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Abstract 

 

Abstract  

 

Conventional non-oxide materials utilised in thermoelectric devices have 

unfavourable properties such as instability at high temperatures with scarce and toxic 

raw materials that constitute an environmental hazard. Transition metal oxide 

thermoelectric materials are stable at high temperatures, abundant, less toxic and have 

been suggested as potential alternatives given improvements in thermoelectric figures 

of merit (ZT). La-Sm co-doped SrTiO3, Sm-doped Sr5LaTi3Nb7O30 and Nb-doped 

La2Ti2O7 n-type oxide ceramics synthesised using solid state reaction technique, 

sintered in air and 5% H2/N2 have thus been investigated.  

For La-Sm co-doped SrTiO3 ceramics, the following aliovalent doping mechanisms 

were adopted; Sr1-xLax/2Smx/2TiO3 (electron donor-doping), Sr1-3x/2Lax/2Smx/2TiO3 (A-

site vacancies or ionic donor-doping) which were calcined in air or 5% H2/N2 and 

sintered in air or 5% H2/N2 at 1773 K. La-Sm co-doped SrTiO3 pellets sintered in air 

were white/pale yellow in colour, indicating they were stoichiometric with respect to 

oxygen concentration hence electrical insulators. All La-Sm co-doped 5% H2/N2 

sintered ceramics were black single-phase pellets up to 15 mol% (x = 0.15) doping 

concentration for electron donor-doped compositions. For the A-site vacancy, La-Sm 

doped SrTiO3, the single-phase materials spanned across all the compositions (x ≥ 

0.30). This indicates that processing in reducing atmosphere improves the electronic 

conduction by generating oxygen vacancies (VO) in the lattice with a lower La-Sm 

solid solubility limit observed in electron donor-doped samples. Vacancy doping with 

a double calcination in 5% H2/N2 at elevated temperatures optimised the ZT values. x 

= 0.20 (1400H) doubled calcined (at 1573 and 1673 K) and sintered in 5% H2/N2 for 

8 hours showed the highest ZT (0.35 at 973 K) reported for RE co-doped n-type 

SrTiO3 ceramics. The result shows that La-Sm co-doping of SrTiO3 through creation 

of VSr with processing in 5% H2/N2 opens a new window for the synthesis, fabrication 

and characterisation of oxide thermoelectrics.  
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Abstract 

For Sm-doped Sr5LaTi3Nb7O30 ceramics, Sr5La1-xSmxTi3Nb7O30 and Sr5-

3x/2SmxLaTi3Nb7O30 were sintered in air and 5% H2/N2 at 1673 K for 6 hours. The Sm-

doped Sr5LaTi3Nb7O30 air sintered ceramics showed single-phase, homogenous 

ceramics with dense microstructures and a white/pale yellow appearance. The white 

or pale yellow colour shows the samples are electrical insulators, hence were not 

characterized for TE performance.  In contrast, Sm-doped Sr5LaTi3Nb7O30 sintered in 

5% H2/N2 were identified with secondary phases consisting of SrTiO3 (Sm doped) and 

an Nb-rich oxide (most likely Nb2O5). The A-site vacancy samples (Sr5-

3x/2SmxLaTi3Nb7O30) exhibited lower thermal conductivity when compared to its 

electron doped counterpart (Sr5La1-xSmxTi3Nb7O30), indicating that secondary phase 

mixtures present in the microstructure and the vacancy defects (VSr and VO) created in 

the lattice contributed in shortening the mean free path (MFP) of phonons, resulting 

in a maximum ZT (0.21) at 973 K for x = 0.30.  

Nb-doped La2Ti2O7 ceramics with an electron compensation mechanism were also 

investigated. All compositions were single-phase with porous microstructures 

consistent with their low experimental densities. The thermoelectric results showed 

improved properties in comparison to pure La2Ti2O7 but PF and ZT values were too 

low and not useful for thermoelectric applications. However, the high Seebeck 

coefficient and glass-like (low) thermal conductivity values achieved have established 

La2Ti2O7 as a potential thermoelectric material.  
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Introduction 

 

Chapter 1: Introduction 

  

1.1 Background 

 

Non-renewable energy sources based on fossil fuels, e.g. petroleum, natural 

gas, coal, etc. currently remain the most widely used sources of electricity 

generation. Study on the reserves of the world fossil fuel has revealed a probable 

decrease and eventual total depletion of hydrocarbon production [1], [2]. Despite the 

global call for a switch to greener and sustainable energy sources, fossil fuels still 

provide over 80 % of the world energy usage [3]. The high cost of fossil fuels and 

their attendant environmental effects such as global climate changes, environmental 

pollution and the emissions of greenhouse gases have resulted in research and 

development of alternative energy sources [4], [5].  These alternative energy sources 

include solar power (photovoltaic), wind power, biofuels (biomass), geothermal, 

nuclear power and thermoelectrics. 

Thermoelectric (TE) materials amongst these promising renewable energy 

sources have received significant attention. TE materials are expected to play a dual 

role; power generation and energy conversion, and the performance of these roles 

rely on the efficiency of the materials [6]. Thermoelectric power generators (TEGs) 

are solid-state devices that directly convert waste-heat (thermal energy) into useable 

electrical energy using the Seebeck effect [7]–[14]. It has been calculated that if 20 

% of waste heat from automobiles, power and incineration plants could be converted 

to electricity, 35,000GWh of power will be obtained in a year [2], [15]. Recent 

statistics suggest that about 60 % of the energy produced in US is not reused or 

recycled but released into the environment as heat [16]  

The performance of TEGs are controlled by two main factors; functionality 

and efficiency. The functionality is based on a heavily doped p-type and n-type 

semiconducting TE materials with a high carrier concentration, n (n~1019-1021 cm-3) 

[17] and with bandgap of ~ 10kBT [18] connected electrically in series (to allow the  



2 | P a g e  
 

Introduction 

flow of the same quantity of current along the thermoelements) and thermally in 

parallel (to restrict the flow of heat) [18]. The efficiency depends on the 

dimensionless figure of merit, ZT. The low energy conversion efficiency (~ 5 %) 

associated with TEGs has limited their use for electricity generation and viable only 

in specialized areas [19]. However, the low energy conversion efficiency is not a 

major hindrance since energy harvesting (gathering of energy) is from waste heat 

sources. The fundamental challenge is to optimize the power factor (PF) for effective 

electricity generation [19]. Apart from low energy efficiency, TEGs suffer from slow 

technology progression, limited applications, and lack of customer and/or industry 

education [20] 

Presently the most studied thermoelectric semiconducting materials with 

optimised ZT values of 1 or higher are primarily non-oxides such as (Bi,Sb)2(Te,Se)3, 

SiGe, PbTe and LaFe3CoSb12 and their corresponding alloys [21] mainly because 

they possess small phonon group velocity and low k, desirable for thermoelectric 

applications. The broad application of these materials is limited, however, due to 

toxicity, scarcity, cost, and limited operational temperature range [22]. There is 

evidence, however, that transition-metal oxide thermoelectric materials are viable 

alternatives that if given improvements in ZT, may surmount the challenges 

associated with non-oxides [23]–[25]. Among these oxide based TE materials, p-

type layered cobaltates such as NaCo2O4, (Sr,Ca)3Co4O9, Bi2-xPbxCo2O8 (0≤x≤0.4), 

Tl0.4[Sr0.9O]1.12CoO2 and [Pb0.7Hg0.4Sr1.9Co0.2][CoO2]1.8 are promising with ZT = 0.8 

– 1.0 at 800 – 1000 K [26]. n-type oxides are considered inferior when compared to 

these p-type oxides as a result of their lower ZT values. Potential thermoelectric n-

type oxides include SrTiO3, CaMnO3, In2O3 and ZnO. The highest ZT values so far 

reported for polycrystalline n-type oxides are 0.47 at 1000 K [27], [28] and 0.65 at 

1247 K [27] for Al-Ga co-doped ZnO [Zn0.96Al0.02Ga0.02O] and recently ZT ≥ 0.60 

at 1000 – 1100 K for 10 mol % La and 10 mol% Nb co-doped SrTiO3 [29]. 

 Most of the TE research reported for reduced RE-doped SrTiO3-δ relate to 

electronic compensation mechanism [13], [30], [31], while ionic compensation 

mechanism (cation vacancy) mostly on A-site are reported only by Kovalevsky et al 

[13], Lu et al [31], Popuri et al [32] and recently by  Han et al [33].  Moreover, there 

are several reported studies of dual doped SrTiO3 with La and Dy or Yb [21], [22],  
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[33]–[37] La and Ba [38], La and Nb or W [29], [31], [32]. There is no report in the 

literature for SrTiO3 dual doped with Sm and a second cation. 

Sr5RTi3Nb7O30 (SLTN) (R = rare earth elements mainly La, Sm, Nd, Eu, Gd 

and Dy) tetragonal tungsten bronze (TTB) oxide ceramics have been studied widely 

in terms of crystal structure [39], [40], dielectric and /or ferroelectric properties [39], 

[41] and phase transition [42]–[46] for various applications. SLTN and other TTBs 

are significant due to their complex and tunable structures with many interstitial sites 

in which substitution of various cations are possible [41], [45], [46] However, no 

literature has reported the thermoelectric properties and potentials of SLTN despite 

intrinsic characteristics that favour thermoelectric applications. Recent investigation 

of oxygen-deficient strontium barium niobate (SBN), SrxBa1-xNb2O6-δ ferroelectric 

single crystals as a potential n-type thermoelectrics opens the window for the study 

of other TTB compounds for thermoelectric applications [47]. Lee et al in this study 

reported a high power factor (PF) of 2000 μW/m. K2 at 516 K parallel to c-axis [48], 

[49] and a figure of merit, ZT > 0.5 at 550 K along the c-direction [50]. 

 La2Ti2O7 (LTO) is a perovskite-like layered structure compound whose 

piezoelectric, dielectric, electro-optic and photocatalytic properties have been widely 

researched [51]. LTO possesses multiple layers of perovskite units resulting in a 

large unit cell, crystal anisotropy and a complex structure, hence they exhibit low 

thermal conductivity [52]. As a complex structured material, it shows a high 

flexibility for tuning through cation/anion substitution which together with intrinsic 

low k are vital constituents required for a thermoelectric material.  

 

 1.2 Aim of Research 

 

The major aim of this research is to study the structure-property relationships 

of co-doped rare earth, RE (La and Sm) SrTiO3-δ perovskite, Samarium (Sm) doped 

Sr5LaTi3Nb7O30-δ (SLTN) tetragonal tungsten bronze (TTB) and niobium (Nb) 

doped La2Ti2O7 (LTO) perovskite-like layered n-type ceramics based on the 

aliovalent doping mechanisms and sintered in 5% H2/N2 gas mixtures to 
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reduce the oxides and engender greater conductivity. 

The purpose of co-doping in the case of SrTiO3 instead of single doping is an 

attempt to enhance the phonon scattering and therefore reduce total thermal 

conductivity without significantly affecting the PF. To do this, we selected 

lanthanum (La) as the largest RE ion (La3+ = 1.36 Å in co-ordination number, CN 

12) and samarium (Sm) as an intermediate sized RE ion (Sm3+ = 1.24 Å in CN 12) 

dissimilar to strontium, Sr ion (Sr2+ = 1.44 Å in CN 12) [53]  to give a significant 

variation in the ionic radius and mass of these A-site doping ions compared to Sr. In 

SLTN and LTO study, Sm and Nb, respectively are chosen as donor dopants with a 

view to increasing the carrier concentration and enhancing phonon scattering thereby 

optimizing the thermoelectric properties. 
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Chapter 2: Literature Review 
 

2.1 Principle of Thermoelectric Power Generator 
 

In a thermoelectric power generator (TEG), several doped p-type and n-type 

semiconductors are configured within the thermoelectric module such that they are 

arranged electrically in series and thermally in parallel. This arrangement forms the 

p-n junctions through which the charge carriers (holes for p-type and electrons for n-

type) are transported as shown in Figure 2.1 [1]. When a temperature gradient, ∆T 

(heat) is applied across the thermoelectric (TE) module, the charge carriers become 

thermally activated. The applied temperature gradient causes a diffusion of heat and 

charge carriers along the thermal gradient from the hot junction to the cold junction 

which leads to generating a Seebeck voltage (electrostatic potential, ∆V) across the 

module. Owing to the generated Seebeck voltage, electric current flows within the 

circuit leading to the production of electrical DC power.  Diffusion, phonon-electron 

interactions and entropic contributions (e.g. spin entropy) control the transport of the 

charge carriers [2]. Diffusion of the charge carriers and their flow (carrier mobility) 

are the parameters that regulate the thermoelectric  transport [1].    
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Figure 2.1. A schematic showing the thermoelectric modules operating 

across a temperature gradient for power generation [1]. 

 

 

In a typical TEG (Figure 2.2), heat is transferred from the high temperature 

heat source which is maintained at a temperature, TH at a given heat rate, QH [3], [4].   

Consequently, the heat is dissipated to the sink sustained at a low temperature, TL at 

a rate of QL via the cold junction. Owing to the generated voltage or Seebeck voltage, 

electric current flows within the TE module (circuit) which leads to the production 

of electrical power. This is attributed to the heat supplied at the hot junction and 

supported by the first law of thermodynamics [3];   
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QH − QL = We                                                                                                                           2.1 

 

where We is the electrical power. 

 

 

 

Figure 2.2. Schematic of the operating principle of Thermoelectric Power 

Generator (TEG) based on the Seebeck effect [4] . QH is high temperature 

heat transfer, TH is high temperature, QL is low temperature heat transfer, and 

We is the output energy (Electrical power output). 

 

A conventional single-stage TEG is made up of two ceramic plates or substrates 

which serve as foundation, mechanical support, and electrical insulation for the 

thermoelements/TE materials (p- and n- types) [3]–[5] . These ceramic plates are of 

ZnO or Al2O3 and at times BeO or AlN when large heat transfer is required. The 

edges of the thermoelements are interconnected with metallic strips of high electrical 

conduction such as copper. A diagram of a typical single stage TEG showing the  
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arrangement of major components is represented in Figure 2.3. The merits of a TEG 

over other conventional power generation devices are as outlined below  [3]–[9]:  

i. TEG is a solid-state device with no moving mechanical parts, hence 

noiseless, and requires less maintenance 

ii. It is a reliable source of green energy and capable of exceeding 100,000 

hours of steady-state operation 

iii. TEG is relatively small in size (scalability) and light weight thereby 

making it suitable for small-scale and rural power supply 

iv. It is simple, safe, and environmentally friendly; and   

v.  Operates at both low and high temperatures. 

Despite the low energy conversion efficiency, niche applications and slow 

technological progression associated with TEG, it is paramount to state that TEGs 

are still in their developmental stage with numerous potential applications [10]. 

Outside power generation, TE materials have attracted potential applications in solid 

state cooling or thermoelectric refrigeration using the Peltier effect. The effect of low 

energy conversion efficiency has constrained the use of TEGs to specialised areas 

where reliability other than cost is a major consideration [4].  These specialised 

applications include providing power for cathodic protection systems in gas well 

casings and pipelines [10], [11]  ̧ self-powered systems for wireless data 

communications or gatherings [11], [12], powering of automotive and deep space 

explorations [12] , ventilation fans, navigation equipment and landing lights in 

airports [11].  
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Figure 2.3. Schematic of a typical TEG showing the arrangement of the major 

components [4]. The thermoelements are heavily doped n- and p-type 

materials. 

 

 

2.2 Thermoelectric Phenomena 

 

Electrically conductive materials exhibit three types of effects, namely the: 

Seebeck; Peltier and Thomson effects. These effects are collectively known as 

thermoelectric effects [10]. The functionality of power generation and solid-state 

refrigeration thermoelectrics are fundamentally dependent on the Seebeck effect and 

Peltier effect, respectively. The focus of this research is on the Seebeck effect as 

applied in TEGs. 

 Seebeck effect is the establishment of a thermal gradient across a material 

which leads to generation of a voltage. It involves the conversion of temperature 

differences across a conductive material directly into electricity and vice versa [10]  

 



15 | P a g e  
 

Literature Review 

; and was discovered in 1821 by a German physicist, Thomas John Seebeck [13]–

[15]. Seebeck in his experiment observed that when two different conductors are 

joined together, and the junctions are held at different temperatures such as T1 and 

T2, a voltage difference, ∆V is developed. The ratio of the ∆V to temperature 

difference, ∆T (T2 – T1) is given as; 

 

−
∆V

∆T
= S                                                                                                             2.2

                                                            

where, S is the constant of proportionality called the Seebeck coefficient 

(thermopower), while ∆V and ∆T are the voltage and temperature differences, 

respectively between the hot and cold junctions. The negative sign in equation 2.2 is 

a representation of electron as a negative charge and the convention of current flow 

in a circuit. 

 At the atomic scale, Seebeck effect is dominated by charge carrier diffusion. 

This diffusion therefore pushes the majority charge carriers towards the cold junction 

of the material leading to a build-up of a compensating voltage [10]. This situation 

leads to p-type materials (valence holes dominated) to have a positive S values while 

n-type materials (electrons dominated) possess negative S values.  The minority 

charge carriers move at a slower rate in the opposite direction which can be attributed 

to an increase in effective mass (electrons and holes) interacting with crystal lattice 

(known as phonon drag) and charge carrier diffusion rates [16].    

 

2.2.1 Seebeck Effect 
 

When two different conducting materials such as A and B are joined to create 

an open circuit (Figure 2.4a) and kept at different temperatures, T1 and T2 at the 

junctions, ∆V will be generated between the open ends. If the open ends are closed 

as illustrated in Figure 2.4b, an electric current, I will be developed which flows  
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along the loop. As ∆T between T1 and T2 approaches zero, a linear relationship 

between ∆T and ∆V is established [17]: 

 

SAB =
∆V

∆T
                                                                                                          2.3

             

                       

Considering equation 2.2, equation 2.3 can be re-written as; 

 

𝑆𝐴𝐵 = 𝑆𝐴 − 𝑆𝐵 =
∆𝑉𝐴

∆𝑇
−

∆𝑉𝐵

∆𝑇
                                                                                   2.4

   

where, SAB is the constant of proportionality called the relative Seebeck coefficient 

(expressed in units of μV/K or μV/oC) of the A-B circuit., SA and SB are the absolute 

Seebeck coefficients of materials A and B, respectively.  A similar Seebeck effect 

associated with two dissimilar joined materials also occurs in a single conducting 

material (Figure 2.5). 
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Figure 2.4. A diagram illustrating the Seebeck effect in (a) an open circuit, 

and (b) a closed circuit with different conducting materials (A and B) and 

temperatures (T1 and T2) maintained at the joints (a and b) [17]. 
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Figure 2.5. The Seebeck effect in a single conducting material [18] showing 

the hot and cold junctions. 

 

2.2.2 Peltier Effect 
 

The Peltier effect is the presence of heating or cooling at the junction of two 

dissimilar electrical conducting materials [10]. It is the basis for thermoelectric 

cooling and was discovered in 1834 by a French physicist, Jean Charles Athanase 

Peltier [18]–[21]. Peltier in his study observed that an electrical current would 

produce a temperature gradient at the junction of two different conducting materials. 

When an external electromotive force (emf) source is applied across the open ends 

of the two coupled materials (Figure 2.6), current, I flow in a clockwise direction 

around the circuit. Therefore, a temperature difference, dT is developed, while heat 

is absorbed or generated, dQ/dt (known as rate of heating) at one junction and at 

other junction, heat is released or removed, -dQ/dt (known as rate of cooling). The 

heat absorbed at the junction is proportional to the electric current, I and as shown in 

equation 2.5.   
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dQ

dt
= πAB . I                                                                                                          2.5

                                 

where, πAB  is the Peltier coefficient of the A-B circuit and it is measured in W/A or 

V according to Kelvin relationship [13], 

 

πAB = S. T                                                                                                          2.6 

 

 

 

Figure 2.6. Schematic illustration of Peltier effect [18]. 

 

2.2.3 Thomson Effect 
 

In 1854, about three decades after the discovery of Seebeck effect, Thomson, a 

British physicist who later became Lord Kelvin [22], analysed the correlation 

between Seebeck and Peltier effects, and found what becomes the Thomson effect. 

In this study, heat is absorbed or released when a current flow in a conducting 

material with a temperature gradient, dT/dx. The rate of the heat absorbed or released 

(dQ/dt) is proportional to the electric current (I) and dT/dx. This is demonstrated in 

equation 2.7.  
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𝑑𝑄

𝑑𝑡
= 𝜇. 𝐼.

𝑑𝑇

𝑑𝑥
                                                                                                          2.7

   

where, μ is the Thomson coefficient measured in V/K. The value of Thomson 

coefficient is positive when current flows from the hot end to the cold end (heat 

liberation) and negative when current flows in a reverse direction (heat absorption). 

Thomson effect with a negative Thomson coefficient is shown in Figure 2.7. 

 Thermoelectric effect (Seebeck, Peltier and Thomson effects) is interrelated 

in Kelvin’s relations as derived from thermodynamics; 

 

πAB =
∆V

∆T
T = SABT                                                                                              2.8

   

μA − μB = −T
∆

∆T
(

πAB

T
) = −T

∆SAB

∆T
= −T

∆2V

∆T2                                               2.9

  

   
∆SAB

∆T
=

μB−μA

T
                                                                                            2.10
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Figure 2.7. Schematic illustration of Thomson effect with a negative 

Thomson coefficient [18]. This implies that electric current flows from cold 

end to hot junction. 

 

 

2.3  Thermoelectric Performance 

 

About 90 % of the world’s electricity is generated by heat energy which on 

average operates at 30-40 % efficiency thereby losing an approximate of 15 terawatts 

(1.5 x 1013 Watts) of power (in form of heat) per year to the surroundings [23], [24].  

Thermoelectric devices convert some of this heat into useful electricity [24] . From 

laws of thermodynamics, the efficiency of a TEG is related to the properties of the 

TE materials.  

The performance of TE devices including TEG depends on the combined effects of 

efficiency of the Carnot process (ɳC), efficiency of thermoelectric generator (ɳT) and 

the dimensionless figure of merit (ZT) resulting to a maximum conversion efficiency 

(ɳmax) [13], [25]–[27];  
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ɳmax =
W

QH
= ɳC. ɳT = ηC[

√(1+ZTavg)−1

√(1+ZTavg)+(
TC
TH

)
]                                             2.11

  

 

ηC =
TH−TC

TH
= 1 −

TC

TH
                                                                                 2.12

   

where W is the power generated, QH is the net heat flow, TH and TC are the 

temperatures at the hot and cold sites, respectively, and Tavg is the average 

temperature (
𝑇𝐻+𝑇𝐶

2
). Equation 2.12 shows that for an increased efficiency to be 

obtained, high ZTavg values and large temperature gradients are required.  

ZT contains both electrical and thermal contributions to the properties of the TE 

materials and is given as: 

 

ZT =
S2σ T

K
                                                                                                        2.13

     

where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute 

temperature at which the properties are measured and k = kL+kE [28] is the total 

thermal conductivity. kL and kE are the lattice thermal conductivity and electronic 

thermal conductivity, respectively. ZT describes the material’s performance, hence 

is a prerequisite for a good thermoelectric material. As Dehkordi [29] puts it, “ZT is 

a measure of the competition between electronic transport (power factor) and thermal 

transport (total thermal conductivity) in a material”. The higher the ZT, the better the 

efficiency of the TE materials to convert heat energy into useable electricity. In 

equation 2.13, 𝑆2𝜎 is known as the power factor (PF) and is another important TE 

performance factor. PF is the determination of the capacity of electronic transport in 

a material for thermoelectric applications [30]. It is the electric power through which  
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the heat flows between the hot and cold sides per unit temperature gradient [31]. 

Therefore, PF is a measure of the power anticipated from a TEG [32].  

 

2.3.1 Characteristics of Thermoelectric (TE) Materials 
 

A good TE material as already stated is required to exhibit a high 

dimensionless figure of merit (ZT). The concept of ZT was first used in1949 by 

Abram Fedororich Ioffe, a Russian physicist when he developed the modern theory 

of thermoelectricity [33], [34]. For a high ZT to be achieved, the following parameter 

are essential [28], [35]–[40]: 

i. Large Seebeck coefficient to produce a required high voltage for a given 

temperature difference. 

ii. High electrical conductivity to minimise losses through electrical heating 

(Joule heating), and  

iii. Low thermal conductivity to restrict diffusion of heat across the device 

by maintaining a large thermal gradient. 

Unfortunately, nature does not provide materials with these expected properties for 

thermoelectric applications. For instance, metals have very high electrical and 

thermal conductivities with low Seebeck coefficient, while glasses, polymers, and 

insulators in general exhibit very low electrical and thermal conductivities [41]. This 

therefore gave rise to the notion “phonon-glass and electron-crystal (PGEC) 

properties” [41]. This concept implies that outstanding thermoelectric materials 

require crystalline solids with low total thermal conductivity (k) such as glass and 

scatter phonons without significantly hindering the electrical conductivity (σ) but 

maintains charge carriers of high mobility or electronic transport (conduction of 

electricity) as expected of a crystal [41]–[44]. It is observed that S, σ and k in ZT are 

tied to carrier concentration. Hence, increasing σ (which is desired) decreases S 

(which is undesirable). Thus, TE materials with high σ are essential for high 

performance but tend to have very low S and very high k which leads to low ZT and  
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poor efficiency. As carrier concentration increases, σ and k simultaneously increase 

with a decrease in S thereby decreasing the overall ZT [30]. 

A mutual correlation must be established amongst a large Seebeck coefficient, high 

electrical conductivity, and a low thermal conductivity to optimise the figure of 

merit.  The balance lies on the carrier concentration, hence a good TE material 

requires a high carrier concentration, 1019 – 1021 cm-3  [45]. Figure 2.8 illustrates the 

dependence of ZT, σ, S and k on carrier concentration for a TE material. 

 

 

 

Figure 2.8. A schematic illustrating optimising ZT through a carrier 

concentration tuning. Maximising the efficiency (ZT) of a thermoelectric 

material involves a compromise between thermal conductivity (k) and 

Seebeck coefficient (S )  with electrical conductivity (σ) [45]. 
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2.3.2 Seebeck coefficient 
 

Seebeck coefficient is an important property for evaluating the performance 

of TE materials as shown in equation 2.2. It is the measure of the quantity of potential 

difference for a given temperature difference generated across a material [46]. 

Seebeck coefficient, S can also be defined as the heat (entropy) per carrier with 

respect to temperature ( 𝑆 ≃
𝐶

𝑞
), where C is the specific heat, and q is the charge of 

the carrier [47]. Different materials have different Seebeck coefficients. Therefore, 

the magnitude and mechanism of Seebeck coeffcient and Seebeck effect, 

respectively for metals are different with that of semiconductors and other materials. 

In metals, S is given as the product of electronic specific heat (Cel) and the 

temperature (T) divided by the carriers’ number (N) [48] ;  

      

S =
CelT

N
                                                                                                        2.14

     

Equation 2.14 holds because carrier concentration and the position of fermi level of 

metals are unchanged relative to temperature, hence; 

 

𝑆 ≃
𝐶𝑒𝑙

𝑞
= (

𝐾𝐵

𝑒
)

𝐾𝐵𝑇

𝐸𝐹
                                                                                             2.15

    

where KB is the Boltzmann constant, EF is the Fermi energy, 
KB

e
= 87μVK−1 is the 

thermopower of a classical electron gas. For metals, S < 87 μV/K and increases with 

increasing temperature and vice versa. 
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 In a semiconductor, the charge carriers in the hot joint possess more thermal 

energy than those in the cold joint leading to the diffusion of the carriers. This implies 

that the charged particles will excite across the energy, EG, thus [48]; 

 

𝑆 =
𝐶𝑒𝑙

𝑞
≈ (

𝐾𝐵

𝑒
)

𝐸𝐺

𝐾𝐵𝑇
                                                                                            2.16

    

For semiconductors, S > 87μVK−1 and decreases with increasing temperature and 

vice versa. Semiconducting materials exhibit either electron conductivity, σe 

(electron dominated charge carrier) with negative thermopower (Se) or hole 

conductivity, σp (hole dominated charge carrier) with positive thermopower (Sp). 

These Seebeck coefficients and their corresponding electrical conductivities are 

related as follows:  

 

S ≈
Seσe+Spσp

σe+σp
                                                                                                        2.17

                                                                           

Typical values of Seebeck coefficient, S required of a good TE materials are 

150 -250 μV/K or greater with a corresponding electrical conductivity, σ values of 

500-2000 S/cm [29]. Ideally, insulators and semiconductors by nature exhibit large 

Seebeck coefficients because they possess low carrier concentrations [26].  For a 

large S to be obtained, only majority carriers (either holes or electrons) devoid of 

bipolar contributions (mixture of majority and minority carriers) are required in the 

lattice [49]. Mixed carrier system (existence of n-type and p-type carriers) weakens 

the Seebeck voltage because of increase of the mixed charge carriers at the cold end. 

This leads to a total Seebeck coefficient, St of both n- and p-type carriers. 

 

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑛 + 𝑆𝑝                                                                                                                                    2.18 
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where Sn is the thermopower of n-type carrier with a negative value, while Sp is the 

thermopower of p-type carrier with a positive value. 

 The Boltzmann transport theory describes electronic and thermal transport of 

most solids. In this theory, the concept of Seebeck coefficient is expressed in the 

Mott equation [25], [50]: 

 

   S =
π2

3

KB
2

e
 dln

σ(E)

dE
⎮E = Ef                                                                                                    2.19 

 

where e is the charge electron, and σ (E) is the electrical conductivity determined as 

a function of the Fermi energy, Ef..  The relationship between the Seebeck coefficient 

in the simple model of electron transport as stated below [51]: 

 

s =
9π2KB

2

3eh2  m⋆ T (
π

3n
)

2

3
[1 + (

dlnλs

dlnE
) Ef]                                                        2.20 

 

where h is the Planck’s constant, n is the carrier concentration, m* is the effective 

mass and λs is the scattering distance [52]. It has been shown that large carrier 

effective mass materials correspond to high Seebeck coefficient, hence desirable for 

TE applications. On another end, large effective mass leads to low carrier mobility, 

μ [29] resulting to low electrical conductivity. 

This implies that carrier mobility is inversely related to effective mass as shown 

below: 

 

μ =
eτ

m∗                                                                                                         2.21 

where τ is the scattering time or the mean scattering between collisions of carriers 

(carrier lifetime). 
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2.3.3 Electrical Conductivity 
 

Electrical conductivity (σ) is an important property in TE applications since 

current flow is required to provide the needed electrical power. Electrical 

conductivity is the inverse of electrical resistivity and a measure of the ability of a 

material to conduct an electric current or to allow the passage of electric current. It 

is related to carrier concentration, n, and its mobility, μ as follows [45]: 

 

𝜎 = 𝑛𝑒𝜇                                                                                                        2.22 

 

Using the Drude model [18], [48] which involves combination of equations 2.21 and 

2.22, σ can be defined as: 

 

𝜎 =
𝑛𝑒2𝜏

𝑚⋆                                                                                                         2.23 

 

where e is the charge carrier with positive for a hole and negative for an electron. 

 In metals, electrical conductivity results from the constant motion of the ions 

and decreases with increase in temperature. σ of metals is very high because they 

possess optimum charge carriers, about 𝑛 ≈ 1022 Carriers/cm3. The electrical 

conductivity of semiconductors lies between metals and insulators. For electrical 

conduction to occur in semiconductors, the charge carriers must be excited across a 

gap and by the contributions of electrons and holes. 

 

𝜎 ≈ 𝜎0 exp (+
𝐸𝐺

𝐾𝐵𝑇
)                                                                                            2.24 

 



29 | P a g e  
 

Literature Review 

 

𝜎 = 𝑛𝑒𝜇𝑒 + 𝑝𝑒𝜇ℎ                                                                                            2.25 

 

where n, p, μe and μh are the electron concentration, hole concentration, electron 

mobility and hole mobility, respectively. Unlike metals, the electrical conductivity 

of semiconductors increases with increase in temperature. Generally, 

semiconductors and insulators exhibit low electrical conductivity with high Seebeck 

coefficient due to possession of low carrier concentration. Two basic methods 

applicable for achieving high electrical conductivity in semiconductors involves 

creation of a very small gap for excitation of charge carriers (EG < KBT) or having a 

very high mobility carrier [48].  

 

2.3.4 Thermal Conductivity 
 

Thermal conductivity, k is the description of energy transport in the form of 

heat through a material because of temperature gradient. In thermoelectrics or solid 

state in general, thermal conductivity is the transfer of heat via a material either by 

charge carriers (electrons and holes) or by phonons travelling through the lattice. 

Therefore, total thermal conductivity, k is associated with carrier or electronic 

thermal conductivity (kE) and lattice thermal conductivity (kL) [28], hence;  

 

 k = kE + kL                                                                                                        2.26 

 

 In metals, the total thermal conductivity is dominated by kE which is 

attributed to presence of high carrier concentration. Therefore, metals are the best 

electrical and thermal conducting materials. Unlike metals, kL dominates the total 

thermal conductivity in insulators and semiconductors.  According to Wiedemann-

Franz law, the ratio of the electronic contribution of the total  thermal 
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 conductivity (κE) to the electrical conductivity (σ) of the majority of TE materials  is 

proportional to the temperature (T) [45], [50], [53]: 

 

kE = LσT                                                                                                        2.27 

 

Theoretically, the constant of proportionality, L is known as Lorentz number (factor) 

and is given by: 

 

L =
π2

3
(

KB

e
)

2

 = 2.45 x 10-8 WΩK-2                                                                    2.28 

 

The Wiedemann-Franz law exposes the impediment for a TE material to achieve 

high temperature efficiency by simultaneously increasing σ and decreasing kE. An 

attempt to suppress kE affects the electrical conductivity, leading to low ZT. 

Therefore, TE materials with kL dominated are desirable since the σ will be preserved 

while k can be reduced through other techniques. The lattice contribution to the total 

thermal conductivity is given by a classical kinetic theory as [16], [27]: 

 

KL =
Cvl Vs

3
                                                                                                       2.29 

 

where C is the specific heat capacity, l is the mean free path of the phonons and Vg 

is the group velocity of the phonons. Equation 2.29 shows that not only kL depends 

on the electronic structure of the material. For a low k to be obtained, low C, short l 

and a low Vg are required [27]. 

 Heat capacity (C) is a measure of the ability of a material to absorb thermal 

energy. It is represented as the ratio of heat added (dQ) or removed from a material 

or system relative to a change in temperature, dT (equation 2.30). 

https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Electrical_conductivity
https://en.wikipedia.org/wiki/Temperature
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 C =
dQ

dT
                                                                                                        2.30 

 

From Debye theory, heat capacity has a weak temperature dependence above Debye 

temperature (θD) (at high temperature) [54]. At θD, the highest normal mode of 

vibration of the material is achieved [54], above which the vibrational modes of the 

material are occupied and heat capacity approaches the Dulong-Petit limit [27]. 

 Mean free path (MFP) of the phonons is the average distance through which 

phonons travel between two scattering centres [27]. An introduction of scattering 

centres (defects) into the lattice can modify the thermal conductivity of a material.  

These lattice defects (vacancies, substitutions, dopings, etc.) shorten the MFP, cause 

a decrease in k and consequently improve the ZT of TE materials [27], [55]. It has 

been observed that at high temperature (T > ~ 300 K), Vg and C are temperature 

independent in typical materials [28], thus only MFP of phonons determine the size 

and temperature-dependence of kL. Three basic approaches required to reduce kL 

without lowering σ involve introduction of point defects (rattling structures) [56]–

[59], designing of complex structures with the intention of scattering phonons 

without disrupting electron transport [60]–[69], and creation of nanostructures to 

decrease MFP of phonons [27]. These approaches give rise to 2D structures 

(superlattices), 1D structures (nanowires), 0D structures or quantum dots and thin 

film materials [24], [70]–[76].  

 

2.4 Classification of Thermoelectric Materials 
 

Thermoelectric materials are classified into two; conventional (non-oxide) and novel 

(oxide) thermoelectrics [77].  
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2.4.1 Conventional Thermoelectric Materials (CTMs) 
 

CTMs basically composed of Bi2Te3/Se3, Sb2Te3, PbTe/Se, SiGe, etc. and 

their corresponding alloys [78]. Conventional thermoelectric materials were first 

investigated and identified in the 1950s [77]–[81]  for commercial and practical 

applications in TE power generation with attendant high ZT [13], [51]. Due to the 

their framework structures with large voids filled with heavy elements in most 

CTMs, they possess low phonon group velocity and thus low k which are desirable 

for optimised ZT [27]. The broad application of these materials is limited, however, 

due to toxicity, scarcity, cost, and limited operational temperature range [13].  Non-

oxide thermoelectric materials (CTMs) are grouped into three based on operational 

temperature ranges; low temperature, intermediate temperature and high temperature 

CTMs [3], [13], [45]. 

 

2.4.1.1 Low Temperature (≤ 500 K) CTMs 

 

This class of non-oxide thermoelectrics is primarily based on bismuth (Bi) combined 

with antimony (Sb), tellurium (Te) or selenium (Se) e.g. Bi2Te3, Sb2Te3. These alloys are the 

most widely used TE alloys. Bi2Te3 and its alloys e.g p-type BixSb2-xTe3, n-type Bi2Te1-xSe 

possess high ZT (≥ 1) at near-room temperature up to 500 K applicable in TE refrigeration 

and power generation [35], [45], [79], [82]–[84].  

 

2.4.1.2 Intermediate or Mid Temperature (500-900 K) CTMs  

 

They are non-oxide alloys mainly based on group IV tellurides, e.g.  PbTe, 

GeTe, SnTe and AgSbTe2 [35], [82], [84]–[86].  ZT values of ~ 1 have been reported 

for p-type PbTe1-xSex and n-type Pb1-xSnxTe (PbTe alloys) with a corresponding 

reduction in k at 300 K [87], [88].  Current reports on p-type PbTe1-xSex show a high  
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ZT ≥ 2 with optimised PF and reduced kL [5], [47], [89], [90]. AgSbTe2 alloys such 

as (AgSbTe2)1-x(GeTe)x have shown ZT values of  > 1 for n-type and p-type 

materials, respectively [25], [35],  [45],  [91].  

 

2.4.1.3 High Temperature (> 900 K) CTMs 

 

High temperature CTMs are fabricated typically using silicon-germanium 

(SiGe) alloys as the thermoelements of TE power generating devices. The ZT of 

these materials are still low particularly the p-types despite their high operational 

temperature. This is attributed in part to its diamond structure (SiGe alloys) with high 

kL [45].  Reports have shown a ZT values of ~ 1 and ~ 0.6 for n-type and p-type 

Si0.8Ge0.2, respectively[47], [92]. A further improvement on the material (Si0.8Ge0.2) 

by the application of nano-structuring techniques has optimised the n-type ZT to 1.3 

[74] and the p-type to 0.9 – 1.0 [75]. The graph showing the ZT variations of selected 

conventional thermoelectric materials (CTMs) with their corresponding operational 

temperatures is represented in Figure 2.9 [93].  
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Figure 2.9. Thermoelectric figure of merit (ZT) as a function of 

temperature (K) for selected conventional thermoelectric materials 

(CTMs) [93]. 

 

 

2.4.2 Novel Thermoelectric Materials (NTMs) 

 

According to Ioffe’s theory, oxides are unsuitable for TE applications due to 

their strong, mixed ionic and covalent bonds, possession of high kL and lower carrier 

mobilities resulting in low electrical conductivity [94]. However, there is strong 

evidence that oxide thermoelectrics containing transition-metal oxides are novel 

alternative materials to the current intermetallic (conventional) TE materials. 

Generally, oxides are inert, non-toxic, light weight, cheap, possess small thermal 

expansion with high melting point, hence promising TE candidates for high 

temperature applications [93], [95], [96].   
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Novel thermoelectric materials are expected to exhibit increased ZT and large 

PF compared to CTMs. Principal NTMs include p-type NaxCo2O4 [comparable to 

(Bi, Sb)2(Te, Se)3] and n-type rare-earth (RE) doped SrTiO3 based compositions that 

have been reduced in N2/5 % H2 gas mixtures [96].  The recognition of NTMs as 

potential TE materials particularly p-type oxides was in 1997 when Terasaki et al  

[96]–[98] in their study showed that layered cobalt oxide, NaxCo2O4 exhibited a high 

electrical conductivity (σ ≈ 500 S/m) and a large Seebeck coefficient (S ≈ 100 μV/K). 

This landmark opened the window for further investigations of other oxides for TE 

applications. 

 In terms of crystal structure, transition metal-oxides for TE applications are 

classified into wide-band-gap semiconductor, perovskite-based, layered cobalt 

oxides and oxychalcogenides  [97] and recently oxides with adaptive structures [27] 

. A brief understanding of structures and properties of some of these promising 

classes of TE oxides will be reviewed.  

 

2.4.2.1 NaxCoO2 (NaCo2O4) 

 
The short MFP associated with layered structured materials due to phonon 

scattering at the interfaces between the layers result in low k, hence better candidates 

for TE applications. Therefore, there is a prospect for layered-structure cobalt oxides 

as TE materials. Prime p-type oxides for thermoelectric applications are alkaline 

based layered cobalt oxides [53], [99]–[101]. They are found to exhibit large Seebeck 

coefficients due to low spin state of Co3+ [99], [102].  These layered cobaltites derive 

a path for conduction due to the presence of CoO2 planes while the interconnected 

points or interfaces between the layers and other parts of the structure inhibit heat 

flow via lattice phonons. Prominent amongst these layered cobaltites are Ca3Co4O9 

[99], [100], [103]–[108], and NaxCoO2 [53], [109]–[112].  
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The crystal structure of NaxCoO2 is a hexagonal layered structure with an 

alternating stack of Na+ ions and sheets of CoO2 along the c-axis (Figure 2.10) [97]. 

The CoO2 sheets serve as electronic crystal thereby maintaining high electrical 

conductivity while the Na+ ion blocks function as phonon scattering boundaries 

resulting in low k [97] . Due to the phonon glass-electron crystal (PGEC) behaviour 

of NaxCoO2, its structure type is known as nano-block integration [97].  The large 

Seebeck coefficients at high temperatures associated with NaxCoO2 and other layered 

cobalt oxides due to the low spin state of Co3+ and Co4+ are as a result of the CoO2 

sheets in the structure [102], [113].  

 

 

 

Figure 2.10. Hexagonal crystal structure of NaxCoO2 layered cobalt 

oxide [97]. 
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Single crystal NaxCoO2 shows a thermal conductivity between 4 and 5 

W/m.K at 300 K with  large Seebeck coefficient (100 μV/K), low  resistivity (200 

μΩcm) and  a resulting PF value of 50 μW/K2.cm [96], [97], [114], [115]. A high ZT 

≈ 1 at 800 K has been reported for a single crystal NaxCoO2 sample with a high PF 

and a low thermal conductivity [97], [99]. Unlike single crystal NaxCoO2, the 

polycrystalline ceramic NaxCoO2 shows a high resistivity which results in ZT = 0.8 

at 1000 K [116]–[118].  It is observed that at high temperatures, NaxCoO2 becomes 

unstable because it tends to absorb moisture in air (a situation known as hygroscopy) 

while the constituent Na vaporises (degrades) at above 800 oC. This, therefore, limits 

the TE application of NaxCoO2 at elevated temperatures. This drawback 

notwithstanding, the huge success recorded in TE study of NaxCoO2 has led to the 

exploitation of other layered cobalt oxides such as Ca3Co4O9 and Bi2Sr2Co2O9.  The 

crystal structure of Ca3Co4O9 is similar to NaxCoO2 except that its CoO2 planes are 

separated with layers of a distorted rock-like structure (CaO) as shown in Figure 

2.11. ZT values of 1.2 to 2.9 at 873 K [64] and ZT ≥ 1.1 at 1000 K [66] have been 

reported for Ca3Co4O9 single crystals and Bi2Sr2Co2O9 whiskers , respectively.  
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    Figure 2.11. Crystal structure of layered Ca3Co4O9 oxide [97] .   

 

2.4.2.2 ZnO 

 
Zinc (II) oxide (ZnO) is a wide band gap semiconductor and a promising candidate 

for TE applications. It is also known as a transparent conducting oxide, TCO [119] 

with a wurtzite crystal structure belonging to a hexagonal system [120]. In the 

hexagonal lattice of ZnO (Figure 2.12), each Zn ion is surrounded by four O2- ions 

in a tetrahedral configuration to form ZnO4 groups. It possesses a wide band gap of 

3.44 eV at low temperature [121], [122]. Stoichiometric ZnO is an intrinsic  
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semiconductor (insulator) but exhibits n-type conductivity due to excess Zn atoms 

[120].  

 

 

Figure 2.12. Crystal structure (Wurtzite) of ZnO [120]. Zn2+ ions are in red 

and O2- in yellow. 

 

 

The strategy to enhance the TE efficiency of zinc (II) oxide lies in the 

reduction of the Zn-O ionic bonds to increase the carrier mobility. A single crystal 

ZnO and Al-doped ZnO samples were found to possess a carrier mobility of ~ 200 

cm2/Vs and 80 cm2/Vs, respectively at room temperature [123]. A study of 

ZnO0.98Al0.02O thin films showed a ZT ~ 0.3 at 1273 K with a PF of 1.5 x 10-3 W/m. 

K2 [119], [124].  An improved ZT (0.4) at 773 K [125] was obtained in Al-doped 

ZnO using nanoparticles of carbon or organic polymer (void forming agent). The 

enhancement of the TE performance of the Al-doped ZnO is attributed to the 

compression of the c/a lattice ratio of crystal due to the Al doping [126].   

 Co-doping has been identified as an effective mechanism in the promotion of 

TE performance of ZnO. A reported research has shown ZT = 0.47 and 0.65 at 1000 

and 1273 K, respectively for an Al-Ga dual doped ZnO (Zn0.96Al0.02Ga0.02O) [127].  

As stated in the introductory part of this work, these ZT values (0.47 and 0.65) so far 

remain the highest reported ZT values for bulk n-type oxides.  
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ZnO possesses a very high thermal conductivity when compared to other 

thermoelectric oxides. It has k = 54 W/m.K for single crystals [124] and k = 40 

W/m.K   for polycrystalline samples [123]  at room temperature. Therefore, the 

effective means of reducing this high thermal conductivity without compromising 

the power factor, PF is a fundamental research challenge. 

 

2.4.2.3 BiCuSeO 

 

BiCuSeO is a potential p-type TE material, and the oxide with highest known 

ZT [128]. It is a non-toxic quaternary oxychalcogenide with a tetragonal crystal 

structure (space group P4/nmm) [129], [130]. The crystal structure is composed of 

alternately stacked layers of insulating oxide (Bi2O2)
2+ and the conductive selenide 

(CuSe2)
2- [18], [128], [130] as shown in Figure 2.13 [130] . The layered crystal 

structure enhances phonon scattering at the interface (leading to low k), exhibits 

weak bonding, and contains heavy elements [101], [128]. BiCuSeO possesses k of 

0.4 – 0.5 W/m.K at 900 K [128], [129], [131] and k ≤ 1 at room temperature [128], 

[132], [133]. 
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Figure 2.13. Tetragonal crystal structure of BiCuSeO (space group 

P4/nmm) [130].   

 

Research has shown that BiCuSeO has a good TE properties with σ ≥ 4000 

S/m, S ≥ 200 μV/K and k = 0.5 W/m. K with a ZT = 0.7 at 773 K [101] [128] [130], 

[132]. A high ZT (0.76) has been reported in BiCuSeO in which the Sr2+ is 

substituted for Bi3+ in (Bi2O2)
2+ layer [131]. Liu et al [130] enhanced the TE of 

BiCuSeO properties by introducing Cu deficiencies or holes into the (CuSe2)
2- 

selenide layers. In this study, Cu deficient BiCu0.975SeO gave an σ = 3000 S/m, S = 

273 μV/K, k = 0.5 W/m. K and a high ZT = 0.81 at 923 K. A further study was 

reported for a heavily Ba-doped BiCuSeO (Bi1-xBaxCuSeO) [101], [134] in which a 

ZT ~ 1.1 at 923 K was obtained.  Finally the authors of refs [135]–[138] achieved a 

ZT ≈ 1.4 at 923 K  which remains to date the highest reported for p-type TE oxides.  
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2.4.2.4 SrTiO3  

 

Strontium titanate, SrTiO3 (STO) is the n = 1 end member of the Ruddlesden-

Popper (RP) phases with formula SrOn-1(SrTiO3)n (n = integer) and particularly when 

doped with Nb has received considerable attention as a thermoelectric n-type oxide 

[139]. Bhattacharya et al [49]  highlighted notable transport properties of SrTiO3 to 

include quantum paraelectricity, induced ferroelectricity, superconductivity, 

correlation between superconductivity and ferromagnetism, piezoelectricity, photo-

catalytic activity, and thermoelectricity. Moreover, strontium titanate was the first 

discovered superconducting ternary oxide [140].  It is a non-toxic, chemically stable 

in air with a high melting temperature (2080 oC) thereby making it a promising 

candidate for TE applications at high temperatures [139].  

 

Doped SrTiO3 Ceramics 

Doped and/or reduced SrTiO3 ceramic materials have recently shown 

increased conductivity sufficient for thermoelectric applications [140].  Upon doping 

either at A-site or B-site and/or creation of oxygen vacancies, SrTiO3 undergoes a 

transformation to semiconductor [49] producing n-type carriers and if sufficient O is 

removed it becomes metallic in character. Doped and oxygen deficient strontium 

titanate (SrTiO3-δ) has been reported to exhibit Seebeck coefficients (│S│~ 200 – 

300 μV/K), low resistivity (ρ < 5 μΩ/cm) at 750 K due to the carrier electrons 

possessing high effective mass, m* of (~ 6-10)me attributed to its d-band nature and 

significant high PF ~ 0.8 – 1.3 W/m. K2 [49], [139], [141].  For example, n-type La-

doped SrTiO3 single crystals are reported to have high PF of 3.6 x 10-3 W/m. K2 at 

room temperature attributed to high carrier concentration, comparable to Bi-Te 

alloys [101].  However, at 773 K, a decrease in ZT (0.15) occurs in the doped SrTiO3 

single crystals because of its inherent high thermal conductivity [142]–[145]. The 

high thermal conductivity in SrTiO3 and other oxides emanates from the contribution 

of the lattice thermal conductivity (kL). SrTiO3 and other related oxides are also  
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susceptible to oxygen uptake (reoxidation) in air when reduced and oxygen-loss in 

reducing atmospheres at high temperatures [146]. Nonetheless, promising n-type 

thermoelectric properties have been reported in SrTiO3 doped with Nb, W, La, Ce, 

Pr, Nd, Sm, Gd, Dy and Yb [27].  

There is great interest in developing n-type SrTiO3 despite its low TE 

properties when compared to state-of-the-art non-oxides [49], [145], [147], [148].  

Doped SrTiO3 exhibits high carrier mobility and large effective mass due to its d-

band structure [27] thereby causing the observed high electrical conductivity and 

Seebeck coefficient. Despite the reported high S, high σ and large PF, the ZT remains 

low due to its high k compared with non-oxide TE materials [148]. It has been widely 

studied in terms of different dopants, doping mechanisms, and processing conditions 

[149].  ZT value of 0.27 at 1073 K was obtained in the study of La- and Nb-doped 

SrTiO3 single crystals [144]. Sr1-xLaxTiO3 (0≤x≤0.1) single crystals were studied by 

Okuda et al [143] and a large PF of 3600 μW/m. K2 was observed at room 

temperature. Improved TE properties (k ~ 3 W/m. K, ZT = 0.37) at 1000 K have 

been reported in an epitaxial  Nb-doped strontium titanate (SrTi0.8Nb0.2O3) films 

[142], [150].  Kovalevsky et al [151] studied RE-doped Sr0.9R0.1TiO3-δ (R = Dy, Sm, 

Nd) ceramics in reduced atmosphere and obtained an optimised ZT of 0.42 at 1190-

1225 K. Recently, Lu et al obtained a similar result with a ZT = 0.41 at 973 K from 

their La-doped, A-site deficient strontium titanate sample (Sr1-3x/2LaxTiO3; x = 0.15) 

processed in 5% H2/N2 reduced atmosphere  [135], [152].  

Co-doping has been suggested to enhance thermoelectric properties of 

SrTiO3 ceramics. La-doped and Dy-doped SrTiO3 ceramics (La0.1Sr0.9TiO3 and 

Dy0.1Sr0.9TiO3) showed maximum ZTs of 0.17 at 673 K (k ~ 3.4 W/m.K, 1073 K) 

and 0.22 at 573 K (k ~ 2.2 W/m.K), respectively [153], [154]. Co doping with La 

and Dy (La0.1Sr0.83Dy0.07TiO3) [147], [155] resulted in a  reduced k (2.5 W/m.K) and 

a high ZT = 0.36 at 1045 K. Enhanced thermoelectric properties have been reported 

for La-Nb doped SrTiO3 ceramics. Wang et al [156] in the study of La-Nb co-doped 

SrTiO3 obtained a significant improved power factor and Seebeck coefficient when 

compared to La-doped SrTiO3 which is attributed to energy filtering effect of grain 

boundaries. An increase in electrical conductivity is observed in the study of Nb-

doped La0.05Sr0.95TiO3 [142]. Overall, the improvement of the PF and ZT is  
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significant because σ is not much enhanced while Seebeck coefficient is reduced. 

Muta et al [157] investigated the effect of Ba-La co-doping on SrTiO3 (Ba0.9-

xSrxLa0.1TiO3) and observed an improved PF due to a shorter Ti-Ti distance and a 

change in lattice parameter according to Vegard’s law. Though the ZT obtained is 

not high (3 x 10-4 K-1), further reduction of thermal conductivity and Ti-Ti distance 

is advocated.  

Liu et al [148] in their investigation on the TE properties of RE-doped SrTiO3 

ceramics suggested that SrTiO3 doped with large RE ions (e.g. La, Nd) exhibit large 

PF [148], while those doped with mid-sized or small RE ions (Sm, Gd, Dy, Er, Yb) 

show low thermal conductivity without disrupting the electrical properties [140], 

[148]. The excess positive charge from the RE ions (normally doped at A-site) is 

balanced with Sr vacancies in oxidising conditions while some of the Ti4+ ions are 

reduced to Ti3+ ions in reducing conditions [140].  

 A study of La-Dy co-doped Sr-deficient SrTiO3 ceramics strongly upholds 

the potency of dual doping and Sr vacancies in improving the efficiency of ceramics. 

La0.1DyxSr1-1.25(0.1+x)TiO3 (x = 0, 0.05, 0.075, 0.1) ceramics were prepared using sol-

gel method and sintered in 5% H2-95% N2 reducing gas [154]. Increase in carrier 

concentration due to the La-Dy co-doping improved the electrical conductivity. Sr 

vacancies and the generated second phase (Dy2Ti2O7) led to promotion of phonon 

scattering and decrease in total thermal conductivity (k). A very low k (1.92 W/m.K 

at 773 K) and improved ZT = 0.29 at 773 K were obtained in x = 0.1 ceramics [154]. 

Although the ZT of doped SrTiO3 is less than one which is attributed to its large 

thermal conductivity, La-Nb co-doped SrTiO3 ceramics have shown to be one of the 

best n-type oxide thermoelectric materials (Figure 2.14). Recently, a ZT ≥ 0.6 at 1000 

– 1100 K for 10 mol% La and 10 mol% Nb (La10Nb10)  co-doped bulk SrTiO3 

ceramics has been reported [158] which remains the highest value for bulk SrTiO3 to 

date.  

Co-doping of SrTiO3 involving other transition elements (e.g. V, Ta, W, etc.)  

for thermoelectric applications are also reported in the literature. The effect of 

vanadium (V) co-doping of Nb-SrTiO3 was investigated by full-potential density 

functional theory [159]. The results indicate that Nb and V concentrations linearly  



45 | P a g e  
 

Literature Review 

increased the carrier density, hence a potential tool for improving the  ZT. Wang et 

al [160] studied the thermoelectric performance of Sr0.9La0.1Ti1-xTaxO3; 0.0 ≤ x ≤ 

0.05,  synthesised by conventional solid state reaction method. Substitution with Ta 

decreased the power factor due to reduction in Seebeck coefficient. Although the 

thermal conductivity was reduced, resulting in a minimal value of 2.9 W/m.K at 1074 

K for x = 0.03, the overall thermoelectric performance is reduced with Ta doping.  

The highest ZT (0.29) at 1046 K is observed in Sr0.9La0.1TiO3 Ta-free ceramic. In 

another development, the thermoelectric properties of W-Nb co-doped SrTiO3 

ceramics were investigated [161].  Reduction in k and relative high Seebeck 

coefficient were observed due to carrier scattering, leading to a maximum ZT value 

of 0.28 at 1270 K for Sr0.97Ti0.8Nb0.17W0.03O3±δ.  

Generally, Sintering conditions also play important role in the improved 

electronic properties of doped or co-doped SrTiO3 ceramics. Sintering in reducing 

atmosphere such as N2/H2 gas at high temperature improves the electrical 

conductivity [162] but this is at the expense of a decrease in S and an increase in k 

[49], [139]. To make radical breakthrough in ZT, reducing the high k without altering 

the electronic transport properties is required.  

 

 

Figure 2.14. Temperature dependence of figure of merit (ZT) values for La, 

Nb and La-Nb co-doped SrTiO3 ceramics. [158]. The values (5, 10 and 20) 

attached to La and Nb indicate the mol% of the dopant elements in SrTiO3.   

 

https://www.quora.com/Whats-the-name-for-plus-or-minus-%C2%B1
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Doped SrTiO3 with Graphene Derivatives or Metallic Inclusions  

Apart from A and/or B-site doping, co-doping,  ionic doping mechanism 

(A/B-site cation vacancy), generation of oxygen vacancies and processing under 

reducing conditions,   incorporation of graphene or graphene oxide (GO), metallic 

elements or creation of second phases have been suggested as potential routes in 

improving the thermoelectric properties of doped SrTiO3 based ceramics.  

Improvement in TE performance due to addition of graphene  have been 

observed in conventional  materials (non-oxides) [163], [164], organic (polymeric) 

materials [165]–[168] and RE-doped SrTiO3 ceramics [169], [170]. In the study by 

Lin et al [169], incorporation of small amount of graphene into La-doped SrTiO3 

(LSTO) composites and sintered in Ar/H2 reducing gas produced final materials with 

multiphase structures and nano grains. As a result of the reduced thermal 

conductivity and improved power factor, the highest ZT (0.36 at 1023 K) was 

achieved by adding 0.6 wt % graphene, which is adjudged to be over 280 % higher 

when compared to pure LSTO.  Recently, TE performance of Nb-doped SrTiO3  

(STN) ceramics mixed with 0.6 wt % graphene oxide (GO), prepared by Humer-

based method and sintered in 10 % H2 - 90 % /N2 high reducing gas mixture was 

investigated [171]. The study shows that Sr deficiency with GO addition results in a 

high power factor (~ 1.98 mW/K2m) at 332 K and a maximum ZT (0.29 at 1160 K) 

for Sr-deficient, 10 wt % Nb-doped SrTiO3 (nSTN10 + rGO) as shown in Figure 

2.15.  ZT progressed from 0.17 at 1160 K for stoichiometric STN10 ceramics without 

GO to 0.24 at 1160 K when GO was added without Sr deficiency (STN10 + rGO) to 

0.29 at 1160 K when GO and Sr deficiency were created (nSTN10 + rGO).  
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Figure 2.15. Temperature dependence of figure of merit,  ZT of 

stoichiometric STNx and Niobium doped with 2% Sr deficient nSTNx 

ceramics sintered in 10% H2/90% N2 gas with Nb content x = 10 and 15% 

and their composites with rGO[171]. r implies addition of GO in reduced 

atmosphere.   

 

Thermoelectric properties of Sr0.9La0.1TiO3 ceramics with silver (Ag) 

metallic inclusions up to 15 %, prepared by hydrothermal method have been 

investigated [172], [173]. In these different but similar studies, increased electrical 

conductivity, enhanced Seebeck coefficient and reduced thermal conductivity, 

leading to improved figure of merit, ZT are observed. The decrease in thermal 

conductivity is attributed to an increased phonon scattering centres emanating from 

the precipitated second phase grain boundaries. Similarly, Qin et al [174] prepared 

Sr0.9La0.1TiO3/xAg compound (x = 5 wt. %, 10 wt. %, 15 wt. %, 20 wt. %) via  
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conventional solid state reaction method and sintered in Ar reducing atmosphere. 

The results revealed that addition of Ag increased the carrier concentration and 

accumulated at the grain boundaries (Figure 2.16), forming a complex percolating 

network. The network acts as electrical connections between the grains, leading to 

an increase in electrical conductivity, a decrease in thermal conductivity (1.4 – 3.4 

W/m.K) and a maximum ZT value of 0.30 at 883 K for x = 20 wt% composition. 

The k (1.4 – 3.4 W/m.K) value obtained in the study is smaller than the k (3.0 – 9.5 

W/m.K) observed in Sr0.9La0.1TiO3/xAg composites synthesized via hydrothermal 

method [173] and that for pure Sr0.9La0.1TiO3 (3.5 – 6.0 W/m.K) [174]. 

 

 

Figure 2.16. the schematic diagram of the complex percolating 

network formed by the accumulated Ag additive at the grain 

boundaries [174]. The network acts electrical connections between 

grains, causing an increase in electrical conductivity. 
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The limitation of Ag as a metallic additive in some materials have been 

reported in the literature [175], [176]. Diffusion along grain boundaries and 

consequent degradation of properties are seen in Bi1/2Na1/2O3 ceramics when Ag is 

utilized as an electrode [175]. The low melting point (1235 K) of Ag is considered 

to propagate diffusion especially during sintering , thereby hindering microstructural 

control [176]. In attempt to overcome the challenges associated with the use of Ag 

metallic additive and improve the thermoelectric performance, 

Sr0.8La0.067Ti0.8Nb0.2O3-δ containing Cu or Fe inclusions were investigated under 

reducing conditions [176]. The high melting points of Cu (1358 K) and Fe (1811 K) 

are considered advantageous in restricting diffusion, thereby paving way for 

microstructural control. The Cu and Fe metallic inclusions therefore increased the 

carrier concentration and carrier mobility resulting in an  increase in σ and PF up to 

75 % [176]. A progressive increase in ZT from 0.25 at 1000 K for the control sample 

(composition without metallic inclusion), to ZT of 0.36 at 900 K for Cu-containing 

composition and to an optimal ZT value of 0.38 at 1000 K for Fe-containing 

composition.  

Thermoelectric properties of Ti-doped Sr0.9La0.1TiO3 ceramics have been 

previously studied [177]. Titanium (Ti) as an electrically conductive, and chemical 

stable transition metal is expected to improve the electrical properties of the La-

doped SrTiO3. The results showed that the titanium was oxidized to form TiO2 during 

the initial heat treatment (calcination), hence unable to form a Ti-metal inclusion 

after sintering. Therefore, the TiO2 secondary phase co-existed with the 

Sr0.9La0.1TiO3 matrix in the sintered ceramics. The Seebeck coefficients increased 

from -163 (at 350 K) to -259 μV/K (at 1073 K) with a maximum ZT value of 0.144 

at 1073 K for 5 wt% Ti-doping.  

 

2.5 Structure of SrTiO3 

  

Pure SrTiO3 (STO) crystallizes in an ideal cubic perovskite structure at room 

temperature with a lattice parameter, a ~ 3. 905 Å (space group =  Pm-3m) and a 

wide band gap, Eg of ~ 3.2 eV [49], [178].  STO undergoes a phase transformation  
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from cubic (Pm-3m) to tetragonal (I4/mcm) structure at a temperature below 105 K 

as a result of the rotation of the TiO6 octahedra within the structure [49], [140], [179].  

 

 

2.5.1  Crystal Structure of SrTiO3 

 

Perovskites are ternary compounds with the general formula ABX3 where 

“A” and “B” are two different cations in equal ratio (with A > x2 the ionic radius of 

B) and “X” is an anion, which is usually oxygen (O). In an ideal cubic SrTiO3 

structure, “A” represents Sr2+ and “B” is the smaller Ti4+ ion. Sr2+ ions occupy the 

corner positions of the cube, while the Ti4+ ions occupy the centre with O2- (X) anions 

located at the edge centres of the cubic unit cell [180]. The schematic of cubic 

perovskite structure of SrTiO3 is shown in Figure 2.17. As shown in the structure of  

SrTiO3 (Figure 2.17), Sr2+ cations are arranged in cubo-octahedral coordination and 

are surrounded by twelve O2- anions. The Ti4+ ions are surrounded by six O2- anions 

which leads to the formation of TiO6 octahedra. By the introduction of dopant into 

the lattice, distortions from cubic to lower symmetries (size incompatibility) may 

occur. The measure of stability (degree of distortion) within the structure of 

perovskite-type ABO3 is defined by the Goldschmidt tolerance factor, t [180]–[183]:  

 

t =
rA+rO

√2(rB+rO)
                                                                                             2.31 

 

where rA, rB and rO are the ionic radii of atoms “A”, “B” and oxygen, respectively.  

For an ideal cubic perovskite such as SrTiO3, t = 1, rA = 1.44 Å, rB = 0.605 Å and rO 

= 1.40 Å. Lower symmetries are adopted when t < 1 or t > 1 [180]. This deviation 

from t = 1 results in distortion from the ideal perovskite structure. For example,  if 

the A ion is too small for the octahedral cage (t < 1) as dictated by the radius of the 

“B” ion, tilting  occurs with the intent to fill the unused space, thereby lowering the 

symmetry of the crystal structure [184].  For compounds with very low values of t,  
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an orthorhombic perovskite structure is formed, e.g. CaZrO3 (t = 0.914). When t >1, 

tetragonal (BaTiO3, t = 1.062) distortions occur or the ABC close packed stacking 

sequence is altered to create a family of hexagonal perovskite structures, such as 

BaMnO3 and BaNiO3 (t = 1.13). These distortions often occur due to doping or 

through the formation of solid solutions and can be used to tune properties of interest. 

 

 

 

Figure 2.17. Crystal structure of cubic perovskite SrTiO3 at room temperature 

showing the (a) octahedral coordination of Ti4+ cation and (b) corner sharing 

array of TiO6 octahedra [180]. Sr2+ ions are in yellow, Ti4+ ions in green and 

O2- ions in red.  

 
 

2.5.2  Electronic structure of SrTiO3 
 

The Ti4+ ion in SrTiO3 is a typical transition metal oxide having a d0 electron 

configuration. Donor doping of SrTiO3 is thought to partially fill its conduction band 

with electrons which results in a transition from d0 state to d1 electron configuration 

(Ti3+) thereby increasing the carrier concentration of the lattice. Undoped SrTiO3 is 

a band insulator at room temperature with a large band gap (3.2 eV) separating the 

valence from the conduction band [185]. Due to the six-fold coordination of Ti4+ ions 

by O2- anions, octahedral field splitting of Ti-3d states (five degenerate d-band) 

occurs [186], [187]. Figure 2.18 shows the schematic spatial (three-dimensional) 

distribution of the octahedral crystal field [186].  
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Figure 2.18. Diagrammatic representation of (a) spatial distribution of d-

orbitals (b) oxygen octahedral cage around Ti4+ (c) d-band energy splitting 

due to the octahedral crystal field [186]. 

 

  

Studies have shown that the large PF exhibited by SrTiO3 which is 

comparable to the conventional TE materials is attributed to the large orbital 

degeneracy of the Ti – d conduction band [187]. From band theory, the valence band 

is formed by the oxygen 2s and 2p state and it corresponds to the highest occupied 

molecular orbitals. The conduction band originates from the Ti – d states (mainly Ti 

– 3d t2g) and it corresponds to the lowest unoccupied molecular orbitals [187].   

 

2.6  Oxides with Adaptive Structures  
 

Magneli phases have recently been explored as potential TE materials. In Ti 

oxides, they constitute an homologous series of reduced titanium oxides [27]. The 

oxygen deficiency in the homologous series such as TinO2n-1 (4 ≤ n ≤ 11) leads to the 

formation of crystallographic shear (CS) planes [27], [188]. CS planes act as phonon 

scattering centres within the lattice which contribute to the decrease of thermal 

conductivity.  
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Tetragonal tungsten bronze (TTB) structure materials such as Nb8-xW9+xO47 

[189]–[192] and W-Nb-O alloy systems [193], [194] have been found to share 

similar structures with Magneli oxides. NaxWO3 was first reported in 1824 by 

Wӧhler  [195] but Magneli was the first to determine its structure using x-ray 

diffraction [196], [197]. Since this discovery, numerous compounds have been 

shown to crystallise with the TTB structure. The main elements or cations common 

in TTBs include alkali/alkali earth, rare earth, and transition metals [198], [199].  

 

2.6.1 Tetragonal Tungsten Bronze (TTB) Oxides 
 

Tetragonal tungsten bronze (TTB) oxide ceramics are the largest class of 

dielectrics after perovskites [197], [200], [201]. The TTB structure is a complex 

framework lattice with a distorted, corner-sharing oxygen-octahedra (B1O6 and 

B2O6) which forms three different interstices/tunnels or sites [197], [199], [200], 

[202], [203], [204]. These tunnels are square (also called perovskite), A1 with a 

coordination number of 12, pentagonal, A2 with 15-coordinated sites and 

trigonal/triangular (which is the smallest channel) C containing 9-coordinated sites. 

A typical TTB structure is represented with the general formula: 

 

 

[A12A24C4][B12B28]O30                                                                                2.32 

 

Generally, the A1 and A2 sites are occupied by metal cations of alkali/alkaline earth 

elements, p-block elements (e.g. Pb, Bi) or RE elements. C-sites are narrow and can 

be empty in most TTB compounds or occupied by small cations like Li+. B octahedra 

sites are often occupied by Ti4+, Nb5+ and Ta5+. Because of the capacity to 

accommodate large cations and possession of great flexibility (or degrees offreedom) 

for tuning the chemical composition, the TTB family shows excellent properties for  
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diverse applications [197], [202], [203]. These include electro-optic, pyroelectric, 

piezoelectric, semiconductivity (and metallic conductivity), superconductivity and 

high permittivity. A prototype TTB crystal structure showing the sites and the corner-

sharing oxygen octahedra is presented in Figure 2.19 [200]. 

 

 

 

 

Figure 2.19. (a) Tilted view of a prototype tetragonal tungsten bronze (TTB)  

structure showing multiple unit cells and the corner-sharing oxygen 

octahedra (b) a-b plane projection (// c-axis) illustrating the tunnels described 

by the corner-sharing oxygen octahedra [200]. 

 

 

 

2.6.2  Classification of TTB Oxides 
 

Tungsten bronze structures exist in cubic, tetragonal (type I and type II), 

hexagonal and orthorhombic crystal systems [205]. Tetragonal -I and tetragonal-II 

differs only in the rotation of the oxygen corner-sharing within the unit cell (Figure 

2.20) [206]. In this research, only tetragonal tungsten bronzes (type I with prototype 

symmetry, P4/mbm) will be studied in terms of structure-property relations since 

they are the focus of part of this thesis [198]. 
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Figure 2.20. Schematic of planar projection (a-b plane view) showing the 

difference between type I (a) and type II (b) tetragonal tungsten bronzes 

[206]. The blue   octahedra depict the portions that can be rotated to move 

from type-I to type-II. 

 

 

TTBs are classified into three;  stuffed, filled and unfilled based on the sites 

(A1, A2 and C) occupied by cations [197], [200], [207] . 

2.6.2.1 Stuffed TTB 

 
This class of TTB results when all the A (A1 and A2) and C sites are occupied 

by cations, e.g. K6Li4Nb10O30.  

 

2.6.2.2 Filled TTB 

 
In filled TTBs, all the 6 A-sites [A12A24] are occupied while C site remains 

empty. With this, the general formula reverts to: 

[𝐴12𝐴24][𝐵12𝐵28]𝑂30                                                                                 2.32 
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An example of a filled TTB includes Ba4Na2Nb10O30. Filled TTBs generally forms 

two distinct compounds; M4R2Ti4Nb6O30 and M5RTi3Nb7O30, where M = Sr or Ba, 

R = alkali/alkaline earth or RE cations such as Na, Ca, La, Sm, etc. [199]. 

 

2.6.2.3 Unfilled TTB 

 
For unfilled TTB, some of the A1 and A2 sites are vacant. Normally, 5 out 

of the 6 A-sites are occupied, e.g. SrxBa1-xNb2O6, (SrxBa1-x)5Nb10O30. In some 

unfilled TTBs, a vacancy (hole) is created within the 5 A-sites occupied by cations, 

e.g. Ba4Dy0.67Nb10O30 [207] and is refers to as “Empty TTB” [197].  

TTB compounds have also been classified using a geometric Goldschmidt 

tolerance factor, t [197] as stated in equation 2.29. Individual tolerance factors for 

A1 and A2 sites represented with tA1 and tA2, respectively are stated as follows [197], 

[208]: 

  

tA1 =
rA1+rO

√2(rB+rO)
                                                                                             2.33 

 

tA2 =
rA2+rO

√23−12 √3(rB+rO)
                                                                                 2.34 

 

tTTB =
tA1+2tA2

3
                                                                                            2.35 

 

Equation 2.35 is referred to as the effective tolerance factor for the entire TTB 

structure (tTTB) and it is obtained by combining equations 2.33 and 2.34.  This 

equation (2.35) is similar for perovskites as stated in equation 2.31. Therefore, tTTB 

is an index to determine the occurrence of a TTB structure with consideration given 

to the ions involved [197]. 
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2.6.3  Thermoelectric Properties of TTB Oxides 
 

Oxides are potential TE materials due to their cheapness or abundance, non-

toxicity and high chemical and/or physical stability when subjected to high 

temperatures.  However, high crystallographic symmetry (and small unit cells) 

associated with oxides lead to high thermal conductivity and low ZT [209]. In order 

to improve the TE efficiency via lowering of the thermal conductivity, materials with 

intrinsic phonon scattering centres such as Magneli phases and TTBs have recently 

attracted attention [192], [209]. The CS planes and the natural disorder inherent in 

Magneli phases and TTBs are regarded as intrinsic nanostructures [27], [209] and 

serve as barriers to phonon propagation. 

 The TE properties of Na8-xW9+xO47-δ (x = 0, 0.075, 0.1, 1, 2) TTB compounds 

were investigated [27], [209] with compositions exhibiting stability up to 1323 K, 

low thermal conductivity (1.6-2.0 W/m.K) , and high S = -240 μV/K (indication of 

n-type) at room temperature. The highest PF = 0.8 μW/cm. K2 and maximum ZT = 

0.043 at 973 K were observed in Nb6W11O47-δ (x = 2).  The highest ZT (0.043) for 

Na8-xW9+xO47-δ obtained in this study is very low compared to other n-type oxides, 

but the high Seebeck coefficient and very low thermal conductivity recorded show 

the potential of TTBs for TE applications. Lee et al [210] and Li et al  [211] 

independently investigated the TE performance of single crystal SrxBa1-xNb2O6-δ 

TTB compounds and reported a high PF (200 μW/m.K2) at 516 K parallel to c-axis 

and a ZT > 0.5 along the c-direction [200]. In a related study of TE properties of 

SrxBa1-xNb2O6-δ single crystal and ceramics, k = 1.92 W/m.K (400 K), PF = 40.8 

μW/cm.K2 (550 K), ZT = 1.12 (550 K) for single crystals; and k = 2.28 W/m.K (550 

K), PF = 7 μW/cm.K2 (550 K), ZT = 0.17 (550 K) for ceramics [32].  In the recent 

study of the TE properties of Nb8-xW9+xO47 (0<x<5) TTB ceramics, S = -95 μV/K, k 

= 2.6 W/m.K and ZT = 0.2 at 1173 K were reported for Nb4W13O47 (x = 4) 

composition [212]. 
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 With these TE results reported for TTB compounds, it is obvious to state that 

oxides with adaptive structures are potential candidates for TE applications [27].  

This is attributed in part but not limited to their complex structure, hence there is the 

possibility of tuning properties by cation substitution (and oxygen deficiency), [27], 

[209].  

 

   

2.7  RE2Ti2O7 Oxide Ceramics 

 

 Rare earth titanium oxide ceramics ,RE2Ti2O7 ( where RE = trivalent rare 

earth ions) have received a significant attention due to their robust crystal chemistry 

[213], and their thermal, electrical, optical, magnetic, and catalytic properties [214], 

[215]. RE titanates exhibit potential technological applications in fuel cells [214]–

[217]; sensors; fluorescence; catalytic activities [216]; thermal barrier coatings; high 

permittivity dielectrics, nuclear waste management [217]  and other related 

technological areas  [214], [215].  

 The stability of RE2Ti2O7 compounds is determined by the ratio of the RE- 

(A) and Ti-site (B), rA/rB cationic radii. As widely reported in the literature [213], 

[214], [218], [219], [220], RE titanates form a pyrochlore structure (Fd-3m) if the 

rA/rB range is 1.46-1.78. When the ratio decreases below 1.46, i.e. rA/rB < 1.46, a 

disordered fluorite structure (Fd-3m) is formed, while it adopts a monoclinic 

perovskite layered structure (P21) if rA/rB > 1.78. Generally, RE titanates with smaller 

atomic mass (La3+ - Nd3+) form monoclinic perovskite structures while others (Sm3+ 

- Lu3+) form cubic pyrochlore structures [213], [214]. 

 

2.7.1  La2Ti2O7 Ceramics 
 

 The study of electrical properties of lanthanum dititanate, La2Ti2O7 (LTO) 

ferroelectrics started over thirty years ago [221].  LTO exhibits high Curie  
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temperature, Tc >1500 oC [218], [221], [222] , excellent piezoelectric properties 

[213], [218], [221], non-linear optical and photocatalytic properties [213], [218], 

[221], [222]; and finds application in gas turbines at high temperature (>1000 oC) 

[222].  

 La2Ti2O7 belongs to the perovskite-like layered structure family with a 

homologous series AnBnO3n+2, where A = RE elements, B = titanium, and n (= 4 in 

case of LTO) is the number of octahedral units in the perovskite layers [218], [223]. 

At room temperature, LTO possesses a monoclinic unit cell with a space group of 

P21 and a corresponding lattice parameter a = 13.0150 Å, b = 5.5456 Å, c = 7.8170 

Å and β = 98.6o [223]. Above room temperature (at high temperatures), LTO 

undergoes a transformation.  For instance, at ~ 780 oC, it transforms to orthorhombic 

phase (CMc21) and changes to a paraelectric phase (CMcm) at 1500 oC [221], [222]. 

 The structure of LTO consists of discontinuous layers of corner sharing TiO6 

octahedra in the unit cell [218], [223], with La occupying interstitial positions 

between the octahedra [218]. Figure 2.21 represents the crystal structure of La2Ti2O7 

ceramics. Pure LTO has a wide band gap (Eg) of 3-4 eV [224], [225]. The size of Eg 

is dependent on the microstructure [224], morphology [225] and processing method 

of La2Ti2O7 [225]. 
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Figure 2.21. Crystal structure of Lanthanum dititanate, La2Ti2O7 [218]. Blue, 

red, and green balls correspond to La3+, O2- and Ti4+ ions respectively.  

 

 In comparison with many structure types, the thermoelectric properties of 

LTO and other related layered perovskites have received less attention. Recently, 

Khaliq et al [223]  reported a low thermal conductivity, k value (k ~ 1.3 W/m.K at 

573 K in pure La2Ti2O7, and very low values of ~ 1.12 and ~ 0.93 W/m.K for Sr- and 

Ta-doped La2Ti2O7, respectively at 573 K. These low k values are attributed to its 

large unit cells, large atomic mass, crystal anisotropy and complex crystal structure.  
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2.8 Impact of Processing Conditions on TE Properties  

 Thermoelectric performance of semiconductors, ceramics, organics and other 

related materials have been widely studied in terms of the effects of different dopants, 

inclusions/additives, doping mechanisms, processing conditions (and parameters), 

defect engineering and micro/nanostructural engineering [149], [226]. As already 

discussed, the essence of utilizing these strategies is to seek the best approach to 

boost the electronic transport (power factor), minimize or restrict heat flow (phonon 

scattering) and optimize the efficiency (ZT) necessary for thermoelectric application. 

Furthermore, researchers have suggested that creation of both cation and anion 

vacancies in the doped materials with sintering in reducing atmosphere is a 

promising approach to enhance the TE properties [149], [162], [226]. 

 SrTiO3 ceramic (which is the main focus of this thesis) has a high thermal 

conductivity and it’s detrimental to TE applications. However, SrTiO3 has received 

a considerable attention due to its high Seebeck coefficient [223]. For example, 

Kovalevsky et al [151] in their study utilized highly reducing conditions and  

achieved a high ZT (~ 0.42) for RE-doped SrTiO3 ceramics. The optimized ZT 

obtained is attributed to generated Ti3+, oxygen vacancies, cation (A-site) vacancies 

and oxygen-rich crystallographic shear planes.  

 In view of the promising results obtained by Kovalevsky et al [151] and other 

investigators, La-Sm co-doped SrTiO3 (perovskite), Sm-doped Sr5LaTi3Nb7O30 

(TTB) and Nb-doped La2Ti2O7 (PLS) ceramics were prepared via solid state reaction 

technique and processed under reducing conditions (5% H2-95% N2) to create 

oxygen deficiency [176]. Co-doping (using La3+ and Sm3+ cations) was utilized to 

validate the findings that mass contrast (atomic mass difference) and nanoscale 

intergrowths could influence the thermal conductivity [223]. It is also in furtherance 

to test the proposition that dopants with mass contrasts and ionic radii dissimilar to 

the matrix cation (in this case, Sr2+) would enhance phono scattering, thus reduce the 

thermal conductivity. 
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The importance of low thermal conductivity in thermoelectrics necessitated 

the study of TTB and PLS compounds in this research. The inherent crystallographic  

shear planes in Magneli phases and TTBs are intrinsic phonon scattering centres [27], 

[209] and thus serve as barriers to phonon propagation. In addition, TTB and PLS 

compounds possess large unit cells when compared to perovskites which amount to 

low thermal conductivity. Due to the multiple layers of perovskite units in PLS, it 

exhibits anisotropy and eventual low thermal conductivity. 
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Chapter 3: Experimental Procedure 

3.1 Introduction 

 

 In this chapter, a description of the experimental procedures used in this work 

is given. It starts with the processing of the raw materials (starting powders), 

synthesis of the doped ceramics, followed by the methods used in the sintering and 

preparation of samples for analysis. 

 The processing method applied in this project is solid-state reaction (SSR). 

SSR is one of the oldest and most widely used approaches in preparing 

polycrystalline solid materials such as oxides. It is an effective industrial processing 

approach to obtain micro- or meso size powders [1], [2]. For nanoparticles, 

hydrothermal and wet chemical reactions are required [1]. SSR is a chemical reaction 

involving the mixture of the starting materials (reactants) as powders at high 

temperatures in the absence of a solvent. Stoichiometric amounts of the starting 

powders are mixed, ball milled and subjected to an initial heat treatment, known as 

calcination. The calcined powders are pressed into pellets and sintered in a furnace 

to form dense polycrystalline ceramics. 

 

3.2 Ceramic Processing 
 

3.2.1 Powder Preparation  

 

 Prior to use, all the starting materials; strontium carbonate, SrCO3 (99.90 %, 

Sigma-Aldrich, UK), titanium (IV) oxide, TiO2 (99.90 %, Sigma-Aldrich, UK), 

lanthanum (III) oxide, La2O3 (99.99 %, Sigma-Aldrich, UK), samarium (III) oxide, 

Sm2O3 (99.90 %, Stanford Materials Corporation, USA) and niobium (V) oxide, 

Nb2O5 (99.5 %, Stanford Materials Corporation, USA) were a dried. SrCO3 powder 

was dried in a chamber furnace at 180 oC for 24 hours. TiO2, La2O3, Sm2O3, and  
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Nb2O5 powders were dried in a clean chamber furnace at 900 oC for 8 hours and 

cooled to 200 oC. All dried powders were transferred to a vacuum desiccator and 

allowed to cool to prevent adsorption of moisture. Table 3.1 shows the starting oxide 

powders used in this study with their manufacturers, percentage purity and drying 

temperatures. 

 Stoichiometric proportions of the dried powders were weighed using a digital 

analytical weighing balance to a precision of ± 0.0001 g based on compositions 

shown in Table 3.2. Each composition was mixed using a ball mill in isopropanol 

(propan-2-ol, C3H8O) with 10 mm diameter yttria -stabilized zirconia (YSZ) milling 

media for 24 hours. After milling, the slurry was dried at  80 oC, sieved through a 

250 μm mesh and calcined at 1423 – 1573 K for 6, 8 or 15 hours in air or 5 % H2/N2 

mixed gas (depending on the composition) in an alumina crucible [3]. Calcination is 

important in order to decompose any carbonate present in the mixture and drive off 

absorbed moisture and volatile constituents, thereby obtaining a homogenous mix 

with smaller particle sizes. 

 

Table 3.1. Starting materials, percentage purity and drying 

temperatures. 
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3.2.2 Pellet Preparation and Sintering 

 

 The two most common laboratory-based consolidation techniques to obtain 

a sintered ceramics are uniaxial pressing and/or cold isostatic pressing [3]. In this 

work, only uniaxial pressing method was used. Uniaxial pressing involves loading 

of finely grained, calcined powder into a cylindrical or oblong steel die and 

application of pressure to compact the powder. The pressure is applied along one 

axis using a hydraulic press handle [3]. Prior to application of the pressure, it needs 

to be tested in order to select the suitable compaction (low, moderate or high) for 

each calcined powder. For  example,  a low pressure compacted powder could lead 

to weak mechanical green body, hence difficult to be removed from the die, while 

high compaction leads to end-capping defect in the green body [4]. The calcined 

powders (~ 2 g per disc or bar pellet) were mixed with 5 wt.  % poly vinyl alcohol 

(PVA) binder, ground and pressed into a 20 mm diameter (≤ 2 mm thickness) disc 

or 40 x 5 x 3 mm bar pellet in a uniaxial press using 31.2 MPa of applied load for ~ 

1 minute. 

The green pellets were placed in an alumina narrow boat-shaped crucible and 

pre-sintered in air at 873 K for 1 hour to burn-off the binder. It was followed by 

sintering the samples in air or in flowing 5 % H2/N2 gas at 1673 or 1773 K for 6 or 

8 hours depending on the sample or composition. Heating and cooling rates of 5 

oC/min and 10 oC/min, respectively were used. The calcination conditions 

(temperature and atmosphere) for the 5 % H2/N2 gas sintered compositions are 

presented in Table 3.3. Air sintered pellets were placed on platinum (Pt) foil in the 

crucible to prevent the pellets from reacting with the alumina crucible. For samples 

sintered in 5% H2/N2 gas, Pt foil was not used since it melts at high temperature in 

this atmosphere. 
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Table 3.2. Fabricated compositions in the La-Sm, Sm and Nb-doped 

ceramics 

 

 

3.2.3 Polishing and Density Measurements  

 

 The sintered ceramics were wet polished with metallographic abrasive papers 

(120, 240, 400, 800, and 1200 grits in decreasing order of roughness) to remove 

surface impurities and produce smooth (and flat) surface samples. In carrying out 

this simple operation, care was taken to avoid introduction of non-uniformities 

(inconsistencies) in thickness of the samples.     

The density of sintered ceramics is commonly determined using the direct 

measurement (geometric) method or Archimedes method. The experimental 

densities of the samples were determined by applying Archimedes principle using an 

electronic digital density balance (Mettler-Toledo AG Balance, Laboratory & 

Weighing Technologies, CH-8606 Greifensee, Switzerland) to an accuracy of 

±0.0001 g. First, the temperature of the distilled water contained in a beaker used for 

the measurement was read (and recorded) from the thermometer inserted therein. 

Each of the samples was weighed in air, removed, and immersed in a distilled water 

and weighed. The density was automatically calculated using the following equation: 

https://www.quora.com/Whats-the-name-for-plus-or-minus-%C2%B1


86 | P a g e  
 

Experimental Procedure 

 

𝜌𝑒 = 𝜌𝐻20 ∗
𝑚1

𝑚1−𝑚2
                                                                                              3.1 

 

where: ρe is the experimental density (g/cm3) of the sample; ρH20 is the density 

(g/cm3) of distilled water at the experimental temperature; m1 is the mass (g) of 

sample weighed in air and m2 is the mass (g) of sample weighed when immersed in 

distilled water. 

Because direct measurement method relies on the geometry of the sample, 

any error recorded in the length, width, thickness or radius will be integrated double 

fold into the volume, thereby inducing a high percentage error (1-2 %). Archimedes 

method, on the hand is unsuitable to give accurate or reliable result for porous (low 

density) samples [3]. Uncertainties in density measurement using Archimedes 

principle method are limited to errors due to measurement of weight of samples. 

Therefore, accurate measurement of weight could limit these errors. The typical 

uncertainty in the resultant density value for this method is ±0.05 %. 

 

 

 

 

 

 

 

 

 

 

https://www.quora.com/Whats-the-name-for-plus-or-minus-%C2%B1


87 | P a g e  
 

Experimental Procedure 

 

 

Table 3.3. Heat treatment conditions for H2/N2 gas sintered compositions 

 

 

3.3 Structural and Microstructural Characterisation 

 

3.3.1 Particle Size Analysis (PSA) 

 

 Particle size distribution to determine the particle diameters of the raw 

materials and calcined powders after ball milling was carried out using a Mastersizer 

3000 laser particle size analyser (Malvern Instruments Limited, Worcestershire, 

UK). A typical laser diffraction system such as Mastersizer 3000 is made up of three 

main systems [5]: optical bench; sample dispersion unit and instrument software. 

The optical bench is the measurement area through which the dispersed powder 

sample passes, and the laser beam illuminates the particles while the intensity of 

scattered light by the particles is accurately measured.  The sample unit is designed 

to hold the sample (either wet or dry) and ensures that the correct concentration of 

the particles is channelled to the optical bench. The wet sample dispersion unit uses 

a liquid dispersant, e.g. distilled water, while a dry sample dispersion unit suspends 

the sample in a flowing gas stream (dry air). 
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The instrument software controls the system – controls the measurement process, 

analysis the scattering data generated and calculates the particle size distribution of 

the sample. A typical optical layout of a laser diffraction instrument is shown in 

Figure 3.1.  

 About 0.2 g of each sample powder was dissolved in distilled water. After 

initializing the analyser, the background was measured, and the dissolved powder 

was dispersed into a 500 ml beaker filled with distilled water which was placed in 

the wet sample dispersion unit. The dispersed powder was de-agglomerated for about 

30 seconds using the ultrasonic unit of the analyser. Finally, the measurement 

commenced and automatically measured particle size to an accuracy of ±0.001 μm. 

 As the beam passes through the dispersed particulate sample, the angular 

intensity of the scattered light relative to the beam was measured. The scattered data 

were collected and analysed by the instrument software. The size of the particles that 

created the scattering pattern was calculated using the Mie theory of light scattering 

[5]. The Mie theory requires the optical properties (mainly the refractive index) of 

both the dispersant and the measured sample. Five measurements on each sample 

were repeated and out of which the average particle diameter was determined. The 

particle size was reported as a volume equivalent sphere diameter. The uncertainty 

in the particle size distribution measurements using the laser diffraction Mastersizer 

3000 analyser is as low as ±0.6 % while the repeatability in the data is ±0.5 %.  
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Figure 3.1. Schematic of a typical laser diffraction instrument showing the 

optical layout [5]. 

 

 

3.3.2 Thermogravimetric Analysis  
 

Thermogravimetric analysis, TGA (or simply thermogravimetry) is a branch 

of thermal analysis that studies the change in mass of a sample as a function of 

temperature or time when subjected to a controlled temperature and atmosphere [5], 

[7]. TGA to determine the rate of oxygen uptake (weight variation) and thermal 

stability of samples in air at room temperature to 1000 oC was carried out using 

PerkinElmer Pyris 1 TGA (PerkinElmer Instruments, Norwalk, USA) computer-

controlled analyser. 

The sample pan (supported with precision or microbalance) of the analyser 

operates with a high resolution (sensitivity) and can detect a mass change as small as 

0.1 μg up to a maximum capacity of 1300 mg. The furnace uses Pt/30 % Rh elements 

and change in weight of the ceramic samples were measured in air with a 5 oC/min 

heating rate up to 1000 oC and a 5 oC/min cooling rate to room temperature.  
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3.3.3 X-Ray Diffraction  
 

X-ray diffraction (XRD) is a non-destructive technique used for identification 

of crystalline materials (in powdered and solid forms), qualitative analysis and 

determination of the phases present [8]. X-rays are electromagnetic radiation with 

high frequency (~ 1018 Hz), low wavelength (~ 10-10 m = 1 Å) and energies in the 

range of 100 eV-1000 KeV. An anode (a major component of x-ray tube where the 

x-rays are produced) converts the energy of the electrons (electronic energy) into x-

rays and dissipates the heat produced in the process. For an effective performance, 

the anode materials are required to be metallic (i.e.  conduct electrons), possess high 

melting point and produce characteristic wavelengths of about 0.5 to 2.3 Å. Typical 

anodes are chromium (Cr), iron (Fe), cobalt (Co), copper (Cu) and molybdenum 

(Mo) (Table 3.3). A Cu anode is the most commonly used in powder diffraction since 

its wavelength (λ) is comparable with the inter-atomic distances (~ 1.5 Å) required 

in XRD while Mo is preferred in single crystal diffraction. 

Crystal (lattice) planes are described by notations called Miller indices. The 

Miller indices refer to the reciprocal of the points at which a, b, and c axes of the 

lattice planes are intersected by the plane, denoted h, k, and l from a defined origin. 

These lattice planes are arranged in space to form a series of parallel planes which 

are separated from each other by an interplanar spacing d. When an x-ray beam of 

wavelength λ is incident on the crystal planes of a crystalline material at an angle θ, 

a constructive interference of the diffraction occurs when Bragg’s law (Figure 3.2) 

is satisfied, i.e. when AC+BC is equal to a whole number of wavelength (nλ). 

Bragg’s law is expressed as: 

 

 

𝑛λ = 2dsinθ                                                                                                3.2 

 

where n is an integer representing the order of the diffraction peak. The signals 

generated are then converted into peaks (fingerprints) by the diffractometer.  
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Table 3.4. Characteristic wavelengths of common anode materials used 

in XRD operation [9]. Kα is the average value derived from λaverage = 

(2λKα1 + λKα2)/3.  Kα1 and Kα2 are two characteristics components of Kα 

radiation. 

 

 

 

 

Figure 3.2. Schematic diagram of an X-ray beam interacting with crystal 

planes and illustrating Bragg’s law. 



92 | P a g e  
 

Experimental Procedure 

In this work, the crystal structures of starting materials, calcined powders and 

the crushed sintered pellets were characterized by powder x-ray diffraction with Cu 

Kα radiation with λ = 1.5406 Å using Siemens D5000 x-ray diffractometer (Siemens 

Analytical X-ray Instruments Inc., Madison W1, 53719) and D2 phaser 

diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) operated with 40 kV 

voltage, 40 mA current and 30 kV voltage, 10 mA current, respectively.  

A specimen holder was filled with the powder sample and gently pressed down with 

a glass slide so that the top of the sample is on the same level with the top of the 

specimen holder. This simple precaution is necessary to prevent “specimen height 

displacement error”. After loading the sample into the diffractometer, the scan was 

conducted across the 2θ range of 20 – 80 degrees with a step size of 0.01o or 0.02o at 

a scan rate of 1o/min. Phase identity and purity of the collected data were analysed 

using the “Bruker Eva COD” and “ICDD Sleve+ PDF-4+” software [10], [11]. The 

theoretical density, ρth was calculated from the equation below [12]: 

 

ρth =
(FW∗Z∗1.66)

V
   ,                                                                                                        3.3 

 

while the relative density, ρr (%) was determined from the experimental density over 

the theoretical density [13];  

 

𝜌𝑟 =
𝜌𝑒

𝜌𝑡ℎ
∗ 100                                                                                              3.4 

 

where: FW is formula weight of the sample (g/mol); Z is the number of atoms per 

unit cell and V is the cell or lattice volume of the sample (Å3) which was calculated 

using the lattice parameter constants from XRD data of the crushed pellets. The 

errors associated with the calculation of lattice parameters are limited by specimen 

displacement, offset of 2Theta (2θ) degrees and peak position which amount to 

uncertainties of ±0.001 Å. 

https://www.quora.com/Whats-the-name-for-plus-or-minus-%C2%B1


93 | P a g e  
 

Experimental Procedure 

 

3.3.4 Scanning Electron Microscopy (SEM) 

 

 A scanning electron microscope, SEM is an instrument used for the 

observation of solid specimen surfaces. According to Australian Microscopy & 

Microanalysis Research Facility online learning module [14], SEM is a tool for 

seeing invisible worlds of microspace (1 micron = 10-6 m) and nanospace (1 

nanometer = 10-9 m). SEM uses a focussed incident electron beam of high energy to 

generate a variety of emitted signals when it strikes the specimen surface. SEM uses 

these signals to observe, analyse and interpret information such as microstructure, 

chemical composition, morphology (texture) and topography (structural shape) of 

specimens at magnifications ranging from 10x to ~ 300,000x.  

When the primary (incident) electron beam strikes the sample, it penetrates 

to a depth ~ 1 μm forming  a limiting interaction  volume from which several signals 

(radiations) are emitted as shown in Figure  3.3(a). These signals include secondary 

electrons (SEs), backscattered electrons (BSEs), characteristic x-rays, 

cathodoluminescence (photons) and auger electrons. Secondary electrons (SEs) 

originate from the atoms of the sample and are released when electron beam interacts 

inelastically with lower energy shell of sample elements. The electrons are released 

from topmost regions (~ 15 nm) from the sample surface [14]. SEs have low energy 

(< 50 eV), and very useful for the inspection of the topography of the sample surface. 

However, BSEs originate from deeper regions of the sample and are reflected back 

after elastic interactions between the primary electron beam and the sample nucleus. 

Backscattered electrons show high sensitivity to atomic number of sample elements. 

The higher the atomic number (Z) of an element, the brighter the sample image 

appears.  For example, iron, Fe atoms (Z = 26) scatter more electrons back towards 

the detector than the lighter aluminium, Al (Z =13) atoms, hence shows a brighter 

SEM image.  

 Typically, SEM consists of three main components [14]: a microscope 

column; ancillary equipment unit and the computer device.  The microscope column 

contains the electron gun at the top, followed by the column, magnetic lens system  
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and the specimen chamber at the base. The electron gun generates the electrons, 

while the “column” is the channel through which the electron beam travels. The 

magnetic lens system (comprising the condenser lenses, deflection, or scan coils and 

final or objective lenses) processes the electron beam by controlling its intensity and 

brings the electron into focus on the specimen. The specimen chamber houses the 

specimen and maintains a high vacuum condition in order to minimize scattering 

(attenuation) of the electron before reaching the specimen. Generally, the electron 

gun, lenses and specimen chamber must be under a high vacuum for an efficient 

operation of the SEM. This condition is expedient because an electron cannot freely 

travel through air.  

 The ancillary equipment unit includes the pump system (to keep the system 

under vacuum), water chilling system and the electron detectors. The water chilling 

system maintains the magnetic lenses at a constant temperature of 20 oC during the 

operation. When the chiller fails, the lenses heat up and the SEM will automatically 

shut down.   Electron detectors collect the generated signals from the specimen. The 

collected signals are converted to photons using a scintillator, amplified in a photo 

multiplier, hence converted to electrical signals [14]. The computer device drives the 

SEM and displays the image on the viewing screen. A simplified SEM operational 

set up is shown in Figure 3.3(b). The quality of an image produced in SEM is 

controlled by the properties of the sample, sample preparation technique and 

instrumental parameters such as accelerating voltage, scan speed, working distance 

and spot size. 

 Samples for microstructural examination were prepared by grinding and 

polishing to a mirror finish on a diamond polishing wheel. The polished samples 

were thermally etched at 90 % of the sintering temperature in air or 5 % H2/N2 gas 

(depending on the processing atmosphere) for 30 minutes to reveal the grain 

structures. Thermally etched samples were mounted on aluminium pin-type stubs 

with adhesive tapes. Powder samples of the starting materials and calcined powders 

were dispersed in acetone and deposited on adhesive tape mounted on pin-type stubs 

and allowed to dry. 
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 Samples prepared for SEM were carbon coated using Edwards vacuum 

carbon coater (Edwards High Vacuum Ltd, England) to make them conductive and 

maximise secondary electron signal from the specimen. Conductive samples prevent 

“charging”.  Charging is a build-up of negative charge at the point where the electron 

beam strikes the sample surface. Charging causes uncommon effects such as 

abnormal contrast and image deformation. The edges (sides) of the mounted samples 

are obviously poorly coated. Therefore, conductive silver-based paste (Agar 

Scientific Ltd, Stansted, UK) was applied on the edges. After carbon coating of the 

samples, the microstructures were examined using XL 30 S-FEG (Philips/FEI) at an 

accelerating voltage of 5-20 kV. Secondary electron images were obtained from the 

sample surfaces. 

 The average grain size in the  samples was calculated using the line-intercept 

method [15], [16] after Mendelson model [17]. The procedure involves taken 

measurements from the photomicrograph of the SEM images. A transparent overlay 

or intersection consisting of one or more test lines of known length and placed over 

the micrograph.  The number of intercepts between the test lines and grain boundaries 

are counted.  Afterwards, the average grain size, Đ is calculated using the following 

equation [16]:  

 

Đ = 1.56
C

MN
                                                                                                         3.5 

   

where: C = total length of the test line; N = number of intercepts; M = magnification 

of the photomicrograph and 1.56 is the constant of proportionality (correction factor). 

This method, however, is suitable only for a full dense single-phase microstructure.  

For a multi-phase microstructure, the defects (secondary phase, porosity, etc) may 

have an effect on the accuracy of the measurement. 
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Figure 3.3. Schematics of  (a) scanning electron microscope operational set-

up and (b) Primary electron beam-Sample interaction [14]. 

 

 

3.3.5 Energy Dispersive X-Ray Spectroscopy (EDX) 

 

 Energy dispersive spectroscopy (EDX) is a chemical microanalysis technique 

linked to SEM to analyse characteristic x-ray spectra by measuring the energies of 

the x-rays. As the electron beam strikes the sample, the EDX technique detects the 

x-rays emitted and characterizes the elemental composition of the sample. The x-

rays are generated within the whole region of the interaction volume as shown in 

Figure 3.3(a). As an electron is removed from the inner shell of the atom by the 

incident primary electron beam, the atom becomes ionized and unstable. The atom 

regains its stability when an electron from an outer shell fills the inner shell vacancy, 

and in so doing, x-ray photon is emitted. The energy of the emitted photon is 

characteristic of the energy difference between the two energy states for the atom 

[18].   

 EDX system is  made up of three major components; x-ray detector, pulse 

processor and analyser. The x-ray detector identifies and converts the x-rays into 

electronic signals while the pulse processor measures the electronic signals. In 

measuring the electronic signals, the energy of each x-ray is identified. The analyser 

finally displays and interprets the x-ray data. 
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The data generated for collection consists of spectra with peaks 

corresponding to all the different elements that are present in the sample. The 

software (analyser) enables auto-identification of the peaks and calculation of the 

atomic percentage of the elements detected.  These spectra together with the atomic 

percent of the elements confirmed  in each of the samples are collected.  

Sources of errors  associated with EDX analysis are related to the sample,  

SEM, EDX detector and the data software [14]. Therefore, the accuracy of EDX 

analysis depends on the sum of all these errors, hence difficult to quantify. The 

combined uncertainties limit the precision of EDX analysis to ±2 %  [14] 

In this work, the EDX analysis was performed using INCA Energy EDS X-

ray Microanalysis System (Oxford Instruments Analytical, UK) comprised of INCA 

EDS detectors, INCAx-stream pulse processors and INCAEnergy software and 

linked to Philips XL 30 S-FEG SEM. 

 

3.4 Thermoelectric Characterisation 

 

3.4.1 Electrical Conductivity (σ) and Seebeck Coefficient (S) 

 

 The electrical conductivity and Seebeck coefficient of the samples were 

measured simultaneously by employing the Van der Pauw four-point probe method 

(commonly known as four-point probe method). The four-point probe method was 

first proposed in 1916 by Frank Wenner to measure the earth’s resistivity [19]. It was 

later used by Valdes in 1954 for measuring semiconductor wafer resistivity [20].  

Four-point probe method is preferable to other conventional methods to measure the 

resistivity of low resistive (conductive) samples [3]. It provides less internal 

resistance and a better accuracy. The four-point probe method involves bringing 

four-independent electrical terminals (probes) in contact with a sample surface of 

unknown resistance [21]. Two of the terminals (outer probes) are utilized for 

sourcing current (current contacts). A pre-set electrical current is passed through the 

outer probes from an external source. The other two terminals (inner probes) are used  
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for measuring the resulting voltage drop (voltage contacts) across the surface of the 

sample. To obtain reliable data, the four-point probe method requires the sample to 

be homogeneous (devoid of holes or cavities) and flat (constant thickness) [22].  

A rectangular-shaped sample of about 20 mm in length, 3 mm in width and 

≤ 2 mm in thickness or a circular-shaped pellet of 16 mm in diameter with ≤ 2 mm 

thickness was prepared for electrical conductivity and Seebeck coefficient 

measurements. The Van der Pauw four-point probe method was employed for the 

simultaneous measurements of the electrical conductivity and Seebeck coefficient 

under identical conditions using a Netzsch SBA 458 Nemesis (NETZSCH-

Geratabau GmbH, Germany) Seebeck coefficient and electrical conductivity 

analyser. The sample was placed with both ends on a sample support in the carrier 

system unit of the Nemesis measuring instrument. The carrier system enclosed in a 

furnace is constructed in such a way to measure simultaneously the Seebeck 

coefficient and electrical conductivity of solid state materials using two 

thermocouples and two current pins arranged in a four-linear electrical terminals 

[23], [24]. The carrier system contains a sample support which has two micro heaters 

(to generate a temperature gradient, ΔT between both ends of the sample), two 

current pins (outer probes) and two thermocouples (inner probes) (Figure 3.4). In 

SBA 458 Nemesis instrument [23], the distance between the current pins is 11.50 

mm, while the distance between the  thermocouples is 8.25 mm.  

 To initiate the measurement process, a pre-set program of temperature steps 

(room temperature to 700 oC) was set up, and the furnace purged with argon gas. As 

the furnace was heated, it followed the pre-set temperature steps and measured the 

electrical conductivity on reaching the temperature using the current pins. Thereafter, 

the micro heaters generated a temperature gradient within the sample thereby 

measuring the resulting voltage (ΔU) using the thermocouples and the Seebeck 

coefficient (S = ΔU/ ΔT) calculated. This procedure was repeated automatically at 

every pre-set temperature until the maximum temperature (973 K) was reached. The 

furnace was allowed to cool down to room temperature before removing the sample.  

The uncertainty in the electrical conductivity and Seebeck coefficient 

measurements using the SBA 458 Nemesis instrument is as high as ±10 % while the  
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repeatability in the data is ±7 % and ±3 % for σ and S, respectively. However, the 

probes (current pins and thermocouples) of the Netzsch Nemesis risk degradation 

emanating either from aging or reaction with impurities within the sample or lack of 

contact with the sample. In order to determine the proper alignment of the data, 

multiple heating and cooling cycles are undertaken and, in some instances, the probes 

are properly cleaned or replaced.  

 

 

Figure 3.4. Simultaneous electrical conductivity and Seebeck coefficient 

measurement set up for the SBA 458 Nemesis instrument in the temperature 

range between room temperature and 700 oC [23]. It allows samples of 

different geometries (square, rectangle, round/disc and strips) to be 

measured. 

 

 

3.4.2 Thermal Conductivity   

 

 The commonly used techniques for measuring the thermal conductivity of 

bulk materials include steady-state absolute method, comparative technique, laser 

flash diffusivity (LFD) method and transient plane source (TPS) method [25]. In this 

work, LFD method was used. 
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Laser flash method utilizes non-contact, non-destructive temperature sensing 

to achieve a high precision [25]. The LFD method was first introduced by Parker et 

al  in 1961 [26] and has remained a preferred method for researchers of 

thermophysical properties of materials and is the most common method for the 

determination of thermal conductivity of bulk ceramics [3]. A typical arrangement 

of LFD method is shown in Figure 3.5. It uses instantaneous heat source (laser or 

xenon flash) to heat up the sample’s front side, and a high infra-red (IR) detector to 

measure the time-dependent temperature rise at the rear (back) side [25]. Thermal 

diffusivity values are computed from the temperature rise versus time data curve 

(Figure 3.5b). The higher the thermal diffusivity of the sample, the faster the heat 

transfer and temperature rise on the rear side. The heat conduction is one dimensional 

with the presumption that no lateral heat loss occurs.  

 For a good detector signal to be obtained in a laser flash system, the test 

sample must not be transparent to IR radiation and/or reflective to visible light, but 

required to exhibit excellent emission-absorption capacity [27]. Unfortunately, most 

materials in nature do not fulfil these important criteria, e.g. most polymers and 

glasses are transparent to IR radiation while metals are highly reflective to visible 

light. Therefore, prior to LFD method measurement, all samples are required to be 

coated in order to improve emission-absorption properties and optimize the signal-

to-noise ratio [27]. The sample is either coated with graphite or sputtered with gold. 

Graphite is commonly preferred as the standard coating film. It is applied by spraying 

a layer of graphite on both sides of the sample. The graphite layer acts as an absorber 

on the front side (to prevent the penetration of laser beam into the sample) and acts 

as an emitter on the rear side (to prevent viewing of the IR detector into the sample) 

[28]. 
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Figure 3.5 ( a) Schematic measurement set up for the laser flash diffusivity 

(LFD) method. A light source (laser or flash) heats the front side of the 

planar-shaped sample and an IR detector measures the resulting temperature 

rise of the rear surface of the sample.( b) An exemplary illustration of a 

measured time-dependent temperature rise data curve [25]. 

  

The thermal conductivity measurements were performed using a thermal 

properties analyser (Anter Flashline TM 3000, Pittsburgh, PA 15235, USA) with 

High Speed Xenon Discharge (HSXD) pulse source and IR furnace operated with 

nitrogen gas. A square sample of 10 x 10 mm with ~ 1.5 mm thickness was prepared 

for the measurements.  The density of the sample measured using Archimedes 

method was keyed into the program software. The sample was cleaned with 

isopropanol, coated with graphite aerosol on both sides and allowed to dry. The 

prepared sample and a thermographite reference material were placed in different 

sample holders and positioned on a sample chamber (carousel) aligned with graphite 

foil located in the furnace. Thermographite is noted for its stability and well 

documented thermophysical properties, hence it is used as a common reference 

material in LFD method. 

 As the furnace was heated, it followed predetermined temperature steps 

(room temperature  to 700 oC). At each temperature, the sample surface (front side)  
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was irradiated with energy pulse from the HSXD. The energy pulse in turn resulted 

in a homogeneous temperature rises at the sample surface. The resulting temperature 

rise of the sample rear surface was measured by a high speed IR detector. Thermal 

diffusivity and specific heat values of the samples were then evaluated from the time-

dependent temperature rise data (signal) generated. Combining the thermal 

diffusivity (α), specific heat capacity (Cp) and density (ρ) values, the total thermal 

conductivity (k) of the sample was calculated using the following equation with 

expanded uncertainty of ± 4 % for Anter Flashline thermal properties analyser: 

 

k(T) = α(T) ∗ Cp ∗ ρ(T)                                                                         3.6 

where T is the predetermined temperature. 

 

The determination of k using the laser flash system is the most significant 

source of error for the calculation of thermoelectric figure of merit. This is obvious 

because, measurement of k involves the integration of density and specific heat 

capacity data which have their own errors. To minimize the uncertainty resulting 

from density measurement via Archimedes principle, use of high density samples are 

encouraged.  Porous samples can absorb the liquid, leading to an overestimation of 

the density values [29]. In as much as graphite coating of the sample prior to 

measurement is pertinent to ensure excellent emissivity and absorption of the laser 

impulse and detector signal [27], [29] , thin coatings are required for reliable 

diffusivity data. Excess graphite coatings of samples could cause errors [29]. In 

controlling the errors inherent in Cp measurement, the thickness of the sample should 

be thin enough to allow the value of t1/2 to be ≤ 0.3 s, thereby minimizing heat losses 

[3]. t1/2 is the time required of the temperature to increase to half-maximum, and it is 

utilized in calculating the thermal diffusivity [29].  With these measures in place, the 

errors in ZT can be minimized. However, the accuracy and percent errors associated 

with the individual  measurements of σ, S and k lead to a final uncertainty of ±14 % 

in ZT. 
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Chapter 4: Powder Characterisation  

4.1 Characterisation of Raw Powders 

 

Solid state reaction technique depends on accurate stoichiometry of the raw 

materials and even distribution (homogeneity) of the constituent ions [1]. To ensure 

optimum reproducibility and reliability of experimental data, particle size, phase and 

microstructural analyses of the raw and calcined powders were carried out. 

 

4.1.1 Strontium Carbonate, SrCO3 

 

The SrCO3 powder with 99.9% purity used in this work was supplied by 

Sigma-Aldrich Company Ltd, UK.  Figure 4.1 depicts the XRD patterns of SrCO3 

powder, showing that all diffraction peaks may be indexed as strontium carbonate 

according to the PDF card No. (PDF# 01-071-2393) with no secondary phases. SEM 

images and EDX trace of the SrCO3 powder (Figure 4.2) revealed rod-like particles 

and presence of Sr, C and O elements. No secondary phase was confirmed. The 

particle diameter distribution is shown in Figure 4.3. The mean particle size (or 

diameter), d50 of SrCO3 was 4.3 μm with a d90 (cumulative 90 % point of diameter) 

of 10.7 μm, i.e. 90 % of sample has particle size ≤ 10.7 μm. 
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Figure 4.1. XRD pattern of SrCO3 powder. 

 

 

Figure 4.2.SEM image and EDX trace of SrCO3 powder. 
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 Figure 4.3. Particle size distribution of SrCO3 powder. 

 

 

4.1.2 Titanium (IV) Oxide, TiO2 

 

 Titanium (IV) oxide powder with 99.9% purity used in this work was 

obtained from Sigma-Aldrich Company Ltd. UK. As shown in Figure 4.4 (XRD 

pattern), the all peaks were indexed according to tetragonal TiO2-rutile with the PDF 

card No. (PDF# 04-004-4337). SEM images (Figure 4.5) along with EDX, revealed 

clusters of nanoparticles but no secondary phases. Figure 4.6 represents the particle 

size distribution of TiO2 powder.  The mean measured particle size (d50) was 6.6 μm 

and d90 = 12.2 μm. This data contradicts the observation of nanoparticles by SEM, 

suggesting that ultrasonic treatment prior to measurement was insufficient to 

breakdown the powder to its primary particle size. 
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 Figure 4.4. XRD pattern of TiO2 powder. 

 

 

Figure 4.5. SEM image and EDX trace of TiO2 powder. 
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Figure 4.6. Particle size distribution of TiO2 powder. 

 

 

4.1.3 Lanthanum (III) Oxide, La2O3 

  

The La2O3 powder (with 99.99% purity) was supplied by Sigma-Aldrich 

Company Ltd, UK. All peaks in the XRD pattern were indexed according to 

hexagonal La2O3 (PDF# 01-083-4961), Figure 4.7. As shown in Figure 4.8, the 

primary particle size was ~ 5 μm and no secondary phases were detected in the SEM 

image and through EDX analysis. The particle size distribution, Figure 4.9 showed 

that the particle mean size was large, 25.4 μm with a corresponding large d90, 51.3 

μm, indicating significant agglomeration. Ball milling was therefore utilized to 

reduce the particle size. 
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 Figure 4.7. XRD pattern of La2O3 powder. 

 

 

Figure 4.8. SEM image and EDX trace of La2O3 powder. 
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       Figure 4.9. Particle size distribution of La2O3 powder. 

 

 

4.1.4 Samarium (III) Oxide, Sm2O3 

 

 Stanford Materials Corporation, USA supplied the Sm2O3 pale yellow 

powder with 99.90% purity. All peaks in the XRD pattern (Figure 4.10) were indexed 

as Sm2O3 according to the PDF card (PDF# 00-043-1030). SEM images revealed a 

needle like primary particle geometry (0.5 x 5 μm) but no secondary phases were 

detected, as shown in Figure 4.11. The particle size distribution is shown in Figure 

4.12 with a large mean particle size of 24.1 μm and d90 of 54.4 μm, again suggesting 

agglomeration. 
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 Figure 4.10. XRD pattern of Sm2O3 powder. 

 

 

Figure 4.11. SEM image and EDX trace of Sm2O3 powder. 
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Figure 4.12. Particle size distribution of Sm2O3 powder. 

 

 

4.1.5 Niobium (IV) Oxide, Nb2O5 

 

 Niobium (IV) oxide powder with 99.5% purity was supplied by Stanford 

Materials Corporation, USA.  All peaks of the XRD pattern were indexed according 

to a monoclinic Nb2O5 crystal system using PDF card No. (PDF# 00-037-1468), 

Figure 4.13. As shown in Figure 4.14, the particle size showed a homogenous 

distribution ~1 μm, with no secondary phases.  Figure 4.15 shows the particle size 

distribution of Nb2O5 powder. The mean particle size (d50) was 8.8 μm while the d90 

was 37.2 μm, which indicated that the powders were significantly agglomerated. 
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Figure 4.13. XRD pattern of Nb2O5 powder. 

 

 

Figure 4.14. SEM image and EDX trace of Nb2O5 powder. 
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Figure 4.15. Particle size distribution of Nb2O5 powder. 

 

 

4.2 Characterisation of Calcined Powders 

 

4.2.1 La-Sm Co-Doped SrTiO3 Series 

 

 Figure 4.16 shows the particle size distribution (PSD) of calcined La-Sm co-

doped SrTiO3 powders based on aliovalent doping mechanisms after ball milling. 
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Figure 4.16. Particle size distribution of (a) Sr1-xLax/2Smx/2TiO3 (ESTO); x = 

0.05, 0.10, 0.15, 0.20, 0.30, (b) Sr1-3x/2Lax/2Smx/2TiO3 (VSTO); x = 0.05, 0.10, 

0.15, 0.20, 0.30, (c) Sr1-3x/2Lax/2Smx/2TiO3 (VSTO-H); x = 0.05, 0.10, 0.15, 

0.20, 0.30 calcined powders after 24 hours of ball milling. VSTO-H 

represents powders calcined in 5% H2/N2 gas.  
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As shown in Table 4.1, all the ball milled powders had mean particle sizes ≤ 6 

μm and d90 ≤ 12 μm.  Lu [2]  worked on the same powder (SrTiO3) using attrition 

milling and obtained much smaller particle sizes (d50 ≤ 3 μm and  d90 ≤ 9 μm). This 

confirms the postulation of  Boston et al [1] that attrition milling utilizing high energy 

in mixing is more efficient  than ball milling in reducing particle size. However, 

attrition milling has a higher possibility of introducing impurities such as ZrO2 into 

the reaction from the milling media [1]. 

The SEM images together with EDX elemental analysis of selected calcined 

La-Sm co-doped SrTiO3 powders after ball milling is shown in Figure 4.17. From 

the SEM images, all the powder particles were homogenous, and no secondary phase 

was detected. The EDX analysis confirmed that only elements (Sr, La, Sm, Ti, O) of 

the La-Sm doped SrTiO3 powders were present. ESTO-0.15 (x = 0.15) had the 

smallest powder particles while VSTO-0.15 (x = 0.15) exhibited the largest powder 

particles. This agrees with the PSD results (Table 4.1) where ESTO-0.15 had a mean 

particle size (d50) of 2.8 μm while VSTO-0.15 and VSTO-0.15H had d50 of 5.6 and 

3.3 μm, respectively. The result also confirms that processing (calcination) of 

vacancy co-doped Sr1-3x/2Lax/2Smx/2TiO3 powders in 5% H2/N2 gas reduces the 

particles sizes. 
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Table 4.1. Particle sizes of calcined La-Sm co-doped SrTiO3 powders based on 

aliovalent doping mechanisms after 24 hours ball milling. Uncertainty in 

particle size determination is ±0.6 %. 
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Figure 4.17. SEM image and EDX trace of (a) Sr1-xLax/2Smx/2TiO3 (ESTO-

0.15); x = 0.15, (b) Sr1-3x/2Lax/2Smx/2TiO3 (VSTO-015); x = 0.15, (c) Sr1-

3x/2Lax/2Smx/2TiO3 (VSTO-0.15H); x = 0.15 calcined powders after 24 hours 

of ball milling.  
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4.2.2 Sm-Doped Sr5LaTi3Nb7O30 Series 

 

The particle size distribution of milled Sm-doped Sr5LaTi3Nb7O30 powders 

after calcination based on different compensation mechanisms are shown in Figure 

4.18. All as-milled powders showed mean particle sizes of ~ 5 μm and d90 ≤ 10 μm 

(Table 4.2).  These small particle sizes confirmed that ball milling reduced the 

particles of Sm-doped Sr5LaTi3Nb7O30 powders required for thermoelectric 

applications. 

Figure 4.19 shows the SEM image and EDX analysis of Sr5Lax-1SmxTi3O30 

(SLTNe); x = 0.15 and Sr5-3x/2LaSmxTi3O30 (SLTNv); x = 0.15 calcined powders 

after ball milling. All the as-milled powders showed a homogenous particle with no 

secondary phases. All the x-ray peaks from the EDX matched with O, Sr, La, Sm, 

and Ti elements as contained in the sample powders. The particle sizes of SLTNe, x 

= 0.15 were larger than that of SLTNv, x = 0.15, hence in agreement with the PSD 

results as shown in Table 4.2. 

 

 

Figure 4.18. Particle size distribution of (a) Sr5Lax-1SmxTi3O30 (SLTNe); x = 

0.00, 0.15, 0.20, 0.25, 0.50, 0.75, 1.00 (b) Sr5-3x/2LaSmxTi3O30 (SLTNv); x = 

0.05, 0.10, 0.15, 0.20, 0.25, 0.30 calcined powders after 24 hours of ball 

milling. 
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Table 4.2. Particle sizes of calcined Sm-doped Sr5LaTi3Nb7O30 powders  

based on different compensation mechanisms after 24 hours ball milling. 

Uncertainty in particle size determination is ±0.6 %. 
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Figure 4.19. SEM image and EDX trace of (a) Sr5Lax-1SmxTi3O30 (SLTNe); 

x = 0.15, (b) Sr5-3x/2LaSmxTi3O30 (SLTNv); x = 0.15 calcined powders after 

24 hours of ball milling.  

 

 

4.2.3 Nb-Doped La2Ti2O7 Series 

 

The particle size distribution of calcined and milled Nb-doped La2Ti2O7 

powders according to electronic B-site compensation mechanisms are represented in 

Figure 4.20. All as-milled powders (Table 4.3) showed mean particle sizes of ~ 5 μm 

and d90 ≤ 10 μm with no significant agglomerations. 
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Figure 4.20. Particle size distribution of La2Ti2-xNbxO7 (LTO); x = 0.00, 0.05, 

0.10, 0.15, 0.20, 0.25 calcined powders after 24 hours of ball milling.  

 

Figure 4.21 shows the SEM image together with EDX trace of selected 

calcined Nb-doped La2Ti2-xNbxO7 (LTO) powders after ball milling. The SEM image 

(LTO, x = 0.00, 0.15) showed homogeneous particles with no secondary phases.  
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Table 4.3. Particle sizes of calcined Nb-doped La2Ti2O7 powders based  

on B-site electronic compensation mechanisms after 24 hours ball 

milling. Uncertainty in particle size determination is ±0.6 %. 
 

 

 

 

 

Figure 4.21. SEM image and EDX trace of La2Ti2-xNbxO7 (LTO); x = 0.00, 

0.15 calcined powders after 24 hours of ball milling.  
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4.3 Conclusion 
 

 

 Particle size distribution and quality of starting powders are essential in 

achieving efficient and high thermoelectric figures of merit [3]. At times this vital 

processing step is neglected and it leads to unreliable and/or irreproducible results 

[1]. 

Based on the foregoing, the particle size distribution, phase and elemental 

composition (SEM/EDX) analyses were carried out. Results of all powders analysed 

confirmed homogenous particles and no trace(s) of secondary phase(s) were 

detected. 
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Chapter 5: La-Sm Electron Doped SrTiO3 Ceramics 

 

5.1 Introduction 

 

 Reduced rare earth (RE) doped SrTiO3 ceramics have recently been shown 

to have promising TE properties [1]–[3]. SrTiO3 as an end-member material has been  

widely studied in terms of the effect of different dopants,  doping mechanisms, and 

processing conditions [4]. The most common RE doping mechanism is based on A-

site donor doping via an electronic mechanism, i.e. RE3+ + e- →Sr2+ (general formula 

Sr1-xRExTiO3) in attempts to increase σ. Despite reported high S, high σ, and large 

PF, ZT remains low due to high k when compared to non-oxide TE materials [3],  

[5]. 

 There are a wide range of values reported for RE-doped SrTiO3, the majority 

of which relate to the same electronic compensation mechanism discussed in this 

chapter [2], [3], [6], [7]. These reported ZT values for reduced bulk polycrystalline 

strontium titanates include 0.22 at 573 K for Sr0.9Dy0.1TiO3 and 0.28 at 873 K for 

Sr0.9Nd0.1TiO3 [2], [6], [7], 0.22 at 800 K for Sr0.92La0.08TiO3 and 0.17 at 1045 K for 

SrTi0.90Ta0.1TiO3 [6], 0.24 at 1073 K for Sr0.9Sm0.1TiO3 and 0.31 at 1023 K for 

Sr0.8La0.18Yb0.02TiO3 [2],  0.36 at 1045 K for La0.1Sr0.83Dy0.07TiO3 [2], [7] and 

Sr0.9Nd0.1TiO3±δ, Sr0.9Sm0.1TiO3±δ and Sr0.9Dy0.1TiO3±δ of ZT ~ 0.42 at 1190 –1225 

K [2]. However, the recent data with an optimised ZT was presented by Wang et al 

[8] who studied La-Nb electron co-doped SrTiO3 prepared using hydrothermal 

method. Wang et al [8] concluded that the hydrothermal method and high sintering 

temperature were effective in producing nano-structured bulk ceramics. The net 

overall result was a high ZT (> 0.6) and low k (~ 2.75) at 1100 K obtained in 10 

mol% La and 10 mol% Nb (La10Nb10) co-doped SrTiO3 bulk ceramics. 

 This chapter studies the structure-property relationships of co-doped RE 

SrTiO3-δ ceramics based on the electron doping sintered in 5% H2/ N2 gas mixtures. 

The purpose of co-doping instead of single doping is an attempt to enhance the  
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phonon scattering and therefore reduce k without significantly affecting the PF [3].  

La3+  (largest RE ion) and Sm3+ (intermediate sized RE ion ) ions were chosen as co-

dopants in this study to test the hypothesis that a range of ions with mass and ionic 

radius dissimilar to Sr2+ ion on the A-site would enhance phonon scattering and 

decrease k whilst simultaneously acting as a donor dopant, potentially increasing the 

carrier concentration [3]. 

 

5.2 Results and Discussion 

 

5.2.1 Phase Assemblage 
 

 Room temperature XRD patterns of the crushed Srx-1Lax/2Smx/2TiO3 ceramics 

sintered in air and 5% H2/N2 at 1773 K for 6 hours are shown in Figure 5.1. All major 

peaks are indexed as primitive cubic SrTiO3 perovskite (space group Pm-3m) 

according to the PDF card (PDF# 04-002-6890). x = 0.20 and 0.30 exhibited weak 

intensity peaks (< 1% relative intensity) of a secondary phase that corresponded to 

rutile TiO2.The absence of a trend for the appearance of a secondary phase as a 

function of x suggests the residual TiO2 is most likely due to unreacted starting 

material [3]. The lattice parameters, cell volumes and theoretical densities were 

determined from the XRD data by manual indexing and the results for 5%H2/N2 

sintered compositions are shown in Table 5.1. They were derived from the indices 

of the main peaks and corresponding angles using Bragg’s law. The dopant (La-Sm) 

concentration dependence of the lattice parameters of both air and 5% H2/N2 sintered 

compositions are presented in Figure 5.2. 

The lattice parameter of the ceramics decreases progressively with increasing 

doping concentration, 0.00 ≤ x ≤ 0.20 and then levels off at x = 0.30 (Figure 5.2). 

The decrease is attributed to the smaller ionic radii of La3+ (1.36 Å in coordination 

number, CN 12) and Sm3+ (1.24 Å in CN 12) in the substitution for large Sr2+ ions 

(1.44 Å in CN 12) [6], [9]–[11]. The reason for a sharp increase in lattice parameter 

after x = 0.20 is unclear. From the suggestion made by Wang and Wang [9], the 

increase could be that the dopants (in this case, La3+ and Sm3+) are no 
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longer incorporated onto the A- site of the lattice. Kovalevsky et al [2] in their work 

obtained a tetragonal phase for 10 mol % Sm doped SrTiO3±δ ceramics and a cubic 

phase for Sr0.9La0.1TiO3±δ with lattice parameter of 3.9096(3) Å. The data obtained 

in this work therefore suggests that co-doping inhibits the apparent distortion to the 

tetragonal phase. Further diffraction analysis (electron, neutron) is recommended to 

ascertain whether co-doping has suppressed the distortion or reduced its scale length 

to below the detection limit of the x-ray diffractometer. However, it is concluded that 

La and Sm are incorporated onto the A-site of the perovskite lattice in respect of the 

batched stoichiometry. Further crystallographic studies (beyond the scope of this 

thesis) would provide more insight on the lattice distortions, incorporation of the co-

doped elements and clarify the solid solution limit. 
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Figure 5.1. Room temperature XRD patterns of crushed Srx-1Lax/2Smx/2TiO3 

Ceramics sintered in (a) air (ESTO, Air) (b) 5% H2/N2 (ESTO, 5% H2/N2) at 

1773 K for 6 hours. 
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As shown in Figure 5.2, the lattice parameter of pure SrTiO3 sintered in 

reduced atmosphere is high with a value of  3.912 ±0.001 Å in comparison to air-

sintered 3.906 ±0.001   Å which is comparable to the value (3.905 Å) reported in 

literature [12], [13].  The lattice parameters of the compositions irrespective of 

sintering atmosphere decreased progressively within x ≤ 0.20 and levels off at high 

doping concentration. Sample with x = 0.20 possesses the lowest values of 3.902 Å 

and 3.903 Å for air (ESTO, Air) and 5% H2/N2 (ESTO, 5% H2/N2) sintered ceramics, 

respectively.  Generally, the lattice parameter of compositions sintered in 5% H2/N2 

gas are larger than those sintered in air. This is attributed to the decrease in 

Coulombic force (binding energy) in the lattice due to  removal of O2- ions (in form 

of water, H2O) from the lattice during the reduction process [14] resulting  in the 

partial reduction  of Ti4+ ions (0.605 Å in CN 6) to the larger ionic radius of  Ti3+  

(0.670 Å in CN 6) [6], [14]. A similar decrease in lattice parameters on co-doping of  

SrTiO3 has been reported for La0.1Sr0.9-xYbxTiO3; x ≤ 0.1 [9].   

 

 

 

Figure 5.2. Lattice parameters of Srx-1Lax/2Smx/2TiO3 ceramics sintered in air 

(ESTO, Air) and 5% H2/N2 (ESTO, 5% H2/N2) at 1773 K for 6 hours. 

 

 

 

https://www.quora.com/Whats-the-name-for-plus-or-minus-%C2%B1
https://www.quora.com/Whats-the-name-for-plus-or-minus-%C2%B1
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Table 5.1. Lattice parameters, cell volumes and theoretical densities of  

Srx-1Lax/2Smx/2TiO3 ceramics sintered in 5% H2/N2 at 1773 K for 6 hours. 

 

 

5.2.2 Microstructure 

 

 All ceramics after sintering had a relative density of ≥ 89 % as presented in 

Table 5.1.  Secondary electron microscopy (SEM) images of the thermally etched, 

carbon coated surfaces for Srx-1Lax/2Smx/2TiO3 ceramics are shown in Figure 5.3. The 

SEM images of 0.00 ≤ x ≤ 0.15 ceramics revealed a homogeneous and dense 

structures consistent with their high relative density of ≥ 95 %.  x = 0.05 ceramics 

contain smaller irregular shaped grains with average grain size of 3.1μm. For 15 wt. 

% La-Sm doped sample, a broad grain size distribution was observed. It (x = 0.15) 

exhibits an oval shaped grain with an average grain size of 9.4 μm. A further increase 

in the doping level (> 15 wt. %) inhibited grain growth which resulted in small grain 

sizes (5.2 μm average size for x = 0.30) with significant evidence of porosity and 

secondary phase (Figure 5.3c-d). This observation is in agreement with the phase 

structure (XRD) obtained for x ≥ 0.20 ceramics with a lower relative density of ~ 90 

%. The multiphase microstructure observed in  x ≥ 0.20 ceramics due to the presence 

of pores and secondary phase hindered the accurate determination of the average  

grain size of x = 0.20 sample.  The low density of x ≥ 0.20 ceramics most likely 

relates to the more refractory nature of La and Sm oxides in comparison to SrTiO3.  
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This signals the need for further optimisation sintering techniques to achieve higher 

density [3]. Increase in La-Sm concentration within the solubility limit (≥ 0.15) of 

the composition contributes to the expansion of the grain sizes. Enlarged grains have 

been suggested to provide pathway for carrier mobility, leading to increase in 

electrical conductivity [15]. 

 The impact of porosity and secondary phase in the heavily doped 

compositions (x ≥ 0.20) is not clear. Some researchers suggest the presence of pores 

and/or secondary phase create discontinuities in the lattice which act as scattering 

centres, impede carrier mobility, and enhance phonon scattering [8], [16]. In 

consequence, electrical conductivity is reduced due to the restricted carrier mobility 

[16], [17] while thermal conductivity is decreased by additional phonon scattering 

by the pores [16]. Therefore, these pores and secondary phases in the SEM 

micrographs may contribute to the very low electrical and thermal conductivity 

values observed in x ≥ 0.20 ceramics.    

 

 

Figure 5.3. SEM images of the surfaces of Srx-1Lax/2Smx/2TiO3 (ESTO, 5% 

H2/N2) ceramics sintered in 5% H2/N2 at 1773 K for 6 hours and thermal 

etched at 1623 K for 0.5 hour. 
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5.2.3 Thermogravimetric Analysis (TGA) 

 

 The results of the thermogravimetric analysis, TGA of electron doped Srx-

1Lax/2Smx/2TiO3 ceramics sintered in 5% H2/N2 at 1773 K for 6 hours are presented 

in Figure 5.4 and Table 5.2.  From the results, x≤ 0.05 and x = 0.10 compositions 

were stable in air up to 1000 oC and 960 oC, respectively. This validates the theory 

that SrTiO3 as a  transition oxide is chemically stable in air at high temperatures [18].  

When the doping concentration of the ceramics was increased (x ≥ 0.15), an upward 

trend with onset temperatures around 770, 550 and 400 oC for x = 0.15, 0.20 and 

0.30, respectively was observed. The weight gain (oxidation) continued sharply up 

to the maximum temperature (1000 oC) for x = 0.15 and 800 oC for x ≥ 0.20 and 

stabilised afterwards. The colour of ceramic samples after TGA remained black for 

x ≤ 0.05 and turned to brown for x ≤ 0.15 and white for x ≥ 0.20.  

 

 

Figure 5.4. Thermogravimetric analysis showing the oxidation (oxygen 

uptake) in air up to 1000 oC of Srx-1Lax/2Smx/2TiO3 (ESTO, 5% H2/N2, 0.00 ≤ 

x ≤ 0.30) ceramics sintered in 5% H2/N2 at 1773 K for 6 hours. 
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 As shown in Table 5.2, the oxygen uptake increased with increasing La-Sm 

concentration and decreasing oxidation onset temperature for x ≥ 0.10 ceramics. This 

concludes that SrTiO3 ceramics at high values of x are not stable in air at high 

temperatures, hence unsuitable for thermoelectric applications above 300 oC. 

 

Table 5.2. TGA result showing the weight variation and oxidation  

onset temperature of Srx-1Lax/2Smx/2TiO3 (ESTO, 5% H2/N2,   
0.00 ≤ x ≤ 0.30) ceramics sintered in 5% H2/N2 at 1773 K for 6 hours. 
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5.2.4 Thermoelectric Properties 

 

 The temperature dependence of the thermoelectric properties (σ, │S│, PF, k, 

kE, kL and ZT) of Srx-1Lax/2Smx/2TiO3 0.05 ≤ x ≤ 0.30) ceramics sintered in 5% H2/N2 

at 1773 K for 6 hours are shown in Figures 5.5 to 5.11. As shown in Figure 5.5, the 

electrical conductivity, σ for x ≤ 0.15 decreases with increasing temperature. This 

trend shows typical metallic-type behaviour.  Further, within this same range of 

compositions (x = 0.05 to 0.15), σ increases as the  La-Sm concentration increases, 

showing that σ depends on carrier concentration and carrier mobility [19].  At high 

La-Sm concentrations (x ≥ 0.20), a switch from metallic to semiconducting 

behaviour was observed. This behaviour is attributed in part to inability of the heavy 

dopants to be fully incorporated into the lattice, hence more grain boundaries that act 

as scattering centres to electrons and phonons are created. Therefore, carrier mobility 

is restricted which leads to decrease in σ [9], [10]. Further, this may relate to 

structural phase transitions involving the rotation of O-octahedra commonly seen in 

RE-doped SrTiO3 [2], [3], [6].  
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Figure 5.5. Temperature dependence of electrical conductivity, σ for Sr1-

xLax/2Smx/2TiO3 (0.00 ≤ x ≤ 0.30) ceramics sintered in 5% H2/N2 at 1773 K 

for 6 hours. 

 

 

Han et al [20] obtained a similar electrical conduction behaviour in their 

study of microstructure and thermoelectric properties of La0.1Dy0.1SrxTiO3 (x = 0.70, 

0.75, 0.78, 0.80) ceramics. At x ≥ 0.78, the ceramics exhibited semiconducting 

behaviour with low σ values compared to x ≤ 0.75 compositions. The authors 

attributed this trend to generation of defects (Sr and O) and presence of porosity in 

the microstructure, which restrict the carrier mobility by scattering carriers.  Studying 

the influence of  10 wt% of RE (La, Nd, Sm, Gd, Dy, Y, Er, Yb) doping on TE 

properties of SrTiO3 ceramics has shown  the impact of pores and second phases [5], 

which supports the σ behaviour obtained in this work.  Liu et al [5], showed that 

inherent pores and second phases generated in the microstructure of Sr0.9Yb0.1TiO3 

reduced the relative density (91.6%) compared to other compositions, and switched 

the electrical conduction from metallic to semiconducting behaviour.  
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The temperature dependence of Seebeck coefficient (S) is shown in Figure 

5.6. The Seebeck coefficients of all compositions are negative, suggesting n-type 

electrical conduction. The absolute value of S increases linearly with temperature, 

and this indicates metallic behaviour [9]–[11].  The │S│ decreases with increasing 

La-Sm concentration in all the samples. This suggests an inverse relationship 

between S and carrier concentration. For example, │S│ (~ 393 μV/K) for x = 0.00 

at 973 K decreases to ~ 179 μV/K and ~ 119 μV/K at 973 K for x = 0.15 and x = 

0.30, respectively. The linear relationship of S with temperature and inversely related 

with carrier concentration for all the compositions can be expressed as [11]: 

 

𝑆 =
𝜋2𝐾𝐵

2𝑇

𝑒𝐸𝐹
                                                                                               5.1 

 

where KB is Boltzmann constant (8.617 x 10-5 eV), T, e, and EF are Temperature, 

electron charge and Fermi level, respectively. From equation 5.1, S is inversely 

related to EF. Therefore, increase in doping level (invariably an increase in carrier 

concentration) causes an upward shift of the energy level resulting to increase in EF 

and decrease in S. 
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Figure 5.6. Temperature dependence of absolute Seebeck coefficient, │S│ 

for Sr1-xLax/2Smx/2TiO3 (0.00 ≤ x ≤ 0.30) ceramics sintered in 5% H2/N2 at 

1773 K for 6 hours. 

 

 The power factor, PF was calculated from S2σ, and presented in Figure 5.7.  

PF for 0.05 ≤ x ≤ 0.15 ceramics decreases progressively in the entire measured 

temperature range (573-973 K) with a display of relative larger values. For x = 0.00 

and x ≥ 0.20, the PF increases with increasing temperature over all the measured 

temperature range but with very low values, hence unsuitable for thermoelectric 

applications. x = 0.10 exhibits the highest PF of ~ 1400 μW/K2.m and ~ 865 

μW/K2.m at 573 and 973 K, respectively. The interplay of S and conductivity in 

reduced oxide compositions and how it gives rise to PF values is complex. The “O” 

stoichiometry is most likely inhomogeneous with the bulk having higher oxygen 

concentration than the grain boundary regions [3]. The resulting inhomogeneous 

electrical microstructure may result in differing Seebeck coefficients and 

conductivities as a function of distance within the sample, with the macroscopic 

properties representing average behaviour [3].  
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Figure 5.7. Temperature dependence of power factor, PF for Sr1-

xLax/2Smx/2TiO3 (0.00 ≤ x ≤ 0.30) ceramics sintered in 5% H2/N2 at 1773 K 

for 6 hours. 

 

 

 Total thermal conductivity (k = kE+kL) as a function of temperature is shown 

in Figure 5.8 and the electronic thermal conductivity, kE is presented in Figure 5.9. 

As discussed in the literature review, kE was calculated from Wiedemann-Franz law 

(equation 2.27), while lattice thermal conductivity (kL) shown in Figure 5.10 was 

determined from k and kE (equation 2. 26).  k decreases with increasing temperature 

within the measured temperature range. This suggests that heat transfer is controlled 

by phonon scattering via oxygen deficiency and lattice defects [3],  [21], [22]. For 

example, k for x = 0.00 ceramics decreased linearly from 5.9 W/m.K at 573 K to 4.2 

W/m.K at 973 K. As observed from Figures 5.8 and 5.10, the difference between k 

and kL is very small, while large differences exist between k and kE, Figure 5.9. This 

explains the fact that kE contributed less to k. Therefore, the decrease in k with 

temperature of Srx-1Lax/2Smx/2TiO3 (0.05 ≤ x ≤ 0.30) ceramics is mainly attributed to 

a reduction in kL obtained by enhanced phonon scattering. 
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Figure 5.8. Temperature dependence of total thermal conductivity, k for Sr1-

xLax/2Smx/2TiO3 (0.00 ≤ x ≤ 0.30) ceramics sintered in 5% H2/N2 at 1773 K 

for 6 hours. 

 

 Enhanced phonon scattering is dependent on the difference between size 

(ionic radius) and mass of the dopant and the host (matrix) [11]. In this work, the 

atomic mass of the dopants (La and Sm) is 138.91 and 150.36 g/mol, respectively, 

while the host (Sr) has a small atomic mass of 87.62 g/mol. However, the ionic radius 

of the dopants (La = 1.36 Å, Sm = 1.24 Å in CN 12) is slightly smaller than Sr (1.44 

Å in CN 12). From this observation, the increase in phonon scattering and resultant 

decrease in k can be attributed to the large mass difference between the dopants (La 

and Sm) and host species (Sr). It is noted that an increase in porosity and presence 

of secondary phases also contribute in reducing k. Thermal conductivity of non- 

metallic crystals such as ceramics depends mainly on lattice vibration (phonon) [23]. 

Thus, phonon scattering during transmission by defects, impurities, pores and phase 

boundaries lead to low k. These effects impede carrier mobility and phonon 

propagation resulting in low σ [10], [16], [17] and low k [10], [16]. As shown in  
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Figures 5.1 and 5.3, the pores and phases observed in x ≥ 0.20 ceramics may have 

contributed in the low thermal and electrical conductivities. The lowest k is observed 

for x = 0.20 with a value of ~ 3.0 W/m.K at 973 K. 

 

 

Figure 5.9. Temperature dependence of electronic thermal conductivity, kE 

for Sr1-xLax/2Smx/2TiO3 (0.00 ≤ x ≤ 0.30) ceramics sintered in 5% H2/N2 at 

1773 K for 6 hours. 
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Figure 5.10. Temperature dependence of lattice thermal conductivity, kL for 

Sr1-xLax/2Smx/2TiO3 (0.00 ≤ x ≤ 0.30) ceramics sintered in 5% H2/N2 at 1773 

K for 6 hours. 

 

 

 Temperature dependence of dimensionless ZT is shown in Figure 5.11.  ZT 

of all ceramic samples increases with temperature over the whole temperature range. 

However, a “transverse wave” behaviour was observed between x = 0.10 and x = 

0.15 ceramics at high temperature range (773 – 973 K) resulting in a crest (maximum 

point) and trough (minimum point) at 873 K. The effect of heavy doping (x ≥ 0.30) 

and consequent porosity on σ and k also influence ZT. The excess scattering centres 

created in the lattice results in low ZT values for x ≥ 0.30 ceramics. Overall, x = 0.15 

shows the highest ZT value of 0.24 at 873 K. This is due to the relatively high PF 

and low k exhibited by x = 0.15 ceramics. 

 The maximum ZT value (0.24) obtained for 15 wt% La-Sm doped sample at 

873 K is low due to low σ compared to other RE electron co-doped SrTiO3 in the 

literature [5], [6], [8], [11], [24]. It is important to state that authors report these high 

ZT values at elevated temperatures (≥ 1000 K) where the operation of a commercial  
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TE device is not feasible [25]. Boston et al [25], therefore suggests the report of TE 

properties at intermediate temperatures (573 – 973 K) for easy assessment of the 

potential and viability of the TE materials. However, the approach applied in this 

work has shown a pathway to pursue methodologies to improve the power factor, 

maximise the ZT and utilise the reduction in k as a result of defects and pores.  

 

 

Figure 5.11. Temperature dependence of dimensionless figure of merit, ZT, 

for Sr1-xLax/2Smx/2TiO3 (0.00 ≤ x ≤ 0.30) ceramics sintered in 5% H2/N2 at 

1773 K for 6 hours 

 

5.6 Conclusion 

 

 Evidence is presented here that novel electronically co-doped SrTiO3 

ceramics with La and Sm enhances the ZT in part through a reduction in k (minimum 

k = 3.0 W/m.K at 973 for x = 0.20). However, as the La-Sm concentration increases, 

σ and │S│ decrease with a corresponding decrease in PF. Compositions with x = 

0.15 ceramics with the highest ZT (0.24 at 873 K) reflect an optimum comprise 

between reducing k and maintaining metallic behaviour with high σ. 
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Further, RE co-doped SrTiO3 with La and Sm decreases the scale length of 

previously observed tetragonal distortion associated with Sm (and other RE with 

small ionic radii ) as a single dopant [2]. 

However, overall it is established that electron co-doping had minimal effect 

on k leading to the conclusion that optimising ZT by this method is of limited merit 

in the context of this compositional set. In light of the work reported by Lu et al [6] 

and Lu [26], it is suggested that batched stoichiometries with A-site (cation) 

vacancies are more likely to optimize ZT, at least in part through enhanced phonon 

scattering and reducing k. This idea informs the aim of the work as presented in 

chapter six. 
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Chapter 6: A-Site Vacancy La-Sm Co-Doped SrTiO3 Ceramics 
 

6.1 Introduction 

 

 As discussed in Chapter 5, a maximum ZT value of 0.24 at 873 K was 

obtained in electron La-Sm co-doped SrTiO3 ceramics. A conclusion is drawn that 

this method is of limited effect in optimizing ZT. Introduction of cation vacancies in 

the A- and/or B-site, doped with RE and/or transition metal cations, followed once 

again by processing in reduced atmosphere has been suggested as a promising route 

to achieving optimised thermoelectric properties [1]. The combination of cation and 

anion vacancies has been shown to improve PF and suppress k [2], [3] by previous 

researchers and is the basis of the following chapter. There are various approaches 

so far utilized for optimising the thermoelectric properties in SrTiO3. These include 

suitable doping (and co-doping), additives (or inclusions), enhanced processing 

conditions, defect engineering and micro/nanostructural engineering [1], [3]. The 

highest ZT values achieved in applying these methods for bulk SrTiO3 ceramics 

remained ≤ 0.4 until recently ZT ≥  0.6 at 1000-1100 K was reported in La-Nb co-

doped SrTiO3 bulk ceramics [4].  

The work reported in this chapter therefore attempts to improve the 

thermoelectric properties of A-site vacancy La-Sm co-doped SrTiO3 ceramics by 

modifying the calcination atmosphere, temperature, dwell time, and calcination 

cycles. Sintering methods and atmospheres (e.g. 5%H2/N2) as described in chapter 

five are utilised. The A-site vacancy La-Sm co-doped SrTiO3 ceramics whose 

powder were calcined in air will be denoted as VSTO-A while those calcined in 

5%H2/N2 will be known as VSTO-H (VSTO denotes strontium titanate with 

compositionally engineered A-site vacancies). 
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6.2 Results and Discussion 

 

6.2.1 Phase Assemblage 

 

 Figure 6.1 shows the room temperature XRD patterns of crushed Sr1-

3x/2Lax/2Smx/2TiO3 (0.05 ≤ x ≤ 0.30) ceramics (VSTO-A and VSTO-H) sintered in 

5% H2/N2 at 1773 K for 6 or 8 hours.  All the major peaks can be indexed with the 

SrTiO3 cubic perovskite structure belonging to the Pm-3m space group (PDF# 04-

002-6890). No secondary phase was detected within the limits of the diffractometer. 

The lattice parameters, cell volumes and theoretical densities were calculated from 

the XRD data and results are shown in Table 6.1. The dopant (La-Sm) concentration 

dependence of the lattice parameters of VSTO-A and VSTO-H compositions are 

presented in Figure 6.2. 

The lattice parameters of VSTO-A compositions show a progressive 

decreasing relationship with increasing La-Sm concentrations (Figure 6.2). The 

lattice parameters of VSTO-A ceramics contract from 3.910 Å (for x = 0.05) to a 

minimal value of 3.902 Å for x = 0.30.  The decrease in lattice parameter is attributed 

to the smaller ionic radii of La3+ and Sm3+ (La3+ = 1. 36 Å; Sm3+ = 1.24 Å in CN 12) 

than that of  Sr2+ ionic radius (1.44 Å in CN 12) [5]–[8] and in obedience to Vegard’s 

law. In contrast, the lattice parameters of VSTO-H compositions of 0.05 ≤ x ≤ 0.20 

ceramics increase with increasing La-Sm doping concentrations, from 3.899 Å to 

3.910 Å  and drops at x = 0.30 with a value of 3.902 Å  (Table 6.1(b), Figure 6.2). 

The lattice parameter may expand due to a decrease in Coulombic force in the lattice 

by the formation of VO accompanied by partial reduction of Ti4+ ions (0.605 Å in CN 

6) to a high ionic radius Ti3+ ion (0.67 Å in CN 6) [2]. The reason behind the decrease 

in lattice parameter at high doping level (x = 0.30) is unclear but might be related to 

structural transitions or distortions or solid solution limit. However, as suggested in 

Chapter 5, subsection 5.2.1, further crystallographic study using electron diffraction 

would provide more insight. 
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Figure 6.1. Room temperature XRD patterns of crushed Sr1-

3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in (a) air (VSTO-A) at 

1573 K for 6 hours and (b) 5% H2/N2 (VSTO-H) at 1573 K for 6 hours and 

sintered in 5% H2/N2 at 1773 K for 6-8 hours.  
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Figure 6.2. Dopant (La-Sm) concentration dependence of the lattice 

parameters of Sr1-3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30. The lattice parameters 

merged at x = 0.15 and 0.30 for both VSTO-A and VSTO-H ceramics  as 

represented by double capped (at both ends) uncertainty bar icons. 

 

 

6.2.2 Microstructure 

 

 Secondary electron microscopy (SEM) micrographs of the thermally etched, 

carbon coated surfaces for Sr1-3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics are shown 

in Figures 6.3 and 6.4. After sintering, all compositions showed a relative density of 

≥ 96 % (Table 6.1). All images revealed homogenous and dense microstructures 

consistent with their high relative density. The average grain size of the compositions 

was calculated using  the line intercept method [9], [10]. All samples exhibited 

regular polygonal-shaped grain structures, with size increasing with doping 

concentration. The average grain size of VSTO-A samples increased from 5.1 μm  

(for x = 0.05) to 9.6, 14.9 and 15.3 μm  for x = 0.10, 0.20 and 0.30 ceramics, 

respectively. VSTO-H samples showed similar trend with VSTO-A compositions, 

but the grain sizes are smaller especially at high x values. 
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The average grain size increased from 7.5 μm for x = 0.10 to 10.4 μm for x = 0.15, 

to 10.8 μm for x = 0.20, and finally to 11.2 μm for x = 0.30.   The small average grain 

size exhibited by VSTO-H compositions compared to that of VSTO-A compositions 

agrees with the particle size distribution (PSD) results reported in Chapter 4 (Table 

4.1) for powders used for VSTO-A and VSTO-H ceramics. VSTO-A powders had a 

mean particle size (d50) of ≤ 6.04 μm while VSTO-H showed a smaller d50 of ≤ 4.70 

μm.  It can be concluded from these results that processing (calcination and sintering) 

of vacancy co-doped Sr1-3x/2Lax/2Smx/2TiO3 ceramics in 5% H2/N2 gas contributes in 

the grain size reduction. This assertion is supported by the study undertaken by 

Srivastava et al [3]. The authors revealed that Sr0.8La0.067Ti0.8Nb0.2O3-δ ceramics 

when sintered in air showed a grain size of ~ 13 μm, and 7-10 μm when sintered in 

reducing atmosphere. Therefore, processing in reducing atmosphere creates oxygen 

vacancies, which contribute to the reduction in grain size. The use of highly reducing 

processing conditions (calcination and sintering) in 5% H2/N2 as applied in this work 

is postulated to cause stripping of more VO from the lattice. Reduced grain size 

(incorporation of large grain boundaries) shortens the mean free path (MFP) of the 

phonons. Since grain boundaries act as scattering  for the phonons [11], k is reduced 

with consequent increase in ZT  [12], [13].  

In VSTO-A SEM images, artefacts (labelled with white circles on the 

images) were observed on the grain and grain boundaries. This abnormal feature is 

likely deposited onto the ceramics through sample preparations or absorbed dirt or 

trapped impurities in the furnaces used for the processing. These impurities are more 

pronounced in x = 0.30, and with enlarged sizes. Since the presence of impurities 

and defects affect k, these artefacts might have contributed to the low thermal 

conductivity observed in this composition.   

 

 

 

 

 



153 | P a g e  
 

A-Site Vacancy La-Sm Co-Doped SrTiO3 Ceramics 

 

Table 6.1. Lattice parameters, cell volumes and theoretical densities of  

Sr1-3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in (a) air (VSTO-

A) at 1573 K for 6 hours and (b) 5% H2/N2 (VSTO-H) at 1573 K for 6 

hours and sintered in 5% H2/N2 at 1773 K for 6-8 hours.  
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Figure 6.3. SEM micrographs of the surfaces of Sr1-3x/2Lax/2Smx/2TiO3; 0.05 

≤x ≤ 0.30 ceramics calcined in air (VSTO-A) at 1573 K for 6 hours, sintered 

at 1773 K for 6 hours and thermally etched at 1623 K for 30 minutes. 

Observed artefacts are labelled with white circles.  

 

 

Figure 6.4. SEM micrographs of the surfaces of Sr1-3x/2Lax/2Smx/2TiO3; 0.05 

≤x ≤ 0.30 ceramics calcined in 5% H2/N2 (VSTO-H) at 1573 K for 6 hours, 

sintered in 5% H2/N2 at 1773 K for 8 hours and thermally etched at 1623 K 

for 30 minutes. 
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6.2.3 Thermogravimetric Analysis (TGA) 

 

 As shown in Figure 6.5, for the VSTO-A and VSTO-H calcined compositions 

sintered in 5% H2/N2 at 1773 K, oxygen uptake increased with increasing La-Sm 

concentration and decreased with oxidation temperature for all ceramics.  x = 0.05 

were stable in air up to 1000 oC. The colour of VSTO-A ceramics after TGA 

remained black for x ≤ 0.10, turned to brown for x ≤ 0.20 and white for x = 0.30, 

while in VSTO-H compositions, x = 0.05 was black and x ≥ 0.10 turned white. 

 Table 6.2 shows the variation in weight in 5% H2/N2 calcined ceramics 

(VSTO-H) was larger than air calcined samples (VSTO-A).  This indicates that 

calcination of vacancy doped Sr1-3x/2Lax/2Smx/2TiO3 powders in air and subsequent 

sintering in 5% H2/N2 yields a stable ceramic in air at higher temperatures. However, 

all the ceramics after TGA remained stable up to 475 oC and this is within the 

intermediate temperature range (300 -700 oC), suggested as desirable for a ceramic-

based TE generator technology [11]. 
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Figure 6.5. Thermogravimetric analysis showing the oxidation in air up to 

1000 oC of Sr1-3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in (a) air 

(VSTO-A) at 1573 K for 6 hours and (b) 5% H2/N2 (VSTO-H) at 1573 K for 

6 hours and sintered in 5% H2/N2 at 1773 K for 6-8 hours.  
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Table 6.2. TGA result showing the weight variation and oxidation onset 

temperature of Sr1-3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in 

(a) air (VSTO-A) at 1573 K for 6 hours and (b) 5% H2/N2 (VSTO-H) at 

1573 K for 6 hours and sintered in 5% H2/N2 at 1773 K for 6-8 hours. 
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6.2.4 Thermoelectric Properties 
 

6.2.4.1 VSTO-A Series 

 

 Figures 6.6 to 6.12 show the temperature dependence of the thermoelectric 

properties (σ, │S│, PF, k, kL, kE and ZT) of the Sr1-3x/2Lax/2Smx/2TiO3 (VSTO-A) 

ceramics sintered at 1773 K for 6 hours in 5% H2/N2 gas mixture. For all samples, 

electrical conductivity decreases with increasing temperature over the measured 

temperature range, Figure 6.6. This trend confirms metallic behaviour and also 

implies the properties share a similar conduction mechanism [6], [14]. σ for x ≤ 0.20 

compositions increases with increasing La-Sm concentration, showing the 

dependence of σ on carrier concentration and mobility [15]. At x = 0.30, the electrical 

conductivity decreased. The reason for the drop of σ at high La-Sm concentration is 

unclear, However, this may relate to solid solution limit (though no secondary phase 

was observed in the XRD and SEM images) or structural phase transitions as a result 

of  rotation of O-octahedra observed in RE-doped SrTiO3 [8], [16], [17].  The highest 

electrical conductivity obtained was 1184 S/cm at 573 K for x = 0.20. From literature, 

heavily doped La-Sm VSTO-A ceramics (x ≥ 0.15) in this work show enhanced σ 

when compared to that of Sr0.9Nd0.1TiO3 with B2O3 and Zr2O3 additions [18] and La-

Nb co-doped SrTiO3 ceramics [4] at the same temperature range (573 - 973 K).  The 

σ result concludes that A-site vacancy has a greater effect on conductivity than 

electronic compensation in La-Sm doped SrTiO3 (σmax = 942 S/cm at 573 K for x = 

0.15). It is important to state that x = 0.15 of VSTO-A shows a maximum electrical 

conductivity, σmax=1029 S/cm at 573 K which is ~ 9% higher than σmax= 942 S/cm 

of Sr0.85La0.075Sm0.075TiO3 at the same temperature. This may relate to greater oxide 

ion diffusion rates through the vacated A-site which permits a greater volume of 

reduced material throughout the ceramic.  
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Figure 6.6. Temperature dependence of electrical conductivity, σ for Sr1-

3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in air (VSTO-A) at 1573 

K for 6 hours and sintered at 1773 K for 6 hours in 5% H2/N2. 

 

  

 Seebeck coefficients of all VSTO-A compositions are negative, indicating n-

type conduction behaviour. Absolute coefficients for all compositions, Figure 6.7 

increase linearly with increasing temperature, showing a metallic behaviour  [5]–[7], 

[14]. │S│ values decrease as La-Sm concentration increases, Figure 6.7, possibly 

due to an increase in the carrier concentration resulting in an increase in electrical 

conductivity as shown in Figure 6.6. Because of the link of electrical conductivity to 

carrier concentration and its mobility (σ = neμ, equation 2.22), increase in carrier 

concentration suggesting metallic behaviour results in a decline in Seebeck 

coefficient. The │S│ value of all samples at high temperature (973 K) falls within 

the range of 158-255 μV/K.   

It is noted however, that these │S│ values are higher than the minimum 

values of Seebeck coefficients (150 -250 μV/K) suggested for a good TE materials 

[19]. In addition, the Seebeck coefficients obtained are similar to data reported 



160 | P a g e  
 

A-Site Vacancy La-Sm Co-Doped SrTiO3 Ceramics 

for La-Dy doped SrTiO3 [6], [7] and La-Nb doped SrTiO3 ceramics [4], [20], but 

lower than the values reported by Han and Song [21] for La-Dy co-doped Sr-

deficient SrTiO3 ceramics. 

 

 

Figure 6.7. Temperature dependence of Seebeck coefficient, │S│ for Sr1-

3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in air (VSTO-A) at 1573 

K for 6 hours and sintered at 1773 K for 6 hours in 5% H2/N2. 

 

 

 Temperature dependence of power factors (PF) for VST-A compositions 

between 573 and 973 K are shown in Figure 6.8. The PF for samples with La-Sm 

concentrations ranging from 15 to 30 mol% (x ≥ 0.15) displays a peak behaviour 

between 573 and 673 K, suggesting a semiconductor-like mechanism. Above 673 K, 

the power factors decreased with increasing temperature. For x ≤ 0.10, the PF 

decreases in the entire measured temperature range. The maximum PF value of ~ 

1185 μW/K2 for x = 0.10 at 573 K was obtained. This high PF could be attributed to 

an optimised │S│ recorded (125-193 μV/K) which is higher than the │S│ values of  
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other compositions except x = 0.05. However, at high temperatures, the PF of x = 

0.10 decreased, and could be due to the low σ exhibited, Figure 6.6. 

 

 

 

Figure 6.8. Temperature dependence of power factor, PF for Sr1-

3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in air (VSTO-A) at 1573 

K for 6 hours and sintered at 1773 K for 6 hours in 5% H2/N2. 

 

 

 The largest PF at 973 K was ~ 873 μW/K2 for x = 0.20, and this value is 

higher than the maximum PF (~ 865 μW/K2 at 973 K) observed in x = 0.10 of electron 

La-Sm co-doped SrTiO3 ceramics (Chapter 5). This is due to increasing the electrical 

conductivity while maintaining a reasonable Seebeck coefficient by La-Sm doping.  

Based on this, we conclude that electrical transport properties of La-Sm co-doped 

SrTiO3 is optimised via an A-site vacancy doping mechanism. The PF results 

obtained in this work are in agreement with most results in the literature for electron 

La-Yb [5] and La-Dy [6], [7] co-doped SrTiO3 ceramics, but higher than the reported 

values for Nb-doped Sr0.95La0.05TiO3 ceramics at high temperatures (≥ 973 K) [20].  
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Although the power factors obtained in this study are not as high as the values 

observed in La-Nb doped SrTiO3 reported by Wang et al [4] and in  doped SrTiO3  

single crystals [22], [23], the maximum PF recorded  is among the high levels in 

polycrystalline SrTiO3 bulk ceramics. 

 The total thermal conductivity (k), lattice thermal conductivity (kL) and 

electronic thermal conductivity (kE) of VSTO-A samples are shown in Figures 6.9, 

6.10 and 6.11, respectively. The highest k (5.57 W/m. K) at 573 K was observed in 

x = 0.10, Figure 6.9. In contrast, the lowest k at 573 K was observed in x = 0.30 (3.46 

W/m.K), which decreases to a minimum of 2.99 W/m.K  for all the compositions at 

973 K. Total thermal conductivity decreases with increasing temperature over the 

measured temperature range, which suggests a typical thermal conduction behaviour 

of a semiconductor [6] and domination of lattice thermal conductivity [5], Figure 

6.10. The high concentration of impurities in the microstructure of x = 0.30 ceramics 

may have affected the thermal transport, leading to the low k observed. Generally, 

the reduction of k in doped SrTiO3 ceramics is ascribed to formation of VO in 

perovskites, preceded by sintering in reducing atmosphere [16].  At the maximum 

temperature (973 K), the electronic contribution to the total thermal conductivity was 

estimated at 0.20 W/m. K (5.1%), 0.49 W/m. K (12.8%), 0.71 W/m. K (18.8%), 0.84 

W/m. K (20.9%), 0.68 W/m. K (22.8%) for x = 0.05, 0.10, 0.15, 0.20 and 0.30, 

respectively. These values confirm that k mainly results from the lattice vibrations 

(phonon), hence kL plays a dominant role in k. 
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Figure 6.9. Temperature dependence of total thermal conductivity, k for Sr1-

3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in air (VSTO-A) at 1573 

K for 6 hours and sintered at 1773 K for 6 hours in 5% H2/N2. 

 

 An increase in La-Sm concentration results in decreasing kL, Figure 6.10, 

which indicates increasing lattice defects and shortening of the mean free path (MFP) 

of phonons resulting to low k [13]. Furthermore, kL decreases with increasing 

temperature in all the compositions except the deviation observed for x = 0.05 and 

0.15 at 973 K, suggesting a domination by Umklapp phonon scattering [4], [23], [24].  

On the other hand, kE of all compositions, Figure 6.11 shows similar temperature 

dependence with electrical conductivity and increases with an increase of La-Sm 

concentration up to x = 0.20 and lowers at x = 0.30. From the results of the thermal 

transport properties, it can be deduced the reduction in total thermal conductivity 

caused by La-Sm concentration is mainly attributed to the decrease in kE, especially 

at higher temperatures, Figure 6.11. 

 

 



164 | P a g e  
 

A-Site Vacancy La-Sm Co-Doped SrTiO3 Ceramics 

 

Figure 6.10. Temperature dependence of lattice thermal conductivity, kL for 

Sr1-3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in air (VSTO-A) at 

1573 K for 6 hours and sintered at 1773 K for 6 hours in 5% H2/N2. 

 

Figure 6.11. Temperature dependence of electronic thermal conductivity, kL 

for Sr1-3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in air (VSTO-A) 

at 1573 K for 6 hours and sintered at 1773 K for 6 hours in 5% H2/N2. 
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 Figure 6.12 shows the temperature dependence of figure of merit of all the 

compositions. ZT increases with increasing temperature over the entire measured 

temperature range. By optimising the La-Sm doping concentration, x = 0.30 recorded 

the highest ZT value of 0.25 at 973 K. However, the highest ZT value did not occur 

in x = 0.20 sample which have both the highest electrical conductivity (350 S/cm at 

973 K), Figure 6.6 and power factor (873 μW/K2.m at 973 K), Figure 6.6(c) values 

as expected. Obviously, the dramatic decrease observed in the k of x = 0.30 sample 

despite its low PF results in higher ZT values especially at high temperatures (773 – 

973 K). This suggests that heavy doping (x ≥ 0.30) of A-site vacancy Sr1-

3x/2Lax/2Smx/2TiO3 ceramics has less effect in enhancing the electrical transport 

properties especially the power factor. 

 

 

Figure 6.12. Temperature dependence of dimensionless figure of merit, ZT 

for Sr1-3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in air (VSTO-A) 

at 1573 K for 6 hours and sintered at 1773 K for 6 hours in 5% H2/N2. 
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6.2.4.2 VSTO-H Series 

 

Temperature dependence of the thermoelectric properties of the Sr1-

3x/2Lax/2Smx/2TiO3 (VSTO-H) ceramics sintered at 1773 K for 8 hours in 5% H2/N2 

gas mixture are shown in Figures 6.13 to 6.20. The ZT, electrical (σ, S, PF) and 

thermal (k, kL, kE) transport properties were measured from 573 to 973 K. The La-

Sm doping concentration was observed to have a similar effect on σ, S, and k. 

Electrical conductivity for all compositions decreases with increasing temperature, 

implying a metallic conduction behaviour and sharing of a comparable scattering 

mechanism, Figure 6.13 as reported previously (σ of VSTO-A series) [6], [14].  

Further, σ increases with the increase of La-Sm concentration (0.05 ≤ x ≤ 0.30). This 

trend suggests a better control of the oxygen concentration and a proportional effect 

of carrier concentration by changing the doping concentration. Therefore, a high 

concentration of 30 mol% (x = 0.30) resulted in high σ with a maximum value of 

1023 S/cm at 573 K.  

 

Figure 6.13. Temperature dependence of electrical conductivity, σ for Sr1-

3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in 5% H2/N2 (VSTO-H) 

at 1573 K for 6 hours and sintered at 1773 K for 8 hours in 5% H2/N2. 
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A comparative analysis of the σ of VSTO-A, Figure 6.6 and VSTO-H 

samples shows that the processing atmosphere (whether air or 5% H2/N2) has no 

significant effect on σ at the highest measured temperatures, but variation at low 

temperatures is observed. For an example, in x = 0.15 compositions, VSTO-A and 

VSTO-H showed σ values of 1029 S/cm and 758 S/cm, respectively at 573 K. At 

high temperature (973 K) for the same compositions (x = 0.15), VSTO-A exhibited 

σ of 298 S/cm, and VSTO-H showed σ = 284 S/cm.  This strongly suggests that the 

bulk conductivity (high temperature conductivity) is the same for a given dopant 

level (irrespective of processing atmosphere) while grain boundaries or electrical 

heterogeneities are responsible for the variation in lower temperature conductivity.  

Seebeck coefficient shows negative values in the whole temperature range, 

confirming that all compositions (0.05 ≤ x ≤ 0.30) are n-type. As shown in Figure 

6.14, │S│ increases with increasing temperature, but decreases with increase in La-

Sm concentration, which is in agreement with the reported results, Figure 6.7 [5]–

[7], [14]. The metallic behaviour of Seebeck coefficients of VSTO-H sample is better 

explained using  the following equation (equation 2.15) [25] as reported in Chapter 

2 of this work: 

 

𝑆 ≃
Cel

q
= (

KB

e
)

KBT

EF
 

The background of the equation shows that carrier concentration and fermi level (EF) 

are unchanged relative to temperature (T). The direct relationship of S and T suggests 

an increase in absolute Seebeck coefficient as temperature increases or vice versa. 

Another important observation is the inverse relationship of S to charge carrier (q) 

and EF, and this implies a decrease in S with increase in carrier concentration as 

shown in Figure 6.14. 
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Figure 6.14. Temperature dependence of Seebeck coefficient, │S│ for Sr1-

3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in 5% H2/N2 (VSTO-H) 

at 1573 K for 6 hours and sintered at 1773 K for 8 hours in 5% H2/N2. 

 

 Figure 6.15 represents the results of power factor for VSTO-H compositions. 

The trend and values of results obtained are similar to previously reported data, 

Figure 6.8. Consequently, processing atmosphere does not have any significant effect 

on the PF of Sr1-3x/2Lax/2Smx/2TiO3 ceramics especially at high temperatures. This 

might be the confirmation of the interplay of bulk electrical conductivity at high 

temperature as discussed previously. As an illustration, x = 0.15 at 973 K showed 

power factors of 873 and 870 μW/K2.m for VSTO-A and VSTO-H samples, 

respectively. x = 0.15 showed the maximum display of PF values between 673 and 

873 K, with the highest value of ~ 1093 μW/K2.m obtained at 673 K. This could be 

attributed to the large values of electrical conductivity exhibited.  
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Figure 6.15. Temperature dependence of power factor, PF  for  Sr1-

3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in 5% H2/N2 (VSTO-H) 

at 1573 K for 6 hours and sintered at 1773 K for 8 hours in 5% H2/N2. 

 

 The thermal transport properties (k, kL and kE) of VSTO-H compositions are 

shown in Figures 6.16 to 6.18. The thermal transport properties of VSTO-H 

compositions exhibited lower values compared with that of VSTO-A compositions 

but show similar trend. As discussed previously, processing atmosphere showed little 

or no effect on the electrical transport properties of Sr1-3x/2Lax/2Smx/2TiO3 ceramics. 

However, it is evident to state that the effect of processing atmosphere was clearly 

observed in the thermal transport properties of the compositions.  
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Figure 6.16. Temperature dependence of total thermal conductivity, k  for  

Sr1-3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in 5% H2/N2 (VSTO-

H) at 1573 K for 6 hours and sintered at 1773 K for 8 hours in 5% H2/N2. 

 

 

The results obtained in the PSD of VSTO-A and VSTO-H powders and grain 

size of the ceramics were affected by the processing atmosphere, hence the eventual 

behaviour evidenced in the thermal conductivity. The small mean particle size, d50 

(4.70 μm) obtained in the PSD of VSTO-H powders compared to that of VSTO-A 

(6.04 μm) which translated to a reduced grain size obtained in the microstructure of 

VSTO-H samples as discussed in section 6.2.2 of this work.  Reduced grain size or 

incorporation of large grain boundaries shorten the MFP of phonons by acting as 

scattering centres [11]. In addition, processing (both calcination and sintering) in 

reduced atmosphere generate high oxygen vacancies in the lattice. Hence, randomly 

distributed oxygen vacancies within the lattice restrict phonon propagation in VSTO-

H compositions, resulting to a decrease in thermal conductivity [13]. The lowest k 

(2.67 W/m. K) at 973 K was observed in x = 0.20, which is ~ 11 % lower than the    
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lowest k (2.99 W/m. K at 973 K) obtained in VSTO-A composition. The k value  

(2.67- 5.50 W/m.K) observed in VSTO-H ceramics  is comparable to minimal  k 

values of most doped SrTiO3 ceramics prepared via conventional methods [6], [7], 

[16], [26] and  with metallic/semi -metallic or oxide additives [18], [27], [28]. This 

significant reduction in k as shown in VSTO-H compositions confirms that strongly 

reducing conditions are efficient in achieving low thermal conductivity in SSR 

synthesised Sr1-3x/2Lax/2Smx/2TiO3 ceramics.   

 

 

Figure 6.17. Temperature dependence of lattice thermal conductivity, kL  for  

Sr1-3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in 5% H2/N2 (VSTO-

H) at 1573 K for 6 hours and sintered at 1773 K for 8 hours in 5% H2/N2. 
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Figure 6.18. Temperature dependence of electronic thermal conductivity, kL  

for  Sr1-3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in 5% H2/N2 

(VSTO-H) at 1573 K for 6 hours and sintered at 1773 K for 8 hours in 5% 

H2/N2. 

 

 

 The temperature dependence of dimensionless figure of merit of VSTO-H 

samples is shown in Figure 6.19. ZT of x ≥ 0.15 compositions increases with 

temperature over the entire measured temperature range. In contrast, the ZT of x ≤ 

0.10 compositions increases within 573-873 K temperature range and declines at 

high temperature (973 K). This could be related to the low electrical conductivity 

exhibited, Figure 6.13. The ZT increases with increasing La-Sm concentration and 

reaches a maximum at x = 0.20. A highest ZT value of 0.30 was recorded in x = 0.20 

at 973 K, and this could be attributed to its relative low k.  
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Figure 6.19. Temperature dependence of dimensionless figure of merit, ZT  

for  Sr1-3x/2Lax/2Smx/2TiO3; 0.05 ≤x ≤ 0.30 ceramics calcined in 5% H2/N2 

(VSTO-H) at 1573 K for 6 hours and sintered at 1773 K for 8 hours in 5% 

H2/N2. 

 

 

A comparison of ZT values of VSTO-A and VSTO-H ceramics at   maximum 

measured temperature (973 K) relative to La-Sm doping concentration is shown in 

Figure 6.20. Both samples maintained similar ZT values at low dopant concentration 

and converged at the maximum doping concentration (x = 0.30). A rapid increase in 

the ZT of VSTO-H sample was observed in x = 0.15-0.20. The highest ZT, achieved 

in x = 0.20 of VSTO-H, as already discussed is related to its low k. It is obvious to 

state that the high concentration of VO created in this composition (x = 0.20) majorly 

contributed to the low k and consequent high ZT. This conjecture is supported by the 

increased lattice parameter observed in the composition as previously reported 

(Figure 6.2). The lattice expansion observed suggests a decrease in coulombic force 

or binding energy in the lattice due to creation of VO accompanied by the formation 

of the higher ionic radius Ti3+ cation [2].  
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Figure 6.20. A comparison of ZT values of VSTO-A and VSTO-H ceramics 

relative to La-Sm concentration at 973 K. 

 

    

In general, the obtained results discussed here show A-site vacancy La-Sm 

co-doped SrTiO3 TE ceramics can be optimised compared to the electron co-doping 

mechanism. In Sr1-xLax/2Smx/2TiO3 samples, a maximum ZT value of 0.24 at 873 K 

was achieved. As shown in Sr1-3x/2Lax/2Smx/2TiO3 results, enhanced ZT values were 

obtained with a maximum value of 0.25 for VSTO-A (x = 0.30) and 0.30 for VSTO-

H (x = 0.20) at 973 K. This higher ZT value achieved in VSTO-H samples reflects 

an optimum comprise between reduced k and metallic behaviour of the ceramics 

without compromising the PF.  
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6.3 Thermoelectric Study of 20 mol% La-Sm-doped SrTiO3 

Ceramics 
 

6.3.1 Introduction 

 

 The high ZT (ZTmax = 0.30) and appreciable low k (kmin = 2.67 W/m. K) 

achieved in VSTO-H samples are strong indications that processing in strongly 

reducing conditions can further improve the TE performance of Sr1-

3x/2Lax/2Smx/2TiO3. It also confirms introduction of A-site cation vacancies, 

processing in reduced atmosphere and induced oxygen defects can improve the TE 

properties of doped SrTiO3 materials. Additionally, microstructure modulation 

achieved via enhanced processing methods has proved to be a practical approach for 

enhancing the TE performance of doped ceramics. 

   Due to the novel research window opened and the highest ZT obtained in x 

= 0.20 of the La-Sm co-doped SrTiO3, a further step was attempted to enhance its 

TE properties. The approach involved the modification of the processing temperature 

and the calcination cycle while maintaining calcination and sintering in 5% H2/N2. 

The structure-property relationships of the new samples are studied, and comparison 

made with the already discussed 20 mol% of the VSTO-A and VSTO-H samples. 

These samples are code named 1300A, 1300H, 1350H and 1400H. 1300A and 

1300H represent the SrLa0.10Sm0.10TiO3 (electronic doped) and 

Sr0.70La0.10Sm0.10TiO3 (vacancy doped) ceramics calcined in air and 5% H2/N2, 

respectively at 1300 oC  (1573 K) for 6 hours and sintered in 5% H2/N2 at 1773 K for 

6 and 8 hours. Portions of the 1300H calcined powders were recalcined at 1350 or 

1400 oC for 6 hours in 5% H2/N2, and subsequently sintered in the same atmosphere 

at 1773 K for 8 hours. These samples are named 1350H (calcined at 1573 and 1623 

K) and1400H (calcined at 1573 and 1673 K).  
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6.3.2 Results and discussion 

6.3.2.1 Particle Size Distribution 

 Figure 6.21 represents the particle size distribution of the double calcined 

Sr0.70La0.10Sm0.10TiO3 (1350H, 1400H) powders after ball milling. All as-milled 

powders showed no agglomeration and mean particle sizes of ≤ 6 μm and d90 ≤ 11 

μm (Table 6.3). Comparing with 1300A and 1300H powders, a significant reduction 

in d50 from 6.04 μm to 4.22 μm (30 % reduction) was observed in 1400H.  These 

small particle sizes confirmed that double calcination at high temperatures in 

5%H2/N2 contributed in the reduction of the particle sizes of the powders. 

 

 

Figure 6.21. Schematic particle size distribution of Sr0.70La0.10Sm0.10TiO3 

(1350H and 1400H) calcined powders after 24 hours of ball milling. 
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Table 6.3. Particle sizes of calcined 20 mol% La-Sm-doped SrTiO3 

powders after 24 hours ball milling. 

 

 

 

 

6.3.2.2 Phase Structure and Microstructure  

 

The XRD patterns of the crushed SrLa0.10Sm0.10TiO3 and 

Sr0.70La0.10Sm0.10TiO3 ceramics sintered in 5% H2/N2 at 1773 K for 6 or 8 hours are 

shown in Figure 6.22. All the peaks could be indexed on a simple cubic SrTiO3 

perovskite with Pm-3m space group. No secondary phase was detected within the 

detection limit of the diffractometer. The results of the lattice parameters, cell 

volumes and theoretical density as calculated from the XRD data are shown in Table 

6.4, while Figure 6.23 illustrates the behaviour of the lattice parameter relative to 

processing condition. 1300A sample showed the lowest parameter (3.903 Å), while 

1300H exhibited an expanded lattice parameter and reached a maximum value of 

3.910 Å, suggesting stripping of more oxygen ions from the lattice and consequent 

partial reduction of Ti4+ to Ti3+ ions. For 1350H and 1400H samples, a decrease in 

lattice parameter (~ 3.907 Å) was observed. No clear reason is adduced for this 

behaviour, but it could be related to an expansion limit where a further increase in 

the calcination temperature does not result in a greater concentration of VO. 
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Relative density of all samples after sintering was ≥ 96 % (Table 6.4). The 

SEM images of 1350H and 1400H samples as shown in Figure 6.24 revealed 

homogenous and dense structures relative to the high relative density in Table 6.4. It 

is also observed that the microstructure showed a reduced   grain sizes consistent 

with decreased particle diameters of the powders obtained in the particle size 

distribution test (Table 6.3). The microstructure showed a reduced average grain size 

of 7- 8 μm with concentration of voids. This shows that double calcination in 5% 

H2/N2 reducing gas at high temperatures has a significant effect on the microstructure 

of the ceramics. 

 

 

Figure 6.22. Room temperature XRD patterns of crushed SrLa0.10Sm0.10TiO3 

and  Sr0.70La0.10Sm0.10TiO3 ceramics calcined in air or 5% H2/N2   at 1573, 

1623 or 1673 K for 6 hours and sintered in 5% H2/N2 at 1773 K for 6 or 8 

hours. 
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Figure 6.23. Lattice parameter behaviour relative to processing condition of 

crushed SrLa0.10Sm0.10TiO3 and Sr0.70La0.10Sm0.10TiO3 ceramics calcined in 

air or 5% H2/N2 at 1573, 1623 or 1673 K for 6 hours and sintered in 5% H2/N2 

at 1773 K for 6 or 8 hours. 

 

Table 6.4. Lattice parameter, cell volume and relative density of 20 

mol% La-Sm-doped SrTiO3 ceramics sintered in 5%H2/N2 at 1773 K for 

6 or 8 hours. 
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Figure 6.24. SEM micrographs of the surfaces of Sr0.70La0.10Sm0.10TiO3 

ceramics double calcined in 5% H2/N2 at (a) 1573 and 1623 K (b) 1573 and 

1673 K for 6 hours, sintered in 5% H2/N2 at 1773 K for 8 hours and thermally 

etched at 1623 K for 30 minutes. 

 

 

6.3.2.3 Thermal Behaviour  

 

 The thermal stability of 20 mol% La-Sm co-doped SrTiO3 ceramics in air 

was determined using thermogravimetric analysis (TGA). The TGA results are 

shown in Figure 6.25. At low temperatures (25 – 500 oC), a noticeable weight loss 

(~ 0.2 %) was observed for 1350H and 1400H samples. Such behaviour can mainly 

be attributed to a chemical reaction (such as thermal decomposition, loss of water of 

crystallisation, combustion or reduction of oxides) or physical transitions (e.g. 

vaporisation, evaporation, sublimation, desorption and drying).  Within this low 

temperature range, 1300A and 1300H samples remained stable.  

It is worth noting that 1350H and 1400H samples showed a low onset 

oxidation temperature (500 oC) when compared to 1300A and 1300H samples as 

shown in Table 6.5. This could be due to the chemical reaction or physical transitions 

undergone at low temperatures. However, colour of 1350H and 1400H ceramics after 

TGA remained black while 1300A and 1300H turned brown and white in 

appearance, respectively. This suggests that Sr0.70La0.10Sm0.10TiO3 ceramics with  
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improved processing conditions can enhance their stability in air with decreased re-

oxidation (small oxidation weight change) as shown in Table 6.5. 

 

 

Figure 6.25. Thermogravimetric analysis showing the thermal behaviour in 

air of 20 mol% La-Sm-doped SrTiO3 ceramics calcined and/or recalcined in 

air or 5% H2/N2 at 1573 -1673 K for 6 hours and sintered in 5% H2/N2 at 1773 

K for 6-8 hours.  
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Table 6.5. TGA result showing the weight variation and oxidation onset 

temperature of 20 mol% La-Sm-doped SrTiO3 ceramics calcined and/or 

recalcined in air or 5% H2/N2 at 1573 -1673 K for 6 hours and sintered 

in 5% H2/N2 at 1773 K for 6-8 hours.  

 

 

6.3.2.4 Thermoelectric Properties 

Figures 6.26 to 6.32 represent the temperature dependence of the 

thermoelectric properties (σ, │S│, PF, k, kE and ZT) of the SrLa0.10Sm0.10TiO3 and 

Sr0.70La0.10Sm0.10TiO3 ceramics sintered at 1773 K for 6 or 8 hours in 5%H2/N2 gas 

mixture. In all the samples, electrical conductivity decreases with increasing 

temperature over the measured temperature range, implying a metallic conductor-

like behaviour and display of similar scattering mechanism as discussed previously 

(Figure 6.26) [6], [14]. It is observed that 1300A and 1400H showed high σ within 

the measured temperature, and this implies that processing conditions have little or 

no effect on the electrical properties of 20 mol% SrTiO3 ceramics as studied in this 

work. 1300A showed the highest σ (1184 S/cm) at 573 K, while at high temperatures 

(673-973 K) 1400H displayed the highest σ values. 
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Figure 6.26. Temperature dependence of electrical conductivity,  σ for 20 

mol% La-Sm-doped SrTiO3 ceramics calcined in air or 5% H2/N2 at 1573-

1673 K for 6 hours and sintered at 1773 K for 6-8 hours in 5% H2/N2.  

 

 

As highlighted previously, many factors contribute to the electrical 

conductivity of ceramics, which include doping and processing in reduced 

atmosphere. Increase in VO results to increase in an efficient carrier mobility [29]. 

The more the O2- anions are removed from the lattice, the higher the electrical 

conductivity.   

All samples showed negative Seebeck coefficient values in the whole 

measured temperature range, indicating n-type degenerate behaviour due to the 

reducibility of Ti4+ to Ti3+ ions and  eventual release of electrons into the conduction 

band  [30], [31]. As expected, the │S│ exhibited metallic behaviour and showed a 

value ≥ 154 μV/K at 973 K, Figure 6.27. 1400H had the lowest │S│ values, and this 

could be attributed to its high σ.  
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Figure 6.27. Temperature dependence of Seebeck coefficient, │S│ for 20 

mol% La-Sm-doped SrTiO3 ceramics calcined in air or 5% H2/N2 at 1573-

1673 K for 6 hours and sintered at 1773 K for 6-8 hours in 5% H2/N2.  

 

 

The power factors for the different samples (1300A, 1300H, 1350H and 

1400H) are presented in Figure 6.28. At low temperatures (573-673), the samples 

exhibited a peak behaviour, and decreases with increasing temperature between 673 

and 973 K. 1300A samples showed the highest PF (~ 1111 μW/K2.m) at 573 K. The 

high PF value is traceable to its highest σ at low temperature (573 K). At ≥ 873 K, 

PF of 1400H exhibited high values than other samples. Therefore, the combination 

of large σ and moderate │S│ achieved by optimised processing conditions resulted 

in the large PF observed in 1400H sample at high temperatures. 
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Figure 6.28. Temperature dependence of power factor, PF for 20 mol% La-

Sm-doped SrTiO3 ceramics calcined in air or 5% H2/N2 at 1573-1673 K for 6 

hours and sintered at 1773 K for 6-8 hours in 5% H2/N2.  

 

The total thermal conductivity (k) and electronic thermal conductivity (kE) of 

the various 20 mol% La-Sm-doped SrTiO3 ceramics are shown in Figures 6.29 and  

6.30. A decrease in k with increasing temperature was observed in all samples, 

suggesting a thermal conduction behaviour with kL in dominance, commonly found 

in semiconductors [5], [6]. 1300A sample showed a very high k over the measured 

temperature range compared to other samples. In contrast, low k was observed in 

other samples within the measured temperature range and decreased linearly to the 

smallest value of ~ 2.5 W/m. K at 973 K for 1400H sample, Figure 6.29. This value 

(2.5 W/m. K) is ~ 6 % lower than the smallest k obtained in VSTO-H compositions 

(2.67 W/m. K for x = 0.20 at 973 K). The high concentration of voids observed in 

the microstructure of 1400H sample act as phonon scattering centres and might 

contribute to the small value of k (2.5 W/m.K). 
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Figure 6.29. Temperature dependence of total thermal conductivity, k for 20 

mol% La-Sm-doped SrTiO3 ceramics calcined in air or 5% H2/N2 at 1573-

1673 K for 6 hours and sintered at 1773 K for 6-8 hours in 5% H2/N2.  

 

 

It is obvious to state that the optimised processing conditions significantly 

enhanced the thermal transport properties of Sr0.70La0.10Sm0.10TiO3 ceramics. As 

previously  discussed, reduced grain sizes and a significant level of oxygen defects 

created in the lattice restrict the MFP of phonons, resulting in low k [11]–[13].  The 

kE of all samples showed a similar temperature dependence with σ and decreased 

with an increasing temperature, Figure 6.30. The small values observed in kE show 

the main contribution to k comes from kL, suggesting kE was controlled efficiently.  
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Figure 6.30. Temperature dependence of electronic thermal conductivity, kE 

for 20 mol% La-Sm-doped SrTiO3 ceramics calcined in air or 5% H2/N2 at 

1573-1673 K for 6 hours and sintered at 1773 K for 6-8 hours in 5% H2/N2.  

 

By enhancing the processing conditions, a high ZT (0.35) at 973 K, which is 

17 % higher than the highest ZT of 0.30 obtained in VSTO-H (x = 0.20) at 973 K 

was achieved for the 1400H sample, as shown in Figures 6.31- 6.32, respectively. 

Though, no La-Sm co-doped SrTiO3 has been reported in the literature, the high  ZT 

value of 0.35 at 973 K  obtained in this work remains the highest ZT reported in the 

literature of RE co-doped SrTiO3 at this temperature [5]–[7], [21], [26]. By 

extrapolation, ZT value of 0.36 - 0.40 at 1000 - 1100 K is achievable in 1400H 

samples based on the linear trend of ZT values with temperature. The enhancement 

of ZT is mainly due to reduction of the total thermal conductivity by the reduced 

grain sizes (containing voids) and increased oxygen vacancies.  
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Figure 6.31. Temperature dependence of dimensionless figure of merit, ZT 

for 20 mol% La-Sm-doped SrTiO3 ceramics calcined in air or 5% H2/N2 at 

1573-1673 K for 6 hours and sintered at 1773 K for 6-8 hours in 5% H2/N2.  

 

 

Figure 6.32 shows a comparison of ZT values of 1300A, 1300H, 1350H and 

1400H ceramics at 573 and 973 K measured temperatures relative to 20 mol% La-

Sm concentration. Air calcined samples (1300A) exhibited the lowest ZT value, and 

ZT increased in 5%H2/N2 calcined samples at 1573 K (1300H). As the samples were 

recalcined in 5%H2/N2 at high temperatures (1623-1673 K), an improved ZT was 

achieved. The highest ZT (0.35) achieved in 1400H as already discussed is related 

to its low k, which is attributed to the reduced grain sizes and high oxygen vacancies 

created in the sample.  
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Figure 6.32. Comparison of dimensionless figures of merit, ZT for 20 mol% 

La-Sm-doped SrTiO3 ceramics relative to La-Sm concentration at 573 and 

973 K. 

 

 

6.4 Conclusion 
 

 The combination of the solid-state reaction technique and strongly-reducing 

processing conditions successfully produced a nanostructured doping in A-site 

vacancy La-Sm-doped SrTiO3 ceramics. The microstructure-control-approach 

applied in this work via modified processing (calcination and sintering) conditions 

has a triple function, viz:  

i. La and Sm co-doping increased the carrier concentration, resulting to 

increase in electrical conductivity. 
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ii. Though the enhanced processing conditions seem to have a minimal 

effect on the electrical transport properties, optimised power factors were 

achieved. 

iii. Total thermal conductivity was reduced by introducing complex defect 

strctures, attributed to atomic-scale La and Sm co-doped, the creation of 

A-site vacancies and oxygen vacancy contributions. 

Upon optimising the electrical transport properties and reducing total thermal 

conductivity, a higher figure of merit, ZT (0.35) at 973 K was achieved in 

Sr0.70La0.10Sm0.10TiO3 (1400H) ceramics.   

 However, the highest ZT (0.35) obtained in this work is still low when 

compared with the work on SrTiO3 reported by Lu et al [8], Lu [32], Kovalevsky et 

al [16] and Wang et al [4]. Lu et al and Lu conclude that A-site cation vacancies are 

significant in optimising ZT, hence a high ZT (0.41) at 973 in A-site vacancy La-

doped SrTiO3 ceramics is recorded. With this result in comparison to the ZT achieved 

in this study, one may argue that co-doping has a minimal effect in optimising ZT. 

In contrast, Wang et al, in their recent work reported an optimised ZT values of ≥ 

0.6 at 1000-1100 K and ≥ 0.5 at 900-1000 K in 10 mol% La and 10 mol% 

(La10Nb10) electron co-doped SrTiO3 ceramics. These ZT values (0.50 - 0.60) are 

higher than the best  ZT values (0.38 – 0.41) reported in the literature for single-

doped SrTiO3 ceramics [8], [16], [32] and La-Nb doped SrTiO3 assisted with Fe 

inclusion [27]. Wang et al [4] concluded that the combination of hydrothermal 

synthesis method and efficient sintering led to the optimised ZT. 

 From this comparative analysis, it is paramount to state that the type of 

doping mechanism (be it electron or vacancy) adopted plays a role in enhancing the 

ZT of doped SrTiO3 ceramics but other factors may be more important and an 

efficient synthesis route with processing in strongly-reducing conditions is suggested 

to be pivotal in improving the TE performance. Lu et al [8] and Lu  [32] in their 

works utilized attrition milling in the synthesis of the starting  materials and calcined 

powders, and obtained small mean particle sizes. Attrition milling is adjudged to be 

more efficient mixing method than ball milling in reducing particle sizes 
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of ceramic powders [11] and might have contributed to the higher ZT obtained by 

Lu et al  and Lu.  In another development, Kovalevsky et al [16] employed solid 

state reaction synthesis method and sintering under strongly reducing conditions  

(10%H2-90%N2), resulting to a suppressed k (~ 2.0) and optimised ZT (~ 0.41) at 

1073 K for Sr0.9Dy0.1TiO3±δ ceramics. 
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Chapter 7: Sr5LaTi3Nb7O30 and La2Ti2O7 Oxide Ceramics 
 

7.1 Introduction 
 

 Complex oxide compounds with intricate atomic structures, tunable 

stoichiometry and intrinsic low thermal conductivity (k) are promising 

thermoelectric (TE) materials for power generation [1]. Among this class of 

ceramics, tetragonal tungsten bronze (TTB) and perovskite-like layered structured 

(PLS) ceramics are of interest due to their intrinsic phonon scattering centres [2], [3] 

giving rise to low k [4] which may result in an increasing ZT. Unfortunately, they 

also possess very low electrical conductivity, hence it is a challenge to achieve strong 

TE performance in these oxides.  In this work, the structure and thermoelectric 

properties of Sm-doped TTB Sr5LaTi3Nb7O30 (SLTN) and PLS Nb-doped La2Ti2O7 

(LTO) ceramics are studied with a view to increasing the electrical conductivity 

through the use of appropriate dopant/processing strategies. 

  Sr5LaTi3Nb7O30 was investigated via two different doping mechanisms: 

electron, Sr5La1-xSmxTi3Nb7O30, 0.00 ≤ x ≤ 1.00 (SLTNe) and ionic (vacancy), Sr5-

3x/2LaSmxTi3Nb7O30, 0.00 ≤ x ≤ 0.30 (SLTNv).  Nb-doped La2Ti2O7 was studied 

using electron doping mechanism (La2Ti2-xNbxO7; 0.00 ≤ x ≤ 0.25). 

 

7.2 Sm-Doped Sr5LaTi3Nb7O30 Ceramics: Results and Discussion 

 

7.2.1 Phase Assemblage and Microstructure 

  
 Sm-doped Sr5LaTi3Nb7O30 compositions (SLTNe and SLTNv) were sintered 

in air and 5% H2/N2 at 1673 K for 6 hours and analysed to confirm the phase 

assemblage. The resulting room temperature XRD patterns of the crushed ceramics 

are shown in Figures 7.1, 7.2 and 7.3, respectively. All peaks in air sintered SLTNe 

compositions, as displayed in Figure 7.1, are indexed with the Sr5LaTi3Nb7O30 

tetragonal tungsten bronze structure with  space group P4/mbm according to the PDF  
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card no. 04-020-0459 [5] and PDF card no. 00-054-0777 (space group, P4bm) [6] 

for 0.00 ≤ x ≤ 0.75 and x = 1.00, respectively. No secondary phases were detected.  

 However, when compositions were sintered in reducing atmosphere using a 

5% H2/N2 gas mixture (Figures 7.2 and 7.3), significant peaks associated with 

secondary phases were indexed according to an ideal cubic SrTiO3 perovskite and a 

weak intensity unknown peak. The presence of these secondary phases (SrTiO3 and 

the unknown peak) is attributed to structural instability induced by oxygen deficiency 

[7] resulting from the sintering in the reducing atmosphere (5% H2/N2).  

 

 

Figure 7.1. Room temperature XRD patterns of crushed Sr5La1-

xSmxTi3Nb7O30; 0.00 ≤ x ≤ 1.00 (SLTNe) ceramics sintered in air at 1673 K 

for 6 hours. 
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Figure 7.2. Room temperature XRD patterns of crushed Sr5La1-

xSmxTi3Nb7O30; 0.00 ≤ x ≤ 1.00 (SLTNe) ceramics sintered in 5% H2/N2 at 

1673 K for 6 hours. 
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Figure 7.3. Room temperature XRD patterns of crushed Sr5-

3x/2LaSmxTi3Nb7O30; 0.00 ≤ x ≤ 0.30 (SLTNv) ceramics sintered in 5% H2/N2 

at 1673 K for 6 hours. 
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Figures 7.4 and 7.5 display the SEM micrographs of the air and 5% H2N2 

sintered, thermally etched and carbon coated surfaces of SLTNe (x = 0.00, 0.20, 0.50, 

1.00) ceramics. All images of the air sintered ceramics (Figure 7.4) showed 

homogenous and dense structures consistent with the high average density (5.05 

g/cm3) and absence of secondary phase peaks in XRD spectra. The end member 

sample (x = 0.00, undoped) had the largest average grain size of   7.4 μm. With 

increasing x, average grain size decreased to  4.3 μm with rod-like large grains (~ 6 

x 2 μm) in x = 1.00.  

 

 

Figure 7.4. SEM micrographs of the surfaces of Sr5Lax-1SmxTi3Nb7O30 

(SLTNe); 0.00 ≤ x ≤ 1.00 ceramics sintered in air at 1673 K for 6 hours, 

carbon coated and thermally etched at 1533 K for 30 minutes. 
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Figure 7.5. SEM micrographs of the surfaces of Sr5Lax-1SmxTi3Nb7O30 

(SLTNe); 0.00 ≤ x ≤ 1.00 ceramics sintered in 5%H2N2 at 1673 K for 6 hours 

and thermally etched at 1533 K for 30 minutes. 

 

 

 In contrast, SEM images of 5% H2N2 sintered samples showed a bimodal 

grain size distribution as shown in Figure 7.5. The small grains indicated the presence 

of secondary phase dispersed within the large or coarse grains and at grain 

boundaries, confirming the presence of secondary phases as identified in XRD 

patterns, Figures 7.2 - 7.3. The average grain size of the large grains is dependent on 

the doping concentration. It reduces progressively from 5.1 μm for x = 0.00 to 4.5 

μm for x = 0.20, to a minimal value of 4.1 μm for x = 0.50 and increased to 5.0 μm 

for x = 1.00 sample. The secondary phases are typically 1-2 μm in size.   

EDX confirmed the chemical composition of the  large grains to be the TTB 

phase, while  the smaller grains of similar contrast are SrTiO3 perovskite with 

smallest bright grains as Nb-rich oxide as shown in the EDX results and spectra, 

Figure 7.6, Tables 7.1 and 7.2. The presence of an Nb-rich oxide (most likely Nb2O5-

x) secondary phase is attributed to the reduction. The TTB phase decomposes to a 

Sm-doped SrTiO3 and Nb2O5. The former composition accommodates reduction  
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through the formation of Ti3+ on the B-site which is compensated by Sm3+ on the A-

site. Nb5+ is more difficult to reduce and as is expunged from solid solution. 

However, the formation of Nb4+ ions is not excluded in the Nb-rich oxide phase [8], 

[9].  The presence of these secondary phases has a significant effect on the 

thermoelectric properties of Sr5LaTi3Nb7O30 ceramics as discussed later in this work. 

 

 

Figure 7.6. SEM image and point EDX trace of Sr5La0.80Sm0.20Ti3Nb7O30  

ceramic sintered 6 hours in 5% H2/N2 at 1673 K from a (a) large grain 

(spectrum 1) (b) small grain or secondary phase (spectrum 3). 
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Table 7.1. Point EDX analysis done on the large grain surface (Spectrum 

1) of Sr5La0.80Sm0.20Ti3Nb7O30 ceramic sintered 6 hours in 5% H2/N2 at 

1673 K. 
 

 

 

Table 7.2. Point EDX analysis done on the small grain surface (Spectrum 

3) of Sr5La0.80Sm0.20Ti3Nb7O30 ceramic sintered 6 hours in 5% H2/N2 at 

1673 K. 
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7.2.2 Thermoelectric Properties 
 

 The thermoelectric results obtained for reduced Sm-doped Sr5LaTi3Nb7O30 

(SLTNe and SLTNv) ceramics are discussed in the following section. The discussion 

is divided into three perspectives viz; the electrical transport properties, thermal 

transport properties and efficiency (ZT) of the ceramics.  

 

Electrical Transport Properties 

 Figure 7.7 shows the temperature dependence of the electrical conductivity, 

σ of the Sr5La1-xSmxTi3Nb7O30 (SLTNe) and Sr5-3x/2LaxSmxTi3Nb7O30 (SLTNv) 

ceramics sintered in 5% H2/N2 at 1673 K for 6 hours. The electrical conductivity of 

all SLTNe samples, except x = 0.15 increased with respect to the measuring 

temperature up to 873 K, and then decreased with a further increase in temperature, 

Figure 7.7(a). This shows the samples at 573-873 K exhibited semiconducting 

behaviour, which at 973 K switched to typical metallic behaviour. For x = 0.15, σ 

decreased with increasing temperature over the entire measured temperature range, 

indicating metallic behaviour as reported previously [10], [11]. The magnitude for 

the σ of SLTNe samples increased significantly for x = 0.15 compared to undoped 

sample (x = 0.00), suggesting that carrier concentration and mobility were affected 

by doping [12], [13]. With an increase in Sm concentration (x ≥ 0.20), σ decreased 

even lower than the un-doped sample (x = 0.00). The highest electrical conductivity 

value (~ 444 S/cm) was obtained in x = 0.15 SLTNe sample at 573 K. It is important 

to state that x = 0.15 sample maintained the highest σ in the entire measured 

temperature range. 

 The electrical conductivity behaviour of SLTNv samples as shown in Figure 

7.7(b) is divided into two parts for discussion purposes.  Part I is x = 0.00, x = 0.15-

0.20; part II is x = 0.05-0.10, x ≥ 0.25. In part I, σ increased significantly when 

compared to part II. The σ of x = 0.00; 0.20 and x = 0.15 samples exhibited a peak 
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behaviour in the low temperature ranges 573-773 K and 573-873 K, respectively, 

showing a semiconductor-like behaviour and transits to metallic behaviour (decrease 

in σ with increasing temperature) at high temperature (973 K) [9], [13]. Similarly, σ 

of all samples in part II displayed a transition at 873 K, which increased with 

increasing temperature in 573-873 K temperature range and decreased at high 

temperature (973 K). Sm-doping of the vacancy compositions (SLTNv) with x < 

0.20 or > 0.20 reduced σ when compared to un-doped samples (x = 0.00), hence the 

highest σ (~292 S/cm) at 573 K was recorded in x = 0.20. As observed from the 

graph, σ of x = 0.00 and x = 0.20 ceramics converged at high temperatures (873-973 

K). The reason for the maximum σ (292 S/cm) observed in SLTNv when compared 

to SLTNe (σmax = 444 S/cm at 573 K) is unclear but unlike in perovskite 

compositions, cation vacancies did not improve σ with respect to electron 

substitution.  
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Figure 7.7. Temperature dependence of electrical conductivity for (a) 

SLTNe, (b) SLTNv samples sintered in 5% H2/N2 at 1673 K for 6 hours. 
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 Figure 7.8 shows the absolute Seebeck coefficient, │S│ of SLTNe and 

SLTNv samples as a function of temperature. The Seebeck coefficients of all 

ceramics are negative, indicating that electrons are the dominant carriers. The 

Seebeck coefficient increased monotonically with increasing temperature and 

decreased with increasing σ, showing metallic behaviour. The increase in S with 

temperature can be associated with an increase in  the internal entropy [14]. The 

highest Seebeck coefficients recorded for SLTNe and SLTNv samples were 179 

μV/K (for x = 0.50) and 164 μV/K (for x = 0.30), respectively at 973 K. The high S 

values exhibited by these compositions (x = 0.50; 0.30) is related to their low σ.  
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Figure 7.8. Temperature dependence of Seebeck coefficient for (a) SLTNe, 

(b) SLTNv samples sintered in 5% H2/N2 at 1673 K for 6 hours. 
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The thermoelectric power factor (PF) of SLTNe and SLTNv samples are 

shown in Figure 7.9.  The PF for SLTNe samples, Figure 7.9(a) showed a decrease 

except x = 0.15 when compared to the undoped ceramic (x = 0.00) due to Sm doping. 

The highest PF value (451μW/K2.m) was obtained in x = 0.15 composition at 973 K, 

and is attributed to its high σ. In contrast, the highest PF value does not occur in x = 

0.20 of the vacancy sample (SLTNv) with the highest σ (Figure 7.9b). x = 0.00 

(undoped sample) showed the highest PF value, ~ 417 μW/K2.m at 973 K with x = 

0.15 (412 μW/K2.m) and x = 0.20 (404 μW/K2.m) power factors close to the 

maximum PF. The combined effect of the high σ and S obtained in x = 0.00 

contributed to its high PF. Though, no TE study has been reported in the literature 

for Sr5LaTi3Nb7O30 TTB, the PF results obtained in this work are higher than the PF 

results reported for SrxBa1-xNb2O6 TTB ceramics [9], [15], [16]. It is argued that the 

presence of secondary phases particularly the conducting SrTiO3 phase in the 

microstructure might have contributed to the improved PF observed in SLTN 

ceramics. This assertion is supported by the work of Lu et al [17] on La-doped 

Sr3Ti2O7 Ruddlesden-popper (RP) ceramics. They showed that compositions with 

SrTiO3 secondary phases resulted in high PF.  This result suggests that doping 

Sr5LaTi3Nb7O30 ceramics with samarium element and sintered in reducing 

atmosphere (5% H2/N2) can precipitate secondary phases in the lattice which 

improve the electronic transport properties. It also indicates that the ideal cubic 

SrTiO3 phases have higher σ than any Sm-doped Sr5LaTi3Nb7O30 phase (as discussed 

in Chapters 5 and 6), and therefore more suitable for TE applications.  
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Figure 7.9. Temperature dependence of power factor for (a) SLTNe, (b) 

SLTNv samples sintered in 5% H2/N2 at 1673 K for 6 hours. 
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Thermal Transport Properties 

 The total thermal conductivity (k), lattice thermal conductivity (kL) and 

electronic thermal conductivity (kE) of SLTNe and SLTNv samples are shown in 

Figures 7.10, 7.11 and 7.12, respectively. k and kL of all the samples vary irregularly 

with Sm-concentration especially at low temperatures as shown in Figures 7.10 and 

7.11.  The main reason for this anomaly is unclear but could be due to the influence 

of numerous factors such as defect scattering and bond angles of the Ti-O, Nb-O 

octahedra and the changes in phase assemblage as a function of composition. 

However, at low temperatures, k for most of the compositions increases with 

temperature. This can be explained as follows [18]. At low temperatures, majority of 

the thermally excited phonons possess small momentum and it’s known as “Normal 

process (N-process)”. As a result, momentum is conserved, hence there is no 

contribution or effect on net energy, momentum contribution, scattering in heat 

transport and MFP for k. Thus, k increases with temperature.  

Apart from point defects (VSr, VO) created in the lattice, the presence of 

secondary phases (SrTiO3 and Nb2O5) in the microstructure influence the thermal 

conductivity. SLTNv samples exhibited low k values (1.62-3.85 W/m. K) when 

compared to that of SLTNe samples (2.02 to 4.17 W/m. K) in the whole measured 

temperature range. This observation suggests the presence of these secondary phase 

inclusions and the point or vacancy defects act as scattering centres, shorten MFP of 

phonons and restrict their propagation, resulting in a decrease in k as previously 

discussed [13], [19], [20]. It is observed that only x = 0.50 (from SLTNe sample) and 

x = 0.30 (from SLTNv sample) exhibited similar thermal behaviour. k of x = 0.50 

and x = 0.30 compositions decreased with increasing temperature over the entire 

measured temperature range, showing phonon scattering behaviour [9] which is 

dominated by the Umklapp process (U-process) [13], [21], [22]. The Umklapp 

process or scattering is the name for several types of scattering that change the 

momentum of phonons.  The U-process occurs usually at high temperatures, and 

momentum is not conserved, resulting in a net momentum deposition in the 

scattering process and k being proportional to 1/kT. The lowest k (~ 2.0 W/m. K)  
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obtained in SLTNe sample was observed in x = 0.50 at 973 K, while in SLTNv 

sample, x = 0.30 showed the lowest k (~ 1.6 W/m. K) at 873 K. The lowest k values 

are attributed to the Umklapp scattering which not only reduces the k, but also σ 

(especially at high temperature for SLTNv, x = 0.30) as presented in Figure 7.10.  

 

Figure 7.10. Temperature dependence of total thermal conductivity 

for (a) SLTNe (b) SLTNv samples sintered 6 for hours in 5% H2/N2 

at 1673 K. 



212 | P a g e  
 

Sr5LaTi3Nb7O30 and La2Ti2O7 Oxide Ceramics 

The lattice thermal conductivity (kL), Figure 7.11 exhibited the same trend as 

k but with slightly lower values. In general, the decrease in k experienced in SLTNe 

and SLTNv samples may be linked to an additional phonon scattering resulting from 

impurities (or secondary phases) evidenced in the SEM images, cation vacancies, 

oxygen defects and grain boundaries [23]–[25]. The kE of all samples showed similar 

temperature dependence with σ and increased with increase in temperature as 

presented in Figure 7.12. From the small kE values (19.5-20.6 % of k), the electronic 

thermal conductivity makes a very small contribution to the total thermal 

conductivity. Therefore, the decrease of k of the samples is mainly due to the 

decrease of kL via enhancement of phonon scattering.  
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Figure 7.11. Temperature dependence of lattice thermal conductivity for (a) 

SLTNe (b) SLTNv samples sintered 6 for hours in 5% H2/N2 at 1673 K. 
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Figure 7.12. Temperature dependence of lattice thermal conductivity for (a) 

SLTNe (b) SLTNv samples sintered 6 for hours in 5% H2/N2 at 1673 K. 
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Thermoelectric Figure of Merit 

The overall thermoelectric performance or efficiency of Sm-doped 

Sr5LaTi3Nb7O30 ceramics studied in this work was measured using the 

thermoelectric figure of merit (ZT). The thermoelectric figure of merit of SLTNe and 

SLTNv samples as a function of temperature is shown in Figure 7.13.  ZT values of 

all the samples increased with temperature in the measured temperature range. As 

previously discussed, Sm-doping, cation vacancy, oxygen-reduction or oxygen 

vacancy and the secondary phase inclusions evident in the microstructure played a 

major role in optimising the PF. More so, the significant reduction in k, attributed to 

a large extent to the multiphase mixtures in the microstructure contributed greatly in 

the increased ZT recorded in the Sm-doped Sr5LaTi3Nb7O30 ceramics.   

The ZT values of SLTNe samples reached a maximum of 0.18 at 973 K in 

the Sr5La0.50Sm0.50Ti3Nb7O30 (x = 0.50) sample, Figure 7.13(a).  However, this 

highest value of ZT does not occur in x = 0.15 composition with the highest σ (Figure 

7.7a) and PF, Figure 7.9(a), but from x = 0.50 sample composition with the lowest k 

values. In SLTNv samples, similar trend repeated itself. As shown in Figures 7.7 (b) 

and 7.9(b), the highest σ and PF were observed in x = 0.00 (and x = 0.20 at high 

temperatures) and x = 0.00, respectively but could not exhibit the maximum ZT. The 

highest ZT (~ 0.21) value was observed in Sr4.55LaSm0.30Ti3Nb7O30 (x = 0.30) sample 

at 973 K (Figure 7.9b). x = 0.30 recorded the smallest k value of 1.6 W/m. K at 873 

K. The secondary phase inclusions (SrTiO3 and Nb2O5) observed in the 

microstructure and the vacancy defects created (Vsr and VO) as discussed would have 

contributed to the enhancement of phonon scattering, resulting in a very low k. The 

impact of this low k gives an overall increase in ZT.  

Overall, the highest ZT (~ 0.21) recorded in this work for the thermoelectric 

study of Sm-doped Sr5LaTi3Nb7O30 was obtained in vacancy doped 

Sr4.55LaSm0.30Ti3Nb7O30 (x = 0.30) at 973 K. It is obvious to conclude that Sm 

doping, oxygen-reduction, secondary phase inclusions and cation vacancies created  
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in SLTNv strongly restricted phonon propagation, resulting to the decrease in k (Ref. 

13, 19, 20).  

 

Figure 7.13. Temperature dependence of figure of merit for (a) SLTNe (b) 

SLTNv samples sintered 6 for hours in 5% H2/N2 at 1673 K. 
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The highest ZT (0.21) reported in this work is  comparable to that of  Sr1-

xBaxNb2O6, 0.21 (at 1073 K) [9] and Nb4W13O47, 0.20 (at 1173 K) [14]. At 973 K, 

Sr1-xBaxNb2O6 showed a ZT ~ 0.15 which is less that the maximum ZT obtained in 

this work for SLTNe (ZTmax = 0.18) and SLTNv (ZTmax = 0.21) at same temperature. 

In addition, the ZTmax is higher than all ZT values achieved for Sr1-xBaxNb2O6 TTBs 

[15], [16], [26]–[28] and within error with most doped SrTiO3 compositions [29]–

[31].  

In comparing the thermal behaviour of SLTNe (x = 0.50) and SLTNv (x = 

0.30) with maximum ZT values (0.18 for x = 0.50; 0.21 for x = 0.30), as shown in 

Figure 7.14, x = 0.30 (SLTNv) exhibited the highest ZT values in all the measured 

temperature range. This result confirms that cation defect (which is absent in SLTNe 

sample) as previously discussed contributed to the reduction in k and optimised ZT 

obtained in x = 0.30 (SLTNv). Both x = 0.50 (SLTNe) and x = 0.30 (SLTNv) 

recorded the same PF (365 μW/K2.m) at 973 K, suggesting that the cumulative effect 

of secondary phase inclusions, Sm-doping and oxygen vacancy on their electronic 

transport properties is similar. However, they differed in k by 0.29 W/m. K at the 

same temperature (x = 0.50, 2.02 W/m. K; x = 0.30, 1.73 W/m. K at 973 K), 

indicating that Vsr as an additional scattering centre created in SLTNv samples 

influenced the k. 
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Figure 7.14. Temperature dependence of figure of merit for (a) SLTNe  

(x =0.50) (b) SLTNv (x = 0.30) samples sintered 6 for hours in 5% H2/N2 at 

1673 K. 

 

 

7.3 Nb-Doped La2Ti2O7 Ceramics: Results and Discussion 

 

7.3.1 Phase Assemblage and Microstructure  
 

 The room temperature XRD patterns of the crushed air and 5%H2/N2 sintered 

La2Ti2-xNbxO7 (LTO) ceramics are shown in Figure 7.15. The phase assemblage was 

analysed using ICCD Sleve+ PDF-4+ software. The patterns are indexed to a 

La2Ti2O7 monoclinic structure ceramic (space group, P21) with the lattice constant a 

= 7.80896(10) Å, b = 5.54608(7) Å, and c = 13.01425(22) Å [32], consistent with 

those reported in the literature [4], [33]. No secondary phases were detected in any 

of the compositions within the detection limit of the diffractometer, and the peaks 

were sharp, suggesting a large particle size according to the Scherrer formula  [4]. 

The bulk and relative density of all compositions for different Nb 

concentrations are plotted in Figure 7.16. The relative density of all compositions  
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varied progressively from 84 % to 93 %. This implies the bulk density increased with 

increase in Nb concentration with x = 0.25 showing the maximum sintering density 

of 5.38 g/cm3 (93 % of theoretical density, 5.789 g/cm3) [32]. The SEM images of 

the 5%H2/N2 sintered, thermally etched and carbon coated surfaces for La2Ti2-

xNbxO7; 0.00 ≤ x ≤ 0.25 ceramics are shown in Figure 7.17. The SEM images 

revealed homogenous and porous structures consistent with their low relative density 

of ≤ 93 % and average grain size of ≤ 2 μm. The effect of porosity on the 

thermoelectric performance of these compositions is unclear.  However, some 

authors have suggested the presence of  porosity in the lattice creates discontinuities 

which act as scattering centres thereby restricting carrier mobility and  enhancing 

phonon scattering [30], [34], [35]. As a result, both σ and k are reduced.  
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Figure 7.15. Room temperature XRD patterns of crushed ceramics; La2Ti2-   

xNbxO7 (LTO), 0.00 ≤ x ≤ 0.25 sintered 6 hours in (a) air (b) 5% H2N2 at 1773K. 
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Figure 7.16. The Archimedes measured density of La2Ti2-xNbxO7; 

0.00 ≤ x ≤ 0.25 ceramics sintered in 5% H2/N2 at 1773 K for 6 hours. 

The uncertainty in density measurement is ± 0.05 %. 

 

 

Figure 7.17. SEM micrographs of the surfaces of La2Ti2-xNbxO7 (SLTNe); 

0.00 ≤ x ≤ 0.25 ceramics sintered 6 hours in 5% H2/N2 at 1773 K and 

thermally etched at 1623 K for 30 minutes. 

 

https://www.quora.com/Whats-the-name-for-plus-or-minus-%C2%B1
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7.3.2 Thermoelectric Properties 

 

 Figures 7.18 to 7.22  show the temperature dependence of the electrical 

conductivity (σ), absolute Seebeck coefficient (│S│, power factor (PF), total thermal 

conductivity (k), electronic thermal conductivity (kE) and dimensionless figure of 

merit (ZT), respectively for La2Ti2-xNbxO7 ceramic compositions sintered in 5% 

H2/N2 gas mixture at 1773 K for 6 hours. As shown in Figure 7.18, x = 0.00 (undoped 

La2Ti2O7) exhibited the lowest σ in all the measured temperature range, consistent 

with its lowest density (Figure 7.16). The low σ obtained in x = 0.00 showed that 

carrier mobility was restricted probably by the inherent heavy pores in the grains. 

The electrical conductivity increased with Nb doping but inconsistent with dopant 

(Nb) concentration. x = 0.10 showed the highest σ in all the measured temperature 

range, reaching a maximum of ~ 2.0 S/cm (200 S/m) at 873 K. This increase in 

electrical conductivity is attributed to the increase in carrier (electron) concentration 

due to the substitution of Nb5+ for Ti4+ which produces electrons. Moreover, VO 

introduced by processing in reducing atmosphere increases the carrier concentration, 

thereby increasing σ [36], [37]. Some authors have also suggested the effect of grain 

size as a contributory factor to the enhanced σ. Doping has generally been observed 

to increase grain size, resulting in a reduced grain boundary area and scattering which 

may enhance the conduction [36]–[38].    

  σ of all the compositions increased with temperature within 573-873 K, and 

declined at 973 K. As discussed previously, the compositions at 573-873 K showed 

semiconducting behaviour and switched to a typical metallic behaviour at high 

temperature (973 K). The highest σ (200 S/m) at 873 K for La2Ti1.9Nb0.1O7 obtained 

in this work is higher than the maximum σ (0.5 S/m) reported in the literature for  

La1.6Sr0.4Ti2O6.8±δ ceramic at 573 K [4]. 
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Figure 7.18. Temperature dependence of electrical conductivity for pure and 

Nb-doped La2Ti2O7 ceramics sintered 6 hours in 5% H2/N2 at 1773 K. 

 

 

 

Figure 7.19 shows the │S│ of La2Ti2-xNbxO7 sample as a function of 

temperature. S of all ceramics are negative, indicating that electrons are the dominant 

carriers [37], [39]–[41]. S increased monotonically with increasing temperature in 

all the measured temperature range. However, the behaviour of S of the sample is 

inconsistent with Ioffe theory [42] (except x = 0.00 at 973 K),  the relationship 

between S and carrier concentration is given by the following equation [39]:  

    

   𝑆 = 𝛾 + ln
1

𝑛
                                                                                                                    7.1 

 

 

where ϒ and n are the scattering factor and the carrier concentration, respectively. S 

is inversely proportional to the carrier concentration. This implies that x = 0.00 with 

the lowest σ (lowest carrier concentration) is expected to show the highest S in all 

temperatures while x = 0.10 should likewise exhibit the lowest S as a result its high  
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σ in obedience with Ioffe’s theory. At the maximum measured temperature (973 K), 

x = 0.00 as expected exhibited the highest absolute Seebeck coefficient value of ~ 

389 μV/K. This value is larger than the Sm-doped Sr5LaTi3Nb7O30 values obtained 

in this work, and in most SrTiO3 samples in the literature [10], [13], [29], [39], [43], 

[44], but very close to the value of undoped SrTiO3 (393 μV/K at 973 K) reported in 

this study (Chapter 5). 

 

 

 

 

Figure 7.19. Temperature dependence of Seebeck coefficient for pure and 

Nb-doped La2Ti2O7 ceramics sintered 6 hours in 5% H2/N2 at 1773 K. 

 

 

Combining the electrical conductivity and the Seebeck coefficient, the PF of 

La2Ti2-xNbxO7 sample was determined and shown in Figure 7.20 as a function of 

temperature. Despite the high Seebeck coefficients (190 - 389 μV/K) exhibited by 

all the compositions, the PF remained very low (< 20 μW/K2.m), due to the low σ (≤ 

2.0 S/cm).  However, the results obtained showed that the power factors of the Nb-

doped compositions (0.05 ≤ x ≤ 0.25) where higher than that of undoped composition 

(x = 0.00) in all the measured temperature range, due to the enhanced electrical  
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conductivity. x = 0.10 showed a higher PF value especially at high temperatures 

(773-973 K) than other compositions and recorded the maximum PF value of ~ 18 

μW/K2.m at 973 K. 

 

 

 

Figure 7.20. Temperature dependence of power factor for pure and Nb-doped 

La2Ti2O7 ceramics sintered 6 hours in 5% H2/N2 at 1773 K. 

 

 

 

 The temperature dependence of the total thermal conductivity, k and the 

electronic thermal conductivity, kE of pure and Nb-doped La2Ti2O7 ceramics are 

shown in Figures 7.21.  The thermal transport behaviour particularly k of the Nb-

doped ceramics is irregular with temperature. This behaviour could be related to the 

complex interplay of phonon scattering including U and N-processes on the ceramic 

material. Importantly, the effect of grain size as discussed previously which was 

presumed to contribute to the enhancement of conduction process affect phonon 

scattering. Since cation doping of a material increases the grain size thereby 

promoting carrier (electron) mobility, it could be assumed that phonon propagation 

as well occurs. As a result, the Nb-doped La2Ti2O7 ceramics exhibited a 
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metallic conduction behaviour, which is evidenced in the increased σ and k, 

respectively.  

On the other hand, undoped La2Ti2O7 showed the lowest k across the 

measured temperature range, with a minimum = 1.18 W/m. K at 773-873 K.  The 

reduced relative density observed in La2Ti2O7 ceramics indicates an increase in 

porosity in the microstructure, which significantly affected thermal conductivity. The 

relation between the k and volume of pores is given in the following equation [45]: 

 

k = kO (1 − P
2

3)                                                                                                7.2 

 

where kO is the thermal conductivity of the material without porosity and P is the 

fraction of pores in the material. The implication of equation 7.2 therefore, is that 

increase porosity leads to an increase in phonon scattering, resulting in reduction of 

k. The minimal k value (1.18 W/m.K)  obtained in an undoped La2Ti2O7 is lower 

than the value (1.3 W/m.K at 573 K) obtained in the literature for pure La2Ti2O7 [4]  

and comparable to related polycrystalline PLS compounds such as Bi4Ti3O12 (k ~ 

1W/m.K) [4], [46] and Sr2Nb2O7 (k = 1.5 W/m.K) [4], [47]. For the Nb-doped 

La2Ti2O7 compositions reported in this work, x = 0.10 showed the highest k value 

(2.26 W/m. K) at 973 K, while x = 0.05 exhibited the lowest k value of 1. 49  W/m. 

K at 773 K, attributed to its large unit cell, large atomic mass, crystal anisotropy and 

complex crystal structure [46], [47]. 

The electronic thermal conductivity of all LTO compositions showed similar 

temperature dependence with σ and increased with increase in temperature as 

presented in Figure 7.21(b). From the small kE values (≤ 0.0044 W/m. K), it is 

obvious to state that electronic thermal conductivity makes a very small contribution 

to the total thermal conductivity. This means that k comes mainly from their lattice 

thermal conductivity [4], [21].  
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Figure 7.21. Temperature dependence of (a) total thermal conductivity (b) 

electronic thermal conductivity for pure and Nb-doped La2Ti2O7 ceramics 

sintered 6 hours in 5% H2/N2 at 1773 K. 
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Figure 7.22 shows the temperature dependence of figure of merit (ZT) values 

for pure and Nb-doped La2Ti2O7 ceramics sintered in 5% H2/N2 gas mixture at 1773 

K for 6 hours. From 573 K up to 873 K (573-873 K), x = 0.00 (pure La2Ti2O7) had 

the lowest ZT values (≤ 0.0045) because of the low electrical conductivity. The 

combination of a higher σ and S resulted in a relatively high ZT in Nb-doped 

La2Ti2O7 ceramics compared to undoped La2Ti2O7. This suggests that the ZT of 

La2Ti2O7 could be increased by a careful tuning with an appropriate dopant such as 

Nb. As observed from Figure 7.22, the ZT of all the compositions except x = 0.15 

increased with increasing temperature within the measured temperature range. 

 

 

Figure 7.22. Temperature dependence of figure of merit for pure and Nb-

doped La2Ti2O7 ceramics sintered 6 hours in 5% H2/N2 at 1773 K. 

 

 The ZT of La2Ti1.85Nb0.15O7 (x = 0.15) ceramic increased with temperature 

up to 873 K and decreased at 973 K. Furthermore, in all compositions, x = 0.05 and 

0.10 showed a high ZT values at low temperatures (573-673 K), and beyond 673 K, 

x = 0.05 exhibited the highest values with a maximum ZT of 0.0084 at 973 K.  The 

highest ZT displayed by 5 mol% Nb-doped La2Ti2O7 is traceable to the lowest k 

value recorded at high temperatures (773-973 K) compared to other Nb-doped  
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La2Ti2O7  compositions. x = 0.10 LTO ceramic recorded the highest σ values (Figure 

7.18) within the measured temperature and also showed the highest PF at high 

temperatures (773-973 K), Figure 7.20. With these results, one would have expected 

x = 0.10 to display the maximum ZT, but its metallic behaviour resulted to increase 

in k (1.98-2.26 W/m. K) between 773 and 973 K, leading to a drop in ZT. However, 

the optimised S and low k obtained in Nb-doped La2Ti2O7 ceramics are clear 

indication that La2Ti2O7 is a potential oxide thermoelectric material.  

 

7.4 Conclusion 

 

 The complex structure and intrinsic low thermal conductivity possessed by 

Sr5LaTi3Nb7O30 TTB and La2Ti2O7 PLS oxide ceramics were explored in this study 

to achieve optimised thermoelectric properties. The combination of cation doping 

and sintering in reducing atmosphere (5% H2/N2) significantly improved the 

thermoelectric performance. Sm-doping of Sr5LaTi3Nb7O30 increased the carrier 

concentration, which resulted in optimised electrical transport properties (σ, S and 

PF) obtained. The thermal conductivity of Sm- doped Sr5LaTi3Nb7O30 ceramics was 

reduced through a modulated complex microstructure resulting from Sm-doping, 

vacancy defects (Vsr and VO) and secondary phase inclusions (SrTiO3 and Nb2O5)   

in the lattice. Overall, a record high ZT value of 0.21 at 973 K was achieved in 

Sr4.55LaSm0.30Ti3Nb7O30. However, this high ZT (0.21) obtained for Sr5LaTi3Nb7O30 

ceramics are still low compared to state-of-art thermoelectric, n-type oxides such as 

doped SrTiO3 and ZnO, as reported in the literature.  

 Interestingly, the maximum ZT of 0.21 obtained in this study is higher than 

most  ZT values reported in the literature for La-doped SrTiO3 ceramics [37], [39], 

[41], [48] and  cation doped CaMnO3 n-type ceramics at high temperatures (≥ 900 

K) [49]–[52].  For example, in the La- SrTiO3 and Nb-doped CaMnO3 ceramics 

studied by Shang et al [39] and Xu et al [49], respectively, a maximum ZT of 0.08 

at 679  and 1000 K is obtained. In addition, the ZT = 0.21 at 973 K recorded is 

comparable to the ZT of  Dy-doped n-type SrTiO3 (ZT = 0.22 at 963 K) [41], [48]  
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and  Nb-doped CaMnO3 ceramics (ZT = 0.23 at 973 K) [53]. 

Similarly, improved thermoelectric properties particularly optimised S and 

reduced k were achieved in La2T2O7 ceramics by B-site doping with a heterovalent 

Nb5+ cation. Although the maximum ZT (0.0084) obtained in this study for x = 0.05 

LTO at 973 K is very low, optimised S (389 μV/K at 773 K) and minimised k (1.18 

W/m. K at 773-873 K) were recorded in undoped La2Ti2O7. By doping with Nb5+ 

cation, the carrier concentration was increased, leading to enhanced electrical 

transport properties and improved ZT. S recorded in all the compositions especially 

at high temperatures is higher that most of the values achieved in the current oxide 

state-of- art materials such as BiCuSeO [54]–[58] and SrTiO3 [59]–[61]. 

 In conclusion, TTB, PLS and other structurally related oxides are relatively 

new classes of thermoelectric oxides, but the results obtained in this project clearly 

show promising properties. For example, decrease in grain size, presence of 

secondary phases and pores can contribute to a decrease in k, leading to improved 

ZT. Therefore, effective control of the microstructure and relative density can 

promote the efficiency of TE materials and devices.  From the developmental  history 

of thermoelectrics, the research on oxides is relatively young [62], and there is no 

doubt that progress is evident in the near future. In the words of Vining [63] as 

reported by Kieslich et al[1], thermoelectric research is not expected to proffer 

solution to all the world energy problems but only anticipated to make a more 

committed contributions than in the past.  
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Chapter 8: General Discussion  

8.1 Discussion 

 

 In light of the limitations associated with non-oxide thermoelectric materials 

[1], ceramics based on transition metal oxide are considered to be viable alternatives 

[2]–[4]. However, n-type oxides remain inferior when compared to p-type oxides 

owing to their low PF and ZT values. With this in mind, SrTiO3, a potential TE n-

type oxide together with Sr5LaTi3Nb7O30 and La2Ti2O7 were investigated. The 

complex crystal structures, tunable composition/stoichiometry and intrinsic low k 

inherent in perovskites, TTBs [5]–[7] and PLS [8] ceramics motivated this study. 

 

8.1.1 La-Sm Doped SrTiO3 Ceramics 
 

 Electron La-Sm co-doping SrTiO3 (ESTO) followed by sintering 6 hours in 

5% H2/N2 at 1773 K enhanced ZT (especially the ≤ 0.15 compositions) due to the 

relatively high PF and low k. x = 0.15 recorded the highest ZT value of 0.24 at 873 

K due to a reduced k and a high σ of 942 S/cm at 573 K. At ≥ 0.20, a switch from 

metallic to semiconducting behaviour was observed, hence σ decreases. x = 0.20 

achieved the smallest k (3.0 W/m. K) at 973 K. The minimum k is attributed in part 

to the presence of porosity and secondary phase in the microstructure which agrees 

with the reported phase assemblage and microstructure. Some authors have 

suggested the pores and second phase inclusions restrict carrier mobility and enhance 

phonon scattering, resulting in a reduction in σ [9], [10] and  k [10].  

 The maximum figure of merit, ZTmax (0.24) obtained for x = 0.15 of the 

ESTO samples is higher than many reported ZT values for electron doped and 

reduced polycrystalline strontium titanates such as  Sr0.9Dy0.1TiO3 (ZT = 0.22 at 573 

K) [11]–[13], Sr0.92La0.08TiO3 (ZT = 0.22 at 800 K) and SrTi0.90Ta0.1TiO3 (ZT = 0.17 

at 1045 K) [13]; and comparable to Sm-doped SrTiO3 (ZT = 0.24, 1073 K) [11]. In 

light of the promising results achieved in ESTO samples and building on work by 
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 Lu et al [13] and Lu [14], doped SrTiO3 ceramics batched with A-site vacancies 

(VSTO) were studied in two different calcination conditions; air (VSTO-A) and 5% 

H2/N2 calcined (VSTO-H) followed by sintering in 5% H2/N2. The TE properties of 

VSTO-A ceramics, particularly electrical transport properties, showed significant 

improvement with respect to ESTO ceramics. The maximum power factor (PFmax) 

achieved in VSTO-A was 873 μW/K2.m at 973 K for x = 0.20, higher than that (865 

μW/K2.m at 973 K) achieved for x = 0.10 (ESTO) ceramics. x = 0.30 (VSTO-A) 

with the minimum k (2.99 W/m. K) exhibited the highest ZT value 0.25 (only 0.01 

higher than maximum ZT of ESTO) at 973 K. The further reducing conditions 

applied in VSTO-H ceramics decreased the thermal conductivity [15] without 

compromising PF. Smaller grain size combined with VO  resulted in reduced k [16] 

and optimised ZT. The minimum k (2.67 W/m. K) and maximum ZT (0.30) were 

recorded in x = 0.20 (VSTO-H) ceramics at 973 K. 

 The highest ZT (0.30) achieved in 20 mol% of VSTO-H ceramics revealed 

the impact of processing cation-doped SrTiO3 ceramics using strong reducing 

conditions. Application of double calcination in 5% H2/N2 for vacancy x = 0.20 

composition, first at 1573 K and finally at high temperatures (1623 or 1673 K) prior 

to sintering at 1773 K for 8 hours (increased dwell time) was suggested to be a 

suitable option to further reduce k and optimise the ZT. 1400H (x = 0.20) 

composition calcined at 1573 and 1673 k, respectively achieved the smallest k (2.5 

W/m. K) and a maximum ZT value of 0.35 at 973 K. As already stated in Chapter 

six, this maximum ZT (0.35) achieved in this work for SrTiO3 is the highest ZT 

reported for RE co-doped SrTiO3 at 973 K in the literature  [1], [17]–[20].   
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8.1.2 Sm-Doped Sr5LaTi3Nb7O30 Ceramics 
 

 Electronic Sm-doped Sr5LaTi3Nb7O30 (SLTNe) ceramics sintered in reducing 

atmosphere (5%H2/N2) showed improved TE properties. A maximum PF of 451 

μW/K2.m was achieved in x = 0.15 at 973 K, attributed to its high σ. At x = 0.50, a 

minimum k (~2.0 W/m. K) was observed resulting in the highest ZT (0.18) at 973 K. 

The low k observed in SLTNe ceramics is attributed in part to the presence of 

impurities (secondary phases), reduced grain sizes and oxygen defects created in the 

lattice (Chapter 7) [21]–[23].  

In a bid to optimise ZT and following on from the work on perovskite 

structured ceramics, ionic (vacancy) Sm-doped Sr5LaTi3Nb7O30 (SLTNv) ceramics 

were studied. Phonon scattering from cation vacancies, oxygen defects and 

secondary phase inclusions (SrTiO3 and Nb2O5) observed in the microstructure 

restricted carrier mobility and phonon propagation [15], hence low σ  (σmax = 292 

S/cm at 573 for x = 0.20) compared to SLTNe samples and low k was achieved. 

Overall, a maximum σ (292 S/cm at 573 K for x = 0.20), smallest k (1.6 W/m. K) 

and a highest ZT value of 0.21 at 973 K for x = 0.30 were recorded. The improved 

ZT from 0.18 (SLTNe) to a maximum ZT of 0.21(SLTNv) could be attributed to the 

smallest k (1.6 W/m.K) obtained as a result of the increased concentration of scatter 

centres (VSr, VO and secondary phase inclusions). In addition, the promising PF 

values probably relate to the presence of doped, reduced SrTiO3 secondary phases 

following the arguments made by Lu et al for RP-structured compositions [14]. 

 

8.1.2 Nb-Doped La2Ti2O7 Ceramics 
 

 Reduced Nb-doped La2Ti2O7 (LTO) ceramics were studied. The pure 

La2Ti2O7 exhibited the lowest k, 1.18 W/m. K at 773-873 K and the maximum 

Seebeck coefficient, S (389 μV/K at 973 K). All doped compositions showed an 

increase in σ and k, attributed to metallic behaviour due to an increase in carrier  
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concentration and creation of oxygen vacancies [24], [25]. x = 0.10 showed the 

highest PF (18 μW/K2.m) at 973 K, resulting from its high σ (σmax = 0.2 S/cm at 873 

K) and moderate S. The highest ZT (0.0084) was recorded in x = 0.05 compositions 

at 973 K partially due to its low k value. Generally, Nb-doped La2Ti2O7 ceramics 

exhibited very low TE properties especially σ, PF and ZT which are not suitable for 

TE applications. However, the high S (≥ 190 μV/K) and low k (≤ 2.26 W/m. K) 

recorded are a manifestation of the TE potential of Nb-doped La2Ti2O7 ceramics.   
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Chapter 9: Conclusions 
 

In this research, conventional solid-state reaction, aliovalent doping 

mechanisms and reducing conditions were employed to study the thermoelectric 

performance of La-Sm co-doped SrTiO3, Sm- and Nb-doped Sr5LaTi3Nb7O30 and 

La2Ti2O7   n-type ceramics. 

 Air sintered La-Sm doped SrTiO3 samples appeared white or pale yellow 

after sintering, indicating insulating behaviour and could not be measured for TE 

properties. The synthesis method and processing conditions are beneficial for 

distinguishing electron and A-site vacancy (ionic) compensation mechanisms in La-

Sm co-doped SrTiO3 compositions. For the electron doped SrTiO3 compositions 

(ESTO), the electrical conductivity reached a peak (942 S/cm at 573 K) for x = 0.15. 

At x ≥ 0.20, a switch from metallic to semiconducting behaviour was observed, 

which is attributed to the solid solubility limit, structural phase transitions [1]–[3], 

and/or presence of pores and secondary phases which are consistent with the 

observed microstructure.  

For A-site vacancy La-Sm doped SrTiO3 (VSTO) samples, the solubility limit 

was higher and improved σ and ZT were obtained compared to electron doped 

samples. With the improved TE results achieved in VSTO ceramics, it became 

apparent that processing in strongly reducing conditions could lead to optimized ZT.  

This is as a result of the effective phonon scattering in the oxygen deficient ceramics 

formed upon reduction, leading to suppressed  k.  The ZT value of 0.35 recorded for 

Sr0.7La0.1Sm0.1TiO3 (1400H) at 973 K remains the highest ZT reported in the 

literature for RE co-doped SrTiO3.  

The crystal structure of a material influences the TE properties. The phase 

transition from ideal cubic to tetragonal for RE0.1Sr0.9TiO3 ceramics as reported by 

Kovalevsky et al [1] suggests that the enhanced ZT observed is associated with 

distortion of TiO6 octahedra, leading to reduction in k and improved conductivity 

along Ti-O-Ti bonds. The authors maintain that decrease in the radii of the RE 

cations results in the distorted TiO6 octahedra.  
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 In contrast, the data generated from La-Sm co-doped SrTiO3 in this work suggests 

that co-doping postponed to higher values of x the distortion to tetragonal from the 

ideal cubic structure of SrTiO3 as reported in Sm-doped SrTiO3 [1], [2].  It  may be 

concluded that understanding of the  mechanism behind  the non-distortion of  La-

Sm doped SrTiO3  is complex and depends on a number of factors such as cation 

vacancies, Ti3+, VO and A-site ion ionic radius. However, a further study as 

recommended in Chapter 10 (Future work) of this report will actually help to 

establish a reliable position.  

Comparison of the lattice parameter of ESTO and VSTO samples in this 

study reveals the impact of strongly-reducing processing conditions on the TE 

performance. The lattice parameter of ESTO ( with x ≤ 0.20) and VSTO-A 

compositions sintered in 5% H2/N2 decreased with increase in x, consistent with the 

substitution of Sr2+ ion (1.44 Å in CN 12) with the smaller RE cations (La3+, 1.36 Å 

in CN 12; Sm3+, 1.24 Å in CN 12 ) as previously discussed [ref 5-8, chapter 6]. For 

VSTO-H compositions sintered in 5% H2/N2, the lattice parameter increased from x 

= 0.05 to 0.20 and declined at x > 0.20. As already discussed, the increase is 

attributed to a decrease in Coulombic force in the lattice, leading to  loss of oxygen 

ions (VO) and formation of  unequal  mixed oxidation states ( Ti3+/Ti4+) on the B-

site.  This trend of increase in lattice parameter relative to x observed in VSTO-H 

samples is in agreement with previous works of Sahini et al [4], Lu et al [3] and [5] 

for Ba0.5Sr0.5Co0.8Fe0.2O3, Sr1-3x/2LaxTiO3 and Sr1-xLax/3Ti1-xNbxO3 perovskites, 

respectively. The partial reduction of Ti4+ to Ti3+ cations creates VO in the matrix. 

As already discussed, VO is a point defect and contributes in enhancing phonon 

scattering thereby lowering k. Therefore, the cumulative effect of VO and Ti3+ ions 

induced by strongly-reducing processing conditions is suggested to have contributed 

to the high ZT values recorded in VSTO-H samples.  

This study also demonstrated the effect of processing conditions on the grain 

size of samples, and the general impact on the TE properties.  ESTO samples 

exhibited large grain size, low solubility, inherent pores at high x and subsequent 

poor TE properties when compared to VSTO samples.  
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The observation is in agreement with the suggestion in the literature (see also Chapter 

5 of this project) that SrTiO3 ceramics with A-site vacancies are more likely to 

improve the TE properties via enhanced phonon scattering and reduced k. Therefore, 

as  established by previous authors in the literature  (and as discussed therein), the 

combination of cation and anion (oxygen) vacancies in SrTiO3 help to improve PF 

and reduce k. Between VSTO-A and VSTO-H samples, processing conditions have 

been established as having little or no effect on the electronic transport properties of 

the samples. Other factors such as carrier concentration, bulk conductivity (high 

temperature conductivity and grain boundaries or electrical heterogeneities might 

play significant role. For example, VSTO-A (x = 0.15) showed σ = 298 S/cm (at 973 

K), while VSTO-H (x = 0.15) exhibited σ = 284 S/cm (at 973 K). The effect of 

strongly-reducing conditions was felt on the thermal transport properties. The results 

of the PSD of the powders and grain size of VSTO-H ceramics are smaller than the 

values of VSTO-A (as discussed in Chapters 4 and 6). The minimum k values for 

VSTO-H and VSTO-A samples are 2.50 W/m.K (x = 0.20, 1400H) and 2.99 W/m.K 

(x = 0.30), respectively at 973 K. This, therefore, suggests that calcination and 

sintering (strongly reducing atmosphere) in 5% H2/N2 generates high VO 

concentration, which serves as restriction to phonon propagation, resulting in low k. 

Consequently, high ZT values are observed in VSTO-H samples.   

The 5% H2/N2 sintered Sm-doped Sr5LaTi3Nb7O30 ceramics contain phase 

mixtures of TTB with SrTiO3 perovskite and Nb2O5. Reduced SrTiO3 compositions 

are known to have a high PF and k might be optimised by phonon scattering within 

a mixed phase assemblage as posited by Lu et al [6]. The presence of secondary 

phases may thus contribute to enhanced thermoelectric performance. Samples with 

A-site vacancies (SLTNv) have the lowest electrical conductivity and smallest 

thermal conductivity but showed the highest ZT value. This observation is contrary 

to perovskite compositions where cation vacancies improve the PF. 

For Nb-doped La2Ti2O7 ceramics, the TE results obtained are not suitable for 

thermoelectric applications. Nb-doped compositions of La2Ti2O7 showed better 

properties than the undoped compositions suggesting that cation doping has the 

potential to improve the TE properties. Therefore, the impact of Nb-doping on  
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La2Ti2O7 ceramics in improving the TE performance opens a new window for 

exploring LTO and other related perovskite-like layered compounds. 

 Overall, this investigation established the influence of microstructural 

modification, strongly-reducing processing conditions and secondary phases on the 

thermoelectric properties of La-Sm co-doped SrTiO3 and Sm-doped Sr5LaTi3Nb7O30 

ceramics. The significant effect of cation vacancies, oxygen deficiencies and 

generation of high ionic radius Ti3+/Nb4+ electronic defects were identified as the 

main contributing factors in improving the electronic transport properties. Phonon 

scattering at grain boundaries, presence of secondary phases and point defects (e.g. 

VSr, VO, voids and pores) hindered the MFP of phonons and depressed the phonon 

group velocity within the lattice. The net effect, therefore, is reduced thermal 

conductivity and improved ZT values. This processing route could provide a guide 

to the synthesis of future targeted oxides for TE applications.   
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Chapter 10: Future Work 
 

 For La-Sm co-doped SrTiO3 (STO) ceramics, the ideal cubic structure was 

maintained in all compositions, contrary to the work reported by Kovalevsky et al  

[1] where a tetragonal phase was achieved for single Sm-doped SrTiO3 ceramics  

(Sr0.9Sm0.1TiO3±δ). Further diffraction analysis (e.g. electron or neutron) is 

recommended. This will help to establish whether co-doping has actually stifled the 

distortion or reduced its scale length below the detection limit of the x-ray 

diffractometer. Generally, a detailed microstructural and crystallographic study 

using transmission electron microscope (TEM) and/or scanning transmission 

electron microscope (STEM) to determine the distribution (short vs. long range 

order) of A-site defects and tilt phase transitions in La-Sm co-doped SrTiO3 ceramics 

is paramount.   

 Cation doping, processing in reducing atmosphere and oxygen loss result in 

improved electrical conductivity due to an increase in carrier concentration. Hall 

Effect measurements are suggested to determine the actual amount of carrier 

concentration and mobility generated. This will be a practical guide to evaluate the 

electronic conduction of the materials. Freeman et al [2] studied by simulation 

(modelling) the effect of oxygen loss on the electronic conduction of  A-site vacancy 

La-doped BaTiO3. Such a study is suggested for La-Sm doped SrTiO3 and by 

extension on other n-type oxides investigated in this project. In so doing, the highest 

electronic conductivity observed for A-site vacancy compositions compared to 

electronic doped compositions would be quantitatively explained.   

Calcination of mixed powders of A-site vacancy La-Sm doped SrTiO3 

(VSTO) in 5% H2/N2 instead of air, prior to sintering in 5% H2/N2 led to more oxygen 

loss which resulted in optimized TE properties. The same processing method is 

suggested for other potential n-type oxides studied in this work.  If combined with 

attrition milling, as reported by Lu et al [3] and Lu [4]  and in combination with spark 

plasma sintering (SPS) dense small grained microstructures with a large 
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volume fraction of grain boundaries might be obtained. As a result, the MFP of 

phonons would be shortened, and TE performance improved by lowering the thermal 

conductivity without compromising the electrical conductivity.  

Finally, a holistic study of RE A-site vacancy co-doped and/or A-site (and B-

site) electron doped SrTiO3 ceramics prepared by the combination of hydrothermal 

method and strong reducing processing condition may further enhance the TE 

properties obtained. A similar work has been reported recently for 

Sr0.9La0.1Ti0.9Nb0.1O3 ceramics [5] in which a ZT (> 0.6) at 1000 K is achieved.  
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