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Abstract 

Cooling demand for indoor thermal comfort is expected to increase as hot days are 

increasing in temperature and becoming more frequent across the globe. As urban 

residential buildings and neighbourhoods are increasingly subject to such excessive heat 

events, urban dwelling can become vulnerable to heat stress if the cooling demand 

cannot be met for reasons such as power outages or summer fuel poverty. This thesis 

investigates how data-driven peak cooling energy demand modelling can be developed 

for assessing heat stress vulnerability (HSV) of a city’s residential building (dwelling) 

stock in the future climate. The hypothesis is twofold: (1) that the predicted future indoor 

peak cooling demand (PCD, kWh/m2) can serve as a heat stress vulnerability (HSV) 

indicator of a city’s dwelling stock on the grounds that higher PCD demands will lead to 

higher HSV levels, (2) that potential HSV of the current stock composition can be 

assessed according to the predicted peak cooling loads required to restore the estimated 

indoor thermal conditions to acceptable thresholds. The purpose of subjecting a city’s 

dwelling stock to the PCD-based HSV assessment is to identify segments of the dwelling 

stock with higher HSV levels that may require urgent actions of adaptation through 

renovation or replacement. The thesis presents a modelling framework and then applies 

it to Seoul's high-rise apartment stock using the multiple data sources available for 2014-

2050 including Seoul’s climate projections under RCP4.5 and RCP8.5. The HSV 

assessment outcome is presented as relative rankings among the six apartment 

archetypes in the 18 city-district residential neighbourhoods in Seoul. The implications 

of the findings are discussed as inputs to what, where and how adaptation and mitigation 

strategies could be developed for the neighbourhoods identified, leading to a significant 

reduction of peak cooling demands while remaining satisfactory to dwellers’ thermal well-

being as a priority.  
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1.1. Research background 

Facing warming temperatures and more extreme weather events, there is increasing 

concern about the likelihood of increasing cooling demand in urban dwelling leading to 

indoor thermal discomfort, heat-related illness and even mortality (McMichael et al., 2006; 

De Wilde and Coley, 2012). This is particularly important to urban dwellers, considering 

the compounding effects of ageing population, intensified urban heat islands, and 

increased frequency of urban heatwave episodes. It can be devastating for the urban 

population if peak-cooling demands cannot be met even for a short period of time.  

Historically, many parts of the world have already experienced unexpected heat-related 

risks caused by events such as heatwaves, resulting in mortality and morbidity. The 

heatwave in Chicago in 1995 caused 700 excess deaths in only one week (Whitman et 

al., 1997), and 70,000 excess deaths were linked to the heatwave in Europe in 2003 

(Robine et al., 2007), including 2,000 in the UK alone (Johnson et al., 2005) and 15,000 

in France (Fouillet et al., 2006). In South Korea, about 4.1% of increased excess deaths 

were observed to be related to heatwaves across the seven major cities from 2000-2007 

and it reached up to 8.4% in Seoul (Son et al., 2012).  

Those irregular and extreme events are not that far removed from human activities. The 

latest global scientific consensus of climate change reported that the largest contribution 

to climate change is the increase of atmospheric CO2 concentrations and it is mainly 

caused by anthropogenic activities since 1750, preindustrial condition (IPCC, 2013). 

Consequently, it was predicted a substantial increase of the global average surface 

temperature by 2100. Depending on model scenarios (i.e., representative concentration 

pathways, RCP), the range of temperature change for 2081-2100 relative to 1986-2005 

was projected to likely be 0.3oC to 1.7oC (by RCP2.6), 1.1oC to 2.6oC (RCP4.5), 1.4oC to 

3.1oC (RCP6.0) and 2.6oC to 4.8oC (RCP8.5). Moreover, the intensity, frequency and 
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length of heatwaves were predicted to increase (Meehl and Tebaldi, 2004; Jones et al., 

2008; Perkins et al., 2012). Particular attention must be paid on a regional scale. Those 

estimates are not even over land regionally. For instance, in South Korea under the 

downscaled MM5 mesoscale model developed by Grell et al. (1994), the temperature for 

the summer period of 2071-2100 is predicted to increase up to 5.5oC relative to 1991-

2000 (Boo et al., 2006). In the UK, the mean daily maximum temperature was predicted 

to increase by 5.4oC in Southern England and by 2.8oC in Northern Britain in 2080 

according to the UKCP09 (Murphy et al., 2009). Furthermore, the regional specific land 

cover exacerbates the effect of global climate change. Urban heat island (UHI) is a good 

example. The effects of UHI were widely observed in many cities with the increased 

range of 5oC to 11oC when compared to the surrounding rural areas (Aniello et al., 1995; 

Knight et al., 2010; Tomlinson et al., 2012). Especially, in the urban context, the surface 

temperature of dark albedo materials such as asphalt pavement could reach up to 30-

40oC higher than the immediate atmospheric temperature (Frumkin, 2002).  

Under these circumstances, many researchers highlighted the need for better 

understanding of how climate change impacts human health (Patz et al., 2005; 

McMichael et al., 2006; O’Neill and Ebi, 2009; Portier et al., 2017). Patz et al. (2005) and 

McMichael et al. (2006) broadly reviewed the connected chain effects of climate change 

on human health, including direct and indirect heat related risks. Recently, Portier et al., 

(2017) reported around 11 broad health-related categories to be influenced by the 

change in climate including even heat-related mental stress disorders. Especially, Patz 

et al. (2005) highlighted that such studies must be carried out on a regional-scale of 

spatial resolution in early summer of temporal scope when people have not yet become 

accustomed to the increased temperature. O’Neill and Ebi (2009) identified a number of 

vulnerable subgroups to temperature extremes within the urban population of the U.S.A. 

under the existing climate change projections: the poor, the elderly, children and the 
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impaired. They also suggested the inclusion of a wide range of parameters in projecting 

future impacts on human health: i.e., estimates of length and strength of extreme 

temperature; nonfatal heat related sickness; the effect of UHI with urban planning. 

Consequently, over the past few decades, many studies have been carried out to 

estimate how climate change impacts human health in the future regionally, as excess 

deaths were clearly related to extreme temperatures and the duration of the exposure 

(Hajat et al., 2002). In the UK, all regions were observed to have the potential to be 

exposed to heat-related risks and the related deaths were predicted to increase by about 

257% by the 2050s relative to the current annual baseline of about 2000 deaths (Hajat 

et al., 2014; Hames and Vardoulakis, 2012). Across seven major cities in South Korea, 

the heat-related (temperature-attributable) mortality ratio (MR) was projected to increase 

by 1.53 (under RCP4.5, temperature rise by 2.83oC) and by 3.30 (under RCP8.5, by 

5.10oC) by the 2090s relative to baseline of 1991-2015 deaths (MR=1.00) (Lee et al., 

2018). In Canada, more than double the amount of casualties from the present level was 

predicted by 2050s and tripled by 2080s (Cheng et al., 2009). For other countries and 

cities, Huang et al. (2011) summarised the regional impacts of climate change on human 

health. 

Although most heat-related risk projections were developed on the basis of 

epidemiological studies in the relationship between external temperature and excess 

deaths, there is lack of evidence in the link between the heat related deaths and indoor 

thermal environment (Vardoulakis et al., 2014; 2015). Moreover, those heat-related risk 

projections encompass a wide range of risk factors leading to mortality. Thus, better 

understanding of the process of heat risk and the factors is crucial in order to identify the 

specific point for establishing intervention of potential heat risk in future years. The 

“casual chain” from heat exposure to heat death is well-documented by Kovats and Hajat 

(2008). For instance, the “casual chain” is composed threefold: “Heat” affects “Heat 
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stress” with factors affecting exposure; then, “Heat stress” leads to “Heat illness” with 

factors affecting sensitivity to given heat exposure; finally, “Heat illness” results in “Heat 

death” with factors affecting access to treatment. This shows that the starting point in 

assessing potential heat risk on human health must be “heat stress”.  

Moreover, the factors of heat-related risk on human health include a large number of 

determinants. Kovats and Hajat (2008) also summarised the determinants of heat-

related mortality and morbidity with six categories as following:  

 Age and Aging: heat vulnerability to old age by rapid changes in thermoregulatory 

system (i.e., Flynn et al., 2005; Grundy, 2006; Thomas and Soliman 2002) 

 Clinical or Pathophysiological factors: i.e., people with depression (Stafoggia et 

al., 2006) and with diabetes (Schwartz, 2005) 

 Living in Institutions: i.e., the elderly (+75) living in retirement homes in France 

(Fouillet et al., 2006) and people living in nursing homes and care homes in the 

UK (Hajat et al., 2007) 

 Housing characteristics and air-conditioning: i.e., poor thermal envelop and 

inefficient natural ventilation system in residential building (Mirchandani et al., 

1996; Vandentorren et al., 2006); lack of air-conditioning (Klinenberg, 2002) 

 Socio-economic factors: i.e., deprivation in cities, such as low-income groups 

(Michelozzi et al., 2005) 

 Urban Heat Islands: i.e., Kunkel et al., 1996; Watkins et al., 2002 

Heat itself is a known source of present and future environmental hazards. Looking 

beneath those factors of heat-related risk as described above, all of them cannot be 

separated to populations who live in urban areas. People spend the majority of their life 

indoors: over 90% in developed countries alone (Harrison et al., 2002; Lat et al., 2004; 

Vardoulakis, 2009; Vardoulakis et al., 2015) and 66% of their time is spent in their homes 
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in particular (i.e. UK, Schweizer et al., 2007). Especially, the proportion of vulnerable 

groups staying in their homes could be much higher (Torfs et al., 2008). Moreover, public 

awareness of extreme heat occurrence and the related risks were shown to be 

insufficient in a recent survey in New York (Lane et al., 2014), which may worsen the 

adversary effects of heat-related risk on the urban population. Therefore, it is important 

to investigate urban dwelling’s indoor thermal environment in the future as one of the key 

interventions of any potential heat risk (Hacker et al., 2005; Vardoulakis et al., 2015). 

Different from other building sectors, household’s end-use energy consumption is highly 

user-specific, determined by multiple factors such as residents’ socio-economic 

circumstances, indoor thermal conditions resulting from interaction with urban 

microclimates, and energy use behaviours. For instance, as shown in the characteristics 

of urban dwelling’s cooling energy use presented later, there appeared to be clear spatial 

variations in the metered residential cooling energy uses during the summer period of 

previous years across Seoul’s city districts, and such variations were predicted to widen 

over the timeframe of climate change projections (see Chapter 4 for more detail). The 

cooling energy use data suggests that there can be substantial differences in individual 

households’ indoor thermal conditions and therefore, there can be varying levels of 

indoor heat exposure experienced by the residents. As urban residential buildings and 

neighbourhoods are increasingly subject to excessive heat events, urban dwelling can 

become vulnerable to heat stress if cooling demand cannot be met for reasons such as 

power outage or summer fuel poverty. Thereby, this thesis defines “Heat stress 

vulnerability” as an indicator in assessing urban dwellings’ potential heat-related risk 

according to the predicted peak cooling loads required to restore the temperature 

thresholds of indoor thermal conditions which are acceptable and agreeable to dwellings’ 

populations.  
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1.2. Aims and objectives 

 Research aims 

This thesis investigates how data-driven peak cooling energy demand modelling can be 

developed for assessing heat stress vulnerability (HSV) of a city’s residential building 

(dwelling) stock in the future climate. The hypothesis is twofold: (1) that predicted future 

indoor peak cooling demand (PCD, kWh/m2) can serve as a heat stress vulnerability 

(HSV) indicator of a city’s dwelling stock on the grounds that higher PCD demands will 

lead to higher HSV levels, (2) that potential HSV of the current stock composition can be 

assessed according to the predicted peak cooling loads required to restore the estimated 

indoor thermal conditions to acceptable thresholds.  

The question therefore is how indoor thermal conditions and peak cooling demands of a 

city’s dwelling stock in future climate might be modelled, assuming no housing stock 

adaptation. If the indoor thermal conditions of dwelling units could be estimated through 

empirical data modelling combined with contextual building energy simulation, the peak 

cooling demands could be estimated in terms of the amount of cooling energy required 

to bring the indoor thermal conditions down to some threshold cooling temperature set 

points agreeable or acceptable to the dwelling population.  

The purpose of subjecting a city’s dwelling stock to the PCD-based HSV assessment is 

to identify neighbourhoods of the dwelling stock with higher HSV levels that may require 

urgent actions of adaptation through renovation or replacement. The expectation is that 

sustainable urban dwelling stock management will take well-informed measures to 

reduce peak cooling energy demands while meeting the population’s thermal well-being 

requirements and hence lowering heat stress vulnerability. The city of Seoul was chosen 

as a test case study. The goal is to be able to quantify the potential heat stress 



Chapter 1. Introduction 

 

 

8 
 

vulnerability of Seoul’s dwelling stock over the timeframe of climate change projections. 

To achieve the research aims, multiple objectives are further carried out as presented: 

 

 Research objectives 

Objective 1 

The first objective is to investigate characteristics of historical residential cooling energy 

use through several statistic relational analyses within different temporal and spatial 

resolutions to understand its’ relationship with other relevant multiple factors (Chapter 4).  

Unlike other building sectors, residential cooling energy use highly depends on 

household-related factors such as socio-economic circumstances and energy use 

behaviours for cooling under the interaction with building thermal environments. This 

represents that the knowledge of dwellers’ cooling energy use behaviour is essential in 

housing stock energy modelling. However, obtaining such user-related information 

through a completed survey in an urban context is challenging. In the absence of this 

reliable knowledge, this thesis investigates the characteristics of historical cooling energy 

use to explore possible knowledge of households’ user-related information. 

The hypothesis is that the datasets of households’ cooling energy use contains their 

historical cooling energy use behaviours determined by their own circumstances in 

responding to external and internal climates. To confirm this, several statistic relational 

analyses between residential cooling energy use and other relevant multiple factors are 

carried out in different summer months (July – September) and different spatial scales 

(city vs. neighbourhood). The expectation is that if a certain spatial resolution of 

neighbourhood can capture the homogenous datasets of multiple factors (energy flow 

pathways) affecting peak cooling energy use, the housing archetype can be developed 
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within that boundary scale with reduction of uncertainties in terms of representativeness 

to housing stock. Hence, the urban housing stock energy modelling will take well-

informed knowledge that enables one to outline detailed modelling techniques for the 

purpose of assessing heat stress vulnerability.  

 

Objective 2 

The objective here is to develop archetypes of a city’s dwelling stock for estimating 

present indoor thermal conditions of residential neighbourhoods (Chapter 5). 

Given the derived modelling ideas from the literature review in Chapter 2, a bottom-up 

housing stock energy modelling framework is proposed for assessing potential heat 

stress vulnerability of a city’s dwelling stock (Chapter 3). To estimate likely peak cooling 

demand of a dwelling unit for assessing heat stress vulnerability of an urban dwelling 

stock, the knowledge of a possible range of indoor air temperatures under such 

conditions is essential. However, to obtain such knowledge through field survey 

campaigns for a city’s entire dwelling stock would be cost-prohibitive if not impossible. In 

the absence of reliable city-wide measurements of indoor thermal conditions, archetype 

is first developed within a neighbourhood scale of microclimate boundary for building 

physics. Then, the detailed data requirements of neighbourhoods’ archetypes are 

analysed to be applied into a model calibration process of peak cooling energy use 

proposed for estimating archetypes’ present indoor thermal conditions. 

 

Objective 3 

The following objective is to assess potential heat stress vulnerability (HSV) of a city’s 

dwelling stock in the coming years (Chapter 6).  
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The potential HSV of a city’ dwelling stock under climate change projections is assessed 

in two perspectives: (1) in terms of future indoor thermal conditions; and (2) in terms of 

future peak cooling demands. The indoor thermal condition perspective points to 

implications for dwellers’ health and welling under the “no change of peak cooling energy 

use behaviour” scenario. On the other hand, the peak cooling demand perspective points 

to implications for cooling energy supply and demand over the timeframe of climate 

change projections under the “no stock change” scenario. 

In both approaches, the HSV assessment outcomes are summarised as the distances 

between estimated set points and base reference points. It follows that neighbourhood 

archetypes further away from the reference points present higher heat stress 

vulnerability. Finally, the quantified distances are sorted as relative ranking among a 

city’s neighbourhood archetypes. 

However, in both assessments, the base reference points of indoor thermal conditions 

are crucial. Therefore, the question is what suitable base reference points can be 

considered in assessing HSV of a city’ dwelling stock under climate change projections. 

This thesis introduces two types of reference points. One is based on referencing to a 

fixed threshold indoor temperature which is often recommended by a statutory authority 

on residential use of cooling systems. Another is based on referencing to the population 

of a city’s indoor heat acclimatisation (IHA) history as captured by the actual peak cooling 

energy use data over many years. The outcomes derived from each of these 

assessments will be compared to each other and the implications will consequently be 

discussed. 

 



Chapter 1. Introduction 

 

 

11 
 

1.3. Thesis structure 

To achieve the research aims and objectives described above, this thesis is composed 

of a preliminary study section and three main bodies of results (Figure 1-1). The 

preliminary study (Chapter 2) provides a key body of knowledge in establishing a 

methodological framework for assessing potential heat stress vulnerability of a city’s 

dwelling stock (Chapter 3). Chapter 4 in particular gives fundamental ideas on archetype-

based stock energy modelling. Applying the methodological framework, the results are 

presented and discussed in Chapters 5 and 6. The brief introduction of each chapter is 

described as below: 

Chapter 1 – “Introduction” introduces the research background on potential heat-related 

risk on human health in urban dwellings and provides the needs for assessing potential 

heat stress vulnerability of a city’s dwelling stock. This chapter ends with a detailed 

reference to research aims and objectives, including research questions. 

Chapter 2 – “Literature review” explores the possible approaches to the main research 

question, “how might peak cooling demands (PCDs) of a city’s dwelling stock be 

modelled to maintain indoor thermal conditions agreeable and acceptable to urban 

populations in future years”. This chapter reviews previous studies in relation to the urban 

building energy model and climate change impacts on heat stress vulnerability of indoor 

dwelling environments. It subsequently identifies the key body of knowledge in 

addressing research aims and objectives. 

Chapter 3 – “Methodology” presents a bottom-up stock energy modelling framework for 

assessing potential heat stress vulnerability of a city’s dwelling stock, given the body of 

knowledge identified and modelling ideas in literature review (Chapter 2). This chapter 

also describes the key constituent methods, including EnergyPlus model calibration 
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process to estimate indoor thermal conditions and details of stock energy modelling 

process for the purpose of assessing potential heat stress vulnerability. 

 

 

Figure 1-1. Overall thesis structure 

 

Chapter 4 – “Characteristics of urban dwelling’s cooling energy use” presents a data 

analysis of Seoul’s open heterogeneous datasets to investigate characteristics of 

historical cooling energy use through several statistic relational analyses within different 
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temporal (summer months, July – September) and spatial resolutions (city to 

neighbourhood scale). The statistic relational analyses include Pearson-correlation, 

analysis of variance (ANOVA) and regression analysis. Those analyses are mainly to 

characterise the residential peak month (August) cooling energy use behaviour in 

responding to external climates (i.e. temperature) on a neighbourhood scale. This 

chapter provides evidence that a housing archetype can be developed within the 

neighbourhoods of a microclimate boundary for the purpose of modelling the peak month 

(August) cooling energy use of a city’s dwelling stock. 

Chapter 5 – “Developing archetypes for building physics” presents how urban dwelling 

archetypes can be developed for building physics underpinning the Seoul Study. It 

includes Seoul’s collected data and the analysis required for archetype developments 

into building physics, EnergyPlus model calibration process. In the absence of reliable 

field measurements of dwellings’ indoor thermal conditions in the city context, the 

possible approach to obtaining a replaceable indicator of indoor thermal measurements 

can be found in developing archetypes. Then, each archetype can be specified with 

known sources of building and occupancy information as input requirements for 

EnergyPlus model calibration process to estimate indoor thermal conditions. Finally, the 

estimated indoor thermal conditions in each archetype neighbourhood are presented. 

There are six archetypes developed in the 18 city-district neighbourhoods in this study. 

Chapter 6 – “Assessing potential the heat stress vulnerability of Seoul’s dwelling stock” 

describes Seoul’s neighbourhood dwelling stock modelling and the outcomes of heat 

stress vulnerability (HSV) assessment. Applying the methodological framework 

presented in Chapter 4, the potential HSV is assessed in two perspectives: (1) in terms 

of Cooling Temperature Set Points based; and (2) in terms of Cooling Energy Demand 

based. Consequently, the stock energy modelling is presented into two types for the 

purpose of each of the HSV assessments: hence, (1) modelling indoor thermal conditions 
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and (2) modelling peak cooling demands. In both approaches, the HSV assessment 

outcomes are summarised as the distances between estimated set points and base 

reference points. It follows that neighbourhood archetypes further away from the 

reference points present higher heat stress vulnerability. Finally, the quantified distances 

are sorted as a relative ranking among a city’s neighbourhood archetypes. 

Chapter 7 – “Conclusions” gives key findings from this study and finally, concluding 

remarks. This chapter also discusses the implications of the findings as inputs to what, 

where and how adaptation and mitigation strategies could be developed for the 

neighbourhoods identified. 
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To explore how peak cooling demands (PCDs) of a city’s dwelling stock might be 

modelled to maintain indoor thermal conditions agreeable and acceptable to urban 

populations in future years, this chapter intensively reviews recent studies into building 

stock energy modelling relating to assessing potential heat stress vulnerability of indoor 

dwelling environments. Section 2.1 first accounts for the limited applicability of current 

building energy simulation methods into quantifying urban dwellings’ PCDs associated 

with indoor thermal environments for future years. As an alternative approach, section 

2.2 introduces statistical methods of a building energy model on a large scale and also 

addresses the required body of knowledge in using such a statistical model, (i.e. the 

knowledge of households’ present indoor thermal conditions). Section 2.3 covers a 

possible approach to obtaining the addressed knowledge requirements at 

neighbourhood scale: hence, archetype in segmented building physics. Section 2.4 

finally illustrates the need for addressing adaptive capacity in bottom-up urban building 

energy model (UBEM) for assessing dwellings’ potential heat stress. 

 

2.1. The limit in application of building simulation in potential heat stress 

assessment 

Most residential buildings in heating-dominant countries may not be equipped to alleviate 

extreme heat stress. Overheating has been observed in central London (Mavrogianni et 

al., 2015) and even across England as a whole (Beizaee et al., 2013; Symonds et al., 

2017). Investigating the problems of overheating has been mostly limited to free running 

buildings in the European context. However, in Seoul, clear overheating has been 

detected in even mechanically cooled households during peak summer periods (Bae and 

Chun, 2009; Lee and Lee, 2015). 



Chapter 2. Literature review 

 

 

17 
 

In response to the changing climate on buildings, the risk of overheating in residential 

buildings has been identified as one of the key source areas of any potential heat threat 

(Vellei et al., 2017; Lomas and Porritt, 2017). However, few studies have been carried 

out in quantifying potential heat stress risk (or vulnerability) of a city’s residential building 

stock with sufficient spatial-temporal resolutions corresponding to the stock composition. 

Such studies may be difficult as it is rare that a large number of households’ indoor 

thermal environmental measurements are collected readily for analysis; also fine-grained 

on-site future weather data required for dynamic building energy performance modelling 

(e.g., Guan, 2009) is not yet widely available below the city-scale.  

In the absence of data availability for the future, most potential heat related studies in 

residential buildings tend to estimate cooling energy demands to maintain certain levels 

of indoor thermal comfort based on energy modelling. This approach assumes that the 

estimated cooling energy demands may be met by power suppliers or be paid by 

dwellers. Otherwise, the heat stress would occur in terms of occupants’ indoor thermal 

environment.  A number of previous studies used fixed cooling temperature set points to 

estimate peak cooling loads in future years. For instance, 27oC was used as a fixed 

threshold temperature of cooling set point for calculating future cooling loads in the UK 

(Gaterell and McEcoy, 2005). Others suggested that 26oC should be the cooling set point 

for summer acclimatisation in the UK (Collins et al., 2010); 29oC as an acceptable point 

for a short term under the external hot climates in Switzerland (Frank, 2005); and 25.5oC 

in Hong Kong (Chan, 2011). Consequently, all projections showed a certain level of 

increase in cooling energy demands in future years but dynamic variations appeared in 

the amount of the increment regionally. More detailed regional climate change impacts 

on built environment was summarised by Li et al. (2012). They also highlighted that the 

largest energy demands would occur in warm winter and hot summer climates owing to 

high demands for cooling energy. For instance, in South Korea, cooling degree days 
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(CDDs) by the year of 2099 from 1980 were predicted to increase up to 160% while 

heating degree days (HDDs) would be reduced up to 63%, implying a substantial 

increase of energy demands in cooling potentially (Lee and Levermore, 2010). 

Those indoor overheating criteria based studies largely rely on building energy simulation. 

One important body of knowledge emerging in such climate impact studies is a definition 

of the future climates as the starting point (De Wilde and Coley, 2012). The importance 

of on-site weather input is widely understood in building simulation (Chan, 2011) and 

therefore, the needs in such studies are obvious (Guan, 2009). In previous decades, 

great efforts have been made to generate climate change projection datasets applicable 

in this area. UKCP09 and UKCIP02 in the UK are good examples, projected by UK Met 

Office’s HadRM3 regional models (Met Office). Those projections can be applied into a 

building simulation model (i.e., Kolokotroni et al., 2012) and even statistical model (i.e., 

regression model, Braun et al., 2014) to predict future energy consumption in the UK. 

Further development in specific weather variable such as solar radiation has been 

carried out by Tham et al. (2011). Moreover, a specific type of future weather input readily 

accessible on building simulation was developed by PROMETHEUS project of the 

University of Exeter Centre for Energy and Environment, which is the probabilistic future 

reference year weather datasets using UKCP09. Many researchers applied the 

probabilistic climate change projections into their climate impact studies (i.e., Kershaw 

et al., 2011; Tian and de Wilde, 2011; Jenkins et al., 2011).  Similarly, Du et al. (2012) 

developed design reference years. However, those efforts were limited to the UK.  

For other regional contexts, Belcher et al. (2005) developed a method, which is called 

“morphing” to generate future regional climates. The tools, CCweatherGen (Jentsch et 

al., 2008) and CCWorldWeatherGen (Jentsch et al., 2013) are well-known examples 

applied the morphing method, developed by Sustainable Energy Research Group in the 

University of Southampton (SERG). Using the morphing method, Crawley (2008) 
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estimated the future energy demands in world-wide and Chan (2011) in Hong Kong. 

However, the limitations of morphing method were widely discussed: uncertainties of 

high spatial-temporal resolutions (de Dear, 2006); lack of interactions among weather 

variables (Guan, 2009); limited consideration of geographic conditions (Eames et al., 

2011). Recently, the Korea Meteorological Administration (KMA) developed a regional 

model, MK-PRISM (Modified Korean Parameter-elevation Regressions an Independent 

Slopes Model) (Kim et al., 2012; Kim et al., 2013) to project future climates at the city 

district level (see section 3.2.4 for more detail). However, the data availability is limited 

to temperature and precipitation. In the absence of the detailed hourly future weather 

input for a building simulation, the impacts of changing climate on urban dwelling’s indoor 

environment cannot be assessed only by building energy simulation, representing that 

other approaches must be explored. 

 

2.2. Statistical methods of residential energy model on a large scale 

2.2.1. Overview of techniques to building energy modelling 

There is a fundamental difficulty and complexity in predicting building energy use as a 

large number of factors have an influence on the energy performance, such as ambient 

climates, building thermal characteristics, geometric configurations, building sub-level 

component service systems and user-related aspects which dynamically vary in 

residential buildings in particular. Moreover, such factors are more dynamic in high 

spatial resolutions of urban contexts. Building energy model is a function to quantify 

energy demands determined by input parameters, such as energy associated major 

drivers. The modelling method can be subdivided into two categories, depending on the 

modelling purpose and the level of details of input: top-down and bottom-up (Swan and 

Ugural, 2009; Li et al., 2017).  
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The top-down approach is typically used to estimate energy supply requirements on a 

regional or national scale based on a long-term relationship between historical energy 

use and the associated key drivers, such as gross domestic product (GDP), economic 

indices, climate, housing population rate, etc. Thus, the method of top-down tends to rely 

on statistical approaches. For instance, one early top-down model was introduced by 

Hirst et al. (1977). They modelled residential annual energy consumption in the U.S. 

based on econometric regression model with econometric parameters. Nesbakken 

(1999) assessed how socio-economic variables affect the housing end-use energy by 

econometric model in Norway. This simple regression model was also applied within 

Denmark by Bentzen and Engsted (2001). Closely relating to this study, climatic 

variables were used into the multiple linear regression energy model as an independent 

variable. In the UK, Summerfield et al. (2010) found that for every 1oC increase for 

heating period, the average residential energy use was estimated to drop by about 

1MWh/year. In China, Zhang (2004) analysed the relationship between annual energy 

use per household and heating degree days (HDDs) and then, compared it to other 

countries, the U.S., Canada and Japan. One distinctive advantage of top-down model is 

the model applicability within the limited level of details of input: hence, it only needs 

aggregated data (i.e., total national households’ end-use energy data). However, owing 

to the aggregated inputs on model, the downscaled variations in individual households 

or neighbourhoods can be easily ignored.  

On the other hand, the bottom-up model allows to identify the households’ energy 

associated drivers at the downscaled spatial resolutions, such as individual households 

or neighbourhood scale and then, aggregates each of them to a certain level of stock 

composition. Thus, the bottom-up model is able to account for the energy use at the 

spatial resolution where the data is collected. Especially, the statistical method of bottom-

up model uses the relationship between households’ end-use energy data (i.e. billing 
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data) collected from a sample, which can vary in terms of spatial scope, and the 

associated determinants, such as socio-economic factors, climates, etc.: hence, a similar 

approach to top-down. However, a distinctive characteristic that is different from the top-

down is to use a deeper level of detail of inputs in terms of spatial resolution and 

consequently, to have the more detailed model representative. For instance, the 

statistical bottom-up model allows one to reflect dwellers’ behavioural aspects into 

residential energy model (Lutzenhiser, 1992; Emery and Kippenhan, 2006), which can 

be ignored in top-down.  

 

2.2.2. Statistical methods in residential energy modelling 

Typically, several statistical techniques are widely used in the bottom-up modelling area 

depending on model applicability within data availability. There are three well-informed 

statistical methods in residential energy modelling: regression, conditional demand 

analysis (CDA) and neural network (NN) (Swan and Ugural, 2009).  

Firstly, regression model can be achieved by regression analysis which can explore the 

relationship between one dependent variable (energy use data) and several independent 

variables (other factors affecting energy use), and finally determine the model 

coefficients. The key idea of the regression model is to identify major determinants on 

energy use. For instance, climatic variables were identified as a key determinant such 

as HDD (Hirst et al., 1986; Jones and Harp, 1982). Similarly, Raffio et al., (2007) 

examined the relationship between utility bills and weather data within multiple residential 

areas. They identified different coefficients in each of the residences as “energy 

signature”, also termed to “fingerprints” (Hirst et al., 1986), which represents unique 

metred energy occurrences determined by weather only for that specific residence 

(Swan and Ugural, 2009). This fingerprint is particularly important in energy modelling of 
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the residential sector as it can represent dwellers’ energy use behaviours corresponding 

to the key driver. 

Secondly, conditional demand analysis (CDA) is also run by regression. However, the 

data source and type required in CDA tends to be individual households’ belongings, 

such as end-use appliances, their ownership (i.e. usage ratio) and the details of building 

characteristics (i.e. details of users and building service systems at conditioned zones) 

(Li et al., 2017). The model coefficients are determined by regression of the total energy 

use on the collected ownership lists of home appliances (or other relevant data lists) as 

this technique uses the presence of appliances’ ownership to account for the level of 

usage (Swan and Ugural, 2009). Therefore, the model accuracy of CDA method largely 

relies on the sample size and the number of variables. This shows us that the CDA 

method requires large sampling based on comprehensive survey data for households’ 

home appliances in order to achieve model reliability on large scale energy modelling. 

For instance, Parti and Parti (1980) used 5,286 households survey data, including 

appliance ownership and house characteristics such as the floor area and demographic 

components, to determine individual usage level of appliances through the regression 

method in San Diego. Also, Aigner et al. (1984) used 100 households’ dataset based on 

a very high resolution of time interval (15 min). The largest sample, about 100,000 in 

total in Quebec has been used by LaFrance and Perron (1994), including climate 

indicators and heating sources and finally, the model coefficient of determination (R2) 

was reached up to (.700). The primary benefit in CDA enables to reflect occupancy 

behavioural factors (i.e. appliances’ ownership and their usage rate) into modelling, while 

the sampling large enough can be challenging at city scale modelling. 

Thirdly, neural network (NN, also called artificial neural network, ANN) is typically used 

in case that the relationship between the independent (i.e. dwelling characteristics in 

energy modelling as input parameters) and the dependent (i.e. end-use energy data as 
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output parameters) is non-stationary due to the capability of NN model to find hidden 

parameters which enable to interconnect neural structures between the parameters 

(Swan and Ugural, 2009). Aydinalp et al. (2002) employed the ANN technique for 

modelling energy use in the Canadian residential sector by components, such as 

modelling energy use of appliance, lighting and space cooling. For the input parameters, 

they used a number of housing characteristics datasets collected from 988 households 

(741 for training datasets and 247 for testing). Thus, R2 of the model was reached at .909. 

In a Korean apartment housing context, Suh and Chang (2012) developed ANN model 

for estimating energy demand. They introduced eight key indicators affecting energy and 

water usage, which can be considered substantially reduced input parameters in ANN, 

and the model reliability was reached at 4.5% - 7.3% of MAPE (mean absolute 

percentage error) in error statistics for electricity model. However, despite such high 

reliability in ANN model performance, several parameters required as inputs for 

estimating residential energy demands in future years can be challenging. 

Thus, the regression model can be considered as a suitable statistical modelling 

technique in this thesis taking into account the modelling purpose, predicting peak 

cooling demands within limited data availability for future years (i.e., daily temperature 

climate change projections in Seoul’s city-districts). If certain parameters are clearly 

identified as key determinants to do with historical peak cooling energy use, which are 

also available for the future, the regression model allows one to estimate the likely peak 

cooling demand of urban dwellings.  

 

2.2.3. Microclimate as a key determinant on residential cooling energy use 

In regression modelling, it is important to understand the factors affecting residential 

cooling energy use. Yu et al. (2011) documented major determinants affecting residential 
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energy use and they can be classified into three categories: (a) climates including urban 

heat island; (b) building physical characteristics, i.e. thermal property of building 

envelope, geometric configurations and service systems; and (c) user-related aspects, 

i.e. occupants’ behaviours and socio-economic circumstances. In relation to cooling 

energy use, this study adds climate (microclimate) change as an additional important 

factor taking into account the likely impacts of rising external temperature on cooling 

loads. 

It is widely understood that climate is one of the most influential factors affecting building 

thermal and energy performance. Of the wide range of climatic variables, air temperature 

(dry-bulb), humidity, wind pattern (speed and direction) and solar radiation are 

considered as the most significant parameters (Flor and Domınguez, 2004). Especially, 

dry-bulb temperature is one of the most influential climatic variables and thus, it is largely 

used in measuring heating and cooling degree days (HDDs and CDDs) (Lee & 

Levermore, 2010), which is a key indicator of building weather dependent energy use.  

In detail, the impacts of the ambient climates (i.e., microclimate) on building energy 

performance was clearly investigated by Flor and Dominguez (2004) throughout 

modifying weather variables on the basis of an integrated outdoor and indoor 

computational model. Allegrini et al. (2012) investigated the effect of microclimate 

influenced by neighbouring buildings of street canyon on building heating and cooling 

loads based on building physics. Especially, Moonen et al. (2012) broadly reviewed in 

this area and highlighted the importance of urban microclimate in assessing building 

energy demands. Many authors suggested an outdoor and indoor integrated or coupling 

computational building energy model as assessment methods to improve building 

energy performance and the assessing model accuracy (He et al., 2009; Bouyer et al., 

2011; Yang et al., 2012; Yi and Peng, 2014).   
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In spite of the importance of microclimate in assessing building thermal and energy 

performance, very few field studies have been carried out to investigate the interrelations 

between microclimate and building weather dependent energy use (heating and cooling), 

including actual field measurements in residential sector in particular (Asimakopoulos et 

al., 2001). Santamouris et al. (2001) examined the impacts of urban microclimate on 

building energy consumption based on climatic field measurements from 30 urban and 

suburban weather stations but it was carried out into one representative office building 

for all locations. For residential buildings, other related studies used alternative inputs 

instead of on-site weather measurements, i.e. city-wide HDDs and CDDs for energy 

modelling studies (Aydinalp et al., 2002) and weather normalization process on the basis 

of line-of best fit between HDDs (and CDDs) and energy use measurements for the 

correlational study (Touchie et al., 2013). 

The importance of microclimate consideration on building energy modelling is owing to 

diversity of urban climates such as an urban heat island (UHI). UHI can be considered 

as the representative example of urban anthropogenic climatic modifications, influenced 

by the energy and heat interactions between urban surfaces and the ambient 

atmospheric layers (Arnfield, 2003; Rizwan et al., 2008). The effects of UHI were widely 

observed in many cities. In New York city, the seasonal UHI magnitude was observed to 

be about 4oC in summer and autumn, and 3oC in winter and spring but the hourly based 

was over 8oC on nights (Gedzelman et al., 2003). In London, as hourly results for 

summer monitoring (June – August, 1999), the UHI was characterised into a nocturnal 

phenomenon and the UHI intensity was observed up to 7oC (Watkins et al., 2002). Also, 

in Birmingham (UK), the summer surface diurnal UHI magnitude under the heatwave 

event (18 July 2006) was observed up to 7oC (in city centre) compared to a city park 

(Tomlinson et al., 2012). In Seoul between 1999 and 2002, it was found that the 

maximum daily UHI during non-precipitation days (and precipitation days) was observed 
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to be 4.5oC (2.6oC) in spring, 3.5oC (2.4oC) in summer, 4.8oC (3.2oC) in autumn and 4.5oC 

(3.2oC) in winter (Lee and Baik, 2010). Moreover, in the perspective of micro-urban heat 

islands (MUHIs), defined as isolated urban locations that produce “hot spots” within a 

city (Aniello, 1993), the diurnal temperature differentiations in MUHIs were much large 

with the range of 5oC to 11oC warmer than surrounding areas in the U.S (Dallas in Texas) 

by mid-morning in October (Aniello et al., 1995). 

At an individual building or neighbourhood level, the effect of UHI generates on-site 

microclimate conditions (i.e. MUHIs) and then, they have an influential impact on building 

weather dependent energy use, especially cooling loads. Santamouris et al. (2001) and 

Kolokotroni et al. (2006) investigated the effect of UHI on cooling energy use in office 

buildings in Athens and London respectively: in Athens, where the mean UHI intensity 

exceeded 10oC, the urban cooling load was estimated to be double that of rural buildings; 

in London, the cooling energy demand of rural reference buildings was 84% of urban 

areas and there was no cooling demand predicted in the optimised rural building in order 

to maintain indoor temperature below 24oC. In improving the model accuracy in building 

energy assessment, Chan (2011) highlighted the use of on-site weather input (i.e. typical 

meteorological year, TMY) modified based on on-site measurements. The author applied 

the modified on-site TMY weather input into the Hong Kong study and found that there 

was about 10% of increased cooling loads compared to the application of existing TMY 

in both office and residential buildings. Similarly, Salvati et al. (2017) reported the effects 

of UHI on residential cooling energy use in Barcelona, where the maximum UHI intensity 

at street level was 4.3oC: the cooling demands was predicted to increase of 18%-28% 

due to the effect of on-site UHI.  

Furthermore, in the residential sector, the energy use largely depends on the user-

related aspects, such as the occupants’ behaviour (Yun and Steemers, 2011), occupant 

age (Chen et al., 2013) and socio-economic circumstances (Schuler et al., 2000). 
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However, the influence of those factors varies according to location and the type of 

energy use (i.e. heating or cooling). Occupants’ behaviour was more significant for 

cooling energy use in the US (Yun and Steemers, 2011), and the age of occupants was 

more influential than their income for both heating and cooling in Hangzhou, China (Chen 

et al., 2013). Socio-economic circumstances were investigated as significant factors but 

less dominant than building physical configurations for heating in Western Germany 

(Schuler et al., 2000). Similarly, in the Netherlands, the user characteristics and the 

behaviours explained only 4.2% variation for heating, while the building physical 

characteristics explained 42% (Santin et al., 2009).  

However, even though the literature has shown that user-related aspects could play an 

important role in residential energy use, such influence might be inconclusive depending 

on the location and energy type. This implies that the application of such diversity into 

stock energy modelling can be challenging. Therefore, this thesis (Chapter 4) intensively 

investigates the characteristics of historical residential cooling energy use through 

several statistic relational analyses within different temporal and spatial resolutions. As 

described later, the spatial resolution of residential neighbourhood within microclimate 

boundary (1km radius neighbourhood) could capture a set of homogeneous user 

behaviours in terms of cooling energy use responding to the external climates. 

Consequently, as this study aims at assessing urban dwellers’ potential heat stress 

vulnerability, the knowledge of households’ present indoor thermal conditions city-wide 

is essential and it should be explored in relation to peak cooling energy use. The 

challenging body of knowledge is the collecting of such data for an entire city is cost-

prohibitive, even if possible at all. In the absence of reliable measurements of urban 

dwellings’ indoor thermal conditions, this study seeks the solution at the idea of 

archetype in building physics to obtain a replaceable indicator of indoor thermal 

measurements, such as HVAC cooling temperature set points. 
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2.3. Archetype in building physics 

Over the past decades, there have been two approaches in building energy modelling 

according to the purpose and the scale: individual building energy model (simulation) for 

a building designer and building stock energy model on a large scale (i.e., regional and 

national scale) for policy makers. However, recently they have been merged into hybrid 

methods such as the bottom-up urban building energy model (UBEM) for the scale of 

the neighbourhood (Reinhart and Davila, 2016). The basic idea of UBEM is the extended 

capacity of individual building energy simulation model, which is a physical and 

thermodynamics model used to predict energy use as well as indoor thermal 

environments, to a large scale of building stock. Hence, UBEM is also called to bottom-

up building physics (Kavgic et al., 2010).  

As an essential element in UBEM, the definition of an archetype can be either sample 

building (i.e. a documented real building) or virtual building (i.e. a hypothetical building 

synthesised through statistical building data and/or expert opinions) (Reinhart and Davila, 

2016). Archetype is widely used to classify building (housing) stock based on building 

type, envelop fabric, geometry, size etc. and consequently, to be a representative 

building within certain levels of spatial resolutions (Swan and Ugursal, 2009).  

 

2.3.1. Methods in developing archetypes 

Reinhart and Davila (2016) summarised the two key processes in developing archetype 

for UBEM: segmentation and characterisation. The segmentation is a step for grouping 

within whole building stock, classified by building form, year of construction, climate and 

system (i.e., Dascalaki et al., 2011; Filogamo et al., 2014). In turn, the characterisation 

is a phase to define the detailed thermal properties within each of the identified segments. 

Parekh (2005) outlined more detailed characterisation method through introducing three 
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basic criteria in developing archetype of housing stock for building energy simulation: 

building thermal characteristics, geometric configuration and operation parameters. In 

studying the Hellenic building stock, Dascalaki et al. (2011) reported the link of residential 

building topologies to energy performance assessment. In Osaka (Japan), Shimoda et 

al. (2004) developed 20 virtual housing archetypes based on households’ characteristics 

(i.e. family type and activities of housewife), housing building type (i.e. detached house 

and apartment house) and floor area. A classification of residential building stocks using 

12 sample building typologies was proposed by Filogamo et al. (2014), which was 

applied to the whole residential building sector of Sicily. More recently, Sandberg et al. 

(2017) developed a segmented dynamic stock modelling approach to scenario analysis 

of future energy demand of the Norwegian dwelling stock towards 2050. The 

segmentation parameters for archetype definitions in other cities have been summarised 

by Reinhart and Davila (2016): typically based on building typological factors, i.e., shape, 

area and system.  

However, those building typological classifications were limited in accessing the actual 

measurements of individual energy use, which may poorly reflect an occupants’ 

behaviours into UBEM. Thus, Famuyibo et al. (2012) identified key parameters (one key 

determinant and eight supplementary variables) affecting energy use data by using 

multiple regression analysis and then, developed 13 Irish residential archetypes by using 

clustering statistics. The noticeable value of this Irish study is an attempt to show how 

historical residential energy use data is used in defining archetypes to improve model 

reliability.  

Furthermore, it appears that the aspect of urban climatic diversity, such as a micro-urban 

heat island has been paid much less attention in developing archetypes at city scale 

modelling, while in national scale, climate was commonly used as a segmentation 

parameter (i.e. Ballarini et al., 2014; Dascalaki et al., 2011; Mata et al., 2014). Sensitivity 
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analysis is often used in urban building energy modelling to quantify sensitivity of each 

segmentation input parameter on the model results. This enables determination of a set 

of key parameters within a number of variables for developing archetype. Kavgic et al. 

(2013) investigated the sensitivity of 14 parameters on predefined dwelling archetypes’ 

CO2 emission model and found that the highest normalized sensitivity coefficients 

occurred at external air temperature. Therefore, it is important to consider both climates 

and residential energy use characteristics in developing housing archetypes for housing 

stock energy modelling on the city scale along with building typology.  

 

2.3.2. Seoul’s apartment housing stock 

As Seoul was chosen as a test case study in this thesis, it is necessary to understand 

housing typological characteristics in the Seoul context first. Seoul is the capital city of 

South Korea and it is composed of 25 “gu” (city district) (see also Figure 4-1). According 

to the Korea Meteorological Administration (KMA, 2018), Seoul is located in the 

temperate zone (middle latitudes of the Northern Hemisphere geographically) and there 

are four distinct seasons. Seoul’s annual temperature is 12.5oC: the lowest monthly 

temperature is -2.4oC in January while the highest is 25.7oC in August. About 61% of 

annual precipitation occurs in the summer months (June, July and August), while only 5% 

in winter periods (December, January and February). Therefore, Seoul’s energy use can 

be characterised into both heating and cooling. However, the distribution of the monthly 

heating and cooling degree days (HDDs and CDDs) shows that the heating is more 

dominant than the cooling (see Figure 5-5). Due to the high temperature and humidity 

climatic conditions during the summer months, Seoul’s housing stock can be considered 

a mechanically cooled dwelling. Households’ air conditioning (AC) penetration rate 

supports this. According to the Korea Power Exchange (KPX, 2012), the household AC 
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penetration rate per household is 0.61, as counted by outdoor heat rejection unit 

nationally. However, as this penetration rate was surveyed at national scale including 

other types of residential building, it can be limited to represent Seoul’s apartment 

housing stock. Another survey which has been carried out in apartments (Seo and Hong, 

2014) showed the rate was increased to 0.85. This suggests that the number of 

household AC units cannot be above one but serving one or more zones for cooling (e.g., 

a multi split AC system driven by one outdoor unit). 

Seoul’s total population in 2016 was 9,805,506 (KOSIS, 2017) and the total number of 

households was 2,830,857 of which about 58% (1,641,383) are apartments. As the 

dominant housing type in Seoul, Apartment neighbourhood (AN, multi-family housing 

complex and also named Danji in Korean) has unique features distinguished from other 

countries’ housing context (Figure 2-1). Thus, AN is often called Korean-style apartment 

complex (Suh and Chang, 2012). Similar to Hong Kong and other Asian mega cities, the 

usual type of residential buildings in Seoul are high-rise apartment buildings (KOSIS, 

2013): about 84% of apartments are tall buildings over 10 floors high. The background 

of such high-density and high-rise apartment neighbourhoods is not apart from the 

Korean modernising history, which experienced extreme rapid economic growth during 

a short modernisation period, since the 1970s (Kim and Park, 2005). Also, between 1965 

and 1991, Seoul’s total population was rapidly increased: increase of about 286,000 per 

year (representing increase of 780 per day) (Kim, 2013). This led to very high demands 

in the housing market, since the 1970s. Therefore, the neighbouring ANs at certain areas 

were developed contemporarily (see also Table 5-4). 
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Figure 2-1. Changes in Seoul’s apartment neighbourhoods (ANs) between 1960s and 
2000s (Source: Park et al., 2005; Kim, 2012; Choi et al., 2004) 

 

(a) 

1960s 

 
“Naksan Simin” apartment         Floor plan at building level 

 
25.6m2 floor plan 

(b) 

1970s 

 
“Yeoido Sibeom” apartment neighbourhood (Slab type) 

 
117m2 floor plan 

(c) 

1980s-

1990s 

 
“Garak Geumho” apartment neighbourhood (Tower type) 

 
84m2 floor plans: 

1980s (left); 1990s (right) 

(d) 

2000s 

 

 
“Jamsil Parkrio” apartment neighbourhood (bottom) 

redeveloped from the aged “Jamsil Siyoung” (up) 

 
Typical 84m2 floor plan of “Jamsil 

Parkrio” apartment building 
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In 1960s, the first large-scale apartment neighbourhoods were supplied by the central 

government for the labour class in Seoul’s selected 32 districts in order to solve the 

housing shortage problem (Park et al., 2005). Thus, the floor area per apartment unit 

was less than 30m2 mostly (See Figure 2-1 (a)). One distinctive feature of 1960s’ 

apartments is the sharing toilets located in the middle of each floor and the form of the 

building is typically “slab” type. 

In 1970s, the supply of apartment was extended to the middle class. Yeoido district 

(about 8.48 km2) housing development project was carried out in Yeongdungpo city-

district located in the riverside of Han River. Especially, “Yeoido Sibeom” apartment 

neighbourhood (built in 1971 in this area) is one of the iconic apartment neighbourhoods 

historically, due to the fact that it contains commercial area and public park within the 

neighbourhood of 1,790 apartment households (Kim, 2012) (See Figure 2-1 (b)). From 

this project, a single apartment neighbourhood has formed its’ own community district.  

In 1980s and 1990s, the housing market was led by private developers commercially 

and as a result, user demands were reflected into the planning of housing development. 

According to a study into changes in Korean apartment floor plans (Choi et al., 2004), 

various floor plans were experimented in 1980s and they were standardised into a few 

typical floor plans based on the occupants’ preferences and popular floor area size (i.e. 

84m2) in 1990s (see Figure 2-1 (c)). Also, the form of apartment buildings was changed 

to “tower” type from “slab” type: about 70 – 80% of new apartment developments built in 

1990s were tower type (Choi et al., 2004), representing that there appeared high-rise 

apartment neighbourhoods. 

In 2000s, the housing market can be characterised into “Hosing redevelopment”, which 

contains the complete demolishment of existing buildings first and then new development 

in the same site, owing to the poor liveability of the aged apartments built in early 1970s 
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(Choi et al., 2013). As seen in Figure 2-1 (d), the aged “Jamsil Siyoung” (built in 1971) 

apartment neighbourhood (5563 apartment households and slab type buildings with 5 

story-tall) was fully redeveloped to “Jamsil Parkrio” (6864 apartment households and 

tower type buildings with up to 36 story-tall) in 2008. The building form became various 

but the placement and layout of housing components were not significantly different the 

1990s’. Furthermore, super high-rise apartment buildings appeared in 2000s, i.e. 

“Mokdong Hyperion Tower”, 256m of 69 story-tall and built in 2003 (Choi et al., 2013). 

To investigate potential housing archetype developments in the Seoul context, it is 

necessary to understand the typological characteristics at a single apartment 

neighbourhood level first. In terms of geometric configurations, the building type of AN 

can typically be classified into two: Slab type and Tower type (Choi et al., 2012). As seen 

in Figure 2-1 (b), the form of slab type apartment building is horizontally linear such as 

“I” where the core (lift and stairs) is located in the side areas across the several apartment 

housings linearly attached. On the other hand, tower type in Figure 2-1 (c) is vertically 

linear where the core is placed in the middle of the surrounded a few number of 

apartments (typically 2-4 apartments in each floor equally). The difference between slab 

type and tower type is the number of external walls exposed to external climate in 

apartments: 2 sides in slab type; 3 sides in tower type. Also, shading effects of one 

apartment building on other neighbouring buildings can be different. Therefore, energy 

loads required for cooling and heating can probably be differentiated in each type of AN. 

However, according to a recent study into energy load variations by the location of 

apartment units, taking into account the number of exposed walls and shading effects, 

there was no significant locational differences in cooling loads while heating loads were 

sensitive to both parameters (Kim et al., 2015). This suggests that the consideration of 

building type and height can be minimised in developing archetypes for Seoul’s cooling 

model.  
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A single AN tends to be built upon the same construction assembly profiles (Tae et al., 

2011) according to insulation criteria of building regulation (see Table 4-9). This is due 

to the fact that the apartment neighbourhood is a single development of several 

apartment buildings built by one housing developer (or a consortium of several 

developers as a main housing supplier). The number of households in each apartment 

neighbourhood citywide can vary significantly from the hundreds to the thousands 

depending on housing development projects. Also, the floor area of apartment units is 

multiple, usually from 59.4 m2 to 148.4 m2 according to KOSIS (2013), indicating diverse 

family sizes. However, in a single apartment neighbourhood, about 89% of similarity in 

the floor area of apartment units was observed (Choi et al., 2012). Therefore, apartments 

within each AN can be considered architecturally homogeneous in terms of not only 

geometric configurations but also thermal characteristics (Choi et al., 2012; Tae et al., 

2011).  

Furthermore, the architectural homogeneity has also formed unique socio-economic 

characteristics. For instance, there is no significant difference in property price of each 

apartment household within a single apartment neighbourhood (KAB, 2015b). Also, 

according to a recent survey derived from the selected four ANs in Seoul (Choi et al., 

2012), similarity of characteristics in family member were found: over 60% of similarity in 

the age of a housewife, about 90% in educational level of housewife, 90% in employment 

of housewife (i.e. full-time housewife), 75% in family composition (i.e. nuclear family) and 

up to about 90% in monthly income.  

However, beyond the architectural and socio-economic homogeneity at a single 

apartment neighbourhood level, investigating typological characteristics of the combined 

apartment neighbourhoods (as the apartment housing stock at large scale) is further 

required in archetype developments for the purpose of housing stock energy modelling 

at a city scale. TABULA (Typology Approach for Building Stock Energy Assessment) 
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project can be a good example, which is developed for building typology definitions in 20 

European countries (Loga et al., 2016). The building typological classifications have 

been widely used for building stock energy modelling at large scale in European context 

(Ballarini et al., 2014; Ballarini et al., 2011; Vimmr et al., 2013; Kragh and Wittchen, 2014).  

As this study is the first attempt to develop housing archetypes in a certain level of spatial 

resolution for city scale modelling, such details of housing typology are not yet readily 

accessible at present. In the absence of reliable measurements of urban dwellings’ 

typological characteristics, this study seeks the solution to the idea of “typical apartment 

floor plan” proposed by the “guideline for evaluating design and performance of green 

houses” established by a central government of the Ministry of Land, Infrastructure and 

Transport (MoLIT, 2009) in Korea (see also Figure 5-4). The purpose of establishing 

typical floor plans is to be used for assessing “green home certification” for new 

apartment development projects as the base reference floor areas and plans and they 

were developed based on the existing and potential trends of apartment floor plans (Tae 

et al., 2011). Thus, the MoLIT’s typical floor plans have been applied into assessing 

apartments’ life cycle CO2 emissions (Shin et al., 2011; Tae et al., 2011) and into 

evaluating the embodied environmental impacts of apartment buildings (Roh et al., 2017).  

Finally, as described later in section 4.4.2.1, one distinctive characteristic of residential 

cooling energy use is that only within each residential neighbourhood (city-district 

microclimate boundary setting), there are high internal consistency and similarity in terms 

of the distribution of households’ monthly cooling energy use. Moreover, there are a set 

of dominant thermal characteristics and geometric configurations identified in 

neighbourhood of microclimate boundary. Therefore, it is reasonable to assume that the 

archetype can be defined within microclimate boundary (segment) potentially for this 

study. Once an archetype is developed in each segmentation, the thermal modelling can 

be performed using dynamic building simulation tools (i.e. DOE-2, Huang and Broderick, 
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2000). Especially, the estimation of archetypes’ indoor thermal conditions (i.e. HVAC 

cooling temperature set points) can be achieved by model calibration methods (Raftery 

et al., 2011a) on the basis of metred cooling energy use (see chapter 3 for more detail).  

 

2.4. Addressing adaptive capacity in UBEM for assessing dwellings’ 

potential heat stress 

2.4.1. Bottom-up urban building energy model (UBEM) associated with indoor 

dwelling environments 

Over the past decade, research into building stock energy modelling on large scales (city, 

regional, or national) has intensified in response to policy-making to reduce building-

related end-use energy demand and CO2
 emissions.  Pittam et al. (2014) reported how 

a bottom-up approach for local authority housing in Cork City, Ireland was developed for 

stock modelling in the absence of a detailed housing database. Using GIS, climate, 

buildings and dwellings statistics datasets, Buffat et al. (2017) developed and validated 

a bottom-up heating energy demand model based on 1,845 buildings in two Swiss 

municipalities. To achieve segmented dynamic dwelling stock model energy analyses, 

stock renovation probability functions have been developed for realistic estimates for a 

nation’s renovation activity (Sandberg et al., 2017), which were applied to model future 

Norwegian dwelling stock energy demand towards 2050. For the housing stock energy 

models developed and deployed in the UK throughout the past 25 years, a 

comprehensive review and evaluation of 29 such models have identified several areas 

for improvement including transparency, accuracy, sensitivity and updatability (Sousa et 

al., 2017). As the model-theoretical frameworks and large urban datasets are set to grow, 

there will be a demand for practical computational tools and platforms to be developed. 

TEASER (Tool for Energy Analysis and Simulation for Efficient Retrofit), for instance, is 
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an open framework for urban energy modelling of building stocks to perform dynamic 

building performance simulation on urban-scale (Remmen et al., 2018). TEASER’s 

usability was shown to be applicable to building, neighbourhood and urban scales. 

However, it appears that the aspect of cooling energy demand has been paid much less 

attention in urban dwelling stock modelling research. Moreover, even though internal 

temperature was identified as the most dominant parameter in residential energy use 

(Famuyibo et al., 2012), it is hardly found the UBEM encompassed with indoor thermal 

conditions in statistical approaches. Furthermore, dynamic building physics cannot be 

practical in predicting cooling energy demands owing to limited applicability of future 

weather input. Under these circumstances, this study attempts to develop an urban 

dwelling stock modelling framework for predicting archetypes’ peak cooling energy 

demands taking into account indoor thermal conditions, such as threshold cooling 

temperature set points agreeable and acceptable to the dwelling populations. Thus, the 

specific threshold of indoor thermal environment can be key reference point to estimate 

peak cooling energy demands in future years. Back to the related cooling loads studies 

in building physics (in section 2.1), they used various fixed cooling temperature set points 

regionally. Those thresholds set points stipulate overheating criteria for achieving 

regulated cooling energy uses mechanically. However, these thresholds may not 

correspond to dwellers’ actual thermal preferences (tolerances) borne out of outdoor-

indoor heat acclimatisation. As shown in this study of Seoul, the cooling temperature set 

points estimated through empirical data modelling and building energy model calibration 

are higher than the statutory 26oC and moreover, the indoor temperature was 

significantly different in each neighbourhood (spatially) and by year (temporally) (see 

section 5.4). The implication is clearly that such variations cannot be explained by any 

single comfort model. 
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2.4.2. Addressing adaptive capacity in assessing dwellings’ potential heat stress 

In the energy modelling, the reference point of indoor thermal condition (comfort or 

discomfort) is crucial to estimate the energy demands. For instance, there is an 

assumption for the UK, if the winter dwellings’ indoor temperature is raised by 1oC, the 

energy requirements would be increased by 10% (Humphreys and Hancock, 2007). 

There have been on-going debates between static (Fanger, 1970) and adaptive thermal 

comfort models (Humphreys and Nicol, 1998), due to the limitations of steady state 

approaches in field studies (Humphreys and Nicol, 2002; Stoops, 2004; Jokl and Kabele, 

2007). More recently, further adaptive thermal models have been developed, ranging 

from context-specific residential building energy simulation (Peeters et al., 2009), global 

households’ indoor neutral (comfort) temperatures responding to the outdoor prevailing 

mean temperature (Humphreys et al., 2013), and climate change impact on comfort 

standards (Kwok and Rajkovich, 2010). 

However, the perception of thermal comfort or discomfort ultimately lies with the subjects, 

and any attempts at assessments for the future will contain large uncertainties, leading 

to over- or underestimation. In fact, a recent field study showed that the European 

adaptive model, BS EN 15251 (BSI, 2007), underestimated dwellers’ discomfort in the 

UK (Vellei et al, 2017). Such discrepancy was also found in other field studies (i.e., 

Humphreys and Hancock, 2007; Tweed et al., 2014). This may be accounted for by the 

complexity of human thermal sensation and adjustments through behavioural (voluntary), 

physiological (involuntary) and psychological adaptations as summarised by de Dear 

and Brager (1998). In reality, there can be voluntary adaptive behaviours other than just 

turning on or off the air-conditioning such as the changing of clothing level, using a fan 

or drinking cold liquids (Kwok and Rajkovich, 2010). Therefore, not all household’s indoor 

thermal environments can be neatly characterised into some kind of uniformity. For 

instance, a past field survey of sampled indoor temperatures of Seoul’s households 
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showed substantial variations even within each season, ranging from 21.3oC and 33.2oC 

in summer; 16.0oC – 31.5oC in autumn; 17.1oC – 28.3oC in winter (Bae and Chun, 2009).  

There appears to be a wide range of comfort variations associative with environmental 

variables relating to different behavioural and cognitive level of adaptation (Nikolopoulou, 

2011). Therefore, it is important not to disregard the element of “adaptive opportunities” 

in assessing potential heat stress, which is do with dwellers’ adaptability to their 

surrounding thermal environments (Baker and Standeven, 1995; Nicol and Humphreys, 

2002). However, it would be problematic to deduce some fixed points of adaptive 

discomfort for the purpose of heat stress assessment. Instead, as argued by Chappells 

and Shove (2005), “comfort is a highly negotiable socio-cultural construct”, the concept 

of comfort can be reproduced. As Brooks and Adger (2005) suggested that adaptive 

capacity may be best revealed from the dwellers’ past experiences of living with effects 

of external climates on indoor thermal conditions over time. In mechanically cooled 

dwellings, households’ actual cooling energy use could contain such histories of dwellers’ 

cooling energy use behaviours afforded by adaptive opportunities (Bae and Chun, 2009; 

Yun and Steemers, 2011). However, the question here is about the potential impact of a 

changing climate on the extent of population adaptability constrained by limited energy 

supply and/or socio-economical affordability (Kim and Joh, 2006; Maller and Strengers, 

2011).  
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2.5. Conclusions 

It is evident that the possible approach to predicting peak cooling demands (PCDs) 

associated with urban dwelling’s indoor thermal environment in the coming years is a 

bottom-up urban building energy model (UBEM) on the basis of statistical approach. 

Especially, regression model can be considered as a suitable statistical modelling 

technique in this thesis. If certain parameters are clearly identified as key determinants 

on historical peak cooling energy use, which are also available for future years, the 

regression model allows one to estimate the likely peak cooling demand of urban 

dwellings.  

However, one challenging body of knowledge in generating the regression model is how 

to obtain the data requirement of dwellings’ present indoor thermal conditions at an urban 

scale, of which collecting city-wide data is cost-prohibitive and almost impossible to 

achieve. In the absence of reliable measurements of urban dwellings’ indoor thermal 

conditions, this study seeks the solution to the idea of archetype in building physics to 

obtain a replaceable indicator of indoor thermal measurements, such as HVAC cooling 

temperature set points. If a certain spatial boundary can capture a set of homogenous 

characteristics in terms of thermal property, geometric configurations and cooling energy 

use, the archetype can be defined within the dwelling stock of the identified spatial 

resolution in urban contexts. Then, archetypes’ present HVAC cooling temperature set 

points can be estimated through empirical data modelling combined with contextual 

building physics.  

Once the PCDs energy model is generated, the reference point for indoor thermal 

condition (comfort or discomfort) is crucial in estimating PCDs. However, the perception 

of thermal comfort or discomfort ultimately lies with the subjects. Moreover, the HVAC 

cooling temperature set points does not represent any details of occupants’ thermal 
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perceptions as there can be a number of occupants’ voluntary adaptive behaviours. Thus, 

this study seeks out the possible reference points for estimating PCDs in the future into 

investigating the dwellers’ historical experiences of living with the effects of external 

climates on indoor thermal conditions over time.  
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3.1. A bottom-up stock energy modelling framework 

From the literature, the possible approach to predicting peak cooling demands 

associated with indoor thermal conditions was concluded to be the statistical regression 

model owing to the limited applicability of future weather inputs into building physics. 

Moreover, to assess heat stress vulnerability (HSV) of an urban dwelling stock, it is 

essential to obtain measurements of the stock’s indoor thermal conditions during peak 

cooling months. However, obtaining such large-scale field measurements to cover the 

interiors of a city’s housing stock extensively both in space and time will be prohibitively 

expensive if not impossible. Therefore, a bottom-up energy modelling framework (Figure 

3-1) is proposed for estimating indoor thermal conditions of a city’s dwelling stock during 

peak cooling demand. The methodological framework was built on the basis of the data 

requirements for the purpose of assessing heat stress vulnerability.  

Here the main idea is to identify and develop a system of dwelling ‘archetypes’ in stock 

composition and placement modelling. Each archetype is then specified with known 

sources of building and occupancy survey information for EnergyPlus model calibration 

based on publicly available urban microclimate data and metered energy usage data. 

From the model calibration process, the HVAC cooling temperature set-point of an 

archetype can be extracted as a key indicator of the archetype’s present indoor thermal 

condition which is then taken as the basis for potential heat stress vulnerability 

assessment in present and future climate. The methodology presupposes a “business 

as usual” scenario assuming no major dwelling stock retrofit or replacement to take place 

into the coming years.  

The potential HSV is assessed in accordance to two approaches: (1) in terms of Cooling 

Temperature Set Points based (HSV-AT, HSV-BT); and (2) in terms of Cooling Energy 

Demand based (HSV-AE, HSV-BE). Consequently, the stock energy modelling is divided 
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into two types for the purpose of each of the HSV assessments: hence, (1) modelling 

indoor thermal conditions and (2) modelling peak cooling demands. 

 

 

Figure 3-1. A bottom-up stock energy modelling framework for assessing potential heat 

stress vulnerability of a city’s dwelling stock through combined micro building energy 

modelling and macro statistical modelling 

 

In both modelling process, multiple regression model is employed. In both modelling 

types, key determinants are identified by multiple regression analysis and then, a multiple 
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regression model is generated. The model accuracy is evaluated by k-fold cross 

validation. To predict archetypes’ indoor thermal condition in future years, peak cooling 

energy use is required as an input for modelling indoor thermal condition. Therefore, 

modelling for archetypes’ peak cooling energy use is carried out at Micro level 

responding to external climates. A more detailed account of the components of the 

modelling framework is provided in the following sections. 

 

3.2. Developing neighbourhood dwelling archetypes for building physics 

Recent research in building stock energy modelling has shown identification and 

specification of archetypes at different spatial scales to represent the composition of a 

building population (i.e., building archetype definitions summarised by Reinhart and 

Bavila (2016). Arguably, residential buildings present a highest level of uncertainty in 

quantitative modelling. Hence, it is of an interest to reduce uncertainty by maximal use 

of empirical data where available.  

Here a bottom-up approach to housing stock modelling is considered by developing 

archetypes at the spatial resolution of urban neighbourhood. This method is particularly 

pertinent if field measurement data such as energy use, local weather, and building 

construction information are readily accessible. Another rationale is the correspondence 

between urban neighbourhoods and urban microclimate boundary (as defined by a 1km 

radius of a city-district automatic weather station).  

For the purpose of archetype building energy modelling, this spatial resolution and 

empirical data availability could reflect more closely to variations in local environmental 

and building conditions as well as in the contingency of residents’ energy use decision-

making. In this thesis, methods on how the residential neighbourhood archetypes can be 

developed for building physics in City of Seoul is presented in chapter 5. 



Chapter 3. Methodology 

 

 

47 
 

3.3. Estimating present indoor thermal conditions of neighbourhood 

archetypes 

Based on the identification and specification of an archetype building, building energy 

modelling can be performed with inputs reflecting in its urban and user context.  A 

workflow is developed to estimate archetypes’ present-day indoor thermal conditions 

through a peak cooling energy model calibration process (Figure 3-2). The goal is to 

obtain the HVAC cooling temperature set points as estimated ranges of indoor 

temperatures, which for the purpose of this study reflects a certain level of dwellers’ 

indoor heat acclimatisation determined under adaptive opportunities (see section 6.2.4 

for more details). In turn, this present-day estimates are used in developing 

neighbourhood specific models for estimating archetypes’ indoor conditions in line with 

climate projections.  

The archetype cooling energy model calibration follows an iterative process (Raftery et 

al., 2011a). As there are no field measurement data available for internal loads of 

household equipment, the calibration process consists of two phases: (1) initial 

archetype non-weather-dependent (NWD) energy model calibration to estimate internal 

heat gains of household NWD equipment, and (2) archetype peak cooling energy model 

calibration to estimate present-day indoor thermal conditions expected during the hottest 

month of the year. 

As shown in the upper section of Figure 3-2, an initial step is required to obtain estimates 

of internal heat gains from household equipment usage (i.e., lighting, cooking, machinery 

and others), which are then taken as inputs to peak cooling energy model calibration for 

each neighbourhood archetype (see the lower part of Figure 3-2). For the initial non-

weather dependent (NWD) energy model calibration, three types of inputs (by 

measurement or by inference) are required: (a) physical properties in terms of 3D 
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geometry and thermal property of building material assembly profile; (b) urban 

microclimate boundary specific TMY weather data; and (c) NWD energy usage data 

including NWD household equipment use profiles. 

 

 

Figure 3-2. Model calibration process of peak cooling energy use for estimating an 

archetype’s present indoor thermal conditions 

 

Given the initial preparation, the archetype model can be updated at the zone level to 

include operating parameters of occupancy scheduling and placement of household 

NWD equipment. The application of a certain standard profile of household operation 

parameters in the zoning level should be adjusted or calibrated for the neighbourhood 
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model specifically through the iterative model calibration process based on the actual 

field measurements, i.e. hourly based especially. However, due to the limited data 

availability of residential neighbourhoods’ profiles in more detail, the selection of 

standard occupancy profile is carried out by empirical data analysis, of which the spatial 

resolution of hourly residential electricity use profile is on the national scale. Considering 

that the occupancy profile plays a key role in residential energy use (which then, affects 

indoor thermal environments at high resolution of time scale), such normalisation may 

lead to uncertainty in reflecting neighbourhood-specific circumstances into the model. 

However, the question is how this national scale data may differ from Seoul. In the stock 

energy modelling, the definition of archetype building contains uncertainty. Instead, it is 

important to point out the differences of the estimated indoor thermal conditions in each 

neighbourhood under the even inputs. However, different from other NWD dependent 

energy uses, lighting can probably be classified into seasonal use. Therefore, seasonal 

circumstances must be considered in the occupancy scheduling (see Table 5-8 for more 

details). 

Through iteration until the simulated NWD energy use outputs meet the measured NWD 

energy usage data, the internal loads for each archetypes’ NWD energy use can be 

obtained. The calibrated internal loads then are used to estimate internal heat gains of 

NWD equipment use, such as lighting, machinery, cooking and miscellaneous.  

Based on the initial NWD model obtained, peak cooling energy model calibration can be 

further performed by: (1) replacing the calibration data from NWD to total peak cooling 

energy use data; (2) updating operating parameters of occupancy scheduling and HVAC 

placement for cooling; and (3) inputting the internal heat gains of NWD household 

equipment use estimated previously. Finally, peak cooling temperature set points are 

derived from the iterative calibration process against the measured total amount of peak 

energy use (i.e., NWD + peak cooling). 
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3.4. Identifying key determinants for multiple regression models 

In theory, peak indoor thermal conditions (and/or peak cooling demands) of a city’s 

housing stock in future years can be modelled in a way similar to the present-year 

modelling as described above (section 3.3). However, future TMY/DSY weather data 

required for EnergyPlus modelling are not available at city-district level to be comparable 

to the present-year modelling. Therefore, statistical modelling techniques are employed 

for extrapolating future indoor thermal conditions (and peak cooling demands) of a city’ 

housing stock based on past and present conditions, presupposing no occurrence of 

major stock and other urban changes. It starts with estimating present indoor thermal 

conditions (and peak cooling energy use) as a dependent variable; the task here is to 

identify the key determinants via multiple regression analysis at the macro level, i.e., the 

aggregate of all the neighbourhood archetypes developed previously to ensure a largest 

possible training dataset.  

In this study, independent variables considered potential determinants of an archetype’s 

indoor thermal condition during peak cooling demand include: (1) the highest monthly 

external average temperature, (2) highest monthly cooling energy use, (3) property price 

as a socio-economic factor in cooling energy use decision-making, (4) floor area ratio 

(FAR) of residential neighbourhoods as a morphological density indicator, (5) non-

weather dependent energy use, and (6) U-value of building envelop. For the modelling 

for peak cooling demands, the dependent variable can be swapped from the estimated 

cooling temperature set points to peak cooling energy use. Using Seoul’s available data 

in current case study, it was found that the August average external temperature and 

August archetypes’ cooling energy use were identified as the key determinants of 

present indoor thermal conditions (see section 6.2.1). On the other hand, August average 

external temperature and HVAC cooling temperature set points temperature were 
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identified as the key parameters of peak cooling energy use (see section 6.3.1). These 

two determinants may not be applicable to other cities without city-specific analyses. 

 

3.5. Modelling archetypes’ peak indoor thermal conditions and peak 

cooling demands  

Based on the key determinants of indoor thermal conditions (and peak cooling energy 

use) identified, archetypes’ peak indoor thermal conditions (and peak cooling demands) 

are modelled by further multiple regression analyses. The statistical model is subject to 

k-fold cross validation to assess how the model predicts against an independent test 

dataset, taking into account yearly based sample characteristics. For example, in this 

Seoul study, four folds were used as there were four years’ annual datasets (2014-17) 

available for analysis; hence, for the cross evaluation: k=1, 2017 as the testing case 

(while k=2, 2016; k=3, 2015; k=4, 2014). Moreover, five criteria are used in error statistics: 

mean absolute error (MAE); mean square error (MSE); root mean square error (RMSE); 

mean absolute percentage error (MAPE); coefficient of determination (R2). 

Notably, as this is a bottom-up approach using all inputs derived from the micro level, 

the resultant regression model can be applicable to predict the future peak indoor thermal 

conditions (and peak cooling demands) of each neighbourhood archetype given its 

projected monthly average external temperatures based on city-wide climate change 

projections and peak cooling energy of future (and HVAC cooling temperature set points 

required). 
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3.6. Modelling archetypes’ peak cooling energy uses 

To predict the housing archetypes’ indoor thermal conditions during peak cooling periods 

in future years, the model needs an input, estimates of the archetypes’ peak cooling 

energy uses in future years, along with climate change projections for Seoul at the city-

district level. To obtain such estimations, the modelling archetypes’ peak cooling energy 

uses is carried out at the Micro level, under the “no change of peak cooling energy use 

behaviour” scenario. 

According to the correlational study of monthly external temperatures and cooling energy 

uses in Seoul’s residential neighbourhoods (Chapter 4), the correlation coefficients found 

at the city-district neighbourhood level were positive and exceptionally strong during the 

hottest month of the year (August). Moreover, there appear significant spatial variations 

in the strength of the coefficients, implying that peak cooling energy uses aggregated at 

the neighbourhood complex level is location-specific and closely related to urban 

microclimate boundary. In this study, assuming no major housing stock renovation or 

replacement will take place into the future, bivariate regression models are developed to 

estimate archetypes’ future peak cooling energy uses in accordance with the latest 

climate change projections. This statistical modelling should take place at the micro level 

to reflect historical energy use behaviours of the housing stock residents, which may 

carry some degree of continuity onto future years.  

To avoid overfitting training datasets with regard to testing datasets when the sample 

size is relatively small, peak cooling energy regression models should be subject to 

statistical checks such as the leave-one-out cross validation (LOOCV). The assumption 

of no stock renovation/replacement involved in the modelling can still produce results to 

inform likely consequences of “business as usual” scenarios; hence, in virtual retrospect, 
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what measures could be taken now to undertake innovative and purposeful housing 

stock management over a timeframe allowed by a city’s latest climate projections. 

 

3.7. Assessing potential heat stress vulnerability  

Finally, given the indoor thermal condition model and the peak cooling demands model, 

the potential heat stress vulnerability (HSV) of a city’s dwelling stock is assessed in two 

approaches labelled as HSV-A and HSV-B. The HSV-A assessment is based on 

referencing to a fixed threshold indoor temperature which is often recommended by a 

statutory authority on residential use of cooling systems.  For example, the Ministry of 

Land, Infrastructure and Transport of South Korea recommends 26ºC as the threshold 

temperature for domestic HVAC use (MoLIT, 2017). On the other hand, the HSV-B 

assessment is based on referencing to a city population’s indoor heat acclimatisation 

(IHA) history as captured by the actual peak cooling energy use data over many years. 

The rationale behind HSV-B is that urban dwellers may adapt to indoor heat conditions 

over time (i.e., indoor heat acclimatisation), hence an individual household’s decision on 

cooling energy use may deviate significantly from the fixed statutory set point. As an 

alternative reference point, here this study uses the Max value of cooling temperature 

set points inferred from historical cooling energy use data for HSV-B assessment. 

Furthermore, within HSV-A and HSV-B, two methods are introduced: Cooling 

Temperature Set Points based (HSV-AT, HSV-BT), and Cooling Energy Demand based 

(HSV-AE, HSV-BE). Both sub-methods assume that future peak cooling energy demand 

will be met by energy suppliers and affordable by dwellers to maintain the statutory set 

point temperature (HSV-AT) or the historical IHA level (HSV-BT). Hence, the peak cooling 

energy demand based HSV assessment is carried out over two strands: (1) HSV-AE peak 

cooling loads estimated according to a statutory cooling temperature set point for all 
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neighbourhoods; and (2) HSV-BE peak cooling loads estimated according to each 

neighbourhood archetype’s present Max cooling set point temperature as the 

vulnerability threshold. 

In both approaches, the HSV assessment outcomes are summarised as the difference 

between estimated set points and base reference points. It follows that neighbourhood 

archetypes further away from the reference points present higher heat stress 

vulnerability. Finally, the quantified differences are sorted as relative ranking among a 

city’s neighbourhood archetypes. Applying this methodological framework, this study 

presents an assessment of potential heat stress vulnerability of Seoul’s dwelling stock in 

Chapter 6. 
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4.1. Introduction 

The main idea of the proposed modelling framework (Chapter 3) is to identify and 

develop a system of housing archetypes representative to the dwelling stock population. 

Especially, as the framework was developed by a bottom-up approach to modelling a 

dwellings’ peak (August) cooling demands (PCDs) at the city scale, it is important to 

identify a possible spatial boundary (as a “bottom” level) of housing stock, which can 

capture key components of households’ cooling energy pathways in developing housing 

archetypes. As the principal elements in archetype developments, not only building 

physical configurations (i.e. geometric form and thermal characteristics) but also 

households’ cooling energy use behaviour during the peak months must be considered 

for the purpose of modelling PCDs of a city’s dwelling stock. This represents that the 

knowledge of a dwellers’ cooling energy use behaviour is essential in energy modelling. 

However, obtaining such user-related information through a completed survey in an 

urban context is cost-prohibitive. Even if possible, the diversity of individual household’s 

energy use behaviours would be poorly abstracted into the urban energy model. In the 

absence of this reliable knowledge, this chapter first investigates the characteristics of 

historical cooling energy use to explore possible knowledge of households’ user-related 

information. The hypothesis is that the datasets of households’ cooling energy use 

contain their historical energy use behaviours determined by their own circumstances in 

responding to external and internal climates. It was developed on the grounds that 

residential cooling energy use highly depends on household-related factors such as 

economic circumstances and energy use behaviours under the interaction with building 

thermal environments. 

Therefore, several statistic relational analyses between energy use data and other 

multiple factors are introduced (see Figure 4-5). Also, they are carried out within different 
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temporal (summer months, July-September) and spatial resolutions (city and 

neighbourhood scale). To account for building interaction with the urban microclimate, 

this thesis defines urban area as being within a 1 km radius of urban weather stations as 

the spatial location and boundary in sampling a city’s housing stock: hence, the 

neighbourhood scale. This is considered an acceptable spatial scale reflecting climatic 

variation in an urban climate zone (Oke, 2004; 2006). Therefore, this thesis considers 

that there could be similar climate (particularly dry-bulb temperature) conditions affecting 

residential neighbourhoods within a sub-urban spatial resolution. 

The expectation is that if the residential neighbourhood of microclimate boundary can 

capture the homogenous datasets of multiple factors (energy flow pathways) affecting 

peak cooling energy use, the housing archetype can be developed within that boundary 

scale with reduction of uncertainties in terms of representativeness to housing stock. 

Hence, the urban housing stock energy modelling will take well-informed knowledge that 

enables one to outline detailed modelling techniques. 

The city of Seoul has been identified as the case study site where the datasets required 

to address the above issues are available in the public domain under the country’s open 

data and protection law - Article 23 in “Multi-family Housing Management Act” (MoLIT, 

2016). The goal in this chapter is to investigate characteristics of residential peak month 

(August) cooling energy use to outline housing archetype developments for the purpose 

of assessing heat stress vulnerability of a city’s dwelling stock. 

To achieve the primary aim of this chapter, section 4.2 first presents the collected Seoul’s 

open data based on the literature of factors affecting residential cooling energy use. 

Section 4.3 on methods analyses the collected data and introduces a statistic relational 

analysis framework to understand the characteristics of the urban dwelling’s cooling 

energy use. The results are presented and discussed in section 4.4. Finally, chapter 4.5 
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concludes with the key findings and presents limitations and further developments in 

stock energy modelling. 

 

4.2. Seoul’s open data 

The city of Seoul is made up of 25 “gu” (city district, CD) and each CD has its own 

automatic weather station (AWS). Seoul’s open data is first analysed to look for potential 

correlations between (a) the actual residential cooling energy use extracted from the 

energy bill data from the apartment neighbourhoods, and (b) the actual location-specific 

microclimate urban weather data as measured from the CD AWS. 

By the Article 23 in “Multi-family Housing Management Act” (MoLIT, 2016), apartment 

neighbourhoods (ANs, multi-family housing complex) with at least 300 households (or 

150 with specific article under the Act) are subject to “compulsory management”, 

meaning to make their neighbourhood aggregate monthly utility energy use available on 

the Apartment Management Information System (AMIS, see section 4.2.2 for more 

detail). As in 2018, there are 2,343 apartment neighbourhoods registered on AMIS, and 

16,464 apartment buildings, 1,419,808 apartment households, about 87% of the total, 

are registered with AMIS (2018a). Each apartment neighbourhood is composed of about 

seven apartment buildings and each apartment building contains about 86 households 

arithmetically. In the Seoul study, the boundary of 1km radius of a city-district automatic 

weather station (CD-AWS) is used as the microclimate boundary in sampling the city’s 

high-rise apartment neighbourhoods.  
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4.2.1. Urban microclimate data 

The urban microclimate data collected at the AWS of each city district in Seoul are open 

to the public (KMA, MDOP). However, the scope of AWS data is restricted to temperature 

(dry-bulb), wind direction/speed and precipitation (above 0.5mm). As dry-bulb 

temperature is the most influential weather variable affecting building thermal regulations 

and energy use, it was chosen to represent the urban weather data in this study. Figure 

4-1 shows the locations and boundaries of the 19 city areas identified, considering the 

sample size for statistical analyses (see section 4.2.3 for more detail). The boundary of 

1km radius within the AWS location is chosen according to the spatial scale of urban 

microclimate (Oke, 2004; 2006). Thus, a total of 98 apartment neighbourhoods are 

identified across the 19 district sites.  

 

 

Figure 4-1. Locations of the 98 apartment neighbourhoods (ANs) within 1km radius of the 

19 city district (CD) automatic weather stations (AWS) in Seoul highlighted for the study. 



Chapter 4. Characteristics of urban dwelling’s cooling energy use 

 

 

60 
 

Table 4-1. The location information of Seoul’s 19 City District (CD) Automatic Weather 

Station (AWS), and height and size information of the Apartment Neighbourhood (AN) 

within each CD-AWS 1km boundary (Source: KMA; AMIS, 2018b)  

                            CD AWS info.     AN info. 

 Location  Height info.      

 Lat. Long   Sea 
lv. (m) 

Street 
lv. 
(m) 

Roof lv. 
(Stories)  

 Avg. 
Top 
floor lv. 

Avg. 
Min 
floor lv. 

No. 
Apt. 
Building 

No. 
Apt. 

CD1 37.5134 127.0470  59.6 50.6 3  21 13 59 4193 
CD2 37.5555 127.1450  56.9 47.9 3  17 12 61 4977 
CD3 37.6397 127.0257  55.7 34.7 7  17 12 15 1517 
CD4 37.5499 126.8425  79.1 64.1 5  20 13 64 3519 
CD6 37.5336 127.0853  38.0 38.0 0  19 11 16 1692 
CD8 37.4655 126.9001  41.5 29.5 4  21 15 30 2156 
CD10 37.6661 127.0295  55.5 43.5 4  14 11 47 4862 
CD11 37.5846 127.0604  49.4 34.4 5  21 11 47 3387 
CD12 37.4937 126.9181  33.8 33.8 0  19 15 17 2049 
CD13 37.5655 126.9027  25.0 13.0 4  16 10 18 1192 
CD15 37.4889 127.0156  35.5 26.5 3  17 10 67 6565 
CD16 37.5472 127.0388  33.7 18.7 5  17 10 25 2065 
CD17 37.6117 126.9994  125.9 107.9 6  19 11 37 3033 
CD18 37.5115 127.0967  53.6 29.6 8  18 15 105 11276 
CD19 37.5296 126.8782  9.7 6.7 1  18 9 119 7892 
CD20 37.5271 126.9070  24.4 12.4 4  21 15 52 3980 
CD21 37.5204 126.9761  32.6 20.6 4  21 13 52 4681 
CD22 37.6077 126.9338  65.0 56.0 3  16 8 34 1976 
CD25 37.5855 127.0868  40.2 28.2 4  18 12 11 1087 

 

Table 4-1 shows the locations of the 19 AWS, including height above sea level, estimated 

street and building roof level and the associated neighbourhood facts such as apartment 

building height and size. However, as the AWS data contains only location and height 

above sea level, the street level of each AWS was estimated from the sea level 

information given in KMA with 3m for each floor. For instance, CD1 AWS is placed on 

the top of a three-story building and thus, the likely street level is 50.6m (=59.6m-9.0m). 

Arguably, there are vertical variations in the distribution of air temperature observed in 

urban context regionally, seasonally, and diurnally (Jayamurugan et al., 2013). However, 

as most of the CD AWS are placed on building roof tops, the collected temperature data 

could be thought of as an influential weather variable affecting cooling energy use of the 

associated neighbourhoods. It should be highlighted here that the CD AWS datasets 

encompass urban heat island (UHI) effects wherever and whenever present in the district 

neighbourhoods.  
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4.2.2. Cooling energy use data 

Due to the very high ratio of apartment buildings in South Korea, the Ministry of Land, 

Infrastructure and Transport (MoLIT) set up the Apartment Management Information 

System (AMIS) in 2010, under the country’s open data and protection law - Article 23 in 

“Multi-family Housing Management Act” (MoLIT, 2016).  

The AMIS was constructed to inform the monthly energy bill of each apartment 

neighbourhood including aggregate monthly utility bill for gas, electricity and water 

(Korean Won per square meter, KRW/m2) and the amount of monthly electricity use 

(kWh/m2, available since 2014). In order to withdraw cooling energy use data from the 

AMIS, the electricity “bill” data was chosen, especially for this study within chapter 4, as 

only the electricity bill mirrors energy use for summer cooling in Seoul (i.e. uses of 

household air-conditioning and electric fans). Notably, the spatial resolution of the AMIS 

energy bill data is an average monthly energy bill of each apartment neighbourhood not 

a single residential household’s monthly energy bill. Therefore, the collected electricity 

bill data from each apartment district (Korean Won per square metre, KRW/m2) reflects 

collective energy use for summer cooling specific to the placement of a neighbourhood.  

The Korea Electric Power Corporation (KEPCO, 2016) have stated that the only electric 

power supplier in South Korea, currently 95% of total apartments in South Korea have 

their metres read on the same day (the18th of each month). It is therefore assumed that 

95% is satisfactory for all apartments in this preliminary statistic relational study to have 

the same metre reading day. Bearing in mind their sample sizes, city districts containing 

fewer than 3 apartment neighbourhoods were not included in this paper. Thus, 19 city 

districts and a total of 98 apartment neighbourhoods (approx. 72,000 apartment 

households) were chosen for the study, each of which is within 1 km radius of the city-

district weather station. Furthermore, considering the fact that the AMIS only started in 
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2010, going through the system testing period 2010-2013, 2012-14 were selected as the 

temporal range for the AMIS energy (electricity) bill data. Finally, the locations of the 98 

apartment neighbourhood (AN) sites coupled with the 19 city-district weather station sites 

selected for the relational study are identified (Figure 4-1).  

 

4.2.3. Property price data 

The AMIS data portal also provides apartment property cost data by joining the 

information service of publicly noticed value (PNV) of real estate price (KAB, 2015a), 

which is preserved by the Korea Appraisal Board (KAB, 2017) under the MoLIT. 

Therefore, the apartment property price data in this study is not of market price, but of 

PNV for deciphering the household’s property tax. Like energy use data, the unit of the 

property price is shown in Korean Won per square metre (KRW/m2) and the length of 

time to collect was 2012-14.  

 

4.2.4. Seoul’s climate change projection data 

First set up by the Korea Meteorological Administration (KMA), Seoul’s Climate change 

datasets, projected by MK-PRISM (Modified Korean Parameter-elevation Regressions 

an Independent Slopes Model) (Kim et al., 2012; Kim et al., 2013a), are available at 

present at the Climate Information Portal (CIP). The future climate data available is daily 

maximum, minimum and mean temperature and rainfall up to Year 2100 at the city 

district level. The MK-PRISM model was engineered on the basis of the 2000-2010 

weather data collected from the CD AWS sites with 1km horizontal resolutions taking 

into account topographic influence and data histogram.  
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There are four climate change scenarios used in this projection: Representative 

Concentration Pathways (RCP) 2.6, 4.5, 6.0, 8.5, representing CO2 concentration 

touching 420, 540, 670 and 940 ppm in 2100 respectively. The RCP4.5 and RCP8.5 

scenarios were selected in this study. Also, the projected daily mean temperature data 

for August was used to create a future peak monthly average temperature on the basis 

of the same metre reading day for electricity use data.  

 

4.3. Methods  

The first survey of the above open datasets from the 19 city districts suggests a need for 

a systematic approach to analysing the data in accordance to the research question. 

Hence, a data mining method was created in three steps in section 4.3.1: (1) extracting 

summer cooling energy use data (see also section 5.3.2 for the further developed 

analysis based on metred electricity use data, kWh/m2), (2) identifying the summer 

cooling period and (3) data normalisation. Furthermore, to analyse the open data fairly, 

a statistic relational analysis framework and the workflow were developed in section 4.3.2, 

which allows to understand characteristics of residential cooling energy use with other 

multiple factors in diverse temporal and spatial resolutions. 

 

4.3.1. Data mining 

First of all, in searching for potential correlations between energy use (electricity bill) and 

urban weather data (air temperature etc.), it is essential to minimize inclusion of the non-

weather-dependent electricity bill (Asimakopoulos et al., 2001). In this study, the rise (IR) 

of the monthly electricity bill during summer period was proposed as a cooling energy 

use index which can be calculated by the increment of electricity bill of each summer 
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month based on the non-weather-dependent electricity bill of the year. The non-weather-

dependent bill can be thought of as the minimum electricity bill of the year, because it 

could potentially contain the operating costs of lighting and home appliances not affected 

by the external thermal conditions (Bronson et al., 1992). The equation for working out 

the monthly IR of an apartment neighbourhood is simply as follows (Equation 1), where 

Bsm is the summer monthly electricity bill and Bmin is the non-weather-dependent 

electricity bill: 

𝐼𝑅 (%) =
(𝐵𝑠𝑚−𝐵𝑚𝑖𝑛)

𝐵𝑚𝑖𝑛
× 100                                (1) 

 

It may be contentious whether the minimum electricity month excludes any cooling and 

heating energy use or not. In a real situation, it is difficult to be sure of this differentiation 

due to the complexity of user behaviour and circumstances in residential energy use. 

Here it was presumed that the month where the minimum electricity bill occurs was non-

weather-dependent or, at least, it was minimal in cooling and heating energy use.   

 

 

Figure 4-2. Monthly temperature distribution based on hourly dataset from city weather 

station for 2012 (left) and monthly IR data of aggregate of all 98 ANs across the 19 CD’s 

boundaries 
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Figure 4-2 backs up this assumption, showing that monthly temperature distribution and 

the monthly IR in 2012 as an example. For Seoul, the base temperature for HDD and 

CDD was set at 17.1oC as a transition point of electricity demand from heating to cooling 

(Lee et al., 2014). As seen in monthly temperature distribution, May and October are 

placed on near the base temperature and therefore, about 60% of 98 ANs displayed that 

the minimum electricity bill occurred in May (28%) and October (29%). Furthermore, the 

minimum IR occurred in both months with only 4.67% and 5.06% respectively. More 

detailed analysis for identifying non-weather-dependent electricity use is presented in 

section 5.3.2. 

 

Figure 4-3. Distribution of the monthly mean IR indexes of the aggregated 98 apartment 

neighbourhoods in Seoul over May-September 2012-14 

 

Secondly, the summer cooling period in Seoul was recognised by the monthly IR 

distribution (Figure 4-3). The Korean Meteorological Administration (KMA) currently 

states that June, July and August as the official summer months (KMA, 2014). However, 

it was proposed to look once more at the summer months in Seoul according to the 

distribution of the IRs during May and September 2012-2014 as Lee and Levermore 
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(2010) broadly defined the summer period by excluding winter period (Oct-Apr) in their 

previous study of the cooling degree days (CDDs) in South Korea. The lay out of the 

monthly IRs was calculated as the mean of monthly IR of the aggregated 98 apartment 

neighbourhoods in Seoul. Notably, the time unit (day) in the IR-based analysis is set to 

the metre reading day of electricity billing: the 18th of each month, which is also applied 

to the city-district weather station datasets.  

Figure 4-3 shows that the summer cooling period in Seoul could be July-September 

rather than June-August as the KMA previously thought. Even though cooling energy 

use (IR) happened in May and June, the levels were significantly lower than the other 

months, which may be a sign of climate change. Through the monthly IR distribution 

analysis, July-September was identified as the summer cooling period in Seoul 2012-14, 

which was attached to the corresponding AWS datasets. 

 

Table 4-2. Normality distribution of IR (increase rate of energy use for cooling) of the 98 

apartment neighbourhoods (ANs) by each of the summer months and the summer period 

2012-2014. * Values in () are square root transformed IR 

 N Mean Std. D Skewness Kurtosis Kolmogorov-
Smirnov Sig. 

Jul IR 294 
(98ANs x 1mon x 3yr) 

37.94 
(5.86) 

23.62 
(1.90) 

.942  
(.270) 

.508 
(-.449) 

.000  
(.077) 

Aug IR  294 
(98ANs x 1mon x 3yr) 

96.02 
(9.49) 

48.77 
(2.46) 

.803  
(.254) 

.446 
(-.519) 

.002  
(.004) 

Sept IR 294 
(98ANs x 1mon x 3yr) 

24.43 
(4.44) 

20.67 
(2.17) 

1.898  
(-.015) 

5.301 
(.662) 

.000  
(.000) 

Summer 
Period IR (Jul–
Sept) 

882 
(98ANs x 3mon x 3yr) 

52.80 
(6.60) 

45.65 
(3.05) 

1.484  
(.393) 

2.299 
(.017) 

.000  
(.000) 

 

Finally, as the main statistical method of this study would be parametric statistics (e.g. 

Pearson correlation and analysis of variance), normality of the IR values was checked 

first. Also, it was performed by each summer month (July, August, and September) 
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during 2012-2014 due to the monthly time base of each parametric analysis. The output 

of normality distribution of the IR is shown in Table 4-2.  

 

 

Figure 4-4. Normality distribution of original (left) and Sqrt transformed (right) September 

IR of the 98 apartment neighbourhoods (ANs). 

 

The normality of July and August IR was primarily accepted as each value of skewness 

(the symmetry of the distribution) and Kurtosis (the ‘peakedness’ of the distribution) was 

less than 1. Although Sig. of Kolmogorov-Smirnov was less than .05 in all cases, this 

was normal in a larger sample (N>30) (Pallant, 2010, pp. 63). Nevertheless, as the 

September IR and the Summer Period IR did not meet normality condition, which 

skewness and Kurtosis were 1.898 (1.484) and 5.301 (2.299) respectively, the IR data 

was converted using square root (Sqrt) transformation recommended by Tabachnick and 

Fidell (2007, pp. 87). Considering the coherence of data transformation, all IR data was 

subsequently Sqrt transformed. Figure 4-4 shows the normality distribution of original 

(left) and Sqrt transformed (right), taking the September IR as an example.  
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4.3.2. A statistic relational analysis framework 

A statistic relational analysis framework and the workflow are created for correlating 

cooling energy use with urban microclimate and property price data (Figure 4-5). Here 

the statistic relational studies are performed at two spatial scales: (a) at the macro-level, 

aggregating the 98 apartment neighbourhoods (ANs) within the AWS 1km boundaries 

across the 19 city districts, and (b) at the micro-level, aggregating only the ANs within 

each CD-AWS 1km boundary individually. The results from the correlational analyses 

provide a basis for estimating future summer peak energy demands given the climate 

change projections made available at the city-district level. 

 

 

Figure 4-5. A statistic relational analysis framework for correlating cooling energy use 

with urban weather and property price data as a basis for projecting future summer peak 

energy demand 
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Firstly, at a macro-level, for the aggregated 98 apartment neighbourhoods (AN) chosen 

from the 19 CDs’ AWS 1km boundaries, the relationships between cooling energy use 

(IR) and the two variables (urban weather and property price data) were investigated by 

Pearson correlation analyses (RA1, RA2). Then, a multiple linear regression analysis 

was completed to compare the impact of the two variables on IR (RA3). The purpose of 

the aggregation analyses at macro level is to investigate which parameter is the key 

deriver of residential cooling energy use in different summer months (July – September) 

overall. For instance, as described later (Section 4.4.1), the impact of urban weather on 

cooling energy use is much stronger than that of property price data in August (the hottest 

month of the year), while it is opposite in July (under milder summer month relative to 

August). This enables one to outline detailed micro-level analysis to understand the 

characteristics of residential cooling energy use responding to external temperature. 

Secondly, at a micro-level, travelling into each CD’s AWS 1km boundary individually, the 

number of apartment neighbourhoods varies from 3 to 10, the interaction between 

cooling energy use and urban weather data were examined in two aspects: (1) The huge 

range of IR by analysis of variance (SA1); (2) the relationship between IR and AWS data 

by Pearson correlation (RA4). Then, due to the varying strength of correlation in summer 

months and exceptionally strong relationship coefficients discovered in August (the 

hottest month of the year), a straight forward bivariate regression (SBR) model was 

derived for each of the 19 city district AWS boundaries (RA5). The SBR models were 

evaluated by residual analysis (SA2). Finally, the SBR models were applied to predict 

future peak energy demands of each city district using the climate change projection data 

for South Korea. 
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4.4. Results and discussions 

In this section, the results of the proposed statistic relational analysis framework are 

offered and discussed. In accordance with the key steps presented in Figure 4-5, section 

4.4.1 shows macro-level outputs (including RA1, RA2 and RA3) and section 4.4.2 

displays micro-level outcomes (RA4 and SA1). Finally, given the results of RA4 and SA1, 

the estimating future peak cooling energy demands is presented in section 4.4.3 (RA5 

and SA2). 

 

4.4.1. Correlating cooling energy use with air temperature and property price at 

macro-level 

4.4.1.1. Correlating cooling energy use with air temperature (RA1) 

The relationship between the cooling energy use (Sqrt IR) and the urban weather 

(monthly average temperature) of the 98 apartment neighbourhoods within the 19 CDs’ 

AWS 1km boundaries was scrutinised by Pearson correlation analyses. To confirm no 

violation of the assumption of normality, linearity and homoscedasticity, a preliminary 

analysis was performed for the whole summer period, and July, August and September 

of 2012-2014 (Figure 4-6). 

Table 4-3 shows that there was an extremely strong and positive correlation between 

the two variables for the whole summer period (r=.770). For individual months, July 

(r=.574) and August (r=.749) show strong or very strong positive correlations but 

September (r=-0.009) shows negative, no correlation and no real significance. 
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Figure 4-6. Scatterplot between cooling energy use (Sqrt IR) and monthly average 

temperature 

 

Table 4-3. Correlation coefficients between cooling energy use (Sqrt IR) and monthly 

average temperature. **. p <0.01 and *. p <0.05 

 Sqrt of AN 
monthly IR  
(Whole Summer) 

Sqrt of AN 
monthly IR 
(July) 

Sqrt of AN 
monthly IR 
(August) 

Sqrt of AN 
monthly IR 
(September) 

monthly 
average 
temperature 

Pearson-C .770** .574** .749** -.009 

Sig. .000 .000 .000 .882 

r squared .593 .329 .561 .000 

N 882  
(98ANs*3Mon 
*3Yr) 

294  
(98ANs*1Mon*
3Yr) 

294  
(98ANs*1Mon*
3Yr) 

294  
(98ANs*1Mon*
3Yr) 

 

To discover what might have contributed to the differences in the Pearson correlation 

coefficients seen in Table 4-3, another possible urban weather parameter, changes in 

humidity was looked into as the role of an air-conditioning system is to maintain not only 
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indoor air temperature but also humidity. However, as no humidity data was present at 

the AWS portal, the monthly temperatures were grouped into 2 types: monthly average 

temperature during Precipitation and Non-precipitation days (Table 4-4). It could be 

discussed if the humidity change can be simplified in those two temperature types. 

However, under the complexity of urban weather and limited data availability, it is 

assumed that the humidity situation in non-precipitation days is definitely drier than in 

precipitation days. 

 

Table 4-4. Correlation coefficients between cooling energy use (Sqrt IR) and monthly 

average temperature in precipitation and non-precipitation days. **. p <0.01 and *. p <0.05 

 Sqrt of AN 
monthly IR  
(Whole Summer) 

Sqrt of AN 
monthly IR  
(July) 

Sqrt of AN 
monthly IR 
(August) 

Sqrt of AN 
monthly IR 
(September) 

Precipitation 
monthly average 
temperature 

Pearson-C .738** .443** .693** .027 

Sig. .000 .000 .000 .647 

r squared .545 .196 .481 .001 

N 882  
(98ANs*3Mon 
*3Yr) 

294  
(98ANs*1Mon*
3Yr) 

294  
(98ANs*1Mon
*3Yr) 

294  
(98ANs*1Mon
*3Yr) 

Non-Precipitation 
monthly average 
temperature 

Pearson-C .762** .525** .746** -.059 

Sig. .000 .000 .000 .317 

r squared .580 .276 .556 .003 

N 882  
(98ANs*3Mon 
*3Yr) 

294  
(98ANs*1Mon*
3Yr) 

294  
(98ANs*1Mon
*3Yr) 

294  
(98ANs*1Mon
*3Yr) 

 

Firstly, the cooling energy use over the whole summer phase (N=882, 98ANs*3Mon*3Yr) 

had a stronger correlation with non-precipitation average temperature (r=.762) than 

precipitation (r=.738), showing that air temperatures in non-precipitation days may have 

been more influential on residential cooling energy use. This was also ratified in the 

monthly correlation analysis: in July and August (N=294, 98ANs*1Mon*3Yr), the non-

precipitation average temperature was more strongly linked with IR than precipitation. 

Secondly, comparing the two correlations in Table 4-3 and Table 4-4, the cooling energy 

use was more strongly correlated with monthly average temperature in the whole 



Chapter 4. Characteristics of urban dwelling’s cooling energy use 

 

 

73 
 

summer period. Therefore, the left over relational study was carried out using only the 

monthly average temperature. However, the September case still showed no link, 

suggesting that under the mildest summer condition, other parameters such as solar 

radiation may be more influential than temperature. 

 

4.4.1.2. Correlating cooling energy use with apartment property price data (RA2) 

To give an explanation for possible human behavioural factors of cooling energy use (i.e., 

factors associated with decision on using cooling energy or not and how much), it was 

probed to see if cooling energy use was correlated to apartment property price data 

(Figure 4-8. c). However, physiological and psychological factors are not considered in 

this study due to the data limitation and complexity of those involuntary factors in the 

analysis. Here, it is assumed that the apartment property price is an overall gauge of the 

socio-economic circumstances of households, affecting residents’ cooling energy use 

decisions. Since the property price data was circulated as the average price of 2012-

2014, the correlation analysis was carried out based on total cooling energy use (IR) of 

the whole summer period and each summer month during 2012-2014; thus, the number 

of elements in all cases was 98. The property price data was also Sqrt transformed for 

data normalization. A one-way between-groups analysis of variance (ANOVA) was 

conducted to explore the difference of Sqrt of property price in each of the districts. The 

ANOVA output shows that the difference in the mean scores on the property price 

variable for 19 city districts is statistically significant: the sig. (p) was .000, less than .05. 
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Table 4-5. Correlation coefficients between cooling energy use (Sqrt IR) and Sqrt of 

property price 2012-2014. **. p<0.01 

 Sqrt of total AN 
monthly IR  
(Whole Summer) 

Sqrt of total AN 
monthly IR 
(July) 

Sqrt of total 
AN monthly IR 
(August) 

Sqrt of total 
AN monthly IR 
(September) 

Sqrt of AN 
property 
price  

Pearson-C .712** .698** .708** .101 

Sig. .000 .000 .000 .324 

R-squared .507 .487 .501 .010 

N 98 98 98 98 

 

Table 4-5 shows that the two variables had positive and very strong coefficient during 

the entire summer (r=.712). Nevertheless, the strength of the monthly coefficients varied, 

July (r=.698), August (r=.708), September (r=.101), suggesting higher cooling energy 

use correlated with higher apartment property prices. Surprisingly when comparing the 

two correlations in Table 4-3 and Table 4-5, the July correlation coefficient of property 

price (r=.698) was much more significant than that of average temperature (r=.574). This 

could be due to the fact that under milder weather conditions (July in this case), the 

socio-economic factor, as mirrored in the apartment property price data, can be more 

influential than the external weather conditions on cooling energy use. To go into more 

depth, a multiple regression analysis was carried out to investigate the combined effect 

of urban weather data and property price data on cooling energy use in the next section. 

 

4.4.1.3. Effect of combined air temperature and property price on cooling energy 

use (RA3) 

In the first place, the multi-collinearity was assessed using tolerance and VIF (Variance 

inflation factor) in collinearity statistics. The tolerance and VIF in 4 cases were not 

below .10 and not higher than 10 respectively, so the multi-collinearity assumption was 

not violated (Pallant, 2010, pp.157): whole summer period (.969 and 1.032), July (.751 

and 1.332), August (.951 and 1.052) and September (.820 and 1.220). Also, a 

preliminary analysis for regression model was performed to check outliers, normality, 
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linearity, homoscedasticity and independence of residuals through inspecting the normal 

probability plot (P-P) of the regression standardised residual and the scatterplot (Figure 

4-7).  

 

 

Figure 4-7. Normal P-P plots of regression standardized residual and the scatterplots for 

summer period, July, August and September. * Dependent variable: Sqrt of apartment 

neighbourhood (AN) monthly IR for whole summer period (a); for July (b); for August (c); 

for September (d) 

 

The probability plot shows all the times reasonably placed in the straight diagonal line 

except September (slightly biased): therefore, no large deviations from normality were 

found in all cases. Moreover, in the scatterplot, there were no significantly great number 

of points of more than 3.3 or less than -3.3: hence, no presence of outliers (Tabachnick 

and Fidell, 2007, pp.125). This was also confirmed by looking closely at the Mahalanobis 

distances, comparing to critical chi-squared value, that is, the distance must be less than 

13.82 in case of 2 numbers of independent variables (Pearson and Hartley, 1958; 
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Tabachnick and Fidell, 2007): maximum Mahalanobis distance for whole summer 

(8.936); for July (8.866); for August (8.573); for September (8.611). 

 

Table 4-6. Multiple regression analyses to investigate effect of combined monthly 

average temperature and Sqrt of property price on cooling energy use (Sqrt IR) 

Case regression  
model 

Dependent Independent B Std. 
error 

Beta Sig. 

Whole Summer 
Period 
 
R2 = .613,  
p = .000 

Sqrt of AN 
monthly IR for 
whole 
summer 
months 
 

(Constant) -29.656 .973  .000 

Monthly average  
temperature 1.332 .038 .744 .000 

Sqrt of AN property 
price 

.001 .000 .146 .000 

July 
 
R2 = .506,  
p = .000 

Sqrt of AN 
monthly IR 
for July 

(Constant) -28.245 3.964  .000 

July average  
temperature 1.162 .167 .331 .000 

Sqrt of AN property 
price 

.002 .000 .485 .000 

August 
 
R2 = .655,  
p = .000 

Sqrt of AN 
monthly IR 
for August 

(Constant) -30.282 1.808  .000 

August average  
temperature 1.304 .068 .679 .000 

Sqrt of AN property 
price 

.002 .000 .314 .000 

September 
 
R2 = .007,  
p = .224 

Sqrt of AN 
monthly IR 
for September 

(Constant) 6.422 3.839  .095 

September  
average temperature -.129 .172 -.048 .453 

Sqrt of AN property 
price 

.001 .000 .094 .147 

 

Table 4-6 displays the result from the regression analysis. Firstly, the regression model 

explained 61.3%, 50.6% and 65.5% of the variance in the Sqrt of neighbourhood monthly 

IR for whole summer period, July, and August 2012-2014 respectively; the statistical 

meaning in all 3 models was .000 (p<.0005). Secondly, evaluating each of the stand-

alone variables, the impact of each variable on cooling energy use was different. In the 

entire summer period model, the impact of microclimate temperature (the standardised 

coefficient, Beta, .744) on cooling energy use was much higher than the property price 

(.146). This implies that the microclimate conditions (as reflected by the monthly average 
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temperature) are more of a dominant influence on residential cooling energy usage 

during the summer period overall.  

However, comparing the Beta values between July and August, while the bearing of 

average property price (.485) was higher than that of monthly average temperature (.331) 

in July, the temperature (.679) was more influential on cooling energy use than the price 

(.314) in August. This suggests that only under the high temperature of August, the 

influence of the weather on cooling energy use is more dominant than that of the socio-

economical (as reflected by the property price). However, under the lower temperature 

of July, the socio-economic factor appears more dominant.  

 

4.4.2. Correlating cooling energy use with air temperature at micro-level (RA4) 

Following the three relational analyses above at the macro-level (RA1-RA3 in Figure 4-

5), the characteristics of residential cooling energy use (SA1) were investigated and then, 

further correlational analysis (RA4) was performed at the micro-level, looking into the 

apartment neighbourhoods within each city district’s AWS 1km boundary. 

 

4.4.2.1. Characteristics of monthly cooling energy use (SA1) 

Firstly, the characteristics of the residential cooling energy use were investigated with 

external temperature and property price. Figure 4-8 (a) displays the August average air 

temperatures (19 Jul – 18 Aug, 2012) recorded at each city district AWS in Seoul, the 

hottest period during 2012-2014. The highest average August cooling energy use came 

up also in 2012 (Figure 4-8. b). However, at that time the average temperatures varied, 

and the gap between the highest and lowest was about 2.65oC (the highest 29.61oC 

occurred at CD25, while the lowest 26.96oC at CD22).  
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Figure 4-8. The August average temperature (a) and August ANs’ IR (b) in 2012, and 

ANs’ property price (c) within each of the 19 CDs’ AWS 1km boundary 

 

Furthermore, a number of city district temperatures differed significantly from the Seoul 

City Weather Station temperature (28.21oC). The August IR for cooling energy use also 

shows noticeable differences across the 19 city districts. However, these two 

measurements are not always in agreement with our instinct that higher air temperatures 

correspond to higher IRs and vice versa. As shown by the macro analyses above, socio-

economic factor (reflected in the property price, Figure 4-8. c) could also affect cooling 

energy use massively. For instance, CD25 is an example: low IR, high temperature, and 

low property price band. The highest IR happened at CD21 (high temperature, high 

property price band), while the lowest IR occurred at CD17 (low temperature, low 
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property price band). Arguably, there can be other factors in determining residential 

cooling energy use, such as building characteristics (age, glazing ratio and air-

conditioning penetration rate). If those on-site measurements in more detail are available, 

the relationship between cooling energy use and building characteristics can be further 

investigated.   

 

Figure 4-9. Mean of apartment neighbourhoods (ANs’) monthly IR of each city district by 

July, August and September of 2012-14 

 

Table 4-7. Analysis of variance (ANOVA) of monthly IR of July, August and September, 

2012-2014, across the 19 city districts 

 
F Sig. (p) 

Sqrt July IR 26.308 .000 

Sqrt August IR 9.285 .000 

Sqrt September IR 14.708 .000 

 

Secondly, as shown in Figure 4-9, the mean of apartment neighbourhood’s IRs of each 

individual city district during the summer period varied. For example, CD21 had the 

highest IR for all the 3 months during 2012-14, while CD17 had the lowest IR for July 
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and August and relatively large for September. The difference in cooling energy use 

across the 19 CDs was looked into by a one-way between-groups analysis of variance 

(ANOVA). As the climate conditions of each summer month were not the same, the 

ANOVA was carried out monthly for July, August, and September, 2012-2014. The 

ANOVA result in Table 4-7 displays that the difference in the monthly IR of the 19 CDs 

is statistically significant (p < .05) 

 

Table 4-8. Cronbach’s alpha coefficients and correlation coefficients between inter-

items of monthly cooling energy use (IR) in each city district’s AWS 1km boundary: () 

standardised Cronbach’s alpha 

 Cronbach’s alpha 
coefficients 

Correlation coefficients between inter-items (N=9, Jul to Sep 
2012-14) 

No. of 
ANs 

Avg. Min Max Range Max/Min variance 

CD1 .982 (.985) .893 .741 .996 .255 1.344 .007 8 
CD2 .986 (.992) .945 .876 .994 .118 1.135 .001 7 
CD3 .948 (.949) .860 .742 .922 .180 1.243 .008 3 
CD4 .990 (.993) .978 .960 .992 .032 1.034 .000 3 
CD6 .989 (.995) .977 .952 .991 .038 1.040 .000 5 
CD8 .922 (.941) .799 .554 .962 .408 1.737 .018 4 
CD10 .992 (.993) .973 .959 .998 .039 1.041 .000 4 
CD11 .953 (.968) .860 .693 .953 .260 1.375 .008 5 
CD12 .985 (.991) .958 .912 .975 .063 1.069 .000 5 
CD13 .974 (.978) .936 .890 .991 .101 1.114 .002 3 
CD15 .984 (.985) .892 .638 .997 .359 1.562 .011 8 
CD16 .986 (.990) .961 .931 .989 .058 1.062 .001 4 
CD17 .839 (.880) .710 .453 .916 .462 2.022 .044 3 
CD18 .965 (.972) .896 .779 .981 .202 1.260 .008 4 
CD19 .990 (.994) .946 .737 .999 .262 1.355 .003 10 
CD20 .990 (.993) .946 .810 .996 .186 1.230 .003 8 
CD21 .988 (.989) .928 .828 .995 .167 1.202 .003 7 
CD22 .959 (.960) .857 .731 .984 .253 1.345 .007 4 
CD25 .947 (.974) .927 .882 .962 .080 1.090 .001 3 

 

Moreover, it was looked at that there appears a close similarity of monthly IR distribution 

within each CD boundary in Figure 4-8 (b). To confirm this with figures, the internal 

consistency and the similarity was examined using Cronbach’s Alpha and correlation 

coefficients between inter-items (monthly IR of each AN) respectively. As seen in Table 

4-8, the Cronbach’s alpha coefficients in all CDs were above 0.9 except CD17, but even 

CD17 was above 0.8. Furthermore, the average of correlation coefficients between inter-
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items was above 0.7 in all examples. This means high internal consistency and similarity 

in terms of the layout of AN’s monthly cooling energy use within each CD-AWS 1km 

boundary. Therefore, it is sensible to assume that the apartment buildings are mostly 

surrounded with homogeneous parameters of multiple factors affecting residential 

cooling energy use beyond microclimate conditions, such as building physical 

characteristics. The detailed apartment building information was explored in the following 

subsection. 

 

4.4.2.2. Apartment building information 

Holistically speaking, energy use for cooling in the context of this study can be thought 

of as a human comfort and economic decision in response to the result of dynamic 

interaction between building envelope and surrounding urban microclimate. The 

differences or similarities of physical thermal properties of the apartment buildings play 

a specific role in the characteristics of cooling energy use seen at the city district level. 

Nevertheless, here in Chapter 4 of this study, one adopts an “all in the energy bill” 

approach as a wrapper encompassing some aspects of the complex physical 

interactions. Nonetheless, some key building evidence is presented in this subsection. 

First of all, the building insulation criteria (U-value) according to the year of building 

regulation applied (Table 4-9) was collected. Figure 4-10 (a) shows that there is one 

dominant insulation regulation type in each CD boundary although some CDs are not 

the same (e.g. CD8 & 15). However, even those 2 CDs can be put into one dominant 

insulation type because the adjacent insulation criteria have similarity in terms of the U-

value (see Table 4-9). Secondly, as seen in Figure 4-10 (b), there appears to be a 

similarity in the size of a household within the given categories of floor area collected 

from AMIS. 



Chapter 4. Characteristics of urban dwelling’s cooling energy use 

 

 

82 
 

 

Figure 4-10. The number of apartment households (units) within each CD-AWS boundary 

according to the building insulation criteria applied in certain built years (a) and the ranges 

of floor area (b) 

 

Table 4-9. Insulation criteria for Seoul’s housing stock according to the year of building 

regulation applied (U-value, W/m2*K). (Source: Kim et al., 2013b) *Side wall represents 

the external wall without opening area, such as glazing 

Building 
regulation 

Base year External 
wall 

External/ 
Ground Floor 

External 
Roof 

Side wall Window 

R1 Sep 1979 1.05 1.05 1.05 - 2.56 
R2 Dec 1980 .58 1.16 .58 - 3.49 
R3 Dec 1984 .58 .58 .58 .47 3.49 
R4 Jul 1987 .58 .58 .41 .47 3.37 
R5 Jan 2001 .47 .35 .29 .35 3.84 
R6 Nov 2008 .47 .35 .29 .35 3.0 
R7 Jun 2010 .36 .30 .20 .27 2.1 

 

Thirdly, an apartment building’s glazing ratio and its orientation can affect its internal 

solar gain to a large degree. However, the cost of collecting such thorough building 

information is prohibitive given the large sample size (72,104 apartment buildings in total). 

Here this study referred to a previous paper on glazing ratio (Kim et al., 2010) and 

assume that the 98 ANs may have similar glazing ratios (Table 4-10). However, given 
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this restricted information, the characteristic of glazing ratio within each CD boundary 

remains inconclusive. 

 

Table 4-10. Average glazing ratio (%) of the apartment building by type of apartment 

building. (Source from Kim et al., 2010) 

Faced 
orientation 

Tower 
type 

Slab  
type  

Total  
(Tower +Slab) 

South 61.48 34.98 41.91 
East 48.57 22.00 28.80 
West 70.19 25.65 36.10 
North 56.49 46.30 49.48 

 

 

4.4.2.3. Correlating cooling energy use with air temperature within microclimate 

boundary (RA4) 

When the characteristics and internal consistency of monthly cooling energy use in each 

CD are looked at, a relational study between cooling energy use (Sqrt IR) and urban 

weather data was performed within each CD-AWS 1km boundary. Shown in Table 4-11, 

for the whole of the summer stage, there were positive and very strong correlation 

coefficients between Sqrt IR and monthly average air temperature in most CDs (r>.700 

and even r>.900 in some cases). Nonetheless, several city districts stand out with 

relatively smaller correlation coefficients (r<.700), for example, CD11, CD13, CD17 and 

CD22. 

Amongst the monthly correlation coefficients, the August correlations were the strongest 

and most measurable, while July varied and September were the weakest, showing no 

relation or even negative. Moreover, the August coefficients increased hugely even in 

the aforementioned four city districts, compared to whole summer correlation coefficients. 

This suggests that under extreme weather conditions, such as August (being the hottest 

month in Seoul), the outside temperature can be the key parameter in affecting 
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residential cooling energy use in most CDs. Though under relatively milder weather 

conditions (i.e. July or September), there may be other parameters affecting cooling 

energy use. 

 

Table 4-11. Correlation coefficients between cooling energy use (Sqrt IR) and monthly 

average temperature within each CD-AWS 1km boundary. **. p<0.01 and *. p<0.05 

 Whole summer months  

(Jul – Sept inclusive) 

 July  August  September  

 Pears-

C 

Sig. N  Pears-

C 

Sig.  Pears-

C 

Sig.  Pears-

C 

Sig. N 

CD1 .883**  .000  72, 8ANs  .306  .146   .913** .000  .143 .504 24, 8ANs 

CD2 .890**  .000  63, 7ANs  .523* .015  .877** .000  -.114 .624 21, 7ANs 

CD3 .850**  .000  27, 3ANs  .323 .397  .959** .000  .043 .912 9, 3ANs 

CD4 .909**  .000  27, 3ANs  .863**  .003  .937** .000  .001 .997 9, 3ANs 

CD6 .928**  .000  45, 5ANs  .691**  .004  .918** .000  .100 .723 15, 5ANs 

CD8 .819**  .000  36, 4ANs  -.055 .865  .836** .001  .118 .716 12, 4ANs 

CD10 .942**  .000  36, 4ANs  .742**  .006  .972** .000  .069 .831 12, 4ANs 

CD11 .628**  .000  45, 5ANs  .509 .052  .738** .002  -.088 .755 15, 5ANs 

CD12 .891**  .000  45, 5ANs  .552* .033  .943** .000  .006 .984 15, 5ANs 

CD13 .649**  .000  27, 3ANs  .869**  .002  .870** .002  -.084 .830 9, 3ANs 

CD15 .881**  .000  72, 8ANs  .283 .180  .931** .000  .415* .043 24, 8ANs 

CD16 .932**  .000  36, 4ANs  .802**  .002  .948** .000  .385 .217 12, 4ANs 

CD17 .267   .178 27, 3ANs  -.282 .462  .684* .042  -.432 .246 9, 3ANs 

CD18 .896**  .000  36, 4ANs  .263 .408  .960** .000  .401 .196 12, 4ANs 

CD19 .848**  .000  90, 10ANs  -.136 .475  .838** .000  .702** .000 30, 10ANs 

CD20 .829**  .000  72, 8ANs  -.339 .106  .909** .000  .213 .317 24, 8ANs 

CD21 .898**  .000  63, 7ANs  .696**  .000  .883** .000  -.210 .361 21, 7ANs 

CD22 .616**  .000  36, 4ANs  -.045 .890  .726** .007  .004 .990 12, 4ANs 

CD25 .739**  .000 27, 3ANs  -.861**  .003  .774* .014  -.328 .388 9, 3ANs 

 

The results of the monthly correlation coefficients discovered at the micro-level are 

similar to those found at the macro-level (see section 4.4.1.1, Table 4-3): August 

(strongest, r=.749); July (strong, r=.574); September (negative and no correlation, 

r=-.009). However, looked at the micro-level, the strength of correlation coefficients 

varies among the CDs. It can be understood that there are not only temporal variations 

in relationship between residential cooling energy use and urban microclimate data, but 

also spatial variations. 
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4.4.2.4. Other parameters affecting residential cooling energy use 

Why did the 4 CDs (CD11, CD13, CD17 and CD22) demonstrate relatively smaller 

correlation coefficients (Table 4-11)? Firstly, usual to these CDs is a relatively small 

sample size (3 to 5 ANs). As the statistical approaches performed in this study are 

parametric, the output can be sensitive to sample size. For example, the internal 

consistency and the correlation coefficients between inter-items of those 4 CDs are 

relatively minor (see Table 4-8), especially, the minimal coefficient in CD17 was only .453. 

With a slight sample size, such a weak internal consistency could result in a weak 

relationship. 

Secondly, there may be other variables (e.g. solar radiation) affecting cooling energy 

usage in such CDs. As recent studies have discovered that air temperature and solar 

radiation play a significant role in residential cooling energy use at the same time (Flor & 

Domınguez, 2004; Salvati et al., 2017), the probability of solar radiation on these 4 CDs 

was investigated, through deciphering floor area ratio (FAR) and site coverage ratio 

(SCR) as a density indicator (Figure 4-11). Here both the FAR and SCR are the 

percentage ratios actually used in the 98 existing ANs, not inferred from the building 

regulation of land use.  

Intriguingly, there appears to be characteristics in the FAR of the four CDs: one or two 

ANs had massively different FAR values. The different density may affect non identical 

internal solar gains and in turn, lead to different cooling energy use, resulting in fragile 

internal consistency, and finally, it results in smaller correlation coefficients within a little 

sample size. However, the SCR plot is not clear. This implies that those four CDs, 

showing relatively poorer correlation coefficients, may need to take solar radiation into 

account in correlating cooling energy use. Finally, there may be socio-economic factors 

(e.g. property price) usual to these CDs that belong to a relatively lower property price 
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band (see Figure 4-8. c). Here the socio-economic issue as represented by property 

price may be more influential than the external temperature even in August. 

 

 

Figure 4-11. The actually applied floor area ratio (FAR) (a) and site coverage ratio (SCR) 

(b) of ANs within each CD-AWS boundary 

 

4.4.3. Estimating future peak cooling energy demands 

Given the outcome of the Pearson correlation analysis of IR to monthly average 

temperature (RA4), which was corroborated by ANOVA and Cronbach’s alpha 

coefficients analyses (SA1), city-district specific energy models are resultant in 

estimating future peak cooling energy demands according to the latest climate change 

projection for Seoul. This is attained by a bivariate regress analysis (RA5, section 4.4.3.1) 

checked by model accuracy and error statistics (SA2, section 4.4.3.2). The peak demand 

presumptions for each city district are then presented in section 4.4.3.3.  
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4.4.3.1. Simple bivariate regression (SBR) models (RA5) 

As the cooling energy use (IR) shows a very strong link with the external temperature in 

August, a simple cooling energy use model for estimating peak cooling demand for each 

CD boundary can be derived from bivariate regression. The reason for this modelling 

exercise is to estimate cooling energy use for each city district (within the AWS 1 km 

boundary), not for a single apartment neighbourhood. Hence, the dependent variable 

(Sqrt IR) must be the sum or an average of all ANs' IR within each CD boundary as its 

peak cooling energy use.  

 

Table 4-12. Coefficients of simple bivariate regression (SBR) models for estimating 

each CD’s peak cooling demand within its AWS 1km boundary 

Sqrt of 
AN Aug 
IR of 

Constant CD Aug Avg. temp      

B p value  B  p value R R2 Adjusted 
R2 

Sig. N 

CD1 -30.126 .000 1.505 .000 .913 .834 .827 .000 24 (8 ANs) 
CD2 -34.159 .000 1.632 .000 .877 .769 .757 .000 21 (7 ANs) 
CD3 -27.637 .000 1.315 .000 .959 .919 .908 .000 9 (3 ANs) 
CD4 -31.872 .001 1.526 .000 .937 .878 .860 .000 9 (3 ANs) 
CD6 -31.228 .000 1.466 .000 .918 .843 .831 .000 15 (5 ANs) 
CD8 -23.132 .005 1.148 .001 .836 .699 .669 .001 12 (4 ANs) 
CD10 -33.680 .000 1.603 .000 .972 .945 .940 .000 12 (4 ANs) 
CD11 -18.437 .017 .985 .002 .738 .544 .509 .002 15 (5 ANs) 
CD12 -31.226 .000 1.463 .000 .943 .889 .880 .000 15 (5 ANs) 
CD13 -14.240 .027 .895 .002 .870 .756 .722 .002 9 (3 ANs) 
CD15 -39.766 .000 1.828 .000 .931 .867 .861 .000 24 (8 ANs) 
CD16 -28.738 .000 1.427 .000 .948 .899 .888 .000 12 (4 ANs) 
CD17 -3.229 .439 .367 .042 .684 .468 .392 .042 9 (3 ANs) 
CD18 -34.153 .000 1.564 .000 .960 .921 .913 .000 12 (4 ANs) 
CD19 -34.035 .000 1.563 .000 .838 .702 .691 .000 30 (10 ANs) 
CD20 -42.146 .000 1.838 .000 .909 .826 .818 .000 24 (8 ANs) 
CD21 -35.252 .000 1.749 .000 .883 .780 .769 .000 21 (7 ANs) 
CD22 -9.425 .096 .657 .007 .726 .527 .480 .007 12 (4 ANs) 
CD25 -17.332 .067 .926 .014 .774 .599 .541 .014 9 (3 ANs) 

 

Nevertheless, due to the small sample size (N=3, 2012-2014 August) imposed by the 

limited time phase of the current AMIS data availability, an alternative was thought about. 

As seen in section 4.4.2.1, the characteristic of ANs IR data displays that there is very 

good internal consistency and similarity in terms of the distribution of ANs’ monthly 
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cooling energy use (Sqrt IR) within each CD boundary. Built upon these findings, the 

Sqrt IR of individual ANs within each CD boundary was used as a dependent variable. 

The resultant 19 SBR models are displayed in Table 4-12. 

 

4.4.3.2. Model accuracy and error statistics (SA2) 

To evaluate the SBR model accuracy, error statistics between predicted and observed 

CD cooling energy use was calculated. The SBR model was taken from ANs’ IR data 

within each CD boundary for August 2012-14 as the training data; the Sqrt of average 

ANs’ IR within each CD boundary for August 2015 (provided by the AMIS) was utilised 

as the testing data. Five criteria (i.e., Catalina et al., 2013) were worked out using the 

following equations, where 𝑦𝑖  is the predicted and 𝑦𝑖
′ is the observed: mean absolute 

error (MAE); mean square error (MSE); root mean square error (RMSE); mean absolute 

percentage error (MAPE); coefficient of determination (R2). 
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Table 4-13. The error statistics between the predicted and the observed Sqrt of average 

CD IR for August 2015 in each city district’s AWS 1km boundary 

Error statistics Sqrt CD Avg. IR 

MAE .538 
MSE .443 
RMSE .665 
MAPE .062 
R2 .882 
  
Residuals (%)  

Min. residual -1.294 
Max. residual 1.410 
Avg. residual -.244 

 

 

Figure 4-12. Scatter plot between the predicted and the observed Sqrt of average CD 

IR for August 2015 in each city district’s AWS 1km boundary 

 

Table 4-13 shows the output of the error statistics calculation. The average residual was 

near to 0 (-.244) and the mean absolute percentage error (MAPE) was 6.2 %. 

Furthermore, the coefficient of determination from the scatter plot between the observed 

and the predicted was .882 (Figure 4-12), representing over 88% of variance in the 

observed CD IRs was clarified by the corresponding bivariate regression model.  From 

this, the SBR models are considered rationally acceptable. Also, the other way of using 
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individual ANs IR within each CD boundary for estimating CD peak cooling energy uses 

was confirmed methodologically. 

 

 

Figure 4-13. Comparative analysis of residuals between observed and estimated Sqrt 

average IR of each city district’s (CD’s) AWS 1km boundary for August 2012-14 (in 

black as the training set) and 2015 (in red as the testing set) 
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To judge the behaviour (bias) of the two residuals—relatively changed or unchanged, a 

comparative analysis between 2012-14 (training) and 2015 (testing) was performed on 

the residuals between predicted and observed AN IR in each CD. Figure 4-13 displays 

the outputs of the comparative analysis: the training residuals for 2012-14 are in black, 

and the testing for 2015 are in red. 

First of all, the bias between red and black line was looked at. Some CDs, such as CD4, 

10, 12, 13, 17, 19, 20, show that all 2015 residuals (red) are to the left of 2012-14 (black), 

showing that 2015 had lower residuals than 2012-14. This suggests that the presumed 

energy use (Sqrt IR) for those CDs could be underestimated. CD2, 3, 8 might be close 

to those CDs because only one 2015 residual in each case was right-biased slightly 

towards 2012-14. Secondly, a number of CDs had a very similar behaviour between the 

two residuals, such as CD1, 6, 15, 18, showing similar fit in 2015 to 2012-14 and most 

of the 2015 residuals were close to 0, meaning the predicted residuals were close to the 

observed. This shows that the predicted energy uses in these CDs are reasonably sure. 

Hence, CD16 and CD22 could be similar to these CDs because their 2015 residuals 

were close to zero even though left-biased. 

Conversely, some CDs (CD11, 21, 25) are inconclusive. In CD11, most of 2015 residuals 

were left-biased but the max residual was primarily right-biased. Given the small sample 

size, it is hard to draw any conclusion. In CD21, the 2015 residuals were more greatly 

distributed compared to 2012-14, meaning that less variation shown by the model in 

2015 than in 2012-14. CD 25 is a special case where very little can be said due to lack 

of data for 2015. 
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4.4.3.3. Projection of future peak cooling demands incorporating climate change 

projections 

Thinking about the limitation on accuracy and reliability, the SBR models presented in 

Table 4-12 can be applied to estimating future summer peak energy demand if future 

urban climate projections are offered. For the city districts in Seoul, climate change 

projections made by MK-PRISM (Modified Korean Parameter-elevation Regressions on 

Independent Slopes Model) is open and two RCP (Representative Concentration 

Pathways) scenarios were chosen for this study: RCP4.5 and RCP8.5. RCP4.5 is the 

scenario of CO2 concentration reaching at 540 ppm in 2100, while RCP8.5 at 940 ppm. 

The hottest August of the year was recognised in both scenarios within 2050s using 

monthly average temperature between 19th of July and 18th of August (see Figure 5-2 for 

more detail). Thinking about the same meter-reading day for electricity bill, the 

temperature projections for 2045 (RCP 8.5) and 2047 (RCP 4.5) were generated. 

 

 

Figure 4-14. Projected August average temperature (a) and predicted future peak 

(August) cooling demands (b) in each of city districts’ AWS 1km boundary using two 

different climate change RCP scenarios, RCP4.5 (2047) and RCP8.5 (2045). * red for 

underestimated; blue for reasonably confident; black for non-defined confidence 
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Figure 4-14 displays the projected August average temperatures and future peak cooling 

demands predicted by the SBR models. The 2012 Temp-IR profiles (being the hottest 

year during 2012-14) are included for reference. As discussed in above section 4.4.3.2, 

the confidence level was shown up using different colours: red for underestimated; blue 

for reasonably confident: black for non-defined confidence. 

As the MK-PRISM climate change dataset was created with a horizontal resolution of 

1km x 1km and the CD-AWS data of 2000-2010, the range of temperature changes 

between 2012 and 2047 RCP4.5 (or 2045 RCP8.5) varies across the city districts. For 

example, under the RCP4.5, the minimum increase of temperature between 2012 and 

2047 occurs in CD25 (0.03oC) while the maximum occurs in CD2 (2.43oC). Secondly, 

the projection of cooling energy use (IR) is more dynamic and complicated. For example, 

the predicted Min and Max IR increase occurs in CD17 (6%, underestimated) and CD2 

(96.1%, underestimated) respectively, showing that the predicted cooling energy 

increase may not always align with projected temperature increase in a linear way (CD 

17 is not projected to have the lowest temperature rise between 2012 and 2045/47, as 

seen in Figure 4-14.  

Finally, a comparison between the Min (CD17) and Max (CD21) cooling demands 

predicted for future years points to a prospective challenge/threat to resident’s health 

and well-being living in CD17 if the neighbourhood environment stays largely unchanged. 

Though the August average temperature of CD17 and CD21 in 2012 (2047) was 27.61oC 

(29.46oC) and 28.74oC (29.94oC), and the IR was 51.5% (57.5%) and 224.9% (292.8%), 

the cooling energy bill of CD21 was predicted to increase by 67.9% due to a rise of 1.2oC, 

while CD17 was predicted to increase by just 6% in response to an increase of 1.85oC. 

Here it is seen a potentially significant negative impact on the health and well-being of 

residents living in CD17: potential high indoor temperatures lasting for a protracted 

period of time without adequate cooling energy uses. 
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4.5. Conclusions 

Based on the open data of the city districts in Seoul, South Korea, Chapter 4 offered a 

relational study on correlating cooling energy use with local weather stations and 

property price data. The overall macro-level statistical analyses showed that there were 

temporal (monthly) differences in correlating cooling energy use with urban weather data 

in terms of strength of correlation coefficients during summer months. A further relational 

study of sole residential neighbourhoods at the micro-level showed that there were 

temporal and spatial (city-district) variations. As the August correlation coefficients 

appeared the most significant across all city districts, up to r=.972, a simple bivariate 

regression (SBR) model was derived for the residential neighbourhoods within each city 

district border to predict peak cooling energy use. When taking into account the latest 

climate change projections for Seoul, the SBR models were used to estimate potential 

increases of cooling energy use for each city district’s residential districts in August 

2050s’. The following subsections discussed the details (section 4.5.1-2) and the 

implications of the proposed future peak cooling energy demands for sustainable 

resilience as well as citizen’s health and wellbeing (section 4.5.3). Finally, the limitations 

and further developments were discussed to outline a dwelling stock energy modelling 

framework, specified for the purpose of assessing heat stress vulnerability (section 4.5.4). 

 

4.5.1. The temporal (monthly) variations 

The connection between cooling energy use and the two factors, urban microclimate 

data (i.e., monthly average temperature) and property price data, was looked at in the 

analyses of the aggregated 98 ANs across the 19 CDs’ 1km boundaries at the macro-

level. The cooling energy use was very strongly linked with both of the two factors for the 

whole summer period (July to September): urban microclimate (r=.770); property price 
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(r=.712). Nevertheless, there were significant temporal variations in the strength of 

correlation coefficients in each month of the summer period. Initially, it was found that 

there were temporal variations in correlating cooling energy use with urban microclimate 

data: July (r=.574); August (r=.749); September (r=-.009). Next, the correlation 

coefficients between cooling energy use and property price also had temporal 

differences: July (r=.698); August (r=.708); September (r=.101). Thirdly, the joint effect 

of urban microclimate and property price on cooling energy use varied in each summer 

month: in July, the impact of property price (Beta, .485) was more instrumental on cooling 

energy use than urban weather (.331) while the urban weather (.679) was more dominant 

than the property price (.314) in August. This implies that under the high temperature of 

August, the effect of weather condition on cooling energy use is more dominant than that 

of the property price (as reflecting socio-economic backgrounds). However, under lower 

temperature of July, the socio-economic factor appears more dominant. 

 

4.5.2. The temporal and spatial variations 

Looking closely at the micro-level, there were unique characteristics of cooling energy 

use within each of the 19 CD boundaries. It was discovered that the difference in cooling 

energy use of the 19 CDs was statistically significant (p=.000 in all summer months). 

Furthermore, there was extremely crucial internal consistency and similarity in terms of 

the distribution of ANs’ monthly cooling energy use within each CD boundary. This shows 

that there are certain aspects that affect a similar range of cooling energy use in each 

CD boundary, such as homogeneous microclimatic conditions and building physical 

features or socio-economic factors. Given the characteristics, the relational study 

between cooling energy use and microclimate data was investigated within each CD’s 

AWS 1km boundary. There were not only temporal (monthly) disparities in relationship 
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between the two variables, but also spatial (each CD) disparities. This suggests that the 

residential cooling energy use should be individually studied within each CD AWS 

boundary to mirror its own characteristics of cooling energy use. 

 

4.5.3. Implications of the projected future peak cooling demands 

Notwithstanding the temporal and spatial variations, it was commonly found that all CDs 

had the strongest correlation coefficients for August. The simple bivariate regression 

(SBR) model for each CD was created to estimate future peak cooling energy 

requirements. Given Seoul’s MK-PRISM climate change projections made at the CD 

level, the estimates of neighbourhood-specific peak cooling energy demands for future 

years were created. The variety of temperature changes between 2012 and 2047 

RCP4.5 (or 2045 RCP8.5) varied across the 19 CD boundaries. Additionally, following 

the temperature diversity and the SBR model in each CD boundary, the projection of 

cooling energy use was more dynamic and complicated, for example CD17 and CD21: 

while the increased temperature from 2012 to 2047 (RCP4.5) was 1.85oC (CD17) and 

1.2oC (CD21), the increased IR was predicted to only 6% at CD17 but 67.9% at CD21. 

Furthermore, the absolute amount of IR in 2047 (RCP4.5) was predicted to 57.5% (CD17) 

but to 292.8% (CD21). This implies that the internal thermal circumstances of the 

apartment buildings in CD17 may be more inferior to those in CD21, affecting residents’ 

health and well-being if they are unable to increase cooling energy uses due to socio-

economic restraints. However, identifying main source of the differentiated residential 

cooling energy use remains uncertain due to the limited data availability of building 

characteristics in more detail, such as AC penetration and building facade. 
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4.5.4. Limitations and further developments 

First of all, the accuracy of energy model to predict peak cooling energy demands 

remains unclear due to the small sample size. As the AMIS only started in 2010, going 

through the system testing period 2010-2013, the study was restricted to the energy bill 

dataset of 2012-14. Also, as the spatial boundary of AWS 1km radius was set rendering 

to the urban microclimate scale, the selected number of apartment neighbourhoods 

within each CD boundary was also limited. Therefore, the temporal and spatial scope set 

for data collection in this chapter 4 study resulted in small sample size for the statistical 

analyses. Nevertheless, if the energy use data can be collected constantly into the 

forthcoming years, the sample size will be significant enough to conduct more relational 

analyses and identify other key parameters affecting residential cooling energy use. 

Therefore, prediction of peak cooling energy requirements could perform better through 

model improvement with an increased sample size.  

However, sampling housing stock requires a deep level of consideration in urban climatic 

variations as this study is developed with the consideration of the relationship between 

residential cooling energy use and urban microclimate. In a perspective of urban climate 

zone (UCZ, Oke, 2004), which identifies areas of ‘homogeneity’ and oppositely 

distinguishes areas of transition climatically, 1km boundary is an ‘acceptable’ maximum 

distance to climatic change in urban area. However, the actual scene is much more 

complicated in the urban context regionally. For instance, even in the local climate zone 

(LCZ), which is classified by homogenous built environments or ecosystems (Steward, 

2011), the thermal differentiation was observed vertically and horizontally (Stewart and 

Oke 2012): averaging about 2K in compact high-rise LCZ; and about 1.5K in open high-

rise LCZ. Thus, the challenging body of knowledge in sampling housing stock is how to 

determine neighbourhood scale taking into account climatic homogeneity. A recent 

urban climate modelling technique has proposed a method to construct urban local 
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climate with spatial resolution of 200m (Lin et al., 2019). Employing the urban climate 

modelling method can be considered in sampling housing stock. 

Secondly, applying the projected relational analyses framework, further SBR models can 

be produced at an individual apartment neighbourhood level if urban microclimate data 

is obtainable for each apartment neighbourhood. In the microclimatic point of view, the 

range of the urban microclimate could be much smaller than 1km. Although it was 

thought that the climatic condition within 1km radius of the CD AWS would be similar, in 

fact there could be variety of climates even 1km boundary such as solar radiation. The 

lengthy study could include measurements of other climatic variables in affecting cooling 

energy use, such as humidity, wind pattern and solar radiation. However, including such 

climatic parameters may be challenging because it should meet certain requirement in 

terms of data homogeneity: temporal and spatial. The temporal extent of this study was 

monthly time-based and the spatial was of the neighbourhood scale. Evaluating impacts 

of wind pattern and solar radiation on residential cooling energy use will involve site-

specific spatial data (i.e. around individual apartment complex building) and a narrower 

time line (i.e. hourly data), considering characteristics of these two parameters. From a 

microclimatic point of view, the variations of the two factors are far more dynamic spatially 

and temporally than temperature. Within the neighbourhood range and monthly time-line 

scope, wind pattern and solar radiation cannot be generalized into monthly value. Also 

the effect of those climatic variables should be considered incorporating the individual 

household’s building layout and glazing ratio data. To obtain the data required at this 

spatial-temporal resolution, computation intensive CFD-based urban microclimate 

simulation might be needed. 

Finally, the AMIS energy bill data utilised for extracting IR (%, as the cooling energy use 

index) was an average monthly energy bill of every apartment neighbourhood not a 

single residential household’s monthly energy bill, reflecting collective energy use for 
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summer cooling specific to the neighbourhood location. Therefore, there is a limitation to 

reflect the diversity of households’ energy use individually. Furthermore, as concluded in 

section 4.5.3 above, the implication of energy modelling requires urgent action, looking 

into dwellings’ indoor thermal conditions in relation to residents’ health and well-being. 

However, owing to a complexity of the billing tariff system, the energy bill based 

modelling method is limited to estimating the actual amount of cooling energy demand 

(i.e., kWh/m2), which further enables to estimate indoor thermal environment for 

assessing occupants’ health. This implies that for the purpose of dwellers’ health related 

study, using actual energy use data should be considered in the energy modelling 

process. Moreover, given the characteristics of the similarity and very useful internal 

consistency in both monthly cooling energy use and building physical configurations 

within each CD microclimate boundary, the current energy model can be further 

developed to a stock energy model on the basis of archetype potentially. 
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5.1. Introduction 

In the absence of reliable field measurements of dwellings’ indoor thermal conditions in 

the city context, the possible approach to obtaining a replaceable indicator of indoor 

thermal measurements can be found in developing archetypes for building physics. As 

the study in Chapter 4 concluded, the spatial resolution of residential neighbourhoods 

within a microclimate boundary can capture a set of homogeneous datasets in terms of 

dwellings’ cooling energy use and building physical characteristics, the archetypes can 

potentially be defined within each boundary. Then, each archetype can be specified with 

known sources of building and occupancy information as input requirements for 

EnergyPlus model calibration process to estimate indoor thermal conditions. 

EnergyPlus was used for model calibration process in this study. It has been developed 

by the U.S. Department of Energy’s (DOE) Building Technologies Office (BTO) and 

designed for modelling energy loads for HVAC, lighting, and water use in buildings 

(EnergyPlus, 2018). As a whole building energy simulation tool, EnergyPlus enables to 

estimate building thermal interactions between integrated and simultaneous thermal 

zones, under the given building energy use datasets in relation to the predefined HVAC 

system and control strategies. The accuracy of EnergyPlus has been largely validated 

(e.g. Tabares-Velasco et al., 2012; Mateus et al., 2014; Harish and Kumar, 2016).  

However, the model calibration process also requires detailed energy use profile and 

occupancy operation parameters. The question therefore is how can archetypes be 

developed for estimating present indoor thermal conditions of a city’s dwelling stock? To 

what extent, can the collected data be analysed and developed for the EnergyPlus model 

calibration? Finally, what do archetypes’ present indoor thermal conditions look like? The 

aim of this chapter is to obtain the HVAC cooling temperature set points as estimated 

ranges of indoor temperatures, which for the purpose of this thesis reflect a certain level 
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of dwellers’ indoor heat acclimatisation determined under adaptive opportunities (see 

section 6.2.4 for more details). In turn, these present-day estimates are used in 

developing neighbourhood specific models for estimating archetypes’ peak cooling 

demands associated with indoor conditions in line with climate projections. 

The city of Seoul was identified as a case study to apply the methodological framework 

described in Chapter 3 to assess potential heat stress vulnerability of Seoul’s dwelling 

stock in a future climate. The data collection of Seoul’s apartment neighbourhoods 2014-

2050s is presented in section 5.2. Then, the details of data analyses for developing 

archetypes of Seoul’s dwelling stock are described in section 5.3. Finally, the outputs of 

archetypes’ present indoor thermal conditions are presented and discussed in section 

5.4. The concluding remarks are provided in section 5.5. 

 

5.2. Data collection of Seoul’s apartment neighbourhoods 2014-2050s  

In general, a number of datasets are considered essential inputs to residential energy 

modelling including physical characteristics of building envelope, occupancy data, home 

appliances, historical energy use data, climate conditions and economic data (indicators) 

(Swan and Ugursal, 2009). For the purpose of heat stress vulnerability assessment, this 

study focuses on data collection on possible factors affecting residential cooling energy 

use in the city context of Seoul.  

For the Seoul study, the main datasets required as inputs include: (1) urban weather 

data collected at microclimate boundaries within which one or more residential 

neighbourhoods reside, (2) residential neighbourhood household energy use data, (3) 

high-resolution climate projections at city-district level, and (4) building-related 

information for developing archetypes representative of a city's dwelling stock. After a 
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preliminary survey of the availability of residential energy use data, 18 city-district 

microclimate boundaries were identified for data collection and analysis. 

 

5.2.1. Urban microclimate data 

Climate is one of the most influential parameters in building thermal and energy 

performance modelling. Here temperature (dry-bulb) was chosen to represent the key 

characteristics of urban microclimate as measured by the city-district AWS sites in Seoul. 

The detailed background information of the 18 CD AWS sites identified for data collection 

is shown in Table 5-1.  

 

Table 5-1. The location and height information of Seoul’s 18 City District (CD) Automatic 

Weather Stations (AWS) and size information of the apartment stock within 1km radius 

of each CD-AWS (Source: KMA; AMIS, 2018b). *The street level was estimated from the 

sea level height with 3m for each floor 

City- 
district 
Neighbour-
hood 

CD AWS  Dwelling stock 

Lat. Long  Sea lv. 
(m) 

Street 
lv. (m) 

 No. Apt. 
Neighbour-

hoods 

Avg. Top 
floor lv. 
(storey)  

No. Apt. 
Building 

No. Apt. 
House-

hold 

CD1 37.5134 127.0470 59.6 50.6  7 20 42 3054 
CD2 37.5555 127.1450 56.9 47.9  6 17 53 4405 
CD3 37.6397 127.0257 55.7 34.7  3 17 15 1517 
CD4 37.5499 126.8425 79.1 64.1  2 18 43 2355 
CD6 37.5336 127.0853 38.0 38.0  3 18 12 1071 
CD8 37.4655 126.9001 41.5 29.5  4 21 30 2156 
CD10 37.6661 127.0295 55.5 43.5  1 15 7 690 
CD11 37.5846 127.0604 49.4 34.4  4 20 40 2587 
CD12 37.4937 126.9181 33.8 33.8  4 21 15 1665 
CD13 37.5655 126.9027 25.0 13.0  3 16 18 1192 
CD15 37.4889 127.0156 35.5 26.5  7 18 58 5491 
CD16 37.5472 127.0388 33.7 18.7  3 18 17 1429 
CD18 37.5115 127.0967 53.6 29.6  3 19 75 7310 
CD19 37.5296 126.8782 9.7 6.7  8 18 115 7176 
CD20 37.5271 126.9070 24.4 12.4  7 21 49 3722 
CD21 37.5204 126.9761 32.6 20.6  7 21 52 4681 
CD22 37.6077 126.9338 65.0 56.0  1 15 15 662 
CD25 37.5855 127.0868 40.2 28.2  1 15 3 178 
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Moreover, the CD-AWS climatic data shows the diversity of urban microclimate in Seoul. 

Figure 5-1 shows the recorded August (the hottest summer month of the year) monthly 

average temperature of the 18 CD-AWS sites during 2014-17. The actual duration for 

the August monthly temperature record was set between the 19th of July and the 18th of 

August, as the meter-reading day for electricity use in Seoul is on the18th of each month.  

 

 

Figure 5-1. External August monthly average temperatures of 18 CD-AWS in Seoul, 

August 2014-17 

 

The fluctuation of the August temperature distributions during 2014-17 is observed: 

August 2016 was the hottest (Max, 30.28oC; Min, 27.08oC) while August 2014 was the 

mildest (Max, 26.24oC; Min, 24.53oC). August 2015 and 2017 were close to the average 

of August 2014-17. According to the climatic analysis report published by KMA (2016), 

August 2016 was the warmest summer month on record since 1908, while August 2014 

was one of the mildest summer months in Seoul. The variance of the hottest year (2016) 
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was much larger than the mildest year (2014): standard deviation of 2016 and 2014 

was .745 and .484 respectively. This indicates the extent of urban heat island effect 

increased by hot weather conditions in Seoul. 

 

5.2.2. Energy use data of housing stock 

Electricity usage data (kWh/m2), which is different from Chapter 4 (electricity bill data, 

KRW/m2) was used in this study as it is attributed to cooling energy use, such as air-

conditioning and electric fans. August was chosen as the month for the proposed heat 

stress risk assessment when peak cooling demand is most likely to occur.  

The AMIS started reporting electricity use data (kWh/m2) in 2014, hence 2014-17 was 

set as the study period. Given the time frame and the CD-AWS microclimate boundaries, 

the availability of electricity usage data on AMIS was checked, and finally, 18 (out of 25) 

CD microclimate boundaries were identified (Table 5-1). Within these boundaries, the 

electricity usage data collected from 74 apartment neighbourhoods (659 apartment 

buildings, 51,351 households) were used in the analysis. 

 

5.2.3. MK-PRISM climate change projections  

As described in section 4.2.4, Seoul’s Climate change datasets projected by MK-PRISM 

are collected at city district level. The RCP4.5 and RCP8.5 scenarios were chosen in this 

study. Also, the projected daily mean temperature data for August was used to generate 

future peak monthly average temperature on the basis of the same metre reading day 

for electricity use data. Figure 5-2 shows the projected monthly temperature distribution 

of the 18 CDs during 2030-2050. Since the warmest August months are predicted to 
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occur in 2047 (RCP4.5) and in 2045 (RCP8.5), both years were chosen as the 

assessment points for heat stress vulnerability analysis in Chapter 6. 

 

 

Figure 5-2. Projected August (peak) monthly average temperature ranges of 18 CD 

boundaries in 2030-2050 under RCP4.5 and RCP8.5 scenarios (Source: CIP). * Each bar 

represents the temperature range of the18 CDs selected for the study 

 

5.2.4. Other factors 

Firstly, the data of built year and the number of apartment household by floor area in 

each neighbourhood were collected to obtain building physical characteristics such as 

building envelope and floor plan. These two datasets were used as the main sources for 

determining thermal characteristics and geometric configuration in developing apartment 

archetypes representative of Seoul’s current housing stock (see section 5.3.1 for more 

detail).  
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Figure 5-3. (a) Distribution of apartment neighbourhood property prices based on publicly 

noticed value, (b) Distribution of floor area ratio (FAR) across the 18 CDs 

 

Secondly, the property price data (KRW/m2) were collected from Korea Appraisal Board 

(KAB, 2015b). Thirdly, floor area ratio (FAR) was calculated based on the total floor area 

and site area provided by AMIS. It was used as a morphological (built) density indicator 

in the modelling process. Figure 5-3 shows the property price and FAR across the 18 

CDs (all within each CD’s AWS boundary). 

 

5.3. Developing archetypes for building physics 

Following the modelling framework presented in chapter 3, the intensive data analysis 

was carried for developing archetypes for the purpose of estimating archetypes’ present 

HVAC cooling temperature set point as an indicator of indoor thermal conditions in five 

tasks as presented below: (1) archetype development (section 5.3.1), (2) analysis of 

archetypes’ peak cooling energy use (section 5.3.2), (3) analysis of archetypes’ 

household non-weather dependent electricity use profile (section 5.3.3), (4) adjustment 

of archetypes' on-site EnergyPlus weather files (section 5.3.4), and (5) configuration of 

archetypes’ household operation parameters and occupancy scheduling (section 5.3.5). 
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5.3.1. Developing archetypes 

To model indoor thermal condition of a city’s housing stock in the present climate, this 

study first develops a collection of housing archetypes as an approximate representation 

of the stock population. Each archetype can then be modelled in EnergyPlus in its urban 

microclimate context with available building information and measured energy usage 

data. Parekh (2005) outlined three basic criteria for archetype energy modelling of 

housing stock: geometric configurations, thermal characteristics and operating 

parameters. Here, thermal characteristics, geometric configurations and city-district 

microclimate boundaries were the main factors considered in developing the archetypes. 

As a common occupancy scheduling profile was configured and applied in the modelling 

process, household operation parameters was not considered in developing the 

archetypes (see section 5.3.5 for more detail).  

Firstly, the building insulation criteria (U-values, Table 4-9) according to the year of 

building regulation applied were gathered into groupings of thermal characteristics. As 

shown in Table 4-9, Seoul’s apartment buildings were built through seven periods 

(epochs) of building regulations (R1-R7, from September 1979 to June 2010). Each 

building regulation period adopted a set of building component U-values (Kim et al., 

2013b). These building regulation epochs were used in developing the archetypes as 

apartment neighbourhoods tend to be built with a similar material assembly and 

structural system under the building regulation applied. Taking R4 (July 1987) as an 

example, Table 5-2 shows the details of the construction material assembly profile drawn 

from two randomly selected apartment neighbourhoods, which is the most dominant 

insulation criteria in Seoul’s housing stock. The construction material assembly profile 

(Table 5-2) developed from the two ANs (built under R4) was equally applied into other 

building regulation epochs through adjusting the insulation thickness (polyurethane) to 
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fit U-value of the criteria. Data for construction material assembly profiling are available 

at city district councils.  

 

Table 5-2. R4 construction material assembly profiles (↓, outside to inside) as an example. 

 Materials Thick- 
ness  
(mm) 

Heat 
Conducti
vity  
W/(m*K) 

Density  
Kg/m3 

Specific 
Heat 
Capacity  
J/(kg*K) 

Resistance 
m2K/W 

Vapour 
Resistivity 
GN*s/(kg*
m) 

U-value  
W/m2*K 

Roof Concrete deck 100 2.000 2400 1000 0.050 - 0.401 
 Membrane 10 1.000 1100 1000 0.010 -  
 Polyurethane board 50 0.025 30 1400 1.600 550  
 Cast concrete 100 1.400 1900 1000 0.136 500  
 Cavity 100 - - - 0.160 -  
 Gypsum 

plasterboard 
10 0.160 950 840 0.059 45  

Floor/ceiling Flooring sheet  10 0.130 500 1600 0.077 - 0.531 
 Cement mortar 40 1.400 2100 840 0.029 500  
 Polyurethane board 30 0.025 30 1400 1.600 550  
 Cast concrete 150 1.400 1900 1000 0.136 500  
 Cavity 210 - - - 0.160 -  
 Gypsum 

plasterboard 
10 0.160 950 840 0.059 45  

External Wall Water-resistant 
paint  

10 0.500 1300 1000 0.019 50 0.456 

 Cast concrete  200 1.400 1900 1000 0.136 500  
 Polyurethane board 45 0.025 30 1400 1.600 550  
 Gypsum 

plasterboard 
10 0.160 950 840 0.059 45  

Ground/ 
Exposed 
floor 

Water-resistant 
sheet  

10 0.500 1300 1000 0.019 50 0.538 

Cast concrete 150 1.400 1900 1000 0.136 500  
 Polyurethane board 35 0.025 30 1400 1.600 550  
 Cement mortar 60 1.400 2100 840 0.029 500  
 Flooring sheet  10 0.130 500 1600 0.077 -  
Internal 
Partition 

Wallpaper 10 0.072 480 1400 0.139 125 1.500 
Cast concrete  180 1.400 1900 1000 0.136 500  

 Wallpaper 10 0.072 480 1400 0.139 125  
Window Single glazing 10 1.060 - - 0.009 - 3.092 

 

Secondly, in developing the archetypes for EnergyPlus modelling, the number of 

households counted by floor areas of apartment buildings was used to generate 

geometric configurations. In AMIS, the range of apartment floor areas (m2) were 

classified into four sizes based on the lettable area: A1 ≤ 60; 60 < A2 ≤ 85; 85 < A3 ≤ 

135; A4 > 135. The detailed floor plan for each area size was sourced from the typical 

apartment floor plan according to the guideline for evaluating design and performance of 

green houses established by MoLIT (2009) in Korea.  
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Figure 5-4. Applied floor plans from typical apartment flats based on lettable area (solid 

line): A2 (84m2) and A3 (125m2) (Source: MoLIT, 2009; Tae et al., 2011) 

 

The MoLIT guideline classifies five apartment floor plans set by the number of bedrooms 

on the floor area: 36m2 (one bedroom); 46m2 (two); 59m2 (three); 84m2 (three); 125m2 

(four). Thus, the MoLIT floor plans were associated to each area classification of AMIS: 

A1 (59m2), A2 (84m2), and A3 (125m2). Those three floor areas can be considered as 

the most dominant ones in Seoul. According to the KOSIS (2018a), the percentage of 

households of 49.5-66m2 (A1, 59m2) is 12% and of 66-99m2 (A2, 84m2) is 30% and of 

99-132 (A3, 125m2) is 33%, meaning that about 75% Seoul’s apartment households’ 

floor area belongs to these three types of floor area. Figure 5-3 shows the floor plan of 

A2 (84m2) and A3 (125m2) which are the two floor area sizes and plans sourced for 

archetype development. 

Finally, based on combined thermal and geometric characteristics (i.e., the building 

regulation epochs and typical floor plans), the archetypes were developed by considering 

the highest proportion of households in each of the 18 city-district AWS boundaries 

(Table 5-1). The result is the six archetypes: R1/A2, R3/A2, R3/A3, R4/A2, R4/A3, and 
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R5/A2. Table 5-3 shows the distribution of the archetypes across the 18 city districts 

sampled for the study. The other seven city districts of Seoul were not included in this 

study due to lack of data availability consistent with the other districts. The current 

outcome of Ri/Aj descriptors suggests that R6, A1, and A4 do not appear in the present 

formation of archetypes representative of Seoul’s housing stock up to 2017. 

 

Table 5-3. Archetype analysis based on the number of apartment households within each 

microclimate boundary according to the year of building insulation criteria applied (R1-

R7, Table 4-9) and the floor area size (A1-A4). * The survey shows R6, A1 and A4 do not 

appear in archetype formation 

City- 
district 
Neighbour-
hood 

Building Regulation Epochs (Ri)  Floor Area m2 (Aj) Arche-
type Sep 

1979 
(R1) 

Dec 
1980 
(R2) 

Dec 
1984 
(R3) 

Jul 
1987 
(R4) 

Jan 
2001 
(R5) 

Nov 
2008 
(R6) 

Jun 
2010 
(R7) 

 ≤ 60 
 
(A1) 

< 60  
≤ 85 
(A2) 

< 85  
≤ 135 
(A3) 

>135 
(A4) 

CD1 - 478 - 502 1914 - 160  427 1389 993 245 R5 / A2 

CD2 - 768 1844 448 203 - 1142  560 2857 733 255 R3 / A2 
CD3 - - 824 693 - - -  439 907 152 19 R3 / A2 
CD4 - - - - 2355 - -  542 1192 621 - R5 / A2 
CD6 - 444 - 627 - - -  142 485 289 155 R4 / A2 
CD8 639 - - 786 741 - -  728 1187 251 - R4 / A2 
CD10 - - - 690 - - -  270 420 - - R4 / A2 
CD11 - - - 1423 445 - 719  668 1300 619 - R4 / A2 
CD12 - - - 1508 157 - -  230 1302 101 32 R4 / A2 
CD13 - - - - 1192 - -  237 779 172 4 R5 / A2 
CD15 615 - 2390 1357 1129 - -  20 2554 2130 787 R3 / A2 
CD16 - - - 1054 375 - -  494 732 203 - R4 / A2 
CD18 4632 - - - 2678 - -  1496 3210 1900 704 R1 / A2 
CD19 - - 6232 217 727 - -  1216 2104 3206 650 R3 / A3 
CD20 - 410 - 1848 1464 - -  920 1577 1147 78 R4 / A2 
CD21 192 - - 3833 656 - -  1360 1030 1477 814 R4 / A3 
CD22 - - - - 662 - -  206 343 113 - R5 / A2 
CD25 - - - - 178 - -  - 178 - - R5 / A2 

Total 6078 2100 11290 14986 14876 - 2021  9955 23546 14107 3743  

 

Other input data required of building energy modelling such as apartment building type, 

height, orientation and glazing ratio, which are not available or applicable at individual 

household (or apartment neighbourhood) level, were inferred from relevant statistical 

data. According to the Korean Statistical Information Service (KOSIS, 2018b), about 67% 

(989,176) of the total number of apartments (1,483,460) are of Tower type and the rest 
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are of Slab type in Seoul. Also, 27% (400,634) are 15-storey tall apartment building. 

Therefore, tower type and 15-storey high were identified as the representative apartment 

building type. The height of individual apartment unit was fixed to 3m tall. Moreover, the 

glazing to wall ratio and orientation of apartment building was referred to in a recent study 

(Kim et al., 2010, Table 4-10) and the current MoLIT energy-saving building design 

guideline (MoLIT, 2018) respectively. This is due to the fact that the cost of collecting 

such thorough building information is prohibitive given the large sample size. As the 

MoLIT design guideline recommends south facing building orientation for apartment 

housing developments, it was assumed that the orientation of existing apartment stock 

could be south facing mostly. In the case of south facing orientation of tower type building, 

the number of walls exposed to external climates are typically three sides but the opening 

areas are two sides oriented to the south and the north (see also section 2.3.2 and Figure 

2-1). Thus, the glazing ratio with 61.48% for South and 56.49% for North; South faced 

orientation. Those four geometric configurations (Tower type, 15-storey tall, the glazing 

ratio above and south faced orientation) were equally applied to all archetypes.  

 

5.3.2. Estimating archetypes’ peak cooling energy use 

The AMIS dataset provides monthly electricity use data at apartment neighbourhood 

level, containing not only heating/cooling energy use but also energy use for other home 

appliances. It is therefore necessary to deduce the monthly electricity use data into two 

types: non-weather-dependent (NWD) use for operating home appliances and weather-

dependent (WD) use for cooling or heating. This study assumes that NWD energy use 

is the minimum monthly electricity use for the study period 2014-17, and peak (August) 

cooling energy use can be estimated as the net of August total energy use minus the 

NWD use identified. Here, the estimated NWD energy use drawn from the 2014-17 
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dataset was adopted as a constant value applied to the subsequent energy modelling of 

the six archetypes. 

To confirm the assumption above, the relationship between cooling degree days (CDD), 

heating degree days (HDD) was analysed, and monthly electricity use 2014-16. CDD 

and HDD were calculated by 17.1oC as the base temperature for Seoul (Lee et al., 2014). 

As shown in Figure 5-5 (a), the heating, cooling and mixed period can be clearly identified 

by CDD and HDD: Nov-Apr (heating); Jun-Sep (cooling); May and Oct (mixed). The 

mixed period had a relatively small amount of CD/HD days, implying a high probability 

of NWD energy use occurring in both months (May and October). The actual energy use 

profile in Figure 5-5 (b) supports this conclusion: the minimum electricity use occurred in 

both May and October of each year. 

The assumption in estimating NWD energy use was further considered statistically 

through Pearson correlation analysis. If the minimum electricity use can be attributed to 

NWD use and the minimum use occurred in May and Oct, it can be expected that the 

correlation coefficients between CDD and monthly electricity use for May and October 

would be weak or negative in explaining the relationship. A relational study was carried 

out for each season separately for cooling and the mixed period. However, as the main 

heating source in South Korea is gas and gas energy use for heating specifically was 

not available on the AMIS or elsewhere, the analysis for the heating period (Nov-Apr) is 

due to be carried out in a future study. Also, for the normality in variables, the cooling 

period’s variables (CDD and electricity data) were transformed using a square root (sqrt) 

and logarithm (log) respectively. Table 5-4 shows the outputs: The relationship between 

CDD and electricity use in the cooling period (Jun-Sep) was very strong and positive. 

However, in the mixed period (May and October), there was a very strong but negative 

correlation coefficient between CDD and electricity use, suggesting that the electricity 

use in this period cannot be explained by external weather conditions. 
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Figure 5-5. (a) HDD and CDD based on daily temperature dataset from the Seoul city 

weather station; (b) monthly electricity use profile from aggregated 74 apartment 

neighbourhoods in Seoul, 2014-16 

 

Table 5-4. Correlation between monthly electricity use and HDD and CDD for heating, 

cooling and mixed periods. **. p<0.01 and *. p<0.05 

 Cooling period (Jun-Sep)  Mixed period (May and Oct) 

 CDD (sqrt) and Electricity (log)   CDD and Electricity 

Pearson-C .951**  -.887* 
Sig. .000  .018 
r squared .905  .787 
N 12 (4mon*3yr)  6 (2mon*3yr) 

 

Despite the relational study between CDD and HDD and monthly electricity use data of 

2014-16, the assumption can still lead to over or under estimate of NWD energy use due 

to the current limit of data availability. However, it can be argued that there will be 

minimized inclusion of weather-dependent energy use in certain months, such as May 
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and October in Seoul. The expectation is that non-weather-dependent electricity use 

estimated according to the minimum use days would be close to the actual NWD use if 

the temporal span of data coverage is sufficiently large enough. Table 5-5 shows the 

NWD and peak cooling energy use estimated for each neighbourhood archetype. These 

estimates were later used in the EnergyPlus model calibration process to output cooling 

temperature set points as estimates of archetypes’ indoor thermal conditions in present 

years. 

 

Table 5-5. Archetypes’ NWD and peak cooling energy use data for peak cooling energy 

model calibration 

Neighbourhood 
Archetype 

NWD 
electricity 

use 
(kWh/m2) 

Peak cooling energy use 
(kWh/m2) 

City 
District 

Type 2014  2015  2016  2017  

CD1 R5A2 3.010 1.210 1.624 2.342 1.922 
CD2 R3A2 3.354 1.218 1.486 1.993 1.484 
CD3 R3A2 3.127 .857 1.242 1.954 1.311 
CD4 R5A2 3.345 .775 1.099 1.939 1.535 
CD6 R4A2 2.691 1.044 1.195 2.025 1.201 
CD8 R4A2 2.992 .792 1.373 1.580 1.566 

CD10 R4A2 3.365 .605 1.098 2.060 1.243 
CD11 R4A2 3.632 1.144 1.407 1.739 1.734 
CD12 R4A2 3.276 1.134 1.760 2.610 1.971 
CD13 R5A2 3.373 1.196 1.211 1.843 1.683 
CD15 R3A2 2.702 .965 1.487 2.268 1.531 
CD16 R4A2 3.067 .875 1.219 2.511 1.461 
CD18 R1A2 3.346 1.041 1.560 2.181 1.360 
CD19 R3A3 2.852 .890 1.307 2.350 1.190 
CD20 R4A2 2.836 .684 1.069 2.001 1.090 
CD21 R4A3 2.685 1.069 2.046 2.862 1.887 
CD22 R5A2 3.301 .667 1.994 2.661 2.902 
CD25 R5A2 3.085 .740 1.409 1.968 1.792 

 

5.3.3. Estimating archetypes’ household NWD electricity use by component 

equipment 

Obtaining a detailed account of energy use of individual household equipment from total 

NWD electricity use is important in building thermal modelling as each piece of 

equipment has a different heat property in affecting internal sensible heat gains. In this 

study, the household NWD equipment energy use profile was required to extract internal 
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loads for calibrating internal heat gains in EnergyPlus modelling. This is due to the fact 

that a detailed household equipment energy use profile is unavailable for Seoul’s housing 

stock, a certain proportion (%) of total NWD electricity use was estimated by referring to 

the household equipment energy use profile survey from both the UK (Palmer and 

Cooper, 2014) and Korea (Seo and Hone, 2014). This cross-nation referencing was to 

combine the limited Korean survey covering only a small sample size (30 apartment 

households) in a different city (Daegu) for a short time period (2 weeks) with the UK 

survey, which is of a national and annual scale. This may be justified by a good degree 

of similarity between South Korea and the UK in geographical circumstances (middle 

latitude, heating dominant) and socio-economic developments. However, without spatial 

and temporal-specific field measurements, it remains uncertain. 

 

Table 5-6. Modified % of Seoul’s household equipment electricity use profile of total NWD 

electricity use based on the UK survey data (Palmer and Cooper, 2014) 

Areas Characteristics % of total 
electricity use 
(UK) 

Applied % of total electricity 
use in NWD month (Seoul) 

Lighting  15 or more 18 
Appliances Cold appliances (Fridges and 

freezers) 
16 20 

 Wet appliances (Washing machines 
and dishwashers) 

14 16 

 Consumer electronics 14 17 
 Information and communication 

technology (IT) 
6 9 

Cooking Microwave, cattle and fan-assisted 
oven 

14 20 

Total  79 or more 100 

 

The actually applied % of total NWD electricity use for Seoul was adjusted by considering 

Seoul’s social cultural circumstances with reference to the UK household equipment 

energy use profile (Table 5-6). For instance, one of the unique characteristics of Korean 

food is the fermentation process for long term food preservation and this technique 

requires spending relatively more effort in the cooking process (Kim et al., 2016). 
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Therefore, the percentage for cold appliances and cooking had more weight than others. 

Approximate 2-3% of weight was equally applied to the rest of household equipment for 

Seoul as the UK proportion is annual based. The proportion in Table 5-6 was equally 

applied into each archetype’s model calibration to extract internal loads as the basis for 

estimating internal heat gains. Considering the similarity of the operating schedule of the 

equipment to avoid complexity of input in modelling process, the cold and wet appliances 

were grouped into machinery and consumer electronics while IT was combined into 

Miscellaneous. Table 5-7 shows the details of archetypes’ NWD household equipment 

energy use profile which would be used as a calibration data to extract internal loads in 

NWD energy model. 

 

Table 5-7. Detailed amount of NWD household equipment in each neighbourhood 

archetype as a calibration data in NWD energy model 

Neighbour- 
hood (arche- 
type) 

NWD elec 
use 
(kWh/m2) 

Floor 
area  
(m2) 

Total NWD 
elec use 
(kWh) 

 Lighting 
(18%, 
kWh) 

Machinery 
(36%, kWh) 

Miscellaneous 
(26%,  
kWh) 

Cooking 
(20%, 
kWh) 

CD1(R5/A2) 3.010 A2 (84) 252.84  45.51 91.02 65.74 50.57 
CD2(R3/A2) 3.354 A2 (84) 281.73  50.71 101.42 73.25 56.35 
CD3(R3/A2) 3.127 A2 (84) 262.64  47.28 94.55 68.29 52.53 
CD4(R5/A2) 3.345 A2 (84) 281.02  50.58 101.17 73.07 56.20 
CD6(R4/A2) 2.691 A2 (84) 226.05  40.69 81.38 58.77 45.21 
CD8(R4/A2) 2.992 A2 (84) 251.29  45.23 90.46 65.34 50.26 
CD10(R4/A2) 3.365 A2 (84) 282.69  50.88 101.77 73.50 56.54 
CD11(R4/A2) 3.632 A2 (84) 305.07  54.91 109.82 79.32 61.01 
CD12(R4/A2) 3.276 A2 (84) 275.20  49.54 99.07 71.55 55.04 
CD13(R5/A2) 3.373 A2 (84) 283.33  51.00 102.00 73.67 56.67 
CD15(R3/A2) 2.702 A2 (84) 226.93  40.85 81.69 59.00 45.39 
CD16(R4/A2) 3.067 A2 (84) 257.66  46.38 92.76 66.99 51.53 
CD18(R1/A2) 3.346 A2 (84) 281.05  50.59 101.18 73.07 56.21 
CD19(R3/A3) 2.852 A3 (125) 356.48  64.17 128.33 92.69 71.30 
CD20(R4/A2) 2.836 A2 (84) 238.23  42.88 85.76 61.94 47.65 
CD21(R4/A3) 2.685 A3 (125) 335.68  60.42 120.84 87.28 67.14 
CD22(R5/A2) 3.301 A2 (84) 277.26  49.91 99.81 72.09 55.45 
CD25(R5/A2) 3.085 A2 (84) 259.11  46.64 93.28 67.37 51.82 

 

5.3.4. Generating archetypes’ on-site EnergyPlus weather files  

In building energy simulation, Chan (2011) highlighted the importance of the modification 

of a typical meteorological year (TMY) site-specifically as weather input to reflect local 
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urban climatic diversity (e.g. UHI). Among the open TMY weather files available on 

energyplus.net, the TMY weather file (epw) of Incheon, which is the closest to Seoul, 

was selected as the default weather file to be modified with on-site weather inputs. In 

generating the final EnergyPlus weather files for archetype modelling, this study 

incorporated urban microclimate conditions local to each archetype’s city district context 

by combining the weather datasets collected by the City District Automatic Weather 

Station (CDAWS) sites and Seoul central city weather station site. The CDAWS datasets 

are available only for hourly dry-bulb temperature, wind direction and wind speed. 

The data for dry-bulb temperature and wind pattern collected from each CDAWS site 

was applied into the Incheon TMY file. For the remaining weather variables, such as 

relative humidity, dew point temperature, air pressure, solar radiation and cloud cover, 

the historical weather data collected from Seoul central city weather station was used. 

Furthermore, the time frame (day) in all modelling process was set to the electricity meter 

reading day (18th of month) and therefore, the weather input for peak cooling (August) 

model was set for the period between 19th of July and 18th of August 2014-17. Finally, 

72 (18 archetype neighbourhoods * 4 years) on-site TMY weather files were generated 

for estimating each archetype’s present-day indoor thermal conditions through iterative 

EnergyPlus model calibration.  

 

5.3.5. Archetypes’ household operation parameters in zoning inputs 

The operation parameters in building energy modelling include detailed occupancy 

scheduling profiles of household equipment and the placement in zones.  As user 

behaviour has been shown to be one of the key determinants in residential energy use 

(Yu et al., 2011; Yun & Steemers, 2011), accurate values to the operation parameters 

are required for model accuracy and reliability. To establish an estimated occupancy 
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scheduling profile in the energy modelling for each neighbourhood archetype, this study 

first analysed hourly residential electricity use profile (KOSIS, 2016) and then, identified 

relevant energy standard and guidelines for partially inferring the scheduling profile.  

 

 

Figure 5-6. Index of relative coefficient of hourly residential electricity use profile for July 

and August 2015. (Source: KOSIS, 2016) 

 

Figure 5-6 shows the index of relative coefficient of hourly residential electricity use 

profile for July and August 2015 (the hottest months in Korea) at national level. The index 

was calculated by Dn/A*1000 (n=1,2,…,24), where A is the average of all hourly electricity 

uses for the month, and Dn is average of specific hourly electricity use for the month. In 

this case, 1000 is used as the base reference line to differentiate high or low energy use 

by hour, and there are four temporal segments identified by the transition points of 

electricity use. Firstly, during the midnight segment, most of the energy use activities 

may be stopped excluding operational use of essential home appliances. Secondly, the 

morning segment from 7 am, certain activity started and increased until 9 am. Thirdly, 

between 9 am and 17 pm (day time), there was consistent electricity use near to the 
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average, implying mixed activities occurred but there may be no or minimal cooling. 

Finally, the dramatic change and diversity occurred in the evening/night segment, 

implying mixed activities including cooling activity. 

 

Table 5-8. Assumptions of placement of household equipment and occupancy scheduling 

profile in zoning inputs. * (a: master bedroom, b: bedrooms, c: bathroom, d: kitchen, e: 

living room, f: balcony) 

 Placement  Occupancy scheduling profile 

 a b c d e f   

Lighting o o o o o -  

 
Machinery - - - o - -  

 

Miscellaneous o o o - o -  

Cooking - - - o - -  

 
People 
(residents) 

o o o o o -  

 
Cooling o - - - o -  

 
         

Opening profile Type Openable 
area (%) 

Opening 
threshold (oC) 

Degree of opening 

External window Sliding 50 26 On continuously 
Internal window Sliding 50 - Off continuously 
Door Side hung 100 - Off continuously 

 

Based on the analysis of hourly residential electricity use profile, this study selected a 

standard and guideline of occupancy profile database of the IES VE package (IES, 2017) 

that is the closest to the profile analysis shown in Table 5-8. For instance, the majority of 

electricity use occurred between 18:00 and 24:00. Thus, most of the household activities 

were scheduled during those times. Moreover, taking into account the seasonal peak 

summer condition, the lighting schedule was set up at evening. Ideally, in case of 

application of certain standard profile into energy modelling, the occupancy profile should 
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be calibrated for the model specifically through the iterative model calibration process 

(Raftery et al., 2011b) as the occupancy profile plays a certain role in energy use, 

especially weather dependent heating and cooling energy use (Yang and Becerik-

Gerber, 2014). However, this study was carried out on the basis of aggregated housing 

stock energy use data, and an archetype may not be a real physical entity corresponding 

to a household’s occupancy scheduling profile. To validate such operation and behaviour 

scheduling for archetypes in their urban context requires a more extensive investigation. 

Here, it is assumed that the reference occupancy profile of household equipment can be 

equally applied to all archetypes in the city context of Seoul.  

However, as HVAC operation plays a key role in influencing energy use and indoor 

thermal conditions (Yang and Becerik-Gerber, 2014), the cooling profile requires a more 

detailed consideration. As described in Literature review (section 2.3.2), this study infers 

that the AC was mostly installed in two of the household’s major spaces: the master 

bedroom and the open space between the living room and the kitchen. Furthermore, the 

AC operation scheduling profile takes into account the residents’ household occupancy 

profile and hourly electricity use profile: AC is on during the morning and evening/night 

time period. Thirdly, the window and door opening schedule was assumed under the 

extreme condition of potential heat stress. Finally, the AC system capacity profile was 

assumed based on the IES VE system database for residential HVAC system: nominal 

energy efficiency ratio (EER, kW/kW) is 3.125, seasonal EER (2.500), and system 

seasonal EER (2.000).  

 

5.4. Estimated archetypes’ present indoor thermal conditions 

Given the dataset analysed in section 5.2 and the model calibration process shown in 

Figure 3-2, modelling of the city’s housing archetypes’ peak (August) cooling energy was 
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carried out in each city-district neighbourhood. This is to estimate the peak HVAC cooling 

temperature set points as an indicator of the archetypes’ present (2014-17) indoor 

thermal conditions. As each floor of an archetype apartment was built with the same 

thermal characteristics (insulation criteria and material assembly profile) and geometric 

configurations (floor plan, building type, height, glazing ratio and orientation), the energy 

modelling process was conducted using one apartment household unit located in the 

middle of an archetype building (e.g., the 8th floor in a 15-story apartment), meaning that 

the air flow and thermal heat transition of floor and ceiling areas were fully tightened to 

external climates.  

 

 

Figure 5-7. Profiles of calibrated internal loads (maximum power consumption) for non-

weather dependent (NWD) household electricity use among the neighbourhood 

archetypes in Seoul 

 

Firstly, archetypes’ internal loads (maximum power consumption) of household non-

weather dependent (NWD) equipment (lighting, machinery, cooking and miscellaneous) 
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were estimated through the iterative calibration process of the initial archetype NWD 

energy model. As shown in Figure 5-7, there are spatial (neighbourhood archetypes) 

variations in the estimations of each NWD equipment component energy use due to the 

differentiated NWD calibration inputs (Table 5-7). This highlights the need to consider 

the diversity of internal heat gains among the archetypes of the city’s residential 

neighbourhoods in addition to the variations observed in the surrounding external climate 

conditions. 

 

Table 5-9. Estimated internal heat gains of household NWD equipment based on the 

determining heat gain ratio (25%) to the calibrated internal loads (max power 

consumption). * People (4W/m2) and Lighting (3W/m2) are equally applied to all 

neighbourhood archetypes 

Neighbourhood 
(Archetype) 

Internal sensible heat gain (W/m2) 

Machinery Miscellaneous Cooking 

CD1(R5/A2) 3.883 .445 5.160 
CD2(R3/A2) 4.327 .495 5.750 
CD3(R3/A2) 4.034 .462 5.360 
CD4(R5/A2) 4.316 .494 5.735 
CD6(R4/A2) 3.472 .398 4.613 
CD8(R4/A2) 3.859 .442 5.128 
CD10(R4/A2) 4.342 .497 5.769 
CD11(R4/A2) 4.685 .537 6.226 
CD12(R4/A2) 4.227 .484 5.616 
CD13(R5/A2) 4.351 .498 5.782 
CD15(R3/A2) 3.485 .399 4.631 
CD16(R4/A2) 3.957 .453 5.258 
CD18(R1/A2) 4.316 .494 5.736 
CD19(R3/A3) 3.491 .423 4.642 
CD20(R4/A2) 3.659 .419 4.862 
CD21(R4/A3) 3.287 .399 4.371 
CD22(R5/A2) 4.258 .488 5.658 
CD25(R5/A2) 3.979 .456 5.288 

 

Secondly, the internal heat gains of household NWD equipment were estimated by the 

determining heat gain ratio to the calibrated internal loads, and 25% (Hosni et al., 1999) 

was used as the determinant ratio in this estimation except lighting. For the lighting, 

3W/m2, which is the standard lighting gain for office stair (ASHRAE, 2004), was equally 

applied to all archetypes, taking into account the range of the calibrated archetypes’ 



Chapter 5. Developing archetypes for building physics 

 

 

125 
 

internal loads for lighting (between 4.512 and 6.122W/m2). The lighting gain used in this 

study is relatively low, compared to other benchmark allowances: i.e. general office (8-

12W/m2); hospital wards (9W/m2) (CIBSE, 2015, pp6-3). In determining internal heat gain 

for lighting, the details of lighting components are required, such as total electrical input 

power, heat entering the space, and details of radiant, convective and conductive 

components (CIBSE, 2015, pp.6-3). However, due to the complexity and limited 

availability of data in the determination of lighting gains, the lighting gain was 

benchmarked to the closest allowance within the range of calibrated internal loads 

(Figure 5-7) as internal heat gain cannot be higher than the calibrated internal loads. In 

addition, for the people, low density office with light work was benchmarked from CIBSE 

(2015, pp6-2): 4W/m2. 

 

 

Figure 5-8. Estimated peak cooling temperature set points as an indicator of the indoor 

thermal conditions of the archetypes in Seoul’s 18 city-district neighbourhoods, based on 

the data collected for the August months of 2014-17 
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Finally, the initial archetype NWD energy model was updated to a peak cooling energy 

model through updating the zoning inputs, including calibration data of total peak 

electricity use (NWD + peak cooling use in Table 5-5), operating parameters of 

occupancy cooling scheduling (Table 5-8), and HVAC and estimated internal heat gains 

(Table 5-9). Figure 5-8 shows the modelling outputs of the archetypes’ peak cooling 

temperature set points estimated for Seoul, August 2014-2017. 

 

Table 5-10. Descriptive variance analysis of the estimated peak cooling temperature set 

points, August 2014-2017, Seoul  

Neighbourhood 
(archetype) 

Min Max Mean Std. 
Deviation, S 

Variance, 
S2 

CD1(R5/A2) 26.01 26.57 26.30 .268 .072 
CD2(R3/A2) 25.45 26.59 26.22 .520 .270 
CD3(R3/A2) 26.74 27.36 27.10 .271 .073 
CD4(R5/A2) 26.70 27.26 26.96 .258 .067 
CD6(R4/A2) 26.44 27.50 26.94 .517 .268 
CD8(R4/A2) 26.52 28.05 26.94 .740 .548 
CD10(R4/A2) 25.96 26.65 26.44 .325 .106 
CD11(R4/A2) 25.71 27.77 26.54 .877 .769 
CD12(R4/A2) 25.83 25.89 25.87 .030 .001 
CD13(R5/A2) 25.14 27.01 26.26 .836 .699 
CD15(R3/A2) 26.90 27.50 27.14 .293 .086 
CD16(R4/A2) 26.05 27.02 26.61 .463 .215 
CD18(R1/A2) 26.81 27.85 27.25 .504 .254 
CD19(R3/A3) 26.88 28.22 27.46 .595 .354 
CD20(R4/A2) 27.29 28.46 27.80 .493 .243 
CD21(R4/A3) 26.13 26.95 26.53 .448 .201 
CD22(R5/A2) 22.33 26.19 24.06 1.596 2.547 
CD25(R5/A2) 26.32 27.39 26.90 .447 .200 

 

Overall, across the 18 neighbourhood archetypes during the data collection period, there 

were spatial and temporal variations in the estimates of peak cooling temperature set 

points (Figure 5-8). However, looking at each archetype individually, the ranges of peak 

cooling temperature set points appear somewhat consistent during the four years 

modelled even though these city districts were experiencing wide variations in 

microclimate conditions (Figure 5-1). In comparison, archetype CD12 (S=0.03, S2=0.001) 

and CD22 (S=1.596, S2=2.547) are two extreme cases (Table 5-10). Also, there appears 

a trend that most of the highest set points occurred in 2016, the year of the largest cooling 
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degree day (CDD) count, while the lowest set points occurred in 2014 with the lowest 

CDD count (see Figure 5-5 - August). This suggests that there may be a certain process 

of indoor heat acclimatisation, which contains dwellers’ adaptive opportunities 

associated with each archetype in neighbourhood context. 
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5.5. Conclusions 

To apply the methodological framework for assessing potential heat stress vulnerability 

of a city’s dwelling stock in the future climate, the city of Seoul was chosen as case study. 

Then, the main datasets required in stock energy modelling as inputs were collected 

within each city districts’ microclimate boundary setting: urban microclimate data; energy 

use data of housing stock; Seoul’s climate change projection data; property price data 

(as a socio-economic indicator); building physical information (i.e., building thermal 

characteristics and geometric configuration). Finally, data analysis was carried out for 

developing archetypes as a preliminary preparation for building physics, which is the 

EnergPlus energy modelling for estimating present indoor thermal conditions. 

Firstly, housing archetypes were developed within urban microclimate context as 

approximate representation of the stock population based on building physical criteria, 

i.e., thermal characteristics (Ri) and geometric configuration (Aj). Six archetypes were 

identified by the combination (Ri/Aj descriptors) across the 18 city districts sampled for 

the study. Other geometric configurations, such as building type, height, glazing ratio to 

wall and orientation were equally applied to all archetypes: Tower type, 15-storey tall, 

the glazing ratio (61.48% for South and 56.49% for North) and south faced orientation. 

Secondly, two types of electricity use were deduced from the collected monthly (August) 

data through the assumption that the NWD energy use is the minimum monthly electricity 

use during the study period, and peak (August) cooling energy use can be estimated as 

the net of August electricity use minus the NWD use identified. The assumption was 

testified by the relational analysis between cooling/heating degree days (CDDs/HDDs) 

and monthly electricity use. In the analysis, it was found that the heating (Nov-Apr), 

cooling (Jun-Sep) and mixed (May and Oct) periods were clearly identified by CDDs and 

HDDs in Seoul. However, the amount of CDDs and HDDs in mixed period was relatively 
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very small, implying that a high probability of NWD energy use occurs in May and Oct. 

This implication was confirmed by actual energy use profile. Moreover, the assumption 

was further confirmed by Pearson correlation analysis statistically, that is the monthly 

electricity use in May and Oct was not explained by CDDs for both months. The 

estimated NWD and peak cooling energy use were used as the calibration inputs to 

estimate archetypes’ present indoor thermal conditions in the EnergyPlus model 

calibration. 

Thirdly, the EnergyPlus modelling for estimating archetypes’ present indoor thermal 

conditions requires a detailed household NWD equipment energy use profile as each 

component equipment has a different heat property in affecting internal heat gains. The 

UK household electricity use profile was referred and adjusted to estimate the actually 

applied proportion (%) of total NWD electricity use for Seoul, taking into account local 

socio-cultural circumstances. The detailed NWD equipment energy use profile then 

would be used as calibration data to extract internal loads in NWD energy model. 

Fourthly, 72 (18 archetype neighbourhoods * 4 years) on-site EnergyPlus typical 

meteorological year (TMY) weather files were generated to estimate each archetype’s 

present indoor thermal conditions. As data availability of city district automatic weather 

station is limited to hourly dry-bulb temperature, wind direction and wind speed, the 

remaining weather variables used the historical weather data collected from Seoul’s 

central city weather station.  

Fifthly, archetypes’ household operation parameters in zoning inputs were established, 

including detailed occupancy scheduling profiles of household equipment and the 

placement. To achieve this, hourly residential electricity use profile during hottest 

summer months (July and August) was analysed, and then the relevant standard and 

guidelines were identified.  
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Finally, given the developed archetypes and the dataset analysed, modelling of 

archetypes’ peak cooling energy was carried out to estimate the peak HVAC cooling 

temperature set points as an indicator of the archetypes’ present (2014-17) indoor 

thermal conditions. The estimates showed that there were spatial (each city district’s 

neighbourhood) and temporal (each year) variations. This is owing to differentiated 

responses (dwellers’ cooling energy use behaviours) to the external climates (August 

average temperature) observed in the metred peak cooling energy uses. However, there 

appeared a trend that most of the highest set points occurred in 2016, the year of the 

largest cooling degree day (CDD) count, while the lowest set points occurred in 2014 

with the lowest CDD count. This implies that there may be certain process of indoor heat 

acclimatisation, which contains dwellers’ adaptive opportunities associated with each 

archetype in a neighbourhood context. 
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6.1. Introduction 

This chapter presents Seoul’s neighbourhood dwelling stock modelling and the heat 

stress vulnerability (HSV) assessment. Given the collected and estimated archetypes’ 

present and future datasets from chapter 5, the stock energy modelling is carried out 

following the two perspectives of HSV assessments. Section 6.2 presents modelling 

indoor thermal conditions for Cooling Temperature Set Points based HSV assessment 

(HSV-AT, HSV-BT). Section 6.3 presents modelling peak cooling demands for Cooling 

Energy Demand based HSV assessment (HSV-AE, HSV-BE). Section 6.4 summarises 

key findings and concludes remarks. 

 

6.2. Cooling Temperature Set Points based HSV assessment (HSV-AT, HSV-

BT) 

This section presents the Seoul neighbourhood dwelling stock modelling and heat stress 

vulnerability assessment in four sets of results in accordance with the key steps shown 

in Figure 3-1. Based on the data collected (2014-2017) and estimated present HVAC 

peak cooling temperature set points, the key determinants of archetypes' present indoor 

thermal conditions were identified (section 6.2.1). A multiple regression model for 

predicting archetypes' future indoor thermal conditions during the peak cooling month 

(August in Seoul) is presented in section 6.2.2. As an input required of building energy 

modelling of the housing archetypes in the future climate (2050s), the modelling outcome 

of the future peak cooling energy use per neighbourhood archetype is given in section 

6.2.3, presupposing no housing stock renovation/replacement has taken place. Finally, 

section 6.2.4 reports on the estimated future HVAC cooling temperature set points for 

the purpose of Seoul’s HSV assessment. 
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6.2.1. Identified key determinants of peak indoor thermal conditions 

As described in section 3.4, a multiple regression analysis was carried out at the macro 

level (i.e. aggregate of the 18 neighbourhood archetypes) to identify likely key 

determinants of indoor thermal conditions as represented by the cooling temperature set 

points during the peak cooling period. Six independent variables were used in this study 

taking into account factors which can potentially be determinants affecting indoor thermal 

conditions and Seoul’s open data availability at the same time.  

In detail, August (peak) average temperature (oC) in each city-district neighbourhood 

(Figure 5-1) was used as the external climate conditions. The energy use datasets 

(kWh/m2) were divided into two types: (a) NWD household equipment energy use, and 

(b) cooling energy use (Table 5-5), as each plays a different role in indoor thermal 

conditions. The former can produce a certain amount of sensible internal heat gains while 

the latter is opposite. The collected property price (KRW/m2) and floor area ratio (%) 

datasets of each apartment neighbourhood (Figure 5-3) were abstracted into the average 

value within each archetype neighbourhood (microclimate boundary) to reflect 

representative archetype property. Finally, U-value (W/m2*K) of the external wall (Table 

4-9) which was matched to the applied archetype’s building regulation (Table 5-3) was 

used as the building envelop of physical characteristics. Therefore, the total number of 

the sample was 72, 4 years (present 2014-17) * 18 neighbourhood archetypes. Notably, 

all the inputs for this multiple regression analysis were collected (or estimated) at micro 

level and then, they were aggregated at macro level, as the bottom-up modelling 

approach was adapted in this study. 
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Table 6-1. Coefficients of multiple regression analysis to identify key determinants in 

present indoor thermal conditions 

 Dependent Independent B Std. 
error 

Beta Sig. 

R2 = .984, 
R2 (adj.)=.982  
p = .000 
 
N=72 (18 * 4 yrs) 
 

August (peak) 
cooling 
temperature 
set points (oC) 

(Constant) 5.331 .584   .000 

August average temperature 
(oC) 

.881 .017 1.265 .000 

August cooling energy use 
(kWh/m2) 

-2.262 .042 -1.282 .000 

Property Price (KRW/m2) .000 .000 .041 .039 

Floor Area Ratio (%) .001 .001 .025 .177 

NWD energy use (kWh/m2) -.026 .072 -.008 .717 

Building envelop (W/m2*K) .740 .142 .095 .000 

 

Table 6-1 shows the output of the multiple regression analysis. Overall, R2 was .984 

(.982, adjusted R2) and p was .000, representing that 98.4% of the variance in the 

present indoor thermal condition (dependent) was explained by the model and this model 

was statistically significant respectively. In evaluating each of the independent variables, 

the highest standardised coefficients (Beta) occurred in August average temperature 

(1.265) and cooling energy use (-1.282), meaning that those two variables made the 

strongest contribution on indoor thermal conditions within the statistically significant level 

(Sig.=.000). Finally, August’s average temperature and cooling energy use were 

identified as key determinants in the indoor thermal conditions. In fact, the key 

determinants would be different in each of the neighbourhoods as this study is looking 

at Seoul’s residential building stock. However, this can only be testified within a large 

enough sample size of each of the archetype neighbourhoods. Those two identified 

parameters were used in the modelling process to predict archetypes’ future indoor 

thermal conditions in following subsection. 

 

6.2.2. Modelling indoor thermal conditions under peak cooling energy use 

Given the external August average temperature and the August cooling energy use as 

the two key determinants identified, the archetypes’ indoor thermal conditions under 
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peak cooling in future years can be estimated from multiple regression modelling with 

the input of Seoul’s latest climate change projection. Considering the current data sample 

scope and size, a decision was made to perform the multiple regression analysis at a 

macro-level, that is, aggregate of all city-district archetypes.  

 

 

Figure 6-1. A preliminary analysis for the multiple regression model: (a) Normality 

histogram, (b) normal probability plot (P-P) and (c) scatterplot of regression standardised 

residuals. * Dependent variable: estimated neighbourhood archetypes’ present HVAC 

cooling temperature set points. ** Dot lines of (c) are at ±3.3 

 

A preliminary analysis was carried out to check outliners, normality, homoscedasticity 

and independence of residuals through inspecting the normal probability plot (P-P) of the 

regression standardised residual and the scatterplot (Figure 6-1). From the preliminary 

analysis, a CD22’s 2017 data was detected as outlier: its’ standardised residual was less 

than -3.3 (see Figure 6-1. c) and also, the Mohalanobis distance was 19.25 which was 

above 13.82, critical value for 2 independent variables model (Tabachnick and Fidell, 

2007). However, the regression modelling was carried out without deleting CD22 as only 

one was found. The resultant multi-regression model is presented in Figure 6-2 (scatter 

plot) and Table 6-2 (model details).  
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Figure 6-2. Scatter plot of estimated peak cooling temperature set points based on the 

two key determinants identified (August average external temperature and Peak cooling 

energy use) 

 

Table 6-2. Coefficients of a multi-regression model for estimating the indoor thermal 

conditions of Seoul’s 18 neighbourhood archetypes based on the 2014-17 datasets 

 
Dependent Independent B Std. 

error 
Beta Sig. 

R2 = .932,  
p = .000 

 
N=72 (18 * 4 
yrs) 
 

Peak cooling 
temperature 
set point (oC) 

(Constant) 6.478 .755  .000 

August average 
temperature (oC) .854 .030 1.226 .000 

Cooling energy use 
(kWh/m2) 

-2.122 .075 -1.230 .000 

 

K-fold cross validation was applied to evaluate the model accuracy. Four folds were 

generated as there were four years’ datasets (2014-17). For instance, k=1 fold used 

2014, 2015, 2016 datasets as the training set and 2017 as the testing set. Moreover, five 

criteria were used in error statistics: mean absolute error (MAE); mean square error 

(MSE); root mean square error (RMSE); mean absolute percentage error (MAPE); 
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coefficient of determination (R2). The predicted data represents the output resulted from 

each k-fold multiple regression model while the observed represents the outcome 

estimated by EnergyPlus peak cooling energy model (Figure 5-8).  

 

Table 6-3. Coefficients of modelling archetypes’ peak indoor thermal conditions of each 

k-fold to evaluate model accuracy and the error statistics between the predicted and the 

observed of each k-fold. * y: cooling temperature set points (oC), x1: August average 

temperature (oC), x2: peak cooling energy use (kWh/m2). 

k-fold model 
y(x1, x2)=a+bx1+cx2 

a b c R2 Sig. 

k=1 (2014, 15, 16) 7.273 .820 -2.040 .916 .000 
k=2 (2014, 15, 17) 5.789 .880 -2.109 .932 .000 
k=3 (2014, 16, 17) 6.275 .865 -2.174 .934 .000 
k=4 (2015, 16, 17) 5.919 .874 -2.117 .944 .000 

      

Error statistics MAE 
(oC) 

MSE 
(oC) 

RMSE 
(oC) 

MAPE 
(%) 

R2 

k=1 (testing 2017) .196 .067 .259 .738 .986 
k=2 (testing 2016) .161 .034 .183 .605 .977 
k=3 (testing 2015) .112 .022 .147 .423 .969 
k=4 (testing 2014) .143 .039 .198 .536 .935 

At total .153 .040 .197 .576 .958 

 

Table 6-3 shows the model details and the outputs of the error statistics of each k-fold. 

Overall, the coefficient of determination from the scatter plot between the observed and 

the predicted was .958 (Figure 6-3), representing about 96% of variance in the observed 

peak cooling setback temperature could be explained by the corresponding fourfold 

multiple regression models. Moreover, all four k-fold’s errors were near to zero, 

representing that there are no over fitting training datasets to the testing sets in all four 

cases. From this cross validation, the multiple regression model is considered acceptable 

to be used in predicting the archetypes’ cooling temperature set points in forthcoming 

years for heat stress vulnerability assessment (section 6.2.4). 
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Figure 6-3. Coefficient of determination (R2) between the predicted and observed peak 

cooling set point temperature at total (aggregate of all four k-folds). 

 

6.2.3. Modelling archetype-specific peak cooling energy use 

According to the multi-regression analysis reported in section 6.2.2, to predict the 

housing archetypes’ indoor thermal conditions during August in forthcoming years, the 

model will need two inputs: (1) estimates of the archetypes’ peak cooling energy uses in 

future years, and (2) climate change projections for Seoul at the city-district level. 

According to the data collection (section 5.2.3), the most recent climate change 

projections for Seoul have been published by the Korean Meteorological Administration 

(KMA; available at CIP).  This subsection presents the estimates of the archetypes’ peak 

cooling energy uses in accordance with the KMA climate projections for Seoul in 2050s.  

Table 6-4 shows archetypes’ correlation coefficients between the two variables at the 

city-district (micro) level. Despite of the relatively small sample (N=4, 2014-17), the 

correlation coefficients (Pears-C) of all neighbourhood archetypes were very strong and 

positive. The Pears-C of the aggregate of all 18 archetypes (Macro) was relatively weak 
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(.706), implying that it is preferable to explain the relationship between the two variables 

at the micro level. 

 

Table 6-4. Correlation coefficients between peak cooling energy use and August average 

temperature in each neighbourhood archetype. *. Macro: aggregate of all 18 

neighbourhood archetypes (N=72, 18 * 4yrs) **. p <0.01 and *. p <0.05  

Neighbourhood 
(archetype) 

Pears-C Sig.  Neighbourhood 
(archetype) 

Pears-C Sig.  Neighbourhood 
(archetype) 

Pears-C Sig. 

CD1(R5/A2) .982* .018  CD10(R4/A2) .993** .007  CD18(R1/A2) .948 .052 

CD2(R3/A2) .968* .032  CD11(R4/A2) .873 .127  CD19(R3/A3) .930 .070 

CD3(R3/A2) .993** .007  CD12(R4/A2) .998** .002  CD20(R4/A2) .950* .050 

CD4(R5/A2) .974* .026  CD13(R5/A2) .843 .157  CD21(R4/A3) .986* .014 

CD6(R4/A2) .879 .121  CD15(R3/A2) .993** .007  CD22(R5/A2) .892 .108 

CD8(R4/A2) .852 .148  CD16(R4/A2) .964* .036  CD25(R5/A2) .928 .072 

Macro .706** .000         

 

 

Figure 6-4. Scatter plots between peak cooling energy use and August average 

temperature at Macro level (aggregate of all 18 neighbourhood archetypes), and the three 

types of bivariate regression models in each k-fold. *The model fit in All (2014-17) is for 

predicting peak cooling energy use of each neighbourhood archetype in future years 

 

This implication can be further confirmed by the macro bivariate regression modelling for 

estimating archetypes’ future cooling energy use and to evaluate the model accuracy. 

Three types of bivariate model were tested at macro level (aggregate of all 18 
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neighbourhood archetypes): (a) linear, (b) quadratic and (c) logarithmic. Seen in Figure 

6-4 overall, the relationship between peak cooling energy use and the external 

temperature were largely distributed out of those three types of linear fits. This represents 

that the peak cooling energy use cannot be explained by the external temperature in all 

three types of bivariate model at macro level. Fourfold cross validation was carried out 

to evaluate the model accuracy. Table 6-5 shows the output of the error statistics and 

Figure 6-5 shows coefficients of determination (R2) between the predicted and observed 

peak cooling energy use at total (aggregate of all four k-folds). As the accuracy outcomes 

do not meet the criteria of acceptance level, the modelling for archetypes’ peak cooling 

energy use needs to be performed at the micro level (i.e., at each neighbourhood 

archetype independently). 

 

Table 6-5. Error statistics between the predicted and the observed peak cooling energy 

use at each k-fold (with MAPE, %) and at total (aggregate of all four k-folds) 

  Linear Quadratic Logarithmic 

Each 
k-fold’s 
MAPE 
(%) 

k=1, 2017 test 18.6 18.5 18.7 
k=2, 2016 test 16.9 27.9 17.6 
k=3, 2015 test 18.4 18.3 18.7 
k=4, 2014 test 36.9 120.6 35.9 

     

Avg. MAE (kWh/m2) .317 .558 .319 
Avg. MSE (kWh/m2) .187 .516 .190 
Avg. RMSE (kWh/m2) .425 .663 .427 
Avg. MAPE (%) 22.7 46.3 22.7 
R2  .377 .290 .367 
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Figure 6-5. Coefficient of determination (R2) between the predicted and observed peak 

cooling energy use at total (aggregate of all four k-folds). 

 

Finally, the modelling peak cooling energy use was carried out at micro level 

(neighbourhood archetype independently). Figure 6-6 presents the resultant bivariate 

regression model derived from 2014-17 for each neighbourhood archetype that gives 

estimates of peak cooling energy use (kWh/m2) given the archetype’s external August 

temperatures (oC). To evaluate the model accuracy, the leave-one-out cross validation 

(LOOCV) was used. Due to the small sample size (N=4), only linear regression was 

applied in the modelling. 

The modelling shows that most of the neighbourhoods’ present peak cooling energy use 

are well fitted to the external temperature on the linear model. However, some 

neighbourhoods, such as CD6 (R2=.773), CD8 (R2=.726), CD11 (R2=.762) and CD13 

(R2=.711), show relatively weak overall relationships. This suggests that other model 

types, such as non-linear models, may achieve a better fit for some neighbourhoods in 

consideration of the form of the scattered.  
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Figure 6-6. Scatter plots between present measured peak (August) cooling energy use 

(kWh/m2) and August external temperature (oC) in each archetype of neighbourhood 

(micro level), and the detailed coefficients of bivariate regression models in each k-fold. 

*The model fit in All (2014-17) is for predicting peak cooling energy use of each 

neighbourhood archetype in future years 
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As LOOCV was applied here to evaluate model accuracy within a small sample size 

(N=4), and only three data points were taken into account in generating the model fit, the 

coefficient of determination (R2) of the relationship between the two variables is rather 

sensitive to certain small and irregular changes. For examples, CD8 (k4, R2=.452), CD11 

(k4, R2=.424), CD13 (k2, R2=.415), CD18 (k2, R2=.640), CD22 (k4, R2=.311) and CD25 

(k4, R2=.670), compared to other folds, these neighbourhoods show a particularly low R2 

in only one fold. Interestingly, common to the k-formation of those folds (k2 and k4) was 

the combination between 2 typical summer years (2015 and 2017) and one abnormal 

summer years (2014, the mildest or 2016, the warmest). This suggests that there could 

be another key determinant involved if such irregular patterns occur. However, this can 

only be confirmed by further investigation of larger data sample sizes.  

Table 6-6 shows the LOOCV error statistics output of each neighbourhood archetype. 

To show the differentiated errors in each testing year, percentage error (PE, %) was 

used. MAPE (mean absolute percentage error) represents average of each year’s PE. 

Overall, half of neighbourhood archetypes (9/18) are considered reasonably acceptable 

including CD1, 2, 3, 4, 10, 12, 15, 18, 21.  However, the rest of the archetypes had 

relatively weak reliability in terms of model accuracy.  

In detail, firstly, CD22 had the largest error as this archetype was already identified as 

an outlier. Secondly, those low model accuracy archetypes had a tendency that only one 

or two testing years’ model had weak reliability (high PE) within the four testing years. 

This can result from a small sample in relation to the irregular pattern of an archetype’s 

cooling energy use in certain years. Figure 6-7 shows the coefficient of determination 

(R2) of aggregate of all 18 archetypes. As all datasets for this aggregation came from 

each archetype specific bivariate regression model, the accuracy of the macro modelling 

test result (Table 6-5 and Figure 6-5) was much improved in the micro modelling 

approach. 
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Table 6-6. Error statistics of the LOOCV between the predicted and the observed peak 

cooling energy use in each neighbourhood (archetype) 

Neighbourhood 
(archetype) 

k-fold’s percentage error (%) MAPE R2 

k=1, 2017 test k=2, 2016 test k=3, 2015 test k=4, 2014 test   

CD1 (R5/A2) 0.1 8.3 2.7 8.1 4.8 .936 
CD2 (R3/A2) 24.4 6.6 13.5 6.1 12.6 .643 
CD3 (R3/A2) 18.9 2.8 10.3 6.7 9.7 .901 
CD4 (R5/A2) 24.6 19.8 2.1 9.1 13.9 .888 
CD6 (R4/A2) 96.5 1.3 51.7 17.6 41.8 .152 
CD8 (R4/A2) 70.9 10.1 46.7 18.8 36.6 .144 
CD10 (R4/A2) 38.3 7.4 12.5 6.9 16.3 .903 
CD11 (R4/A2) 20.7 5.0 23.3 16.1 16.3 .366 
CD12 (R4/A2) 3.7 2.2 2.9 4.0 3.2 .988 
CD13 (R5/A2) 26.2 28.2 6.6 12.2 18.3 .435 
CD15 (R3/A2) 9.1 4.0 3.8 8.0 6.2 .966 
CD16 (R4/A2) 70.9 20.9 25.4 12.3 32.4 .585 
CD18 (R1/A2) 9.3 11.0 14.5 21.9 14.1 .702 
CD19 (R3/A3) 78.9 7.5 32.7 33.6 38.2 .368 
CD20 (R4/A2) 72.6 7.2 28.3 27.3 33.9 .522 
CD21 (R4/A3) 10.5 10.8 1.2 8.9 7.8 .946 
CD22 (R5/A2) 178.0 5.3 50.6 28.7 65.6 .225 
CD25 (R5/A2) 66.6 0.3 32.9 21.4 30.3 .480 

 

 

Figure 6-7. Coefficient of determination (R2) between the predicted and measured peak 

cooling energy use at total (aggregate of all archetypes of 18 neighbourhoods). 

 

Finally, based on the regression model, future peak cooling energy use was estimated 

(Figure 6-8. b). As the bivariate cooling energy model was built on the correlation 
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coefficients with external temperatures (CD-AWS), a comparison between present and 

future external temperatures is shown in Figure 6-8 (a). Overall, the estimated future 

peak cooling energy use will increase as the projected temperatures rise in 2050s. 

However, some districts (e.g., CD6, CD19, and CD20) are different: Common to these 

districts, the projected temperatures (RCP4.5) are higher than 2016 (the hottest year 

during the study period 2014-17), but the estimated cooling energy uses are lower than 

the ones metred in 2016. However, under the RCP8.5 climate change scenario, dramatic 

increases of peak cooling energy use in 2045 (projected the hottest year in 2050s under 

RCP8.5) are predicted for all archetypes in their city districts. Here, the predicted peak 

cooling energy uses and the KMA climate projections were then used as inputs to 

estimate each archetype’s indoor thermal conditions in 2050s. 

 

 

Figure 6-8. (a) 2014-17 and 2045 RCP8.5 and 2047 RCP4.5 August monthly average 

temperatures, (b) neighbourhood archetypes 2014-17 and 2045 RCP8.5 and 2047 

RCP4.5 peak cooling energy uses estimated by each neighbourhood archetype bivariate 

regression model 
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Table 6-7 shows descriptive variation of peak (August) temperature and cooling energy 

use in future years based on the present (2014-17) mean and maximum values. In 

RCP4.5 (2047), the average of all archetype neighbourhoods’ temperature variations by 

present mean value (by Max.) was 2.37oC (.60oC) within the range of 1.49oC (-.66oC) 

and 3.15oC (1.88oC). The future peak cooling energy use was predicted an average 

increase of 54.5% (8.7%) within the range of 31.2% (-8.7%) and 126% (60.7%). Looking 

at neighbourhood (archetype) individually, even though CD2(R3/A2) and CD22(R5/A2), 

their future August temperature variations were similar (close to Max.) but the estimated 

cooling energy uses varied significantly: 48.5% (15.1%) in CD2(R3/A2); 126.9% (60.7%) 

in CD22(R5/A2). Only two neighbourhoods, CD3(R3/A2) and CD15(R3/A2), are 

projected lower August temperatures (-.28oC and -.66oC by Max); and for five 

neighbourhoods, CD3(R3/A2), CD6(R4/A2), CD15(R3/A2), CD19(R3/A3), CD20(R4/A2), 

the cooling energy uses were estimated decreases of -6.9%, -1.5%, -8.7%, -5.8%, -2.6% 

respectively. 

On the other hand, in RCP8.5 2045, all CDs were predicted to both have an average 

temperature increase (3.2oC by mean; 1.49oC by Max.) and average cooling energy use 

increase (75.8%; 23.4%). The range of temperature variation was between 2.39oC by 

mean (.14oC by Max.) and 4.17oC (2.95oC), and of cooling energy use was between 41.8% 

(2.5%) and 170.9% (91.9%) respectively. Clearly, the variation of estimated peak cooling 

energy uses in 2045 RCP8.5 (high-emission scenario) is much higher than in 2047 

RCP4.5 (lower-emission scenario). 
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Table 6-7. Descriptive variation of August monthly average temperature (oC) and peak 

cooling energy use (kWh/m2) in future years (RCP4.5 2047 and RCP8.5 2045) based on 

their present (2014-17) Mean and Maximum values. * (): variation by present Max 

Neighbour-
hood 
(Archetype) 

August monthly average 
temperature (oC) 

 Peak (August) cooling energy use (kWh/m2) 

Present 
(2014-17) 

RCP4.5 
(2047) 

RCP8.5 
(2045) 

 Present 
(2014-17) 

RCP4.5 
(2047) 

RCP8.5 
(2045) 

Mean Max. Variation by 
mean, oC  

Variation by 
mean, oC 

 Mean Max. Estim-
ation 

variation by 
mean, % 

Estim-
ation 

variation by 
mean, % 

CD1(R5/A2) 27.72 29.53 2.24 (1.43) 3.02 (1.22)  1.774 2.342 2.497 40.7 (6.6) 2.750 55.0 (17.4) 
CD2(R3/A2) 26.89 28.45 3.15 (1.58) 3.90 (2.33)  1.545 1.993 2.295 48.5 (15.1) 2.474 60.1 (24.1) 
CD3(R3/A2) 27.43 29.20 1.49 (-.28) 2.45 (.68)  1.341 1.954 1.819 35.7 (-6.9) 2.126 58.5 (8.8) 
CD4(R5/A2) 27.33 29.06 2.29 (.55) 3.41 (1.68)  1.337 1.939 2.117 58.3 (9.2) 2.500 87.0 (29.0) 
CD6(R4/A2) 27.34 28.63 2.72 (1.43) 3.51 (2.22)  1.366 2.025 1.994 46.0 (-1.5) 2.279 66.8 (12.6) 
CD8(R4/A2) 27.29 29.21 1.98 (.05) 2.87 (.95)  1.328 1.580 1.741 31.2 (10.2) 1.929 45.3 (22.1) 
CD10(R4/A2) 26.29 27.87 2.75 (1.18) 3.70 (2.12)  1.252 2.060 2.560 104.5 (24.3) 3.011 140.5 (46.2) 
CD11(R4/A2) 27.14 29.13 3.09 (1.11) 3.92 (1.93)  1.506 1.739 2.003 33.0 (15.2) 2.135 41.8 (22.8) 
CD12(R4/A2) 27.35 29.22 2.30 (.43) 3.18 (1.31)  1.869 2.610 2.802 49.9 (7.3) 3.158 68.9 (21.0) 
CD13(R5/A2) 27.02 28.83 2.79 (.98) 3.80 (1.98)  1.483 1.843 1.981 33.5 (7.5) 2.159 45.5 (17.1) 
CD15(R3/A2) 28.01 30.26 1.59 (-.66) 2.39 (.14)  1.563 2.268 2.070 32.4 (-8.7) 2.324 48.7 (2.5) 
CD16(R4/A2) 27.38 29.27 2.65 (.77) 3.46 (1.57)  1.517 2.511 2.702 78.1 (7.6) 3.060 101.8 (21.9) 
CD18(R1/A2) 27.68 29.50 2.46 (.65) 3.23 (1.42)  1.536 2.181 2.322 51.2 (6.5) 2.567 67.2 (17.7) 
CD19(R3/A3) 27.90 29.69 1.93 (.15) 2.97 (1.18)  1.434 2.350 2.215 54.5 (-5.8) 2.634 83.6 (12.0) 
CD20(R4/A2) 27.90 29.73 2.12 (.29) 3.07 (1.24)  1.211 2.001 1.948 60.9 (-2.6) 2.279 88.2 (13.9) 
CD21(R4/A3) 27.89 29.79 2.05 (.15) 2.92 (1.02)  1.966 2.862 2.941 49.5 (2.7) 3.354 70.6 (17.2) 
CD22(R5/A2) 25.87 27.08 3.10 (1.88) 4.17 (2.95)  2.056 2.902 4.665 126.9 (60.7) 5.570 170.9 (91.9) 
CD25(R5/A2) 27.66 29.51 1.97 (.12) 2.79 (.94)  1.477 1.968 2.154 45.8 (9.5) 2.434 64.8 (23.7) 

Avg. 27.34 29.11 2.37 (.60) 3.26 (1.49)  1.531 2.174 2.379 54.5 (8.7) 2.708 75.8 (23.4) 
Min. 25.87 27.08 1.49 (-.66) 2.39 (.14)  1.211 1.580 1.741 31.2 (-8.7) 1.929 41.8 (2.5) 
Max. 28.01 30.26 3.15 (1.88) 4.17 (2.95)  2.056 2.902 4.665 126.9 (60.7) 5.570 170.9 (91.9) 

 

6.2.4. HSV-AT and HSV-BT: Heat stress vulnerability in terms of future indoor 

thermal conditions 

Given the outputs from the multiple regression modelling presented above, the potential 

heat stress vulnerability (HSV) of Seoul’s dwelling stock under climate projections is 

assessed in terms of the perspective of dwellers’ health and well-being under the “no 

change of peak cooling energy use behaviour” scenario. The peak cooling temperature 

set points of the 18 neighbourhood archetypes can be estimated by the multiple 

regression model (y = 6.478 + .854x1 - 2.122x2, where x1 is August average temperature 

(oC) and x2 is cooling energy use (kWh/m2). Figure 6-9 shows the result of estimated 

peak cooling temperature set points for present (2014-17) and future years (2047 

RCP4.5 & 2045 RCP8.5).  
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Figure 6-9. Estimated neighbourhood archetypes’ peak (August) cooling temperature set 

points for present (2014-17) and future years (RCP4.5 2047 and RCP8.5 2045) in Seoul 

 

Here the cooling temperature set points are considered as an indicator of indoor thermal 

conditions with which this study further concludes an assessment of potential heat stress 

vulnerability of the housing stock in future climate. However, the household’s indoor 

thermal condition itself does not represent any details of occupants’ thermal comfort or 

discomfort as it only represents HVAC cooling set point temperature deduced from the 

history of each neighbourhood’s peak cooling energy uses which has been already paid 

by dwellers. The key part where we pay attention to is the history which is determined 

by neighbourhood-specific cooling energy use behaviour responding to the external 

climate under the occupants’ own circumstances. Therefore, the cooling temperature set 

point can be considered as an indicator of the maximized level of indoor heat 

acclimatisation (IHA). Therefore, this study assumes that if the predicted future years’ 

cooling temperature set point is higher than the present Max., there can be increased 

HSV in a view of historical IHA. 
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Table 6-8 shows the differences of neighbourhood archetypes’ future indoor thermal 

conditions from the two points of reference HSV-AT and HSV-BT. Overall, the average 

difference in HSV-AT under RCP4.5 climate change scenario (or RCP8.5) was .81oC 

(.88oC) within the range from -4.68oC (-5.68oC) to 2.06oC (2.48oC), while in HSV-BT, it 

was much reduced to -.42oC (-.36oC) within the range from -4.87oC (-5.87oC) to .74oC 

(1.22oC). In comparison between HSV-AT and HSV-BT, there are significant difference 

changes commonly found under both climate change scenarios: all differences in HSV-

BT are more reduced than in HSV-AT. This shows that the estimated future indoor thermal 

condition will be far higher than the 26oC threshold as recommended by the local HVAC 

design guide; yet it is actually closer to each neighbourhood’s present highest IHA level 

(Max. IHA) - the neighbourhood-specific demographic heat-related indoor set-point 

temperature. 

Moreover, it was observed in HSV-AT that only four (out of 18) neighbourhoods were 

found to have lower set points than 26oC. On the other hand, in HSV-BT, many 

neighbourhoods (12 out of 18 in RCP4.5; 9 out of 18 in RCP8.5) were found to have 

lower set point temperatures than the historical Max. IHA. This suggests that the rest of 

the neighbourhoods will likely be exposed to certain heat stress in the future. This indoor 

thermal condition based HSV assessment assumes that future cooling energy demand 

will be met by suppliers and affordable by dwellers to maintain below those indoor 

thermal thresholds (26oC in HSV-AT and neighbourhood-specific historical Max. IHA in 

HSV-BT) in future climate.  
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Table 6-8. Descriptive variation (difference) of neighbourhood-archetype’s August (peak) 

cooling temperature set point (oC) in future years (RCP4.5 2047 and RCP8.5 2045) from 

26oC fixed point (HSV-AT) and from each neighbourhood-archetype’s present (2014-17) 

Max. (HSV-BT) 

Neighbour-
hood 
(Archetype) 

 Present 
Max. 

indoor 
Temp 

(oC) 

 RCP4.5 (2047)  RCP8.5 (2045) 

  Est. 
Indoor 
Temp. 

(oC) 

 Change of 
cooling load to 

present Max 
(%) 

Difference 
(oC) 

 Est. 
Indoor 
Temp. 

(oC) 

Change of 
cooling load 

to present 
Max (%) 

Difference 
(oC) 

  HSV-
AT 

HSV-
BT 

 HSV-
AT 

HSV-
BT 

CD1(R5/A2)  26.57  26.78 6.6 .78 .21  26.91 17.4 .91 .34 
CD2(R3/A2)  26.59  27.27 15.1 1.27 .68  27.53 24.1 1.53 .94 
CD3(R3/A2)  27.36  27.33 -6.9 1.33 -.03  27.50 8.8 1.50 .14 
CD4(R5/A2)  27.26  27.29 9.2 1.29 .03  27.44 29.0 1.44 .18 
CD6(R4/A2)  27.50  27.92 -1.5 1.92 .42  28.00 12.6 2.00 .50 
CD8(R4/A2)  28.05  27.79 10.2 1.79 -.26  28.15 22.1 2.15 .10 
CD10(R4/A2)  26.65  25.86 24.3 -.14 -.79  25.71 46.2 -.29 -.94 
CD11(R4/A2)  27.77  28.06 15.2 2.06 .29  28.48 22.8 2.48 .71 
CD12(R4/A2)  25.89  25.87 7.3 -.13 -.02  25.86 21.0 -.14 -.03 
CD13(R5/A2)  27.01  27.75 7.5 1.75 .74  28.23 17.1 2.23 1.22 
CD15(R3/A2)  27.50  27.38 -8.7 1.38 -.12  27.52 2.5 1.52 .02 
CD16(R4/A2)  27.02  26.41 7.6 .41 -.61  26.33 21.9 .33 -.69 
CD18(R1/A2)  27.85  27.31 6.5 1.31 -.54  27.44 17.7 1.44 -.41 
CD19(R3/A3)  28.22  27.27 -5.8 1.27 -.95  27.26 12.0 1.26 -.96 
CD20(R4/A2)  28.46  27.99 -2.6 1.99 -.47  28.10 13.9 2.10 -.36 
CD21(R4/A3)  26.95  25.82 2.7 -.18 -1.13  25.68 17.2 -.32 -1.27 
CD22(R5/A2)  26.19  21.32 60.7 -4.68 -4.87  20.32 91.9 -5.68 -5.87 
CD25(R5/A2)  27.39  27.23 9.5 1.23 -.16  27.33 23.7 1.33 -.06 

Avg.  27.24  26.81 8.7 .81 -.42  26.88 23.4 .88 -0.36 
Min.  25.89  21.32 -8.7 -4.68 -4.87  20.32 2.5 -5.68 -5.87 
Max.  28.46  28.06 60.7 2.06 .74  28.48 91.9 2.48 1.22 

 

It was considered at the same time the percentage change of future peak cooling loads 

against present Max cooling energy use along with the indoor thermal differences. The 

future peak cooling loads of many neighbourhoods (13 out of 18 under RCP4.5) and in 

all neighbourhoods (RCP8.5) were predicted to increase. This highlights a potential trend 

in that even though the peak cooling demands may be met there are many 

neighbourhoods whose future indoor thermal levels are elevated to the extent of causing 

potential heat stress. For some of the neighbourhoods such as CD11 and CD13, not only 

their future peak cooling loads are higher than present Max cooling usages but also, the 

future cooling temperature set points are predicted to be above their historical Max. IHA. 

Here raises the question if there is a point of no return in Max. IHA for an urban population 
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living in a particular neighbourhood beyond which large-scale outbreak of heat-related 

illness occurs. 

 

6.3. Cooling Energy Demand based HSV assessment (HSV-AE, HSV-BE) 

This section presents another Seoul neighbourhood dwelling stock modelling and the 

heat stress vulnerability assessment in three sets of results in accordance with the key 

steps shown in Figure 4-1. Based on the data collected (2014-2017) and estimated 

present HVAC peak cooling temperature set points, the key determinants of archetypes' 

present peak cooling energy use were identified (section 6.3.1). A multiple regression 

model for predicting archetypes' future peak cooling demands (PCDs) during the peak 

cooling month (August in Seoul) is presented and evaluated in section 6.3.2. Finally, 

section 6.3.3 reports on the estimated future PCDs for the purpose of Seoul’s HSV 

assessment in terms of implications for cooling energy supply and demand over the 

timeframe of climate projection under the “no stock change” scenario. 

 

6.3.1. Identified key determinants of peak cooling energy use 

As carried out in section 6.2.1, a multiple regression analysis was carried out at the 

macro level (i.e. aggregate of the 18 neighbourhood archetypes) to identify likely key 

determinants of present peak cooling energy use. The only difference from section 6.2.1 

analysis was the dependent variable which was swapped from the estimated cooling 

temperature set points to peak cooling energy use. Therefore, six independent variables 

were used in this section taking into account factors which can potentially be 

determinants affecting peak cooling energy use and Seoul’s open data availability at the 

same time: (1) August (peak) average temperature (oC) in each city-district 
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neighbourhood (Figure 5-1); (2) NWD household equipment energy use (Table 5-5); (3) 

estimated present peak cooling temperature set points (Figure 5-8); (4) the collected 

property price (KRW/m2) and (5) floor area ratio (%) datasets of each apartment 

neighbourhood (Figure 5-3); (6) U-value (W/m2*K) of the external wall (Table 4-9). Also, 

total number of sample was 72, 4 years (present 2014-17) * 18 neighbourhood 

archetypes. 

 

Table 6-9. Coefficients of multiple regression analysis to identify key determinants in 

present peak cooling energy use 

 Dependent Independent B Std. 
error 

Beta Sig. 

R2 = .990, 
R2 (adj.)=.989  
p = .000 
 
N=72 (18 * 4 yrs) 
 

August (peak) 
cooling energy 
use (kWh/m2) 

(Constant) 2.119 .282   .000 

August average 
temperature (oC) 

.387 .005 .981 .000 

August cooling temperature 
set points (oC) 

-.432 .008 -.763 .000 

Property Price (KRW/m2) .000 .000 .035 .023 

Floor Area Ratio (%) .000 .000 .021 .144 

NWD energy use (kWh/m2) .001 .032 .000 .978 

Building envelop (W/m2*K) .311 .063 .071 .000 

 

Table 6-9 shows the output of the multiple regression analysis. Overall, R2 was .990 

(.989, adjusted R2) and p was .000, representing that 99% of the variance in the present 

peak cooling energy use (dependent) was explained by the model and this model was 

statistically significant respectively. In evaluating each of the independent variables, the 

highest standardised coefficients (Beta) occurred in August the average temperature 

(.981) and peak cooling temperature set points (-.763), meaning that those two variables 

made the strongest contribution to peak cooling energy use within the statistically 

significant level (Sig.=.000). Finally, August average temperature and peak cooling 

temperature set points were identified as key determinants in peak cooling energy use. 

Those two identified parameters were used in modelling process to predict archetypes’ 

future peak cooling demands (PCDs) in following subsection. 



Chapter 6. Assessing potential heat stress vulnerability of Seoul’s dwelling stock 

 

 

153 
 

6.3.2. Modelling peak cooling demands 

Given the external August average temperature and the August cooling temperature set 

points as the two key determinants identified, the archetypes’ PCDs in future years can 

be estimated from multiple regression modelling with input of Seoul’s latest climate 

change projection. Considering the current data sample scope and size, a decision was 

made to perform the multiple regression analysis at a macro-level, that is, an aggregate 

of all city-district archetypes.  

A preliminary analysis was carried out to check outliners, normality, homoscedasticity 

and independence of residuals through inspecting the normal probability plot (P-P) of the 

regression standardised residual and the scatterplot (Figure 6-10). From the preliminary 

analysis, a CD22’s 2017 data was detected as outlier: its’ Mohalanobis distance was 

21.06 which was above 13.82, critical value for 2 independent variables model 

(Tabachnick and Fidell, 2007). However, the regression modelling was carried out 

without deleting CD22 as only one was found. The resultant multi-regression model is 

presented in Figure 6-11 (scatter plot) and Table 6-10 (model details). 

 

Figure 6-10. A preliminary analysis for the multiple regression model: (a) Normality 

histogram, (b) normal probability plot (P-P) and (c) scatterplot of regression standardised 

residuals. * Dependent variable: estimated neighbourhood archetypes’ present peak 

cooling energy use. ** Dot lines of (c) are at ±3.3 
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Figure 6-11. Scatter plot of peak cooling energy use based on the two key determinants 

identified (August average external temperature and Peak cooling temperature set points) 

 

Table 6-10. Coefficients of a multi-regression model for estimating peak cooling demands 

(PCDs) of Seoul’s 18 neighbourhood archetypes based on the 2014-17 datasets 

 
Dependent Independent B Std. 

error 
Beta Sig. 

R2 = .958,  
p = .000 
 
N=72 (18 * 4 
yrs) 
 

Peak cooling 
energy use 
(kWh/m2) 

(Constant) 2.324 .403  .000 

August average 
temperature (oC) .393 .011 .973 .000 

Peak cooling 
temperature set points 
(oC) 

-.424 .015 -.749 .000 

 

K-fold cross validation was also applied to evaluate the model accuracy. Four folds were 

generated as there were four year datasets (2014-17). For instance, k=1 fold used 2014, 

2015, 2016 datasets as the training set and 2017 as the testing set. Moreover, five criteria 

were used in the error statistics: mean absolute error (MAE); mean square error (MSE); 

root mean square error (RMSE); mean absolute percentage error (MAPE); coefficient of 

determination (R2). The predicted data represents the output resulted from each k-fold 
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multiple regression model while the observed represents the outcome estimated by NWD 

energy use assumption (Table 5-5).  

 

Table 6-11. Coefficients of modelling archetypes’ peak cooling demands of each k-fold to 

evaluate model accuracy and the error statistics between the predicted and the observed 

of each k-fold. * y: peak cooling energy use (kWh/m2), x1: August average temperature 

(oC), x2: cooling temperature set points (oC). 

k-fold model 
y(x1, x2)=a+bx1+cx2 

a b c R2 Sig. 

k=1 (2014, 15, 16) 2.544 .392 -.441 .962 .000 
k=2 (2014, 15, 17) 2.142 .400 -.434 .933 .000 
k=3 (2014, 16, 17) 2.175 .390 -.425 .966 .000 
k=4 (2015, 16, 17) 2.309 .399 -.440 .946 .000 

      

Error statistics MAE 
(kWh/m2) 

MSE 
(kWh/m2) 

RMSE 
(kWh/m2) 

MAPE 
(%) 

R2 

k=1 (testing 2017) .069 .009 .095 4.67 .975 
k=2 (testing 2016) .055 .005 .073 2.63 .958 
k=3 (testing 2015) .051 .005 .068 3.62 .950 
k=4 (testing 2014) .050 .006 .074 5.68 .908 

At total .057 .006 .078 4.15 .981 

 

Table 6-11 shows the model details and the outputs of the error statistics of each k-fold. 

Overall, the coefficient of determination from the scatter plot between the observed and 

the predicted was .981 (Figure 6-12), representing about 98% of variance in the 

observed peak cooling energy use could be explained by the corresponding fourfold 

multiple regression models. Moreover, all four k-fold’s errors were near to zero, 

representing that there are no over fitting training datasets to the testing sets in all four 

cases. From this cross validation, the multiple regression model is considered acceptable 

to be used in predicting the archetypes’ peak cooling demands in future years for heat 

stress vulnerability assessment. 
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Figure 6-12. Coefficient of determination (R2) between the predicted and observed peak 

cooling energy use at total (aggregate of all four k-folds). 

 

6.3.3. HSV-AE and HSV-BE: Heat stress vulnerability in terms of future peak cooling 

demands 

Given the outputs from the multiple regression modelling presented above, another set 

of assessments were carried out in terms of peak cooling energy loads estimated to 

maintain the two types of indoor thermal thresholds. Similarly, the assessments of are 

two sub-types: HSV-AE in terms of peak cooling loads estimated by 26oC as a fixed 

cooling temperature set point for all neighbourhoods. HSV-BE in terms of peak cooling 

loads estimated by each neighbourhood’s present Max. cooling set point temperature as 

derived from the Max. IHA of each neighbourhood. The peak cooling demands can be 

estimated by the multiple regression model in Table 6-10:  y = 2.324 + .393x1 - .424x2, 

where y is peak cooling demands (PCDs, kWh/m2), x1 is August average temperature 

(oC), and x2 is cooling temperature set points (oC). Finally, this part of the HSV 

assessment is quantified by the variation (difference) of future peak cooling loads against 

certain base reference points. 
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This study considers that the historical maximum cooling energy use is a quantity 

resultant from dwellers’ living experiences in spending energy from a socio-economic 

viewpoint. Here, it is assumed that the estimated future cooling energy demands going 

above the historical maximum cooling energy use (as a cooling energy supply threshold) 

could ultimately lead to increased heat stress vulnerability (i.e., cooling demands simply 

cannot be met even if affordable). Therefore, each neighbourhood’s historical Max 

cooling energy use is used here as the base reference point to measure the variation 

(difference) in assessing both HSV-AE (according to the load meeting the 26oC threshold), 

and HSV-BE (according to the load meeting the Max. IHA threshold). 

 

Table 6-12. Estimated neighbourhood archetypes’ August (peak) cooling demands in 

future years to maintain a fixed cooling set point (26oC) to all 18 neighbourhoods for HSV-

AE and to maintain each neighbourhood’s present Max cooling set point to each 

neighbourhood individually for HSV-BE, and descriptive variation (difference, %) from 

each neighbourhood’s present Max. cooling energy use 

Neighbour-
hood 
(Archetype) 

Present 
Max. 

cooling 
(kWh/m2)  

 RCP4.5 (2047, kWh/m2)  RCP8.5 (2045, kWh/m2) 

 HSV-AE  HSV-BE  HSV-AE  HSV-BE 

 Est. 
load 

Difference 
(%) 

 Est. 
load 

Difference 
(%) 

 Est. 
load 

Difference 
(%) 

 Est. 
load 

Difference 
(%)  

CD1(R5/A2) 2.342  2.814 20.2   2.567 9.6  3.122 33.3  2.875 22.8 
CD2(R3/A2) 1.993  2.842 42.6  2.586 29.7  3.137 57.4  2.881 44.6 
CD3(R3/A2) 1.954  2.406 23.1  1.816 -7.1  2.782 42.4  2.193 12.2 
CD4(R5/A2) 1.939  2.680 38.2  2.133 10.0  3.122 61.0  2.575 32.8 
CD6(R4/A2) 2.025  2.851 40.8  2.200 8.7  3.161 56.1  2.511 24.0 
CD8(R4/A2) 1.580  2.540 60.8  1.651 4.5  2.893 83.1  2.004 26.8 
CD10(R4/A2) 2.060  2.454 19.1  2.172 5.5  2.827 37.2  2.545 23.5 
CD11(R4/A2) 1.739  2.922 68.0  2.154 23.9  3.245 86.6  2.477 42.4 
CD12(R4/A2) 2.610  2.692 3.1  2.740 5.0  3.037 16.3  3.085 18.2 
CD13(R5/A2) 1.843  2.756 49.5  2.318 25.8  3.150 70.9  2.712 47.1 
CD15(R3/A2) 2.268  2.672 17.8  2.022 -10.9  2.985 31.6  2.335 2.9 
CD16(R4/A2) 2.511  2.845 13.3  2.402 -4.3  3.160 25.8  2.718 8.2 
CD18(R1/A2) 2.181  2.888 32.4  2.085 -4.4  3.189 46.2  2.387 9.4 
CD19(R3/A3) 2.350  2.763 17.6  1.801 -23.4  3.170 34.9  2.207 -6.1 
CD20(R4/A2) 2.001  2.837 41.8  1.770 -11.5  3.211 60.5  2.144 7.2 
CD21(R4/A3) 2.862  2.805 -2.0  2.393 -16.4  3.147 10.0  2.735 -4.4 
CD22(R5/A2) 2.902  2.423 -16.5  2.340 -19.4  2.845 -2.0  2.762 -4.8 
CD25(R5/A2) 1.968  2.686 36.5  2.083 5.9  3.007 52.8  2.404 22.2 

Avg. 2.174  2.715 28.1  2.180 1.7  3.066 44.7  2.530 18.3 
Min. 1.580  2.406 -16.5  1.651 -23.4  2.782 -2.0  2.004 -6.1 
Max. 2.902  2.922 68.0  2.740 29.7  3.245 86.6  3.085 47.1 
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Table 6-12 shows the estimations of future peak cooling demands (kWh/m2) to maintain 

two types of HVAC cooling temperature set points and the variation (difference, %) for 

HSV-AE and HSV-BE. Overall, the average difference (%) in HSV-AE under RCP4.5 

climate change scenario (or RCP8.5) was 28.1% (44.7%) within the range from -16.5% 

(-2.0%) to 68.0% (86.6%). Moreover, there are only two neighbourhoods, CD21(R4/A3) 

and CD22(R5/A2), which have lower cooling energy demands than their historical Max 

cooling energy uses under RCP4.5; while only CD22(R5/A2) has a lower demand under 

RCP8.5. This suggests that Seoul’s 16 (out of 18) neighbourhoods have increased 

vulnerability in terms of peak cooling loads to maintain 26oC of indoor cooling set point 

in future years.  

On the other hand, in HSV-BE, the average difference (%) under RCP4.5 (or RCP8.5) 

was 1.7% (18.3%) within the range from -23.4% (-6.1%) to 29.7% (47.1%). Compared 

to HSV-AE, the average difference in HSV-BE was much reduced. Moreover, there 

appeared more neighbourhoods (8 out of 18), which have less future cooling energy 

demands than the historical Max. use under RCP4.5. However, the number of such 

neighbourhoods is reduced to only three under RCP8.5. Pessimistically speaking, this 

suggests that 10 out of 18 under RCP4.5 and 15 out of 18 neighbourhoods under RCP8.5 

have increased vulnerability in future climate.  

To bring HSV-AE and HSV-BE together, this study introduced ‘proportion’ in sorting 

differences and produced a relative ranking of each HSV assessment under each climate 

change scenario. Here the difference value was converted to a value of proportion, 

ranging from 0.0 (Min. of difference) to 1.0 (Max. of difference), representing each 

neighbourhood (archetype) in relation to the whole city stock. Therefore, higher 

proportion values indicate higher levels of heat stress vulnerability and vice versa (Figure 

6-13). 
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Figure 6-13. Relative ranking of potential heat stress vulnerability among the six 

archetypes in Seoul’s 18 city district (CD) neighbourhoods in HSV-AE (26oC fixed cooling 

set point temperature based) and HSV-BE (neighbourhood-specific indoor heat 

acclimatisation based). *↓ higher to lower vulnerability ** The transition points (in white) 

between red and blue are set by the zero difference 

 

From the ranking result, it was observed that the repeated instances where the same 

archetypes appear in neighbourhoods of different ranking positions. Special attention 

should be paid to the substantial differences between HSV-AE and HSV-BE, in terms of 

the relative vulnerability ranking and the level of HSV (proportion). CD19(R3/A3) and 

CD20(R4/A2) are good examples: The ranking changes are due to the large differences 

in cooling temperature set points between 26oC, set by the fixed point as design criteria 

in HSV-AE, and 28.22oC (or 28.46oC), set by CD19 (or CD20) neighbourhood-specific 

Max. IHA in HSV-BE. 
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6.4 Conclusions 

This chapter presented Seoul’s neighbourhood dwelling stock modelling and the heat 

stress vulnerability (HSV) assessment in two approaches: HSV-A is based on a fixed 

threshold temperature (26oC as the local statutory standard adopted in Seoul), and HSV-

B is based on the historical metred energy uses reflecting households’ indoor heat 

acclimatisation histories. Furthermore, under HSV-A and HSV-B, this study employed 

two sub-methods: Cooling Temperature Set Points based (HSV-AT, HSV-BT), and 

Cooling Energy Demand based (HSV-AE, HSV-BE). The former perspective points to 

implications for dwellers’ health and wellbeing under the “no change of peak cooling 

energy use behaviour” scenario. The latter peak cooling demand perspective points to 

implications for cooling energy supply and demand over the timeframe of climate change 

projections under the “no stock change” scenario. Those HSV assessments were 

summarised as the differences between the estimations and base reference points, 

following that neighbourhood archetypes further away from the reference points present 

higher HSV.  

Firstly, for Cooling Temperature Set Points based assessments (HSV-AT, HSV-BT), the 

stock modelling for indoor thermal conditions was carried out. Two key determinants of 

peak indoor thermal conditions were identified by a multiple regression analysis at the 

macro level (aggregate of the 18 neighbourhood archetypes): August (peak) average 

temperature and the cooling energy use. Then, given the two identified determinants, a 

multiple regression model was generated to estimate archetypes’ indoor thermal 

conditions under peak cooling in future years and the model accuracy was evaluated by 

K-fold cross validation. 

To predict the archetypes’ peak indoor thermal conditions in future years, estimates of 

the archetypes’ peak cooling energy uses in were modelled at the micro level, in 
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accordance with the climate change projections for Seoul at the city district level. The 

model accuracy was checked by leave one out cross validation statistically. Overall, it 

was found that under the RCP4.5 climate change scenario, the future peak cooling 

energy use was predicted to have an average increase of 8.7% by each archetype’s 

historical Max. cooling energy use within the range of -8.7% and 60.7%. On the other 

hand, under the RCP8.5, the average increase by Max. was predicted to be 23.4% within 

the range of 2.5% and up to 91.9%. 

Given the outputs of the indoor thermal condition model, the Cooling Temperature Set 

Points based assessments were carried out. The outcomes showed that 14 (out of 18) 

neighbourhoods were predicted to be likely exposed to certain heat stress in future years 

in HSV-AT, while 6 (out of 18 in RCP4.5) and 9 (out of 18 in RCP8.5) in HSV-BT, under 

the assumption that future cooling energy demand will be met by suppliers and affordable 

by dwellers. Furthermore, particular attention should be paid to some neighbourhoods 

(i.e., CD11 and CD13), where not only their future peak cooling loads are higher than 

present Max cooling usages but also, the future cooling temperature set points are 

predicted to be above their historical Max. IHA.: hence, the high probability of dwellers’ 

potential heat-related illnesses.  

Secondly, for Cooling Energy Demand based assessments (HSV-AE, HSV-BE), the stock 

modelling for indoor thermal conditions was carried out. Two key determinants of peak 

cooling energy use were identified by a multiple regression analysis at the macro level 

(aggregate of the 18 neighbourhood archetypes): August (peak) average temperature 

and indoor cooling temperature set points. Then, given the two identified determinants, 

a multiple regression model was generated to estimate archetypes’ peak cooling 

demands in future years and the model accuracy was evaluated by K-fold cross 

validation. 
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Finally, in Cooling Energy Demand based assessments, Seoul’s 16 (out of 18) 

neighbourhoods have increased vulnerability in terms of peak cooling loads to maintain 

26oC of indoor cooling set point in future years in HSV-AE, while 10 out of 18 under 

RCP4.5 and 15 out of 18 neighbourhoods under RCP8.5 have increased vulnerability in 

future climate in HSV-BE. Furthermore, a relative ranking of heat stress vulnerability of a 

city’ dwelling stock was proposed based on the estimated peak cooling demands 

according to a statutory cooling temperature set point for all neighbourhoods (HSV-AE) 

and to each neighbourhood archetype’s present Max cooling set point temperature as 

the vulnerability threshold (HSV-BE). There are three neighbourhoods, CD2(R3/A2), 

CD11(R4/A2), and CD13(R5/A2), are ranked at the top three positions persistently, 

which are the most vulnerable segments if their estimated peak cooling demand cannot 

be met in the 2050s. 

 

 

Figure 6-14. Unban context of CD22, the lowest HSV neighbourhood (a) and CD2, the 

highest HSV (b) *. Red dot: location of the weather station **. 1km radius circular 

boundary 
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Furthermore, two neighbourhoods were ranked at the top (CD2) and the bottom positions 

(CD22) persistently between the HSV-AE and HSV-BE paired relative rankings. It was 

important to think about what the main source of the opposite HSV results was caused 

by. Due to that fact this study is carried out within a limited availability of data in relation 

to on-site building characteristics, there is a limit to identify this. However, as the urban 

microclimate was identified as the key determinant in modelling, the urban context in two 

extreme cases was compared.  As seen in Figure 6-14, a clear difference was found in 

terms of green coverage ratio (GCR) within the microclimate boundary. This suggests 

that outdoor mitigation strategies could be developed for the neighbourhoods identified 

with increasing GCR, leading to a reduction in peak cooling demands. 

 

Table 6-13. Estimated neighbourhood archetypes’ August (peak) cooling demands in 

future years for HSV-AE and HSV-BE according to the ±1oC of the current climate change 

projections (RCP4.5 2047 as an example), and descriptive variation (difference, %) from 

each neighbourhood’s present Max. cooling energy use 

Neighbour-
hood 
(Archetype) 

Present 
Max. 

cooling 
(kWh/m2)  

 -1oC scenario  +1oC scenario 

 HSV-AE  HSV-BE  HSV-AE  HSV-BE 

 Est. 
load 

Differen
ce (%) 

 Est. 
load 

Differen
ce (%) 

 Est. 
load 

Differenc
e (%) 

 Est. 
load 

Differen
ce (%)  

CD1(R5/A2) 2.342  2.421 3.4   2.174 -7.2  3.207 36.9  2.960 26.4 
CD2(R3/A2) 1.993  2.449 22.9  2.193 10.0  3.235 62.3  2.979 49.4 
CD3(R3/A2) 1.954  2.013 3.0  1.424 -27.2  2.799 43.2  2.209 13.0 
CD4(R5/A2) 1.939  2.287 18.0  1.741 -10.2  3.073 58.5  2.526 30.3 
CD6(R4/A2) 2.025  2.458 21.4  1.808 -10.7  3.244 60.2  2.593 28.1 
CD8(R4/A2) 1.580  2.148 35.9  1.259 -20.3  2.933 85.6  2.044 29.4 
CD10(R4/A2) 2.060  2.062 .1  1.780 -13.6  2.847 38.2  2.565 24.5 
CD11(R4/A2) 1.739  2.529 45.4  1.761 1.3  3.315 90.6  2.547 46.4 
CD12(R4/A2) 2.610  2.300 -11.9  2.347 -10.1  3.085 18.2  3.133 20.0 
CD13(R5/A2) 1.843  2.363 28.2  1.925 4.4  3.149 70.8  2.711 47.1 
CD15(R3/A2) 2.268  2.279 .5  1.629 -28.2  3.065 35.1  2.414 6.4 
CD16(R4/A2) 2.511  2.452 -2.4  2.009 -20.0  3.237 28.9  2.795 11.3 
CD18(R1/A2) 2.181  2.495 14.4  1.692 -22.4  3.280 50.4  2.478 13.6 
CD19(R3/A3) 2.350  2.371 .9  1.408 -40.1  3.156 34.3  2.193 -6.7 
CD20(R4/A2) 2.001  2.444 22.2  1.377 -31.2  3.230 61.4  2.163 8.1 
CD21(R4/A3) 2.862  2.413 -15.7  2.000 -30.1  3.198 11.7  2.786 -2.7 
CD22(R5/A2) 2.902  2.030 -30.1  1.947 -32.9  2.815 -3.0  2.733 -5.8 
CD25(R5/A2) 1.968  2.293 16.6  1.691 -14.1  3.079 56.5  2.476 25.8 

Avg. 2.174  2.323 9.6  1.787 -16.8  3.108 46.7  2.572 20.3 
Min. 1.580  2.013 -30.1  1.259 -40.1  2.799 -3.0  2.044 -6.7 
Max. 2.902  2.529 45.4  2.347 10.0  3.315 90.6  3.133 49.4 
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What if a certain outdoor mitigation strategy is applied into the Seoul context and 

therefore, 1oC reduction of air temperature is achieved in future years? On the other 

hand, what if the future temperature is 1oC higher than current climate change projections 

due to the effect of an urban heat island? Table 6-13 shows the changed peak cooling 

demands of archetype neighbourhoods according to the two scenarios (±1oC) under 

RCP4.5 (2047) as an example. Compare to Table 6-12, the effect of outdoor mitigation 

strategy is obvious in terms of peak cooling demands in future years. 
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A bottom-up approach to modelling peak cooling demand and assessing potential heat 

stress vulnerability of a city’s housing stock in a future climate was presented. It is 

proposed that housing archetypes can be developed to represent a city’s housing stock 

in terms of three key descriptors: (1) building epoch (in terms of legislation years of 

residential building codes governing thermal performance standards), (2) building 

geometry (typical floor plans and sizes), and (3) urban microclimate boundary defined 

as an urban area of 1 km radius from an urban automatic weather station.  

Historical energy use data metred in aggregates of neighbourhood units are analysed to 

obtain an estimate of peak cooling energy use for each archetype. In this study, building 

energy modelling of archetypes always takes into account available local weather station 

data as the microclimate contexts of the archetypes. This model calibration process gives 

an estimate of the range of (peak) cooling temperature set points for each archetype in 

its urban microclimate boundary. The same archetype may appear in multiple locations 

and exhibit different ranges of peak cooling temperature set points. However, the defined 

archetypes always lie with the neighbourhood of microclimate boundary. The estimated 

cooling temperature set points are then taken as simulated measurements of indoor 

thermal conditions for assessing potential heat stress vulnerability of each dwelling 

archetype in context. 

Presupposing no housing stock replacement or renovation over the timeframe of climate 

projections, this study makes use of a city’s climate change projection data to estimate 

peak cooling energy demand and heat stress vulnerability in the future climate. This is 

intended as a scenario of “business as usual” to inform a city’s dwelling stock 

management policies and strategies towards a sustainable future. Predicted heat stress 

vulnerability attributed to dwelling stock archetypes in context could rise or fall depending 

on whether peak cooling energy demand may or may not be met in the future climate. 
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Successful dwelling stock management therefore needs to know where and how peak 

cooling energy demand can be reduced to lower heat stress vulnerability for city dwellers.  

 

7.1. Key findings 

7.1.1. Characteristics of urban dwelling’s cooling energy use 

To understand the characteristics of urban dwelling’s cooling energy use, the relationship 

between residential cooling energy use and the two factors, urban microclimate data (i.e., 

monthly average temperature) and property price data, was explored in the two different 

spatial resolutions: (1) Macro level, aggregated all apartment neighbourhoods in city of 

Seoul; (2) Micro level, apartment neighbourhoods individually within city-district (CD) 

urban microclimate boundary setting. 

In Macro level analysis, there were temporal (monthly) variations in correlating cooling 

energy use with both urban microclimate data and property price data during the summer 

months (July – September). However, the combined effect of urban microclimate and 

property price on cooling energy use varied in each summer month: in the mild 

temperature of July, the impact of property price was more influential on cooling energy 

use than urban weather while the urban weather was more dominant than property price 

in the high temperature of August.  

In the Micro level analysis, there were unique characteristics of cooling energy use within 

each of the microclimate boundary neighbourhoods. It was found that there was very 

good internal consistency and similarity in terms of the distribution of apartment 

neighbourhoods’ monthly cooling energy use within each boundary. This implies that 

there are certain aspects which affect a similar range of cooling energy use in each CD 

boundary, such as homogeneous microclimatic conditions and building physical 
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characteristics or socio-economic factors. Given the characteristics, the relational study 

between cooling energy use and microclimate data was explored within each CD’s AWS 

1km boundary. There were not only temporal (monthly) variations in relationship between 

the two variables, but also spatial (each CD) variations. This suggests that the residential 

cooling energy use should be individually studied within each CD microclimate boundary 

to reflect its own characteristics of cooling energy use. 

Despite the temporal and spatial variations, it was commonly found that all CDs had the 

strongest correlation coefficients for August, the hottest summer month. The simple 

bivariate regression (SBR) model for each CD was generated to estimate future peak 

cooling energy demands. The estimates showed dramatic differences in each CD 

neighbourhood in terms of the predicted peak cooling demands responding to external 

temperature of climate change projections. This implies that there can be substantial 

differences in individual households’ indoor thermal conditions. Therefore, there can be 

varying levels of indoor heat exposure experienced by the residents, affecting residents’ 

health and well-being if they are unable to increase cooling energy use due to socio-

economic constraints. 

 

7.1.2. Housing archetype development for building physics 

The implication of the study into historical cooling energy use required the urgent action 

of looking into dwelling’s indoor thermal conditions in relation to residents’ health and 

wellbeing in future years. To assess potential heat stress vulnerability of a city’s dwelling 

stock, the knowledge of a possible range of indoor air temperatures under such condition 

is essential. However, to obtain such knowledge through field survey campaigns for a 

city’s entire dwelling stock would be cost-prohibitive if not impossible. In the absence of 

reliable city-wide measurements of indoor thermal conditions, the possible approach to 
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obtaining a replaceable indicator of indoor thermal measurements was found in 

developing archetypes for building physics. 

The results derived from the characteristics of urban dwelling’s cooling energy use 

showed that the spatial resolution of residential neighbourhoods within a microclimate 

boundary can capture a set of homogeneous datasets in terms of dwellings’ cooling 

energy use and building physical characteristics. Given the findings, housing archetypes 

were developed within an urban microclimate context as approximate representation of 

the stock population based on building physical criteria, i.e., thermal characteristics (Ri) 

and geometric configuration (Aj). Six archetypes were identified by the combination (Ri/Aj 

descriptors) across the 18 city districts sampled for the study of Seoul. However, the six 

housing archetypes defined by building physical characteristics, always lie with the 

neighbourhood of 18 city-districts’ microclimate boundary (as a key factor in 

segmentation process, CDi): hence, 18 housing archetypes, CDi(Ri/Aj). As a virtual 

archetype development, the details of each CDi archetype are associated with (1) the 

construction assembly profile (Table 5-2) according to the built year of building epoch 

(Table 4-9, Ri) and (2) the predefined typical apartment floor plans (Figure 5-4) in relation 

to floor area size (Ai). 

Furthermore, as the EnergyPlus model calibration process for estimating archetypes’ 

present indoor thermal conditions required a detailed energy use profile, such as energy 

use only for cooling and detailed household non-weather-dependent (NWD) equipment 

energy use profile. However, the energy use data was limited into monthly (August) total 

energy (electricity) use data. Thus, this study intensively analysed the datasets to extract 

the exact details. Firstly, two types of electricity use were deduced from the collected 

monthly (August) data through the assumption that the NWD energy use is the minimum 

monthly electricity use during the study period, and peak (August) cooling energy use 

can be estimated as the net of August electricity use minus the NWD use identified. The 
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assumption was testified by the relational analysis between cooling/heating degree days 

(CDDs/HDDs) and monthly electricity use. Secondly, the detailed household NWD 

equipment energy use profile was estimated through referring to and adjusting the UK 

household electricity use profile, taking into account local socio-cultural circumstances. 

Thirdly, 72 (18 archetype neighbourhoods * 4 years) on-site EnergyPlus typical 

meteorological year (TMY) weather files were generated based on the collected city and 

city-districts weather data. Fourthly, archetypes’ household operation parameters in 

zoning inputs were established though the analysis of the historical hourly households’ 

electricity use profile, including detailed occupancy scheduling profiles of household 

equipment and the placement.  

Finally, given the developed archetypes and the dataset analysed, modelling of 

archetypes’ peak cooling energy was carried out to estimate the peak HVAC cooling 

temperature set points as an indicator of the archetypes’ present (2014-17) indoor 

thermal conditions. The estimates showed that there were spatial (each city district’s 

neighbourhood) and temporal (each year) variations. This was owing to differentiated 

responses (dwellers’ cooling energy use behaviours) to the external climates (August 

average temperature) observed in the metred peak cooling energy uses. However, there 

appeared a trend that most of the highest set points occurred in 2016, the year of the 

largest cooling degree day (CDD) count, while the lowest set points occurred in 2014 

with the lowest CDD count. This implies that there may be a certain process of indoor 

heat acclimatisation, which contains dwellers’ adaptive opportunities associated with 

each archetype in the neighbourhood context. 

Moreover, the estimated household’s indoor thermal condition itself does not represent 

any details of the occupants’ thermal comfort or discomfort as it only represents HVAC 

cooling set point temperature deduced from the history of each neighbourhood’s peak 

cooling energy use which has been already paid by dwellers. The key part where we pay 
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attention to is the history which is determined by neighbourhood-specific cooling energy 

use behaviour responding to the external climate under the occupants’ own 

circumstances. Therefore, the cooling temperature set point can be considered as an 

indicator of the maximized level of indoor heat acclimatisation (IHA). 

 

7.1.3. Potential heat stress vulnerability of Seoul’s dwelling stock 

The indoor thermal conditions of Seoul’s dwelling stock during summer months are one 

of the key determinants of peak cooling demand. The city’s population will be subject to 

heat stress if the cooling demand cannot be met for reasons such as extended power 

outage or fuel poverty. To inform sustainable dwelling stock management, a modelling 

framework for estimating peak cooling demand is presented. The aim of the modelling is 

to obtain heat stress vulnerability (HSV) assessment of a city's dwelling stock over the 

timeframe of climate projections. The modelling framework is underpinned by the spatial-

temporal scale of an urban microclimate boundary defined as an urban area within 1 km 

radius of an automatic weather station.  

The modelling framework was applied to Seoul's dwelling stock drawing on the datasets 

available for 2014-17 as the basis for assessing the likely peak cooling demands and 

heat stress vulnerability in 2050s, assuming there is no stock adaptation. The 

assessment of the potential heat stress vulnerability of Seoul’s dwelling stock in future 

climate is concluded as relative ranking among the neighbourhoods of six apartment 

archetypes in 18 city-district neighbourhoods, CDk(Ri/Aj). HSV-A is based on a fixed 

threshold temperature (26oC as the local statutory standard adopted in Seoul), and HSV-

B is based on the historical metred energy uses reflecting households’ indoor heat 

acclimatisation histories. Furthermore, under HSV-A and HSV-B, this study employed 
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two sub-methods: Cooling Temperature Set Points based (HSV-AT, HSV-BT), and 

Cooling Energy Demand based (HSV-AE, HSV-BE). 

Taking Seoul’s dwelling stock as a whole, under HSV-AT, the average difference from 

26oC was .81oC under RCP4.5 (2047 being the hottest year in 2050s under RCP4.5) 

and .88oC under RCP8.5 (2045 the hottest year in 2050s under RCP8.5), ranging from -

4.68oC to 2.06oC (2047 RCP4.5), and -5.68oC to 2.48oC (2045 RCP8.5). Under HSV-BT, 

the average difference from the present (2014-17) Max indoor temperatures (as 

estimated from EnergyPlus model calibration with the households’ metered energy uses) 

was much reduced to -.42oC (RCP4.5 2047) and -.36oC (RCP8.5 2045), ranging from -

4.87oC to .74oC (2047 RCP4.5), and -5.87oC to 1.22oC (RCP8.5 2045).  

Looking at the neighbourhoods of housing stock individually, 14 out of 18 (77.8%) the 

stocks are predicted to have higher peak indoor temperatures than 26oC in future climate 

under HSV-AT. Considering the residents’ indoor heat acclimatisation histories under 

HSV-BT, 33.3% (6/18) and 44.4% (8/18) are predicted to have higher peak indoor 

temperatures in 2047 RCP4.5 and 2045 RCP8.5 respectively, in comparison with the 

present Max indoor temperature estimated for each archetype in the neighbourhood. It 

should be noted that both HSV-AT and HSV-BT difference measures assume no stock 

adaptation and the estimated peak cooling demands will be met in the 2050s.  

Also, meeting either the fixed statutory or the indoor heat acclimatisation threshold 

cooling temperature does not imply heat stress free absolutely. In public health research, 

various heat morbidity and mortality functions have been proposed recently which take 

measured or estimated apparent temperatures as one of the primary inputs (see among 

others, Kim and Joh, 2006; Kendrovski et. al., 2017; Lee et. al., 2018). 

This study proposes a relative ranking of heat stress vulnerability of a city’s dwelling 

stock based on estimated peak cooling demands in the future climate. In the HSV-AE 
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and HSV-BE assessment of Seoul’s dwelling stock, the estimated peak cooling loads 

required for each archetype in a neighbourhood to restore future indoor peak 

temperatures to the statutory 26oC (HSV-AE) or to the present Max cooling temperature 

set points calibrated for the existing stock (HSV-BE) are used to establish the relative 

ranking (Table 6-12 and Figure 6-13). This is a more pessimistic approach to HSV 

assessments as it shows how each dwelling stock stands in relation to each other if the 

estimated peak cooling loads cannot be met in the forthcoming years. In HSV-AE, the 

proportional difference measures show that 88.89% (16/18) and 94.44% (17/18) of the 

housing stock neighbourhoods will be greater than zero in RCP4.5 2047 and RCP8.5 

2045. In HSV-BE, the ratios reduce to 55.6% (10/18) and 83.3% (15/18) respectively. As 

expected, the heat acclimatisation model predicts a lower HSV level across the housing 

stock neighbourhoods.  

Between the HSV-AE and HSV-BE paired relative rankings, some neighbourhoods cross 

the zero transition point from high to low: 33.3% (6/18) under RCP4.5 2047, and 11.1% 

(2/18) under RCP8.5 2045. There are three neighbourhoods, CD2(R3/A2), CD11(R4/A2), 

and CD13(R5/A2), are ranked at the top three positions persistently, which are the most 

vulnerable neighbourhoods if their estimated peak cooling demand cannot be met in the 

2050s. Further research should focus on what and how adaptation and mitigation 

strategies and measures could be developed and implemented for the neighbourhoods 

identified, leading to significant reduction of peak cooling demands while being 

satisfactory to dwellers’ thermal well-being as a priority.  

 

7.2. Limitations and further studies 

Firstly, due to the small sample size in modelling archetype-specific peak cooling energy 

use at micro level (section 6.2.3), the model accuracy remains uncertain, except 9 (out 
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of 18) archetype neighbourhoods. As the AMIS started provided an actual amount of 

electricity use data in 2014, the study was limited to the energy use dataset of 2014-17 

(N=4). This small sample only allowed one to use a linear fit model and thus, some CDs 

showed a relatively weak overall relationship in bivariate linear model: i.e. CD6, 8, 11, 

13 (Figure 6-6). Tracking the form of the scattered between cooling energy use and the 

external climates, another non-linear model may achieve a better fit in those CDs. As 

this study employed a parametric statistical approach to the model fit, the outcome can 

be sensitive to the sample size. Moreover, within the 4-year datasets, August of two 

years (2014 and 2016) are considered as extreme cases historically: August 2016 was 

reported as the warmest summer month on record since 1908, while August 2014 was 

one of the mildest summer months in Seoul (see also Figure 5-1). Under these small 

samples, such extreme cases may result in weak model reliability. However, the energy 

use data can be continuously collected into further years, the sample size will be large 

enough to implement other modelling types or fits. Therefore, the assessment of HSV in 

terms of dwelling’s indoor thermal conditions could perform better through model 

improvement with an increased sample size. 

Secondly, in developing archetypes, the accurate homogeneity of building typological 

characteristics must be further investigated even at a neighbourhood of microclimate 

boundary. As this study has paid much attention to residential cooling energy use 

characteristics in developing housing archetypes for the purpose of assessing HSV, 

debates in terms of all the assumptions related to building geometric configurations and 

thermal characteristics in archetype definitions are inevitable. For instance, there could 

be differentiated material assembly profiles in other ANs (from Table 5-2) and also, 

building regulations (Table 4-9) may be limited to entirely represent an accurate proxy 

for u-values to all housing stock on a city scale. Moreover, there can be a number of 

existing floor plans which cannot be simply unformed into a single plan (Figure 5-4). 
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However, the question is how sensitive are those parameters to residential peak cooling 

energy use? In further studies, the sensitivity analysis must be carried out in relation to 

data normalisation for developing archetypes. 

Furthermore, in relation to the consideration of building typological characteristics in 

archetype developments, this study also proposes that the segmentation scale in 

archetype development can be further narrowed down to individual apartment 

neighbourhood or the building level if microclimate data is available at that spatial 

resolution. As pointed out in Chapter 4, the actual scale of microclimate is much smaller 

than 1 km and the effect of microclimate on residential cooling energy use can be much 

more dynamic at an individual apartment building. Solar radiation can be a good example. 

It is well informed that the effect of solar radiation on residential energy use varied under 

urban canyon geometry (Salvati et al., 2017). Although the inclusion of solar radiation 

can be challenging in the stock modelling (because it has to meet the temporal and 

spatial data homogeneity within limited data availability), the segmentation scale for 

developing an archetype can be classified by canyon geometry, such as the orientation 

of the building. However, this also remains as a further study due to the limitation of the 

current open residential energy use data at apartment neighbourhood level. If the data 

availability is extended to an individual apartment building, such detailed segmentation 

would be considered in developing housing archetypes.  

Thirdly, this study concludes that a further study must focus on what, where and how 

adaptation and mitigation strategies could be developed for the neighbourhoods 

identified, leading to significant reduction of peak cooling demands while remaining 

satisfactory to dwellers’ thermal well-being as a priority. Thus, it is important to identify 

what the main source of the increased HSV is caused by. As the microclimate was the 

key determinant in modelling for both indoor thermal condition and peak cooling demand 

of the Seoul’s dwelling stock during summer months, a mitigation strategy of urban 
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microclimate can be considered as the possible approach to reduction of cooling loads 

in future years (i.e. Table 6-13).  

Over the past decades, many studies have been carried out for assessing the effect of 

outdoor mitigation strategy in different cities and they were summarised by Salata et al. 

(2017). The key part can be that the effect of microclimatic variables must be considered 

in relation to the individual household’s building geometry configuration such as 

orientation and glazing ratio. This represents that microclimate mitigation strategies must 

be effectively linked to building adaptation design. 

In obtaining such microclimate data requirements at high spatial and temporal 

resolutions, CFD (computational fluid dynamics) based urban microclimate simulation 

may be essential. For instance, Ng et al. (2012) investigated the cooling effect of 

greening in Hong Kong context, using Envi-met, a computation intensive microclimate 

assessment software (developed by Bruce and Envi-met team at the University of Mainz). 

As a base reference model to be compared to the cooling effect of greening, they used 

700 x 700 x 300 (x, y, z) model domain size of a high-density urban area, where building 

coverage ratio is 44% with 0% of green coverage ratio (GCR). They found that within the 

model domain about 33% of GRC of tree planting (20m dense crown trees) at ground 

level attributed to a 1oC reduction of air temperature at pedestrian level. 

With further extension to building level, Yi and Peng (2014) developed outdoor and 

indoor coupled simulation framework for passive building adaptation design at the 

neighbourhood level. The key idea was to identify the main source of an indoor 

overheating problem through the coupling simulation framework and then, to deploy 

effective passive design strategy at the building to be adaptive to climate change.  

In detail, one key body of knowledge in the building simulation area for assessing climate 

change which impacts on an existing building is how to obtain an on-site climate change 
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input which is specified for a target building for the future. As the scale of current climate 

change projections cannot be representative to a neighbourhood or building level, they 

introduced and application of the Envi-met microclimate simulation into generating on-

site present and future (climate change) weather inputs for a building simulation. The 

outcome of Envi-met simulation can be considered the result of thermal interactions 

between air, surface of urban morphology and plants within the model domain size on 

the neighbourhood scale. Given the generated on-site weather inputs, they identified the 

main source of an indoor overheating problem in both the present and the future, (i.e. 

solar gain from a South facing fully-glazed wall), and suggested one passive design 

strategy which can cover the time frame of climate change projects. This framework can 

potentially be applicable into developing both building adaptation and outdoor mitigation 

strategies for the neighbourhoods identified.  

Finally, one key area to be given further attention is how the proposed methodological 

framework can be refined and extended into different city contexts, e.g. the UK. In the 

UK, a city’s housing stock is under the influence of different urban microclimatic variables 

on a dwelling’s indoor thermal conditions due to the low-rise geometric configuration and 

build density. In the UK context, solar radiation was identified as a key determinant of 

indoor thermal environment along with air-temperature. The effects of solar radiation on 

the indoor thermal condition largely depends on geometric configurations (i.e. orientation, 

glazing-ratio) under the surrounding urban canyon geometry (i.e. low-density and low-

rise). Therefore, the hypothesis can be (1) that the spatial segmentation in an archetype 

development can be further scaled down than the Seoul study, or (2) that several 

segmentations can be identified within a 1 km radius boundary. To test the hypothesis, 

Birmingham can be selected for further research, where 20 urban weather stations were 

installed and maintained across the city during 2016-17. 
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Moreover, the heat stress vulnerability (HSV) assessment should consider the impact of 

potential heat events (i.e. heatwaves) on a dwelling’s indoor thermal condition owing to 

the dominant free-running-housing stock characteristics in the UK. This represents the 

temporal resolution of the UK stock modelling must be daily-based at least. To achieve 

it, the knowledge of a possible range of present indoor thermal conditions responding to 

external climates is essential. However, to obtain such knowledge of city-wide 

measurements through field survey would be cost-prohibitive if possible at all. Thus, 

empirical data modelling combined with contextual building energy simulation is required 

to estimate present indoor thermal condition. This is achievable as demonstrated in this 

thesis through the iterative EnergyPlus model calibration process. Furthermore, the HSV 

assessment needs to consider other factors already identified as potential determinants 

of heat risk on public health taking into account the compounded effects such as an 

inhabitant’s details such as age, morbidity and domestic energy affordability. The 

purpose of subjecting a city’s dwelling stock to the proposed HSV assessment is to 

establish the overall stock of neighbourhoods of higher HSV that may require urgent 

actions of adaptation through renovation or mitigation over the timeframe of UKCP18. 
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Appendix B 

 Statistical terms and tools applied in this thesis 

Parametric statistics: one branch of statistical techniques which makes assumptions 

that the underlying distribution of scores in the population from which the sample has 

been drawn is normal. They include T-test, Pearson-correlation and Analysis of Variance 

(ANOVA). 

Correlation analysis: is used to describe the strength and direction of the linear 

relationship between two variables. Especially, Pearson correlation coefficient (r) is 

designed for internal level (continuous) variables. It can also be used between one 

continuous variable and one dichotomous variable. 

Analysis of Variance (ANOVA): is used in comparing the mean scores of more than 

two groups. One-way analysis of variance analysis involves one independent variable 

which has a number of different levels, which correspond to the different groups or 

conditions. 

Assumption of Normality: in parametric statistics, scores on each variable should be 

normally distributed. It can be checked by inspecting the histograms of scores on each 

variable. 

Assumption of Linearity: in parametric statistics, the relationship between the two 

variables should be linear. This represents that in a scatterplot of scores, a straight line 

(roughly) appears. 

Assumption of Homoscedasticity: in parametric statistics, the variability in scores for 

X should be similar at all values of variable Y. It also can be check by the scatter plot of 

scores. 



Appendix 

 

 

204 
 

Cronbach’ coefficient alpha: provides an indication of the average correlation among 

all of the items that make up the scale. Values ranges from 0 to 1, with higher values 

indicating high internal consistency. Internal consistency is the degree to which the items 

that make up the scale are all measuring the same underlying attribute. 

K-fold cross validation: is one of model validation techniques. The total data “set” is 

split into K (number of) sets. One set is defined as a testing set while the rest of sets are 

defined as a training sets. The training sets are used for model fitting and a testing set is 

used for model evaluation through comparing the test set to results derived from the 

model. 

Leave-on-out cross validation (LOOCV): is similar to K-fold cross validation but of the 

total datasets, only one data remains as a test data. 
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