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Abstract 

Ependymal cells (ECs) of the central canal (CC) are a quiescent population of neural stem 

cells (NSCs) present in the intact spinal cord. Normally dormant ECs are activated by injury; 

exhibiting increased proliferation, migration, and differentiation. Astrocytes and 

oligodendrocytes also generate new progeny in the intact and injured postnatal spinal cord. 

Understanding how the microenvironment of the spinal cord modulates proliferation and 

differentiation is essential if we are to consider harnessing endogenous mechanisms such as 

these to aid spinal cord repair. This project aims to investigate the role that the 

neurotransmitter GABA may play in modulating proliferation and differentiation in the adult 

spinal cord.      

Alterations in the levels of ambient γ-aminobutyric acid (GABA) in the spinal cord in 

vigabatrin- treated or GAD67-GFP mice resulted in either a decrease or an increase in the 

number of proliferating EdU+ cells in the white matter (WM), grey matter (GM), and CC 

compared to control, respectively. In the postnatal spinal cord there appears to be an inverse 

relationship between GABAergic signalling and the number of proliferating cells. Potentiation 

of GABAaR by the central benzodiazepine (BZ) recognition site (CBR) ligands etifoxine and 

midazolam also increased the number of EdU+ cells compared to vehicle. The endogenous 

CBR site ligand diazepam binding inhibitor (DBI) was found to be expressed in the spinal 

cord, with robust expression in ECs, suggesting the presence of an intrinsic mechanism 

which modulates the basal inhibitory GABAergic tone to restrict proliferation. Indeed, animals 

with alteration in ligand binding at the CBR site as a result of either flumazenil treatment, 

Ro15-4513 treatment, or G2F77I mutation possessed greater numbers of EdU+ cells 

compared to control animals. Flumazenil treatment also increased proliferation after 

lysophosphatidylcholine (LPC) -induced demyelination in the dorsal column.  The effect of 

GABAergic modulation upon differentiation was varied, and its contribution to differentiation 

of specific cell types in the spinal cord was unclear.  

This study shows that GABA both positively and negatively influences proliferation in the 

postnatal spinal cord and that endogenous ligands such as DBI may be instrumental in the 

restrictive nature of GABA. Work presented here provides a basis for further study into how 

modulation of GABAaR by endogenous ligands such as DBI may also influence spinal cord 

self-regeneration and recovery.   
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1.1 The spinal cord  

The central nervous system (CNS) is comprised of the brain and the spinal cord. The spinal 

cord is essential for the connection of brain and body, allowing signal transmission to the 

sensory cortex by ascending sensory afferents and providing a path for descending signals 

to effector organs from the motor cortex. The spinal cord also acts as a centre for the 

integration and coordination of complex neuronal circuits involved in sensory, autonomic, 

and motor functions. The central pattern generator, the neural network comprised of spinal 

motor neurones (MNs) involved in rhythmic movement, is also housed in the spinal cord. 

Furthermore, independent control of reflex action also arises from the spinal cord. 

The spinal cord begins at the brainstem, where it extends from the caudal medulla 

oblongata, passes through the foramen magnum at the base of the skull, and continues 

through the vertebral column, eventually terminating at the first lumbar vertebrae as the filum 

terminale. The cauda equina, a bundle of lumbar and sacral nerves and nerve rootlets, 

occupies the lumbar cistern surrounding the filum terminale. The spinal cord is split into 4 

segments; cervical, thoracic, lumbar, and sacral, where exiting spinal nerves are named for 

the segment from which they originate.  

Spinal nerves contain mixed sensory and motor nerve fibres which arise from the dorsal and 

ventral root, respectively (figure 1.1). Sensory primary afferents enter the spinal cord via the 

dorsal root and synapse onto spinal neurones within the dorsal horn GM, their cell bodies 

are located within dorsal root ganglia. Axons from both motor neurones and sympathetic 

preganglionic neurones exit via ventral roots. Cell bodies of motor neurones and sympathetic 
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preganglionic neurones are primarily located in the ventral horn GM and intermediolateral 

nucleus (IML), respectively.  

 

 

Neuronal cell bodies are housed within the central GM of the spinal cord which is 

cytoarchitectonically divided into defined anatomical layers or laminae (Rexed, 1952; Rexed, 

1954). The 10 laminae (I-X) can be broadly divided into: the sensory dorsal horn (I-VI), the 

intermediate grey (lamina VII), and the ventral horn (VIII-IX). Lamina X surrounds the spinal 

cord CC a cerebrospinal fluid (CSF) filled space which extends longitudinally through the 

rostrocaudal extent of the spinal cord. The GM contains sites of termination of primary 

afferent neurones and descending neurones, interneurones, and cells from ascending tracts 

which project to the brain. The GM is surrounded by the WM. WM comprises the myelinated 

and unmyelinated axons which form the ascending and descending spinal tracts that relay 

Figure 1.1 The spinal cord is a highly organised structure  

Schematic of the spinal cord in the transverse plane depicting the GM laminae (DH: dorsal 

horn, VH: ventral horn), WM ascending and descending tracts, and ventral and dorsal rootlets. 

Ascending tracts are coloured in red and include: SCT: spinocerebellar tract, STT: 

spinothalamic tract, and the dorsal column medial lemniscus system. Descending tracts are 

coloured in green and include CST: corticospinal tract and EPT: extrapyramidal tract.   
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signals to and from the brain and between spinal segments. Ascending tracts relay sensory 

information and include the dorsal columns, spinothalamic, and spinocerebellar tracts which 

are found in the dorsal, lateral, and ventral columns. Conversely, descending tracts, 

including the corticospinal, corticobulbar, and extrapyramidal tracts relay motor information 

and are present in the lateral and ventral columns (figure 1.1).  

1.2 Spinal cord injury  

Axonal fibre tracts within the spinal cord are essential for communication between the spinal 

cord and the brain in order to coordinate sensory input and motor output. Spinal cord injury 

(SCI) disrupts these crucial pathways, leading to sensorimotor deficits below the lesion site 

which result in variable degrees of loss of movement and sensation. Each year, around the 

world, between 250,000 and 500,000 experience significant trauma which results in SCI 

(https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury). A patient’s experience 

of SCI, including the degree of physical impairment, costs associated with care, and life 

expectancy, is directly related to injury severity and the spinal level affected (Hawryluk et al., 

2008). Higher level and/or more complete spinal injuries are associated with greater 

functional impairments, poorer prognoses, and a greater cost to society by healthcare, 

whereas lower level and/or incomplete injuries are generally associated with a more 

favourable clinical outcome (McDonough, Ashley and Martínez-Cerdeño, 2012).  

1.2.1 Mechanisms of spinal cord injury   

The neuropathology of SCI begins when the spinal cord is lacerated or macerated by a 

sharp penetrating force, or is contused or compressed by high energy mechanical blunt 

trauma (Silva et al., 2014). This initial primary neurological insult leads to a cascade of 

secondary injury events which result in further tissue damage and cellular degeneration in 

the WM and GM which persist over a period of minutes to weeks after the initial insult 

(McDonough, Ashley and Martínez-Cerdeño, 2012; Faulkner et al., 2004). These include 

vascular changes (Figley et al., 2014; Tator and Koyanagi, 1997), oxidative neuronal cell 
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death by free radial formation (Toborek et al., 1999), intense local inflammation and release 

of inflammatory cytokines (Stammers et al., 2012), glutamate excitotoxicity (Park, E. et al., 

2004; Mazzone et al., 2013) and disruption of ionic balance of K+, Na+, and Ca2+ (Silva et al., 

2014; Stys and Lopachin, 1998). The culmination of these primary and secondary injury 

processes results in the death of significant numbers of neurones, oligodendrocytes, 

microglia, and astrocytes. The death of oligodendrocytes continues for many weeks 

following injury, causing wide-spread demyelination in spared axons which prevents efficient 

signal propagation in remaining axons, and leaves them vulnerable to further degeneration 

(Crowe et al., 1997; Meletis et al., 2008; Silva et al., 2014). Finally, there is a chronic phase 

of injury which leads to neurological impairment in both antero- and retrograde directions, 

including the brain (Silva et al., 2014; Cramer et al., 2005; Yiu and He, 2006).  

1.2.2 New avenues and challenges in spinal cord repair  

Unlike the rest of the body, the CNS shows poor regenerative capabilities, and until recently, 

reconstruction of damaged neural circuits following SCI was thought to be hopeless. As yet, 

there is no effective cure for SCI (Harvey, 2016).  

One of the major barriers to axonal regeneration following SCI is the presence of an 

inhibitory environment at the lesion site (Cregg et al., 2014). Following injury there is a 

period of reactive gliosis in which astrocytes proliferate and swell in size, exhibiting higher 

expression levels of GFAP, vimentin, and nestin (Cregg et al., 2014). These hypertrophic 

astrocytes undergo major restructuring and extend long filamentous processes which 

entangle to form a mesh-like layer that acts as a physical barrier to regenerating axons of 

descending and ascending tracts (Wanner et al., 2013; Menet et al., 2003). The dense glial 

scar has also been shown to synthesise and deposit inhibitory chondroitin sulphate 

proteoglycans (CSPGs) which further limit axonal regeneration (Jones et al., 2003; McKeon 

et al., 1991; Tang et al., 2003). 
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Conversely, other studies, which genetically abrogate mechanisms involved in reactive 

gliosis and glial scar formation, have shown that seclusion of the lesion site limits tissue 

damage, restricts inflammation, and preserves function in the subacute phase of SCI 

(Faulkner et al., 2004; Sabelstrom et al., 2013; Sofroniew, 2015; Renault-Mihara et al., 2017; 

Okada, S. et al., 2006). Animals with defective glial scar formation exhibit enhanced 

demyelination, increased neuronal loss, poor lesion sealing and cavitation, and greater 

motor impairment compared to injury matched controls (Okada, S. et al., 2006; Faulkner et 

al., 2004; Sabelstrom et al., 2013; Herrmann et al., 2008). More recently, the glial scar has 

also been shown to support, rather than hinder, axon outgrowth, even in the chronic phase 

of SCI (Anderson, M.A. et al., 2016). 

Whilst the exact contribution of the glial scar to regenerative failure following SCI remains to 

be determined, it is clear that spontaneous recovery is limited and current therapeutic 

options are lacking. However, replacement of the damaged cells and introduction of scar 

‘bridging’ cells by cell transplantation has emerged as a potential strategy to promote repair 

following SCI. Such interventions have already shown efficacy at both the pre-clinical and 

clinical level (Mackay-Sim and St John, 2011; Saberi et al., 2011) and have therefore 

garnered interest as a possible new approach for the treatment of SCI.    

1.2.3 Cell transplantation for neural regeneration  

Numerous cell types have been assessed for their capacity to treat SCI by transplantation 

(Chhabra and Sarda, 2017; Nakamura and Okano, 2013). Embryonic stem cells (ESCs) 

were the first population studied for their regenerative potential. ESCs can differentiate into 

neuronal cell types both in vitro and in vivo (Okada, Y. et al., 2008). However, owing to the 

tumorigenic potential of transplantation of undifferentiated ESCs much work has focused on 

the effects of ESC-derived neural stem cells (NSCs) or neural stem/progenitor cells (NSPCs) 

transplantation following SCI. Transplantation of NS(P)Cs derived from foetal spinal cord 

tissue into injured spinal cord results in successful graft survival, differentiation of 
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transplanted cells, and graft connectivity by host-graft integration (Bregman et al., 1993; 

Bonner et al., 2011). Improved functional recovery has also been reported in animal models 

of SCI following transplantation of rat foetal spinal cord-derived NSPCs (Ogawa et al., 2002), 

mouse foetal striatum-derived NSPCs (Okada, S. et al., 2005; Abematsu et al., 2010), and 

human foetal brain-derived NSPCs (Iwanami et al., 2005; Cummings et al., 2005). 

Intraspinal grafting of human foetal spinal cord tissue is also feasible and safe in humans 

(Wirth et al., 2001).  

Transplanted foetal NSPC grafts clearly possess the capacity to differentiate, promote axon 

growth, and myelinate the injured cord, leading to improved functional recovery, however 

ethical concerns regarding the source of these cells remain (Rosenfeld et al., 2008). 

Furthermore, there are also concerns regarding the possibility of immunological rejection 

and the effects that immunosuppression would have on the health of patients with SCI.  

Induced pluripotent stem cells (iPSCs), which are generated by reprogramming adult 

somatic cells to a pluripotent state (Takahashi et al., 2007), may help to circumvent these 

issues. Clinical iPSC-based therapy for SCI would allow skin cells taken from a patient with 

SCI to be reprogrammed into autologous iPSCs, followed by further differentiation into 

NSCS, for implantation into the lesion site of the patient (Lee-Kubli and Lu, 2015). Preclinical 

studies have shown that these iPSC-derived NSCs survive, proliferate and differentiate 

following implantation and give rise to extensive axon growth throughout both the WM and 

GM (Lu et al., 2014). Lu et al., (2014) report that the majority of grafted cells (71.2%) 

differentiated into NeuN+ mature neurones which extended axons reaching as far rostrally as 

the olfactory bulb and as far caudally as the lumbar spinal cord (Lu et al., 2014). Implantation 

of iPSC-derived NSCs however did not result in functional improvement in tests of forelimb 

function. There was an absence of neurofilament expression in graft-derived axons and 

myelination by host oligodendrocytes was not observed, suggesting that neural conduction 

may not have been repaired despite evidence of host axonal regeneration (Lu et al., 2014).     
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Disappointing results from functional studies following implantation of iPSC-derived NSC 

grafts are overshadowed by concerns about the safety of iPSC-derived cell grafts. Several 

studies have found that iPSCs exhibit tumorigenicity even if all undifferentiated cells are 

purged from the population (Nori et al., 2011; Lee, A.S. et al., 2013). Therefore, despite 

promising results relating to the differentiation and integration of iPSC-derived NSCs in SCI, 

such concerns seriously limit the consideration of iPSC-derived grafts for clinical use at this 

current time. Despite early optimism in NSC grafts, novel therapeutic avenues to replace lost 

and damaged cells following SCI are still absent.      

1.2.4 Potential for repair by endogenous NSCs  

The mammalian spinal cord lacks the remarkable self-regenerative capability which is seen 

following SCI in lower vertebrates such as the eel (Dervan and Roberts, 2003), lamprey 

(Zhang, G. et al., 2014), axolotl (Thygesen et al., 2016), and zebrafish (Reimer et al., 2008), 

which permits functional recovery in these organisms. This is in direct opposition to the 

mammalian spinal cord which shows little evidence of self-repair following SCI (McDonough, 

A. et al., 2013; Barnabe-Heider et al., 2010; Meletis et al., 2008; Mothe and Tator, 2005). 

However, the mammalian spinal cord exhibits an injury-induced proliferative response, much 

like that seen in lower vertebrates (Johansson et al., 1999; Barnabe-Heider et al., 2010; 

Meletis et al., 2008; Lytle and Wrathall, 2007; Mothe and Tator, 2005; Lacroix et al., 2014). 

The majority of new cells following injury differentiate into scar forming astrocytes which 

occupy the lesion core rather than reparative neurones or remyelinating oligodendrocytes 

(Barnabe-Heider et al., 2010; Meletis et al., 2008). The gliogenic environment of the injured 

mammalian spinal cord may therefore contribute to its poor recovery.  

It has been suggested that injury-induced proliferation is due to activation of dormant NSC 

properties in resident spinal cord cells which are relatively quiescent under normal conditions 

(Hamilton, L.K. et al., 2009). Investigation into the proliferative capacity of the spinal cord, 

how these NSC-like populations behave in the intact cord, including the signals which 
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modulate their proliferation and differentiation is essential if we are the harness any 

endogenous proliferating cells for repair in conditions such as SCI.  One of the major barriers 

to repair following SCI is the development of an inhibitory environment, including the glial 

scar, which prevents adequate neuroaxonal recovery for significant sensorimotor 

improvement. Understanding how niche signalling in the spinal cord restrains proliferation 

and differentiation in the intact cord, where cells only exhibit self-renewal for population 

maintenance, will also help elucidate signalling pathways which may be involved in the 

inhibitory environment seen after SCI.    

1.3 Proliferation and neurogenesis in the adult CNS  

For 100 years a central dogma existed in neuroscience which postulated that the vast 

majority of neural cells were established during embryonic development and that after birth 

no new cells were added to the CNS. The advent of tritiated thymidine autoradiography to 

label proliferating cells allowed Altman and colleagues to show for the first time that new 

neurones were indeed generated in the adult brain (Altman and Das, 1965). Following this, 

continuing advances in the field such as in vivo thymidine analogue labelling of proliferating 

cells, cell-type-specific immunohistochemical markers, retroviral tracing, and genetic fate 

mapping studies have established that pools of NSCs and NSPCs exist within specific 

niches of the adult CNS. In vitro generation of neurospheres from specific regions of the 

adult brain and spinal cord has given evidence for the existence of cells within these 

specialised niches which possess the fundamental hallmarks of NSCs; self-renewal and 

multipotency of progeny. NSC behaviour within the postnatal CNS has been evidenced 

many times in many different species (reviewed by (Ma et al., 2009)), including humans 

(Eriksson et al., 1998; Spalding et al., 2013; Dromard et al., 2008) and generates excitement 

and optimism in the field about the possibility of a new therapeutic avenue for CNS repair. 
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1.3.1 What is a neural stem cell?  

Stem cells are notoriously difficult to define and identify, often encompassing a 

heterogenous population of cells, with regional diversity, within a specialised niche, as is 

often seen in somatic stem cell populations (Goritz and Frisen, 2012; Bonaguidi et al., 2011). 

These difficulties also apply to NSCs and are compounded by the fact that there is no single 

molecular marker to unambiguously identify NSCs in situ as they express a wide range of 

markers which are also expressed by other neural cell types.  

In general, NSCs are defined as cells which possess both self-renewal capacity and 

multipotency within the CNS; that is the ability to generate newly proliferated progeny which 

are capable of differentiation into mature neural lineage cells, either neurones, astrocytes, or 

oligodendrocytes. NSC possess 2 patterns of division, either asymmetric; involving the 

generation of another NSC and a progenitor which differentiates into another neural cell 

type, or symmetric; involving the generation of 2 NSCs or 2 progenitor cells (Egger et al., 

2010) (figure 1.2). The balance of asymmetric vs symmetric division is an important 

mechanism which allows control over the stem cell population and prevents proliferative 

exhaustion of the stem cell pool (Urban et al., 2016). 

In the CNS, cells with self-renewal capacity and multipotency are found in the subventricular 

zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus 

(Kempermann, G. and Gage, 1999; Lim and Alvarez-Buylla, 2016). It is debated however 

whether NSCs must be tripotent, and therefore generate neurones, astrocytes, and 

oligodendrocytes, in order to be classified as a ‘true’ NSC. Indeed, recent studies using 

genetic fate mapping and clonal lineage tracing of SVZ and SGZ NSCs has called the tri-

lineage potential of well-established NSCs into question. Recent work shows that type B 

radial-glia like cells of the SVZ population generate only neurones and astrocytes (Calzolari 

et al., 2015; Ortega et al., 2013). Furthermore, it also appears that SGZ NSCs only produce 

neurones and astrocytes (Bonaguidi et al., 2011). It has long been argued that ECs are not 
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Figure 1.2 NSCs exhibit either asymmetric or symmetric division  
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NSCs in the true sense as they are not tripotent and only generate astrocytes and 

oligodendrocytes for tissue repair after SCI (Barnabe-Heider et al., 2010). Mature neurones 

are rarely generated from EC progeny (Barnabe-Heider et al., 2010). However, if we were to 

use this definition for all NSCs then the long established SVZ and SGZ NSCs would also fail 

to fit this categorisation.   

These findings highlight the need for a standardised NSC definition in regards to how these 

stem cells behave in order to prevent ambiguity when attempting to identify possible novel 

latent NSC populations such as spinal cord ECs.  

1.3.2 Neurogenic niches in the adult brain 

There are 2 areas within the postnatal mammalian brain where NSCs reside, proliferate, and 

differentiate in a specialised neurogenic niche environment; the SVZ of the lateral ventricle 

and the SGZ of the hippocampal DG. 

Radial glia-like NSCs of the SVZ, also known as type B cells, reside within the 

subependymal layer and extend a basal process towards a blood vessel, and an apical 

process through the ependymal layer and towards the ventricular space (Mirzadeh et al., 

2008) (figure 1.3). Upon activation, type B cells divide asymmetrically, giving rise to another 

type B cell and a transit amplifying cell/type C cell. Transit amplifying cells then enter the cell 

cycle and proliferate themselves before maturing and generating neuroblasts/type A cells 

(Doetsch et al., 1999a; Doetsch et al., 1997) (figure 1.3). Neuroblasts migrate tangentially 

along astrocyte-ensheathed chains within the rostral migratory stream towards the olfactory 

bulb (Sun, W. et al., 2010). Once within the olfactory bulb, neuroblasts differentiate into 

mature interneurons and integrate into the olfactory bulb network (Doetsch and Alvarez-

Buylla, 1996; Doetsch et al., 1999a; Doetsch et al., 1997; Lois and Alvarez-Buylla, 1994; 

Lois and Alvarez-Buylla, 1993; Belluzzi et al., 2003; Carleton et al., 2003) 
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In the DG SGZ radial glia-like NSCs, known as type 1 cells do not migrate as far as SVZ 

NSCs to reach, and integrate into, their target location/network (figure 1.4). Type 1 cells of 

the SGZ generate immediate progenitor cells which undergo limited rounds of proliferation 

before generating neuroblasts (Seri et al., 2001). These neuroblasts eventually migrate 

tangentially along the SGZ before migrating radially into the granule cell layer of the DG 

where they differentiate into granule neurones (Sun, G.J. et al., 2013) (figure 1.4). In addition 

to new neurones, these NSCs of the SVZ and SGZ can also give rise to oligodendrocytes 

and astrocytes (Ortega et al., 2013; Bonaguidi et al., 2011 Lois and Alvarez-Buylla, 1993). 

Figure 1.3 The SVZ is a neurogenic niche 

Schematic of the SVZ depicting the arrangement of NSC/type B cells (B), transit amplifying 

cells (B), and neuroblasts (A) within the niche. SVZ: subventricular zone, VZ/EZ: ventricular 

zone/ependymal zone, V: ventricular space, BV: blood vessel  
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1.4 Proliferation in the adult spinal cord  

The SVZ and SGZ are often stated to be the only postnatal neurogenic niches of the CNS, 

however, results from both in vitro neurosphere culture assays and in vivo genetic lineage 

tracing studies show that the postnatal spinal cord also contains proliferative cells which may 

be NSCs. 

Proliferating cells are frequently found in the GM and WM of the rat spinal cord (Horner et 

al., 2000). 0.6-0.7% of NG2+ glial cells in the adult spinal cord incorporate BrdU over a 4-

week period, illustrating the presence of a slowly dividing glial population in the adult spinal 

cord parenchyma (Horner et al., 2000). More stringent analysis, using genetic fate mapping 

of oligodendrocyte, astrocyte, and ependymal progenitors has shown that oligodendrocyte, 

astrocyte, and ependymal progeny make up more than 90% of the BrdU+ proliferative cell 

population in the intact adult spinal cord (Barnabe-Heider et al., 2010). Oligodendrocyte 

lineage cells (OLCs) are the most numerous of the proliferating populations, making up more 

Figure 1.4 Neurogenesis in the SGZ provides new granule cells in the hippocampus 

Schematic depicting the proliferation of NSCs (type 1 cells) in the SGZ of the hippocampal DG 

and their maturation along the neural lineage to become mature granule cell neurones in the 

granule cell layer (GCL) of the hippocampus 
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than 80% of BrdU+ cells. In the intact cord oligodendrocyte progenitor cells (OPCs) both self-

renew and generate an increasing number of mature oligodendrocytes over time. 

Ependymal and astrocytes instead proliferate by self-renewal to maintain their population 

size (Barnabe-Heider et al., 2010; Meletis et al., 2008).  

Due to the proliferation of NG2+ glial cells within the spinal cord WM and GM, the identity of 

spinal cord NSCs has been difficult to establish and their existence remains controversial, 

however there is evidence that NSC potential within the spinal cord resides within the ECs 

which line the spinal cord CC (Mothe and Tator, 2005; Sabourin et al., 2009). 

 

1.4.1 The spinal cord neurogenic niche 

The cells surrounding the CC are a heterogeneous population of cells, including ECs, 

cerebrospinal fluid contacting cells (CSFcCs), and radial-glial like ECs (figure 1.5) (Hugnot 

and Franzen, 2011). ECs are FoxJ1-expressing ciliated cells which possess short basal 

processes and are primarily located at the lateral domains of the CC (figure 1.5), these cells 

are discussed in detail below (section 1.1.4). Radial-glial like ECs are mainly concentrated at 

the dorsal and ventral poles of the CC (figure 1.5). Radial-glial like ECs also are unique in 

their expression of the intermediate filament protein nestin (Hamilton, L.K. et al., 2009; 

Sabourin et al., 2009). CSFcCs are sporadically distributed around the CC and make contact 

with the lumen by a thick dendritic process which is terminated by a large bulb (figure 1.5). 

Although the exact function of CSFcCs remains elusive, these cells express 

immunohistochemical (IHC) markers of immature neurones including PSA-NCAM and 

synthesize GABA (Roberts et al., 1995; Stoeckel et al., 2003; Reali et al., 2011). CSFcCs 

are therefore anatomically well situated to influence the activity of cells within the CC 

neurogenic niche.  
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1.5 Spinal cord ependymal cells  

ECs are often cited as NSC-like population of the adult spinal cord (Meletis et al., 2008; 

Hamilton, L.K. et al., 2009; Panayiotou and Malas, 2013). ECs are ciliated cells which line 

the ventricular neuraxis of the brain and the spinal cord CC. ECs are embryonically derived 

from radial glial cells (Spassky et al., 2005), therefore sharing a common developmental 

Figure 1.5 The spinal cord CC is a heterogenous population of cells 

Schematic depicting the arrangement of cells around the CC of the spinal cord, 

illustrating that the CC is lined by CC which are interspersed with other cell types 

including radial glia and CSFcCs. RG-like EC: radial glia-like EC GFAP+: glial fibrillary 

protein+, NeuN+: Neuronal nuclei+, OPC: oligodendrocyte progenitor cell, BV: blood 

vessel  
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origin with the NSCs of the SVZ and SGZ (Kriegstein and Alvarez-Buylla, 2009). ECs first 

appear at embryonic day 15.5 and surround the CC by birth (P0) (Li, X. et al., 2016). 

Ultrastructural analysis has posited the existence of 3 distinct morphological signatures of 

CC ECs (Bruni and Reddy, 1987; Meletis et al., 2008). Cells displaying a typical bicilated 

cuboidal EC morphology are most common (Alfaro-Cervello et al., 2012). These cells have 

motile cilia which are essential for the propulsion of CSF (Alfaro-Cervello et al., 2012) (figure 

1.5). A smaller subset of ECs, often referred to as radial ECs, reside at the dorsal and 

ventral poles of the CC and extend long processes along the dorsoventral axis toward the 

pial surface of the spinal cord (Alfaro-Cervello et al., 2012; Meletis et al., 2008). The 

existence of another EC-subtype known as tanycytes, characterised by a single cilium and a 

long basal process which terminates on the basal lamina of blood vessels or neurones 

(Bruni and Reddy, 1987; Hugnot and Franzen, 2011), is debated. Some authors identify 

tanycyte-like cells to exist only at the dorsal and ventral regions of the central canal (Mothe 

and Tator, 2005; Hamilton, L.K. et al., 2009). Others however, suggest that tanycytes are 

also present within the lateral walls of the CC alongside cuboidal and radial ependymal cells. 

Analysis by electron microscopy (EM) has shown that the CC is composed of ECs with radial 

processes which reside in dorsal, ventral, and lateral aspects of the CC (Meletis et al., 2008; 

Alfaro-Cervello et al., 2012) (figure 1.5).  

ECs are also present lining the lateral ventricle wall where they are in close apposition to the 

neurogenic SVZ (Mirzadeh et al., 2008) (figure 1.2). However, these are functionally distinct 

from the ECs of the spinal cord and do not constitute the NSC population of the SVZ 

(Doetsch et al., 1999a; Alfaro-Cervello et al., 2012; Shah et al., 2018). In the SVZ, ECs 

separate the NSCs/type B cells from the lateral ventricle and aid the flow of CSF by beating 

their motile cilia (Bond et al., 2015). SVZ ECs also cluster to form a pinwheel architecture 

where NSCs are found in the centre of ependymal rosettes (Mirzadeh et al., 2008).  
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SVZ ECs provide support to the NSCs by secreting the pro-neurogenic factor Noggin, an 

inhibitor of bone morphogenic protein signalling, which induces NSC activation (Lim et al., 

2000). Therefore, although ECs are not the NSC population of the SVZ, as they may be 

within the spinal cord, they are essential for the maintenance and functioning of the SVZ 

neurogenic niche. From here, unless stated, EC refers to ECs within the spinal cord, and not 

the SVZ. 

1.6 Evidence that ECs are NSCs in the adult cord  

There is much debate as to whether postnatal spinal cord ECs are indeed NSCs, whether 

they exhibit the properties of NSCs in vivo or whether their NSC properties are merely an in 

vitro artefact. In addition, there is further debate concerning whether these cells are simply 

latent NSCs which are not active in normal homeostatic or intact conditions. 

1.6.1 ECs share express markers common to other NSC populations 

There is significant heterogeneity between NSC molecular markers, many of these markers 

are also found to be expressed in mature astrocytes in addition to NSCs (McDonough, 

Ashley and Martínez-Cerdeño, 2012), therefore complicating the identification of NSCs 

within the adult spinal cord. 

Despite such complications, ECs within the spinal cord have repeatedly been shown to 

possess many IHC markers associated with NSCs including nestin (Frisen et al., 1995; 

Meletis et al., 2008), sex determining region Y-box 2 (Sox2) (Hamilton, L.K. et al., 2009; 

Corns et al., 2015), and vimentin (Hamilton, L.K. et al., 2009). An extensive literature search 

carried out by Pfenninger et al., (2010) revealed that adult ECs also express many genes 

which are known to play a role in cell division, cell cycle regulation, and telomere stability 

(Pfenninger et al., 2011). 
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Table 1.1 Immunohistochemical markers of NSCs are shared by spinal cord CC 

ependymal cells and NSCs of the neurogenic niches of the brain, the SGZ and SVZ 

 

Marker ECs SVZ NSCs SGZ NSCs 

Sox2 + + + 

Nestin + (dorsal and 

ventral poles) 

+ + 

Vimentin + + + 

CD133/Prominin + +  

GFAP +  + + 

Notch1 receptor + +  

BLBP + + + 

Musashi1 + + + 

PSA-NCAM + +  + 

Mash1 - + + 

CD24 + + + 

Ki67 + + + 

EdU/BrdU + + + 

CB1 + + + 
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Furthermore, NSC markers present within ECs are often also expressed by NSCs of the 

known neurogenic niches of the SVZ and SGZ (Hamilton, L.K. et al., 2009) (table 1.1). Some 

of these markers, such as polysialylated neural cell adhesion molecule (PSA-NCAM), S100 

calcium binding protein (S100β), cluster of differentiation 24 (CD24), are often associated 

with progenitor cells rather than NSCs (Zhang, J. and Jiao, 2015). Such markers may also 

be expressed when the cell begins to differentiate toward a more mature state such as a 

migrating neuroblast, as is the case within the SVZ.  

As with NSCs in other niches, ECs undergo proliferation within the intact adult spinal cord, 

as evidenced by their positive staining for the proliferative markers Ki67, EdU, and BrdU 

(Hamilton, L.K. et al., 2009). Detection of Ki67 labels cells undergoing proliferation as the 

Ki67 nuclear protein is present during all active phases of the cell cycle (G(1), S, G(2), and 

mitosis) but is absent from resting cells in G0 (Ping Yuan et al., 2015; Sobecki et al., 2017). 

The thymidine analogues EdU and BrdU label cells in S-phase and therefore highlight a 

smaller fraction of cells undergoing proliferation (Salic and Mitchison, 2008). Despite such 

technical differences, both methods have shown that ECs in the intact cord are mitotically 

active (Corns et al., 2015; Namiki and Tator, 1999; Meletis et al., 2008).   

Whilst ECs do show expression of many molecular markers associated with NSCs, they do 

not express mammalian achaete scute homolog 1 (Mash1). Mash1 is associated with 

neurogenic SVZ progenitors (Yamamoto et al., 2001a) and is thought to be important for 

neural differentiation (Tomita et al., 1996). This may explain why when ECs do proliferate 

and differentiate, they preferentially become astrocytes or oligodendrocytes, rather than 

neurones (Meletis et al., 2008; Barnabe-Heider et al., 2010). ECs may therefore be 

considered to be latent NSCs due to their in vitro stem cell potential and NSC molecular 

signature common to NSCs of both the SVZ and SGZ. 
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1.6.2 ECs generate neurospheres  

As early as the 1990s cell culture protocols which allow for the culture of free-floating cell 

aggregates, known as neurospheres, have provided in vitro evidence of cell populations with 

self-renewal and multi-lineage neural differentiation potential within the CNS (Weiss et al., 

1996). Neurosphere forming cells which generate new clones during serial passaging and 

possess the ability to differentiate into other neural cell types are classified as NSCs. The 

ability to generate neurospheres is a hallmark feature of both SVZ and SGZ derived NSCs 

(Weiss et al., 1996; Guo et al., 2012). 

 Neurosphere forming cells have also been reported to be present throughout the spinal cord 

(Sabelstrom et al., 2014), including the CC (Johansson et al., 1999; Martens, D.J. et al., 

2002), and the medial and lateral areas of the cord (Yamamoto et al., 2001b; Yoo and 

Wrathall, 2007). However, only neurospheres derived from ECs from the CC have been 

found to self-renew after several passages. These cells are also multipotent, differentiating 

into oligodendrocytes, and astrocytes, in culture (Meletis et al., 2008). High intrinsic NSC 

potential of EC is present from postnatal day 10 and appears to reduce with age (Li, X. et al., 

2016). No neurosphere-initiating activity has been seen in non-EC fractions of the cord 

(Johansson et al., 1999; Martens, D.J. et al., 2002; Mothe and Tator, 2005; Barnabe-Heider 

et al., 2010), indicating that NSC potential in the adult cord resides at the ependyma and is 

present from early postnatal life.  

1.6.3 Lineage tracing experiments show EC generate clones and mature 

progeny  

Genetic fate mapping using tamoxifen-dependent Cre-recombination under the control of EC 

specific promotors including FoxJ1 and Nestin has been used to further examine and 

confirm NSC properties of ECs in both the intact and injured cord (Meletis et al., 2008; 

Barnabe-Heider et al., 2010). Meletis et al., (2008) illustrate that Nestin-CreER and FoxJ-

CreER transgenes are expressed in identical EC populations lining the CC. Following culture 
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in neurosphere forming conditions it was found that ~76% of neurospheres from Nestin-

CreER and ~85% of FoxJ1-CreER neurospheres had undergone tamoxifen dependent 

recombination, and were therefore derived from recombined ECs. Neurospheres generated 

from the Nestin-CreER and FoxJ1-CreER populations could be passaged up to eight times 

to give rise to new neurospheres, indicating self-renewal capacity. Furthermore, analysis of 

differentiation potential showed that 100% of the neurosphere clones were multipotent and 

could generate neurones, astrocytes, and oligodendrocytes. Barnabe-Heider et al., (2010) 

also showed that almost all neurospheres originate from ECs in both injured and uninjured 

conditions.  

Cell turnover and EC proliferation in the intact adult spinal cord is limited and it appears that 

in the intact cord ECs undergo self-renewal only (Barnabe-Heider et al., 2010; Meletis et al., 

2008; Mothe and Tator, 2005; Horner et al., 2000; Johansson et al., 1999). It is for this 

reason that existence of NSCs in the spinal cord has been contested. BrdU labelling has 

shown that ECs constitute ~4.8% of proliferating cells in the intact mouse spinal cord 

(Johansson et al., 1999; Barnabe-Heider et al., 2010). BrdU labelled ECs were commonly 

found in pairs, indicating that mitotic events most likely resulted in self-renewal, rather than 

generation of a cell which migrated away from the EC layer (Meletis et al., 2008). This 

finding suggests that ECs undergo mitosis in the intact spinal cord for the purpose of self-

renewal and maintainence of EC population numbers. This finding was confirmed by 

Barnabe-Heider et al., (2010) who showed that the number of recombined cells from the 

FoxJ1-CreER line did not change significantly 4 months post tamoxifen administration. The 

phenotype of FoxJ1-CreER recombined cells remained the same at 4 months post tamoxifen 

as that seen at 5 days post tamoxifen, indicating that in the intact cord ECs do not produce 

differentiated progeny (Barnabe-Heider et al., 2010). 
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1.6.4 Quiescent ECs are activated following injury 

Whilst ECs are limited in their proliferation and differentiation in the intact cord, following SCI 

ECs markedly increase their proliferation, by approximately 50-fold (Johansson et al., 1999), 

and generate glial-differentiated progeny which contribute to the glial scar (Barnabe-Heider 

et al., 2010; Sabelstrom et al., 2013). Following injury, ECs downregulate EC specific 

makers such as Sox2, Sox3, and FoxJ1, migrate toward the lesion site, and differentiate 

toward an astrocytic phenotype. ECs then generate the largest new population of glial cells 

in the injured cord, where 39% of new astrocytes are derived from ECs (Barnabe-Heider et 

al., 2010). SCI also increases the in vitro NSC potential of ECs, resulting in more numerous 

and faster growing neurospheres (Barnabe-Heider et al., 2010). Furthermore, TUNEL 

staining has shown that whilst SCI results in death of significant numbers of neurones, 

astrocytes, and oligodendrocytes, the EC population does not undergo apoptosis after SCI. 

This finding indicates the importance of this population of dormant NSCs which can be 

activated when required for tissue repair or cellular repopulation (Mothe and Tator, 2005).  

The age of ECs contributes to their NSC and reactive potential following injury, where lesion 

size and severity impacts juvenile (P21) EC behaviour (Li, X. et al., 2016). Juvenile ECs do 

not appear to be recruited following a mild dorsal funiculi transection in the same way they 

are in adult (4 month) mice. Adult ECs migrate toward the lesion core in both mild injuries 

and also more severe dorsal hemisection injuries. However, it appears that in juvenile mice, 

ECs seal the lesion more efficiently without EC migration en masse, as shown by smaller 

lesion cores in P21 mice compared to adults following mild SCI. It is only when subjected to 

more severe injuries, that lesions in juvenile animals are comparable to those seen adults. 

Furthermore, when ECs are prevented from entering the cell cycle and proliferating following 

severe SCI, using FoxJ1-CreER-rasless mice (Sabelstrom et al., 2013), juvenile mice 

continue to seal lesions as 50% of adult mice exhibit ineffective lesion sealing. These results 

suggest that in juvenile mice other glial cells, such as astrocytes and microglia, appear to 
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have appropriate lesion sealing properties, and that ECs are a reservoir for repair in 

adulthood when other glial populations are no longer as efficient at tissue repair. 

Cells which appear to be capable of self-renewal and multipotency following injury but are 

latent or quiescent NSCs in homeostatic conditions, such as spinal cord ECs, are therefore 

likely to be overlooked when considering NSC populations of the CNS. For example, Coskun 

et al (2008) provide evidence that a subpopulation of CD133+ ECs within the ependyma 

close to the SVZ neurogenic nice are not 100% postmitotic as previously thought, and 

possess the characteristics of bona fide NSCs (Coskun et al., 2008). These CD133+ ECs 

exhibit in vitro NSC properties and colabel with the proliferative marker Ki67. CD133+ ECs 

appear quiescent under normal conditions, dividing infrequently, similarly to ECs of the 

spinal cord. However, upon ablation of fast dividing type B NSCs of the SVZ, by 

intracereboroventricular (ICV) injection of Cytosine-β-D-arabinofuranoside (AraC), CD133+ 

ECs proliferate rapidly and contribute to the differentiation and migration of new neurones 

along the rostral migratory stream toward the olfactory bulb (Coskun et al., 2008). 

Coskun et al., (2008) therefore argue that CD133+ ECs are a quiescent population of NSCs, 

which reside in the SVZ ependyma, but do not contribute to SVZ neurogliogenesis to the 

same extent as other NSC populations such as the type B cells which are already active in 

this location (Coskun et al., 2008). It is only upon chemical ablation by AraC treatment that 

ECs are activated, leave quiescence, and realise their NSC potential to replace the normally 

fast dividing NSC population. This may also be the case in the spinal cord, where the 

proliferation and differentiation of ECs is markedly upregulated in injury situations to replace 

lost cells.  

Work has shown that it is not only SCI which activates the proliferation of ECs. Danilov et al., 

2006 show that following induction of experimental autoimmune encephalitis (EAE) in rats, a 

model of multiple sclerosis (MS), ECs labelled by injection of the lipophilic tracer DiI not only 

proliferated, but their progeny could also be seen migrating toward areas of 
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neuroinflammation (Danilov et al., 2006). DiI labelled EC progeny were also colabelled with 

the neuronal markers NeuN and Tuj1 (Danilov et al., 2006). These results would suggest 

that following EAE ECs are capable of proliferating, migrating toward the neuroinflammatory 

lesions, and differentiating into cells with neuronal morphology, to aid repair following 

autoimmune induced demyelination. This study relies upon specific labelling of EC by DiI 

injections. However, it is possible that nearby oligodendrocytes or astrocytes may have also 

been labelled by ventricular DiI injection and contribute to the effects seen in response to 

EAE. 

1.6.5 Transplantation of ECs to other neurogenic niches 

Cell transplantation studies allow us to determine whether NSC-candidate cells, such as 

ECs, possess in vivo NSC behaviour when removed from their niche, clonally expanded, 

and placed into their original neurogenic niche (homotopic transplantation) or into a different 

niche (heterotopic transplantation). For example, it has been shown that when cultured adult 

hippocampal progenitors, which remain mostly uncommitted in culture, are homotopically 

grafted into the hippocampus they migrate into the neuronal layers of the DG, undergo 

maturation, and express the neuronal markers NeuN and calbindin, as expected for adult 

hippocampal progenitors (Suhonen et al., 1996). However, this study also showed that when 

these cells were grafted into a heterotopic location, the rostral migratory stream adjacent to 

the neurogenic SVZ, cells migrated along the rostral migratory stream and into the granule 

and glomerular cell layers of the olfactory bulb. By 8 weeks post-graft, adult hippocampal 

progenitors which migrated to the olfactory bulb expressed tyrosine hydroxylase, calbindin, 

and NeuN. These results show that following heterotopic transplantation to the rostral 

migratory steam adult hippocampal progenitors behave similarly to endogenous SVZ 

progenitors, suggesting that regional cues can confer regional specific developmental 

behaviour to progenitors of heterotopic origin (Suhonen et al., 1996).  
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Transplantation of NSC candidate cells into well-known neurogenic niches has provided in 

vivo demonstration of NSC potential. Coskun et al., 2008 show that CD133+ ECs, which line 

the lateral ventricle and have in vitro NSC potential, proliferate and exhibit multipotency 

when transplanted into the neurogliogenic environment of the adjacent SVZ via injection into 

the lateral ventricle.  

Similarly, heterotopic transplantation of ECs provides us with strong evidence that ECs are 

NSCs which are trapped in the restrictive signalling environment of the intact spinal cord, 

which therefore limits NSC behaviour. Shihabuddin (2000) showed that when transplanted 

into the neurogenic niche of the hippocampus, fibroblast growth factor responsive clonally 

expanded cultures of cells originating from cervical or thoracic spinal cord migrate and 

integrate into the neuronal layers of the DG. By six weeks post transplantation, many of the 

cells originally from the spinal cord exhibited morphologies characteristic of native 

hippocampal granule cells, including a large rounded nucleus, an ovoid cell body, and 

polarised branching dendritic processes (Shihabuddin et al., 2000).  

BrdU+ transplanted cells preferentially expressed molecular markers of hippocampal 

neurones, with 47.5±3.7% expressing NeuN and 43.7±3.7% expressing the DG granule cell 

layer specific marker calbindin. Heterotopically transplanted spinal cord cells also exhibited 

multipotency, 2.8±0.6% of BrdU + cells expressed GFAP, 21.5±5.7% expressed NG2, and 

2.8% expressed the mature oligodendrocyte marker RiP.  BrdU+ cells within grafts also 

possessed synaptophysin immunoreactive (IR) elements on their surface, indicating that 

spinal cord cell grafts had integrated into the local hippocampal GCL network by receiving 

synaptic contacts (Shihabuddin et al., 2000). Proliferating cells of the spinal cord usually 

become oligodendrocytes in intact cord, and astrocytes in injured cord, indicating a strong 

gliogenic drive within the spinal cord. However, when transplanted into the neurogenic 

environment of the hippocampus, these cells respond to the intrinsic cues of the 

environment and behave similarly to native hippocampal NSCs and progenitors.  
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Ultimately, work by Shihabuddin et al., (2000) shows that ECs are NSCs, however their local 

environment does not possess the intrinsic cues to permit NSC behaviour as is seen when 

these cells are relocated to the hippocampus. Therefore, rather than completely lacking 

NSCs, the spinal cord lacks the correct environment and intrinsic cues which permit NSC 

behaviour. 

1.6.6 Transplantation of cells to the restrictive spinal cord environment 

Work by Braz et al., (2012) however suggests that the spinal cord environment may not be 

as restrictive as previously imagined. Using heterotopic transplantation of embryonic cortical 

interneurone precursors, originating from the medial ganglion eminence (MGE), into the 

dorsal horn of the adult spinal cord, MGE transplants survive, retain cortical interneurone 

features, and integrate into host spinal cord circuitry. The majority of the MGE-derived 

precursors transplanted into the spinal cord expressed markers of distinct subpopulations of 

cortical GABAergic neurones including GABA, neuropeptide Y, parvalbumin, and 

somatostatin, and so recapitulate the heterogeneity of native cortical GABAergic neurones 

(Braz et al., 2012).  

MGE grafts also developed into mature neurones and exhibited firing patterns similar to 

endogenous cortical and spinal inhibitory GABAergic interneurone populations (Etlin et al., 

2016). Furthermore, the successful integration of MGE grafts into the spinal cord, which 

established new inhibitory dorsal horn circuits in the host, overcame mechanical 

hypersensitivity and hyperalgesia induced by a nerve injury model of neuropathic pain (Etlin 

et al., 2016; Llewellyn-Smith et al., 2018).  

Whilst these results may suggest that the spinal cord environment is not as restrictive as it 

may seem, they may instead indicate the rigidity of the differentiation programme intrinsically 

ascribed to MGE-derived cortical progenitors. MGE precursors appear to possess a strict 

differentiation programme which allows the cells to maintain their neurochemical phenotype 

irrespective of the restrictive environment they find themselves in. The results may have 
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been different if undifferentiated hippocampal NSCs were instead introduced into the cord. 

Furthermore, it is also possible that the transplantation of MGE cells by injection causes a 

‘stab-like’ injury which results in afferent sprouting to repair damage to existing spinal 

neurones of the dorsal horn (Braz et al., 2012; Etlin et al., 2016; Llewellyn-Smith et al., 

2018). Results such as these highlight the need to understand the niche signals which 

control cell proliferative behaviour in the spinal cord.  

1.6.7 Transplantation of ECs into the injured spinal cord 

Transplantation of healthy donor spinal cord derived NSC/NSPCs cells into an injured spinal 

cord has also provided evidence of NSC capabilities within the spinal cord. Transplanted 

spinal cord derived NSC/NSPCs are able to differentiate and slightly improve functional 

motor recovery following SCI in rats (Hofstetter et al., 2005). However, animals also develop 

allodynia and hypersensitivity as a result of aberrant axonal sprouting and infiltration of new 

CGRP-IR sensory fibres into superficial and deep layers of the dorsal horn (Hofstetter et al., 

2005).  Grafted cells also exhibit poor survival (Hou et al., 2018) and failure to differentiate in 

vivo (Li, J. and Lepski, 2013). In addition, the overwhelming gliogenic environment of the 

spinal cord seems to result in predominant differentiation of grafts into cells of the astrocytic 

lineage which then further contribute to the already problematic glial scar (Hofstetter et al., 

2005).  

Most studies investigating SC derived NSC grafts to aid in SCI repair use dissociated tissue 

from the entire spinal cord. Moreno-Manzano (2009) illustrate that functional recovery can be 

improved in a rat model of SCI if ECs are isolated and used for transplantation, rather than 

undifferentiated neurospheres generated from the entire spinal cord. In particular, activated 

ECs (aECs), taken from an injured rat spinal cord, provide more successful grafts for 

transplantation than their healthy counterparts. As a result of the environmental changes 

which result following SCI, it appears aECs are already primed to proliferate and 
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differentiate, and also show greater self-renewal potential, for optimal reparative outcomes 

(Moreno-Manzano et al., 2009).  

Furthermore, aECs can either be transplanted undifferentiated into the cord, and are alone 

successful in motor repair, or can be subjected to a differentiation programme in vitro prior to 

transplantation. Following directed differentiation, aECs were able to generate OPCs and 

functional motor neurones which were then transplanted into the injured cord, further 

contributing to functional recovery. There is a greater yield of OPCs and motor neurones 

following directed differentiation of aECs when compared to ECs isolated from healthy intact 

donor cords, 87% vs. 21% for OPCs and 45% vs 12% for motor neurones (Moreno-Manzano 

et al., 2009).  

SCI rats which received grafts of either aEC or OPCs exhibited significant motor recovery 

compared to animals that received healthy donor EC grafts, including consistent plantar 

stepping, weight bearing capacity, and improved coordination 1-month post transplantation 

(Moreno-Manzano et al., 2009). These results therefore illustrate improved hindlimb 

coordination in animals following post SCI transplantation of aECs. 

In conclusion, rats receiving grafts of aECs had greater regenerative capacity and smaller 

cavities following SCI, leading to greater functional repair. These results show that EC do 

possess the crucial NSC properties of self-renewal and differentiation, but appear dormant 

until switched on following injury, and if ECs with these enhanced properties are grafted into 

another injured SC environment, then they can have greater functional outcomes than 

healthy ECs. 

Hoffstetter et al., (2005) showed that whilst grafts improve functional recovery, their utility is 

limited by aberrant axonal sprouting induced allodynia. In order to overcome this, NSCs 

were transduced with the transcription factor Neurogenin-2 (Ngn2) prior to transplantation. 

Ngn2 modulates the fate of engrafted NSCs, suppressing astroglial differentiation. Animals 

which received Ngn2-NSC grafts rather than naïve NSCs showed increased levels of 
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myelination and WM volume at the injury centre which positively correlated with recovery of 

hindpaw locomotor and sensory function without the development of allodynia (Hofstetter et 

al., 2005). These results indicate that overcoming the gliogenic environment of the spinal 

cord, by suppression of astroglial differentiation of grafts, is essential for successful 

reparative behaviour of the spinal cord stem cells, the ECs.  

In conclusion for this section, results from transplantation studies provide strong evidence for 

NSC properties of ECs. Studies using transplantation of ECs have provided clear evidence 

that ECs possess NSC properties and that when in their local environment of the spinal cord, 

their NSC abilities remain dormant, unless activated by environmental changes such as 

injury (Barnabe-Heider et al., 2010; Meletis et al., 2008), or placed into a permissive 

environment such as the hippocampus (Shihabuddin et al., 2000).  

1.7 Neurotransmitters as niche signals which restrict proliferation in the 

spinal cord  

If ECs are indeed bona fide NSCs but only exhibit NSC behaviour in certain conditions and 

environments, then we must consider which niche signals may be present in the spinal cord 

which maintains their dormancy under normal conditions. It is clear that the local 

environment and its intrinsic signalling pathways play a large part in determining NSC 

behaviour (Massirer et al., 2011). Niche signalling within the CC ependymal layer may 

therefore exist to keep the cells in a quiescent state, although what exactly constitutes these 

restrictive signals remains unclear.  

Neurotransmitters are known to be an important aspect of the neurogenic niche 

microenvironment, controlling the delicate balance between quiescence, proliferation, and 

differentiation (Ma et al., 2004; Jansson and Akerman, 2014; Trujillo et al., 2009; Catavero et 

al., 2018). For example, acetylcholine is known to be an important regulator of proliferation, 

differentiation, and new born neurone survival in other postnatal neurogenic niches (Corns et 
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al., 2015). Cholinergic inputs enhance NSC proliferation within the SVZ (Paez-Gonzalez et 

al., 2014; Asrican et al., 2016), indicating that cholinergic neurotransmission may be 

essential for postnatal neurogenesis and modulation of proliferation in other neurogenic 

niches such as that of the spinal cord CC. Indeed, recent work has shown how acetylcholine 

is an important regulator of EC proliferation in both physiological and simulated pathological 

situations (Corns et al., 2015). 

Cholinergic structures have been found in close apposition to ECs within the CC and are 

therefore well situated to influence and modulate the proliferative capacity of cells within the 

CC (Corns et al., 2015; Gotts et al., 2016). Corns et al., (2015) illustrate that treatment with 

the α7*nAchR modulator PNU 120596 significantly increased the number of newly 

proliferated Sox2/CD24/Na+K+ATPase α1+ ECs within the CC in in vivo intact mature 

animals and also in in vitro organotypic spinal cord slice culture, a method which resembles 

an injurious situation (Fernandez-Zafra et al., 2017). Furthermore, treatment with the 

antagonist MLA in naïve organotypic spinal cord slices reduced the level of EC proliferation, 

suggesting that endogenous activation of α7*nAchRs contributes to baseline levels of EC 

proliferation (Corns et al., 2015). The numbers of proliferative cells in the WM and GM were 

also influenced by modulation of α7*nAchRs, indicating the widespread effects of cholinergic 

enhancement upon proliferation within the spinal cord (Corns et al., 2015). 

These results illustrate that acetylcholine may therefore be an important signal within the CC 

neurogenic niche for the control of postnatal proliferation of ECs. Such results also 

demonstrate the role that neurotransmitters may play in controlling proliferation in the adult 

spinal cord. The classic inhibitory neurotransmitter γ-aminobutyric acid (GABA) is another 

possibly important player in the control of proliferation and maintenance of EC quiescence 

within the postnatal spinal cord (Corns et al., 2013; Catavero et al., 2018). 
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1.8 GABA 

GABA is produced in the CNS in a closed loop system known as the GABA shunt. First, α -

ketoglutarate, produced during the Kreb’s cycle, is converted into glutamate by glutamate 

dehydrogenase. Glutamic acid decarboxylase (GAD) catalyses the decarboxylation of 

glutamate to produce GABA. GABA is then packaged into vesicles and released from the 

synaptic terminal into the cleft following action potential-induced depolarisation of the 

neurone. The action of GABA is terminated by GABA reuptake into presynaptic neurones 

and surrounding glia cells by GABA transporters such as GABA transporter 1 (Soudijn and 

van Wijngaarden, 2000) (figure 1.6). Reuptake into neurones is around 4- to 5-fold greater 

than in astrocytes (Salat and Kulig, 2011).  

Following reuptake, GABA transaminase, present in mitochondria of glial cells and neurones 

(Schousboe et al., 1973; Jeon et al., 2000), breaks down GABA in neurones and glia to form 

succinic semialdehyde which re-enters the citric acid cycle for the production of α -

ketoglutarate to eventually form GABA by resynthesis in neurones. Glial cells however lack 

GAD expression and so in glia GABA is converted to glutamine which is transferred back to 

the neurone. Glutamine is then converted to glutamate by glutamate synthase which re-

enters the GABA shunt (Ben-Menachem, 2011) (figure 1.6) 
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Figure 1.6 Schematic depicting GABA synthesis and neurotransmission 

GABA is produced in a closed loop system (A) where, following action potential 

arrival at the presynaptic neurone, it is released and binds to GABAaRs on the 

postsynaptic membrane (B). The action of GABA is terminated by GABA-

transaminase mediated catabolism. Vigabatrin inhibits GABA-transaminase to 

increase GABA availability (B) GABA-T: GABA-transaminase GAT1: GABA 

transporter 1 (Adapted from Ben-Menachem, E., 2011). 
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GABA signalling is known to have important roles in pre- and postnatal neural development 

through effects upon embryonic stem cells (Varju et al., 2001; Wang, D.D. and Kriegstein, 

2009). GABA has also been shown to modulate proliferation, differentiation, and migration of 

adult NSCs and neural progenitor cells of the SVZ and the SGZ in postnatal CNS (Catavero 

et al., 2018). These cells express functional GABAaRs in addition to the enzymes required to 

synthesise GABA, GAD65 and GAD67 (Nguyen et al., 2003; Wang, D.D. et al., 2003; 

Fernando et al., 2011). Depolarisation of proliferating progenitors by GABAergic signalling 

results in a cascade of events which combines activity and development of new neurones by 

activation of differentiating signals in the NSCs. Work suggests that it is GABA, and its 

activity at GABAaRs, which holds the key to ‘excitation-neurogliogenesis coupling’ in the 

adult brain (Song, J. et al., 2012; Deisseroth, K. and Malenka, R. C., 2005; Ge et al., 2007).  

1.8.1 GABAaR subunit composition and allosteric modulators  

GABAaRs are heteropentameric protein complexes which form ligand-gated ionotropic 

receptors arranged around a central channel pore which is permeable to Cl- (Bormann et al., 

1987). GABAaRs are part of the evolutionarily conserved cys-loop superfamily of ligand 

gated ion channels and are widely expressed throughout the CNS, within multiple cell types, 

and with considerable subunit heterogeneity (Sigel, E. and Steinmann, 2012). A repertoire of 

19 different subunits have been identified so far in mammals, divided into 8 different subunit 

classes based on sequence homology, these include α (1-6), β (1-3), ƴ (1-3), δ, ε, ρ (1-3), θ, 

and π (Hevers and Luddens, 1998; D'Hulst et al., 2009; Sieghart, W. and Sperk, 2002). 

Whilst the vast array of subunit isoforms suggests an infinite number of possible subunit-

isoform combinations, in reality limited numbers of these combinations have been shown to 

exist in vivo (McKernan and Whiting, 1996). Each subunit possesses a large extracellular N-

terminal domain and a C-terminal domain. The extracellular N-terminal domains are believed 

to implicated in receptor assembly and the formation of agonist and allosteric modulatory 

binding sides (Xu, M. and Akabas, 1996; Uchida et al., 1997). The C-terminal domain 
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possesses four transmembrane spanning segments, designated TM1-4, which are 

connected by short loops.  The ion-conducting channel pore is lined by the TM2 domains of 

the five subunits (Xu, M. and Akabas, 1996; Goren et al., 2004). 

The majority of native GABAaRs in the CNS are comprised of α-, β-, and ƴ- subunits and 

those with 2 α1s, 2 β2, and 1 ƴ2 subunits are most abundant (Olsen and Sieghart, 2008; 

McKernan and Whiting, 1996) (figure 1.7). These isoforms are frequently located at the 

synapse, where they mediate transient phasic synaptic GABAergic transmission (Farrant 

and Nusser, 2005; Belelli et al., 2009). Thus, they are responsible for ‘classic’ 

neurotransmission for the communication between pre- and postsynaptic neurones. 

In some neurones however there also exists a level of GABA-mediated tonic inhibition which 

is conferred by extrasynaptic GABAaRs. These extrasynaptic GABAaRs are activated by 

GABA spill-over from the synaptic cleft following vesicular GABA release from the 

presynaptic neurone (Otis et al., 1991; Salin and Prince, 1996a; Salin and Prince, 1996b). 

Extrasynaptic GABAaRs are often formed from more ‘uncommon’ subunits such as α4, α5, 

α6, and δ subunits (Belelli et al., 2009; Wang, L. et al., 2008). This leads to their unique 

sensitivity to some ligands such as ethanol (Santhakumar et al., 2007) and insensitivity to 

benzodiazepines (BZs), for example, extrasynaptic α4, α6, and δ expressing GABAaRs are 

insensitive to BZs (Belelli et al., 2009). GABAaR subunit composition therefore confers 

specific ligand binding properties and behaviour and responses of GABAaRs.   

Pentameric assembly and receptor subunit heterogeneity of GABAaRs results in the 

formation of various ligand binding sites at the extracellular- or transmembrane domain of 

certain subunits at the interface between subunits (Sieghart, Werner, 2015). Ligand binding 

at these sites modulates the activity of the GABAaR. αβγ GABAaRs have two agonist 

binding sites, where GABA binds (Wagner and Czajkowski, 2001; Baumann et al., 2003), 

and another for the binding site for BZ-like allosteric modulators (Sigel, E. and Buhr, 1997; 

Sigel, Erwin and P. Luscher, 2011). GABA binding to these sites induces opening of the 
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channel pore which then allows flow of Cl- ions down their electrochemical gradient. Entry of 

Cl- leads to hyperpolarisation of the cell membrane in most cells, although there are some 

exceptions where GABA causes depolarisation (Spitzer, 2010).   

There are five main modulatory mechanisms at GABAaR, these include; positive allosteric 

modulation (PAM) e.g. BZs, negative allosteric modulation (NAM)/inverse agonists e.g. DBI, 

agonists at the GABA binding site e.g. muscimol, antagonists at the GABA binding site e.g. 

bicuculline, and pore/channel blockers e.g. picrotoxin. GABAaRs were therefore initially 

characterised based upon the presence of their 3 major drug binding sites. 2 of these 

binding sites are located in the extracellular domain and include the GABA binding site at β-

subunits, and the BZ/central BZ recognition (CBR) site at the interface between and y2 

subunits. The third GABAaR defining ligand binding site is specific for the channel blocker 

picrotoxin and is located within the transmembrane domain of the channel ionic pore (Ticku 

et al., 1978) (figure 1.7). 
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Figure 1.7 The GABAaR receptor is a pentameric ion channel with binding sites for 

common neuromodulatory pharmacological agents located at subunit interfaces 

A: Schematic showing a top down view of the pentameric assembly of the GABAaR and the 

location of binding sites for GABA, ETX, and the CBR site. B: Schematic detailing the 

intracellular, extracellular, and transmembrane binding sites for common GABAaR modulators    
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1.8.1.1 Extracellular binding domains of GABAaRs 

Firstly, located between the extracellular sites of β/α interfaces are the orthosteric GABA 

sites. It is at this site where GABA and various agonists and antagonists such as muscimol 

and bicuculline bind (Smith, G.B. and Olsen, 1995) (figure 1.6). At the interface between the 

α and ƴ2 subunits, at the extracellular domain, exist the allosteric BZ/CBR sites, where 

PAMs such as BZs (e.g. diazepam) bind and potentiate GABAaR activity (Squires and 

Braestrup, 1977; Olsen, 2018). The long sought-after endogenous ligand of the GABAaR 

CBR site diazepam binding inhibitor (DBI) acts as a NAM of GABAaR by binding to this site 

(Dumitru et al., 2017; Slobodyansky et al., 1989). Drugs of the β-carboline family, such as 

DMCM, also bind to the CBR site, whereupon they also act as NAMs (Hanson and 

Czajkowski, 2008). Furthermore, inverse agonists and competitive antagonists of the BZ 

site, such as Ro15-4513 and Ro15-1788 (flumazenil), also bind specifically to CBR (Votey et 

al., 1991; Buck, K.J. and Harris, 1990).  

1.8.1.2 Transmembrane domains of GABAaRs 

GABAaR subunit interfaces have also been shown to possess specific binding sites within 

the receptor transmembrane domain. Specific transmembrane domain subunit interface 

binding sites include binding sites for barbiturates, located at α+/β- and γ+/β- subunit 

interfaces (Thompson et al., 1996), and anaesthetics, such as etomidate, propofol, at β+/α- 

subunit interfaces (Chiara et al., 2013; Li, G.D. et al., 2006) (figure 1.7).  

Neurosteroids, such as allopregnanolone (AlloP) also bind within the transmembrane 

domain of GABAaR, where they act as either PAMs or NAMs, depending upon their specific 

molecular composition and subunit composition of the GABAaR it binds to (Wang, Mingde, 

2011).   
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Figure 1.8 Mixed modulators of GABAaR and TSPO such as ETX influence 

GABAergic signalling by both PAM activity at GABAaR and neurosteroidogenesis 

A: Schematic illutrating the dual effects of ETX at TSPO and GABAaR. B: Schematic 

depicting the synergistic affects of mixed modulators which potentiate GABAergic 

signaling by direct PAM of GABAaR and by production of neurosteroids  
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The 18kDa mitochondrial translocator protein TSPO, previously known as PBR, for which 

the GABAaR ligands BZs and DBI are also ligands, is implicated in the synthesis of such 

neurosteroids which can modulate GABAergic signalling (Ante and Ljiljana, 2016) (figure 

1.9).  

Some GABAaR-CBR site ligands can therefore have additive effects upon GABAergic 

transmission, by either direct binding to CBR or by influencing neurosteroid synthesis. The 

recent discovery that the CBR specific NAM of GABA, DBI, influences proliferation and 

differentiation of NSCs within the brain (Dumitru et al., 2017; Alfonso et al., 2012), and is 

linked to neurogenic effects of enriched environment, has generated new interest in the CBR 

site of GABAaR, and its endogenous ligands.  

1.8.1.3 Endozepines and the CBR site  

Co-immunoprecipitation with GABAaR subunit isoform specific antibodies and application of 

such antibodies for in-situ hybridisation, showed that seventy five percent of GABAaRs have 

a classical high affinity BZ binding site/CBR site, located extracellularly at the α and ƴ2 

subunit interface (figure 1.7) (Wisden and Stephens, 1999; Sigel, E. and Buhr, 1997; Ernst et 

al., 2003). The predominant GABAaR CBR site is most commonly composed of an α1 

subunit isoform which forms a binding pocket with the interface of a neighbouring ƴ2. 

Following binding to the CBR site, there is a conformational change in the GABAaR which 

increases the affinity of at least one GABA/agonist site resulting in increased GABA-

mediated currents and increased GABA affinity (Tallman and Gallager, 1985; Serfozo and 

Cash, 1992; Lavoie and Twyman, 1996). 

Binding at α1 containing CBR sites produces sedation and muscle relaxation, whereas CBR 

sites with α2 or α3 subunits with ƴ2 results in the anxiolytic and anticonvulsant effects of 

BZs. Extrasynaptic GABAaRs however can also express α5 which is responsible for 

amnestic effects of some BZs, and also mediates the amnestic effects of ethanol when α5 is 

expressed alongside δ subunits (Nutt et al., 2007). Within the α subunit of α1, 2, 3, and 5 
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isoforms, there exists a histidine residue (H101, H101, H126 and H105, respectively) which 

possesses a high affinity for BZs. However, α4 and α6 isoforms contain an arginine residue 

instead and therefore do not have affinity for BZs (Kelly et al., 2002). 

The ƴ2 subunit is essential for the formation and function of the CBR site (Gunther et al., 

1995).  Peak sensitivity of GABAaR CBR sites requires ƴ2 expression as decreased 

sensitivity to BZs is seen when either ƴ1 or ƴ3 are expressed (Hadingham et al., 1995; Ymer 

et al., 1990). The ƴ2 subunit is also required for the synaptic postsynaptic membrane 

clustering, and therefore function, of GABAaRs (Schweizer et al., 2003; Essrich et al., 1998).  

Global knockout (KO) of the ƴ2 subunit results in mice which lack the CBR site of GABAaR 

and are insensitive to the hypnotic effects of diazepam (Gunther et al., 1995). Homozygous 

ƴ2 KOs appear normal at birth, however they show retarded growth, sensorimotor 

dysfunction, and a drastically reduced lifespan (Gunther et al., 1995). Previous studies have 

shown that reduced lifespan in homozygous ƴ2 KO is likely due to impaired postsynaptic 

receptor clustering and loss of GABAaR function in mature neurones (Gunther et al., 1995; 

Essrich et al., 1998; Schweizer et al., 2003). The deleterious effects of y2 subunit/CBR site 

KO also possibly suggests the importance and necessity of postnatal GABAaR regulation by 

an endogenous ligand at the CBR site.  

Heterozygous ƴ2 knockdown (KD) mice have also been generated where ƴ2 expression is, 

on average, 35% of normal levels (Crestani et al., 1999; Chandra et al., 2005). These mice 

are viable, develop well, and have normal lifespans, however they exhibit enhanced anxiety-

like behaviours and have significantly decreased binding of the CBR ligand Ro15-4513. This 

is expected as CBR is located at the interface of select alpha and ƴ2 subunits of GABAaR, 

where the deficiency of the ƴ2 abolishes binding of CBR specific ligands (Chandra et al., 

2005; Gunther et al., 1995). However, ƴ2 KD mice have unaltered behavioural responses to 

BZ GABAergic modulators such diazepam or midazolam. These results suggest that unlike 

global ƴ2 KO mice, which exhibit 6% CBR site binding, and are therefore insensitive to the 
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behavioural effects of BZs, those with heterozygous ƴ2 KD retain some CBR site binding. 

Chandra et al., (2005) suggest that perhaps the remaining 20-40% of BZ binding in these 

mice is sufficient to induce the hypnotic effects of diazepam and midazolam. Alternatively, 

the significant inter-animal differences in ƴ2 KD efficiency, which ranged from 10-95% of 

normal levels, may have masked any change in behavioural responses to these drugs 

(Chandra et al., 2005).    

1.9 Effects of GABA and GABAaR signalling in other neurogenic niches  

PSA-NCAM+ cells persist in several regions of the adult brain and are particularly enriched in 

areas involved in postnatal neurogenesis such as the SVZ and SGZ (Nguyen et al., 2003). 

Proliferation of purified cultured PSA-NCAM+ progenitor cells, as assessed by BrdU 

incorporation, is reduced following treatment with GABA itself and the GABAaR agonist 

muscimol. This effect however is not seen upon treatment with the GABAbR agonist 

baclofen, indicating the GABAaR mediated effect upon proliferation of PSA-NCAM+ neural 

progenitor cultures. TUNEL staining illustrates that the GABA/muscimol induced reduction in 

the percentage of PSA-NCAM+ cells which incorporate BrdU is not due to increased cell 

death mediated by GABAaR activation, and is instead a GABAaR mediated reduction in cell 

proliferation (Nguyen et al., 2003). These results indicate the role GABAergic signalling plays 

in modulating proliferation in neurogenic niches of the brain. In addition, GABAergic 

signalling via GABAaR also induces differentiation of neural progenitors within the SGZ 

(Tozuka et al., 2005) and modulates the speed of neuroblast migration through the rostral 

migratory stream (Bolteus and Bordey, 2004).   

1.9.1 Effects of GABA on NSCs in the SVZ 

Contrary to the hyperpolarising effects normally induced by GABA binding to GABAaR, 

GABA depolarises SVZ neural progenitors (Wang, D.D. et al., 2003). In addition, application 

of the GABAaR antagonist, bicuculline, to organotypic cerebral slices containing SVZ results 
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in an increase in proliferating cells, as assessed by BrdU incorporation (Liu, X. et al., 2005). 

GABA also has roles in promoting differentiation of NSCs and progenitors (Tozuka et al., 

2005). Furthermore, migratory speed of neuroblasts from the SVZ to the olfactory bulb is 

controlled by the release of GABA from astrocytes which line the rostral migratory stream 

(Bolteus and Bordey, 2004). In the SGZ niche, GABA, spilled over from nearby terminals of 

parvalbumin+ interneurones regulates proliferation and differentiation of both NSCs and 

young neurones/neuroblasts by tonic and synaptic activation of GABAaRs, respectively 

(Song, J. et al., 2012; Ge et al., 2007; Song, Juan et al., 2013). 

Less is known however about how GABA may influence NSC niche behaviour by regulating 

quiescence and activation of NSCs through the regulation of cell cycle kinetics. A large 

majority of NSCs within a given niche remain in a dormant state (Morizur et al., 2018), which 

is thought to be due to the influence of a GABA mediated paracrine stop signal released 

from neighbouring neuroblasts within the niche. GABA then activates GABAaR in NSCs and 

limits their progression through the cell cycle (Fernando et al., 2011). It is well established 

that GABA released from neuroblasts within the SVZ exerts inhibitory control over astrocyte-

like GFAP+ NSCs via action on GABAaR, and disinhibition of this process by treatment with 

bicuculline results in increased proliferation of transit amplifying cells and NSCs (Liu, X. et 

al., 2005).  

Antimitotic agents and ionisation radiation induces death of neuroblasts, removing the 

source of inhibitory GABA, which results in NSC proliferation and subsequent recovery of 

SVZ populations (Daynac et al., 2013; Doetsch et al., 1999b; Morshead et al., 1994). For 

example, following irradiation of the SVZ to selectively ablate fast dividing progenitors, the 

numbers of proliferating Mash1+ transit amplifying cells and DCX+ neuroblasts were reduced 

by 90%. However, GFAP+ cells, likely NSCs with slow cell-cycle kinetics and turnover, 

remained unchanged (Daynac et al., 2013). Furthermore, whilst qRT-PCR analysis showed 

maintenance of NSC markers GLAST and TLX were maintained 24-48 hours post-

irradiation, markers for transit amplifying cells, such as Mash1, Sox2 and Nestin, and 
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neuroblasts, DCX, were significantly reduced. Treatment with BrdU following irradiation 

confirmed that GFAP+ quiescent NSCs are resistant to irradiation and increase their 

population size by approximately 6-fold to repopulate the niche following depletion of other 

cells within the SVZ. DCX/BrdU+ cells were later found in the olfactory bulb, indicating that 

surviving NSCs are capable of producing functional migrating neuroblasts (Daynac et al., 

2013).  

Daynac et al., (2013) also illustrate that 24 hours following GABAaR inhibition by bicuculline 

treatment the population of NSCs in intact SVZ increases 6.4-fold, suggesting GABAaR 

antagonist treatment allows cell cycle entry of quiescent NSCs to increase the population of 

activated, actively cycling, and proliferating NSCs. GABA-secreting neuroblasts die shortly 

after irradiation, therefore removing the source of GABA which prevents NSC proliferation. It 

is likely that through the loss of the GABA mediated stop signal in this way, quiescent NSCs 

are able to enter the cell cycle, increase their proliferation by 6-fold and repopulate the niche. 

This was confirmed by treatment with the GABAaR agonist muscimol, where muscimol 

delayed activation and proliferation of surviving quiescent NSCs which also delayed 

recovery of SVZ neurogenesis until 96 hours post-irradiation. Activated NSCs and transit 

amplifying cells were below basal levels following irradiation in muscimol treated mice. In 

addition, very few active cycling cells were found scattered in the SVZ compared to 

untreated irradiated animals. Conversely, bicuculline improved recovery of the niche at 7 

days post irradiation where recovery was associated with a higher level of cycling cells in 

both quiescent and activated NSC populations. These results show that GABA maintains 

NSCs in a quiescent state under physiological conditions, however following loss of 

GABAergic signalling following irradiation-induced neuroblast death, quiescent NSCs can be 

reactivated to exit dormancy/quiescence, and this is particularly critical in times of niche 

population depletion. 
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1.10 Effects of GABA on spinal cord NSCs 

Whilst some of the effects of GABA on the NSC niches of the hippocampus and SVZ may 

remain elusive and need to be fully explored, even less is known about how GABA may play 

a part in influencing NSCs in the spinal cord. ECs consistently respond with a robust 

depolarisation following GABA application in patch clamp experiments (Corns et al., 2013). 

Depolarisation of ECs by GABA was determined to be mediated in part by GABAaR as 

these responses were significantly smaller upon co-application of the GABAaR antagonists 

bicuculline and gabazine which decreased the size of the depolarisation to GABA by 38 ± 

10% and 37 ± 11%, respectively. The remainder of the GABAergic response in ECs was not 

found to be mediated by either GABA transporters, tested using nipecotic acid or guvacaine 

to block transporters, or GABAbR activation since baclofen activates GABABRs (Corns et 

al., 2013). Therefore, exactly what mediates the bicuculline-resistant component of the 

GABAergic response in ECs remains to be determined. However, it is evident that ECs are 

able to respond to local GABA release, where their response is similar to progenitor cells 

within the neurogenic niches of the brain (Liu, X. et al., 2005).  

Endogenous GABA is likely to influence ECs through release of GABA from the GABAergic 

terminals that synapse with ECs (Kaduri et al., 1987; Magoul et al., 1987). These terminals 

may arise from local GABAergic interneurons of lamina X (Gotts et al., 2016), or from 

neighbouring cells present within the highly heterogenous CC cytoarchitecuture (Hugnot and 

Franzen, 2011). GABAergic terminals have been found in close apposition in CSFcCs 

(McLaughlin et al., 1975) and this possibility may extend to ECs.  

Glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) mice, which have 

expression of GFP in all cells expressing the enzyme responsible for the formation of GABA 

by glutamate decarboxylation, GAD67, allow identification of GABA synthesising cells in the 

CNS (Tamamaki et al., 2003). GAD67-GFP mice show robust expression of GFP in CSFcCs 

of the CC, indicating the presence of GABA synthesising machinery in these cells 
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(Tamamaki et al., 2003). Furthermore, CSFcCs are located in the subependymal layer in 

close apposition to ECs (Corns et al., 2015). It has been suggested that CSFcCs may 

constitute a neurosecretory system which influence CSF composition as CSFcCs exhibit of 

dense granular and clear synaptic vesicles in the CSFcC terminal bulb (unpublished 

observation, Deuchars’ lab) (Vigh et al., 1983a; Vigh et al., 1977). These vesicles may 

contain GABA as VGAT-IR has also been observed in CSF-contacting end-bulbs (Conte et 

al., 2009). Furthermore, immunohistochemistry (IHC) for both synaptophysin and synaptic 

vesicle protein 2 has shown that these molecules, which are critical for vesicle exocytosis 

(Edelmann et al., 1995; Chang and Sudhof, 2009), are present in CSFcCs (Stoeckel et al., 

2003), suggesting that CSFcCs may be able to release GABA or other peptides into the CSF 

from these terminal projections.  

These GABAergic cells are therefore well situated to influence EC behaviour by paracrine 

activation whereby secreted GABA would keep ECs in a quiescent state, similar to the 

mechanism in which GABA released by neuroblasts inhibits proliferation of SVZ NSCs (Liu, 

X. et al., 2005). 

CSFcCs also receive functional GABAergic contacts and exhibit functional GABAaRs (Reali 

et al., 2011; Marichal, Nicolás et al., 2009). CSFcCs in the turtle spinal cord depolarise in 

response to GABA, due to the predominance of NKCC1 expression over KCC2, leading to 

an excitatory response to GABA and an increase in intracellular Ca2+ (Reali et al., 2011). A 

situation may therefore exist depolarisation of CSFcCs at the CC, causing them to release 

GABA, which then acts on CSFcCs and also ECs to restrict proliferation within the CC niche. 

However, whether these processes occur in the mammalian spinal cord remain to be seen. 

Oligodendrocyte progeny make up the majority of newly proliferated cells in the intact 

postnatal spinal cord (Barnabe-Heider et al., 2010) and are also likely to be affected by 

changes in GABAergic signalling in the spinal cord. In the brain OPCs receive synaptic 

contacts from GABAergic interneurones (Lin and Bergles, 2004) and endogenous GABA 
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release has been shown to modulate the differentiation of OPCs (Zonouzi et al., 2015). A 

decrease in GABAaR mediated signalling following hypoxia has been shown to increase 

OPC proliferation but delay myelination (Zanouzi et al., 2015). Conversely, endogenous 

GABA release, acting on GABAaRs, greatly reduced the number of oligodendrocytes and 

reduced the amount of myelin present in organotypic cortical slices (Hamilton, L.K. et al., 

2009). GABAergic signalling has also been implicated in the migration of OPCs (Tong, X.P. 

et al., 2009). Such results illustrate that the effects of the basal inhibitory GABAergic tone 

upon proliferation and differentiation of oligodendrocytes must also be considered in the 

adult spinal cord.  

1.10.1 Could changes in GABA explain changes in EC behaviour and their 

activation following injury?  

Following injury, ECs increase their proliferation by up to 50-fold (Johansson et al., 1999). 

Could the process of activating dormant NSCs to replace lost cells which seen in the SVZ 

following irradiation also be occurring in the spinal cord and therefore explain the change in 

EC behaviour following injury? It is only when there is an injury, where 50% of the glial 

population is lost in the first 2 days following insult (Grossman et al., 2001; Lytle and 

Wrathall, 2007; Rabchevsky et al., 2007), that normally quiescent ECs become activated 

NSCs, increase their proliferation by ~3x, are able to differentiate into glial cells and migrate 

toward the lesion site (Barnabe-Heider et al., 2010; Meletis et al., 2008). ECs may therefore 

remain quiescent under normal conditions, but retain NSC properties and appearance, as 

they serve as an emergency repair mechanism that can be activated in times of 

oligodendrocyte and astrocyte population depletion, as occurs in injury.  

Alternatively, if CSFcCs do secrete GABA which acts on ECs to induce dormancy, could 

injury result in changes in the CSFcCs which removes the GABA-mediated proliferative 

brake so ECs realise their NSC potential? If so, this would be similar to the effects seen in 

the SVZ following the ablation of GABA secreting neuroblast (Daynac et al., 2013; Morshead 
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et al., 1994). One could hypothesise that such changes could include cell death of CSFcCs, 

migration of CSFcCs away from the CC and ECs, or changes in the level of GABA 

synthesised or released by the cells, all of which might then allow ECs to proliferate, 

differentiate, and migrate toward areas of damage as the GABAergic signal which acts to 

maintain EC dormancy has been removed by the injury process. For example, reduced 

GABA levels have been found in the brains of patients with relapsing-remitting MS and have 

been linked to greater levels of disability, motor- and cognitive impairment (Cao et al., 2018; 

Cawley et al., 2015). Such results suggest that changes in GABAergic signalling may 

influence proliferation and differentiation in response to CNS pathologies such as MS.  

This possibility however is purely speculation at this point in time, as no studies have yet 

investigated the effects of injury on the activity of CSFcCs and how this would affect NSC 

behaviour of ECs. Despite this, there is a wealth of evidence which shows that there is a 

change in the GABAergic system of the spinal cord following SCI (Zhang, A.L. et al., 1994; 

Gwak, Young S. and Hulsebosch, 2011; Meisner et al., 2010). Following SCI there is a 

reduction in the number of GABAergic interneurones, leading to hypofunction in the basal 

GABAergic tone of the spinal cord which is a key factor in the development of central 

neuropathic pain, allodynia, and hyperalgesia (Gwak, Young S. and Hulsebosch, 2011; 

Gwak, Y. S. et al., 2006; Drew et al., 2004). Loss of inhibitory GABAergic tone following 

injury may also result in activation of EC NSC capabilities, indicating that these cells are 

indeed kept dormant by GABAergic signalling in the intact cord. 

1.11 Diazepam binding inhibitor  

Whilst it is clear that GABA has a role in controlling NSC cell cycle entry, and therefore 

quiescence, the exact mechanism of this and how GABAaR itself is modulated has remained 

elusive until recently. Work from Alfonso et al., 2012 and Dimutru et al., 2017 suggests NAM 

of GABAergic neurotransmission via the endogenous ligand DBI delicately balances 

quiescence vs. proliferation by regulating cell cycle exit of NSCs (Alfonso et al., 2012; 
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Dumitru et al., 2017). These studies suggest that DBI provides a mechanism by which GABA 

can be modulated differentially in distinct cell types of the neurogenic niche, and attempts to 

explain how GABA can simultaneously increase the number of new neural cells whilst also 

maintaining NSC quiescence in the CNS.  

DBI is an endogenous 10kDa peptide, also known as endozepine or acyl-CoA binding 

protein. DBI was first characterised upon isolation from rat brain in 1983 by Guidotti et al by 

examining the ability of the peptide to bind to and displace radio labelled diazepam from 

GABAAR (Guidotti et al., 1983; Alho et al., 1985). DBI binds to the extracellular domain 

between α and γ2 subunits of GABAAR which forms the CBR site (see section 1.7.1.1). DBI 

also binds to the peripheral-type BZ receptor (PBR) within the mitochondrial membrane, 

more recently renamed translocator protein (18 KDa) (TSPO) (Papadopoulos et al., 1991; 

Papadopoulos et al., 2006). DBI is broken down within astrocytes to form its two main 

processing products; octadecaneuropeptide (ODN) and triakontatetraneuropeptide (TTN) 

(Alho et al., 1990). ODN and TTN are secreted by astrocytes (Christian et al., 2013; Loomis 

et al., 2013; Loomis et al., 2010), and bind preferentially to CBR and TSPO, respectively, as 

confirmed by pharmacological study of these receptors with their specific antagonists 

flumazenil and PK-11195 (Slobodyansky et al., 1989).  

1.11.1 Expression of DBI in the adult CNS 

High levels of DBI mRNA have been reported in the cerebellum, hypothalamus, amygdala, 

the reticular thalamic nucleus, ependyma of third ventricle, and the area postrema (Alho et 

al., 1990; Alho et al., 1985; Alho et al., 1991; Tong, Y. et al., 1991; Costa, E. and Guidotti, 

1991). 

Astroglial cells have extremely high concentrations of DBI protein and DBI mRNA, and have 

also been shown to express the DBI gene (Costa, E. and Guidotti, 1991; Alho et al., 1994).. 

Thus, DBI appears to be preferentially located in glial cell populations such as hypothalamic 

glial cells, and Bergmann glia of the cerebellum (Tong, Y. et al., 1991). Similarly, it has also 
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been suggested that the strong in situ labelling found in the area postrema may be due to 

labelling of its prolific glial network (Roth and Yamamoto, 1968). Cultured rat astroglial cells 

also contain and release substantial amounts of DBI-related peptides (Gandolfo et al., 2000), 

suggesting that DBI processing products may regulate glial cell activity, in addition to 

affecting other cells in the vicinity. In situ hybridisation and IHC have also shown the 

expression of DBI within ependymal and subependymal populations of the third ventricle 

(Tong, Y. et al., 1991; Dumitru et al., 2017).   

IHC shows that DBI and DBI-related peptides appear to be highly to moderately 

concentrated in several key areas of the brain including, the cytoplasm of astroglial cells in 

the cerebellum and dentate gyrus, the ventricular ECs, tanycytes of the 3rd ventricle, and the 

choroid plexus (Alfonso et al., 2012; Dumitru et al., 2017; Yanase et al., 2002). It is possible 

that DBI is highly expressed throughout the ventricular system as expression of TSPO in 

ECs lining these areas may be involved in the modulation of the formation of CSF. Binding of 

the TSPO specific ligand Ro 5-4864 decreases CSF formation by 48% (Williams et al., 

1990). DBI immunoreactivity has also been reported within NSCs of the hippocampus (Nochi 

et al., 2013; Dumitru et al., 2017). The presence and expression of DBI within NSCs appears 

to decrease in association with progression of cellular differentiation (Nochi et al., 2013).  

In areas of the brain thought to express DBI, in situ hybridisation signal to DBI antisense has 

been shown to be absent from neurons (Tong, Y. et al., 1991; Ferrero et al., 1984). More 

recent studies however have shown that DBI is indeed expressed within neurones, with 

reports of DBI expression within neurones of the retricular thalamic nucleus (Christian et al., 

2013). The gene expression nervous system atlas (GENSAT) project at Rockefeller 

University has also reported that DBI is expressed within neurones of the hypothalamus, 

thalamus, cerebellum, and hippocampus. 

DBI and DBI-like peptides are also present within human brain and CSF (Ferrero et al., 

1986a). Furthermore, DBI immunoreactivity within the human brain parallels that of the 
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GABAergic system, showing the strong link between DBI and CBR (Ferrero et al., 1986a; 

Ferrarese et al., 1989). 

1.11.2 Expression of TSPO in the adult CNS  

The GABAaR CBR site ligands BZs and DBI also bind at ‘peripheral type’ BZ receptor/ 

translocator protein, TSPO, discovered in 1970s (Squires and Braestrup, 1977; Gavish et al., 

1999; Alho et al., 1988b). These peripheral binding sites were originally thought to be 

specifically expressed in mitochondria of peripherally located steroidogenic tissues such as 

Leydig cells and adrenal glands (Papadopoulos, 1993; Gavish et al., 1999). However, whilst 

TSPO expression is particularly enriched in steroidogenic tissues by up to 50-fold (Gavish et 

al., 1999) later work unveiled that PBR was ubiquitously expressed throughout the 

mammalian body, including the CNS.  

Autoradiography using the TSPO ligand 3[H]PK11195 has shown that TSPO is expressed 

within the olfactory bulb (Anholt et al., 1984; Bolger et al., 1984), the ventricular ependyma 

and choroid plexus (Benavides et al., 1983; Bénavidès et al., 1984), and the cerebellum 

(Anholt et al., 1984). In the healthy CNS, TSPO is expressed at a low level within glial cells, 

particularly within microglia and astrocytes (Gavish et al., 1999; Cosenza-Nashat et al., 

2009; Notter et al., 2018). Unlike DBI, low levels of TSPO have also been reported to be 

present in neurones (Notter et al., 2018; Wang, H.J. et al., 2012). In the SVZ neurogenic 

niche TSPO immunoreactivity (IR) is found in Nestin+ and GFAP+ NSPCs of the SVZ 

ependyma and rostral migratory stream. TSPO-IR is also observed throughout the entire 

hippocampal region, with concentrated expression in the Nestin+ and GFAP+ NSPCs of the 

neurogenic SGZ (Betlazar et al., 2018).  

 

TSPO is located at the outer mitochondrial membrane and is mainly present at contact sites 

between the outer mitochondrial membrane and the inner mitochondrial membrane 

(McEnery et al., 1992). TSPO has been suggested to be an integral part of an 800kDa 

complex located at the outer mitochondrial membrane which is involved in cholesterol 
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transport to the inner mitochondrial membrane for steroid biosynthesis. The complex 

includes TSPO, a voltage dependent anion channel, cytochrome p450, the ATPase family 

AAA domain-containing protein 3A, and optic atrophy type 1 proteins (Rone et al., 2012) 

(figure 1.8). Following transport of cholesterol to the inner mitochondrial membrane by 

TSPO, the first and rate-limiting step of steroid synthesis, cholesterol is converted to 

pregnenolone, the first steroid, by the enzyme cytochrome p450 side chain cleavage. 

P450 side chain cleavage transcripts are also expressed in the brain, although estimated to 

be 0.01% of that measured in the adrenal gland. Only a small subpopulation of cells in the 

brain are capable of de novo neurosteroidogenesis (Mellon and Deschepper, 1993). P450 

side chain cleavage expression is reported to be localised in the cortex, basal ganglia, 

hippocampus, olfactory bulb, hypothalamus, thalamus, and cerebellum (Compagnone et al., 

1995; Mellon and Deschepper, 1993). Binding at TSPO may therefore induce 

neurosteroidogenesis, and since these ligands have also act as modulators of GABAaR, DBI 

may have amplified effects on GABAergic signalling by its effects on both GABAaR and its 

role in the production of neurosteroids which also bind to GABAaR (Tokuda, Kazuhiro et al., 

2010). There may also exist a situation in which DBI and GABAergic neurosteroids exhibit 

opposing effects at GABAaR and instead act to balance one another.  

1.11.3 Effects of DBI on quiescence and NSC proliferation and differentiation  

DBI is robustly expressed in the neurogenic niches of the brain, the SVZ of the lateral 

ventricle and the SGZ of the hippocampus in both juvenile and adult mice (Alfonso et al., 

2012; Dumitru et al., 2017). Expression appears to be limited to similar populations of cells 

within these 2 areas. For example, in the SVZ, strong DBI immunoreactivity is detected in 

astrocyte-like GFAP+/Nestin+ NSCs, and in Mash1+ fast dividing transit amplifying 

progenitors, but not in DCX+ neuroblasts (Alfonso et al., 2012). Similarly, within the SGZ, 

DBI expression is limited to Nestin+/Sox2+ NSCs, Nestin-/Sox2+ early amplifying neural 

progenitors, Mash1+/Tbr2+ late neural progenitors, but absent/barely detectable in most 
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DCX+ neuroblasts (Dumitru et al., 2017). These results suggest that DBI is expressed during 

early neurogenesis and therefore may be important in regulating these processes. DBI also 

appears to be expressed in Nestin+/Sox2+ tanycytes lining the recently identified neurogenic 

niche at the 3rd ventricle. Furthermore, DBI has also been detected in GFAP+/Sox2+ RG-like 

NSCs and Sox2+ amplifying neural progenitors in the hippocampal SGZ of a 1-year old 

rhesus monkey, indicating that DBI may regulate such behaviours beyond that of rodents 

(Dumitru et al., 2017). 

Loss/gain of function experiments were carried out in both studies in order to determine the 

action of DBI upon neurogenic niche behaviour in vivo. Whilst Alfonso et al., 2013 use 

targeted lenti- or retro-virus to induce DBI loss- or gain of function, Dumitru et al., 2017 

utilise several methods to manipulate DBI levels in vivo. Methods used by Dumitru et al., 

2017 include an inducible genetic system to selectively delete DBI in NSCs following 

tamoxifen administration, a combination of a genetic model and viral injections that allows 

tracing of labelled stem cells and their progeny, and finally intracranial lentiviral injections in 

the SGZ of WT mice.  

Using these various methods, targeted KD of DBI expression in Nestin+ NSCs resulted in an 

overall decrease in proliferation in SVZ and SGZ. In the SVZ, KD of DBI expression in NSC 

also resulted in a decrease in BrdU+/NeuN+ cells in the olfactory bulb, indicating that DBI is 

essential for the proliferation of the new neuronal population migrating to the olfactory bulb 

from the SVZ. Whilst KD resulted in fewer new neurones, the proportion of new BrdU+ cells 

reaching the olfactory bulb was greater following DBI KD, suggesting a greater migratory 

capacity of new cells following DBI KD as fewer cells were present in the rostral migratory 

stream compared to the olfactory bulb. Using a similar viral mediated strategy to induce DBI 

KD in NSCs and their progeny in the SGZ, Dumitru et al., 2017, showed DBI KD in the 

hippocampus has similar results to those seen in the SVZ, where the proportion of 

proliferating Ki67+ NSCs, amplifying neural progenitors, and neuroblasts decreased, but the 
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number of new neurones increased. These results provide further support to the notion that 

DBI regulates the progenitor pool in postnatal neurogenesis. 

Targeted DBI overexpression (OE) gain-of-function experiments in SVZ and SGZ NSCs and 

their progeny resulted in increased proliferation of SVZ progenitors and an increase of 

NSCs, astrocytes, and neuroblasts. Concurrently, DBI OE decreased numbers of young 

neurones in the SGZ. DBI OE therefore results in expansion of the progenitor pools of the 

SVZ and SGZ, demonstrating the role of DBI in balancing preservation of the progenitor pool 

and the production of new neurones in these niches.  Furthermore, DBI OE also affected the 

level of migration from SVZ, through rostral migratory stream, to the olfactory bulb. DBI OE 

resulted in more cells remaining in the rostral migratory stream at 7dpi compared to control 

cells without DBI OE. This was not the result of an increase in cell death of migrating cells. A 

likely explanation is that similarly to DBI KD, DBI OE results in changes to the cell cycle 

where overexpressing progenitors remain in division for longer than their control 

counterparts and therefore more time is required for these cells to differentiate to 

neuroblasts, migrate through the rostral migratory stream, and eventually incorporate into 

olfactory bulb. This hypothesis is in line with the finding that DBI OE results in a larger 

Mash1+ progenitor population in the SVZ.  

1.11.4 The effects of DBI are dependent on GABAaR CBR site binding  

Alfonso et al., 2013 and Dumitru et al., 2017 confirm that the effects of DBI KD/OE are 

dependent upon the NAM action of DBI binding to the CBR site on GABAaR. DBI OE in 

neurosphere cultures from SVZ resulted in increased proliferation of spheres (Alfonso et al., 

2012). However, introduction of flumazenil, an inverse agonist at CBR which removes DBI 

from its binding site on GABAaR, prevented DBI OE mediated changes in proliferation. This 

result indicates that DBI relies on its binding to CBR to mediate its proliferative effects in 

NSCs. Furthermore, the shorter fragment of full length DBI protein, ODN, which binds 

specifically to CBR, was also able to reduce GABA mediated currents in outside out patches 
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of isolated transit amplifying progenitors from the SVZ. Together these results confirm that 

DBI acts to inhibit GABA currents in SVZ progenitors and so attenuates GABA induced 

quiescence of NSCs.  

These findings were mirrored in the SGZ niche, whereby GABAergic mediated responses in 

NSCs were partially inhibited by ODN. Specificity of ODN binding to CBR to induce NAM of 

GABAaR induced currents was confirmed using γ2F77I mutant mice. Γ2F77I mutant mice 

possess a phenylalanine (F) to isoleucine (I) substitution at position 77 in the γ2 subunit and 

as a result are unable to bind BZs, and similar compounds such as DBI, at the CBR site with 

the same affinity as WT animals (Buhr and Sigel, 1997; Cope et al., 2004). The γ2 subunit is 

extremely important in the formation of CBR in GABAaR as of CBR in GABAaR as γ2 KO 

results in a loss of 94% of all BZ binding sites (Gunther et al., 1995). CBR deficient mice 

show retarded growth, sensorimotor dysfunction, and a drastically reduced lifespan (Gunther 

et al., 1995). These results indicate the importance of postnatal GABAaR regulation by an 

endogenous ligand at CBR, such as DBI/ODN. Without usual CBR function in γ2F77I mutant 

mice ODN-mediated decreases in GABA induced currents are absent. Moreover, the DBI 

OE-mediated increase in the number of Sox2+ NSCs within the SGZ was absent in γ2F77I 

mice, further indicating that DBI/ODN modulates the stem cell niche by NAM of GABAaR by 

specific binding to CBR (Dumitru et al., 2017). 

Modulation of GABAaR by DBI also appears to be essential for the proneural effects of 

enriched environment upon the hippocampus (Dumitru et al., 2017). It is well established 

that animals given access to enriched environment, such as the inclusion of running wheels 

in their home cage, over standard housing show increased levels of neurogenesis in the 

brain (van Praag et al., 2000; van Praag et al., 2005). Interestingly, a similar finding has also 

been seen in the spinal cord, where increased physical activity in rats via free access to a 

running wheel, which results in a significant 2.6-fold increase in BrdU+ proliferating ECs 

(Cizkova et al., 2009).  
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 As expected, Dumitru et al., (2017) show that control animals in an enriched environment 

possess increased numbers of DCX+ immature neurones over WT littermates placed in 

standard housing. However, DBI KD prevented the increase in DCX+ cells seen in enriched 

environment compared to standard housing, illustrating the way in which modulation of 

GABAaR by DBI couples activity and neurogenesis in the hippocampus. DBI modulation of 

GABAaR allows GABA seemingly opposing effects in different cell types, whereby GABA 

signalling can both increase the survival and development of new neurones whilst keeping 

NSCs quiescent.  

1.11.5 DBI and pathological proliferation  

High levels of DBI and GABAaR expression have been found in astrocytomas, 

neurocytomas, and human gliomas (Alho et al., 1995, Labrakakis et al., 1999, Young and 

Bordey, 2010). During patch clamp experiments using glioma cells, Labrakakis et al., (1998) 

illustrated that GABA triggered depolarisation in the majority of cells which resulted in an 

increase in intracellular Ca2+ concentration, likely through activation of voltage gated Ca2+ 

channels present within the tumour membrane. Changes in intracellular Ca2+ are a known 

downstream signalling effector for the transduction of GABA-mediated effects on 

proliferation (Young, S.Z. et al., 2010). Activation of GABAaR by diazepam in a human 

glioma cell line inhibited proliferation (Chen, J. et al., 2013), indicating that similar to NSCs, 

GABA is a negative regulator of proliferation in glioma cells. GABA therefore appears to 

regulate proliferation in the CNS at both a physiological and a pathological level, however 

the effects of GABA upon proliferation within the intact spinal cord remain to be determined.  

1.12 Hypotheses and aims 

It has been argued that the SVZ and SGZ are not the only neurogenic niches present within 

the adult CNS. There is mounting evidence that NSCs are present in the adult spinal cord 

and exist within a specialised niche surrounding the CC. This has led to optimism in the field 

of SCI research as these cells may constitute an endogenous pool of proliferative cells which 
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could be used for tissue repair. However, if endogenous NSC-derived repair is ever to 

become a reality, we must first understand the signals which modulate proliferative 

behaviour within the postnatal spinal cord.  

GABA is an important negative regulator of proliferation in other neurogenic niches. ECs at 

the CC respond to GABA and neighbouring GABAergic CSFcCs are a possible source of 

ambient GABA in the CC niche which may induce quiescence within the intact spinal cord. It 

is hypothesised that GABA will negatively affect proliferation in the intact postnatal spinal 

cord, and that the negative influence of GABAergic signalling in the spinal cord is modulated 

by endogenous ligand binding to the CBR site of GABAaR.  

Work described here therefore attempts to investigate the possibility that GABA is involved 

in keeping ECs and other neural progenitors in a dormant state, as the signal which controls 

the proliferation of these cells in the adult spinal cord is not yet known. Ultimately such work 

will also provide clues as to why the spinal cord shows poor regenerative capabilities in 

mammals, and whether modulation of such signalling events lead to greater therapeutic 

outcomes.  

The aims of this study are to: - 

1. Use both transgenic and pharmacological methods to determine whether modulating 

GABAergic signalling influences proliferation of cell populations at the CC and within 

both the WM and GM of the postnatal spinal cord  

2. Determine the fate of proliferating cells in response to GABAergic modulation 

3. Examine the expression of the GABAaR modulator and CBR site ligand DBI in the 

adult spinal cord  

4. Examine the expression of TSPO in the intact spinal cord in order to consider 

whether neurosteroids may also be a likely GABAergic modulator in the control of 

proliferation and differentiation 
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5. Examine the effects of TSPO and GABAaR mixed modulators upon basal levels of 

proliferation alongside the effects of TSPO or GABAaR specific ligands 

6.  Use both transgenic and pharmacological interventions to determine whether 

perturbation of GABAaR modulation by endogenous CBR site ligands such as DBI is 

a plausible mechanism for the low levels of proliferation in the intact cord 

7. Investigate whether the GABAaR CBR site antagonist increases proliferation of 

OPCs in response to a demyelinating lesion 
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2.1 Animals  

All experiments were carried out under the UK Animals (Scientific Procedures) Act 1986 and 

in line ethical standards set out by the University of Leeds Ethical Review Committee. Every 

effort was made to minimise the number of animals used and their suffering. Animals were 

housed in groups, given ad libitum access to food and water, and experienced a 12 hour 

light-dark cycle (lights on 06.30– 18.30). 

Five strains of adult mice (4-8 weeks) were used in these experiments. C57BL/6 mice, 

nestin-GFP mice and GAD67-GFP knock-in mice were bred in-house at the University of 

Leeds. When in-house supply failed to meet demand adult C57BL/6 mice were sourced from 

Charles River Laboratories. Two other transgenic mouse lines were also used, ƴ2F77I mice 

and TSPO global K/O mice, their tissue was a kind gift of collaborators in Germany and the 

USA, respectively. These are discussed in further detail below. 

2.1.1 GAD67-GFP mice  

GAD67-GFP mice (Tamamaki et al., 2003) were originally sourced from Yuchio Yanagawa, 

leading to the establishment of successful GAD67-GFP breeding trios in-house, consisting of 

one GAD67-GFP male paired with two C57BL/6 females. GAD67-GFP mice harbour 

enhanced GFP cDNA between the GAD67 5’ flanking region and the GAD67 codon start of 

the GAD67 promotor (Tamamaki et al., 2003). Productive breeding results in heterozygous 

GAD67-GFP (GAD67+/-) pups, with GAD67 haplodeficiency due to GFP knock in, as GAD67-

/- is lethal at birth due to cleft palate development (Asada, H. et al., 1997).  At 2-3 days of 

age mice are genotyped by GFP visualisation under an ultraviolet light, as at this age 

fluorescence can be visualised through the thin bones of the skull.  

GAD67-GFP mice are seizure free and phenotypically normal in terms of growth and 

reproductive behaviour despite showing a reduction in brain GABA content, as measured by 

high performance liquid chromatography (HPLC) (Tamamaki et al., 2003). The use of 
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GAD67-GFP knock-in mice allowed us to not only visualise GABA producing GAD67-GFP 

positive cells, such as CSF-cCs, but also provided an invaluable tool to examine how 

reductions in ambient GABA may affect cellular proliferation and differentiation in the spinal 

cord. 

2.1.2 Nestin-GFP mice  

In addition to GAD67-GFP transgenic mice adult nestin-GFP mice (Yamaguchi et al., 2000) 

were used for visualisation of the ependymal cell layer. A productive in-house breeding 

colony was set up similarly to the GAD67-GFP colony.  

Nestin is expressed in radial glia and nestin-GFP mice have been previously used to analyse 

neurogenic events in SGZ and SVZ (Abla and Sanai, 2013; Murdoch and Roskams, 2008; 

Mignone et al., 2004). Nestin has also been shown to be expressed in ECs in both health 

and disease (Alfaro-Cervello et al., 2012; Dromard et al., 2008; Xu, R. et al., 2008; 

Matsumura et al., 2010; Cawsey et al., 2015; Cizkova et al., 2009; Namiki and Tator, 1999). 

Therefore nestin-GFP mice were used in these experiments as a means to label the EC 

layer of the CC.  

2.1.3 ƴ2F77I mice 

Adult (~8-12 weeks) transgenic (C57/Bl6, ƴ2F77I/F77I) ƴ2F77I mice, with the point mutation 

F77I in the Gabrg2 gene were examined for changes in proliferation and differentiation within 

the intact spinal cord compared to WT animals. Spinal cord tissue from these animals was a 

kind gift of Dr I. Dumitru (Prof. H. Monyer’s Lab, DKFZ, Heidelberg, Germany).  

Binding of BZs to GABAaR occurs at the interface between α and ƴ2 subunits (Sigel, E., 

2002; Ernst et al., 2003). γ2F77I mice possess a phenylalanine (F) to isoleucine point 

mutation (I) at position 77 in the Gabrg2 gene which alters the affinity and specificity of the 

drug binding site within the ƴ2 subunit (Buhr and Sigel, 1997; Cope et al., 2004). γ2F77I 

mice breed normally and behave similarly to control C57BL/6 mice when examined with a 

range of behavioural observational tests (Cope et al., 2004). GABAaRs within these mice 
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however, show altered responses various CBR ligands including, but not limited to, zolpidem 

(Cope et al., 2004), zopiclone, diazepam, and flumazenil (Ramerstorfer et al., 2010). The 

endogenous protein DBI also binds to GABAaR at the α and ƴ2 subunits, modulating 

GABAergic signalling through CBR (Bormann, 1991; Alfonso et al., 2012) (Bormann et al., 

1985, Alfonso et al., 2012).  

These mice were therefore chosen to examine any changes in the level of proliferation within 

the spinal cord as a result of transgenic manipulation of the CBR site within GABAaR, which 

may affect binding of endogenous GABAaR modulators, such as DBI and its smaller peptide 

derivatives ODN and TTN. 

2.1.4 TSPO KO mice  

Transgenic global TSPO K/O mice were also examined for changes in proliferation and 

differentiation within the spinal cord compared to control C57/Bl6 mice. Tissue from these 

animals was a kind gift of Dr O. Chechneva (Dr W. Deng’s lab, UC Davis, Sacramento, 

California, USA).  

The endogenous protein DBI binds and has cellular effects at 2 locations, the CBR site 

located within GABAaRs (Bormann, 1991; Alfonso et al., 2012; Dumitru et al., 2017), and 

also at the glial TSPO receptor, located at the outer mitochondrial membrane (Papadopoulos 

et al., 1991; Veenman and Gavish, 2012). Whilst DBI is able to bind to TSPO, it is the 

smaller neuropeptide fragment of DBI TTN which is seen to preferentially bind with high 

affinity to the TSPO receptor, as confirmed by pharmacological study of these receptors 

using the specific ligand PK11185 (Alfonso et al., 2012; Slobodyansky et al., 1989). Whilst 

the specific primary function of TSPO is still debated, TSPO has been shown to be involved 

in many mitochondrial-based functions including steroidogenesis, ion transport, and cell 

proliferation (Gavish et al., 1999). 

The TSPO specific ligand TTN increases intracellular [Ca2+] (Gandolfo et al., 2001) and 

stimulates proliferation in cultured rat astrocytes (Gandolfo et al., 2000). This pro-
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proliferative effect was determined to be due to TTN binding at TSPO as these effects were 

abolished by PK11195 but not by the CBR specific antagonist flumazenil (Gandolfo et al., 

2000). Furthermore, increased levels of TSPO expression have been found in high-grade 

gliomas (Roncaroli et al., 2016). These results suggest that TSPO may also influence 

postnatal proliferation within the CNS, and therefore global TSPO KO mice were used to 

investigate this possibility.  

Detailed information on the numbers of animals used in different experimental conditions can 

be found in table 2.1 

 

Table 2.1 Numbers and types of animals used in each experiment  
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Experiment Strain Number used 

Day vs. Night C57BL/6 6 

Day vs. Night  GAD67-GFP 6 

WT vs. GAD in light hours C57BL/6 and GAD67-GFP 3 of each strain  

WT vs. GAD in dark hours C57BL/6 and GAD67-GFP 3 of each strain  

HPLC to determine GABA content C57BL/6 and GAD67-GFP 3 of each strain  

VGB vs. Vehicle C57BL/6 6 

IHC analysis of DBI expression C57BL/6, GAD67-GFP, nestin-GFP 3 of each strain 

IHC analysis of TSPO expression C57BL/6, GAD67-GFP, nestin-GFP 3 of each strain 

TSPO expression in MNs and SPNs C57BL/6 and GAD67-GFP 3 of each strain  

IHC analysis of TSPO and DBI in injury Nestin-GFP 3 

ETX vs. Vehicle C57BL/6 and GAD67-GFP 3 of each strain  
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MDZ vs. Vehicle C57BL/6 6 

Flumazenil vs. Vehicle C57BL/6 6 

Ro15-4513 vs. Vehicle C57BL/6 6 

G2F77I vs WT G2F77I and C57BL/6 3 of each strain 

TSPOKO vs TSPOflox TSPOKO and TSPOflox 3 of each strain 

Intact animal for LPC studies  C57BL/6 3 

Intraspinal saline injection + flumazenil C57BL/6 3 

LPC injection + vehicle  C57BL/6 3 

LPC injection + flumazenil  C57BL/6 3 
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2.2 In vivo studies 

In vivo studies were carried out to determine if there were changes in the levels of 

proliferation and differentiation within the spinal cord in various experimental conditions. In 

vivo experiments played an integral role in the investigation of GABAergic influences over 

proliferative behaviour.    

Experiments were carried out for 5 days, unless stated otherwise. Animals received 

intraperitoneal (I.P) injections of EdU +/- a pharmacological agent or vehicle daily until the 

end of the experiment. Animals were sacrificed on day 5 to allow processing of CNS tissue 

for immunofluorescent analysis.  

Injections were given at the same time of day to maintain uniformity across all in vivo 

studies. Although first experiments begun with administration of EdU and pharmacological 

agents during daytime/light hours, injections in subsequent studies were later given during 

the evening in the dark hours of the animal unit, between 19.00 and 21.00, when animals 

would be awake and most active. Numbers are proliferating cells are known to increase in 

established neurogenic regions, such as the SVZ, during periods of activity (Kempermann, 

Gerd et al., 2010; van Praag et al., 2005). It is possible that treating animals during periods 

of wakefulness and activity may allow for labelling of more proliferating cells. Labelling a 

greater population of proliferating cells can then be useful when using drugs which result in a 

decrease in the numbers of EdU labelled cells.    

A timeline to show the general injection paradigm for experiments investigating proliferation 

and differentiation within the spinal cord is detailed below (figure 2.1).  
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Figure 2.1 Animals received 4 days of EdU I.P before tissue analysis 

Timeline showing the timings of experiments investigating the number and fate of proliferative 

cells in the adult spinal cord in drug vs. vehicle treated animals 

 

 

2.2.1 In vivo administration of 5-ethynl-2’-deoxyuridine for the detection of 

proliferating cells  

In order to label newly proliferated cells for later visualisation using immunofluorescence, 

animals received daily 100µl I.P injections of 5-ethynyl-2’-deoxyuridine (EdU) (Carbosynth, 

product number: NE08701). EdU was made up in distilled water to give a final concentration 

of 10mM and stored at -20ºC in 1 ml foil wrapped eppendorfs until needed. 

Interest in using proliferation assays to investigate cellular turnover and neurogenesis in the 

CNS has existed since the 1960s when early pioneers of the field such as Smart and 

Leblond, (1961) and Altman and Das (1965) utilised the incorporation of tritiated thymidine 

into diving cells and its detection by autoradiography. Such studies were the first to illustrate 

that not only do we find dividing glial cells throughout the postnatal parenchyma (Smart and 

Leblond, 1961), but these cells, born in the SVZ, migrate and mature into postnatally born 

neurones within the olfactory bulb (Altman and Das, 1965; Altman, 1969).  

Later development of the thymidine analogue 5-bromo-2’-deoxyuridine (BrdU), which 

incorporates into DNA during the S-phase and is later detected by IHC, has been invaluable 

for the quantification of newly divided cells, and has further opened up the study of 

neurogenesis (Seki and Arai, 1993; Kuhn et al., 1996; Corotto et al., 1993; van Praag et al., 

2000). Proliferation assays using BrdU incorporation have long been considered the ‘gold-

standard’ for the detection of newly proliferated cells (Zeng et al., 2010; Wojtowicz and Kee, 

2006). Whilst BrdU staining is more convenient than tritiated thymidine autoradiography, and 

can be carried out alongside other cell type markers to determine cell fate, significant 

drawbacks still remain. Detection of BrdU requires a harsh DNA denaturation step to allow 
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the anti-BrdU antibody access to the incorporated BrdU residues and can result in the 

destruction of many cellular antibody epitopes (Buck, S.B. et al., 2008). Recently however, a 

novel technique, which instead employs the thymidine analogue EdU for the detection of 

DNA synthesis, has allowed for the circumvention of such problems associated with using 

BrdU.  

EdU is readily incorporated into cellular DNA during DNA replication (Salic and Mitchison, 

2008). Detection of the incorporated nucleoside is achieved by a copper catalysed [3+2] 

cycloaddition reaction (‘click’ chemistry) of the ethynyl group of EdU with a small biotin-azide 

group followed by a biotin-fluorescent streptavidin conjugation step for later analysis by 

fluorescent microscopy (Salic and Mitchison, 2008; Buck, S.B. et al., 2008; Chehrehasa et 

al., 2009; Zeng et al., 2010; Corns et al., 2015). The protocol for the detection of EdU uses 

small reaction components (~0.6kDa) which easily diffuse into, and have easier access to, 

the incorporated EdU within the double stranded DNA compared to the larger 

macromolecules of BrdU detection protocols i.e. anti-BrdU antibodies (150kDa), therefore 

bypassing the need for harsh denaturation steps and possible loss of tissue structure and 

antigenicity (Salic and Mitchison, 2008; Buck, S.B. et al., 2008; Chehrehasa et al., 2009). 

 

Figure 2.2 EdU is incorporated into DNA and can be detected by copper catalysed click 

chemistry and a fluorescent azide 
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EdU has been shown to be successful in labelling proliferating cells in the prenatal and 

postnatal mouse brain (Salic and Mitchison, 2008; Chehrehasa et al., 2009; Corns et al., 

2015). Furthermore, studies by Zeng et al., 2010 showed that when injected with 200 mg/kg 

EdU and an equimolar dose of BrdU (243.5 mg/kg) there was no significant difference 

between the number of EdU-positive cells and BrdU-positive cells in the adult hippocampus. 

In addition, almost all (over 95%) of EdU-positive and BrdU-positive cells were colocalised in 

the dentate gyrus, demonstrating that EdU and BrdU label the same cells in this neurogenic 

niche with similar efficiency (Zeng et al., 2010). EdU therefore has been validated as a 

useful means to study cellular proliferation and differentiation in relation to neurogenesis.  

2.3 In vivo administration of GABAergic modulators  

In addition to EdU treatment, some animals were also treated daily with various GABAergic 

modulators (table 2.2). All drugs were given I.P at a volume of 100µl. In vivo experiments 

were always carried out alongside a control group which received 100µl of vehicle I.P rather 

than drug (table 2.2) 
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Drug name Supplier Dose (mg/kg) Vehicle MOA 

Vigabatrin  Tocris 200 Saline GABA-T inhibitor 

Etifoxine Sigma 50 

1% TWEEN-80 

saline 

GABAaR PAM and 

TSPO agonist 

Midazolam Tocris 0.3 Saline 

GABAaR PAM and 

TSPO agonist  

PK11195 Tocris  3 

4% DMSO/0.8% 

TWEEN-80 

saline TSPO specific ligand 

Flumazenil Tocris 5 

0.1% TWEEN-

80 saline CBR site antagonist 

Ro15-4513 Tocris 3 

4%TWEEN-

80/3% DMSO 

saline 

CBR site inverse 

agonist 

Table 2.2 Details of all drugs used in in vivo experiments 
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2.3.1 Use of transgenic animals to assess changes in baseline proliferation 

Transgenic mice including GAD67-GFP mice (Tamamaki et al., 2003), γ2F77I mutant mice 

(Buhr and Sigel, 1997; Cope et al., 2004), and TSPO global KO mice (Wang, H. et al., 2016) 

were used alongside control C57BL/6 mice to investigate changes in proliferation and 

differentiation following changes in CNS GABA content, CBR binding affinity, and TSPO 

expression, respectively. These are discussed in further detail in the chapters 3 and 5. 

In experiments where transgenic animals were used as the experimental group vs C57BL/6 

mice as the control, EdU was introduced in the same manner and time frame as previously 

described for other in vivo experiments investigating proliferation (section 2.2.2). Briefly, 

animals received nightly 100ul injections of 10mM EdU for 4 days and were perfused on the 

5th day.  

2.3.2 Preparation of tissue for immunohistochemistry  

At the end of each experimental period animals were terminally anaesthetised by I.P 

injection of pentobarbitone sodium 20% w/v (60 mg/kg) (Pentoject, Animalcare, UK). Pedal 

and corneal withdrawal reflexes were tested until absent to ensure that the animal was 

suitably anaesthetised. The chest cavity was opened at the xiphoid process using blunt 

ended scissors, the diaphragm was perforated, and cuts were made along the lateral edges 

of the chest wall up to the clavicle. The ribcage was reflected back to expose the heart and 

lungs. Care was taken so as not to accidentally damage the liver and compromise the quality 

of the perfusion by premature disruption of the circulation. A cannula was inserted into the 

left ventricle and an opening was made in the right atrium to allow transcardial perfusion of 

50 ml 0.1M phosphate buffer (PB), followed by 200 ml of 4% paraformaldehyde (PFA) in 

0.1M PB, to effectively flush the circulation and fix the tissue.  

Once fixed, an incision was made along the midline of the back. Soft tissue was scraped 

away using a scalpel to reveal the vertebrae before the spinal cord and brain were removed 

using coarse forceps and small spring scissors (World Precision Instruments, catalogue # 
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654558). Harvested tissue was postfixed overnight in 4% PFA at 4ºC. Following postfixation, 

fine forceps (World Precision Instruments, catalogue # 500235) were used to remove the 

meninges. Spinal cords and brains were then placed in 0.1M phosphate buffered saline 

(PBS) supplemented with 0.1% sodium azide, to prevent bacterial growth, and kept at 4ºC 

until use. Tissue from the thoracolumbar region was sectioned transversely at 40µm on a 

vibrating microtome (Leica, VT1000S, Microsystems, UK).  Sections were placed in PBS in a 

24 well plate, with a maximum of 8 sections per well, ready for later fluorescent labelling of 

EdU and other cellular markers of differentiation.     

2.3.3 Detection of proliferating cells using EdU 

EdU detection was performed before any fluorescence IHC. Use of Cu(II)SO4 as a catalyst 

during the click reaction creates copper ions which may negatively affect the outcome of 

fluorescent secondary antibody detection as copper has been shown to be a fluorescence 

quencher (Choi, Y.-A. et al., 2015; Rahimi et al., 2008).  

Unless otherwise stated, all steps were carried out at room temperature whilst placed on an 

orbital shaking platform to gently agitate the sections and prevent sections sticking together.  

For the fluorescent detection of EdU incorporation into DNA; tissue sections were 

permeabilised by washing in 0.2% PBS-triton (PBST) for 30 minutes, followed by 2 x 10 

minute washes in Tris buffer (pH 7.6) before a 30 minute light protected incubation in 320 µl 

distilled water, 25 µl Tris buffer (2 M), 50 µl Cu(II)SO4 (10mM), 5 µl biotinylated azide 

(Kerafast, Boston MA,1mM, catalogue # FCC371), and 100 µl of ascorbic acid (0.5 M). 

Ascorbic acid must be added last to start the reaction by the reduction of Cu(II) SO4 to Cu(I), 

where Cu(I) ions catalyse the [3+2] cycloaddition reaction used to detect the incorporation of 

EdU in DNA of newly born cells.  

Sections were washed a further two times in Tris buffer (pH 7.6) before being incubated for 2 

hours in Streptavidin Alexa555 (Invitrogen, catalogue # S-32355) diluted 1:1000 in PBS, to 

allow fluorescent detection of azide binding to EdU present in DNA of newly born cells. 



73 

 

Finally; sections were washed in PBS and checked for evidence of positive staining before 

undergoing fluorescence IHC.  

2.3.4 Overview of immunohistochemical method and rationale  

IHC allows visualisation of cells or proteins of interest by utilising the principle that antibodies 

will bind specifically to an antigen of interest. A primary antibody can be raised against an 

antigen of interest by immunisation of a host animal, e.g. a rabbit, with the antigen. The 

animal will then produce antibodies to the antigen which can be extracted, purified, and used 

in biological research. Antibodies raised in this way are generally polyclonal, meaning that 

they recognise and bind to multiple different epitopes within the protein. Monoclonal 

antibodies, which instead bind to one epitope, can also be generated against a protein of 

interest using cell lines. A secondary antibody, raised against the species the primary 

antibody is raised in, with a fluorescent tag for visualisation is then used for the detection of 

the primary antibody.  

2.3.5 Immunohistochemistry protocol  

IHC was usually carried out on sections that had previously undergone staining to reveal the 

incorporation of EdU into DNA to examine changes in proliferation and differentiation 

(chapters 3, 5, and 6). Other sections however were used purely for IHC analysis and 

characterisation of the expression of certain antibodies, such as DBI and TSPO, within the 

adult spinal cord (chapter 4). However, whether the sections underwent EdU detection or 

not, the methods for the staining of other antibodies are the same and are discussed below.  

Sections in 24 well plates were washed three times in PBS for a total of 30 minutes. 

Following this, sections were placed in 300ul of primary antibody solution diluted to optimal 

working concentrations (table 2.3). Unless otherwise stated, primary antibodies were made 

up in 0.1% PBST to aid tissue permeabilisation. For the localisation of some antigens, such 

as CD24 and TSPO, membranes needed to remain intact for successful staining and 

visualisation to occur. In these cases, triton was omitted from the staining protocol and 
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sections instead received a 30 minute wash in 0.1% TWEEN-20 PBS before incubation in 

primary antibody. Sections were left in primary antibodies overnight at 4ºC on an orbital 

shaker.  

 

After primary antibody incubation, sections were washed three times in PBS for a total of 30 

minutes in order to remove any unbound primary antibody. Antigens were visualised by a 2- 

Table 2.3 Primary antibodies used to determine cell fate acquisition of EdU+ cells 

Antigen 
 

Species Dilution Supplier and cat. # 

CD24-FITC  Mouse 1 in 500 (TWEEN) BD Pharmingen 564664 

DBI 

 

Rabbit 1 in 2000 

Frontier Institute 

B_2571690 

GFAP  Mouse 1 in 100 Neuromab 73-240 

HuC/D  Rabbit 1 in 1000 Proteintech 130321AP 

Iba1  Rabbit 1 in 1000 Wako 019-19741 

MBP  Chicken 1 in 250 Abcam 134018 

Nestin  Rat 1:1000 BD Pharmingen 556309 

NeuN  Mouse 1 in 1000 Millipore MAB377 

ODN  Rabbit 1:250 Gift of M.C.Tonon 

PanQKI  Mouse 1 in 100 Neuromab 73-168 

S100β  Rabbit 1 in 1000 Abcam ab52642 

Sox2  Goat 1 in 500 Santa Cruz sc17320 

TSPO/PBR  Goat 1 in 100 (TWEEN) Abcam ab118913 

Tuj/B-tubulin III 

 

Rabbit  1 in 1000 Proteintech 10068-1-AP 
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hour incubation at room temperature with the appropriate Alexa-Fluor-conjugated secondary 

antibody (table 2.4). Sections were protected from light during secondary antibody 

incubation in order to prevent bleaching of the fluorescent probes which would affect later 

antigen visualisation.  

For some antibodies visualisation of primary antibodies using an Alexa fluorophore-

conjugated secondary antibody was not sufficient. In these cases, sections were incubated 

for 2 hours with a species specific biotinylated secondary antibody (1:200). The biotinylated 

antibody was washed from the sections by 3 x 10-minute washes in PBS. Following this, an 

Alexa fluorophore-conjugated streptavidin step was used to visualise areas of antibody-biotin 

binding and allow visualisation.   

  

  

Table 2.4 Table of all secondary antibodies used  

Secondary antibody Dilution Supplier and cat. # 

Donkey anti-Goat IgG Alexa Fluor 555 1 in 1000 Invitrogen A-21432 

Donkey anti-Mouse IgG Alexa Fluor 555 1 in 1000 Invitrogen A-31570 

Donkey anti-Rabbit IgG Alexa Fluor 555 1 in 1000 Invitrogen A-31572 

Donkey anti-Goat IgG Alexa Fluor 488 1 in 1000 Invitrogen A-11055 

Donkey anti-Mouse IgG Alexa Fluor 488 1 in 1000 Invitrogen A-21202 

Donkey anti-Rabbit IgG Alexa Fluor 488 1 in 1000 Invitrogen, A-21206 

Donkey anti-Sheep IgG Alexa Fluor 488 1 in 1000 Invitrogen A-11015 

Goat anti-Chicken IgG Alexa Fluor 488 1 in 1000 Invitrogen A-11039 
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Following incubation with secondary antibodies, sections were washed another 3 times in 

PBS for a total of 30 minutes, before being mounted on glass slides using a fine paintbrush. 

Slides were allowed to air dry before adding vectashield or vectashield plus 4’,6-diamidino-2-

phenylindole (DAPI) (Vector Laboratories, Burlingame, CA) to sections and covering with a 

glass coverslip and sealing with nail polish.   

When counting EdU positive cells to determine levels of proliferation, streptavidin 

autofluorescence can sometimes produce ‘false positive’ non-specific staining in some areas 

which could be mistaken for EdU positive cells. Therefore, sections which had undergone 

double labelling for EdU plus markers of differentiation were always mounted in vectashield 

plus DAPI. DAPI binds to DNA within cells and fluoresces blue and is used to prevent 

inclusion of autofluorescent spots in later cell counts.  

2.3.6 Cell counting 

Cell counts, including colocalisation of EdU and specific cellular markers, were performed 

manually using a Nikon E600 microscope equipped with epifluorescence at custom settings 

at x40 magnification. The number of EdU+ cells, in addition to EdU+ cells which were also 

immunopositive for specific cellular markers detailed above, were counted in the WM, GM, 

and the CC region of every 3rd 40µm section. The total number of EdU+ cells given is the 

sum of these 3 regions. Cells were mapped onto a digital spinal cord template representing 

the lumbar level and later counted using a digital tally counter. In order to determine that no 

cell had been counted twice and that no cell had been missed, the top of the section was 

first visualised in the Z-plane and the focus was then gradually moved through this plane. 

This method was used in order to focus on each cell present to give a reliable count in each 

plane of focus. The percentage of total EdU+ cells which colocalised with markers of 

differentiation were also determined for each section. The raw number of EdU+/differentiation 

marker+ cells were also examined.  
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2.3.7 Statistical analysis  

Data were collated in Microsoft Excel and later analysed using GraphPad Prism 7 software 

(GraphPad Software, California, USA). Cell counts are given as mean number of EdU+ cells 

per 40µm section where n=number of sections counted in each condition and N= number of 

animals included in each experimental group. Data are presented as means ± SE and for 

statistical analysis. Student’s t-tests and one-way ANOVA with post-hoc Tukey’s testing for 

multiple comparisons were carried out to determine significant differences in the levels of 

proliferation between the two groups, including any changes in the percentage of 

colocalisation between EdU+ cells and specific cellular markers. Data were considered 

significant when p <0.05 (denoted by *); p <0.05 (denoted by **), p <0.005) (denoted by ***); 

or p <0.001 (denoted by ****).   

2.3.8  Image capture and analysis 

Sections of particular interest were checked for colocalisation using a Zeiss LSM880 upright 

confocal laser scanning microscope with Airyscan equipped with argon and He-Ne lasers 

and 40x and 63x Fluor oil objective. Using Carl Zeiss Zen software (Zeiss microscopy, 

Germany) 3x2 tile scans were acquired when it was necessary to view the entire spinal cord 

section. Images were also acquired, processed, and exported using ZEN software. 

CorelDRAWx6 graphics suit was used for image manipulation, including correction of 

brightness, contrast, and intensity, and production of figures. Figures are presented as single 

plane confocal images. 

2.4 Intraspinal injections for focal demyelination in the spinal cord  

Lysophosphatidylcholine (LPC), also known as lysolethicin, is a detergent derived from egg 

yolk, which can be injected directly into either the brain or spinal cord to induce focal 

demyelination at the site of injection (Keough et al., 2015).  The focal lesions induced by 

LPC provide a good model to investigate the changes in cell proliferation and 
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oligodendrocyte differentiation following CBR manipulation in a model of WM injury, and so 

have been utilised here for such purposes.  

2.4.1 Preparation of tools and equipment for surgery and injection 

Prior to surgery all tools were sterilised in an autoclave. Surgical tools and materials required 

included:  2 pairs of Dumont  #55 fine forceps (World Precision Instruments, catalogue # 

500235), 2 pairs of crocodile teeth forceps, 1 pair of haemostat locking clamps, small pair of 

spring scissors, scalpel handle, sterile  #10 scalpel blades (Swann Morton), surgical tissue 

retractors, 1 ml glass syringe (Thermo Fisher), sterile 23-gauge needles, vicryl absorbable 

sutures (W9015, Ethicon), black braided silk non-dissolvable sutures with 16mm curved 

needle (W2502, Ethicon), battery-operated high temperature cautery (Bovie medical, 

Change-A-Tip cautery, catalogue number: DEL1)   

Glass electrodes for injecting solution, either sterile saline or 1% LPC, were pulled using a 

Sutter P27 micropipette puller (Sutter Instruments, USA), from thick walled borosilicate glass 

capillaries. A CMA 4004 syringe pump (Harvard apparatus) was used to deliver precise 1 μl 

microinjections of either 1% LPC or saline at a flow rate of 0.5 μl over 10 minutes followed 

by a pulse of a further a 0.5 μl. The A 1 ml glass syringe, primed with sterile saline, was 

fitted to the microdialysis pump, and plastic tubing, also filled with sterile saline, was used to 

connect the syringe to the injecting glass capillary. The glass capillary for injecting was 

secured to a probe holder on the stereotactic frame (Stoelting Co., Illinois, USA) where the 

animal was situated following spinal cord exposure.  

2.4.2 Preparation of animals for surgery and injection 

Adult (6-8 weeks) male C57BL/6 mice were used throughout these experiments.  

Prior to surgery mice were weighed to calculate the appropriate dose of anaesthetic and to 

record baseline measurements for the maintenance of postsurgical recovery records. Mice 

were then anaesthetised with an I.P injection of ketamine (75 mg/kg, Ketavet, Zoetis) and 

medetomidine (1 mg/kg, Domitor, Pfizer). It was planned that the animal would be under 
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anaesthesia for approximately 1 hour. The animal was determined to be properly 

anaesthetised when it no longer exhibited pedal withdrawal reflexes upon pinching of the 

foot.  

Using electric clippers, a 2-3cm patch of hair was removed from the dorsal surface of the 

animal below the rib cage and care was taken to remove all shaved hair from the 

preoperative area and the animal’s skin. Protective lubricant (Lacri-Lube) was added to the 

eyes to prevent drying of the cornea during surgery.  

2.4.3 Surgery to expose the spinal cord for injection 

Throughout surgery, all procedures were carried out whilst the animal was placed on a 

heated table at 37ºC in order to maintain body temperature.  Using a surgical microscope at 

lowest magnification a #10 scalpel blade was used to cut through the dorsal skin and into the 

underlying superficial layers of muscle covering the spinal column. The 2-3cm cut must be 

made rostral to the ending of the rib cage, a landmark which should be palpated and 

identified before incising the dorsal surface. Once the first opening had been made, 

retractors were then used to open the surgical field further. In order to gain access to the 

vertebral column, fine forceps were used for blunt dissection of the overlying paraspinal 

musculature.  

Once the spinal column was visible, a dorsal laminectomy was not necessary as natural 

intervertebral foramen exist between the vertebrae at this lower thoracic-upper lumbar 

region. Surgery aimed to expose an intervertebral space for needle insertion and LPC/saline 

injection (figure 2.3). The spinal cord was visualised between the intervertebral spaces and 

was seen to be covered in a thick shiny layer of visible dura. A prominent blood vessel can 

be seen running rostral to caudal through the approximate midline of the spinal cord at this 

point.  

For successful injection the thick outer dura mater and underlying pia mater must be 

removed from the spinal cord surface, as remaining meningeal tissue can prevent smooth 
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insertion of the injecting glass electrode. If this occurs the electrode instead compresses the 

cord, likely resulting in greater injury, elevated inflammatory cascades, and higher levels of 

proliferation. To remove the meninges a curved 23-gauge needle was gently scraped 

laterally across the surface of the cord until the dura was cleared. Following removal of the 

rostral/caudal blood vessel at the midline can be seen with greater clarity.  

Once the dura had been cleared, and any leaking CSF which had been cleared using a 

cotton bud, a handheld battery-operated high temperature cautery was then used to remove 

the pia mater. The handheld cautery was heated and slowly advanced toward the exposed 

cord, the cautery tip was briefly touched to the cord surface to remove the pia. Following the 

successful removal of the pia, intraspinal insertion of the glass microelectrode and injection 

of solution was able to take place. 

2.4.4 Intraspinal injections of lysophosphatidylcholine 

Once the spinal cord was exposed and the pia fully removed, the animal was transferred to a 

stereotactic frame (Harvard Apparatus). To secure the animals head the teeth were placed 

in a toothbar and light pressure was applied at the bridge of the nose. A rolled section of 

gauze was placed underneath the animal to accentuate curvature of the spine and aid 

visibility during intraspinal injection.  

The glass microelectrode was viewed with the surgical microscope and the tip was broken 

back using fine forceps before being attached to the probe holder on the z-direction 

stereotactic arm.  Depending upon whether animals were assigned to the experimental 

group, and therefore received LPC injection (N=8), or the control group, which received 

saline (N=4), LPC or saline was drawn up into the electrode ready for injection. An air bubble 

separated the priming sterile saline solution and the injecting solution. Prior to placement of 

the electrode tip at the injection site solution was ejected from the electrode to ensure that 

the tip was not blocked.  



81 

 

Following loading of the injection apparatus the probe holder was lowered toward the 

injection site until the tip of the electrode was just visible when viewing the intervertebral 

space with the surgical microscope. The microscope was repositioned so that both the tip of 

the electrode and the spinal cord were in focus and small movements, using the 

micromanipulator controls of the Z-direction stereotactic arm, were carried out until the tip of 

the electrode was visible at the midline of the spinal cord surface. Once visible at the surface 

the electrode tip was moved laterally to displace the large rostral-caudal blood vessel and 

induce a lateral trajectory of the injection away from the midline.  

Using the graded measurements of the Z-direction stereotactic arm a baseline position 

measurement was calculated. The micromanipulator was then used to make a swift 

downwards movement to pierce the tissue and achieve a depth of 300 μm for injection into 

the dorsal horn. A schematic of the processes involved in injection up to this point are 

detailed in figure 2.3 below. 

 

Figure 2.3: LPC or saline was directly injected into the dorsal columns in vivo 

through the intervertebral space  
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A CMA 4004 infusion pump was used to deliver precise 1 μl microinjections of either 1% 

LPC or saline at a flow rate of 0.5 μl over 10 minutes, followed by a pulse of a further a 0.5 

μl. Once the infusion was complete the capillary was left in situ for 2 minutes to prevent 

backflow upon removal of the capillary.   

Upon completion of LPC or saline infusion the electrode was slowly withdrawn from the 

spinal cord and discarded. The underlying muscle and adipose tissue overlaying the spinal 

column were brought together with a simple interrupted suture using vicryl absorbable 

sutures (Ethicon, W9015). Black braided silk non-dissolvable sutures with 16mm curved 

needle (Ethicon, W2502) were used to close the skin and antibacterial wound powder 

(Battles, 2273) was applied to the site of the incision to prevent infection. 

2.4.5 Postoperative care of animals 

Immediately following surgery animals received a subcutaneous injection of the α2 

adrenergic receptor antagonist atipamezole (1 mg/kg, 0.2 ml per 20 g weight, Antisedan 

Pfizer) for the reversal of the sedative and muscle relaxant effects of medetomidine. Animals 

also received I.P injection of buprenorphine (Vetergesic, 0.3 ml/mg solution given at 0.1 

mg/kg) for postoperative analgesia. The duration of the effect of buprenorphine has been 

documented to be between 3 and 5 hours in mice (Tubbs et al. 2011, Gades et al., 2000). 

Therefore, mice were checked periodically for signs of postoperative pain by cage side 

behaviour observations e.g. presence of hunching, isolation, and non-explorative behaviour, 

and by assessing facial expressions using the mouse grimace scale. Further doses of 

buprenorphine were given accordingly (I.P). Any animals which appeared to be suffering/in 

pain beyond the moderate procedure severity, as defined in the Home Office project license, 

during any of the periodic welfare checks were euthanised by schedule 1 methods; exposure 

to rising concentration of CO2 followed by dislocation of the neck. These methods will be 

referred to as ‘Sch1’ from now on.  
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During immediate recovery following surgery, animals were placed in a heated recovery 

chamber and were observed until fully ambulatory. Whilst surgery involves direct injection 

into the spinal cord WM and, possible corticospinal tract disruption, animals are capable of 

walking, self-voiding, -drinking, and -feeding after they recover from anaesthesia. Animals 

were placed back into home cages with cage mates following recovery from anaesthesia.  

Although animals are capable of self-feeding and drinking soaked diet was given for the first 

few days post-surgery to aid food and water intake. To further assess postoperative recovery 

animals were weighed daily and compared to their baseline weights taken before surgery.   

2.4.6 In vivo injection paradigm for introduction of drugs and EdU 

Following intraspinal injections, animals were further split into 3 experimental groups and 

randomised to each arm. Group 1 received 1% LPC intraspinal injection followed EdU and 5 

mg/kg flumazenil nightly on days 5-8 post surgery. Group 2 received 1% LPC intraspinal 

injection followed by EdU and saline nightly on days 5-8 post surgery. Group 3 received 

saline intraspinal injection followed by EdU and flumazenil on days 5-8 post surgery. EdU 

and flumazenil were given at day 5 (figure 2.4) in an attempt to avoid labelling the immediate 

post-injury proliferative peak which is likely due to tissue disruption by injection rather than 

LPC-induced demyelination. The rationale behind the time points used in these experiments 

are discussed in further detail in chapter 6.  
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2.4.7 Processing of tissue for EdU and immunohistochemistry  

After 14 days post- LPC or saline intraspinal infusion, animals were terminally anaesthetised 

by I.P injection of sodium pentobarbital 20% w/v (60 mg/kg) (Pentoject, Animal care, UK). A 

transcardial perfusion was performed as described previously in this chapter, section 2.2.4. 

Following perfusion fixation spinal cords were harvested and post-fixed in 4% PFA at 4⁰C for 

4-18 hours as described in section 2.2.5.   

Intraspinal LPC/saline injection sites were situated at approximately mid-lumbar level and 

were determined by the presence of a slight pinprick sized bruise on the cord surface which 

made the area appear irregular and distinct from the rest of the tissue. Injection sites were 

isolated from each spinal cord to give a ~3mm tissue block which were sectioned and 

analysed as detailed below.   

Tissue was sectioned at 40 μm on a vibrating microtome and processed for post-hoc 

detection of newly proliferated EdU+ cells as previously described (section 2.2.5). Following 

this, sections were incubated in primary antibodies overnight and detected the following day 

by a 2-4 hour incubation in a species appropriate Alexa fluorophore conjugated secondary 

antibody (section 2.2.7). Analysis of oligodendrocyte differentiation and remyelination was 

Figure 2.4 Timeline of experimental paradigm 

Diagram of the experimental timeline showing the time following intraspinal injection of LPC 
or saline, the effects of LPC, and the period in which animals were treated with EdU alongside 
flumazenil or saline. The diagram also shows the length of the experiment and details timing 
of sacrifice, perfusion, and tissue processing for IHC 
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most important following LPC-induced demyelination, therefore staining for PanQKI (table 

2.3) was carried out alongside EdU detection. 

Following incubation with secondary antibodies, sections were washed 3 x10 minutes in 

PBS and mounted on glass slides using a fine paintbrush. Sections were allowed to air dry 

before adding vectashield or vectashield plus 4’,6-diamidino-2-phenylindole (DAPI) (Vector 

Laboratories, Burlingame, CA), covering with a glass coverslip, and sealing with nail polish. 

2.4.8 Analysis of spinal cord sections following LPC induced demyelination 

or saline infusion 

Following tissue processing, sections from the injection sites of each animal (n=12 N=9) 

were imaged using a Zeiss LSM880 upright confocal laser scanning microscope with 

Airyscan equipped with argon and He-Ne lasers. ZEN software (Carl Zeiss, Germany) was 

used to acquire z-plane tile scan stacks of entire spinal cord sections imaging Alexa-

Fluor555 and Alexa-Fluor488, to capture EdU and markers of differentiation, from the entire 

injection site. The following settings were used to achieve this: zoom 0.6, averaging 1, speed 

9, tile 2x2 or 3x2 depending on whether the section was located at the upper or lower lumbar 

level, gain 500-700, digital offset 0, pinhole 1AU, and a manual set centre of focus so that 

number of sections for z-stack was ~ 60-70 with 1 μm increments between sections. 

Processing in ZEN was used to stitch tiles together before exporting the final images for 

analysis in ImageJ.  

Confocal images were processed to generate maximum intensity projections of z-stacks in 

order to count the total number of EdU+ cells and EdU/PanQKI+ cells in the z-plane. These 

images were exported as .tif files and counted using the cell counter plugin in Fiji. Counts of 

EdU+ and EdU/PanQKI+ cells in the WM and GM were determined and collated in Microsoft 

Excel and analysed using GraphPad Prism 7 as previously described (2.2.9).  
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Sections were also imaged using the Axio Scan.Z1 slide scanner microscope for high 

throughput collection of tiles and z-stacks of sections taken from the injection site of all 

experimental groups. These images were counted and analysed as described above.   
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Chapter 3 – Endogenous GABA inhibits proliferation 

in the postnatal spinal cord 
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3.1 Introduction and rationale 

Endogenous neurogenic niche signalling is known to regulate the cellular output of the 

neurogenic niches within the brain (Wang, D.D. et al., 2003; Nguyen et al., 2003; Alfonso et 

al., 2012; Daynac et al., 2013; Morizur et al., 2018), balancing proliferation and differentiation 

of NSCs by matching niche output to population demand in their end targets i.e. olfactory 

bulb or granule cell layer. Similarly, previous work from our lab has shown that modulation of 

cholinergic neurotransmission modulates proliferation and differentiation in the adult spinal 

cord (Corns et al., 2015).  

However, it is currently unclear whether other well documented signals which are known to 

affect other proliferative niches, such as GABA, affect proliferation and differentiation within 

the spinal cord. Determining the signals which regulate EC behaviour is important if we are 

to consider whether these cells may be modulated and transformed for in vivo repair in 

conditions such as MS, SCI, and in situations of ‘excessive proliferation’ such as CNS 

cancers. 

The role of GABA in niche maintenance and as a master regulator of proliferation is covered 

in detail in section 1.8. Briefly, in the SVZ and SGZ, GABA is a strong negative regulator of 

proliferation (Bolteus and Bordey, 2004; Catavero et al., 2018; Nguyen et al., 2003; Ge et al., 

2007), restricting NSCs to dormancy, by regulation of cell cycle exit, until required (Fernando 

et al., 2011; Daynac et al., 2013). GABA however is also involved in the differentiation and 

migration of NSCs and immature neural cells (Bolteus and Bordey, 2004; Tozuka et al., 

2005). GABA in these areas is secreted by nearby neuroblasts or parvalbumin+ 

interneurones and forms a paracrine feedback loop for maintenance of niche size and 

output. GABA has also been implicated in embryonic development and tumour cell 

proliferation (Blanchart et al., 2016; Young, S.Z. and Bordey, 2009), indicating that GABA is 

a ubiquitous signal in the control of cellular proliferation in many pre- and postnatal neuronal 

and non-neuronal tissues. 
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ECs represent a population of latent stem cells within the adult spinal cord (Hamilton, L.K. et 

al., 2009; Panayiotou and Malas, 2013; Barnabe-Heider et al., 2010). Much like NSCs within 

the brain, ECs surrounding the spinal cord CC respond to applications of GABA with a 

robust depolarisation (Corns et al., 2013). Furthermore, as ECs possess similarities to other 

neurogenic niches, where GABA has been implicated in the control of proliferation vs. 

differentiation, it is possible that GABA may play a similar role within the spinal cord. GABA 

is known to suppress proliferation in other regions and EC turnover and proliferation is 

extremely slow compared to other cell types in the cord, suggesting that EC dormancy may 

be influenced by GABA in the spinal cord. Preliminary studies in our lab have shown that 

increasing ambient GABA by vigabatrin (VGB) treatment results in a significant decrease in 

the level of post-injury proliferation (figure 3.2). However, the effects of GABA upon 

proliferation in the intact adult spinal cord have not yet been fully investigated.  

Work discussed here investigates the effects of increasing CNS GABA content by both 

transgenic and pharmacological means, with the aim of determining whether or not EC 

proliferation, and proliferation of other cell types in the spinal cord, is influenced by changes 

in GABAergic neurotransmission. 

3.1.1 Using GAD67-GFP mice to assess proliferation in response to changes 

in GABA 

GAD is the main enzyme responsible for the production of GABA and is expressed in 2 main 

isoforms; GAD65 and GAD67. GAD67 is thought to be more important during development 

than GAD65, as GAD65 heterozygous knockout mice have similar CNS GABA levels to WT 

mice at birth. However, GABA mRNA and protein were reduced to approximately one half of 

the level of WT littermates in the brain of GAD67 heterozygote knockouts (Asada, H. et al., 

1997). These differences continued into adulthood, suggesting that in these animals GAD65 

does not compensate for the loss of GAD67 to normalise GABA levels in adulthood (Asada, 

Hideo et al., 1996; Asada, H. et al., 1997). 
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In order to investigate the expression and distribution of GABAergic neurones many 

researchers have attempted to induce ectopic green fluorescent protein (eGFP) expression 

in GABAergic neurones (Oliva et al., 2000; Huang, J. et al., 2006). However, in these 

studies, cDNA encoding for eGFP was inserted randomly into the mouse genome, leading to 

variations in the accuracy of GFP expression in GABAergic neurones (Tamamaki et al., 

2003). Tamamaki et al., (2003) circumvent these issues and induce robust and specific 

expression of GFP in GABAergic neurones by targeted insertion of cDNA encoding eGFP 

into the locus encoding GAD67 with homologous recombination (Tamamaki et al., 2003).  

GAD67-GFP mice harbour enhanced GFP cDNA between the GAD67 5’ flanking region and 

the GAD67 codon start of the GAD67 promotor, a location chosen to ensure accuracy of 

GFP expression within GABAergic neurones (Tamamaki et al., 2003). The first step involved 

in GAD67-GFP transgene production involves the use of homologous recombination of ES 

cells where a loxP-flanked PGK-neo cassette was used as a positive selection marker for 

screening homologous recombinant ES cells.  GAD67-GFP mice therefore retain the eGFP 

cDNA and the loxP-flanked PGK-neo cassette in the GAD67 locus. The loxP flanked PGK-

neo cassette may have unexpected effects upon GFP expression and so was removed by 

crossing GAD67-GFP mice containing the PKG-neo cassette with CAG cre-transgenic mice 

on a C57Bl/6 background, resulting in excision of the floxed PKG-neo cassette in the ‘final’ 

animals. These animals were referred to as GAD67-GFP (Δneo) mice, and these were the 

particular strain bred and housed in our animal facility. These animals will be referred to as 

GAD67-GFP mice from here on. A schematic of the WT and recombinant alleles of the 

GAD67-GFP mice are detailed in figure 3.1. Figure 3.1B is a representative image taken 

from a sagittal section of adult GAD67-GFP spinal cord illustrating the GFP expression in 

GABAergic CSFcCs lining the CC (arrow).  

Productive breeding results in heterozygous GAD67-GFP (GAD67+/-) pups, with GAD67 

haplodeficiency due to GFP knock in, as GAD67-/- is lethal at birth due to cleft palate 

development (Asada, H. et al., 1997). GAD67-GFP mice are heterozygotes and therefore 
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express one WT allele and one modified GFP containing allele of GAD67 (figure 3.1A). At 2-

3 days of age mice are genotyped by GFP visualisation under an ultraviolet light, as at this 

age fluorescence can be visualised through the thin bones of the skull. GAD67-GFP mice 

are seizure free and phenotypically normal in terms of growth and reproductive behaviour 

despite showing a reduction in brain GABA content, as measured by high performance liquid 

chromatography (Tamamaki et al., 2003). There are no abnormalities in the brains of 

GAD67-GFP animals when examined at a macroscopic level. 

 

The use of GAD67-GFP knock-in mice allowed us to not only visualise GABA producing 

GAD67-GFP positive cells, such as CSFcCs, but also provided an invaluable tool to examine 

how reductions in ambient GABA may affect cellular proliferation and differentiation in the 

Figure 3.1 Generation of GAD67-GFP 

mice 

A: Schematics of the wild type and 

recombinant GAD67 alleles (Adapted from 

Tamamaki et al., 2003). B: Representative 

confocal image of the CC (sagittal plane), 

illustrating GFP expression in GABAergic 

CSFcCs (arrow). 
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spinal cord. Preliminary work from our lab has shown that GAD67-GFP mice have 

differences in the number of Ki67+ cells at the CC compared to WT animals, therefore further 

investigation of this phenomenon using in vivo markers of proliferation, such as EdU, was 

necessary. 

3.1.2 Increasing GABAergic neurotransmission by vigabatrin treatment 

GAD67-GFP transgenic mice provide a model in vivo situation in which CNS GABA content 

may be reduced, thereby affecting proliferation, without the use of pharmacological agents. 

However, there are many licensed drugs available which influence GABAergic 

neurotransmission. Treatment with drugs that influence GABAergic proliferation, alongside 

EdU administration, provides a useful tool to investigate the effects of GABA, or rather 

influencing GABA levels, upon proliferation in the spinal cord.  

VGB (vinyl-γ-aminobutyric acid) is an antiepileptic which acts specifically to prevent GABA 

catabolism by irreversible suicide inhibition of GABA transaminase (Mumford and Dam, 

1989; Jung et al., 1977). The concentration of GABA present in synaptic vesicles, and 

therefore available for synaptic transmission, is dependent upon the equilibrium between 

GABA synthesis and degradation. Inhibition of GABA transaminase by VGB therefore results 

in an increase in GABA levels in the brain (Gram et al., 1988; Löscher et al., 1989) and an 

increase in the availability of GABA within the synaptic cleft, resulting in enhanced 

GABAergic neurotransmission (Jung et al., 1977; Sarhan et al., 1979; Ben-Menachem, 

2011). VGB induced GABA transaminase reduction in activity resulted in a 5-fold increase in 

brain GABA 4 hours after a single 1500 mg/kg injection in mice. VGB has rapid plasma 

pharmacokinetics, however the increase in GABA persists much longer, where GABA 

transaminase activity remains low for as long as 5 days after VGB administration, suggesting 

that VGB has a long biologic half-life. Similar results have also been observed in humans, 

where GABA remains elevated in the CSF for more than 1 week following a single 50 mg/kg 

dose (Menachem et al., 1988).  
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Others have suggested that VGB may also inhibit GABA uptake into astrocytes (Leach et al., 

1996), stimulate GABA release (Ben-Menachem, 2011), and influence glutamate/glutamine 

cycling between neurones and glial cells (Yang and Shen, 2009)( figure 1.6). Whilst these 

results are yet to be replicated, all of these aforementioned mechanisms would invariably 

lead to an increase in ambient GABA available for neurotransmission, hence the 

effectiveness of VGB as an antiepileptic medication (Ben-Menachem, 2011). 

GAD67-GFP animals have been shown to have alterations in their baseline GABA levels 

(Tamamaki et al., 2003), in addition to more proliferative Ki67+ cells at the CC compared to 

WT animals (unpublished observation, Deuchars’ lab). VGB was chosen as it has a similar 

effect to GFP insertion to GAD67 allele; altering the level of ambient GABA available for 

neurotransmission (Tamamaki et al., 2003; Yang and Shen, 2009). VGB therefore allows 

investigation of the effects of pharmacological modulation of GABA availability upon 

proliferation without influencing GABAaR directly.  

It was hypothesised that as VGB increases GABA levels it may decrease proliferation, 

whereas lower GABA levels in GAD67-GFP animals may result in more proliferation. 

Therefore, examining these experimental conditions together will provide evidence of 

whether modulation of GABA in the adult spinal cord can induce bidirectional changes in 

proliferation i.e. both increases and decreases in proliferation. 

Preliminary data from our lab have shown that modulating GABAergic neurotransmission by 

VGB treatment has an effect upon post-injury proliferation following stab injury to the dorsal 

WM. Whilst injury to the spinal cord results in a significant increase in EC proliferation at the 

CC (13.3 ± 2.4 EdU+ cells at the CC in injured animals vs. 3.6 ± 1.4 cells in intact animals, p 

< 0.005, student’s t-test, N=3 n=36 figure 3.2A,B,D), VGB treatment, dramatically reduces 

EC proliferation to near intact/uninjured levels (6 ± 0.8 EdU+ cells at the CC, p < 0.005, 

student’s t-test,  figure 3.2C-D). These results illustrate that GABA is a powerful controller of 
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proliferation in the spinal cord, so much so that following injury it is able to dampen the 

increased proliferative response when GABA levels are increased by VGB. 

. 

Investigating how changes in GABA availability may impact baseline proliferation is essential 

to further understand the role that GABA may play in postnatal spinal cord proliferation. 

Much work has investigated the possibility of reactivation of endogenous NSCs in the spinal 

cord for repair, however more work must be carried out to identify regulatory factors that 

control EC proliferative behaviour if this possibility is to ever become a reality. 

  

Figure 3.2 VGB reduces post-injury 

proliferation in the adult spinal cord  

A-C: Representative confocal images 

of EdU+ cells at the CC in intact spinal 

cord (A), following injury + vehicle 

treatment (B), and injury + VGB 

treatment (C). D: Counts of EdU+ cells 

at the CC in intact, SCI + vehicle, and 

SCI+ VGB groups. (* = p < 0.05, 

student’s t-test, N=9 n=9)  

Intact 

Intact  
Injury + 

vigabatrin (200 

mg/kg) 

Injury + 
vehicle  

D 
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3.1.3 The importance of considering natural behaviours in experimental 

animals 

Experiments carried out in research are usually are usually performed during the normal 

daytime working hours of the experimenter, however during this time nocturnal mice are 

normally asleep/inactive. Unless animals undergo light-dark cycle reversal, experiments in 

the day are carried out at the ‘wrong physiological time’ for rodents. In order to assess 

proliferation within the spinal cord during the normal waking hours for mice, experiments 

were carried out in the evening rather than the day. This was especially pertinent as 

research has shown that proliferation at the CC is influenced by physical activity (Cizkova et 

al., 2009).  

3.2 Aims and objectives 

The aim of studies in this chapter is to determine whether GABA has an effect upon 

proliferation and differentiation within the adult spinal cord, as GABA is known to be 

particularly important in regulating these processes in other neurogenic niches.  

This chapter employs EdU labelling to investigate proliferation in vivo following manipulation 

of GABAergic signalling in both GAD67-GFP transgenic mice and VGB treated animals.  

Baseline proliferation in the intact spinal cord is particularly low, therefore studies described 

here also aim to determine whether a greater proliferative population is apparent following 

EdU administration during periods of wakefulness. 

3.3 Methods 

3.3.1 Animals  

To determine the effects of waking activity (N=6), reduced ambient GABA in GAD67-GFP 

(N=6), and vigabatrin treatment (N=3) upon on spinal cord proliferation adult wild-type 

C57Bl/6 mice (~4-8 weeks) of either sex were used in line with the UK animals (Scientific 
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Procedures) Act 1986 and ethical standards set out by the University of Leeds Ethical 

Review Committee. Every effort was made to minimise the number of animals used and their 

suffering. Animals were given ad libitum access to food and water and were housed in a 12-

hour light dark cycle.  

In addition to adult WT C57Bl/6 mice, adult (~8-12 weeks) transgenic GAD67-GFP knock-in 

mice (N=12) were also used in order to investigate changes in spinal cord proliferation 

following genetic manipulation of pathways involved in the production of the neurotransmitter 

GABA.  

Adult C57Bl/6 (N=3) and GAD67-GFP (N=3) mice (~4-6 weeks) were also used for analysis 

of GABA levels in the brain and spinal cord by HPLC.  

3.3.2  In vivo drug and EdU administration  

Animals, both C57Bl/6 and GAD67-GFP, received a nightly 0.1 ml injection of the thymidine 

EdU as described previously (section 2.2). Animals receiving EdU in the light hours were 

injected between 10:00 and 11:00, whereas animals receiving EdU in the dark hours were 

injected between 20:00 and 21:00. When examining the effects of vigabatrin upon 

proliferation, animals also received either 0.1 ml vigabatrin (200 mg/kg) (N=3) or 0.1% 

TWEEN-80 containing saline (N=3) I.P each evening.  

3.3.3 Tissue preparation, EdU detection, and immunohistochemistry 

Tissue from the spinal cord of animals treated with EdU and vigabatrin or vehicle was 

prepared for the detection of EdU and IHC for other cellular markers as previously described 

(section 2.2). 40µm sections from the thoracolumbar region underwent Cu2+ catalysed click 

chemistry for the detection of EdU+ cells. Following EdU localisation, sections were 

incubated with primary antibodies in order to determine the identity of EdU+ cells. 

Immunofluorescence was performed with antibodies against NeuN, for mature neurones, 

(mouse, 1:1000, Millipore, Watford, UK), Sox2, for undifferentiated stem-progenitor cells, 

(goat, 1:1000, Santa Cruz), PanQKI, for oligodendrocytes, (mouse, 1:100, UC Davis/NIH 
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Neuromab Facility, Davis, CA), S100B, for astrocytes, (rabbit, 1:750, Abcam, Cambridge, 

UK), and Iba1, for microglia (rabbit, 1:1000, Wako, Japan). Antibodies were detected using 

appropriate Alexa488 conjugated secondary antibodies (section 2.2.7).  

3.3.4 Cell counts, image capture, and statistical analysis of data  

Cell counts and image capture including colocalisation of EdU and specific cellular markers, 

were performed as described previously in sections 2.2.8 and 2.2.9  

Data was collated and analysed as described in section 2.2.10. EdU+ cell counts are given 

as mean number of EdU+ cells per 40µm section ± SE. Data were considered significant 

when p <0.05 (denoted by *); p <0.05 (denoted by **), p <0.005) (denoted by ***); or p 

<0.001 (denoted by ****).   

3.3.5 Using HPLC to measure ambient GABA levels in the spinal cord and 

brain of WT and GAD67-GFP mice 

Using HPLC, Tamamaki et al., (2003) show that GAD67-GFP mice have lower levels of 

ambient GABA in the brain as a result of genetic manipulation of GAD67 expression, where 

one allele of GAD67 is replaced by GFP to allow for expression, and therefore detection, of 

GFP in GABAergic cells in the CNS (Tamamaki et al., 2003). GABA levels were not 

examined in the adult spinal cord however, and manipulations in the expression of GAD67 

by introduction of GFP, may result in changes in the level of ambient GABA available in the 

spinal cord of adult mice. Brain and spinal cord samples for HPLC were taken from adult 

C57Bl/6 (N=3) and GAD67-GFP (N=3) mice perfused with PB as described earlier (section 

2.2.4). Brains and spinal cords were dissected as previously described and kept in PB on ice 

for ~10 minutes before HPLC. 

HPLC of these samples from C57Bl/6 and GAD67-GFP mice was kindly carried out by Ellen 

Tedford of Dr Glenn McConkey’s lab (Faculty of Biological Sciences, University of Leeds, 

UK), due to their expertise in the method. 



98 

 

Briefly, brain and spinal cord tissue were homogenised by sonication with 0.1M perchloric 

acid (PCA) to extract amino acids and precipitate proteins (Fisher et al., 2001). GABA 

standards were made using 5mM GABA in methanol:water (80:20 w/v). The solution was 

filtered through a 0.22 μm membrane filter. Amino acids in the samples were derivatised with 

o-phthaldialdehyde. The determination of GABA concentration in brain and spinal cord 

samples was carried out by HPLC with a UV spectrophotometric detector at 360nm.  

HPLC analysis was performed with a Dionex HPLC system consisting of a P580 Pump 

(Dionex, USA) and Ultimate 3000 Autosampler Column Compartment with a C18 Acclaim 

150 column and an ESA Coulochem III cell. The mobile phase contained 57mM anhydrous 

citric acid (Fisher Scientific, UK), 43mM sodium acetate (Dionex, USA buffer containing 

0.1mM EDTA (Sigma, USA), 1mM sodium octanesulphonate monohydrate, and 10% 

methanol. The pH was adjusted to 4. The mobile phase was delivered at a flow rate of 0.8 

ml/min, and the column temperature was set at 40⁰C. GABA standards were dissolved in 

0.1M PCA for chromatography. The concentration of compounds was determined and 

analysed using Chromeleon software. Statistical analysis of replicants and differences 

between WT and GAD brain and spinal cord were carried out using GraphPad Prism 7.  

3.4 Results  

3.4.1 Proliferation is greater in both WT and GAD67-GFP mice when EdU is 

given in dark hours compared to light hours   

In adult WT mice the number of newly proliferated EdU+ cells, is significantly greater (p < 

0.0001, students t-test) in mice treated with EdU during waking hours, between 19:00 and 

21:00, compared to animals injected with EdU during daylight hours (10:00-11:00).  

When comparing the total number of EdU+ cells in mice given EdU during dark hours vs. 

mice given EdU during light hours, those which were administered EdU during the dark 

hours had significantly more EdU+ cells than animals treated with EdU during the day (71.6 ± 
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2.7 cells vs. 13.2 ± 1.9 cells, p < 0.0001, student’s t-test, N=3 n=12, figure 3.3A). 

Furthermore, when counting EdU+ cells specifically within the EC layer surrounding the CC, 

EdU administration in the dark/waking hours resulted in more newly proliferated EdU+ cells 

at the CC compared to the numbers of EdU+ cells at the CC in animals which received EdU 

during the light/sleeping hours (2.4 ± 0.2 cells vs. 0.3 ± 0.1 cells, respectively, p < 0.0001, 

student’s t-test, N=3 n=12, figure 3.3Ai).  

When conducting the same experiment in GAD67-GFP mice it was found that there were 

significantly more total EdU+ cells in animals given EdU at night compared to those given 

EdU during the day (70.9 ± 1.7 cells vs. 30.2 ± 2.9 cells, p < 0.0001, student’s t-test, N=3 

n=12, figure 3.3B). However, there were no significant differences in the numbers of EdU+ 

cells specifically located at the CC in animals given EdU during the evening compared to 

animals given EdU during the day (3.4 ± 0.4 vs. 3.8 ± 0.3, n.s, student’s t-test, N=3 n=12, 

figure 3.3Bi) 

These findings confirm the hypothesis that animals treated with EdU during their period of 

wakefulness and activity would exhibit higher baseline levels of proliferation compared to 

animals treated with EdU during their sleeping hours of the day/light phase 
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Figure 3.3 Administration of EdU during the evening results in more EdU-labelled cells 

in the spinal cord compared to animals given EdU I.P during the day 

A-Ai: Effects of EdU administration in either light hours or dark hours upon the number of 

proliferative cells in the spinal cord of WT mice, including cell counts of EdU+ cells specifically 

located at the CC compared to vehicle treatment. B-Bi: Effects EdU administration in either 

light hours or dark hours in GAG67-GFP mice upon the number of EdU+ cells in the WM and 

GM and CC compared to vehicle treatment (n.s = p > 0.05, ****= p < 0.0001, student’s t-test, 

N=3 n=12) Light hours = EdU given between 10:00 and 11:00. Dark hours = EdU given 

between 20:00 and 21:00.  
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3.4.2 GAD67-GFP animals have greater numbers of newly proliferated EdU+ 

cells in the adult spinal cord compared to C57Bl/6 mice 

Baseline spinal cord proliferation in GAD67-GFP animals was compared to that of WT 

C57Bl/6 mice in order to investigate whether these animals had changes in their proliferative 

capacity as a result of transgenic manipulation of the GAD67 gene. 

Following EdU administration over 5 days in both the light-phase and dark-phase of the 

12:12 light-dark cycle, it was determined that GAD67-GFP animals exhibited greater levels 

of baseline proliferation compared to WTs (figure 3.4).  

Experiments carried out during the day/light-phase showed that GAD67-GFP animals had 

significantly greater numbers of total EdU+ cells (31.1 ± 2.8 vs.13.2 ± 2.8, respectively, p < 

0.0001, student’s t-test, N=3 n=12) and EdU+ cells localised at the CC (3.4 ± 0.4 vs. 0.27 ± 

0.1, respectively, p < 0.0001, student’s t-test, N=3 n=12) compared to WT animals (figure 

3.4A-Ai). 

Similarly, when EdU was administered to GAD67-GFP and WT mice during the 

evening/dark-phase there were significantly more EdU+ cells at the CC of GAD67-GFPs 

compared to WT animals (3.8 ± 0.3 vs. 2.6 ± 0.3, respectively, p < 0.001, student’s t-test, 

N=3 n=12. figure 3.4Bi). However, the total number of EdU+ cells were similar between WT 

and GAD67-GFP animals when EdU was administered during the evening when the animals 

were awake (76.3 ± 4.1 vs. 70.9 ± 1.7, respectively, p > 0.05, n.s, student’s t-test, N=3 n=12. 

figure 3.4B). This is in contrast to findings observed when EdU I.P is given during the day, 

and at the CC at both day and night, where GAD67-GFPs exhibit significantly greater levels 

of baseline proliferation compared to WTs.  
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Figure 3.4 Spinal cord proliferation is significantly greater in GAD67-GFP animals 

A-Ai: Cell counts of EdU+ cells in the spinal cord of both WT and GAD67-GFP mice 

following 4 days of EdU administration during light hours B-Bi: Cell counts of EdU+ cells in 

the spinal cord of both WT and GAD67-GFP mice following 4 days of administration of EdU 

during the dark hours (**** = p < 0.0001, *** p <0.001, n.s = p > 0.05, student’s t-test, N=3 

n= 12)   
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These findings therefore illustrate that GAD67-GFP animals have differences in their 

baseline levels of proliferation compared to WTs where GAD67-GFPs exhibit significantly 

greater levels of baseline proliferation compared to WTs.   

3.4.3 GAD67-GFP mice have lower levels of ambient GABA in the brain and 

spinal cord 

HPLC was used to determine whether GAD67-GFP mice had differences in their CNS GABA 

content compared to WT C57BL/6 mice. If so, these results may explain differences in 

baseline proliferation between these 2 strains.   

GABA content was significantly reduced in both the brain and spinal cord samples from 

GAD67-GFP animals compared to WT mice (p < 0.05, students t-test, N=3, figure 3.5). 

Brains of GAD67-GFP mice had on average 65% less GABA than WT brains, whereas 

spinal cords had 71% less GABA than WTs. Glutamine content was also measured by 

HPLC in the brain and spinal cord of GAD67-GFP mice, however whilst results showed a 

trend toward a decrease in glutamine in GADs, these results were not statistically significant 

(p > 0.05). 

Figure 3.5 CNS GABA content is significantly reduced in GAD67-GFP mice with no 

change in glutamine levels 

A: GABA content of brain and spinal cord from adult WT and GAD67-GFP mice measured 

by HPLC B: Brain and spinal cord glutamine content in adult WT and GAD67-GFP mice 

measured by HPLC analysis (* = p < 0.05, student’s t-test, N=3)  
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3.4.4 VGB significantly reduces proliferation in the spinal cord compared to 

vehicle treatment  

Animals treated with VGB, and therefore greater levels of ambient GABA, had significantly 

fewer EdU+ cells in total compared to animals treated with vehicle (42.82 ± 1.95 vs. 56.16 ± 

2.47, respectively p < 0.0001, student’s t-test, N=3 n=15, figure 3.6A). VGB treated animals 

exhibited a 24% decrease in proliferation compared to vehicle treated animals. These 

differences were not confined to one specific parenchymal region as VGB treated animals 

exhibited significantly less proliferation in both the WM and GM (26.02 ± 1.45 vs. 32.21 ± 

2.24, p <0.01, and 16.42 ± 0.91 vs. 20.97 ± 0.89, p <0.001, for WM and GM, respectively, 

student’s t-test, N=3 n=15 figure 3.6A) compared to vehicle treated littermates. Furthermore, 

in VGB treated animals there were significantly fewer EdU+ cells present at the CC 

compared to vehicle (0.68 ± 0.13 vs. 1.8 ± 0.2, respectively, p < 0.0001, student’s t-test, N=3 

n=15, figure 3.6Ai). VGB treated animals possessed 62% fewer cells at the CC compared to 

vehicle treated animals. In conclusion, together these results show that increasing ambient 

Figure 3.6 VGB significantly reduces proliferation in the intact adult spinal cord 

A: Effects of VGB upon the number of total EdU+ cells in the spinal cord compared to vehicle 

treatment. The numbers of EdU+ cells specific to the WM and GM are also shown. Ai: 

Numbers of EdU+ cells located at the CC in VGB and vehicle treated animals (** = p < 0.01, 

*** = p < 0.001, **** = p < 0.0001, student’s t-test, N=3 n=15)  
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GABA by VGB treatment results in a significant reduction in proliferation compared to vehicle 

treated animals. 

3.4.5 PanQKI+ oligodendrocytes and Sox2+ NSCs represent the largest 

population of proliferating cells in the spinal cord  

Immunohistochemical markers of specific cell types were used to determine the fate of newly 

proliferated cells by analysis of frequency of colocalisation with EdU+ cells. EdU+ cells 

regularly colocalised with undifferentiated Sox2+ cells and PanQKI OPCs and 

oligodendrocytes. EdU also colocalised with some S100b+, and Iba1+ astrocytes and 

microglia. Colocalisation of EdU with Sox2, PanQKI, S100b, and Iba1 was found in both the 

WM and GM (figure 3.7).  Colocalisation of EdU+ cells and NeuN was never seen in any 

sections from animals in either condition, therefore NeuN has been omitted from data 

examining changes in percentage colocalisation of EdU and other cellular markers as values 

were always 0. To examine colocalisation, the number of EdU+ cells which also showed 

immunoreactivity (IR) for the marker in question was divided by the total number of EdU+ 

cells in the section to give percentage colocalisation to compare to other markers.    

Colocalisation of EdU+ and Sox2+ cells occurred in the WM and GM, however EdU+ cells at 

the CC were exclusively immunopositive for either Sox2 and S100b (figure 3.8A and 3.8B). 

Colocalisation of ECs was not seen with any other markers due to expression pattern of ECs 

i.e. ECs do not express PanQKI or Iba1. Percentage of EdU+ cells at the CC that were also 

Sox2-IR in vehicle animals was 2.77 ± 2.77 %, whereas this increased to 11.11 ± 7.34% in 

VGB treated animals. S100b+ cells were colocalised with 20.3 ± 11.7% of EdU+ cells at the 

CC of vehicle treated animals, but this was reduced to 5.56 ± 5.56% of CC EdU+ cells in 

VGB treated animals. This occurred despite the fact that the average numbers of EdU+ cells 

at the CC were similar in sections counted with S100b immunolabelling (< 1, 0.33 cells, n= 9, 

N=3). 
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Figure 3.8 EdU+ cells at the CC are frequently Sox2-IR and S100β-IR 

A-B: Representative confocal images showing that EdU+ cells colocalise with the NSC marker 

Sox2 (A, arrows) and the EC marker S100β at the CC (B, arrows) of the intact spinal cord 

Figure 3.7 EdU+ cells colocalise with other specific cell-type markers 

A-C: Representative confocal images illustrating the presence of EdU/PanQKI+ (A),  

EdU/Sox2+ (B), and EdU/S100β+ (C) cells in the intact postnatal spinal cord D: 

Representative confocal image illustrating the presence of Iba1+ microglia in the WM. Non-

colocalised cells are labelled with open arrows. Closed arrows denote colocalised cells  
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In the spinal cord WM and GM of both vehicle and VGB treated animals, EdU+ cells were 

most frequently Sox2-IR and PanQKI-IR, illustrating that undifferentiated NSCs and cells of 

the oligodendrocyte lineage represent the highest proliferating populations within the spinal 

cord of these animals (figure 3.9). The percentages of total EdU+ cells which were PanQKI-

IR or Sox2-IR were significantly greater than the percentage of total EdU+ cells which were 

either S100b-IR or Iba1-IR (Figure 3.9). This was the case for both vehicle and VGB treated 

animals, indicating that Sox2+ and PanQKI+ cells remained the greatest contributors to 

proliferation independent of experimental condition.   

The percentage colocalisation of Sox2/EdU+ in the GM of vehicle treated animals was 

significantly smaller than the percentage colocalisation of PanQKI/EdU+ cells in the GM of 

vehicle treated animals (23.24 ± 5.32% vs. 40.72 ± 4.98%, respectively, p < 0.05, one-way 

ANOVA, N=3 n=9, figure 3.9A) suggesting that the GM has more proliferation of PanQKI+ 

OLCs than new Sox2+ cells. There were no other significant differences between the 

percentage colocalisation of EdU/PanQKI or EdU/Sox2 in any other conditions of spinal cord 

region. 
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Figure 3.9 Sox2 and PanQKI represent the largest population of proliferating cells in 

the intact spinal cord. These populations remained unchanged by VGB treatment 

A-Ai: Average percentages of EdU+ cells which were also either PanQKI+, Sox2+, S100 β+, or 

Iba1+ in both the WM and GM in each experimental condition (solid bars: vehicle treated 

animals and hatched bars: VGB treated animals  
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3.4.6 Increasing ambient GABA levels by VGB does not change amount of 

differentiation or % fate acquisition of new cells compared to vehicle 

treatment  

Whilst PanQKI and Sox2 represent the highest proliferating population of cells in the spinal 

cord of vehicle and VGB treated animals, as they have the greatest percentage 

colocalisation with EdU across any of the conditions and markers, there were no significant 

differences in the frequency of EdU colocalisation with any of the markers examined in 

vehicle and VGB treated animals (figure 3.9).  

Therefore, whilst treatment with VGB resulted in a significant reduction in both overall 

proliferation (figure 3.6A) and EC proliferation at the CC (figure 3.6Ai), VGB did not 

significantly change the percentage of EdU+ cells which colocalised with either PanQKI, 

Sox2, S100β, or Iba1. That is to say VGB treatment did not affect differentiation of these 

newly proliferated cells as their colocalisation with PanQKI, Sox2, S100β, and Iba1 was 

similar in vehicle treated animals.   

Whilst, the percentage of Sox2/EdU+ cells showed a trend toward an increase following VGB 

treatment, this was not statistically significant (p > 0.05).  

3.5 Discussion  

This chapter provides evidence that proliferation within the adult spinal cord can be 

modulated by GABA, either by a reduction in CNS GABA content by transgenic manipulation 

of GAD67 expression or by pharmacological inhibition of GABA catabolism. Whilst previous 

work from our lab has shown that ECs exhibit GABAergic responses (Corns et al., 2013), 

results discussed here are the first to show that proliferation in the postnatal spinal cord WM 

and GM can be modulated by changes in the level of ambient GABA available for 

neurotransmission. EC proliferation is also affected by changes in GABA availability. Much 

work suggests that ECs are latent NSCs (Barnabe-Heider et al., 2010, Meletis et al., 2008). 
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The effects of GABA upon proliferation of ECs seen here is similar to the way in which 

GABA influences proliferation of SVZ and SGZ NSCs, suggesting that ECs are regulated by 

the similar niche signalling mechanisms as NSCs of other niches. Furthermore, work 

discussed here illustrates that experiments investigating proliferation in the adult spinal cord 

should be carried out during times in which animals are awake and active, particularly when 

reductions in proliferation are hypothesised.       

3.5.1 Effects of the sleep/wake cycle on baseline levels of spinal cord 

proliferation  

Whilst cells with NSC properties have been isolated from the spinal cord, baseline levels of 

proliferation in the healthy adult spinal cord are particularly low when compared to cell 

turnover in both the SVZ and SGZ, where proliferation continues well into adulthood 

(Barnabe-Heider et al., 2010; Meletis et al., 2008; Bond et al., 2015). Determining reductions 

in proliferation in the spinal cord, as a result of pharmacological manipulation of GABA, may 

therefore prove difficult.  

Animals used in these experiments were housed in standard conditions with 24-hour ad 

libitum access to food and water in a constant temperature- and humidity-controlled 

environment. Temperature fluctuations and availability of food and water are variables which 

are known to confine animals to temporal niches which govern their day-night sleep-wake 

cycle (Asher and Sassone-Corsi, 2015). Light/dark cycles also influence rodent behaviour, 

where mice will exhibit a 23.73- hour circadian rhythm if left in constant darkness. Mice are 

nocturnal and therefore exhibit waking behaviour during the evening hours. A study of the 

transcriptome of 12 different mouse organs found that 43% of protein encoding genes 

display circadian rhythms in transcription (Zhang, R. et al., 2014), further highlighting the 

importance of considering how external factors such as sleep/wake and day/night cycles 

influence physiology. Animals used in these studies experience a 12:12 dark-light cycle, 
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between 06:00 and 18:00, and are therefore awake, most active, and exhibiting more 

‘natural’ behaviour, in the dark hours between 18:00 and 06:00.  

It was therefore hypothesised that cell proliferation may be higher in the spinal cord in the 

evening when mice would be naturally awake and active during lights off, between 19:00 and 

21:00. These experiments confirmed this hypothesis and showed WT animals treated with 

EdU in the evening had significantly more proliferation than animals given EdU during the 

day. This was also the case for the total number of EdU+ cells in GAD67-GFP mice.  

3.5.1.1 Nocturnal activity results in more EdU labelling 

It is well established that exercise increases proliferation and neurogenesis in both the SGZ 

and SVZ (van Praag et al., 2005; Kempermann, Gerd et al., 2010). However, enhanced 

physical activity has also been shown to increase EC proliferation in the thoracic spinal cord, 

with a 2.1-2.6-fold increase in the BrdU+ EC population following use of a running wheel 

(Cizkova et al., 2009; Krityakiarana et al., 2010). Preliminary findings from our lab have also 

shown that mice with access to a running wheel have more Ki67+ cells at the CC (Deuchars’ 

lab, unpublished observation). Furthermore, following SCI, exercise has also been shown to 

increase EC proliferation and differentiation of EC progeny into neural precursors, 

oligodendrocytes, and astrocytes, leading to improvements in both functional recovery and 

autonomous micturition following SCI (Foret et al., 2010 2007 2007; Kulbatski et al., 2007). 

Foret et al., (2010) report a positive correlation between behavioural locomotor scores and 

the number of nestin expressing cells around the CC, indicating that increased EC 

proliferation in the exercise group contributed to improved recovery. It is possible that in 

these situations, proliferation of ECs leads to beneficial outcomes by the increased 

production of neurotrophic factors which aid tissue repair (Cusimano et al., 2018 2008, 

Cusimano et al., 2018 2008, Cusimano et al., 2018). 

Exercise has not only been linked to increased EC proliferation in the spinal cord but has 

also been shown to enhance oligodendrogenesis in the intact adult spinal cord 
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(Krityakiarana et al., 2010). In exercising animals, the expression levels of the immature 

oligodendrocyte marker NG2 was 124% of that of sedentary animals. Expression of 

CNPase, which is present in both immature and mature oligodendrocyte cell bodies, 

processes, and in the myelin sheath, was also significantly increased in thoracic segments 

following exercise (Krityakiarana et al., 2010).      

Therefore, a simple explanation for the increased number of EdU+ cells in animals injected 

with EdU during the evening is that as mice are nocturnal animals, increased activity during 

the time when EdU is present and incorporating into dividing cells, results in the labelling of 

more cells. Natural increases in activity by being awake will lead to more EdU+ cells 

compared to animals that are given EdU during daytime inactivity.   

Previous work has shown that exercise increases EC proliferation (Krityakiarana et al., 2010 

2010 2010; Cizkova et al., 2009). Significantly more EdU+ cells are found at the CC in the 

evening group, and this is in agreement with the hypothesis that evening EdU administration 

during increased activity results in the increases in EC proliferation described here. In the 

parenchyma oligodendrocytes are the most abundant cell type contributing proliferation in 

the intact cord (Barnabe-Heider et al., 2010), which also exhibit exercise-induced increases 

in proliferation (Krityakiarana et al., 2010). It is possible that the increases in the total EdU 

labelled cells in evening treated animals, which include EdU counts from WM and GM, are a 

result of increased OLC proliferation. This possibility needs to be confirmed using IHC for 

oligodendrocytes alongside EdU labelling of new cells.  

In order to investigate whether these increases in proliferation following evening EdU vs. 

daytime EdU are indeed due to increased activity the same experiment could be carried out 

alongside automated home cage analysis of animal cage activity. This would help determine 

whether a correlation exists between the level of evening waking activity and the number of 

EdU+ cells in the spinal cord, as has been illustrated previously using more intense physical 

activity/exercise paradigms.  
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3.5.1.2 Exposure to light at night exerts widespread effects upon physiology  

Many have advised of the issues involved in working with rodents during human working 

hours outside of the physiologically relevant period of the animal itself. Such arguments 

advocate for light/dark cycle reversal in experimental animals so experiments are more 

ethologically relevant and may yield more reliable data. However, whilst this may be the 

case, and indeed results discussed here provide evidence for differences in results between 

day and night, there are still problems associated with disruption of light/dark and 

sleep/wake cycles by exposing animals to light at night (LAN) for experimental purposes. 

Exposure to light during the dark phase appears to negatively affect molecular circadian 

rhythms and physiology (Fonken et al., 2013). These include inflammatory responses in 

mice (Fonken et al., 2013) and is also associated with elevated body mass and changes in 

metabolism (Fonken et al., 2013 2015 2015; Gnocchi et al., 2015). Exposure to light and 

internal desynchronization by experimental jet lag has also been shown to cause deficits in 

learning and memory with parallel reductions in hippocampal proliferation and neurogenesis 

(Iggena et al., 2017 2010 2010; Gibson, Erin M. et al., 2010; Yagita et al., 2010). Therefore, 

even in light/dark cycle reversed animals, exposure to light during the dark phase may 

continue to cause experimental and reproducibility issues. 

Nocturnal light exposure suppresses melatonin production and secretion (Russart and 

Nelson, 2018). Melatonin has been shown to augment hippocampal neurogenesis and 

reverse the effects of experimental jet lag on hippocampal proliferation and differentiation 

(Iggena et al., 2017). These findings suggest that LAN exposure and circadian dysrhythmia 

have widespread effects upon physiology which extend to CNS proliferative niches, likely in 

part mediated by light-induced suppression of nocturnal melatonin. Dosing animals with EdU 

at night requires brief exposure (~10-20 minutes of the animals to white light, which may 

affect circadian rhythmicity and melatonin production, therefore resulting in changes in 

proliferation in the cord, as is seen in night treated animals. Administration of EdU in drinking 
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water or subcutaneous implantation of EdU-containing osmotic minipumps, which are 

designed to dispense EdU at night, could be used to investigate this possibility further.  

3.5.1.3 Circadian rhythms govern fluctuations in cell proliferation 

Circadian rhythms are endogenous oscillations in gene expression and physiology. These 

oscillations are generated by transcriptional-translational feedback loops in individual cells 

where core clock genes Period (Per1 and 2), Cryptochrome (Cry1 and 2), and Bmal1 are 

rhythmically activated throughout the day (Ko and Takahashi, 2006). Cell proliferation 

follows similar oscillatory behaviours as a result of the circadian rhythmic control of these 

genes in proliferative cells (Dickmeis and Foulkes, 2011). Hippocampal cells also exhibit 

rhythmic clock gene expression (Bouchard-Cannon et al., 2013) and exhibit rhythmic 

patterns of differentiation in vitro (Malik et al., 2015). Expression of key clock components 

such as Bmal, Per, and Cry have been implicated in the mechanism controlling cell cycle 

entry and exit of quiescent neural progenitors (Bouchard-Cannon et al., 2013). Disruption of 

the molecular clock leads to aberrant proliferation in the SGZ (Bouchard-Cannon et al., 

2013). Bmal KO has reduces neuronal differentiation of neurospheres generated from the 

dentate gyrus (Malik et al., 2015), and survival of newborn neurones in vivo (Rakai et al., 

2014). Neurosphere cultures from Cry KO mice also exhibit decreased proliferation and 

secondary neurosphere generation (Malik et al., 2015). 

It therefore appears that proliferation of NSCs is also influenced by the circadian clock and 

may explain the increase in spinal cord proliferation at night. However, whether these 

processes are also occurring in the spinal cord remain to be seen. Whilst circadian rhythms 

in clock gene expression are usually absent in embryonic- and multi-potent somatic stem 

cells, they do appear in more differentiated tissues (Malik et al., 2015). Whether ECs and 

other neural progenitors of the spinal cord express these components, and can therefore be 

influenced by the circadian clock, is currently unknown. 
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In conclusion, whatever the reason for a greater number of EdU+ cells in the spinal cords of 

animals treated with EdU during the dark phase, these results inform a new method of 

working when examining adult spinal cord proliferation. Therefore, later experiments looking 

at the effects of various GABAergic modulators upon proliferation and differentiation in the 

spinal cord, discussed in chapter 5, were all carried out in the dark phase. 

3.5.2 GABA influences proliferation in the postnatal spinal cord 

In both the SVZ and SGZ, GABA secreted from nearby neuroblasts induces a paracrine 

negative feedback loop which suppresses proliferation and restricts NSCs to quiescence 

(Nguyen et al., 2003; Daynac et al., 2013). In these neurogenic areas of the brain, 

GABAergic signalling also influences differentiation, migration, and integration of neural 

progenitors to their target network/location (Ge et al., 2007; Nguyen et al., 2003; Tozuka et 

al., 2005; Deisseroth, Karl and Malenka, Robert C., 2005; Wang, D.D. et al., 2003). 

Moreover, endogenous modulation of GABA by DBI regulates niche output by controlling 

balance of NSC population or the population of new born neurones via dampening of the 

GABAergic ‘brake’ (Alfonso et al., 2012, Dumitru et al., 2017). These mechanisms, and how 

they may be relevant to spinal cord proliferation, are discussed in detail in chapter 5. 

Results described here, which show that the level of ambient GABA and the level of spinal 

cord proliferation are inversely proportional to one another, are in agreement with the effects 

of GABA in the proliferative niches of the brain. Increased proliferation in GAD67-GFP mice 

is likely due to their reduced CNS GABA content, whereas significant increases in GABA 

availability by VGB, results in a reduction in spinal cord proliferation. These results suggest 

that GABA may also control proliferation in the adult spinal cord in a similar way to that of the 

brain by suppressing proliferation. These effects were seen in the WM and GM, in addition to 

the CC. Although ECs have NSC properties they are relatively quiescent cells, proliferating 

rarely for self-renewal purposes, could an excess of GABA in the CC niche be one of the 

reasons for this?  
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3.5.2.1 Could neighbouring CSFcCs release GABA and inhibit EC proliferation in a 

paracrine fashion?  

Neighbouring CSFcCs are GABAergic cells which possess the machinery for GABA 

synthesis and secretion (Corns et al., 2015; Roberts et al., 1995), and therefore may provide 

the source of GABA to restrict proliferation, similarly to the role neuroblasts play in the SVZ 

(Liu, X. et al., 2005)li(Nguyen et al., 2003; Wang, D.D. et al., 2003; Daynac et al., 2013).  

Selective killing of CSFcCs, perhaps by PKD2L1 targeted mutations, followed by EdU 

administration to label proliferating ECs may help determine whether these GABAergic 

paracrine feedback loops also occur in the spinal cord to keep ECs dormant. For example, in 

the SVZ, radiation induced death of fast dividing GABAergic progenitors results in activation 

of dormant NSCs previously restricted by GABAergic signalling (Daynac et al., 2013). Is this 

occurring in a less intense fashion in GAD67-GFPs where CSFcCs produce less GABA, and 

so the spinal cord is slightly released from GABA suppression? Additionally, is GABA 

something that changes following injury and could this explain why we see differences in 

NSC behaviour of ECs following this? Or rather do ECs overcome GABAergic signalling, 

perhaps by upregulating DBI expression, to switch on their multipotent proliferative NSC 

behaviour to replace depleted populations lost to cell death following tissue injury? These 

are pertinent research questions which still need to be addressed if we are to ever fully 

understand the role GABA plays in spinal cord proliferation and differentiation in both the 

intact and injured spinal cord. 

  



117 

 

3.5.2.2 Does the way in which VGB changes GABA metabolism affect energy 

availability for proliferation?  

VGB has a well-defined mechanism of action whereby irreversible selective suicide inhibition 

of GABA transaminase results in an increase in synaptic GABA availability, and therefore 

enhanced GABAergic neurotransmission (Ben-Menachem, 2011; Jung et al., 1977; Sarhan 

et al., 1979). 50 mg/kg VGB increases GABA levels by 200-300% in human cerebrospinal 

fluid and CNS tissues (Ben-Menachem et al., 1993), illustrating the powerful effect VGB has 

on CNS GABA levels. Preliminary data from our lab has also hinted at the power of VGB in 

increasing GABA and the resultant effects this has in decreasing reactive post-injury 

proliferation (figure 1.2). Results described here show that VGB also reduces proliferation in 

the intact spinal cord.  

There are very few other studies which have directly investigated the effects of VGB upon 

neurogenesis or proliferation within the CNS. However, VGBs increase epithelial cell 

proliferation, leading to gingival overgrowth, a common adverse drug reaction associated 

with VGB treatment (Mesa et al., 2003), suggesting that VGB influences proliferation in 

many other cell types.  

In the brain, GABAergic signalling regulates NG2-cell development in vivo (Zonouzi et al., 

2015). In young mice (P5-11) VGB decreases NG2- cell proliferation and increases the 

number of mature oligodendrocytes compared to vehicle injected mice (Zonouzi et al., 

2015). Furthermore, in a mouse model of tuberous sclerosis complex, a condition involving 

disinhibition of the mTOR pathway which causes excessive cell growth and tumour 

formation, VGB significantly reduces tuberous sclerosis complex-induced over-proliferation 

of GFAP+ astrocytes (Zhang, B. et al., 2013). These results were linked to a 40% reduction 

in the mTOR pathway in the neocortex and hippocampus of VGB treated mice. VGB also 

significantly reduced mTOR signalling in WT mice, suggesting that VGB may reduce 
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proliferation by effects upon both GABAergic signalling but also by inhibiting mTOR, a key 

signalling pathway involved in cell growth and proliferation (Zhang, B. et al., 2013).  

In a study examining breast to brain cancer metastases (BBMs), upregulation of all GABA 

receptor mRNA isoforms was found in cultured cells from HER2+ BBMs. BBM cells also 

over-expressed GABA transaminase and GAD67 (Neman et al., 2014). Furthermore, 

following exogenous GABA treatment, BBM cells increased their proliferation in a dose 

dependent manner. Whilst this may seem counterintuitive to the effects of GABA upon 

proliferation which have been previously described, Neman et al., (2014) show that the 

effects of GABA upon proliferation of BBM cells was not due to GABAergic signalling as 

cultures treated with muscimol showed no change in proliferation relative to non-treated 

cells. Instead, it appears that BBM cells metabolise GABA as an energy source for 

proliferation by metabolising GABA to increase NADH levels by 47%. BBMs have increased 

GABA transaminase expression relative to primary breast cancer cells. GABA transaminase 

inhibition by VGB treatment abolished the increased tumour cell proliferation in BBMs, and 

attenuated the exogenous GABA induced increase in NADH levels, suggesting that in BBMs 

GABA increases proliferation independent of GABAergic neurotransmission and instead 

provides a source of energy that BBM cells can use to fuel proliferation via the GABA shunt.    

In conclusion results described here are in agreement with other papers which show that 

VGB reduces proliferation of neural cells. However, whether this effect is solely related to the 

VGB induced increases in GABAergic neurotransmission is unknown as other studies 

suggest that VGB may mediate its effects by alternative mechanisms such as mTOR 

signalling and changing how the cell produces and utilises energy for proliferation.  

3.5.3 Identity of newly proliferated cells remains the same in VGB treated 

animals  

NSC-like ECs represent less than 5% of the proliferative population (Johansson et al., 1999), 

astrocytes contribute <1%, and OLCs make up more than 80% of BrdU+ newly proliferated 
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cells in the intact adult spinal cord (Barnabe-Heider et al., 2010). Results described here are 

in agreement with these findings, where the percentage of total EdU+ cells which were also 

immunopositive for OLC marker PanQKI was significantly greater than that of other glial 

markers. This trend continued throughout and was seen in all animals treated with EdU 

(Chapter 5).   

The percentage of EdU+ cells which colocalised with Iba1 was particularly low, suggesting 

that whilst repeated handling of animals and IP injections can increase stress (Yun et al., 

2010; Lee, K. and Ko, 2018), the level of tissue reactivity by microglial proliferation was low. 

This was a trend which continued through these experiments. 

Our work also showed that undifferentiated Sox2 cells were as abundant as PanQKI+ OLCs, 

and particularly strong colocalisation of EdU was found with Sox2 at the CC. Sox2 is a 

neural progenitor marker as it is a transcription factor associated with maintenance of neural 

progenitor identity and inhibition of neural differentiation (Graham et al., 2003). Sox2 

labelling in the WM, GM and in the ECs at the CC follows the same as the pattern of Sox2 

staining found in both the rat and human spinal cord (Foret et al., 2010 2008 2008; Dromard 

et al., 2008). In these experiments, many EdU+ cells colocalised with Sox2, where all ECs 

were Sox2+, indicating the abundant proliferation of neural progenitors in both vehicle and 

VGB treated animals. Foret et al., (2010) also showed that Sox2+ ECs also colocalised with 

S100β, which was also observed here.  

There were however no EdU+ cells which colocalised with the mature neuronal marker 

NeuN, this may be because of the short time frame used in this study of 5 days, where 

others have stated NeuN begins to be expressed in post-mitotic neurones at day 10 (Kim et 

al., 2009). Alternatively, few others have provided evidence for the proliferation of new 

neurones in the intact adult spinal cord, often showing that whilst proliferation of astrocytes 

and oligodendrocytes occurs, markers of proliferation such as BrdU and EdU are never 

found in NeuN+ cells (Barnabe-Heider et al., 2010). It is therefore possible that the signals 
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required for neuronal differentiation may be absent in the adult spinal cord, instead providing 

a more gliogenic environment.  

Whilst GABA has been shown to influence differentiation of new cells (Tozuka et al., 2005), 

VGB treatment did not result in any significant differences in number of EdU+ the cells which 

co-labelled with either Sox2, PanQKI, S100B, Iba1, or NeuN compared to vehicle. As VGB 

increases GABA levels it could be hypothesised that the reduced level of proliferation would 

also result in more differentiation to more mature cell types, however this was not the case 

here. Sox2/EdU+ cells showed a trend toward an increase, but this was not significant, 

however perhaps this indicates that the length of time following EdU administration and 

sacrifice was not long enough to observe sufficient differentiation as many undifferentiated 

Sox2+ cells were still present. Further experiments could be carried out with a longer time to 

sacrifice following EdU to determine whether this increases the level of differentiated cells in 

the spinal cord from the boosted proliferative population. 

In conclusion, whilst VGB treated animals may not have had significant changes in the 

differentiation potential of newly proliferated cells, these new cells are capable of 

differentiation into astrocytes, oligodendrocytes, and microglia.   

3.6 Conclusion  

In conclusion, the experiments carried out in this chapter have ultimately shown that EdU 

administration in the evening is superior in these types of experiments as animals show 

greater levels of proliferation in the evening whilst awake and active. Alternatively, light/dark 

cycle reversal could be carried out to allow working in normal hours with animals which are 

in their dark phase.   

Experiments described here are the first to show that like in other CNS niches, GABA has a 

role in controlling in vivo postnatal spinal cord proliferation, as confirmed by both transgenic 

and pharmacological methods. These newly proliferated cells are also capable of 
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differentiation, where most EdU+ cells are either PanQKI-IR oligodendrocytes or 

undifferentiated Sox2-IR neural progenitors. 

Furthermore, GAD67-GFP and VGB show that GABA levels inversely affect proliferation, 

illustrating a bidirectional mechanism which can be used to either increase or decrease 

proliferation depending upon clinical need. For example, the ability to reduce proliferation in 

CNS cancers would be hugely beneficial. Results described here were the result of 

widespread changes in GABAergic neurotransmission, by increasing GABA availability. 

However, further work needs to be carried out using more specific modulators to probe the 

effects of GABA at GABAaR upon proliferation at specific allosteric binding sites. This work 

will also help determine whether the spinal cord also employs endogenous GABAergic 

modulators such as DBI for the control of proliferation and differentiation, as is seen in the 

brain. 
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4.1 Introduction and rationale 

Work presented in chapter 3 showed that changes in ambient GABA in the spinal cord 

resulted in changes in the numbers of proliferative cells in the WM, GM, and CC. This work 

suggests that much like the brain, GABA also acts as a stop signal for proliferation within the 

spinal cord.  

GABAaRs contain many allosteric binding sites for both pharmacological and endogenous 

agents, leaving a wide range of possible ways to further examine the effects of GABA on 

spinal cord proliferation. Endogenous BZ-like molecules of the CNS, endozepines, which 

bind to BZ sites and modulate GABAergic neurotransmission, are known to occur in the CNS 

(Guidotti et al., 1983; Alho et al., 1985; Bormann, 1991) and may provide a novel avenue for 

these investigations. DBI is the most well documented of the endozepines and indeed has 

already been shown to have a role in controlling proliferation and differentiation within the 

neurogenic niches of the brain (Alfonso et al., 2012, Dumitru et al., 2017). However, whether 

DBI is also expressed in the spinal cord is not yet known. Therefore, work described here 

investigates the expression of DBI in the spinal cord in an attempt to elucidate whether 

endozepinergic modulation of GABAaR may be a possible mechanism involved in the 

regulation of the GABA-mediated stop signal which restricts proliferation in the postnatal 

spinal cord.   

4.1.1 What is known about DBI and TSPO in the spinal cord? 

There have been many studies investigating the cellular location and distribution of DBI 

within the brain (Alho et al., 1985), in addition to pinpointing the essential expression of DBI 

within the SVZ and SGZ neurogenic niches (Alfonso et al., 2012, Dumitru et al., 2017). 

However, less is known about the pattern of DBI expression and cellular distribution in the 

spinal cord or its expression in spinal cord NSCs, the ECs. It evident that DBI expressed in 

other cells which also have NSC properties and is important in other proliferative niches to 

balance the effects of GABAergic signalling upon NSC proliferation and differentiation 
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(Alfonso et al., 2012; Dumitru et al., 2017). DBI may therefore have similar roles in the spinal 

cord. The full length DBI pro-peptide is a precursor to ODN, a smaller fragment of DBI which 

also has high affinity for GABAaR/CBR (Slobodyansky et al., 1989). ODN replicates the 

effects of DBI at CBR (Alfonso et al., 2013, Dumitru et al., 2013). Much like DBI, expression 

of ODN has been confirmed in the brain (Ferrero et al., 1984; Ferrero et al., 1986b; Tonon et 

al., 1990), however less is known about whether ODN is also present within the spinal cord.  

Similarly, expression of the mitochondrial DBI receptor TSPO has also been well 

documented in the brain and the periphery (Gavish et al., 1999). Other work has focused on 

the upregulation of TSPO in response to EAE induced demyelination (Daugherty, D. J. et al., 

2013) and other neuroinflammatory conditions  (Liu, G.J. et al., 2014). Many studies have 

investigated the upregulation of TSPO in microglia during inflammatory processes and 

reactive gliosis following injury (Papadopoulos and Lecanu, 2009).  Much less is known 

however about the cell types which express TSPO in the intact adult spinal cord.  

4.1.2 Aims and objectives 

Before we can consider utilising systems involving TSPO and DBI in the modulation of 

proliferation, we need to first characterise their expression within the spinal cord, and how 

these compare to other neurogenic niches. This study aims to investigate which specific cell 

types express DBI and TSPO within the spinal cord and whether NSCs of the spinal cord CC 

also express DBI, ODN, and TSPO. Immunohistochemical investigations using antibodies 

raised against the peptides DBI and ODN and the mitochondrial receptor TSPO were 

therefore carried out in the adult spinal cord.  

This chapter will focus on the expression of DBI and TSPO within the CC, lamina X, and in 

select populations of neurones, astrocytes, and oligodendrocytes in both the WM and GM. 
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4.2 Methods 

4.2.1 Animals 

Wild-type adult C57BL/6 mice, GAD67-GFP, and nestin-GFP mice (4-6 weeks N=9, N=6 and 

N=9, respectively) of either sex were used in line with the UK Animals (Scientific 

Procedures) Act 1986 and ethical standards set out by the University of Leeds Ethical 

Review Committee. Further detail regarding the use of GAD67-GFP and nestin-GFP 

transgenic mice is represent in section 2.11 and 2.22. Briefly, GAD67-GFP animals were 

used in these studies to visualise GABAergic CSFcCs present at the CC. Nestin-GFP 

animals were used to label to EC layer of the CC.   

4.2.2 Fluorogold-mediated tracing from the periphery to label motor 

neurones, sympathetic preganglionic neurones, and pericytes in the 

spinal cord 

To fluorescently label motor neurones (MNs), sympathetic preganglionic neurones (SPNs), 

and pericytes by retrograde tracing from the periphery, (Edwards et al., 2013), C57BL/6 mice 

(4-6 weeks N=3) and GAD67-GFP mice (4-6 weeks N=3) received a single intraperitoneal 

(I.P) injection of FluoroGold (FG) (0.05 ml 1% in sterile saline, 25 mg/kg, 

hydroxystilbamadine, Abcam, UK). 72 hours post FG I.P injection animals were terminally 

anaesthetised, perfused with 4% paraformaldehyde, and 40 μm sections of spinal cord were 

generated for tissue analysis, as discussed in section 2.2.4.   

4.2.3 Surgery to perform WM minimal stab injury to examine resultant 

changes in DBI- and TSPO-IR  

Injury to the WM dorsal columns was carried out by stab injury in order to investigate 

whether the patterns of expression of DBI and/or TSPO are altered in such conditions. 

Surgery to perform such stab injuries was carried out via a modified version of the surgical 

methods used for the injection of LPC/saline for focal demyelination (section 2.3). 
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Briefly, the glass pipette was inserted at the midline to a depth of 300µm to reach the dorsal 

column without disturbing the ependyma, left in place for 2 minutes to allow the tissue to 

reseal around the pipette, and then withdrawn. Animals were sutured and allowed to recover 

for 3 days before being sacrificed and undergoing tissue analysis at the height of the injury 

response.  

4.2.4 Immunohistochemistry 

Tissue from wild-type C57Bl/6, GAD67-GFP, and nestin-GFP mice for IHC analysis was 

prepared as previously described (sections 2.2.4 and 2.2.7). Tissue from the thoracolumbar 

region was processed for DBI-IR (1:2000 Frontier Institute) and TSPO-IR (1:100, Abcam). 

Double labelling IHC was carried out to look for colocalisation of DBI and TSPO with various 

other specific cellular markers including; CD31 (1:500, BD Pharmingen) for endothelial cells, 

anti-ODN (1:250, gift of Dr. M.C Tonon, University of Rouen, France), cluster of 

differentiation 24 (CD24) (1:500 BD Pharmingen) for membranes of CSF-cCs and ECs, 

S100β for ECs, (1:750, Abcam), Sox2 ( polyclonal,1:1000, monoclonal, 1:100, Santa Cruz) 

and for neural stem/progenitor cells, Nestin (1:1000 BD Pharmingen) for radial glia, glial 

fibrillary acid protein (GFAP) (1:100, Neuromab) for astrocytes,  PanQKI (1:100 Neuromab) 

for oligodendrocytes, NeuN (1:1000, Millipore) for nuclei of mature neurones, and HuC/D 

(1:1000, Proteintech) for immature and mature neurones. More information on primary 

antibodies, secondary antibodies, and methods used are detailed in tables 2.3 and 2.4 and 

section 2.2.7.  

4.2.5 Image capture and manipulation 

Sections were viewed using a Zeiss LSM880 laser scanning confocal microscope, acquired 

using Zen software, and manipulated in CorelDRAW 2017 (section 2.2.10).  

For FG labelled sections, images were also captured using the Nikon E600 microscope set 

up for epifluorescence at custom settings and Acquis image capture software (Synoptics, 
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Cambridge UK) (section 2.2.10). Images were adjusted and channels merged to create dual 

labelled images using Corel Photo Paint (Corel, Canada).  

4.2.6 Cell counting and statistical analysis of FG/TSPO+ cells  

Using a Nikon E600 microscope, TSPO+, FG+, and GAD+ labelled cells were counted in 

sections from cervical, thoracic, and lumbar regions of the adult spinal cord to determine the 

distribution and percentage colocalisation of TSPO within MNs and SPNs (N=3 n=18, where 

N refers to the number of animals and n refers to the total number of sections in which cells 

were counted).  

Data were plotted and analysed using GraphPad Prism 6 software (GraphPad Software, 

California, USA). The data were expressed as mean ± SEM. For multiple comparisons, and 

evaluation of statistical differences between groups, one-way ANOVA was used followed by 

Tukeys post hoc testing for multiple comparisons. A p value of <0.05 was considered 

statistically significant. 
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4.3 Results 

4.3.1 DBI and TSPO are expressed within the adult spinal cord CC  

DBI and TSPO are both expressed within the postnatal murine spinal cord (figure 4.1).  

Intense DBI immunoreactivity (DBI-IR) appears to be preferentially located at the CC (figure 

4.1A), with less intense staining appearing in both the WM and GM (figure 4.1Ai). TSPO 

exhibits a similar pattern of expression in the spinal cord to that of its ligand DBI, and is 

present in both WM and GM, with intense immunoreactivity at the CC (figure 4.1B and Bii).   

Figure 4.1 DBI and TSPO are expressed within the postnatal spinal cord CC  

A: Representative image showing DBI expression in the postnatal spinal cord Ai: 

Representative confocal image of DBI expression at the CC B: Representative confocal image 

of TSPO expression in the adult spinal cord Bi: Representative confocal image of TSPO 

expression at the CC. Images in B-Bi are not taken from the same sections as A-Ai. 
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Whilst TSPO and DBI exhibit overall similar patterns of expression in the spinal cord, with 

strong labelling at the CC, DBI and TSPO are preferentially present in different cellular 

locations. DBI is expressed in both the cytoplasm and membranes of cells lining the CC 

(figure 4.1Ai). TSPO however appears to be more distinct at cell membranes, with a lack of 

staining in the cytoplasm (figure 4.1Bi). The distinct patterns of staining of DBI and TSPO 

are exemplified by double labelling IHC, as seen in figure 4.2A-Bii. TSPO and DBI are 

present in complementary locations to one another in the CC (figure 4.2Aii and Bii). When 

examining labelling at the CC in both transverse and sagittal planes (figure 4.2B-Bii), it 

becomes clear that TSPO is present within the membranes of the DBI+ cells which surround 

the CC.   

Immunohistochemical labelling using anti-sera raised in rabbit against rat ODN illustrated 

that much like DBI and TSPO ODN is also present cells lining the CC (figure 4.2C-Cii). ODN 

exhibits a similar cytoplasmic pattern of staining to that of DBI (figure 4.2A and C). TSPO is 

present in the membranes of these ODN+ cells (figure 4.2C-Cii). A double labelling protocol 

using ODN and DBI was not possible due to species reactivity of ODN and DBI antibodies 

used in these experiments. 
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Figure 4.2 TSPO labelling is present at the CC alongside DBI+ and ODN+ areas 

A-Ai: Representative confocal images showing staining for DBI (A), the mitochondrial DBI 

receptor TSPO (Ai), and dual labelling for both (Ai) at the CC B-Bii: Confocal images of DBI 

(B) and TSPO (Bi) labelled cells in sagittal spinal cord sections C-Cii: Confocal images 

showing staining for the DBI-fragment ODN (C), TSPO (Ci), and dual labelling for both (Cii) 
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4.3.2 DBI and TSPO colocalise in the WM 

Labelling for DBI and TSPO were also found to be colocalised in the WM (figure 4.3A-Aii). 

Colocalisation of DBI- and TSPO-IR was observed in fibres (figure 4.3Aii, closed arrows), 

with absence of TSPO in DBI+ cell bodies (figure 4.3Aii, open arrows). 

 

4.3.3 TSPO is expressed in spinal cord vasculature where DBI is not  

Whilst DBI and TSPO are expressed in complementary regions of ECs (figure 4.2A-Cii), 

which echoes their functional relationship as ligand and receptor, there are some cell types 

within the cord which do not express both TSPO and DBI.  For example, unlike DBI, TSPO is 

strongly expressed within blood vessels, appearing in both larger and smaller diameter 

vessels (figure 4.4A-Ai). Colabelling for the endothelial cell marker CD31 (figure 4.4B-Bii), 

and absence of TSPO in FG labelled pericytes (data not shown), indicate that TSPO is 

expressed in vascular endothelial cells rather than perivascular cells within the spinal cord 

vasculature (figure 4.4C-Cii).  

Figure 4.3 DBI and TSPO colocalise in cell projections within the WM 

A-Aii: Representative confocal images illustrating labelling of TSPO (A), DBI (Ai), and dual 

labelling for both (A-Aii) in the spinal cord WM 
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TSPO+ blood vessels can also be seen adjacent to the CC in lamina X (figure 4Ci). Whilst 

DBI may not be putatively expressed alongside TSPO in vascular endothelial cells, DBI+ 

cells at the CC do appear to make contact with these cells (figure 4.4Cii). Figure 4.4 

illustrates that some DBI+ cells at the CC send out lateral projections which are in close 

apposition with the TSPO+ vasculature present in lamina X (figure 4.4C-Cii).   
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4.3.4 Intense DBI-IR and TSPO-IR are present within ECs  

Whilst the CC generally appears to be strongly labelled for both TSPO and DBI, there are 

some regions within the CC where staining for both TSPO and DBI are absent. Therefore, 

coloabelling with markers which detect specific cell types present in the CC lining was 

perfomed to determine the specific populations which express DBI and/or TSPO.   

Antibodies against the cell adhesion molecule CD24, to label ECs and CSFcCs, and the EC 

specific marker, S100β were used alongside double labelling for either DBI or TSPO. 

Results illustrated that both DBI and TSPO are preferentially expressed in ECs (figure 4.5, 

arrows). Areas which are CD24+ but are TSPO- and DBI- are likely to represent CSFcC cell 

bodies which are present in the EC layer.   

Findings from experiments using GAD67-GFP to selectively label GABAergic CSFcCs 

alongside DBI confirm that DBI is not expressed in GFP+ CSFcC cell bodies present in the 

EC layer (figure 4.6A-Aii). CSFcCs are characterised by long apically projecting dendritic 

processes which terminate in an end bulb within the CC lumen (Hugnot and Franzen, 2011). 

DBI was also absent from these CSFcC bulbs within the CC lumen (figure 4.6A-Aii). Sagittal 

sections of the CC improved visualisation of the CC lumen, and therefore CSFcC end bulbs, 

Figure 4.4 Epithelial cells of spinal cord vasculature are TSPO+ and DBI+ EC processes 

are in close apposition to TSPO+ blood vessels 

A-Ai: Confocal images of TSPO+ labelling of large blood vessels in the spinal cord B-Bi: 

Representative confocal images of TSPO+ cells surrounding vascular spaces (B), CD31+ 

endothelial cells (B), and colocalisation of TSPO and CD31 (Bii) C-Cii: Representative 

confocal images of DBI+ EC projections (C), TSPO + ECs and vessels (Ci), and colocalisation 

of these markers (Cii) 
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and confirmed that DBI was not expressed in either CSFcC cell bodies or end bulbs. (Figure 

4.6B-Bii).   

Figure 4.5 DBI and TSPO are expressed in ECs 

A-Ai: Representative confocal images of DBI (A), CD24 (Ai), and dual labelling for both (C) at 

the spinal cord CC B-Bi: Representative confocal images of TSPO (B), CD24 (Bi), and dual 

labelling for both (Bii) within the CC C-Cii: Representative confocal images of labelling for 

TSPO (C), S100β (Ci), and dual labelling for both (C) at the spinal cord CC region. Open 

arrows denote non-colocalised cells which are CD24+ but DBI-  
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Similarly to DBI, TSPO-IR is also absent from CSFcC cell bodies, confirmed by double 

labelling in GAD67-GFP mice (figure 4.7A-Aii, open arrows). However, unlike DBI, it appears 

that TSPO is expressed within CSFcC terminal projections as TSPO-IR colocalises with 

GFP in CSFcC end bulbs within the CC lumen (Figure 4.7A-Aii, closed arrows). These 

results were confirmed using double labelling for TSPO in sagittal sections of the CC from 

GAD67-GFP animals (figure 4.7B-Bii). 

Together these results illustrate that DBI-IR is confined to the ECs of the CC region and is 

absent from CSFcCs. Unlike DBI however, TSPO is expressed in CSFcC end bulbs. 

Figure 4.6 DBI is not expressed in CSFcCs 

Representative confocal images showing DBI+ (A and B), GFP+ (Ai and Bi) and dual 

labelling for DBI and GFP (Aii and Bii) at the CC in both transverse (A-Aii) and sagittal 

(B-Bii) tissue sections from the spinal cord. Open arrows denote non-colocalised cells 
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4.3.5 DBI and TSPO+ cells at the CC express the NSPC marker Sox2 

 

Sox2 labelling of ECs provides further evidence for the presence of DBI and TSPO within the 

EC fraction of the CC region, as the Sox2+ nuclei of ECs are located in the cytoplasm of DBI+ 

cells (figure 4.8A-Aii).  These findings are further strengthened by the colocalisation of the 

smaller fragment of DBI, ODN, with Sox2+ ECs (figure 4.8B-Bii). Furthermore, whilst some 

CSFcCs are also labelled by Sox2, these are easily distinguished from ECs due to both the 

absence of DBI and ODN, and their less intense IHC labelling (figure 4.8A-Bii, open arrows).  

Figure 4.7 TSPO is expressed in CSFcC end bulbs 

Representative confocal images showing TSPO+ (A and B), GFP+ (Ai and Bi) and dual 

labelling for TSPO and GFP (Aii and Bii) at the CC in both transverse (A-Aii) and sagittal (B-

Bii) tissue sections from the spinal cord. Open arrows denote non-colocalised cells and closed 

arrows denote areas of colocalisation 
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TSPO also labels membranes of EC which possess Sox2+ nuclei (Figure 4.8C-Cii). These 

results illustrate that TSPO is also expressed in NSCs of the spinal cord, the ECs. 

Figure 4.8  Sox2+ cells are present in areas of the CC which are also labelled by DBI, 

ODN, and TSPO 

A-Ai: Representative confocal images of DBI (A) and Sox2 (Ai) and dual labelling for both 

markers at the CC (Pandamooz et al.) B-Bii: representative confocal images of ODN (B), 

Sox2 (B), and dual labelling (Bii) at the CC C-Cii: Representative confocal images of TSPO 

(C), Sox2 (Ci), and dual labelling for both at the CC (Cii) (Closed arrows non colocalised 

cells. Open arrows: colocalised cells)  
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4.3.6 DBI and TSPO labelling is present in GFP+ ECs in nestin-GFP mice 

Nestin-GFP mice were used to selectively label the nestin+ EC population present at the CC. 

Examining both transverse and sagittal sections for double labelling for DBI and GFP in 

nestin-GFP mice shows that DBI is expressed in the GFP+ EC population (figure 4.9A-Aii).  

DBI is also expressed in GFP+ fibres projecting from the dorsal pole of the CC (figure 4.9A-

Aii). Furthermore, DBI also appears to be expressed in a subset of nuclei of small nestin-

GFP+ cells in lamina X (figure 4.9A-Aii, closed arrows and 8Aii, inset). However not all of 

these GFP+ cells express DBI (figure 4.9Aii, open arrows).   

The pattern of TSPO-IR in nestin-GFP ECs is similar to that of DBI (figure 4.9C-Dii), 

however TSPO does not label dorsal projections from the CC (figure 4.9C-Cii).  
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Figure 4.9 DBI and TSPO are expressed in GFP+ ECs of nestin-GFP mice 

A-Bii: Representative confocal images of DBI (A and B), GFP (Ai and Bi), and dual labelling for both 

(Aii and Bii) at the CC of nestin-GFP mice in transverse (A-Aii) and sagittal (B-Bii) sections C-Cii: 

Representative confocal images of TSPO (C and D), GFP (Ci and Di), and dual labelling for both (Cii 

and Dii) at the CC of nestin-GFP mice in transverse (C-Cii) and sagittal (D-Dii) sections (open arrows: 

colocalised cells, closed arrows: non-colocalised  cells)  

4.3.7 DBI and TSPO are expressed within astrocytes of the spinal cord WM 

but not oligodendrocytes 

Whilst nestin-GFP mice label ECs, using a nestin antibody to label glial cells yields a 

different pattern of staining at the CC to that seen in nestin-GFP mice (figure 4.10A-Aii). 

Double labelling using an antibody directed against nestin confirms that DBI is expressed at 

the dorsal and ventral poles of the CC (figure 4.10A-Bii). DBI+ fibres extend dorsally from the 

CC towards the posterior median sulcus and exhibit punctate nestin staining along their 

entire length (figure 4.10A-Bii). DBI is also expressed in glia within the WM (figure 4.10C-

Cii). However, whilst DBI exhibits punctate staining in nestin+ radial glial fibres at the CC, in 
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the WM DBI is expressed in both the cell body and fibres of nestin+ astrocytes (figure 

4.10Cii, closed arrows). 

  

Figure 4.10 Nestin+ radial glia are DBI+ at the CC and WM 

A-Aii: Representative confocal images of DBI (A), nestin (Ai) and dual labelling for both 

(Pandamooz et al.) at the CC of the spinal cord B-Bii: Representative confocal images of 

labelling for DBI and nestin within the fibres which extend from the dorsal pole of the CC C-

Cii: Representative confocal images of DBI and nestin colabelling within the WM of the spinal 

cord (closed arrows: colocalised cells) 
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GFAP+ astrocytic fibres are located within lamina X, and are in close apposition to the DBI 

and TSPO+ EC layer of the CC region (figure 4.11A-Bii). GFAP+ fibres often make contact 

with ECs and pass through the EC layer to contact the CC lumen (figure 4.11Aii), however 

GFAP is not expressed within DBI and TSPO+ ECs (figure 4.11A-Bii). There are however, 

DBI/GFAP+ astrocyte cell bodies present in close proximity to the CC, and GFAP+ fibres 

from these cells often contact the EC layer (figure 4.11A-Aii, arrows).  

In the WM DBI is also present within the cell bodies of GFAP+ astrocytes (figure 4.11C-Ci). 

In contrast, TSPO colocalises with GFAP+ fibres in the WM with minimal staining found in 

the soma of astrocytes (Figure 4.11D-Dii). 
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Figure 4.11 DBI and TSPO are expressed within GFAP+ astrocytes of the spinal cord  

A-Bii: Representative confocal images of labelling for DBI and GFAP (A-Aii) and TSPO and 

GFAP (B-Bii) at the CC region C-Dii: Representative confocal images of labelling for DBI and 

GFAP (C-Cii) and TSPO and GFAP (D-Dii) in the spinal cord WM 
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In addition to radial glia and astrocytes, oligodendrocytes are another cell type which 

contribute to the vast population of neuroglial cells within the spinal cord. Double labelling 

IHC for DBI, or TSPO, and the oligodendrocyte marker PanQKI, illustrates that in the WM 

there are some DBI and TSPO+ cells which also express PanQKI (figure 4.12A-Bii). In the 

dorsal columns there are also TSPO+ cells which colocalise with the oligodendrocyte 

transcription factor olig2 (figure 4.12C-Cii). DBI and TSPO were not found in PanQKI+ 

oligodendroctyes in lamina X (data not shown). 

Figure 4.12 DBI and TSPO are expressed in a subset of PanQKI+ and Olig2+ 

oligodendrocytes 

A-Bii: Representative confocal images of labelling for DBI and PanQKI (A-Aii) and TSPO and 

PanQKI (B-Bii) in the spinal cord WM C-Cii: Representative confocal images of TSPO and 

Olig2 labelling with the dorsal column WM (closed arrows: colocalised cells open arrows: non-

colocalised cells) 
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Staining with the microglial marker Iba1 showed that TSPO is also expressed in microglia of 

the adult spinal cord (figure 4.13A-Aii).  

 

4.3.8 DBI is not expressed in mature neurones however TSPO is present in 

some MNs and SPNs  

 

Double labelling IHC for the mature neuronal nuclei marker NeuN alongside DBI showed 

that DBI was not present in NeuN+ neuronal populations of the spinal cord (Figure 4.14A-

Aii). Furthermore, TSPO was also absent from NeuN+ mature neurones which are present in 

lamina X (Figure 4.1412B-Bii). NeuN+ neurones however appeared appear to make close 

contact with the TSPO and DBI+ ECs (Figure 4.14Aii and Bii).  

NeuN labels mature neurones, however HuC/D is present in both immature and mature 

neurones and therefore labels a greater neuronal population. TSPO expression was also 

absent in HuC/D labelled cells surrounding the CC (figure 4.1412C-Cii), indicating that TSPO 

is not present in the neuronal populations present in lamina X.   

Figure 4.13 TSPO is expressed in Iba1+ microglia  

A-Aii: Representative confocal images of TSPO (A), Iba1 (Ai), and dual labelling for both (Aii) 

in the WM of the intact adult spinal cord  
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Figure 4 14 Mature and immature neurones surrounding the CC do not express DBI or 

TSPO 

A-Bii: Representative confocal images of labelling for DBI and NeuN (A-Aii) and TSPO and 

NeuN (B-Bii) in the spinal cord WM C-Cii: Representative confocal images of TSPO and HucD 

labelling with the dorsal column WM  
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Interestingly, unlike the smaller NeuN+
 or HuC/D+ neurones near the CC, a subset of large 

MNs, and their projections, within the ventral horns were determined to be TSPO+ (figure 

4.15). These TSPO+ cells were mature NeuN+ neurones (figure 4.15A-Aii, closed arrows) 

which were also colabelled by the retrograde neuronal tracer fluorogold (figure 4.15B-Bii, 

closed arrows), following peripheral IP injection. TSPO is not expressed by the entire ventral 

MN population, and instead appears to be localised to a subset of larger alpha MNs (figure 

4.15, open arrows).  

  

Figure 4.15 TSPO is expressed in a subset of ventral motor neurones 

A-Aii: Representative confocal images of TSPO (A), NeuN (Ai), and dual labelling for both 

markers in the ventral horn of the spinal cord (Pandamooz et al.) B-Bii: Representative images 

of colocalisation of FG and TSPO in the ventral horn of the spinal cord (open arrows: non- 

colocalised cells closed arrows: colocalised cells) 
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TSPO-IR was also often found within a subpopulation of cells present adjacent to the CC in 

IMM, and laterally in IML. These TSPO+ cells were identified as SPNs based upon double 

labelling with FG, their morphology, and location within the thoracolumbar region of the 

spinal cord (Figure 14A-Bii).  

DBI did not exhibit this same pattern of expression in MNs regardless of the level of spinal 

cord examined and was also absent from SPNs of the thoracolumbar region. Therefore, 

unlike TSPO, which appeared to be expressed in some of these neuronal cell types, DBI 

was absent from all neurones within the spinal cord. 

  

Figure 4.16 TSPO labels subsets of neurones within the IMM and IML 

A-Ai:  Confocal images showing TSPO labelling in the IMM, Ai is a higher magnification image 

of A B-Bi: Representative confocal images of TSPO labelling within the IML of sections taken 

from the thoracic segment of the spinal cord. Bi is a higher magnification image of B   
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4.3.8.1 Distribution of TSPO labelling in neurones in the spinal cord 

In order to determine whether the subpopulations of TSPO+ ventral MNs and SPNS were 

distributed along the entire rostrocaudal spinal cord axis, or were specific to the ventral 

horns of certain spinal regions, cell counts were performed in all spinal cord segments. 

TSPO-IR MNs of the ventral horn, and SPNs within both the IMM and IML, were counted in 

cervical, thoracic, and lumbar regions. Furthermore, the percentage of FG+ cells which also 

expressed TSPO was calculated in each of segment region. There was no colocalisation of 

GAD67-GFP TSPO within these TSPO/FG+ MNs. Furthermore, there were no instances of 

GFP/FG+ SPNs in any section from any spinal segment during cell counting (data not 

shown). 

TSPO was present in a subset of, but not all, ventral MNs, in cervical, thoracic, and lumbar 

regions of the spinal cord. The mean percentage of FG labelled MNs which were also 

TSPO+ in cervical, thoracic, and lumbar segments was 31%, 22%, and 36%, respectively 

(figure 4.16). There were no significant differences in the percentage of FG+ MNs which 

were also TSPO+ in the cervical segment (31±2%) compared to thoracic regions (21±4%). 

There were no significant differences in the percentages of FG+ MNs which also expressed 

TSPO in the ventral horn of cervical regions compared to lumbar regions (36±3%). However, 

there were significantly more FG+ MNs which also expressed TSPO in the lumbar region 

compared to the thoracic region (21±4% v.s 36±3%, respectively, p <0.05, students t-test, 

figure 4.17)  
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When examining the distribution of TSPO in FG+ SPNs, there were no significant differences 

in the percentages of FG+ cells which were also and TSPO+ in the IML between the thoracic 

(48±2%) and lumbar (42±5%) segments. Furthermore, there was no significant difference in 

the percentage of FG+ cells which also expressed TSPO within the IMM between the 

thoracic (30±4%) and lumbar (18±5%) segments (figure 4.18A).  

At the IML all FG+ cells were TSPO+, however there was another population of TSPO+ cells 

present in the IML which were not FG+ (figure 4.18B). In other words, FG+ cells within the 

IML were always TSPO+, however TSPO+ cells at this location did not always contain FG. 

There were a significantly larger population of TSPO+/FG- cells cells in the IML of the upper 

lumbar spinal segment compared to the thoracic segment (22±7% of TSPO+ cells were FG- 

in the lumbar IML vs. 2±1% of TSPO+/FG- in the thoracic IML, respectively, p < 0.05, 

students t-test, figure 4.18B).  

Figure 4.17 The percentage of total FG labelled cells which are also TSPO+ is 

significantly greater in sections from the lumbar segment 
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4.3.9 DBI-IR and TSPO-IR following stab injury to the spinal cord  

Focal intraspinal stab injuries were performed in the dorsal column WM to examine changes 

in DBI-IR and TSPO-IR in response to environmental insult to the spinal cord. DBI-IR and 

TSPO-IR was examined 3 days post injury. Following injury to the cord there were varying 

observable changes in DBI-IR and TSPO-IR (figure 4.19).  

At 3 dpi in sections taken from the injury site, the CC and DBI/TSPO+ EC cells appeared 

distorted (figure 4.19), possibly due to mechanical trauma to the ependyma. Furthermore, 

following injury TSPO appeared to exhibit more diffuse staining at the CC and within the WM 

than is usually seen (figure 4.19). Whilst DBI and TSPO labelling appeared more intense, 

and in more regions, following WM injury, we were unable to quantify such changes, and 

therefore further work is required to more closely investigate how DBI and TSPO expression 

changes in such injurious situations. 

Figure 4.18 TSPO is expressed in FG labelled SPNs across the thoracolumbar region  

A: Pooled data showing the percentage of total FG labelled cells which are also TSPO+ in the 
IML and IMM in the thoracic and lumbar segments. B: Pooled data showing differences in the 
percentage of total TSPO+ cells which are also FG+ at the IML of sections taken from thoracic 
and lumbar segments  
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Figure 4.19 Patterns of DBI and TSPO staining appear to change following WM injury  

A-Bi: Representative confocal images of DBI (A-Ai) and TSPO (B-Bi) labelling at the CC 

following WM injury (Ai and Bi) C-Di: Representative confocal images of DBI (C-Ci) and TSPO 

(D-Di) labelling in the WM and GM following WM injury (Ci and Di)   
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4.4 Discussion  

4.4.1 DBI and TSPO are present in the adult spinal cord where they often are 

colocalised with one another   

Many studies have characterised the expression of DBI and TSPO within the brain and 

peripheral organs, where they are often found in complementary regions to one another in 

tissues (Guidotti et al., 1983; Alho et al., 1988b; Tong, Y. et al., 1991; Gavish et al., 1992). 

For example, DBI and TSPO are both expressed in glial and ependymal cells in the brain 

and also colocalise in peripheral steroidogenic cells (Alho et al., 1991; Bovolin et al., 1990; 

Lihrmann et al., 1994; Malagon et al., 1993). These results may not be surprising as DBI is a 

known ligand for TSPO.  

Results from this study are consistent with previous findings and show that, similarly to the 

brain, robust DBI- and TSPO-IR is also present in the intact adult spinal cord where they 

often colocalise. DBI and TSPO are colocalised within cells in the WM which have a glial-like 

morphology. In addition, DBI and TSPO are also coexpressed at the CC. The DBI metabolite 

ODN is also expressed in TSPO+ ECs lining the CC.  

Whilst DBI and TSPO are present in the same cells and regions, they show different cellular 

locations. TSPO has been previously detected at the plasma membrane in some CNS cell 

types and peripheral organs (Scarf et al., 2009; Oke et al., 1992). In the spinal cord TSPO is 

also located at the plasma membrane of ECs lining the CC. In TSPO+ ECs DBI-IR is 

localised more diffusely in the cytoplasm, a pattern which echoes that of DBI+ glial cells and 

ECs within the brain (Alho et al., 1991). ODN within ECs also exhibits a similar pattern to 

ODN labelling in ECs of the brain (Tonon et al., 1990). In the spinal cord WM, TSPO is 

present in glial-like fibres whereas DBI is concentrated within the cell soma.  

Much like the brain, TSPO is also found in the endothelial cells of the spinal cord vasculature 

(Cosenza-Nashat et al., 2009). MRNA expression analysis of TSPO in different cell types of 
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the mouse cerebral cortex has shown that endothelial cells have the same basal levels of 

TSPO mRNA as microglia (Wimberley et al., 2018).  

Unlike TSPO, endothelial cells within the spinal cord were not DBI+. However, DBI is 

expressed in a subset of ECs which appear to send lateral projections from the CC to make 

contact with adjacent TSPO+ vessels within lamina X. These DBI+ cells are likely to be 

tanycytes which are laterally located ECs that contact the CC lumen and are characterised 

by a long basal process which terminates on the basal lamina of blood vessels (Hugnot and 

Franzen, 2011; Doetsch et al., 1997). Tanycytes have contact with both CSF and vessels, 

potentially linking the CSF, blood, and neuroendocrine system. The presence of TSPO in the 

vascular contacts of DBI+ tanycytes only strengthens this possibility as DBI in these 

tanycytes could communicate changes sensed in the CSF to the vasculature by binding to 

TSPO in the endothelial cells. 

Furthermore, tanycytes of the spinal cord also show strong IR for vasoactive intestinal 

polypeptide (VIP), a hypotensive and vasodilatory peptide found in the CSF (Fahrenkrug et 

al., 1977; Sharpless et al., 1984), where processes of VIP+ tanycytes also terminate on 

blood vessels (Basbaum and Glazer, 1983; Chung and Lee, 1989). Tanycytes therefore may 

be able to control vascular tone of spinal blood vessels through the communication of DBI 

and TSPO which then leads to the release of VIP from these cells. Indeed, the TSPO 

specific antagonist PK11195 strongly dilates large arteries and arterioles (Gavish et al., 

1992). In normal human volunteers, midazolam, which has actions at TSPO, is also a 

vasodilator (Colussi et al., 2011), indicating a link between DBI/TSPO and vascular control 

which may also extend to CNS vasculature.  

Tanycytes also line the ventricles of the brain, and in particular tanycytes of the 3rd ventricle 

have been shown to express DBI-IR along the length of the ventricle (Dumitru et al., 2017) 

indicating that DBI expression is conserved between tanycytes of the brain and CC. DBI-IR 

tanycytes lining the 3rd ventricle also coexpress nestin and Sox2 much like DBI-IR ECs of 
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the CC. ODN is also expressed in tanycytes of the brain, indicating the importance of DBI 

and DBI metabolites as signalling mechanisms in this cell type (Gandolfo et al., 2000). TSPO 

is also present in the hypothalamus (Giannaccini et al., 2011; Gavish et al., 1992). 

Hypothalamic DBI/ODN+ tanycytes of the 3rd ventricle are thought to be glucosensing, 

communicating CSF nutrient availability to nearby hypothalamic neuronal nuclei, where 

DBI/ODN act as a ‘relay’ in glucose sensing and regulation of energy homeostasis (Lanfray 

et al., 2013; Guillebaud et al., 2017). These results indicate that DBI, its metabolites, and 

TSPO in tanycytes are a complementary sensing system in the brain, and results described 

here suggest that this function may also extend to the spinal cord. 

4.4.2 Expression of DBI and TSPO in NSCs modulates proliferation 

In the brain intense DBI expression is found in areas designated as postnatal neurogenic 

niches, including the dentate gyrus of the hippocampus and the ependyma of the SVZ of the 

lateral ventricle (Yanase et al., 2001; Tong, Y. et al., 1991; Alho et al., 1988a; Alfonso et al., 

2012). Alfonso et al., (2012) and Dumitru et al., (2017) show that DBI is expressed in NSCs 

and the expression of DBI decreases in association with cellular differentiation. Results from 

these studies also show that DBI is necessary in these areas for balancing the paracrine 

activity of GABA, released from nearby neuroblasts, which keeps NSCs in an inactive state. 

Thus, following OE or KD of DBI, there are resultant changes in the proportion of 

proliferation of NSCs, migration of neuroblasts, and maturation of new neurones (Alfonso et 

al., 2012, Dumitru et al., 2017).   

Findings from this study show that DBI is also located within the neurogenic niche of the 

spinal cord and is preferentially expressed within the ECs of the CC region. ECs constitute 

the NSC population of the spinal cord (section 1.5) and co-label with the NSC marker Sox2 

alongside DBI. ODN, determined to be the ‘active’ fragment at GABAaR (Alfonso et al., 

2012, Dumitru et al., 2017) is also present in Sox2+ ECs.  
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The presence of DBI within yet another neurogenic niche of the CNS highlights the 

importance of this endogenous protein in the maintenance of the postnatal stem cell niche. 

The presence of DBI may be essential to maintain the proliferative balance by offsetting the 

negative effects of GABA on proliferation (Alfonso et al., 2012; Bormann, 1991; Tozuka et 

al., 2005). Whilst ECs possess NSC properties and exhibit NSC behaviour, self-renewal and 

differentiation, following spinal cord injury their basal level of proliferation is low, Many 

different niche signals may be involved in this process (section 1.6), however as GABA is 

important in other niches for regulating proliferation and differentiation, and modulates 

proliferation in the spinal cord following manipulation of ambient GABA levels (chapter 3), 

perhaps GABA also suppresses EC NSC behaviour. Neighbouring GABAergic CSFcCs may 

provide the source of this GABA (section1.9), however processes which restrict EC 

proliferation, and whether DBI is involved in such processes, remain to be elucidated. 

TSPO is robustly expressed at the plasma membrane of ECs and is colocalised with the 

NSC marker Sox2. TSPO mRNA and protein has also been shown to be expressed in NSCs 

and in post-mitotic neural precursors in primary neuron-enriched cultures in vitro (Varga et 

al., 2009). The DBI-derived TSPO ligand TTN stimulates proliferation in cultured rat 

astrocytes following binding to TSPO (Gandolfo et al., 2000), suggesting that TSPO is 

implicated in proliferation and differentiation in the CNS. Furthermore, TSPO is involved in 

the production of neurosteroids, such as allopregnanolone, which have profound effects on 

NSCs including influencing differentiation and suppressing genes that repress cell 

proliferation (Charalampopoulos et al., 2008b; Charalampopoulos et al., 2008a). Moreover, 

allopregnanolone increases oligodendrocyte proliferation and function (Daugherty, D. J. et 

al., 2013), indicating that it has multiple effects within both NSCs and also more mature 

lineage committed cell types. Therefore, TSPO may influence proliferation and differentiation 

in the CNS indirectly through neurosteroidogenesis. 

Indeed, studies of glioma within the spinal cord give a perfect example of the power that DBI 

and TSPO may have over proliferation. Studies on these spinal cord tumours have shown 
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increased levels of DBI and its receptor TSPO (Alho et al., 1995; Miettinen et al., 1995), 

where perhaps unchecked expression of DBI and TSPO work in an autocrine manner to 

result in pathological tumorigenic proliferation.  DBI and TSPO are therefore are expressed 

in areas involved in proliferation, differentiation, and migration, including spinal cord ECs. 

4.4.3 DBI is not expressed in CSFcCs however CSFcC end bulbs are TSPO+ 

The CC of the spinal cord is a heterogenous population of cells consisting of a variety of 

different cell types with different morphologies, functions, and expression of characteristic 

markers (Hugnot and Franzen, 2011). Areas devoid of DBI and TSPO may therefore 

represent these different cell types which have cell bodies within the EC layer but do not 

express DBI or TSPO such as CSFcCs.   

CSFcCs are another cell type which are distributed around the CC with ependymal- or 

subependymally located soma. CSFcCs send a thick dendritic-like process into the lumen 

which terminates in a large ciliated end-bulb contacting the CSF (Hugnot and Franzen, 

2011). There are 2 main types of CSFcCs, type-1 and type-2 CSFcCs, which are classified 

based on morphology, IHC, and electrophysiological properties, however both types are 

GABAergic (Barber et al., 1982) and can therefore be visualised as GFP+ cells within the CC 

ependyma of GAD67-GFP mice. GFP is expressed in the entire CSFcC; in the cell body 

within the ependyma, the dendritic-like structure which projects through the ependyma and 

the terminal end-bulb which sits in the CC lumen contacting the CSF.   

DBI is not expressed in either the cell body, dendritic-like projections or CSF-contacting end-

bulbs of GFP+ CSFcCs. CSFcCs are thought to represent a neuronal subtype, albeit with a 

less developed immature neural cell phenotype (Marichal, Nicolás et al., 2009). CSFcCs 

express the immature neuronal markers DCX, PSA-NCAM and HuC/D, but do not express 

the mature marker NeuN (Marichal, Nicolás et al., 2009; Stoeckel et al., 2003). CSFcCs also 

display electrophysiological properties of immature neurones (Marichal, Nicolás et al., 2009). 

In the brain DBI is expressed in few immature and mature neurones (Alho et al., 1988b), 
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therefore perhaps DBI is also absent from CSFcCs due to the neural similarities of these 

cells. 

However, whilst TSPO is also absent from the soma of GFP+ CSFcCs, TSPO-IR is found in 

GFP+ CSFcC end bulbs within the CC lumen. Terminal bulbs of CSFcCs contain 

mitochondria (Leonhardt, 1976). TSPO is primarily expressed within mitochondria (Yasin et 

al., 2017; Gavish et al., 1999), where is it believed to play a role in the translocation of 

cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane, 

during steroid- and neurosteroidogenesis (Papadopoulos et al., 2018). As CSFcC end-bulbs 

are rich in mitochondria, and TSPO is normally expressed in mitochondria, it would therefore 

make sense that TSPO would be found in mitochondrial-rich CSFcC terminal bulbs.  

In the brain, TSPO is present within the ventricular ependyma and choroid plexus of the 

brain (Benavides et al., 1983; Stephenson et al., 1995).  Binding of the TSPO antagonist Ro 

5-4864 decreases CSF formation by 48%, suggesting that TSPO+ end bulbs of CSFcCs may 

also be related to modulation of CSF as seen in the brain. Whilst the precise function of 

CSFcCs is still enigmatic, they have been implicated in the sensing of CSF composition, 

pressure, and flow (Vigh et al., 1977; Vigh et al., 1983b). For example, CSFcCs have been 

shown to express both pH- and acid- sensing ASICs, P2X2 receptors, and PKD2L1 channels 

which may be related to CSF chemosensing in CSFcCs (Marichal, N. et al., 2016; Marichal, 

Nicolás et al., 2009; Stoeckel et al., 2003; Huang, A.L. et al., 2006). The presence of TSPO 

within the end bulbs of CSFcCs, which are in direct contact with the CSF, may aid CSFcCs 

in sensing CSF composition and initiating downstream signalling processes in response to 

CSF components. For example, DBI is present in high levels within the mammalian CSF 

(Barbaccia et al., 1986), where it would be able to bind to TSPO within CSFcC end bulbs 

present within the CC lumen. ECs of the CC express high levels of DBI, however whether 

they secrete DBI into the CSF to influence TSPO present within CSFcC bulbs, or whether 

the source of DBI is located further away from the niche, is unknown.   
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In the SVZ GABA is released from nearby neuroblasts where it acts as a paracrine stop 

signal to limit proliferation of NSCs (Nguyen et al., 2003). ECs at the CC exhibit NSC 

properties, however in the intact cord their proliferation is restricted, occurring only for 

population maintenance (Barnabe-Heider et al., 2010). Work described in chapter 2 

illustrates that proliferation in the spinal cord is also restricted by GABAergic signalling. 

Perhaps a mechanism exists in which DBI, or other CSF components, are able to bind to 

TSPO within CSFcC bulbs which regulates the level of GABA released from CSFcCs which 

inhibits EC proliferation in the intact cord by paracrine signalling on GABAaRs in ECs. If this 

were to be the case, then increased proliferation and differentiation of ECs following SCI 

could result from disruption of this system by either change in CSF composition following 

injury or by loss of CSFcCs. As yet the effects of DBI upon CSFcCs, EC proliferation, and 

changes in CSFcC behaviour following injury remain to be seen. 

TSPO regulates the synthesis of neurosteroids and therefore it could be possible that 

expression of TSPO in CSFcC end-bulbs allows for neurosteroid synthesis in CSFcCs, 

where DBI in the CSF would then regulate this process by interacting with TSPO (Guarneri 

et al., 1990; Besman et al., 1989; George et al., 1994). Synthesis and secretion of 

neurosteroids by CSFcCs into the CC niche may then maintain the proliferative brake on 

nearby ECs by local PAM effects on GABAaRs in these cells. CSFcCs also express 

GABAaRs therefore a negative feedback loop could exist to regulate neurosteroid production 

in CSFcCs. Whether this is possible or does indeed occur is unknown and much more work 

is required to understand the patterns of DBI and TSPO expression in CSFcCs.  

4.4.4 DBI and TSPO are expressed in certain glial populations of the spinal 

cord  

In the brain, DBI and TSPO are preferentially located in glial populations. Astroglial cells 

have extremely high concentrations of DBI and DBI mRNA, and express the DBI gene 

(Costa, E. and Guidotti, 1991; Alho et al., 1994; Alho et al., 1985; Gandolfo et al., 2000). DBI 
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is exclusively located in glial cell populations of the brain including hypothalamic glial cells 

and Bergmann glia of the cerebellum (Tong, Y. et al., 1991). Cultured rat astroglial cells also 

contain and release substantial amounts of DBI-related peptides, TTN and ODN (Gandolfo 

et al., 2000), suggesting that DBI metabolites may not only be stored in astrocytes but that 

they may also regulate their local environment by secretion from these cells. Indeed, ODN 

has also been preferentially located in glial cells of the brain (Tonon et al., 1990). IHC shows 

that DBI and DBI-related peptides are also highly to moderately concentrated in the 

cytoplasm of astroglial cells in the cerebellum and dentate gyrus (Alfonso et al., 2012) 

(Yanase et al., 2002). TSPO is also most prevalent in glia, particularly within microglia and 

astrocytes (Gavish et al., 1992). 

When examining expression of TSPO and DBI in the spinal cord, it was evident that DBI and 

TSPO were also expressed in glial-like cells of the spinal cord WM. TSPO appeared as 

punctate staining that was preferentially located in WM fibres, whereas DBI appeared to 

label cell bodies. In order to determine which glial populations may express DBI and TSPO 

in the spinal cord at the CC dorsal pole, lamina X GM, and WM double labelling for nestin 

and GFAP alongside DBI and TSPO were carried out. DBI- and TSPO-IR were also 

examined in Nestin-GFP mice 

4.4.4.1 DBI and TSPO are expressed in nestin+ radial glia  

Dorsal projections which originate from the CC dorsal pole were DBI and TSPO+  suggesting 

that DBI and TSPO may also be expressed in radial-glia like ECs, an EC subtype which 

possess long basal processes that extend along the dorsal midline and express the glial 

markers nestin and GFAP and (Hugnot and Franzen, 2011). Nestin-GFP mice possessed 

DBI/ GFP+ dorsally located fibres at the CC, indicating that these dorsally projecting 

DBI/TSPO+ ECs were nestin+ as might be expected.  

Nestin-GFP mice exhibit intense and specific GFP staining in ECs at the CC which 

colocalises with both DBI and TSPO, with some labelling of DBI+ dorsally projecting fibres at 
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the CC dorsal pole. DBI also appeared to be expressed in small nestin-GFP+ cells in lamina 

X. Labelling using a nestin antibody generated a different pattern of staining, where DBI+ 

projecting fibres RG-like ECs at the dorsal pole were nestin+, however all other DBI+ ECs 

were nestin-. Nestin-GFP mice also do not exhibit GFP-labelling in WM glial cells as seen in 

nestin antibody labelled sections. Despite these differences, results ultimately show that 

nestin+ RG-like ECs are DBI+ and that DBI is also present in nestin+ radial glia of the WM.  

4.4.4.2 DBI and TSPO are expressed in GFAP+ astrocytes in the spinal cord  

GFAP is another intermediate filament protein expressed by glial cells which is used to label 

astrocytes. GFAP is also present in RG-like ECs of the CC dorsal pole where it colocalises 

with DBI+. There are GFAP+ astrocytic fibres which are located within lamina X, and are in 

close apposition to the DBI+ and TSPO+ EC layer of the CC region. GFAP+ fibres often 

appear to make contact with the EC layer, these CC-contacting astrocytes of lamina X 

express DBI in their cell body. TSPO is not seen in these GFAP+ astrocytes close to the CC 

and neither DBI or TSPO colocalise with GFAP+ astrocytic processes in this region. In the 

WM, DBI is expressed within the cell body and fibres of GFAP+ astrocytes while TSPO 

colocalises with GFAP+ fibres with minimal staining found in the soma. Despite differing 

patterns of cellular expression of GFAP, these results illustrate that DBI and TSPO are also 

expressed in astrocytes of the spinal cord.  

In the brain, astrocytes are thought to synthesise, break down, (Loomis et al., 2010), and 

release substantial amounts of DBI and DBI-related peptides (Gandolfo et al., 2000; Patte et 

al., 1999; Christian et al., 2013) and this function may also occur in spinal cord DBI and 

TSPO+ astroglial cells. In the brain TSPO and DBI expressing astrocytes are involved in the 

production of neurosteroids which then feedback to astrocytes and influence the production 

and secretion of DBI peptides (Loomis et al., 2010). DBI, ODN, and TTN have also been 

shown to protect neurones and astrocytes from oxidative stress-induced apoptosis (Ghouili 

et al., 2018; Hamdi et al., 2015). Whether these processes also occur in the spinal cord 
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DBI/TSPO+ astrocytes remain to be seen, but could explain why DBI and TSPO are 

colocalised within glial cells of the spinal cord.   

4.4.4.3 TSPO is expressed in Iba1+ microglia of the spinal cord 

In the brain TSPO is also expressed in microglia where it plays a role in microglia-

macrophage interactions in response to injury and inflammation (Wang, M. et al., 2014; 

Daugherty, D. J. et al., 2013). TSPO was also found to be expressed in Iba1+ microglial cells 

within the spinal cord, where it may perform similar functions following SCI as it does in 

peripheral nerve injury and inflammatory demyelinating lesions (Daugherty, D. J. et al., 

2013)dau(Daugherty, Daniel J. et al., 2016; Girard et al., 2008). 

4.4.4.4 A subset of PanQKI+ oligodendrocytes colocalise with DBI and TSPO 

QKI is an RNA binding protein which has been implicated in controlling the translation of 

many oligodendrocyte related genes, oligodendrocyte differentiation, and myelinogenesis 

(Hardy, 1998; Wu et al., 2001; Zhao, L. et al., 2006; Chen, Y. et al., 2007). Disruption of QKI 

results in dysmyelination (Hardy, 1998). DBI and TSPO were not found in PanQKI+ 

oligodendroctyes in lamina X. There were however rare occurrences of small, less intense, 

DBI and TSPO+ cells present in the WM, some of which appeared to colabel with PanQKI 

and the oligodendrocyte transcription factor olig2, suggesting that some oligodendrocytes 

may express DBI and TSPO in the spinal cord. 

 Previous studies have shown that TSPO and DBI peptides are expressed in Schwann cells 

of the peripheral nervous system (Lacor et al., 1999), however when examining myelinating 

cells in the brain, TSPO and DBI were rarely found in oligodendrocytes (Cosenza-Nashat et 

al., 2009), which fits with the case within the spinal cord. Many studies have reported the 

expression of DBI and TSPO in astrocytes and microglia, however a detailed picture of 

whether TSPO and DBI or DBI metabolites are expressed in oligodendrocytes of the brain is 

not yet available. However, a correlation has been found between TSPO expression, steroid 
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biosynthesis, and oligodendrocyte differentiation (Cascio et al., 2000), suggesting TSPO 

may also be involved in differentiation of this cell type.  

4.4.5 TSPO is present in a subpopulation of motor neurones and SPNs whilst 

DBI is absent from all neuronal populations of the spinal cord 

DBI IHC in the spinal cord echoes that of the brain, where DBI is preferentially expressed in 

glia and is absent from neurones. In the spinal cord DBI was also absent from CSFcCs, 

which express immature neuronal markers such as DCX and PSA-NCAM, suggesting that 

DBI is not expressed any cells with a neuronal phenotype. In the brain however DBI may be 

present in select neuronal populations such as pyramidal neurons of the cerebral cortex, 

hippocampal pyramidal cells, and neurons of the reticular thalamus (Alho et al., 1985; 

Ferrarese et al., 1987b; Costa, E. and Guidotti, 1991; Christian, Catherine A. and 

Huguenard, John R., 2013). When DBI is expressed in neurones, it is concentrated into 

synaptosomes where it is colocalised and co-released alongside GABA (Ferrarese et al., 

1987b; Ferrarese et al., 1987a; Ferrarese et al., 1993). These findings suggest that whilst 

DBI and its proteolytic fragments are synthesised and released by glia, hence the strong 

labelling of glial populations throughout the brain, DBI can be taken up and retained by some 

neurons, which may explain the conflicting results found between some studies when 

examining expression of DBI in neurones (Tong, Y. et al., 1991). 

However, this was not the case for DBI-IR in the spinal cord. IHC labelling for DBI was never 

seen in retrogradely labelled MNs and SPNS or in cells labelled with the mature neuronal 

marker NeuN. Staining for DBI in the GM was non-nucleic in nature and did not appear in 

cytoplasmic areas of large neurones, as often seen with TSPO. When DBI labelling was 

present in GM it appeared as diffuse cytoplasmic labelling in small cells with glial 

morphology. ODN was also absent from neurones in the spinal cord as is also seen in the 

brain (Vidnyánszky et al., 1994; Tonon et al., 1990). Furthermore, results examining the 

colocalisation of ODN-IR and GABA-IR in the cerebellar cortex of mice, where GABA is 



163 

 

always associated with neuronal elements, showed that whilst ODN-IR glial processes were 

located in close apposition to synaptic junctions, ODN and GABA did not colocalise. These 

findings therefore do not support the conclusion that DBI and DBI metabolites such as ODN 

are a neuronal processing product of DBI which are retained in some GABAergic neurones 

(Vidnyánszky et al., 1994). They do however support conclusions drawn here using IHC 

showing that DBI is also absent from spinal cord neurones.   

In contrast to DBI, TSPO was expressed in a subset of large MNs of the ventral horn, SPNs 

in the lateral horn of the thoracolumbar segment, and SPNs in the IML. TSPO colocalised 

with FG+ MNs in the ventral horn and FG+ SPNs in the lateral horn. This was not specific to 

one particular spinal cord segment as TSPO/FG+ MNs were found in cervical, thoracic, and 

lumbar sections, indicating that TSPO is not specific to the function of motor neurones at a 

particular spinal level to certain muscle effectors. There were however significantly more 

TSPO/FG+ MNs in lumbar sections compared to thoracic sections. This finding may be 

simply a result of the increased size of the ventral horn in lumbar sections, and that the 

lumbar region is responsible for more motor output for controlling the lower limbs. 

Furthermore, fewer TSPO/FG labelled SPNs were present in the IMM compared to the IML 

in both thoracic and lumbar regions. Literature searches for TSPO/PBR in SPNs yield no 

results, therefore it does not appear that presence/expression of TSPO has as yet been 

documented/published in this cell type. 

TSPO labelled a subset of MNs and SPNs, there were often cells which were TSPO+ but FG 

negative or FG+ and TSPO negative. At the IML there many TSPO+ cells which were not 

FG+, and there were significantly more TSPO+/FG- cells in the lumbar region compared to 

thoracic. Retrograde labelling by IP FG injection should label the entire SPN population 

(Anderson, C. and Edwards, 1994), therefore these TSPO+ cells at the IML and IMM are 

unlikely to be SPNs, and further investigation using markers of neurochemistry to elucidate 

the identity of these cells is required. 
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Double labelling for FG and TSPO and TSPO and NeuN indicate that not all motor neurones 

or SPNs of the spinal cord express TSPO and that TSPO is present in a subpopulation of 

large motor neurones. Further work is therefore required to examine TSPO-IR alongside 

other specific immunohistochemical markers to determine the neurochemistry of TSPO+ 

motor neurones and SPNs, such as ChaT, GAT, parvalbumin, and somatostatin. 

Very few other studies have examined the expression of TSPO in neurones, motor 

neurones, or SPNs and those which have report that TSPO is preferentially expressed in 

non-neuronal cells, with the greatest expression of TSPO in astrocytes and microglia 

(Cosenza-Nashat et al., 2009). This is in direct opposition to the pattern of TSPO-IR in the 

spinal cord, as discussed here. In vitro cultured cortical neurones have been shown to 

express TSPO, but this has not been replicated in vivo (Jayakumar et al., 2002). Whilst few 

have shown the expression of TSPO in neurones of the intact CNS in vivo, others have 

shown that TSPO, but not DBI, is expressed is induced in dorsal root ganglia neurones 

following peripheral nerve injury in vivo (Karchewski et al., 2004; Mills et al., 2005; Xiao et 

al., 2002). Moreover, treatment with the TSPO reported agonist Ro5-4864 result in 

enhanced mouse sensory axon regeneration following injury in vivo (Mills et al., 2005). 

Hernstadt et al., (2009) also report that TSPO is colocalised in NeuN+ mature neurones of 

the dorsal horn following Complete Freund’s Adjuvent-induced monoarthritis in mice 

(Hernstadt et al., 2009). Therefore, previous work shows that TSPO is expressed in 

neurones following nerve damage in a similar way to injury induced inflammatory 

upregulation of TSPO in microglia. However, whilst it is clear that some motor neurones and 

SPNs express TSPO, the reason for this, and whether their expression changes in these cell 

types following injury is unknown. 
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4.4.6 The pattern of DBI and TSPO IHC is changed following spinal cord WM 

injury 

Following stab injury to the dorsal column of the spinal cord, DBI expression appeared to 

increase at 3dpi. ECs respond to injury by proliferation, differentiating into astrocytes, and 

migrating toward the lesion, and is possibly the reason for the new pattern of DBI-IR 

following injury to the dorsal columns. In sections more rostral to the injury, DBI-IR appeared 

to be more intense in the dorsal horns than in the same region in uninjured animals. There 

have been no previous studies investigating changes in DBI expression following SCI and 

whilst TSPO expression has been shown to increase following peripheral nerve injury, the 

same cannot be said for DBI (Karchewski et al., 2004). However, others have shown that 

ODN-IR increases in the sciatic nerve distal stump, and is expressed in Schwann cells, 

following transection of the sciatic nerve (Lacor et al., 1999). Results from this study shows 

that DBI may increase its expression following injury to the spinal cord WM and continues to 

be expressed in migrating activated ECs. However, such visual changes need to be 

quantified and work must be carried out to examine this phenomenon in greater detail, 

including lineage tracing the of DBI+ EC progeny in injured spinal cord tissue.  

Although very little is known about what may happen to DBI, or its metabolites, following 

injury, changes in TSPO expression have become a hallmark investigative feature in recent 

research in CNS injury and repair. Following stab injury to the spinal cord WM TSPO-IR 

appeared more intense, particularly at the site of injury. CNS pathologies which show an 

upregulation of TSPO are typically associated with microglial activation, neuroinflammation, 

and reactive gliosis (Papadopoulos and Lecanu, 2009). Increased spinal cord TSPO 

expression has also been seen following compression-induced SCI (Li, X.-m. et al., 2017). 

Moreover, treatment with the specific TSPO ligand ZBD-2 improved motor recovery after SCI 

and reduced mechanical allodynia and thermal hyperalgesia in these injured animals. ZBD-2 

also attenuated GM damage and significantly reduced chronic reactive astrocytosis and 
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microgliosis, indicating that the TSPO ligand improved both functional motor outcomes and 

reactive gliosis and tissue damage after SCI (Li, X.-m. et al., 2017). 

TSPO is thought to be involved in the regulation of reactive gliosis as PK11195 and 

etifoxine, reduce the level of reactive microglia and astroglia in vivo after a 

neurodegenerative insult (Ryu et al., 2005; Veiga et al., 2005; Veiga et al., 2007). 

Furthermore, PK11195 reduces the level of microglial reactivity by a mechanism which is 

independent of neuronal survival, indicating that a reduction in microglial reactivity by 

PK11195 is not simply due to increased apoptosis of microglial populations, but rather by a 

mechanism which regulates TSPOs control over gliosis, microglial proliferation and 

infiltration (Veiga et al., 2007). TSPO ligands also improve functional repair following 

peripheral nerve injury, SCI, and EAE-induced demyelination (Li et al., 2017, Girard 2011, 

Daugherty et al., 2013), suggesting that TSPO may be a future therapeutic target for treating 

CNS injury. The presence of TSPO and DBI in NSC-ECs, their upregulation following injury, 

and positive effects of TSPO ligand treatment in other studies, further strengthen this 

possibility.   

4.5 Conclusion 

In conclusion, DBI and TSPO are expressed in similar cell types of the spinal cord and brain, 

where both are found to be preferentially expressed in glial cells. Work discussed here has 

illustrated that similarly to cells of the 3rd ventricle, DBI/TSPO+ CSFcCs and tanycytes of the 

CC may also use DBI/TSPO and for environment sensing and information relay. DBI has 

been implicated in SVZ and SGZ neurogenic niche function, and remarkably is also 

expressed in the spinal cord NSC niche, suggesting that DBI may also be necessary for 

NSC niche behaviour in the cord. TSPO ligands may be a powerful tool for CNS recovery, 

elucidating a novel pathway for tissue repair. This work must therefore be carried further to 

determine whether DBI and TSPO within the spinal cord may be beneficial in other SC 

pathologies such as SCI, CNS tumours, and demyelinating conditions.
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diazepam binding sites alters the levels of 

proliferation, and differentiation, of new cells 
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5.1 Introduction and rationale  

Previous work has shown that GABA is an important signal in controlling proliferation and 

differentiation within the adult CNS (section 1.8 and 1.9). It also appears that regulation of 

GABAaR by the endogenous CBR site ligand DBI further modulates proliferation and 

differentiation by controlling GABAergic signalling (Alfonso et al., 2012; Dumitru et al., 2017) 

GABA also appears to perform similar functions in the adult spinal cord, these findings are 

discussed at length in chapter 3. The endogenous GABAergic modulator DBI is also 

expressed in the adult spinal cord, with robust expression in the proliferative EC population, 

(Chapter 4). However, it is unknown whether modulation of GABAaR by endogenous CBR 

ligands such as DBI is also important in balancing the negative influence GABA also exerts 

upon proliferation in the intact adult spinal cord.  

Therefore, experiments detailed in this chapter focus upon modulation of GABAaR via ligand 

binding at specific subunits to examine the effects upon postnatal proliferation and 

differentiation. As DBI also binds to the mitochondrial protein TSPO, the effects of 

modulation at TSPO upon postnatal proliferation are also considered.  

5.1.1 Using pharmacology and transgenic mice to probe the contribution of 

GABAaR- and TSPO in the modulation of proliferation   

To investigate this possibility, results presented below will discuss the effects of various 

different CBR and TSPO modulators upon proliferation and differentiation in the adult spinal 

cord. The mechanism of action (MOA) of these can be broadly split into 3 classes; 1. Mixed 

modulators which bind at both GABAaR and TSPO, such as etifoxine (ETX) and midazolam 

(MDZ) 2. Modulation specific to TSPO, such as PK-11195 3. Modulation specific to CBR 

binding, such as flumazenil and Ro15-4513. A summary of the pharmacological agents 

used, their administered dose (mg/kg), the vehicle in which they were dissolved and a brief 

overview of their MOA can be found in section 1.4 table 1.1 
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5.1.2 Mixed modulators of GABAaR and TSPO  

 

5.1.2.1 The GABAaR and TSPO mixed modulators MDZ and ETX bind to and 

positively modulate GABAaR  

MDZ was first developed in 1975 and is still used frequently in clinic today for its muscle 

relaxant, anticonvulsant, hypnotic, and sedative properties. MDZ belongs to the BZ class of 

drugs, binding to the CBR site of GABAaR to potentiate GABAergic signalling (Squires and 

Braestrup, 1977). MDZ results in a leftward shift of the GABA concentration-response curve, 

where saturating MDZ doses result in an increase in the maximal channel open probability 

by 10.2% (Rüsch and Forman, 2005). ETX is a structurally distinct positive GABAergic 

modulator which acts as an effective anxiolytic without the common BZ side effects (Kruse 

and Kuch, 1985; Schlichter et al., 2000; do Rego et al., 2015). BZ effects such as sedation, 

anterograde amnesia, and ataxia, are linked to binding to the α subunit of GABAaR (Tan et 

al., 2011), which forms one half of the CBR site alongside γ2 (Gunther et al., 1995). ETX 

however preferentially modulates β2-3 subunit containing GABAaRs which are less sensitive 

to typical BZ and neurosteroid modulation (Hamon et al., 2003). 

5.1.2.2 The effects of ETX and MDZ upon GABAergic signalling are twofold due to 

neurosteroidogenesis 

ETX and MDZ also bind to the mitochondrial DBI/endozepine receptor TSPO (Hamon et al., 

2003; Schlichter et al., 2000; Verleye et al., 2001). It is therefore likely that ETX may mediate 

its anxiolytic effects via a combination of these two distinct binding mechanisms. Firstly, ETX 

enhances GABAergic neurotransmission by allosteric PAM of GABAaRs at β2-3 subunits 

(Schlichter et al., 2000; Verleye et al., 2002). However, ETX also activates TSPO, whereby it 

upregulates the production of GABAaR modulatory neuroactive steroids, such as AlloP and 

dehydroepiandrosterone (Aouad et al., 2014; Gunn et al., 2015; Verleye, M. et al., 2005; 

Liere et al., 2017).  
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The effects of ETX are not fully reversed by the either the BZ antagonist flumazenil or the 

TSPO antagonist PK11195 alone (Choi, Y.M. and Kim, 2015), however PK1195 suppresses 

the effect of ETX upon GABAaR transmission (do Rego et al., 2015). Therefore, there exists 

a likely scenario in which these two mechanisms are synergistic; where both direct allosteric 

modulation of GABAaR, and indirect modulation of GABAaR by stimulation of 

neurosteroidogenesis at TSPO, modulate GABAergic neurotransmission to a greater degree 

than either mechanism alone (Tokuda, K. et al., 2010). Furthermore, it has been reported 

that the anxiolytic action of ETX is potentiated by allopregnanolone (Verleye et al., 2001; 

Ugale et al., 2007).  

MDZ is also able to influence GABAergic signalling by either binding to the CBR site of 

GABAaR itself and/or indirectly by binding to TSPO to promote the synthesis of GABAaR 

modulatory neurosteroids (Bender and Hertz, 1987; Tokuda, K. et al., 2010; So et al., 2010). 

MDZ enhances the synthesis of 5-α reduced neurosteroids, such as AlloP, in hippocampal 

neurones in ex-vivo brain slices, where the effects of MDZ upon synaptic inhibition require 

both neurosteroidogenesis by TSPO activation and PAM of GABAaR (Tokuda, K. et al., 

2010). Interaction with TSPO is also required for the anticonvulsant, antidepressant, and 

anxiolytic activity of MDZ (Dhir and Rogawski, 2012; Qiu et al., 2015).  

5.1.2.3 Effects of ETX and MDZ upon proliferation 

Although little work has been done to investigate the effects of MDZ upon NSC proliferation, 

studies of highly proliferative cancer cell lines show that MDZ can influence proliferation, as 

MDZ inhibits highly-proliferative tumour cell-lines of varying tissue origin, including CNS-

derived gliobastoma (Chen, Jingkao et al., 2016).  Experiments described here attempt to 

determine whether MDZ produces similar effects upon the postnatal proliferation of 

neurones, astrocytes, and oligodendrocytes in the adult spinal cord. The effects of in vivo 

MDZ treatment upon EC proliferation, the NSC-like cells spinal cord, are also reported here.  
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Much work focuses on the effects of ETX as a reparative agent following injury, therefore 

there is less information concerning how ETX affects intact tissue. It is also currently 

unknown whether the effects of ETX at both GABAaR and/or TSPO can affect postnatal 

proliferation, differentiation, or even neurogenesis. Neurosteroids influence proliferation and 

differentiation of NSCs in vitro (Varga et al., 2009). AlloP influences proliferation and 

differentiation of both human and murine neuronal precursor cells in vitro (Wang, D.D. and 

Kriegstein, 2009). These findings therefore suggest that ETX and MDZ may influence 

proliferation and differentiation through their effects upon neurosteroidogenesis. The PAM of 

GABAaR by ETX and MDZ may also influence postnatal proliferation and differentiation as 

suggested by results discussed earlier in Chapter 3 which show that GABA influences 

postnatal proliferation in the intact adult spinal cord. 

5.1.3 TSPO-specific modulation may affect neuroinflammation and 

proliferation 

In order to determine whether effects of ETX and MDZ upon proliferation in the spinal cord 

were due to their binding at TSPO, the effects of the specific TSPO ligand PK-11195 upon 

proliferation were also examined. PK-11195 is an isoquinoline carboxamide which binds 

selectively to TSPO with nanomolar affinity, and exhibits antagonist properties (Le Fur et al., 

1983). Others however have provided evidence that PK-11195 may also act as a partial 

weak agonist in some systems (Park, S.Y. et al., 2005; Mackowiak et al., 2017). It is 

therefore difficult to predict the effects that PK-11195 will have in a novel system, such as 

proliferation and differentiation in the adult spinal cord, as investigated here. The majority of 

work referencing the use of PK-11195 is directed toward the use of labelled PK-11195 for 

the assessment of CNS inflammation in vivo in both humans and animals (Betlazar et al., 

2018; Chen, M.K. and Guilarte, 2008). TSPO expression has been reported to increase in 

stroke patients (Cerami and Perani, 2015), traumatic brain injury (Donat et al., 2016), in CNS 
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tumours such as glioblastoma (Roncaroli et al., 2016), and in patients with chronic 

neurodegenerative conditions such as MS (Herranz et al., 2016). 

Early autoradiographic studies using tritiated PK-11195 ([3H]-PK11195) in rodents have 

shown that in the healthy CNS, TSPO is primarily expressed in the ependymal walls, choroid 

plexus, and olfactory bulb (Williams et al., 1990; Anholt et al., 1984; Benavides et al., 1983). 

Using this method TSPO expression has been shown to be specific to glial cells, showing 

little to no expression in neurones (Betlazar et al., 2018). However, results described in 

chapter 4 show that TSPO is expressed in a subset of MNs and SPNs within the adult spinal 

cord. 

Following injury to the CNS, for example in models of MS and PNI, there is a widespread 

upregulation in [3H]-PK11195 binding (Daugherty, D. J. et al., 2013; Daugherty, Daniel J. et 

al., 2016; Girard et al., 2008). Higher levels of TSPO density via radiolabelled PK11195 

([11C]-PK11195) PET have also been used as a marker of neuroinflammation in humans 

(Liu, G.J. et al., 2014). The injury-induced increase in TSPO expression may be due to either 

upregulation of TSPO in glial cells, or more likely as a result of the increased proliferation of 

TSPO+ proinflammatory activated microglia and reactive astrocytes (Cosenza-Nashat et al., 

2009; Betlazar et al., 2018). 

Less is known however about the effects of PK-11195 on cell proliferation, although, much 

like MDZ, PK-11195 has also been shown to inhibit cell proliferation in a dose dependent 

manner in some in vitro cancer cell lines (Maaser et al., 2001; Campbell et al., 2006; 

Mendonça-Torres and Roberts, 2013; Bode et al., 2012).  

The TSPO specific ligand TTN increases intracellular [Ca2+] (Gandolfo et al., 2001) and 

stimulates proliferation in cultured rat astrocytes (Gandolfo et al., 2000). This pro-

proliferative effect was determined to be due to TTN binding at TSPO as these effects were 

abolished by PK11195 but not by the CBR specific antagonist flumazenil (Gandolfo et al., 

2000). Furthermore, increased levels of TSPO expression have been found in high-grade 
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gliomas (Roncaroli et al., 2016; Miettinen et al., 1995). TSPO has also been implicated in 

neurosteroidogenesis (Papadopoulos et al., 2018; Wolf et al., 2015), where neurosteroids 

such as AlloP have been shown to strongly modulate GABAaR activity and influence NSC 

differentiation and proliferation (Wolf et al., 2015; Varga et al., 2009). These results suggest 

that TSPO may also influence postnatal proliferation so this was a feasible target for my 

studies.  

5.1.4 Effects of CBR site specific modulation by endogenous and exogenous 

ligands upon proliferation and differentiation in the CNS  

It is evident that BZs bind to CBR and exert their effects through PAM of GABAaR activity. 

However, the existence, function, and necessity of binding of an endogenous positive 

GABAaR-modulatory BZ-like molecule, or endozepine, is still controversial. Furthermore, it is 

also still unknown whether endozepines exhibit basal levels of binding to GABAaR which is 

essential for normal network functioning and regulation of proliferation and differentiation.  

Existence of the elusive endozepinergic molecule, defined as an endogenous ligand for the 

CBR site, was first demonstrated in 1983, when DBI was isolated and characterised based 

on its ability to bind to and displace radio labelled diazepam from GABAaR in the adult rat 

brain (Guidotti et al., 1983) Since its discovery, DBI has been shown to be widely expressed 

in the CNS, where, upon binding to CBR within GABAaRs, it acts as a NAM, reducing 

GABAaR activity and dampening GABAergic signalling (Bormann, 1991; Olsen, 2018; 

Guidotti et al., 1983; Slobodyansky et al., 1989; Alfonso et al., 2012; Dumitru et al., 2017). 

Most importantly DBI has functional effects on GABAergic control over proliferation and 

differentiation in the SVZ neurogenic niches of the lateral ventricle SVZ and SGZ of the 

hippocampus dentate gyrus (Alfonso et al., 2012, Dumitru et al., 2017). In addition, 

GABAergic modulation by DBI is essential for the neurogenic effects of enriched 

environment upon hippocampal neurogenesis (Dumitru et al., 2017). These findings raise an 

important question; could endozepinergic modulation of GABAaR function, which contributes 
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to the balance of proliferation vs. differentiation, also occur in the spinal cord neurogenic 

niche?  

DBI is robustly expressed in the NSC-like ECs and the glial cells of the spinal cord (Chapter 

4), however whether it negatively modulates GABA to ease the proliferative brake in the 

spinal cord in the same way as in the SVZ and SGZ is unknown. DBI can also act as a PAM, 

for example in the thalamic nucleus, where, following secretion from astrocytes, it 

potentiates inhibitory GABAergic signalling and suppresses absence seizures in a mouse 

model of epilepsy (Christian, Catherine A. and Huguenard, John R., 2013; Christian et al., 

2013). These results indicate that DBI does not act as a NAM throughout the entire CNS, 

and indeed areas may exist where it acts as a PAM, likely dependent upon the specific 

subunit composition of the local GABAaRs in that region. The specific action of endogenous 

CBR site ligands, such as DBI, upon GABAergic signalling in the spinal cord is entirely 

speculative. Furthermore, it is also unknown whether inverse agonists of GABAaR, such as 

Ro15-4513, which also bind to the CBR site, would have similar effects to DBI to influence 

the level of proliferation and differentiation of new cells.  

Therefore, the effects of the CBR competitive antagonist flumazenil, the inverse agonist 

Ro15-4513, and reduced CBR binding affinity in mutant G2F77I animals upon postnatal 

proliferation and differentiation within the spinal cord were investigated here. 

5.1.4.1 Selective CBR antagonists influence proliferation 

Flumazenil is an imidazobenzodiazepine derivative which acts as a selective CBR site 

antagonist to competitively inhibit activity of BZ and BZ-like compounds at the CBR site of 

GABAaR (Votey et al., 1991; Kucken et al., 2003). Flumazenil is therefore used in the 

reversal of BZ-induced anaesthesia and as an antidote to BZ overdose (Amrein et al., 1988; 

Chern et al., 1998; Sage, 1988).  

Flumazenil is considered a neutral allosteric modulator at the CBR site with selective 

antagonism at α1 and partial agonism at α2, α3, α5 subunit subtypes (Sivilotti, 2016). 
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Radiolabelled [C11-Flumazenil] has therefore been used to examine the distribution and 

subunit composition of GABAaRs in the brain, much like the use of [C11-PK11195] to 

visualise TSPO (Yankam Njiwa et al., 2013). 

DBI and ODN influence the proliferation and differentiation of NSCs within the SVZ and 

SGZ, acting to dampen the inhibitory GABAergic tone within the niche to delicately balance 

the numbers and fate of NSCs and neural progenitor pools. Concomitant flumazenil 

treatment alongside lentiviral mediated DBI or ODN OE or KD determined that these effects 

were specific to the DBI/ODN binding at the CBR site of GABAaR (Dumitru et al., 2017; 

Alfonso et al., 2012). It would therefore appear that endogenous modulation of GABAaR by 

CBR binding acts as a negative feedback mechanism to maintain proliferative homeostasis 

within the niche.  

Ro15-4513 is structurally similar to flumazenil and therefore also acts as competitive 

antagonist at the CBR site of GABAaR (Syapin et al., 1990). Ro15-4513 is also a weak 

partial inverse agonist of GABAaR (Mereu et al., 1987; Bonetti et al., 1988), which lowers 

seizure threshold to bicuculline and pentylenetetrazole (Nutt and Lister, 1987; Lister and 

Nutt, 1988). Ro15-4513 also exhibits antagonist properties at the ethanol binding site of 

extrasynaptic GABAaRs (Nutt et al., 2007; Bonetti et al., 1988; Suzdak et al., 1986; Glowa et 

al., 1988; Olsen et al., 2007). 

Studies described here attempt to examine the effects of flumazenil and Ro15-4513 upon 

postnatal proliferation and differentiation in the spinal cord, to determine whether the inverse 

agonist or competitive antagonist properties of these drugs are able to influence proliferation 

in a similar way to DBI or ODN. 

5.1.4.2 Mutations of the γ2 subunit of GABAaR can affect proliferation  

Binding of BZs to GABAaR occurs at the CBR site, where the ƴ2 subunit is essential for the 

actions of BZs upon GABAaR (Sigel, E., 2002; Ernst et al., 2003). γ2F77I mice possess a 

phenylalanine (F) to isoleucine point mutation (I) at position 77 in the N-terminal domain of 
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the Gabrg2 gene which alters the affinity and specificity of the drug binding site within the ƴ2 

subunit (Buhr and Sigel, 1997; Cope et al., 2004; Ogris et al., 2004). Whilst cerebella of 

mutant mice show a 15% reduction in ƴ2 subunit expression, γ2F77I mice breed normally 

and behave similarly to control C57BL/6 mice when examined with a range of behavioural 

observational tests (Cope et al., 2004). GABAaRs within these mice however, show altered 

responses various CBR ligands including, but not limited to, zolpidem, zopiclone (Cope et 

al., 2004), diazepam (Ramerstorfer et al., 2010), flunitrazepam (Buhr and Sigel, 1997; 

Wingrove et al., 1997) and flumazenil (Cope et al., 2004). G2F77I mice therefore 

demonstrate the importance of phenylalanine expression for the formation of the CBR 

binding pocket in GABAaR (Cope et al., 2004; Ogris et al., 2004; Ramerstorfer et al., 2010). 

The endogenous proteins DBI and ODN also bind to, and modulate, GABAaR through the 

CBR site (Bormann, 1991; Alfonso et al., 2012). In WT mice, electrophysiological 

experiments demonstrate that hyperpolarising GABA-induced currents within SVZ transit 

amplifying cells are significantly decreased following application of ODN, indicating that DBI 

and ODN inhibit GABAergic signalling in these progenitor cells (Alfonso et al., 2012). 

However, this effect was almost abolished in G277I mutant hippocampal NSCs. In addition, 

whilst DBI OE normally results in an expansion of the Sox2+ progenitor pool in WT mice, by 

NAM of GABAaR, the effects of DBI OE are mitigated in G2F77I mice (Dumitru et al., 2017). 

These experiments illustrate the utility of G2F77I when investigating the contribution of CBR-

site binding in modulating postnatal proliferation and differentiation.  

5.2 Aims 

The aim of the work described in this chapter was to determine whether the 

CBR/DBI/endozepine binding sites of GABAaR are also important in the regulation of 

postnatal proliferation and differentiation in the intact adult spinal cord, as has been 

suggested for other neurogenic niches such as the SGZ and SVZ (Dumitru et al., 2017, 

Alfonso et al., 2013). 
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DBI and its derivatives are also TSPO ligands (Slobodyansky et al., 1989), therefore the 

effects of TSPO specific modulation were also examined to determine whether the effects 

DBI/endozepines may be having on proliferation are also related to TSPO.  

5.3 Methods 

5.3.1 Animals  

To determine the effects of in vivo administration of various CBR- and TSPO- ligands upon 

proliferation and differentiation within the adult spinal cord, adult (6-8 weeks) C57Bl/6 mice 

(N=38) of either sex were used in line with the UK animals (Scientific Procedures) Act 1986 

and ethical standards set out by the University of Leeds Ethical Review Committee. Every 

effort was made to minimise the number of animals used and their suffering. Animals were 

given ad libitum access to food and water and were housed in a 12-hour light dark cycle.  

Collaboration with groups at UC Davis, California and Heidelberg, Germany provided us with 

an opportunity to examine spinal cord proliferation in transgenic mice with global TSPO KO 

and transgenic mice with a point mutation within the G2 subunit of GABAaR which disrupts 

binding affinity at CBR, respectively. These animals were used in order to determine whether 

perturbation of TSPO and GABAergic signalling pathways in these animals results in 

differences in spinal cord proliferation compared to WTs.  

EdU treated spinal cord tissue from adult (~8-12 weeks) G2F77I mice (Buhr and Sigel, 1997) 

(N=5) was a kind gift of I. Dumitru (Prof. H. Monyer’s Lab, DKFZ, Heidelberg, Germany). 

 Adult (4-8 weeks) heterozygous TSPOflox (N=4) mice were generated using Cre-LoxP 

technology and crossed with Cre-expressing mice to generate TSPO global KO mice (Wang, 

H. et al., 2016). Mice with floxed TSPO which was not yet excised were used as controls in 

these experiments (N=4) Tissue from these animals was a kind gift of O. Chechneva (Dr W. 

Deng’s lab, UC Davis, Sacramento, California, USA).   
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GAD67-GFP knock in mice (Tamamaki et al., 2003) (N=3) were also used in experiments 

using ETX, further details about these animals can be found in chapter 3.  

5.3.2 In vivo drug and EdU administration  

Experiments using the thymidine analogue EdU (100ul at 10mM) were carried out as 

previously described (section 2.2.1). In addition to EdU, drug-treated animals were also 

given either ETX (50 mg/kg), MDX (0.3 mg/kg), PK11195 (3 mg/kg), flumazenil (5 mg/kg), 

Ro15-4513 (5 mg/kg). Control animals received an equivalent volume of vehicle IP (table 

1.1). The doses of the drugs used in these experiments were determined based upon 

previous studies in mice.  

 

 

Name Abbreviation Dose (mg/kg) Vehicle MOA 

Etifoxine ETX 50 1% TWEEN-80 in 

sterile saline 

TSPO ligand 

and GABAaR 

PAM (β 

subunits)  

Midazolam MDZ 0.3 0.9% sterile 

saline 

TSPO ligand 

and GABAaR 

(CBR)  

 

PK11195 N/A 3 4% DMSO/0.8% 

TWEEN-80 in 

Saline 

TSPO specific 

antagonist  

Flumazenil N/A 5 0.1% TWEEN-80 

in sterile saline 

Competitive 

inhibitor at 

CBR site 

Ro15-4513 N/A 5  4% TWEEN-

80/3%DMSO in 

sterile saline 

Inverse 

agonist at 

CBR site 

Table 1.1. Details of drugs used and their mechanism of action 
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5.3.3 Tissue preparation, EdU detection, and immunohistochemistry 

Tissue from the thoracolumbar region (T11-L4) was prepared as described previously 

(section 2.2.4) and underwent post-hoc Cu2+ catalysed click-chemistry mediated detection of 

EdU-incorporation to visualise newly proliferated cells (section 2.2.5). 

Following EdU localisation, sections were incubated with primary antibodies to determine the 

identity of any new EdU+ cells. Immunofluorescence was performed with antibodies against 

NeuN, for mature neurones (mouse, 1:1000, Millipore, Watford, UK), Tuj or HucD for 

immature and mature neurones (rabbit, 1:1000, and rabbit 1:1000, for Tuj and HucD, 

respectively, Proteintech, Manchester, UK), Sox2, for undifferentiated stem-progenitor cells, 

(goat, 1:1000, Santa Cruz), PanQKI, for oligodendrocytes, (mouse, 1:100, UC Davis/NIH 

Neuromab Facility, Davis, CA), S100β, for astrocytes, (rabbit, 1:750, Abcam, Cambridge, 

UK), and Iba1, for microglia (rabbit, 1:1000, Wako, Japan). Further details are present in 

table 2.3 and 2.4. 

5.3.4 Cell counts, statistical analysis, image capture and processing 

Cell counts, including colocalisation of EdU and specific cellular markers, were performed as 

described previously (section 2.2.8). The percentage of total EdU+ cells which colocalised 

with the marker in question was determined for each section. Occasionally the raw number 

of EdU+/differentiation marker+ cells were also examined. Cell counts are given as mean 

number of EdU+ cells per 40µm section where n=number of sections counted in each 

condition and N=number of animals included in each experimental group.  

Data were collated in Microsoft Excel and analysed using GraphPad Prism 7 software 

(GraphPad Software, California, USA). Data are presented as means ± SE. Student’s t-tests 

and one-way ANOVA and post-hoc Tukey’s testing for multiple comparisons were carried 

out and were carried out to determine significant differences between vehicle and drug 

treated animals. Data were considered significant when p <0.05 (denoted by *); p <0.05 

(denoted by **), p <0.005 (denoted by ***); or p <0.0001 (denoted by ****).   
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Representative images of colocalised cells were acquired using Carl Zeiss ZEN software 

(Zeiss microscopy, Germany) and edited using CorelDRAW 2017. 

5.4 Results  

5.4.1 ETX and MDZ modulate spinal cord proliferation  

Following treatment with 50 mg/kg ETX, animals showed reduced levels of proliferation 

(figure 5.1A-Ai). In WT C57Bl/6 mice, the total number of EdU+ cells, which included both the 

WM and GM regions was significantly lower in ETX treated animals compared to vehicle 

treated (38.6 ± 1.9 vs. 84.4 ± 4.7, for ETX and vehicle treated animals, respectively, p < 

0.0001, student’s t-test, N=3, n=12). Proliferation of ECs, as assessed by changes in the 

number of EdU+ cells at the CC, was also significantly reduced in ETX treated animals (1.3 ± 

0.2 vs. 2.9 ± 0.4 vs., for ETX and vehicle treated animals, respectively, p < 0.01, student’s t-

test, N=3, n=12). The number of total EdU+ cells was reduced by 54% in ETX treated 

animals while CC-specific proliferation was reduced by 55% compared to vehicle treated 

animals (figure 5.1Ai).   

Experiments were repeated in GAD-GFP transgenic animals which produce significantly less 

GABA in the brain and spinal cord compared to WT counterparts (section 3.3.4). Much like 

WT mice, GAD67-GFP animals treated with ETX possessed significantly fewer total EdU+ 

cells (48 ± 2.3 vs. 68 ± 1.8, p < 0.0001, student’s t-test, N=3 n=10) and EdU+ cells at the CC 

(1.1 ± 0.1 vs. 3.4 ± 0.3, p < 0.0001, student’s t-test, N=3 n=10) compared to vehicle treated 

animals (figure 5.1B-Bi). ETX reduced total proliferation by 29% in GAD67-GFP mice, which 

is smaller than that seen in ETX treated WT mice. However, GAD67-GFP mice had a 

greater reduction in CC proliferation at 67% compared to 55% for WT mice.  

Animals treated with MDZ also had significantly fewer total EdU+ cells in the spinal cord 

compared to vehicle treated animals (42 ± 2.1 cells for MDZ vs. 67.5 ± 3.4 cells for vehicle, p 

< 0.05, student’s t-test, N=3 n=30) (figure 5.1C). Animals treated with MDZ also possessed 
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fewer EdU+ cells within the EC layer of the CC (0.4 ± 0.1 cells at the CC for MDZ vs. 2 ± 0.2 

cells at the CC for vehicle, p < 0.05, student’s t-test, N=3 n=30), compared to vehicle treated 

animals (figure 5.1Ci). The total number of EdU+ cells was 38% smaller in MDZ treated 

animals. MDZ treated animals also possessed 80% fewer EdU+ cells at the CC. 
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5.4.2 Effects of ETX and MDZ treatment upon differentiation of newly 

proliferated EdU+ cells  

In ETX treated animals the proportion of total EdU/PanQKI+ cells was significantly smaller 

than that of vehicle treated animals (49.7 ± 4.8% vs. 64.9 ± 5.2%, p < 0.05, student’s t-test, 

N=3 n=12, figure 5.2B). The raw number of EdU/PanQKI+ cells was also significantly lower 

in ETX treated animals compared to vehicle treated animals, however unlike percentage 

colocalisation, EdU and PanQKI colabelled cells were significantly lower (p < 0.0001, 

student’s t-test, N=3 n=12) in total counts (14.83 ± 2.3 cells vs. 64.9 ± 5.2 cells), WM- (8.8 ± 

1.5 cells vs. 30 ± 2.4 cells), and GM-specific counts (6.2 ± 1.1 cells vs. 30.2 ± 2.1 cells) 

(figure 5.2Bi) Furthermore, the proportion of EdU+ cells which were also colabelled with 

PanQKI was also significantly reduced (p <0.005, student’s t-test, N=3 n=9) in the GM of 

MDZ treated animals (18.0 ± 7.0%) compared to those treated with vehicle (50.5 ± 7.7%). 

However, the proportion of EdU/PanQKI+ cells was significantly greater in the WM of MDZ 

vs. vehicle treated animals (82.0 ± 7.0% vs. 49.5 ± 7.7%, p < 0.01, student’s t-test, N=3 n=9, 

figure 5.2Bii). 

There was no significant difference in the percentage of EdU+ cells which were also labelled 

with GFAP in either region for ETX treated vs. vehicle treated animals (figure 5.3A). 

However, animals treated with ETX had significantly greater percentage of total EdU+ cells 

Figure 5.1 Both ETX and MDZ treatment significantly reduces proliferation in the adult 

murine spinal cord compared to vehicle treatment 

A-Ai: Effect of ETX (50 mg/kg) in WT mice upon the number of proliferative cells in the spinal 

cord, including cell counts of EdU+ cells specifically located at the CC compared to vehicle 

treatment. B-Bi: Effects of ETX in GAG67-GFP mice upon the number of EdU+ cells in the 

WM and GM and CC compared to vehicle treatment. C-Ci: Effects of MDX (0.3 mg/kg) upon 

numbers of EdU+ cells in the spinal cord and spinal cord CC compared to vehicle treatment.  

(* = p < 0.05, ** = p < 0.01, **** = p  < 0.0001, student’s t-test, N= 3 n=30) 
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which were colabelled with NeuN in the WM (4.2 ± 1.2% vs. 0% p < 0.05, student’s t-test, 

N=3 n=9, figure 5.3B) 

 

 

  

Figure 5.2: Oligodendrocyte 

differentiation is significantly reduced 

in animals treated with either ETX or 

MDZ compared to vehicle treated 

animals 

A-Aii: Representative confocal images of 

EdU+ cells (red), PanQKI+ cells (green), 

and colocalisation of EdU+- and PanQKI+-

cells regionthe  PanQKI+ cells (dual) in the ventral WM region of the spinal cord (closed arrows: 

EdU+/PanQKI+ cells, open arrows: EdU+/PanQKI- cells). B-Bi: Graphs showing the total 

percentage of EdU/PanQKI+ cells and the percentages of EdU/PanQKI+ cells in WM and 

GM of ETX and vehicle treated animals (B) and raw numbers of EdU/PanQKI+ cells in 

ETX vs vehicle treated animals (Bi). Bii: Percentages of EdU/PanQKI+ cells in the WM 

and GM of MDZ and vehicle treated animals. Solid bars represent vehicle treated 

animals. Hatched bars are ETX and MDZ treated animals (* = p < 0.05, ** = p < 0.01, 

**** = p  < 0.0001, student’s t-test, N=3 n=9)  



184 

 

 

5.4.3 Perturbation of TSPO function significantly alters proliferation  

Animals treated with PK11195 (3 mg/kg) had significantly fewer EdU+ cells in both the WM 

and GM (60.9 ± 2.9 vs. 86.8 ± 3.8, p < 0.0001, student’s t-test N=3, n=10) and at the CC (0.7 

± 0.1 vs. 4.2 ± 0.3, p < 0.0001, student’s t-test N=3, n=10), compared to vehicle (4% DMSO/ 

0.8% TWEEN-80 in sterile saline) treated littermates (figure 1.4A-Ai). The total number of 

EdU+ cells in PK1195 treated mice was 30% lower compared to vehicle (figure 5.4A) while 

proliferation at CC was 83% lower in PK11195 treated animals compared to vehicle (figure 

5.4Ai). 

In contrast however, mice with global KO of TSPO exhibited significantly higher numbers of 

EdU+ cells, compared to WT animals (54.6 ± 2.4 vs. 47.4 ± 2, p < 0.05, student’s t-test, N=4 

n=18, figure 5.4B). This difference was specific to the WM region (35.5 ± 1.5 vs. 29.4 ± 1.4 

EdU+ cells, p < 0.001, N=4, n=18, figure 5.4B), as the numbers of EdU+ cells in the GM of 

TSPO KO mice were not significantly different from WT. There were also no differences in 

Figure 5.3 Animals treated with ETX exhibit unaltered glial differentiation but 

significantly more EdU/NeuN+ cells compared to vehicle treated animals 

A: Pooled cell counts showing the percentage of EdU+ cells which are also GFAP+ in the WM 

and GM in ETX and vehicle treated animals. B: Graph showing the average percentages of 

EdU+ cells which are also NeuN+ in the WM and GM of ETX and vehicle treated animals. 

Vehicle treated animals are represented by solid bars and ETX treated animals are 

represented by hatched bars. (* = p <0.05, student’s t-test, N=3 n=9)  
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the numbers of EdU+ at the CC in TSPO KO animals compared to WTs (1.6 ± 0.2 vs. 1.9 ± 

0.2, n.s, p > 0.05, student’s t-test, N=4 n=18, figure 5.4Bi   

 

 

 

Figure 5.4 Effects of TSPO modulation on proliferation in the postnatal spinal cord 

A-Ai: Effects of the TSPO specific ligand PK11195 (hatched bars) upon the number of EdU+ 

proliferative cells in the WM and GM combined and the CC compared to vehicle treated 

animals (solid bars). B-Bi: Numbers of EdU+ cells in the WM, GM, and CC of animals with 

global TSPO KO vs. WT animals (n.s = p > 0.05, * = p < 0.05, ** = p < 0.01, **** p < 0.0001, 

student’s t-test, N=3, n=9 and N=4, n=18 for PK11195 vs. vehicle and TSPO KO vs. WT, 

respectively) 



186 

 

5.4.4 Global TSPO KO alters differentiation in the spinal cord 

There were no NeuN/EdU+ cells present in any of the sections examined from either TSPO 

KO or WT animals and therefore but these data are not further examined. It was found that 

for every other marker tested there was at least one example of a mature cell which 

colocalised with EdU (figure 5.5A-Ai) 

The percentage colocalisation of PanQKI/EdU+ and Sox2/EdU+ cells was significantly 

greater than the colocalisation of any other markers studied, independent of region studied 

or experimental condition (figure 5.5A). There were no differences between the percentage 

colocalisation of EdU+ cells with either Sox2, HucD, Tuj, or S100β in animals with TSPO KO 

compared to WT mice (figure 5.5).   

There was however a significantly smaller percentage of EdU+ cells which colocalised with 

PanQKI in TSPO KO animals compared to WT mice (45.7 ± 2.6% vs. 56.1 ± 4.1%, p < 0.05, 

student’s t-test, N=4 n=12, figure 5.5). This represents a 19% reduction in EdU+ cells which 

are PanQKI+ compared to vehicle. These results illustrate that whilst overall differentiation of 

newly proliferated astrocytes and mature or immature neurones is not affected by TSPO KO, 

the number of proliferating PanQKI+ OLCs in the WM is reduced following TSPO KO despite 

an overall increase in EdU+ cells. 

EdU/Sox2+ and EdU/S100β+ were found scattered throughout the WM and GM. However, 

newly proliferated EdU+ cells at the CC exclusively colocalised with Sox2 (figure 5.6A-Aii) 

indicating that NSC-like ECs were also proliferating in the intact cord. Moreover, whilst there 

was no significant difference in the numbers of proliferating cells at the CC in TSPO KO mice 

compared to WT mice, in experiments detailed throughout this chapter it is highly likely that 

these pharmacologically induced changes in proliferation at the CC are due to direct effects 

upon EC proliferation as EdU+ cells frequently colocalise with both Sox2 (figure 5.6A-Aii). 

For example, in this case the percentage of EdU+ cells which were also Sox2+ accounted for 
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57.6 ± 11.6 % and. 63 ± 11% of total EdU+ cells at the CC in TSPO KO and WT mice, 

respectively (figure 5.5A). 

 

 

 

 

 

Figure 5.5 TSPO KO reduces the number of new PanQKI+ cells in the spinal cord WM 

A-Ai: Percentages of total EdU+ cells which colocalise with either PanQKI, Sox2, HucD, 

Tuj, or S100β in WT (solid bars) and TSPO KO (hatched bars). Values for PanQKI and 

Sox2 are shown on a larger y-axis due to higher percentage values. (* p <0.05, one-way 

ANOVA)   

Figure 5.6 EdU+ cells at the central canal are Sox2+ ECs 

A-Aii: Representative confocal images of EdU+ cells (red) and Sox2+ cells (green) located 

at the spinal cord CC. EdU/Sox2+ cells are also present (dual). Closed arrows mark 

colocalised cells. Open arrows mark non-colocalised cells. 
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5.4.5 Modulation of the GABAaR CBR site affects numbers of EdU+ cells  

Three experimental conditions were used to assess the effects of manipulation of the CBR 

site, and therefore GABAaR function, upon baseline proliferation in the intact adult spinal 

cord 1. Treatment with the CBR site competitive antagonist flumazenil vs vehicle treatment, 

2. Treatment with the CBR site inverse agonist Ro15-4513 vs. vehicle treatment, or 3. 

Transgenic mutagenesis to reduce ligand binding affinity at CBR in G2F77I mice vs. WT 

littermates  

Animals treated with flumazenil (5 mg/kg), a CBR specific antagonist, exhibited a significant 

increase in the total number of EdU+ cells within the spinal cord compared to vehicle (0.1% 

TWEEN-80/sterile saline) treated animals (132.1 ± 4.4 vs. 112 ± 2.1, for flumazenil and 

vehicle treated animals, respectively, p <0.001, student’s t-test, N=3 n=15, figure 5.7A). 

Flumazenil treated mice exhibited an 18% increase in proliferating EdU+ cells. These effects 

were specific to proliferating cells within the WM (77.3 ± 3.6 vs. 63 ± 1.7, for flumazenil and 

vehicle treated animals, respectively, p < 0.001, student’s t-test, N= 3 n=15, figure 5.7A) as 

increases in EdU+ cells within the GM did not reach statistical significance. 

Ro15-4513 is a weak partial inverse agonist at CBR and was used to investigate and 

compare the effects of a drug with a similar MOA to flumazenil.  
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Following treatment with Ro15-4513 (5 mg/kg) there were significantly more total EdU+ cells 

in the spinal cord (104.2 ± 3.8 vs. 85.6 ± 2.9 cells for Ro15-4513 and vehicle treated mice, 

respectively, p < 0.001, student’s t-test, N=3 n=18, figure 5.7B), indicating an increase in 

proliferation in Ro15-4513 treated animals compared to vehicle. These results were similar 

to those seen in flumazenil treated animals, however there were significantly more EdU+ 

cells in the GM following Ro15-4513 treatment compared to vehicle (41.8 ± 1.8 vs. 30.7 ± 

1.4 cells respectively, p < 0.0001, student’s t-test, N=3 n=18). Ro15-4513 induced a 22% 

increase in total EdU+ cells and a 36% increase in the GM specifically (figure 5.7B). 

transgenic G2F77I in the WM and GM compared to WT littermates. Hatched bars: treated 

or transgenic animals Solid bars: vehicle or WT animals. (*** = p < 0.001, ****, p< 0.0001, 

student’s t-test)  

Figure 5.7 Modulation of the CBR site 

of GABAaR results in higher numbers 

of EdU+ cells in the spinal cord 

compared to control animals  

A-B: Numbers of EdU+ cells in the spinal 

cord WM and GM in animals treated with the 

GABAaR CBR-site ligands flumazenil and 

Ro15-4513 compared to vehicle treated 

animals. C: Numbers of EdU+ cells in 

transgenic 
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Similarly, animals with the G2F77I point mutation exhibited significantly greater average 

numbers of total EdU+ cells per section compared to control animals (65.9 ± 1.4 cells vs. 

45.1 ± 1.1 cells in G2F77I mice (N=5 n=60) and WT mice (N=4 n=60), respectively, p < 

0.0001, student’s t-test, figure 5.7C). G2F77I mutant mice also had significantly (p < 0.0001) 

higher numbers of EdU+ cells in both the WM and the GM (37.5 ± 0.9, n=60, 26.6 ± 1, n=60, 

for WM and GM respectively) compared to WT controls (29.2 ± 1.1, n=60, 15.3 ± 0.8, n=60 

for WM and GM, respectively, figure 5.7C). G2F77I animals had 46% more total EdU+ cells, 

WM 28% more EdU+ cells in the WM and 42% more EdU+ cells in the GM compared to WT 

animals. 

Thus, both pharmacological and transgenic manipulation of binding to the CBR site within 

GABAaR increases proliferation within the intact adult spinal cord. 

5.4.6 Effects of CBR modulation upon EC proliferation 

Flumazenil treatment also resulted in significantly greater levels of proliferation at the CC 

compared to vehicle (5.7 ± 0.4 vs. 2.5 ± 0.2 EdU+ cells, for flumazenil and vehicle treated 

animals, respectively, p < 0.0001, student’s t-test, N=3 n=15), a change of 128% (figure 

5.8A-Ai). 

Animals treated with Ro15-4513 also had significantly more EdU+ cells at the CC (3.1 ± 0.2 

cells vs. 1.7 ± 0.2 cells, p <0.0001, student’s t-test, N=3 n=18). Treatment with Ro15-4513 

therefore resulted in 82% more proliferative cells at the CC compared to vehicle treated 

animals (figure 5.8B-Bi).  

Proliferation at the CC was also significantly greater in G2F77I mice than in WT control 

animals (1.3 ± 0.2 EdU+ cells at the CC in G2F77I mice (N=5 n=60) vs. 0.63 ± 0.1 EdU+ cells 
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at the CC in WT animals (N=4 n=60) student’s t-test, p < 0.0001) (figure 5.8C-Ci). The 

number of EdU+ cells at the CC was 106% higher in G2F77I mice.  

Figure 5.8 Alteration in CBR function results in greater levels of proliferation at the CC 

A, B: Representative confocal images of the CC region illustrating the presence of EdU+ cells 

at the CC in animals treated with either flumazenil or Ro-154513  compared to vehicle treated 

animals. Ai, Bi: Pooled data showing the numbers of EdU+ cells at the CC of flumazenil and 

Ro15-4513 treated animals vs. vehicle treatment. C: Representative confocal images of EdU+ 

cels at the CC of WT and G2F77I animals Ci: Cell counts of EdU+ cells at the CC of WT and 

G2F77I animals. (*** = p < 0.001, **** = p < 0.0001, student’s t-test) 
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5.4.7 Oligodendrogenesis is altered following CBR modulation  

In both control and treated animals EdU/PanQKI+ cells were frequently observed in both the 

WM and GM (figure 5.9A-Aii, closed arrows) with between 31-36.7% of newly proliferated 

cells differentiating into PanQKI+ oligodendrocytes. 

Although flumazenil and Ro15-4513 treated animals showed a slight trend toward a 

decrease in the percentage of EdU+ cells which were also PanQKI+ compared to vehicle 

treated animals, there were no significant differences in the percentage of EdU/PanQKI+ 

cells in flumazenil or Ro15-4513 treated animals compared to vehicle (figure 5.9B). 

However, when looking at raw numbers of EdU/marker+ cells, rather than the percentage of 

entire EdU+ cell population which were also PanQKI+, there were some significant 

differences between vehicle and Ro15-4513 (figure 5.9Bi). Ro15-4513 treated animals had 

significantly more total EdU/PanQKI+ cells compared to vehicle treated animals (17.5 ± 2.4 

cells vs. 11.2 ± 1.7 cells, in Ro15-4513 treated animals and vehicle treated animals, 

respectively, p <0.05, student’s t-test, N=3 n=9, figure 5.9Bi).   

However, whilst PanQKI+ cells also represented the greatest proportion of newly proliferated 

EdU+ cells in the cord of G2F77I mice these animals had a significantly smaller proportion of 

total EdU/PanQKI+ cells than WT mice (25.5 ± 2.2% vs. 33.7 ±1.7%, p < 0.05, student’s t-

test, N=5 n=15, figure 5.9B). There was also a significantly smaller percentage of 

EdU+/PanQKI+ cells in the GM of G2F77I mice compared to that of WT littermates (19.1 ± 

1.8% vs. 29.9 ± 4.1%, p <0.05, student’s t-test, N=5 n=15) (figure 5.9B). These results 

indicate that whilst G2F77I exhibit significantly greater levels of proliferation in the postnatal 

spinal cord, the differentiation of these cells into PanQKI+ oligodendrocytes is decreased 

compared to their level of differentiation in WT animals. 
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5.4.8 CBR modulation alters the level of glial proliferation compared to 

control treated animals 

Astrocytes represent the third largest population of proliferating cells in the intact adult spinal 

cord following PanQKI+ oligodendrocytes, and Sox2+ NSCs. The glial markers GFAP and 

S100β were used here to identify EdU+ cells belonging to the astrocyte lineage. The ‘classic’ 

Figure 5.9 Effects of alteration of CBR function on oligodendrocyte differentiation  

A-Aii: Representative confocal images illustrating the presence of EdU/PanQKI+ cells in 

the dorsal WM (dual) Colocalised cells are labelled with closed arrows. Open arrows 

denote non-colocalised cells. B: Pooled data showing the percentages of EdU+ cells which 

are also PanQKI+ in flumazenil and Ro15-4513 treated animals vs. vehicle treatment. The 

percentages of EdU/PanQKI+ cells in G2F77I and WT animals are also shown. Bi: Raw 

numbers of EdU/PanQKI+ cells in Ro15-4513 treated animals vs. vehicle treatment. Solid 

bars represent control animals. Hatched bars represent data from flumazenil-, Ro15-4513-

treated, and G2F77I animals. (* = p < 0.05, student’s t-test) 

* 
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glial cell marker GFAP was utilised in early experiments, however due to the nature of GFAP 

labelling it was difficult to confidently identify EdU/GFAP+ cells due to the lack of staining of 

the cell soma. Therefore, in later experiments S100β, a cytoplasmic/nuclear specific stain 

was used. 

In both vehicle and flumazenil treated animals there were instances of EdU+ cells which 

were also GFAP+ in both the WM and GM, indicating the presence of astroglial differentiation 

in the mature spinal cord of both flumazenil and vehicle treated animals (figure 5.10A-Aii). 

However, there were no significant differences in the percentages of EdU+ cells which were 

also GFAP+ in flumazenil treated animals compared to vehicle treatment (figure 5.10D), 

despite the changes in the overall number of EdU+ cells compared to vehicle. 

Animals treated with Ro15-4513 however showed a reduction in the percentage of total 

EdU/S100β+ cells compared to vehicle treated animals (2.4 ± 0.4% vs. 5 ± 1%, p < 0.01, 

student’s t-test, N=3 n=9, figure 5.10B-Bii,D). In G2F77I mice the proportion of EdU+ cells 

which were colabelled with S100β was also decreased at both the total cord level, looking at 

WM and GM together (1.5 ± 0.4% vs. 3.9 ± 1.1% for G2F77I and WT animals, respectively p 

< 0.05, student’s t-test, N=4 n=12) and also more specifically within the GM alone (1.6 ± 

0.7% vs. 6.8 ± 2.4%, p < 0.05, student’s t-test, N=4 n=12, figure 5.10D). The differentiation 

of newly proliferated EdU+ cells into S100β+ astrocytes was therefore decreased in both 

Ro15-4513 treated animals and G2F77I mutant mice compared to control animals.   
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Iba1 was used to investigate microglial proliferation in the intact cord in an effort to 

determine whether changes in proliferation may be related to astrogliosis and microglial 

reactivity. Labelling with the microglial specific marker Iba1 revealed WM and GM which 

were sparsely populated with activated Iba1+ microglia (figure 5.10C-Ci).  which is common 

in healthy intact CNS tissue. The total percentage of EdU+ cells which were also Iba1+ was 

not significantly different from the percentage of EdU+ cells which colocalised with either 

GFAP or S100β, indicating that reactive microglial proliferation was not increased in any of 

the groups examined when compared to proliferation of other ‘healthy’ glial cell types. 

Furthermore, although animals exhibited increased proliferation compared to controls, the 

percentages of EdU+ cells which were Iba+ were not significantly altered in either flumazenil, 

Ro15-4513 treated animals, or G2F77I mutant mice, compared to control (figure 5.10D).  

5.4.9 Ro15-4513 treatment significantly increases proliferation of Sox2+ NSCs 

in the spinal cord compared to vehicle 

In these experiments there was frequent colocalisation of EdU+ cells with S100B, Iba1, and 

PanQKI, indicating progression and differentiation of new EdU+ cells into microglia, 

oligodendrocyte lineage cells, and astroglial. However, Sox2 /EdU+ cells were the second 

largest population when compared to colocalisation of other markers with EdU (figure 5.12), 

indicating that a large proportion of the EdU+ cells in both control and experimental groups 

Figure 5.10 Ro15-4513 and G2F77I animals exhibit decreased proliferation of S100b+ 

astrocytes compared to control animals 

A-Bii: Representative confocal images illustrating the presence of EdU/GFAP+ cells and 

EdU/S100β in the intact postnatal spinal cord C-Cii: Representative confocal images 

illustrating the presence of Iba1+ microglia in the WM. Non-colocalised cells are labelled with 

open arrows. Closed arrows denote colocalised cells D: Average percentages of EdU+ cells 

which were also either GFAP+, S100 β+, or Iba1+ in both the WM and GM in each experimental 

condition (solid bars: vehicle treated/WT animals and hatched bars: experimental group, * p < 

0.05, ** p <0.01, one way ANOVA). 
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remained as undifferentiated NSCs which still expressed the stem cell marker Sox2. 

Sox2/EdU+ cells were located in both the WM and GM (figure 5.11A-Aii and B-Bii). 

Furthermore, EdU+ cells surrounding the CC were consistently immunoreactive for the 

transcription factor Sox2, thereby confirming the stem cell identity of these newly proliferated 

cells within the ECL of the CC region (figure 5.11B-Bii).  

Flumazenil treated animals did not show any significant differences in the percentage of 

EdU+ cells which were also Sox2+ in either the WM, GM, or CC, compared to vehicle treated 

animals (figure 5.11C). The total percentage of EdU+ new cells which were still residing in an 

undifferentiated state of stem cell readiness was also similar in both WT and G2F77I 

animals, 19% for WTs, and 20% for G277I animals, indicating that the proportion of newly 

proliferated Sox2+ NSCs was not significantly different in G2F77I compared to WT 

littermates (figure 5.11C). Ro15-4513 treated animals however exhibited an increase in the 

percentage of EdU/Sox2+ cells in the GM compared to vehicle treated animals (figure 

5.11C). Animals treated with Ro15-4513 also had significantly more EdU/Sox2+ cells at the 

CC compared to vehicle treated animals (2.2 ± 0.4 cells vs. 1.1 ± 0.3 cells, p <0.05, 

student’s t-test, N=3 n=9, figure 5.11Ci).  
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Figure 5.11 Proliferation of Sox2+ NSCs is greater in Ro15-4513 animals  vs. vehicle 

treated animals, this effect is specific to the GM and CC 

A-Aii: Representative confocal images illustrating the presence of EdU+ cells and Sox2+ cells 

the WM. B-Bii: Representative confocal images of EdU+ and Sox2+ cells surrounding the CC. 

Colocalisation of EdU and Sox2 in the WM and CC are also shown (dual, closed arrows. Non-

colocalised cells: open arrows) C: Pooled cell count data of EdU/Sox2+ cells from the WM and 

GM of control (solid bars) vs. experimental animals (hatched bars) Ci: Pooled data for 

percentages of EdU+ cells that are also Sox2+ in the CC of  vehicle and Ro15-4513 treated 

animals. (* p <0.05, student’s t-test, N=3 n=9)    
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5.4.10 CBR modulation had mixed effects on neuronal cell differentiation 

In all groups examined, evidence of neuronal differentiation of newly proliferated EdU+ cells 

was very rare, that is very few EdU+ cells were colocalised with the mature marker NeuN 

(figure 5.12). In both flumazenil vs vehicle treated animals and G2F77I vs WT animals, 

evidence of NeuN immunoreactivity within EdU+ cells was absent in both the WM and GM 

regions, indicating a lack of neural differentiation in these experiments (data not shown).  

However, in the GM of both vehicle and Ro15-4513 treated mice there were rare 

occurrences of EdU/NeuN+ cells within the GM (~0.2% in both vehicle and Ro15-4513 

treated mice). Upon inclusion of immature neurones in staining using Tuj, the average 

percentage of EdU+ cells which colocalised with neuronal markers was increased to 0.9% in 

both vehicle and Ro15-4513 mice, indicating the importance of labelling for immature 

neuronal cells.  

Ro15-4513 treated animals also showed a significant increase in the percentage of EdU/Tuj+ 

compared to vehicle treatment suggesting a slight increase in neuronal proliferation, likely 

immature neurones as the same changes were not seen with the mature neuronal marker 

NeuN. Ro15-4513 treatment also resulted in significantly greater total numbers of EdU/Tuj+ 

cells (1.3 ± 0.4 cells vs. 0.3 ± 0.12 in Ro15-4513 treated animals and vehicle treated 

animals, respectively, p < 0.05, N=3 n=9, figure 5.12A) and EdU/Tuj+ cells specific to GM, 

compared to vehicle treated animals (1.3 ± 0.4 vs. 0.2 ± 0.2 cells, p < 0.05, N=3 n=9, figure 

5.12A). 
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5.5 Discussion  

5.5.1 Mixed modulation at TSPO and GABAaR reduces the level of postnatal 

proliferation in the spinal cord  

Results described here provide evidence that proliferation within the adult spinal cord can be 

modulated by pharmacological agents which also bind at the endozepine-specific binding 

sites at GABAaR and TSPO. Much like DBI, MDZ and ETX are also able to bind and 

Figure 5.12 Ro1504513 treated animals possess a significantly greater percentage 

of EdU+ cells which coexpress the imature neuronal cell type marker TuJ1 compared 

to vehicle treated animals 

A: Pooled data illustrating percentages of EdU/NeuN+ and EdU/Tuj+ cells in the WM and 

GM of both vehicle (solid bars) and Ro15-4513 treated (hatched bars) animals. B-Bii: 

Representative confocal images illustrating that EdU+ cells rarely colocalise with the 

mature neuronal marker NeuN (open arrows) (* = p < 0.05, student’s t-test, N=3 n=9) 
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modulate both GABAaRs and TSPO. Therefore, understanding the effects that these drugs 

have upon proliferation and differentiation within the adult spinal cord may provide insights 

into how these endogenous ligands may influence the postnatal proliferation within the intact 

spinal cord.   

Following treatment with either MDZ or ETX, animals showed a significant reduction in 

proliferation within both the WM and GM compared to vehicle treated animals. Proliferation 

of cells within the NSC-containing EC layer of the CC was also curbed in animals treated 

with either MDZ or ETX compared to vehicle. These findings are the first to show that 

following binding at GABAaR and TSPO, MDZ and ETX negatively affect proliferation within 

the intact adult spinal cord. Furthermore, MDZ and ETX also act to significantly reduce 

proliferation within the already relatively dormant NSC-containing EC layer of the CC.  

Results detailed here support the hypothesis that GABAaR and TSPO play a regulatory role 

in spinal cord proliferation. It is possible that both GABAaR and TSPO are influenced by 

endogenous modulators such as DBI, and upon binding to these same sites by MDZ and 

ETX, the regulation is lost, leading to a change in proliferation. In other neurogenic NSC-

containing regions such as the SVZ and SGZ, GABAergic signalling negatively affects the 

level of cell turnover, restricting proliferation of NSCs, the findings from chapter 3 suggest 

that this may also be the case in the adult spinal cord. The negative effect of ETX and MDZ 

upon proliferation complements the results described in chapter 3 and strengthens the 

notion that much like other proliferative niches of the CNS, GABA is also an important 

regulatory signal of proliferation in the adult spinal cord.  

5.5.1.1 ETX and MDZ may help reduce aberrant neoplastic proliferation 

Although few have investigated the effects of MDZ upon NSC proliferation, many studies 

have investigated the effects of MDZ upon proliferation of tumour cells as a hopeful anti-

proliferative agent for cancer therapy (Jiao et al., 2017). These reports show that MDZ 

reduces proliferation in a squamous cell carcinoma cell line (Dou et al., 2014), a malignant 
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glioblastoma line (Chen, Jingkao et al., 2016), and 2 different murine myeloid leukaemia cell 

lines (Mak et al., 1997; Jiao et al., 2017). Such findings highlight the importance of 

considering the use of endogenous regulators of proliferation such as GABA for reducing 

proliferation in situations of aberrant proliferation such as cancer. For example, TSPO, DBI 

and CBR sites have all been shown to be upregulated in human glioma and astrocytomas, 

where expression levels are linked to tumour malignancy and poor prognosis (Miettinen et 

al., 1995; Alho et al., 1995). It is possible that the high expression of DBI, TSPO, and CBR 

may play a role in the neoplastic growth of glial cells via GABAergic signalling, and that 

modulation of such pathways using drugs such as MDZ and ETX may suppress tumour 

proliferation in these cases. 

5.5.1.2 The effect of MDZ upon proliferation negatively affects neonatal brain 

development 

Others have shown that exposure to MDZ in developing brains reduces NSC proliferation in 

vivo, resulting in neurodegenerative (Duerden et al., 2016) and neuroapoptotic effects 

(Stevens et al., 2011). Early MDZ exposure and its effects upon proliferation and 

neurogenesis lead to future neurofunctional deficits (Xu, J. et al., 2019; Giri et al., 2018; 

Kang et al., 2017). These effects are particularly pronounced in preterm infants exposed to 

MDZ during procedures involved in neonatal intensive care. For example, preterm MDZ 

exposure is associated with macro- and microstructural alterations in hippocampal 

development, hippocampal dysmaturation, and poorer cognitive scores in later life (Duerden 

et al., 2016).  

Furthermore, neonatal MDZ exposure in rats leads to decreased proliferation in the SVZ and 

SGZ and progressively poorer performances in the Morris water maze, in adulthood, 

suggesting impaired learning and memory/cognitive functions. The deleterious effects of 

neonatal MDZ exposure upon NSC proliferation and cognition in adulthood were ameliorated 

by the, previously reported neuroprotective agent, minocycline (Giri et al., 2018). These 
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effects are therefore likely a result of the detrimental effect of MDZ on NSC proliferation, 

leading to stunted hippocampal neurogenesis and development (Duerden et al., 2016). It 

would also appear that MDZ is having similar effects in the adult spinal cord.  

GABA acts as a crucial signalling molecule to influence both the proliferation and 

differentiation of neural- and embryonic stem cells (Nguyen et al., 2003; Varju et al., 2001; 

Bolteus and Bordey, 2004), therefore it is unsurprising that MDZ, which mediates its effects 

through GABAergic modulation, can have profound effects on the normal proliferation and 

differentiation of neural cell types during development. Results described here are the first to 

show that, much like in the brain, MDZ also negatively impacts proliferation within the adult 

spinal cord, further illustrating the importance of GABA as a regulator of postnatal 

proliferation in the CNS.  

5.5.1.3 ETX and MDZ may be affecting NSC proliferation by Ca2+ mediated 

secondary signalling cascades  

Zhao et al., (2012) examine the effects of MDZ on NSC proliferation, using cultured 

hippocampal NSCs. Similar to results described here MDZ treatment significantly reduced 

proliferation of hippocampal NSCs in vitro. MDZ also decreased the proportion of NSCs in 

the S-phase of the cell cycle and evoked a rapid increase in the intracellular calcium 

concentration within NSCs. Pre-treatment with the GABAaR antagonist bicuculline or the 

NKCC2 cotransporter furosemide partially rescued the MDZ-induced reduction in NSC 

proliferation and inhibited the increase in intracellular Ca2+. These findings suggest that the 

effects of MDZ upon proliferation within cultured hippocampal slices were mediated by the 

activation of GABAaR, which is likely communicated to intrinsic secondary signalling 

cascades by the rise in intracellular Ca2+ (Zhao, S. et al., 2012). Intracellular Ca2+ signalling 

is essential for cell cycle progression and regulation of proliferation (Roderick and Cook, 

2008). TSPO-specific ligands such as TTN have been shown to mediate their effects upon 

proliferation through their effects on Ca2+ signalling (Gandolfo et al., 2001).  It is therefore 
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possible that MDZ also reduces proliferation in the spinal cord as a result of changes in 

intracellular Ca2+.  

MDZ has also been shown to block voltage-dependent Ca2+ channels in neurones, which is 

related to the caspase-8-independent proapoptotic pathway (Cheung So et al., 2013). This 

mechanism may also explain the beneficial effect of MDZ in tumour proliferation, as tumors 

are often found to over express Ca2+ channels (Panner and Wurster, 2006). ETX has been 

shown to decrease the force of muscle contraction by inhibiting voltage dependent Ca2+ 

channels (Zagorchev et al., 2018), and the beneficial effects of ETX in the amelioration of 

nerve damage and axonal recovery in animal models of both MS and traumatic brain injury 

have been hypothesised to be in part related to changes in Ca2+ and its effect on secondary 

inflammatory cascades (Zagorchev et al., 2018; Sama and Norris, 2013). Therefore, much 

like MDZ, ETX may also influence proliferation via changes in intracellular calcium signalling 

cascades. However, whether this is also the case within the spinal cord is currently unknown 

5.5.1.4 ETX and MDZ augment neurosteroidogenesis which may further influence 

proliferation  

ETX and MDZ also have binding affinity at TSPO, where they have been shown to increase 

levels of the neuroactive steroids such as AlloP (Costa, B. et al., 2017; Liere et al., 2017; 

Verleye, Marc et al., 2005; Qiu et al., 2015). AlloP is an allosteric GABAergic modulator 

(Rupprecht and Holsboer, 1999; Lambert et al., 2009). The selective TSPO ligands PK11195 

and 4’-cholorodiazepam mimic the neurotrophic effect of etifoxine, whereas the selective 

GABAA receptor ligands muscimol and bicuculline are ineffective at stimulating axonal repair 

and reducing the inflammatory environment (Girard et al., 2008). These results therefore 

suggest that the neurotrophic and neuroprotective effects of ETX could be mediated by 

TSPO and the concomitant stimulation of neurosteroidogenesis.  

The unique duality of the mechanism of actions of MDZ and ETX therefore makes their 

effects upon proliferation and differentiation difficult to predict, especially as findings showed 
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that ETX had similar effects in GAD67-GFP animals with perturbed GABA levels. Therefore, 

whether the effects described here are the result of MDZ and ETX acting alone at GABAR, 

or a consequence of enhancement of the production GABAergic modulatory neurosteroids, 

such as AlloP, by binding to TSPO, or a synergistic effect of both, as seen in hippocampal 

long-term potentiation (Tokuda, K. et al., 2010), is as yet unknown. Further experiments 

using specific CBR or TSPO antagonists such as flumazenil or PK11195, respectively, or 

through attenuation of neurosteroidogenesis, by finasteride-induced inhibition of 5α-

reductase, alongside MDZ and ETX treatment are therefore required to elucidate such 

mechanisms further.  

Pharmacological treatment with the neurosteroid AlloP however has been found to enhance 

NSC proliferation and differentiation (Varga et al., 2009; Wang, Mingde, 2011; Wang, J.M. et 

al., 2010), promote neurogenesis, and positively influence learning and memory in trace eye-

blink conditioning in mice (Wang, J.M. et al., 2010). It would therefore seem that the effect of 

neurosteroids upon GABAergic modulation of NSC proliferation and differentiation, as well 

as their increased synthesis by drugs such as MDZ and ETX, are not as simple as 

previously imagined. It is also currently unclear how the reported effects of AlloP upon NSC 

proliferation and differentiation would take place alongside the inhibition of proliferation by 

increased GABAergic signalling as previously reported. 
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5.5.1.5 Concomitant TSPO and GABAaR modulation decreases the level of 

oligogenesis in the spinal cord whilst increasing neurogenesis 

In addition to the effects GABA has upon proliferation GABA also promotes differentiation of 

new born cells, processes which are also likely regulated by endozepinergic modulation of 

GABAergic signalling. Song et al., (2012) propose that a reduction in GABAergic signalling 

to NSCs increases symmetric and asymmetric division, thus augmenting the NSC pool and 

astrocyte production, respectively. Furthermore, Dumitru et al., (2017) report that a reduction 

in GABAergic signalling by OE of DBI in the SVZ leads to expansion of the NSC pool and a 

depletion of new born neurones, whereas DBI KD causes a reduction in the early progenitor 

pool with a concomitant shift toward neuronal differentiation. These findings illustrate the role 

GABA plays in the differentiation of postmitotic NSCs, where DBI acts to regulate this 

pathway, acting as a potent regulator of NSC self-renewal to delicately balance stem cell 

and mature populations (Dumitru et al., 2017).  

Results described here suggest that GABA may also play a similar regulatory role in the 

spinal cord as animals treated with ETX exhibited an increase in EdU/NeuN+ cells, despite 

an overall decrease in proliferation, compared to vehicle treated animals.  Furthermore, ETX 

treatment also resulted in a reduction in oligodendrocyte proliferation, despite others 

showing that ETX and enhances the proliferation and differentiation of new Olig2+ OPCs for 

myelin repair in an animal model of MS (Daugherty, D. J. et al., 2013). Previous studies have 

also shown that neurosteroids such as pregnanolone promote myelin repair after sciatic 

nerve injury in the same way as ETX (Girard et al., 2008; Schumacher et al., 2012; Koenig et 

al., 1995). Furthermore, administration of the steroid hormones oestrogen and testosterone 

has also been shown to be beneficial in treating MS symptoms (Gold et al., 2009; Soldan et 

al., 2003), while the neuroactive steroids progesterone and allopregnanolone have been 

effective in EAE (Yates et al., 2010). Neurosteroids have also been shown to increase 

oligodendrogenesis and expression of MBP, suggesting that they may aid in oligodendrocyte 

regeneration and remyelination in the spinal cord (Ghoumari et al., 2003; Ghoumari et al., 
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2005). Results described here however show that ETX treatment significantly reduced the 

number of proliferating oligodendrocytes compared to vehicle, therefore further work is 

required to examine the effects of neurosteroidogenesis in the intact spinal cord  

These findings may suggest that potentiation of GABAergic signalling in the spinal cord, 

either by direct modulation of GABAaR itself or by increased synthesis of GABAaR 

modulatory neurosteroids, results in a reduction in gliogenesis and an increase in 

neurogenesis. It therefore would appear that GABAergic mechanisms which regulate the 

NSC pool and the differentiation of new cells in the neurogenic niches of the SVZ and SGZ, 

and their regulation by endozepines such as DBI (Alfonso et al., 2013, Dumitru et al., 2017), 

are also important in the adult spinal cord.  

Following ETX treatment there were significantly more EdU+ cells which were colabelled with 

the mature neurone marker NeuN, suggesting that ETX treatment increased the number of 

new neurones in the adult spinal cord compared to vehicle. Although generally accepted to 

be the case in the SVZ and SGZ, and despite evidence that latent multipotent NSCs reside 

in the spinal cord, the existence of postnatal neurogenesis in the adult spinal cord is often 

contested. Whilst much work has shown that ECs constitute the NSC population of the cord 

which proliferate and differentiate to contribute to the glial scar following injury (Barnabe-

Heider et al., 2010; Cregg et al., 2014; Sabelstrom et al., 2013) as yet there have been no 

conclusive in vivo studies which have detailed the birth of new neurones in the adult intact 

spinal cord. Furthermore, although ECs exhibit tripotent potential in vitro, these results have 

not been replicated in vivo, where lineage tracing studies of EC progeny show glial-restricted 

potential (Barnabe-Heider et al., 2010).  

It is therefore surprising that the percentage of EdU/NeuN+ cells in the adult spinal cord was 

seen to increase following ETX treatment and therefore further work must be carried out to 

confirm this finding. ETX however, has been shown induce axonal repair and neuronal 

recovery in animal models of MS (Daugherty et al., 2013) and peripheral nerve injury (Girard 
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et al., 2008), possibly due to its effects upon neurosteroidogenesis. Indeed, AlloP has been 

shown to induce neurogenesis and suppresses genes that repress cell proliferation 

(Charalampopoulos et al., 2008b; Charalampopoulos et al., 2008a).  

It is possible however that ETX also acts as a neurogenic agent in the intact spinal cord  

Further work which also examines colocalisation of immature neuronal markers such as 

Tuj/b-tubulin III with EdU+ cells, alongside that of mature neuronal markers such as NeuN, is 

required to determine whether these results are replicable  Coadministration of ETX 

alongside blockers of neurosteroidogenesis, such as finasteride, would also help to 

determine whether the effects of ETX are a result of the attenuated synthesis of pro-neural 

neurosteroids such as AlloP, as is suggested in animal models of MS and peripheral nerve 

injury.  

5.5.2 TSPO specific modulation by either -PK11195 or global TSPO KO gave 

diametrically opposed effects upon proliferation in the spinal cord  

The binding of ETX and MDZ to TSPO and GABAaR resulted in a significant decrease in the 

number of EdU+ cells in the spinal cord, indicating a reduction in the level of proliferation in 

the WM, GM, and at the CC. As ETX and MDZ have effects at both TSPO and GABA, it is 

difficult to determine which receptor may be causing these changes. Previous work has 

shown that GABA influences proliferation in the spinal cord (chapter 3), therefore more 

specific investigation into the effects of TSPO upon proliferation in the spinal cord was 

essential. To this end, the number of EdU+ cells were examined in animals treated with the 

specific TSPO ligand PK11195 and in animals with global KO of TSPO compared to control. 

It was found that PK11195-treated animals had significantly fewer EdU+ cells, and therefore 

a reduced level of proliferation, in the WM, GM, and CC regions of the spinal cord compared 

to vehicle treated animals. TSPO KO animals however possessed significantly greater 

numbers of EdU+ cells in the WM and GM compared to WT littermates. There were no 

significant differences in the number of EdU+ cells at the CC in TSPO KO animals compared 
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to control. The original hypothesis was that similar results would be found for both PK11195 

treatment and following global TSPO KO as the mechanism of both includes the perturbation 

of TSPO function, however it seems that this is not the case.    

5.5.2.1 PK-11195 treatment inhibits proliferation in both in vitro and in vivo models 

 

In agreement with the findings presented here, previous work has shown that PK-11195 

inhibited proliferation of human colorectal carcinoma cells (Maaser et al., 2001) and growth 

of multiple myeloma cells growth in vitro. PK-11195 has also been shown to chemosensitise 

drug-resistant human-derived multiple myeloma tumours in immunodeficient mice (Campbell 

et al., 2006), leading to marked inhibition of tumour growth in animals treated with both PK-

11195 and melphalan compared to animals treated with melphalan alone (Campbell et al., 

2006). Similar effects have also been seen following PK-11195 treatment of pre- and post-

relapse neuroblastoma cell lines (Mendonça-Torres and Roberts, 2013), and in glioblastoma 

cell lines (Bode et al., 2012; Chen, J. et al., 2013). Bruce et al., (1991) also illustrate that PK-

11195 inhibits proliferation of astrocytes in vitro, suggesting that PK-11195 may not only 

inhibit proliferation of neoplastic tumour cells, but also ‘healthy’ glial cells (Bruce et al., 

1991). It is possible that the effects of PK11195 in our experiments were the result of a 

reduction in glial cell proliferation in particular, and therefore more work using markers of 

glial differentiation such as S100β or GFAP alongside EdU labelling is necessary to 

investigate this further.  

In contrast to the above findings, PK11195 has been shown to be anti-apoptitic when used 

at concentrations close to its affinity for TSPO whereupon administration at higher 

concentrations elicits pro-apoptotic effects which does not appear to be related to TSPO 

binding (Veenman and Gavish, 2012; Veenman et al., 2007). This dose-dependent 

mechanism may explain why PK11195 reduced proliferation in the spinal cord, whereas 

TSPO KO increased proliferation.  
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Analysis of the thermodynamic properties of PK1195 has suggested that it acts as a TSPO 

antagonist (Le Fur et al., 1983), leading to the hypothesis that TSPO KO would produce 

similar results to PK11195. However, later in vivo and in vitro studies have shown that this 

broad pharmacological classification of these compounds is not always applicable, and that 

PK111195 also acts as a weak partial agonist at TSPO (Papadopoulos et al., 1990). 

Furthermore, recent work has also shown that hepatic metabolism of PK-11195 causes a 

switch in the pharmacological properties of the ligand at TSPO, where N-demethylation of 

PK11195 alters the interaction with the binding pocket of the constitutive androstane 

receptor causing PK11195 to act as an agonist (Mackowiak et al., 2017). Such a metabolic 

switch may explain the opposing pharmacological properties of PK11195 in different 

systems. Therefore, predicting the antagonist effect PK11195 may have upon spinal cord 

proliferation, and that TSPO KO would cause similar effects was too simplistic, leading to the 

opposing results described here. Additional experiments comparing the effects of the TSPO 

agonist FGIN-127 upon proliferation in the spinal cord to those seen in TSPO KO mice 

would help determine if PK11195 is indeed acting as an agonist here. 

5.5.2.2 TSPO and neurosteroidogenesis 

TSPO is an evolutionarily well conserved outer mitochondrial membrane OMM protein which 

is highly expressed in steroidogenic cells of the adrenal glands and testis (De Souza et al., 

1985; Veenman and Gavish, 2012). Exposure to TSPO ligands at close to their binding 

affinities was found to stimulate steroid synthesis in adrenal cortical cells (Mukhin et al., 

1989), testicular Leydig cells (Papadopoulos et al., 1990), and neurosteroid production in 

glial cells (Costa, E. and Guidotti, 1991; Papadopoulos, 1993) which lead to the hypothesis 

that TSPO was involved in steroidogenesis, including neurosteroidogenesis in the CNS. For 

example, DBI and TTN have been shown to stimulate steroidogenesis in glioma originating 

mitochondria (Papadopoulos et al., 1991; Costa, E. and Guidotti, 1991).  
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Neurosteroids exhibit neuroprotective, anti-inflammatory, and neurogenic effects within the 

CNS, as described previously (Borowicz et al., 2011; Varga et al., 2009; Noorbakhsh et al., 

2014).  It was therefore hypothesised that inhibition of TSPO function by PK11195 may 

influence proliferation of NSCs of the spinal cord by inhibiting the production of 

neurosteroids. Indeed, PK11195 did result in a significant reduction in proliferation in the 

spinal cord, however as TSPO KO did not produce the same results, instead resulting in an 

increase in proliferation, it is unlikely that effects of PK11195 on proliferation are a result of a 

simple inhibition of neurosteroidogenesis. In order to assess this possibility further, 

coadministration of PK11195 alongside compounds to inhibit neurosteroidogenesis, such as 

finasteride, would elucidate the effects PK11195 may have upon neurosteroidogenesis in 

this system and the effects this may have upon proliferation and differentiation.  

The dogma that TSPO function is essential for steroidogenesis was born when experiments 

which attempted to generate TSPO KO mice illustrated that heterozygous global TSPO KO 

was embryonic lethal (Papadopoulos et al., 1997). However, more recently animals with 

global TSPO KO from birth have shown to be viable, indeed the TSPO KO model here was 

one of the first to show that pups with global TSPO KO were possible. Viable global TSPO 

KO mice therefore cast doubt on the idea that TSPO function, and the irrefutable role it plays 

in steroidogenesis and neurosteroidogenesis is essential for survival. 

Therefore, the effects described here may be unrelated to neurosteroidogenesis and the 

effects these compounds have upon proliferation and instead could a result of one of the 

many other proposed functions of TSPO, including inducing apoptosis by the increased 

production of reactive oxygen species. For example, the TSPO agonist FGIN-127 has been 

shown to induce apoptosis in cancer cells by this signalling mechanism (Maaser et al., 2001; 

Sutter et al., 2003; Veenman et al., 2007; Santidrian et al., 2007). It is therefore possible that 

PK11195 significantly reduces the number of EdU+ cells compared to vehicle treatment by 

inducing apoptosis of NSCs, whereas TSPO KO increases the proliferation within the spinal 

cord compared to WT by attenuation of the pro-apoptotic TSPO-mediated pathways.  
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5.5.3 Changes in proliferation and differentiation following CBR modulation 

suggests endozepinergic regulation of GABAergic signalling in the 

adult spinal cord  

Previous work has shown that GABA is also an important modulator of proliferation in the 

intact postnatal spinal cord (chapter 3), where an increase in the level of ambient GABA by 

vigabatrin significantly decreased the number of proliferative EdU+ cells. Work described 

here has also shown that PAM of GABAaR by the CBR-specific ligand MDZ also results in a 

reduction in the number of EdU+ proliferating cells, suggesting that this modulatory region of 

the GABAaR may be involved in the inhibitory GABAergic tone which appears to dampen 

proliferation in the spinal cord.  

The endogenous CBR ligand DBI is robustly expressed in the spinal cord. Utilising the CBR 

site ligands flumazenil and Ro15-4513 allowed for investigation to determine whether 

endogenous binding at CBR in the spinal cord may also balance proliferation and 

differentiation via GABAaR, as in SVZ and SGZ. Indeed, flumazenil and Ro15-4513 treated 

animals exhibited greater levels of proliferation compared to vehicle treated animals. 

Differentiation of EdU+ cells into S100b+ glial cells was reduced in Ro15-4513 treated 

animals compared to control, however the proportion of EdU+/Tuj+ cells increased. The 

percentage of EdU+ cells which were sox2+ was also greater in Ro1504513 treated mice vs. 

vehicle treatment. Using G2F77I mice to alter the binding affinity to CBR also increased 

proliferation in the spinal cord, with a decrease in gliogenesis, compared to WT animals. 

These results therefore suggest that modulation of GABAergic signalling by endogenous 

CBR ligand binding may also influence proliferation in the spinal cord.  

5.5.3.1 Does flumazenil show intrinsic efficacy without exogenous BZ binding? 

As flumazenil mediates its effects by competitive inhibition at the CBR site it is debated 

whether flumazenil itself has intrinsic activity, or produces behavioural effects, in the 

absence of exogenous BZ administration. For example, Marten et al., (1993) report that 
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flumazenil has no effect in rotarod testing of motor deficits and offers no protection against 

pentylenetetrazole- or audiogenic-induced seizures in mice, and therefore conclude that 

flumazenil exhibits little to no intrinsic efficacy in these cases (Martens, F. et al., 1990). 

Flumazenil has also been shown to have no effect upon anxiety-like states in rodents 

exposed to the open field test (Nazar et al., 1997) and did not evoke anxiety in quiescent 

human volunteers (Darragh et al., 1983). 

In direct contrast to these findings however, it was shown that flumazenil reduced social 

interaction in rats and mice, suggesting an increase in ‘anxiety’ (File and Pellow, 1985; 

Uhlirova et al., 2004). Flumazenil also exhibited an anxiogenic-like profile in the elevated 

plus maze (Lee, C. and Rodgers, 1991). Others however, have shown that in rodents 

flumazenil also produces anxiolysis in several behavioural tests including the elevated plus 

maze (Belzung et al., 2000) and measurements of ultrasonic vocalisation (Hess et al., 2013). 

These findings therefore suggest that flumazenil has inconsistent behavioural effects which 

may be dependent upon several factors, including the behavioural paradigm in question, the 

basal level of anxiety, or the result of the different doses of flumazenil used in such studies 

(Uhlirova et al., 2004). However, such results suggest that flumazenil may indeed have 

intrinsic efficacy in certain neurological systems and lend support to the existence of 

endogenous CBR ligand modulation of GABAaR.  

Results described here also give evidence for intrinsic efficacy of flumazenil as flumazenil 

treatment significantly increased the number of EdU+ cells in the spinal cord of adult animals 

compared to vehicle. This effect may be mediated by the effects flumazenil would have upon 

endogenous CBR ligand binding.  
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5.5.3.2 Endozepines and CBR ligands 

The presence of endogenous ligand binding to the CBR site of GABAaR may explain why 

flumazenil has been shown to have intrinsic activity and behavioural effects in the absence 

of exogenous BZ admin. Flumazenil may also exhibit inconsistent behavioural effects due to 

the presence of endogenous ligands of the CBR site in the CNS, for example the 

endozepines DBI and the CBR site-specific fragment ODN. The action of flumazenil, which 

inhibits binding of these endogenous peptides to the CBR site (Slobodyansky et al., 1989), is 

therefore likely to be dependent upon the effect of DBI and ODN upon GABAaR signalling. 

However, the effects of endozepines upon GABAergic signalling are still undefined many 

systems/regions, therefore making it difficult to predict the effects flumazenil may have 

without exogenous BZ administration.    

For example, if DBI or ODN act as inverse agonists/NAMs at GABAaR, then removal of 

basal binding of these ligands by flumazenil could be hypothesised to lead to an anxiolytic 

profile of flumazenil. Indeed, some studies have reported flumazenil to act as an axiolytic 

and also as a sedative (Hess et al., 2013), which could also be explained by the removal of a 

NAM at CBR by flumazenil. Many studies have shown that ODN and DBI act as inverse 

agonists/NAMs at GABAaRs both in vitro and in vivo (Costa and Guidotti, 1991; Alfonso et 

al. 2012; Dumitru et al., 2017; Bormann et al.,1991; Slobodyansky et al., 1989). For 

example, studies conducted by Bormann et al., (1988) and MacDonald et al., (1986) show 

that micromolar concentrations of rat brain DBI, which were insufficient to affect the gating of 

GABAAR channels, reduced the GABA-activated Cl- current in a dose dependent manner, as 

measured by whole-cell patch clamp electrophysiology in primary cultures of mouse 

embryonic spinal cord. Bormann et al., (1985) not only provided seminal findings illustrating 

the NAM action of DBI, but also showed that reduction of GABA responses by DBI did not 

occur in the presence of flumazenil, indicating that DBI affects GABA-induced Cl- currents by 

direct interaction with the CBR site of GABAAR. It is currently unknown whether this is the 
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case in all regions of the CNS, particularly as heterogeneity in specific alpha subunit 

expression is seen in different areas of the CNS. 

Whilst it may be difficult to predict the effects of DBI in all CNS regions/systems Alfonso et 

al, (2012) and Dumitru et al., (2017), show that DBI and ODN do indeed act as NAMs at 

CBR and regulate the level of proliferation and differentiation in the neurogenic niches of the 

SVZ and SGZ. It appears that DBI and ODN are important regulators of postnatal 

neurogenesis; acting to balance the inhibitory nature of GABAergic signalling upon NSC 

proliferation to increase the proliferating NSC pool. These effects are attenuated however 

following flumazenil treatment or disruption to CBR site binding by mutation of crucial amino 

acids for the formation of the CBR site in G2F77I mice. (Alfonso et al., 2012; Dumitru et al., 

2017). Results described here are the first to show that similar mechanisms involving 

endozepinergic modulation of GABAergic signalling may also control the basal level of 

proliferation in the spinal cord as proliferation was significantly greater in both flumazenil 

treated and G2F77I mutant mice compared to control. 

DBI and ODN have been shown to induce anxiety and pro-conflict behaviour (De Mateos-

Verchere et al., 1998) further suggesting inverse agonist activity of endozepines. Increased 

levels of DBI-like immunoreactivity have been found in the CSF of patients with severe 

depression and anxiety (Barbaccia et al., 1986) and following psychological stress in mice 

(Katsura et al., 2002) and rats (Sudakov et al., 2001). Differences in baseline levels of 

anxiety, perhaps related to the level of endogenous DBI or ODN binding to CBR, therefore 

also appear to affect the actions of flumazenil. It appears that when anxiety is high, such as 

during benzodiazepine withdrawal, flumazenil appears as an anxiolytic: however, when 

anxiety is low, flumazenil increases anxiety (Uhlirova et al., 2004; File et al., 1990). For 

example, in sociable mouse strains, flumazenil produced anxiogenic-like effects by inducing 

timidity (Uhlirova et al., 2004). However, flumazenil produced anxiolytic effects in the 

elevated plus maze and the light/ dark test in BALB/c mice, a more ‘anxious’ mouse strain 

but not in ‘low-anxiety’ C57BL/6 mice (Belzung et al., 2000; Belzung and Griebel, 2001). 
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Significant differences in brain levels of DBI have been found in two inbred rat strains which 

exhibit different basal levels of anxiety-like behaviour (Suzdak et al., 1986). The biphasic 

effect of flumazenil upon anxiety could therefore be explained by the difference in the level of 

DBI/ODN binding, and its effect upon GABAaR signalling, in anxious vs. non-anxious 

subjects.  

However, if endozepines are primarily agonists/PAMs of GABAaR signalling flumazenil 

would be expected to induce anxiety by reducing the inhibitory GABAergic tone following 

removal of DBI/ODN binding at CBR. Whilst most studies have shown that DBI and ODN act 

as NAMs of GABAaR and that flumazenil has anxiolytic properties (Alfonso et al. 2012; 

Dumitru et al., 2017; Bormann et al.,1991; Slobodyansky et al., 1989) others have reported 

that DBI acts as a PAM of GABAaR signalling in select neuronal populations. For example, 

Christian et al., (2013) show that DBI potentiates GABAergic signalling in the reticular 

thalamic nucleus of the hypothalamus, and that this effect is blocked by flumazenil (Christian 

et al., 2013).  

It therefore appears that endozepines such as DBI and ODN are able to act as both PAMs 

and NAMs of GABAaR depending upon the specific system in which the GABAergic 

signalling is implicated. The dual action of DBI and ODN upon modulation of GABAergic 

signalling may also explain why flumazenil also has seemingly contradictory behavioural 

effects. It is also possible that the subunit heterogeneity of GABAaRs, and therefore the 

different ways in which the CBR site can be formed, may be the cause of such diametrically 

opposed effects of the CBR ligands; endozepines and flumazenil.  

5.5.3.3 Is the endogenous CBR ligand a GABAaR PAM in the spinal cord? 

Although Alfonso et al., (2012) and Dumitru et al., (2017) show that DBI and ODN are potent 

regulators of proliferation and differentiation in the SGZ and SVZ, respectively, less it known 

about how regulation of GABAaR by CBR site binding may affect these processes in the 
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adult spinal cord. Work detailed in this chapter is the first to show that these mechanisms 

may also be important in the spinal cord 

Following alteration of CBR function by a variety of means, these results strengthen the 

hypothesis that endogenous modulation of GABAaR by endozepinergic compounds 

influences basal proliferation and differentiation in the postnatal spinal cord. For example, in 

instances of decreased binding affinity to CBR as seen in G2F77I mutant mice, or 

competitive antagonist activity at CBR following flumazenil treatment, the basal level of 

proliferation is significantly greater compared to control animals. These results suggest the 

presence of an endogenous molecule bound to CBR, which influences GABAergic tone to 

negatively modulate basal proliferation in the postnatal intact spinal cord, which, following 

interruption or blocking of its binding to CBR, in G2F77I mutant- and flumazenil treated 

animals, respectively, releases the negative GABAergic tone on proliferation and therefore 

proliferation increases. A similar mechanism has been described in the both the 

hippocampus and SVZ for DBI, where DBI OE leads to an expansion of the NSC pool, via a 

reduction in GABAergic signalling, in the SVZ, this effect is blocked by flumazenil and 

attenuated in G2F77I mice (Alfonso et al., 2013; Dumitru et al., 2017). However, if this were 

also the case for the spinal cord, the endozepinergic molecule in question would be acting 

as a PAM, rather than the NAM action described in the hippocampus and SVZ. Indeed, PAM 

activity of endozepines such as DBI is evident in the reticular thalamic nucleus, where is it 

secreted by nearby astrocytes to influence GABAergic tone (Christian, Catherine A. and 

Huguenard, John R., 2013; Christian et al., 2013). Glial cells of the spinal cord also express 

DBI (Chapter 4) and so a similar paracrine feedback loop may also exist within the spinal 

cord to regulate proliferation and differentiation.  

Furthermore, animals treated with the CBR-specific inverse GABAaR agonist Ro15-4513 

also have greater levels of proliferation, Sox2+ NSCs, and a reduced level of gliogenesis 

compared to vehicle treated animals. These results further suggest the existence of a 

positive endogenous CBR-specific molecule which is involved in the GABAaR mediated 
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dampening of proliferation in the adult spinal cord by PAM of GABAaR at CBR. For example, 

inverse agonist functionality requires constitutive receptor activity (Khilnani and Khilnani, 

2011; Kenakin, 2001), therefore Ro15-4513 reverses CBR mediated inhibitory GABAergic 

tone, resulting in an increase in proliferation and a decrease in differentiation. 

In conclusion, whilst it appears that modulation of GABAaR at CBR is an important 

mechanism in the control GABA exerts over proliferation in the spinal cord the exact 

molecule responsible for the actions in the spinal cord is still elusive. Although results 

described here have illustrated that it is an endozepinergic-like compound, we are unable to 

conclude with absolute certainty that it is DBI or its derivatives, despite robust expression of 

these proteins within the postnatal spinal cord Further work is required to determine the 

molecular identity of this particular modulator and specific effects it has upon proliferation 

and differentiation in the CNS  

5.6 Conclusion  

The experiments carried out in this chapter have shown that endozepines may be present in 

the spinal cord to regulate proliferation by acting in concert at both TSPO and GABAaR. 

Furthermore, experiments using the GABAaR CBR site antagonist flumazenil suggest that 

endogenous ligand binding at the CBR site may regulate quiescence in the spinal cord as 

seen in other neurogenic niches.
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6.1 Introduction and rationale  

Work presented in Chapter 5 showed that modulation of GABAaR by the endogenous CBR 

site competitive antagonist flumazenil significantly increased the number of EdU+ cells in the 

intact spinal cord of adult animals compared to vehicle treatment. On average animals 

treated with flumazenil had 18% more EdU+ cells in the spinal cord compared to vehicle 

treated animals. This change was specific to the WM as there was no significant difference 

in the numbers of EdU+ cells present in the GM of flumazenil treated animals compared to 

vehicle treatment.  

It was hypothesised that the WM-specific increase in EdU+ cells may represent an increase 

in the proliferation of OLCs in flumazenil treated animals. Staining for the mature and 

immature oligodendrocyte marker PanQKI was therefore carried out to examine whether 

flumazenil treated animals had a significantly greater percentage of EdU+ cells which were 

also PanQKI+ compared to vehicle treated animals. However, there were no significant 

differences in the proportion of EdU+ cells which were PanQKI+ OLCs, therefore indicating 

that whilst flumazenil treated animals had more EdU+ cells in the WM, these cells did not 

differentiate into PanQKI+ OLCs to increase the population of EdU/PanQKI+ cells compared 

to vehicle treated animals in the intact spinal cord.  

Preliminary results from our lab have shown that although it is possible to increase 

proliferation in the intact adult spinal cord by modulation of neurotransmission, the numbers 

of EdU+ cells appear to decrease and return to a baseline level of proliferation by 14 days 

post EdU treatment (Deuchars lab, unpublished observation). Genetic fate mapping 

experiments have illustrated that proliferation within the intact adult spinal cord is limited and 

occurs only for the purpose of self-renewal and cell population maintenance (Barnabe-

Heider et al., 2010; Meletis et al., 2008). Whilst proliferation increases exponentially 

following spinal cord injury, these cells differentiate and migrate toward the injury site, 

replacing lost astrocytes and oligodendrocytes and contribute to the sealing of the lesion 
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cavity by formation of the glial scar (McDonough, Ashley and Martínez-Cerdeño, 2012; 

Barnabe-Heider et al., 2010; Meletis et al., 2008; Sabelstrom et al., 2013). Indeed, it has 

also been shown that injury-induced proliferation in the spinal cord also dissipates over time 

(McDonough, Ashley and Martínez-Cerdeño, 2012; Lacroix et al., 2014), suggesting that as 

the need for increased numbers of astrocytes and oligodendrocytes for tissue repair wanes 

in the time after injury, so too does the increased level of proliferation.  

It is therefore unsurprising that in the intact spinal cord, where maintenance of the cell 

population size is crucial, flumazenil-induced increases in the proliferative cell population 

does not also result in differentiation of these new cells. In these animals the 

oligodendrocyte population is likely already at its peak, and therefore these new cells are 

surplus to the needs of the intact cord. Indeed, recent in vivo imaging work has shown that 

oligodendrocyte apoptosis frequently occurs in the adult rodent brain, where most OLCs die 

prior to committing to myelination (Hill et al., 2018; Hughes et al., 2018). This therefore 

sparks the question as to what would happen if we were to give flumazenil, and boost the 

cell population, in a situation where more cells, and their differentiation, would be beneficial. 

For example, what would happen if we were to induce demyelination and tissue injury to the 

WM and then boost the numbers of proliferative cells by flumazenil? Work presented here 

aims to examine the effects of demyelination upon proliferation within the postnatal spinal 

cord. The effect of demyelination upon the proliferation and differentiation of cells, 

particularly of EdU/PanQKI+ OPCs in the spinal cord of flumazenil vs. vehicle treated 

animals is also considered.  

Our experiments were particularly focused on looking at the numbers of new EdU/PanQKI+ 

oligodendrocytes after LPC induced focal demyelination, using CBR site manipulation via 

flumazenil in an attempt to increase the level of proliferation and differentiation of these 

crucial cells for repair of demyelinated lesions. In order to determine whether demyelination-

induced oligodendrocyte death results in the differentiation of EdU+ cells to replace the cells 

which have been lost by the demyelination, a model of focal demyelination was employed 
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here. Focal areas of demyelination were induced by direct intraspinal injection of the 

gliotoxin lysophosphatidylcholine (LPC) into the spinal cord dorsal column WM of adult mice 

(figure 5.1)  

LPC is a bioactive lipid with detergent-like activity which is capable of solubilizing 

membranes and producing rapid demyelination of WM tracts at the injection site (Hall, 1972). 

Focal Injection of 1% LPC results in demyelination in the spinal cord (Hall, 1972; Keough et 

al., 2015), brainstem (Pratt et al., 1991), caudal cerebellar peduncle (Woodruff and Franklin, 

1999), and the corpus callosum (Sahel et al., 2015). LPC selectively targets myelin and 

leaves other cellular components relatively unaffected, resulting in the recruitment of T and B 

immune cells, microglia and macrophages to the lesion site (Keough et al., 2015; E Marzan 

et al., 2018). This procedure therefore produces a well characterized and focused 

demyelinating injury consisting of macrophage/microglial infiltration and activation (E Marzan 

et al., 2018; Miron et al., 2013; Kotter et al., 2001), reactive astrogliosis, disruption of axonal 

homeostasis and axonal injury, and OPC proliferation and migration (Keough et al., 2015; 

Lau et al., 2012).  

The LPC lesion exhibits precise temporal regulation over a period of a few weeks and is 

eventually capable of full remyelination, a process which begins at the end of the first week 

following removal of myelin debris (Woodruff and Franklin, 1999; Ghasemlou et al., 2007; 

Blakemore and Franklin, 2008; Keough et al., 2015).  At 1-3dpi days there is active 

demyelination at the site of LPC injection. During days 3-7, OLCs proliferate extensively and 

are recruited to the lesion site which then differentiate into mature myelinating 

oligodendrocytes by 7-10 dpi. At 10-21 dpi there is evidence of active remyelination (Keough 

et al., 2015). Remyelination following LPC injection is faster compared to other toxin-induced 

demyelination models as OPCs are unaffected (Blakemore and Franklin, 2008). 

Furthermore, LPC does not induce loss of astrocytes or macrophages which also facilitates 

faster remyelination (Bjelobaba et al., 2018).  
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In vivo models of demyelination are frequently used to investigate the processes of 

demyelination and remyelination in the CNS in order to understand the processes which 

govern the proliferation and differentiation of OPCs and their ability to generate and remodel 

axonal myelin throughout the lifespan of the CNS (Young, K.M. et al., 2013; Osorio-

Querejeta et al., 2017). These models also provide clues as to ways in which new 

therapeutic strategies could be employed to promote the proliferation and maturation of 

OPCs to replace lost myelin in diseases such as MS.  

MS is a chronic demyelinating disease of the CNS which is characterised by immune cell 

infiltration, oligodendrocyte death, and neuronal and axonal degeneration. MS typically 

follows a relapsing-remitting disease course consisting of inflammatory relapses and periods 

of neurological decline, followed by periods of symptom remission (Keough et al., 2015). 

Remyelination in MS does occur in humans, however in the majority of patients, this process 

is incomplete (Patrikios et al., 2006; Goldschmidt et al., 2009). Remyelination is also present 

in animal models of demyelination, however its efficiency declines with age and disease 

severity (Blakemore, 1977; Jeffery and Blakemore, 1995; Shields et al., 1999). Myelin 

provides metabolic support to underlying axons (Funfschilling et al., 2012; Lee, Y. et al., 

2012), and with an absence of treatments that halt disease progression, patients with MS 

eventually exhibit progressive neurological decline likely due to neuroaxonal degeneration as 

a result of chronic demyelination (Irvine and Blakemore, 2008). New treatments to boost the 

endogenous OPC population to enhance remyelination in these patients is therefore 

essential. Modulation of GABAaR niche signalling to enhance the endogenous proliferating 

cell population in the spinal cord may provide a new source of reparative cells for this 

purpose.  

For successful remyelination several processes must occur; OPCs need to proliferate, 

migrate toward the demyelinating lesion site, and mature into myelinating oligodendrocytes 

which contact and enwrap axons (Harlow et al., 2015; Osorio-Querejeta et al., 2017). 

Although flumazenil is capable of increasing the number of proliferative EdU+ cells in the 
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intact spinal cord, where 30% of these new cells are PanQKI+ OLCs (Chapter 5), the 

numbers of new PanQKI+ OLCs were unchanged compared to vehicle treatment. It was 

hypothesised that this is because these new cells are not necessary in the intact cord as cell 

population size is strictly controlled to balance self-renewal and cell death. Therefore, in 

conclusion, work described here attempts to use intraspinal LPC treatment to recapitulate 

demyelinating lesions seen in MS in vivo, and examine whether demyelination provides 

differentiating cues for the replacement of lost myelin by flumazenil-induced augmentation of 

proliferation. 

6.2 Aims 

The aim of the work described in this chapter was to investigate whether flumazenil was also 

capable of increasing proliferation following focal LPC-induced demyelination in the spinal 

cord. Proliferation of PanQKI+ oligodendrocytes following focal LPC injection in animals 

treated with either vehicle or flumazenil was also investigated in order to determine whether 

modulation of GABAaR by blocking endogenous ligand binding to the CBR site may be a 

possible mechanism for increasing the numbers of oligodendrocytes after a demyelinating 

insult to the adult spinal cord. 

6.3 Methods 

6.3.1 Animals  

Adult (6-8 weeks) male C57Bl/6 mice (N=12) were used in line with the UK animals 

(Scientific Procedures) Act 1986 and ethical standards set out by the University of Leeds 

Ethical Review Committee. Every effort was made to minimise the number of animals used 

and their suffering. Animals were given ad libitum access to food and water and were 

housed in a 12-hour light dark cycle.  
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6.3.2 Experimental design 

Full details of the materials and methods used for the in vivo intraspinal LPC injection, 

postoperative care, treatment with EdU and flumazenil, and post-hoc tissue processing and 

analysis are present in section 2.4. The rationale for these methods is also discussed.  

Animals were randomly assigned to 3 experimental groups: 1. intraspinal LPC injection and 

I.P flumazenil (N=3), 2. intraspinal saline injection and I.P flumazenil (N=3), and 3. 

intraspinal LPC injection and I.P vehicle (N=3). Animals that had received 5 days of EdU and 

flumazenil treatment, but had not received intraspinal injections, were used as intact controls 

(N=3).  

6.3.3 Thoracolumbar intraspinal injections of either saline of LPC 

Animals received direct intraspinal injections to the dorsal column at a depth of 300 μm, of 1 

μl of either 1% LPC, to induce focal demyelinated lesions, or saline, in the dorsal column of 

the thoracolumbar region of the spinal cord (figure 6.1).  

6.3.4 In vivo injection paradigm for introduction of drugs and EdU 

Figure 6.1 LPC or saline were injected directly into the spinal cord through the 

intervertebral space  

Diagram showing the injection paradigm for the in vivo focal injection of either LPC or saline 

into the dorsal column of the spinal cord 
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Following intraspinal LPC or saline treatment animals were treated with I.P injections of EdU 

and either flumazenil or saline and underwent sacrifice and processing for IHC as outlined 

(figure 6.2).  

6.3.5  Processing of tissue for EdU and immunohistochemistry  

Tissue was sectioned at 40 μm on a vibrating microtome and processed for post-hoc 

detection of newly proliferated EdU+ cells and markers of oligodendrocyte differentiation as 

previously described (section 2.2.5).  

Intraspinal LPC/saline injection sites were situated at approximately mid-lumbar level and 

were determined by the presence of a slight pinprick sized bruise on the cord surface which 

made the area appear irregular and distinct from the rest of the tissue. Injection sites were 

isolated from each spinal cord to give an ~3mm tissue block and were sectioned and 

analysed as detailed below.   

Animals which had not received an intraspinal infusion but which were treated with EdU and 

flumazenil for 4 days were used intact/control animals to examine the effects of intraspinal 

injection upon the level of proliferation in the spinal cord. 

  

Figure 6.2 Timeline of experimental paradigm 

Diagram of the experimental timeline showing the time following intraspinal injection of 

LPC or saline, the effects of LPC, and the period in which animals were treated with EdU 

alongside flumazenil or saline. The diagram also shows the length of the experiment and 

details timing of sacrifice, perfusion, and tissue processing for IHC. 
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6.3.6 Analysis of spinal cord sections following LPC induced demyelination 

or saline infusion 

Following tissue processing, sections from the injection sites of each animal (N=3 N=30) 

were imaged using a Zeiss LSM880 upright confocal laser scanning microscope with 

Airyscan equipped with argon and He-Ne lasers. ZEN software (Carl Zeiss, Germany) was 

used to acquire z-plane tile scan stacks of entire spinal cord sections imaging Alexa-

Fluor555 and Alexa-Fluor488, to capture EdU and PanQKI+ cells, from the entire injection 

site. Images were processed using ZEN to stitch tiles together and generate maximum 

intensity projections before exporting the final images for analysis in Fiji.  

Sections were also imaged using the Axio Scan.Z1 slide scanner microscope for high 

throughput collection of tiles and z-stacks of sections taken from the injection site of all 

experimental groups. The centre of each section, determined by the Z-plane position in 

which EdU+ cells were most in focus, were exported and EdU+ cells in the WM, GM, and CC 

were counted using the cell counter plugin in Fiji. Cells located specifically within the dorsal 

columns were also counted to determine if there were differences in proliferation and 

differentiation specifically within the lesion site.  To examine colocalisation of PanQKI+ and 

EdU+ cells images were converted to single channel images and PanQKI+ cells were marked 

in the green channel using the cell counter plugin. EdU+ cells in the red channel were then 

counted in the same way. Overlaying the red and green channel allowed the counting of 

cells which were both PanQKI+ and EdU+. Cell counts of EdU+ and PanQKI/EdU+ cells in 

images acquired using the LSM880 confocal microscope were also carried out using this 

method.  

Data were collated and analysed as described previously (Chapter 2: section #). Data were 

considered significant when p <0.05 (denoted by *); p <0.01 (denoted by **), p <0.001) 

(denoted by ***); or p <0.0001 (denoted by ****).  
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6.4 Results  

6.4.1 Effects of intraspinal injection upon proliferation within the adult spinal 

cord  

Injections were targeted to the dorsal column of the spinal cord and as such many EdU+ 

cells were often found clustered at the dorsal surface of the cord following intraspinal 

injection of saline, whereas in intact/control animals EdU+ cells were more sparsely spread 

throughout the entire section (figure 6.3 A-Ai). Animals which received an intraspinal 

injection of saline into the dorsal column possessed significantly greater numbers of total 

EdU+ cells in the spinal cord compared to animals that did not receive an intraspinal injection 

(748.9 ± 0.4 EdU+ cells in saline injected animals vs. 132.1 ± 4.4 EdU+ cells in intact 

animals, p <0.0001, student’s t-test, N=3 n=45, figure 6.3A-B). The number of EdU+ cells 

was significantly greater in both the WM and GM regions of the spinal cord in animals which 

received intraspinal saline injection compared to control/’intact’ animals (495.8 ± 27.3- vs. 

77.31 ± 3.6 EdU+ cells in the WM and 247.7 ± 15.5- vs.113.8 ± 19.4 EdU+ in saline treated 

and control/’intact’ animals respectively, p < 0.0001, student’s t-test, N=3 n=45, figure 6.3A-

Ai and Bi). However, there was no significant difference in the number of EdU+ cells which 

were present at the CC in animals which received an intraspinal injection of saline compared 

to animals which did not (figure 6.3Bii)  
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Both groups were treated with the CBR site antagonist flumazenil, as later experiments were 

interested in investigating the effects of flumazenil upon proliferation of PanQKI+ 

oligodendrocytes following focal demyelination by intraspinal LPC injection. 

 

  

Figure 6.3 Animals which received an intraspinal injection of saline had significantly 

higher numbers of EdU+ cells in the WM and GM of the spinal cord 

A: Representative confocal image of the presence and distribution of EdU+ cells in the intact 

spinal cord of adult mice treated with flumazenil. Ai: Representative confocal image of the 

increased numbers of EdU+ cells in the spinal cord of flumazenil treated animals that 

received an intraspinal infusion of saline. B: Pooled data of counts of total EdU+ cells in the 

spinal cord of control and intraspinal treated animals. Bi: EdU+ cell counts in the WM and 

GM of control and intraspinal treated animals. Bii: Counts of EdU+ cells at the CC of control 

and intraspinal treated animals. Solid bars: intact/control animals. Hatched bars: intraspinal 

saline injected animals (**** = p < 0.0001, student’s t-test) 
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6.4.2 Focal intraspinal LPC injection results in fewer EdU+ cells in the spinal 

cord compared to intraspinal saline injection 

Animals that underwent intraspinal injection of saline exhibited higher numbers of EdU+ cells 

in the spinal cord compared to ‘intact’ animals. Therefore, animals that received intraspinal 

dorsal column injections of saline were used as controls to examine the baseline effects of 

focal demyelination in the spinal cord by LPC in flumazenil treated animals.  

Whilst the injection method itself resulted in significantly more EdU+ cells in both the WM and 

GM of the spinal cord in flumazenil treated animals, animals receiving an intraspinal infusion 

of LPC had significantly fewer EdU+ cells in the WM compared to control animals given 

intraspinal saline (327.4 ± 27.8 vs. 428.6 ± 22.3 EdU+ cells in animals treated with LPC and 

saline, respectively, p <0.01, students t-test, N=3 n=30, figure 6.4A-B). There were no 

significant differences in the number of EdU+ cells within the GM of LPC treated- vs saline 

treated animals (figure 6.4A-B).  

In addition, animals which received intraspinal LPC treatment also had significantly fewer 

EdU+ cells surrounding the CC compared to saline treated animals (3 ± 0.3 vs. 5.2 ± 0.3 

EdU+ cells at the CC of animals treated with LPC or saline, respectively, p <0.0001, N=3 

n=30, figure 6.4Bi). 
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Figure 6.4 Intraspinal LPC treatment results in fewer EdU+ cells in the WM and at the 

CC compared to saline treatment 

A – Ai: Representative confocal images of the spinal cord showing EdU+ cells following 

intraspinal injection of either saline or LPC, respectively. B: Pooled data of EdU+ cell counts 

in the spinal cord of both saline and LPC treated animals. Bi: Pooled data of EdU+ cell 

counts at the CC. Solid bars are saline treated animals. Hatched bars are LPC treated 

animals (** = p <0.01, **** = p <0.0001, student’s t-test) 
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6.4.3 Intraspinal LPC results in focal areas of MBP-ve labelling where EdU+ 

cells are also located  

Direct injection of LPC into the WM results in the recruitment of macrophages and microglia 

which phagocytose nearby myelin, leading to focal areas of demyelination. MBP labelling 

was therefore was used as a marker of LPC-induced demyelination in the spinal cord.  

In saline treated animals there was strong MBP immunoreactivity present throughout the 

WM of the spinal cord (figure 6.5A and 6.6A). Following intraspinal injection of LPC into the 

dorsal columns, MBP staining appeared absent from focal regions of the WM where the 

toxin had been introduced (figure 6.5Ai and 6.6B). Examining such changes in labelling for 

MBP in the WM therefore suggest that, as expected, LPC infusion resulted in focal 

demyelination in the spinal cord. 

Figure 6.5 Animals which received intraspinal LPC injection possessed areas devoid of 

MBP labelling indicative of LPC-induced focal demyelination 

A: Representative confocal image of MBP labelling in the WM of the spinal cord of animals 

treated with intraspinal saline, illustrating the presence of MBP+ myelin rings (arrows). B: 

Representative confocal image showing areas within the WM of LPC-treated animals which 

no longer possess MBP 
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Following intraspinal injection of 1% LPC there was a decrease in the level of proliferation in 

the spinal cord WM, with clustering of EdU+ cells near the injection site (figure 6.3Ai). LPC 

treatment significantly reduced the level of proliferation in the spinal cord compared to saline, 

however, despite this, EdU+ cells were present within focal areas which were MBP- (figure 

6.6). These findings suggest that despite an overall loss of EdU+ cells in the spinal cord in 

animals which possess areas of LPC-induced demyelination, proliferating cells are present 

at the lesion site (figure 6.6). Therefore, these results illustrate the potential for LPC lesion-

induced migration of newly proliferated cells to regions of demyelination in the dorsal column 

which may be beneficial for tissue repair.  

Figure 6.6 Newly born EdU+ cells are present in areas of demyelination following 

intraspinal LPC treatment  

A-Aii: Representative confocal images of the spinal cord DC of intraspinal saline treated 

animals showing labelling for MBP (green) and EdU (red), and dual labelling for both. Open 

arrows mark EdU+ cells. B-Bii: Representative confocal images showing areas which are 

MBP+ and MBP- (green) in the DC of animals treated with LPC. EdU+ cells (red) in this region 

are present in both MBP+ and MBP- regions (dual). Closed arrows label EdU+ cells in MBP+ 

regions. Open arrows label EdU+ cells in MBP- regions  
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6.4.4 EdU+ cells at the LPC-lesion site are also PanQKI+ 

EdU+ cells are found at the lesion site following LPC injection (figure 6.7B-Bi). In LPC treated 

mice labelling with PanQKI illustrates that many of these cells EdU+ cells belong to the 

oligodendrocyte cell lineage as they are also PanQKI+ (figure 6.7Bii and Cii, closed arrows 

represent colocalised cells). These results show that new PanQKI+ oligodendrocytes are 

present in the dorsal column WM areas targetted by LPC-induced demyeination, therefore 

suggesting that whilst LPC induces oligodendrocyte death, new oligodendrocytes are 

present at the lesion site in the days following demyelination. This finding provides a window 

of opportunity for WM repair, whereby augmenting the proliferative population of the spinal 

cord may lead to greater numbers of oligodendrocytes which could contribute to 

remyelination following LPC-induced demyelination. 
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Figure 6.7 EdU+ cells present at the DC of LPC-treated animals are also PanQKI+  

A-Aii: Representative confocal images illustrating the presence of PanQKI+ (green) and EdU+ 

(red) cells at the DC of the spinal cord of intraspinal saline treated animals. Colocalisation of 

EdU and PanQKI can also be seen (dual). B-Bii: Representative confocal images showing 

colocalisation of EdU and PanQKI+ cells in the DC of LPC treated animals. C-Cii: Higher 

magnification of sections shown in B-Bii. Open arrows mark non-colocalised cells. Closed 

arrows represent EdU/PanQKI+ colocalised cells     
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6.4.5 Following LPC injection flumazenil treated animals exhibit greater 

numbers of EdU+ cells compared to vehicle  

Following intraspinal LPC injection there were significantly fewer proliferating EdU+ cells 

compared to animals injected with saline (figure 6.4). In the intact cord flumazenil 

significantly increases the level of proliferation in the WM, GM, and CC regions compared to 

vehicle treatment (Chapter 5). The effects of flumazenil upon proliferation were therefore 

examined in animals which had received intraspinal LPC treatment. In these animals, EdU 

was administered at 5 days post-LPC injection in an effort to avoid labelling the immediate 

post-injection induced peak in proliferation which is frequently seen following injury to the 

spinal cord. 

Animals treated with flumazenil possessed significantly more EdU+ cells compared to 

animals which received vehicle following intraspinal LPC treatment (327.4 ± 27.8 vs. 168.1 ± 

16.8 total EdU+ cells in animals treated with flumazenil or saline following intraspinal LPC 

injection, respectively, p < 0.0001, student t-test, N=3 n=30, figure 6.8A-B). In flumazenil 

treated animals the numbers of EdU+ cells were significantly higher in both the WM (327.4 ± 

27.8 vs. 168.1 ± 16.8 EdU+ cells, p <0.0001, student’s t-test, N=3 n=30, , figure 6.8B) and 

GM (204.4 ± 22.1 vs 58.7 ± 6.7 EdU+ cells p <0.0001, student’s t-test, N=3 n=30) of the post-

LPC spinal cord compared to vehicle treated animals 

Although there was a trend toward an increase in the number of EdU+ cells surrounding the 

CC in flumazenil treated animals, this was not statistically significant (figure 6.8Bi). 
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6.4.6 Effects of LPC treatment on the number and percentage of 

EdU/PanQKI+ cells in the spinal cord  

In the intact cord EdU+ cells most frequently colocalise with PanQKI, illustrating that 

PanQKI+ oligodendrocytes contribute the greatest number of proliferating cells in the adult 

spinal cord. Animals that received intraspinal injection of either saline or LPC also 

possessed many EdU+ cells which were also PanQKI+ (figure 6.9A-Bii, closed arrows 

Figure 6.8 Following intraspinal LPC infusion animals treated with flumazenil possess 

significantly more EdU+ cells compared to vehicle treated animals 

A-Ai: Representative confocal images of EdU+ cells in the spinal cord of LPC-treated animals 

following either vehicle or flumazenil I.P treatment, respectively. B: Average numbers of EdU+ 

cells in the spinal cord of LPC-vehicle and LPC-flumazenil treated animals. Bi: Pooled data 

showing numbers of EdU+ cells at the CC specifically. Solid bars represent LPC/vehicle 

treated animals. Hatched bars are LPC/flumazenil treated animals (**** = p < 0.0001, student’s 

t-test)  
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represent EdU and PanQKI colocalised cells). In these animals 19-37% of total EdU+ cells 

were also PanQKI+ (figure 6.9Ci)  

In the spinal cord of LPC treated animals there were significantly fewer EdU+ cells which 

were also PanQKI+ (46.2 ± 14.3 vs. 97.1 ± 18.1 total EdU/PanQKI+ cells in LPC and saline 

injected mice, respectively, p < 0.05, student’s t-test, N=3 n=10, figure 6.9C). The number of 

newly proliferated PanQKI+ cells was significantly lower in the WM (31.7 ± 10.6 vs. 65.5 ± 

9.3 EdU/PanQKI+ cells, p <0.05, student’s t-test, N=3 n=30) and in the GM (14.6 ± 3.8 vs. 49 

± 9.9 EdU/PanQKI+ cells, p <0.01, student’s t-test, N=3 n=30) in animals which received 

intraspinal LPC compared to those injected with saline (figure 6.9C) 

These results are likely explained by the finding that LPC-treatment significantly reduced the 

overall number of EdU+ cells compared to saline treatment (figure 6.4B). Therefore, it is 

important to consider percentage of total EdU+ cells which are also PanQKI+ in both saline 

and LPC treated animals to examine the numbers of EdU/PanQKI+ cells relative to the 

overall number of EdU+ cells in each condition (figure 6.9Ci). The percentages of total 

EdU/PanQKI+ cells in LPC and saline treated animals show that despite an overall decrease 

in the number of EdU+ cells in LPC treated animals, the proportion of EdU+ cells which were 

also PanQKI+ were significantly greater in LPC treated animals vs. saline treated animals 

(35.8 ± 4% vs. 16.6 ± 2.6% of total EdU+ cells which were also PanQKI+, p < 0.01, student’s 

t-test, N=3 n=30, figure 6.9Ci). The percentage of EdU+ cells which were also PanQKI+ was 

significantly greater in both the WM (39.7 ± 6.6% vs. 18.3 ± 3.3%, p < 0.05, student’s t-test, 
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N=3 n=30) and GM (36.1 ± 2.1% vs. 20.6 ± 2.1%, p < 0.0001, student’s t-test, N=3 n=30) of 

LPC- vs saline treated animals (figure 6.9Ci). 
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6.4.7  Effects of flumazenil treatment on the number and percentage of 

EdU/PanQKI+ cells in LPC treated mice  

It was hypothesised that as flumazenil increased the number of proliferating EdU+ cells in the 

spinal cord following LPC infusion, and that EdU/PanQKI+ cells were frequently seen at the 

site of LPC-induced demyelinated lesions, flumazenil may be able to boost the numbers of 

newly proliferated PanQKI+ OPCs to contribute toward remyelination following LPC 

treatment. 

However, in animals which received an intraspinal LPC infusion, there were no significant 

differences were found in the number of EdU/PanQKI+ cells in animals treated with 

LPC/flumazenil vs LPC/vehicle treated animals (figure 6.10A). There were also no significant 

differences in the percentage of total EdU+ cells which were also PanQKI+ in LPC/flumazenil 

vs LPC/vehicle treated animals (figure 6.10Ai). 

Figure 6.9 Intraspinal LPC-treatment significantly affects oligodendrocyte lineage 

acquistion of EdU+ cells compared to saline treatment 

A-Aii: Representative confocal images showing the expression of both EdU (red) and PanQKI 

(green) in saline/flumazenil treated animals. Dual labelling illustrates colocalisation of EdU+ 

and PanQKI+ cells in the spinal cord of these animals. B-Bii: Representative confocal images 

also illustrating the colocalisation of EdU+ and PanQKI+ cells in the spinal cord of 

LPC/flumazenil treated animals. Open arrows represent non-colocalised cells. Closed arrows 

represent EdU/PanQKI+ colocalised cells. C: Counts of total EdU+ cells which are also 

PanQKI+. The numbers of EdU/PanQKI+ cells in the WM and GM are also shown. Ci: Pooled 

data showing the percentage of total EdU+ cell which are also PanQKI+ in the WM and GM 

combined, and the WM and GM specifically. Solid bars represent saline/flumazenil treated 

animals. Hatched bars are LPC/flumazenil treated animals (* = p < 0.05, ** = p < 0.01, **** = 

p < 0.0001, student’s t-test)        
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It was hypothesised that as counts of EdU+ cells were counted in the entire spinal cord 

section and that LPC results in a discrete area of demyelination, including counts of other 

regions may be masking the effects of LPC at the lesion site. However, when analysing the 

numbers of EdU+ cells and EdU/PanQKI+ located at the lesion site there were no significant 

differences in animals treated with LPC/flumazenil vs. saline/flumazenil (figure 6.10B-Bi). 

There were also no significant differences in the percentage of total EdU+ cells which were 

PanQKI+ at the lesion site. These results therefore show that flumazenil did not significantly 

increase the population of proliferating PanQKI+ cells compared to vehicle following LPC 

induced demyelination in the dorsal column of the adult spinal cord.  
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6.5 Discussion  

6.5.1 Proliferation in the postnatal spinal cord is markedly increased in the 

WM and GM following intraspinal injection of saline 

In these experiments focal demyelinated lesions were induced by direct injection of LPC into 

the spinal cord dorsal column of adult mice. Intraspinal treatments were delivered to the 

spinal cord by a glass capillary broken back to a sharp tip. It is therefore important to 

consider the effects of the injection procedure itself upon the level of proliferation within the 

spinal cord as the spinal cord responds to tissue disruption and trauma with a marked 

increase in the number of proliferative cells (Johansson et al., 1999; Meletis et al., 2008; 

Barnabe-Heider et al., 2010; Mothe and Tator, 2005).  

As a result of the capacity of the spinal cord to respond to injury in this way, it is possible that 

the intraspinal injection method may resemble a stab injury which causes an increase 

proliferation via an injury-induced proliferative response. Indeed, animals which received an 

intraspinal infusion of saline exhibited higher numbers of proliferative EdU+ cells compared 

to animals which did not. It is therefore likely that a proportion of the EdU+ cells which are 

Figure 6.10 There are no significant differences in the numbers or percentages of 

EdU/PanQKI+ cells in the spinal cord of flumazenil vs. saline treated animals following 

intraspinal LPC infusion  

A: Pooled data showing total counts of EdU/PanQKI+ cells in the spinal cord of LPC/vehicle 

and LPC/flumazenil treated animals. Cell counts specific to the WM and GM are also shown. 

Ai: Pooled data showing the percentage of total EdU+ cells which are also PanQKI+ in the 

spinal cord of LPC/vehicle and LPC/flumazenil treated animals. Solid bars represent counts 

from LPC/vehicle treated animals. Hatched bars represent counts from LPC/flumazenil treated 

animals B-Bi: Pooled data of EdU+ (B) and EdU/PanQKI+ cell counts and the percentage of 

total EdU+ cells which are PanQKI+ at the lesion site (Bi) in LPC/vehicle vs. LPC/flumazenil 

treated animals :  (n.s = p > 0.05, student’s t-test, N=3, n=9) 
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present following intraspinal injection of either saline or LPC are the result of reactive 

proliferation as a result of injury to the spinal cord itself.  

6.5.2 Are EdU+ cells at the CC migrating toward the ‘injury’ site? 

In animals receiving intraspinal saline, the proliferation was greater in both the WM and GM 

compared to intact animals. Interestingly however, there were no significant differences in 

the number of EdU+ cells which were located at the CC in intact vs. intraspinal treated 

animals. This is in contrast with other studies which have shown that spinal cord injury 

reactivates the NSC properties of the normally quiescent ECs which reside at the CC, 

causing this dormant population to proliferate extensively, migrate to the lesion site, and 

differentiate into oligodendrocytes and astrocytes (Mothe and Tator, 2005; Johansson et al., 

1999; Lytle and Wrathall, 2007; McDonough, A. et al., 2013; Meletis et al., 2008; Barnabe-

Heider et al., 2010; Sabelstrom et al., 2013). Genetic fate mapping studies have shown that 

following dorsal funiculus transection the majority of new glial cells are derived from ECs 

(Barnabe-Heider et al., 2010), where injury-induced proliferation, migration, and 

differentiation of ECs is essential to prevent secondary tissue damage and cavitation at the 

lesion site (Barnabe-Heider et al., 2010).  

Following stab injury at T8, DiI-labelled ECs begin to migrate away from the CC toward the 

site of injury by 3dpi, where the distance of migration and number of migratory cells occurs in 

a time-dependent manner. By 14dpi DiI-labelled ECs are found at a distance of 140um from 

the CC (Mothe and Tator, 2005). In our experiments proliferating ECs are labelled by EdU 

during days 4-8 post saline injection, however animals are not sacrificed until day 14, giving 

EdU+ ECs time to migrate away from the CC and toward the dorsal column. Indeed, there 

were many EdU+ cells present at the dorsal surface of the cord where the capillary would 

have pierced the WM during saline infusion. It is therefore possible that EdU+ ECs could 

have migrated to the injection site, making it appear as though there was no difference in the 
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level of proliferation at the CC at 14dpi. In addition, injury induced proliferation occurs in a 

spatiotemporal wave-like pattern which may also explain such findings (Lacroix et al., 2014).  

Further experiments using genetic fate mapping by tamoxifen-dependent Cre-recombination 

under the control of the EC-specific promotor FoxJ1 would help determine whether ECs are 

indeed migrating toward the injection site. Lineage tracing of glial progeny alongside EC 

progeny would also elucidate whether the increased proliferation seen in the WM and GM of 

intraspinal saline treated animals is the result of proliferation of native glial cells or infiltration 

of newly proliferated EC progeny. 

6.5.3 Does EC proliferation following injury require ependymal disruption?  

Recent work however has challenged the role that ECs play in tissue repair following injury, 

suggesting that ECs do not constitute a dormant NSC population which are reactivated 

following injury (Ren et al., 2017). Contrary to previous findings, using BrdU in Foxj1CreERT2-

tdT transgenic animals, Ren et al., (2017) illustrate that, following either lateral or midline 

stab injuries which are near to, but do not directly impact the CC ependyma, there were no 

tdT+ EC-derived progeny at the lesion site. Such injuries contained many newly proliferated, 

scar-forming astrocytes that were positive for both BrdU and GFAP, but did not contain any 

tdT positive cells, with or without BrdU, even when lesions came within less than 150 μm of 

the lateral edge of the EC layer. However, Foxj1-tdT mice receiving midline radially 

orientated stab injuries that penetrated the ependyma exhibited BrdU/tdT+ cells which 

extended from the EC layer along the injury margins (Ren et al., 2017), echoing the findings 

of previous studies which have also observed reactive EC proliferation, migration, and 

differentiation following SCI. 

Taken together, these findings demonstrate that ECs do not contribute any cells to stab 

injury response unless the ependyma itself is directly injured (Ren et al., 2017), and may 

also explain why EC proliferation has not been seen in humans following SCI (Paniagua-

Torija et al., 2018).  In our study the injection was performed at a depth of 300 μm from the 
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dorsal surface to target the dorsal column. Successful injection should therefore leave CC 

intact and the ependyma undamaged and so may explain why there were no significant 

differences in the number of EdU+ cells at the CC in intact vs. intraspinally injected animals.  

If this is the case it would also mean that any changes seen at the CC following LPC 

injection are more likely the result of the LPC rather than the injection method itself.  

6.5.4 Effects of intraspinal LPC upon the numbers of EdU+ cells in the 

postnatal spinal cord  

6.5.4.1 Intraspinal injection of LPC results in significantly fewer EdU+ cells in the 

spinal cord  

Whilst intraspinal injection itself resulted in greater numbers of EdU+ cells in the WM and GM 

compared to intact animals, animals which received intraspinal injection of 1% LPC 

possessed fewer EdU+ cells compared to animals which were injected with saline. 

Furthermore, in LPC treated animals there were fewer EdU+ cells in the WM compared to 

animals treated with intraspinal saline infusion.  

Intraspinal LPC injection results in marked astrocyte loss and death of OLCs in the WM, as 

measured by GFAP, Olig2, and PDGFRα IHC (Plemel et al., 2017; Keough et al., 2015). As 

OLCs and astrocytes make the largest contribution to the proliferating population of the 

spinal cord (Barnabe-Heider et al., 2010), it is possible that animals treated with LPC 

possessed fewer EdU+ proliferating cells compared to saline-treated animals due to the 

oligo- and gliotoxic properties of LPC in the WM.  

However, the remyelinating properties of LPC-induced demyelinating lesions by 14-21dpi 

are well described (Hall, 1972; Woodruff and Franklin, 1999; Blakemore and Franklin, 2008; 

Ghasemlou et al., 2007; Keough et al., 2015), where there is a significant increase in both 

the total number of OLCs at 14 days compared to 7 days, as well as the proportion of mature 

oligodendrocytes compared to OPCs (Keough et al., 2015). These results suggest that it is 

therefore unlikely that at the time of EdU injection, 5-8dpi, there would have been fewer 
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proliferating oligodendrocytes in LPC treated animals than in those which were treated with 

intraspinal saline injection as this has been shown to be the period in which OLCs are 

proliferating and migrating to the lesion site. Further investigation, using IHC for OLC 

markers specific to oligodendrocyte maturity alongside markers of cell death, is necessary to 

confirm whether or not differences in the numbers of EdU+ cells in the WM of LPC treated 

animals are due to OLC death.   

Animals treated with intraspinal LPC also possessed fewer EdU+ cells at the CC compared 

to animals treated with saline. Previously, Lacroix et al., (2014) illustrated that LPC-induced 

demyelinating lesions did not result in greater numbers of proliferative Ki67+ cells at the CC 

compared to PBS injection. LPC injections were performed at the dorsal lateral funiculus as 

it was noted that dorsal column injections occasionally penetrated too deeply, contacting the 

CC, and resulting in needle damage to the ependyma which itself caused an increase in 

baseline Ki67 staining at the CC (Lacroix et al., 2014). Animals injected with saline at the 

dorsal column in our experiments did not show greater numbers of proliferative cells at CC 

compared to non-injected intact animals, therefore it is unlikely that the reduction in the EdU+ 

cells at the CC of LPC treated animals is related to traumatic perturbation to the CC itself. 

Proliferating ECs may have provided a population of migratory cells which moved toward the 

lesion site, however genetic fate mapping of EC progeny following LPC-induced 

demyelination would be required to investigate this possibility further.   

6.5.5 Can we augment OPC proliferation for more oligodendrocytes following 

LPC? 

6.5.5.1 LPC-treated animals possess a greater proportion of EdU/PanQKI+ cells in 

the spinal cord following demyelination 

IHC for MBP and PanQKI+ illustrate that LPC infusion did indeed result in demyelination 

within the dorsal column and that new EdU/PanQKI+ OLCs were present within the lesion 

site. Furthermore, despite showing an overall decrease in the number of new cells in the 
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WM, LPC-treated animals possessed a greater proportion of EdU+ cells which were 

PanQKI+. These findings suggest an increase in the proportion of EdU+ cells that 

differentiated into PanQKI+ oligodendrocytes compared to saline treated animals, likely as a 

result of the need to replace the OLC population which undergo cell death during LPC-

induced demyelination (Plemel et al., 2017). 

Whilst it is known that OPC proliferation and differentiation does occur following LPC-

induced demyelination, which ultimately leads to remyelination (Keough et al., 2015), the 

well documented choreography of myelin repair following LPC infusion allows investigation 

into ways in which this process of endogenous remyelination could be enhanced for 

therapeutic gain. For example, work described here attempts to determine whether 

modulation of GABAergic signalling by perturbation of binding of endogenous CBR ligands 

by flumazenil can enhance the proliferation of OLCs for remyelination. 

6.5.5.2  Effects of flumazenil upon proliferation of PanQKI+ cells following LPC-

induced demyelination  

Whilst animals treated with intraspinal LPC were found to have fewer EdU+ cells than 

intraspinal saline treated counterparts, flumazenil treatment following LPC infusion resulted 

in greater numbers of new cells compared to animals receiving vehicle following LPC 

treatment.  

Therefore, this study is the first to show that modulation of GABAaR signalling by the CBR 

antagonist flumazenil can result in a greater number of cells in the spinal cord following LPC-

induced demyelination. These results suggest that modulation of GABAaR by its 

endogenous ligands may be important in the post-injury response to LPC-infusion in the 

spinal cord, where the CBR antagonist flumazenil prevents this and augments the 

proliferating cell population. 

 It was hypothesised that whilst flumazenil results in more EdU+ cells in the WM, GM, and 

CC compared to vehicle treatment in the intact cord the proportion of these cells which are 
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also PanQKI+ is unchanged as these cells are surplus to the needs of the intact cord and so 

do not undergo differentiation (Hill et al., 2018; Hughes et al., 2018; Sun, L.O. et al., 2018). 

This study showed that flumazenil can also increase the number of proliferative cells in the 

cord after LPC infusion to perhaps augment the endogenous pool of cells which could be 

used for repair in cases of demyelinating injury such as MS.  

However, whilst flumazenil increased the number of EdU+ cells following LPC-induced 

demyelination compared to vehicle treatment, there were no significant differences in either 

the number or proportion of EdU/PanQKI+ cells. There were also no changes in the numbers 

of new PanQKI+ cells specifically at the site of LPC-induced demyelination in flumazenil vs. 

vehicle treated animals. Therefore, despite the hypothesis that loss of OLCs by LPC-induced 

demyelination may influence the differentiation of the greater population of EdU+ cells in 

flumazenil treated animals, this was not the case. 

Indeed others have shown that endogenous GABA alters neuronal firing in OPCs which may 

alter OPC proliferation and myelination (Lin and Bergles, 2004; Gibson, E. M. et al., 2014).  

Furthermore, GABA release is essential for OPC maturation and development of fully mature 

myelinating oligodendrocytes (Zonouzi et al., 2015; Hamilton, N.B. et al., 2017). In flumazenil 

treated animals alteration in GABAergic signalling by antagonist activity at the CBR site 

animals, there were more proliferative cells, but these were not PanQKI+, which may be the 

result of a reduction GABAergic stop signal for proliferation but a loss of the GABAergic 

maturation signals. However, it is possible that proliferation of ECs and cells within the WM 

and GM may still contribute to repair, without their maturation into differentiated progeny. For 

example, Sabelstrom et al., (2013) illustrated that without EC proliferation, animals with SCI 

exhibited worse functional outcomes, and poorer tissue repair. 
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6.5.6 How can we accurately quantify remyelination? 

Examining the number and proportion of EdU/PanQKI+ cells in LPC/flumazenil treated 

animals vs LPC/vehicle treated animals provides an insight into whether flumazenil 

increased the level of oligodendrocyte proliferation and differentiation following LPC 

treatment. QKI is an RNA-binding protein that is upregulated in myelinating oligodendrocytes 

to which the commonly used mature oligodendrocyte marker APC/CC1 binds (Bin et al., 

2016). This provides an indirect measure of repair as oligodendrocytes are capable of 

forming a wide number of remyelinated internodes (Keough et al., 2015), however it is not 

able to provide exact information on the level of remyelination.  

Animals were sacrificed at 14dpi and injection sites were stained for MBP in order to quantify 

the level of remyelination in LPC/flumazenil vs. LPC/vehicle treated animals at a time point 

when remyelination has begun but some demyelination remains for comparison (Keough et 

al., 2015). However, technical issues during imaging prevented the gathering of this data 

and therefore it was not possible to determine whether flumazenil had any effect on the level 

of remyelination in these animals compared to vehicle treatment outside of the effects upon 

EdU/PanQKI+ cell counts. Therefore, further experiments must be undertaken in order to 

provide more insight into the effects, if any, that flumazenil may have had upon the speed 

and efficiency of remyelination in these animals.  

The ‘gold-standard- method for quantification of remyelination is based on the central dogma 

that remyelinated segments are shorter in length and thinner than their healthy counterparts 

(Gledhill et al., 1973; Harrison and McDonald, 1977). An increase in the g-ratio (axon 

diameter divided by axon + myelin diameter) is a morphological indication of the presence of 

axons which have undergone remyelination (Crawford et al., 2013; Franklin and Goldman, 

2015; Duncan et al., 2017). Calculation of the g-ratio of cross-sectional semi- or ultrathin 

sections stained with toluidine blue would therefore provide an accurate measure of the 

presence and extent of remyelination in animals treated with LPC/flumazenil vs. 
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LPC/vehicle. Analysis of the prevalence of shorter internodes and thinner myelin sheaths 

could therefore be employed in future experiments to determine whether remyelination is 

improved in flumazenil treated animals (Duncan et al., 2017; Crawford et al., 2013). 

Remyelination has been linked to restoration of saltatory conduction (Smith, K.J. et al., 1979) 

and therefore the level of repair following models of demyelination are likely best quantified 

by the level of functional neurological recovery. However, as a result of the focal nature of 

LPC-induced demyelinating lesions there are no overt observable neurological or motor 

deficits compared to more robust demyelination models such as experimental autoimmune 

encephalitis (Keough et al., 2015).  

Hamaguchi et al., (2017) however have developed a protocol for the assessment of 

behavioural deficits following demyelination of the corticospinal tract by injection of LPC into 

the dorsal column, illustrating that assessment of sensorimotor impairment following LPC-

induced demyelination is possible. Demyelination of the corticospinal tract leads to motor 

impairment as assessed by hindlimb function by correct stepping during beam walking and 

ladder walking behavioural test. Sensorimotor deficits partially recover over time due to 

spontaneous remyelination, however significant recovery of motor function is detectable by 

10dpi (Hamaguchi et al., 2017; Matoba et al., 2017). Utilising behavioural analyses such as 

these in future work, alongside IHC analysis of remyelination, would be further help 

determine whether modulation of GABAaR by endogenous CBR ligands, and their 

perturbation by antagonists such as flumazenil, are mechanisms which could be harnessed 

for repair following demyelination.  

6.6 Conclusion 

Work described in this chapter has shown that intraspinal LPC infusion results in fewer EdU+ 

cells in the spinal cord compared to saline infusion. The numbers of EdU+ cells are greater in 

animals which receive flumazenil treatment following LPC infusion vs. animals which are 
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treated with vehicle, however, flumazenil treatment did not result in greater numbers of new 

EdU/PanQKI+ oligodendrocytes as hypothesised. Technical issues prevented the 

quantification of remyelination in these animals, and therefore we are still unable to 

determine whether modulation of GABAaR by perturbation of endogenous binding to CBR 

by flumazenil resulted in improved remyelination in these animals following LPC. Further 

work which employs the use of more sensitive methods of remyelination quantification 

alongside behavioural assessment of sensorimotor functional recovery is therefore 

necessary.  

Despite this, work described here is the first to show that preventing binding to the GABAaR 

CBR site by flumazenil treatment results in a greater number of proliferative cells following 

LPC-induced demyelinating lesions in the spinal cord. Knowledge of ways to augment the 

endogenous proliferating population following demyelination is essential as research into 

future therapies for MS are beginning focus on ways to improve endogenous remyelination. 

It is possible that combinatorial therapies, involving a proliferative boost and a differentiating-

promoting agent may be the future of MS therapy to slow or even halt the progressive 

neurological decline by chronic demyelination and neuroaxonal degradation.
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7.1 Introduction 

It has been long contested as to whether postnatal proliferation and neurogenesis occurs 

outside of the well- defined neurogenic niches of the brain. However, there is much evidence 

illustrating that new cells are continually added to the intact adult spinal cord and that ECs 

possess NSC capabilities (section 1.5). Cell turnover occurs very slowly in the intact cord, 

where most cells undergo self-renewal for population maintenance, oligodendrocytes are the 

exception to this rule and also produce new progeny (Meletis et al., 2008; Barnabe-Heider et 

al., 2010). Whilst injury results in the expansion of the normally dormant cell populations, 

most progeny differentiate into scar-forming astrocytes, and although this is essential for 

damage control and lesion sealing, the new cells do not appear to contribute to the 

replacement of lost myelinating oligodendrocytes or neurones.  

Therefore, rather than a lack of neurogenic potential, instead the spinal cord appears to 

possess a proliferation-restrictive and gliogenic environment which prevents the realisation 

of NSC-potential in the intact adult spinal cord and neurogenic- and oligogenic- potential in 

the injured cord. Hopes that the endogenous proliferating population of cells which are 

augmented following injury could be used for self-repair therefore feel short-sighted. 

However, if we determine the niche signalling mechanisms which contribute to the restrictive 

environment in the postnatal spinal cord to modulate proliferation and differentiation this 

would renew hope in the self-regenerative capabilities of the adult spinal cord. Work 

presented here illustrates that GABA is, at least one of, these restrictive signals in the spinal 

cord.  

7.2 GABAergic signalling influences proliferation in the WM, GM, and CC 

region of the intact adult spinal cord  

The numbers of EdU+ cells in the WM, GM, and CC were examined in GAD67-GFP animals 

compared to WT animals. GAD67-GFP mice exhibit decreased levels of ambient GABA in 
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their spinal cord compared to WT and as a result possess greater numbers of EdU+ cells in 

the spinal cord WM, GM, and CC, compared to WT animals (table 7.1). Increasing the levels 

of ambient GABA by treatment with vigabatrin significantly decreased the numbers of EdU+ 

cells in the WM, GM, and CC compared to vehicle treatment (table 7.1). These results 

illustrate the inhibitory effect of the basal GABAergic tone in the adult spinal cord upon 

proliferation of cells in the WM and GM, but also that GABAergic signalling may be one of 

the signals within the CC neurogenic niche which keeps the NSC-like ECs in a quiescent  

state.   

Table 7.1 Effects of various modulators upon proliferation in the postnatal 
spinal cord 

Summary of the effects of different experimental conditions upon the number of EdU+ cells located 

within the WM, GM, and CC of experimental vs. control animals. + = significantly greater numbers of 

EdU+ cells. - = significantly fewer EdU+ cells. N.s = no significant difference between groups  

Experiment Effect on numbers of EdU+ cells  

Day vs. Night (WT) Total +  CC + 

Day vs. Night (GADs) Total +  CC n.s 

WT vs. GAD in light hours Total +  CC + 

WT vs. GAD in dark hours Total n.s  CC + 

VGB vs. Vehicle Total -  WM -  GM -  CC -  

ETX vs. Vehicle (WT and GAD) Total -  CC - 

MDZ vs. Vehicle Total -  CC - 

PK11195 vs vehicle Total -  CC - 

TSPOKO vs TSPOflox Total +  WM +  GM n.s  CC n.s 

Flumazenil vs. Vehicle Total +  WM +  GM n.s  CC + 

Ro15-4513 vs. Vehicle Total +  WM n.s  GM +  CC + 

G2F77I vs WT Total +  WM +  GM +  CC + 
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7.3 DBI and TSPO may be involved in the regulation of GABAergic 

modulation of proliferation in the cord  

7.3.1 DBI and TSPO are expressed in the adult spinal cord   

Work described in chapter 4 illustrates that the allosteric GABAaR modulator DBI is 

expressed within the postnatal spinal cord and is also robustly expressed in ECs. GABAergic 

signalling modulates proliferation in the spinal cord; the presence of DBI within the spinal 

cord therefore suggests that DBI may also serve as a master regulator of GABAaR to 

balance quiescence, proliferation, and differentiation. Indeed, this is the case in both the 

SVZ and SGZ, where DBI negatively modulates GABA to increase the NSPC pool and 

decrease the young neurone population (Alfonso et al., 2012; Dumitru et al., 2017). 

The spinal cord also expresses the mitochondrial DBI receptor TSPO where it frequently 

colocalises with DBI (chapter 4). It is therefore possible that in the spinal cord DBI may also 

have effects at TSPO which could influence proliferation either by changes in Ca2+ signalling 

(Gandolfo et al., 2000), or through the production of neurosteroids which are modulators of 

GABA (Varga et al., 2005). 

Work in presented in chapter 3 illustrates that a basal inhibitory GABAergic tone modulates 

proliferation in the postnatal spinal cord. The presence of the endogenous CBR site ligand 

DBI suggests that similarly to the SGZ and SVZ the spinal cord may also modulate GABAaR 

through endogenous CBR site binding. The expression of TSPO in complementary regions 

of DBI-IR may also suggest the involvement of TSPO, and its role in GABAergic 

neurosteroidogenesis, in modulation of postnatal proliferation and differentiation in the adult 

spinal cord.  

7.3.2 TSPO is involved in spinal cord proliferation 

Animals treated with mixed modulators of GABAaR and TSPO, ETX and MDZ, possessed 

fewer EdU+ cells in the WM, GM, and CC, compared to vehicle treated animals (table 7.1). 
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The TSPO specific ligand PK11195 also resulted in fewer EdU+ cells in the spinal cord 

compared to vehicle (table 7.1). These results are the first to show that that ligand binding at 

TSPO is involved in the modulation of proliferation within the adult spinal cord, however 

whether this is the result of DBI binding and/or the production of neurosteroids cannot be 

determined. Further work using the α5-reductase inhibitor finasteride would further elucidate 

the role neurosteroidogenesis may play in controlling proliferation in the intact spinal cord.  

7.3.3 Perturbation of endogenous binding to CBR alters proliferation and 

differentiation in the adult spinal cord  

Perturbation of ligand binding to the CBR site, by treatment with either the CBR specific 

antagonist flumazenil or the inverse agonist Ro15-4513 results in greater numbers of EdU+ 

cells in the WM, GM, and CC compared to vehicle treatment (table 7.1). G2F77I animals 

also possessed greater numbers of EdU+ cells in the spinal cord compared to WT animals 

(table 7.1). These results illustrate the importance of endogenous CBR-ligand binding in the 

control of levels of basal proliferation in the adult spinal cord as when this is prevented by 

either pharmacological or transgenic means there is an increase in proliferation compared to 

control.  

It would therefore appear that endogenous ligand binding at CBR which modulates the 

inhibitory basal GABAergic tone acting on proliferation, as is seen in other neurogenic 

regions (Alfonso et al., 2012; Dumitru et al., 2017), is a likely mechanism which also occurs 

in the spinal cord However, such a mechanism would involve DBI acting as a PAM at 

GABAaR to keep GABAergic signalling high to maintain quiescence in the spinal cord, 

whereas in the SVZ and SGZ, DBI negatively modulates GABA to suppress its inhibitory 

proliferative brake (Alfonso et al.,2012; Dumitru et al., 2017). DBI has been shown to be 

released by astrocytes and potentiate GABAergic signalling in the reticular thalamic nucleus 

(Christian et al., 2013; Christian, C. A. and Huguenard, J. R., 2013). Although the expression 

of DBI within astrocytes and ECs could be hypothesised to be for this purpose, further work 
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is required to determine if DBI does show PAM activity at GABAaR in the spinal cord and its 

effects upon ECs. It is also not yet known whether specific peptide fragments of DBI are 

involved in such effects or whether these fragments exhibit preferential activity at subunit 

specific GABAaR CBR sites.  

7.3.4 Clinical significance of the effects of GABA modulation upon 

proliferation in the postnatal spinal cord 

Controlling NSC quiescence is extremely important, as unchecked proliferation may lead to 

tumorigenesis and GABAergic signalling may hold the key to such regulation. It has been 

hypothesised that endozepines such as DBI and GABAergic signalling may be involved in 

the high proliferative rate of anaplastic tumour cells, as there is a significant increase in DBI 

expression in various human brain tumours, including astrocytomas, glioblastomas and 

medulloblastomas (Alho et al., 1995). Tumours with high DBI expression also express the 

mitochondrial DBI receptor TSPO at a high level. The level of TSPO expression is strongly 

associated with the histological grade of the tumour, greater level of proliferation and 

malignancy, and tendency toward poor patient survival (Miettinen et al., 1995). Results 

presented in chapter 3 and 5 illustrate that modulation of GABAergic signalling in the spinal 

cord is able to influence proliferation in either direction. Such findings indicate that 

modulation of GABAaR by binding of endogenous CBR site antagonists such as flumazenil 

could be investigated as a means to reduce aberrant proliferation in CNS cancers 

7.4 GABA and differentiation in the spinal cord  

In all of the experiments described there was evidence of co-labelling of EdU+ cells with 

markers of either astrocyte, oligodendrocyte, microglial, or neuronal differentiation. The 

majority of EdU+ cells were either Sox2+ or PanQKI+ independent of experimental group, 

indicating that newly proliferated EdU+ cells either remained as undifferentiated Sox2+ NSCs 

or differentiated into PanQKI+ oligodendrocytes. This is in agreement with findings from other 
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studies which have shown that in the intact adult spinal cord, OPCs consistently produce 

new oligodendrocytes and therefore make up 80% of the proliferating population (Barnabé-

Heider et al., 2010). 

 The percentage and/or numbers of EdU+ cells which were also positive for markers of 

differentiation were often not significantly different in experimental vs. control animals. 

However, fate acquisition of EdU+ cells was altered in some experimental conditions vs. 

control (table 7.2).   

Glial cell fate acquisition by newly proliferated EdU+ cells was most affected as differences in 

the number and/or percentage of EdU+ cells which expressed either S100b or PanQKI+ 

changes in experimental vs control animals were more frequently observed (table 7.1). 

Whether these results reflect the effect that GABA has on differentiation of newly proliferated 

Experimental group Marker of differentiation Effect on EdU/marker # or % 

ETX PanQKI # and % decreased 

ETX NeuN % increased 

MDZ PanQKI  % increased  

TSPO KO PanQKI % decreased  

G2F77I PanQKI % decreased  

G2F77I S100β % decreased 

Ro15-4513 PanQKI # increased 

Ro15-4513 S100β % decreased 

Ro15-4513 Sox2 % increased 

Ro15-4513 Tuj % increased 

Table 7.2 Summary of effects upon differentiation  

Table showing the effects of different experimental conditions upon either the number of 

EdU/differentiation marker+ cells (#) or the percentage of total EdU+ cells which were colabelled with a 

particular marker of differentiation (%) 
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cells in the spinal cord in creating a gliogenic environment is not clear and further work is 

required to determine whether this is the case. 

Flumazenil treated animals possessed significantly more EdU+ in the spinal cord compared 

to vehicle treated animals, however there were no differences in the fate acquisition of these 

newly proliferated cells. It was hypothesised that in flumazenil treated animals with greater 

numbers of EdU+ cells, cell death by LPC-induced demyelination, may provide an 

environment for differentiation of these new cells to replace those which had been lost to 

demyelination. However, this was not the case (section 6.5.5.1) 

GABAergic signalling, possibly modulated by endogenous ligands such as DBI, is likely 

involved in the control of proliferation and differentiation within the spinal cord. However, 

further work is required to determine how best to influence such signals to direct 

differentiation for repair following cell depletion in times of injury. For example, 

overexpression of the transcription factor Sox2 has been shown to induce the differentiation 

of resident astrocytes to DCX+ neurones in the injured adult spinal cord (Su et al., 2014). 

These ‘directed-neurones’ showed features of GABAergic interneurons and illustrate how 

the proliferative gliogenic environment following injury can be used for good. In a mouse 

model of demyelination, reactive astrocytes were converted to myelinating mature 

oligodendrocytes by injection of Sox10 into the lesion site. Such results hold promise for the 

future of CNS repair, where transdifferentiation of resident astrocytes which proliferate 

following injury could be employed in situ to enhance tissue repair  
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7.5 Considerations  

7.5.1 Is EdU the best method to assess proliferation? 

In all experiments described here, proliferation in the spinal cord was quantified by detecting 

incorporation of the thymidine analogue EdU. Examining thymidine incorporation in dividing 

cells has been used for the investigation of cell proliferation since the early work of Altman 

and Das who utilised autoradiography to detect cell division by the incorporation of [3H]-

thymidine and showed that proliferation does occur in the adult CNS (Altman and Das, 

1965). This method was largely replaced by detection of BrdU incorporation in diving cells by 

IHC due to convenience and compatibility with high-resolution microscopy and colocalisation 

of up to 3 cell type markers (Breunig et al., 2008). However, assessing proliferation by BrdU 

detection can be problematic as it requires strong DNA-denaturing conditions to unmask and 

label the BrdU epitope within the new cell. 

Assessing proliferation by incorporation of the thymidine analogue EdU, and its detection by 

‘click-chemistry’, retains the benefits of BrdU-labelling in double labelling cell fate studies, 

but circumvents such methodological issues (Buck, S.B. et al., 2008; Salic and Mitchison, 

2008; Chehrehasa et al., 2009). EdU incorporation has been frequently used for studying 

proliferation in the adult CNS (Zeng et al., 2010). However, recent work has suggested that 

EdU may not be the best way to investigate proliferation and may induce experimental 

artefacts caused by labelling DNA repair and damaging DNA.  

EdU labels proliferating cells by replacing thymidine nucleosides during the s-phase of cell 

division, however nucleosides are also incorporated into DNA during DNA repair (Kao et al., 

2005; Lee, Y.-H. and Stallcup, 2011; Lowndes and Murguia, 2000). There have been 

concerns that this is the case for BrdU (Cooper-Kuhn and Georg Kuhn, 2002), and as EdU 

only differs from BrdU in its post-hoc detection method, it is therefore possible that EdU also 

labels cells undergoing DNA repair. Inclusion of cells undergoing DNA repair would mean 

that we are overestimating the amount of proliferation in the adult CNS. This would be of 
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particular concern in experiments where tissue damage is induced, for example following 

LPC-induced demyelination (chapter 6).  

Copper-Kuhn and Kuhn (2002) argue against DNA repair being a major contribution of 

BrdU+ cells as double labelling IHC and analysis by EM illustrate that BrdU+ cells exhibit 

maturation from dividing precursors to fully mature neurones. Apoptotic cell death is 

accompanied by activation of DNA repair mechanisms (Norbury and Zhivotovsky, 2004), 

however co-labelling with apoptotic markers such as active caspase-3 and TUNEL with BrdU 

was not observed in the SVZ, indicating that BrdU is not being incorporated into cells 

undergoing DNA repair before apoptosis (Cooper-Kuhn and Georg Kuhn, 2002). Neurones 

immediately activate DNA repair pathways to detect and correct DNA damage in response to 

ionising radiation (Gobbel et al., 1998; Leadon, 1996). Ionizing radiation dose-dependently 

increases DNA damage followed by DNA repair (Li, L. et al., 2001). However, when the 

number of BrdU+ cells is measured in the SVZ following irradiation, there was an immediate 

dose dependent decline in BrdU+ cells and a significant increase in the number of apoptotic 

cells (Bellinzona et al., 1996). Together these findings confirm that changes in the numbers 

of thymidine-analogue labelled cells are not an artefact or false-positive induced by the 

labelling of cells undergoing DNA repair.  

EdU has recently been suggested however to possess cytotoxic properties, where its 

incorporation into dividing cells leads to cell cycle arrest and/or cell death (Diermeier-

Daucher et al., 2009; Kohlmeier et al., 2013). It has been shown that EdU incorporation may 

slow cell replication, induce DNA damage signalling pathways, induce G2 cell cycle arrest 

and ultimately lead to apoptosis (Zhao, H. et al., 2013). EdU has also been observed to 

decrease survival of myogenic stem cell survival following transplantation into regenerating 

muscle (Andersen et al., 2013). These findings illustrate the need to reconsider EdU as an 

inert indicator in experimental settings. However, as they are based on the effects of EdU 

upon cell growth in vitro, where the dose of EdU used and the method of application, and 

length of exposure to EdU, differ from in vivo settings, further work is therefore required to 
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determine whether this is also a problem when using EdU to assess proliferation in vivo. 

Nevertheless, animals in all experimental groups studied here received EdU and this would 

control for any confounding cytotoxic effects that EdU may have in vivo.  

7.5.2 Migration of ECs  

Colabelling with the GFAP was used to determine whether any newly proliferated cells in the 

spinal cord were astrocytes. However, due to the fibrillary nature of GFAP+ staining the 

soma of GFAP+ cells was difficult to determine, and therefore colocalisation of EdU and 

GFAP could be easily over- or underestimated during cell counting. Later experiments used 

the calcium binding protein S100β as a marker of astrocytic differentiation in EdU+ cells 

which vastly improved visualisation of EdU+ astrocytes. However, S100b is also expressed 

in ECs (Canova et al., 2006) and therefore some of the EdU/S100b+ cells may represent 

migrating ECs rather than astroglial proliferation.  

Following injury, astrocytes and ECs proliferate, differentiate, and migrate to the centre of 

the lesion site to contribute to wound sealing and repair (Mothe and Tator, 2005; Meletis et 

al., 2008; Barnabe-Heider et al., 2010; Sabelstrom et al., 2013). Clustering of many EdU+ 

cells was also seen at the dorsal columns following LPC-induced demyelination. However, 

due to the inability to track specific neural cell type progeny in our experiments we were 

unable to determine which populations of cells were most involved in the LPC-induced 

proliferative response. For this reason, it was also not possible to determine whether new 

EdU+ cells present at the dorsal columns were glial cells native to the dorsal column WM or if 

it other cells migrated to the lesion site.   

It has been repeatedly shown that EC proliferation increases markedly following injury to the 

spinal cord, however in animals which received an intraspinal injection, there were no more 

EdU+ cells in at the CC compared to intact animals. Furthermore, following intraspinal LPC 

injection there were fewer EdU+ cells in the CC compared to saline injected animals. It is 

possible that these results are due to the migration of newly proliferated cells to the injured 
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dorsal columns, resulting in fewer EdU+ cells present at the CC, so that overall the level of 

proliferation in this area does not appear greater than in control conditions. However, without 

labelling of EC progeny in order to track their migration toward the dorsal column and their 

differentiation, we are unable to determine whether this is indeed the case.   

Barnabe-Heider et al., (2010) performed genetic fate mapping using tamoxifen-dependent 

Cre-recombination under the control of cell type specific promotors such as FoxJ1 to label 

ECs (Barnabe-Heider et al., 2010; Meletis et al., 2008). Genetic fate mapping of FoxJ1+ EC 

progeny would enable us to investigate the effects of GABAergic modulation of proliferation 

and differentiation in the intact spinal cord specifically in ECs. Such experiments would 

complement work presented here by further elucidating whether a basal GABAergic tone is 

responsible for the slow turnover of ECs in the intact cord. These experiments would further 

elucidate whether latent NSC properties of ECs can activated in the intact cord under 

conditions which modulate GABAergic signalling e.g. with CBR site modulation or KD or OE 

of DBI. As ECs are not the only proliferating cells in the postnatal spinal cord, genetic fate 

mapping would also allow more detailed investigation into the effects of GABAergic 

modulation of proliferation and differentiation of oligodendrocytes, astrocytes, and neurones 

in the intact spinal cord.  

7.6 Function of DBI in the intact adult spinal cord  

Work in presented in chapter 4 illustrates that DBI is expressed within the adult spinal cord 

and is present within the NSC-like ECs at the CC. In the SVZ and SGZ, DBI modulates the 

inhibitory effect of GABAergic signalling to balance NSC proliferation and neuroblast 

maturation (Alfonso et al., 2012; Dumitru et al., 2017). However, whether DBI is expressed in 

the spinal cord for the same purpose is not yet known. 

Flumazenil treated and G2F77I mice possessed significantly more EdU+ cells in the WM, 

GM, and CC compared to control animals, illustrating that attenuation of endogenous ligand 
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binding to the CBR site of GABAaR in the spinal cord by either pharmacological or 

transgenic means results in greater numbers of proliferative cells. These results suggest that 

an endogenous ligand exists at CBR in the spinal cord, which also modulates the basal 

inhibitory GABAergic tone to induce quiescence in the postnatal spinal cord, as perturbation 

of binding to CBR leads to more EdU+ cells in the spinal cord. However, whether flumazenil 

treated mice or G2F77I mice exhibit reduced binding of DBI to GABAaR in the spinal cord is 

not known. If the ligand modulating GABAaRs control of proliferation in the spinal cord is DBI 

then unlike effects seen in the SVZ and SGZ, it would be acting as a positive modulator of 

GABAaR in the spinal cord as proliferation is greater in animals with alterations in CBR site 

binding. Although ECs express DBI and respond to GABA, the effects of DBI on GABAergic 

currents in ECs, and whether DBI augments these, remains to be seen. Further work 

examining the effects of DBI upon the electrophysiological behaviour of ECs is therefore 

essential. 

Whilst work described in chapter 5 suggests that there is some form of endogenous ligand 

binding at the CBR site which modulates the inhibitory GABAergic tone in the adult spinal 

cord to keep cell turnover low in the intact cord, the effect of DBI on proliferation and 

differentiation was not specifically tested. Alfonso et al., (2012) and Dumitru et al., (2017) 

assess the effects of DBI on proliferation and differentiation in the neurogenic niches of the 

SVZ and SGZ using lentiviral mediated KD or OE of DBI. Collaboration with Prof. H. Monyer 

and Dr. I Dumitru allowed us to test these same DBI OE or DBI KD lentiviruses in the spinal 

cord in order to assess the contribution of DBI to the modulation of proliferation and 

differentiation in the intact postnatal spinal cord.  

There were few instances of successful transfection of ECs by either virus, as assessed by 

the expression of GFP or RFP, following injections targeted to the CC. However, transfection 

was largely unsuccessful and propagation to cells outside of the injection site was rarely 

seen (data not shown). ECs divide slowly (Alfaro-Cervello et al., 2012; Barnabe-Heider et al., 

2010), however as lentiviruses are capable of infecting non-dividing cells (Vodicka, 2001), it 
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is unlikely that slow turnover of ECs is to explain for poor transduction of these viruses 

following injection. Instead missed injections due to difficulty in exact targeting of injections 

to the CC or poor transfection by injection of too small a viral titre may explain why these 

experiments were unsuccessful. Ren et al., (2017) show that the proliferative response of 

EC following injury is due to direct damage to the CC ependyma (Ren et al., 2017). 

Therefore, if lentiviral mediated DBI OE or KD had been successful in the spinal cord, 

investigation into how DBI influences proliferation and differentiation within the intact adult 

spinal cord may have been confounded by the damage sustained by the ependyma during 

the viral injection itself. Martens et al., (2002) illustrated that in vivo infusions of exogenous 

growth factors into 4th ventricle resulted in changes in the proliferative capacity of cells in the 

spinal cord CC despite their introduction at a most rostral location. Injections of DBI OE/KD 

lentiviruses could be instead focused at the 4th ventricle, in an attempt to label ECs without 

the damage caused by direct injection to the ependyma (Ren et al., 2017).  

7.6.1 GABAaR expression in the spinal cord  

ECs respond with robust depolarisations in response to application of GABA, an effect which 

is mainly mediated by GABAaR (Corns et al., 2013). The numbers of EdU+ cells in the WM, 

GM, and CC are significantly higher in GAD67-GFP mice which possess lower levels of 

GABA in their spinal cord compared to WT animals. Together these results suggest that 

ambient GABA acting via GABAaRs influence proliferation in the adult spinal cord. However, 

the identity and specific subunit composition of GABAaRs in the proliferating cells of the 

spinal cord remain undetermined at present. Further investigation into the expression of 

specific GABAaR subunits in proliferating populations such as OPCs and ECs is needed in 

order to understand the effects of flumazenil, Ro15-4513, and G2F77I mutation, and 

possibly DBI, upon proliferation and differentiation in the spinal cord. For example, single cell 

RNA sequencing has already been used to analyse singe cell transcriptomics of ECs close 

to the SVZ neurogenic niche in relation to their neurogenic potential (Shah et al., 2018). 
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Therefore, such methods could also be used to investigate the expression profile of 

GABAaR subunits in ECs.  

7.6.2 Can we determine the source of GABA in the spinal cord? 

Neighbouring GABAergic CSFcCs have been hypothesised to be the source of the inhibitory 

GABA acting on ECs to induce quiescence, similar to that of neuroblasts in the SVZ (Daynac 

et al., 2013). Evidence for this hypothesis is discussed in detail in section 1.9 and section 

3.5.2.1.  

Irradiation of fast dividing progenitors results in depletion of the GABA-secreting neuroblast 

population and the activation of normally quiescent NSCs within the SVZ niche (Daynac et 

al., 2013). CSFcCs however do not show the same cell-cycle dynamics and have not been 

shown to incorporate markers of cell division in the intact postnatal spinal cord (Daniels, 

2015), therefore this method would not be applicable to the spinal cord. Instead of trying to 

selectively remove the GABA source by selective ablation of CSFcCs, recording ECs and 

GCaMP3+ CSFcCs in acute slices from VGAT-Cre/GCaMP3 mice would instead show 

whether activity of CSFcCs induces activity in ECs. VGAT/GCamp3 mice express the 

fluorescent calcium indicator in cells which express the vesicular GABA transporter VGAT, 

therefore activity of GABAergic cells, i.e. CSFcCs, can be measured in real time by changes 

in fluorescence intensity (Seo et al., 2016; Zariwala et al., 2012). Alternatively, expression of 

light activated channel rhodopsin in VGAT+ cells in VGAT-cre/ChR-tdtomato animals could 

provide another method to probe the effect of CSFcC activity upon ECs, where CSFcCs 

could be activated by blue light and resultant changes in electrical activity could be recorded 

in the nearby ECs (Cohen et al., 2012).  

If activity of CSFcCs does influence EC activity, it could be hypothesised that CSFcCs 

change in some way following SCI and this is why ECs are able to realise their NSC 

potential proliferate, differentiate, and migrate to the lesion site. Investigation into whether 

there are changes in the presence of GAD67-GFP+ CSFcCs at the CC following SCI would 
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show whether these cells die following injury or migrate to release ECs from CSFcC-

mediated inhibitory paracrine GABAergic signalling. A simpler explanation could involve a 

SCI-induced signalling pathway which inhibits GABA secretion by CSFcCs, leading to 

disinhibition of EC proliferation.  

7.7 Applicability of findings to humans  

Dromard et al., (2008) and Mothe et al., (2011) have demonstrated that the adult human 

spinal cord harbours cells which possess in vitro NSC potential. These studies show that 

self-renewing, multipotent NSCs can be passaged from adult human spinal cord which are 

able to differentiate into neurones and glia following transplantation into rats with SCI (Mothe 

et al., 2011). Such work suggests that endogenous NSCs from the spinal cord may be 

utilised for repair in conditions such as SCI or MS in humans.  

Interestingly however, arguments about whether ECs possess NSC potential which could be 

manipulated for therapeutic gain may be moot according to findings from Garcia-Ovejero 

(2014) regarding the cytoarchitecture of the human spinal cord CC ependymal region. The 

function of the CC in humans in not yet well understood (Saker et al., 2016). It is often 

thought to be a vestigial structure which loses patency over time and is gradually replaced 

by ependymal cells, where occlusion or stenosis is thought to occur in 70 to 80% of normal 

adults, as seen by high resolution MRI (Saker et al., 2016; Milhorat et al., 1994; Garcia-

Ovejero et al., 2015). MRI and post-mortem immunohistochemical investigations have also 

suggested that ECs within human spinal cords are distinct from those seen lining the CC in 

other species. A notable gliosis, formed by a dense mesh of GFAP+ astrocytic processes is 

found at the adult human CC region. The GFAP+ gliotic mesh surrounds and infiltrates EC 

accumulations within this area and is a characteristic believed to be unique to this region in 

humans (Garcia-Ovejero et al., 2015) Vimentin+ cells arranged in a perivasuclar 

pseudorosette structures, a characteristic diagnostic feature of low-grade ependymoma, 

have also been found to be specific to the human CC region. 



268 

 

These findings are still debated however, with some claiming that CC occlusion and changes 

to the ependymal region architecture are a pathologic post-mortem finding, rather than an 

accepted degenerative process associated with normal aging (Cramer et al., 2005). It is 

thought that these changes may be associated with acquired ependymitis caused by 

common viruses contracted throughout life (Saker et al., 2016). Indeed, there is evidence 

that some viruses including influenza A, poxviruses, measles, mumps, selectively target ECs 

and replicate within ECs which results in their destruction without other clinically relevant 

disease (Milhorat et al., 1994; Mims, 1960).  

Furthermore, whilst Garcia-Ovejaro (2015) show that the CC architecture may be distinct 

from other species, the vimentin+ ependymocytes present at the human CC show expression 

of CD15 and glutamate aspartate transporter which have been related to stem/precursor cell 

phenotypes in other NSC niches (Garcia-Ovejero et al., 2015). Cannabinoid receptor type 1, 

another molecular marker associated with NSC regulation, has also been shown to be 

enriched in the ependymal region of human CCs which retain patency (Paniagua-Torija et 

al., 2015) indicating that whilst differences in the ependymal region cytoarchitecture between 

different species, the ECs may still possess NSC capabilities which may be reparative, in 

humans as seen in animal models. Cawsey et al., 2015 illustrate that following SCI in 

humans, ECs respond by upregulating their expression of the neural progenitor cell marker 

nestin, with significantly more ECs positive for nestin post injury, where there is a positive 

correlation between the percentage of nestin positive ECs and post-injury survival time 

(Cawsey et al., 2015). These findings further illustrate that whilst the ependymal region may 

differ between species, it appears that ECs within humans also respond to injury, perhaps 

adopting a more neural progenitor-like phenotype, as illustrated by an increase in EC nestin 

expression (Cawsey et al., 2015).  

Activation of ECs for functional gain has been explored in humans using infusion of growth 

hormone (GH) in a 9 month old infant with caudal regression syndrome (Devesa et al., 

2017). Caudal regression syndrome is a foetal malformation characterised by incomplete 
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spinal cord development, resulting in interruption of the SC at L2-L3 level, lack of innervation 

to lower limbs, and neurogenic bowel and bladder in the patient treated in this study (Devesa 

et al., 2017). GH is known to have positive effects on NSCs in other niches (Martens, D.J. et 

al., 2002), therefore the patient was treated with GH plus rehabilitation over a course of 5 

years. At the end of the 5-year experimental protocol, significant sensorial and motor 

improvements had been reached, with the gross motor function test-88 improving from 

12.31% to 78.48% (where the maximum = 100). The patient gained control over his 

sphincters and could walk when aided with crutches, suggesting significant reinnervation 

occurring below the lesion level (Devesa et al., 2017). Treatment of caudal regression 

syndrome is usually supportive to improve quality of life and whilst it is difficult to assess the 

exact effects of GH in this situation, it appears that treatment with GH alongside 

rehabilitation at an early age when the CNS is still highly plastic, may have aided recovery. 

Brain GH has been shown to induce proliferation and differentiation of NSCs, and although 

less is known about the effects of GH on ECs, it seems possible that it may also have 

positive effects in the spinal cord if ECs are indeed NSCs. Devasa et al., (2017) argue that 

GH may act in the spinal cord as it does in the brain, increasing proliferation and 

differentiation of the spinal cord NSCs, allowing the formation of neural components which 

provide new innervation distal to the lesion level and therefore improve sensory and motor 

outcomes when supported by rehabilitation. Whilst this is an isolated case study, examining 

a disease known to have a spectrum of pathology, initial results suggest that manipulation of 

EC NSC properties by exogenous means may have contributed to the degree of functional 

recovery seen here. This is the ultimate goal for work described in this thesis, where 

investigation into how endogenous signalling in the spinal cord influences the cellular 

response, and how to manipulate these processes with clinically available drugs, may inform 

further work for therapeutic gain.  

Overall, these results suggest that ECs in humans may also be important for repair following 

CNS trauma, and may be able to be manipulated to improve this process. Recent work 
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however has shown that ECs in humans do not proliferate in response to SCI, suggesting 

that ECs do not constitute an endogenous pool of cells for repair and that other avenues to 

replace cells lost in injury should be considered (Paniagua-Torias et al., 2018). However, 

ECs are not the only proliferative cell in the spinal cord (Barnabe-Heider et al., 2010; Horner 

et al., 2000). Work described here shows that modulation of GABAergic signalling influences 

proliferation of cells present in the WM and GM which may also be involved in the post-injury 

proliferative boom. Furthermore, GABA can decrease proliferation in the spinal cord, a 

finding which may be important in informing future CNS cancer therapies. Therefore, we 

must not ignore the importance of understanding the proliferative behaviour of different cell 

types in the adult spinal cord.  

7.8 Conclusions 

In conclusion, studies in this thesis have elucidated new information regarding how 

proliferation in the postnatal spinal cord may be modulated by GABAergic signalling. Results 

described here illustrate that GABA and its modulation by endozepines such as DBI may be 

one of the mechanisms which restrict proliferation of cells in the neurogenic niche 

surrounding the CC of the mammalian spinal cord. Although the postnatal spinal cord 

exhibits low levels of proliferation, this thesis has shown that proliferation within the intact 

adult spinal cord is not a rigid entity. Furthermore, alterations in either ambient GABA or 

modulation of GABAergic signalling by ligand binding to the CBR site of GABAaR can 

influence proliferation in a bidirectional manner. Work presented here illustrates that the 

postnatal spinal cord and NSC properties of ECs should not be overlooked when considering 

the possibility of self-regenerative therapies in future clinically relevant studies for spinal cord 

repair, it simply requires more attention. 
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