides a direct technique to solve problem (9.3.8), iterating

backward in time from a known terminal condition and solving a static, one period,

optimisation problem at each time step. The only difficulty in this procedure lies

in the estimation of conditional expectations of the future value function, which

can not be computed exactly. Refer to chapter 2-3 for a presentation of numerical

methods suitable to solve this kind of problems.

9.4 Relaxing the no-blackout constraint

In this section, we introduce an extension of the original model where we relax

the hard constraint on blackouts and substitute it with one on the probability of a

blackout event between decision times. Recall that the control decisions are made
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at discrete epochs {0, 1, . . . , N}, however, in this problem, we assume that these

decisions affect the state of the system continuously. As a result, choosing the control

ds involves minimising the cost of running the microgrid, as well as controlling the

probability of blackout (i.e. the controller fails to match the residual demand) at

intermediate intervals [n, n+1). This section presents an introduction to the problem

originally included in Balata et al. [6].

The stochastic control problem in this model reads:

V (n, x, i,m) = min
(ds)Ns=n

{
E
[
N−1∑
s=n

1{ms+1−ms=1}K + πρ(ds) + g(IdN)
]}

subject to P( sup
s∈[n,n+1)

Ss > 0|Fn) < p ∀n.
(9.4.12)

The admissibility condition is in terms of the supremum functional

pn(x, i, dn) := P( sup
s∈[n,n+1)

Ss > 0|Fn).

Because pn() is not (in general) available analytically, the admissibility condition

pn < p is implicit.

Define the admissible control set U(x, i) = {d ∈ {0} ∪ [dmin, dmax] : pn(Xn, dn) <

p and In+1 ∈ [0, Imax]}.

Remark 9.4.1. The admissible set U for this problem has the special structure of

being an interval: if d ∈ Un(x, i), then ∀ d̃ > d, d̃ ∈ Un(x, i). Hence, we may

represent U(x, i) = [dmin(x, i), dmax] in terms of the minimal admissible diesel output

dmin(x, i).

In Figure 9.4 we present the minimum admissible control dmin(x) under a constraint

of p = 0.01 probability of blackout, conditional on (X, I). We also present a path

for (Xn, In)t≥0 using a myopic strategy where the controller employs the minimum

admissible control at each point, dn := dmin(Xn, In) ∀n. Notice how for the most

part, dmin(x, i) = 0 is trivially admissible so that U(x, i) = [0, d̄] and the blackout
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Figure 9.4: Contour plot for minimum admissible diesel output. Red line represents a

path following a myopic strategy choosing the minimum admissible control.

constraint is not binding. This is not surprising, as blackouts are only possible when

Xn is large and positive and the battery is close to empty, In ' 0. Thus, except for

the lower-right corner, any control is admissible. As a result, only a small subset

of the state space actually requires additional effort to estimate the admissible set

U(x, i).
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Chapter 10

Guidelines for optimal microgrid

management

10.1 Introduction

In this chapter, we illustrate the results of the numerical computations and we

analyse the behaviour of the model of microgrid that we have outlined in the previous

chapter. Through our methodology, expressed by the different experiments and

optimisation procedures devised, we seek to guide the practitioner towards a full

analysis of a real microgrid system. Our work tries to introduce novel simulations

techniques that can increase the efficiency of a system that is part of the critical

transition towards sustainable energy management.

Before exploring the optimisation results, we provide a list of the base parameters

chosen for the numerical experiments; notice that the ”s” column indicates whether

a sensitivity analysis is run for such a parameter. For the meaning of the parameters

refer to section 9.2.
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parameter value s

T 100h

∆t 0.25h

b 0.5 *

σ 2 *

Λt 0, ∀t

parameter value s

Imax 10 KWh *

ρ(d) (d−d∗)3+(d∗)3+d
10

litre
KW

d∗ 6 KW

p 1 ¤

g(i) 0, ∀i

parameter value s

dmin 1KW

dmax 10KW

K 5 ¤ *

C 0 ¤ *

According to the parameters table above, and recalling remark 9.3.1, the residual

demand has the following dynamics:

Xn+1 =
(
Xn(1− 0.5∆t) + σ

√
∆tξn

)
∧ 10, t ∈ {0, 1, . . . , T − 1}, (10.1.1)

where ξt ∼ N (0, 1). We decided to use such simple dynamics for illustrative purposes

in order to make the sensitivity of the optimal control policy to the remaining

parameters more straightforward to understand.

The rest of the chapter is organised as follow: in section 10.2 we study the

optimal sizing of the battery, the impact of increasing penetration of renewable

generation and the effect of switching and curtailment cost. In section 10.3 we

compare the performance of the policy estimated in the stochastic setting versus an

industry-standard policy obtained from a deterministic model and show the superior

performance of the former, in particular during those days when the system is more

critically overloaded. We progress with section 10.4 where we relax the no-blackout

constraint by introducing a bound on the probability of blackout between decision
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times. In this framework we show the effect on costs and empirical frequency of

blackout of the constraint in a stationary and seasonal model, the latter being

calibrated on real data obtained from a microgrid in Huatacondo, Chile. Section

10.5 that follows, explores the differences between the islanded system described so

far and the framework where the microgrid is connected with the main electricity

grid and, rather than using a diesel generator, power can be bought at a variable

market price. It is interesting to see, in this scenario, how the policy is free to engage

in price arbitrage or minimise cost to satisfy demand, according to the statistical

properties of the demand and price processes. We conclude the chapter with section

10.6, where the previous analysis are elaborated into a concise set of guidelines for

microgrid design and management.

10.2 System behavior

The aim of the section is to build a solid understanding of the behaviour of the

microgrid in order to get an insight into the optimal design of the system. We

decided to study the following aspects of the grid: battery capacity, represented

by Imax; different proportions of renewable production, via the variance σ and the

mean reversion b; tunable behaviour of the policy, via the switching cost K and

curtailment cost C.

In order to be able to carry out our analysis, without introducing cumbersome

economic and engineering details regarding the microgrid components, we have to

make very simplistic assumptions. Our aim is, however, to guide the reader through

a methodology that can be replicated to study real-world microgrid systems.
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Figure 10.1: In the figure above we show histograms for different levels of battery capacity.

In the top panel, we display the estimated probability density of the curtailed energy, while

in the bottom panel the estimated density of the cost of operating the diesel generator.

Notice that the decrease in cost and curtailed energy per kWh of additional capacity is

smaller for high capacity batteries.

10.2.1 Battery capacity

We study first the behaviour of the system relatively to changes in the capacity of the

battery. We would expect to observe a negative correlation between the quantity of

diesel consumed and the battery size. We display in Figure 10.1 both the quantity of

energy curtailed and the cost of running the diesel generator for different values of the

battery capacity. We can observe that, as expected, increasing the size of the battery

leads to lower diesel usage thanks to the higher proportion of renewable energy that

is retained within the system. As the capacity of the battery reaches 30/40 KWh,

we start observing a decrease in the cost-reduction per kWh of additional capacity

suggesting that further analysis should be run in order to understand up to which

size it is worth to pay to add storage capacity to the system.

We show now how to infer information about the optimal sizing of the battery,

minimizing the trade-off between the installation cost of a bigger battery and the
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reduced use of the diesel generator. Consider however that including battery ageing

in the stochastic control problem is outside the scope of this analysis, but rather

in this section we present only a post-optimisation analysis. Assuming that the

microgrid runs under similar conditions for the next 10 years, we can quickly estimate

the total throughput of energy for the different battery capacities. Consider now

that a battery has not an infinite lifetime (see chapter 8), but rather it should be

scrapped after, say, equivalent 4000 cycles (amount of energy for one full charge and

discharge). Under the previous assumptions, we can compute how many batteries

would be necessary to cover the next 10 years of operations. Similarly, using the

data relative to the usage of the diesel generator for different levels of capacity, we

can compute the operating cost of the diesel generator over the same time period.

Further, exploiting the assumption about the lifetime of a battery, we obtain the

cost of running the grid for 10 years as a function of the number of batteries. To

conclude, assuming a linear cost of 400 EUR/KWh of capacity, we work out the

installation cost of the different-size storage devices.

Once this information is collected we search for the minimum of the sum of

installation and running cost and, in turn, we compute the optimal capacity. Figure

10.2, on the left, displays a graphical summary of the procedure just described and

shows that, in our problem, the optimal size of the battery is 14 KWh under the

current set of assumptions. Further, we study how much our result is affected by

the cost per KWh of capacity, repeating the procedure above. We find that, as

expected, when the cost increases, the size of the optimal battery decreases. Figure

10.2, on the right, displays such behaviour.

10.2.2 Renewable penetration

In this section, we want to investigate how robust the microgrid is to higher

penetration of renewable generation, or, in other words, to what extent the algorithm
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Figure 10.2: In the figure above we compute the total cost of installing and running the

grid for ten years, assuming we replace the battery every 4000 cycles, and plot it against

the battery capacity (left panel). From the corresponding minimum we can work out the

optimal battery capacity and, further, compute the sensitivity of such result with respect

to the cost per KWh of capacity.

can cope with increasing randomness and decreasing predictability of the system.

To model this phenomena we assume that greater penetration of renewables can be

modeled by increasing both the parameters for variance σ and the mean reversion

rate b.

In order to establish the real added value provided by our stochastic optimisation

algorithm, we compare the estimated policy with a heuristic myopic control which

can be reproduced in our model solving the dynamic programming equation (9.3.10)

taking constant conditional expectation with respect to the control. We show the

value of the two control policies as a function of the increasing learning difficulty

in Figure 10.3 where we observe the value of accounting for statistical estimation of

future conditional expectations when taking decisions increases.

In figure 10.3 we present cost of diesel as a function of σ for stochastic and myopic

policy. Since increasing σ alters the variance of the distribution, we define the mean

reversion rate b = σ2/(2c) in order to ensure that the stationary distribution of the

process (Xn) is constant while we increase σ. The stochastic policy leads to at least



Chapter 10. Guidelines for optimal microgrid management 185

Figure 10.3: The figure represents the cost of the diesel usage for stochastic and myopic

policy as a function of σ. The orange curve represents the percentage improvement in

cost, as a proportion of the cost of the myopic policy.

Figure 10.4: The figures in the left and right panel represent demand, diesel usage and

the inventory dynamics for low and high σ respectively. It is important to mention that

the mean reversion rate was chosen as b = σ2/8, in order to ensure a constant variance of

the process regardless of σ. Notice the low usage of the diesel generator in the figure on

the right compared to the one on the left.
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12% reduction in the cost of the diesel usage, compared to the myopic policy, and the

difference magnifies with increasing “fluctuations” in the process. The decreasing

relationship of the cost with σ signifies the importance of the battery storage system

in the microgrid which absorbs the sharp change in the demand. In figure 10.4 we

compare the demand for two different levels of the σ, the dynamics of the diesel

generator and the inventory. Notice significantly less usage of the diesel for high

fluctuations, σ = 5, compared to σ = 1.175.

The results of this experiment are affected by the over-pessimistic assumption of

modeling greater penetration of renewables with an increasingly unpredictable, and

eventually completely random, residual demand process. This sort of analysis can,

however, provide insight into how much (weather and load) forecasting capability

will be necessary for a given level of renewable penetration.

10.2.3 Switching and curtailment

We conclude this section by analyzing the dependence of the system behavior on two

key parameters in the model: switching cost K and curtailment cost C. Switching

cost is a system’s property and the microgrid controller has little freedom over,

however, the controller can significantly reduce the amount of curtailed energy

by choosing the appropriate curtailment cost. In figure 10.5, we observe that

increasing the curtailment cost reduces the total curtailed energy by approximately

4%. However, it comes at the cost of inefficient use of the diesel generator, which is

represented on the right in the figure 10.5. The histograms represent the difference

of the cost of diesel usage (blue) and the energy curtailed (orange) between the

solution obtained for C=20 and the one obtained for C=2. Positive diesel cost

depicts inefficient usage of the diesel at C=20 compared to C=2. Depending upon

the specific cost functional for the diesel, the controller can use C as a parameter

for better optimisation.
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Figure 10.5: Line plot on the left represents the impact of curtailment cost on the total

curtailed energy for different C as a proportion of curtailed energy at C=2. The histogram

on the right represents the difference in the cost of diesel and the curtailed energy between

C=20 and C=2. Notice the increase in curtailment cost leads to reduced curtailed energy

but at the expense of inefficient diesel usage.

The optimal policy when the generator is ON mn = 1 is significantly altered

depending upon the switching cost. For example, in figure 10.6, we present the

control maps associated with K=2 and K=5. As expected, larger switching cost

disincentivises the controller to switch OFF the diesel generator once it’s ON.

However, we don’t observe ”significant” change in the control policy due to an

increase in switching cost when the generator is OFF.

10.3 Comparison with deterministically trained

policy

In this section we compare our stochastic optimisation algorithm with a

deterministically trained policy. The latter is widely used in online optimisation

where the solution is computed with respect to the best forecast available at a given

time. We emulate this situation by computing the optimal set of actions for a
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K = 2 K = 5

Figure 10.6: Figure on the left represents the control map for switching cost K = 2, while

the figure on the right represents the control map for K = 5 when the generator is ON.

Notice the increase in area for light blue (corresponding to d = 1) in the figure on the

right because of increased switching cost.

particular deterministic demand trajectory at different levels of the inventory. We

assume that the forecast of the demand is given by:

Xn+1 = Xn + 0.5(6 sin(πt12)−Xn)∆t; t ∈ {0, 1, . . . , T − 1}. (10.3.2)

Equation (10.3.2) implies periodicity of one day in the residual demand and is

equivalent to σ = 0, b = 0.5 and Λt = 6 sin(πt12)1 in (9.2.2). Zero variance in

the residual demand curve leads to a deterministic optimal control problem, rather

than a stochastic control problem we have presented in section 5.

Notice that the deterministic optimal control problem results in a sequence of control

maps dn : (w,m)→ [dmin, dmax]∪0. As a result, although the policy has been trained

on a deterministic residual demand, it dynamically adapts itself to different inventory

levels and state of the diesel generator, when tested in a stochastic environment.

We present the modified pseudocode in algorithm 7. There are two key differences

compared with the algorithm presented in chapter 3: first, we use a one-dimensional

projection of the value function and second, we replace regression with interpolation

since there is no randomness left in the problem.
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Algorithm 7 Regression Monte Carlo algorithm for deterministic demand
1: Simulate {Xn}Nt=1 according to its dynamics;

2: Discretize In into M levels indexed by j s.t. {Ijn}Mj=1 ;

3: Initialize the value function V (T, IjT ,mT ) = g(IjT ), ∀j = 1, . . . , M and mT =

{0, 1} ;

4: for t = N − 1 to 1 do

5: Find interpolation function B(t + 1, In+1,m) for {V (t +

1, Ijn+1,mt+1)}Mj=1 for each m = 0, 1

6: Compute the set of admissible controls as Ut
7: for j = 1 to M do

8: for m = 0 to 1 do

9: F = B(t+ 1, Ijn, 0)

10: Compute the value function

V (t, Ijn,m) =

if 0 ∈ Ut :

min
d∈Ut\{0}

{
πρ(d) + CSt1{Sn<0} + B(t+ 1, Ijn −Bd

t , 1)
}

+K1{m=0} ∧ F

otherwise :

min
d∈Ut

{
πρ(d) + CSt1{Sn<0} + B(t+ 1, Ijn −Bd

t , 1)
}

+K1{m=0}

output: control policy {B(t, ·, ·)}Nt=2.
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Demand Inventory Diesel Output

Figure 10.7: The image illustrates the dynamics of the inventory and control for the

deterministic control problem. The figure on the left represents the demand in equation

(10.3.2), the optimal control of the diesel in the central figure and the corresponding

dynamics of the inventory in the right figure.

In order to understand the solution of the deterministic problem, in figure 10.7 we

present the dynamics of optimal control and inventory. As expected, diesel switches

on when the demand is high and it keeps it running just long enough that the battery

is empty before it faces negative residual demand to charge the battery. Moreover,

there is a substantial curtailment of energy since the battery is not large enough to

store all the excess energy.

In order to quantify the gain due to formulating the microgrid management problem

as a stochastic control rather than traditional deterministic control, we compare the

performance of the deterministically trained strategy of this section to its stochastic

counterpart developed in this paper. While the deterministic control problem was

solved using the residual demand curve (10.3.2), the stochastic control problem was

fed in with the residual demand curve (10.3.3). Finally, we test both the strategies

on fresh out-of-sample paths following the residual demand (10.3.3).

Xn+1 =
(
Xn + 0.5(6 sin(πn12 )−Xn)∆t+ 2

√
∆tξn

)
∧ 10 ; n ∈ {0, 1, . . . , N − 1}

(10.3.3)

In figure 10.8, we present the histogram of the cost from the stochastic policy and
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Figure 10.8: Difference of the Cost of Stochastic and deterministic policy for K=5

Switching Cost K=2 K=5 K=10

Deterministic 138.56 162.63 201.52

Stochastic 131.86 150.49 178.22

% difference 4.84% 7.46% 11.56%

Table 10.1: Comparison between stochastic and deterministic policy: switching costs

the deterministic policy pathwise for 10,000 out-of-sample paths. As evident, most

of the distribution lies on the negative side, implying gain due to stochastic policy.

To measure this difference, in table 10.1, we quantify the gain of the stochastic

policy for different switching cost. For switching cost of K=5, we observe that the

stochastic policy is 7.5% better than the deterministic policy. As the switching cost

increases, mistakes made by deterministic policy become more expensive leading to

higher percentage difference.

Finally, Figure 10.9 displays the behavior of inventory and the cost along with a
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Figure 10.9: The figure above presents the pathwise comparison of stochastic and

deterministic policy for the same demand on the left panel. The center panel represents

dynamics of the inventory due to control on the right panel. Particularly notice the

difference in switching times for the diesel in the deterministic policy and stochastic policy.

random trajectory of residual demand. In blue we show the stochastically trained

control policy and in orange the deterministically trained. The stochastic policy has

fewer switches of the diesel generator and thus lower costs. The spikes in the cost

function for the deterministic policy is due to poor management of the inventory

and thus inefficient usage of the microgrid.

10.4 Probabilistic constraint

In this section, we study the model introduced in section 9.4, where the constraint

on blackouts is implemented through a probabilistic bound on the supremum of the

imbalance process between the discrete decision times. Denote by Gn(x, i, d) the

random variable sups∈[n,n+1) Ss.
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The main difficulty in solving these kinds of models, compared to the original one,

is that the set of admissible controls is not immediately available, but needs to be

estimated. In the next section, we shortly describe different estimation techniques,

for details refer to Balata et al. [6].

10.4.1 Admissible set estimation

In this section we propose different approaches to estimate the admissible set of

controls Un in equation (9.4.12). We follow three main themes to estimate the

admissible set:

• Probability estimation: Given a state Xn = x, In = i and d ∈ Un, we

estimate, via simulation or via logistic and Gaussian process regression, the

probability

p(x, i, d) := P
(
Gn(x, i, d) > 0

)
.

It follows that d ∈ Un(x, i) ⇔ p̂(x, i, d) < p.

• Density estimation: Alternatively, we can first learn the distribution of

the random variable Gn(x, i, d), and then analytically infer the probability

P
(
Gn(x, i, d) > 0

)
from the corresponding cumulative distribution function.

Practically this is done by proposing a parametric family {fθ} of distributions

for Gn, fitting the underlying parameters θ based on an empirical

sample of Gn’s and then evaluating the resulting analytical probability

P
(
Gn(Θ̂(x, i, d)) > 0

)
. This approach potentially allows for “universal”

solution across a range of constraint levels p.

• Quantile estimation: We may target the estimation of the quantile q(x, i, d)

of Gn(x, i, d) for each d ∈ Du which allows us to assess whether d ∈ Un by

checking q(x, i, d) ≤ 0. Thus, instead of estimating p(x, i, d) we learn q(x, i, d)
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via quantile regression, SVM, empirical ranking and conditional tail average

(conservative). The admissible sets Un(x, i, d) is then defined as:

Un(x, i) :=
{
d : q̂(x, i, d) < 0

}

10.4.2 Numerical implementation

We approximate the continuation value using piecewise continuous approximation

with three degrees in (X) combined with interpolation in other dimensions (with

discretisations of inventory MI = 10). For the estimation of the admissible set Un,

we approximate it using the methods described in section 10.4.1. We discretize

the control space [1, 10] into 51 values, while we use a fixed set of M ′ = 20, 000

out-of-sample simulations to evaluate the performance of each method.

Numerical Gold Standard: In the absence of analytic benchmark, we use a so-

called ”empirical gold standard” (naive nested Monte Carlo estimation) to compare

the output from the different estimation techniques. We employ a total simulation

budget of 100 × 100 × 102 × 10000 ≈ 1010 to compute sample averages on a fine

three-dimensional grid and estimate the probability of blackout. To estimate the

continuation value, we use a piecewise linear approximation and grid size 1500 ×

15× 15.

We consider now two situations: a stationary residual demand process, and the case

with seasonality, as estimated from data measured in Huatacondo, Chile.

10.4.3 Stationary net-demand

In this subsection, we assume that the dynamics of the net-demand process is given

by equation (9.2.2), where Λn = 0, ∀n. In this scenario, we need to estimate the

admissible set U0(·) only once as a pre-processing step before starting the sequential
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estimation of the continuation value function. While simplistic, this method helps

us evaluate the performance of different admissible set estimation methods and the

relative performance remains similar as we extend the model to assume a more

realistic dynamics in section 10.4.4.

Table 10.2 lists other input parameters i.e. capacity of the battery Imax, maximum

charging rate Bmin, maximum discharging rate Bmax and switching cost K for the

model. The costs v for different methods by running the microgrid for 48 hours and

b = 0.5, K = 5

Imax = 10 (kWh), Bmin = −6, Bmax = 6 (kW)

T = 48 (hours), ∆t = 0.25 (hours)

Table 10.2: Parameters for the microgrid example. Chance constraint at level p = 5%.

the corresponding estimated probability of constraint violations wfreq, is given in left

panel of figure 10.10. The red star represents the cost from using the numerical gold

standard and the circles represent the performance of different estimation methods

for the admissible controls set on two-dimensions: cost and estimated probability of

constraint violations. Recall the we choose p = 5%. Although the figure as presented

may have us believe equal importance for the two dimensions, we want to emphasize

that it is not the case. Consider two hypothetical methods with the following values

on the two dimensions: (i) zero cost and a large probability of constraint violations,

or (ii) large cost with zero probability of violations. While method (ii) is acceptable,

method (i) is not due to the large probability of constraint violations. In the absence

of an exact threshold of acceptability (we can only estimate the accuracy of our

solution), we consider methods closer to the numerical gold standard to be better

than others. In particular, notice that the numbers reported in figure 10.10 do

not represent the probability of a blackout, but rather the probabilities that the

blackouts probability are greater than the chosen threshold p. With GPR and
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logistic regression, we observe 0.4% and 0.9% estimated probability of violations,

while the latter jumps up to 7.1% for quantile regression, 9.7% for SVM, 8.9% for

CVaR and 9.5% for Ranking. Between GPR and Logistic regression, while GPR

has a lower estimated probability of violations, it results in higher costs. As a

result, we consider both as equally good methods. While all the methods seemed

promising a priori, admissible set estimation via probability-based methods clearly

seems to outperform quantile-based methods. Although it is not clear to us the

source of this difference in the two types of methods, our experience on hypothetical

dataset suggests that sample estimates of probability p̂(x, d) have significantly lower

bias compared to sample estimates of quantiles q̂(x, d), thus partially explaining the

difference. Notice that the results imply that, if one wants to reduce the probabilities

of breaching the constraint, depending on the method employed, should choose a

more conservative parameter p also incurring in higher running costs as a result.

Next, we test the sensitivity of the cost in terms of the violations threshold p

(employing logistic regression ÛLR) in the right panel of figure 10.10. Increasing

the probability threshold decreases the cost as the set of admissible controls U

monotonically increases in p. For example, any admissible control at p = 1%

threshold is also feasible for ∀p > 1%, thus the cost at 1% threshold should be greater

than or equal to cost at, say, 10% threshold. In the same figure, we also present the

realized frequency of blackouts as a function of the probability threshold. Notice

that as p → 1, the realized probability of blackouts → 20% which indicates that

the constraint is binding only about 20% of the time over the optimally controlled

inventory paths.

10.4.4 Calibration on real data

Unlike in the previous example where we assumed stationary net-demand, in

practice, it is quite common to observe seasonality in the net-demand process
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Figure 10.10: Left panel: Trade-off between cost and frequency of constraint violations w

for the stationary model. Right panel: Total cost v (left axis, line with stars) and realized

frequency of blackouts w (right axis, line with circles) at any time-step as a function of p

employing the logistic regression method.

i.e. during the day when the output from the renewables is high, net-demand is

negative and during morning/evening when demand exceeds the renewable output,

net-demand is positive. Thus, we incorporate seasonality in the net-demand process

(9.2.2).

We estimate the model using iterative methodology described in [41] and the data

from a solar-powered microgrid in Huatacondo, Chile. We estimate the function

Λn and σn by computing the mean and variance of the residual demand at 15-

minute intervals using data from spring 2014 i.e. estimating the following sequence

{Λ1,Λ2, . . . ,Λ96} and {σ1, σ2, . . . , σ96}. The estimated parameters are presented in

the left panel of figure 10.11. We can observe that during the day i.e. n ∈ [12, 20]

(noon- 8:00 pm) the net-demand is negative Λn < 0 and is positive Λn > 0 for

morning and night. Moreover, the variance σn is also higher during the day due to

the unpredictable nature of electricity consumption. The mean reversion parameter

was estimated to be b = 0.3416.

To visualize the interplay of the net-demand, inventory and optimal control, in the
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center panel of figure 10.11, we present the average trajectories of the three processes

by running the microgrid for 2 days i.e. 48 hours. During the morning hours when

the net-demand is high and the battery is empty, the controller uses the diesel

generator to match the net-demand process. Similarly, during the day when the

renewable output is high and the net-demand is negative, the controller switches off

the diesel generator and the battery charges itself. However, the non-trivial region is

when the average net-demand changes sign, either from positive to negative around

noon or negative to positive in the evening. During the former time-interval, the

average optimal control process is either {0, 1} (recall that minimum diesel output

is 1), which is possible only due to the stochastic nature of net-demand. Similarly,

during the evening when the net-demand becomes positive (as the renewable output

declines), the controller quickly ramps up the diesel output to match the net-demand

process. Finally, in the right panel of figure 10.11, we present the optimal control

process and the net-demand process with the 2-standard deviation bands, in terms

of the forward trajectories of (Xs)Ns=0. As expected from the center panel, the

time-periods around ramp-up or ramp-down of the diesel generator is when the

control process differs from the net-demand process and experiences the greatest

path-dependency and dispersion.
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Figure 10.11: Left panel: Calibrated model parameters for a microgrid in Huatacondo,

Chile; Center panel: Average values of net-demand, inventory and optimal control

processes using the gold standard. Right panel: 2-Std error bands for net-demand and

optimal control.
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Method Total Cost wfreq wAv

Gold Standard INMC 53.39 0 0

Logistic regression 53.78 0.82% 0.11

GP regression 54.04 1.19% 0.14

Empirical percentile 52.82 22.2% 0.23

Support vector machine 38.87 45.39% 0.96

Table 10.3: Cost of running the microgrid V̂ (0,Λ0, 5), probability of constraint violations

wfreq = w(0,Λ0, 5) and average violations wAv. Recall that wfreq measures how often the

constraint is breached, not the magnitude of the breach. wAv, on the other hand, indicates

the average missing power that would have constrained the probability of blackout below

5%

Next, to compare the performance of different methods, we present in table 10.3 the

cost, average number of violations and the intensity of the violations. Comparing

table 10.3 with figure 10.10 indicates that incorporating seasonal net-demand process

does not change the relative order of performance between the methods, however,

it does lead to a higher cost. This is expected as the diesel generator has to be

used through the mornings and the evenings to match demand. This observation is

similar to the results obtained in [20], in the context of natural gas storage, where

authors observed higher valuation by incorporating seasonal effects in the model.

As in the previous example, we continue to observe the overall performance of logistic

regression and Gaussian process regression to be very similar to our numerical

gold standard despite significantly lower simulation budget. When fixing p = 5%,

the probability of violating the constraint for the different methods are 0.82% for

Logistic, 1.19% GPR, but 22.2% and 44% for Ranking and SVM respectively. To

illustrate the results, in figure 10.12 we present the average optimal control and the

minimum admissible control had we been using the gold standard at those locations
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for each of these methods. The solid blue line is expected to be above the dashed

blue line, as it implies that on an average the method does not violate the constraint.

Reverse order i.e. solid blue line below the dashed blue line is undesirable as the

method will violate the constraint on an average. We observe that on an average

logistic regression and Gaussian process regression do not violate the constraints but

SVM quite obviously violates the constraint as the dashed-line is significantly higher

than the solid line at several time-steps. Furthermore, the conservative nature of

GP is also evident via the large difference between the average minimum admissible

control and the average optimal control.

0 10 20 30 40
time (hours)

0

0.5

1

1.5

2

2.5

3

3.5

av
er

ag
e 

co
nt

ro
l

Logistic minimum admissible GS

0 10 20 30 40
time (hours)

0

0.5

1

1.5

2

2.5

3

3.5

4

av
er

ag
e 

co
nt

ro
l

GPR minimum admissible GS

0 10 20 30 40
time (hours)

0

0.5

1

1.5

2

2.5

3

3.5

av
er

ag
e 

co
nt

ro
l

Empirical ranking minimum admissible GS

0 10 20 30 40
time (hours)

0

0.5

1

1.5

2

2.5

3

3.5

av
er

ag
e 

co
nt

ro
l

SVM minimum admissible GS

Figure 10.12: Average optimal control and the minimum admissible control using gold

standard. We can clearly see how bad VaR and SVM are through these plots.
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10.5 Non-islanded mode

After having analysed an islanded set-up for the microgrid in the previous sections,

we now explore how the connectivity with a centralised grid changes management

and design practices. In practice, we replace the diesel generator with a connection

to the grid, from which electricity can be bought, but also sold.

For the model in this example we take inspiration from Scott et al. [68] and consider

an electricity system composed of an intermittent energy supply represented by a

wind turbine, a load or electricity demand represented by a group of residential

buildings, a battery storage device and an interconnection with the main grid.

Energy can flow through the different components of the system as indicated by

the arrows in Figure 10.13; note that the power produced from the wind turbine is

directly transferred to the load and used to satisfy the demand, the power in excess

is transferred to the storage device which can sell it to the main grid or save it for

later use in the battery. When the power from the wind turbine is insufficient to

satisfy the demand, the shortfall is fulfilled either (or both) from the storage device

discharging the battery or/and by buying electricity from the grid. Note that we

assume that the main grid can always provide the power we require.

The operator has control on every flow of energy, making the dimensionality

of the control process equal to five; we denote these flows at time n by

XWD
n ,XWB

n ,XBD
n ,XGB

n and XGD
n , where the notation X i,j indicates energy flowing

from i to j and we denote the components as follow: W for the wind turbine, D for

the demand, G for the grid interconnection and B for the battery. We constrain each

flow to be positive except for XGB
n which can assume negative values indicating that

the battery is selling energy to the grid. Finally, we consider our problem stated on

an hourly basis over a time horizon of two weeks.
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10.5.1 Modelling choices

As in Scott et al. [68], we make the following modelling choices.

Wind Power

We compute the power in MWh produced by a wind turbine with rated power

2.1MW in one hour as a function of the wind speed wn (average over an hour in

m/s):

Wn = 10−6 Cp ρA max(wn, ω)3,

where Cp = 0.4 is the power efficiency, ρ = 1.225 kg/m3 is the density of air,

ω = 14m/s represents the rated output speed and A = 502π is the area swept by

the blades.

In particular, as commonly done, we model the centred square root of the wind

speed (which we consider constant) as an AR(1) process:

wn = (yn + µ)2

yn+1 =0.7633yn + 0.4020ξn, ξn ∼ N (0, 1)

The coefficients are calibrated from 2010 real data registered in Maryneal, Texas;

see Scott et al. [68] for details.

Electricity Price

The electricity price is modelled as is Scott et al. [68] as an exponential of a mean

reverting process superimposed on a weekly seasonal component Y week estimated

from the data recorded in Texas in 2010:

Pn+1 =eYn+1 − 27.2531 + Y week
n+1

Yn+1 =Yn + 0.2055(4.1995− Yn) + 0.11856ξn + Jn, ξn ∼ N (0, 1)
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where Jn = ξjn1{Un<0.017} is the jump component, ξjn ∼ N (0, 0.4229) and Un ∼

U(0, 1).

Note that we introduce a fixed 10% transmission surcharge on the use of the grid

for both supplying demand and exchanging energy with the battery. This is a

requirement in order to make the optimal control unique, otherwise, it would be

equivalent to supply power to the load from the battery through XBD or through

XGB → XGD.

Electricity Demand

It is well known that temperature is one of the main drivers of the electricity

demand of residential buildings, in fact, during periods of high or low temperature

households tend to use air conditioning. The electricity demand is therefore modelled

as a function of temperature; in Scott et al. [68] it is suggested to use an order 5

polynomial to fit the observed pairs of demand and temperature. Since estimated

coefficients were not provided and in order to be consistent with the other data,

we estimated our coefficients using observations recorded in Austin, Texas in 2010

(http://www.noaa.gov/). We obtained the following model for the demand:

D̃n = 6784.9728− 235.5911Tn − 2.2869T 2
n + 0.8897T 3

n − 0.0204T 4
n + 0.000105T 5

n .

To scale down the demand to a few buildings we set Dn = D̃n
30000 . We model the

temperature as a simple mean reverting process Tn = T̃n + µn, where µn represents

a daily seasonal component estimated from the data and

T̃n+1 = −0.92T̃n + 2.14ξn, ξn ∼ N (0, 1).

http://www.noaa.gov/
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Figure 10.13: The diagram above shows components of the system. Boxes show evolution

of state variables. Ellipses display energy flows among the components. Note that the

algorithm directly controls the connection grid-battery and grid-demand as other flows

are uniquely determined by those two.

The Battery

The most interesting component of the system is an energy storage device; it is

represented by a battery with rated capacity Imax = 20MWh and maximum power in

charge Bmax = 2.1MW and discharge Bmin = −2.1MW. For simplicity of exposition

we assume the battery is 100% efficient and its use does not take into account its

ageing. The level of charge of the battery evolves as follow:

In+1 = In +XGB
n +XWB

n −XBD
n .

10.5.2 Problem formulation

We look at the system on an hourly basis during the first two weeks of January, which

corresponds to 336 hourly time steps. We aim to provide power to the residential

buildings minimising the cost of buying electricity from the grid. Since the problem
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is stated in discrete time we will deal with energy rather than power. Notice that

the following set of constraints is in place (we dropped the subscript n):

XGD +XWD +XBD = D (c.1)

XWD = min{W,D} (c.2)

XWB +XWD = W (c.3)

XGD ≥ 0 (c.5)

XBD ∈ [0,−Πmin] (c.6)

XGB +XWB −XBD ∈ [Bmin, Bmax] ∩ [−I, Imax − I] (c.7)

The first constraint (c.1) is natural and says that the demand has to be matched at

all times. Constraints (c.2) and (c.3) regulate the operations of the wind turbine:

all its power is delivered to the load first and the excess is transferred to the battery.

As long as the current level of charge allows it the power is accumulated; the excess

power is sold to the grid (for a price reduced by the 10% transmission surcharge),

c.f. (c.7). Constraint (c.5) enforces the natural condition that power should only

flow from the grid to the load. Constraint (c.6) limits the discharging rate of the

battery enforcing a bound on the energy flowing from the battery to the demand.

Finally, the last constraint (c.7) guarantees that the inventory stays between empty

and full and that the maximum charging/discharging rates are maintained.

Note that the constraints (c.1)-(c.7) actually reduce the dimension of the controlled

process from five to two (XGB and XGD), as the other components can be computed

consequently. Recall that XGD ≥ 0 while the sign of XGB depends on whether the

battery buys or sells energy to the grid.

We can then write the profit of an electricity provider who owns the wind turbine

and the battery and has contracted a given load, as electricity sold minus electricity
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bought (net of transmission surcharge):

J
((
Ds,Ws, Ps, Bs, Is, X

GB
s , XGD

s

)
s=1,...,N

)
=

N∑
n=1

PnDn − 1.1Pn(XGB
n +XGD

n ).

Define the value function of the problem as the solution to the minimisation problem:

V (n, d, w, p, i) =

max
X∈U

{
E
[
J
(
(Ds,Ws, Ps, Bs, Is, X

GB
s , XGD

s )s=n,...,N
)
|(Dn, Wn, Pn, In) = (d, w, p, i)

]}
,

(10.5.4)

where U is the set of admissible controls specified by constraints (c.1)-(c.7).

10.5.3 Numerical solution

We solve the problem (10.5.4) applying the Regress Later algorithm

introduced in chapter 2. For this problem the choice of linear

and quadratic basis functions, i.e. {D, W, P, D2, W 2, P 2, I, D I,

P I, W I, I2}, works satisfactorily. The numerical complexity of the algorithm

stems mainly from a non-trivial two dimensional constrained optimisation problem

for the control which is solved at each time step and for each training point.

Once the estimated optimal policy has been computed we run it forward in time to

assess its value; in Figure 10.13 we display a particular realisation of all the flows of

energy among the components. It can be observed that the battery stores the wind

power when this exceeds the demand for electricity and transfers it to the demand

instead of buying electricity from the grid at a high price. Over the two weeks

of interest the system considered has an average demand of electricity of 320 KW

compared with an average production of wind power of 350 KW meaning that the

system is a net exporter of electricity. Figure 10.15 displays some of the interactions

within the system. The scatter plot on the left shows the energy flowing to the
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Figure 10.14: The empirical probability distributions of the performance J at time 0 with

the initial data (d,w, p, i) = (0.15, 0, 35, 10), representing the profits obtained in the system

with (blue) and without (green) the use of the battery. There are 30 bins each 500 units

wide.

Figure 10.15: This graphs display interactions within the system in the form of scatter

plots. The left plot shows XGD and XBD against the price revealing that the first tends

to provide power when price is low, the latter when price is high. The right plots show

how the connection battery-grid (XGB) is influenced by the wind power; note that the

high level of wind often results in selling energy to the grid in order to decrease the level

of charge.
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demand from the battery (blue) and from the grid (orange). There is a general

tendency for the power to be bought from the grid when its price is low while it is

supplied mainly by the battery when the price is high. The scatter plot on the right

displays the interactions between wind power and transfers through the connection

battery-grid. We observe that when the wind power is high the battery tends to sell

energy to the grid in order to maintain an acceptable level of inventory.

The solution of the optimisation problem of this subsection enables the study of the

economic value of using a battery to assist the operations of a wind turbine. To

this end, we evaluate the estimated policy on a new and larger set of trajectories

of the underlying processes (wind, demand and price). This is further compared to

the profits made in a system with no battery installed, i.e., all excess wind energy

immediately sold to the grid. We find that the 25% and 75% quantiles of the

profits for operating the system without the use of the storage over two weeks are

3595USD, and 5498USD, respectively. When the flexibility provided by the storage

is optimally used the respective quantiles are 7556USD and 9598USD, showing an

increase in the profits of about 90%. Further details about the distribution of profits

are displayed in Figure 10.14. Considering the inventory behaviour displayed in

Figure 10.13 as “typical” we can compute the total throughput of energy to be 490

MWh in the two weeks. Assuming further that the battery sustains 4000 full cycles

we obtain an estimated life-span of 320 weeks or approximately 6 years. Assuming

further a stationary flow of profit during the life of the battery we conclude that

the installation of the storage alongside the wind turbine will bring additionally

640000USD in profits (assuming zero scrap value and zero interest rate).
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10.6 Managing a microgrid: final guidelines.

In this section we reflect upon the experiments described in this chapter and, as a

result, present some concise guidelines for microgrid management.

In section 10.3 we learn that the use of stochastic-based optimisation, compared

with traditional industry standard techniques, reduces cost between 5% and 10%

and, in particular, the increase in performance is particularly evident during those

days in which the system is under the most stressful conditions. This result suggests

that, for a microgrid operator, an investment in advanced control software and in

hiring specialised personnel is, in the long-term, a profitable choice. The gains from

a stochastic formulation increase as the forecasting capabilities decrease, suggesting

that in a world with growing renewable penetration, this kind of optimisation

becomes a requirement for viable microgrid management.

Section 10.2.1 and 10.5 show, in both islanded and fully connected configuration, the

paramount importance of a battery storage in the microgrid system. An investment

in this device allows to exploit more efficiently the power produced by renewable

generators and to reduce the reliance on dispatchable units or external devices. The

high cost of this component, however, requires careful optimisation of the sizing, we

found that avoiding over-sizing can reduce costs by about 3%, while the effect of

under-sizing is often more severe.

Section 10.5 explores the design where the microgrid is connected to the main power

grid. Such configuration shows the extent to which a battery device can be useful,

even when renewable power does not have to be curtailed (as in the islanded case),

but can be sold at a variable price, helping to optimise the interplay between

distributed generation and power trading. It is widely recognised however, even

though outside the scope of this investigation, that when operating in a connected

configuration, battery device can also provide very remunerative ancillary services
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like frequency regulation.

Finally, in our analysis of probability constrained blackouts, in section 10.4, we

showed the cost of reliability in a microgrid system (figure 10.10). It is possible to

maintain the probability of blackout below the required threshold encountering only

a modest increase in cost. This experiment also allowed us to, once again, prove the

importance of the battery, which allows to make mistakes (being over-conservative)

without paying a dear price in terms of usage of the dispatchable generator.

The microgrid operator, in conclusion, should recognise the importance of

sophisticated control and modelling software to manage and design the system and

ensure a successful financial outcome, maintaining the most appropriate level of

reliability.
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[49] Nicolas Langrené, Tanya Tarnopolskaya, Wen Chen, Zili Zhu, and Mark

Cooksey. New regression Monte Carlo methods for high-dimensional real

options problems in minerals industry. In 21st International Congress on

Modelling and Simulation, pages 1077–1083, 2015.

[50] Hao Liang and Weihua Zhuang. Stochastic modeling and optimization in a

microgrid: A survey. Energies, 7(4):2027–2050, 2014.



BIBLIOGRAPHY 217

[51] Francis A. Longstaff and Eduardo S. Schwartz. Valuing American options by

simulation: A simple least-squares approach. Review of Financial Studies, 14

(1):113–147, 2001.

[52] Michael Ludkovski and Aditya Maheshwari. Simulation methods for stochastic

storage problems: A statistical learning perspective. arXiv:1803.11309, 2018.

[53] S. Mashayekh, M. Stadler, G. Cardoso, M. Heleno, S. Chalil Madathil,

H. Nagarajan, R. Bent, M. Mueller-Stoffels, X. Lu, and J. Wang. Security-

constrained design of isolated multi-energy microgrids. IEEE Transactions on

Power Systems, 33(3):2452–2462, 2018.

[54] Salman Mashayekh, Michael Stadler, Gonçalo Cardoso, and Miguel Heleno. A
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