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Abstract
This thesis is concerned with a concept of geometrising time evolution of quantum

systems. This concept is inspired by the fact that the Legendre transform expresses

dynamics of a classical system through first-order Hamiltonian equations. We consider,

in this thesis, coherent state transforms with a similar effect in quantum mechanics:

they reduce certain quantum Hamiltonians to first-order partial differential operators.

Therefore, the respective dynamics can be explicitly solved through a flow of points in

extensions of the phase space. This, in particular, generalises the geometric dynamics

of a harmonic oscillator in the Fock-Segal-Bargmann (FSB) space. We describe all

Hamiltonians which are geometrised (in the above sense) by Gaussian and Airy beams

and exhibit explicit solutions for such systems
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1

Introduction

Hamilton equations describe classical dynamics through a flow on the phase space.

This geometrical picture inspires numerous works searching for a similar description

of quantum evolution starting from the symplectic structure [42], a curved space-

time [13, 35, 41, 75, 86], the differential geometry [14, 16] and the quantizer–dequantizer

formalism [15, 86]. A common objective of these works is a conceptual similarity

between fundamental geometric objects and their analytical counterparts, for instance,

the symplectic structure on the phase space and the derivations of operator algebras. A

promising direction that may lead to broader developments into classical-like descriptions

of quantum evolution suggests the use of coherent states.

The coherent states were introduced by Schrödinger in 1926 but were not in use until

much later [8, 29, 71, 74]. Further developments of the concept of coherent states have

manifested a remarkable depth and width [3, 28, 54, 65, 80].

The canonical coherent states of the harmonic oscillator have a variety of important

properties, for example, semi-classical dynamics, minimal uncertainty, parametrisation

by points of the phase space, resolution of the identity, covariance under a group action,

etc.

In this thesis, we discuss geometrisation of quantum evolution in the coherent states

representation by looking for a simple and effective method to express quantum evolution

through a flow of points of some set. More precisely, let the dynamics of a quantum
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system be defined by a Hamiltonian H and the respective Schrödinger equation

i}φ̇(t) = Hφ(t). (0.0.1)

Geometrisation of (0.0.1) suggested in [15] uses a collection {φx}x∈X of coherent states

parametrised by points of a set X . Then the solution φx(t) of (0.0.1) for an initial value

φx(0) = φx shall have the form

φx(t) = φx(t), (0.0.2)

where t : x 7→ x(t) is a one-parameter group of transformations X → X . Recall that the

coherent state transform f̃(x) of a state f in a Hilbert space is defined by

f 7→ f̃(x) = 〈f, φx〉 . (0.0.3)

It is common that a coherent state transform is a unitary map onto a subspace F2 of

L2(X, dµ) for a suitable measure dµ on X . If {φx}x∈X geometrises a Hamiltonian H in

the above sense, then for an arbitrary solution f(t) = e−itH/}f(0) of (0.0.1) we have:

f̃(t, x) =
〈
e−itH/}f(0), φx

〉
=
〈
f(0), eitH/}φx

〉
= f̃(0, x(t)). (0.0.4)

Thus, if a family of coherent states geometrises a Hamiltonian H , then the dynamics

of any image f̃ of the respective coherent state transform is given by a transformation

of variables. Motivation for such a concept is the following example of the canonical

coherent states of the harmonic oscillator [8, 28, 29, 71, 74, 80]

Example 0.0.1 Consider the quantum harmonic oscillator of constant mass m and

constant frequency ω:

H =
1

2m
P 2 +

mω2

2
Q2, (0.0.5)

where

Qφ(q) = qφ(q), Pφ(q) = −i}
d

dq
φ(q).
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For the pair of ladder operators

a− =
1√

2}mω
(mωQ+ iP ), a+ =

1√
2}mω

(mωQ− iP ), (0.0.6)

the above Hamiltonian becomes H = ω}(a+a− + 1
2
I). The canonical coherent states,

φz (where, z = q + ip) of the harmonic oscillator are produced by the action of the

“displacement” operator on the vacuum φ0:

φz := eza
+−z̄a−φ0 = e−

1
2
|z|2

∞∑
n=0

zn√
n!
φn, (0.0.7)

where φ0 is such that a−φ0 = 0 and φn = 1√
n!

(a+)nφ0. One can then use the spectral

decomposition of H (i.e. the relation Hφn = }ω(n + 1/2)φn) to obtain evolution in the

canonical coherent states representation which takes the form

e−itH/}φz = e−iωt/2φz(t) (0.0.8)

where z(t) = e−iωtz is a one-parameter group of transformations. These rigid rotations

z 7→ e−iωtz of the phase space are the key ingredients of the dynamics of classical

harmonic oscillators. Therefore, for an arbitrary solution f(t) = e−itH/}f(0) of (0.0.1)

for the above harmonic oscillator Hamiltonian we have:

f̃(t, z) =
〈
e−itH/}f(0), φz

〉
=
〈
f(0), eitH/}φz

〉
= e−iωt/2

〈
f(0), φz(t)

〉
= e−iωt/2f̃(0, e−iωtz). (0.0.9)

Thus, the classical behaviour of the dynamics in φz is completely reflected in the dynamics

of its coherent state transform. Nevertheless, the image of such a transform gives rise to

the following Hilbert space (a model of the phase space):

Definition 0.0.2 ([3, 8, 25]) Let z = q+ ip ∈ C, the Fock-Segal-Bargemann (FSB) space

consists of all functions that are analytic on the whole complex plane C and square-

integrable with respect to the measure e−π}|z|
2

dz. It is equipped with the inner product

〈f, g〉F =

∫
C
f(z)g(z) e−π}|z|

2

dz. (0.0.10)
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Notably, the ladder operators have the simpler expressions:

a− = ∂z, a+ = zI.

Then the harmonic oscillator Hamiltonian on FSB space has the form

H̃ = }ω(z∂z +
1

2
I). (0.0.11)

The respective Schrödinger equation is, therefore, a first-order PDE. Hence, one can use,

for example, the method of characteristics and obtains the dynamics

F (t, z) = e−
i
2
ωtF (0, e−iωtz). (0.0.12)

This dynamics is exactly the same as (0.0.9). In other words, the geometric dynamics

(0.0.9) inherited from that of the corresponding coherent states obeys the Schrödinger

equation for the first order Hamiltonian H̃ (0.0.11).

It was already noted in [15] that even the archetypal canonical coherent states do not

geometrise the harmonic oscillator dynamics in the above strict sense (0.0.4) due to the

presence of the overall phase factor in the solution (0.0.8). However, the factor is not a

minor nuisance but rather a fundamental element: it is responsible for a positive energy

of the ground state.

To accommodate such observation with geometrising, we propose the adjusted meaning

of geometrisation

Definition 0.0.3 A collection {φx}x∈X of coherent states parametrised by points of a

manifold X , geometrises quantum dynamics, if the time evolution of the coherent state

transform f̃ is defined by a Schrödinger equation

i}
df̃

dt
= H̃f̃ , (0.0.13)

where H̃ is a first-order differential operator on X .



INTRODUCTION 5

In light of this definition we say that the above canonical coherent states geometrise the

Hamiltonian of the harmonic oscillator.

Group representations are a rich source of coherent states [3, 28, 65]. More precisely, let

X be the homogeneous space G/H for a group G and its closed subgroup H . Then for a

representation ρ of G in a space V and a fiducial vector φ ∈ V the collection of coherent

states is defined by (see Section 2.1)

φx = ρ(s(x))φ, (0.0.14)

where x ∈ G/H and s : G/H → G is a section. In this setting, the canonical

coherent states of the harmonic oscillator are produced by G being the Heisenberg

group [25, 44, 46, 53], H—the centre of G, ρ—the Schrödinger representation and

φmω(x) = e−π}mωx
2—the Gaussian. So, the above example can be easily adapted to

this language as will be seen explicitly in Chapter 3.

The main points of the thesis are outlined as follows.

• We offer a group-theoretic approach to the construction of the first-order differential

operator H̃ from Definition 0.0.3. A technical advantage of our method is that

it does not require the explicit spectral decomposition of H that is typically

used to solve the respective time-dependent Schrödinger equation. Instead, the

standard method of characteristics for first-order PDEs becomes an important tool

in our investigation. The analytic structure of FSB space is the key source of the

simplification of the harmonic oscillator Hamiltonian. Yet, the role of analyticity

property in obtaining such a Hamiltonian as a first order differential operator was

hidden. Example 0.0.1 will be reconsidered in Chapter 3 within a group-theoretic

set-up. As a result of our method, it will be clearer the role of Cauchy–Riemann

operator in reducing the order of the harmonic oscillator Hamiltonian in the FSB

space, see the last paragraph after (3.1.20). This will resolve the sort of ambiguity in

having geometric dynamics (0.0.9) for a second–order differential operator (0.0.5)!
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• We apply the method to the harmonic oscillator extending the above example from

the Heisenberg group to the minimal three-step nilpotent Lie group, denoted G.

The group G is being viewed as the minimal nilpotent extension of the Heisenberg

group H, see Section 1.1. The main advantage is that we are allowed to use

Gaussian e−π}Ex
2 with arbitrary squeeze parameter E (E > 0) [28, 80, 70] as a

fiducial vector φE for a simultaneous geometrisation of all harmonic oscillators

with different values of mω. This is specifically discussed in details in Chapter 3 of

this thesis, see the end of Section 1.4 for a further explanation.

• The group G and its representations provide a wider opportunity of considering

various fiducial vectors. For example, we study the fiducial vector (4.1.2) which

is the Fourier transform of an Airy wave packet [11] that is useful in paraxial

optics [76, 77]. We provide a full classification of all Hamiltonians that can

be geometrised by Gaussian and Airy beams according to Definition 0.0.3. For

such Hamiltonians we write explicit generic solutions through well-known integral

transforms.

The thesis is divided into four chapters. The first chapter presents the group G together

with its main unitary representations that are needed for our approach. Important

physical and geometrical aspects related to the group G structure are also highlighted.

Being the simplest three-step nilpotent Lie group, G is a natural test ground for various

constructions in representation theory [17, 44] and harmonic analysis [9, 37]. The group

G was called quartic group in [5, 38, 55] due to its relation to quartic anharmonic

oscillator.

The content of the second and the third chapters is based on our work [6]; in the second

chapter, we introduce the important notion of coherent states and the respective coherent

state transforms from group representation viewpoint. The result which is presented in

Corollary 2.1.15 provides a general and largely accessible way of describing properties

of the respective image space of such transforms. The fundamental example is the FSB
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space consisting of analytic functions. We revise this property from the perspective of

Corollary 2.1.15 in Example 2.1.16 and deduce the corresponding description of the

image space of coherent state transform of G in Section 2.2. Besides the analyticity-

type condition, which relays on a suitable choice of the fiducial vector, we find an

additional condition, referred to as structural condition, which is completely determined

by a Casimir operator of G and holds for any coherent state transform. Notably, the

structural condition coincides with the Schrödinger equation of a free particle. Thereafter,

the image space of the coherent state transform of G is obtained from FSB space through

a solution of an initial value problem for a time evolution of a free particle.

The third chapter presents our main technique of reducing the order of a quantum

Hamiltonian applied to the harmonic oscillator from the Heisenberg group and the group

G. In the case of the Heisenberg group, Section 3.1 we confirm that the geometric

dynamics (3.1.20) is the only possibility for the fiducial vector φE with the matching

value of E = mω. In contrast, Section 3.2 reveals the gain from the larger group G:

any minimal uncertainty state can be used as a fiducial vector for a geometrisation of

dynamics. We end this chapter with creation and annihilation operators in Section 3.2.2.

Their action in terms of the group G is still connected to Hermite polynomials (but with

respect to a complex variable). This can be compared with ladder operators related to

squeezed states in [4].

In the final chapter, we provide a complete classification of arbitrary Hamiltonians whose

dynamics can be geometrised in the sense of Definition 0.0.3. We give one further

example beyond the harmonic oscillator and explicitly solve the respective Schrödinger

equation.
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Chapter 1

Preliminaries

This chapter is intended to review some known results. We stress the relationship between

the group G and the Heisenberg group H. This relationship suggests a further important

relationship between the group G and the Schrödinger group S which we explicitly

illustrate in Proposition 1.3.2. The connection between the group G and S reveals

significant geometric and physical phenomena that will also be confirmed from another

standpoint in Chapter 3.

Due to its link to the Schrödinger group via shear transformation, what will be seen soon,

we may call the group G the shear group.

1.1 The Heisenberg group and the shear group G

The Heisenberg-Weyl algebra, denoted h, is the two-step nilpotent Lie algebra spanned

by elements {X, Y, S} with commutation relations:

[X, Y ] = S, [X,S] = [Y, S] = 0. (1.1.1)

Here and in the rest of the thesis the commutator is given by [A,B] = AB −BA.
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It can be realised by the matrices:

X =


0 1 0

0 0 0

0 0 0

 ; Y =


0 0 0

0 0 1

0 0 0

 ; S =


0 0 1

0 0 0

0 0 0

 .

In particular, the element S generates the centre of h.

The corresponding group is the Heisenberg group , denoted H [25, 44, 49, 69]. In the

polarised coordinates (x, y, s) on H ∼ R3 the group law is [25, § 1.2]:

(x, y, s)(x′, y′, s′) = (x+ x′, y + y′, s+ s′ + xy′). (1.1.2)

Let g be the three-step nilpotent Lie algebra whose basic elements are {X1, X2, X3, X4}
with the following non-vanishing commutators [17, Ex. 1.3.10] [44, § 3.3]:

[X1, X2] = X3, [X1, X3] = X4 . (1.1.3)

In matrix realisation the Lie algebra g has the following non-zero basic elements,

X1 =


0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

 ; X2 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 ;

X3 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 ; X4 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 .

Clearly, the basic element corresponding to the centre of such a Lie algebra is X4. The

elements X1, X3 and X4 span the above mentioned Heisenberg–Weyl algebra.

Exponentiating the above basic elements in the manner (x1, x2, x3, x4) :=

exp(x4X4) exp(x3X3) exp(x2X2) exp(x1X1) (where xj ∈ R and known as canonical
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coordinates [44, § 3.3]) leads to a matrix description of the corresponding Lie group,

denoted G, being three-step nilpotent Lie group whose elements are of the form

(x1, x2, x3, x4) :=


1 x1

x21
2

x4

0 1 x1 x3

0 0 1 x2

0 0 0 1

 .

The respective group law is

(x1, x2, x3, x4)(y1, y2, y3, y4) = (x1 + y1, x2 + y2, x3 + y3 + x1y2, (1.1.4)

x4 + y4 + x1y3 + 1
2
x2

1y2).

The identity element is (0, 0, 0, 0) and the inverse of an element (x1, x2, x3, x4) is

(−x1,−x2, x1x2−x3, x1x3− 1
2
x2

1x2−x4). It is clear that the group G is not commutative

and its centre (the set whose elements commute with all elements of the group) is

Z = {(0, 0, 0, x4) ∈ G : x4 ∈ R}. (1.1.5)

This is a one-dimensional subgroup. Another abelian subgroup which has the maximal

dimensionality is

H1 = {(0, x2, x3, x4) ∈ G : xj ∈ R}. (1.1.6)

This subgroup is of a particular importance because its irreducible representation (which

is a character, see Remark 1.1.1 below) induces an irreducible representation of the group

G as will be seen in the next section.

Remark 1.1.1 Throughout this thesis, a character χ of an abelian subgroup H is a map

χ : H → C, such that χ(h1h2) = χ(h1)χ(h2) and for a unitary character we also have

|χ(h)| = 1 and χ̄(h) = χ(h−1), where h, h1, h2 ∈ H .



Chapter 1. Preliminaries 11

A comparison of group laws (1.1.2) and (1.1.4) shows that the Heisenberg group H is

isomorphic to the subgroup

H̃ = {(x1, 0, x3, x4) ∈ G : xj ∈ R} by (x, y, s) 7→ (x, 0, y, s), (x, y, s) ∈ H . (1.1.7)

In most cases we will identify H and H̃ through the above map. All formulae for the

Heisenberg group needed in this thesis will be obtained from this identification. That is,

in any formula of G by setting x2 = 0 we get the group H counterpart.

1.2 Induced representations of the shear group G

The unitary representations of the group G can be constructed using inducing procedure

(in the sense of Mackey) and Kirillov orbit method, a detailed consideration of this topic

is worked out in [44, § 3.3.2]. Here, we construct the needed representations of G along

this induction method which is briefly outlined in Appendix B.

1. For H being the centre Z = {(0, 0, 0, x4) ∈ G : x4 ∈ R}, we have

p : (x1, x2, x3, x4) 7→ (x1, x2, x3),

s : (x1, x2, x3) 7→ (x1, x2, x3, 0),

r : (x1, x2, x3, x4) 7→ (0, 0, 0, x4) .

Then,

r((−x1,−x2, x1x2 − x3, x1x3 − 1
2
x2

1x2 − x4)s(x′1, x
′
2, x
′
3))

= (0, 0, 0,−x4 + x1x3 − x1x
′
3 − 1

2
x2

1x2 + 1
2
x2

1x2) .

Thus, for a character χ(0, 0, 0, x4) = e2πi}4x4 of the centre, formula (B.47) gives the

following unitary representation of G on L2(R3):

[ρ̃(x1, x2, x3, x4)f ](x′1, x
′
2, x
′
3) = e2πi}4(x4−x1x3+ 1

2
x21x2+x1x′3−

1
2
x21x
′
2) (1.2.8)

× f(x′1 − x1, x
′
2 − x2, x

′
3 − x3 − x1x

′
2 + x1x2).
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This representation is reducible and we will discuss its irreducible components

below. A restriction of (1.2.8) to the Heisenberg group H̃ is a variation of the

Fock–Segal–Bargmann representation.

2. For the maximal abelian subgroup H1 = {(0, x2, x3, x4) ∈ G : x2, x3, x4 ∈ R}, we

have

p : (x1, x2, x3, x4) 7→ x1 ,

s : x 7→ (x, 0, 0, 0) ,

r : (x1, x2, x3, x4) 7→ (0, x2, x3 − x1x2, x4 − x1x3 + 1
2
x2

1x2) .

Then,

r
(
(−x1,−x2, x1x2 − x3, x1x3 − 1

2
x2

1x2 − x4)(x′1, 0, 0, 0)
)

= (0,−x2, x
′
1x2 − x3,−x4 + x3x

′
1 −

1

2
x2x

′2
1 ).

A generic character of the subgroupH1 are parametrised by a triple of real constants

(h2, h3, }4) where }4 can be identified with the Planck’s constant:

χ(0, x2, x3, x4) = e2πi(h2x2+h3x3+}4x4). (1.2.9)

The Kirillov orbit method shows [44, § 3.3.2] that all non-equivalent unitary

irreducible representations are induced by characters indexed by (h2, 0, }4). For

such a character the unitary representation of G on L2(R) is, cf. [44, § 3.3, (19)]:

[ρh2}4(x1, x2, x3, x4)f ](x′1) = e2πi(h2x2+}4(x4−x3x′1+ 1
2
x2x′21 ))f(x′1 − x1). (1.2.10)

This representation is indeed irreducible since its restriction to the Heisenberg

group H̃ coincides with the irreducible Schrödinger representation [25, § 1.3][53]

(for irreducibility of the Schrödinger representation see [25, Proposition 1.43]).
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1.2.1 Derived representations

Let ρ be a representation of a Lie group G, the derived representation denoted dρX and

generated by an element X of the corresponding Lie algebra g is a representation of g in

the space of linear operators of a vector spaceH and given by

dρXφ :=
d

dt
ρ(exp tX)φ

∣∣∣∣
t=0

, (1.2.11)

where the domain consists of functions φ ∈ H such that the vector-function g 7→ ρ(g)φ is

infinitely-differentiable function for any g ∈ G. Such functions are called smooth vectors

and constitute a vector subspace, denoted D∞, of H which can be shown to be dense in

H. It is also easy to show that D∞ is invariant under ρ(g), for proofs of these properties,

see for example [44, Appendix V] [78, Ch. 5] and [17, Appendex A.1].

In our situation,H is either of L2(Rn)(n = 1, 2, 3), in such a case the spaceD∞ coincides

with Schwartz space [26, 67] S(Rn) which is a dense subspace of L2(Rn).

Now, for the basis elements Xj spanning the Lie algebra g of the group G (1.1.3):

X1 = (1, 0, 0, 0), X2 = (0, 1, 0, 0), X3 = (0, 0, 1, 0), X4 = (0, 0, 0, 1)

we apply the formula (1.2.11) to the representation ρ̃}4 of G on L2(R3) and we obtain:

dρ̃X1
}4 = −∂1 − x2∂3 + 2πi}4x3I; dρ̃X2

}4 = −∂2; (1.2.12)

dρ̃X3
}4 = −∂3; dρ̃X4

}4 = 2πi}4I ,

here and throughout the thesis “I” denotes the identity operator. For the unitary

irreducible representation ρh2}4 of G on L2(R) (1.2.10) we have:

dρX1
h2}4 = − d

dy
; dρX2

h2}4 = 2πih2 + iπ}4y
2; (1.2.13)

dρX3
h2}4 = −2πi}4y; dρX4

h2}4 = 2πi}4 I.

It is easy to check that the sets of operators (1.2.12) and (1.2.13) represent the Lie algebra

g (1.1.3) of the group G. Moreover, the domains of these operators are S(R3) and S(R),

respectively.



Chapter 1. Preliminaries 14

Moreover, in this thesis physical dimensions will be considered, thus we adhere to the

following convention, see [46].

Convention 1.2.1 Only physical quantities of the same dimension can be added or

subtracted. Therefore, mathematical functions such as exp(u) = 1 + u + u2/2! + . . .

can be naturally constructed out of a dimensionless number u only. Thus, Fourier dual

variables, say x and q, should posses reciprocal dimensions because they have to form

the expression eixq. We assign physical units to coordinates on the Heisenberg group H.

Precisely, let M be a unit of mass, L of length and Tof time. For an element (x, y, s)

of the Heisenberg group H, where x, y, s ∈ R, we adopt the following. To x and y,

we assign physical units T/(LM) and 1/L, respectively. These units are reciprocal to

that of momentum p (measured in ML/T ) and position q (measured in L) components

of (p, q, }). The latter are points parametrising the elements of the dual space h∗ to the

Heisenberg-Weyl algebra h of H.

Remark 1.2.2 Based on the Convention 1.2.1, we assign the following units to xj; the

components of an element (x1, x2, x3, x4) of the group G. Namely, x1 has dimension

T/ML (reciprocal to momentum) and x3 has dimension 1/L (reciprocal to position.)

So, from (1.1.3) x2 is measured in unit M/T . Also, h2, the dual to x2 (cf. (1.2.9)) has

reciprocal dimension to x2, that is, it has dimension T/M as well as }4 has dimension

ML2/T of action which is reciprocal to the dimension of the product x1x3 or x4. The

dimension of }4 coincides with that of Planck’s constant. Note also that the dimensions

of dρXj are, respectively, reciprocal to that of Xj.

1.3 The group G and the Schrödinger group

An important realisation of the group G is as a subgroup of the so-called Schrödinger

group S. For this purpose we need to recall the notion of the semidirect product.
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Definition 1.3.1 Let G and H be two groups and assume that γ : k → γ(k) is a

homomorphism of H into Aut(G), that is, γ(k) : G → G is an automorphism of G for

each k in H . We denote by G oγ H the semidirect product of G and H which generates

a group with group law given by

(g1, h1)(g2, h2) = (g1γ(h1)g2, h1h2), (1.3.14)

where g1, g2 ∈ G and h1, h2 ∈ H .

There are important groups arise as a semidirect product. The Schrödinger group S is a

relevant example, which is the group of symmetries of the Schrödinger equation [39, 63],

the harmonic oscillator [64], other parabolic equations [84] and paraxial beams [76]. It is

the semidirect product of the Heisenberg group and SL2(R)—the group of all 2 × 2 real

matrices with the unit determinant [20]:

S = H oγ(A) SL2(R), (1.3.15)

where γ(A) is a symplectic automorphism of H:

γ(A) : (x, y, s) 7→
(
ax+ by, cx+ dy, s− 1

2
xy +

1

2
(ax+ by)(cx+ dy)

)
; (1.3.16)

A =

a b

c d

 ∈ SL2(R) and (x, y, s) ∈ H.

Denote by
(
(x, y, s), A

)
elements of the group S, then the corresponding group law

(1.3.14) reads

(
(x, y, s), A

)
((x′, y′, s′), B

)
=
(
(x, y, s)γ(A)

(
x′, y′, s′), AB

)
. (1.3.17)

Let

N =


1 0

t 1

 , t ∈ R

 ⊂ SL2(R)
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and let n(t) denote an element of N , that is, n(t) :=

1 0

t 1

. Then, for this particular

case, (1.3.16) becomes

γ(n(t)) : (x, y, s) 7→ (x, y + tx, s+
1

2
tx2). (1.3.18)

Moreover, we have the following result:

Proposition 1.3.2 The group G is isomorphic to the subgroup H oγ(n) N of S.

Proof

We show that the map J : G → H oγ(n) N given by

J(x1, x2, x3, x4) =

(
(x1, x3 − x2x1, x4 −

1

2
x2x

2
1), n(−x2)

)
,

is an isomorphism, where (x1, x3−x2x1, x4− 1
2
x2x

2
1) ∈ H and n(x2) =

 1 0

x2 1

 ∈ N .

First, we show that J is a homomorphism. Indeed, using the group law (1.3.17) we see

that

J(x1, x2, x3, x4)J(y1, y2, y3, y4)

=

((
x1, x3 − x2x1, x4 −

1

2
x2x

2
1

)
, n(−x2)

)((
y1, y3 − y2y1, y4 −

1

2
y2y

2
1

)
, n(−y2)

)
=

((
x1, x3 − x2x1, x4 −

1

2
x2x

2
1

)
γ(n(−x2))

(
y1, y3 − y2y1, y4 −

1

2
y2y

2
1

)
,

n(−(x2 + y2))

)
=

((
x1 + y1, x3 − x1x2 + y3 − y1y2 − x2y1, x4 −

1

2
x2

1x2 + y4 −
y2

1

2
(y2 + x2)

+ x1(y3 − y1y2 − x2y1)
)
, n(−(x2 + y2))

)
. (1.3.19)



Chapter 1. Preliminaries 17

On the other hand, (using the group law of G (1.1.4))

J ((x1, x2, x3, x4)(y1, y2, y3, y4))

= J

(
x1 + y1, x2 + y2, x3 + y3 + x1y2, x4 + y4 + x1y3 +

1

2
x2

1y2

)
=

((
x1 + y1, x3 + y3 + x1y2 − (x2 + y2)(x1 + y1), x4 + y4 + x1y3

+
1

2
x2

1y2 −
1

2
(x2 + y2)(x1 + y1)2

)
, n(−(x2 + y2))

)
=

((
x1 + y1, x3 + y3 − x2x1 − y2y1 − x2y1, x4 + y4 −

1

2
x2

1x2 −
y2

1

2
(y2 + x2)

+ x1(y3 − y1y2 − x2y1)
)
, n(−(x2 + y2))

)
.

Since the last equality is the same as (1.3.19), the map J is a homomorphism. It remains

to show that J is also a bijection. It is clear that J is injective because each component of

J contains a linear term of xj , respectively. Such a map is surjective because each element

((x, y, s), n(t)) ∈ H oγ(n) N is the image of an element (x,−t, y − tx, s − 1
2
tx2) ∈ G

under J , thus J is bijective. 2

The geometrical meaning of the transformation

n(x2)(x1, x3) :=

 1 0

x2 1

x1

x3

 =

 x1

x2x1 + x3

 . (1.3.20)

is shear transform with the angle tan−1(1/x2), see Fig. 1.1.

Note that this also describes a physical picture; it is time-shift Galilean transformation:

for a particle with coordinate (position) x3 and the constant velocity x1: after a period of

time x2 the particle will still have the velocity x1 but its new coordinate will be x3 +x2x1.

We shall refer to both geometric and physical interpretations of the shear transform in

Section 3.2 in connection with the dynamic of the harmonic oscillator.

Another important group of symplectomorphisms—squeezing—are produced by matrices
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q

p

q

p

Figure 1.1: Shear transforms: dashed (green) vertical lines are transformed to solid (blue)

slanted ones. An interpretation as the dynamic of a free particle: the momentum is

constant, the coordinate is changed by an amount proportional to the momentum (cf.

different arrows on the same picture) and the elapsed time (cf. the left and right pictures).

a 0

0 a−1

 ∈ SL2(R). These transformations act transitively on the set of minimal

uncertainty states φ, such that ∆φQ · ∆φP = }
2
—the minimal value admitted by the

Heisenberg–Kennard uncertainity relation, cf. Section 1.4.

Quantum blobs1 are the smallest phase space units of phase space compatible with the

uncertainty principle of quantum mechanics. They are in a bijective correspondence

with the squeezed coherent states [28] from standard quantum mechanics of which

they are a phase space picture. Quantum blobs have the symplectic group as group

of symmetries. In particular, the actions on quantum blobs by the above squeeze

and shear (symplectic) transformations brings out a close relationship between these

transformations, see Fig. 1.2.

1See [19, Definition 8.34] and also [21].
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Figure 1.2: Shear transformations (blue) act on blobs as squeeze (green) plus rotation

(red), although these transformations are different in general as transformations of R2 and

their effects on quadratic forms coincide.

1.3.1 The group G and the universal enveloping algebra of h

A related origin of the group G is the universal enveloping algebraH of the Heisenberg–

Weyl algebra h spanned by elements Q, P and I with [P,Q] = I . It is known [84] that

the Lie algebra of Schrödinger group can be identified with the subalgebra spanned by

the elements {Q,P, I,Q2, P 2, 1
2
(QP + PQ)} ⊂ H. This algebra is known as quadratic

algebra in quantum mechanics [28, § 2.2.4][83, § 17.1]. From the above discussion of the

Schrödinger group, the identification

X1 7→ P, X2 7→ 1
2
Q2, X3 7→ Q, X4 7→ I (1.3.21)

embeds the Lie algebra g into H. In particular, the identification X2 7→ 1
2
Q2 was used

in physical literature to treat anharmonic oscillator with quartic potential [5, 38, 55].

Furthermore, the group G is isomorphic to the Galilei group via the identification of

respective Lie algebras

X1 7→ −Q, X2 7→ 1
2
P 2, X3 7→ P, X4 7→ I. (1.3.22)
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We shall note that the consideration of G as a subgroup of the Schrödinger group or the

universal enveloping algebra H has a limited scope since only representations ρh2}4 with

h2 = 0 appear as restrictions of representations of Schrödinger group, see [19, Ch. 7][20,

Ch. 7] [25, § 4.2].

1.4 Some physical background

Here we briefly review basic elements from quantum mechanics (QM), for more details

see for example [12, 33, 60, 72].

1.4.1 A mathematical model of QM

To begin with, we recall that a physical system is described by a state. In quantum

mechanics a state is meant to be a non-zero vector in a Hilbert space H whose norm

is unity. A quantum observable is associated with a self-adjoint operator A on H. In the

context of QM, a self-adjoint operator A can be unbounded [33, Ch. 3][68, Ch. 1], thus

A requires a certain domain of definition, denoted Dom(A) such that Dom(A) is dense in

H. In this way, we say that the unbounded operator A is densely defined in H. Density

of the domain is a sufficient and necessary condition for the adjoint operator A∗ to be

well-defined [56, Ch. 10].

For a state ψ, an observable operator A produces a probability distribution with the

expectation value, denoted Ā and given by

Āψ = 〈Aψ,ψ〉 , ψ ∈ Dom(A). (1.4.23)

The dispersion of A in the state ψ, denoted ∆ψA is defined as the square root of the

expectation value of (A− Ā)2 and computed as

(∆ψA)2 =
〈
(A− Ā)2ψ, ψ

〉
=
〈
(A− Ā)ψ, (A− Ā)ψ

〉
=
∥∥(A− Ā)ψ

∥∥2
. (1.4.24)
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Let us consider the Hilbert space L2(R) of complex-valued function which represents

a quantum mechanical model on the real line, also known as the Schrödinger model. In

such a space the position observable, denotedQ is represented by the self-adjoint operator

Q = qI, (1.4.25)

on the domain; Dom(Q) = {f ∈ L2(R) : qf(q) ∈ L2(R)} which can be shown to be

a dense subspace in L2(R) [33, § 9.8][56, § 10.7][68, § 2.3]. This operator provides

a probability distribution of determining the position of a particle on the line. The

corresponding expectation value is computed through the integral formula

[Q̄ψ](q) = 〈Qψ,ψ〉 =

∫
R
qψ(q)ψ(q) dq =

∫
R
q|ψ(q)|2 dq.

Another important observable operator in the state space L2(R) is the momentum

observable, denoted P and given by the self-adjoint operator

P = −i}
d

dq
, (1.4.26)

where } is the Planck’s constant divided by 2π and has a physical dimension: energy ×
time. It is self-adjoint on Dom(P ) = {f ∈ L2(R) : f ′(q) ∈ L2(R)} [33, § 9.8][68,

§ 2.4].

On the Schwartz space S(R), the operators Q and P are stable and essentially self adjoint

operators [33, § 9.7][66, § 8.5] and satisfy “the canonical commutation relation” [12, 33,

66]

[Q,P ] = QP − PQ = i}I, (1.4.27)

since for ψ in the Schwartz space S(R), we have

PQψ(q) = −i}
d

dq
(qψ(q)) = −i}(ψ(q) + qψ′(q)) = −i}ψ(q) +QPψ(q).

That is,

[Q,P ]ψ(q) = QPψ(q)− PQψ(q) = i}ψ(q).

That is, the operators Q and P do not commute.
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1.4.2 The Uncertainty Relation

Theorem 1.4.1 (The Uncertainty Relation [25, 33, 52]) If A and B are symmetric

operators with domains Dom (A), Dom (B) in a Hilbert spaceH, then

‖(A− a)ψ‖ ‖(B − b)ψ‖ ≥ 1

2
|〈(AB −BA)ψ, ψ〉| (1.4.28)

for any ψ in H such that ψ ∈ Dom (AB) ∩ Dom (BA), where a, b ∈ R. Equality holds

when ψ is a solution of

((A− a) + ik(B − b))ψ = 0, (1.4.29)

where k is a real parameter. So, only commuting observables have exact simultaneous

measurements.

In particular, for a = Ā and b = B̄, we have

∆ψA ∆ψB ≥
1

2
|〈(AB −BA)ψ, ψ〉| , (1.4.30)

and when equality holds, ψ is termed a minimal uncertainty state or coherent state.

An important consequence of the above theorem is the case whenA andB are the position

Q and the momentum P observables. In such a situation the relation (1.4.30) is known as

the Heisenberg-Kennard uncertainty relation [52]:

∆ψQ ∆ψP ≥
}
2
, (1.4.31)

for all unit vector ψ ∈ L2(R) in Dom(QP )∩Dom(PQ). Equality in (1.4.31) holds when

ψ is a solution of the equation

((Q− a) + ik(P − b))ψ(q) = 0, (1.4.32)

where a = Q̄ and b = P̄ . It can be easily checked that the state ψ needed to satisfy the

above equation (1.4.32) is

ψ(q) = c exp

((
ib

}
+

a

}k

)
q − 1

2}k
q2

)
,
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where c is a constant determined by a normalisation condition.

Let a = b = 0, and consider the normalisation of ψ in terms of L2-norm so that

ψ(q) =

(
1

π}k

)1/4

e−
1

2}k q
2

.

Then, we have

(∆ψQ)2 =
∥∥(Q− Q̄)ψ

∥∥2
=

∫
R
|[Qψ](q)|2 dq

=

(
1

π}k

)1/2 ∫
R
q2e−

1
}k q

2

dq

=
}k
2
.

Thus,

∆ψQ =

√
}k
2
. (1.4.33)

For the momentum P we have

(∆ψP )2 =
∥∥(P − P̄ )ψ

∥∥2
=

∫
R

∣∣∣∣i} d

dq
ψ(q)

∣∣∣∣2 dq

=

(
1

π}k

)1/2(
1

k

)2 ∫
R
q2e−

1
}k q

2

dq

=
}
2k
.

So,

∆ψP =

√
}
2k
. (1.4.34)

Hence,

∆ψQ∆ψP =

√
}k
2
·
√

}
2k

=
}
2
.

It can be easily seen that for k 6= 1, the dispersions (1.4.33) and (1.4.34) are not equal and

one of these is at the expense of the other to maintain the minimum uncertainty relation.

This is the case in which one calls ψ a squeezed state [70, 79, 80, 81]. It minimizes the
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uncertainty relation when the dispersions of the respective quantum observables are not

equal.

Squeezed states turn out to be of a prominent role in quantum optics [28, 70]. They first

appeared in connection with applications to quantum optics in the work of Yuen [85]

under the name two-photons. A systematic way of obtaining a squeezed state involves

the action of a unitary operator, the so-called squeeze operator, introduced in [73] while

the name “squeeze operator” was given by Hollenhorst [36]. This has provided a way of

generalising squeezed states which falls within a group theoretical framework based on

the representations of the special unitary group SU(1, 1) and its Lie algebra [4, 32, 82].

In this thesis, a certain connection to Gaussian with arbitrary squeeze will be seen in the

next chapter.

1.4.3 Harmonic oscillator and ladder operators

A one-dimensional harmonic oscillator of mass m and frequency ω has the classical

Hamiltonian (energy)

h =
1

2m
p2 +

mω2

2
q2, (1.4.35)

where q and p are its position and momentum, respectively. The classical Hamiltonian h

is understood as a function in the phase space R2 of points (q, p). The quantised version

(Weyl quantisation 2) of h is presented by a self-ajoint operator and called the observable

of energy and given by

H =
1

2m
P 2 +

mω2

2
Q2, (1.4.36)

where as before

Qφ(q) = qφ(q), Pφ(q) = −i}
d

dq
φ(q).

The operator H is self-adjoint on Dom (H) = Dom (P 2) ∩ Dom (Q2)=Dom (P 2) [33,

§ 9.9] [68, § 2.5].
2 Quantisation is a rule of passing from classical mechanics to quantum mechanics [34, Ch. 13][25, 53].
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In quantum mechanics, the eigenvalues of a quantum observable are interpreted as the

measured values of such an observable. For example, the eigenvalues of a Hamiltonian

are the measured energies of the corresponding quantum system. The problem of finding

these eigenvalues in the case of harmonic oscillator is completely solved via algebraic

approach. Precisely, for the specific H (1.4.36) of constant mass m and frequency ω, one

takes the advantage of the ladder operators, as defined in Appendix A where the parameter

λ has the specific value: λ =
√
mω and so,

a− =
1√

2}mω
(mωQ+ iP ), a+ =

1√
2}mω

(mωQ− iP ). (1.4.37)

Here, we restrict the operators P and Q to the Schwartz space S(R). Then, the relation

[Q,P ] = i}I implies that

a−a+ =
1

2mω}
(P 2 +m2ω2Q2 +mω}I) =

1

ω}
(H +

1

2
ω}I);

a+a− =
1

2mω}
(P 2 +m2ω2Q2 −mω}I) =

1

ω}
(H − 1

2
ω}I).

Thus,

H =
}ω
2

(a−a+ + a+a−),

which can be shown to be essentially self-adjoint on S(R) [33, § 9.9]. Moreover, from

[a−, a+] = I we arrive at

H = }ωa+a− +
}ω
2
I. (1.4.38)

Finally, using (A.37) the spectrum of H (1.4.36) is determined from

Hφn = }ω(n+
1

2
)φn. (1.4.39)

The vacuum vector φ0 is the solution of a−φ0 = 0. Precisely, 1√
2mω}(mωq+} d

dq
)φ0(q) =

0 which has the solution

φ0(q) =
(mω
π}

)1/4

e−
1
2
mω
} q2 . (1.4.40)
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Then, φn(q) = 1√
n!

(a+)nφ0(q) = 1√
n!

(
mω
π}

)1/4
(

1√
2mω}

)n
(mωq − } d

dq
)ne−

1
2
mω
} q2 =

1√
n!

(
1√

2mω}

)n
Hn(

√
mω
} q)φ0, where Hn are the Hermite polynomials of order n:

Hn(y) =

bn
2
c∑

k=0

(−1)kn!

k!(n− 2k)!
(2y)n−2k (1.4.41)

note that b·c is the floor function (i.e. for any real x, bxc is the greatest integer n such

that n ≤ x.) The functions φn(q) constitute the standard basis of L2(R) [33, Ch. 11].

The non-negative number n is called the quantum number. The value n = 0 corresponds

to the lowest state energy
1

2
}ω (1.4.42)

which corresponds to the ground state or the vacuum φ0.

1.4.4 Canonical coherent states

The canonical coherent states, φz (z = q + ip) of the harmonic oscillator are produced by

the the action of the “displacement” operator on the vacuum φ0 (or φmω in case we want

to emphasize the dependence on the particular value mω):

φz(x) = eza
+−z̄a−φ0(x) = e−

1
2
|z|2

∞∑
n=0

zn√
n!
φn(x), (1.4.43)

where a+, a− are given by (1.4.37) and z̄ is the complex-conjugate of z. Usually, the

canonical coherent states are denoted |z〉. A list of fundamental properties of these

states is given in [28], see also [54, 70]. Among these is that a−|z〉 = z|z〉, so one

may even regard this property as a definition of coherent states, i.e. the coherent states

are the eigenstates of the annihilation operator. From this, one can easily deduce the

expectation value of Q and P in such coherent states from the real and imaginary parts

of the eigenvalue z, respectively [83, Ch. 23]. Indeed, the expectation values of Q and

P in the coherent state |z〉 are
√

2}
mω
<(z) and

√
2}mω=(z), respectively. Moreover, by
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expressing Q and P in terms of a− and a+, one can then simply evaluate the expectation

values of Q2 and P 2 which lead to obtain the respective dispersions being ∆Q =
√

}
2mω

and ∆P =
√

mω}
2

. Thus, ∆Q∆P = }
2
, that is, the canonical coherent states minimise

the uncertainty relation. Therefore, |z〉 must be related to a Gaussian; one can show [62,

Ch.3] that (1.4.43) reduces to

|z〉 := φz(x) = π−1/4 exp

(
1

2
z2 − 1

2
|z|2 − (

√
mω/(2})x− z)2

)
,

known as Gaussian wave packets.

1.4.5 Dynamics of the harmonic oscillator

The time evolution in quantum mechanics (in Schrödinger picture) is determined via the

time-dependent Schrödinger equation which takes the form

i}ψ̇(q, t) = Hψ(q, t), (1.4.44)

where H is the Hamiltonian observable and ψ is termed wavefunction.

With regard to the above harmonic oscillator Hamiltonian H , we can use the spectrum of

H:

Hφn(q) = }ω(n+
1

2
)φn(q) (1.4.45)

to obtain the dynamic of the system as follows.

Since {φn} is an orthonormal basis of L2(R) one can write

φ(q, t) =
∞∑
n=0

an(t)φn(q). (1.4.46)

Then, after substituting into (1.4.44) and using (1.4.45) one gets an(t) = an(0)e−iω(n+ 1
2

)t.

Hence, the dynamic is given by

φ(q, t) =
∞∑
n=0

an(0)e−iω(n+ 1
2

)tφn(q). (1.4.47)
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The process of obtaining such a solution depends on knowing the spectrum of H . So, in

other complicated systems it may be difficult to proceed this way.

In a similar way, one can also obtain evolution in the canonical coherent states

representation which takes the form

e−itH/}|z〉 = e−iωt/2|e−iωtz〉. (1.4.48)

Or,

e−itH/}φz = e−iωt/2φz(t) (1.4.49)

where z(t) = e−iωtz is a one-parameter group of transformations. This shows that the

dynamic in canonical coherent states, or the expectation values of the displacement in

canonical coherent states behave in a manner similar to the displacement of classical

oscillator.

1.4.6 The FSB space

A transition from the configuration space R to the phase space R2 in quantum mechanics

is performed by the coherent states transform [19, 20, 25]:

Wφ0 : f 7→ 〈f, φz〉 := f̃(z)

where f ∈ L2(R) and φz is the canonical coherent states (1.4.43). The image of this map

gives rise to the following Hilbert space:

Definition 1.4.2 ([3, 8, 25]) Let z = q+ ip ∈ C, the Fock-Segal-Bargemann (FSB) space

consists of all functions that are analytic on the whole complex plane C and square-

integrable with respect to the measure e−π}|z|
2

dz. It is equipped with the inner product

〈f, g〉F =

∫
C
f(z)g(z) e−π}|z|

2

dz. (1.4.50)
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This space has several advantages over the state space L2(R). In particular, the dynamics

of the harmonic oscillator H has a geometrical description that comes in agreement with

the classical counterpart.

Starting from the fact that the ladder operators have the simpler expressions:

a− = ∂z, a+ = zI,

where the domain of these operators consist of the space of analytic polynomials. It can be

easily verified that [a−, a+] = I and (a−)∗ = a+, where “*” is the adjoint of an operator

with respect to the inner product 〈·, ·〉F . The vacuum Φ0 (i.e. the solution to a−Φ0 = 0)

in this space is just a constant Φ0(z) = c, where c is chosen so that ‖Φ0‖F = 1 and the

“exited states” Φn are easily seen to be monomials: Φn(z) = 1√
n!

(a+)nΦ0 = c√
n!
zn. The

harmonic oscillator Hamiltonian on FSB space has the form

H = }ω(z∂z +
1

2
I). (1.4.51)

So, the dynamic calculated through the Schrödinger equation (which is just a first-order

PDE) is

F (t, z) = e−
i
2
ωtF (0, e−iωtz). (1.4.52)

The coordinate transformation here represents a rotation in the phase space R2 ∼ C

which reflects the classical picture of the dynamic of a classical harmonic oscillator

calculated via Hamilton’s equations [30]. This nature of such dynamic in this space

is clearly inherited from the dynamic of the corresponding coherent states (1.4.48).

From another standpoint we also observe that such a geometric nature is a result of the

Schrödinger equation being a first-order PDE. These together explain, once again, the

formulation of Definition 0.0.3.

Note also that although ladder operators technique completely solves the spectral problem

for the harmonic oscillator, it should be observed that:
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1. The ladder operators (1.4.37) (and subsequently the eigenvectors φn) depend on the

parameter mω. They are not useful for a harmonic oscillator with a different value

of m′ω′.

2. The explicit dynamic (1.4.47) of an arbitrary state φ is not transparent disregarding

the prior difficulty in finding the decomposition φ =
∑

n cnφn over the orthonormal

basis of eigenvectors φn. Despite the fact that this dynamic in FSB space is

presented in a geometric fashion (1.4.52), this presentation still relays on the

vacuum φmω (and, thus, all other coherent states φz (1.4.43)) having the given value

of mω as before.

Metaphorically, the traditional usage of the ladder operators and vacuum φmω is like a

key, which can unlock only the matching harmonic oscillator with the same value of mω.

However, the method we use in Chapter 3 makes possible an extension of the traditional

framework, which allows to use any minimal uncertainty state φE (E > 0) as a vacuum

(or fiducial) for a harmonic oscillator with a different value of mω to obtain geometric

dynamics similar to (1.4.52), cf. Section 3.2.
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Chapter 2

Coherent state transform

We consider here the coherent state transform which plays an important role in

mathematics and physics. If this transformation is reduced from the group G to the

Heisenberg group it coincides with the Fock–Segal–Bargmann type transform. In this

connection, we highlight a certain technical aspect arises in the case of the group G

regarding square-integrability notion, see Remark 2.1.7. The principal result in this

chapter is the physical characterisation of the image space of an induced coherent state

transform of the group G, Section 2.2.

2.1 The induced coherent state transform and its image

LetG be a Lie group with a left Haar measure dg and ρ a unitary irreducible representation

of the group G in a Hilbert space H. Then, we define the coherent state transform as

follows.

Definition 2.1.1 ([3, 49]) For a fixed vector φ ∈ H called a fiducial vector1 (aka vacuum

1Fiducial vector is a general term [54, Ch. 1][7] and is meant to be an arbitrary unit vector; it can be

called vacuum vector or ground state in the context of ladder operators that mentioned earlier.
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vector, ground state, mother wavelet), the coherent state transform, denoted Wφ, of a

vector f ∈ H is given by:

[Wφf ](g) = 〈f, ρ(g)φ〉 , g ∈ G.

We denote the image space of such a transform by Lφ(G).

Definition 2.1.2 The irreducible representation ρ is called square-integrable if for every

ψ, φ ∈ H, the function [Wφψ](g) is in L2(G, dg). That is,

‖Wφψ‖2
2 =

∫
G

| 〈ψ, ρ(g)φ〉 |2 dg <∞. (2.1.1)

The coherent state transform may not produce a square-integrable function on the entire

group, that is, (2.1.1) may not hold. Take for example the case where G is a nilpotent Lie

group, then it is known thatWφ is not square-integrable [17, § 4.5]. However, in such a

situation it is still possible to define a coherent state transform on a suitable homogeneous

space that results in square-integrable function in the following manner.

According to [3, § 8.4][65, § 2] let a fiducial vector φ ∈ H be a joint eigenvector of ρ(h)

for all h in a subgroup H of G. That is,

ρ(h)φ = χ(h)φ for all h ∈ H, (2.1.2)

where χ is a character of H , see Remark 1.1.1. Then, we see that

[Wφf ](gh) = 〈f, ρ(gh)φ〉 = 〈f, ρ(g)ρ(h)φ〉 = χ(h)[Wφf ](g). (2.1.3)

This indicates that the coherent state transform is entirely defined via its values indexed

by points of X = G/H . This motivates the following definition of the coherent state

transform on the homogeneous space X = G/H :

Definition 2.1.3 ([3, § 8.4][53, § 5.1]) For a group G, a closed subgroup H of G, a

section s : G/H → G, a unitary irreducible representation ρ of G in a Hilbert space H
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and a fiducial vector φ satisfying (2.1.2), we define the induced coherent state transform

Wφ fromH to a space of functions (the image space ofWφ) Lφ(G/H) by the formula

[Wφf ](x) = 〈f, ρ(s(x))φ〉, x ∈ G/H . (2.1.4)

The family of vectors indexed by x:

φx = ρ(s(x))φ (2.1.5)

is called coherent states [3, 65].

Proposition 2.1.4 ( [3, § 8.4][49, § 5.1] [53, § 5.1]) Let G, H , ρ, φ and Wφ be as in

Definition 2.1.3 and χ be a character from (2.1.2). Then, the induced coherent state

transform intertwines ρ and ρ̃:

Wφρ(g) = ρ̃(g)Wφ, (2.1.6)

where ρ̃ is a representation induced from the character χ of the subgroup H .

In particular, (2.1.6) means that the image space Lφ(G/H) of the induced coherent state

transform is invariant under ρ̃.

The case of the Heisenberg group H is the leading example of the application of the

induced coherent state transform see also [18]:

Example 2.1.5 Let us consider the the following form of Schrödinger representation as

it will be used in the rest of the thesis:

σ}(x, y, s)f(x′) = e2πi}(s−x′y)f(x′ − x). (2.1.7)

For the centre of H, Z = {(0, 0, s) ∈ H : s ∈ R}, we see that

σ}(0, 0, s)f(x′) = e2πi}sf(x′), (2.1.8)
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that is, the property (2.1.2) is satisfied for the character of the centre χ(0, 0, s) = e2πi}s.

Thus, for the corresponding homogeneous space H/Z ∼ R2, we consider a section s :

H/Z → H; s : (x, y) 7→ (x, y, 0). Then, for f, φ ∈ L2(R), the respective induced

coherent state transform is

[Wφf ](x, y) = 〈f, σ} (s(x, y))〉

= 〈f, σ}(x, y, 0)〉

=

∫
R
f(x′)σ}(x, y, 0)φ(x′) dx′

=

∫
R
f(x′)e2πi}x′yφ(x′ − x) dx′. (2.1.9)

From the last integral, one may notice that this is just a composition of an version formula

of Fourier transform and measure preserving a change of variables and henceWφ defines

an L2-function on H/Z ∼ R2, more details are found in [25, § 1.4].

In the time-frequency analysis, the above transform is known as the short-time Fourier

transform and φ, in such context, is called the window function [31, Ch. 3].

2.1.1 The induced coherent state transform of the shear group G

On the same footing as above we explicitly calculate an induced coherent state transform

Wφ of G.

For the subgroup H being the centre Z of G; Z = {(0, 0, 0, z) ∈ G : z ∈ R},
the representation ρh2}4 (1.2.10) and the character χ(0, 0, 0, z) = e2πi}4z of Z, any

function φ ∈ L2(R) satisfies the eigenvector property (2.1.2). Thus, for the respective

homogeneous space G/Z ∼ R3 and the section s : G/Z → G; s(x1, x2, x3) =
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(x1, x2, x3, 0), the induced coherent state transform is:

[Wφf ](x1, x2, x3) = 〈f, ρh2}4(s(x1, x2, x3))φ〉

= 〈f, ρh2}4(x1, x2, x3, 0)φ〉

=

∫
R
f(y)ρh2}4(x1, x2, x3, 0)φ(y) dy

=

∫
R
f(y)e−2πi(h2x2+}4(−x3y+ 1

2
x2y2))φ(y − x1) dy

= e−2πih2x2

∫
R
f(y)e−2πi}4(−x3y+ 1

2
x2y2)φ(y − x1) dy. (2.1.10)

The last integral is a composition of the following three unitary operators of L2(R2):

1. The change of variables

T : F (x1, y) 7→ F (y, y − x1) , (2.1.11)

where F (x1, y) := (f ⊗ φ)(x1, y) = f(x1)φ(y), that is, F is defined on the tensor

product L2(R)⊗ L2(R) which is isomorphic to L2(R2) [66];

2. the operator of multiplication by a unimodular function ψx2(x1, y) = e−πi}4x2y2

Mx2 : F (x1, y) 7→ e−πi}4x2y2F (x1, y), x2 ∈ R; (2.1.12)

3. and the partial inverse Fourier transform in the second variable

[F2F ](x1, x3) =

∫
R
F (x1, y)e2πi}4yx3 dy. (2.1.13)

Thus, [Wφf ](x1, x2, x3) = e−2πih2x2 [F2 ◦Mx2 ◦ T ]F (x1, x3) and we obtain

Proposition 2.1.6 For a fixed x2 ∈ R, the map f ⊗ φ 7→ [Wφf ](·, x2, ·) is a unitary

operator from L2(R)⊗ L2(R) onto L2(R2).

Such an induced coherent state transform also respects the Schwartz space, that is, if

f, φ ∈ S(R) then [Wφf ](·, x2, ·) ∈ S(R2). This is because S(R2) is invariant under each

operator (2.1.11)–(2.1.13).
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Remark 2.1.7 As already mentioned that the coherent state transform on a nilpotent Lie

group, cf. Definition 2.1.1, does not produce an L2-function on the entire group but

may rather do on a certain homogeneous space. For the Heisenberg group H and the

homogeneous space H/Z, the respective induced coherent state transform defines an

L2-function on H/Z, see Example 2.1.5. In the context of an induced coherent state

transform of G, two types of modified square-integrability are considered [17, § 4.5]:

modulo the group’s center and modulo the kernel of the representation. The first notion

is not applicable to the group G: the induced coherent state transform (2.1.10) does

not define a square-integrable function on G/Z ∼ R3 or a larger space G/kerρh2}4 .

On the other hand, the representation ρh2}4 is square-integrable modulo the subgroup

H = {(0, x2, 0, x4) ∈ G : x2, x4 ∈ R}. However, the theory of α-admissibility [3,

§ 8.4], which is supposed to work for such a case, reduces the consideration to the

Heisenberg group since G/H ∼ H/Z. It shall be seen later (3.2.30) that the action

of (0, x2, 0, 0) ∈ H will be involved in important physical and geometrical aspects of the

harmonic oscillator and shall not be factored out. Our study provides an example of the

theory of wavelet transform with non-admissible mother wavelets [32, 45, 47, 48, 87].

In view of the above mentioned insufficiency of square integrability modulo the subgroup

H = {(0, x2, 0, x4) ∈ G : x2, x4 ∈ R}, we make the following:

Definition 2.1.8 For a fixed unit vector φ ∈ L2(R), let Lφ(G/Z) denote the image space

of the induced coherent state transform Wφ (2.1.10) equipped with the family of inner

products parametrised by x2 ∈ R

〈u, v〉x2 :=

∫
R2

u(x1, x2, x3) v(x1, x2, x3) }4 dx1dx3 . (2.1.14)

The respective norm is denoted by ‖u‖x2 .

The factor }4 in the measure }4 dx1dx3 makes it dimensionless, which is a natural

physical requirement, see Remark 1.2.2.
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It follows from Proposition 2.1.6 that ‖u‖x2 = ‖u‖x′2 for any x2, x′2 ∈ R and u ∈
Lφ(G/Z). In the usual way [25, (1.42)] the isometry from Proposition 2.1.6 implies

the following orthogonality relation.

Corollary 2.1.9 Let f1, f2, φ1, φ2 ∈ L2(R) then:

〈Wφ1f1,Wφ2f2〉x2 = 〈f1, f2〉 〈φ1, φ2〉 for any x2 ∈ R . (2.1.15)

Corollary 2.1.10 Let φ ∈ L2(R) have unit norm, then the induced coherent state

transformWφ is an isometry from (L2(R), ‖·‖) to (Lφ(G/Z), ‖·‖x2).

Proof

It is an immediate consequence of the previous corollary. Alternatively, for f ∈ L2(R):

‖f‖L2(R) =
∥∥f ⊗ φ∥∥

L2(R2)
= ‖Wφf‖x2 ,

as follows from the isometryWφ : L2(R)→ L2(R2) in Proposition 2.1.6. 2

Proposition 2.1.11 The following formula represents the adjoint of Wφ (in the weak

sense) with respect to the inner product (2.1.14) parametrised by x2:

[Mφ(x2)u](t) =

∫
R2

u(x1, x2, x3)ρh2}4(x1, x2, x3, 0)φ(t) }4 dx1 dx3. (2.1.16)

Proof

Let f, φ ∈ S(R) and u(·, x2, ·) ∈ S(R2), then

〈Wφf, u〉x2 =

∫
R2

[Wφf ](x1, x2, x3)u(x1, x2, x3) }4 dx1 dx3

=

∫
R2

〈
f, ρh2}4(x1, x2, x3, 0)φ

〉
u(x1, x2, x3) }4 dx1 dx3

=

〈
f,

∫
R2

u(x1, x2, x3)ρh2}4(x1, x2, x3, 0)φ }4 dx1 dx3

〉
= 〈f,Mφ(x2)u〉 .



Chapter 2. Coherent state transform 38

2

Corollary 2.1.12 An inverse of the unitary operatorWφ (in the weak sense) is given by

its adjointMφ(x2) (2.1.16) for ‖φ‖ = 1 .

Proof

Generally, for an analysing vector φ and a reconstructing vector ψ both in S(R) and for

any f , g ∈ S(R) the orthogonality condition (2.1.15) implies:

〈Mψ(x2) ◦Wφf, g〉 = 〈Wφf,Wψg〉x2
= 〈f, g〉 〈ψ, φ〉

= 〈〈ψ, φ〉 f, g〉 .

Thus,Mψ(x2) ◦ Wφ = 〈ψ, φ〉 I and if 〈ψ, φ〉 6= 0, thenMψ(x2) is a left inverse ofWφ

up to a factor. It is clear that if ψ = φ, thenMφ(x2) is exactly a left inverse. 2

Moreover, we have the following result as a direct consequence of Proposition 2.1.4.

Corollary 2.1.13 The induced coherent state transform Wφ (2.1.10) intertwines ρh2}4
with the restriction of the following representation (see (1.2.8)) on the image space of

Wφ:

[ρ̃h4(y1, y2, y3, y4)f ](x1, x2, x3) = e2πi}4(y4−y1y3+ 1
2
y21y2+y1x3− 1

2
y21x2) (2.1.17)

× f(x1 − y1, x2 − y2, x3 − y1x2 + y1y2 − y3) .

Proof



Chapter 2. Coherent state transform 39

We show this through the following straightforward calculation.

[Wφρh2}4(y1, y2, y3, y4)k](x1, x2, x3)

=
〈
ρh2}4(y1, y2, y3, y4)k, ρh2}4(x1, x2, x3, 0)φ

〉
=
〈
k, ρh2}4((y1, y2, y3, y4)−1)ρh2}4(x1, x2, x3, 0)φ

〉
=

〈
k, ρh2}4

(
x1 − y2, x2 − y2, x3 − y3 + y1y2 − x2y1,

y1y3 −
1

2
y2

1y2 − y4 − x3y1 +
1

2
y2

1x2

)
φ

〉
= e−2πi}4(−y4+y1y3− 1

2
y21y2−y1x3+ 1

2
y21x2)

×
〈
k, ρh2}4(x1 − y1, x2 − y2, x3 − y1x2 + y1y2 − y3, 0)φ

〉
= e2πi}4(y4−y1y3+ 1

2
y21y2+y1x3− 1

2
y21x2)

× [Wφk](x1 − y1, x2 − y2, x3 − y1x2 + y1y2 − y3)

= ρ̃}4(y1, y2, y3, y4)[Wφk](x1, x2, x3).

2

We consider the representation (2.1.17) restricted to the image space Lφ(G/Z), which is

easily seen to be unitary, that is,
∥∥ρ̃}4(y1, y2, y3, y4)f

∥∥
x2

= ‖f‖x2 , where f(x1, x2, x3) ∈
Lφ(G/Z).

We recall, here, the notion of the Lie derivative as this will be essential for our method.

Definition 2.1.14 Let G be a Lie group and g the corresponding Lie algebra. Then,

the Lie derivative (left invariant vector fields) denoted LX , for an element X of the Lie

algebra g is computed through the derived right regular representation:

[LXF ](g) =
d

dt
F (g exp tX)

∣∣∣∣
t=0

(2.1.18)

for any differentiable function F on G.
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We want to calculate this for a function in the image space of the coherent sate transform

of the shear group G. However, functions in such a space possess the property

F (x1, x2, x3, x4 + z) = e−2πi}4zF (x1, x2, x3, x4) for all z ∈ R. (2.1.19)

Indeed, for the group G and its unitary irreducible representation (1.2.10), let F = Wφf

for f ∈ L2(R). Then, we can easily see that (follows also from (2.1.3) when H is the

centre of G)

[Wφf ](x1, x2, x3, x4 + z) =
〈
f, ρh2}4(x1, x2, x3, x4 + z)φ

〉
=
〈
f, ρh2}4(0, 0, 0, z)ρh2}4(x1, x2, x3, x4)φ

〉
= e−2πi}4z

〈
f, ρh2}4(x1, x2, x3, x4)φ

〉
= e−2πi}4z[Wφf ](x1, x2, x3, x4).

Taking this property into account, we calculate LXj , where Xj being an element of the

basis of the Lie algebra g of G

X1 = (1, 0, 0, 0), X2 = (0, 1, 0, 0), X3 = (0, 0, 1, 0), X4 = (0, 0, 0, 1).

The role of the above property is best seen when calculating LX2:

LX2F (x1, x2, x3, x4) =
d

dt
F ((x1, x2, x3, x4) exp tX2)

∣∣∣∣
t=0

=
d

dt
F ((x1, x2, x3, x4)(0, t, 0, 0))

∣∣∣∣
t=0

=
d

dt
F
(
x1, x2 + t, x3 + x1t, x4 +

1

2
x2

1t
)∣∣∣∣
t=0

=
d

dt
e−πi}4tx21F (x1, x2 + t, x3 + x1t, x4)

∣∣∣∣
t=0

= (∂2 + x1∂3 − πi}4x
2
1)F (x1, x2, x3, x4).

Similarly, we calculate LXj (j = 1, 3, 4) and we obtain

LX1 = ∂1; LX2 = ∂2 + x1∂3 − iπ}4x
2
1I; (2.1.20)

LX3 = ∂3 − 2πi}4x1I; LX4 = −2πi}4I .
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One can readily check that

[LX1 ,LX2 ] = LX3 , [LX1 ,LX3 ] = LX4 ,

in agreement with the Lie algebra non-vanishing commutator relations (1.1.3).

2.1.2 Right shifts and coherent state transform

Recall that the right regular representation of a group G, denoted R(g), acts on functions

defined on the group G in the following way:

R(g) : f(g′) 7→ f(g′g), g ∈ G.

In particular, it is an immediate to see that

R(g)[Wφf ](g′) = [Wφf ](g′g) = 〈f, ρ(g′g)φ〉 = 〈f, ρ(g′)ρ(g)φ〉 = [Wρ(g)φf ](g′).

(2.1.21)

That is, the coherent state transformWφ intertwines the right shift with the action of ρ on

the fiducial vector φ. This observation leads to the following result that will play a central

role in exploring the nature of the image space of the coherent state transform and will be

a recurrent theme of our investigation.

Corollary 2.1.15 (Analyticity of the coherent state transform, [49, § 5]) Let G be a group

and dg be a measure on G. Let ρ be a unitary representation of G, which can be extended

by integration to a vector space V of functions or distributions on G. Let a fiducial vector

φ ∈ H satisfy the equation

ρ(d)φ :=

∫
G

d(g) ρ(g)φ dg = 0, (2.1.22)

for a fixed distribution d(g) ∈ V . Then, any coherent state transform ṽ(g′) = 〈v, ρ(g′)φ〉
obeys the condition:

R(d̄)ṽ = 0, where R(d̄) =

∫
G

d̄(g)R(g) dg , (2.1.23)
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with R being the right regular representation of G and d̄(g) is the complex conjugation of

d(g).

Important and well-known functional spaces whose members enjoy property of

analyticity such as Fock-Segal-Bargmann space and Hardy space, may arise through

applications of this result. Here we shall demonstrate a relevant situation regarding the

Heisenberg group, further examples can be found in [49, § 5][52] [53, § 5.3].

Example 2.1.16 (Gaussian and analyticity) Consider again the following form of the

Schrödinger representation:

σ}(x
′, y′, s′)f(y) = e2πi}(s′−yy′)f(y − x′).

For the basic elements of the Heisenberg–Weyl algebra,

X = (1, 0, 0), Y = (0, 1, 0), S = (0, 0, 1),

the infinitesimal generators are

dσX} = − d

dy
, dσY} = −2πi}yI, dσS} = 2πi}I.

For the purpose of applying the above result in its integral version note that

dσX} φ(y) =
d

dt
σ}(exp tX)φ(y)

∣∣∣∣
t=0

=
d

dt
σ}(t, 0, 0)φ(y)

∣∣∣∣
t=0

=

∫
R3

δ(x′, y′, s′)
∂

∂x′
σ}(x

′, y′, s′)φ(y) dx′dy′ds′.

= −
∫
R3

∂

∂x′
δ(x′, y′, s′)σ}(x

′, y′, s′)φ(y) dx′dy′ds′.

= σ}(−δ′1)φ(y),

where δ is the Dirac delta distribution and δ′1 is its partial derivative with respect to first

component and likewise dσY} = σ}(−δ′2). Similarly, we may view the Lie derivative LX

(2.1.18) but with R in place of σ} andWφk in place of φ.
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Now, the Gaussian

φE(y) = e−π}Ey
2

, E > 0 (2.1.24)

is a null solution of the annihilation operator

idσX} − iE(idσY} ) = −i
d

dy
− 2πi}Ey. (2.1.25)

This matches condition (2.1.22) for the distribution

d(x′, y′, s′) = −iδ′1(x′, y′, s′)− Eδ′2(x′, y′, s′).

Then, any element f in the respective image space of the induced coherent state transform,

f(x, y) = [WφEk](x, y), for k ∈ L2(R), is annihilated by the operator:

D := R(d̄) = −iLX + ELY (2.1.26)

= −i∂x + E∂y − 2πi}ExI.

Yet, from Example 2.1.5 for φ being φE (2.1.24), the induced coherent state transform

becomes

[WφEk](x, y) = eπi}xy− π}
2E

(E2x2+y2)VE(x, y), (2.1.27)

where

VE(x, y) =

∫
R
k(x′)e2π}(Ex+iy)x′− π}

2E
(Ex+iy)2e−π}Ex

′2
dx′. (2.1.28)

This integral represents a Fock–Segal–Bargmann type transform [25, 44, 49, 61].

Now, since Df(x, y) = 0, for f =WφEk, that is

(−i∂x + E∂y − 2πi}ExI)eπi}xy− π}
2E

(E2x2+y2)VE(x, y) = 0, (2.1.29)

clearly,

(−i∂x + E∂y)VE(x, y) = 0.

This, in turn, shows that VE(z) is analytic in z = Ex+ iy. Precisely, ∂z̄VE(z) = 0, where

∂z̄ = 1
2
( 1
E
∂x + i∂y) is a Cauchy–Riemann type operator. Moreover, the left-hand side of
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equality (2.1.27) defines a function in L2(R2), according to Example 2.1.5. Furthermore,

|eπi}xy|2 = 1 and therefore the function VE(x, y) is square-integrable with respect to the

measure e−
π}
E

(E2x2+y2)dxdy. In short, the induced coherent state transform WφE (when

φE is a Gaussian) gives rise to a space consisting of functions VE(z) that are analytic in

the entire complex plane C and square-integrable with respect to the measure e−
π}
E
|z|2dz.

This is exactly the structure of a FSB space, see Section 1.4, Definition 1.4.2.

2.2 Characterisation of the image space Lφ(G/Z)

To give a description of the image space Lφ(G/Z) of the respective induced coherent

state transform (2.1.10), we employ Corollary 2.1.15. This requires a particular choice of

a fiducial vector φ such that φ lies in L2(R) and φ is a null solution of an operator of the

form (2.1.22). For simplicity, we consider the following linear combination of generators

of the Lie algebra g, cf. (1.2.13):

dρiX1+iDX2+EX3
h2}4 = idρX1

h2}4 + iD dρX2
h2}4 + E dρX3

h2}4

= −i
d

dy
− π}4Dy

2 − 2πiE}4y − 2πh2D ,
(2.2.30)

where D and E are some real constants. It is clear that the function

φE,D(y) = c exp

(
πiD}4

3
y3 − πE}4y

2 + 2πiDh2y

)
, (2.2.31)

is a generic solution where c is a constant determined via normalisation. Moreover, square

integrability of φE,D requires that E}4 is strictly positive. It is sufficient here to use the

simpler fiducial vector corresponding to the value2 D = 0, cf. (2.1.25):

φE(y) = (2h2E)1/4e−πE}4y2 , }4 > 0, E > 0. (2.2.32)

2The case D 6= 0 will be considered in the last chapter.
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Remark 2.2.1 The factor (2h2E)1/4 makes φE normalised with respect to the L2-norm:

‖f‖2 =
∫
R |f(y)|2

√
}4
h2

dy. Following the Convention 1.2.1, the exponent in φE(y) shall

be dimensionless. Therefore, E has to be of dimension M/T which follows from the fact

that y has dimension T/(ML) and }4 has dimension ML2/T . As a result, we attach the

factor
√

}4
h2

to the measure so the measure is dimensionless. Note that from Remark 1.2.2

h2 has dimension T/M .

Since the function φE(y) (2.2.32) is a null-solution of the operator (2.2.30) with D =

0, the image space LφE(G/Z) can be described through the respective derived right

regular representation (Lie derivatives) (2.1.18). Specifically, Corollary 2.1.15 with the

distribution

d(x1, x2, x3, x4) = −i δ′1(x1, x2, x3, x4)− E δ′3(x1, x2, x3, x4) ,

matches (2.2.30). Thus, any function f in LφE(G/Z) for φE (2.2.32) satisfies

Cf(x1, x2, x3) = 0 (2.2.33)

for the partial differential operator:

C =
(
−iLX1 + ELX3

)
= −i∂1 + E∂3 − 2πi}4Ex1 , (2.2.34)

where Lie derivatives (2.1.20) are used.

Remark 2.2.2 Due to the explicit similarity to the Heisenberg group case with the

Cauchy–Riemann equation, Example 2.1.16, we call (2.2.33) the analyticity condition

for the coherent state transform. Indeed, it can be easily verified that for the fiducial

vector φE (2.2.32), the induced coherent state transform (2.1.10) becomes

[WφEk](x1, x2, x3) = exp

(
−2πih2x2 + πi}4x1x3 −

π}4

2E
(E2x2

1 + x2
3)

)
Bx2(x1, x3)



Chapter 2. Coherent state transform 46

where

Bx2(x1, x3) =

∫
R

e−πi}4x2y2k(y)e
−π}4
2E

(Ex1+ix3)2+2π}4(Ex1+ix3)y−π}4Ey2 dy

= [(VE ◦Mx2)k](x1, x3)

with VE being the Fock–Segal–Bargmann type transform (2.1.28) and Mx2 is a

multiplication operator by e−π}4x2y
2
. Thus, by condition (2.2.34) we have

[−i∂1 + E∂3

− 2πi}4Ex1]

{
exp

(
−2πih2x2 + πi}4x1x3 −

π}4

2E
(E2x2

1 + x2
3)

)
Bx2(x1, x3)

}
= 0.

That is,

(−i∂1 + E∂3)Bx2(x1, x3) = 0, (2.2.35)

which can be written as

∂zBx2(z) = 0, (2.2.36)

where z = Ex1 + ix3 and ∂z = 1
2
( 1
E
∂1 + i∂3)—a Cauchy–Riemann type operator. Thus,

Bx2(z) is entire on the complex plane C. As such, the induced coherent state transform

of G gives rise to the space consisting of analytic functions Bx2(z) which are square-

integrable with respect to the measure e−
π}4
E
|z|2dz.

Remark 2.2.3 Note that in the previous remark if x2 = 0, then we obtain the formula

for the induced coherent state transform of the Heisenberg group, Example 2.1.5 and

Example 2.1.16.

A notable difference between the group G and the Heisenberg group is the presence of an

additional condition, which is satisfied by any function f ∈ LφE(G/Z) for any fiducial

vector φE . Indeed, another auxiliary condition beside (2.2.34) comes naturally from the

group structure. Recall that the Casimir operators are those in the respective universal

enveloping algebra of g which commute with every element in the Lie algebra g. Thus,
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if C is a Casimir operator, then dρCh2}4 has the form c I where c ∈ C, by Schur’s Lemma

[3, 27], since it commutes with the irreducible representation dρXh2}4 where X ∈ g. This

means that (dρCh2}4 − cI)φE(y) = 0 for any φE ∈ L2(R). Therefore, by Corollary 2.1.15,

we can conclude that any function f in LφE(G/Z) vanishes for the operator LC − c̄I .

Precisely, in our case C = X2
3 − 2X2X4 is the only (up to a scalar factor) “non-trivial”

Casimir operator, see [17, Ex. 3.3.9] [44, § 3.3.1] [1, 2]. Then, from (1.2.13) it can

be easily checked that the corresponding operator acts as a multiplication operator by

8π2h2}4 on L2(R):

dρ
X2

3−2X2X4

h2}4 φE(y) =
(
(dρX3

h2}4)
2 − 2dρX2

h2}4dρ
X4
h2}4

)
φE(y) = 8π2h2}4φE(y).

That is, (
(dρX3

h2}4)
2 − 2dρX2

h2}4dρ
X4
h2}4 − 8π2h2}4I

)
φE(y) = 0. (2.2.37)

From here we can proceed in either of ways:

1. Corollary 2.1.15 with the distribution

d(x1, x2, x3, x4) = δ
(2)
33 (x1, x2, x3, x4)− 2 δ′2(x1, x2, x3, x4) · δ′4(x1, x2, x3, x4) ,

asserts that the image f ∈ LφE(G/Z) of the coherent state transform WφE is

annihilated by the respective Lie derivatives operator

Sf(x1, x2, x3) = 0, (2.2.38)

where, cf. (2.1.20):

S = (LX3)2 − 2LX2LX4 − 8π2h2}4I (2.2.39)

= ∂2
33 + 4πi}4∂2 − 8π2h2}4I .

2. The representation, cf. (1.2.12):

dρ̃C}4 = (dρ̃X3
}4 )2 − 2dρ̃X2

}4 dρ̃X4
}4 (2.2.40)
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of the Casimir element C takes the constant value 8π2h2}4 on LφE(G/Z). Note

that this produces exactly (2.2.39) because for the Casimir operator the left and the

right actions of the group coincide.

The relation (2.2.38) will be called the structural condition because it is determined by

the structure of the group G and its Casimir operator.

Note that (2.2.39) is the Schrödinger equation of a free particle with the time-like

parameter x2. Thus, the structural condition is the generator of the quantised version

of the classical dynamics (1.3.20) of a free particle represented by the shear transform,

see the discussion of this after (1.3.20).

Summing up, the physical characterisation of the LφE(G/Z) is as follows.

1. The restriction of a function f ∈ LφE(G/Z) to the plane x2 = 0 (a model of the

phase space) coincides with the FSB image of the respective state.

2. The function f is a continuation from the plane x2 = 0 to R2 × R (the product of

phase space and timeline) by free time-evolution of the quantum system.

This physical interpretation once more explains the identity ‖f‖x2 = ‖f‖x′2 for any x2, x
′
2

in R: the energy of a free state is constant in time.

Now, we specify the ground states and the respective induced coherent state transforms,

which will be used below.

Example 2.2.4 Consider our normalised fiducial vector φE(y) = (2h2E)1/4e−π}4Ey
2

with a parameter E > 0. Then, we calculate the induced coherent state transform for
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a minimal uncertainty states φq(y) (q > 0) as follows :

[WφEφq](x1, x2, x3) =
√

2}4(qE)1/4

∫
R

e−π}4qy
2

e−2πi(h2x2+}4(−x3y+ 1
2
x2y2))

× e−π}4E(y−x1)2 dy (see Remark 2.2.1 for the measure)

=
√

2}4(qE)1/4e−π}4Ex
2
1−2πih2x2

∫
R

e−π}4(ix2+E+q)y2

× e2π}4(Ex1+ix3)y dy

=
√

2(qE)1/4
exp

(
−πh4Ex

2
1 − 2πih2x2 − π}4

(−iEx1+x3)2

ix2+E+q

)
√

ix2 + E + q
.

(2.2.41)

Clearly, the function (2.2.41) is dimensionless and satisfies conditions (2.2.33) and

(2.2.38). It shall be seen in Section 3.2.2 that such a function is an eigenstate (vacuum

state) of the harmonic oscillator Hamiltonian acting on the image space LφE(G/Z) of the

respective induced coherent state transform. Moreover, this function represents a minimal

uncertainty state in the space LφE(G/Z) for any x2 ∈ R and any E > 0.
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Chapter 3

Harmonic oscillator through reduction

of order of a PDE

In this chapter we devise an approach applied to the harmonic oscillator through reducing

a PDE order for geometrisation of the dynamics in the sense of Definition 0.0.3. First, we

use the Heisenberg group and find that geometrisation condition completely determines

which fiducial vector needs to be used. The treatment of the group G provides the

wider opportunity: any minimal uncertainty state can be used for the coherent state

transform with geometric dynamics in the result. At the end we provide eigenfunctions

and respective ladder operators.

3.1 Harmonic oscillator from the Heisenberg group

Here we use a simpler case of the Heisenberg group to illustrate the technique which

will be used later. The fundamental importance of the harmonic oscillator stimulates

exploration of different approaches. Analysis based on the pair of ladder operators

elegantly produces the spectrum and the eigenvectors, see Section 1.4. However, this
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technique is essentially based on a particular structure of the Hamiltonian of harmonic

oscillator expressed in terms of the Heisenberg–Weyl algebra. Thus, it loses its efficiency

in other cases. In contrast, our method is applicable for a large family of examples since

it has a more general nature as will be seen in Chapter 4.

Before proceeding, we shall briefly adopt our discussion on the harmonic oscillator,

Section 1.4, to the language of representations of the Heisenberg group H. Indeed,

the Stone-von Neumann theorem [25, § 1.5][33, Ch. 14][44, § 2.2.6] ensures that

CCR (1.4.27) provides an irreducible representation of the Heisenberg-Weyl algebra

(1.1.1). The corresponding group is the Heisenberg group H with the group law (1.1.2),

it has the unitary irreducible Schrödinger representation (constructed along the induction

procedure, cf. (1.2.10) for x2 = 0) on L2(R):

σ}(x, y, s)f(x′) = e2πi}(s−x′y)f(x′ − x). (3.1.1)

The corresponding infinitesimal generators are (see Example 2.1.16)

dσ}
X = − d

dx′
, dσ}

Y = −2πi}x′I, dσS} = 2πi}I , (3.1.2)

with [dσX} , dσ
Y
} ] = dσS} = 2πi}I . These operators are skew-symmetric, thus we need to

multiply each by the complex unit “i” to get a self-adjoint operator in a proper domain of

L2(R) where these operators are well-defined. It suffices to consider the Schwartz space

S(R) ⊂ L2(R) on which these operators are essentially self-adjoint operators.

With regard to the above form of Schrödinger representation, we recall from Convention

1.2.1 that x is measured in unit T/(ML) while y is measured in unit 1/L, so x′ shall have

physical unit T/(ML). Thus, the self-adjoint operators idσ}
X and idσ}

Y may be viewed

as momentum and position observables, respectively.

Let

L− =
1√

2}mω
(X − imωY ), L+ =

1√
2}mω

(−X − imωY ).
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Then, we have the dimensionless pair of ladder operators

a− = dσL
−

} =
1√

2}mω
(−i(idσX} )−mω(idσY} )); (3.1.3)

a+ = dσL
+

} =
1√

2}mω
(i(idσX} )−mω(idσY} )). (3.1.4)

In this setting, the harmonic oscillator Hamiltonian corresponds to the following element

of the respective universal enveloping algebra:

LH =
}ω
2

(L−L+ + L+L−) = − 1

2m
X2 − mω2

2
Y 2. (3.1.5)

This generates the harmonic oscillator Hamiltonian operator acting on L2(R)

H = dρLH} =
1

2m
(idσX} )2 +

mω2

2
(idσY} )2, (3.1.6)

which is the Weyl quantised version of the classical Hamiltonian: h = 1
2
(p2/m+mω2q2).

In the context of the group H, the (induced) coherent state transform WφE for a fixed

φE as defined in the preceding Chapter, is used to transfer information from the state

space L2(R) (the Schrödinger model, see (2.1.9)) to a closed subspace of L2(R2) (a FSB

model—the induced coherent state transform image):

WφE : f 7→ 〈f, σ}(x, y, 0)φE〉 := ṽ(x, y)

It intertwines the Schrödinger representation (3.1.1) with the following FSB

representation of H on L2(R2):

[σ̃}(x, y, s)f ](x′, y′) = e2πi}(s−xy+xy′)f(x′ − x, y′ − y). (3.1.7)

That is,

Wφσ}(x, y, s) = σ̃}(x, y, s)Wφ. (3.1.8)

The representation (3.1.7) is a representation of H induced from a character of the centre

of H, cf. (1.2.8) for x2 = 0. The infinitesimal generators of the respective basic elements

of h are

dσ̃X} = −∂x + 2πi}yI, dσ̃Y} = −∂y, dσ̃S} = 2πi}I , (3.1.9)

with [dσ̃X} , dσ̃
Y
} ] = dσ̃S} = 2πi}I .
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Remark 3.1.1 For computations convenience in Subsection 3.2.2, we will

consider as observables the self-adjoint operators: i√
2π

dσ̃X} and i√
2π

dσ̃Y} so that

[ i√
2π

dσ̃Y} ,
i√
2π

dσ̃X} ] = i}I . These observables have physical dimensions ML/T and L,

respectively. Again we restrict these operators on the Schwartz space S(R2) which is a

subspace of the image space LφE(H/Z) of the induced coherent state transform, see [25,

§ 1.4]. The same is true in case of the group G, see the paragraph after Proposition 2.1.6.

Due to the intertwining property (3.1.8), the quantised harmonic oscillator Hamiltonian

H (3.1.6) acts on the FSB–like space LφE(H/Z) by (we still use the same notation H)

H =
1

2m

(
idσ̃X}√

2π

)2

+
mω2

2

(
idσ̃Y}√

2π

)2

(3.1.10)

= − 1

4πm
∂2
xx −

mω2

4π
∂2
yy +

i}
m
y∂x +

π}2

m
y2I.

Now, let us consider in the image space LφE(H/Z) the time evolution of the harmonic

oscillator which is defined by the time-dependent Schrödinger equation, Section 1.4,

i}ḟ(t, x, y) = Hf(t, x, y), (3.1.11)

for f(t, ·, ·) in LφE(H/Z) for all t and H (3.1.10). Our aim is to describe the dynamic

f(t, x, y) in geometric terms by lowering the order of the differential operator (3.1.10).

Indeed, the structure of LφE(H/Z) enables to make a reduction to the order of the

differential operator (3.1.10) using the analyticity condition. Based on Example 2.1.16,

for the Gaussian φE(y) = e−π}Ey
2 (E > 0), the respective image of the induced coherent

state transform, f = WφEk where k ∈ L2(R), is annihilated by the operator (the

analyticity condition (2.1.26)):

D = −iLX + ELY (3.1.12)

= −i∂x + E∂y − 2πi}ExI .
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From the analyticity condition (2.1.26) of the induced coherent state transform, the

operator (A∂x + B∂y + CI)(−iLX + ELY ) vanishes on any f ∈ LφE(H/Z) for any

A, B and C. Thus, we can adjust the Hamiltonian (3.1.10) by adding such an operator:

Hr = H + (A∂x +B∂y + CI)(−iLX + ELY ) (3.1.13)

through which the coefficients A,B and C to be determined to eliminate the second-

order derivatives in Hr. Thus, it will be a first-order differential operator equal to H on

LφE(H/Z). To achieve this, we need to take

A =
i

4πm
, B =

ω

4π
, E = mω.

Note that the value of E is uniquely defined and consequently the corresponding vacuum

vector φE(y) = e−π}Ey
2 is fixed. Furthermore, to obtain a geometric action of Hr in the

Schrödinger equation we need purely imaginary coefficients of the first-order derivatives

in Hr. This implies that C = − i}ω
2
x, with the final result:

Hr =

(
1

2m

(
idσ̃X}√

2π

)2

+
mω2

2

(
idσ̃Y}√

2π

)2
)

+ (
i

4πm
∂x +

ω

4π
∂y −

i}ω
2
xI)(−iLX +mωLY )

=
i}
m
y∂x − i}mω2x∂y +

(
1

2
}ω +

π}2

m
(y2 −m2ω2x2)

)
I . (3.1.14)

Note that operators (3.1.10) and (3.1.14) are not equal in general but have the same

restriction to the kernel of the auxiliary analytic condition (3.1.12). Thus, the Schrödinger

equation (3.1.11) becomes equivalent to the first-order PDE

i}ḟ(t, x, y)−Hrf(t, x, y) = 0 (3.1.15)

on the space of functions that satisfy the analyticity condition (3.1.12), where Hr is given

by (3.1.14).

Now, equation (3.1.11) can be solved easily through the following steps:
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1. Since we want to determine the dynamic in LφE(H/Z) for all t, f(t, x, y) must

satisfy the analyticity condition. That is,

(−i∂x +mω∂y − 2πi}mωxI) f(t, x, y) = 0. (3.1.16)

This is a simple linear first-order PDE and we use the method of characteristics to

obtain the following general solution

f(t, x, y) = e−πhmωx
2

f1 (t,mωx+ iy) , (3.1.17)

where f1 is an arbitrary analytic function. It is analytic in mωx + iy because the

factor e−πhmωx
2 “peels” the operator (−i∂x +mω∂y − 2πi}mωxI) to the Cauchy–

Riemann operator, −i∂x +mω∂y on f1.

2. We take the solution (3.1.17) and substitute in the reduced Schrödinger equation

(3.1.15) which becomes even simpler in f1:(
i}∂t − }ωz∂z − (

π}2

m
z2 +

1

2
}ω)I

)
f1(t, z) = 0 (3.1.18)

where z = mωx + iy. Again the method of characteristics provides us with the

following general solution

f1(t, z) = e−
iω
2
t− π}

2mω
z2f2(e−iωtz), (3.1.19)

where f2 is an arbitrary analytic function in z = mωx+ iy.

3. Finally, we make a substitution of (3.1.19) into (3.1.17) to get the general solution

f(t, x, y) = exp

(
− iω

2
t+ πi}xy − π}

2mω
(m2ω2x2 + y2)

)
f2

(
e−iωt(mωx+ iy)

)
(3.1.20)

which satisfies (3.1.15) and certainly satisfies the analyticity condition (3.1.12).

Hence, it is also a general solution of the main equation (3.1.11) with the Hamiltonian

(3.1.10). As known (see the end of Section 1.4) this solution uses a coordinate
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transformation that geometrically corresponds to a uniform rotation of the phase space,

cf. (1.4.52). This is a classical dynamics of the harmonic oscillator.

We can easily see that the reduction has been achieved due to the analyticity condition.

Specifically, the second-order derivative terms in (3.1.10) represent a Laplacian, thus it

vanishes on analytic functions—a standard result from complex analysis. This clearly

explains the reason behind the simple form of a harmonic oscillator Hamiltonian on FSB

space being a first-order differential operator, cf. Section 1.4.

3.2 Harmonic oscillator from the group G

Here we obtain an exact solution of the Schrödinger equation for the harmonic oscillator

in the space LφE(G/Z). It is achieved by the reduction of the order of the corresponding

differential operator in a manner illustrated on the Heisenberg group in the previous

section 3.1. A new feature of this case is that we need to use both operators (2.2.34)

and (2.2.39) simultaneously.

The quantum harmonic oscillator Hamiltonian acting in LφE(G/Z) is given by (cf.

(3.1.10) and the previous paragraph to it):

H =
1

2m

(
idρ̃X1

}4√
2π

)2

+
mω2

2

(
idρ̃X3

}4√
2π

)2

= − 1

4πm
∂2

11 −
1

4πm
x2

2∂
2
33 −

mω2

4π
∂2

33 −
1

2πm
x2∂

2
13 (3.2.21)

+
i}4

m
x3∂1 +

i}4

m
x2x3∂3 −

1

2m
(−i}4x2 − 2π}2

4x
2
3)I .

Note that if x2 = 0, then we get exactly (3.1.10) the Heisenberg group case. Although,

the Hamiltonian (3.2.21) seems a bit alienated in comparison with the Heisenberg group

case, we can still adjust it by using conditions (2.2.33) and (2.2.38) as follows. We write

Hr = H + (A∂1 +B∂2 + C∂3 +KI)C + FS . (3.2.22)
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To eliminate all second order derivatives one has to take A = i
4πm

, B = 0, C =

i
2πm

(−i
2
E + x2) and F = − 1

4πm
(ix2 + E)2 + mω2

4π
. A significant difference from the

Heisenberg group case is that there is no particular restrictions on the parameter E. This

allows us to use functions e−π}4Ey
2 , with any E > 0 as fiducial vectors. Such functions

are known as squeezed states, cf. Section 1.4.

To make the action of the first order operator geometric via the reduced Schrödinger

equation, we make coefficients in front of the first-order derivatives ∂1 and ∂3 imaginary.

For this we put K = i}4
2m
x1(−E + 2ix2). The final result is

Hr = H +

(
i

4πm
∂1 +

i

2πm
(
−i

2
E + x2)∂3 +

i}4

2m
x1(−E + 2ix2)

)
C

+

(
1

4πm
(x2 + iE)2 +

mω2

4π

)
S

=
i}4

m

(
(x3 + x1x2)∂1 −

(
(ix2 + E)2 −m2ω2

)
∂2 − (E2x1 − x2x3)∂3

)
− }4

2m

(
−8iπh2Ex2 − ix2 + 4πh2x

2
2 − 2π}4x

2
3

+4πh2m
2ω2 − E − 4πh2E

2 − 4iπE}4x
2
1x2 + 2π}4E

2x2
1

)
I (3.2.23)

where C and S are given by (2.2.34) and (2.2.39). Thus, the Schrödinger equation for the

harmonic oscillator

i}4∂tf(t, x1, x2, x3)−Hf(t, x1, x2, x3) = 0, (3.2.24)

is equivalent to the first-order linear PDE

i}4∂tf(t, x1, x2, x3)−Hrf(t, x1, x2, x3) = 0, (3.2.25)

for f in the image space LφE(G/Z). Following the same scheme as in the case of the

Heisenberg group, we can achieve a generic solution to (3.2.24) via the following steps:

1. We start from a general formula for f(t, x1, x2, x3) that satisfies the analyticity

condition (2.2.33) for all t. That is, we solve the equation:

(−i∂1 + E∂3 − 2πi}4Ex1)f(t, x1, x2, x3) = 0. (3.2.26)
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Since this is a first-order linear PDE, then by the method of characteristics we obtain

the following general solution

f(t, x1, x2, x3) = e−π}4Ex
2
1f1(t, Ex1 + ix3, ix2 + E), (3.2.27)

where f1 is an arbitrary function, analytic with respect to Ex1 + ix3. Similar to the

case of the Heisenberg group, f1 is analytic in Ex1 + ix3 because the operator of

multiplication

G : f1(t, x1, x2, x3) 7→ e−π}4Ex
2
1f1(t, x1, x2, x3)

intertwines the operator (2.2.34) with the Cauchy–Riemann type operator:

G ◦ C = (E∂3 − i∂1) ◦ G.

2. Upon substitution of (3.2.27) into the reduced Schrödinger equation (3.2.25) with

Hr (3.2.23), we obtain a simplified first-order PDE(
i}4∂t +

}4

m

(
zw∂z + (w2 −m2ω2)∂w (3.2.28)

+ (π}4z
2 + 2πh2(w2 −m2ω2) +

1

2
w)I

))
f1(t, z, w) = 0

where

z = Ex1 + ix3, w = ix2 + E.

Again, by the method of characteristics, we obtain the following general form of

the function f1

f1(t, z, w) =

√
E +mω√
w +mω

exp

(
iω

2
t− 2πh2w − π}4

z2

w +mω

)
(3.2.29)

f2

(
eiωt z

w +mω
, e2iωtmω − w

mω + w

)
.

Thus, substituting f1 (3.2.29) into (3.2.27) we get, in terms of the original
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coordinates xj ,

f(t, x1, x2, x3) =

√
E +mω√

ix2 + E +mω

× exp

(−iω

2
t− π}4Ex

2
1 − 2πih2x2 + π}4

(Ex1 + ix3)2

ix2 + E +mω

)
× f2

(
e−iωt Ex1 + ix3

ix2 + E +mω
, e−2iωtmω − (ix2 + E)

mω + (ix2 + E)

)
.

(3.2.30)

At this stage, formula (3.2.30) satisfies (3.2.25) with the reduced

Hamiltonian (3.2.23), and of course the analyticity condition (3.2.26). Yet, it

is not a solution of (3.2.24) with the original Hamiltonian (3.2.21). We need the

following step.

3. In the final step we request that (3.2.30) satisfy the structural condition (2.2.38).

This results in a heat-like equation in terms of f2:

∂vf2(u, v) = − 1

8π}4mω
∂2
uuf2(u, v) (3.2.31)

where

u =
Ex1 + ix3

ix2 + E +mω
, v =

mω − (ix2 + E)

mω + (ix2 + E)
.

The solution of (3.2.31) is formally given by:

f2(u, v) =

(
2mω}4

v

)1/2 ∫
R
g(ξ) e2π}4mω (u−ξ)2

v dξ, (3.2.32)

where g is the initial condition g(u) = f2(u, 0) and we use analytic extension from

the real variable v to some neighbourhood of the origin in the complex plane—see

the discussion in the next section.

Thus, with f2 as in (3.2.32), formula (3.2.30) yields a generic solution to (3.2.24) with the

Hamiltonian (3.2.21).
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Remark 3.2.1 Note that the above initial value of f2, related to v = 0, corresponds to

x2 = 0 and E = mω. Thus, it indicates that this general solution is obtained from

the unsqueezed states of Fock–Segal–Bargmann space, that is, the case related to the

Heisenberg group.

3.2.1 Geometrical, analytic and physical meanings of new solution

Analysing the new solution (3.2.30) we immediately note that it reduces by the

substitution x2 = 0 (no shear) andE = mω (predefined non-squeezing for the Heisenberg

group) into the solution (3.1.20). Thus, it is interesting to look into the meaning of

formula (3.2.30) for other values. This can be deconstructed as follows.

The first factor, shared by any solution, is responsible for

1. adding the value 1
2
}4ω to every integer multiple of }4ω eigenvalue;

2. peeling the second factor to analytic function;

3. proper L2-normalisation.

The first variable in the function f2 of the second factor produces integer multiples of }4ω

in eigenvalues. The rotation dynamics of the second variable alternate the shear parameter

as follows. Points ix2 + E form a vertical line on the complex plane. The Cayley-type

transformation

ix2 + E 7→ mω − (ix2 + E)

mω + (ix2 + E)
(3.2.33)

maps the vertical line ix2 + E into the circle with the centre −E
mω+E

and radius mω
mω+E

(therefore passing−1). Rotations of a point of this circle around the origin creates circles

centred at the origin and a radius between c =
∣∣mω−E
mω+E

∣∣ and 1, see Fig. 3.1.

Let a function f2 from (3.2.32) have an analytic extension from the real values of v into a

(possibly punctured) neighbourhood of the origin of a radius R in the complex plane. An
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example of functions admitting such an extension are the eigenfunctions of the harmonic

oscillator (3.2.42) considered in the next section. In order for the solution (3.2.30) to be

well-defined for all values of t one needs the following inequality to hold∣∣∣∣mω − (ix2 + E)

mω + (ix2 + E)

∣∣∣∣ < R . (3.2.34)

It implies the allowed range of E around the special value mω:

1−R
1 +R

mω < E <
1 +R

1−Rmω. (3.2.35)

For every such E, the respective allowed range of x2 around 0 can be similarly deduced

from the required inequality (3.2.34), see the arc drawn by thick pen on Fig. 3.1.

The existence of bounds (3.2.35) for possible squeezing parameter E shall be expected

from the physical consideration. The integral formula (3.2.32) produces for a real

v a solution of the irreversible heat-diffusion equation for the time-like parameter u.

However, its analytic extension into the complex plane will include also solutions of time-

reversible Schrödinger equation for purely imaginary v. Since the rotation of the second

variable in (3.2.30) requires all complex values of v with fixed |v|, only a sufficiently small

neighbourhood (depending on the “niceness” of an initial value f2(u, 0)) is allowed. Also

note that a rotation of a squeezed state in the phase space breaks the minimal uncertainty

condition at certain times, however the state periodically “re-focus” back to the initial

minimal uncertainty shape [81].

If a solution f2(u, v), v ∈ R of (3.2.32) does not permit an analytic expansion into a

neighbourhood of the origin, then two analytic extensions f±2 (u, v), for =v > 0 and

=v < 0 respectively, shall exist. Then, the dynamics in (3.2.30) will experience two

distinct jumps for all values of t such that

<
(

e−2iωtmω − (ix2 + E)

mω + (ix2 + E)

)
= 0 . (3.2.36)

Analysis of this case and its physical interpretation may require further investigation.
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−1 Rc −1 Rc −1 R c

Figure 3.1: Shear parameter and analytic continuation. The solid circle is the image of the

line ix2 + E under the Cayley-type transformation (3.2.33). The shadowed region with

dotted boundary (the annulus with radii c and 1) is obtained from the solid circle under

rotation around the origin. The dashed circle of the radius R bounds the domain of the

analytic continuation of the solution (3.2.32).

The left picture corresponds to E = mω (thus c = 0)—there always exists a part of the

shaded region inside the circle of a radius R (even for R = 0).

The middle picture represents a case of some E within the bound (3.2.35)—there is an

arc (drawn by a thick pen) inside of the dashed circle. The arc corresponds to values of

x2 such that the solution (3.2.30) is meaningful.

The right picture illustrates the squeeze parameter E, which is outside of the

range (3.2.35). For such a state, which is squeezed too much, no values of x2 allow

to use the region of the analytic continuation within the dashed circle.
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3.2.2 Harmonic oscillator Hamiltonian and ladder operators in the

space LφE(G/Z)

For determining a complete set of eigenvectors of the harmonic oscillator Hamiltonian

(3.2.21), we consider ladder operators technique as explained in Appendix A. To this end,

let

L+ =

√
mω

π}4

(
i

2mω
X1 −

1

2
X3

)
and L− =

√
mω

π}4

(
i

2mω
X1 +

1

2
X3

)
,

which represent two elements of the Lie algebra g corresponding to the shear group G.

Using the derived representation formulae (1.2.12) we have the following dimensionless

operators—linear combination of infinitesimal generators of the Lie algebra g:

a+ := dρ̃L
+

}4 =

√
mω

π}4

(
1

2mω
(idρ̃X1

}4 ) +
i

2
(idρ̃X3

}4 )

)
=

i

2
√
πmω}4

(−∂1 − (x2 + imω)∂3 + 2πi}4x3 I);

a− := dρ̃L
−

}4 =

√
mω

π}4

(
1

2mω
(idρ̃X1

}4 )− i

2
(idρ̃X3

}4 )

)
=

i

2
√
πmω}4

(−∂1 − (x2 − imω)∂3 + 2πi}4x3 I) .

Since, [(2π)−1/2 idρ̃X3
}4 , (2π)−1/2 idρ̃X1

}4 ] = i}4I , which gives a realisation of the canonical

commutation relation in the Hilbert space LφE(G/Z), one can immediately verify the

commutator relation

[a−, a+] = I . (3.2.37)

Thus, all properties of the ladder operators included in Appendix A are valid for a−,

a+ here. Notably, the Hamiltonian (3.2.21) is expressible in terms of the above ladder

operators:

H = }4ω(a+a− +
1

2
I) . (3.2.38)

Thus the following commutators hold:

[H, a+] = }4ωa
+, [H, a−] = −}4ωa

−.
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Moreover, the creation and the annihilation operators are adjoint of each other:

(a−)∗ = a+ (3.2.39)

where “*” indicates the adjoint of an operator in terms of the inner product defined

by (2.1.14). Then, from (3.2.38) and (3.2.39) we see that H∗ = H .

Corollary 3.2.2 The function (see (2.2.41) for q = mω)

Φ0(x1, x2, x3) =

√
2(mωE)1/4

√
ix2 + E +mω

exp

(
−π}4Ex

2
1 − 2πih2x2 + π}4

(Ex1 + ix3)2

ix2 + E +mω

)
,

(3.2.40)

represents a vacuum vector in the space LφE(G/Z). That is,

a−Φ0 = 0.

Proof

The vacuum Φ0 in the image space LφE(G/Z) must be of the form Φ0 =WφEf for some

f ∈ L2(R) where φE(y) = (2h2E)1/4e−π}4Ey
2 with a parameter E > 0. We can simply

find f for which a−Φ0 = 0 as follows. The vacuum Φ0 is defined as the null solution of

the annihilation operator:

a−Φ0 =

√
mω

π}4

(
1

2mω
(idρ̃X1

}4 )− i

2
(idρ̃X3

}4 )

)
Φ0 = 0.

That is, (
idρ̃X1

}4 +mωdρ̃X3
}4

)
WφEf = 0.

But, the intertwining property, Corollary 2.1.13, implies that

i
d

dt

∣∣∣∣
t=0

ρ̃}4(exp tX1)WφEf +mω
d

dt

∣∣∣∣
t=0

ρ̃}4(exp tX3)WφEf

= i
d

dt

∣∣∣∣
t=0

WφEρh2}4(exp tX1)f +mω
d

dt

∣∣∣∣
t=0

WφEρh2}4(exp tX3)f

=WφE

(
idρX1

h2}4 +mωdρX3
h2}4

)
f
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The latter vanishes if (
idρX1

h2}4 +mωdρX3
h2}4

)
f(y) = 0,

where dρ
Xj
h2}4 are given by (1.2.13). Thus, it has the general solution

f(y) = (2h2mω)1/4e−π}4mωy
2

= φmω(y).

Thus, the vacuum is

Φ0 =WφEφmω (3.2.41)

which has been explicitly computed, see Example 2.2.4 for q = mω. 2

The vacuum Φ0 is normalised (‖Φ0‖x2 = 1) and for the higher order normalised states,

we put

Φj =
1√
j!

(a+)jΦ0, j = 1, 2, . . . .

Orthogonality of Φj follows from the fact that H is self-adjoint.

Corollary 3.2.3 For

u =
Ex1 + ix3

ix2 + E +mω
and v =

mω − (ix2 + E)

mω + (ix2 + E)

we have

Φj(x1, x2, x3) =
1√
2jj!

(v)j/2Hj

(√
−2π}4mω

v
u

)
Φ0 (3.2.42)

where

Hj(y) =

b j
2
c∑

k=0

(−1)kj!

k!(j − 2k)!
(2y)j−2k (3.2.43)

are the Hermite polynomials of order j, see (1.4.41).

Proof

We have

Φj =
1√
j!

(a+)jΦ0
(3.2.41)

=
1√
j!

(a+)j[WφEφmω].
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Again, Corollary 2.1.13 implies that

1√
j!

(a+)j[WφEφmω] =
1√
j!

(√
mω

π}4

)j [
WφE

(
i

2mω
dρX1

h2}4 +
1

2
dρX3

h2}4

)j
φmω

]
=

1√
j!

(√
mω

π}4

)j
×
〈(
− i

2mω

d

dy
+ π}4y

)j
φmω(y), ρh2}4(x1, x2, x3, 0)φE(y)

〉

=
(−1)j/2√

2jj!

〈
Hj

(√
2πmω}4 y

)
φmω(y), ρh2}4(x1, x2, x3, 0)φE(y)

〉
=

(i)j√
2jj!

I(x1, x2, x3)Φ0(x1, x2, x3), (3.2.44)

where

I(x1, x2, x3) =

∫
R

e−πq
2

Hj (αq + βu) dq, (3.2.45)

for α =
√

2πmω√
ix2+E+mω

, β =
√

2πmω}4 and u = Ex1+ix3
ix2+E+mω

. Now, we explicitly evaluate

the above integral as follows:

I(x1, x2, x3) =

∫
R

e−πq
2

Hj (αq + βu) dq

=

∫
R

e−πq
2

bj/2c∑
k=0

(−1)kj!

k!(j − 2k)!
(2 (αq + βu))j−2k dq

=

bj/2c∑
k=0

j−2k∑
n=0

(−1)k2j−2kj!

k!(j − 2k)!

(j − 2k)!

n!(j − 2k − n)!
(βu)j−2k−nαn

∫
R

e−πq
2

qn dq.

In the equality previous to the last, we used the closed form of the expansion of the

binomial (αq + βu)j−2k. Moreover, the last integral vanishes unless n is even, so for

n = 2r with (r = 0, 1, · · ·), we use the identity∫
R

e−πq
2

q2r dq =
(2r)!

22rπrr!
. (3.2.46)
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Thus,

I(x1, x2, x3) =

bj/2c∑
k=0

bj/2c−k∑
r=0

(−1)k2j−2kj!

k!(j − 2(k + r))!
(βu)j−2(k+r)α2r

(
1

22rπrr!

)

=

bj/2c∑
k=0

bj/2c−k∑
r=0

(−1)k2rj!

r!k!(j − 2(k + r))!

(mω)r

(ix2 + E +mω)r
(2
√

2πmω}4u)j−2(k+r).

Let k + r = s, the interior sum becomes

bj/2c∑
k=0

bj/2c∑
s=k

(−1)k2s−kj!

(s− k)!k!(j − 2s)!

(mω)s−k

(ix2 + E +mω)s−k
(2
√

2πmω}4u)j−2s

=

bj/2c∑
s=0

s∑
k=0

[
j!2s

s!(j − 2s)!

s!

k!(s− k)!

(−1

2

)k (
mω

ix2 + E +mω

)s−k
× (2

√
2πmω}4u)j−2s

]
=

bj/2c∑
s=0

[
j!2s

s!(j − 2s)!
(2
√

2πmω}4 u)j−2s

(
−1

2
+

(mω)

ix2 + E +mω

)s ]

=

bj/2c∑
s=0

[
j!

s!(j − 2s)!
(2
√

2πmω}4 u)j−2svs
]

= (i)−j(v)j/2
bj/2c∑
s=0

j!(−1)s

s!(j − 2s)!

(
2

√
−2πmω}4

v
u

)j−2s

= (i)−j(v)j/2Hj

(√
−2πmω}4

v
u

)
.

Thus,

I(x1, x2, x3) = (i)−j(v)j/2Hj

(√
−2πmω}4

v
u

)
.

Finally, upon substitution into (3.2.44), we obtain

Φj(x1, x2, x3) =
1√
2jj!

(v)j/2Hj

(√
−2πmω}4

v
u

)
Φ0.

2
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Due to the general algebraic properties of ladder operators, Appendix A, we still have

a−Φj =
√
jΦj−1. (3.2.47)

Therefore,

a+a−Φj = jΦj.

Hence, for the Hamiltonian H of the harmonic oscillator (3.2.21) we have

HΦj = }4ω(j + 1
2
) Φj.

Recall that CΦ0 = SΦ0 = 0, see the last paragraph after (2.2.41). Furthermore, it can be

verified that both operators C (2.2.34) and S (2.2.39) commute with the creation operator

a+ and thus

CΦj = SΦj = 0, j = 0, 1, 2, . . . .

In other words, the higher-order states Φj satisfy the analyticity condition (2.2.33) and the

structural condition (2.2.38).

Note that the singularity of eigenfunction (3.2.42) at v = 0 is removable due to a

cancellation between the first power factor and the Hermite polynomial given by (3.2.43).

Moreover, the eigenfunction (3.2.42) has an analytic extension in v to the whole complex

plane, thus does not have any restriction on the squeezing parameter E from the

inequality (3.2.34).

The eigenfunction Φj(u, v) (3.2.42) at v = 0 reduces to the power uj of the variable u, as

can be expected from the connection to the FSB space and the Heisenberg group.
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Chapter 4

Classification of Hamiltonian operators

for geometric dynamics

So far we have considered a specific case of Hamiltonian operator, the harmonic

oscillator’s. The corresponding geometric dynamics have been obtained in the space

LφE(G/Z) for the fiducial vector φE being a squeezed Gaussian, that is, the case of φE

(2.2.31) where D = 0. However, certain Hamiltonian operators of the form,

H =
3∑

j,k=1

ajk(idρ̃
Xj
}4 )(idρ̃Xk}4 ), (4.0.1)

where dρ̃Xj are as in (1.2.12), can not be reduced to first-order differential operators when

such a Gaussian (i.e. the case D = 0) is taken as a fiducial vector.

In this chapter, we provide the full classification of the Hamiltonians which can be

geometrised by the minimal three-step nilpotent Lie group G and the cubic exponent in

the fiducial vector (2.2.31). The latter is the Fourier transform of an Airy wave packet [11]

which is useful in paraxial optics [76, 77].
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4.1 Geometrisation of Hamiltonians by Airy coherent

states

Without lose of generality, let us consider the above form of a Hamiltonian H acting in

the image space LφE,D(G/Z) where the fiducial vector φE,D is given by (cf. (2.2.31) and

Fig.4.1)

φE,D(y) = c exp

(
πiD}4

3
y3 − πE}4y

2 + 2πiDh2y

)
. (4.1.2)

Note that in order for φE,D to be in L2(R), the parameter D must be real and as before

E > 0, }4 > 0.

y

x

Figure 4.1: Fiducial vector φE,D (2.2.31): solid blue and red graphs are its real and

imaginary parts respectively. The green dashed envelope is the absolute value |φE,D|,
which coincides with a Gaussian.

Recall that any function f in the image space LφE,D(G/Z) satisfies

Sf = 0, (4.1.3)

where S is given by (2.2.39) which we repeat here:

S = (LX3)2 − 2LX2LX4 − 8π2h2}4I (4.1.4)

= ∂2
33 + 4πi}4∂2 − 8π2h2}4I
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and also f satisfies the analyticity condition

Cf = 0, (4.1.5)

where (see (2.2.30) and the discussion afterwards adapted to the case D 6= 0)

C = −iLX1 − iDLX2 + ELX3 (4.1.6)

= −i∂1 − iD∂2 + (E − iDx1)∂3 − π}4(2iEx1 +Dx2
1)I .

Generally, we may say that the image space LφE,D(G/Z) is annihilated by elements of

the left operator ideal K generated by C (4.1.6) and S (4.1.4). Precisely, an element of

K has the form AC + BS , where A,B are any differential operators. Therefore, any

two operators of K have equal restrictions to the space LφE,D(G/Z). Among many such

operators we can look for a representative with desired properties which geometrises the

dynamic. If the Hamiltonian H (4.0.1) admits, in the sense of Definition 0.0.3, geometric

dynamic in Airy-type coherent state ρh2}4(x1, x2, x3, 0)φE,D then there is a first-order

differential operator, Hr on LφE,D(G/Z) such that Hr −H is in the ideal K generated by

C (4.1.6) and S (4.1.4):

Hrf(x1, x2, x3) = (H + (A∂1 +B∂2 + C∂3 +K)C + FS) f(x1, x2, x3). (4.1.7)

The coefficients A,B,C,K and F are chosen to eliminate all possible second-order

derivatives appear in (4.1.7). Note that the possibility of obtaining Hr as a first-order

differential operator depends on the values E and D in the fiducial vector (4.1.2) and the

respective form of the operator C.
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From the relation (4.1.7), a reduction of the order of H is possible when

A = ia11,

B = −iDa11 + i(a21 + a12),

C = a11(2ix2 − iDx1 + E) + i(a13 + a31),

F = a11(Dx1 − x2 + iE)2 − (a31 + a13)(Dx1 − x2 + iE) + a33

K = −2π}4(a13 + a31)x1 + a11

(
− 2πi}4Ex1 −

D

E
+ 5π}4Dx

2
1

− 4π}4x1x2

)
+
a21

E
.

(4.1.8)

The last parameter K is used to get imaginary coefficients in front of ∂1 and ∂3 in the

Schrödinger equation for Hr. In other words, the choice of K as such will allow to

obtain a geometric action in the plane parametrised by points (x1, x3). Furthermore,

the polynomials (4.1.8) amount to the following restriction on the coefficients ajk of the

Hamiltonian (4.0.1):

a12 = 2Da11 − a21,

a22 = D2a11,

a23 = a13D +Da31 − a32.

(4.1.9)

while, a11, a21, a13, a31, a32 and a33 are free parameters. Thus, we have obtained the

desired classification:

Proposition 4.1.1 The Hamiltonian (4.0.1) can be geometrised over G/Z by Airy-type

coherent state from the fiducial vector (4.1.2) with D 6= 0 or by squeezed Gaussian (i.e.

D = 0) if and only if coefficients ajk satisfy (4.1.9).

A direct consequence of this result is the harmonic oscillator Hamiltonian that we

discussed in the previous chapter, for D = 0 (so, φE,D (2.2.31) is Gaussian) and

a12 = a23 = 0.
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4.2 Example of a geometrisable Hamiltonian and the

fiducial vector φE,D

In light of Proposition 4.1.1, let us consider the matrix (ajk) satisfying condition (4.1.9):

(ajk) =
1

m


1 D 0

D D2 0

0 0 a2

 , (4.2.10)

where m is the mass, see the remark below, and a = mω > 0. Then, the entries of

(4.2.10) together with (4.1.9) bring the Hamiltonian (4.0.1) into the following form:

H =
1

m

((
idρ̃X1

}4

)
+D

(
idρ̃X2

}4

))2
+
a2

m
(idρ̃X3

}4 )2. (4.2.11)

It is the Weyl quantisation of the classical Hamiltonian

h = 1
m

(p+Dq2)2 + a2

m
q2 . (4.2.12)

Explicitly, we have

H = − 1

m

(
∂2

11 + (x2
2 + a2)∂2

33 + 2x2∂
2
13 +D2∂2

22 + 2D∂2
12 + 2Dx2∂

2
32

− 4πi}4x3∂1 − 4πi}4Dx3∂2 − (4πi}4x2x3 −D)∂3 − (4π2}2
4x

2
3 + 2πi}4x2)I

)
.

Remark 4.2.1 According to Remark 1.2.2 and noting that D is measured in unit

LM2/T 2, it can be checked that the Hamiltonian H (4.2.11) has the physical dimension

M L2

T 2 . This also justifies our choice of the parameter a11 being 1
m

.

A reduction of the order of H is achieved by a direct substitution of (4.2.10) into (4.1.8)

which results in:

A =
i

m
, B =

iD

m
, C =

1

m
(2ix2 + E − iDx1) ,

F =
1

m
(Dx1 − x2 + iE)2 +

a2

m
, K =

1

m

(
−2iπ}4Ex1 + 5π}4Dx

2
1 − 4π}4x1x2

)
.
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Subsequently, the reduced Hamiltonian Hr (4.1.7) is

Hr =
1

m

(
4πi}4x3 − 6πi}4Dx

2
1 + 4πi}4x1x2

)
∂1

+
1

m

(
4πi}4Dx3 − 2πi}4D

2x2
1 + 8π}4Ex2 − 4πi}4Dx1x2 + 4πi}4x

2
2

− 4πi}4E
2 − 8π}4DEx1 + 4πi}4a

2

)
∂2

+
1

m

(
2πi}4Dx

2
1x2 − 4πi}4E

2x1 − 4πi}4D
2x3

1 + 4πi}4x2x3

)
∂3

+
π}4

m

(
− 8πh2(Dx1 − x2 + iE)2 − 5π}4D

2x4
1 + 4π}4x

2
3

+ 8iπ}4Ex
2
1x2 − 4π}4E

2x2
1 + 2ix2 − 2iDx1

− 8iπ}4EDx
3
1 + 4π}4Dx

3
1x2 + 2E − 8πh2a

2

)
I.

(4.2.13)

4.2.1 Solving the geometrised Schrödinger equation

For a function f in the image space LφE,D(G/Z), the Schrödinger equation

i}4∂tf(t, x1, x2, x3)−Hf(t, x1, x2, x3) = 0 (4.2.14)

becomes equivalent to the first-order PDE

i}4∂tf(t, x1, x2, x3)−Hrf(t, x1, x2, x3) = 0. (4.2.15)

We proceed to solve (4.2.14) in the same manner as we treated the harmonic oscillator in

the previous chapter . Namely, the first step is to solve the analyticity condition (4.1.5)

for f(t, x1, x2, x3) (using the method of characteristics). Indeed, the following formula

represents a general solution of such an equation:

f(t, x1, x2, x3) = exp

(
πi}4

(
iEx2

1 +
D

3
x3

1

))
(4.2.16)

× φ
(
t,Dx2

1 + 2iEx1 − 2x3, Dx1 − x2 + iE
)
,

for all t.
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Then, the substitution of (4.2.16) into the reduced equation (4.2.15) produces the

following significantly simplified equation(
i}4m∂t + 4πi}4u1u2∂1 + 4πi}4(u2

2 + a2)∂2

+
(
8π2h2}4(u2

2 + a2) + 2πi}4u2 − π2}2
4u

2
1

))
φ(t, u1, u2) = 0,

(4.2.17)

where

u1 = Dx2
1 + 2iEx1 − 2x3, u2 = Dx1 − x2 + iE. (4.2.18)

Equation (4.2.17) is a first-order PDE whose generic solution is

φ(t, u1, u2) =
1√

u2 − ia
exp

(
2aπi

m
t+ 2πih2u2 −

πi}4

4

u2
1

u2 − ia

)
× ψ

(
e

4aπi
m

t u1

u2 − ia
, e

8aπi
m

tu2 + ia

u2 − ia

)
.

(4.2.19)

At this point, (4.2.16) with φ from (4.2.19) solves (4.2.15) for any ψ in (4.2.19) and

obviously satisfies the analyticity condition (4.1.5). The function f(t, u1, u2) (4.2.16)

will also be a generic solution of (4.2.14) if it further satisfies the structural condition

(4.1.3). This requirement leads to the following equation:

∂ηψ(ξ, η) =
1

2π}4a
∂2
ξξψ(ξ, η), (4.2.20)

where

ξ =
u1

u2 − ia
, η =

u2 + ia

u2 − ia
. (4.2.21)

A generic solution of (4.2.20) is given by the integral:

ψ(ξ, η) =

(
a}4

2η

)1/2 ∫
R
k(s) e

1
2
π}4a (ξ−s)2

η ds, (4.2.22)

where k is determined by initial conditions. The function f (4.2.16) with φ (4.2.19) and

ψ (4.2.22) represents a generic solution of (4.2.14).

Remark 4.2.2 Regarding the above integral convergence, the main point is to control

the behaviour of the exponential factor at infinity. This requires a certain range for the
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parameter E. Indeed,∣∣∣∣e− 1
2
π}4a (ξ−s)2

η

∣∣∣∣ = e
<
{
− 1

2
π}4a

(
u1

u2−ia
−s
)2 u2−ia

u2+ia

}

= e
<
{
− 1

2
π}4a

(
u21

(u2−ia)2
− 2u1
u2−ia

s+s2
)
u2−ia
u2+ia

}

= e
<
{
− 1

2
π}4a

(
u21

(u2−ia)2

)
u2−ia
u2+ia

}

× e
<
{
− 1

2
π}4a

(
− 2u1
u2+ia

s+
u2−ia
u2+ia

s2
)}
.

The first factor does not contribute to convergence since it is independent of s. While, for

the second let us rewrite it in terms of xj coordinates:

e
<
{
− 1

2
π}4a

(
− 2u1
u2+ia

s+
u2−ia
u2+ia

s2
)}

= e
<
{
− 1

2
π}4a

(
−2(Dx21+2iEx1−2x3)

Dx1−x2+i(E+a)
s+

Dx1−x2+i(E−a)
Dx1−x2+i(E+a)

s2
)}

= e
− 1

2
π}4a

(
−2(Dx1−x2)(Dx

2
1−2x3)−4(E+a)Ex1

(Dx1−x2)2+(E+a)2
s+

(Dx1−x2)
2+E2−a2

(Dx1−x2)2+(E+a)2
s2
)
.

This is dominated by a Gaussian-like decay at infinity, if

(Dx1 − x2)2 + E2 − a2 > 0. (4.2.23)

This inequality is maintained whenever E ≥ a = mω.

The Hamiltonians (4.2.12) is similar to a charged particle in a magnetic field. In such

a case projections of classical dynamics to the configuration space coincide with the

dynamics with D = 0 (no field). However, classical trajectories in the phase space for

D 6= 0 are significantly different from the rigid rotation of the phase space familiar from

the harmonic oscillator case, see Fig. 4.2.

Quantisation of Hamiltonian (4.2.12) may be relevant for paraxial optics [76, 77]. The

parameter D in the fiducial vector φE,D (4.1.2) is dictated by the respective Hamiltonian,

while the squeezing parameter E is not fixed. However, the convergence of the

integral (4.2.22) requires that E ≥ a = mω as already shown in the remark above.
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q

p

Figure 4.2: Classical orbits in the phase space of the Hamiltonian (4.2.12) .

4.3 Further extensions

The present work provides a further example of numerous cases [32, 45, 47, 48, 87]

when the coherent state transform is meaningful and useful beyond the traditional setup

of square-integrable representations modulo a subgroup H [3, Ch. 8], see Remark 2.1.7.

Specifically, the coherent states parametrised by points of the homogeneous space G/H

are not sufficient to accommodate the dynamics (3.2.30) and (4.2.19).

The method used in this thesis and the construction of coherent states from the group

representations is fully determined by a choice of a group G, its subgroup H , a

representation ρ and a fiducial vector φ. Thus, varying some of these components we

obtain different geometrisable Hamiltonians in the sense of Definition 0.0.3. Therefore,

our work can be naturally extended as follows.

• In the context of the present group G and the fiducial vector φE,D (4.1.2) one may

look for Hamiltonians beyond the quadratic forms (4.0.1). Even in this case, the

nature of the ideal algebra of elements AC + BS (see the paragraph after (4.1.6))

still suggests a possibility for order-reduction of the respective Hamiltonians.

• Corollary 2.1.15 in such a general version offers a concrete base for a wide

applicability. Still in the context of the group G one may also look for
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another fiducial vectors, which will be null-solutions to more complicated analytic

conditions than (2.2.30).

• Many different groups can be considered instead of G with the Schrödinger

group [76, 77] to be a very attractive choice. Indeed, a more refined coherent state

transform can be achieved by the Schrödinger group S introduced in Section 1.3

because it is the largest natural group for describing coherent states for the harmonic

oscillator, see [1] [25, Ch. 5]. However, as was mentioned at the end of Section 1.3,

the smaller group G has more representations than the larger Schrödinger group.

Thus, advantages of each group for geometric description of quantum dynamics

needs to be carefully investigated.

Finally, our technique may be extended to differential equations in Banach spaces through

the respective adaptation of covariant transforms, see [23, 24, 45].
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Appendices

A Algebraic properties of ladder operators

Here we briefly discuss the ladder operators technique which is useful for the study of

the eigenvalues and the corresponding eigenvectors of a harmonic oscillator Hamiltonian

based just on “ the canonical commutation relation”

[Q,P ] = i}I. (A.24)

Here Q and P are the usual position and momentum operators restricted to the Schwartz

space. We only need to use the fact that Q and P are essentially self-adjoint in this case.

In fact, all properties we are deriving below neither depend on what a Hilbert space being

considered nor the explicit expressions of Q and P . We remark that for general self-

adjoint operators, one can use Weyl relation [33, § 11.2][66, § 8.5] to avoid the questions

about the domain of definition of the relative operators that satisfy (A.24).

We introduce a pair of operators:

a− =
1√
2}

(λQ+
i

λ
P ), a+ =

1√
2}

(λQ− i

λ
P ), (A.25)

where λ is a positive real parameter. In particular, for λ =
√
mω we have the harmonic

oscillator Hamiltonian; H = 1
2m
P 2 + mω2

2
Q2 = }ω

2
(a+a− + a−a+).

The operators a− and a+ are called the annihilation operator and the creation operator,
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respectively (together called ladder operators.) These operators are conjugate,

(a−)∗ = a+, (A.26)

where ‘*’ denotes the adjoint of an operator on L2(R). The relation [Q,P ] = i}I implies

that,

[a−, a+] = a−a+ − a+a− = I. (A.27)

Let

N = a+a−.

Then, the relation (A.26) results in

〈Nφ, φ〉 =
〈
a+a−φ, φ

〉
=
〈
a−φ, a−φ

〉
=
∥∥a−φ∥∥2 ≥ 0. (A.28)

Thus, the operator N is positive and hence its eigenvalues (when exist) are non-negative

[22, § 4.9]. Furthermore, from (A.27) we can see that

[N, a−] = Na−−a−N = (a+a−)a−−a−(a+a−) = (a+a−−a−a+)a− = −a−. (A.29)

Similarly,

[N, a+] = a+. (A.30)

A very important consequence of (A.29) is that if φ is an eigenvector ofN with eigenvalue

k, that is, Nφ = kφ, then

N(a−φ)
(A.29)
= a−(N − I)φ = (k − 1)a−φ,

which means that if a−φ 6= 0, then this is an eigenvector of N with the eigenvalue k − 1.

Repeating the above calculation for φ1 := a−φ and so on, we get

N((a−)mφ) = (k −m)φm ,

where φm = (a−)mφ. This process of applying the operator a− repeatedly to φ has

to terminate since otherwise one must pass on to negative eigenvalues of N which
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contradicts the property of the operator N being positive. Thus, there must exist a certain

non-negative integer m0 such that (a−)m0φ = 0. That is, k−m0 = 0, and hence k = m0,

which implies that the spectrum of N consists of non-negative integers, in other words,

the spectrum of N is discrete.

The vector φm0 := φ0 is called vacuum vector which is defined by

a−φ0 = 0. (A.31)

It is an eigenvector of N with the zero eigenvalue.

On the other hand, the relation (A.30) implies that

N(a+φ0)
(A.30)
= a+(N + I)φ0 = a+φ0.

That is, a+φ is also an eigenvector of N and the corresponding eigenvalue is 1. Similarly,

(a+)2φ0 is another eigenvector of N with eigenvalue 2. Hence, the set of eigenvectors of

N are of the form

φn :=
1√
n!

(a+)nφ0, n = 0, 1, 2, . . . . (A.32)

Moreover, it can be shown by induction that

[a−, (a+)n] = n(a+)n−1. (A.33)

By virtue of relation (A.33) we can see that

a−φn =
1√
n!

(a−(a+)n − (a+)na−)φ0

=
1√
n!

[a−, (a+)n]φ0

(A.33)
=

√
n√

(n− 1)!
(a+)n−1φ0.

=
√
nφn−1. (A.34)
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Now,

‖φn‖2 = 〈φn, φn〉

=

〈
1√
n
a+φn−1, φn

〉
=

1√
n

〈
φn−1, a

−φn
〉

(A.34)
= 〈φn−1, φn−1〉 .

Hence, once the vacuum vector φ0 is normalised then so are all φn. For orthogonality of

{φn}∞n=0 note that for any eigenvectors φm, φn of the operator N with eigenvalues m, n

we have

〈Nφm, φn〉 = m 〈φm, φn〉 .

But, we also have

〈Nφm, φn〉 = 〈φm, N∗φn〉 = 〈φm, Nφn〉 = n 〈φm, φn〉 .

Thus,

(m− n) 〈φm, φn〉 = 0.

From this we see that if m 6= n then 〈φm, φn〉 = 0.

Particularly, for the normalised eigenvectors φn we have

a−φn =
√
nφn−1; (A.35)

a+φn =
√
n+ 1φn+1 (A.36)

which explain the name ladder operators. This implies that

Nφn := a+a−φn = nφn. (A.37)

Since H = }ωa+a− + }ω
2
I, the relation (A.37) implies that Hφn = ω}(n + 1

2
)φn from

which one determines the spectrum of H . For explicit expression of the vacuum and all

φn see Section 1.4, particularly, Subsection 1.4.3.
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B Induced representations of nilpotent Lie groups

B.1 The action of a Lie group on a homogeneous space

LetG be a Lie group andH be a closed subgroup ofG, a homogeneous spaceX is defined

as the space of left (right) cosets of the subgroup H [27, 44, 49]. That is, X = G/H =

{gH : g ∈ G}, where gH = {gh : h ∈ H}. The respective equivalence relation is given

as g′ ∼ g if and only if g′ = gh, for h ∈ H.

Definition B.1 Let G and H be as above and let p be the natural projection p : G →
G/H and s : G/H → G be a section, that is, s is a right inverse of p. Then, the left action

of the group G on the homogeneous space X = G/H is given by

g · x = p(gs(x)), g ∈ G, and x ∈ X, (B.38)

where gs(x) is calculated using the respective group law.

Any element g ∈ G can be uniquely written as [43, § 13]

g = s(x)h, x = p(g) and h ∈ H. (B.39)

To see this, let x = gH , the natural projection p maps each element g ∈ G to its

equivalence class, p(g) = gH . Since s(x) ∈ G, there must exist g′ ∈ G such that

s(x) ∼ g′ which means that

s(x) = g′h1, h1 ∈ H. (B.40)

But, g′ = s(x)h−1
1 implies that g′H = p(g′) = p(s(x)h−1

1 ) = p(s(x)) = x. Thus, g′ ∼ g

and this means g′ = gh2, h2 ∈ H . Now substituting into (B.40) gives

g = s(x)h, (B.41)
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where h = (h2h1)−1 which is an element of H .

In the following example we compute the action g−1 · x as this will be used in connection

with the induced representations of the group G below.

Example B.2 Consider the shear group G :

• for the centre Z = {(0, 0, 0, x4) ∈ G : x4 ∈ R}, observe that

G 3 (x1, x2, x3, x4) = (x1, x2, x3, 0)(0, 0, 0, x4), this defines maps, according to

(B.39),

p : G→ G/Z; p : (x1, x2, x3, x4) 7→ (x1, x2, x3).

s : G/Z → G; s : (x1, x2, x3) 7→ (x1, x2, x3, 0).

Thus, the action of G on G/Z ∼ R3 is

(x1, x2, x3, x4)−1 : (x′1, x
′
2, x
′
3) 7→ (x′1 − x1, x

′
2 − x2, x

′
3 − x3 − x1x

′
2 + x1x2).

• For the subgroup H1 = {(0, x2, x3, x4) ∈ G : xj ∈ R} it can be checked that

(x1, x2, x3, x4) = (x1, 0, 0, 0)(0, x2, x3 − x1x2, x4 − x1x3 + 1
2
x2x

2
1) which defines

p : G→ G/H1; p : (x1, x2, x3, x4) 7→ x1.

s : G/H1 → G; s : x 7→ (x, 0, 0, 0).

So, the action of G on G/H1 ∼ R is

(x1, x2, x3, x4)−1 : x′ 7→ x′ − x1.

B.2 Induced representations

The induced representations (in the sense of Mackey) is one of the pillars of the theory

of representation [27, 40, 43, 44] with strong connections to physics [10, 57, 58, 59] and
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further research potential [50, 51, 53]. We briefly outline the method aiming mainly to

build representations of the group G.

Let G be a nilpotent Lie group and H be a closed abelian subgroup of G. According

to Kirillov [44], unitary representations of G are induced from one-dimensional

representations (characters) of its subgroups. Explicitly, for a unitary character χ of

the subgroup H ⊂ G, that is, χ(h) ∈ C and for h, h′ ∈ H; χ(hh′) = χ(h)χ(h′) and

|χ(h)| = 1, we consider the space Lχ2 (G) of square-integrable functions F defined on the

group G and have the (right) H-covariance property

F (gh) = χ(h)F (g), g ∈ G, h ∈ H, (B.42)

where the bar sign indicates the complex conjugation. The space Lχ2 (G) is invariant under

the left G-shifts:

Λ(g) : F (g′) 7→ F (g−1g′), g, g′ ∈ G. (B.43)

The restriction of the left G-shifts (B.43) to the space Lχ2 (G) is called induced

representation (from the character χ).

An equivalent realisation of the above induced representation conveniently defined on

a smaller function space. Consider the natural projection p : G → G/H and a right

inverse (section) s : G/H → G. Different choices of this section lead to equivalent

representations below [3, Ch. 4] . As mentioned above, any g ∈ G has a unique

decomposition of the form g = s(x)h, where x = p(g) ∈ G/H and h ∈ H . Note

that G/H is a left homogeneous space with the G-action defined as in (B.38).

For a character χ of H we can define a lifting Lχ : L2(G/H)→ Lχ2 (G) as follows:

[Lχf ](g) = χ(r(g))f(p(g)) where f(x) ∈ L2(G/H) (B.44)

where the map r : G→ H is given through p and s:

r(g) = (s(x))−1g, where x = p(g) ∈ G/H. (B.45)
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Note that the map r gives the solution of the so-called master equation [44, Appendix V]:

g−1s(x) = s(g−1 · x)h(x, g) (B.46)

in the form h(x, g) = r(g−1s(x)).

The image space of the lifting Lχ satisfies (B.42) and is invariant under left shifts (B.43).

We also define the pulling P : Lχ2 (G) → L2(G/H), which is a left inverse of the lifting

and explicitly can be given, for example, by [PF ](x) = F (s(x)). Then the induced

representation on L2(G/H) is generated by the formula ρχ(g) = P ◦ Λ(g) ◦ Lχ. This

representation has the realisation ρχ in the space L2(G/H) by the formula [43, § 13.2.(7)–

(9)]:

[ρχ(g)f ](x) = χ̄(r(g−1s(x)))f(g−1 · x) , (B.47)

where g ∈ G, x ∈ G/H , h ∈ H and r : G → H , s : G/H → G are maps defined above

and “·” denotes the action (B.38) of G on G/H .

Since χ̄ is a unimodular multiplier and G/H posses a left invariant Haar measure,

because G is nilpotent, formula (B.47) defines a unitary representation of the group G

on L2(G/H), where L2(G/H) is the Lebesgue space of square-integrable functions on

G/H ∼ Rn (n is the dimension of G/H) with the inner product

〈f, g〉 =

∫
G/H

f(x)g(x) dx,

where dx is the Lebesgue measure on Rn.

The map r enjoys the property:

r((g1g2)−1s(x)) = r(g−1
2 s(g−1

1 · x))r(g−1
1 s(x)). (B.48)

This property of the map r is necessary for the following to hold

ρχ(g1)ρχ(g2) = ρχ(g1g2).
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[24] H. G. Feichtinger and K. H. Gröchenig. Banach spaces related to integrable group

representations and their atomic decompositions. II. Monatsh. Math., 108(2-

3):129–148, 1989. 78

[25] G. B. Folland. Harmonic analysis in phase space, volume 122 of Annals of

Mathematics Studies. Princeton University Press, Princeton, NJ, 1989. 3, 5, 9,

12, 20, 22, 24, 28, 34, 37, 43, 51, 53, 78



BIBLIOGRAPHY 90

[26] G. B. Folland. Real analysis. Pure and Applied Mathematics. John Wiley & Sons,

Inc., New York, second edition, 1999. 13

[27] G. B. Folland. A course in abstract harmonic analysis. Studies in Advanced

Mathematics. Boca Raton, FL: CRC Press., second edition, 2016. 47, 83, 84

[28] J.-P. Gazeau. Coherent states in quantum physics. Wiley-VCH Verlag, 2009. 1, 2,

5, 6, 18, 19, 24, 26

[29] R. J. Glauber. Coherent and incoherent states of the radiation field. Phys. Rev.,

131:2766–2788, Sep 1963. 1, 2

[30] H. Goldstein. Classical mechanics. Addison-Wesley Publishing Co., Reading,

Mass., second edition, 1980. Addison-Wesley Series in Physics. 29
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