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Abstract  

REST is a transcriptional repressor protein and has been suggested to maintain the self-

renewal potential of several brain tumours including medulloblastoma.  REST represses 

transcription by recruiting several chromatin modifiers, including histone deacetylase 

(HDAC) enzymes to gene promoters which have been associated with several cancers.  

Nevertheless, HDAC inhibitors (HDACis) have shown promising results in targeting 

specifically tumour cells.  Interestingly, REST expressing cells showed higher sensitivity 

to HDACis yet, it is not known if they induce their action through the HDACs recruited in 

REST repression complexes.  Also, it is not fully understood how HDACis specifically 

inhibit the growth of tumour cells, and in what way normal cells protect themselves from 

the hyperacetylation effect of these drugs.  

In this study, I examined the contribution of REST in the medulloblastoma Daoy cell line 

by modulating its expression using CRISPR/Cas9.  To explore the HDACis anti-cancer 

molecular mechanism, I profiled the gene expression of HDACis-treated tumour and 

normal cells at a single cell level using the next generation sequencing analysis.   

The results showed that disrupting REST expression induced upregulation of neuronal 

genes, slightly (~6 %) reduced the cell growth, prolonged the cell cycle, and reduced the 

migration ability of the tumour cells.  However, it did not stimulate apoptosis or reduce the 

sensitivity of the cell to the HDACis.  Treating the tumour cells with HDACis resulted in 

activating the TNFα signalling via NFκB pathway and modulating the expression of the 

cell cycle and Myc pathways.  Whereas, exposing the normal cells to HDACis caused 

considerable changes on the transcriptome level. 

Collectively, the data of this study showed that blocking REST expression did not lead to 

tumour cell death.  It also showed the ability of HDACis to induce their action independent 

of HDACs recruited in REST complexes.  Treating with HDACis caused global gene 

expression changes in tumour and normal cells which activate a defined signalling 

pathways however, this raises concerns regarding the toxic side effects of HDACis in 

normal cells.  Hence, the use of HDACis should be revised carefully even with their 

minimal side-effect in clinical trials. 
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Chapter 1 

1 Introduction 

The Road Map 

This thesis aimed to study the contribution of Repressor Element 1-Silencing Transcription 

Factor (REST), HDAC and HDAC inhibitors in the Daoy medulloblastoma cells growth 

and treatment response.  Also, it aimed to uncover the molecular regulation of HDACis 

anticancer effect and how normal cells protect themselves from the hyperacetylation 

induced by these drugs.  This chapter begins with a literature review of four main elements 

(REST, HDAC, HDACis, and medulloblastoma) and then will move to talk in more details 

about the research hypothesis, goals, and the used methodology.  Chapter 3 Results I: 

presents the findings of REST modulation on the Daoy medulloblastoma cells.  Whereas, 

Chapter 4 (Results II) presents the findings of the gene profiling of the HDACis treated 

and untreated cells at single cell level. 
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1.1 REST 

REST [also known as Neuron-Restrictive Silencing Factor (NRSF)] is a DNA-binding 

protein that binds to a DNA sequence known as Repressor Element 1 (RE1) located in the 

promoter region of some genes where it is able to recruit several protein complexes.  In 

1995, REST was originally described as a transcriptional silencer of neuronal genes in non-

neuronal cells 1.  Though, this view was reformed after observing the repression activity 

of REST on actively transcribed genes rather than a silencer for all RE1-containing genes 

2.    

The main function of REST is to repress gene transcription through engaging several 

chromatin modifiers and histone alteration factors at gene promoter, which leads to 

chromatin condensation and blocks the binding of transcriptional machinery.  In humans 

there are more than 2000 REST-target genes, the majority of them are neuronal 

differentiation genes 3.  Hence, REST has a major role in regulating neurogenesis and 

prevents the neuronal phenotype in non-neuronal cells.  However, REST function is not 

limited to neuronal genes and it extends to regulate the tumour necrosis factor superfamily, 

complement genes, cadherins, synaptotagmins, immune responses, olfactory receptors, 

voltage-dependent calcium and potassium channels, and microRNA genes 3, 4.  Lately,  

REST has been reported to regulate the differentiation of stem cells by regulating 

pluripotent genes such as Oct4, Sox2, and Nanog 5.   

Deregulation of REST expression has considerable implications on the differentiation of 

neuronal stem cells (NSCs), proliferation of non-neuronal cells, and on tumour cells.  

REST plays a dual function in cancer; as a tumour suppressor in non-neuronal tumours, 

and as an oncogene in neuronal tumours.  In some non-neuronal tumours such as colon 

carcinoma and breast cancer the loss of REST expression, as a result of REST locus 

deletion, has been suggested to contribute to tumour formation 6, 7, 8.  In contrast, in 

neuronal cells, overexpression of REST induces oncogenic activity, which blocks cells 

differentiation and maintains the self-renewal potential of NSCs, and ultimately 

contributes to tumour formation 9, 10.  Hence, downregulating REST activity in 

medulloblastoma and glioblastoma has been suggested to block tumour cell proliferation 

and initiate apoptosis 9, 11, 12, 13.  
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There is a considerable volume of published studies that associate– medulloblastoma with 

REST expression 11, 14, 15.  The most reasonable explanation for REST linkage with 

medulloblastoma is that the continuous REST expression in tumour stem cells prevents the 

expression of neuronal differentiation genes which maintains cell multiplication.  

Conversely, blocking REST expression has been suggested to release neuronal genes 

expression and produce the stimulation of tumour cell death 11, 14, 15.     

In order to provide a better understanding about the relation of REST with 

medulloblastoma, the following sections will present more information about REST gene 

structure, REST protein, its repression mechanism, and what it has been known about its 

contribution in medulloblastoma.  

 REST Gene Structure 

REST gene is located on chromosome 4q12, spans 24 kilo base-pairs of genomic DNA, 

and encodes REST protein and its isoforms.  As with most human multiexon genes, the 

REST mRNA transcript undergoes extensive alternative splicing sites (AS) which could 

be due to the nature of the neuronal cells that show the most complex repertories of splice 

variant.  The REST gene is composed of four constitutive coding exons; Exon1 with four 

AS (1a, 1b, N1 and 1c), Exon2 has 12 AS (2a to 2k), Exon3 contains 4 AS (AS3; a neuronal 

specific AS located between the third and the forth exons, N3a, N3b and N3c), and Exon4 

which includes 12 AS (Figure 1).  In additional to the previous four exons, a new exon 

(Exon5) has been found approximately 30kb downstream of exon4 16, 17, 18 (Figure 1).  At 

least, 45 variants of REST alternative splices have been reported most of them are 

expressed at low levels in a cell-type and in a tissue-specific manner, yet REST Isoform1 

was the most common among all tissues and cell lines that were tested 18.   
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 REST Protein 

There are at least four REST proteins have been reported; REST full length protein, also 

known as Isoform1,  is 122 kilodalton (kDa) zinc finger, structured from three domains: 

The DNA binding domain (DBD) which consist of eight Cysteine and Histamine zinc 

fingers flanked by amino or N-terminal domain (NTD) and carboxy or C-terminal domain 

(CTD) (Figure 2) 19.  Isoform2 which mainly localized in the cytoplasm and retains the 

NTD and four zinc fingers 19.  Isoform3, also known as REST4, localized in the nucleus 

and retains the NTD five zinc fingers (Figure 2).  The REST4 isoform has been suggested 

to be a posttranscriptional regulator of REST expression.  REST4 is generated from the 

inclusion of a neuronal-specific exon (known as exon N) located between the third and the 

fourth exons of REST.  The formed transcript has a frameshift sequence which contains a 

stop codon at the beginning of exon 4 which causes a premature termination of REST 

transcription and the formation of REST4 17.  REST4 protein has a stable structure that 

retains five of the eight zinc fingers present in REST but does not have the CTD.  Hence, 

it does not efficiently recruit the repression complexes which results in upregulating REST 

target genes expression in neuronal cells 7.    Interestingly, high expression of REST4 has 

been associated with several cancers such as neuroblastoma, breast cancer, and small cell 

lung cancers 7.   Isoform4 is similar to REST full-length though, it has a selective deletion 

of zinc finger 5 18 (Figure 2).  Not much are known about REST isoform 2 and 4 and their 

contribution in cancer may warrant further investigation.  
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Figure 2: Schematic illustration of human REST protein and its alterative isoforms 

Four isoforms of REST have been identified.  Isoform1 (REST full-length, 1097 amino acid 

(a.a), and 122 kDa protein) produced by skipping off the neuronal-specific alternative 

splice exon between exon 3 and 4, has two repressing domains (NTD and CTD), a DNA 

binding domain (159-412) which contains eight zinc fingers and the ninth zinc finger is 

located in the C-terminal (1006-1082), lysine-rich domain (400-603), proline-rich domain 

(595-815), two nuclear localization signals (shown in green), a phosphodegron 

(E1009/S1013 or S1027/S1030).  Isoform2 (313 a.a, 35 kDa protein) is a truncated 

protein, and retains from 1 to 4 zinc fingers only.  Isoform3 (also known as REST4) (329 

a.a, 37 kDa protein) is a truncated protein, and retains zinc fingers from 1 to 5.  Isoform4 

(1074 a.a, 119 kDa protein) is similar to isoform1 though, it has a deletion of zinc finger 

5.  The figure was adapted from (Faronato et al., 2010) 16. 

 REST DNA Binding Site  

REST transcriptional repression complexes are mainly recruited to a Repressor Element 1 

(RE1) DNA sequence (also known as NRSE) which works as a regulator for gene 

transcription 4.  RE1 is a group of highly conserved 21 to 23 bp DNA sequences that exist 

in the promoter region of a large number of neuronal genes and several of non-neuronal 

multigene families and microRNA genes 3.  These sequences represent the sole binding 
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site of REST, to which it recruits various chromatin remodelling and histone modifying 

factors 20.   

The number of functional RE1 sites in human has been estimated to reach to more than 

2000 sites most of them are located in neuronal genes 20.  The majority of RE1 sites are 

occupied by REST repression complexes, in particular, the sites in REST expressing cells 

such as embryonic and NSCs 3, 5, 21, 22.  In contrast, the expression of RE1-containing genes 

is higher in cells with low developmental potential as is the case with differentiated neurons 

5.  In addition, the RE1 sites have been found in more than 300 non-neuronal genes that 

are commonly downregulated by the pluripotency factors such as Oct4, Sox2 and Nanog.  

Interestingly, several pluripotency controlling genes, such as Nanog, Wingless signalling 

pathway, ZF206,  ZF281, Lin28, and some neurosecretory genes have been reported to 

have RE1 sites in their promoters which may demonstrate the broad function of  REST 5, 

22.  

 REST Expression  

Regulated REST expression is vital for cell development and neurogenesis and it has 

specific expression patterns based on the stage of the cell cycle and the tissue type.  During 

embryonic brain development REST expression is up-regulated in neuronal cells which 

induces a transient repression of most neuronal genes and drives cellular proliferation.  As 

neuronal progenitors differentiate into mature neurons REST and its corepressor disperse 

from the RE1 sites resulting in the expression of neuronal genes to the default level which 

stimulates neuronal cells differentiation 23.  In animal models, mice with blocked REST 

expression appear normal until embryonic day 9 and they die by day 11 due to the 

widespread of apoptosis 1, 24.   

In mature cells, REST mediates long term silencing and transient repression for specific 

genes based on the stage of cell differentiation and the developmental context.   During 

neural stem-cell differentiation, the CoREST complex remains bound and continues to 

repress the RE1-containing genes despite the cleavage of REST from the RE1 sites 25.  In 

normal developed neurons, REST expression is downregulated resulting in the expression 

of neuronal genes and increases the synaptic activity.  
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In non-neuronal cells, the expression of REST remains high which mediates a long-term 

silencing of most neuronal-specific genes.  However, during cellular multiplication, REST 

repression complexes transiently dissociate from most the RE1-containing genes and re-

established following mitosis 25.   

On the level of REST corepressors, REST has been found to selectively recruit part of its 

corepressor complexes at certain genes and not all complexes are recruited at all genes 25.  

This could explain the mechanism of short-term repression and long-term silencing and 

illustrate why certain chromatin markers are consistently associated with a particular 

cellular context.  However, the molecular mechanism that regulates the binding of a 

particular corepressor is not known.  It has been suggested that the sequence of the RE1 

site and certain sub-nuclear organization could play a significant part in defining which 

cofactors are recruited 5.   

 Regulation of REST Expression 

Despite the extensive studies aimed at understanding REST involvement in normal and 

disease states, little has been done to identify how the REST expression level is regulated.  

However, what is known about the regulation of REST expression suggests that it may 

occur at the REST gene transcriptional level, Rest mRNA, and posttranscriptional level.   

Analysis of REST gene structure has identified the presence of three alternative exons 

(1a,1b and 1c) located at exon1, each of which works as a transcription initiation point.  

The abundance of specific transcripts mainly depends on the initiating exon, for instance 

the transcripts that initiated from exon1a have the highest abundance compared to the 1b 

and 1c transcripts however, none of these transcripts is cell-specific as they were found in 

all tested cells 25.  Also, it has been reported that some of the main pluripotent transcription 

factors such as Oct4 and Nanog may play a significant role in regulating REST 

transcriptional expression 9.   

Also, miRNAs have been found to play a significant role in regulating the Rest mRNA 

level.  miRNA is an endogenous noncoding RNA sequence that regulates the expression 

of specific protein based on the complementarity of its sequence to the protein mRNA.  For 

example, miR-153 has been reported to target Rest mRNA expression and represses its 
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transcription 21.  Accordingly, ectopic induction of miR-153 to medulloblastoma cell lines 

showed a significant reduction in cell proliferation 26.   

With respect to posttranscriptional regulation, REST has been found to have conserved 

phosphodegron sites at serine 861 and 864 which are located in the proline-rich domain.  

Also another two phosphorylatable sites were found as part of a second phosphodegron 

motif at serines1027 and 1030 which are present in the CTD of REST 27, 28.  Serine 861/864 

have been identified to work as substrates for the Peptidylprolyl cis/trans isomerase (Pin1) 

enzyme, which induces protein conformational changes leading to REST protein cleavage.  

It has also been reported that both serine 861/864 work as targets for ERK1/2 (an 

extracellular signal-regulated kinase) kinases which catalyse their phosphorylation 27. The 

serine1027/1030 phosphodegrons are associated with REST downregulation in particular 

during neuronal cell differentiation.  Both of these phosphodegrons are recognised by Beta-

transducing repeat-containing proteins (β-TrCP) which work as a recognition site for 

Skp/Cullin/F box (SCF).  Interaction of the β-TrCP with the SCF protein forms the SCFβ-

TrCP complex which attracts E3 ubiquitin ligase and degrades REST 29, 30.  Likewise, 

overexpression of β-TrCP results in excessive REST degradation as reported in mammary 

epithelial cancer 28.   

 REST Transcriptional Repression Mechanism  

The mechanism of REST transcriptional repression is not entirely known however, it is 

initiated when the REST zinc finger domain recognises an RE1 site (Figure 3 A).  The 

interaction of REST with DNA is then increased by the bromodomain of Brahma-related 

gene 1 (BRG1, an ATP-dependent dependent helicase also known as SMARCA4) protein, 

which increases REST occupancy through increasing the acetylation of histone H4 lysine 

8 (H4K8) resulting in reducing the chromatin condensation around REST target site and 

allowing REST to form more stable binding with the RE1 site DNA 5, 31 (Figure 3 B).   

Then Both of REST terminal domains work as hubs to recruit several chromatin-modifying 

enzymes that cannot directly bind to DNA.  The NTD recruits mSin3 complex, which 

contains interaction domains for the histone deacetylases (HDAC1 and HDAC2).  The 

CTD recruits several transcriptional repression complexes including the CoREST (REST 

corepressor 1) complex, which incorporates HDAC1, HDAC2, LSD1 (a H3K8 

demethylase) and G9a ( a H3K9 methylase) 25, 32 (Figure 3 C).  Once REST is attached to 
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its connate site on DNA, the HDAC enzymes that are recruited by mSin3 and CoREST 

catalyse the removal of acetyl groups from lysine amino acids on H3 and H4 tails and 

promote the electrostatic binding between histone tails and surrounding DNA allowing 

histones to wrap the DNA more tightly 32.  Deacetylation of H3K9 stimulates LSD1 (a 

histone H3K4 demethylase) and G9a methyltransferase activity which removes the methyl 

group of H3K4 and di-methylate H3K9, respectively leading to chromatin condensation 

12.  Methylated H3K9 can recruit heterochromatin protein 1 (HP1) which interacts with 

adjacent nucleosomes resulting in long term silencing of an RE1-containing gene 25 (Figure 

3 D).   

These alterations cause DNA condensation and mobilize the nucleosomes with respect to 

the DNA allowing the nucleosomes to bind the DNA more tightly, which imposes a spatial 

control and constrains the access of the transcription machinery 25.  The ability of REST to 

recruit several chromatin alteration factors may also explain the ability of REST to induce 

long-term repression of RE1-containing genes, even when its expression is downregulated.  

Hence, removing REST from the promoter of an RE1-containing gene may not be adequate 

to restore gene expression due to the chromatin modifications that are induced by the REST 

complexes 33.   
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Figure 3: REST repression mechanism 

REST transcriptional repression starts when REST zinc fingers recognise an RE1 site (A).  

The bromodomain of BRG1 then acetylates H4K8, which reduces the chromatin 

condensation around the RE1 site (B) and facilities the recruitment of REST corepressors 

complexes (C).  REST corepressors contain several histone modifiers and chromatin 

modulators that induce spatiotemporal control of gene transcription (D).  
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1.2 REST Involvement in Medulloblastoma  

 Medulloblastoma  

Medulloblastoma is the most common and aggressive form of embryonal and childhood 

brain tumour.  It develops in both adults and children with a peak incidence between age 4 

and 7 years though it has a rare occurrence in adults.  The exact aetiology of 

medulloblastoma formation is not well known however, both genetic and epigenetic 

alterations have been reported to be involved in medulloblastoma development and 

treatment response 34.  As medulloblastoma is an embryonic tumour, the number of the 

tumour stem cells has been reported to be very low and they involved in cancer initiation, 

propagation, metastasis, and recurrence 35.  These cells characterized by expression of stem 

cell markers including CD133, regulate stemness pathways such as Wingless-Type 

signalling pathway (WNT) and Sonic hedgehog (SHH), and they have the ability to 

differentiate into multiple tumour cell types which contributes in the intratumoral 

heterogeneity 36.  The cells are also have high capability of DNA repair which contributes 

in tumour resistance to therapy 35.  The tumour stem cells have also been found to be tightly 

associated with medulloblastoma dissemination along the cerebrospinal fluid pathway in 

approximately 30% of cases especially in late stages yet, the dissemination outside the 

central nervous system is very rare 36, 37.  Hence, understanding the molecular regulation 

of stem cells in medulloblastoma will contribute to the discovery of more efficient 

anticancer agents and helps in improving the survival rate. 

Based on the genetic profiling analysis the medulloblastoma tumours were classified into 

four subgroups that vary in clinical outcome, age, gender, and molecular genetics and 

epigenetic signatures 38.  WNT subgroup, represents about 10% of medulloblastomas and 

shows wingless signalling pathway activation.  The majority of WNT medulloblastomas 

have been found to harbour Catenin Beta 1 (CTNNB1) mutations and are characterized by 

Tumour Protein P53 (TP53) mutation 39.  WNT subgroup has the best prognosis among 

the other subgroups even when metastasize and shows more than 5 years survival in more 

than 95% of cases under the current treatment regime 40.  Recently, two WNT subtypes 

have been identified WNT α and WNT β.  WNT α is enriched with monosomy of 

chromosome 6 and mostly observed in children.  WNT β has a high frequency of diploid 

chromosome 6 and mainly affects adults 41.   
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SHH subgroup, which represents 30% of medulloblastoma tumours, displays sonic 

hedgehog pathway activation and is dominated by mutations in MYCN Proto-Oncogene 

(MYCN, a transcription Factor), GLI Family Zinc Finger 2 (GLI2), Patched 1 (PTCH1) or 

Suppressor of fused homologue (SUFU) 42.  Four SHH subtypes have been reported.  In 

affected children  SHH α shows the worst prognosis.  SHH β is more dominant among 

infants, frequently results in metastatic outcome, and has worse overall survival rate. SHH 

γ  mainly affects infants and it is enriched for medulloblastoma with extensive nodularity.  

SHH δ  primarily affects adults and shows more favourable prognosis 41.  Generally, the 

SHH subgroup has an intermediate prognosis and around 64% of cases reach 5 years 

survival however, cases with TP53 mutations showed poor prognosis 43.  Both WNT and 

SHH medulloblastomas have been found to be driven from embryonic cell types.   

Group 3 and Group 4 medulloblastoma have the generic name as not much is known about 

their genetic origin however, they are significantly different.  Group 3represents 20% of 

medulloblastomas, occurs exclusively in children, frequently metastatic, and represents the 

worse prognosis of all subgroups.  Three subtypes of Group 3 have been identified; Group 

3α represents around 60% of cases with a favourable outcome.  Group 3β shows a 

favourable outcome with low frequency of dissemination and mainly affects the over 3 

years old.  Group 3γ has the worse prognosis and is enriched with isochromosome 17 q 

arm (iso17q) and MYC expression 41.   

Group 4 is the most common medulloblastoma subgroup and represents 40% of cases 

though it is the least understood of the subgroups and often exhibits iso17q.  Lately three 

subtypes of Group 4 have been identified; Group 4α which is enriched by MYCN 

amplification, chromosome 8p loss and 7q gain.  Group 4β enriched for Cyclin Dependent 

Kinase 6 (CDK6) amplification and shows a high level of neurodegeneration.  Group 4γ is 

enriched for chromosome 8p loss and 7q gain and CDK6 amplification 41.  Both of Group 

3 and 4 medulloblastomas do not have a specific therapy target, present unfavourable 

clinical prognosis and have been proposed to initiate from a foetal cell type 44.    

Approximately 87 % of medulloblastoma cases were diagnosed as Group 4, Group 3 or 

SHH, which show the unfavourable clinical outcome of most medulloblastoma cases 44.  

Based on the research findings it can be clearly seen that medulloblastomas display a 

considerable intertumoral and intratumoral heterogeneity which increases the difficulty of 

developing targeted treatments.  Also, the genetic signature of medulloblastoma metastases 
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is considerably different to their parent primary tumours which has important implications 

on medulloblastoma treatment as the vast majority of the research focuses on primary 

tumours. 

Molecular analysis of medulloblastoma has revealed the presence of somatic copy number 

aberrations and mutations in histone lysine methyltransferases, demethylases, 

acetyltransferases and deacetylates, and in some members of the polycomb transcriptional 

repressor complexes such as PRC1 and PRC2.  However, the frequency of the reported 

mutation is relatively low across the medulloblastoma subtypes 45.   

Current medulloblastoma treatment strategies mainly depend on patient stratification into 

Low-risk, High-risk, and Standard-risk groups, based on the clinical features and outcome.  

The Low risk is characterized by positive β-catenin (cell adhesion protein), presence of 

large-cell anaplastic (LCA), or it shows MYC amplification, though it does not 

metastasise.  The High-risk is defined as metastatic disease with LCA, or demonstrates 

MYC amplification.  Whereas, the Standard-risk are the cases that lacks the high and low 

risks discriminating features 46.  This classification, in general has improved the treatment 

response and the overall survival to more than 70% 46.  Unfortunately, nearly 30 % of 

patients demonstrate the High-risk form of the disease and they experience the recurrence 

of the tumour 14.  Apart from SHH pathway, targetable therapy such as Vismodegib (a 

smoothened inhibitor) and Sonidegib (a SHH inhibitor that blocks SHH through PTCH 

and Orthodenticle homeobox 2 (OTX2) genes) there are no targetable genes or pathways 

for the other medulloblastoma subgroups 7, 47.  Existing medulloblastoma treatment is 

mainly based on chemotherapy, radiotherapy and surgery however, they have serious and 

long-lasting side effects.  Clinical trial of children with medulloblastoma receiving 

radiotherapy plus chemotherapy showed more than 75% event-free survivals and 80% 

overall survival rate in five- and 10-years 48. Unfortunately, many of the recovered cases 

develop severe late toxicity which severely affects the growth, endocrine function, 

neurocognitive development.  It also could result in cardiac, pulmonary, and gynecological 

toxicity 49.  

Elevated REST expression has been reported in approximately 80% of the 

medulloblastoma tumours and it is associated with elevation in Myc pathway expression 

11, 14, 50, 51.  It has been proposed that elevated REST expression may sustain the 
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proliferation of the NSCs and prevent their differentiation which may propose REST as an 

attractive therapeutic target due to its reversible nature 11, 14, 51.  

 REST Contribution in Medulloblastoma  

The majority of REST expressing medulloblastoma cells do not express neuronal 

differentiation genes such as Synapsin I, Tubulin Beta 3 Class III (TUBB3), and Superior 

Cervical Ganglion-10 Protein (SCG10, also known as Stathmin 2 (STMN2)), which 

indicates the direct repression effect of REST 52.  Based on immunohistochemistry, western 

blot, and quantitative PCR analysis around 80 % of medulloblastoma cases show high 

REST expression and poor cellular differentiation 11, 14, 50.   It has also been reported that 

patients with high REST-expressing tumours exhibit worse overall survival, have higher 

occurrence of metastasis, and demonstrate the poorest prognostic indicator compared to 

REST-low and negative tumours 14, 37.  Knocking down REST in human medulloblastoma 

cell lines such as Daoy and D283 has been reported to repeal the tumorigenic potential of 

these cells, upregulate neuronal genes expression, and trigger apoptosis 9, 11, 14, 50.  

Exogenous induction of REST in normal neuronal progenitor cells has been claimed to 

stimulate tumour formation and maintain the self-renewal potential of NSCs 53.   Hence, 

REST has been suggested as a promising target for neuronal and non-neuronal cancer 

however, there is no accessible drug to target REST expression.  Nevertheless, targeting 

REST repression complexes, in particular recruited HDACs, has been an area of enormous 

research interest.  Some medulloblastoma subgroups such as SHH, Group 3 and Group 4 

have been found to overexpress HDACs.  Hence, targeting HDACs has been suggested to 

reduce  the viability of cells, especially in those expressing MYC 54.   

Several HDACis have been approved as anticancer drugs due to their ability to activate the 

transcription of silenced genes, arrest cell proliferation, induce differentiation, promote 

apoptosis, intensify host immune response to cancer cells and impair angiogenesis 55.  

Remarkably, HDACis have shown the most tolerable side effect profile compared to the 

traditional chemotherapy.   

As HDACs are one of the elements of this study, the following sections will introduce 

HDACs, their classes, deacetylation function and their role in cancer.  They also will give 

a summary about HDACis pharmaceutical properties and actions.  
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1.3 HDACs as a Potential Target for Cancer Therapy 

The genetic mutations have been considered as primary factors for cancer initiation and 

formation as they induce a dramatic effect on activating oncogenes and blocking the 

expression of tumour suppressor genes.  However, epigenetic changes such as methylation, 

acetylation, deacetylation and phosphorylation also play major roles in cancer cell growth, 

invasion, metastasis, and treatment response 44, 56.  A typical picture of human cancer shows 

a disruption in most of epigenetic regulators, including the balance between the acetylation 

and deacetylation (which has major implications in cancer cell growth), metastasis, 

heterogeneity and drug resistance.  Thus far there is no conclusive evidence about the 

mechanisms that cause the disruption in this balance.  However it has been widely observed 

that the irregular Histone acetyltransferases (HATs) expression in leukaemia, colorectal, 

gastric and, breast cancers is a result of overexpression, genetic mutations, or chromosome 

translocations of HAT genes 6.  Also, mutations in HATs binding complex such as p300 

and CBP, which function as tumour suppressor-like genes, have been found to stop HAT 

transcriptional coactivation 57.  However, mutations in HDACs genes were mainly reported 

in leukaemia cancers.   

 Acetylation and Deacetylation of Histone Lysine Residue    

Acetylation and deacetylation are the most common histone modifications that regulate 

chromatin structural remodelling through adding or removing the epsilon group of lysine 

(K) amino acid 58.  The histone is an octameric structure assembled from a histone H3 and 

H4 tetramer and two H2 and H2B dimers.  Histone tails contain a large number of 

positively and negatively charged amino acids which dictate the binding affinity between 

histones and DNA.      

Lysine is one of the amino acids in the histone tail that has a major role in regulating genes 

expression.  The lysine residue is an -amino acid that includes an -amino group (NH2) 

attached to the fifth carbon atom and has a positive charge at the physiological pH.  The -

amino group on histone tails works as a substrate for a variety of enzymatic activity and 

post-transcriptional modification; including acetylation and deacetylation, methylation, 

phosphorylation and ubiquitination.  The collective effect of these modifications generates 

an epigenetic coding system that regulates genes expression.   



Chapter 1            Introduction 

17 

 

Acetylation of a lysine residue neutralizes the positive charge on the amino acid via HATs 

enzymes resulting in the transference of an acetyl moiety from acetyl-Coenzyme A to the 

-group of a lysine (Figure 4).  The acetylation process reduces the interaction between 

histones and the negatively charged DNA, resulting in more relaxed chromatin and the 

formation of euchromatin which holds the most active genes 59.  The acetylation 

mechanism can affect a single factor in several ways.  For instance, acetylation of 

transcription factors can change protein stability, protein-protein interactions, protein 

localization and DNA binding.  Also, the acetylation location of an acetyl group may 

enhance or repress DNA binding ability.  In addition, it may enhance the binding of non-

histone proteins such as p53, NF-κB, and several of other proteins, or reduce the binding 

of other factors such as FOXO1 (works as myogenic growth and differentiation), HMGA1 

(regulates gene transcription), and p65 (NF-κB Subunit) 60. 

Conversely, deacetylation is an antagonist process of acetylation, catalysed by HDACs, 

and results in the removal of acetyl group from acetylated lysine, adding a charge, and 

generating a free acetate (Figure 4).  Adding a positive charge to histone tails increases 

histone interaction with the negatively charged DNA backbone resulting in increasing the 

condensation of the surrounding chromatin (heterochromatin, inactive genes), and 

blocking the access of the transcriptional machinery 58.  Deacetylation of histone H3 and 

H4 is generally associated with gene transcriptional repression.  The machinery of lysine 

acetylation and deacetylation is a reversible post-transcriptional modification process that 

induces spatiotemporal control on gene expression.  Over the years it has become evident 

that histone deacetylase is a misnomer as HDAC enzymes targets many of non-histone 

proteins.   
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Figure 4: Acetylation and deacetylation of a lysine residue 

Acetylation of a lysine residue is the process that neutralize the positive change of lysine, 

using HATs enzymes and results in transferring an acetyl moiety from acetyl-Coenzyme A 

to the -group of a lysine.  Conversely, deacetylation is an antagonist process of 

acetylation, catalysed by HDACs, and results in the removal of acetyl group from 

acetylated lysine, adding a charge and generating a free acetate. 

 HDACs Classes  

Human HDACs are a family of 18 enzymes grouped into four classes (I, IIa, IIb and IV) 

based on the sequence homology of their catalytic domains to yeast (Saccharomyces 

cerevisiae) deacetylases.  The HDAC enzymes are different in their molecular structure, 

enzymatic function, expression level and subcellular localization 58.  These enzymes 

cannot solely bind to DNA and they are recruited to a target gene by association with a 

transcriptional activator or repressor protein, or through incorporation with multiprotein 

complexes such as Co-REST, mSin3, SMART/N-CoR, Polycomb Repressive Complex 2P 

(RC2), Nucleosome Remodeling Deacetylase (NuRD), and Zinc Finger MYM-Type 

Containing 3 (ZMYM3) complexes 45.   

HDAC classes I, IIa, IIb and IV are predominantly expressed in nucleus and they depend 

on zinc as a cofactor to deacetylate lysine residues 59.   HDAC Class III or (Sirtuins) is a 

specific group of nicotinamide adenine dinucleotide (NADs+) dependent HDACs that 

deacetylate histone and non-histone proteins.  There are more than 50 of non-histone 

proteins that are regulated by HDACs and they have different cellular function ranging 

from tumour suppressor, transcription factor, signalling mediator, oncoprotein, steroid 

hormone receptors, and DNA-repair protein 58 (Appendix 1). 
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 HDACs and their Involvement in Cancer  

In cancer the expression of HDAC enzymes is widely variable between various types of 

tumours and within the tumour cells of the same entity.  However, the elevated HDACs 

level is mostly accompanied with a severe disease condition and poor survival 61.  It has 

also been reported that the expression of class I HDAC is frequently upregulated in cancers 

whereas, the class II HDAC is often downregulated and its high expression is associated 

with a better prognosis 62.  The following 4 subsections will introduce the HDACs 

subclasses and their involvement in cancers.  

 Class I HDACs and its Involvement in Cancer  

Class I HDACs is a family of four members (HDAC1, 2, 3, 8) that show a high enzymatic 

activity to histone 3 and 4.  All the members are localized predominantly within the nucleus 

apart from HDAC8 which is found both in nucleus and cytoplasm.  HDAC1 and HDAC2 

are very similar and generally found together in most repression complexes such as mSin3, 

CoREST, PRC2 and NuRD complexes 58.  Cells with blocked HDAC1 and HDAC2 

expression have been reported to show high sensitivity to DNA damaging agents.  This 

could be due to the ability of HDAC1 and HDAC2 to repress the transcription at DNA 

damaging sites which allows DNA repair mechanism to take place 63.   In medulloblastoma 

elevated expression of HDAC2 has been reported in SHH, Group 3 and Group 4 

subgroups and it is connected with poor prognosis 54.  Modulating HDAC2 expression 

resulted in reducing the metabolic activity, cell growth and viability, and stimulated cell 

death 54.  HDAC3 shows a considerable role in DNA repair regulation, which may suggest 

the significant therapeutic benefits of targeting HDAC3 in cancer treatment 64.  HDAC8 

has the ability to deacetylate histone and non-histone proteins though its protein complex 

is not clearly known 58.  Recently HDAC8 has been reported to play an important part in 

regulating the transcription of wild-type and mutant p53 protein, suggesting that inhibiting 

HDAC8 could be a tool to block mutant p53 expression 65.      

 HDAC Class IIa and its Involvement in Cancer 

HDAC Class IIa consists of a family of four members (HDAC4, 5, 6 and 9) that have 

approximately 40% sequence homology.  They exhibit the lowest deacetylation activity 

among all HDACs and are primarily implicated in muscle cell differentiation and 
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development 59.  They are present either in the nucleus or the cytoplasm, bind to C-

terminal-binding protein (CtBP) and HP1 complexes, and display tissue-specific 

expression pattern 66.  They have also been reported to assist in recruiting Class I HDACs 

to a repression complex through their NTD, which probably accounts for a part of their 

repression function 58.    High expression of Class IIa HDACs members has been reported 

in cancer and they showed cancer-dependent expression.  For example, the expression of 

HDAC4 is higher in breast cancer compared to colorectal, bladder, and renal cancers 67.  

Overexpression of HDAC5 and HDAC9 has also been associated with a high-risk 

medulloblastoma group, and they were proposed as markers for poor survival 68.  HDAC7 

overexpression has mainly been reported in pancreatic cancer 59. 

 Class IIb HDACs and its Involvement in Cancer 

Class IIb is (HDAC6 and 10) a unique HDAC isoform as it has two homologues catalytic  

domains, is mainly expressed in cytoplasm, and has been reported to regulate cell cycle, 

cell migration, apoptosis, and metastasis of cancer cells 69.  Overexpression of HDAC6 has 

been reported to promote cancer cell proliferation through acetylating cancer-related 

pathways such as Heat Shock Protein 90 (Hsp90), cortactin (rearranges the actin 

cytoskeleton) and -tubulin.  It also reduces the sensitivity of HDACis through stabilizing 

Epidermal Growth Factor Receptor (EGFR).  Inhibiting HDAC6 expression in lung 

adenocarcinoma and glioblastoma has been found to reduce the EGFR level resulting in 

diminishing the associated signalling pathway and initiation of apoptosis  69.  Not much is 

known about HDAC10 though it has been found to be overexpressed in high-risk 

neuroblastomas and ovarian cancer.   

 Class IV HDAC and its Involvement in Cancer 

HDAC11 is the only isoform of Class IV and the depletion of its expression does not affect 

cell metabolic activity and viability 70.  Overexpression of HDAC11 has been suggested to 

suppress Bone Morphogenetic Protein 4 (BMP4) expression, which increases cancer 

malignancy in colon, prostate, breast, and ovarian cancers.  Inhibiting HDAC11 expression 

has been reported to induced apoptosis and inhibit the metabolic activity of some of non-

neuronal cancers 70.  See (Table 1) more information about the HDACs contribution in 

medulloblastoma. 
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Table 1: Summary of HDACs contribution in medulloblastoma 

HDACs The activity of HDACs in medulloblastomas 

HDAC1 Selective inhibition of HDAC1 in Med1-MB mouse cell line and reported 

to affect the SHH medulloblastoma cell growth 71.  In human, its expression 

is downregulated in the prognostically unfavourable medulloblastoma 

groups 68. 

HDAC2 Showed elevated expression in SHH, Group 3, and group 4 and has been 

associated with medulloblastoma unfavourable outcome.  Depletion of 

HDAC2 in Myc amplified cells such as MED8A, UW228-2, ONS76 and 

DAOY increased the acetylation of Histone 4 and induced cell death 54. 

HDAC3 Did not show high expression in medulloblastoma and its contribution in 

medulloblastoma tumorigenesis and treatment has not been investigated 68. 

HDAC4 Downregulated in the prognostically unfavourable medulloblastoma 

groups yet, not much are known about its role in medulloblastoma 68. 

HDAC5 

HDAC9 

Showed the high expression in primary medulloblastomas and 

prognostically poor subgroups and they are significantly associated with 

poor overall survival.  Knockdown their expression in medulloblastoma 

cells such as Daoy, UW228-2, UW228-3, ONS76, and Med8A resulted in 

decreased the cells growth and viability 68. 

HDAC6  Upregulated in SHH-MB mouse cell line and knocking down its expression 

lead to cell death 71. 

HDAC7 Its contribution in medulloblastoma tumorigenesis and treatment has not 

been investigated.  

HDAC8 Slightly elevated in medulloblastoma cell lines such as UW-288-2, 

DAOY, and ONS76 yet, its contribution in medulloblastoma 

tumorigenesis and treatment has not been investigated 72. 

HDAC10 Elevated HDAC10 expression is associated with poor outcome of treated 

medulloblastoma patients 73. 

HDAC11 Showed reduced expression in Smo/Smo medulloblastoma mouse model 

74. 
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1.4 HDACis As Anticancer Drugs 

HDACis are a group of epigenetic molecular drugs that interact with the catalytic domain 

of HDAC enzymes and block their activity.  The principle of the epigenetic cancer therapy 

mainly depends on reversing epigenetics abnormalities that support the disease formation 

which often results in loss or gain of function of many cellular regulators including 

proliferation, differentiation, cell cycle, angiogenesis and apoptosis mechanisms 75.  These 

simultaneous actions on multiple factors represent a major advantage of HDACis as 

anticancer therapeutics, and it explains their ability to treat different cancers.  Currently, a 

large number of HDACis are in clinical trials, and to date five were approved for clinical 

use (four drugs approved by the US Food and Drug Administration, namely  Vorinostat, 

Romidepsin, Panobinostat and Belinostat, while Chidamide is approved in China) 76.  

Clinically the inhibitors have shown potent anticancer activity with remarkable specificity 

to tumour cells and the side-effects were favourable in small set of patients with selected 

diseases 76.  Also, they showed several advantages over the classical anticancer drugs.  One 

of their major advantages is that they showed high selectivity to transformed cells and they 

have not shown damaging effects on normal cells 60.   

Most transformed cells showed high sensitivity to HDACis compared to normal cells 

however, this sensitivity mainly depends on cancer type, inhibitor structure, concentration 

and exposure length 6.   The exact mechanism of the effect of HDACis on tumour cells and 

not normal cells is unclear.   

1.5 The Therapeutic Action of HDAC Inhibitors  

In recent years the list of the HDACis has grown and the research work to uncover their 

biological and chemical mechanisms has become one major research theme in cancer 

treatment  77.  A large number of studies have tried to decipher the therapeutic mechanisms 

of HDACis though this regulation is too intricate and often embedded in a network of 

molecular interactions that occur simultaneously.  Generally, the findings of these studies 

have pointed out several of cellular mechanisms that collectively resulted in a lethal effect 

on the tumour cell.  These mechanisms result in cell differentiation and cell cycle effect, 

DNA damage, deregulation of non-coding RNA, autophagy, deregulation of cellular 

signalling pathways, and affect angiogenesis (blood vessels formation).  They also 



Chapter 1            Introduction 

23 

 

modulate the immune response and stimulate apoptosis 78.  However, the onset and the 

regulation of these mechanisms are relatively different between cancers and they are 

mainly shaped by; the tumorigenesis regulation, the inhibitor selectivity, and the dosage 

and the duration of the treatment.  Interestingly, much of the crosstalk between these 

mechanisms is poorly understood and their initiation factors remain unclear. 

Current understanding of HDACis molecular action has outlined several important cellular 

and molecular mechanisms of HDACis anticancer effects including stimulation of 

apoptosis, DNA damage, anti-angiogenesis effect, and the effect on cell cycle. 

 HDACis Induce Apoptosis 

HDACis have been reported to stimulate both the extrinsic and the intrinsic 

(mitochondrial) apoptotic pathways (Figure 5).  The stimulation of the intrinsic pathway 

has been reported to be through decreasing the expression of the anti-apoptotic proteins 

such as B-Cell Lymphoma 1 Protein (Bcl-1) and B-Cell CLL/Lymphoma 2 (BCL2) and 

upregulating the proapoptotic proteins such as BCL2 Associated X Protein (Bax), BCL2 

Antagonist/Killer 1 (Bak) and BCL2 Like 11 (BCL2L11) which initiate the intrinsic 

pathway 60, 79, 80.  It has also been found that the hyperacetylation effect of HDACis in 

medulloblastoma initiates p53-dependent Bax activation, which delays the progression in 

cell-cycle and activates the proapoptotic genes 81.  HDACis stimulate the extrinsic pathway 

through activating death receptors such as Death Receptor 5 (DR5), Apoptosis Antigen 1 

(Fas), Fas Ligand (FasL, a TNF family member) and TNF-related Apoptosis-inducing 

Ligand (TRAIL) 34, 82.  It has been reported that Blockade of these factors resulted in 

decreasing the efficacy of HDACis in preclinical settings 83. 
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Figure 5: Role of HDAC Inhibitors in regulating apoptosis   

In cancer, HDACs function as apoptotic repressors factors therefore, treatment with 

HDACis has been suggested to release the repression effect and upregulate the expression 

of the pro-apoptotic proteins and downregulate the expression of the anti-apoptotic 

proteins.  HDACis activate apoptosis in cancer cells through both the extrinsic and 

intrinsic pathways.  Note: Black arrows mean activate, while red arrows mean 

downregulate.   This figure was adapted from Li et al., 2014 75. 

 HDACis Induce DNA damage  

HDACis have been suggested to promote DNA damage response though increasing the 

acetylation level leading to relaxation of the chromatin 78.  Consequently the DNA becomes 

more susceptible to damaging agents such as Reactive Oxygen Species (ROS), DNA 

damaging drugs, or radiation which eventually lead to caspase-independent cell death 78.  

HDACis have also been reported to downregulate the expression of homologous 

recombination DNA-repair genes through decreasing the expression of E2F Transcription 

Factor 1 (E2F1), RAD51 Recombinase (RAD51), HDAC1 and HDAC2 which are known 

through their role in regulating the expression of DNA-repair proteins 78, 84.   
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 HDACis Anti-Angiogenesis Effect 

In most transformed cells, HDACis have been found to block blood vessels formation by 

blocking the expression of angiogenesis-related genes such as Hypoxia-inducible factor -

1α (HIF-1) and its target Vascular Endothelial Growth Factor Receptor-2 (VEGF) gene.  

They also upregulate genes that are known by their angiogenesis suppressing  role such as 

p53, von Hippel–Lindau (VHL, a tumour suppressor), Neurofibromin 2 (NF2), and 

Thrombospondin-1 (TSP1) 85.   

 HDACis Interfere with Cell Cycle 

In cancer HDAC 1, 2, 3, 4 and 6, have been reported to have a considerable involvement 

in cell cycle progression and proliferation 78.   For example, the lack of HDAC1 and 

HDAC2 expression stops cell progression to G1 phase both in normal and cancer cells 

therefore, selective inhibition of these HDACs has been proposed to inhibit cancer 

proliferation 86.  Also, it has been found that diminishing HDAC4 expression is associated 

with an increase in Cyclin Dependent Kinase Inhibitor 1A (p21WAF1) expression in some 

cancer cells which contributes to inhibiting tumour cell growth and stimulates apoptosis 

87.  

1.6 The HDACis used in this study  

HDACis are a family of large and diverse naturally occurring and synthetic compounds 

that have different structures, function and specificity.  Generally, HDACis can be 

classified into four structural groups; hydroxamic acid, cyclic peptides, bibenzimides, and 

short-chain fatty acids.  Each HDAC inhibitor comprises three domains; a zinc-binding 

domain which chelates the zinc cofactor of a HDAC and inactivates its enzymatic activity, 

a surface binding domain that blocks the entrance of a HDAC channel to the active site, 

and a linker which connects the previous two domains and fills the hydrophobic channel 

leading to the HDAC catalytic site 60 (Figure 6).  In this study, five HDACis were used and 

the following sections will give a brief overview about each inhibitor.  See Appendix 2 for 

more information about the chemical properties of these inhibitors.  
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Figure 6: Representation of HDACis blocking the catalytic domain of a HDAC 

enzyme 

HDAC inhibitor comprises of three domains; a zinc-binding domain which chelates the 

zinc cofactor of a HDAC, a surface binding domain, and a linker.  Adapted from Kevin et 

al., 2005 88. 

 SAHA (Vorinostat) 

SAHA is a hydroxamic acid class HDACi and it is the first HDAC inhibitor approved by 

FDA-approved to treat Cutaneous T-cell lymphoma, non-Hodgkin’s lymphoma and 

mantle-cell lymphoma 60, 89.  In solid cancers, using SAHA as single treatment was 

ineffective in most clinical trials and it has been strongly recommended to use SAHA either 

in combination with other treatment or prior using conventional cancer treatments 90.  

SAHA shows a high effectiveness in inhibiting class I and class IIb in a sub-micromolar 

range 91.  In vitro analysis showed that SAHA exhibits rapid kinetic binding rate and it 

induces rapid acetylation, in particular with Acetyl-Histone H2B Lys5 (H2BK5) and 

Acetyl-Histone H4 Lys12 (H4K12).  Washout of SAHA induces a rapid dissociation of 

SAHA kinetic binding followed by decrease in acetylation to the basal level 91.  SAHA 

stimulates cellular apoptosis through activating TRAIL expression in breast cancer and 

ROS in leukaemia 78.   

 



Chapter 1            Introduction 

27 

 

 MS-275 (Entinostat) 

MS-275 is a benzamide class HDAC inhibitor characterized by its slow binding and 

dissociation properties which has been attributed to the need to disrupt the hydrogen bonds 

that connect a protein structure in order to accommodate MS-275 lipophilic aromatic rings 

91.  MS-275 demonstrates a broad anticancer activity and well-tolerated side effects in the 

Phase I clinical trials of acute myeloid leukaemia and refractory solid tumour 92.  On the 

molecular level MS-275 exhibits a greater HDAC isoform selectivity to class I HDACs 

with sub-micromolar effectiveness to HDAC1 and 3 93.  

MS-275 has been found to display dose-dependent effect on cells.  For example, at low 

concentration (1 µM) MS-275 acts as an antiproliferative agent through increasing the 

expression of p21waf1 growth arresting protein, hypo-phosphorylate Retinoblastoma 

Tumour Suppressor Protein (pRB), and downregulates the expression of most cell cycle-

related proteins including cyclin D1 94.  However, at higher concentrations (5 µM) it 

induces early increase in ROS, followed by loss of mitochondrial membrane, cytosolic 

release of cytochrome c, and ultimately triggers apoptosis 94. 

 MI-192 

MI-192 is benzamide HDAC inhibitor, characterized by its inhibition selectivity to class I 

HDACs with high affinity to HDAC3 (> 60-fold effective that MS-275) and limited 

affinity to HDAC2 95. In Leukaemia, MI-192 has been reported to inhibit TNF and 

Interleukin 6 (IL-6) production and induced cellular differentiation and apoptosis with no 

observed effect on normal bone marrow cells 96. 

 Apicidin 

Apicidin is fungal metabolite that has cyclic tetrapeptide structure and exhibits HDAC 

inhibiting activity against class I HDAC with a higher affinity to HDAC2 and HDAC3 93.  

Apicidin has been reported to display anti-proliferative activity in many cancers through 

altering the expression of p21WAF1, cyclin A and E-cadherin 97.  Also, it showed apoptotic 

activity in leukaemia through Fas/Fas ligand, and activation of mitochondria-dependent 

caspase  98. 
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 Valproic Acid 

VPA is a short chain fatty acid HDACi with more affinity to class I (HDAC1, 2, 3 and 8) 

than class IIa (HDAC4, 5, 7 and 9).  Clinically VPA was exclusively tested as a 

monotherapy and it showed improvement in 24% of acute myeloid leukaemia and 

myelodysplastic syndrome patients 99.  It has also been approved to treat epilepsy and 

depression.  Combination treatment of VPA with other anticancer drugs appears to be more 

efficient and less toxic 99.  VPA has been found to act as a radioprotection for normal 

hippocampal neurones in radiation therapy through increasing the expression of the anti-

apoptotic proteins and downregulating the pro-apoptotic proteins.  It has also been found 

to act as a radio-sensitizer with glioblastoma cells through inducing cell cycle arrest 100.  

From more information about the HDACis targets and their effective inhibitory 

concentrations see table (Table 2). 

Table 2: Summary table of HDACis targets and their IC50  

HDACis HDACs Target IC50 

SAHA 
Classes I, II and IV marked 

decrease in HDAC1 75 
10 nM 101 

MS275 
Strongly inhibits HDAC1, 

HDAC2, and HDAC3 54 

HDAC1 (300 nM) 101 

HDAC2 (130 nM) 101 

HDAC3 (720 nM) 101 

MI192 HDAC2 and HDAC3 95 
HDAC2 (16 nM) 95 

HDAC3 (30 nM) 
95 

Apicidin HDAC2 and HDAC3 93 
HDAC2 (1 nM)101  

HDAC3 (2 nM) 101 

VAP 
Class I and II HDAC inhibitor 

with a high potency for HDAC199 
0.4 - 20 mM 101 

1.7 HDACis Side-Effects 

Despite the HDACis favourable outcomes in clinical trials their chronic administration is 

possibly associated with risk of increasing the side effects and cytotoxicity which could 

bring fatigue, dehydration, diarrhoea, and moderate thrombocytopenia 61.  In addition, the 

effect of HDACis on normal neuronal and non-neuronal growing cells and stem cells has 

not been well addressed yet.  In several studies depletion of HDAC1 and HDAC2 in mice 

has been reported to cause sever structural abnormalities in brain cerebellum and 
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hippocampus which results in a lethal effect 102.  Depletion of HDAC3 also causes an 

imbalance between carbohydrate and lipid metabolism and leads to embryonic death 61.  

Therefore, using non-selective HDACis to treat cancer could unnecessarily block some 

HDACs that are required for normal cells function and may result in unfavourable side-

effects.  This may suggest the importance of understanding the pharmacodynamics of 

HDACis in tumour and normal cells. 

1.8 The Research Background and Questions 

 REST Contribution in Medulloblastoma   

The contribution of REST in medulloblastoma has been an area of disagreement in 

literature.  For example, some studies have suggested elevated REST expression as 

oncogene due to its ability to blockade the differentiation of cancer stem cells and retain 

their self-renewal potential, which ultimately contributes to tumour cell proliferation 9, 10.  

Knocking down REST expression in medulloblastoma cell lines such as Daoy and D283 

has been claimed to abrogate the tumorigenic potential of the cells and stimulates apoptosis 

11, 14, 50.  Whereas, the exogenous induction of REST into normal neuronal progenitors cells 

has been claimed to stimulate tumour formation and maintain the self-renewal potential of 

neuronal stem cells 53.  

In contrast, the gene expression studies of medulloblastoma have not proposed REST 

involvement, or at least its exclusive repression of the RE1-containing genes, in 

medulloblastoma tumorigenesis 39, 41, 44, 103.  Also none of the medulloblastoma genome 

sequencing studies have identified any direct or indirect genetic mutations that could 

contribute to increasing REST expression 42, 104.  These conclusions are further supported 

by a recent study which revealed that knocking down REST using an shRNA system 

resulted in inhibiting glioblastoma cells migration yet, it did not stimulate cell death or 

reduce tumour size 12.   Therefore, this research was set out to obtain more knowledge 

about the contribution of REST in the Daoy medulloblastoma cells growth and treatment.  

  HDACis Molecular Action in Tumour and Normal Cells 

Treating with HDACis results in increasing the acetylation level both in normal and 

transformed cells 105, 106, 107, 108.  However, it is not known how HDACis induce their 

anticancer effect in tumour cells and what are the consequences of the HDACis treatment 
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on the normal cell gene expression.  This study aimed to investigate the anticancer 

mechanism of HDACis in the Daoy medulloblastoma cells and explore their effect on 

normal neurons. 

 The Research Hypothesis and Questions  

In this study I hypothesized that: 

• Elevated REST expression in medulloblastoma cells sustains tumour cell growth.  

• HDACis induce their anticancer effect through the HDACs recruited in REST 

repression complexes  

• The study also explored the HDACis molecular regulation in Daoy 

medulloblastoma cells and examined their effect on normal neurons  

This study aimed to address the following research questions:  

➢ Is REST expression elevated in all medulloblastoma subgroups?  

➢ Does REST expression have a main contribution in sustaining the growth of the 

medulloblastoma?  

➢ What is the effect of HDACis on the cell cycle? 

➢ What is the effect of modulating REST on the expression of RE1-containing genes? 

➢ Does REST expression play a role in tumour cell migration ability? 

➢ Do HDACis induce their action through the HDACs recruited in REST repression 

complexes?  

➢ What molecular mechanisms and pathways are mainly targeted by the HDACis? 

➢ What is the effect of HDACis on normal neuronal cells? 
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Chapter 2 

2 Material and Methods 

2.1 Introduction 

 The Experimental Model    

Studying brain tumours in general, and medulloblastoma in specific, has been an area of 

hindrance due to; the intertumoral and intratumoral genetic variations, limited primary 

tumour samples, and the tissue samples are often contaminated with a mixture of 

genetically variant cancerous and non-cancerous cells.  Hence, the cancer cell lines could 

be the ideal model to understand the molecular regulations prior examining the therapeutic 

potential on animal model and eventually in clinical trials.   

Cancer cell lines have been the foundation of cancer treatment research as they are easy to 

expand, comparatively uniform, and their research outcomes can be reproduced.  Though, 

they have been an area of criticism as not always known from what type or subtype of 

cancer a particular cell line was generated from, or to what extent a specific cell line 

resembles the original cancer after years in culture 43.  The established cell lines are 

selected from specific tumour subsets that grow under in vitro culture conditions and this 

selection does not represent the diversity of human tumours 109.  Therefore, cell lines do 

not completely mimic the primary cells and they usually used in the absence of their local 

environment which often contains many interactions with other cell types 110.  The culture 

conditions and the infections with mycoplasma can also affect the morphology, the gene 

expression, the cellular pathways, and the response of a cell line toward tested drugs could 

be different form patient response. Hence, with many studies, what it has been 

therapeutically promising in cell lines and animal models comes back negative in clinical 

trials 111.  This may express the importance of identifying a cell line that best mirrors a 

particular medulloblastoma condition, which will considerably help in generating more 

accurate disease picture both in primary and preclinical research.   

Comparing to other tumours, medulloblastoma has relatively less cell lines which it could 

be due to the rarity of the tumour and the difficulty of establishing a continuous cell line 

from paediatric brain tumour.  Currently, there are around 44 medulloblastoma cell lines 

have been produced over a period of four decades 43.  Eighteen of these cell lines have only 
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been classified into the current medulloblastoma subgroups; eleven cell lines grouped 

under Group 3, four cell lines sub-grouped with SHH, two cell lines under Group 4, and 

one cell lines represents the WNT medulloblastoma 15.  Among these cell lines, Daoy has 

been the most frequently used cell in literature to study medulloblastoma 15 . 

The Daoy cell line was established in 1985 from a biopsy taken from a posterior fossa 

tumour of four-years-old boy 112.  The cell has a polygonal shape with irregular shaped-

nucleus, prominent nuclei, multiple nucleoli, and the cytoplasm contains a large number 

of rough endoplasmic reticulum, Golgi apparatus and many small mitochondrial 

aggregates 112.  On the chromosome level, the cell is hypertetraploid with 93 to 99 

chromosomes and two normal X chromosomes however, the Y chromosome is not 

detectable 112.  The Daoy cell expresses a mutated non-functional form of p53 protein as 

the TP53 gene has a single point mutation at base 725, which results in substituting the 

phenylalanine at amino acid 242 by a cysteine 113.  The original tumour of the cell reported 

to show both of neuronal and glial phenotypes though, the cell line dose not retain these 

phenotypes and it has been reported to contain a mixture of CD133- and CD133+ side 

population 43, 114.  Based on the current molecular profiling of medulloblastoma, Daoy was 

classified as SHH subgroup with mutant p53 43.  Elevated REST expression in Daoy has 

been reported in a large number of literatures which brands the cell as an ideal modal to 

study the effect of REST modulation on tumour cell growth and to study its functional 

effect on the RE1-containing genes 11, 14, 52, 115.  Hence, Daoy was used in this research as 

an experimental model for medulloblastoma. 

To study the effect of hyperacetylation on normal cells, the cerebellum cells are possibly 

the most appropriate counterpart of medulloblastoma however, due to the unavailability of 

such cells the analysis was performed using primary human neurons (ScienCell, 1520).  

The neurons were isolated from a male donor and they are categorized as neurons with 

highly communication networks.  As a result of limited amount of the neurons they were 

exclusively used for the analysis and their sensitivity to the used HDACis was not 

examined.  

 Modulating REST Expression using CRISPR/Cas9 and shRNA 

In most of the earlier studies, the shRNA and the REST-VP16 knockdown approaches 

were the tool of choice to uncover the contribution of REST in medulloblastoma, 14, 50, 53, 



Chapter 2  Methods 

33 

 

116, 117, 119.  However, these approaches showed some limitations as the efficiency of the 

knockdown is highly variable between studies and they do not completely block the 

expression of REST, which may affect the interpretation of REST contribution in cancer.  

Therefore, in this study the CRISPR/Cas9 system was used to completely knockout REST 

expression.  As the CRISPR/Cas9 system has not been used before to modulate REST 

expression, the shRNA knockdown approach was used to further confirmed the results of 

the knockout.   

 CRISPR/Cas9 to Knockout REST Expression  

CRISPR/Cas9 is one of the tools that has a high degree of accuracy to modify DNA 

sequence and interrupt gene translation.  CRISPR (or Clustered Regularly Interspaced 

Short Palindromic Repeats) is a pre-designed sequence of around 20 RNA bases known as 

guide RNA (gRNA) designed to target a unique complementary sequence in genome.  

Also, it contains a recognition component for CRISPR associated protein 9 (Cas9) 

endonuclease enzyme known as Protospacer Adjacent Motif (PAM) and located at the 3' 

end.  Both the gRNA and PAM sequences are integrated within a longer RNA scaffold 

which encompasses a sequence-code that activates Cas9.  Cas9 is a Streptococcus 

pyogenes immunity system used with CRISPR to cleave the DNA at the PAM site which 

could result in activating either the non-homologous end joining (NHEJ) or the 

homologous recombination (HR) DNA repair systems 118.  The NHEJ repair pathway is 

the most dynamic mechanism and it frequently causes small nucleotide insertions or 

deletions (indels) at the double-strand break site which leads to disrupting the open reading 

frame of a gene.  Whereas, the HR repair pathway can be utilized to insert specific 

homologous nucleotide sequence immediately upstream or downstream of the target 

sequence.  In this study, I used pCas-Guide system (Origene) which characterized by its 

ability to produce both of the gRNA and the Cas9 expression sequences (Figure 7).  
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Figure 7: The map of the pCas-Guide Vector 

The pCas-Guide is an 8-kb vector, designed for cloning a gRNA insert between a U6 

promoter and gRNA scaffold.  The vector contains a Cas9 cassette driven by a CMV-

optimized codon and an ampicillin resistance gene for E. coli transformation selection.  

The sequence above shows the gRNA1 (green) and its PMA site (blue), and the gRNA2 

(blue) and its PAM site (black). 

 shRNA to Knockdown REST Expression  

short hairpin RNA (shRNA) is an artificial double-stranded RNA molecule used to cleave 

mRNA and knockdown the expression of gene.  In this study, the shRNA was delivered 

into the Daoy cell through an expression vector (pSUPER-Puro) which has a 

Phosphoglycerate Kinase promoter (PKG) promoter sequence located before the cloning 

site and it helps in achieving a robust expression of the shRNA (Figure 8 A).  Also, the 

plasmid contains a puromycin resistance PUR gene which protects the cell from the lethal 

effect of the puromycin selective treatment.   

Once the vector is integrated into a cell genome, the transcription of the shRNA starts by 

producing a pre-miRNA (a hairpin RNA) which then processed by Nuclear RNase III 

enzyme (Drosha) into approximately 70 base pairs long known as small hairpin RNA 

(shRNA).  The resulted shRNA is exported by Exportin 5 into the cytoplasm where the 

connection loop is further processed by riboendonucleases (Dicer).  The antisense (guide) 

strand is then loaded into a ribonucleoprotein known as RNA-induced silencing complex 
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(RISC) and when the sequence of the guide-strand perfectly matches a complementary 

mRNA sequence, the enzymatic activity of the RISC is activated and results in degrading 

the mRNA and silencing the transcription 119 (Figure 8 B).   

In small proportion of the transfected cell, the pSUPER-Puro plasmid is integrated into the 

cell genome and passed into the cell progeny.  This causes a stable expression of the shRNA 

which sustains the knockdown of REST expression.  The selection for the stable expression 

can be achieve by exposing the cells to Puromycin (an amino-nucleoside antibiotic) which 

acts by covalently binding to the elongated polypeptide chains on ribosomes resulting in 

terminating protein synthesis and cell death.  Though, cells that express the puromycin 

resistance gene (puro) inactivates the cytotoxic effect of puromycin 120.  

 

Figure 8: pSUPER-Puro vector map and the shRNA knockdown concept  

(A) pSUPER-Puro is 4.3 kb mRNA expression vector contains an mRNA cloning site driven 

by polymerase-III H1-RNA gene promoter.  Also, it contains a puromycin resistance Pur 

gene cassette driving by the PGK promoter.  This vector produces a small RNA transcript 

missing the polyadenosine tail though, it contains five thymidine basses (T5) signal at the 

start of the transcription and at the termination site.  The termination site is after two 

uridine bases, which yields a transcript that has similar ends to the synthetic shRNA.  (B) 

An illustration for the shRNA knockdown mechanism. 
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 Profiling the Gene Expression at Single Cell Level using the 10x 

Genomics Chromium Single Cell 3’  

One of the aims of this study is to investigate the molecular regulations of the HDACs and 

the HDACis in tumour and normal cells at the transcriptome level.  Until recently, the 

method of choice to address such research question was profiling gene expression using 

microarray analysis yet, the sensitivity and the accuracy of this approach tend to be 

relatively low especially with gene that show low expression.  Also, the microarray results 

should be used for screening only and the findings should be conformed using qPCR 

analysis.  With the advance in Next Generation Sequencing (NGS), the bulk gene 

expression profiling by the RNA-seq has been the preferable alternative due to its high 

analytical sensitivity and accuracy.  This research work was originally designed to be 

performed using the bulk NGS analysis (see Appendix 3 and Appendix 4 for more 

information about the suggested NGS plan).  However, with the advance in the NGS 

analysis, the single cell NGS (scNGS) has become the method of choice to avoid the effect 

of cells heterogeneity especially, and it provides a higher statistical power data to dissect 

the molecular regulation of an individual cell in a diverse population of cells.  With the 

single cell analysis approach measuring the gene expression at a single time point could be 

sufficient to uncover the molecular regulation and understand the differences between the 

cells.  For example, at an early time point of treatment, there will be a mixture of cells at 

their early and late stages of apoptosis, cells that have not initiate the apoptosis mechanism 

and they will die during the late hours of the treatment.  These cells are also distributed 

among each phase of cell cycle.   

The scNGS is a gene expression profiling technique that measure the expression at an 

individual cell level.  The main concept of the scNGS is relying on barcoding the mRNA 

with specific DNA sequence during the reverse-transcription step and measuring the 

transcripts using the NGS.  The barcodes were then used to index the transcripts back to 

their original cell.  Currently, there are several platforms of scNGS all share the previous 

concept but, they are mainly different in; the way of partitioning the cells into a single cell 

reaction, and in their ability to target few hundreds to several thousands of single cells at a 

time.  In this study, the scNGS analysis was performed using the 10x Genomics Chromium 

platform.  
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This platform mainly depends on partitioning a single cell suspension into nanolitre-scale 

reaction vesicles known as Gel Bead in Emulsions (GEMs).  The GEMs are formed on a 

microfluidic chip by combining; gel beads containing barcoded oligonucleotides, in 

parallel with the single cell suspension within an oil vesicle (Figure 9).  This allows 

producing hundreds to tens of thousands of single cells reaction vesicles in less than 7 

minutes using the Chromium Instrument.  The gel beads contain an Illumina R1 sequencing 

primer, a 10x barcode of 16 nucleotides (used to associate the individual reads back to the 

individual cells), a unique molecular identifier (UMI) of 10 nucleotides (10X Barcode, 

used to; count the number of reads of specific sequence, identifies transcriptomes from 

individual cells also, helps in reducing the bias and the noise created during the cDNA 

amplification), and a poly-dT primer.  Whereas, the single cell suspension contains a 

mixture of RT primers and enzymes mix.  Within each GEM reaction vesicle, the poly-

adenylated mRNA was reverse-transcribed and used to generate a barcoded full-length 

cDNA containing the Illumina Read 1 (a primer site for sequencing read 1 and used to 

encode UMI), the 10x Barcode, and the UMI.   After lysing the GEMs, the contents of the 

gel beads are mixed with; the cell lysate, and the master mix.  Due to the small amount of 

the mammalian transcriptome (10 picograms (pg) of the RNA and 0.1 pg the mRNA in a 

typical cell) the full-length cDNA is amplified first.  Simultaneously, the Illumina P5 

primer, the Read 2, the sample index (i7), and the P7 primer (used for Illumina paired-end 

sequencing) are incorporated in the cDNA library.  The Read 1 is used to sequence the 10x 

barcode and the UMI whereas, the Read 2 is utilized to sequence the cDNA fragment.  

Next the library is sequenced on Illumina sequencers using paired-end sequencing with 

single indexing.   
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Figure 9: 10x Genomic Single Cell Generation and Library Construction  

The 10x Genomics platform uses emulsion-tagging to generate single cell reaction vesicles 

or GEMs.  The generation of GEMs is performed on a microfluidic chip by encapsulating 

gel beads and a single cell suspension within an oil vesicle (A).  When dissolution the 

mixture, the reaction generates full-length cDNA from poly-adenylated mRNA containing 

Read 1, 10x Barcode, and UMI.  The cDNA is then amplified and the Illumina P5 primer, 

the Read 2, the sample index (i7), and the P7 primer are incorporated into the cDNA 

library (B).  Next, the library is sequenced on Illumina sequencers using paired-end 

sequencing with single indexing.  Read 1 is used to sequence the 10x barcode and the UMI, 

where Read 2 is utilized to sequence the cDNA fragment. (The images above were adapted 

from the 10x Genomics website (https://www.10xgenomics.com/).  

 Selecting the HDACis 

In this study, five HDACis (SAHA, MS-275, MI-192, Apicidin, and VPA) were used in 

studying the contribution of REST in medulloblastoma.  Yet, due to the high cost of the 

scNGS analysis, the gene expression profiling was performed using SAHA and MS-275.  

The selection criteria for these two inhibitors were based on the inhibitor potency, 

selectivity, and if the inhibitor has been in clinical trials.  In the Daoy cell analysis, all the 

five inhibitors showed high anticancer activity apart from the VPA hence, it was excluded.  

https://www.10xgenomics.com/
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MI-192 and Apicidin showed high affinity to HDAC3 and HDAC2 and HDAC3, 

respectively.  MI-192 was not selected as it has not been thoroughly investigated, and both 

of MI-192 and Apicidin have not been in clinical trials.  SAHA is a pan-inhibitors and was 

approved for clinical used whereas, MS-275 showed higher selectivity to HDAC 3 and 2 

and it has been in phase II clinical trial 60.  Both of SAHA and MS-275 showed differences 

in the onset of their anticancer activity which attract research interest.  Hence, the scNGS 

analysis was performed using SAHA and MS-275.  

 The Cell Number and the Sequencing Depth of the scNGS  

The number of targeted cells and the transcript sequencing depth are important factor for 

the scNGS analysis.   There are no specific criteria for targeting a specific cell number yet, 

the required number increases with the increase in the heterogeneity of the cells.  

Undoubtedly, it is difficult to predict the degree of the heterogeneity however, the required 

number might be estimated based on the flowcytometry data.  As mentioned earlier, the 

Daoy cell-line has been reported to contain a mixture of CD133- and CD133+ side 

population whereas, the human neurons is a mixture of neurons and glia cells 43, 114.  It 

should be considered that with the Chromium technology there is an increasing chance of 

multiplets (two or more cells within a GEM) rate with the increase in the number of loaded 

cells.  Also, the presence of dead cells in the cell suspension could reduce the number of 

the observed cells.  Once the library prepared, the number of the successfully targeted cells 

can be estimated using the UMI.  Generally, the more cells the greater the statistical power, 

and in this study, we aimed to target 2000 cell for each sample.  

The sequencing depth (Coverage) with the scNGS analysis represents the number of the 

detected transcripts for each cell and can be estimated by normalizing the library as per the 

recommendations of the Illumina sequencing platforms.  The recommended sequencing 

depth for the 10x scNGS is ranged from 50.000 to 100.000 reads/cell whereas, the deeper 

sequencing often leads to saturation and does not improve the number of the detected genes 

121.  In this study, we aimed to reach to a read depth of 100.000 reads/cell. 
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2.2 The Methods  

  Standard Cell Culture 

The human medulloblastoma Daoy cell-line was purchased from ATCC (HTB-186).  The 

SH-SY5Y and HeLa cells were obtained from Dr I. C. Wood.  The cells were cultured in 

Dulbecco's Modified Eagle's Medium (DMEM, Life Technologies) supplemented with 10 

% (v/v) Fetal Bovine Serum (FBS, PAA Cell Culture Company) and 1% (v/v) Penicillin 

& Streptomycin (Sigma).  The cells were grown at 37°C humidified incubator in 5% CO2 

air.  Subculturing of the cells was performed every fourth day or when they reached a 

confluency of approximately 80-90%.  The subculturing was carried out by removing the 

old culture media and washing the cells with 10 mL of room temperature phosphate buffer 

saline (PBS, Oxoid [Dulbecco A, 10 mM phosphate buffer, 2.7 mM potassium chloride 

and 137 mM sodium chloride, pH 7.4, at 25 °C], 1 tablet in100 mL of ddH2O, solution was 

autoclaved) for one time.  The cells were treated with 1 mL of Trypsin-EDTA (Sigma) to 

dislodge the cells from the bottom of the culture plate and incubated at 37 °C incubator for 

5 minutes.  The cells were then examined under a microscope to check for their detachment 

and rounded appearance.   Around 9 mL of complete culture media was used to deactivate 

the trypsin, and the cells were released by pipetting the media up and down for 3 times.  

The cell suspension was transferred into 15 mL sterile conical tube.  The cells were pelleted 

by centrifuging the tube at 400 g for 5 minutes, and the supernatant was removed by 

aspiration without disrupting the cell pellet.  The pelleted cells were re-suspended in 5 mL 

complete culture media by gently pipetting the cells up and down to break up the clumps 

using a 10 mL serological pipette.  New subculture plates were prepared by using 1 mL of 

the resuspended cells with 9 mL of complete media and incubated  at 37°C in a humidified 

incubator at 5% CO2 air.  All experiments were conducted on cells with fewer than 15 

passages.   

The confluency of the cell was determined qualitatively using an inverted microscope and 

the confluence was defined as the proportion of the culture surface that was covered by the 

cells at the time of measurement (a confluency of 50 % means half of the culture surface 

was covered by cells). 

 

 



Chapter 2  Methods 

41 

 

 Culturing the Human Neurons  

Neurons from human brain (P0) were purchased from ScienCell (#1520) in a 

cryopreserved from.  Prior culturing, the surface of a 6-well culture plate was coated using 

2 µL of poly-L-lysine (10 mg/mL, ScienCell) in 2 mL of sterile water and the plate was 

left in a 37C incubator overnight.  The wells were washed twice with sterile water prior 

to use and the neurons were seeded using complete Neurons Medium (NM, contains 

neuronal growth supplement and penicillin/streptomycin solution, ScienCell) at a seeding 

density of ~2.5 x104 cells/well.  The plate was incubated at 37°C humidified incubator in 

5% CO2 air for 16 hours and the media was replaced with 2 mL fresh culture medium. The 

neurons were left in culture for 48 hours before treating them with the HDACis.  

Harvesting the neurons was carried out by removing the old culture media and washing the 

cells for 3 times with 2 mL of cold phosphate buffer saline (ScienCell).  The culture plate 

was then rocked back and forth for a few times and the PBS was drawn out by aspiration.  

The cells were overlaid with 300 µL of Tryple Express (Gibco) to dislodge the cells from 

the bottom of the culture plate and incubated at 37 °C incubator of 7 minutes.  The cells 

were then examined under a microscope to check for their detachment and rounded 

appearance and 1 mL of the NM was used to deactivate the Tryple Express, the cells were 

released by pipetting the media up and down for 3 times, and the cells suspension was 

transferred into 15 mL sterile conical tube.  The cells were pelleted by centrifugation at 

400 g for 2 minutes and the supernatant was removed by aspiration without disrupting the 

cell pellet.   

 Identifying a Suitable Daoy Seeding Density for HDACi Treatment 

The Daoy cells were seeded into 24-well culture plates (Nunc Cell-Culture Plate) using 

following concentrations:1 x 104, 2 x 104, 5 x 104, and 1 x 105 cell/mL.  The cells were 

harvested at 24, 48, and 72 hours post seeding using Trypsin-EDTA as described above. 

Post Trypan Blue staining (0.4%, Sigma), the cells were gently mixed and 25 µL of the 

stained cells were loaded underneath the coverslip of a cleaned haemocytometer allowing 

the cell suspension to be drawn out by capillary action.  The count was performed using 

Neubauer haemocytometer under an inverted microscope.  The cells with a dark blue 

staining were considered dead and excluded from the count.  The total number of viable 

cells was calculated by dividing the cell count by 4 (the average), multiplying by (104) and 
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then by 2 to correct for trypan blue addition.  To measure the sensitivity of the cells to 

HDACis, the cells were seeded at 3.5 x 104 cell/mL in 6-well culture plates and treated 

with HDACis (Table 3).  The cells were harvested (at 24, 48, and 72 hours) and counted 

as described in section 2.2.3). 

 HDACis Preparation  

The HDACis SAHA(10009929); MS-275(13284); MI-192(18288);  Apicidin(10575) were 

purchased from Cayman :and were dissolved in DMSO. Hence, a DMSO cell-treated 

control was included in all experiments.  VPA was purchased from Sigma (P4543) and 

was prepared in water.     

 Generating the Dose Response Curves, and Measuring the Cells 

Proliferation Rate and the Sensitivity to HDACis  

To generate the HDACis dose-response curves and to study the proliferation rate and the 

sensitivity of the cells to the inhibitors, the Daoy cells were harvested and counted as 

described previously (section 2.2.1) and a cell concentration of 3.5 x 104 cell/mL was used 

to seed 96-well culture plates (Greiner).  The plates were left at room temperature for 30 

minutes to allow even distribution of the cells throughout the wells and then the plates were 

incubated at 37C in 5% CO2 air for 24 hours.  HDACis treatment was carried out by 

carefully replacing the culture media with complete media containing the required 

concentration of the drugs (Table 3).  The plates were re-incubated at 37C in 5% CO2 air 

and the viability of the cells was measured after 72 hours from the treatment for the ‘dose 

response analysis’ and at 24, 48, and 72 hours for the ‘sensitivity’ experiment.  The 

proliferation rate was measured at 24, 48, 72 and 96 hours or every 24 hours over a period 

of 7 days.  All the measurements were performed using the colorimetric MTT assay 

(section 2.2.6).   
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Table 3:HDACis concentrations used to produce the dose-response curves  

SAHA (µM) MS-275 (µM) MI-192 (µM) Apicidin (µM) VPA  (mM) 

0.003  0.01  0.003  0.003  0.3  

0.01  0.03  0.01  0.01 1  

0.03  0.1  0.03  0.03 3  

0.1  0.3  0.1  0.1  4  

0.3  1  0.3  0.3  5  

1  2  1  1  10  

2  3  2  2  12  

3  4  3  3  13  

4  5  4  4  14  

5  6  5  5  15  

Concentrations used to study the effect of REST expression modulation 

5 µM 5 µM 3 µM 3 µM 10 mM 

 The MTT Assay 

The principle of this assay depends on the activity of mitochondria in viable cells to convert 

tetrazolium MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) dye to 

formazan colour by Nicotinamide Adenine Dinucleotide Phosphate (NADPH) 

oxidoreductase enzyme.  The MTT stock solution was prepared by dissolving 5 mg of the 

MTT powder (Sigma, M5655) in 1 mL of PBS.  The solution was then stored in 500 µL 

aliquots at -20°C.  The MTT working solution (0.5 mg/mL MTT) was prepared by 1:9 

dilution using culture media.  The MTT assay was performed by gently aspirating the 

culture media using a multichannel pipette and adding 50 µL of the 0.5 mg/mL MTT 

working solution.  Subsequently, the plates were re-incubated for 90 minutes at 37C in 

dark.  The solution was then replaced with 100 µL of acidified isopropanol solution (0.04 

M HCL) and the plates were covered with foil and placed on an orbital shaker (~ 300 rpm, 

Stuart SSM1) at room temperature for 15 minutes.  The absorbance of the MTT was 

measured at 590 nm wavelength with a reference filter of 720 nm using a 

spectrophotometer plate reader (FLUOstar Omega, BMG Labtech).   

The cellular viability was calculated by subtracting the blank value (720 nm) from the 

formazan absorbance (590 nm).  At least, 6 biological repeats with 3 technical replicates 
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were performed for each condition and the average of all the biological replicates was used 

to represent the cells responses.   

 Calculating the Doubling Time 

The doubling time of the Daoy wildtype, REST knockout and knockdown cells was 

estimated using the results of the MTT assay.  The calculation was performed by 

subtracting the time value of the 0.8 MTT absorbance on the proliferation curve from the 

time value of the 0.4 MTT absorbance.  

 Modulation of REST Expression  

 Knockout REST Expression Using the CRISPR/Cas9 System  

The CRISPR/Cas9 system was used to disrupt REST gene expression.  Two guide RNA 

sequences (gRNA) were designed using the OriGene Technologies CRISPR/Cas9 tool, 

(gRNA1: 5′- CGCACCTCAGCTTATTATGC-3′, and gRNA2: 5′- TGGCAAATGTGGC 

CTTAACT-3′) 122.  Both sequences were followed by (TGG) PAM sequence and cloned 

into pCas-Guide vector (pCas-Guide1 [OriGene, KN211570G1], pCas-Guide2 – 

[OriGene, KN211570G2]) in additional to the antisense strand of the later gRNAs 

sequences.  A negative scramble-targeting (control) vector (OriGene, GE100003) of 20 bp 

sequence, which does not target any sequence, was included in the transfection reactions.   

The transfection reactions were performed in 6-well culture plates (Nunc Cell-Culture 

Plate) with a cell confluence of 50-70%.  The transfection solution was prepared by gently 

pipetting up and down 6 µL of Lipofectamine 2000 transfection reagents (Invitrogen, Life 

Technology) in 250 µL of the Opti-MEN media and the tubes were incubated at room 

temperature for 20 minutes.  The vectors (pCas-Guide1, pCas-Guide2, and Scramble 

control) mixtures were prepared by diluting 2 µg of vector in 250 µL of a pre-warmed 

Opti-MEN serum reduced medium (Gibco, 31985062) and left at room temperature for 5 

minutes.  The diluted DNA was then added into the lipofectamine solution using a 1:1 

ratio.  Prior the transfection, the cells were washed with sterile PBS for two times and 1 

mL of basal DMEM media was added into each well.  The transfection mixture was added 

in a dropwise manner and the plate was gently rocked back and forth and incubated at 37C 

incubator in 5% CO2 air.  After 4 hours, the transfection media was replaced with 2 mL 

complete DMEM media and the plate was re-incubated for 48 hours. 
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Monoclonal cell culture was established by seeding 96-well plates with a cell concentration 

of 1 cell/100 µL of the CRISPR/Cas9 transfected cells.  After 5 days from the seeding, 

wells with monoclonal cell growth were identified microscopically and left to grow for 

two weeks with replacing the media every 7 days.  After 14 days from the seeding, a 

daughter plate was prepared by harvesting the cells as described previously (see section 

2.2.1) using 25 µL of Trypsin-EDTA, and 70 µL of the culture media was pipetted up and 

down to detach the cells.  From each well, 30 µL of the cells was then transferred into a 

new 96-well culture plate containing 70 µL of complete media and the cells were re-grown 

to 90-100% confluency.   

The screening for the genome editing was performed by sequencing REST exon 2 using 

the DNA Sanger sequencing facility at Beckman Coulter Genomics service (Stortford).  

The efficiency of the knockout was verified using Western blot and SYBR green qPCR 

analysis and the cells with genome editing were propagated for further analysis.   

 Knockdown REST Expression using the shRNA System 

To knockdown REST expression, two shRNA sequences were designed using human 

homologue sequences of previously used mouse shRNA sequences (Gao et al., 2011) 23.  

The homologous human sequences were; 5’-AGTGTAATCTACAGTATCAC-3’ which 

targets REST exon4; and 5’-AGCAGAATCTGAAGAACAGT-3’ which targets exon2.  

The designed sequences were; shREST1:  5’-AGCTAAAAACAGTGTAATCTACAGT 

ATCACTTCTCTTGAAAGTGATACTGTAGATTACACT-3’, and shREST2: 5’-AGC 

TAA AAAAGCAGAATCTGAAGAACAGTTTCTCTTGAAAACTGTTCTTCAGATT 

CTGCT-3’. 

2.2.8.2.1 The shRNA Sequence Annealing 

Annealing the forward and reverse sequences of the two shRNA was performed by mixing 

1 µL of the forward and the reverse sequences (100 µM) with 48 µL of annealing buffer 

(100 mM NaCl, and 50 mM HEPES pH7.4).  The mixture was incubated at 95°C in a 

heating block to denature the oligoes and after 5 minutes the heating block was turned off 

and left to cool down at room temperature in order to allow the oligo to anneal.   When the 

block temperature reached 40ºC the tubes were transferred into ice and 100 µL of sterile 
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distilled water was added into each tube.  The oligos were either used directly in ligation 

reactions or stored at -20°C.   

2.2.8.2.2 The pSUPER-Puro Plasmids Preparation and Linearization  

pSUPER-Puro plasmid was prepared by streaking a loop-full suspension from glycerol 

stocks on ampicillin LB agar plates (2 % of LB Broth [Sigma] in H2O supplemented with 

1.5 % agar [Melford] and 100 µg/mL ampicillin [Sigma]) and incubated at 37°C.  After 24 

hours, a single colony was cultured in 100 mL LB broth (2 % of LB Broth [Sigma] in H2O, 

supplemented with 100 µg/mL ampicillin) and incubated at 37°C in a shaker incubator.  

The plasmid was extracted after 24 hours using HiSpeed plasmid midi kit (Qiagen; 12663) 

and processed according the manufacturer’s instructions.   

pSUPER plasmid was linearized using HindIII and BamHI restriction digestion enzymes.  

All restriction digestions were carried out in a reaction mix of 10 µL containing; 5 units of 

the restriction enzymes (New England BioLabs), 1 µL of 10x restriction enzyme buffer, 1 

% BSA (supplied by the enzyme manufacturer), 5 µL of the pSUPER-Puro DNA, and the 

volume was brought up to 10 µL using ddH2O.  The reactions were incubated at 37°C for 

one hour and then stored on ice.  The restriction digestion products were analysed on a 

1.2% agarose gel via electrophoresis.  

2.2.8.2.3 The shREST-pSUPER Plasmid Construction  

The annealed shREST1 and shREST2 molecules were cloned into the linearized pSUPER 

plasmid using; 1 µL of T4 DNA ligase enzyme (New England BioLabs), 1 µL of 10X 

ligation buffer (supplied by the enzyme manufacturer), 2 µL of the annealed 

oligonucleotides (~ 40 nM), 1 µL of the linearized pSUPER, and 5 µL of sterile distilled 

water.  The cloning reactions were performed by incubating the tubes at room temperature 

overnight.  A negative control containing the linearized vector and no insert was included 

with each ligation reaction.   

2.2.8.2.4 The shREST-pSUPER Plasmid Transformation 

Transformation into E. coli competent bacteria was performed using a heat-shook 

transformation reaction.  The reaction was performed by thawing competent cells (XL1-

Blue Subcloning-Grade, Agilent Technologies) on ice for 10-15 minutes and 50 µL of the 
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bacteria were transferred into a pre-chilled 14 mL BD Falcon tube and kept on ice.  A 

volume of 2 µL of the cloning products were gently mixed with the cells by pipetting up 

and down for few times and the tube was incubated on ice for 20 minutes.  The cells were 

then heat-shocked at 42°C for 45 seconds and immediately incubated on ice for 2 minutes.  

A volume of 900 µL preheated (42°C) SOC medium (Thermo-Fisher) was added into each 

tube, and the cells were then revived at 37°C in a shaker incubator (~230 rpm, Sanyo orbital 

incubator MIR-220RU) for one hour.  The transformed bacteria were then grown on pre-

warmed ampicillin (100 µg/mL) LB agar (5g Tryptone, 2.5g Yeast extract, 2.5g NaCl, 

1.5% Agar, ddH2O to 500 mL, media was autoclaved and stored in 4C, the mixture was 

autoclaved, supplemented with 100 µg/mL ampicillin and poured into plates) plates by 

spreading all the transformation mixture evenly around the surface of the agar and the plate 

was left upright to dry with the lid was slightly off.  After 10 minutes, the plate was 

incubated upside down at 37°C for overnight.   

In the following day, six random colonies from the LB culture plate were picked up using 

200 µL pipette tip and cultured into in 5 mL LB broth (5g Tryptone, 2.5g Yeast extract, 

2.5g NaCl and ddH2O to 500 mL, media was autoclaved and stored in 4C) medium 

supplemented with ampicillin (100 µg/mL) and incubated at 37°C in a shaker incubator 

(~230 rpm, Sanyo orbital incubator) for overnight.   

2.2.8.2.5 The shREST-pSUPER Plasmid Isolation 

After the overnight incubation, 1.4 mL of the LB broth cultured cells were transferred into 

1.5 mL tube and the cells were pelleted by centrifugation at 28000 g for 1 minute, whereas, 

the remaining volume of the LB broth was stored at 4C.  After removing the LB culture 

media, the cells were lysed in 100 μL lysis buffer (50 mM Tris-HCl, 10 mM EDTA, and 

100 μg/mL RNase A pH 8.0 (Sigma, Ribonuclease A from bovine pancreas, R4875).  The 

DNA was released and isolated by adding 200 µL of (1% SDS, and 0.2 M NaOH) buffer 

and then 50 μL of pre-chilled potassium acetate buffer (3.0 M, pH 5.5) was added.  After 

5 minutes of incubating the tubes on ice, a 400 µL of isopropanol was added into each tube 

to precipitate the DNA, and the tubes were incubated for 2 minutes at room temperature 

and centrifuged at 28000 g for 3 minutes.  The isopropanol was removed and 200 µL of 70 

% ethanol was added to remove the salt.  The tubes were further centrifuged at 28000 g for 

3 minutes, the ethanol was removed, and the pellet was air dried at room temperature for 
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5 minutes.  After complete drying of the pellet, the DNA was suspended in 30 µL of TE 

buffer (10 mM Tris-HCL, 1 mM EDTA, pH 8.0).  Enzymes restriction digestion was used 

to screen for successful cloning and it was performed as described previously (2.2.8.2.2).  

The products of the restriction digestion reaction were separated by electrophoresis in 1.2 

% agarose gels at 100 volts.  Constructs that showed the correct digestion product size 

were sequenced using Sanger sequencing facility at Beckman Coulter Genomics service.  

Plasmid with correct cloning sequence was then propagated in 50 mL LB broth for 

overnight and the plasmid isolation was performed using QIAprep Miniprep (QIAGEN) 

according to the manufacturer’s instructions.  

 The shRNA Transfection Reactions 

2.2.8.3.1 Transfection Optimisation 

The amount of the DNA needed to induce an optimal transfection level of the Daoy cells 

was established by transfecting the cells with the pCMV-Beta plasmid expressing β-

galactosidase. This plasmid contains LacZ gene upstream a CMV promoter which 

produces β-galactosidase enzyme.  When lactose (X-gal) is added, the β-galactosidase 

enzyme catalyses the X-gal and produce blue colour (5-bromo-4-chloro-3-hydroxyindole) 

which can be used to represents the transfection efficiency.  The effect of the transfection 

on the cell survival was evaluated microscopically and the transfection efficiency was 

measured by calculating the ratio of the stained to non-stained cells.   

The analysis was performed by transfecting the Daoy cells (80-100 % confluency) with 

the pCMV-Beta plasmid at concentrations of 125, 250 and 500 ng, using Lipofectamine 

2000 transfection reagents (Invitrogen, 11668-027) at ratios of 1:2, 1:3, and 1:4.  Both of 

the DNA and the transfection reagents were suspended in 1X Opti-MEM media (Gibco, 

31985062) and the transfection mixture was incubated at room temperature for 20 minutes.  

The cultured cells were washed with sterile PBS for two times and each transfection 

reaction was prepared by adding one part of the transfection mixture and 4 parts of Opti-

MEM media.  Culture plates were incubated at 37 °C in a 5% CO2 air incubator for 4 hours 

before replacing the transfection media with complete DMEM media.   

After 48 hours from transfection, the cells were washed three times in PBS and fixed in 

100 µl X-Gal Fixative Solution (2% v/v formaldehyde, 0.2% v/v glutaraldehyde) for 5 

minutes.  The cells were washed in PBS for three times and then overlaid with 150 µL of 
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X-Gal solution (5mM Potassium ferricyanide, 5mM Potassium ferrocyanide, 2mM MgCl2 

in PBS).  X-Gal [1mg/mL] was added freshly.  The efficiency of the cell transfection was 

analysed using a bright field microscope after an overnight incubation at 37 ºC.  

2.2.8.3.2 Transfection with the shREST-pSUPER and Establishing the Stable Cell 

Clones   

The transfection with the shREST-pSUPER vectors was performed as described previously 

(section 2.2.8.1) using 2.25 µL of Lipofectamine 2000 with 750 ng of the DNA vectors.  

After 48 hours from the transfection, the culture media was replaced with complete DMEM 

media supplemented with 5 µg/mL of puromycin.  A non-transfected (wild type Daoy) 

control was included in the selection assay and treated with puromycin.  The culture was 

then incubated at 37C and the media was replaced every 3 days with fresh media 

containing the puromycin.  The cells were examined microscopically on a daily basis and 

the selection for stable expression of the vector was assumed to be  completed when all the 

cells in the non-transfected control had been killed.  REST knockdown monoclonal cell 

clones were then established as described earlier in the knockout approach (2.2.8.1).  

 Study the Effect of REST-Modulation on the Daoy Cells Migration 

Using Wound Healing Assay 

The Daoy cells were cultured in 6-well plates using complete DMEM culture media at a 

cell density of 1x105 cell/mL and incubated at 37C in 5% CO2 air.  After 24 hours the 

growth was examined under an inverted microscope and the cells monolayer (90 - 100% 

confluency) was scratched by passing a sterile 200-μL pipette tip across the middle of the 

well in a vertical and horizontal directions.  The well was then gently washed for two times 

with PBS, fed with either 1% FBS-media or FBS-free media, and imaged at the intersection 

between the vertical and horizontal scratches.  A second image was taken 24 hours from 

wounding and the wound closure was analysed using TScratch software (CSElab, Zurich, 

Switzerland) (http://www.cse-lab.ethz.ch.) 123. 
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 The Flow Cytometer Analysis  

 Cell Cycle Analysis using Propidium Iodide  

The samples for cell cycle analysis on flow cytometry (FACS) were prepared by harvesting 

the cultured cells when they reached 80 - 90 % confluency for single time-point analysis 

or at 24, 48, 72 hours (time-courses analysis) using trypsin-EDTA as described in section 

(2.2.1). The cells were fixed in 9 mL of 70% cold ethanol with gentle vortex while adding 

the ethanol dropwise and the tubes were stored at -20C for at least 24 hours.  Prior the 

flowcytometry analysis, the ethanol was removed by centrifuging the cells at 400 g for 5 

minutes and the pellet was washed twice with ice cold PBS.  The cells were then 

resuspended in 250 µL PBS supplemented with 12.5 µL of RNase A (0.5 mg/mL) and 

incubated at 37C for 1 hour.   To each tube, a 12.5 µL of Propidium iodide (PI) (50 µg/mL, 

Sigma, P4170) was added and the samples were kept on ice in dark until the analysis. 

The cells were analysed on a flow cytometer (FACSAria II, Becton Dickinson 

Biosciences) using low-flow rate mode and the PI fluorescein was detected using 488 nm 

excitation.  The parameters of signal detection were; Forward Scatter-Area (FSC-A), Side 

Scatter-Area (SSC-A), SSC-H (Hight), and Phycoerythrin (PE-A, has an excitation 

wavelength (488 nm) similar to Propidium iodide).  The ‘gating’ was performed using 

FSC-A vs SSC-A (to exclude debris), PE-A vs. FSC-A (shows cellular material stained by 

PI), and PE-A vs. PE-H (to discriminate between singlets and doublets). 

The results were presented as DNA content frequency histograms, and the percentages 

of the cells (represented by peaks) were estimated by deconvoluting the histograms 

using ModFit LT DNA analysis software (Verity Software House, version 3.2).  The 

percentage in G1, S and G2 phases was calculated using Sync-Wizard mode of the 

ModFit, which models the actual number of the events after filtering out cell aggregates 

and debris.  The G0-G1 marker in the synchronization wizard was adjusted to align the 

most frequent part of the peak with SD between 1.5 and 2.0; the G2-M marker was adjusted 

to face the highest part of the second visible peak; whereas, the G2/G1 ratio was adjusted 

automatically between 1.7 and 2.0.  These values were then used to generate PI histogram 

plot which was used to quantitate the percentage of the cells in each cell cycle phase.  The 

accuracy of the DNA measurements was assessed by evaluating the coefficient of 

variation (CV) of the G1 mean and the results were accepted when their CV value is 
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less than 6% 124.  The average of the biological replicates was used to calculate the 

percentages of cells within each cell cycle phase. 

 Apoptosis Detection using Annexin V and PI 

The Daoy cells were cultured at 3.5 x 104 cell/mL in 6-well plates using complete DMEM 

culture media and the wells were labelled as 42, 36, and 30 and the plates were incubated 

at 37C in 5% CO2 air.  Prior harvesting the cells by 42, 36, and 30 hours, the cells were 

treated with a single dose of the HDACis by carefully replacing the culture media with a 

complete media containing the required concentration of the drug (Table 3).  The cells 

were harvested by collecting both floating and attached cells as described in section 2.2.1, 

and kept on ice. 

The apoptosis analysis was performed using FITC Annexin V Apoptosis Detection Kit I 

(BD Pharmingen, 556547) according to the manufacturer’s recommendations.  Briefly, the 

cells were washed twice in 1 mL of PBS and once in 600 µL of 1X Annexin V Binding 

Buffer and the cells were pelleted by centrifugation (400 g for 5 min).  For each sample, 

four tubes (Eppendorf, 1.5 mL) were prepared (labelled as Annexin V–/PI–, Annexin 

V+/PI–, Annexin V–/PI+, and Annexin V+/PI+) and a cell number of ~1 x 105 was 

transferred into each tube.  The cell staining was performed by adding 5 µL of Annexin V-

FITC and 5 μL of PI and the tubes were gently vortexed and incubated for 15 min at room 

temperature in the dark.   

The flowcytometry analysis was performed on CytoFLEX S (Flow Cytometry, Beckman 

Coulter) and the acquisition settings were customised to acquire FSC, SSC, FITC-green 

and PI red fluorescence.   The compensation algorithm was performed using cells treated 

with HDACis for 36 hours and stained with Annexin V–/PI–, Annexin V+/PI–, or Annexin 

V–/PI+.  The ‘gating’ for the apoptotic analysis was performed by using (FSC-A vs. SSC-

A) to remove debris (lower left corner of the plot), (SSC-A vs. SSC-H) to sort-out doublets 

(the cells off the diagonal population).  The percentages of the viable, necrotic, apoptotic 

(early/late) cells were interrogated using CytExpert 2.2 software (Beckman Coulter) using 

FITC vs. PE plot and applying a quadrant gate.  The quadrant location on the plot was 

adjusted using Annexin V–/PI–, Annexin V+/PI–, Annexin V–/PI+ controls and the cells 

percentages were represented by bar diagram.   
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 The Single Cell Next Generation Sequencing (scNGS) 

 Cell Treatment and Cryopreservation  

The Daoy cell (Passage 1) and the human neurons were seeded into 6-well culture plates 

at a cell density of 1.5 x 105 cell/mL and ~2.5 x105 cells/well, respectively.  The culture 

was performed as described in section (2.2.1 and 2.2.2).  The cells were then treated with 

by replacing the culture media with fresh media containing 5 µM of SAHA and MS-275 

and DMSO controls were included with each cell line.  The plates were incubated in 5% 

CO2 air incubator at 37C for 36 hours.  The cells were harvested as described in section 

(2.2.1 and 2.2.2), resuspended in 1 mL of cryopreservation media (Daoy: 10% DMSO, 

20% FBS in DMEM media, the neurons: 10% DMSO in NM medium) and transferred into 

1.8 mL cryogenic vials (nunc).  The vials were placed in Mr Frosty freezing container 

(Thermo Scientific) and the container was stored at – 80C for 8 hours and then the vials 

were stored in liquid nitrogen.  The vials were transferred to the MRC Weatherall Institute 

of Molecular Medicine (University of Oxford) in liquid nitrogen where the scNGS analysis 

was performed.  Within the facility, the vials were stored on dry ice until the cells were 

processed.   

 The scNGS Sample Preparation  

The samples for the scNGS analysis were rapidly thawed in a 37°C water bath for ~2 

minutes.  A small volume of the untreated neurons was transferred to a sterile microscope 

culture flask and they were checked microscopically for clumps.  Due to the presence of 

clumps, the neurons were centrifuged at 250 g for 3 minutes and the supernatant was 

removed without disrupting the cell pellet.  The neurons were resuspended in 200 µL of 

TrypLE Express and incubated in 37C water bath.  After 2 minutes, the cells were gently 

mixed with a pipette and re-incubated at 37C for another 2 minutes.  During the incubation 

time, the Daoy cells were thawed in a 37°C water bath at for 2 – 3 minutes.  To each 

neurons tube, 1 mL of the neuron media was added, the cells were gently pipette mix for 5 

times and both the neurons and Daoy cells were pelleted by centrifugation at 250 g for 3 

min.  The supernatant was removed, and the neurons were washed twice using cold NM 

whereas, the Daoy cells were washed twice in cold PBS supplemented with 0.04% (w/v) 

BSA.  The supernatants were removed, and the neurons were suspended in 500 µL of NM 

by gentle pipetting for 10 – 15 times.  The Daoy cells were suspended in 500 µL PBS 
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containing 0.04% (w/v) BSA.  The cells were then stained with DAPI (5%) and stored on 

ice for cell sorting.   

Sorting and isolation of viable cells was performed using FACSAria II SORP (Becton 

Dickinson Biosciences) at the MRC Weatherall Institute of Molecular Medicine 

(University of Oxford) using BD FACSDiva (8.0.1) software.  The sorting was performed 

using the FSC-A vs. DAPI to gate for the viable cell population 1 (P1) (located in the lower 

part of the plot).  The P1 was then further deconvoluted using a FSC-A vs. SSC.A plot to 

minimize cellular debris and to gate for the cells of interest (P2).  The doublets in P2 were 

excluded using FSC-A vs. FSC-H plot and the singlets (P3) were isolated.  For each sample 

at least 2000 events from P3 were sorted out into 1.5 mL tube containing 2 µL of 10% 

(w/v) BSA for the Daoy cell or NM for the neurons and the tubes were stored on ice.   

 The scNGS GEMs Preparation and RT-PCR 

The single cell next generation sequencing was performed using the 10x Genomics 

technology (Chromium Single Cell 3’ Reagent Kits v2) and the work was performed by 

the 10x team of the MRC Weatherall Institute of Molecular Medicine (University of 

Oxford).  Briefly, the single cell master mix for loading the cells into a Chip A Single Cell 

was prepared by mixing the contents of the Chromium Single Cell 3’ Library & Gel Bead 

Kit v2, 4 rxns (PN-120267 (Per sample; 50 µL of RT Reagent Mix, 3.8 µL of RT Primer, 

2.4 µL of Additive A, and 10 µL of RT Enzyme Mix) and approximately most of the sorted 

cells were transferred into the master mix tubes.  The unused wells of the chip were filled 

with 50% glycerol solution apart from the recovery wells and 90 µL of the master mix was 

transferred into row #1 of the chip.  Row #2 of the chip was filled with 40 µL of Single 

Cell 3’ Gel Beads whereas the row #3 was filled with 270 µL of Partitioning Oil.  The chip 

was then assembled using a 10x Chip Holder and the 10x Gasket was placed on the 10x 

tray. The GEMs were generated using Chromium Controller for 6.5 minutes.  A volume of 

100 µL of the GEMs was transferred into an emulsion-safe plate and the plate was heat 

sealed with pierceable foil at 185°C for 6 seconds.  The plated was loaded into a thermal 

cycler (Proflex Veriti MiniAmp, Applied Bio System, Thermo Fisher) and the GEM-RT 

was performed at 53C for 45 minutes, 85C for 5 minutes and the reaction was terminated 

at 4C. 
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 Post GEMs-RT Clean-up  

Post GEM-RT clean-up was performed by adding 125 µL of Recovery Agent (P/N 220016) 

into each well and the entire volume transferred into an 8-tube strip and centrifuged at 250 

g for 30 seconds.  A volume of 125 µL of the Recovery Agent/Partitioning Oil (pink) was 

removed from the bottom of the tube and discard.  Into each well, 200 µL of Dynabeads 

Cleanup Mix (182 µL of Buffer Sample Clean Up, 4 µL of Dynabeads MyOne SILANE, 

9 µL of Additive A, and 9 µL of nuclease-free water) was added and the tubes were 

incubated at room temperature for 10 minutes.  A volume of 100 µL of Elution Solution 

was added (98 µL of Buffer EB, 1 µL of 10% Tween 20, and 1 µL of Additive A) and the 

tubes were then placed on 10x Magnetic Separator in the High position until the 

supernatant is clear.  The supernatant was then discarded and a total volume of 300 μL of 

freshly prepared 80% ethanol was added to the pellet while on the magnet and stood for 1 

minute.  The ethanol was then carefully discarded and 200 µL of 80% ethanol was added 

and carefully removed after 30 seconds. The tubes were centrifuged and returned to a 10x 

Magnetic Separator in the low position and the samples were air dried for 1 minute.  The 

tubes were then removed from the magnet and the beads were resuspended in 35.5 µL of 

Elution Solution I and incubated at room temperature for 1 minute.  The tubes were then 

placed in a 10x Magnetic Separator in the low position until the solution is clear and 35 

µL of the purified GEM-RT product were transferred into a new tube strip.   

 The cDNA Amplification, Purification and Quality Check  

The cDNA amplification was prepared by adding 65 µL of cDNA Amplification Reaction 

Mix (50 µL of Amplification Master Mix, 5 µL of cDNA Additive, and 2 µL of cDNA 

Primer Mix) to the 35 µL of purified GEM-RT product and the cDNA was amplified on 

Proflex Veriti MiniAmp cycler using 90C for 3 min, and 12 cycle of 98C for 15 sec, 

67C for 20 sec, 72C for 1 min, and a final extension step of 72C for 1 min. 

The amplified cDNA was cleaned up using 60 µL of SPRIselect Reagent to each sample 

and the tubes were incubated at room temperature for 5 minutes.  The tubes were then 

placed in a 10x Magnetic Separator in the high position until the solution is clear, and the 

supernatant was carefully discarded.  The pellet was then washed three times using 200 µL 

of 80% ethanol and the samples were air dried for 2 minutes.  The tubes were then removed 

from the separator and 40.5 µL of Buffer EB was added and left for 2 minutes at room 
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temperature.  The tubes were then placed in a 10x Magnetic Separator in the high position 

until the solution is clear and 40 µL of sample was transferred into a new tube.  The quality 

of the cDNA amplification was evaluated using the Agilent Bioanalyzer D5000 

ScreenTape High Sensitivity chip (5067-5592).   

 The cDNA Fragmentation, End Repair and A-tailing  

The fragmentation of the amplified cDNA was performed by mixing 15 µL of the 

Fragmentation Mix (5 µL of Fragmentation Buffer, and 10 µL of Fragmentation Enzyme 

Blend) with 35 µL of the purified cDNA.  The fragmentation reaction was performed on 

Proflex Veriti MiniAmp cycler at 32C for 5 minutes.  The reaction was then followed by 

end repair & A-tailing step thus, the temperature was increased to 65C for 30 minutes and 

the reaction was stopped at 4C.   

The products of the fragmentation reaction were isolated by adding 30 µL of SPRIselect 

Reagent to each sample and the mixtures were incubated at room temperature.  After 5 

minutes, the tubes were placed in a 10x Magnetic Separator in the high position until the 

solution is clear.  A volume of 75 µL of the supernatant was transferred to new tubes and 

10 µL of SPRIselect was added to each tube.  The tubes were placed in a 10x magnetic 

separator in the high position until the solution is clear and then 80 µL of the supernatant 

was removed and discarded.  The pellets were then washed as described in the previous 

step using 125 µl of 80% ethanol and 50.5 µL of Buffer EB.   

 Adaptor Ligation   

The ligation reaction was performed by mixing 50 µL of the purified fragments with 50 

µL Adaptor Ligation Mix (20 µL Ligation Buffer, 10 µL DNA Ligase, and 2.5 µL of 

Adaptor Mix).  The reaction was incubated at 20C for 15 minutes, and the products were 

cleaned using SPRIselect as described in the previous step using 200 µL of 80% ethanol 

and 30.5 µL of Buffer EB.   

 Sample Indexing (i7) 

Sample indexing was performed by mixing 60 µL of the Sample Index PCR Mix (50 µL 

of Amplification Master Mix, 2 µL of SI-PCR Primer, and 8 µL of nuclease-free water) 

with 30 µL of the ligation-reaction purified samples and 10 µL of Chromium i7 Sample 
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Index was added into each sample mix.  The indexing reaction was performed on the 

Proflex Veriti MiniAmp cycler (98C for 45 sec, and then 12 cycles of 98C for 20 sec, 

54C for 30 sec, and 72C for 1 minutes, the reaction was followed by an elongation step 

of 72C for 1 minute).  The reaction products were clean using SPRIselect as described 

previously using 200 µl of 80% ethanol and 35.5 µL of Buffer EB.  A volume of 35 µL of 

sample was transferred into a new tube and the quality of the library construction was 

evaluated using Agilent Bioanalyzer High Sensitivity chip.  The samples were sequenced 

using Illumina NextSeq 500/550 High Output Kit v2.  The sequencing analysis was carried 

out at the MRC Weatherall Institute of Molecular Medicine (University of Oxford) using 

the following run parameters: Read 1-26 cycles, Read 2 - 98 cycles, Index 1-8 cycles.  

A sequencing depth of approximately 50,000 reads/cell was aimed for each 

sample. 

 Sequencing Data Demultiplexing  

 Installing the required Software 

The data demultiplexing was performed on Advanced Research Computing 3 (ARC3), part 

of the High-Performance Computing facilities at the University of Leeds, UK 

(http://www.arc.leeds.ac.uk).  The access to ARC3 was through using the MobaXterm 

software (https://mobaxterm.mobatek.net/download.html) and secure remote login (Secure 

Shell protocol).  The CellRanger V3.0 software was installed as per the 10x genomics 

instructions (https://support.10xgenomics.com/).  Into the same directory, the Human 

reference (GRCh38) data set was downloaded and the successful installation of CellRanger 

was verified and the site-checked file was uploaded to 10x support for future support.  

Further the Illumina bcl2fastq2 Conversion Software (v.20.0) was installed on the ARC3 

server.   

 Running the CellRanger mkfastq Pipeline 

The 10x scNGS Illumina sequencing data (Illumina raw base call (bcl) files format) were 

demultiplexed to FASTq (text files containing sequence data with a quality score for each 

base) files format using the CellRanger mkfastq pipeline.  The data demultiplexing was 

carried out by uploaded the data files to the ARC3 with the sample-index-set of each 

http://www.arc.leeds.ac.uk/
https://support.10xgenomics.com/)
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sample (csv.format).  The mkfastq pipeline was ran by defining the path to the CellRanger 

and the bcel2fasq files location using the following commands:  

Note: the texts in grey font are the variables where the italic texts   are the description of the command  

export PATH=/directory path/bcl2fastq2-v20.0.x/bin:$PATH 

export PATH=/directory path/cellranger-3.0.0:$PATH 

The bcl data files were then converted to fastq format using: 

cellranger mkfastq --id=directory_name \ 

--id= (creates a directory and call it as the defined after the = sign, the name should not be exist in the directory) 

--run=/nobackup/bsasa/rawdata/seq1/ \ 
--run= (the path to the location of the seq data)  

--csv=samplesheet.csv 

--csv= (the sample sheet ended with .csv, no need to include the path of the directory).   

 Running the CellRanger count Pipeline 

The generated files were aligned to GRCh38 reference genome, de-duplicated, filtered, 

and the UMIs were counted using the CellRanger count.  The pipeline was run using the 

following commands: 

cellranger count --id=sample_number \ 

--transcriptome=/path_to_ref_genome/refdata-cellranger-GRCh38-3.0.0 \ 

--transcriptome= (Path to the Cell Ranger compatible transcriptome reference) 

--fastqs=/path_to_fastq_files/outs/fastq_path \ 

--fastqs= (Path to the fastq_path folder generated by mkfastq) 

--sample=sample_no \ 

--sample= (Sample name as specified in the sample sheet) 

--chemistry=SC3Pv2 \ 

--chemistry= (Assay configuration) 

--expect-cells=3000  

--expect-cells= (Expected number of recovered cells) 

The commands were re-run for each sample and the output summary files were used to 

evaluate the quality of the 10x analysis and to generate a digital gene expression 

matrix.  Upon the cell quantification, single-cell specific quality control measures were 
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examined including the sequencing depth, the total read per cell, and the total number of 

genes detected per cell.   

 Running the CellRanger aggr Pipeline 

The generated data of all samples were aggregated and normalized using CellRanger count.  

The pipeline requires a (csv) format file which specify the list of the CellRanger count 

output files path (molecule_h5) and the library ID in order to label the output files.  The 

csv file was uploaded to the analysis directory and the pipeline analysis was performed 

using: 

cellranger aggr --id=cellaggr \ 

--id=(creates a directory and call it as the defined after the = sign) 

--csv=cellaggr.csv \ 

--csv= (Path to the csv file which contains a list of cellranger count) 

--normalize=mapped 

--normalize= (equalizes the read depth between samples before merging until all the samples have an equal number of 

mapped reads per cell) 

 Visualising the Data using Loupe Cell Browser  

The data generated by the CellRanger aggr were visualized using Loupe Cell Browser 

(V.3.0.1) on Windows environment.  The browser was used to visualize the cell 

dimensional reduction on t-distributed Stochastic Neighbour Embedding of the principal 

components (t-SNE) projector.  

 Analysing the scNGS Gene Expression using Seurat 

Seurat scNGS R Package (version 3.0) was used to filter out the dead, empty droplets, 

mitochondrial genes, and doublets from the data sets of the CellRanger count matrix files 

125.  The analysis was performed by uploading the raw data matrix files into Seurat using 

the (Read10X) function, and the (CreateSeuratObject) function was used to include all 

the genes that were detected in at least 3 cells.  Next, the gene numbers (nGene), the 

UMI counts (nUMI), and the percentage of the mitochondrial genes (percent.mito) of 

each sample were counted and the results were visualized on violin and scatter plots.  

The plots were then used to identify the cells with a clear outlier number of genes and 

they were assumed as potential multiplets.  The cells with fewer than 300 genes were 
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also assumed as dead, or empty droplets and they were filtered out using (FilterCells) 

function.  Next, the gene expression values of each cell were normalized to the total 

expression using (LogNormalize) function which multiplies the values by a scaling 

factor of (1x104) and the values were then log-transformed.  Further, the cell to cell 

variations, the nUMI, and the percent.mito expression were regressed out using 

(ScaleData) function.   

To find the correlations between the genes and the cellular phenotypes, the genes with 

high variance were identified using Seurat (FindVariableGenes) function.  In Seurat, the 

highly variable genes were defined as significantly expressed genes with greater than 

zero at a false discovery rate (FDR) of 5% (i.e. getting false positive) and they were 

calculated based on the gene average expression and the dispersion level 126.  These 

genes were proposed to drive the heterogeneity across cells in a population and were 

used to cluster the cells 126.  The data were scaled to regress out cell to cell variations in 

the gene expression which they could be generated from the technical noise, the reagent 

batch, the nUMI, and the percient.mito.  Further, the data were dimensionally reduced 

using the principal component analysis (PCA, statistical procedure used to convert a set 

of correlated variables into a set of linearly uncorrelated variables) of the highly variable 

genes and the results of the cells and the genes clustering were visualized on heatmap 

and JackStraw plots 127.  The plots were used to determine the number of the principal 

components that were included in the subsequent steps.  

The cells were then clustered using Seurat (FindClusters) function and the number of 

the included PCs was determined based on the JackStraw plots significant P-values.  

The (FindClusters) function mainly implements the graph-based clustering approach 

(construct a graph and then apply a clustering algorithm to partition the graph) based on 

the similarity of gene expression patterns between the cells 125.  The data sets were 

dimensionally reduced using the (RunTSNE) function, and the clusters were visualized 

on t-SNE plots.  The differential expression analysis was performed using Seurat 

(FindAllMarkers) function which identifies the positive and the negative markers of each 

cluster by comparing genes in a cluster of cells against genes in all other cells.  The genes 

that were; differentially expressed in at least 10% of cells within a cluster, and with more 

than 0.25 log fold change and P-value of less than 0.01 were considered as marker genes. 
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With the tumour cell only, as the phase of the cell cycle has a major impact on the gene 

expression, each cell was subjected to cell cycle gene expression classification using Seurat 

(CellCycleScoring) function.  This function calculates the S and G2/M phase scores for 

each cell using a pre-set of genes that showed significant cell cycle–dependent expression 

128.   The selection of these genes was based on their anticorrelated expression thus, the 

cells expressing these markers should not be in G1 or quiescent (G0) phases.  The clusters 

of each sample were renamed based on the cell cycle phase and displayed on t-SNE 

projectors.  As HDACi induced a significant effect on the expression of cell cycle genes, 

the analysis was conducted by merging the three Daoy conditions in one Seurat object 

using (MergeSeurat) function.   

With the human neurons only, the identified markers were loaded into the Cell-type 

Specific Expression Analysis (CSEA) website manning server 

(http://genetics.wustl.edu/jdlab/csea-tool-2/) in order to identify the cell-type of each 

cluster 129.  The cell-type of the neurons was determined based on the expression of 

specific neuronal markers and the identity of the cells was assigned based on the 

significance of the P-value (Appendix 11).  The clusters of the neurons in each sample 

were renamed based on the cell identity and displayed on t-SNE plots.   Further, to study 

the effect of SAHA and MS-275 on the normal neurons, the analysis was carried out by 

extracting the data sets of each cell type cluster and the clusters of the same identity were 

merged in a single Seurat object. 

The Daoy and the neurons Seurat objects were normalized, dimensionally reduced, and the 

new dimensional reduction was visualized on non-linear t-SNE plots.  Further, the merged 

objects were subjected to the Seurat (FindClusters) function which cluster the cells based 

on their new PCA values.  The data were then subjected to Seurat (FindAllMarkers) 

function which calculates the average log expression of a gene in a single cluster and 

compared it to all other cells.  Also, it calculates the percentage of the cells in each group 

and uses these values to calculate the P-values. 

 Gene Functional Annotation and Gene Set Enrichment Analysis 

The functional annotations of the differentially expressed genes were investigated using 

the online GenCLiP v2.0 web-based text-mining server 

(http://ci.smu.edu.cn/GenCLiP2/analysis.php) 130.  The enquiries were made by 

http://genetics.wustl.edu/jdlab/csea-tool-2/
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uploading a list of genes IDs and the enrichment of the Gene Ontology (GO) were 

evaluated based on the GenClip enrichment scores.  

The gene set enrichment analysis was performed using java Desktop Gene Set Enrichment 

Analysis (GSEA) Application (v3.0) of the Broad Institute 131.  The analysis was carried 

out by ranking the upregulated and downregulated genes as per the decrease in their fold 

change values and the ranked lists were analysed using the Run-GSEA-Preranked tool.  

The analysis was performed using the gene sets databases of Hallmark (gene symbols 

v.6.2), BioCarta (gene symbols v6.2), KEGG (gene symbols v6.2), and Reactome (gene 

symbols v6.2).  The gene sets with less than 15 genes and more than 500 genes were 

excluded and the statistical significance of the enrichment score (ES) was estimated by a 

permutation test with 1000 replications.  The pathways with a false discovery rate (FDR) 

q-value <0.25 and nominal P-value <0.01 were chosen as significantly enriched.  The 

upregulated pathways were defined by a positive normalized ES and described as positive 

phenotype and the downregulated pathways were defined by a negative normalized ES and 

described as negative phenotype.     

 Pathway Analysis  

The PathViso (version 3.3.0) pathway visualisation and analysis software 

(http://www.pathvisio.org) was used to examine the over-representation of the 

differentially expressed genes and visualized the pathway 132.  The homo sapiens pathways 

were downloaded from the WikiPath and were used for searching the overrepresentation 

of the genes 133.  The search for the pathway was performed by defining the a criterion that 

select all the differently expressed genes in a pathway (e.g. log2FC > 0.2 AND log2FC < 

-0.2) and the pathway was selected based on the highly significance of the P-Value and the 

results of the GSEA analysis.  

 Basic Molecular Biology Procedures 

 Extracting DNA from 6-Well Culture Plates  

The DNA extraction was performed using cells cultured in 6-well culture plates.  After 

removing the culture media, the cells were washed in sterile PBS buffer and scrapped into 

a 1 mL sterile PBS.  With the DNA fragmentation assay, both of floating and attached cells 

were used for the DNA extraction.  The cells were pelleted by centrifugation (12000 g for 
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5 min) and re-suspended in 400 µL of TE buffer (10 mM Tris pH 7.6, and 0.5 mM EDTA 

pH 8.0), 100μL of 10% SDS (10 g of sodium dodecyl sulfate in 100 mL H2O), and 20 μL 

of Proteinase-K (Sigma,10 mg/mL).  The tubes were mixed by gentle inversion for 3 

minutes and were incubated at 55 ºC for overnight.  To precipitate the DNA, 50 μL of 2.5 

M NaCl solution was added into each mixture followed by adding 400 μL of 100% ethanol, 

and the tubes were incubated with rotation for 10 minutes at room temperature.  The DNA 

was picked by pipet tip (when it is contact) and transferred into 1.5 mL tube contains 400 

μL of 70% ethanol.  The DNA that is not condense and not observable was precipitated by 

centrifugation at 28000 g for 10 minutes.  Next, the DNA was washed for two times in 400 

μL of 70% ethanol, the ethanol was removed by centrifugation at 28000 g for 3 minutes, 

and the pellet was air-dried at room temperature for 5 minutes.  The DNA was then 

dissolved in 50 µL TE buffer and the DNA concentration was measured using NanoDrop 

2000c (ThermoScientific) at 260 nm.  The purity of the total DNA was evaluated by the 

ratio of A260/A280 (between 1.8 and 2.0).  

 DNA Extraction from 96-Well Culture Plates 

The DNA extraction from 96-well plate was performed by removing the culture media by 

flipping the plate, and the wells were washed once with PBS.  A volume of 50 µL of (40 

µL TE, 10 µL of 10% SDS, and 2 µL Proteinase K [10 mg/mL] stock solution) buffer was 

added into each well and the plate was mixed on a plate mixture for 1 minute and incubated 

at 60 °C for overnight in humidified chamber.  Next, a 20 µL of NaCl was added into each 

well using a multichannel pipette followed by 130 µL of 100% ethanol, and the plate was 

mixed on a horizontal rotator for 5 minutes and incubate at room temperature.   After 30 

minutes, the plate was centrifuged at 2400 g  (Eppendorf Centrifuge 5810R) for 15 minutes 

and the supernatant was removed using a multichannel pipette.  The precipitated DNA was 

washed with 150 µL of 70% ethanol, centrifuged for 3 minutes at 2400 g, and the ethanol 

was removed with a multichannel pipette.  The precipitated DNA was left to dry at room 

temperature for around 15 minutes and was suspended in 30 µL of TE buffer and stored at 

-20 °C. 

 Extracting Total RNA from Cultured Cells 

The RNA was extracted from cells cultured in 6-well culture plates.  The cultured cells 

were washed in sterile PBS buffer and harvested using trypsin-EDTA for 5 minutes.  The 
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cells were then washed off the plate using 1 mL ice-cold PBS, transferred into a sterile 1.5 

mL tube, and pelleted by centrifugation at 12000 g for 3 min at 4 C (Heraeus Fresco 

centrifuge).  The RNA extraction was performed by suspending the pellet in 1 mL of cold 

TRI-reagent (Sigma-Aldrich, 93289) and the cells were homogenized by passing the lysate 

several times through a 1 mL pipette tip, then vortexed for 1 minute and incubated on ice 

for 10 minutes.   Into each tube, 200 µL Chloroform (Arcos Organics, 158210250) was 

added and the suspension was vortexed for 1 minute and incubated on ice for another 10 

minutes.  The mixture was centrifuged at 28000 g for 10 minutes at 4 ºC and the upper 

aqueous phase was transferred into a fresh 1 mL tube.  Total RNA was precipitated by 

adding 600 µL of isopropanol (Sigma, 59300-M) and the suspension was kept at – 80 ºC 

for at least 1 hour.  The samples were then thawed on ice and centrifuged at 24000 g for 

20 minutes at 4 ºC.  The supernatant was removed, and the pellet was washed with 200 µL 

of 70 % ethanol, centrifuged at 28000 g for 5 minutes, and the ethanol was removed.  The 

pellet was air dried at room temperature for 5 minutes and the RNA was dissolved in 50 

µL TE buffer.  The RNA concentration was measured using NanoDrop 2000c 

(ThermoScientific) at 260 nm, and the purity of the total RNA was evaluated by the ratio 

of A260/A280 (between 1.8 and 2.0). 

 The Nuclear Protein Extraction from Cultured Cells 

Cultured cells in 6-well plates were washed in sterile PBS buffer and harvested using 

trypsin-EDTA for 5 minutes.  The cells were then washed off the plate using 1 mL ice-

cold PBS and transferred into a sterile 1.5 mL tube.  The cell suspension was then pelleted 

by centrifugation at 12000 g for 3 minutes at 4C and washed twice with cold PBS.  After 

removing the supernatant, the pelleted cells were resuspended in 1 mL of ice-cold Triton 

Extraction Buffer (TEB, consists of PBS containing 0.5% Triton X100 (v/v), 0.02% (w/v) 

NaN3, the buffer was sterilized by filtration and supplemented with 1 mM 

Phenylmethanesulfonyl Fluoride (PMSF) (Cell Signal, 8553S) dissolved in isopropanol) 

using up and down pipetting for at least 10 times.  The lysate was incubated on ice for 30 

minutes with vortex every 10 minutes and clarified by centrifugation at 12000 g for 10 

minutes at 4 C.  After removing the supernatant, the nuclei were resuspended in 100 µL 

of Nuclear Lysis Buffer (NLB; 20 mM HEPES-KOH pH 7.9, 25% glycerol, 420 mM 

NaCL, 1.5 mM MgCL2, 0.2 mM EDTA, 0.5 mM dithiothreitol, 0.2 mM PMSF, Protease 

Inhibitor Cocktail powder (Sigma, P8465) [prepared by suspending the powder in NLB 
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buffer and aliquoted in 100 µL], dithiothreitol, PMSF and the inhibitor was added freshly) 

and incubated on ice.  After 20 minutes, the mixture was centrifuge at 28000 g for 2 

minutes at 4 C, and the supernatant, which contains the proteins, was transferred into a 

new a 1.5 mL tube and stored at -20 C until further analysis.   

The concentration of the protein was measured using Pierce BCA Protein Assay Kit 

(ThermoScientific, 23221) as per the manufacturers’ instructions for 96-well plates. 

Briefly, 10 µL of; samples, BSA standards, and blank were mix with 200 µL of BCA 

Working Reagent (50 parts of BCA Reagent A with 1 part of BCA Reagent B).  The plate 

was mixed for 30 seconds and incubated at 37°C for 30 minutes.  The plate was then cooled 

down to room temperature and the absorbance was measured at 562nm wavelength 

(FLUOstar Omega, BMG Labtech).  Protein concentration was determined by plotting the 

average blank-corrected 562nm measurement for each BSA standard against its 

concentration in µg/mL. 

 Polymerase Chain Reaction (PCR) 

The DNA was amplified using 1 µL of the DNA, 0.5 µL of 10 mM dNTPs (Bioline, 

39028), 0.5 µL of 10 µM forward and reverse primers (NHEJ-FWD:5’-GCGATGTG 

GTTTTAAGCCAGT-3’, NHEJ-REV: 5’-GTTATCCCCAACCGGCATCA-3’), 0.2 unit 

of Taq DNA Polymerase and 2 µL of 5X PCR reaction buffer (Thermo Fisher Scientific, 

M7122).  The volume was completed to 10 µL with sterile distilled water.   

The DNA amplification was performed on Eppendorf PCR machine (Mastercycler EP 

Gradient 5341) under the following conditions: denaturation at 95 ºC for 2 minutes, 

followed by 30 cycles of 95 ºC for 30 seconds, annealing at 60 ºC for 30 seconds, extension 

at 72 ºC for 1 minute.  A post-PCR incubation step of 10 minutes at 72 ºC was performed 

to complete the synthesis of the PCR products.  The extension temperature was adjusted 

according to the primers melting time and the PCR efficiency, and all the reactions 

included positive and negative controls. 

 Quantitative Polymerase Chain Reaction (qPCR)  

The total RNA was reverse-transcribed using 1 µg of the total RNA, 0.1 µg Oligo (dT) 15 

Primer (Promega, C1101), and 0.2 µg of Random Primers (Promega, C1181).  The volume 
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was then completed to 15 µL with sterile distilled water and incubated at 65 ºC for 5 min 

and quenched on ice for 1 minute.   Next, each reaction mixture was supplemented with 4 

µL of MMuLV RT 5x Buffer (Promega, M1701), 8 units of RNasin inhibitor (Promega, 

N2111), 1mM dNTPs (Bioline, 39028), and 40 units of MMuLV RT (Promega, M1701) 

in a final volume of 20 µL.  The reaction was incubated at 37 ºC for 1 hour, and then at 4 

ºC for 10 minutes and a volume of 30 µL of sterile distilled water was added into the 

reaction.  

The Sybr Green quantitative PCR was performed in Rotor Gene 6000 (Corbett series) 

using 2X SensiMix SYBR & Fluorescein reagent (Florescencein kit, BioLine, QT615-05).  

The reactions were performed in 10 µL volume containing 2.5 µL of the reverse transcribed 

product, 5 µL of the 2X SensiMix SYBR & Fluorescein, 1.9 µL distilled water, and 0.3 µL 

of forward and reverse primers (10 mM) :(REST; FWD: 5’-ACTTTGTCCTTACTC 

AAGTTCTCAG-3’, REV: 5’-ATGGCGGGTTACTTCATGTT-3’, SNAP25; FWD: 5’-

CGTCGTATGCTGCAACTGGTTG-3’, REV: 5’- GGTTCATGCCTTCTTCG ACACG-

3’, Synapsin FWD: 5’-AGATTTTTGGGGGACTGGAC-3’, REV: 5’-TGTCTT 

CATCCTGGTGGTCA-3’, SCG10 FWD: 5’-TGAAGTCGTTTCTCCCCAAC- 3’, REV: 

5’-TCACAGCTTGCTCACAATGA-3’, GluR2 FWD: 5’-TTGACTTCTCAAAGCCCTT 

CA-3’, REV: 5’-GGCTAAAGGATCAAGAAAGGAA-3’, REST Bi-allelic genome 

editing FWD: 5’-GCAACATTGGAATGGCCCTG-3’, REV 5’- ATGGCGGGTTACTTC 

ATGTT-3’, REST4 FWD: 5’ ACTTTGTCCTTACTCAAGTTCTCAG 3’, REV: 5’ 

GGTATGGATACCATTTGGTAATA 3’).  Each gene expression reaction was performed 

in duplicate and the cDNA amplification was performed under the following real-time PCR 

conditions: Taq polymerase activation at 95 ºC for 10 minutes, followed by 40 cycles of 

95 ºC for 10 seconds, annealing at 60 ºC for 15 seconds, and extension at 72 ºC for 20 

seconds.  The reaction was followed by a melting step ramping from 72 °C to 95 °C with 

1 ºC increment and 5 seconds wait for each step which was later used to confirm the 

specificity of the amplification.  The expression of the RNU6 (RNA, U6 Small Nuclear 1) 

housekeeping gene (FWD:5’-CTCGCTTCGGCAGCACA-3’, REV: 5’-AACGCTTCAC 

GAATTTGCG T-3’) was measured for each sample and was used to normalize the 

expression level of the measured gene/s.  The qPCR expression analysis was performed 

using the Rotor Gene 6000 Series Software, and the expression level was presented by 

calculating the power of two exponent.   
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 Agarose Gel Electrophoresis  

The agarose solution was prepared by dissolving 1.2 % (w/v) of agarose (Sigma, A9539) 

in a volume of Tris-acetate-EDTA (TAE: 2M Tris base, 5M EDTA, and 5.71 % glacial 

acetic acid, pH8.0) and the agarose mixture was melted in a microwave oven.  The agarose 

gel was prepared by pouring the agarose solution into an electrophoresis chamber.  The 

PCR products were mixed with loading dye and 12 µL were loaded into the gel alongside 

of a pre-stained DNA ladder (New England, BioLabs, N3236).  The DNA was 

electrophoresed at 100 volts in 1X TAE buffer until the first migrating band had reached 

the end of the gel.  The DNA was stained with ethidium bromide (Sigma, E1510) and 

imaged using the Bio-Rad ChemiDoc XR system.  

 Western Blot Analysis  

To study protein expression, 30 µg of the total protein were mixed with 10 µL of 2X SDS 

loading buffer (Tris-HCL 0.5M pH 6.8, 20% glycerol, 4 % SDS, and 0.1% bromophenol 

blue, and 0.2 M DTT was added freshly), denatured at 95 ºC for 10 minutes, and incubated 

on ice.  SDS polyacrylamide gel electrophoresis was prepared by pouring a (5%) stacking 

gel over a pre-casted (8%) resolving gels in a 1.5 mm thickness vertical casting plates 

(SDS-PAGE, Mini-PROTEIN Tetra Cell, Bio-Rad) (Table 4).  The samples were loaded 

into the gel using 80 ng of the protein alongside a colour-coded prestained protein Marker 

(Cell Signal, 14208).  The electrophoresis was performed using 40 mA constant current in 

electrophoresis buffer (25 mM Tris, 192 mM glycine, 0.1 % SDS, and dH2O) until the fast 

migrating band (~ 10 kDa) had migrated off the gel, and the resolving gel was separated 

from the staking gel prior western blotting.  

The protein was wet transferred to a Hybond-P PVDF 0.45 μm membrane (Amersham, 

GE10600100).  Before the transfer, the membrane was hydrated in 100 % methanol for 1 

minute, rinsed in H2O for 5 minutes and then equilibrated in transfer buffer (25 mM Tris, 

192 mM Glycine, and 20 % methanol) for 10 minutes.  The wet transfer of the protein was 

performed in XCell II Blot Module (Invitrogen) electrophoresis chamber by sandwiching 

the membrane between the SDS-PAGE gel, filter papers, and support pads with keeping 

the transfer membrane facing the node.  The XCell chamber was filled with the transfer 

buffer and the transfer was performed at 30 V (Start: at ~170 mA, and End: ~110 mA, and 

~ 5W) for 1 hour and 15 minutes.  The Membrane was blocked with 5 % milk (prepared 
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in 1 X PBS, and 0.1 % Tween 20) at room temperature for 1 hour on a roller mixer.  

Immunoblotting with primary antibody was carried out at 4 C overnight on a mixer using 

1:500 rabbit anti-REST antibody (OriGene, TA330562) and mouse anti-β-actin (1:10000, 

Sigma, A1978) antibody.  The membrane was washed three times in (1 X PBS and 0.1 % 

Tween 20) for 15 minutes on a roller mixer.  The detection with the secondary HRP-

conjugated antibodies was performed at room temperature for 1 hour using a mixer of anti-

rabbit (1:20000) and anti-mouse (1:40000) (Cell Signalling Technology, 7074 and 7076, 

respectively).  The membrane was washed three times in (1 X PBS and 0.1 % Tween 20) 

for 15 minutes.  The immunoreactive bands were visualized using 1 mL of Amersham ECL 

Western Blotting Detection reagent (RPN2209) and the membrane was scanned using 

LAS-3000 intelligent dark-box (Fujifilm). 

Table 4: SDS-PAGE Preparation  

  

 Evaluating Gene Expression using the GEO-NCBI Data Sets 

To explore the expression of REST, Synapsin, Synaptosome Associated Protein 25 

(SNAP25), Superior Cervical Ganglion-10 Protein (SCG10) and glutamate Ionotropic 

Receptor AMPA Type Subunit 2 (GluR2 also, known as GRIA2) in human 

medulloblastoma and normal cerebellum, I used the Gene Expression Omnibus (GEO, 

NCBI) data sets; [GSE85217 for medulloblastoma 41, GSE109403 134, GSE13162 135,  

GSE42658 136, GSE68776 137, and GSE86574 138 were used for normal human cerebellum, 

and GSE34101 139, GSE20492 140, GSE77947 141 for the Daoy cell gene expression]142.  

The data were downloaded and analysed using ExAtlas software 

(https://lgsun.irp.nia.nih.gov/exatlas/) 143.  The analysis was performed by transforming the 

Constituents 8% Resolving 5% stacking gel 

Water 3.33 mL 3.3 mL 

30% Acrylamide/Bis-acrylamide 
(Severn Biotech, 29:1) 

2.7 mL 1.02 mL 

1M Tris pH 8.8 3.8 mL - 

0.5M Tris pH 6.8 - 1.5 mL 

10% SDS 100 µL 60 µL 

10% Ammonium persulfate 100 µL 60 µL 

TEMED 
(Tetramethylethylenediamine) 

8 µL 6 µL 

Total volume 10 mL  6 mL 
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values into log2 and the correlation between the selected samples data was performed by 

normalizing the values using a set of pre-selected housekeeping genes.  The quality of the 

normalized samples were assessed by the standard deviation (SD) and ANOVA with error 

variance adjustment (also, known as empirical error variance) 143. 

 The Statistical Analysis and Visualization  

The normal distribution of the data was examined using Shapiro–Wilk test and P-values 

of >0.05 was used to show that the data may follow a normal distribution.  Significant 

differences between the means were evaluated using the Unpaired t-test and the One-Way 

ANOVA, and the two tailed and the P-values of <0.05 were considered significant and the 

measures were presented as means ± standard error of the mean (SEM).  Statistical analysis 

was performed using the GraphPad Prism version 8.0.1 for Windows, GraphPad Software, 

La Jolla California USA, (www.graphpad.com).   

The heatmaps were generated using the Heatmapper web server tool 

(http://www2.heatmapper.ca/expression/) 144 or the Seurat R function of heatmap.3.  The 

violin plots were generated using the ggplot2 R package, and the t-SNE plots were 

generated using the Seurat (TSNEPlot) function.  The Venn diagrams were produced using 

Venny online tool (v.2.1) (http://bioinfogp.cnb.csic.es/tools/venny/index.html). 

http://bioinfogp.cnb.csic.es/tools/venny/index.html
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Chapter 3 

3 Results I 

(Investigating the contribution of REST in Medulloblastoma) 

3.1 Preface  

 The aim and the Objectives of the Study  

This study aimed to investigate the contribution of REST in the medulloblastoma Daoy 

cell proliferation, cell cycle, migration, and to identify if HDACis induce their therapeutic 

action through the HDACs that are recruited in REST repression complexes.   

 The objectives of the study 

• Identifying the difference in REST expression between the medulloblastoma 

tumours and the normal brain tissue and across the medulloblastoma subgroups and 

subtypes 

• Modulating REST expression in the Daoy medulloblastoma cell line using both 

CRISPR/Cas9 and shRNA systems, and investigate the effect of REST depletion 

on the expression of the RE1-containing genes, on the cell proliferation, and on the 

migration ability  

• Investigating whether the HDACis induce their therapeutic action through the 

HDACs that are recruited in REST repression complexes 

 The Roadmap   

To address the research questions, the expression of REST in the Daoy cell line was 

modulated using the CRISPR/Cas9 and the shRNA systems to knockout and knockdown 

REST expression, respectively.  The effect of REST modulation was then examined; on 

the expression of the cell proliferation, the cell cycle, and on the migration ability of the 

cell.  Also, the sensitivity of the cells to HDACis was examined before and after REST 

modulation.  Additionally, the study used the GEO-NCBI gene profiling data of 

medulloblastoma patients’ tissue samples to explore the expression difference of REST 
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between the medulloblastoma tumours and normal cerebellum, and between the 

medulloblastoma classes (Figure 10).  
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Figure 10: Schematic representation of the research workflow  

The research started by optimizing the experimental condition of the cell seeding density, 

the HDACis dose response curves, Daoy transfection optimization, and measuring the 

effect of HDACis on the cell growth and the cell cycle.  REST expression was then 

modulated using the CRISPR/Cas9 and the shRNA systems.  The conformation of REST 

modulation was carried out by the DNA sequencing, measuring REST mRNA and protein 

expression, and the expression of some RE1-containing genes.  The contribution of REST 

modulation on the Daoy cell growth, the cell cycle, the cell migration, and the cell response 

to HDACis was then examined.   
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3.2 The Results 

 Investigate REST Expression using Published Microarray Gene 

Expression Data 

Elevated REST expression has been reported in approximately 80% of the 

medulloblastoma tumours 11, 14, 50.  However, it is not known if all the subgroups and the 

subtypes display an elevated REST expression.  In this analysis, the Gene Expression 

Omnibus (GEO, NCBI) microarray database was used to examine the variations in REST 

expression between the medulloblastoma tumours and normal brain cerebellum 142.  Also, 

the expression of REST and its functional effect on the RE1-containing genes was 

evaluated in the Daoy cell line.   

 REST Expression is Higher in Medulloblastoma Tumours Compared to 

Normal Cerebellum  

To examine the difference in REST expression between the medulloblastoma tumours and 

normal cerebellum, the GSE85217 data set was compared to normal cerebellum samples 

using the ExAtlas tool 41.  This data set contains 763 fresh-frozen primary medulloblastoma 

tissue samples which were originally classified according to their genetic and the 

methylation signature into the 4 subgroups and the 12 subtypes of the medulloblastoma 

classes 41.  The analysis was performed using the ExAtlas tool which normalizes the values 

between the data sets using a set of pre-selected housekeeping genes 143.   

Comparison of REST expression between the medulloblastoma groups and the normal 

cerebellum showed a significant (P<0.0001) increase in REST level in the tumour samples 

by 0.3-fold change (Figure 11 A).  On the level of the medulloblastoma subgroups, the 

expression of REST showed some differences between the subgroups.  For example, the 

WNT subgroup showed the highest expression of REST whereas, the Group 3 and the SHH 

subgroups showed relatively equivalent expression with an extensive variation between 

the samples of the SHH subgroup.  In contrast, the mean of REST expression of the Group 

4 was the lowest among all the subgroups however, around 50% of the samples displayed 

a relatively similar REST expression to the SHH and Group 3 (Figure 11 A).   
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Further, I clustered the samples according to the proposed medulloblastoma twelve 

subtypes in order to demonstrate the expression difference of REST between and within 

the subtypes 41.  The analysis revealed that the WNT β subtype displayed the highest REST 

expression though, the difference in the mean between WNT β and α was not significant 

(P=0.531).  Also, the results revealed a statistically significant difference between the 

means of the SHH subtypes as determined by one-way ANOVA (p<0.0001) (Figure 11 

B).  Both of the SHH α and β subtypes displayed an elevated REST expression compared 

to γ and δ subtypes.  Whereas, the expression of REST was comparable between Group 3 

subtypes as determined by one-way ANOVA (P=0.0539).  Group 4 showed a significant 

difference between the means of the α and β subtypes compared to the γ subtype (ANOVA 

P<0.0001) and they demonstrated the lowest expression of REST in all medulloblastoma 

classes (Figure 11 B). 

In order to evaluate the effect of REST expression, I extracted the expression values of 

some REST-regulated genes that are known by their high sensitivity to the modulation in 

REST expression and the high occupancy of REST to their RE1 sites (Synapsin (regulates 

synaptogenesis), SNAP25 (is a membrane fusion and involved in neurotransmitter release), 

SCG10 (helps in regulate the microtubule dynamic and stability) and GluR2 (is a 

neurotransmitter receptors)) 145.  The expression of Synapsin and SNAP25 was low 

(P<0.0001) in the medulloblastoma subtypes compared to the normal cerebellum.  Also, it 

was lower in the subtypes that display elevated REST expression such as the WNT 

subtypes when compared to the subtypes with low REST expression such as the Group 4 

subtypes (Figure 11 C and D).  Unexpectedly, the expression of SCG10 and GLuR2 was 

high in the medulloblastoma subtypes compared to the normal cerebellum apart from the 

GLuR2 (P<0.001) in the WNT and Group 3 subtypes (Figure 11 E and F).   

Taken together, the expression of REST in the medulloblastoma tumours is variable 

between the subtypes and within each subtype and it showed an elevated expression with 

the WNT and SHH pathways.  The WNT subgroups showed the highest REST expression 

whereas, the Group 4α and β subtypes exhibited the lowest expression among all subtypes.  

These findings may indicate that the contribution of REST in medulloblastoma could be 

different between the subgroups.  
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Figure 11: The expression of REST and some selected RE1-containing genes in 

medulloblastoma and normal cerebellum tissue samples 

The expression of REST in the medulloblastoma subgroups (A) and the subtypes (B), and 

expression of SNAP25 (C), Synapsin (D), SCG10 (E), and GluR2 (F) was extracted from 

the GEO NCBI database using ExAtlas tool.  The expression values were represented by 

the circular dots and the difference between the means was calculated using the two tailed 

Student’s t-test (the * in E and F is P<0.001) and the One-Way ANOVA (SHH subtypes 

(F(3, 143) = 29.61, P<0.0001), Group3 (F(2, 102) = 6.305, P=0.003), and Group4 (F(2, 

221) = 75.07, P<0.0001)), and the error bars are SEM.   
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 REST Expression is Elevated in the Daoy Medulloblastoma Cells 

Compared to Normal Cerebellum 

Elevated REST expression in the Daoy cell has been reported previously in several studies 

11, 14, 115.  In this study, I used the GEO gene expression data to identify the expression 

difference of REST between the Daoy cell and normal cerebellum.  The result showed that 

the expression of REST was almost 1.8-fold change (P<0.0001) higher in the Daoy cell 

compared to the normal cerebellum (Figure 12 A).  To evaluate if the increase in REST 

expression has a significant functional effect on the RE1-containing genes, I compared the 

expression of the aforementioned genes between the Daoy cell and the normal cerebellum.  

The results showed that the expression of the genes in the Daoy is at least one-fold 

(P<0.0001) less compared to the normal cerebellum (Figure 12 B).  

 

Figure 12:  The expression of REST and RE1-containing genes in the Daoy cell and 

normal cerebellum 

(A) Shows the expression of REST in the Daoy cell and the normal brain cerebellum.   (B) 

Shows the functional effect of REST expression on the expression of the RE1-containing 

genes. The expression values are represented by the circular dots and the differences 

between the means was calculated using t-test and the error bars are SEM.   
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 The Experimental Optimization to Examining REST contribution in 

Medulloblastoma   

 Daoy Seeding Density of 3.5 x 104 cell/mL Reaches 100% Confluence by 

72 Hours 

Daoy is a highly proliferative cell with a population doubling time of around 29.8 hours 7.  

Generally, the confluency of the cells could have a major impact on the cell response to 

the treatment which may affect the comparison between the biological replicates.  Hence, 

I started by identifying the cell count that yields 90 to 100 % confluency by 72 hours.   This 

experimental condition was selected in order to study the sensitivity of the cell to HDACis.  

The confluency was defined as the proportion of the culture surface that was covered by 

the cells at the time of measurement thus, a confluency of 50 % means half of the culture 

surface was covered by cells.   

To identify the seeding density that gives the former experimental condition, several 

dilutions (1 x 104, 2 x 104, 5 x 104, and 1 x 105 cell/mL) of the Daoy cell were prepared in 

volumes of complete culture media and cultured in 6-well culture plates.  The confluence 

of the cells was assessed at 24, 48, and 72 hours using an inverted microscope and the cells 

at each time point were also counted using haemocytometer cell counter.  

During the first 24 hour, both the 5 x 104 and 1 x 105 densities showed an increase in the 

cell count in comparison to the seeding time by more than 40% and 20%, respectively.  

Microscopically, the 5 x 104 cells started to show high confluency by the 48 hours, and at 

the 72 hours they showed an increase in the number of the detached cells and a decline in 

the number of the living cells by around 20%.   This outcome could be due to the high cell 

number which led to the consumption of the media nutrients and possibly affected the other 

cell functions.  In contrast, the 2 x 104 and 1 x 104 densities have reached a confluence of 

50% and 20% at 72 hours and their count increased by 30% and 15%, respectively (Figure 

13 B).  As the 1 x 105 and 5 x 104 showed high confluence after 48 hours whereas, the 2 x 

104 did not reach the required confluence, I used a cellular density of 3.5 x 104 cell/mL for 

all the subsequent experiments.  
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Figure 13: Identifying the Daoy cell count that yield 90 – 100% confluence after 72 

hours from culturing 

Different densities (1 x 104, 2 x 104, 5 x 104, and 1 x 105 cell/mL) of the Daoy cell were 

prepared in a complete culture media and seeded into 6-well culture plates.  The 

confluence of the cell (A) was evaluated microscopically every 24 hours from the seeding 

by assuming a confluency of 50% as half of the culture surface is covered by the cells.  The 

cells at each time-point were counted and the percentage of the growth was calculated by 

assuming the concentration of 1 x 105 cell/mL at 48 hours (the highest reading) as 100% 

and the other readings were proportioned to its value (B).   
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 Generating the Cell Dose-Response Curve for HDACis  

HDACis are a family of anticancer drugs that inhibit the deacetylation of the histone and 

non-histone proteins leading to change the gene expression, the cell metabolic activity, and 

the cell cycle which ultimately result in stimulating apoptosis 81.  Both the in vivo and in 

vitro analysis demonstrated the high sensitivity of the transformed cells to HDACis 

compared to normal cells 75, 146.  Based on the distinct chemical structure of the HDACis, 

they have been grouped into four main classes.  In this study, I examined, at least, a drug 

from each of the four structural groups (SAHA is hydroxamic acid structural groups, MS-

275 and MI-192 are bibenzimides, Apicidin is cyclic tetrapeptide, and VPA is classified 

under the Short-chain fatty acids group).   

The analysis was started by generating Daoy cell dose-response curve for each inhibitor.  

The dose-response analysis was performed by seeding the cell at 3.5 x 104 cell/mL in 96-

well culture plates and after 24 hours from the culturing, the media was replaced with 

ranges of the inhibitor’s concentrations.  Untreated and DMSO controls were included with 

each measurement and the anticancer effect of the drugs was measured after 72 hours from 

the exposure using the MTT assay.  The colorimetric results of this assay were presented 

as percentage by assuming the value of the Daoy untreated control at 72 hours as 100% 

and the values of the other reading were proportioned to its value. 

The absorbance of the untreated Daoy control showed robust growth and reached a plateau 

at 72 hours.  The DMSO control did not show any significant cytotoxicity and the cell 

continued to grow with very minimal difference to the untreated cell.  In contrast, the 

HDACis treated cells showed a progressive reduction in the cell viability in a 

concentration-dependent manner (Figure 14).  SAHA, MS-275, MI-192 and Apicidin have 

induced their antiproliferative effect in sub-micromolar concentrations with complete cell 

death at the highest concentrations apart from SAHA which showed some viable cells at 

10 M.  In contrast, VPA induced a slight increase in the cell proliferation rate at the 

0.03mM concentration.  With higher concentrations, VPA showed a concentration-

dependent effect and exhibited more than 95% cell death with the 15  mM concentration.   

The generated dose-response curves were also used to estimate the IC50 (half maximal 

inhibitory concentration) of the cell at 72 hours (Figure 14).  The subsequent analysis were 

carried out using [SAHA (5 µM), MS275 (5 µM), MI192 (3 µM), APICIDIN (3 µM), and  
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HDACis Used Concentration 

SAHA 5 µM 

MS-275 5 µM 

MI-192 3 µM 

Apicidin 3 µM 

VPA 10 mM 

Figure 14: The Daoy cell dose-response curves showed a concentration-dependent 

effect of HDACis on the cell growth   

The Daoy cells were seeded at 3.5 x 104 cell/mL into 96-well plates, and after 24 hours 

incubation the media was replaced with ranges of the HDACis concentrations; SAHA 

(0.003 µM to 5 µM) (A), MS-275 (0.01 µM to 6 µM) (B), MI-192 (0.003 µM to 5 µM) (C), 

and VPA (0.03 mM to 15 mM) (D).  The viability of the cells was measured after 72 hours 

from the treatment using the MTT assay.  The results are the average of three independent 

replicates and presented in percentage by assuming the value of the vehicle control at 72 

hours as 100% and the values of the other reading were proportioned to its value.  The 

error bars are SEM.  Table (F) shows the used concentrations in the subsequent analysis.  

(F) 
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VPA at (10 mM)] concentrations which induce a significant cell death at 72 hours.  These 

concentrations have been reported to induce tumour cell death though, they do not affect 

the viability of normal cells  147, 148, 149.  

 HDACis Showed Variable Anticancer Activity and a Time-dependent 

Effect  

As most anticancer drugs, HDACis have been reported to reduce the tumour cell growth 

and stimulate apoptosis in a time-dependent manner 65, 150.  In this study, the difference in 

the anticancer activity between the used inhibitors was investigated in a time-course 

manner.  The analysis was performed by treating the cell with a single concentration of 

SAHA (5 µM), MS-275 (5 µM), MI-192 (3 µM), Apicidin (3 µM), and VPA (10 mM) and 

the viability of the cell was measured at 0, 12, 24, 36, 48, 60 and 72 hours from the exposure 

using the MTT assay.  Untreated controls were included with each time-point which were 

used later to normalize the results of the treated cells.   

The MTT results exhibited the ability of HDACis to induce a progressive reduction in the 

cells count in a time-dependent manner yet, the anticancer activity was slightly different 

between the drugs (Figure 15).  For instance, the viability results of MI-192 showed a rapid 

and statistically significant (P ≤ 0.05) decline in the total number of the cells by more than 

15% at the 12-hours measurement and it continued to eradicate the cell by around 50% 

between a time-point and the subsequent time-point (P ≤ 0.001) (Figure 15 C).  Whereas, 

the effect of SAHA, Apicidin and VPA started at the 24-hours with more than 20% 

reduction (P≤0.001) in the total count of the cells.  The Apicidin effect was more 

progressive and it reduced the cell number by more than 60% at the 36-hour (P ≤ 0.001).  

The SAHA effect was gradual with around 20% reduction between the time-points 

whereas, the VPA effect was slightly low compared to the other inhibitors and it showed 

around 15% reduction between a time-point and the subsequent point (P≤0.001).  In 

contrast, MS-275 did not show any significant anticancer effect during the first 24 hours 

of the exposure though, at the 36-hours it started to show a significant reduction (P ≤ 0.001) 

in the cell number by more than 20% and it eradicated most the cells at the 72 hours.   

The results were further used to measure the amount of the dead cells at each time point 

by calculating the difference between the value of a time point and the time point before 

it.  These investigations may appear as an inverse to the above cells viability results though, 
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it was used to show the anticancer effect of HDACis from two sides (Figure 15 F).   The 

results of the dead cells clearly showed that all the inhibitors induce their anticancer effect 

after the first twelve hours, apart from MI-192 which showed a rapid increase in the dead 

cell at the 12-hours reading by around 13% and it reached to more than 30% at the 36-

hours.  SAHA and Apicidin showed more than 20% dead cell at the 24-hour time point 

though, the Apicidin anticancer effect continued to increase and reached to 40% at the 36-

hours (Figure 15 F).  The anticancer activity of 10 mM VPA concentration was relatively 

equivalent to the micromolar-concentration of the other inhibitors yet, its anticancer 

activity during the first 48-hours was lower in comparison with the other inhibitors (Figure 

15 F).    
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Figure 15: HDACis induce a time-dependent antiproliferative effect   

A time course analysis of the HDACis anticancer effect.  The Daoy cells were seeded at 

3.5 x 104 cell/mL into 96-well plates and after 24 hours the cells were treated with a single 

dose of SAHA (5 µM) (A), MS-275 (5 µM) (B), MI-192 (3 µM) (C), Apicidin (3 µM) (D), 

and VPA (10 mM) (E).  Untreated controls were included with each time point.  The 

viability of the cell was measured at 12, 24, 36, 48, 60, and 72 hours using the MTT assay 

and the results of each time point was normalized to the untreated control (not displayed 

in the graphs).  The dots represent the values and the P-value was calculated using the two 

tailed Student’s t-test (* P ≤ 0.05, *** P ≤ 0.001) by comparing the values of a time point 
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to the untreated control of the same time-point which was considered as 100%.  The error 

bars are SEM.  The amount of the dead cell (F) for each time point was measured by 

calculating the difference in the MTT absorbance between a time point and the time point 

before it.  The results are the average of three independent replicates and represented in 

percentage.   

 HDACis Induced a Prolonged Cell Cycle Delay and not a Complete Cell 

Cycle Arrest 

HDAC enzymes have a considerable role in regulating several cellular functions 

including the cell cycle.  In several studies, HDACis have been claimed to cause cell 

cycle arrest at G2 phase yet, this conclusion was based on the results of a single time-

point analysis 151, 152, 153, 154.  In this study, the effect of HDACis on the Daoy cell cycle 

was investigated by treating the cell with HDACis in a time-course manner (at 6, 12, 

24, 48 and 54 hours from culture).  This approach helps in showing the dynamic and the 

duration of each phase and aids in revealing if HDACis induce a complete cell cycle 

arrest.   

The distribution of the cells in each phase can be assessed by staining the cells with PI 

and assay them on FACS 155.  The concept of this analysis depends on the amount of the 

DNA in each phase, and the fluorescence intensity of the PI is presumed to be 

stoichiometric relationship to the DNA content 155.  For example, in G1 and G2 phases 

the DNA is uniform and it is equivalent to the DNA ploidy index (DI) of 1.0 for G1 and 

2.0 for G2/M, where the DI in S phase is between 1.0 and 2.0 156. 

The results of this analysis displayed that the untreated cell have an active cell cycle 

profile (Figure 16).  Whereas, the results of the treated cells showed a non-stopping cell 

cycle with a prolonged delay in the progression between the phases however, there was 

no evidence for the cell cycle arrest.  The results of SAHA and Apicidin showed a 

relatively similar pattern.  For instance, they show more than 30% increase in the cells 

of the G2 phase at the 24-hours however, the accumulation slightly decreased at the 48 

and the 54-hours (Figure 16).  MS-275 showed different pattern of cell cycle delay.  At 

the 6-hours, it showed ~10% increase in G1 phase accumulation and it reached to more 

than 70% at the 24-hours.  This accumulation was associated with a decrease in S and 

G2 phases cell count (Figure 16).  Similarly, MI-192 also showed different pattern of 
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cell cycle delay however, its effect started at the 6-hours with ~15% accumulation in G1 

phase.  At the 24-hours, it induced an increase in cells accumulation in G2 by ~30% yet, 

at the 54-hours it increased the accumulation in S phase by more than 40% compared to 

the untreated cell (Figure 16).  The effect of the VPA started at the 24-hours with around 

20% increase in G2 phase though, it did not last for long and the distribution of the cell 

in the S phase started to increase at the 48-hours (Figure 16).  
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Figure 16: HDACis induced a prolonged cell cycle delay though, it did not arrest the 

cell cycle 

The effect of HDACis on the distribution of the cells in the cell cycle phases.  The cells 

were treated with the HDACis and harvested at 6h (A), 12h (B), 24h (C), 48h (D), and 54h 

(E) from the treatment.  The cells were fixed in 70% ethanol and stored at -20C for at 

least 24 hours.  Before the analysis, the cells were treated with RNase A, stained with PI, 

and analysed on FACS.  The cell distribution results are the average of 3 biological 

replicates and the accuracy of the DNA measurements was assessed by the CV value of 

the G1 mean ( 6) 157.  The error bars are SEM. 
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 Optimizing the Transfection of the Daoy Cell 

In order to identify the optimal ratio between the Lipofectamine transfection reagent and 

the plasmid DNA concentration, I used three concentrations (125, 250 and 500 ng) of the 

pCMV-β-gal plasmid with a Lipofectamine reagent ratio of 1:2, 1:3, and 1:4 to transfect 

the Daoy cell.  The results showed that the transfection ratio of 1:2 DNA to Lipofectamine 

was not enough to introduce the DNA into the cells and it did not cause any noticeable cell 

death.  Whereas, the 1:4 ratio showed more than 40% efficiency with all the DNA 

concentrations, but it induced more than 60% cell death.  The 1:3 ratio showed more than 

20% transfection efficiency with the 125 and 250 ng of the DNA, with the 500 ng the 

transfection efficiency reached to around 30% and the cell death was less than 30% (Figure 

17).  As the 1:3 ratio showed the lowest cell death and generated around 30% transfection 

efficiency with the 500 ng hence, the transfection reactions of the shRNA knockdown were 

prepared using 1:3 ratio with 750 ng of the DNA.   

 

Figure 17:  Daoy Cell Transfection optimization  

The X-Gal assay was used to optimize the lipofectamine transfection reaction.  The Daoy 

cell with 60 - 80% confluency was transfected with the pCMV-β-gal plasmid using 125, 

250 and 500 ng of the plasmid DNA to Lipofectamine reagent at ratios of 1:2, 1:3, and 

1:4.  After 48 hours from the transfection, the cells were exposed to X-gal solution and 

incubated overnight for colour development.  The effect of the transfection on the cell 

viability was evaluated under inverted microscope, and the transfection efficiency was 

measured by identifying the proportion of the stained to non-stained cells.   
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 Modulating REST Expression in the Daoy Cell  

To study the effect of REST ‘loss-of-function’ on the Daoy cell and to investigate whether 

HDACis induce their action through the HDACs recruited in the REST repression 

complexes, I disrupted REST expression using the CRISPR/Cas9 and shRNA systems.   

 Modulating REST Expression Using CRISPR/Cas9  

With the CRISPR/Cas9 system, two guide RNA (gRNA) sequences were used to 

selectively target the sense and the anti-sense strand of REST exon 2 (Figure 18 A).  The 

off-target effect for each gRNAs was examined using NCBI-blast and the analysis 

displayed the 100% sequence identity and covary of the gRNAs to the human REST 

mRNA transcription variant 1 and 2 (NCBI Reference Sequence: NM_005612.4 and 

NM_001193508.1).  The E value, which represents the number of hits that is expected to 

be found in the NCBI blast search, was 0.017 (the closer to zero the more significant the 

match is).  The shortest sequence compatible with other genomic sites is 18 bp for gRNA1 

and 16 bp for gRNA2 and they aligned to ZNF91 (a zinc finger protein of the KRAB 

(Kruppel-associated box) and NEAT1 (a long non-coding RNA), respectively.  The 

shortest sequence of the scramble control that is compatible with other genomic sites was 

15 bp with E-value of 9.1.  These results demonstrate the low probability of the two gRNA 

sequences to induce off-target effect.  In order to isolate cells with complete knockout of 

REST expression, the CRISPR/Cas9 transfected cells were grown as a single cell per 

culture to produce a monoclonal cell growth.  The cells were screened for the genome 

editing by amplifying the editing sites and the products were analysed using Sanger 

sequencing.  The sequencing results of 140 monoclonal cell growths showed the presence 

of 6% of the cells with mono-allelic genome editing in forms of a single nucleotide deletion 

and/or insertion in REST exon 2 (Figure 18 B).   



Chapter 3Chapter 5  Results I 

89 

 

 

Figure 18: CRISPR/Cas9 induced mono-allelic genome editing 

(A) A schematic diagram of the REST gene regulatory regions, the exons, the genome 

target site of gRNA1 (green) and gRNA2 (blue) at exon 2, and the PAM sites (TGG) which 

are the located immediately following the gRNA sequence.  (B) Examples of the mono-

allelic genome editing in form of insertion (AT, T, C, or GAAAA) or deletion 

(TGTGGCCTTA).  

Interestingly, the PCR screening revealed a cell clone (hereinafter referred to as KO) with 

a single PCR product of more than 1500 bp and no amplification product at 326 bp (the 

expected product size) which may suggest that the genomic editing in this clone could 

involve all REST alleles (Figure 19).  Sequencing of the KO cell clone has identified a 

homologues recombination of more than 1500 bp DNA insert at the editing site.  The NCBI 

blast analysis of the inset referred the sequence to a highly conserved E. coli enzyme, 

known as triphosphoribosyl-dephospho-CoA synthase (citrate fermentation enzyme).   
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Figure 19: CRISPR/Cas9 has induced homologous recombination genome editing 

Agarose gel electrophoresis (1.2%) shows the PCR amplification products of the 

CRISPR/Cas9 editing sites.  REST exon 2 was amplified using specific primers to amplify 

the editing sites.  The cell clone KO showed a single PCR product of more than 1500 bp 

and did not show the expected product size (~ 326 bp).  

With the knockout approach, to achieve functional knockout both copies of a gene should 

be mutated (biallelic mutation).  Hence, to confirm the biallelic editing of REST in the KO 

cell, the editing site was amplified using SYBR green qPCR.  For efficient SYBR green 

amplification signal, the recommended amplicon length should be between 50-150 bp.  

Amplifying longer fragments of cDNA mostly leads to loss of the qPCR efficiency in 

detecting the florescence single which it could be due to the inability of the reaction to 

produce completed PCR products that can be used as templates in further cycles 158.   

Accordingly, this reaction is expected to show amplification with the wildtype and if the 

editing in the KO cell involved one allele (monoallelic editing) as the size of the product 

is 188 bp.  If all the REST alleles in the KO cell were edited the qPCR should show no 

amplification due to the long fragment of the insert (~1500 bp).  As this reaction generates 

negative results (no amplification), a positive control that amplifies REST exon1 (known 

here as E1) was included.  In this study, I used U6 Small Nuclear 1 RNA (RNU6, also 

known as RNU6-1) as an endogenous control to normalize the qPCR results.  This gene 

has been widely used to normalize the qPCR results due to its consistent high expression 

in transformed cells compared to healthy controls also, it characterized by its narrow 

standard deviation 159, 160, 161. 
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The qPCR results showed an amplification with the Daoy, the scramble control, and the 

E1 control.  The KO reaction did not show any amplification signal, which could confirm 

the genome editing of all REST alleles in the KO cell (Figure 20).  Further, the expression 

of REST protein in the KO cell clone was examined using western blot analysis (section 

3.2.2.4).   Also, the expression of the RE-1 containing genes was examined using the qPCR 

analysis (section 3.2.4.2). 

 

Figure 20: CRISPR/Cas9 induced bi-allelic genome editing in the KO cell clone 

qPCR amplification of the REST editing site.  The qPCR was performed by reverse-

transcribing 1.0 µg of the total RNA and the SYBR green qPCR reactions were performed 

using a pair of primers that specifically amplifies the CRISPR/Cas9 editing site (188 bp).  

A positive control that amplified REST exon 1 (E1) was included to verify the no-

amplification of the KO reaction and the qPCR was performed using the standard 

amplification conditions.  The measurements were performed in duplicate and the results 

are the average of 6 repeats normalized to RNU6 housekeeping gene.  The expression 

values are log2 transformed and represented by the circular dots, the P-value was 

calculated using the two tailed Student’s t-test, and the error bars are SEM. 
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 Modulating REST Expression Using the shRNA Knockdown System 

As CRISPR/Cas9 has not been used previously to knockout REST expression, the shRNA 

knockdown approach was used to validate the knockout results.  With the knockdown, two 

shRNA sequences were used to target REST exon 2 and exon 4.  The selection for stable 

shRNA-expression cells was performed by culturing the cells in puromycin selective 

medium.   

Ahead of this work, the puromycin killing curve was generated by treating the Daoy cell 

with various concentrations of puromycin and the viability of the cells was evaluated using 

the MTT assay at day 4 and day 7 from the start of the treatment (Figure 21).   The result 

of this analysis showed that the puromycin concentration of 5 µg/mL was sufficient to 

eradicate the Daoy cell within 7 days of treatment.  

To select for the stable shRNA expression, the transfected cells were treated with 5 µg/mL 

of puromycin and the selection was completed when all the cells in the non-transfected 

control had been killed.  The survived cells were then grown as a single cell per culture to 

produce a monoclonal cell growth.  Screening for the pSUPER-puro genomic integration 

was performed using the PCR amplification and the clones that showed shRNA plasmid 

integration were further analysed with western blot analysis.   
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Figure 21: 5 µg/mL of Puromycin was used to select for stable expression of the 

shRNA 

Puromycin kill curve for the Daoy cell.  The cell was seeded at 3.5 x 104 cell/mL and after 

24 hours the media was replaced with range of puromycin concentrations (0, 1, 0.5, 1, 2, 

3, 4, 6, and 8 ug/mL).  The viability of the cell was measured after 4 days and 7 days from 

the treatment using the MTT assay.  The results are the average of three independent 

replicates and presented in percentage by assuming the value of the untreated control at 

72 hours as 100% and the values of the other reading were proportioned to its value.  The 

error bars are SEM.  

 Confirm the Modulation of REST Expression 

 Modulating REST Expression Resulted in a Significant Reduction in REST 

mRNA and Protein levels 

To further confirm the modulation of REST, Western blot with anti-REST polyclonal 

antibody was used to examine the KO cell clone and to screen the stable shRNA cell clones 

for REST expression.  The immunoblotting analysis of the KO cell did not show the 

expression of REST protein (122 kDa) (Figure 22 A).  With the shRNA knockdown 

system, I found a cell clone (hereinafter referred to as KD) showed approximately 80% 

reduction in the REST protein expression compared to the wild type cell (Figure 22 A and 

B).  It should be noted that the other immunoreactive bands may be incompletely reflecting 

the different REST isoforms due to: the specificity of the anti-REST antibody, not all REST 
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protein isoforms have been experimentally verified, and the post-translational 

modifications of the isoforms can substantially alter their apparent molecular weight when 

resolved on western blots 162.  These factors make difficult to determine whether an 

unknown immunoreactive band is non-specific or a REST isoform.  See (Appendix 6) for 

more information. 

Figure 22: REST modulation has induced a significant reduction in REST protein 

Western blot analysis of REST protein expression in the KO and KD cells.  The nuclear 

protein was immunoblotted with anti-REST polyclonal antibody (1:1000) and anti-β-actin 

antibody (1:20000) (A).  The Bar chart (B) is the densitometric quantification of the 

western blot membrane using Image J.  The dots represent the REST expression relative 

to β-actin value and the P-value was calculated using the two tailed Student’s t-test and 

the error bars are SEM. See (Appendix 6) for complete western blot image and comment.  

The mechanism of the shRNA knockdown is based on the sequence-specific degradation 

of the host mRNA which results in decreasing the mRNA level and accordingly the REST 

protein expression.  To study the functional effect of the shRNA, the expression of REST 
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results of the KD cell showed a significant reduction (P<0.0001) in the REST mRNA level 

by more than 50% compared to the control (Figure 23).   

 

Figure 23: The shRNA resulted in a significant reduction in the KD REST-mRNA 

level  

The qPCR amplification of REST-mRNA in the KD cells.  The mRNA (1.0 µg) was reverse-

transcribed and amplified using a pair of primers that specifically amplifies part of REST 

exon 3 and 4.  The measurements were performed in duplicate and the results are the 

average of seven repeats normalized to the RNU6 housekeeping gene.  The expression 

values are log2 transformed and represented by the circular dots, the P-value was 

calculated using the two tailed Student’s t-test, and the error bars are SEM. 

 Modulation of REST Expression Derepresses the Expression of the RE1-

Containing Genes  

REST expression is typically associated with repressing the expression of the RE1-

containing genes conversely, depletion of REST expression results in the derepression of 

the REST-regulated genes 23.  To study the impact of REST modulation, I measured the 

expression of the four RE1-containing neuronal genes (Synapsin, SNAP25, SCG10 and 

GluR2) that are known by the high occupancy of REST to their RE1 sites and showed 

sensitivity to the modulation in REST expression 145.   
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The qPCR results revealed a significant upregulation in the expression of these genes by 

more than 5-fold change in the KO and KD cells compared to the wild type (Figure 24).  

The expression in the KO cell was almost 2-fold higher than the KD, apart from SCG10, 

which showed a higher expression in the KD cell (Figure 24 C).  It is not clear why the 

SCG10 expression is elevated in the KD cell however, it could be due to the SCG10 

function in regulating neurite outgrowth and branching during the neuronal cell maturation.  

This may suggest that despite the general repression effect of REST on most RE1-

containing genes however, there could be concomitant regulations that precisely adjust the 

expression of a gene according to the internal regulations.  Collectively, these results 

confirmed that REST expression is elevated in the Daoy medulloblastoma cells and 

demonstrated its functional impact on the expression of the RE1-containing genes.  The 

results also verify the efficiency of the knockout and knockdown systems to modulate 

REST expression.    
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Figure 24: Modulation of REST expression resulted in increasing the expression of 

the RE1-containing genes  

The expression of Synapsin (A) SNAP25 (B) SCG10 (C) and GLuR2 (D) in the KO and KD 

cell clones.  The total RNA was (1.0 µg) was reverse-transcribed to cDNA and amplified 

using SYBR green qPCR.  The measurements were performed in duplicate and the results 

are the average of seven repeats normalized to the RNU6 housekeeping gene.  The 

expression values are represented by the circular dots, the P-value was calculated using 

the two tailed Student’s t-test, and the error bars are SEM. 
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 Study the Effect of REST Modulation on the Daoy Cell 

In brain cancers, REST has been proposed as an oncogene due to its ability to govern the 

expression of the neuronal differentiation genes.  In a number of previous studies, the 

oncogenic property of REST was investigated through knockdown REST expression.  

Such studies have claimed the direct involvement of REST in reducing the tumour cells 

growth and stimulating apoptosis 4, 11, 12, 13, 14.  However, this study has moved further to 

examine REST contribution in cancer through using the knockout approach as the partial 

expression of REST in the knockdown approaches may maintain some repression on 

different subsets of the neuronal genes. 

The following sections will present the functional effect of REST modulation on the Daoy 

cell proliferation rate, cell cycle, and the cell migration ability, and if HDACis induce their 

action though the HDAC recruited in REST repression complexes. 

 REST Deficiency does not Strongly Inhibit the Cell Proliferation Rate  

In cancer, unrestrained cell proliferation depends mostly on bypassing at least, a 

checkpoint pathway however, there is a large number of oncogenic factors that may 

contribute in maintaining the self-renewal potential of tumour cells.  To study the effect of 

REST knockout on the cell growth, the MTT assay was used to measure the viability of 

the cells at 24, 48 and 72 hours from seeding.   

The analysis showed that blocking REST expression did not induce a significant effect on 

the self-renewal potential of the KO and KD cells though, it slightly decreased their 

proliferation rate compared to REST expressing cells (Figure 25 A & B).  However, due 

to the small difference in the KO and KD growth to the control cells, the MTT analysis 

was performed over a period of 7 days.  The results of the 7 days culture showed a decrease 

in the KO and the KD cells growth by around 20% compared to the REST expressing cell 

(Figure 25 C).    

In addition, the proliferation curves were used to calculate the doubling time of the cells 

by subtracting the time value of 0.8 MTT absorbance from 0.4.   The calculated doubling 

time for the Daoy cells was around 27.9 hours, and for the KO cell it was 29.5 hours, and 

the KD cell was 29 hours (Figure 26).  
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Figure 25: Modulating REST expression slightly reduced the proliferation rate in the 

KO and KD cells 

The proliferation rate of the KO and KD cells.  The Daoy cells were seeded at 3.5 x 104 

cell/mL in complete culture media and the growth was measured using the MTT assay at 

24, 48 and 72 hours (A & B) and at day 7 (C).  The results are the average of three 

replicates and the percentage in the graph (C) was calculated by assuming the control 

value (the highest reading) at 72-hour and 7 days as 100% and the other readings were 

proportioned to it.  The error bars SEM. Further experiments are required to establish the 

effect of REST on the proliferation of the Daoy cells.  

  

0 24 72 96 120 144 168

0

40

80

120

  KO & KD Proliferation Over 7 Days

Time (hour)

C
el

l 
v
ia

b
il

it
y
  
(%

)

Daoy KO Scramble KD

(C)

EmpVec

0 2 4 4 8 7 2

0 . 0

0 . 4

0 . 8

1 . 2

1 . 6

K O  C e l l  P r o l i f e r a t i o n

T i m e  ( h o u r )

M
T

T
 
A

b
s

o
r

b
a

n
c

e
 
(

5
9

0
 
n

m
)

K O S c r a m b l e D a o y

( A )

0 24 48 72

0.0

0.4

0.8

1.2

1.6

KD Cell Proliferation

Time (hour)

M
T

T
 A

b
so

rb
a
n

ce
 (

5
9
0
 n

m
)

KD EmpVec Daoy

(B)



Chapter 3Chapter 5  Results I 

100 

 

 

Figure 26: The doubling time of the KO and KD cells was slightly longer than REST 

expressing cells 

The doubling time was calculated from the proliferation curves by subtracting the time 

value of 0.8 MTT absorbance from 0.4.  (A) Daoy doubling time (DT) ~ 27.9 Hour, (B) the 

KO DT~ 29.5 Hour, and (C) the KD DT~ 29 Hour.  Further experiments are required to 

establish the effect of REST on the doubling time of the Daoy cells. 
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 Modulating REST Expression Increased Cells Accumulation in G1 Phase of 

the Cell Cycle 

The proliferative advantage of a tumour cell arises from its ability to bypass the 

quiescent state of the parent G1 phase as a result of alterations in the cell molecular 

regulations.  These changes generally disturb the mitogenic signalling and affect the cell 

cycle regulation.  In tumour cell, there is a large number of factors that may contribute in 

evading the quiescent state.   

In this study, the effect of REST modulation on the KO and KD cell cycle was 

investigated by isolating the cells in two conditions: when their growth reached 80-

100% confluency (single time-point), and in a time-course manner (at 24, 48 and 72 

hours from culture).  The single time-point analysis helped in giving an overall view about 

the percentage of the cells in each phase of cell cycle, but it does not show the kinetic of 

the cell cycle.  Whereas, the time-course method helped in revealing the dynamic of each 

phase. 

The results of the single time-point showed the active cell cycle profile of the Daoy cells 

wildtype with progression throughout the phases of the cell cycle.  However, the KO 

and KD cells displayed about 10% accumulation (P<0.0001) at G1 phase with a 

concomitant reduction in the cells proportion at S phase compared to the control cell 

(Figure 27 A).  The time-course analysis revealed that the accumulation of the KO cells at 

G1 phase continued for 48 hours before the progression of the cell cycle became 

moderately similar to the control cells at the 72-hour time point.  With the KD cell, the 

progression in the cell cycle was relatively comparable to the KO cell at the 24-hour time 

point yet, at the 48-hour the proportion of the cells within each phase became similar to 

the control cells (Figure 27 B, C, and D).   
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Figure 27: Modulating REST expression increased the KO and KD cells 

accumulation in G1 phase  

The effect of REST modulation on the distribution of the cells in the cell cycle.  The cells 

were grown in standard culture conditions and harvested when they reached 80-100% cell 

confluence (A) or at 24h (B), 48h (C), and 72h (D) from the seeding.  The cells were treated 

with RNase A, stained with PI, and subjected to flow-cytometry analysis (10.000 evens 

were recorded for each sample).  The distribution of the cells was presented as frequency 

histograms of the DNA content (E).  The results are the average of 3 biological 

replicates and the accuracy of the DNA measurements was assessed by the CV value of 

the G1 mean ( 6).  The dots represent the values and the P-values were calculated 

using the two tailed Student’s t-test and the error bars are SEM.  
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 Knockout REST Expression Significantly Reduced Cells Migration 

Migration of cancer cells represents a major challenge in medulloblastoma treatment and 

has been associated with poor clinical prognosis and outcome 163, 164.  In this study, the 

wound healing assay was used to investigate the effect of REST modulation on the KO and 

KD cells migration ability.  The concept of this assay depends on creating a scratch in a 

confluent cell monolayer which allows the migration of the cells in the edge of the gap 

toward the opining until the cells contact is re-established again.  This assay has been 

widely adapted to study the cell migration ability under several experimental conditions, 

including the modulation of gene expression 165.   

The analysis was performed, initially, by culturing the cells after creating the scratch in 

1% FBS-containing media.  In order to ensure the acquisition of reliable and reproducible 

results, the assay was evaluated by measuring the difference between several biological 

repeats.  The results showed a considerable difference between the repeats and within the 

results of the same cell clone which resulted in high standard deviation values (Figure 28).  

These variations could be due to the 1% FBS which could induce some effect on the cell 

growth.  Hence, in order to minimize the cell growth effect on the analysis, the experiment 

was carried out using FBS-free media.  Microscopically, growing the cells in FBS-free 

media did not show any observable cell death during the first 24 hours and the number of 

dead cells started to show a noticeable increase after 72 hours from the culture (Figure 

28A).  The results of the biological repeats of this work showed more consistent results 

with relatively low SD.  The migration results showed a significant difference between the 

means of the Daoy to the Scramble and EmpVec controls.  However, the difference 

between the KO and KD cells and their controls was also statistically significant 

(P<0.0001) and the cells were less efficient in migration and closing the gap by around 

40% compared to the controls (Figure 28 B and C).  
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Figure 28: The effect of 1% FBS on the wound healing assay results  

The relative cell migration in 1% FBS-containing media.  The cells were cultured in 6-well 

plate and after 24 hours the cells were scratched by passing a sterile pipette tip throughout 

the middle of the well in a vertical and horizontal directions.  Images were taken at the 

time of creating the scratch and after 24 hours and were analysed using TScratch software 

(CSElab, Zurich, Switzerland).  The dots represent the values, the boxes represent the 

upper and lower quantiles, the middle line of the box represents the median, the (x) 

within the box represents the mean, the whiskers indicate the variability and the SD is 

the standard variation.  
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Figure 29: Modulating REST expression resulted in reducing the cells migration 

ability  

The relative cell migration in FBS-free media.  The images (A) are a representation of 

culturing the cell in FBS-free media for 3 days.  (B) The bar chart is the average of three 

biological replicates, the dots represent the values, the P-values were calculated by the 

two tailed Student’s t-test, and the error bars are SEM.  The images (C) are a 

representation of the in vitro wound healing assay (a single biological repeat).  See 

(Appendix 8) for the ‘Tscratch’ analysis images.    
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 Disrupting REST Expression did Not Reduce the Sensitivity of the Cells to 

HDACis 

The mechanism of action of HDACis is not completely well known though, they may 

depend on the HDACs complexes and/or the non-histone proteins to induce their lethal 

effect 80, 166, 167.  REST repression complexes recruit several of HDAC enzymes which 

deacetylate histone and assist REST in repressing genes expression 168.  Tumours with 

elevated REST expression such as medulloblastoma are often highly sensitive to HDACis 

which may suggest that these agents may induce their action through the HDACs in REST 

repression complexes.  

In order to examine this assumption, the KO and the KD cells were treated with a single 

dose of the HDACis and the sensitivity of the cells was measured over a period of 72 hours 

using the MTT assay.  The results showed that the rate of the cell death in the KO and KD 

cells was equivalent to the control cells (Figure 30).  This finding may suggest that REST 

repression complexes are not the primary element for HDACis to induce their action and 

indicates that they may act through other HDAC complexes.   

Collectively, the results of this part of the research showed that the absence of REST 

expression alone is not the main factor of reducing cellular multiplication or inducing 

differentiation.  In addition, despite the elevated expression of REST in Daoy though, its 

repression complexes are not the main component for HDACis to induce their action and 

they may induce their action through other histone or non-histone proteins.    
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Figure 30: Disrupting REST expression did not affect response of the Daoy cells to 

HDACis 
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The sensitivity of the KO and KD cells to HDACis.  The cells were seeded at a 

concentration of 3.5 x 104 cell/mL and the MTT absorbance was measured after 24 hours 

from the seeding.  The cells were then treated with a single dose of the inhibitors (SAHA 

[5µM] (A & B), MS-275 [5µM] (C & D), MI-192 [3µM] (E & F), Apicidin [3µM] and 

VPA [10mM] (G & H) and the absorbance of the MTT was measured every 24 hours from 

the treatment for 3 consecutive days.  The percentage was calculated by assuming the 72-

hour untreated control value (the highest reading) as 100% and the other readings were 

proportioned to it.  The results are the average of five experiments and the samples in each 

experiment were tested in triplicate and the error bars are SEM. 

 The Daoy Cells Express REST4 Isoform   

REST4 isoform is an alternative splice form of REST full-length protein with a poor 

transcriptional repression role as it only retains five of the eight zinc fingers of REST and 

does not have the CTD.  Hence, when REST4 binds to an RE1 site it does not efficiently 

recruit the repression complexes which causes an increase in the expression of REST target 

genes in neuronal cells 7.  Accordingly, REST4 has been suggested to regulate the 

transcriptional repression by opposing REST function.  In cancer, high expression of 

REST4 has been associated with several of non-neuronal tumours such as neuroblastoma, 

breast, and small cell lung cancers however, its expression in brain cancer is not well 

known 7.  Also, the molecular regulation of REST4 expression is not fully understood.  

However, it has been reported that several of the RE1-containing genes such as SRRM4, 

ChAT, and VAChT may regulate REST4 expression which suggest REST regulation of 

REST4 18, 169.  In this work, it was suggested that the Daoy cells may lack the expression 

of REST4 due to the domination of REST full length repression which may downregulate 

REST4 expression.  

To investigate the expression of REST4 in the Daoy cells, the mRNA was amplified using 

REST4 exon-specific primers.  The reaction included an mRNA sample of SH-SY5Y 

neuroblastoma cell line as a positive control as this cell line has been reported to express 

REST4 170.  The results of the PCR amplification showed bands of 88 bp with the Daoy, 

the KO, the KD, and the SH-SY5Y cell (Figure 31).  This finding demonstrates the 

expression of REST4 in the Daoy in the existence of REST full length.  
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Figure 31: Daoy medulloblastoma cells expresses REST4 

Gel electrophoresis of the RT-PCR products of REST4.  Total RNA was reverse-

transcribed and amplified using REST4 exon-specific primes.  The reaction included a 

reaction for SH-SY5Y cell line as a positive control for REST4 amplification.  The PCR 

products of REST4 (88 bp) were electrophoresed on 2% agarose gel alongside with a DNA 

ladder and visualized using ethidium bromide. The negative control is N.CTRL.  

 HDAC Inhibitors Decrease Cell Viability Independent of DNA 

Fragmentation 

The results of this study have demonstrated the ability of the used HDACis to decrease the 

Daoy medulloblastoma cells viability which is possibly through the activation of the 

intrinsic apoptotic pathway.  One of the key features of apoptosis is the activation of the 

endogenous endonucleases which fragment the DNA into small oligonucleosomal 

fragments and irreversibly drive the cell death.  The fragmentation of the DNA forms 

laddering when electrophoresed on an agarose gel however, not all cancer cells show the 

DNA ladder when treated with anticancer drugs.  In here, the study examined if the DNA 

fragmentation is the end products of the HDACis-induced cell death.  

The analysis was performed by treating the cells with a single dose of the HDACis for 48 

hours and the DNA was extracted from both of the attached and floated cells in order to 

capture the DNA fragmentation.  To retain the small molecular weight fragments of the 

DNA, the extraction was performed by releasing the nuclear DNA without performing the 
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salt precipitation step.  The HeLa cell was included as a positive control as it has been 

reported to form DNA ladder when treated with HDACis 171.  The electrophoresis results 

of this work showed a smeary band with the HeLa treated cells whereas, the Daoy did not 

show the laddering feature (Figure 32).  This finding may suggest the presence of a 

different molecular regulation that regulates the Daoy cell death. 

  

 

Figure 32: HDACis induced Daoy cell death independent of DNA fragmentation 

DNA gel electrophoresis of the HDACis treated cells.  The Daoy and HeLa cells were 

treated with a single dose of the HDACis (SAHA [5µM], MS-275 [5µM], MI-192 [3µM], 

Apicidin [3µM] and VPA [10mM]) for 48 hour and the DNA was extracted from both the 

attached and floated cells without performing the salt precipitation step.  The DNA was 

electrophoresed on 2% agarose gel alongside with a DNA ladder and visualized using 

ethidium bromide. 
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3.3 Discussion 

Medulloblastoma is a group of cerebellum tumours branded by elevation of REST 

expression in most of its subgroups.  In literature, there has been some disagreement about 

REST contribution in cancer.  For example, the in vitro analysis has shown that knocking 

down REST in human medulloblastoma cell lines such as Daoy and D283 resulted in 

repealing the tumorigenic potential of the cells, upregulating the expression of neuronal 

genes, and ultimately triggering the apoptosis regulation 11, 14, 50.  Whereas, exogenous 

induction of REST into normal neuronal progenitors cells claimed to stimulate tumour 

formation and maintain the self-renewal potential of the tumour stem cells 53.   

In contrast, several of gene expression profiling studies were performed using primary 

human medulloblastoma specimens to study the whole image of the genetic involvement 

39, 41, 44, 103.  However, none of these studies have proposed REST involvement, or at least, 

the exclusive repression of the RE1-containing genes.  Despite the considerable research 

work that associated REST expression with medulloblastoma however, the 

medulloblastoma sequencing studies have not identified any direct or indirect link between 

the identified mutations which could contribute in increasing REST expression 42, 104.  This 

was further supported by a recent study which revealed that knocking down REST 

expression resulted in inhibiting the glioblastoma cells migration yet, it did not stimulate 

cell death 12.   

The main aim of this study was to identify the contribution of REST in medulloblastoma.  

In this research, I used GEO-NCBI gene profiling database to identify the difference in 

REST expression between the tumour and normal brain cerebellum and between the 

medulloblastoma subgroups and subtypes.  I modulated REST expression in the Daoy 

medulloblastoma cells using the CRISPR/Cas9 and the shRNA approaches.  Then I 

examined the effect of REST modulation on; the expression of the REST-regulated genes, 

the cell proliferation, the cell cycle, and the migration ability of the cells.  Also, I examined 

the sensitivity of the REST-negative and REST expressing cells to HDACis.   

The results of the GEO data analysis have revealed the elevated REST expression in the 

medulloblastoma subgroups compared to normal cerebellum.  Whereas, the evidences 

from the research work of this study showed that blocking REST expression resulted in 

slightly reduction in the cell growth rate, increased the cell accumulation in G1 phase and 
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decreased the cells migration ability.  However, it did not stimulate apoptosis.  The results 

also demonstrated the high sensitivity of the Daoy medulloblastoma cells to the used 

HDACis yet, the HDAC enzymes in REST repression complexes were not the primary 

elements for the inhibitors to induce their action.  

The following sections, will discuss the findings of the study, compare them to what it has 

been known and draw a final conclusion based on the evidences I have.  

  

The Discussions main points 

• WNT Medulloblastoma Subtype Exhibits the Highest REST Expression  

• REST Repression of RE1 Genes is not Equivalent between the Subtypes  

• Medulloblastoma Daoy Cell Showed High Sensitivity to HDACis 

o MI-192 Induced a Significant Cell Death within 12H of the 

Treatment 

o Apicidin Induced a Progressive Cell Death 

o MS-275 Showed a Significant Delay in Inducing Cell Death 

o SAHA Did not Completely Eradicate the Cell 

o Daoy Cell Showed Concentration-Dependent Sensitivity to VPA 

• HDACis Induced a Prolonged Cell Cycle Delay and not a Complete Arrest 

• Blocking REST Expression in Medulloblastoma did not Stimulate 

Apoptosis Mechanism 

• Modulating REST Expression Slightly Reduced Cell Proliferation and 

Increased the Accumulation of the Cell in G1 Phase 

• Modulation of REST Expression Significantly Reduced Cell Migration 

• HDACs Recruited in REST Repression Complexes are not the Primary 

Element for HDACis to Induce Their Action 

• Daoy Medulloblastoma REST4 Expression 
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 WNT Medulloblastoma Subtype Exhibits the Highest REST 

Expression  

Medulloblastoma is a cohort of heterogenous tumours which depends on specific cellular 

mechanisms to maintain its proliferation and tumorigenesis.  Based on the genetics 

profiling, four distinct subgroups of medulloblastoma have been identified and each 

subgroup characterized by a domination of a specific cellular mechanism 39.  Due to the 

high heterogeneity within each subgroup, twelve subtypes have been recently 

characterized based on the methylation and expression signatures 41.  In this study, I aimed 

to identify the subgroup and subtype that exhibit the highest expression of REST, which 

possibly helps in identifying the most possible pathway that mediates REST upregulation.   

The findings of this study revealed the high expression of REST in medulloblastoma 

tumour compared to the normal brain tissue.  Also, it showed that the medulloblastoma 

tumours enriched with WNT and SHH pathways displayed the highest expression of 

REST.  The highest expression of REST was in the WNT β and WNT α subtypes  whereas, 

the SHH subtypes showed variation in REST expression between moderate in the SHH β 

and SHH α subtypes to low in SHH γ and δ.  The lowest expression of REST was identified 

in Group 4α and β.  Moreover, the expression of some of the RE1-containing genes was 

inversely correlated with the level of REST expression however, not all RE1-containing 

genes were equally repressed.  

High expression of REST has been reported in most brain tumours including glioblastoma 

and medulloblastoma 4, 13, 14.  However, the molecular mechanisms that control and 

maintain REST expression in cancers has not yet been known.  In this study, the observed 

association of high REST expression with WNT and SHH pathways may reveal part of the 

regulations that maintain high REST expression.  As REST is elevated in WNT and SHH, 

I will focus on these two mechanisms in attempt to identify the mechanism that enhances 

REST expression. 

The WNT pathway is a signalling cascade, consists of a family of nineteen secreted 

glycoproteins that play a major role in regulating cell proliferation, migration, survival, 

and the self-renewal in stem cells 172.  Any perturbation in the WNT pathway level during 

neuronal stem cell proliferation can result in embryonic defect and may affect defining 

midbrain/hindbrain boundary, from which the cerebellum is developed 172.  
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Overexpression of the WNT genes, in particular WNT1 and WNT3, causes acceleration in 

neural progenitor growth.  WNT medulloblastoma subgroup was proposed to arise from a 

group of embryonic stem cells located below the cerebellum.  The majority of this 

subgroup tumours have been found to harbour CTNNB1, TP53, and DDX3X mutations, 

and loss of chromosome 6 39.   

One of the WNT pathway functions is to stabilize β-catenin (CTNNB1) protein and 

activate CTNNB1-dependent transcription 172.  β-catenin is transcriptional coactivator and 

central component of the WNT pathway and its expression is elevated during neuronal 

differentiation.  The expression of WNT stabilizes β-catenin, also it assists in translocating 

β-catenin/TCF complex into the nucleus where it activates the transcription of its target 

genes.  In medulloblastoma and several of other cancers, the regulation of β-catenin 

expression fails when CTNNB1 gene contains mutations that prevents proteasomal 

degradation of β-catenin 173.  In addition, APC (adenomatous polyposis coli, a human 

tumour suppressor factor) which downregulates β-catenin, has been frequently found 

mutated in cancers 172.   

Two proposed mechanisms have been reported for the β-catenin/TCF complex which 

contribution in cancer.  The first, the β-catenin/TCF complex has been found to activate 

Cyclin D1 (CCND1), which requires for neuronal stem cells progression through G1 phase 

to S phase 173.  The second mechanism is that the Exon1a of REST contains a DNA 

conserved sequence that works as a putative binding site for β-catenin/TCF.  Binding of   

the β-catenin/TCF complex to this site enhances REST transcription 174.  Therefore, it 

could be concluded that the high REST expression in the WNT pathway could be due to 

the activation of REST transcription by β-catenin/TCF complex dependent mechanism and 

this warrant further investigation.    

In contrast, the mechanism that upregulate REST expression in SHH is not fully identified.  

The SHH pathway plays a fundamental role in the carcinogenesis of the SHH enriched 

medulloblastoma subgroup.  It consists of several Hedgehog (Hh) proteins that regulate 

embryonic cell proliferation and differentiation, and they orchestrate the development of 

the granular neuronal precursors in the cerebellum.  During normal embryogenesis, Hh 

expression is upregulated, and when the cells reach their early postnatal stage the Hh 

expression is downregulated 175.  However, in some tumours the expression of SHH 

enhances the stem cell self-renewal in the presence of other tumour pathways, which has 
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been suggested to give rise to medulloblastoma 175.  One of the common features of the 

SHH medulloblastoma is the PTCH1 gene mutation in additional to several of other 

mutations in Smo, SuFu, Gli and N-myc.  PTCH1 gene encodes a transmembrane protein 

(PTCH1) that works as a receptor for the SHH pathway.  Binding of an activated Hh protein 

to PTCH1 results in releasing a proliferation cell signal protein, known as smoothened 

(Smo).  Hence, mutated PTCH1 protein cannot block Smo proliferation signal leading to 

activation of Gli1 (glioma-associated oncogene) and Gli2 transcription factors and 

increases the expression of cell proliferation genes such as cyclin D, cyclin E, and MYCN 

(a proto-oncogene protein) 176.  The interplay between SHH and REST is unclear however, 

many of the Gli1/2 target genes overlap with the β-catenin target genes, which may lead to 

elevate REST expression.  Recently, it has been proposed that WNT/β-catenin and SHH 

may collectively regulate the expression of mSin3 REST corepressor 177.   

The expression of REST in Group3 and 4 was relatively lower than the WNT and the SHH 

subgroups, conversely, the expression of some RE1-containing genes was moderately 

higher than the WNT and the SHH subgroups.  Several pathways have been reported in 

Group3 tumours such as photoreceptor, protein translation, and telomere maintenance 

pathways 44.  Whereas, Group 4 has been reported to be enriched for MAP Kinase (a signal-

regulated kinases), fibroblast growth factor receptor 1, and cell migration pathways 41.  

However, it is not completely known what factors maintains the proliferation of Group 3 

and 4.   

 REST Repression of the RE1-containing Genes is not Equivalent 

between the Subtypes  

REST is a transcriptional repressor recruits several chromatin and histone modifiers at the 

RE1 sites, leading to chromatin condensation and transcriptional repression.  Elevated 

REST expression is predicted to cause an extensive repression of the RE1-containing 

genes.  However, the expression analysis of the used microarray data showed that REST 

repression of RE1-containing genes was not even across the selected genes.  For example, 

despite the elevated REST expression in the SHH subtypes yet, some subtypes such as 

SHH γ showed wide variations in the RE1-containing genes expression between the 

subtypes and among the RE1-containing genes as well.  These variations could be referred 

to the heterogeneity of REST repression function.  It has been reported that more than half 
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of REST binding sites showed low recruitment of REST corepressors which results in 

insufficient transcriptional repression 178.  While, some RE1 sites showed more efficient 

binding and contain varying number of corepressors 178.  Also, it has been proposed that 

some of the RE1 genes, which have a postsynaptic role in synaptic plasticity such as 

GluR2, are highly depending on the SHH regulation rather than the repression of REST 

179, 180.  This may suggest that the regulation of the RE1-containing genes is not limited to 

REST repression machinery and possibly there are several of other pathways that have 

more superior control on their expression.   

 Medulloblastoma Daoy Cell Showed High Sensitivity to HDACis 

Many tumours showed high sensitivity to HDACis however, the sensitivity is often 

different from one inhibitor to another and between the different types of the same cancer.  

The results of this study demonstrated the ability of the HDACis to induce a progressive 

reduction in the Daoy cell number in a time-dependent manner though, the anticancer 

activity was slightly different between the drugs.  In this research, I used at least a drug 

from each chemical group of the HDACis.  Some of these drugs are pan-inhibitors and the 

other are more selective.  All the sensitivity analyses were performed within 72 hours as it 

has been reported that continuous treatment with HDACis for more than 72 hours could 

lead to a dramatic effect on cells viability due to the cytotoxicity rather than the acetylation 

status 91.   

The most noticeable difference between the inhibitors was the exposure time needed for 

an inhibitor to induce its anticancer effect.  Based on the time-course analysis, MI-192 

showed a significant cell death after 12 hours from the treatment.  SAHA, Apicidin and 

VPA showed a significant anticancer effect after 24 hours from the treatment.  Whereas, 

MS-275 showed some delay in its anticancer activity.  

 MI-192 Induced a Significant Cell Death within 12 Hours from the 

Treatment 

MI-192 is a member of benzamide class of HDACis with a high selectivity to HDAC3 and 

HDAC2 and it showed more than 60% higher selectivity to HDAC3 than MS-275 95.  In 

this study, MI-192 showed a rapid, progressive, and significant cell death which started 

after 12 hours from the treatment.  MI-192 is one of the promising anticancer drugs 
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regrettably, no pharmacokinetic data were reported on this unique compound and its 

anticancer regulation is not well addressed 95.  A single study that was performed on 

cholangiocarcinoma (bile duct cancer) cell line reported that MI-192 significantly inhibited 

the activity of HDAC3, also it caused an elevation in the p53 expression which could 

promote apoptosis through the expression of BAX gene 147.   

HDAC3 has been found to take part in regulating the cell proliferation in a large number 

of cancers and its elevated expression been correlated with poor overall survival in breast, 

colon, lung, cervical, prostate and several of other cancers 96.   In medulloblastoma, the 

expression of HDAC3 has been reported to show a relatively similar level between normal 

cerebellum and the four medulloblastoma subgroups 54.  The elevated expression of 

HDAC3 has been reported to enhance the stability of β-catenin (a downstream element in 

WNT signalling pathway) which could maintain the growth of cancer stem cell in several 

tumours 96.  Knocking down the HDAC3 expression has been found to suppress the 

expression of the PI3K/Akt-mediated signalling pathways (promotes survival and growth 

in response to extracellular signals) and increase the caspases activity through  

downregulating the anti-apoptotic genes and upregulating the pro-apoptotic genes 181.  In 

clinical trials, selective inhibition of HDAC3 in solid tumours was more effective and 

helped in reducing the toxicity produced by inhibiting several HDAC enzymes 80.   

HDACis containing benzamide moiety such as MI-192 have been found to possess higher 

affinity to HDAC3 than other compounds 96.  The advantages of MI-192 in inducing a 

rapid and progressive cell death over the other used inhibitors may suggest the importance 

of using selective inhibitors in cancer therapy.  Also, suggest the significance of exploring 

the pharmacokinetic of this inhibitor, which require further investigation.      

 Apicidin Induced a Progressive Cell Death 

Apicidin is a selective inhibitor with a higher affinity to HDAC3 and HDAC2 93.  The 

finding of this study showed that treating with Apicidin for 24-hours resulted in reducing 

the cell viability by around 20%, and it induced a progressive anticancer activity which 

reached to more than 50% at the 36-hours measurement.  

The anti-proliferative activity of Apicidin has been reported in many cancers.   In cervical 

and ovarian cancer cells, Apicidin has been reported to induce HeLa and SK-OV-3 

(cervical and ovarian cancer cell line, respectively) cells death through altering the 



Chapter 3                                                Results I 
          Discussion Section 

119 

 

expression of p21WAF1, cyclin A and E-cadherin 182, 183.  It also showed an apoptotic activity 

in the human promyelocytic leukaemia cell line (HL60) through activation of the 

mitochondria-dependent caspase pathway 150.  In this study, the concentration used to treat 

the cell was the same between Apicidin and MI-192 (3 µM), both inhibitors show 

progressive cell death however, the difference was in the high kinetic binding of the MI-

192.  Though, Apicidin has higher inhibition for HDAC3 and HDAC2 than MI-192 184.  

Collectively, the dynamic anticancer activity of MI-192 and Apicidin and their selectivity 

to HDAC3 may suggest HDAC3 as a potential therapeutic target in this tumour.  

 MS-275 Showed a Delay in Inducing Cell Death  

MS-275 is a selective inhibitor and it showed a high selectivity to HDAC1 and to lesser 

extent, HDAC2 and HDAC3 55.  Compared to the other inhibitors MS-275 showed a delay 

in its anticancer activity as it did not induce any significant reduction in the cell number 

after 24-hours from treatment.  Though, at 36-hours it showed rapid and progressive cell 

death by more than 30%.  This delay in stimulating the cell death has been referred to the 

slow binding and dissociation kinetic of MS-275 91.  The chemical structure of MS-275 

contains a lipophilic aromatic ring which necessitates the disruption of most hydrogen 

bonds that connect a HDAC protein structure in order to accommodate this inhibitor, and 

when it binds it showed a long residence time 91.  However, the observed progressive cell 

death after the 36-hours may suggest that MS-275 has induced its action through 

stimulating specific cellular pathway that induced the rapid cell death.   

The efficiency of MS-275 to block medulloblastoma cells growth has been reported in the 

in vitro and the in vivo analysis hence, it becomes one of the current potential treatment for 

medulloblastoma tumour 81.  In previous studies, the effect of MS-275 was evaluated on 

several paediatric solid tumours and has been found to increase histone acetylation and 

p21WAF mRNA level however, it showed diverse effect on cell cycle.  For example, in some 

cells MS-275 led to increase the accumulation in the G1 and the G2 cell cycle as it is the 

case with the Daoy cells whereas, in some other cell lines it stimulated apoptosis 81.  It is 

not completely known how MS-275 stimulate apoptosis however, the upregulation in the 

death receptor (Fas) expression has been suggested as a possible factor 185.  

Fas is a cell membrane surface receptor that stimulates apoptosis when binds to a 

transmembrane protein known as Fas ligand (FasL) and activates apoptosis through 
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caspase-8 activation.  Downregulation of Fas receptor expression by HDAC1 and HDAC3 

has been reported in several cancers 185.  Similarly, the low expression of CASP-8 has also 

been reported in more than 70% of medulloblastoma tumour samples, and it has been 

associated with unfavourable survival outcome in childhood medulloblastoma 186.  

Furthermore, the expression of cellular FLICE-inhibitory protein (c-FLIP) Fas inhibitor 

protein is upregulated in most cancers 185.  All of these factors could lead to increase the 

resistance of cancer cells to death-receptor mediated apoptosis pathway 187.  Nevertheless, 

treatment with MS-275 disrupts the former cancer strategies by selectively inhibiting 

HDAC1 and HDAC3 leading to increase the expression of Fas receptor on cell surface and 

upregulate the expression of CASP-8 gene 186.  Also, MS-275 downregulates the 

expression of c-FLIP which results in redistributing the Fas receptors on cell surface and 

sensitizing the cells to FasL 185.  These changes, in turn, elevate Caspase-8 activity, 

stimulate Bax release, and initiate apoptosis downstream signalling pathway 34, 81.   

Another possible explanation of the high sensitivity of medulloblastoma cell to MS-275 is 

through increasing the acetylation of H3 and H4 at the DR4 (also known as TRAIL receptor 

1 (TRAILR1)) promoter which results in increasing the expression of the DR4 receptor 

and stimulating apoptosis.  Interestingly, in many medulloblastoma tissue samples and in 

the Daoy cell-line the expression of DR4 has been reported to be consistently 

downregulated compared to normal cerebellum 34.  Collectively, this may explain the high 

sensitivity of the Daoy cells to MS-275. 

The high sensitivity of the Daoy cells to MS-275 does not necessarily suggest the 

sensitivity of other medulloblastoma cell lines to this drug.  In a previous study, the D283 

medulloblastoma cell line was included in the analysis and it showed a minor sensitivity 

to this drug 34.  This may suggest the contribution of the tumour cell regulation in defining 

the sensitivity to the HDACis treatment.  Also, it is not well known why the 

medulloblastoma cells exhibit different sensitivity to the HDACis in general and to MS-

275 in particular.  However, the low sensitivity of some cancer cells to MS-275 has been 

referred to the overexpression of an endoplasmic reticulum (ER) stress regulator, known 

as glucose-regulated protein 78 (GRP78).  GRP78 is an antiapoptotic factor with ability to 

chaperon newly-synthesized proteins across the ER membrane 188.  Downregulation of 

GPR78 expression by HDAC1 has been reported in many cancers.  It has been suggested 

that MS-275 inhibiting of HDAC1 may result in increasing the expression of GPR78 which 
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relieves the ER stress and blocks apoptosis.  As a result, this mechanism could be a 

potential machinery for HDACis resistance 189.   

 SAHA Did not Completely Eradicate the Daoy Cells 

SAHA at 5 µM has induced a significant anticancer effect at the 24-hours of treatment 

which increased to more than 50% at the 48-hours measurement.  However, SAHA did not 

completely eradicate the Daoy cells at the 72-hours even with 10 µM concentration, which 

was used to establish the dose response curve.   

SAHA is class I and class IIb pan-inhibitor with a high kinetic binding which can be 

observed by its relatively rapid induction of cell death.  A prior study has shown more than 

50% cell death when a similar concentration of SAHA was used to treat the D283 and the 

D341 medulloblastoma cell lines 190.  The ability of SAHA to induce cells death among 

different medulloblastoma cell lines could be due to the efficiency of SAHA to inhibit a 

wider range of HDACs.  Also, the antiproliferation effect of SAHA has been related to the 

post-transcriptional effect of SAHA on decreasing the REST protein level, which it could 

be through the proteasomal beta subunit (protein degradation) 14. 

SAHA has been found to activate both the extrinsic and the intrinsic apoptotic pathways.  

Activation of the extrinsic pathway was suggested to be through increasing the expression 

of Fas receptor on cell surface, which results in sensitizing the cell to FasL and initiating 

caspases downstream apoptosis pathway.  Whereas, the activation of the intrinsic pathway 

is initiated by cleaving some of the anti-apoptotic factors such as Bcl-2, IKKα, IKKβ, IKKγ 

and NFκB proteins, which increase the acetylation of H3 and H4.   

Consequently, this results in upregulating the expression of p21WAF1, releasing the 

cytochrome c, and ultimately inducing the cell death mechanisms 82, 191.  Also, SAHA is 

believed to increase the intracellular level of ROS which causes an excessive oxidative 

stress and stimulates the cellular death regulations 192.   

It is not completely well known why SAHA does not stimulate complete cell death 

however, it has been proposed that treatment with SAHA leads to increase the expression 

of the caspase inhibitors which pauses the death receptor apoptotic pathway and 

interrupting the SAHA-induced apoptosis.  However, this suggestion has been found to be 

a tumour cell-type dependent 82.  Also, it has been reported that treating cell lines with an 
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increasing concentration of SAHA yield to a non-reversible resistant in a subset of cells 

independent of the increase in HDAC1 or HDAC3.  Though, it is also tumour cell-type 

dependent 193.  Most SAHA-resistant cancer cells have been reported to highly express 

proliferation proteins such as cyclin A, surviving, ki-67, p21WAF1, and p53 which may 

hinder the anti-tumour effect of SAHA 194.  Collectively, this may explain why SAHA does 

not stimulate complete cell death. 

 The Daoy Cells Showed Concentration-Dependent Sensitivity to VPA 

VPA is a pan HDAC inhibitor that showed an inhibitory effect on class I and class IIα 

HDAC.  In this study, VPA showed a significant anticancer effect after 24-hours from the 

treatment.  Also, it showed a concentration-dependent effect.  At low concentrations, the 

cell continued to grow and did not show any significant cell death.  Yet, with the high 

concentrations, it induced a sharp decreased in cell growth by approximately 50% and the 

cells death became more noticeable.   It is not completely understood how VPA induces 

cellular death however, the increase in caspase 3 has been reported in some cell lines after 

72-hours from the treatment.  However, the cleavage of caspase 8 and caspase 9 was not 

detected in the analysed cell lines 195.  This may suggest that the VPA-induced apoptosis 

could be partially through a caspase-dependent pathway though, the activation of the 

caspases might not be through the classic apoptotic pathway 195.   

VPA has been reported to inhibit the growth of the tumour cell through increasing the 

acetylation of H3 and H4, decreasing the expression of GSK3β (neuronal cell development 

factor), and suppressing TP53, CDK4, and c-Myc which are important for the cell cycle 

progression.  Also, VPA has been found to increase the expression of p21WAF1 pathway, 

and activates β-catenin, which works as a blocker for cell division 196.  Likewise, it has 

been proposed that VPA induce degradation of RET-kinase (a proto-oncogene signalling 

molecules) resulting in inhibition of the RET downstream signalling pathway and 

interrupting the proliferation of cancer cells 197.    

It has been observed that VPA can induce a rapid histone acetylation in cell culture though, 

the process that regulate the chromatin condensation may require more than 48 hours to be 

completed 198.  Also, it has been claimed that treating with VPA often causes unexpected 

increase in REST gene expression, which could be due to the increase in the histone 

acetylation and the chromatin remodelling at REST promoter 14.  In this context, treating 
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cancer cells with low concentration of VPA may not inhibit the tumour cells growth due 

to the increase in REST expression which been proposed to drive cells proliferation 14.  

Therefore, it has been suggested that a higher concentration or a longer VPA exposure is 

needed to inhibit the tumour cell growth 14.  In normal cells, it has been reported that the 

effect of the VPA-induced apoptosis is mitigated by increasing the phosphorylation of 

extracellular signal–regulated kinases (ERK1/2), a regulator of cell cycle and 

angiogenesis) which could lead to increase the expression of BCL-2 antiapoptotic protein 

and inhibit the release of cytochrome c from mitochondria 199.   

Taken together, not all the medulloblastoma cells are highly sensitive to HDACis 

treatment, which may further prove the involvement of different molecular regulations in 

sustaining the tumour growth.  Hence, the efficiency of a specific HDAC inhibitor is 

largely depending on identifying these molecular markers and employing them to evaluate 

the efficiency of the treatment.  Also, it is observed that some HDACis that show a high 

selectivity for HDACs were more efficient in inducing cell death than the pan-HDACis.  

This could be due to the ability of the selective inhibitors to target the molecular regulations 

that specifically initiate the cellular death mechanisms.  Whereas, the pan-inhibitors may 

drive the re-expression of the apoptosis initiating and inhibiting genes, which diminishes 

their anti-cancer effect.  Moreover, it has been reported that the high selectivity of a HDAC 

inhibitor is considerably important to reduce the inhibition of inappropriate HDACs and to 

induce more anticancer action 91.      

Also, it has been reported that the activation or the repression of some genes are largely 

depending on the kinetic binding of HDACis.  Therefore, HDACis with low binding 

kinetics such as MS-275 may induce longer effect on genes that control cell proliferation 

and apoptosis compare to the HDAC inhibitor with fast dissociation kinetics such as 

SAHA.  This may suggest that the effect of HDACis on the cell viability may depend on 

the inhibitor-selectivity and the exposure length 91.   

 HDACis Induced a Prolonged Cell Cycle Delay and not a Complete 

Arrest 

Active progression in cell cycle is one of the cancer hallmarks and it is mediated by 

families of regulatory proteins including cyclin-dependent kinases (CDK), p21WAF1, 

p27KIP1, and p57KIP2, CDK inhibitors as well as other regulatory mechanisms known as 
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checkpoints proteins 200.  The HDAC enzymes are known to deacetylate a wide range of 

histone and non-histone proteins including those control the cell cycle.  In several studies, 

HDACis have been claimed to cause cell cycle arrest at G2 phase 151, 152, 153, 154.  In 

contrast, the research work that used the time-course analysis approach reported the 

ability of HDACis to delay the transition between the cell cycle phases and they do not 

induce cell cycle arrest 201, 202, 203.   

In this study, the effect of HDACis on the Daoy cell cycle was investigated using a time-

course analysis.  This approach helped in showing the dynamic and duration of each phase 

and aided in revealing if HDACis arrest the cell cycle.  The results of this study showed 

a wide variation between the inhibitors in their effect on the cell cycle progression. 

Though, the general theme was that the transition between the phases was less active in 

the HDACis treated cells compared to the untreated cell with transient cell accumulation 

between the phases.  Also, these was no significant similarity between the pan-inhibitors 

(SAHA & VPA) and between the selective-inhibitors (MS-275, MI-192 and Apicidin) 

though, SAHA and Apicidin showed relatively similar cell cycle accumulation.  This 

may suggest that each inhibitor may induce different molecular regulations that affect the 

cell transition in cell cycle.  

In most cancers, deacetylation of cell cycle genes is one of the factors in tumour cell 

proliferation.  The role of HDAC enzymes in this regulation is mainly involved in 

regulating the expression of some CDK and CDK inhibitors.  For example, HDAC1 and 

HDAC2 have been found to deacetylate p21WAF1, p27KIP1, and p57KIP2 genes promoters 

and negatively regulate their expression 200.  In variety of tumour cell lines loss of HDAC1 

and HDAC2 resulted in interrupting the cell proliferation potential and drives cell death 

in medulloblastoma, glioblastoma, and colon cancer 71, 204, 205.  HDAC3 is also important 

factor for the cyclin A stability which has a crucial role in S phase progression.  It has 

been suggested that during mitosis the HDAC3 complexes deacetylate histone 3 and 

condensate the chromatin through A-kinase anchor proteins (AKAP8 & AKAP8L).  

This may serve as an indicator for mitotic checkpoint to regulate proper cell division 206.  

Knocking down HDAC3 in HeLa cell reported to increase the accumulation in S and 

G2 phases 207.  HDAC10 is also regulates cell cycle progression via cyclin A and 

knocking down HDAC10 in non-small cell lung cancer resulted in cell accumulation in 

G2 phase 200.  
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Comparing the findings of the cell cycle to the cell proliferation results of this study 

showed some correlation between the results.  For example, MI-192 showed the fastest 

cell death and it also showed a significant decline in G1 phase and increase in S and G2 

phases at the 6-hours measurement.  Likewise, MS-275, which showed the slowest 

anticancer effect (36 hours), its effect on cell cycle was after 24 hours.  SAHA, Apicidin 

and VPA also showed a synchronous effect on the cell cycle and cell viability.  This 

correlation may suggest that the effect of HDACis is started by interrupting the cell 

cycle proliferation genes and simultaneously activating the cell death mechanism.    

Taken together, the results suggest that the cell death induced by HDACis is not due to 

arresting the cell division at specific cell cycle phase, and it could be due to the initiation 

of cell death mechanism.   

In this study, the cell cycle flow cytometry analysis can be improved by synchronizing 

the cell population using an agent such as vinblastine or colcemide or by serum 

starvation.  These agents have the ability to arrest the cell cycle progression at a specific 

phase.  This method could ensure that the cells begin cycling from the same phase which 

may help in improving the results of the time-course analysis 157.  However, the 

synchronization may interfere with normal cycling, growth of cells, gene expression, 

and can result in significant cell death.   

Additionally, the cell cycle effects of HDACis and REST can be further investigated using 

bromodeoxyuridine (BrdU).  BrdU staining of DNA takes advantage of the incorporation 

of BrdU into newly synthesized DNA during the S phase.  When the cells divide the 

fluorescence intensity of the BrdU is halved as a result of the decrease in the amount of 

BrdU per cell.  The reappearance of the BrdU fluorescence signal in S-phase is an 

indicative of a complete cell cycle and the time taken can be used to estimate the cell 

cycle kinetics 208.  The advantage of this method is that it allows to determine the 

duration of a cell cycle phase without the need to induce potentially toxic 

synchronization agents 208.   
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 Blocking REST Expression in Medulloblastoma did not Stimulate 

Apoptosis Mechanism 

In some studies, REST has been described as an oncogene in particular, in 

medulloblastoma and glioblastoma 4, 9, 11, 12, 13.  The claim behind the oncogenic property 

of REST originated from the ability of REST to repress the expression of neuronal 

differentiation genes which blocks the cell differentiation and maintains the self-renewal 

potential of cancer cells.  Therefore, modulating REST expression has been proposed as 

potential approach to treat cancer 4, 9, 11, 12, 13.  This conclusion was built based on using the 

knockdown tools to reduce REST expression in xenograft animal models.  Though, the 

partial expression of REST in the knockdown approaches may maintain some repression 

in different sets of neuronal genes which could affect the results interpretation.   

In this study, the knockout approach was used to study the effect of REST modulation on 

the Daoy medulloblastoma cells.  To the best of my knowledge, this is the first study that 

used CRISPR/Cas9 to knockout REST expression in a medulloblastoma cell line.  In 

addition, this study used the shRNA knockdown approach to approve the knockout results.  

However, the effect of REST modification was not limited to REST expression, and the 

impact was extended to a myriad number of REST-regulated genes.  Comparing the REST-

negative cells to the wildtype cell showed an increase in the expression of some RE1-

containing genes by more than 5-fold change however, it did not result in differentiating 

the tumour stem cell or interrupting the oncogenic regulation.  Noteworthy, the number of 

REST regulated genes has been estimated to exceed 2000 genes 3.  Despite these enormous 

changes though, the cells maintained their proliferative potential and did not show any 

morphological changes or cell death.  In a similar context, the absence of REST expression 

in embryonic stem (ES) cells has been reported to cause inappropriate upregulation of a 

cohort of genes that are important for neuronal cell differentiation and function 9.  Despite, 

the expression of brain-specific genes including Secretogranin III (SCG3), Complexin 1 

(Cplx1) and Stathmin 3 (Stmn3) however, it did not lead to the differentiation of the ES 

cells or affect their multipotent potential 9. 

Collectively, these findings may demonstrate the low importance of REST in regulating 

tumour cell proliferation and differentiation and could suggest the existence of other 

oncogenic regulations that maintain the self-renewal potential of the tumour cell.  Also, 
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the results may suggest the lack of the tumour cell the primary components that are required 

for employing the differentiation factors.  In addition, it may demonstrate the ability of the 

tumour regulation to avoid the progression in the maturation stages. 

 Modulating REST Expression Slightly Reduced Cell Proliferation and 

Increased the Accumulation of the Cells in G1 Phase  

Cancers, in general, sustain their growth through mutations that affect one or several cells 

pathways and the growth continues unless a main factor in proliferation pathway was 

targeted.  In this study, blocking REST expression resulted in reducing the growth of REST 

negative cells by approximately 20%, it also caused a slight accumulation in G1 cell cycle 

phase concomitant with a decrease in S phase.   

These findings are in agreement with a previous study that used shRNA to knockdown 

REST expression in the Daoy cells 52.  In the study, they found that loss of REST resulted 

in increasing the accumulation in G1 phase with a concomitant decrease in the S phase 

however, it did not lead to cellular apoptosis.  Also, they reported that loss of REST led to 

a decrease in the expression of MYCN (a proliferative marker) and an increase in the 

expression of certain antiproliferation makers such as p27 and UPS37 52.  This could 

suggest that REST may control the cellular proliferation through a p27-dependent 

mechanism 52. Similarly, several of gene expression analysis studies were performed using 

primary human medulloblastoma however, the elevated REST expression was not 

proposed as a factor in sustaining the cell growth 38, 39, 44, 41.   

In contrast, a number of other studies, have claimed that knocking down REST expression 

resulted in reducing the tumour cell growth and stimulated apoptosis 11, 50, 115, 209.  For 

example, some studies used REST-VP16 vector to knockdown REST expression in 

medulloblastoma cell lines.  According to Lawinger et al. REST-VP16 is a transcriptional 

activator form of REST that has the ability to compete with REST and upregulate the 

expression of the RE1-containing genes 115.  Also, it was used in some studies to 

differentiate the NSC and the myoblast C2C12 cell into neuronal cells 210.  REST-VP16 

was constructed by replacing both repressor domains of REST with herpes simplex virus 

activation domain (VP16) 115.  Lawinger et al. study has claimed that modulating REST 

expression in the Daoy, D341 and D283 medulloblastoma cell lines using REST-VP16 

resulted in a massive cell death within 96 hours, however, the results of the in vitro 
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apoptosis were not presented in the publication 115.  It has also been reported that 

transfecting a subcutaneously injected Daoy cells with REST-VP16 resulted in inhibiting 

the tumour growth, and the direct injecting of REST-VP16 into subcutaneously Daoy-

formed tumours resulted in about 50% reduction in the tumour growth 115.   In 2005, Fuller 

et al. have reproduced the former experiment on an intracranial Daoy-induced tumour, and 

they claimed the ability of REST-VP16 in blocking the tumour growth and stimulating 

apoptosis however, the study did not mention if the cellular death was observed in the in 

vitro analysis 11.   

In contrast, in three separate studies the expression of REST was knocked down in different 

glioblastoma cell lines using the shRNA system.  The studies reported the effect of REST 

knockdown in reducing the tumour cell proliferation rate and migration ability 4, 12, 13.  

Despite the similarity between the used cell lines, in particular, between Kamal et al. and 

Zhang et al. studies however, the apoptosis was only reported in the Kamal et al. and the 

Conti et al. studies 4, 13. The Zhang et al. study concluded that the apoptosis was not 

stimulated by REST knockdown 12.  It is not clear why the knockdown of REST in the 

former studies led to different outcomes.  However, the variation between the studies could 

be due the limitation in the techniques that were used to detect the cellular apoptosis.  For 

example, the TUNEL assay requires careful analysis of the stained cells, as the duration of 

the proteinase K in the pre-treatment step may generate false-negative or false-positive 

results due to the enzymatic under-digestion or over-digestion, respectively.  The published 

images of the TUNEL assay in Kamal et al. 2012 study did not clearly show the apoptotic 

cells and some of the green signals in the images may not related to apoptotic cells 

(Appendix 9).  In contrast, the FACS analysis in the Zhang et al. study did not identify any 

significant apoptosis events both at early and late stages of cells growth 12. 

Taken together, REST is not a primary factor for the Daoy cell growth and the cell may 

sustain its growth through other cellular mechanisms.  Blocking REST expression in this 

cell led to increase the expression of the neuronal genes and slight decline the cell growth 

however, it did not result in inducing the differentiation or cause cell death.   

 Modulation of REST Expression Significantly Reduced Cell Migration 

Migration is a critical factor in early progression of the tumour cell to metastasis, and it 

has been linked, in part, to elevated REST expression 211.  All medulloblastoma subgroups 
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have been reported to disseminate along the cerebrospinal fluid pathway with higher 

frequency in the Group 3 and 4 medulloblastomas 41.  To gain more insight into the 

implication of REST knockout on the Daoy cell migration, I used wound healing assay to 

evaluate if the absence of REST results in decrease the migration.   

The data showed that, knockout REST expression resulted in decreasing the migration 

ability of the Daoy cell.  This finding is further supported by a previous study that showed 

knocking down REST expression using shRNA led to inhibit glioblastoma cells migration 

12.  The migration inhibition has been referred to the upregulation of genes that are involved 

in migration and cytostasis (stopping cell growth) and some of these genes are regulated 

by REST such as BBC3 and DAXX 12.  This finding is in consistence with the concept of 

the neuronal stem cell development regulation.  During neurogenesis REST expression is 

upregulated in NSCs which may contribute in their migration.  Whereas, the mature 

neurons, which display low REST level, show very limited ability to migrate.   

 HDACs Recruited in REST Repression Complexes are not the Primary 

Element for HDACis to Induce Their Action  

Medulloblastoma has been classified into four main subgroups most of them showed 

elevated REST expression.  Interestingly, the tumours with elevated REST expression 

showed high sensitivity to HDACis.  In this study, we hypothesised that HDACis induce 

their effect through the REST repression complexes which recruits several of HDACs.  We 

found that disrupting REST activity alone did not affect the sensitivity of the cell to the 

HDACis.  This may indicate that these inhibitors do not mainly depend on the REST 

recruited HDACs and they possibly arrest cancer growth through other HDACs complexes 

and/or non-histone protein yet, this requires further investigation.  A previous study has 

suggested REST overexpression as a marker for HDACis treatment, although the findings 

of this study do not fully support this suggestion 14.   

HDACis are multitarget anticancer drugs, and they can act through acetylating histone and 

non-histone proteins.  In human cell, the acetylation sites are countless therefore, the 

cellular response to an inhibitor is very complex and most likely includes transcriptional 

and non-transcriptional regulations.   
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 Daoy Medulloblastoma REST4 Expression 

Comparing the expression of the RE1-containing genes between REST expressing and the 

REST modulated cells demonstrated the functional effect of REST on these genes.  The 

exact mechanism of REST upregulation in cancer is not yet known however, the extensive 

repression of neuronal genes may suggest the exclusive expression of REST full-length 

protein isoform in the absence of REST4 isoform.  REST4 is a transcriptional activator and 

it competes with REST full-length in binding to RE1 sites, resulting in upregulation of 

REST target genes in neuronal cells 7.  Remarkably, REST4 expression has been found 

upregulated in post-mitotic neurons and in non-neuronal cancers that express neuronal 

phenotype such as breast and small cell lung cancers 7, 18.  In contrast, in normal non-

neuronal cells the expression of REST4 has been reported to be downregulated as a result 

of downregulation of protein kinase A by CREB (cAMP response element-binding protein) 

pathway 30.  In this study, I proposed that the upregulation of REST expression in 

medulloblastoma could be due to the absence of REST4 expression in the Daoy cells.   

The result of PCR amplification of REST4 mRNA show the amplification product of 

REST4, which may propose that there is no direct association between the expression of 

REST and REST4.  This primary assumption is further supported by a recent glioma study 

which concluded that the expression of REST4 has no direct relation to REST expression 

and did not recommend the expression of REST4 as a prognostic biomarker due to its low 

expression 212.  Regulation of REST4 transcription is not entirely clear though, it has been 

suggested that the expression of REST4 in neuronal cells is directly promoted by a 

neuronal-specific splicing regulator, known as SRRM4 (Serine/Arginine Repetitive Matrix 

4, also known as nSR100), which activates the inclusion of the exon N 17.  Remarkably, 

SRRM4 gene has been reported to include an RE1 site in its promoter which may suggest 

the involvement of REST in regulating its expression 17.  Also, it has been reported that the 

expression of REST4 is increase when the expression of choline acetyltransferase (ChAT), 

and vesicular acetylcholine transporter (VAChT) genes is increased.  Both genes contain 

an RE1 site in their promoters and they are regulated by Protein kinase A, which increases 

the expression of REST4 isoform 169.  However, the regulation of REST4 expression is 

complicated and not completely clear and needs further investigation. 
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3.4 Conclusion 

The analysis revealed the elevated expression of REST in most the medulloblastoma 

subgroups and the highest expression of REST was identified in WNT subgroup.  Whereas, 

the Group 4α and β subtypes exhibited the lowest expression among all subtypes.  This 

study concluded that blocking REST expression in medulloblastoma Daoy cells has led to; 

increase the expression of some RE1-containing genes, increase the cells accumulation in 

G1 phase, slightly reduced the cell proliferation rate, and decrease cells migration ability.  

However, it did not stimulate apoptosis.  The results also showed the high sensitivity of 

the Daoy medulloblastoma cells to the used HDACis yet, the HDACs recruited in REST 

repression complexes are not the primary elements for the inhibitors to induce their action.   

This is the first study to undertake CRISPR/Cas9 knockout approach to study the 

contribution of REST in medulloblastoma cell growth.  This work has contributed in 

improving our understanding about REST involvement in cancer and it offers some 

important insights about REST contribution in cancer.  
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Chapter 4 

4 Results II 

4.1 Introduction  

This study aimed to investigate the anticancer mechanism of HDACis in the Daoy 

medulloblastoma cells and explore their effect on normal neurons. The analysis was 

performed at the transcriptome level using the single cell next generation sequencing 

(scNGS) as the gene expression is affected by the phase of the cell cycle in the Daoy cells 

and by the cell heterogeneity in the normal neurons.    

The objectives of this work  

❖ investigate the SAHA and MS-275 anticancer regulation in the Daoy 

medulloblastoma cells 

❖ identify the difference between SAHA (pan-HDACi) and MS-275 (selective 

inhibitor)  

❖ investigate the effect of SAHA and MS-275 on the normal human neurons   

The Roadmap  

In this analysis, the Daoy medulloblastoma cells and the normal human neurons were 

treated with SAHA and MS-275 at 5µM concentrations.  The untreated and treated cells 

were harvested into a single suspension and partitioned into nanolitre-scale reaction 

vesicles (GEMs) using the 10x Chromium 3” technology.  After reverse-transcribing the 

RNA, the cDNA libraries were sequenced and the scNGS data were used to study the gene 

expression differences between the untreated and the treated cells.  

In this study, I set off by establishing an appropriate HDACis treatment length to isolate 

the cells for the scNGS analysis.  I took into account the Daoy cell viability and cell cycle 

analysis results that were reported in the Results I .  I used the apoptosis Annexin V and PI 

assay to measure the proportion of the viable cells in each cell cycle phase.  I determined 

the treatment duration on the Daoy cells. As the neurons were postmitotic and limited in 

number, I used the Daoy treatment regime with them.  This chapter starts by showing the 



Chapter 4                                                Results II 

133 

 

results of the HDACis treatment length and then moves to present the scNGS analysis and 

findings. 

4.2 The Results 

 Assessing the Apoptosis Level in SAHA and MS-275 Treated Daoy 

Cells  

During apoptosis, cells pass through several stages of biochemical and gene expression 

changes which could result in externalization of the inward-facing phosphatidylserine (PS) 

on the surface of the cell 213.  The expression of PS is a hallmark during early and late 

stages of apoptosis and can be detected using Annexin V protein labelled with fluorescein 

isothiocyanate (FITC).  Annexin V is an anticoagulant protein with a high affinity to PS 

and has been used to study apoptosis 214.  Similarly, PI has been used to stain the DNA in 

late stages of apoptosis as the cell membrane permeability increases before cell death.  

Whereas, double staining with Annexin V-FITC and PI can be used to distinguish early 

apoptotic cells from late apoptotic cells using FACS analysis.  In early apoptotic cells, the 

externalization of the PS results in Annexin V-FITC (Annexin V+/PI-) binding which 

causes an increase in the ‘forward’ light scatter signal.  In late apoptosis, the PI passes the 

cell membrane and intercalates with DNA which results in increasing the PI ‘side’ scatter 

light signal (Annexin V+/PI+).  

To study the apoptotic effect of SAHA and MS-275, the Daoy cells were treated with 5µM 

of the drugs, harvested at 30, 36 and 42 hours from the treatment and analysed by FACS.  

The result of the untreated control (42 hours) showed that the majority of cells (87%) were 

viable with around 6% of cells being in the late stage of apoptosis as indicated by Annexin 

V and PI signals.  The treated cells showed a gradual reduction in the percentage of the 

viable cells associated with an increase in the ratio of the early and late apoptotic cells.  

The treatment for 30-hours resulted in reducing the percentage of the viable (Annexin V–

/PI–) cells to around 75% (Figure 33 A and B).  With the progression in the treatment, the 

percentage of the cells in late apoptosis stage (Annexin V+/PI+) showed a significant 

increase (P≤0.05) to ~25% and ~35% at the 36 and the 42-hours, respectively.   

Collectively, this analysis showed the presence of more than 65% viable cells at the time 

between the 36 and the 42-hours (Figure 33 A and B).   
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Figure 33: Evaluating the apoptosis level in SAHA and MS-275 treated cells  

The bar charts show the percentage of viable and apoptotic cells at 30, 36 and 42 hours of 

the Daoy SAHA (A) and MS-275 (B) treated cells (5µM concentration).  The cells were 

stained with Annexin V and PI and the results are the average of 4 biological replicates.  

The dots represent the values, the P-value was calculated using the two tailed Student's 

t-test (* P ≤ 0.05, ** P ≤ 0.01) by comparing the values of a time point to the untreated 

control, and the error bars are SEM.  The two-dimensional dots plots (C) are a 

representation of 30.000 events that were measured on FACS.  The viable cells are 
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(Annexin V-/PI-), early apoptotic cells are (Annexin V-/PI+), and late apoptotic cells are 

(Annexin V+/PI+).  

 Estimating the Treatment Length Based on the MTT and FACS 

Analysis   

The results of the cell viability reported in the Results I (section 0) showed that the 

minimum treatment time required for SAHA and MS-275 to reduce the cell viability is 

between the 24 to the 36 hours (Figure 34 A).  At this time frame the percentage of the 

viable cells was ~70%.  Similarly, the apoptosis analysis results showed the presence of 

more than 65% viable cells and around 30% dead cells at the treatment time between 

the 32 to 42 hours (Figure 34 C).  The results of the cell cycle analysis at this time frame 

(Results I section 3.2.2.4) suggested the presence of approximately 30% of the cells in G1, 

more than 15% in S, and around 40% in G2 phase in the cells treated with SAHA.  

Whereas, the MS-275 results showed the presence of more than 60% in G1 and around 

15% in each of S and G2 phases (Figure 34 B).    

Based on these results, the scNGS analysis was performed by treating the cells for the 

36 hours.  At this time point; there are more than 60% viable cells, there are enough cells 

to present each phase of cell cycle, and the anticancer effect of HDACis was observed in 

the apoptosis analysis (Figure 34).   
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Figure 34: Estimating the scNGS treatment duration length using the MTT and 

FACS results 

The pie charts present a summary of the MTT assay, the cell cycle, and the apoptosis 

results of the Daoy SAHA- and MS-275-treated cells (5 M).  The MTT assay (A) shows 

the percentage of viable vs. dead cell at the 24, 36 and 48 time points.  The cell cycle charts 

(B) (PI flowcytometry analysis) show the cells distribution in the cell cycle phases at 24 

and 48 hours.  The apoptosis (C) (Annexin V/PI flowcytometry) charts display the 

percentage of viable to early and late apoptotic cells at 36 hours.  
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 The scNGS Samples Preparation  

The scNGS analysis was performed by treating passage (1) Daoy cells and human neurons 

with SAHA and MS-275 for 36 hours.  In this study, six treatment conditions were analysed 

using the 10x Chromium single cell kit and the RNA libraries were sequenced on Illumina 

500 (Table 5).   

Table 5: Single cell samples identification Acronym 

Sample Number Condition Hereinafter referred to as 

1 Daoy Untreated D.Vehicle 

2 Daoy - SAHA D.SAHA 

3 Daoy -MS-275 D.MS-275 

4 Neurons Untreated N.Vehicle 

5 Neurons-SAHA N.SAHA 

6 Neurons-MS-275 N.MS-275 

 

As standard practice, all the cells were examined microscopically before and after the 36-

hours of the treatment.  The microscopic examination after the 36-hours showed a minor 

fraction of floating cells in the untreated Daoy and neurons cultures (estimated to be <3% 

of the total cell count).  Whereas, the treated Daoy cells showed a noticeable increase in 

the detached cells which estimated to be between 10% to 15%.  The neuron culture showed 

many small floated spherical cells compared to the untreated neurons yet, they can only be 

seen under microscope (Figure 35). 

At the time of the 10x Chromium preparation, the cells were stained with DAPI and the 

viable cells were collected by a FACS sorter after gating for the debris, dead, and doublet 

cells (Appendix 10).  This approach yielded approximately 5000 cells per each Daoy 

sample.  The counts of the sorted neurons were 2000 cells for the untreated, 5000 cells for 

SAHA, and 1200 cells for the MS-275 treated neurons.  The cells were then loaded into a 

10x chip and sequenced on an Illumina 500 platform.  See (Figure 36) for more information 

about the scNGS workflow.   
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Figure 35: Microscopic images for SAHA and MS-275 (-/+) Daoy and neurons at 36 

hours  

The Daoy cells and the normal human neurons were treated with 5µM concentration of 

SAHA and MS-275 for 36 hours.  The images were taken after 36-hours using inverted 

microscope.   
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Figure 36: Schematic representation of the scNGS analysis workflow 

The scNGS analyses were carried out by treating the cells with SAHA and MS-275 for 36 

hours.  After harvesting the cells, they were sorted on a FACS sorter (A).  The cells were 

loaded into a 10x Chromium chip to generate GEMs (Gel Bead in Emulsions) and the RNA 

was reverse-transcribed, amplified, and used to generate the cDNA libraries (B).  The 

libraries were sequenced on an Illumina 500, and the data were demultiplexed using the 

CellRanger pipelines.  Next, the data were analysed using the Seurat R package (C).  The 

data were passed through several stages of data filtration, normalization, and scaling, and 

the quality improved data were used in the subsequent analysis. (STAMPs is single-cell 

transcriptomes attached to microparticles).  The caption was adapted from (Macosko et 

al., 2015) 215. 

 scNGS data Demultiplexing 

The generated 10x scNGS data (Illumina raw base call (bcl) files format) were 

demultiplexed to FASTq (text files containing sequence data with a quality score for each 

base) files format using the 10x CellRanger mkfastq pipeline.  The CellRanger pipelines 

were used to demultiplex the Chromium scNGS data, align the reads to the reference 



Chapter 4                                                Results II 

140 

 

genome, generate barcode matrices, identify the gene count, and perform gene expression 

analysis.  Upon the data demultiplexing, several single-cell specific quality control 

measures were examined including the number of the targeted cells, the mean sequencing 

reads per cell, the mean genes per cells, the sequencing depth, and the Q30 of the bases.   

The output of this analysis showed that the number of the analysed Daoy cells was greater 

than 1700 in the D.Vehicle and in D.SAHA samples, and it reached to more than 2700 

cells with the D.MS-275 cells.  Whereas, the count of the untreated and treated neurons 

was between 1100 to 1300 cells (Figure 37 A).  The low count of the neurons is possibly 

due to the inaccurate counting of the neurons which resulted in loading fewer cells into the 

10x chip.  

With the sequencing depth, the recommended depth for the 10x scNGS analysis is > 95% 

saturation.  Yet, despite the several attempts of resequencing to a higher depth the sequence 

saturation of all the samples did not reach to the recommended level.  The sequencing 

depth of the D.MS-275 cells was 34% and it was lower than 18% in the D.Vehicle and 

D.SAHA.  Whereas, the sequencing depth of the neurons was between the 50% and 60% 

(Figure 37 B).  As a consequence, the low sequencing saturation affected the mean reads 

per cell and the number of the detected genes.  The number of the detected genes in the 

Daoy samples was between 3000 to 5000 genes, and the detected genes of the neuron 

samples were between 1000 to 1300 genes.   

In addition, the quality of the sequencing data was evaluated using the Q30 values on the 

level of; the barcode, the RNA, the sample index, and the UMI.  The Q30 value is defined 

as the probability of having an incorrect base call in 1000 bases (i.e. a Q30 of 99% means; 

every 1000 bp sequencing reads will likely containing an error).  The Q30 results of all the 

samples were more than 85%, apart from the Illumine barcode reads of the N.Vehicle and 

the N.MS-275 which were 63% and 52%, respectively. 

Collectively, these results showed that the sequencing depth was suboptimal in particular 

with the Daoy samples which could affect identifying some of the cellular regulations 

especially and the expression of the low abundant genes may be underrepresented in the 

data set.  Nevertheless, the number of the targeted cells and the quality of sequencing data 

could be sufficient, at least, to address some of the research questions of this thesis.  
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Figure 37: Statistical summary of the 10x scNGS data quality measures   

The sequencing data were demultiplexed using the CellRanger mkfastq and count 

pipelines.  The quality of the 10x libraries were evaluated on the level of; the number of 

the targeted cells (A), the sequence saturation (B), the mean read per cell (C), and the 

median genes per cell (D).  The quality of the data was also evaluated using the Q30 bases 

of the barcode, the RNA reads, the sample index reads, and the UMI reads (E).  
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 The Initial Visualization of the 10x scNGS Data 

The generate data of all the samples were further passed by several steps of data analysis 

(Figure 38).   First the data were processed through the CellRanger aggr which combined 

all the data and subjected them to dimensional reduction using t-Distributed Stochastic 

Neighbour Embedding (t-SNE) analysis.  t-SNE is a nonlinear dimensionality reduction 

technique used to visualize high-dimensional data in a low-dimensional space of two or 

three dimensions 216. 

In this stage, the t-SNE plot was used to demonstrate the transcriptome landscape for a 

sum of 10.262 single cells (Figure 39).  This primary analysis revealed a high-dimensional 

separation between the tumour and the normal cells and across the untreated and treated 

samples which may indicate the high transcriptome heterogeneity between the cells.  

However, it should be noted that the position of the cells and their clustering is significantly 

depending on the parameters that were applied in the dimensional reduction.  The 

dimensional distribution of the cells is also different from one analysis tool to another. 

In order to examine the heterogeneity, the fold change expression of the highly variable 

genes (P<0.001) of each sample was extracted and visualized on a heatmap plot (Figure 

39).  The heatmap plot revealed a considerable heterogeneity in the gene expression 

patterns between the untreated and the treated cells and across the tumour and normal cells.  

For example, the HDACis treated tumour and normal cells showed a distinct expression 

patterns to the untreated cells.  Also, there was a noticeable difference in the expression 

patterns between the tumour and normal cells.  Comparing the expression patterns between 

the SAHA- and MS-275-treated cells showed some similarity in both cell types (Figure 

39).                    

Further, the biological function of these genes was explored using GenCLiP 2.0 Gene 

Ontology (GO) mining server by annotating the genes of each condition.  The GO terms 

of the untreated Daoy cells showed a wide range of cell regulations including proteolysis, 

cell cycle, response to stress, and negative regulation of cell death.  The apoptotic 

regulation and cell death terms were more frequent with the HDACis treated Daoy cells.  

The untreated neurons showed a high enrichment in GO terms that encompass supporting 

normal cell growth, gene expression, and neuronal functions.  In contrast, the treated 
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neurons showed GO terms such as extracellular organelle and vesical, cellular response to 

stress, macromolecule catabolic, and neuronal differentiation process.   

Figure 38: Schematic representation of the data analysis workflow  

The quality improved data were processed through several steps of data analysis.  First, 

the expression of all the samples was visualized on two-dimensional t-SNE projector and 

the gene expression was presented on a heatmap.  Next, each of the Daoy and the neurons 

were processed independently.  The Daoy cells were analysed by clustering the cells based 

on their cell cycle phase and the cells were then subjected to GO annotation analysis.  As 

treating with HDACis affected the cells cycle clustering, all the treatment conditions were 

merged in one data set and the data were subjected to; clustering analysis, GO analysis, 

Gene Set Enrichment Analysis (GSEA), and differential expression analysis.  The analysis 

of the neurons established by identifying the identity of the cells in each cluster and the 

clusters of the untreated and treated cells were merged based on the similarity in their 

identity.  The data were then subjected GO analysis, GSEA, and differential expression 

analysis.      
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Figure 39: Visualization of the untreated and treated Daoy cell and neurons  

The t-SNE scatterplot (A) show the clustering of ~10.262 cells based on their gene 

expression.  The data sets of the 6 samples were processed using the CellRanger aggr 

pipeline and the gene expression of each cell was subjected to PCA and presented on a t-

SNE plot.  Interestingly the scNGS data revealed two populations of Daoy and neuronal 

cells which requires further investigation. Each dot corresponds to one single cell and the 

cells were coloured according to the sample.  The t-SNE plot was produced by CellRanger 
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Loupe.  (B) The heatmap shows the differential expression of the highly variable genes 

(P<0.001) of the untreated and treated Daoy and neurons.  The rows represent the genes 

and the columns represent the samples.  The colour and the intensity of the boxes are z-

score values and were calculated by centring the fold change expression values to zero 

mean and all the data were scaled to 1 SD.  The light green boxes indicate upregulated 

genes, the red indicate the lower expression and no differential expression is black.  The 

hierarchical clustering (left) is the average linkage and was calculated based on the 

similarity of gene expression patterns.  The heatmap was generated using the Heatmapper 

online tool 144.  

 Improving the Quality of the 10x scNGS Generated Data   

As the generated data from the CellRanger-pipelines contain high level of biological 

background signal (cell-free RNA noise) the data were subjected to several steps of 

filtration and quality improvement.  These analyses were performed using the Seurat R 

package which was also used to merge the data sets and visualize the DGE between the 

untreated and treated cells.  The first step in data quality improvement was to exclude the 

cells with fewer than 300 genes and the genes that were detected in less than 3 cells.  Next, 

Seurat was used to calculate the total number of the UMI (nUMI) counts, the percentage 

of mitochondrial genes (percent.mito) and the number of the genes (nGene) for each cell 

and the values were presented using violin and scattered plots (Figure 40).   

The number of the detected genes in the Daoy cells plots was between 3000 to 5000 genes 

however, there were some cells with more than 5000 genes.  Also, the percentage of the 

mitochondrial genes were around 0.2% of the sum of the detected genes.  With the neurons, 

the number of the detected genes in the majority of the cells was between 1000 to 1500 

genes yet, few cells displayed more than 2000 genes.  Whereas, the percentage of the 

mitochondrial genes was ≤0.05%.  With all the samples, the small subsets of cells with a 

clear outlier number of genes and UMIs were assumed as potential multiplets.  The 

elevated expression of the mitochondrial genes could be indicative of poorer cell quality 

and it may be a result of apoptosis and/or cell lysis.  
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Figure 40: Exploring the scNGS Data to improve the quality  

The number of the genes (nGene), UMI (nUMI) and the percentage of mitochondrial genes 

(percent.mito) were calculated for each sample using Seurat (CreateSeuratObject) 

function.  The data were presented as violin and scatter plots to show the subset of cells 

that have clear outlier number of nGene, UMIs, and percent.mito.  The violin plots show 

the calculated number of the gene (first column), UMI (second column), and percent.mito 

(third column) for each sample.  The scatter plots present the expression of the UMIs vs. 

percent.mito, and the UMIs vs. nGene.   

Hence, the cells with a clear outlier number of genes and the mitochondrial genes were 

filtered out.  Also, the cells with low gene count were considered as dying/dead, empty 

droplets and were filtered out, as well.  Next, the quality improved data of each sample 

was normalized, scaled, and subjected to clustering analysis.  The outputs of these 

analysis were dimensionally reduced and displayed on t-SNE plots and the data were used 

in the subsequent analysis.   

 Daoy scNGS Data analysis    

 SAHA and MS-275 Affected the Expression of the Daoy Cell Cycle-Specific 

Markers  

In this study, the scNGS data analysis was established by investigating each Daoy sample 

independently.  The principal component analysis (PCA) revealed the presence of 4 

distinct clusters in the D.Vehicle sample whereas, D.SAHA and D.MS-275 showed the 

presence of 5 and 6 clusters, respectively (Figure 41 A).   

Initially, and as the phase of the cell cycle is possibly the main source of the transcriptome 

heterogeneity within each sample also, it could be the driver of the cells clustering, the 

analysis was carried out by characterizing the cell cycle phase of each cell using Seurat 
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(CellCycleScoring) function.  The analysis was performed by calculating the S and G2/M 

phase scores for each cell using a pre-set of 97 genes that have a significant cell cycle–

dependent expression 128.   The scoring of each cell was based on the genes anticorrelated 

expression thus, the cells expressing these markers should be not be in G1 or quiescent 

(G0) phases (Figure 41 B).  
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(A)            Original Clustering (B)          Cell Cycle Scoring 

D.Vehicle 

0=625, 1=485, 2=435, 3=44 G1=567, G2M=517, S=505 
D.SAHA 

0=560, 1=505, 2=398, 3=157, 4=150 G1=962, G2M=327, S=481 
D.MS-275 

0=712, 1=667, 2=316, 3=300, 4=225, 5=191  G1=1080, G2M=839, S=492 

Figure 41: The clustering of the Daoy treated cells was independent of the cell cycle 

phase 

The t-SNE plots in column (A) show the original clustering-analysis results of D.Vehicle, 

D.SAHA, and D.MS-275.  The t-SNE plots in column (B) show the cell cycle scoring 

analysis results generated by the Seurat (CellCeycleScoring) Function.  The numbers 

below each projector are the cell count of each cluster.  
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The outcome of this analysis showed that the clustering of the D.Vehicle was mainly driven 

by the expression of cell cycle genes, apart from cluster 3 which showed a distinct cluster 

located outside the three main clusters (Figure 41 B).  In contrast, the cell cycle scoring of 

the D.SAHA and D.MS-275 cells showed extensive overlap between the different phases 

of the cells which may indicate the effect of SAHA and MS-275 on the cell cycle gene 

expression (Figure 41 B). 

Further, and in order to demonstrate the effect of HDACis on the expression of the cell 

cycle markers, the expression of the S and G2M specific genes of each cell was visualized 

using heatmaps.  The heatmaps of the D.Vehicle showed high, specific, and more frequent 

expression patterns of the S and G2M markers in the cells that were classified as either S 

or G2M phase, respectively (Figure 42 A and B).  Whereas, the expression patterns were 

different with D.SAHA and D.MS-275.  For instance, the expression of the S phase 

markers was not limited to the cells that were classified as S phase, and many of the G1 

and G2M classified cells showed the expression of these markers.  Similarly, the G2M 

markers were expressed in cells that were classified as S and G1 (Figure 42 A and B). 

To explore the variations between the clusters, I used the functional annotation analysis to 

annotate the upregulated and downregulated genes of each cluster.  The annotation results 

of the D.Vehicle showed some variations in GO categories between the four clusters.  For 

example, the upregulated genes in cluster (1, 2 and 3) showed wide range of GO terms 

including cell cycle transition, mitotic nuclear division, and G2/M transition of mitotic cell 

cycle.  Similarly, the downregulated genes showed a broad range of GO annotations such 

as cell differentiation, regulation of cell differentiation, and cell death.  Noticeably, cluster 

(3) which consists of 44 cells showed upregulation of more than 50 genes that were 

annotated as caspase-independent apoptosis (Table 6).    

With D.SAHA, there was wide variations in the GO terms between the clusters.  For 

example, the downregulated genes in cluster 1 and 2 showed an enrichment by GO terms 

such as regulation of (non-apoptotic) programmed cell death.  In contrast, cluster 4 showed 

upregulation of genes that were annotated as cell cycle phase transition, apoptosis 

inhibitors, and caspase-independent cell death (Table 6).    
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Figure 42: Visualization of the cell cycle markers in D.Vehicle, D.SAHA, and D.MS-

275    

The heatmaps visualize the expression of 97 cell cycle markers (43 genes for S phase (A), 

and 54 genes for G2M phase (B)) across the untreated and treated Daoy cells.  The rows 

represent the genes, the columns represent the cell cycle phase, and each column within a 

row represents a cell.  The green boxes indicate upregulated genes, the red indicate the 

lower expression and the no differential expression is black.   
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Likewise, the cluster (0) of D.SAHA showed an enrichment in GO categories that are 

highly relevant to cell death.  Cluster (3) showed an enrichment in categories of mitotic 

cell cycle, chromosome condensation, and DNA replication and downregulation of genes 

that were annotated as regulators of the extracellular exosome (Table 6).   

Also, D.MS-275 showed wide variations in GO terms between the 6 clusters.  For example, 

cluster (0) and (3) showed upregulation in the genes that are involved in RNA transcription 

and downregulation in cell proliferation genes.  Cluster (1) and (4) showed downregulation 

of genes that are involved in cell cycle transition and also, in the genes that function as 

negative regulators of apoptosis.  Cluster (2) and (5) showed downregulation of genes that 

regulate cell differentiation and upregulation in genes that were annotated as negative 

regulators of cell death (Table 6).   

Collectively, the GO results of the D.Vehicle suggest the expression of cell cycle genes 

whereas, some of the D.SAHA and D.MS-275 clusters showed GO terms related to the 

regulation of caspase-independent cell death.  Treating with SAHA and MS-275 resulted 

in affecting the expression of the cell cycle regulating genes which consequently affected 

the accuracy of the cell cycle soring analysis.  Based on this analysis, comparing the DGE 

between the untreated and treated cell of the same cell cycle phase is not possible under 

the current situation.   

  



Chapter 4                                                Results II 

153 

 

Table 6: Summary of the GO terms that were more frequent for each cluster   

D.Vehicle 

Cluster 
GO Annotation  

(Upregulated Genes) 
GO Annotation  

(Downregulated Genes) 

0 
negative regulation of cell cycle mitotic cell cycle 

cycle transition from G1 to S phase 

1 

mitotic cell cycle 

checkpoint 

negative regulation of cell cycle 

regulation of cell proliferation 

cell differentiation 

regulation of cell death 

2 
Progression in mitotic cell cycle 

DNA metabolic process 

negative regulation of cell cycle 

3 

programmed cell death 

positive regulation of apoptotic 

process 

mitotic cell cycle 

regulation of mitotic cell cycle 

D.SAHA 

0 
apoptotic process 

cell differentiation 

extracellular region 

1 

homeostatic process 

regulation of biological characteristic 

cell cycle 

regulation of (non-apoptotic) 

programmed cell death 

2 

membrane organization regulation of proteolysis activation of 

apoptosis 

regulation of (non-apoptotic) 

programmed cell death 

3 

mitotic cell cycle 

condensed chromosome 

DNA replication 

mitotic cell cycle phase transition 

extracellular exosome 

negative regulation of biological 

process (i.e. gene expression, protein 

modification) 

4 

apoptosis inhibitor activity 

caspase-independent cell death 

cell cycle phase transition 

mRNA metabolic process 

membrane organization 

intracellular transport 

protein synthesis elongation 

D.MS-275 

0 
regulation of transcription from RNA 

polymerase II promoter 

cell proliferation 

1 

 negative regulation of cell death 

(caspase-independent cell death) 

apoptotic process 

cell cycle phase transition 

2 
regulation of cell migration 

regulation of apoptotic process 

cell differentiation 

nervous system development 

3 extracellular organelle growth 

4 

mitotic cell cycle 

regulation of mitotic cell cycle phase 

transition 

negative regulation of cell death 

cell differentiation 

5 

negative regulation of programmed 

cell death 

apoptotic process 

extracellular organelle 
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 Merging the D.Vehicle, D.SAHA, and D.MS-275 Data Sets  

In order to study the anticancer effect of SAHA and MS-275, the three Daoy-cell 

conditions were merged in one Seurat object and the data were normalized, dimensionally 

reduced, and visualized on t-SNE plots (Figure 44 A).  The new dimensional scale of the 

merged data set displayed the D.Vehicle with high similarity to its original unmerged scale.  

Though, the dimensions of the D.SAHA and D.MS-275 cells showed some differences  

compared to their unmerged condition.  The plots did not show overlap between the three 

conditions and each sample maintained its own clustering identity with very few cells of 

the D.SAHA sample were overlapping with the other two conditions (Figure 44 A).  

Comparing the detected genes between the three conditions showed a considerable 

reduction in the number of the genes in the HDACis treated cells.   For example, 1724 

genes were detected in the D.Vehicle cells and the number reduced to 841 and 934 genes 

in D.SAHA and D.MS-275, respectively (Figure 43).   

Next, the merged data set was subjected to the clustering analysis based on the new PCA 

values.  The new clustering of the D.Vehicle did not result in a considerable difference 

when compared to the unmerged clustering yet, the number of the cells within each cluster 

was different when compared to the unmerged (original) clustering (Figure 44 B).  

Whereas, the number of the clusters of the D.SAHA and D.MS-275 was less than the 

unmerged condition.  For example, D.SAHA, was clustered into two clusters with 1563 

cells in the main cluster.  Also, the number of the D.MS-275 clusters was reduced to 4 

clusters with 1404 cells in the main cluster (Figure 44 B).  

Figure 43: Illustration of the number of detected D.Vehicle, D.SAHA, and D.MS-275 

genes 

The Venn diagram shows the number of 

the detected genes in D.Vehicle, D.SAHA 

and D.MS-275 that showed a significant 

differential expression.   

1724 Genes  841 Genes  

934 Genes  
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D.MS275=2411, D.SAHA=1770, D.Vehicle=1589 

 

0=1563, 1=1404, 2=639, 3=634, 4=542, 5=428, 6=218, 7=178, 8=117, 9=47 cells 

 

Figure 44: Merging the three conditions into one Seurat object to study the DGE 

The data sets of the D.Vehicle, D.SAHA, and D.MS-275 samples were merged, normalized, 

dimensionally scaled, and displayed on t-SNE plot (A).  Next, the merged data (A) were 

subjected to clustering analysis based on the new PCA of the three samples, and the new 

clustering was displayed on t-SNE plot (B).   

(A) 

(B) 
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To calculate the differential gene expression (DGE) between the untreated and the treated 

cells, the merged data set was subjected to Seurat (FindAllMarkers) function which 

calculates the log fold-change and the P-value for each differentially expressed gene.  The 

outcome of this analysis showed a significant (P > 0.001) upregulation and downregulation 

of more than 2600 genes across the three conditions.   

Further, the expression values of the genes that showed shared differential expression 

across the three conditions were used to explore the effect of SAHA and MS-275 on the 

Daoy cells.  The analysis identified 253 shared genes which were functionally annotated, 

and their expression was presented on a heatmap plot (Figure 45).   

The heatmap showed a considerable difference between the untreated and treated cells and 

across the treated cells, as well.  Treating with SAHA and MS-275 resulted in a significant 

(P> 0.001) downregulation of several genes families that were annotated as cell cycle 

regulators, cell cycle checkpoint, and positive regulators of cellular process (Figure 45).   

Also, the MS-275 treated cells showed the expression of more than 23 genes that were 

annotated as regulators for cell death (Figure 45).   
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Figure 45: The differential expression of the highly variable genes across the Daoy 

untreated and treated cells    

The heatmap shows the differential expression of 253 highly variable genes (P<0.001) 

shared between the untreated and treated Daoy cells.  The rows represent the genes, the 

columns represent the treatment-condition, and the terms on the right are the GO 

annotations terms.  The colour and the intensity of the boxes are z-score values and were 

calculated by centring the fold change expression values to zero mean and the data were 

scaled to 1 SD.  The light green boxes indicate upregulated genes, the red indicate the 

lower expression and the no differential expression is black.  The hierarchical clustering 

is the average linkage and was calculated based on the similarity in the gene expression 

patterns. 
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Further, the merged data set was used to study the anticancer regulation of SAHA and MS-

275 in the subsequent analysis.  However, as the clustering of the merged set was not 

similar to the clustering of the single sample, also as not all the clusters of the single sample 

analysis showed the anticancer effect of the drugs in the earlier analysis, the main cluster 

of D.SAHA (0) and D.MS-275 (1) were further subjected to the functional annotation 

analysis to determine if they include the clusters that displayed the cell death regulations. 

The results of D.SAHA cluster (0) upregulated genes showed several GO terms with > 

4.13 GenClip Enrichment Score ((GES), significant > 1) 130.  The terms were included the 

negative regulation of cell cycle and positive regulation of programmed cell death.  The 

downregulated genes showed high enrichment in GO terms of cell cycle transition, 

negative regulation of cell death, and cell differentiation (GES: > 20).  

Likewise, the upregulated genes of the D.MS-275 cluster (1) showed a significant 

enrichment in GO categories associated with cell death, response to stress, and cellular 

response to chemical stimulus (GES: >6).  Whereas, the downregulated genes revealed a 

significant enrichment in GO categories that were highly relevant to mitotic cell cycle 

process (GES: 14.89), negative regulation of apoptotic process (GES: 5.43), and 

programmed cell death (GES: 4.75).  Despite, the functional differences between all the 

previous GO terms yet, there was high similarity in the genes across the GO terms.   

Collectively, these findings suggest the anticancer effect of SAHA and MS-275 in cluster 

0 and 1 therefore, they were used in the subsequent analysis to study the anticancer 

molecular regulation.  Hereinafter the cluster (0) referred to as D.SAHA, and the cluster 

(1) referred to as D.MS-275.  

 Dissecting the Molecular Regulation of the Daoy Untreated and Treated 

Cells 

In order to study the anticancer regulation of the HDACis, the study started by exploring 

the molecular regulations of the D.Vehicle, D.SAHA, and D.MS-275 samples.  The 

analysis was carried out by examining the gene enrichment for each sample using the Gene 

Set Enrichment Analysis (GSEA) at Broad Institute 131.  The analysis was performed by 

ranking the upregulated and downregulated genes as per the decrease in their fold change 

values and the ranked lists were used to run the GSEA.  The GSEA define the genes at the 
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top of the ranked list as ‘positive phenotype’ and gives them a positive enrichment score 

(the majority of the genes are upregulated) whereas, it defines the genes at the bottom of 

the list as ‘negative phenotype’ and scores them with negative ES (majority of the genes 

are downregulated). 

The GSEA results of the D.Vehicle cells showed several cellular pathways with 

statistically significant ES [false discovery rate q-value (FDRq) <0.25, and nominal P-

value <0.01] (Table 7).  The majority of these pathways were largely related to the cell 

growth mechanisms.  For instance, the results of the positive phenotype displayed high 

enrichment in cell cycle, DNA replication, Myc and E2F targets pathways (Figure 46). 

Whereas, the negative phenotype showed high enrichment in TNFα signalling via NFκB, 

hypoxia, p53 pathway, MAPK and KRAS pathways which have significant role in 

regulating the cell growth, as well (Figure 46).  Interestingly, the analysis also revealed the 

presence of two different subsets of genes that showed negative phenotype and enriched 

with genes that were identified as regulators for apoptosis (Table 7).   

The results of the D.SAHA and D.MS-275 showed an inverse phenotype to the molecular 

regulations of the D.Vehicle sample (i.e. the positive phenotype in the D.Vehicle becomes 

negative in the D.SAHA and D.MS-275) (Figure 46).  For example, the results of D.SAHA 

and D.MS-275 negative phenotype showed a significant (FDRq <0.25, nominal P <0.01) 

enrichment with terms such as Myc (Targets V1), cell cycle, and p53 pathways.  Whereas, 

the positive phenotype results showed high enrichment with TNFα signalling via NFκB, 

p53 and, MAPK signalling pathways (Table 7).    
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D.Vehicle D.SAHA D.MS-275 

   

   

   

   

   



Chapter 4                                                Results II 

161 

 

   
 

Figure 46: GSEA enrichment plots of the highly enriched molecular regulations  

The GSEA was carried out by ranking the upregulated and downregulated genes based on 

the decrease in their fold change and the ES was calculated by walking down the ranked 

list.  In the above charts, the horizontal middle line in red and blue colours is the rank 

ordered list of the upregulated and downregulated genes, respectively, and the decrease 

in the intensity of the bar colour represents the decrease in the fold change.  The vertical 

black bars represent the gene hits, the vertical grey bars represent the ranking metric 

scores of the genes, the positive values indicate correlation with the phenotype profile and 

the negative values indicate the inverse correlation, and the green fluctuating curve shows 

the enrichment score.  The red framed-charts show the gene set enrichment at the top of 

the ranked list (Positive ES) and the green framed-charts display gene set enrichment at 

the bottom of the list (Negative ES).  
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Table 7: GSEA results of the highly enriched gene sets of the Daoy cells 

(Pathways) Size1 ES2 NES3 
NOM p-

val4 
FDR q-val5 

D.Vehicle 

Reactome_Cell_Cycle 141 0.437 3.585 0 0 

Hallmark_Myc_Targets_V1 108 0.390 3.020 0 0 

Hallmark_E2F_Targets 102 0.497 3.754 0 0 

Reactome_DNA_Replication 79 0.515 3.620 0 0 

Reactome_Apoptosis 44 0.379 2.250 0 0.0011 

Hallmark_TNFA_Signaling_Via_NFKB 54 -0.570 -3.222 0 0 

Hallmark_Hypoxia 41 -0.568 -2.958 0 0 

Hallmark_Apoptosis 41 -0.370 -1.952 0.001 0.042 

Hallmark_P53_Pathway 38 -0.376 -1.923 0.005 0.039 

Kegg_MAPK_Signaling_Pathway 27 -0.557 -2.533 0 3.70E-04 

Hallmark_KRAS_Signaling_Up 27 -0.542 -2.492 0 4.23E-04 

D.SAHA 

Hallmark TNFA Signalling Via NFKB 29 0.174 0.99 0.438 0.932 

Hallmark Myc Targets V1 73 -0.437 -2.36 0.000 0.001 

Reactome Cell Cycle 59 -0.445 -2.17 0.000 0.001 

Reactome Apoptosis 33 -0.317 -1.39 0.117 0.146 

Reactome P53 Dependent G1 DNA 

Damage Response 
25 -0.441 -1.81 0.015 0.019 

D.MS-275 

Hallmark_TNFA_Signaling_Via_NFKB 25 0.505 2.477 0 0.002 

Hallmark_MTORC1_Signaling 22 0.380 1.793 0.018 0.060 

Hallmark_P53_Pathway 18 0.448 1.985 0.002 0.019 

Kegg_MAPK_Signaling_Pathway 17 0.484 2.015 0.002 0.020 

Hallmark_Apoptosis 15 0.415 1.680 0.021 0.094 

Reactome_Cell_Cycle 44 -0.328 -1.938 0.005 0.016 

Hallmark_Myc_Targets_V1 36 -0.374 -2.018 0.003 0.010 

Reactome_Apoptosis 20 -0.516 -2.287 0 0.003 

The light red shaded rows show the positive phenotype and the light green display the 

negative phenotype. The statistically insignificant pathways are in dark red font colour. 

1 The number of the detected genes.  
2 Enrichment Scores. 

3 Normalized Enrichment Score (used to compare analysis results across gene sets). 

4 Nominal P-value (statistical significance of the enrichment score). 
5False discovery rate (the probability that the NES represents a false positive finding). 
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 Study the Differential Expression between the HDACis Untreated and 

Treated Daoy Cells 

The results of the GSEA revealed a significant change in several cellular pathways between 

the untreated and treated cells.  The changes in the HDACis treated cells involved the 

downregulation of genes that regulate the cell proliferation and upregulation of genes that 

are part of cellular pathways such as TNFα Signalling via NFκB, and Myc Pathways.  Also, 

the results showed a significant expression difference between subsets of genes that 

possibly have some contribution in regulating the apoptosis regulations.  In order to 

identify the most potential driver genes across the different pathways, the genes of each 

pathway were compared to the other pathways.  The investigation showed that each 

pathway has a conserved set of genes however, some of the genes were more frequent, in 

particular, across the cell cycle, Myc and the apoptosis pathways (Figure 47).  Also, 9 

genes were shared between the TNFα Signalling via NFκB and the apoptosis pathways 

(Figure 47).    

Figure 47: Representation of the genes that showed high enrichment scores across the 

identified pathways 

The genes that showed high ES in the TNFα Signalling via NFκB, cell cycle, Myc, and 

apoptosis pathways were compared to identify the shared genes between them.  The 

diagram was prepared by combining the genes that present each pathway in the untreated 

and treated cells.   

IER3  JUN SQSTM1 

ATF3  RHOB GADD45A 

MCL1  BTG3  GADD45B 
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4.2.6.4.1 TNFα Signalling via NFκB Molecular Pathways  

Further, to present the gene expression difference between the D.Vehicle, D.SAHA, and 

D.MS-275 cells, the fold change expression was extracted from the merged data set and 

presented on bar carts.  With the TNFα Signalling via NFκB pathway, the number of the 

detected differentially expressed genes across the three conditions was 62 genes, with 9 

genes showed shared differential expression (PHLDA2, ATP2B1, AREG, TUBB2A, 

CDKN1A, CCL2, FOSL1, CEBPD, and PLAUR) (Figure 48).  D.SAHA, showed the 

expression of 7 exclusive genes (EIF1, CD44, SAT1, SOD2, CXCL1, CCND1, and 

BIRC3) whereas, the expression of TRIB1 (reported to help in sensitizing cells to TRAIL-

induced apoptosis) 217 was only detected in the D.MS-275 cells.  The highest fold change 

between the SAHA and MS-275 treated to the untreated cells was in the upregulation of 

AREG (inhibits the growth of certain cancer cells)218 and downregulation of CCL2 

(support primary cell tumour growth and metastasis) 219 (Figure 49).   

 

Figure 48: Illustration of the DGE with high enrichment scores in TNFα Signalling 

via NFκB pathway  

The genes with high ES in the TNFα Signalling via NFκB pathway were compared in order 

to identify the shared genes between the HDACis untreated and treated cells.  The table 

shows the fold change expression of the shared genes across the three conditions, 

upregulated expression in red and downregulated expression in green.  

TNFα Signalling via NFκB pathway 

D.Vehicle D.SAHA D.MS-275

CCL2 1.572 -1.669 -1.145

CEBPD 0.776 -0.417 -0.408

FOSL1 -0.294 -0.289 0.340

PLAUR -0.476 -0.383 0.455

TUBB2A -0.522 -0.631 0.659

ATP2B1 -0.675 0.261 0.292

CDKN1A -1.014 -0.519 0.763

PHLDA2 -1.101 -0.787 0.985

AREG -1.804 -0.469 0.859
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Figure 49: Fold change expression of the TNFα Signalling via NFκB pathway  

The bar chart displays the fold change expression of 62 genes that showed high enrichment 

score in TNFα Signalling via NFκB pathway.  The red bars are the D.Vehicle, the green 

are the D.SAHA, and the blue are the MS-275. 
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4.2.6.4.2 Treating with SAHA and MS-275 Deactivated Myc Signalling Pathway 

The gene set analysis identified 122 genes as components of Myc (HALLMARK MYC 

TARGETS V1) (NOM P<0.0001) pathway however, only 24 genes showed shared 

differential expression between the three conditions (Figure 50).  Comparing the 

expression showed that the majority of these genes were upregulated in the untreated cell 

whereas, treating with HDACis resulted in downregulating 113 genes in HDACis treated 

cells (Figure 51).  

 

Figure 50: Illustration of the DGE with high enrichment scores in Myc Signalling 

pathway  

The genes that showed high ES in the Myc pathway were compared in order to identify the 

shared genes between the HDACis treated and untreated cells. The table shows the fold 

change expression of the shared genes across the three conditions, upregulated expression 

in red and downregulated expression in green.  

Myc Signalling Pathways 

Genes D.Vehicle D.SAHA D.MS-275

CDC20 1.289 -0.500 -0.347

DUT 1.014 -0.660 -0.746

HNRNPA2B1 0.832 -0.571 -0.490

RANBP1 0.761 -0.501 -0.437

NPM1 0.740 -0.744 -0.368

PSMB2 0.734 -0.596 -0.513

EEF1B2 0.731 -0.731 -0.429

PCNA 0.709 -0.280 -0.270

DEK 0.682 -0.359 -0.296

SET 0.681 -0.581 -0.343

ERH 0.669 -0.352 -0.536

HDGF 0.668 -0.445 -0.454

NAP1L1 0.635 -0.555 -0.425

HNRNPA1 0.622 -0.359 -0.392

PABPC1 0.620 -0.324 -0.400

PSMA1 0.546 -0.263 -0.382

PSMB3 0.539 -0.519 -0.313

NHP2 0.526 -0.368 -0.359

PSMA4 0.470 -0.443 -0.270

SRSF3 0.442 -1.112 0.325

SSBP1 0.417 -0.261 -0.259

RPS6 0.407 -0.262 -0.287

NOP56 -0.264 -0.380 0.299

RPS10 -0.694 -0.849 0.834
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Figure 51: Fold change expression of the Myc signalling pathway  

The bar chart displays the fold change expression of 122 genes that showed high 

enrichment score in Myc signalling pathway.  The red bars are the D.Vehicle, the green 

are the D.SAHA, and the blue are the MS-275.   
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 Treating with SAHA and MS-275 Decreased the Expression of Cell Cycle 

Specific Genes 

The gene set enrichment analysis showed high enrichment of 148 genes in the cell cycle 

pathway (NOM P 0.005).  Several of these genes showed more than one-fold significant 

differential expression with 32 genes were shared across the three conditions (Figure 52).  

Treating with HDACis results in reducing the expression of large number of these genes.    

(Figure 53).     

 

Figure 52: Illustration of the DGE with high enrichment scores in cell cycle signalling 

pathway  

The genes that showed high ES in the cell cycle pathway were compared to identify the 

shared genes between the HDACis treated and untreated cells. The table shows the fold 

change expression of the shared genes across the three conditions, upregulated expression 

in red and downregulated expression in green.  

Cell Cycle Pathways 

D.Vehicle D.SAHA D.MS-275

CCNB1 1.866 -0.698 -0.715

UBE2C 1.464 -0.536 -0.568

CKS1B 1.374 -0.905 -0.758

BIRC5 1.330 -0.619 -0.653

HIST1H4C 1.295 -0.555 -0.361

CDC20 1.289 -0.500 -0.347

CCNB2 1.009 -0.319 -0.315

SPC25 0.843 -0.267 -0.302

PSMB5 0.762 -0.704 -0.478

PSMB6 0.749 -0.448 -0.470

DHFR 0.747 -0.322 -0.346

NPM1 0.740 -0.744 -0.368

PSMB2 0.734 -0.596 -0.513

PCNA 0.709 -0.280 -0.270

CENPN 0.658 -0.287 -0.306

RPA3 0.642 -0.289 -0.376

PSMD11 0.595 -0.284 -0.433

PSMB8 0.569 -0.382 -0.365

PSMC5 0.558 -0.455 -0.309

PSMA1 0.546 -0.263 -0.382

PSMB3 0.539 -0.519 -0.313

NHP2 0.526 -0.368 -0.359

PSME2 0.510 -0.429 -0.310

PSMB9 0.495 -0.433 -0.262

PSMA4 0.470 -0.443 -0.270

PSME1 0.435 -0.259 -0.304

TUBA1A -0.261 -0.720 0.284

HSPA2 -0.274 -0.270 0.307

HSP90AA1 -0.316 -1.126 0.338

TUBB4B -0.549 -0.864 0.617

TUBA4A -0.589 -0.312 0.458

CDKN1A -1.014 -0.519 0.763
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Figure 53: Fold change expression of the cell cycle regulating genes  

The bar chart displays the fold change expression of 148 genes that showed high 

enrichment score in cell cycle pathway of the GSEA analysis.  The red bars are the 

D.Vehicle, the green are the D.SAHA, and the blue are the MS-275.   
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 The expression of the Apoptosis Genes  

The GSEA analysis identified several subsets of genes that were identified as regulators 

for apoptosis in each condition.  With the untreated Daoy cells, two subsets of genes were 

associated with the positive and the negative phenotypes with 7 genes were shared between 

the two phenotypes (HMGB2, BID, TNFSF10, LMNA, PMAIP1, DFFA, and H1F0) 

(Figure 54 and Figure 55).  Across the three conditions, D.SAHA and D.MS-275 showed 

differential expression of 33 and 20 genes respectively, with 17 shared genes (Figure 56) 

 

Figure 54: Illustration of the DGE with high enrichment scores in cell apoptosis 

signalling pathway  

The genes that showed high ES in the apoptosis pathway were compared in order to 

identify the shared genes between the HDACis treated and untreated cells. 

 

  

Apoptosis Pathways 
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Figure 55: Fold change expression of the D.Vehicle positive and negative phenotype 

apoptotic genes  

The bar chart displays the fold change expression of 80 genes that showed high enrichment 

score in the positive and negative phenotype of the apoptosis regulation.  The blue bars 

present the shared genes between the positive and negative phenotypes, the green bars 

represent the negative phenotype and the red bars show the positive phenotype.   
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Figure 56: Fold change expression of the apoptotic genes  

The bar chart displays the fold change expression of 82 genes that showed high enrichment 

score in apoptosis regulation of the GSEA analysis.  The red bars are the D.Vehicle, the 

green are the D.SAHA, and  the blue are the MS-275.   
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 Normal Human Neurons scNGS Data Analysis 

As the cell-type is possibly the main element of the transcriptional heterogeneity between 

the neurons, the analysis was established by identifying the cells identity of each cluster 

using the Cell-type Specific Expression Analysis (CSEA) server 129.  The analysis was 

carried out using the maker genes that characterized each cluster and the identity of the 

cells was assigned based on the significance of the P-value (Appendix 11). 

The analysis predicted the identity of the neurons as cortex, striatum, and amygdala 

neurons (Figure 57).  The t-SNE plot displayed the cortex neurons as two distinct clusters 

(hereinafter referred to as Cortex.1 and Cortex.2) with more than 150 cells in each cluster.  

Similarly, the striatum neurons formed two distinct clusters, the first (hereinafter referred 

to as Striatum.1) has more cells and was captured in the three conditions were the neurons 

of the second Striatum cluster were not among the N.SAHA neurons.  Due to the 

predominance of Cortex.1, Cortex.2 and Striatum.1 across the three conditions, the 

subsequent analysis was performed using these cells (Figure 57).   
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N.Vehicle 

 
Cells Number 

Cortex.1 = 226  

Cortex.2 = 221         

Striatum.1 = 304 

Striatum.2 = 124 

Striatum.3 =71 

Amygdala =108  

 

N.SAHA 

 
Cortex.1 = 174         

Cortex.2 = 260           

Striatum.1 = 166         

Amygdala = 37 

 

N.MS-275 

 
Cortex.1 =153         

Cortex.2=328 

Striatum.1= 207         

Striatum.2 =133  

Amygdala = 92 

 

Figure 57: t-SNE plots of the untreated and treated neurons  

The t-SNE plots display the dimensional reduction of the untreated; N.Vehicle (A) and 

treated neurons N.SAHA (B), and N.MS-275 (C).  The dimensional scaling was performed 

using the quality improved data and the analysis was carried out using the Seurat R 

package.  The cells identity of each cluster was characterized based on the expressed genes 

of each cluster using the CSEA server analysis. 
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 Clustering the Neurons Based on their Type 

In order to study the effect of SAHA and MS-275 on the normal neurons,  the analysis was 

carried out by extracting the cluster data set of each cell type (i.e. Cortex.1, Cortex.2, and 

Striatum.1) and the clusters with the same identity (i.e. Cortex.1 of N.Vehicle, N.SAHA, 

and N.MS-275) were merged in a single Seurat object.  The data were then normalized, 

dimensionally reduced, and displayed on t-SNE plots (Figure 58).  In this analysis, the 

merge function was implemented as the Seurat (Combined) function, which combined the 

whole three conditions in one Seurat object, did not allowed comparing the expression 

across the clusters of the same identity and it only allowed comparing the differential 

expression across the three conditions as whole.  

The t-SNE space plots of the merged clusters revealed a significant transcriptional 

heterogeneity across the conditions.  For example, the clustering of SAHA was located in 

a close proximity to the N.Vehicle with some overlap between the cells.  Whereas, the MS-

275 clusters showed a considerable distance to the other two conditions in the three cell 

types (i.e. Cortex.1, Cortex.2, and Striatum.1) which may indicate the significant effect of 

MS-275 on the normal cell gene expression (Figure 58).    
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N.SAHA=174 

N.MS275=214 
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Striatum.1 

N.Vehicle=304 

N.SAHA=166 

N.MS275=228 

 

 

Figure 58: t-SNE plots of the merged Cortex.1, Cortex.2, and Striatum.1 data set 

The data sets of Cortex.1, Cortex.2 and Striatum.1 of each condition were extracted and 

the clusters with the same cell identity across the three conditions were merged in one 

object using the Seurat R package.  The numbers on the left are the cell count of each 

condition.   
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In order to show the transcriptional heterogeneity across the different cell types, the fold 

change expression of the above t-SNE clusters were presented on heatmap plot (Figure 59 

A).   The heatmap showed considerable differences between the three treatment conditions 

and across the different cell types.  For instance, the expression patterns showed extensive 

difference between the untreated and treated neurons also, there was slight difference 

between the SAHA and MS-275 treated cells.  Similarly, there was some differences 

between the different cell types in particular between the cortex and the striatum neurons 

(Figure 59 A).   

Additionally, the major differences in the expression patterns across the three treatment 

conditions on the heatmap were classified into five sections (A, B, C, D, and E) and the 

genes in each section were functionally annotated.  The annotation analysis showed the 

downregulation of several cellular regulations in the HDACis treated cells including the 

cell cycle, the translation, and the ATPase activity genes.  In addition, the analysis showed 

downregulation of a subset of genes annotated as negative regulators for cell death (Figure 

59 B).  
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Figure 59 : The expression differences between the three neurons samples and across 

the different cell types 

The expression of the highly variable genes (fold change ≥ 1) of each cell type and for each 

treatment condition was filtered out and the mean values were z-score to zero and scaled 

to 1 SD and presented on a heatmap plot (A).  The genes that formed distinct differential 

expression patterns (A, B, C, D and E) across the clusters were subjected to functional 

annotation using GenClip annotation tool and the pathways that characterized each group 

A 

B 
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was presented in table (B). The blue bars are represent the fold enrichment sore of each 

Go term.  

 Exploring the Effect of HDACis on the Normal Neurons  

In order to investigate the effect of HDACis on normal cells, the genes of each cell cluster 

(Figure 58) were subjected to GSEA.  The results of GSEA revealed several cellular 

regulations both in the untreated and treated neurons however, the majority of these 

pathways were statistically insignificant (Table 8).  Several of these regulations showed an 

inverse phenotype between the untreated and treated neurons including Myc and cell cycle 

pathways (Figure 60).  Noticeably, Myc pathway showed an inverse correlation between 

the cortex and the striatum neurons (the HDACis treated cortex neurons showed the 

positive phenotype whereas, the striatum neurons displayed the negative phenotype) 

(Figure 60).  Also, the MTORC1 pathway was one of the pathways that showed gene set 

enrichment however, it did not show any significant enrichment in the N.SAHA Cortex.1 

and Cortex.2, N.Vehicle Cortex.2, and N.MS-275 Striatum.1 (Table 8).  
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N.Vehicle N.SAHA N.MS-275 

   

   

   
 

Figure 60: GSEA enrichment plots of the highly enriched gene sets of the neurons 

The GSEA was carried out by ranking the upregulated and downregulated genes based on 

the decrease in their fold change, and the ES was calculated by walking down the ranked 

list.  In the above charts, the horizontal middle line in red and blue colours is the rank 

ordered list of the upregulated and downregulated genes, respectively, and the decrease 

in the intensity of the bar colour represents the decrease in the fold change.  The vertical 

black bars represent the gene hits, the vertical grey bars represent the ranking metric 

scores of the genes, the positive values indicate the correlation with the phenotype profile, 

the negative values indicate the inverse correlation, and the green fluctuating curve shows 

the enrichment score.  The red framed-charts show the gene set enrichment at the top of 

the ranked list (Positive ES) and the green framed-charts display gene set enrichment at 

the bottom of the list (Negative ES). 
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Table 8: GSEA results for some of the highly enriched gene sets of the neurons  

Name Size1 ES2 NES3 NOM p-val4 FDR q-val5 

N.Vehicle Cortex.1 

REACTOME_DEVELOPMENTAL_BIOLO

GY 
30 0.381 1.745 0.015 

0.061 

HALLMARK_MTORC1_SIGNALING 30 0.216 0.978 0.485 1 

REACTOME_CELL_CYCLE_MITOTIC 33 0.083 0.390 0.997 0.998 

REACTOME_METABOLISM_OF_RNA 105 -0.663 -4.965 0.000 0 

REACTOME_METABOLISM_OF_PROTEI

NS 
114 -0.655 -4.957 0.000 

0 

HALLMARK_MYC_TARGETS_V1 51 -0.209 -1.292 0.124 0.145 

REACTOME_CELL_CYCLE 38 -0.108 -0.609 0.944 0.951 

N.SAHA Cortex.1 

REACTOME_TRANSLATION 71 0.486 3.083 0.000 0 

REACTOME_METABOLISM_OF_PROTEI

NS 
98 0.403 2.672 0.000 

0 

REACTOME_CELL_CYCLE 47 0.249 1.436 0.052 0.351 

HALLMARK_MYC_TARGETS_V1 56 0.211 1.243 0.171 0.724 

N.MS-275 Cortex.1 

REACTOME_TRANSLATION 54 0.556 3.521 0.000 0 

REACTOME_METABOLISM_OF_PROTEI

NS 
78 0.458 3.255 0.000 

0 

REACTOME_METABOLISM_OF_MRNA 60 0.447 2.888 0.000 0 

HALLMARK_MYC_TARGETS_V1 48 0.182 1.095 0.357 0.365 

HALLMARK_MTORC1_SIGNALING 35 -0.234 -1.244 0.199 1.000 

REACTOME_CELL_CYCLE 46 -0.156 -0.911 0.599 1.00 

HALLMARK_E2F_TARGETS 32 -0.107 -0.556 0.951 1.000 

N.Vehicle Cortex.2 

HALLMARK_MYC_TARGETS_V1 43 0.123 0.625 0.912 1.000 

REACTOME_METABOLISM_OF_RNA 94 -0.703 -5.127 0.000 0.000 

REACTOME_TRANSLATION 88 -0.728 -5.123 0.000 0.000 

N.SAHA Cortex.2 

REACTOME_METABOLISM_OF_RNA 59 0.097 0.599 0.960 0.947 

REACTOME_METABOLISM_OF_PROTEI

NS 
74 -0.177 -0.965 0.520 

0.890 

REACTOME_METABOLISM_OF_MRNA 54 -0.132 -0.669 0.875 1.000 

HALLMARK_MYC_TARGETS_V1 46 -0.126 -0.610 0.925 0.995 

REACTOME_CELL_CYCLE 44 -0.124 -0.605 0.939 0.928 

N.MS-275 Cortex.2 

REACTOME_TRANSLATION 77 0.585 3.753 0.000 0.000 

REACTOME_ACTIVATION_OF_THE_MR

NA 
31 0.590 2.846 0.000 0.000 
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HALLMARK_MTORC1_SIGNALING 36 -0.218 -1.187 0.250 0.872 

REACTOME_CELL_CYCLE 32 -0.219 -1.134 0.307 0.921 

HALLMARK_MYC_TARGETS_V1 44 -0.105 -0.602 0.942 1.000 

N.Vehicle Striatum.1 

REACTOME_CELL_CYCLE 55 0.282 1.477 0.070 0.150 

HALLMARK_MYC_TARGETS_V1 66 0.266 1.471 0.063 0.135 

HALLMARK_E2F_TARGETS 37 0.245 1.158 0.282 0.415 

HALLMARK_MTORC1_SIGNALING 36 -0.209 -1.249 0.158 0.299 

REACTOME_METABOLISM_OF_PROTEI

NS 
50 -0.144 -0.908 0.614 

0.602 

N.SAHA Striatum.1 

REACTOME_CELL_CYCLE 51 -0.331 -1.464 0.058 0.046 

HALLMARK_MYC_TARGETS_V1 81 -0.257 -1.228 0.185 0.508 

HALLMARK_MTORC1_SIGNALING 30 -0.165 -0.655 0.872 0.885 

N.MS-275 Striatum.1  

REACTOME_TRANSLATION 54 0.337 1.659 0.019 0.029 

REACTOME_METABOLISM_OF_PROTEI

NS 
64 0.311 1.589 0.024 

0.038 

HALLMARK_MYC_TARGETS_V1 31 -0.292 -1.510 0.066 0.044 

The light red shaded rows show the positive phenotype and the light green display the 

negative phenotype.  The statistically insignificant pathways are in dark red font colour. 

1 The number of the detected genes.  
2 Enrichment Scores. 

3 Normalized Enrichment Score (used to compare analysis results across gene sets). 

4 Nominal P-value (statistical significance of the enrichment score). 
5False discovery rate (the probability that the NES represents a false positive finding). 

 

4.2.7.2.1 The Effect of HDACis on Myc Signalling Pathways 

Further, the gene differential expression of Myc signalling pathway of each cell type was 

used in order to compare the variation in the response to HDACis between the cells.   The 

expression results showed the upregulation of most genes in the untreated striatum and the 

downregulation of the majority of genes in the treated cells (Figure 61).  In contrast, the 

expression of the Myc genes in the untreated cells showed a combination of upregulation 

and downregulation with more than 70% of the genes were downregulated in Cortex.1.  

Yet, the cortex neurons treating with HDACis showed upregulation of Myc pathway-genes 

(Figure 61).  It should be noted that the ES of Myc pathway was statistically insignificant.  
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Figure 61: Fold change expression of Myc Pathway across the different neuron cells  

The charts display the fold change expression of Myc pathway in Cortex.1, Cortex.2, and 

Striatum.1.  The red bars are the N.Vehicle, the green are the N.SAHA, and the blue are 

the N.MS-275.   
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4.2.7.2.2 The Effect of HDACis on Cell Cycle Pathway  

The GSEA results of the cell cycle pathway were insignificant both the untreated and 

treated neurons.  The N.Vehicle (Cortex.1) and N.MS-275 (Striatum.1) also did not show 

any gene set enrichment for cell cycle genes.  In order to explore the effect of the SAHA 

and MS-275 on the neurons, the expression of the genes that were identified as component 

of the cell cycle pathway was presented on charts.  The general theme across the different 

types of the neurons is the inverse expression in the HDACis treated to the untreated 

neurons (Figure 62).  The annotation analysis of these genes showed several GO terms that 

were associated with cell cycle, nuclear division, and regulation of transcription.  The 

genes that were annotated as a cell cycle arrest were further compared across the different 

conditions however, the expression of these genes was not detected in the majority of the 

cells (Table 9).  The expression of few genes was more informative such as NPM1 which 

showed upregulation in MS-275-treated neurons and the expression of CCND2 which 

showed downregulation in most HDACis treated neurons.  It should be noted that the ES 

of Myc pathway was statistically insignificant.  

Table 9: The DGE of the genes that were annotated as cell cycle arrest  

 

Genes N.Vehicle N.SAHA N.MS-275 N.Vehicle N.SAHA N.MS-275 N.Vehicle N.SAHA N.MS-275

CDKN1A 0 0 0 0 0 0.421 -0.731 0 1.087

CDKN2A 0 0 0 0 0 0 -0.404 0 0.524

NPM1 -0.607 -0.304 0.758 -0.464 -0.546 0.736 0 -0.885 0.477

RAD9A 0 0.467 0 0 0.629 0 0 0.915 0

CDKN1B 0 0 0 0 0 0 0.501 0 0

CDK4 0 0 -0.444 0 0 0 0.432 0 0

PSMC6 0 0 0 0.509 0 -0.486 0.406 0 0

RAD1 0 0 0 0 0.513 0 0 0 0

CDKN2D 0 0 -0.261 0 0.307 0 0 0 0

GMNN -0.495 0.583 0 0 0.289 0 0 0 0

RFC4 0 0.273 0 0 0 0 0 0 0

CCNH -0.267 0 0 0 0 0 0 0 0

HDAC1 -0.325 0 0 0 0 0 0 0 0

CCND3 0 0 -0.265 0 0 0 0 0 0

SKP1 0 0 0 0 0 -0.298 0 0 0

HSP90AA1 -0.346 0.601 -0.274 0 0.575 -0.400 0 0 0

BUB3 0 0.437 -0.257 0 0.415 -0.445 0 0 0

RPA2 0 0 0 0 0 0 0.359 -0.262 0

CEP57 0.483 0 -0.515 0.495 0 -0.457 0.478 -0.359 0

PTTG1 0 0.341 0 0 0 0 0.500 -0.361 0

RAD21 0 0 -0.313 0.536 0 0 0.569 -0.508 0

PPP2CA 0 0 0 0 0 0 0.460 -0.578 0

CCND2 0.740 -0.630 -0.337 0.844 -0.497 0 0.806 -0.850 0

MAX 0 0.315 -0.406 0 0 0 0.306 0 -0.342

MCM7 0 0 0 0 0 0 0.563 -0.336 -0.416

TERF1 0 0.391 -0.433 0 0.320 -0.586 0.374 0 -0.503

Cortex.1 Cortex.2 Striatum.1
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Figure 62: Fold change expression of the cell cycle component genes across the 

different neuron cells 

The charts display the fold change expression of the genes that were identified as 

components for cell cycle pathway in Cortex.1, Cortex.2, and Striatum.1.  The red bars are 

the N.Vehicle, the green are the N.SAHA, and the blue are the N.MS-275.   
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 The Expression of HDAC and HAT Genes  

In cancer, aberrant expression of acetylation and deacetylation regulating genes has been 

frequently observed in a broad range of tumours and they contribute to the overall concept 

of cancer epigenetic therapy 6.  However, it is not known whether the changes in the 

acetylation condition are due to the alterations in HDACs and HATs genes expression.   In 

this study, the expression of HDACs and HATs in the untreated and treated Daoy cells and 

neurons was extracted from the scNGS data in order to explore their expression in tumour 

and normal cells.    

The results revealed the elevated expression of HDAC1 and HDAC2 in D.Vehicle, 

D.SAHA, and D.MS275.  Also, SAHA-treated cells showed a statistically significant 

(P>0.0001) increase in HDAC3 by 0.3-fold change compared to the D.Vehicle and D.MS-

275.  The results also showed an increase in the SIRT7 in SAHA- and MS-265-treated 

cells (Figure 63).   

The neurons result of the HDACs and HATs expression showed an upregulation in 

HDAC2 in the untreated and treated neurons and it reached to 0.4-fold change (P>0.0001) 

higher in the MS-275-treated Cortex.1.  The results showed a significant (P>0.05) decrease 

in the ATAT1 expression level in the MS-275-treated Cortex.2 and Striatum.1 neurons by 

0.3- and 0.7-fold change, respectively (Figure 65 and Figure 66).  The results also showed 

a slight increase in HDAC and HAT enzymes in small subsets of cells however, the 

expression was statistically insignificant due to the small size of these populations when 

compared to the overall population of a sample ( 

 

, Figure 64, Figure 65, Figure 66).   
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Figure 63: t-SNE plots of the HDAC genes in the Daoy untreated and treated cells 

The t-SNE plots show the average fold change expression of HDAC genes in the Daoy 

untreated and treated cells.  Each dot represents a cell and the level of the expression is 

represented by a gradient increase in colour from yellow to red as it appears in the legend 

of each plot.  The plots were produced by the Seurat R package and each plot has a 

different expression scale (the package is less flexible).  The clusters identity is presented 

in the HDAC2 and SIRT7 plots. 
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Figure 64: t-SNE plots of HATs genes in the Daoy untreated and treated cells 

The t-SNE plots show the fold differential expression of HATs genes in the Daoy untreated 

and treated cells.  Each dot represents a cell and the level of the expression is represented 

by a gradient increase in colour from yellow to red as it appears in the legend of each plot.  

The plots were produced by the Seurat R package and each plot has a different expression 

scale (the package is less flexible).  The clusters identity is presented in the HAT1 plot.  
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Figure 65: t-SNE plots of HDAC genes in the untreated and treated human neurons 

The t-SNE plots show the fold differential expression of HDAC genes in the untreated and 

treated neurons.  Each dot represents a cell and the level of the expression is represented 

by a gradient increase in colour from yellow to red as it appears in the legend of each plot.  

The plots were produced by the Seurat R package and each plot has a different expression 

scale (the package is less flexible).  The clusters identity is presented in the HDCA2 plot.  
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Figure 66: t-SNE plots of HATs genes in the untreated and treated neurons   

The t-SNE plots show the fold differential expression of HATs genes in the untreated and 

treated neurons.  Each dot represents a cell and the level of the expression is represented 

by a gradient increase in colour from yellow to red as it appears in the legend of each plot.  

The plots were produced by the Seurat R package and each plot has a different expression 

scale (the package is less flexible).  The clusters identity is presented in the ATAT1 plot.  
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 Pathway Analysis of the Untreated and Treated Samples  

Further, the gene expression values of the differentially expressed genes of each sample 

were uploaded into the PathVisio pathway visualization software.  The pathway analysis 

identified several pathways with high representation including TNFα and apoptosis 

pathways.  The pathway analysis did not show high representation of the differentially 

expressed genes in all the examined pathways and limited number of the genes were 

represented in the pathways.  For example, D.SAHA showed downregulation of genes that 

regulate apoptosis such as BID, BRIC5, TNFSF10 and TB53.  With the D.MS-275 BIRCS 

and CYCS were only represented in the apoptosis pathway in additional to interferon IRF3 

and IRF7.  The N.SAHA showed two genes BNP3L and DFFA where the N.MS-25 

presented JUN only (Figure 67).   
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(B)  D.SAHA 

(A)  D.Vehicle  
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(C)  D.MS-275 

(D)  N.Vehicle 
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Figure 67: Pathway analysis of the differentially expressed genes  

The differentially expressed genes of each sample were visualised using the PathVisio 

software and the analysis was performed by including the genes ID and expression values 

of all the genes. (A) D.Vehicle, (B) D.SAHA, (C) D.MS-275, (D) N.Vehicle, (E) N.SAHA, 

(F) N.MS-275.  The expression level of a gene is represented by the change in the colour 

from green to red and the expression value is shown next to the box.  The gradient bar 

represent the expression values, green as downregulated and red as upregulated. 

(E)  N.SAHA 

(F)  N.MS-275 
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4.3 Discussion  

HDAC enzymes are a group of epigenetic molecular switches that regulate genes 

expression, cellular proliferation, survival and apoptosis. Thus, they have been attractive 

targets for cancer therapy.  The aim of targeting HDACs is to reverse the effect of the 

epigenetic abnormalities that support the cancer cell proliferation.  In contrast, the HDAC 

inhibitors are a group of molecular compounds that block the HDAC binding site and they 

have attracted a substantial in vitro and in vivo research interest.  The results of the in vitro 

analysis have revealed the potency of certain HDACis in inducing anticancer effect 

through several downstream mechanisms including cell-cycle arrest, blocking 

angiogenesis, inhibition of metastasis, inducing autophagy, and stimulate apoptosis 73, 220.  

Whereas, the findings of the in vivo analysis exhibited the high selectivity of HDACis to 

target tumour cells with minimal effect on normal cells 60.   

However, even though several studies have proposed some possible HDACis anticancer 

mechanisms, there have been several research questions remained unexplored.  

Accordingly, in this study, I set out to obtain a more in-depth knowledge of HDAC-

dependent cancer regulation in tumour and normal cells using large-scale droplet-based 

single-cell transcriptome profiling.  This approach was used to explore the transcriptome 

variability between cells and to avoid the effect of the transcriptome heterogeneity between 

the cells.  Unravelling tumour heterogeneity may help in; unveiling the molecular 

regulation that sustains cancer cell progression, the molecular action of anticancer drugs, 

and identifying the subclone resistance to therapy.  In this study, I tried to; identify the 

molecular regulation of HDACs in sustaining the medulloblastoma cell growth, investigate 

the molecular mechanisms of how HDACis initiate the cell death mechanism, and explore 

the effect of the HDACis on the molecular  regulations of normal cells.  

In order to address these questions, I profiled the gene expression of the Daoy 

medulloblastoma cells and non-cancerous human neurons pre- and post-treating them with 

SAHA (a pan-Inhibitor) and MS-275 selective inhibitor (HDAC1 and to lesser extent, 

HDAC2 and HDAC3).  As the scNGS gene expression data often contain technical and 

biological noises, I subjected the data to stringent quality improvement measures and I 

used the quality improved data in the analysis.  I studied the most dominating pathways 
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using the gene set enrichment analyses, and I used the differential expression analysis to 

explore the differences in the molecular regulations between the cells.  

The evidence of this study may suggest the ability of HDACis to disturb the cancer 

regulation through disrupting the pathways that support the cell cycle such as Myc and 

TNFα via NFκB pathways.  The results showed the considerable effect of HDACis on gene 

transcription of the normal cells in particular on genes that drive the cellular differentiation.  

The following sections, will discuss the findings of the study, compare them to what it has 

been known and draw a conclusion based on the evidences.  

 Assessing the Quality of the scNGS  

Several studies have tried to decipher the therapeutic mechanisms of HDACis using the 

microarray and the NGS bulk analysis.  The findings of these studies have suggested 

several cellular factors that collectively result in stimulating cell death mechanisms 83, 153, 

221, 222, 223.  Yet, the HDACis anticancer regulations are often intricate and embedded in a 

network of molecular interactions that occur simultaneously which make the bulk analysis 

of heterogenous cells less likely to reveal the molecular regulations behind these networks.  

As any analytical approach, the scNGS analysis has several technical and biological factors 

that may limit the ability of the generated data in addressing some important regulations.  

The quality of the scNGS data depends significantly on the number of the targeted cells 

and the sequencing depth, and it also highly affected by the technical and biological noises. 

Thus, in order to generate meaningful results, the data were subjected to several levels of 

quality controls assessment to filter out poor data before investigating the gene expression. 

 Assessing the Quality Based on the Number of the Analysed Cells  

The number of the individual cells is an important factor for generating a statistically 

significant result.  In this study, I aimed to target at least 2000 cells for each condition.  

The data of the tumour cells showed the presence of more than 1800 cells in the D.Vehicle 

and D.SAHA samples and it reached to more than 2700 with the MS-275-treated cells.  

Whereas, the number of the analysed neurons was less than 1400 cells.  The main factor 

of not achieving the aimed number was due to the inaccurate count of the neurons.  As per 

the 10x Genomics recommendations, the number of the loaded cells should be accurately 

measured with considering the multiplets rate and the percentage of the dead cells.   
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In the subsequent data improvement analysis, the number of the cells was further reduced 

after filtering out the poor-quality cells.  The count of the Daoy samples was more than 

1700 cells where, the count of the neurons reduced to around 1000 cells in the untreated 

and MS-275-treated cells, and it was less than 700 cells in the SAHA-treated neurons.  

Calculating the gene differential expression between the different conditions of the same 

cell identity showed statistically significant results (P<0.0001) which may suggest the 

suitability of the data to identify the difference in gene expression across the samples.    

 Assessing the Quality Based on the Sequencing Saturation and Depth 

The sequencing saturation is the average number of reads (mRNA, cell-barcode, and UMI) 

that confidently mapped to known reference bases, and it is used to estimate the number 

of additional reads to detect a new transcript.  Whereas, the sequencing depth is the number 

of the transcripts that were detected for each cell 224.  The values of these measures are 

important to ensure; obtaining the most transcriptome of a single cell, accurate 

identification of gene expression, detecting genes with low abundance, and reducing the 

technical noise.  The recommended sequencing saturation for the scNGS is >85% and the 

recommended depth is >50.000 reads for the RNA-rich cells such as cell lines.   

In this study, the sequencing saturation of the Daoy samples was less than 33% and it 

resulted in reducing the sequencing depth to a suboptimal level.  The sequencing saturation 

of the neurons was between 52 to 63% where the sequencing depth was between the 35 

and 43 thousand read per cell.  Despite several attempts to improve the magnitude of the 

sequencing depth though, the number of reads did not show any significant improvement.  

This could be due to a technical problem and it may result from an inaccurate normalization 

of the cDNA libraries between the samples.  The low sequencing depth often affect the 

reliability of gene detection in particular genes with low transcriptome abundance. 

Accordingly, the low sequencing depth of the Daoy untreated- and SAHA-treated cells 

could have an impact on the interpretation of the findings 121.   

Despite the higher sequencing depth of the neurons in comparison to the Daoy cells 

however, the number of the detected genes in the Daoy samples was higher (between 3000 

to 5000 genes) than the neurons (1000 to 1300 genes).  This could be due to the nature of 

cancer cells which require more functional genes for the cell proliferation, metabolism, 
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DNA repair, chromosome stability, cell matrix interactions, cell communication, tumour 

invasion, angiogenesis, and inhibiting apoptosis 225.   

 Assessing the Quality Based on the Q30 and the Background Noise 

The Q30 score is another important factor as the scNGS data often contain technical and 

biological noise.  The average Q30 of the data (the Barcode, the RNA, the sample index, 

and UMI) in all the samples exceeded the 80% which considered an average score with 

Illumina sequencing and it may indicate the optimal quality of the reads.    

The data showed that the majority of the cells in each treatment condition have a relatively 

equivalent number of genes however, there were cells with a higher number of genes when 

compared to the whole population.  The analysis also exposed cells with low number of 

genes which could result from having a free-RNA.  Additionally, the analysis displayed a 

subset of the Daoy cells with a higher mitochondrial gene count compared to the majority 

of the cells which often results from have broken cells where the mRNA is lost and the 

RNAs enclosed in mitochondria is retained 226.  Therefore, the data were subjected to 

multiple levels of quality improvement analysis using the CellRanger and the Seurat 

analysis tools and the effect of the multiplets, free-RNA background, and the mitochondrial 

genes were removed.  The cell-specific bias such as the dropout (is a true zero value in 

gene expression matrix could result from absence of gene expression) and the batch effect 

were also removed by data normalization 227.   

 The Analytical Approach used to Process the Data 

As the phase of the cell cycle is the main driver of the transcriptome heterogeneity in the 

Daoy cells, each cell was scored according to the expression of a pre-set of the cell cycle 

genes 128.  This analysis was carried out to allow the comparison between the data set of 

the untreated and the treated cells based on the cell cycle phase (i.e. G1 phase of untreated 

compared to G1 of treated).  The result of the untreated Daoy cells showed that the 

clustering of the cells was mainly driven by the cell cycle phase.  This finding demonstrated 

the active proliferation of the tumour cells and it also displayed the transcriptional 

heterogeneity across cells of the same genetic identity.  

In contrast, the cell cycle scoring of the SAHA- and MS-275-treated cells showed an 

extensive overlap between the cells and the expression of the cell cycle genes was 



Chapter 4Chapter 5             Results II 
             Discussion Section  

199 

 

considerably different when compared to the untreated cells.  These results clearly 

demonstrated the effect of HDACis on the cell cycle genes which makes the comparison 

of the gene expression based on the cell cycle phase is inapplicable.   

The alternative approach was to merge the three Daoy samples into one data set.  The data 

were then subjected for clustering analysis which resulted in clustering the cells according 

to the transcriptome similarity between the three samples.  The outcome of this approach 

showed that each sample maintained a clear distance from the other samples and the 

untreated cells maintained their original (unmerged) clustering (Figure 44).  Whereas, the 

treated cells showed a new clustering with a smaller number of clusters and very minimal 

overlap between the SAHA- and MS-275-treated cells.  Interestingly, the cluster of the 

MS-275-treated cells showed a considerable distance to the untreated cell whereas, the 

SAHA-treated cells were positioned near to the untreated cells.  This outcome is further 

demonstrated the considerable effect of HDACis on gene transcription, and it also suggests 

that the ability of MS-275 to induce more transcriptional variations compared to SAHA.   

The clusters were than subject to GO annotation analysis to identify the clusters that exhibit 

the HDACis effect.  The GO annotation analysis showed the enrichment of the main 

clusters, which have the majority of the cells, of SAHA- and MS-275-treated cells with 

GO terms of apoptosis and cell cycle regulations.  Hence, these clusters were used to study 

the anticancer regulation.  Further, the differential expression of the upregulated and 

downregulated genes of each cluster was used to run a preranked GSEA analysis in order 

to identify the gene set enriched-pathways of each cluster.  This analysis mainly depends 

on grouping the genes that share common biological function, chromosomal location, or 

regulation according to priori defined sets of genes.  The results of the GSEA was evaluated 

based on; the ES (reflects the overrepresentation of a genes set), the statistical significance 

of the ES (account for the size of the set and presented by the normalized ES), and 

proportion of false positives (FDR) 131.  Typically, this analysis is significantly affected by 

the number of the expressed and detected genes 228.  The results of the Daoy samples 

showed several gene set-enriched pathways with a statistically significant ES.  However, 

the GSEA results of the neuron clusters did not reach the statistical significance in the 

majority of the identified pathways despite the presences of more 30 genes in each 

pathway.  The main factor that affected the neurons GSEA results could be the low number 

of the genes that play a significant role in a particular pathway.  This could be due to; the 
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biological regulation that determine the response to the HDACis, or a technical matter as 

for example the suboptimal sequencing depth.   

 HDACis Affected the Expression of Several Cellular Pathways 

HDACis are known by their ability to induce extensive transcriptome changes in tumour 

and normal cells.  These changes were suggested to contribute, at least, in part in the 

HDACis anticancer effect and cell proliferation.  Using SAHA and MS-275, I showed that 

these inhibitors induced a transcriptional activation of several cellular pathways in the 

Daoy cells including TNFα-Signalling-via-NFκB, p53, and apoptosis pathways.  They also 

induced transcriptional repression of cell cycle and Myc pathways.  The most noticeable 

theme between the two inhibitors was their ability to induce a transcriptional pausing of 

the cell cycle regulating genes in both the transformed and normal cells.  The two drugs 

showed some slight differences in the number of the differentially expressed genes and 

also in the gene set enrichment analysis.  On the cell type level, the response to the two 

drugs showed also some differences between the different neurons.  Interestingly, the effect 

of the HDACis was not limited on upregulating the transcription of genes but it also 

contributed in transcription downregulation.  Likewise, previous HDACis transcriptome 

analysis showed considerable upregulation and downregulation of a large number of genes 

105, 153, 229, 230.   

The transcriptional repression function of HDACis is not completely understood.  The 

Genome-wide analysis that were applied to identify the localization of HDAC suggested 

that the function of HDACis is often associated with activating gene transcription 231.  The 

downregulation activity of HDACis could be a result of deacetylating non-histone proteins 

which function as transcription factors 232.  This assumption is further supported by a recent 

study which suggested the ability of HDACis to target the transcription elongation complex 

(bromodomain-containing protein 4 (BRD4)) and inhibit its activity 233.  

The patterns of changes in genes expression -apart from the apoptotic regulation- are 

relatively similar for different inhibitors yet, they are highly variable between transformed 

cells 105, 234, 235, 236, 237.  Some changes in gene transcription are possibly due to the direct 

effect of HDACis on gene promoter where other could be secondary and downstream 

effects.  Also, the changes that occur at the start of the acetylation may not reflect the 

anticancer effect in tumour cell, or the tolerance regulation in the normal cell 236.  In 
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addition, the anticancer mechanism may occur at any time from the exposure to prior the 

cell death.  Also, the cell apoptosis regulations in a response to an inhibitor are different 

between various cells and with different inhibitors 146.    

 HDACis Disrupted the Expression of Cell Cycle-Specific Genes  

The active progression in cell cycle is the main factor of tumour cell growth and it is one 

of the treatment targets.  Cancer cells sustain their growth through activating the cell cycle 

pathway whereas, the ability of the anticancer agents to disrupt the cell cycle regulation is 

a central factor in inhibiting tumour cell growth and it may leads to cell death 238.   

In this study, the GSEA results of the untreated Daoy cells a showed a positive phenotype 

of several pathways including the cell cycle, Myc, E2F and DNA replication pathways.  

These pathways are often amplified among many different human cancers and they have 

pivotal role in cell growth, proliferation, and tumorigenesis 84, 239, 240, 241.  The cell cycle 

pathway of the untreated Daoy cells showed a significant enrichment of 141 genes that 

were annotation as regulator for cell cycle, DNA replication, mitosis, nuclear division, and 

active transition in cell cycle.  Some of these genes have also a direct role in cell cycle 

transition including the cyclin-dependent kinase (CDK) genes such as CCNB1, CDC20, 

CDKN2D.  The CDKs are a family of proteins that regulate the transcription of cell 

cycle regulating genes and they play an essential function in regulating normal cell 

division 242.  Overexpression of cyclins is frequently observed in human malignancies and 

their expression has been associated with aggressive cancer and poor prognosis 80, 243.  The 

GSEA results also showed the downregulation of genes that have a direct effect on 

inhibiting the progression in cell cycle and the DNA repair mechanisms such as CDKN1A, 

BIRC5, PCNA, HSPA2, and HSP90AA1.   

In contrast, the GSEA results of the HDACis treated cells showed a negative phenotype of 

the cell cycle pathway.  The most significant differential expression was in CDK genes 

such as CCNB1, CDC20, CKS1B, and CCNB2. The finding also showed the 

downregulation of genes that are components in G1 and S phase checkpoint signalling such 

as CDK1 and CDK4.  The transcriptional inhibition of CDK1 and CDK4 has been 

suggested to arrest the cell cycle and allow DNA repair to occur, which may trigger 

apoptosis when cellular damage cannot be properly repaired in transformed cells 80.   
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The results also showed a robust increase in CDKN1A (also known as p21CIP1, hereinafter 

referred to as p21WAF1) expression, which was more noticeable in the MS-275-treated cells 

compared to the SAHA.  p21WAF1 is a CDK inhibitor with a high potential to arrest cell 

cycle progression at G1 phase by inhibiting the activity of the CDKs.  It is also involved 

in regulating transcription, apoptosis, DNA repair, and cell motility 238.  In several tumours, 

the downregulation of p21WAF1 was connected with tumour cell growth where its 

upregulated expression was associated with anticancer regulation 238.  It has been reported 

that p21WAF1 inhibits the DNA replication by binding to the proliferating cell nuclear 

antigen (PCNA) which inhibits the cell cycle and allow the DNA repair 244.  The increase 

in the p21WAF1 expression has been reported to inhibit caspase-induced apoptosis by 

binding to caspase-2 and caspase-3 in the cytoplasm and block their activity 220, 238.  

However, it has been suggested that p21WAF1-arrested cells may undergo apoptosis 

following the activation of proapoptotic genes in a p53-dependent or -independent manner 

244. 

The exact regulation of p21WAF1 induction is not well known however, it has been 

suggested to occur though the p53 depletion in wild-type expressing tumour cells 83.  

Despite the expression of a non-functional form of p53 protein in the Daoy cells, the 

treatment with HDACis in this study resulted in upregulated p21WAF1 expression which 

may indicate the existence of an alternative regulation and it warrant further investigation 

83, 113.   

Treating the normal human neurons with HDACis also caused a considerable effect on 

genes transcription resulted in up or downregulation of several subsets of genes however, 

many of the identified pathways were statistically insignificant.  The effect of SAHA and 

MS-275 on the neurons cell cycle genes was slightly different and the MS-275-exposed 

cells showed more gene downregulation compared to SAHA.   The GSEA results of the 

treated normal human neurons showed a negative phenotype of several cellular pathways 

compared to the untreated neurons.  For instance, the negative phenotype of the cell cycle 

and Myc pathways was common in all treated neurons whereas the mTORC1 positive 

phenotype was only observed in the untreated cortex.1 neurons.  The most noticeable 

difference in the cell cycle-regulating genes between the Daoy and the neurons was the 

absence of the CDK genes expression in the neurons.   Where the expression of p21WAF1 

was only detected in the Corext.2 neurons treated with MS-275.  The transcriptional 
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changes induced by the inhibitors suggest their effect in modulating gene transcription in 

normal cells which may impair the cells ability to maintain their biological function and 

consequently could lead several of downstream implications.  

Comparing the cell cycle genes between the Daoy and the neurons identified 19 shared 

genes however, the annotation analysis of these genes showed that these genes were 

involved in general biological functions including histone and tubulin regulation with 

eleven genes annotated as ribosomal genes.   

Collectively, the cell cycle gene expression results showed the ability of the HDACis to 

downregulate the CDK genes and upregulate the p21WAF1 gene expression which could 

support the stimulation of the apoptosis pathway.  In contrast, the expression of the CDK 

genes was not detected in the untreated and treated neurons.  This may suggest that the 

anticancer effect of HDACis could depend on CDK and p21WAF1 in tumour cells.   

Whereas, the regulation of the cell cycle in normal cells is less dynamic hence the effect 

of HDACis on the transcripts did not lead to the activation of death mechanisms.  

Collectively, these findings may demonstrate how tumour cells sustain their growth and 

suggest CDKs and p21WAF1 as therapeutic targets.   

 HDACis Disrupted the Expression of Myc Pathway  

Further the results of the untreated Daoy cells showed a statistically significant up or 

downregulation of a large number of genes that were associated with Myc pathway.  Myc 

expression has been reported in many cancers and in medulloblastoma.  However, the 

expression of Myc genes is significantly variable across the medulloblastoma subgroups 

239.   Treating with SAHA and MS-275 resulted in a significant disruption in the expression 

of a subset of genes that were identified as Myc components pathway.  Myc regulation has 

critical part in several aspects of cancer biology, including proliferation, migration and 

treatment response where, treating with HDACis has been suggested to suppress Myc-

oncogenic function.  Myc has been suggested to induce the proliferation activity through 

interacting with a number of HDACs including HDAC1, HDAC2 and HDAC3 83.  

Accordingly, the expression of HDACs in tumour cells has been reported to contribute in 

Myc-driven proliferation.  Tumours with elevated expression of Myc and HDAC2 have 

been reported to show higher sensitivity to class I HDACis 54.  Inhibition of HDAC2 in 

medulloblastoma Group3 has been reported to reduce the stabilization of Myc protein and 
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induce cell death 54.  Myc-induced apoptosis has been reported to occur through indirect 

downregulating the antiapoptotic proteins such as Bcl-2 and Bcl-xL, and through p53 -

dependent and independent manners 245.   

In this study, exposing the neurons to SAHA and MS-275 HDACis resulted in varying 

response across the different neuron types.  The GSEA results showed a negative 

phenotype of Myc in all the different types of the neurons apart from the MS-275-treated 

Cortex.1 which displayed a positive phenotype. However, the Myc pathway was 

statistically insignificant in all treatment conditions.   

The expression of Myc in normal cells has been suggested as the developmental signals as 

Myc works as a factor to integrate the growth signals to support cell growth 240.  Where, 

the expression of Myc in postmitotic neurons has been suggested to drive cell cycle re-

entry and emerged as a potential pathogenic factor which could lead to neuronal 

degeneration and death 246.  The results of this study may indicate the deactivation of Myc 

pathway however, the conclusion cannot build on the current results.     

 HDACi Disrupted the Expression of TNFα signalling via NFκB Pathway 

In this study, the GSEA results of the untreated Daoy cells showed a statistically significant 

negative phenotype of TNFα signalling via NFκB pathway.   Tumour necrosis factor (TNF) 

is a cytokine that binds to TNF cell surface receptors receptor (TNFR) 1 and TNFR2 and 

upon its ligation it activates either of three pathways; the Nuclear Factor kappa-light-chain-

Enhancer of Activated B Cells (NFκB) pathway, MAPK pathways, or cell death pathway 

247.  TNF has a complicated role in cancer as it stimulates proliferation, migration, and 

angiogenesis in cancers that are resistant to TNF-induced cytotoxicity 247.  TNF has also 

been suggested to induce cell death through the TNFR1 which is universally expressed on 

most cell types and has a direct role in NF-κB activation.  The ligation of TNF with 

TNFR1 results in recruitment of TNFR1-associated death domain protein (TRADD) which 

works on promoting apoptosis when binds to caspase-8 in presence of Fas Associated Via 

Death Domain (FADD) 247.  It could also promote survival through TNF Receptor 

Associated Factor 2 (TRAF2) via JNK-dependent kinase cascade 248.   

The expression results of the Daoy untreated cells showed the downregulation of CCL2, 

CEBPD (stimulates the cancer cell proliferation through E2F1), NFKB Inhibitor Alpha 
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(NFKBIA) which collectively promote; the cell growth, reduce the inflammatory 

processes, and inhibit apoptosis 249, 250, 251.  The results also showed the downregulation of 

INHBA, CDKN1A, and PHLDA2 which were suggested to work as tumour suppressor 

genes 252. 

The GSEA results of SAHA- and MS-275-treated Daoy cells showed the positive 

phenotype of TNFα signalling via NFκB pathway (SAHA FDR q-val=0.932, and MS-275 

FDR q-val=0.002).  The gene expression results showed the inverse expression of CCL2, 

CEBPD, NFKBIA, INHBA, CDKN1A, and PHLDA2 and several of other cytokine genes 

that are components of TNFα signalling via NFκB pathway such as TNFSF9, IER2 and 

MAP2K3.  It is unclear whether HDACis have a direct effect on cytokine gene regulation 

or the change is caused due to a secondary effect of HDACis.  Similarly, it is not known if 

the expression of NF-κB is directly regulated by acetylation 253. Additionally, it is not 

well known how TNF stimulates apoptosis especially and it activates NF-κB which has 

a significant contribution in supporting the cell proliferation, cell differentiation, and 

cell death as well.  However, it has been suggested that TNF may induce cell death 

through activating Caspase 3 247.  In several studies, combining HDACis treatment with 

NFκB with proteasome inhibitors enhanced the tumour cell death of Hodgkin lymphoma 

cells and glioblastomas and has been suggested to limit the toxicity associated with 

using either drugs 254.   

 The Expression of HDAC and HAT Genes 

It has been commonly assumed that the imbalance in the HDACs and HATs expression is 

the causative of increasing the deacetylation level in various cancers.  Whereas, treating 

with HDACis has been suggested to reverse the epigenetic states which supresses the cell 

growth and stimulates apoptosis 255.  In this study, the scNGS data were used to explore 

the expression of HDAC and HAT enzymes before and after the HDACis treatment.  The 

results of the Daoy cells showed an increase in the HDAC1 and HDAC2 level in the 

untreated and treated cells.  Where treating with SAHA resulted in a significant increase 

in HDAC3.   

The upregulated HDACs expression has been reported in various types of neuronal and 

non-neuronal cancers however, the expression is vary greatly between tumours 146.  The 

expression is also inversely correlated with the overall survival rate and significantly 
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associated with active tumour progression and poor prognosis  146, 256, 257.  In brain tumours, 

HDACs have been found to play a key role in sustaining cell growth.  For example, in 

glioblastoma the expression of HDAC1, HDAC3 and HDAC6 has been reported to be 

significantly higher than non-plastic brain tissue, where the expression of HDAC9 is 

frequently reported with prognostically poor glioblastoma multiforme patients 257.  

Elevated HDAC2 has been reported in medulloblastoma SHH, Group 3 and Group 4 

subgroups and it was also connected with poor prognosis 54.  The expression of HDAC5, 

HDAC9, and SIRT1 was also associated with the increasing in medulloblastoma tumour 

progression and was suggested as drug targets 45.  Blocking the expression of HDAC2 or 

HDAC3 has been found to inhibit the tumour growth and induce apoptosis which may 

suggest their oncogenic properties 147, 193.  Several studies have reported the decrease in 

HDAC3 expression when treating with HDACis however, in this study treating the Daoy 

cells with SAHA resulted in upregulating the expression of HDAC3 147, 193.  It is not known 

why SAHA increased HDAC3 expression however, it has been reported that treating with 

SAHA often results in reducing the expression of the HDAC enzymes at the protein level 

where the mRNA level remained unchanged 147.  Similarly, a previous clinical trial 

reported that the expression of HDACs remained unchanged in pre- and post-treatment 

with SAHA 258.  This may suggest the ability of HDACis to induce their effect on the 

protein level only where they do not affect the active transcription of the HDAC enzyme.  

The results also showed an upregulation in HDAC2 expression in a small subset of the 

untreated and treated neurons with a noticeable increase in the MS-275-treated cortex 

neurons.  The elevated expression of HDAC2 in neurons has been reported to have a 

critical role in regulating neuronal cell differentiation, and its expression has been reported 

in mature neurons 102.  The current evidence of this study cannot completely explain the 

effects of HDACis on neurons and if it will lead to a cytotoxic effect.  The role of HDACs 

in regulating neuronal survival or death is intricate and involved several regulations.  For 

example, the activity of HDAC1, HDAC4, HDAC5 or HDAC6 has been reported to 

contribute in inducing neurons death 259, 260.  Whereas, the expression of HDAC2, HDAC3, 

HDAC7 or SIRT1 has been suggested to promote neuronal survival 260, 261.   

The expression results of this study also showed an increase in SIRT7 expression in the 

SAHA- and MS-275-treated Daoy cells.  SIRT7 is a deacetylase enzyme that has a high 

involvement in various cellular processes in normal cells.  In cancer cells, SIRT7 has been 
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reported to have an oncogenic property 262.  Overexpression of SIRT7 has been found to 

protect tumour cell against DNA damage and support the tumour cell survival 262.  It is not 

clear why treating with HDACi resulted in upregulating SIRT7 expression.  However, it 

has been reported that treating with HDACis, in particular SAHA, does not significantly 

inhibit SIRT7 enzymatic activity even at high concentration of SAHA 263.  This is 

consistent with the ability of SAHA to inhibit Class I and II HDACs enzymatic activity 

and not class III HDACs.  

The results also showed a slight decrease in the α-tubulin acetyltransferase 1 (ATAT1) 

expression in the MS-275-treated Cortex.2 and Striatum neurons.  ATAT1 is microtubule 

acetyltransferase and play a major part in destabilizing the microtubules and accelerating 

their dynamic 264.  The relation between the HDACis treatment and ATAT1 expression has 

not been studied previously, and the decrease of ATAT1 in the MS-275-treated Cortex.2 

and Striatum could result in decreasing the microtubule dynamics and conformation 265.  

Several of previous studies have examined the roles of HAT members in controlling neuron 

fate and they concluded that the increase in HAT activity is often associated with apoptosis 

265, 266. For example, enhancing EP300 or CREBBP HAT activity has been reported to 

promote the apoptosis of dopaminergic neurons and cerebellar granule neurons, 

respectively 265, 266. 

Collectively, the results of HDACs and HATs expression showed the upregulated 

expression of HDAC1 and HDAC2 in the Daoy medulloblastoma cells which may suggest 

their direct role in increasing the deacetylation level and proposed them as a potential 

treatment target.  The results also showed an increase in HDAC3 mRNA expression in the 

SAHA-treated cells which may suggest the ability of HDACis to induce their effect on the 

HDAC protein but not the transcriptional levels.  Hence, the efficiency of HDACis 

treatment should be monitored on the HDAC protein level.  Incomplete HDACis treatment 

may result in restoring the deacetylation back to its upregulated level. However, the critical 

effect of HDACis on neuronal cell survival needs further exploration.   

 The limitation of the scNGS  

In this study, the scNGS analysis showed great advantages as it allowed me to; measure 

the transcriptome at single cell level, study cell-to-cell heterogeneity, assign cells into their 

cell cycle phases, and identify the highly variable genes that drive the variability across a 
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population of cells.  However, there were some technical and biological factors that may 

impacted the quality of the data and the finding interpretations.  In additional to the 

suboptimal sequencing saturation and sequencing depth that were addressed previously, 

the used 10x Chromium kit (V2) is another factor that could have an effect in reducing the 

sequencing depth.  The efficiency of this version in capturing and reverse-transcribing 

mRNA to cDNA is not significantly high and it displayed a high frequency of not detection 

transcripts with low abundance 121.  Recently, the 10x Genomics has released a new version 

(Chromium V3’) which showed a significant increase in the detection level and more 

transcripts per cell.   

In the biological side, the scNGS analysis showed several limitations.  For example, it does 

not measure the expression of non-coding RNA such as microRNA and Long non-coding 

RNA .  Thus, the number of the expressed genes are lower compared to RNA-seq bulk 

analysis.  The analysis is also subject to cell-size variation, cell cycle phase, transcriptional 

bursting and temporal fluctuations 121.  The transcriptional bursting is a state where the 

transcription from DNA to RNA occur in random fluctuating bursts or pulses followed by 

variable periods of inactivity.  The transcriptional burst often affects the total transcript 

number which it could impact the number of detected genes per cell 121, 267.   

The ability of scNGS to identify most of the potential therapeutic targets is also limited by 

abundance of transcripts.  The abundance of transcripts is controlled by the functional 

category to the gene and the quantity that is needed for producing certain proteins.   For 

example, the expression of genes with high abundance such as collagens and matrix 

metalloproteinases are more redundant in scNGS, where not all low-abundance genes such 

as cytokines are detectable.  Also, some proteins work in small intracellular compartment 

therefore, their transcriptome often less than the genes that are involved in major cellular 

regulations.  This often leads to increase the frequency of dropout events (i.e. none of gene-

transcripts are captured) 227.  At the statistical level, the heterogeneity of the analysed cells 

is often result in a negative binomial or multimodal distribution (data are not normally 

distributed) and this may affect the statistical tests that assume the normal distribution of 

the data 268.   Hence, the findings of the scNGS should be interpreted with caution.   

Finally, pathway or network analyses were performed to gain biological insight into the 

underlying molecular regulation as it could reduce the complexity and help in explain the 

findings however, the results of this analysis did not show high representation of the genes 
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in the identified pathways.  The main limitation in this analysis was due to the suboptimal 

sequencing depth of the current transcriptomic data which impacted the detection of genes 

and affected the subsequent bioinformatic analysis.  The findings representation could be 

improved by using commercial systems such as Ingenuity Pathway Analysis and 

iPathwayGuide software.
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5 General Discussion  

5.1 Summary of the Research Aims and Methodology  

In this thesis, I have investigated the contribution of REST, HDACs, and HDACis in 

medulloblastoma tumorigenesis and treatment response.  To study the contribution of 

REST, I used CRISPR/Cas9 system to knockout REST expression in the Daoy 

medulloblastoma cells, one of the most frequently used cell lines in medulloblastoma 

studies 43.  In addition, and as CRISPR/Cas9 has not been used previously to modulate 

REST expression, I used the shRNA knockdown system to confirm the knockout findings.  

I examined the effect of blocking REST expression on the cell growth, cell-cycle, and cell 

migration ability, and I explored if the HDACis induce their action through the HDACs 

recruited in REST repression complexes.   

Further, I investigated the anticancer molecular regulation of SAHA and MS-275 using the 

Daoy medulloblastoma cells, and I explored their effect on normal human neurons.  I 

carried out the analysis at the transcriptome level using the single cell next generation 

sequencing analysis and I applied the PCA to compare the gene expression of the 

untreated- and treated-Daoy and neurons cells in order to explore the molecular regulation 

of HDACis. 

5.2 Knockout REST did not Induce Medulloblastoma Cell Death   

This study has found that the expression of REST is elevated in the medulloblastoma 

subgroups compared to normal cerebellum and its expression has important role in 

regulating the transcription of some RE1-containing genes.  Blocking REST expression 

resulted in increasing the cell accumulation in G1 phase and decreasing the cells migration 

ability however, it did not reduce the Daoy cells proliferation or stimulate apoptosis.  The 

results also displayed the high sensitivity of the Daoy cells to the used HDACis yet, the 

HDAC enzymes in REST repression complexes were not the primary elements for the 

inhibitors to induce their action.   

Collectively, these data suggest that REST is not a main regulator of the Daoy cell growth, 

and the tumour may depend on other factors to sustain its self-renewal potential.  Also, the 

induction of the Daoy medulloblastoma cell death by HDAC inhibitors is not dependent 
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on, or affected by, REST expression status rather, they may work through other HDAC 

complexes.   

This conclusion does not support what it has been proposed previously to use REST 

expression as a clinical marker for HDACis treatment efficiency in medulloblastoma 14.  

These findings could suggest the lack of the tumour cell the primary components required 

for employing the differentiation factors.  In addition, it demonstrated the ability of the 

tumour regulation to avoid progression in the maturation stages despite the expression of 

the neuronal genes.   

These conclusions are in congruent with some of the latest research findings.  For example, 

Das et al., (2013) used shRNA to knockdown REST expression in the Daoy cells and they 

found that loss of REST resulted in increasing the accumulation in G1 phase with a 

concomitant decrease in the S phase however, it did not lead to cellular apoptosis.  Also, 

they reported that loss of REST expression led to; a decrease in the expression of MYCN 

(a proliferative marker), and an increase in the expression of certain antiproliferation 

markers such as p27 and UPS37 52.  Similarly, Zhang et al., (2016) modulated REST 

expression in glioblastoma U-87 and U-251 cell lines using the shRNA knockdown system 

and they found that knocking down REST expression resulted in inhibiting the 

glioblastoma cells migration yet, it did not stimulate cell death or reduce tumour size 12.  

In addition, several of gene expression analysis studies were performed using primary 

human medulloblastoma however, the elevated REST expression was not proposed as a 

factor in sustaining the cell growth 38, 39, 41, 44.   

One important part of my work was using both of the knockout and knockdown approaches 

in order to examine the contribution of REST and to validate the findings.  The knockout 

approach resulted in completely blockage of REST expression hence, it limited the effect 

of the partial expression of REST in the shRNA knockdown approach which can induce a 

repression on different subsets of genes and affect with results interpretation.  This aspect 

could clearly indicate the importance of using a correct experimental tool to reach more 

evident conclusion.   
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5.3 HDACis Effected the Cell Cycle Regulation in Tumour and Normal 

Cells 

The findings of this study showed that treating the tumour cells with HDACis resulted in 

a considerable decrease in the number of the expressed genes compared to the untreated 

cells.  The treatment also resulted in activating the TNFα signalling via NFκB pathway and 

deactivating the cell cycle and Myc pathways.   

The expression of several genes that are known by their significant function in cells faith 

such as CDKN1A, CCNB1, CDC20, CCNB2, CCL2, CXCL1, NPM1, CCND1, AREG, 

TOP2A and BIRC3 was also affected by the treatment (Table 10).  The dynamic changes 

in gene expression pattern in a response to HDACis may provide important insight into the 

cellular response. 

The significant effect of SAHA and MS-275 on the cell cycle genes was clearly 

demonstrated on reducing the expression of most cell cycle regulations which resulted in 

delaying the progression in the cell cycle and increasing the accumulation in cell cycle 

phases, as it was demonstrated in the cell cycle analysis.  These data therefore strongly 

suggest the ability of HDACis to exert an inhibitory effect on the cell cycle in cancer cells 

which could be one of the anticancer regulations.  

Exposing the normal cell to HDACis also caused considerable changes on the 

transcriptome level.  These changes were diverse between the untreated and treated 

neurons and across the different neuron types.  For example, HDACis resulted in 

downregulating the expression of the genes that were annotated as regulator for; cell cycle, 

translation, ATPase activity, and the nonsense-mediated decay of mRNAs.  The data also 

show a considerable cell-to-cell variation in total transcript level.  The difference in the 

cell response to SAHA and MS-275 was observed in ability of each inhibitor to regulate 

different sets of genes that are components in the metabolic activity, cellular process, and 

cell-cell communication mechanisms.  These changes are potentially harmful on normal 

cell and may lead to impair their normal biological function. 
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Table 10: Gene information 

Gene Abbreviation Function 

Cyclin-Dependent 

Kinase Inhibitor 1A 
CDKN1A 

Inhibits cellular proliferation in response to DNA 

damage 269 

Cyclin B1 CCNB1 
Essential for controlling the cell cycle at the G2/M 

(mitosis) transition 270 

Cell division cycle 

20 
CDC20 

Interacts with several proteins at multiple points in the 

cell cycle 271 

Cyclin B2 CCNB2 
Essential for controlling the cell cycle at the G2/M 

(mitosis) transition 272 

C-C motif 

chemokine ligand 2 
CCL2 

A chemokine and it stimulates host anti-tumour 

activities 272 

C-X-C motif 

chemokine ligand 1 
CXCL1 

Aberrant expression of this protein is associated with 

the growth and progression of certain tumours 273 

Cyclin D1 CCND1 
Regulator of progression through G1 phase during the 

cell cycle 274 

Amphiregulin AREG Inhibits the growth of various types of cancers 275 

Topoisomerase 

(DNA) II Alpha 
TOP2A 

Encodes a DNA topoisomerase which controls the 

topologic states of DNA during transcription 276 

Baculoviral IAP 

Repeat Containing 
BIRC3 

Inhibits apoptosis by binding to tumour necrosis factor 

receptor-associated factors TRAF1 and TRAF2 277 

Nucleophosmin NPM1 

In complex with MYC, NPM1 enhances the 

transcription of MYC target genes and tumour 

suppressors p53/TP53 278 

Four studies in the literature (Chiba et al., 2004, bolden et al., 2013, Halsall et al., 2015, 

Markozashvili et al., 2016) have compared the effect of HDACis on normal and tumour 

cells in order to understand why tumour cells are more sensitive and how normal cells 

tolerate the hyperacetylation effect 279, 105, 280, 281.  The studies profiled the gene expression 

using microarray analysis after treating the normal and their tumour counterpart cells with 

HDACis.  The drug concentrations, exposure time and the cell lines were different between 

the studies (Table 11).  The rationale behind choosing the used concentrations and time 

was not built on an experimental approach, apart from Bolden et al., study which used the 

CDKN1A (cell cycle progression) gene expression to select for the treatment duration 
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length 105.  The findings of the microarray gene expression profiling were different between 

the studies and revealed different cellular mechanisms (Table 11).   

Only Halsall et al., study has claimed that the molecular regulations which protect normal 

cells from the hyperacetylation effect is through down-regulation of the expression of HAT 

enzymes which in minimized protein hyperacetylation, slowed the growth and re-balanced 

the gene expression 280.  However, in this study there were several sources of uncertainty.  

For example, the immunoblotting analysis of global histone showed an increase in the 

acetylation level in the treated cells during the first 120 minutes and this contradicts what 

they claimed about the HAT downregulation.   

Typically, HDACis induce an increase in the acetylation level until the drug loses its 

pharmacokinetic activity or is washed out.  The study by Bolden et al., showed a sustained 

increase throughout the treatment with SAHA (25µM) for 32 hours .  Similarly, the 

increase in the acetylation was reported in several of other studies that used non-disease 

cell lines 106, 107, 108.  The study by Halsall et al. did not take into account comparing the 

decrease of HAT genes in the normal cells to the transformed cells as the expression of 

HAT components could decrease in transformed cells, as well 280.   

Another limitation in the Halsall et al., study is that the fold-change of the HAT genes was 

small and only measured by microarray methodology.  Inspecting the HAT expression 

results at GEO (GSE65297) showed that the changes in the HAT gene expression also 

varies between the biological replicates and some values could be considered as outliers 

when compared to the other replicates.  It is well known that the sensitivity of microarrays 

is affected by several factors including the amount of the mRNA and the hybridization.  

Yet, these limitations are irrelevant if the microarray was used for screening first and then 

the expression results should be verified independently.  Real-time PCR is the method of 

choice for most researchers especially when the fold change in gene expression is low.  

However, the study did not verify the expression of the KAT component genes despite it 

was the main question of the study.  The Halsall et al., study also included clustering of the 

genes according to their expression changes over time.  However, the criteria of selection 

was very limiting as they used an algorithm that allowed selection of very few groups with 

a very small number of genes 280.  This approach may have an advantage of showing very 

limited subgroup of genes however, it eliminates large groups of genes that may have 

similar cellular mechanisms. 
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Table 11: Summary of the four studies 
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Collectively, the four studies were designed to understand the molecular regulation of 

HDACis in tumour and normal cells yet, each study came to different conclusions which 

may reflect the variation between the cell models used and the experimental approaches.  

The findings of these studies have been inadequate to demonstrate the cellular mechanism 

that reduce the hyperacetylation effect of HDACis.  There are several factors that possibly 

contributed in limiting the research outcomes of these studies.  For example, the cultured 

cells are often in different phases of the cell cycle and each phase has different gene 

expression.  Hence, the bulk analysis results often present the average of the variations in 

gene expression of all the phases which could hide many cellular mechanisms and show 

some variations between biological replicates.  

One of the objectives of this study was addressing the controversy about which HDACis 

treatment regime is better: treating with a selective HDACis (e.g. MS-275 (Entinostat)) or 

a pan-HDACis (e.g. SAHA (Vorinostat)).  The data of this study did not allow to further 

explore this debate due to the low sequencing depth of the Daoy cells which may 

underrepresent some important regulations.  No convincing experimental or clinical 

evidence is currently available to support using either type of HDACis.  However, evidence 

from some clinical trials suggests that monotherapy of selective blocking of a HDAC or 

several HDACs might not be sufficient in achieving complete cell death 254, 282, 283.   

Despite the promising results in some of the pre-clinical studies, most HDACis used in 

clinical trials failed to achieve the treatment goals as single agents 254.  Monotherapy 

treatment using HDACis have shown varying antitumor activity however, with some solid 

tumours they did not show a favourable outcome.  In recent years, it has become 

abundantly obvious that HDACis are unlikely to make a substantial effect when used alone 

hence, a rational combination of therapy is largely important to induce more effective 

treatment.  In clinical trials, many of the combination therapies that were performed using 

cytotoxic chemotherapy and hypomethylating drugs have not met the regulatory approval 

yet or been adopted in clinical use 80.   

Combination treatment with DNA damaging agents or ionizing radiation has been reported 

to increase the DNA double-strand breaks and delay the tumour growth 79, 100.   SAHA 

combination with DNA damaging agent has been reported to enhance the treatment 

through upregulating the expression of Bax (a proapoptotic gene) and downregulating 

RD51, RD55, Ku70, and ku86 expression which results in suppression of the DNA repair 
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mediated by homologous recombination 79, 284.  Also, in a number of in vitro studies SAHA 

combination treatment with ionizing radiation and chemotherapy have been found to 

enhance the radio-sensitivity and promote apoptosis 79.  Combination therapy with agent 

that interfere with cell cycle checkpoints, mitosis, antiapoptotic proteins, or proteasome 

activity has also shown an encouraging preclinical effectiveness 79, 100.  Hopefully, the 

theoretical bases of HDACis in combination treatment will successfully be translated into 

more effective therapies to treat cancers in the near future.  This will offer an advantage 

over the current conventional treatment which exhibit adverse side effect on normal cells.   

The findings of this study have contributed in improving our understanding about the 

REST involvement in cancer regulation and suggested new conclusions about the 

contribution of REST expression in brain tumours.  Also, it showed that the cancer cell 

growth does not mainly depend on REST expression otherwise, the treatment of cancer 

would become more approachable with modulating a single factor.  Investigating the 

HDACis anticancer regulation in this study has provided a deeper understanding about the 

ability of HDACis to induce their effects across multiple pathways including the cell cycle, 

TNFα signalling via NFκB pathway, Myc pathways, and inhibiting cell migration.  Despite 

the relatively high tolerance of normal cell to HDACis however, this study demonstrated 

the ability of HDACis to cause considerable changes on the transcriptome level in normal 

cells.  This study provides additional evidence with respect to the effect of HDACis on 

gene regulation in health and disease. 
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5.4 Future Work 

The work presented in this thesis has potential to lead to deeper investigations of several 

molecular regulations however, they have been left for the future due to lack of time.  There 

are number of research ideas that should be considered for future works: 

The off-target effect of CRISPR/Cas9 in the KO cell clone was not examined in this study 

due to the high cost of the NGS analysis.  It is highly recommended to sequence the KO 

cell clone genome.  

The KO and KD cell clones showed a significant increase in the expression of the measured 

RE1 genes however, it has not been confirmed if the increase is caused as a results of direct 

REST modulation or due to a downstream effect.  In future work, it is highly recommended 

to re-induce the expression of REST in order to approve the direct REST effect.  

The Daoy cell line contains a subpopulation of CD133+ and CD133- cells.  In this study, 

the KO and KD cell clones were established from a single cell growth yet, it is not known 

if the cells expressing the CD133 marker.  It is highly recommended to screen the cell 

marker of the KO and KD cells using the FACS analysis.   

The findings of this study suggested that the expression of REST in the Daoy 

medulloblastoma cell line does not have a significant effect on cell growth and the cell 

continued to grow even in the absence of REST expression.  However, this conclusion was 

built on one experimental cell model which represents the SHH medulloblastoma subtype.  

It is not completely known if the other cell models would show the same cell response to 

REST modulation.  Also, it is not known if other cell lines are sensitivity to HDACis. 

The findings of this study also showed that the HDACis induced Daoy cell death 

independent of DNA fragmentation.  However, it is not known if this event was due to the 

dysregulation of the DNA fragmentation machinery in the Daoy cell or it was due to the 

ability of HDACis to induce a caspase-independent cell death.   

Due to the low sequencing depth of the scNGS data, the results did not help in exploring 

the molecular regulation of the HDACis in tumour and normal cells.  Future analysis 

should consider using high depth scNGS data in order to avoid the underrepresentation of 

genes.  In additional to the gene expression analysis, the proteomic analysis using mass 
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spectrometry analysis can be used to characterize the affinity and selectivity of HDACis 

toward HDACs multiprotein complexes. Incorporating the proteomic and the genomic 

analysis can help in systematically and confidently determine the HDACis to HDACs 

interaction specificity.  

 As the effect of HDACis on gene expression could be a direct effect of increasing the 

promoter acetylation, or it could be due to a downstream effect, the chromatin 

immunoprecipitation followed by high-throughput DNA sequencing can be used in future 

analysis to determine the entire subset of genes targeted by HDACis which could help in 

clarifying their mechanism of action and assess in predicting inhibitor efficacy.  

The results of treating the tumour cells with HDACis suggested the activation of TNFα 

signalling via NFκB pathway.  Whereas this signalling pathway is well investigated 

however, its contribution in HDACis anticancer effect remain a topic of investigation. 

In literature, the regulation and function of HDACis in nonhistone protein compared with 

HDACs are still understudied, and the involvement of nonhistone in the HDACis 

anticancer regulation has not been well investigated.  In order to gain more comprehensive 

understanding about the HDACis anticancer effect, the involvement of nonhistone proteins 

should be consider in future work.     

The question of which treatment regime is better: the selective HDACis or the pan-

HDACis remained unaddressed.  Profiling the effect of HDACis at the transcriptome and 

proteome level may help in addressing this question.    

Although the acetylation of histone tails has an effect on the stability of an individual 

nucleosome and the chromatin fibre however, it is not known if the cell death is due to the 

ability of HDACis to impair the DNA packaging regulation during mitosis.
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5.5 Final Conclusion  

In this thesis, I explored the contribution of REST, HDAC, and HDACis in 

medulloblastoma using CRISPR/Cas9 system and scNGS analysis.  The experimental 

evidence of this thesis suggests the low importance of REST expression in regulating 

tumour cell growth or inducing cell death.  It revealed also the ability of HDACis to induce 

their anticancer effect independent of HDACs recruited in REST repression.  The data 

presented in this research demonstrated the ability of HDACis to alter gene expression and 

induce a considerable effect on the cell cycle, Myc and TNFα via NFκB pathways.  The 

central theme underlying the synergism between these pathways is their ability to inhibit 

the cell cycle regulation in tumour cells.  Whatever the mechanisms involved, the data of 

my research suggest that the use of HDACis should carefully be revised even with their 

minimal side-effect in clinical trials.  

Identifying the regulatory network is not the final outcome of a study rather, it is an 

intermediate stage connecting the genotype and the epigenotype to the global cell 

behaviours.  Better understanding of the molecular networks of HDACs and the underlying 

anticancer mechanisms of HDACis and their off-target effects will certainly help in 

developing more rational HDACis treatment strategies.  The research of HDACis has 

revealed several of significant findings that collectively have improved our understanding 

in cancer tumorigenesis and will have major contribution in clinical treatment.    
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7 Appendices  

Appendix 1: Partial list of non-histone protein substrates of HDACs 

This table was adapted from60. 

Effect of 

acetylation 
Protein 

Intracellular 

function 

HDAC 

implicated 

Increased 

DNA-binding 

affinity 

p53 
Tumour 

suppressor 
 

SRY  

sex-determining region Y 

Transcription 

factor 
HDAC3 

STAT3 

signal transducer and activator of 

transcription 

Signalling 

mediator 
HDAC1, 2, 3 

GATA1 
Transcription 

factor 
HDAC3, 4, 5 

GATA2 
Transcription 

factor 
HDAC3, 5 

E2F1 
Transcription 

factor 
HDAC1 

MyoD 
Transcription 

factor 
HDAC1 

Decreased 

DNA-binding 

affinity 

YY1 

 transcriptional repressor protein 

Transcription 

factor 
HDAC1, 2, 3 

HMG-A1  

High Mobility Group 
Nuclear factor  

HMG-N2 Nuclear factor  

p65 
Transcription 

factor 
 

Increased 

transcriptional 

activation 

p53 
Tumour 

suppressor 
 

HMG-A1 Nuclear factor  

STAT3 
Signalling 

mediator 
HDAC1, 2, 3 

AR Nuclear receptor HDAC1 

ERα (basal) 
Steroid hormone 

receptors 
HDAC1 

GATA1  

GATA-binding factor 

Transcription 

factor 
HDAC3, 4, 5 

GATA2 
Transcription 

factor 
HDAC3, 5 
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GATA3 
Transcription 

factor 
 

EKLF 
Transcription 

factor 
HDAC1 

MyoD 

 myogenic differentiation 

Transcription 

factor 
HDAC1 

E2F1 
Transcription 

factor 
HDAC1 

RUNX3  

Runt-related transcription factor 

Tumour 

suppressor 
HDAC1, 5 

Decreased 

transcriptional 

activation 

ERα (ligand-dependent) 
Steroid hormone 

receptors 
HDAC1 

HIF1α  

Hypoxia-inducible factor 

Transcription 

factor 
 

Increased 

protein 

stability 

p53 
Tumour 

suppressor 
HDAC1 

c-MYC Oncoprotein  

AR Nuclear receptor HDAC1 

ERα  

Estrogen receptor 

Steroid hormone 

receptors 
HDAC1 

E2F1  

E2F transcription factor 

Transcription 

factor 
HDAC1 

Smad7 
Signalling 

mediator 
HDAC1, 3 

RUNX3 
Tumour 

suppressor 
HDAC1, 5 

Decreased 

protein 

stability 

HIF1α 
Transcription 

factor 
 

Promotes 

protein–

protein 

interaction 

STAT3 
Signalling 

mediator 
HDAC1, 2, 3 

AR 

 androgen receptor 
Nuclear receptor HDAC1 

EKLF 

 Erythroid Kruppel-like factor 

Transcription 

factor 
HDAC1 

Importin α 
Nuclear import 

factors 
 

Disrupts 

protein–

protein 

interaction 

NF-κB 

 nuclear factor kappa-B 

Transcription 

factor 
 

Ku70  

ATP-dependent DNA helicase 

DNA-repair 

protein 
 

                       Hsp90 

              heat-shock protein  
Chaperone HDAC6 
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Appendix 2: The chemical information about the used HDACis  

SAHA 

Formal Name N1-hydroxy-N8-phenyl-octanediamide 

Synonyms Suberoylanilide Hydroxamic Acid (Vorinostat) 

Molecular Formula C14H20N2O3 

Formula Weight 264.3 

MS-275 

Formal Name 
N-[[4-[[(2-aminophenyl) amino]carbonyl]phenyl] 

methyl]-3-pyridinylmethyl ester, carbamic acid 

Synonyms Entinostat, SNDX 275 

Molecular Formula C21H20N4O3 

Formula Weight 376.4 

MI-192 

Formal Name 
N-(2-aminophenyl)-4-[(3,4-dihydro-4-methylene-1-

oxo-2(1H)-isoquinolinyl) methyl]-benzamide 

Synonyms Has no other names  

Molecular Formula C24H21N3O2 

Formula Weight 383.4 
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122 Apicidin 

Formal Name 
cyclo[(2S)-2-amino-8-oxodecanoyl-1-methoxy-L-

tryptophyl-L-isoleucyl-(2R)-2-piperidinecarbonyl] 

Synonyms OSI 2040 

Molecular Formula C34H49N5O6 

Formula Weight 623.8 

Valproic Acid (sodium salt) 

Formal Name 2-propyl-pentanoic acid, monosodium salt 

Synonyms 
2-Propylvaleric Acid                                        

Sodium Valproate 

Molecular Formula C8H15O2 • Na 

Formula Weight 166.2 
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RNA-seq approach four time-points were suggested to generate snapshots of the 

treatment response (1st Untreated, 2nd At the start of expression of cell apoptosis, 3rd 

A middle point: the start of the apoptosis & apoptosis, 4th When cell death >40%).  

With the second time point, I suggested to use an apoptotic marker that could indicate 

the initiation of the apoptosis mechanism.  After a thorough search for an appropriate 

maker for apoptosis initiation I found that BIM gene expression could be the most 

potential marker.  Bim is essential protein for initiating intrinsic apoptosis pathway 

due its ability in activating most anti-apoptotic proteins and involvement in 

recognising a large number of apoptosis stimuli under many normal and disease 

conditions.  Bim expression has been detected in a wide variety of tissues including 

brain, liver, heart, lung, kidney in additional to hematopoietic cells and several of 

other tissues 287.  Normally, Bim expression level is low and increases with the 

stimulation of cell death.  Increase Bim expression has been reported to deactivate 

most anti-apoptotic proteins of BCL2 superfamily and activate Bax and Bak pro-

apoptotic factors leading to increase the permeability of mitochondrial outer 

membranes 288.  Where, knocking-out Bim expression results in decrease apoptosis 

though, it does not induce a major effect on cell survival 289.  In addition, it has been 

reported that blocking Bim expression resulted in stopping Bax activation 226. 

Uncontrolled expression of Bim is typically associated with increase in cell damage 

and it has been connected with neurodegenerative diseases, diabetes, and liver 

damage.  Bim expression is tightly regulated at transcriptional, translational and post-

translational levels, which may ensure a sensible activation of Bim when required 

287. 

It should be noticed that using the increase in the acetylation level to identify a time-

point is also not indicative as it causes wide variations in gene expression that are not 

necessarily represent the cell response or the anticancer mechanism of the inhibitors. 

 

Appendix 3: The proposed plan for gene expression analysis using bulk NGS 
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Appendix 4: NGS Experimental Considerations  

In optimal condition of cell culture, there are several biological variations that present on 

many levels and could limit the ability of the bulk cell analysis to uncover the molecular 

regulations.  One of the factors is the cell cycle effect which results in heterogeneity within 

an identical cell population.  The cell cycle has a strong and timely association with gene 

expression and showed a considerable variation in total transcript number between the 

phases 243.  For example, G1 subpopulation of cells is often characterized by low total 

transcript level with a downregulation in most of the proliferation associated genes 243.  The 

variation in transcript numbers often results in altering the response to the internal and 

external singles and could lead to change the path of cell proliferation or differentiation 

243.  RNA-seq analysis of pooled cells typically generate average gene expression of 

different subpopulations especially and the tumour cells are in a continuous transition 

throughout the cell cycle phases.  Cell synchronization (bringing the cell to the same phase 

of cell cycle) could be suggested as a possible solution to overcome the cell cycle effect 

though, the cells are often lose the synchrony when progressing through the G1 phase and 

thereby they become less synchronous in other phases 285.   

Another possible biological factor with tumour cell lines is that with each cell division 

there could be additional mutations that were not present in the precursor cell.  With 

continuous growth of a cell line there inevitably an accumulation of additional mutations 

within a single cell that could advantage the growth of a particular cell, promote 

heterogeneity, and ultimately could change the treatment response.   

Up to date, most of our knowledge in understanding the anticancer effect of HDACis came 

from studies that averaged data from mixed populations of cells.  Such data are largely 

affected by the proportion of the cells at different stages of cell growth which may affect 

detecting some important molecular regulation.  
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Appendix 5: The Suggested Time-points for the Bulk NGS analysis and how they 

could be used to address the molecular mechanisms 

With such approach a time-course treatment should be done in order to give snapshots for 

the molecular changes that happen during the treatment.  Though, the selection for these 

time-points should be grounded on specific cellular response or markers as the arbitrary 

selection may not show the initiation or downregulation of certain cellular mechanisms. 

Several of previous works were performed using random time-points of treatment yet, the 

findings did not help in addressing the mechanism of action of HDACis. 

• Fist time point Untreated (2 samples, DAOY, Control)  

This will represent the default genes expression for each cell line.   

➢ Including these samples will help in  

❖ Comparing the results of treated cell to untreated cell of the same cell line will be 

used to study: 

▪ the variation in genes expression before and after treatment.  

▪ the acetylation difference between different inhibitors 

▪ understand why some inhibitors are more efficient in blocking tumorigenesis than 

other  

▪ identifying the cellular mechanisms that prompt the cell death for these inhibitors 

❖ The cross- analysis between the DAOY and the control will help: 

▪ validate and support the results of DAOY cell data analysis 

▪ understand the mechanism that trigger apoptosis in DAOY  

▪ understand how cancer cells sustain their proliferation  

▪ how cancer cell and normal cell responses to HDACis 

▪ understand if deacetylation is one of the cancer growth mechanism and how cancer 

cell induces deacetylation mechanism 

❖ Control cancer vs. control normal  

▪ illustrates the effect of HDACis on normal cell 

▪ describes how can normal cell resist the effect of hyperacetylation 

(Hyperacetylation Rescue Mechanism)  

▪ suggests the possible side effect of HDACis treatment    
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• Second time point: At the start of expression of cell apoptosis genes (8 samples: 

3 DAOY+ 3Control + untreated DAOY and Con) 

There will be large changes in genes expression though, I need to focus on how the 

HDACis stimulate the apoptosis.  So, I need to focus on the genes that have high DGE 

though they are more related to apoptosis regulation.  This time point could show initial 

signal that stimulate the apoptosis. Though it is very difficult to know what is it. 

Comparing the expression between the control and the tumour will help in identifying this 

time point.  

❖ DAOY: shows the apoptotic pathway that is involved in cell death, also it will help in 

identifying the difference in hyperacetylation effect between the inhibitors  

❖ Control: shows the effect of HDACis on genes expression in normal cells  

❖ Untreated cells: as all the cells are actively dividing cell, the genes expression levels 

will be different during their proliferation.  Therefore, this control may help in 

understand the expression profile of the treated cells 

• Third time point: A middle point between the start of the apoptosis and 

apoptosis (8 Samples:  3 DAOY+ 3 Control + untreated DAOY and Con) 

❖ DAOY: the regulation that initiates the apoptosis  

❖ Control: the regulation that rescue the against the hyperacetylation, if there is any, or 

there is not regulation and differentiation of the cell protect it from cell death.  Check 

the expression of DNA repair and other genes families.  

• Fourth time point: At the initiation of caspases (point of no return) (8 Samples:  

3 DAOY+ 3 Control + untreated DAOY and Con) 

❖ DAOY: the regulation of apoptosis mechanism  

❖ Control: understand the rescue mechanism or the faith of normal cell  

Stage 5: NGS Results validation  

Western blot and qPCR will be used in order to validate the finding of NGS analysis.   

The limitation of Bulk NGS analysis  

➢ HDACis may induce their action through non-histone proteins  
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➢ In culture plate each cell has a different stage of cell cycle, therefore, they will show 

different genes expression between replicates. 

It could be reduced by synchronize them. For example, using colcemid to as arrest them 

in metaphase stage and then release them however, the cells may lose their synchronisation 

after a few hours.   

➢ The differential gene expression of HDACis may represent the acetylation effect and 

not the cell response to maintain the balance between the acetylation and deacetylation, 

or to stimulate apoptosis.  

➢ Identifying the treatment time is very critical though, it is difficult to identify exactly 

when the cells start to response to the effect of HDACis (Hyper-acetylation). 

➢ As cancer cells are polyploidy and they have large number of mutations, it not easy to 

map all the results of the NGS to the Ref-seq. 

➢ During the data analysis: there will be a large number of genes that show high 

differential gene expression though, they are not related to the cell response to HDACis 

which may make identifying the regulation that control normal cell response very 

difficult. 

➢ Points to consider: 

➢ Acetylated gene expression response: very changeable, the high or the low gene 

expression variation represent the acetylation effect and not the cell response to 

maintain the balance between the acetylation and deacetylation.  

➢ When the cell started to response to correct the hyper-acetylation effect: could be 

early or late, and to identify the time I may measure the expression of the genes that 

regulate the HDAC and HAT genes expression. 

➢ Identify the hyper-acetylation rescue mechanism: is time dependent, and can be 

identified by genes expression. 

➢ As measuring acetylation alone will show the effect of the inhibitors and histone 

modification, and does not represent if the cells started to correct the hyper-acetylation. 

Genes expression could be the alternative to identify the cell correction response. However, 

not all expression variation is indicator for the rescue mechanism.  Some genes are very 

sensitive to acetylation and their expression is increased or decrease by more than 8 folds 

though, I cannot use them as the change in their expression is not a correction mechanism.  
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Appendix 6: Western blot of REST protein (Complete image)  

  

The blot shows the complete image of the anti-REST antibody western blot analysis.  

According the manufacturer’s information, the anti-REST antibody (OriGene, TA330562) 

is a synthetic peptide towards the middle region of human REST.   Previously, I have tried 

to identify the immunoreactive bands with the help of one of my co-supervisors however, 

we could not identify which isoform an immunoreactive band is related to.  Similarly, Chen 

et al., 2018 162 have concluded the following:  

“Unfortunately, despite the mRNA evidence, not all REST protein isoforms have been 

experimentally verified and they are usually observed as unexpected sizes due to post-

translational modifications, making it challenging to determine whether an unknown 

immunoreactive band is non-specific or a REST isoform. For example, REST4 and RESTC 

(a new REST isoform that is not much known about it) are predicted as 37 and 86 kDa yet, 

they were observed as 53 and 130 kDa, respectively, while the full-length REST has been 

reported as variable sizes ranging from 120 to 200 kDa. So, even if detectable by WB, 

specific REST isoforms might be simply considered as non-specific and excluded from 

being presented in publication, such may explain why RESTC was not reported until 

recently” 162.   
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Appendix 7: REST mRNA expression in the KO cell clone 

 

Interestingly, the KO mRNA was included in this reaction and it did not show any 

significant reduction in the transcriptional level ( 

 

Figure 23).  The expression of REST mRNA in the KO reaction could be due to the 

presence of a truncated form of REST mRNA which it possibly generated by splicing out 

or deletion of the edited exon 2 during the transcription.  This truncated mRNA can be 

degraded by nonsense-mediated decay or by blocking the access of the ribosomes during 

the translation 286.  However, the   Thus, the qPCR analysis may not accurately represent 

the functional effect of CRISPR/Cas9 modulation in the KO cell.   
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Appendix 8: Cell migration assay analysis images  

 0h 24h Closure (%)  

Daoy 

  

 

 70% 57% 13% 

KO 

  

 

  72 % 64 % 7% 

Scra

mble 

  

 

 56 % 37 % 19 % 

KD 

  

 

 49 % 42 % 7 % 
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Emp

Vec 

  
  

 

 63 % 44 % 19 % 

 

 

 

 

Appendix 9: shRNA and TUNEL Assay Images of Kamal et al, 2012 Study  

The above images were taken from Kamal et al, 2012 study to demonstrate the level of 

shRNA knockdown and the apoptosis identified.  These images were used here as a 

reference for the reader only.  
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Appendix 10: scNGS Cell Sorting (BD FACSDiva) 
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Appendix 11: The neurons gene list that were used to identify the cells identity 

N.Vehicle 

0 Striatum.Late.Infancy 2.70E-31 
Striatum.Late.Infancy : BLOC1S1, RPS29, NDUFA4, UQCRB, RPL7, FAU, RPS12, RPS20, RPL35A, 

C12ORF57, RPL37, RPS18, RPL32, RPS27A, RPS5, RPL34, RPL30, RPL38, RPS10, RPL23, RPL28, 

RPL27A, RPL18, PFDN5, RPL31, RPL12, RPL23A, RPL9, RPS7, RPL24, RPS14, RPS28, SSR4, RPS24, 

RPLP1, RPL39, RPL27, RPS23, RPL11, RPS15A, RPL26, RPS27, RPS9, RPL36, RPS8 

1 Cortex.Early.Mid.Fetal 3.55E-34 

Cortex.Early.Mid.Fetal : CTTNBP2, BCL7A, HMGCR, SIAH1, NELL2, FAM110B, DAB1, SATB2, 

CDK5R1, CD24, YTHDF2, DOK5, GNAI1, DAAM1, WASF1, MARCKSL1, KLF6, WDR47, FRMD4B, 

TNPO1, PTP4A1, CHL1, SLA, RNF219, MEF2C, SCN3A, SLC38A1, TNIK, CXADR, KIDINS220, 

CRMP1, FAM13A, REEP1, BRD3, NEUROD6, ITSN1, STMN2, CSRP2, KLF7, RUNX1T1, NEUROD2, 

ZNF195, RNF182, SLC37A3, BHLHE22, NCAM1, NHSL1, SRGAP1, PDIK1L, PAK2, EPM2AIP1, 

GNG2, MAPK8, BCL11A, MAPT, BZW2, MLLT3, FNBP1L, FSD1L, VCAN, CCDC112, MAP1B, 

KBTBD6, SOX11, ZNF300 

2 Cortex.Early.Mid.Fetal 1.03E-09 Cortex.Early.Mid.Fetal : TCF4, CTTNBP2, SLA, CXADR, KIDINS220, MLLT3, NFIB, LBH, MEIS2, 

DCX, SEMA3C, MAPT, FAM13A, NEUROD2, SOX4, AUTS2, SOX11 

3 Striatum.Early.Fetal 
2.45E-

166 

Striatum.Early.Fetal : SMC1A, H2AFX, BUB3, LMNB2, G3BP1, TOX3, CEP57, TMX1, ANP32E, 

NCAPG, IPO5, ECT2, NRM, CKAP2, RNASEH2B, PLK1, DBF4, UHRF1, TCF12, HAUS8, ERI2, 

UBE2C, PAICS, DTYMK, RNF138, KIFC1, OIP5, BUB1B, HAT1, HNRNPK, CTNNAL1, SNRPB, 

CBX5, FAM83D, RAD21, KIF14, AURKA, CENPN, NKAIN3, PRR11, CDK2, MCM3, UBE2T, CDH2, 

ASF1B, ARRDC3, FSTL1, MPHOSPH9, DLGAP5, CDK5RAP2, ARHGAP11A, TK1, HMGN2, 

RAD51AP1, PSMC3IP, TMEM97, ZFP36L2, PHF19, TMEM123, ACTL6A, FAM111A, BRCA2, CKS1B, 

CCDC18, PMAIP1, CEP135, PPP1CC, MPPED2, RFC3, TUBB6, ZNF273, MCM5, CYR61, LBR, 

BRCA1, ASPM, KIF2C, CDK4, TROAP, H2AFV, SYNE2, HJURP, POLD3, BTG3, CNTLN, RAD18, 

CENPE, SMC3, SASS6, BLM, PSRC1, RFC5, CENPV, DNAJC9, SSRP1, BARD1, NAP1L1, RRM1, 

MCM7, UBA2, SMCHD1, PRKDC, BRIP1, HNRNPF, KIF22, HMGN1, E2F1, ELAVL1, NASP, 

DEPDC1, FANCI, ATAD2, ERI1, FBXO5, PHIP, C4ORF46, GTSE1, MELK, CHD1, KIF23, NUSAP1, 

CLIC1, CHAF1A, PPAT, RCC1, PCNA, PBK, PPM1D, QSER1, HELLS, HNRNPU, TRAIP, CDC20, 

MTHFD2, CKS2, DONSON, INSM1, HMMR, GINS2, ARL13B, RRM2, MAD2L1, HNRNPR, HMGB2, 

PRC1, SMC2, TOPBP1, VRK1, GMNN, POLA2, TACC3, ERLIN1, CDCA5, G2E3, SCML1, CDCA3, 

PTTG1, H2AFZ, SUPT16H, EXO1, CCNE2, ITGB3BP, SMARCA5, MASTL, HNRNPA3, ASCL1, 

HIST1H4C, CBX3, NCAPH, DTL, HES6, CENPA, SERTAD4, TOP2A, FANCD2, DEPDC1B, NFATC3, 

RBBP4, RBBP8, FAM111B, ATAD5, USP1, DHX15, CENPK, RBMX, N4BP2, ZFP36L1, CDCA7L, 

CCDC15, CHEK1, CHAF1B, NUDT1, RDX, HMGB1, CDC6, ZNF43, CDCA2, TMPO, UBE2S, NVL, 

H2AFY2, IGFBP2, CDC25C, ESCO2, DEK, ZWILCH, TIMELESS, NDC80, CENPH, CEP152, CHEK2, 

HAUS1, CENPM, SPC25, DSN1, RTKN2, SOAT1, MCM10, KPNA2, GAS2L3, KIF15, PTBP1, MCM2, 

TMSB15A, FOXM1, GEN1, SMC5, CLSPN, TCF19, WDHD1, PBRM1, NCAPG2, KIF4A, HMGXB4, 

RFC4, SOX2, CDC25B, CCDC14, WDR34, TPX2, NUF2, HMGB3, CDCA4, CKAP2L, CCNA2, MCM4, 

BAZ1A, ARL6IP6, CASP8AP2, HDAC2, HAUS6, CCNB2, TYMS, LMNB1, KIF11, CCNB1, CENPF, 

WDR76, KIF20B, SHCBP1, ODC1, NEK2, NEDD1, C21ORF58, SPAG5, CDKN3, MEST, CDC7, 

CORO1C, EZH2, CDT1, CDCA8, DIAPH3, AURKB, MKI67, BIRC5, ZWINT, PTAR1, SMC4, ID4, 

MXD3, BUB1 

4 Amygdala.Late.Fetal 2.15E-26 

Amygdala.Late.Fetal : ARX, NRG1, SFRP1, NKAIN3, TNC, CA12, ASCL1, PLAGL1, SDCBP, MSI1, 

SOX9, CHRDL1, PSAT1, SOX2, DDIT4, SLC35F5, LHX2, RPS18, MOXD1, SORD, SLC16A1, FABP7, 

EEPD1, TMTC4, HSPA6, GNG5, SOX6, GPX3, TRAM1, GATM, RPS2, TSPAN6, PTPRZ1, TFAP2C, 

CPNE3, ABHD3, LOX, SLC1A3, COL11A1, GPC4, LIFR, SLC16A9, LITAF, HMOX1, CDO1, PRSS23, 

HSPA1B, GNG12, GPR137B, MSN, HOPX, CD164, CDCA7L, ZFP36L2, LRRC3B, FABP5, CXCR4, 

PEA15, MFGE8, PHLDA1, DMRTA2, FSTL1, TMEM123, MDK, CNN3, CMTM6, ITGB8, TMEM98, 

PON2, PDPN, PALLD, LEPROT, TSPO, SDC2, CARHSP1, TAGLN2, TGIF1, VIM, PYGL, NCAN, 

ZFP36L1 

5 Striatum.Late.Infancy 4.57E-38 
Striatum.Late.Infancy : RPS29, RPL7, FAU, RPS12, RPS20, RPL35A, RPL35, RPL37, RPS18, COX7C, 

RPL32, SERF2, RPS27A, MYL6, RPS5, RPL34, PHPT1, DBI, CD63, RPL28, RPL27A, RPL18, RPL31, 

S100A11, S100A6, RPL12, RPL23A, CLIC1, RPL9, RPS7, RPL24, RPS14, RPS28, RPS24, RPLP1, 

RPL39, RPL11, FTL, RPS23, B2M, LGALS1, RPS15A, RPL30, MT3, RPL26, RPS27, RPS9, RPL36, RPS8 

N.SAHA 

0 Cortex.Early.Mid.Feta 0.049 Cortex.Early.Mid.Fetal : TCF4, KLF6, SOX4, SOX11 

1 Cortex.Late.Infancy 0.054 Cortex.Late.Infancy : RPL31, SCG3, SNRPG, RPL27, RPL41, GTF3A, C1ORF61, RPL9, HSPB11, RPS27, 

ARC, RPL39, UBL5, UQCRQ, COX7B, NDUFB6 

2 Striatum.Late.Infancy 0.066 Striatum.Late.Infancy : FTL, MT1E 

3 Amygdala.Late.Infancy 
2.105e-

13 

Amygdala.Late.Infancy : RPS27L, RPL7, RPS20, RPL35, MT1X, S100B, DBI, SERF2, MT1E, RPL34, 

SAT1, MT3, PFDN5, RPL31, S100A11, S100A6, RHOC, RPL9, RPS28, RPL39, FTL, RPL27, LGALS1, 

MT2A, RPS27, LGALS3, RPL36 

N.MS-275 

0 Cortex2.Early.Mid.Fetal 5.52E-08 Cortex.Early.Mid.Fetal : TCF4, ID2, SLA, MLLT3, RND3, FRMD4B, SOX4, FAM126A, ARL4D, SOX11 

1 Striatum1.Late.Infancy 6.54E-07 
Striatum.Late.Infancy : FTL, S100A11, S100A6, IGFBP7, CLDN10, LGALS1, CD63, CST3, TIMP1, 

MT2A, DBI, SERF2, B2M 

2 Cortex1.Early.Mid.Fetal 1.42E-08 
Cortex.Late.Fetal : SLA, NELL2, MLLT11, CD24, CCNI, STMN1, PTPN2, MARCKSL1, TUBA1A, 

MEF2C, TRAF4, PAFAH1B3, CXADR, SRM, CRMP1, NEUROD6, CSRP2, GPM6A, RTN1, RPRM, 

RAC3, TUBB, RASL11B, PTP4A1, NEUROD2, BZW2, STMN4, STMN2, MAPK8 

3 Striatum2.Late.Infancy 1.77E-54 

Striatum.Late.Infancy : RPS15A, RPS29, NDUFA4, UQCRB, GSTK1, RPL7, FAU, RPS12, RPS20, 

RPL35A, RPS27L, RPL35, MT1X, IFITM3, UQCRQ, COX7C, RPL32, SERF2, RPS27A, MYL6, MT1E, 

RPS5, RPL34, PHPT1, RPS27, DBI, RPS10, RPL37, RPL23, COX5B, TIMM8B, RPL27A, RPL38, SAT1, 

RPL18, GUK1, PFDN5, RPL31, S100A11, S100A6, RPL12, RPL23A, RHOC, CLIC1, RPL9, RPS7, 

RPL24, SNRPD2, RPS14, RPS28, IFI27L2, RPS24, RPLP1, HSPE1, RPS18, RPL28, FTL, RPL27, RPL11, 

LGALS1, MT2A, ANAPC11, RPL30, MT3, RPL26, RPS21, MYL12A, RPS9, UBL5, RPL36, RPS8, 

COX7B 

4 Amygdala.Late.Fetal 1.37E-16 

Amygdala.Late.Fetal : SFRP1, TNC, CA12, SDCBP, CXCR4, DDIT4, RHOBTB3, LHX2, GPX3, 

SLC16A1, PSAT1, SOX9, CTBP2, SLC40A1, TRAM1, GATM, F2R, TSPAN6, MEIS2, PTPRZ1, CPNE3, 

MMP2, ABHD3, LOX, SLC1A3, GPC4, COL11A1, SRP9, LIFR, LITAF, HSPA6, PRSS23, GNG12, 

GPR137B, CNN3, CD164, CDCA7L, CCND2, ZFP36L1, ARL6IP6, ADD3, PEA15, MFGE8, PHLDA1, 

PTTG1IP, FSTL1, TMEM123, MDK, CMTM6, ITGB8, TMEM98, PON2, PALLD, LEPROT, SDC2, 

SOX2, TGIF1, VIM, NCAN, MOXD1 

 


