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Abstract
This thesis proposes novel active-learning
algorithms and testing methods for deter-
ministic finite-state machines that (i) have
a specified transition from every state on
each input of the (fixed) alphabet and (ii)
can be reliably reset to the initial state
on request. These algorithms rely on the
novel methods of construction of sepa-
rating sequences. Extensive evaluation
demonstrates that the described testing
and learning methods are the most effi-
cient in terms of the amount of interaction
by a tester with the system under test.
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Chapter 1
Introduction

System quality and absence of faults are very important in the development
of any software or hardware product. Quality of a system can be improved
if one has or can construct an abstract model of the system that can be
analysed and tests can be generated from such a model. One type of such
abstract models is a finite-state machine (FSM) that can model a wide variety
of systems, from communication protocols and software systems to hardware
components. Use of finite-state machines is beneficial for the following three
reasons. First, finite-state machines are easy to understand and analyse for
both human and computer. Second, tests that check if the system works
properly can be generated automatically from its model represented by a
finite-state machine. Third, it is possible to learn a model of the system that
can be described as a finite-state machine.

This thesis describes how to generate tests from FSM models and how
to learn FSM models by interaction with the system much more efficiently
than the other methods. There are plenty of methods for both testing and
learning but most of them do not minimize the amount of interaction with
the system. Each interaction requires some time and thus also money in
practice. Therefore, it is important to test or learn the system using the least
number of interactions.

Testing and learning of finite-state machines with terms used in this thesis
are described informally on the example of a turnstile in the next two sections.
The rest of this introduction chapter describes the motivation of research
of finite-state machines, the contribution of this thesis, and definitions of
finite-state machines and common terms. Then the thesis is divided into
three parts. Part I deals with the construction of separating sequences
that are important in both testing and learning. Part II describes testing
of finite-state machines and proposes new testing methods. Part III is
about active learning of finite-state machines and proposes novel learning
algorithms. Each part introduces the topic and definitions of related terms
at first. Then, particular approaches are discussed and proposed algorithms
are experimentally evaluated on randomly-generated machines and another
two case studies that are summarized in Appendix C. All parts end with a
conclusion of the work done in the related part. The entire thesis is summed
up in Chapter 19 followed by the future work in Chapter 20.
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1. Introduction .....................................
1.1 State Machines – Turnstile Example

The simple turnstile in Figure 1.1 is an example of system that can be
described by a finite-state machine. It accepts two actions, or inputs, and
responds with one of three possible outputs to each input. If one inserts a
coin in the turnstile, then there is no observable response; the output for the
action ‘insert a coin’, encoded as ‘c’, is ‘N’ as ‘No response’. If one pushes the
bar of turnstile, the bar is either locked or free so that one can pass through.
The input ‘p’ as ‘push the bar’ leads either to the output ‘L’ to mean ‘Locked’
or to the output ‘F’ to mean ‘Free’.

Inputs:
‘insert a coin’
‘push the bar’

Outputs:
No response
Locked
Free

Figure 1.1: A simple turnstile for coins

The specification, or a model of how the system should work, of the
simple turnstile is shown in Figure 1.2. It has two states called ‘Locked’
and ‘Unlocked’ that correspond to the states of the bar. The bar is initially
locked and is locked until one inserts a coin; the initial state is indicated by a
small arrow above the state ‘Locked’. Other arrows represent transitions, for
example, the leftmost arrow labelled with ‘p/L’ corresponds to the action of
the bar push with the response that it is locked. The state of the turnstile is
changed to ‘Unlocked’ after a coin is inserted. The transition from ‘Unlocked’
corresponding to the bar push is labelled with ‘p/F’ so the bar is free. If
more than one coin is inserted in a row, then the turnstile remains in the
state ‘Unlocked’ which is captured by the transition ‘c/N’ that leads from
‘Unlocked’ back to that state. The specification of the simple turnstile thus
can be summarized as ‘exactly one person can pass through after at least one
coin is inserted’.

The specification in Figure 1.2 is also the first example of models that
this thesis works with. It has at most one transition for each input from
every state, therefore, it is deterministic. There is a transition for each input
from every state, therefore, it is completely-specified. The specification is thus
an example of a completely specified deterministic finite-state machine. In

4



.............................. 1.2. Testing and Active Learning

addition, it is assumed that systems as well as models can be reset reliably
to the initial state at any time; such machines are called resettable.

Locked Unlocked

States = {Locked, Unlocked}
Inputs = {c, p}
Outputs = {N, L, F}
Locked is the initial state

p/L

c/N

c/N
p/F

Figure 1.2: The specification of the simple turnstile (Figure 1.1)

An implementation, or a model of how the system works, can be different
from the specification. The differences are then called faults. For example, the
implementation of the simple turnstile in Figure 1.3 contains a transition fault.
The transition ‘c/N’ from the state ‘Unlocked’ leads to the state ‘Locked’
instead of going back to ‘Unlocked’. It means that every second coin does
not allow one to pass through the turnstile. Therefore, this implementation
follows the description of ‘one can pass through after an odd number of coins
is inserted’.

Locked Unlocked

p/L

c/N

c/N

p/F

Figure 1.3: A faulty implementation of the simple turnstile (Figure 1.1)

1.2 Testing and Active Learning

Testing methods create a set of test sequences called a test suite such that test
sequences as sequences of inputs asked from the initial state aim to reveal
faults in the implementation. A fault is revealed by observing a response
different from the expected one that is produced by the specification. If the
implementation passes a test suite, that is, responses to all test sequences are
equal to the expected ones, then a guarantee on the absence of particular faults
is usually given. For example, the simplest testing method, the transition tour
method, just checks the presence of all transitions so it can guarantee that no
transition is missing if the implementation passes the test suite. The transition
tour method cannot detect all transition faults. For instance, the test suite
of sequences ‘p’, ‘c,c’ and ‘c,p’ covers all transition of the specification in
Figure 1.2 but the implementation in Figure 1.3 with a transition fault passes
it. The transition fault is not revealed because the target states of transitions
are not verified. Such verification is done by using separating sequences.
A separating sequence of two states is a sequence of inputs such that the

5



1. Introduction .....................................
Specification (Figure 1.2)

Testing
method Test suite

c,p,p,p
c,c,p

Expected responses
N,F,L,L
N,N,F

responses observed

N,F,L,L
N,N,L

Fault
detection

Implementation (Figure 1.3)

Learning
algorithm Queries c,p,p,p

responses observed
N,F,L,L

Teacher

Conjectured model (Figure 1.5)

explores
and then
creates

test sequences
are queried and

creates asked and

feedback
refines according to

counterexample
if model and system differ

Figure 1.4: Standard setting of testing and active learning of finite-state machines

states respond with different outputs to the sequence and thus the sequence
separates, or distinguishes, them. One separating sequence of states ‘Locked’
and ‘Unlocked’ of the simple turnstile’s specification is the input ‘p’. Therefore,
it reveals the transition fault in the implementation in Figure 1.3 if it is asked
after the sequence of ‘c,c’. The bar would be locked after insertion of two
coins but it should be free according to the specification in Figure 1.2.

The upper half of Figure 1.4 captures a general flow of testing with an
example of the test suite of the simple turnstile’s specification. At first, a
testing method analyses the specification and builds a test suite based on the
analysis. Then the responses to the test sequences are collected both from
the specification and the implementation. If there is a difference between the
responses of both models, then a fault is detected. Otherwise some guarantee
on the correctness of the implementation is given. In the case of the simple
turnstile, sequences ‘c,p,p,p’ and ‘c,c,p’ are sufficient to reveal any transition
fault in the implementation.

The specification can often be unsuitable for the construction of test suites.
It can be outdated, not described as a finite-state machine, partially specified,
or completely missing. If one still wants to know how the implementation
works, then its model can be learnt instead. There are two main approaches to
learning, active and passive. Passive learning derives a model of a system just
from provided traces, that is, input sequences with corresponding responses.
In contrast, active learning does not limit itself to a set of a few traces but it

6



.............................. 1.2. Testing and Active Learning

interacts with the system by asking for responses on particular input sequences.
According to obtained outputs it refines the conjectured model and queries
another sequence. The model derived by passive learning thus captures just
properties covered in the provided traces while active learning can explore
any behaviour of the system and so it is able to detect possible faults that
are extremely rare. Therefore, this thesis deals with active learning.

The standard setting of active learning is captured in the lower half of
Figure 1.4. A learning algorithm, or a learner, interacts with the implemen-
tation, or the system to learn. It asks for responses to particular sequences
of actions based on the obtained outputs and refines the conjectured model.
Then, it creates another query for the system. In addition, there is usually
a teacher that can help the learner with the learning. The teacher provides
a counterexample on request of the learner if the conjectured model differs
from the implementation. Otherwise, the teacher confirms that both models
are equivalent which means that the learner stops the learning.

In the case of the simple turnstile, the learner knows nothing about the
system at first, so the conjectured model would be just the initial state s0. Let
‘c,p,p,p’ be the first query that is asked. According to the response ‘N,F,L,L’,
the learner refines the conjectured model as shown in Figure 1.5. On the one
hand, the conjectured model has two states as the implementation, because
the separating sequence of single input ‘p’ was observed with two different
outputs. On the other hand, the behaviours of the models differ because
the bar is estimated to be free initially by the conjectured model. Note that
there is no transition for the input ‘c’ from the state s1 which means that
the conjectured model is not completely specified.

s0 s1

c/N

p/F

p/L

Figure 1.5: The conjectured model of the simple turnstile (Figure 1.1) after
observing ‘N,F,L,L’ in response to ‘c,p,p,p’

Figure 1.4 highlights the significant similarity between active learning and
testing. Both approaches work with the implementation by querying sequences
of inputs and make further steps according to observed responses. These input
sequences are formed mainly based on the knowledge of separating sequences
acquired either from the specification in the case of testing or from observed
responses and counterexamples in the case of learning. Both approaches also
result in a guarantee of equivalence of either the implementation and the
specification in testing or the implementation and the conjectured model
in learning. Moreover, the abstract teacher is usually approximated by a
testing method in practice. The conjectured model is then considered as the
specification and thus the guarantee is the same in both approaches.
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1. Introduction .....................................
The difficulty of both approaches is hidden in providing a guarantee of

equivalence and still querying as few input sequences as possible. There
are many kinds of guarantees but this thesis works only with those based
on the number of extra states. What are extra states? Consider a faulty
implementation of the simple turnstile that allows exactly two people to
pass through the turnstile after at least two coins are inserted. Such an
implementation is captured in Figure 1.6. It has three states, the initial one
where the bar is locked and two states, ‘U0’ and ‘U1’, where the bar is free.
The implementation has thus one state more than the specification, that is,
there is the fault of an extra state. A guarantee based on the number of extra
states is usually in the form of ‘if the implementation passes the test suite
but differs from the specification, then the implementation has more than k
extra states’. Particular conditions that influence which sequences are queried
need to be fulfilled to achieve such a guarantee.

L U0 U1

p/L

c/N c/N

c/Np/Fp/F

Figure 1.6: An implementation of the simple turnstile with an extra state

The complexity grows with the number of extra states. Consider a possible
implementation of the simple turnstile in Figure 1.7 that has k extra states
and thus k + 2 states in total. It describes the turnstile that counts the
number of inserted coins but can count just up to k+ 1. It also decreases the
number of coins if one passes through. The shortest separating sequence of
states ‘Ui’ and ‘Uj’, i < j ≤ k, is (i+ 2)-times ‘p’; ‘U0’ responds to sequence
‘p,p’ with ‘F,L’ and ‘U1’ with ‘F,F’. If one wants to guarantee that there is no
such extra state, then at least these separating sequences need to be queried
from corresponding states. However, a testing method does not know that
the implementation looks like the one in Figure 1.7 and does not know its
separating sequences. Therefore, it needs to query many more sequences to
eliminate all possible faulty implementations that have up to k extra states.
Notice that the responses to all shortest separating sequences of two states
differ only in the last output symbol. Therefore, each separating sequence
is formed of a transfer sequence producing the same outputs, a separating
input, and an optional suffix sequence; ‘p,p,p’ is a separating sequence of ‘U0’
and ‘U1’ but it is not the shortest one, the second ‘p’ is the separating input.
Notice also that the sequence of (k + 1)-times ‘p’ has an important property
in the implementation in Figure 1.7 as it distinguishes all states, that is,
all states respond to the sequence differently. Such a sequence is called a
distinguishing sequence and it can rapidly reduce the number of sequences
needed to be asked.

8
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L U0 U1 . . . Uk

p/L

c/N c/N c/N c/N

c/Np/Fp/Fp/Fp/F

Figure 1.7: An implementation of the simple turnstile with k extra states

1.3 Motivation of the Work in the Thesis

Understanding the inner representation of a system is the main goal of reverse
engineering and it is a crucial part for many other fields like testing and
verification. Therefore, it has a great impact if there is a learning algorithm
that can learn a model of the system efficiently and with as little external
help as possible. If someone tries to use an active-learning algorithm, it is
usually the oldest one, the L* algorithm. It asks a lot of queries and it is
also very dependent on the teacher knowing if the learnt automaton is the
‘correct’ one. Hence, the approach of active learning is usually given up as
there are just a few learning algorithms performing a little better than the L*
algorithm but they are not well-known. How would the situation be changed
if a learning algorithm learned with just half of what the L* algorithm needs?

Testing is an important step in the development of any system as it can
detect faults and thus helps to improve the quality. In practice, each test
requires some resources such as money or time, therefore, testing is usually
limited by the given resources. One should thus try to minimize the number of
tests while retaining at least the same guarantee on the outcome. Similarly to
the learning, if someone tries to use a testing method for resettable finite-state
machines, it is usually the oldest one, the W-method. It is very simple but it
generates a lot of test sequences. There are some advanced testing methods
that performs much better than the W-method but are they at the edge of
efficiency? Is there a testing method that creates test suites significantly
smaller than the advanced testing methods?

1.4 Contribution of the Work in the Thesis

The thesis contains several contributions. The main five follow:
Part I — Construction of Separating Sequences. Existing splitting tree (ST) construction procedure was amended to work
with invalid inputs (Chapter 4). This makes it possible to reduce a test
suite by constructing greatly reduced harmonized state identifiers (HSI)
from the splitting tree.

Part II — Testing Methods. New sufficient condition on completeness of a test suite (Section 8.3)
that is weaker than the other sufficient conditions.

9



1. Introduction .....................................
. S-method (Chapter 11) – a novel testing method using separating se-

quences formed from ST that makes it the most efficient testing method.

Part III — Active-Learning Algorithms.Observation tree approach (Chapter 15) proposes a way how to learn
efficiently with an assumption of extra states by including a testing
method in the learning and using an appropriate learning structure. In
addition, it benefits from asking for responses on single inputs instead
of on entire queries that makes it more adaptive and flexible. It usually
eliminates the dependence on the teacher and still needs less interaction
with the system than the other learning algorithms.. S-learner (Section 15.5) – a novel learning algorithm that follows the
observation tree approach and employs the S-method to be the most
efficient learning algorithm.

There are also a few small contributions. FSMlib, a C++ library described
in Appendix A, contains implementation of a significant number of testing
methods and learning algorithms that makes it the most comprehensive
library for deterministic finite-state machines. Moreover, all algorithms
are adjusted to work with all types of deterministic finite-state machines
described in Section 1.6. These amendments are explained on an example
after each algorithm is described in the particular section of the thesis. The
original algorithms were usually proposed for one of the three most common
types of finite-state machine. By introducing a special input symbol called
stOut, a new more general definition of deterministic finite-state machine was
developed such that it covers all three most common types and so it provides
even a richer model. As a consequence, any algorithm that works with this
new general model can implicitly work with any of the three most common
types.

Two flaws were found in the related works. First, the proof of Lemma 3
in [SPY12] about convergent sequences does not cover all possible cases so
it is just partially correct. Convergent sequences are the foundations of the
SPY-method, a testing method. Second, semantic suffix closedness proposed
in [SHM11] as an improvement of the L* algorithm is shown not to be a
sufficient condition for the conjecture model to be minimal as it was claimed.
Both flaws are explained in detail in the related sections. In the case of
convergent sequences, an amendment with a proof is proposed.

1.5 Formal Languages and General Definitions

Basics of the theory of formal languages and some general structures such as
a tree are introduced in this section.

An alphabet X is a nonempty finite set of symbols x1, . . . , xp, where p is
the size, or cardinality, of X, that is, p = |X|. A string, or a word, over X is
any finite sequence of symbols from X. The empty string is denoted ε and it
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has length 0. Let u, v be strings over the alphabet X. Then u · v, or simply
uv, means concatenation of u and v. The length of u is denoted by |u| so that
|ε| = 0. X∗ is the set of all strings over the alphabet X, that is, u, v ∈ X∗.
Xk and X≤k are sets of all strings over the alphabet X of (respectively up
to) length k, that is, u ∈ Xk ⇐⇒ |u| = k and u ∈ X≤k ⇐⇒ |u| ≤ k. Note
that the set of all strings X∗ always contains ε and ∀u ∈ X∗ : ε ·u = u = u · ε.
Concatenation of two sets of strings U, V is U · V = {u · v | u ∈ U, v ∈ V }.

Let u, v, w be strings such that w = u · v. Then u is a prefix of w, v is a
suffix of w and v is an extension of u in w. If v 6= ε, u is a proper prefix. The
set of prefixes of w is denoted pref(w). A set of strings U is prefix-closed if for
each string u ∈ U there are all prefixes of u in U . Similarly, a set of strings
U is suffix-closed if for each string u ∈ U , all suffixes of u are in U .

A successor tree, or a rooted directed tree, is a directed graph with a special
node, called root, such that no edge leads to the root and there is exactly
one directed path to each node from the root. Nodes in a successor tree have
a special notation. Let (u, v) be an edge of a successor tree from node u to
node v. Node u is called a parent of v and v is a child, or a successor, of u. If
node u has no successor, then u is said to be a leaf. Otherwise, u is said to
be an internal node. A decision tree and an observation tree are successor
trees with nodes containing additional information.

1.6 Finite-State Machine

A finite-state machine (FSM) is a model consisting of states and transitions
between states. According to the received input, an FSM changes its current
state and responds with the corresponding output. Examples of FSMs
represented as state diagrams were shown in Figure 1.2 and in Figure 1.3 as
the specification and the implementation of simple turnstile. The behaviour
of an FSM can also be listed in transition and output tables, called together a
behaviour table.

There are many different definitions of finite-state machines in the literature.
Automata active learning deals with deterministic finite automata (DFA)
whereas active learning of finite-state machines works rather with Mealy
machines as they describe reactive systems more precisely. AMoore machine is
another type that is used as a model of finite-state machines. The difference is
mainly the position of outputs in a model. Moore machines and deterministic
finite automata have outputs tied to states. In contrast, outputs are only on
transitions in the case of Mealy machines. This section proposes a general
model called deterministic finite-state machine (DFSM) that have outputs
both on states and on transitions. All four types are depicted in Figure 1.8.
States are denoted ‘A’ and ‘B’, inputs ‘a’ and ‘b’, and outputs are 0, 1, 2.
Note that DFA has just two outputs, one is represented by double line around
the state.

There are two functions that describe the behaviour of a model, transition
and output functions. Both functions take an input symbol and respectively
produce a next state (a state where the transition on the input leads) and an
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A
1

B
0

a / 1
b / 2

DFSM

A B

b / 0

a / 1

Mealy

A
2

B
2

a, b
a,
b

Moore

A B

a, b

ab

DFA

Figure 1.8: FSMs with S = {A,B}, X = {a, b} and Y = {0, 1, 2}

output symbol that is observed if the transition is taken. Two special symbols
are introduced to cover both Moore and Mealy machines in one definition.
An input symbol ↑ called stOut requests the state output and the current
state of the machine is assumed to remain unchanged when it is used. An
output symbol ↓ called noOut represents ‘no response’.
Definition 1.1. A deterministic finite-state machine (DFSM) is a septuple
(S,X, Y, s0, D, δ, λ), where

S is a finite nonempty set of states,
X is an input alphabet (a finite nonempty set of symbols); ↑ /∈ X,
Y is an output alphabet (a finite nonempty set of symbols),
s0 is an initial state, s0 ∈ S,
D is a domain of defined transitions; D ⊆ S ×X, D↑ = D ∪ {S × {↑}},
δ is a transition function δ : D↑ → S such that ∀s ∈ S : δ(s, ↑) = s,
λ is an output function λ : D↑ → Y ∪ {↓}.

Note that the stOut ↑ is not in the input alphabet X so that it differs from
all other input symbols. Similarly, the noOut ↓ can be declared outside the
output alphabet Y so as not to interfere with other output symbols but it
is usually matched to the output of ‘timeout’ that is in Y . Therefore, it is
not specified if ↓ is or is not in Y . The timeout output represents that no
response is observed during the predefined time limit.

The initial state s0 is the current state of the machine before any input is
asked. Moreover, s0 is also the current state if the machine is reset. Machines
that can be reset are called resettable.

Transitions are labelled with input and output symbols. The next state, or
the target state, of a transition is defined by the transition function δ and the
function λ assigns an output symbol to the transition. Not all transitions are
defined as the domain D specifies. If an input x ∈ X is applied, the current
state of the machine is s ∈ S and the transition (s, x) is not defined, that is,
(s, x) /∈ D, then the behaviour of the DFSM is undefined.

For simplicity, let X↑ = X ∪{↑}. Strings over X↑ are called input sequences
and strings over Y ∪ {↓} are called output sequences. ‘Input’ and ‘output’
are usually omitted so only ‘sequence’ is used if it is clear from the context.

12
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The transition function δ and the output function λ can be extended to
work over input sequences. The extended transition function δ∗ returns the
target state reached by following the path labelled with the given input
sequence. The output sequence formed of labels on this path is returned by
the extended output function λ∗. If a transition on the path is not defined,
the path and both functions are undefined. Otherwise, both functions are
defined inductively as follows. If nothing is asked, then the machine stays
in the same state and the empty string is obtained, that is, δ∗(s, ε) = s and
λ∗(s, ε) = ε for any state s ∈ S. If a sequence x · v is queried, then both
functions follow the first symbol x and process the suffix v from the next state,
that is, δ∗(s, x · v) = δ∗(δ(s, x), v) and λ∗(s, x · v) = λ(s, x) · λ∗(δ(s, x), v) for
all (s, x) ∈ D↑ and an input sequence v consisting of defined transitions. In
addition, the transition and output function with their extended versions
can be applied to a set of states and a set of sequences, that is, γ(S′, U) =
{γ(s, u) | s ∈ S′ ∧ u ∈ U} for all γ ∈ {δ, λ, δ∗, λ∗}, S′ ⊆ S and U ⊆ X∗↑ such
that |u| = 1 for all u ∈ U in the case of functions δ and λ.

Definitions of three standard models, Mealy and Moore machines and
deterministic finite automaton, follow with their relations to DFSM.
Definition 1.2. A Mealy machine is a DFSM with a specified output function
λMealy : D → Y .

The output function of DFSM is specified in the following manner:
λ(s, x) = λMealy(s, x) ∀(s, x) ∈ D,
λ(s, ↑) = ↓ ∀s ∈ S.

The response to the stOut symbol ↑ is always the noOut symbol ↓. There-
fore, there is no point to apply ↑ as the output does not provide any additional
information about the model if the machine is modelled by a Mealy machine.
Definition 1.3. A Moore machine is a DFSM with a specified output function
λMoore : S → Y .

The specification of the output function for Moore machines assigns the
output of a state to the output of the incoming transition:

λ(s, x) = λMoore(δ(s, x)) ∀(s, x) ∈ D,
λ(s, ↑) = λMoore(s) ∀s ∈ S.

This way, the stOut symbol is used only to obtain the output of the initial
state. The outputs of other states are observed on transitions leading to the
states. Therefore, ↑ is applied only once in the case of a Moore machine.
Definition 1.4. A deterministic finite automaton is a quintuple (S,X, s0, δ, F ),
where S,X, s0 are a set of states, an input alphabet and the initial state,
respectively, and

δ is a transition function: δ : S ×X → S,
F is a set of accepting, or final, states; F ⊆ S.

A deterministic finite automaton (DFA) is a complete Moore machine M =
(S,X, Y, s0, D, δ, λMoore) with binary output alphabet Y = {0, 1}, such that
λMoore(s) = 1 if and only if s ∈ F . A complete machine has defined transitions
on each input from all states. That is, a DFSM M = (S,X, Y, s0, D, δ, λ) is
completely specified, or complete, if and only if D = S ×X. Otherwise, the
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machine is partially specified, or incomplete; D ⊂ S ×X. States of DFA that
are not accepting are called rejecting.

There are two other important properties of FSMs besides completely
and partially specified machine. The first property is connectedness of state
diagram and the second is minimality of a machine.

Two types of connectedness are related to the topics of thesis and both are
based on reachability of states. A state si is reachable from a state sj if there
is a directed path in the state diagram of the machine that leads from sj to
si. A DFSM is initially connected if and only if each state is reachable from
the initial state. A DFSM is strongly connected if and only if each state is
reachable from each other. Every strongly connected machine is also initially
connected.

The minimality of a machine depends on uniqueness of each state. Two
states si, sj ∈ S are distinguishable, denoted si 6∼ sj , if there is an input
sequence w defined for both states si and sj such that the output sequences
produced in response to w queried from both states are different, that is,
λ∗(si, w) 6= λ∗(sj , w). The sequence w is called a separating sequence of states
si and sj and it can be decomposed to a transfer sequence u ∈ X∗↑ , a separating
input x ∈ X↑, and a suffix v ∈ X∗↑ such that w = u · x · v, λ∗(si, u) = λ∗(sj , u)
and λ(δ∗(si, u), x) 6= λ(δ∗(sj , u), x). A DFSM is minimal, or reduced, if and
only if it is initially connected and each two states are distinguishable, that
is, ∀si 6= sj ∈ S : si 6∼ sj .

Figure 1.8 shows all four types of models and all mentioned properties.
Each machine has two states, ‘A’ and ‘B’, such that ‘A’ is the initial state,
which is denoted by a small arrow above the state. Outputs 0–2 are shown
only where they are essential, that is, the Moore machine and DFA have no
outputs on transitions and the Mealy machine does not show ↓ by every state.
Note that double line around the state ‘B’ of the DFA means that ‘B’ is an
accepting state; ‘B’ ∈ F . If transitions have the same source state and the
same target, they are grouped. For example, the transitions (A, a) and (A, b)
of the Moore machine lead to the state ‘B’ so there is only one transition with
the label ‘a, b’. The DFSM and Mealy machine are partially specified. On
the other hand, the DFA and Moore machine are complete. The DFSM and
Moore machine are initially connected while the DFA and Mealy machine
are strongly connected. The Moore machine is not reduced because states A
and B cannot be distinguished. The other three models are minimal.

From Figure 1.8 can be easily seen that DFSM is a combination of Mealy
and Moore machine and thus DFSM is a generalization of all three other
models because DFA is a subclass of Moore machines. Therefore, it is sufficient
to work with the Definition 1.1 of DFSM as algorithms and definitions can
then be easily adjusted for the other three models.

1.6.1 Sequences for State Identification

Separating sequences grouped according to particular properties have special
names as follows.
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. Preset distinguishing sequence (PDS) – a sequence u is a PDS if it
separates (is a separating sequence of) all pairs of states, that is, each
state responds with a unique output sequence to u.. State verifying sequence (SVS), or unique input output sequence, of state s
– a sequence u is SVS of s if it separates s from all other states, that is, s
responds uniquely to u. Verifying set (VSet) contains an SVS for each
state.. Adaptive distinguishing sequence (ADS) is a VSet such that for each two
states, the associated SVSs have a common prefix that separates the
states.. State characterizing set (SCSet) of state s is a set of separating sequences
such that each other state is separated by a sequence of the SCSet. Each
state of a reduced DFSM has always an SCSet. A set of separating
sequences that separate all pairs of states is called characterizing set
(CSet), sometimes denoted W .. Harmonized state identifiers (HSI) are SCSets of all states such that for
each pair of states si and sj their separating sequence w is a prefix of a
sequence in the HSIs of both si and sj .

There are four main relations of these sequences with respect to a minimal
DFSM M .

i If M has a PDS, then M has an ADS.
– Let d be a PDS. Then d is an SVS of each state and so a VSet
complying with the definition of ADS can be formed as every two states
have the same SVS.

ii If M has an ADS, then M has a VSet, that is, every state of M has an
SVS.
– It follows from the definition.

iii If a state s of M has an SVS, then s has an SCSet of one sequence.
– Let w be an SVS of s and Ws = {w} be an SCSet of s. Then Ws

separates s from the other states because w does it by the definition of
SVS.

iv M has an ADS if and only if M has HSIs such that every HSI contains
just one sequence.
– ii and iii prove that ifM has an ADS, then HSIs are singletons as HSIs
are SCSets. The other direction follows from the fact that an HSI of one
sequence is an SVS because it separates the related state from the others.
Every two HSIs contain a common prefix that separates the related pair
of states. Therefore, the condition on the SVSs in the definition of ADS
is also met.

The first three relations and construction algorithms of these sequences are
discussed in [Sou14]. The relation iv is proposed in [HT15].
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1.6.2 State Pair Array

Algorithms dealing with finite-state machines frequently need to handle pairs
of states, or state pairs, and store information related to them. A state pair
array (SPA) is introduced for this purpose. The content of an SPA can be
arbitrary but it relates to a particular machine M with n states. The size
of SPA is always n·(n−1)

2 that is about a half of the size of state pair table
that has n rows and n columns. An example of an SPA is in Figure 4.2.
The previous version of SPA with different indexing was proposed in [Sou15].
The cells of SPA are indexed according to the following formula that enables
to increase the number of states n without re-indexing the stored content.
Before n is increased by 1, n cells are appended to the end of SPA; the cells
relate to the state pair (s0, sn), . . . , (sn−1, sn) where sn is the added state.
Note that SPAs are different from the Pairs Table used in [Gil62] to minimize
a machine.

getStatePairIndex(i, j)→ j · (j − 1)
2 +i if i < j else swap i and j (1.1)
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Chapter 2
Introduction

Separating sequences are essential elements in both testing and learning of
finite-state machines. One would not be able to distinguish any two different
states without them. Although most of the testing methods and active-
learning algorithms use separating sequences, their construction did not get
much attention. It is obvious that to be efficient in testing or learning, one
needs to be efficient in the construction of separating sequences. If a testing
method or a learner requires a separating sequence of a state pair, then
one may want to know the shortest separating sequences of all state pairs.
However, a special type of separating sequences introduced in Section 1.6.1
is usually requested. The most common are a characterizing set (CSet) and
harmonized state identifiers (HSI) as all minimal deterministic finite-state
machines have these sequences for state identification. In their cases, it is
not just about the length of individual separating sequences but also about
the number of sequences in these sets. It was shown in [Sou15] that the
use of an adaptive distinguishing sequence (ADS), another special type of
grouped separating sequences, results in much smaller test suites. The reason
is that only one sequence is needed for state identification. However, not
every DFSM has an ADS. Note that a machine has an ADS if and only if it
also has HSIs such that every HSI contains just one sequence as is showed in
Section 1.6.1.

This part of the thesis is structured as follows. The next chapter describes
the published approaches to the construction of separating sequences, CSet
and HSIs. Then, a new extension of the existing construction algorithm of a
splitting tree is proposed in Chapter 4. The extension allows one to easily
construct a sequence that separates a state from a subset of states based on
the splitting tree. Moreover, HSIs constructed from the splitting tree contain
a small number of sequences and if there is an ADS, then HSIs are singletons.
Chapter 5 describes experiments comparing the proposed algorithm to the
standard ones in the construction of HSIs. Chapter 6 concludes this part of
thesis.

19



2. Introduction .....................................
2.1 Research Questions

I.1 Is there a technique that can construct a sequence identifying a state in
a subset of states?

I.2 Is there a technique constructing harmonized state identifiers that are
more suitable for testing, that is, the total length of test sequences is
shorter than using a standard HSI-construction method?
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Chapter 3
Existing Methods

This chapter describes the existing algorithms that construct separating
sequences, characterizing set (CSet) and harmonized state identifiers (HSI)
of a minimal completely-specified deterministic finite-state machine (DFSM)
M with n states and p inputs.

3.1 Construction of Separating Sequences

There are three methods for the construction of separating sequences in the
literature. The oldest one derives separating sequences from a minimization
procedure that divides states of a possibly unreduced DFSM into equivalence
classes. The other two methods are quite recent and both aim to construct
separating sequences directly. All three methods build for each state pair a
separating sequence of minimal length.

3.1.1 Minimization Approach

The oldest construction method of separating sequences described in [Gil62,
Algorithm 4.1] is based on the minimization algorithm proposed in [Gil62,
Section 3.6].

The minimization algorithm partitions states of M using so-called Pk

tables that have the same structure as the transition table of M , that is,
rows represent states, columns relate to inputs and each cell contains the
next state δ(s, x) of the related row s and column x. Table P1 groups the
states that have the same responses to all inputs. Next states in the cells
are labelled with a group in which the particular next state is. Table Pk+1
refines the partition given by the groups of Pk such that groups are divided
according to different contents of the related rows. Labels of next states
correspond to the groups of states in Pk+1. If no group can be refined, the
minimization algorithm stops and thus each group represents a state of the
reduced machine.

A separating sequence of states (si, sj) is constructed from the Pk tables
in two steps. At first, a table Pl is found such that si and sj are in different
groups in Pl but they are in the same group in Pl−1. The second step traverses
each of the Pi tables for i < l and appends symbols gradually to the separating
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sequence w. The first symbol of the separating sequence w is the input of
the column in which rows of Pl related to si and sj have different labels.
Then, l is decreased by 1 and the input of the column in which rows of Pl

related to δ∗(si, w) and δ∗(sj , w) have different labels is appended to w. This
is repeated until l reaches 1, then the input x that produces different outputs
from the related states, that is, λ(δ∗(si, w), x) 6= λ(δ∗(sj , w), x), is appended
to w as the last symbol of separating sequence of (si, sj).

The time complexity of the construction of separating sequences of all state
pairs is as follows.

O

(
(n− 1) · np+ n · (n− 1)

2 ((n− 1) · 2 + (n− 1) · 2p)
)

= O(n3p)

At first, at most (n−1) Pk tables of size n×p are created; n−1 is a well-known
upper bound on the length of the shortest separating sequence for any two
states of a minimal completely specified DFSM [Moo56]. Then, the groups of
a particular state pair in up to all Pk tables are compared to find Pl and finally
two rows are compared in l Pk tables such that l ≤ (n− 1). This is performed
for all n·(n−1)

2 state pairs. Note that there are other minimization algorithms.
For instance, the algorithm by Hopcroft [Hop71] runs in O(np logn) but then
it is not easy to reconstruct separating sequences from it.

3.1.2 Shortest Separating Sequences

The shortest separating sequences (SSS) of all state pairs can be constructed
directly without the need of minimization procedure as it was proposed in
[Sou14]. Algorithm 1 amends the original SSS algorithm such that it can
work with all the types of DFSM.

The idea of the algorithm is that all state pairs having a separating input
are distinguished at first. Then, the rest of state pairs are distinguished
successively by prepending an input symbol x to the separating sequence of
a distinguished state pair to which the particular undistinguished state pair
leads on x.

The algorithm handles three structures: a state pair array V for separating
sequences, a queue distinguished of state pairs with a separating sequence
already constructed, and a state pair array transitionsTo for storing prede-
cessor state pairs. There are two phases in Algorithm 1. The first phase
(line 1–18) separates state pairs that have a separating input. It also stores
important data in both distinguished and transitionsTo that are used in the
second phase (line 19–26) to process the undistinguished state pairs efficiently.
Lines 3–12 in the first phase check whether the state pair has a separating
input. If so, the state pair is pushed into distinguished and the next state pair
can be processed. Otherwise, lines 13–18 stores the transition between state
pair (si, sj) and its successor state pair (δ(si, x), δ(sj , x)) for each x ∈ X if
the state pairs are different. Moreover, if the successor state pair is already
separated (line 18) which means that the state pair (si, sj) can be separated
by a sequence of length 2, then the other inputs are not processed. Lines
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Algorithm 1: Construction of shortest separating sequences
input :A minimal DFSM M with n states
output :A state pair array V of the shortest separating sequences

1 foreach pair of states (si, sj) such that i < j do
2 idx← getStatePairIndex(si, sj)
3 if M has state outputs and λ(si, ↑) 6= λ(sj , ↑) then
4 V [idx]←↑
5 distinguished.push(idx)
6 continue
7 foreach x ∈ X do
8 if λ(si, x) 6= λ(sj , x) then
9 V [idx]← x

10 distinguished.push(idx)
11 break

12 if V [idx] is set then continue
13 foreach x ∈ X do
14 if δ(si, x) 6= δ(sj , x) then
15 succIdx ← getStatePairIndex(δ(si, x), δ(sj , x))
16 if idx 6= succIdx then
17 transitionsTo[succIdx].push((idx, x))
18 if V [succIdx] is set then break

19 nu ← |V | − |distinguished| // number of undistinguished state pairs
20 while nu > 0 do
21 succIdx ← distinguished.pop()
22 foreach (idx, x) ∈ transitionsTo[succIdx] do
23 if V [idx] is not set then
24 V [idx]← x · V [succIdx]
25 distinguished.push(idx)
26 nu ← nu − 1

27 return V

22–26 in the second phase go through all stored predecessor state pairs of
distinguished state pairs and if the predecessor is not separated, it is sepa-
rated with the input leading to the distinguished state pair and the related
separating sequence. As distinguished is a queue, the shortest separating
sequences are created.

An example of the SSS algorithm’s outcome is in Figure 4.2 where the state
pair array contains the shortest separating sequences of the Mealy machine
defined in Figure 4.1. The first phase finds the separating input ‘a’ for all
state pairs including state B and the separating input ‘b’ for all other state
pairs including state E. All distinguished state pairs are present in the queue
distinguished and transitionsTo is filled with ((C,D),b) for (A,C), ((A,C),c) for
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(A,D), ((A,D),c) for (A,E), ((A,C),a) and ((C,D),a) for (B,E), and ((C,D),a)
for (D,E). State pairs (A,C) and (D,C) are separated with ‘aa’ in the second
phase when the distinguished state pair (E,B) to which they lead on ‘a’ is
processed. Similarly, (A,D) is separated with ‘cb’ as it leads on ‘c’ to (A,E)
with separating sequence of ‘b’.

The SSS algorithm runs in O(n·(n−1)
2 · 2p + n·(n−1)

2 · p) = O(n2p). It
passes through all states pairs and in the worst case all inputs are checked
in the first phase. The state pair array transitionsTo that represents the
inverse transition function δ−1 can contain at most n·(n−1)

2 · p pairs (idx, x)
in total. The queue distinguished includes each state pair once and so it
would enable to process all elements of transitionsTo, however, all elements
are not necessary. The second phase stops immediately after all state pairs
are separated. This is controlled by the counter nu. Both main cycles (lines
1 and 20) are thus bounded by O(n·(n−1)

2 p). Notice that transitionsTo is
never filled up completely as some state pairs are separated by an input or
the input is unsuitable for separating. There are also inputs that are not
processed in the first phase due to lines 6, 11, 12 and 18 in Algorithm 1.
Hence, the average time complexity is well below O(n2p). The algorithm was
parallelized in [Sou15] where two parallel algorithms running in O(np) are
proposed. Almost identical algorithm was proposed in [HT16]; all state pairs
as possible predecessor are checked with every input instead of the use of
queue distinguished and storing the inverse transition function (lines 20–22).
The difference in the implementations increases the complexity to O(n4p) but
it allowed the authors to easily develop a parallel version of the algorithm.
This parallel algorithm proposed in [HT16] is different from both parallel
algorithms in [Sou15] and runs in O(n4p

Γ ) where Γ is the number of threads.

3.1.3 Splitting Tree with Minimal Separating Sequences

The state-of-the-art construction algorithm of the shortest separating se-
quences of all state pairs was proposed in [SMJ16]. It is called the ST-MSS
algorithm in this thesis as it constructs separating sequences of minimal
length. Its idea of constructing separating sequences based on a distinguished
successors is shared with the SSS algorithm. However, the implementation is
different. The ST-MSS algorithm does not work with individual state pairs
but rather with subsets of states that are stored in a splitting tree. The use
of the splitting tree together with an optimization trick improve the time
complexity to O(np logn).

A splitting tree (ST) is a successor tree such that (i) each node is labelled
with a subset of states, (ii) the root is labelled with the set of all states S,
(iii) internal nodes also contain a separating sequence of the related subset of
states, and (iv) the label of every parent is the union of disjoint sets of states
labelling its children. A complete ST has its leaves labelled with singletons,
that is, there are n leaves, each corresponds to one state. The splitting tree
that is constructed for the Mealy machine defined in Figure 4.1 is shown in
Figure 4.2.
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The algorithm builds an ST in two phases that correspond to the ones of
the SSS algorithm. In the first phase, an input symbol is assigned to each
node of ST if it separates a state pair formed of states labelling the node.
Initially, there is just the root of ST that contains all states. After a separating
input x is chosen for a node ri, the states in ri are divided according to the
response to x and they form labels of the children of ri. The responses to
the separating input label the related edges between ri and its children. All
nodes separated in the first phase are called 1-candidates as their separating
sequences have the length of 1. The second phase checks all ‘predecessors’ of
each k-candidate on every input. It starts with k = 1, then increases k by 1
after all k-candidates were checked and it stops if k = n−1. Notice that there
could be a better stop condition like nu in the SSS algorithm. The check of
predecessor is done using the precomputed inverse transition function δ−1

defined for each state s and input x as δ−1(s, x) = {si ∈ S | δ(si, x) = s}. It
is used such that the states of δ−1(s, x) are located in a leaf of ST for each
state s of the k-candidate ri and each input x. Such a leaf is then possibly
separated with x ·w where w is the separating sequence of ri. An optimization
trick that lowers the time complexity from O(n2p) to O(np logn) is employed
to find out if x ·w is a separating sequence. Instead of traversing all states of
ri, the algorithm looks at the states in the children of ri but the child with
the most states is omitted. Each processed child rc of ri is then a basis for a
temporary child of the leaves that contain the predecessor state of a state of
rc; the label of edge from ri to rc becomes the label of edge connecting the
temporary child to the related leaf. If a temporary child contains all states of
its parent, then the sequence x · w is not separating and the temporary child
is deleted. Otherwise, temporary children of the leaf rj are made permanent
as x · w is a separating sequence of rj . A child needs to be added if the
temporary children did not cover all states of rj . Such states form the label of
the added child and they are not covered by the temporary children because
they lead on x to the states of the omitted child of ri.

The algorithm of a splitting tree with minimal separating sequences was
previously described in [Gil62, Section 4.10] which is not mentioned in [SMJ16].
The contribution of [SMJ16] is thus the efficient implementation of the
construction of separating sequences based on a partial splitting tree that is
already constructed. The name of splitting tree was introduced in [LY94] that
uses the splitting tree for the construction of adaptive distinguishing sequence
so the separating sequences do not have to be minimal. It will be discussed in
a greater detail in the next chapter that introduces another algorithm based
on splitting trees.

A separating sequence of a state pair (si, sj) is obtained from the splitting
tree by finding the lowest common ancestor of the leaves labelled with both
states. This can be done by traversing the ST or by bookkeeping separating
nodes for all state pairs as it is described in the next chapter.
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3.2 Construction of Characterizing Set

A characterizing set (CSet) groups separating sequences of all state pair so
that any state can be identified by observing responses to the CSet. There
are several ways how to construct a CSet of a minimal completely specified
DFSMM . This section describes the main four such approaches and discusses
how a constructed CSet can be reduced in the size.

3.2.1 Minimization Approach

Minimization algorithm partitions states of M by separating sequences until
classes of equivalent states are formed. This idea is used in the algorithm
constructing a characterizing set in [LPB95, Appendix II]. It tries all input
sequences of length k such that it starts with k = 1 and stops if k = n− 1.
Note that the algorithm is proposed for observable partially specified nonde-
terministic finite-state machines so the stop condition on k is actually n·(n−1)

2 .
If a sequence w can refine the current partitions that is initially just the set
of all states, then w refines the partition and is added to the CSet. There is
another stop condition that checks if all sets of the partitions are singletons,
that is, all states are separated from each other and so the algorithm stops.
The time complexity is O(npn−1) as the responses of all states are checked
for sequences of length at most n− 1.

Note that the minimization algorithms described in [Gil62] that were used
to construct separating sequences (Section 3.1.1) were not used to build a
CSet. Another approach was proposed in [Gil62] instead, see Section 3.2.4
below.

3.2.2 Incremental Method

One of the oldest construction approaches was proposed in [Vas73]. It starts
with an empty set W and all state pairs undistinguished. It then extends W
with sequences that separate at least one undistinguished state pair until all
state pairs become distinguished. The sequences are tried if they separate a
state pair in the lexicographic order. Unfortunately, the order is not specified,
that is for example, if all sequences of length k are tried before any longer
sequence, or if all sequences starting with ‘a’ are processed before those
starting with ‘b’. This small nuance can make a big difference in the resulting
CSet W . Nevertheless, if the length of sequences attempted is restricted
by n − 1 as any two different states can be distinguished by a sequence of
this length, then the time complexity of the algorithm is the same as for the
minimization approach, that is, O(npn−1).

3.2.3 From SSS

The SSS algorithm described in Section 3.1.2 fills a state pair array V with
the shortest separating sequences of all state pairs. A characterizing set
(CSet) is formed by collecting all sequences of V as proposed in [Sou15]. This
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can be done in O(n2) as V contains n·(n−1)
2 sequences to collect. Together

with the SSS algorithm a CSet is thus built in O(n2p+ n2).
The CSet of the Mealy machine in Figure 4.1 is formed of sequences ‘a’,

‘aa’, ‘cb’, ‘b’ that are collected from the state pair array shown in Figure 4.2.

3.2.4 From ST-MSS

Two approaches based on a splitting tree (ST) with minimal separating
sequences (MSS) in its internal nodes (Section 3.1.3) were proposed with the
same strategy to construct a CSet from the ST. Both [SMJ16] and [Gil62]
form a CSet as a collection of all separating sequences stored in the ST. This
can be done during the construction of ST so the time complexity remains
O(np logn) in the case of ST-MSS algorithm [SMJ16].

The ST-MSS algorithm builds the splitting tree shown in Figure 4.2 for
the Mealy machine in Figure 4.1 so that the CSet from that ST is ‘a’, ‘b’,
‘aa’, ‘cb’, which is the same as in the case of the construction from SSS.

3.2.5 Reduction of Characterizing Set

Characterizing sets constructed by any of the described methods are usually
not minimal in terms that a sequence could be eliminated and the rest of
the sequences would still form a characterizing set. This is mostly caused
by adding a separating sequence that separates all state pairs as a shorter
separating sequence that is already in the CSet. A step towards smaller CSet
was proposed in [Gil62] where elimination of sequences that are prefixes of
other sequences in the CSet is discussed. However, it is usually not sufficient.

There are several ways how a minimal CSet can be seen but in fact it is
always a trade off between the minimal number of separating sequences in the
CSet and the minimal length of sequences. Focusing on the minimal number
of sequences would lead to the search for a preset distinguishing sequence
or several incomplete preset distinguishing sequences that is a PSPACE-
complete problem [LY94, HT15]. Hence, the described methods build CSets
of the shortest separating sequences. The reduction task is then to choose a
subset of these sequences such that the chosen sequences can still separate
all state pairs. Unfortunately, this task is NP-complete as the NP-complete
task Set Cover Problem (SCP) can be reduced to it. The universe to cover
in SCP represents state pairs and the given subsets represent state pairs
distinguished by a separating sequence, that is, each subset relates to one
separating sequence. The task is to choose minimum number of subsets and
still cover the universe by their union. NP-completeness of SCP is shown in
[Kar72]. As a consequence, two approximation algorithms were proposed in
[Sou14, Sou15] to reduce a CSet at least suboptimally in a reasonable time.

The first reduction algorithm called LS-SL is captured in Algorithm 2
that is an amended version of the original one proposed in [Sou14]. The
algorithm passes through the given CSet W twice, from the longest to the
shortest sequences at first and then in the reverse order, that is, from the
shortest to the longest. In both passes it handles a set of undistinguished
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state pairs that initially includes all state pairs not distinguished by their
state outputs. If a sequence u does not separate any of undistinguished
state pairs, then it is removed from W . Otherwise, it is checked whether
the sequence u can be shortened such that it would still separate the same
undistinguished state pairs. These state pairs separated by u are eliminated
from undistinguished and the next sequence of W is processed. Finally, the
stOut symbol is prepended to any sequence of W or added to W if it is
needed, that is, there is a state pair that is not separated by any sequence of
W . Note that this can happen as undistinguished is initialized such that ↑ is
assumed to be in W and if it is there, it is removed from W in the first pass
as it would not separate any undistinguished state pair.

Algorithm 2: Reduction LS-SL of CSet
input :A characterizing set W to reduce

1 undistinguished ← {(si, sj) ∈ S × S | i < j ∧ λ(si, ↑) = λ(sj , ↑)}
2 foreach u ∈W in the order from the longest to the shortest do
3 separatedu ← {(si, sj) ∈ undistinguished | λ∗(si, u) 6= λ∗(sj , u)}
4 if separatedu is empty then erase u from W
5 else
6 get a prefix w of u that separates all state pairs of separatedu

7 if w = u then undistinguished ← undistinguished \ separatedu

8 else replace u with w in W // w will be processed again

9 undistinguished ← {(si, sj) ∈ S × S | i < j ∧ λ(si, ↑) = λ(sj , ↑)}
10 foreach u ∈W in the order from the shortest to the longest do
11 separatedu ← {(si, sj) ∈ undistinguished | λ∗(si, u) 6= λ∗(sj , u)}
12 if separatedu is empty then erase u from W
13 else
14 get a prefix w of u that separates all state pairs of separatedu

15 undistinguished ← undistinguished \ separatedu

16 if w 6= u then replace u with w in W

17 if ∃si 6= sj∀w ∈W : λ∗(si, w) = λ∗(sj , w) then
18 prepend ↑ to any w ∈W or add ↑ to W if W = ∅

The LS-SL algorithm checks responses to each sequence u of W at most for
all state pairs. All the presented algorithms create a CSet W with at most
n·(n−1)

2 sequences that are shorter than n. Therefore, the time complexity of
the LS-SL algorithm is O(2 · n·(n−1)

2 · (n− 1) · n·(n−1)
2 ) = O(n5). Nevertheless,

the complexity was much lower in experimental evaluation.
The second reduction algorithm called EqualLen is described in Algorithm 3

that amends the original algorithm proposed in [Sou15]. It was developed
in a reaction to the finding that the LS-SL reduction algorithm does not
optimise well the sequences of the same length. The EqualLen algorithm
thus improves the first pass of the LS-SL algorithm by dealing with all
sequences of a particular length instead of just individual sequences. As
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all of the described algorithms construct the shortest separating sequences,
the given W is required to contain the shortest separating sequence for
each state pair. For each sequence u of the CSet W , information regarding
undistinguished state pairs is collected. In addition to observing which state
pairs are separated by u, the algorithm counts state pairs that are separated
by the last input of u. If there is no such state pair, u is eliminated from W .
If arbitrary W was given, u would be needed to be shortened to the shortest
prefix that separates all state pairs in undistinguished as it is done in the
LS-SL algorithm. After the information for all sequences of the same length
is obtained, sequences that separate the most states are gradually selected
to remain in W . They are first compared on the number of undistinguished
state pairs separated by the last input. If they equal, they are compared on
the number of undistinguished state pairs separated by the entire sequence,
and if they are equal even on this number, then the lexicographically lowest
is selected to remain in W . The chosen sequence then updates the set of
undistinguished state pairs which also influences information held for the rest
of the sequences. Some sequences can become unnecessary as they do not
separate any undistinguished state pair by the last input. Hence, they are
eliminated from W . Finally, ↑ is prepended to a sequence of W or added
to W if W is empty. It can be needed because the set undistinguished was
initialized with state pair that are not distinguished by ↑. The input ↑ is
handled differently than the other input symbols because the state is not
changed after ↑ is applied.

Compared to the LS-SL algorithm, the EqualLen algorithm passes the
given CSet W just once. Nevertheless, the time complexity remains in O(n5)
as again the responses to all separating sequences in W are observed for all
state pairs.

This section is about CSet but sometimes one needs state characterizing
sets (SCSet), for example, the Wp-method (Section 9.4) uses them to build a
test suite. These sets can be created as harmonized state identifiers (HSI)
described in the next section, however, they can then be reduced because they
do not have to meet the requirements posed on the HSIs. Both described
reduction algorithms can be easily adapted for SCSets. It is sufficient to work
just with state pairs relating to the particular state for which the given SCSet
is constructed.

3.3 Construction of Harmonized State Identifiers

Harmonized state identifiers (HSI) were shown to produce smaller test suites
than using a charactering set (CSet) [Sou15]. Therefore, it is good to know how
to construct them. This section describes four such construction approaches.

3.3.1 From CSet

One of the first formally described construction algorithms of HSIs was pro-
posed in [LPB95, Appendix II]. It derives HSIs from the given characterizing
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Algorithm 3: Reduction EqualLen of CSet
input :A characterizing set W such that ∀ state pair (si, sj)∃u ∈W : u

is the shortest separating sequence of si and sj

1 undistinguished ← {(si, sj) ∈ S × S | i < j ∧ λ(si, ↑) = λ(sj , ↑)}
2 for len← max({|u| | u ∈W}) to 0 do
3 Ulen ← {u ∈W | |u| = len} such that u = vx and x ∈ X↑
4 foreach u ∈ Ulen do
5 separatedu ← {(si, sj) ∈ undistinguished | λ(si, u) 6= λ(sj , u)}
6 byLastInputu ← {(si, sj) ∈ separatedu | λ(si, v) = λ(sj , v)}
7 if byLastInputu is empty then
8 erase u from W and Ulen

9 while Ulen is not empty do
10 pop w from Ulen with maximal |byLastInputw|, if several comply,

then with maximal |separatedw|, then the lexicographically lowest
11 undistinguished ← undistinguished \ separatedw

12 foreach u ∈ Ulen do
13 separatedu ← separatedu \ separatedw

14 byLastInputu ← byLastInputu \ separatedw

15 if byLastInputu is empty then
16 erase u from W and Ulen

17 if ∃si 6= sj∀w ∈W : λ∗(si, w) = λ∗(sj , w) then
18 prepend ↑ to any w ∈W or add ↑ to W if W = ∅

set W . At first, it constructs a HSI0 of the initial state s0 such that for each
state sj , j 6= 0, there is wj ∈ HSI0 that separates s0 from sj and wj ∈ pref(W )
where pref(W ) is the prefix-closed set of W . Then, it builds HSIi gradually
for each state si such that: (i) HSIi ⊆ pref(W ), (ii) for each state sj , j < i,
there is wj ∈ pref(HSIi)∩ pref(HSIj) that separates si from sj , and (iii) for
each state sj , j > i, there is wj ∈ HSIi that separates si from sj . The given
CSet constructed by any construction algorithm from Section 3.2 can have at
most n·(n−1)

2 sequences of length up to n− 1. As all sequences of W can be
tried for each state, the time complexity of the construction of HSIs from the
CSet is O(n4).

Harmonized state identifiers of all states of the Mealy machine defined
in Figure 4.1 are captured in the comparison table in Figure 4.2. At first,
‘aa’ and ‘cb’ are chosen from W = {aa, b, cb} to form the HSIA. The input
‘a’ is sufficient to separate B from the other states and it is a prefix of ‘aa’
included in HSIA, therefore, HSIB = {a}. The state C is separated with ‘aa’
from A, B and D, but ‘cb’ also needs to be included in HSIB as no other
sequence separates C from E. HSIs of D and E are the same as HSIs of A
and C, respectively.

30



.................... 3.3. Construction of Harmonized State Identifiers (HSI)

3.3.2 From SSS

The harmonized state identifier of a state s is obtained from the state pair
array of the shortest separating sequences (Section 3.1.2) by selection of all
the sequences stored for state pairs (s, si) such that si is any state different
from s [Sou15]. As the sequences are collected in a set, all duplicates are
eliminated. If there is a sequence that is a prefix of another one in the
constructed HSI, then such a sequence is eliminated as well. The construction
of all HSIs from the state pair array of the shortest separating sequences runs
in O(n2) as just n− 1 entries of the state pair array are visited for each state.

Figure 4.2 shows HSIs of all states of the Mealy machine defined in Fig-
ure 4.1. It also captures how the HSI of state C is formed from the state pair
array of the shortest separating sequences.

3.3.3 From ST-MSS

Section 3.1.3 described how a splitting tree (ST) is built to contain minimal
separating sequences (MSS) in its internal nodes. Besides the ST-MSS
algorithm, the original paper [SMJ16] proposed how to form a HSI from the
ST. As the HSI of a state s needs to contain a separating sequence of s and
si for all states si different from s, all sequences of the internal nodes that
include s in their label are collected to form the HSI of s. There are at most
n− 1 such internal nodes and the procedure is repeated for all n states so
that the construction of HSIs from the ST runs in O(n2).

HSIs of all states of the Mealy machine (Figure 4.1) are the same as in the
case of the construction from SSS if the prefixes are eliminated. It is captured
together with the corresponding splitting tree in Figure 4.2. There is another
procedure for construction HSIs from an ST that constructs smaller HSIs
(the third column of the comparison table in Figure 4.2). It will be described
in the next chapter after the related restrictions on the ST are introduced.

3.3.4 From Incomplete Adaptive Distinguishing Sequences

A completely different approach to the construction of harmonized state
identifiers (HSI) is proposed in [HT15]. The authors noticed a correspondence
between HSIs and an adaptive distinguishing sequence (ADS) and used it to
construct HSIs from so-called incomplete ADSs. A lot of machines do not
have an ADS but they always have separating sequences that can form an
ADS of a subset of states. As it does not distinguish all states, it is called
an incomplete adaptive distinguishing sequence (IADS). A set of IADSs is
thus needed to distinguish all states. Moreover, HSIs can be constructed only
from a set of IADSs that is fully distinguishing which means that for each
state pair (si, sj) the set contains an IADS that separates si and sj .

Unfortunately, the proposed greedy algorithm [HT15] is incorrect in some
cases and its description is ambiguous. The inconsistencies of the algorithm
are described in Appendix D.1. This section sketches the idea behind the
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algorithm and describes a running example how the construction of IADSs is
expected to work by the author of the thesis.

The representation of an (incomplete) adaptive distinguishing sequences is
described first. An ADS is usually represented as a successor tree such that
(i) each node ri is labelled with the initial set I(ri), the current set C(ri),
and an input xi if the node is internal, (ii) all edges leading from an internal
node ri are labelled with distinct output symbols of λ(C(ri), xi), and (iii) if
λ∗(s, ui) labels the path from the root to node ri and ui is the input sequence
formed of xj ’s on the path (without xi of ri), then the state s is in I(ri)
and δ∗(s, ui) is in C(ri) [LY94]. Both the initial and current sets are sets of
states such that union of initial sets of successors of ri equals to the initial set
I(ri), and the current set represents states reached by the sequence labelling
the path from the root node of ADS. This description of ADS is adopted by
IADSs. Notice that every ADS is an IADS. The root r0 of an IADS as well
as an ADS has I(r0) = C(r0) = S. Moreover, there are exactly n leaves if
the tree represents an ADS; an IADS does not have to separate all states in
general so that there are leaves that correspond to several states. The length
of an IADS is the depth of the tree. Three examples of IADSs, T0, T1 and
T2, are shown in Figure 3.1. All inputs are tested (dashed lines) for each leaf
that could be separated during the construction and at most one input (solid
line) is chosen as xi of the node ri (above it).

The greedy algorithm is defined in Algorithm 55 which is the same as
the original [HT15, Algorithm 1] except notation. It gradually constructs
incomplete adaptive distinguishing sequences one by one such that each IADS
tries to separate the most state pairs that were not distinguished by the
already-built IADSs. Undistinguished state pairs are stored in Q that initially
contains all state pairs. A new IADS Tk is initialized with the root including
all states. For each unprocessed node ri the algorithm analyses all inputs and
chooses the one that separates the most undistinguished state pairs or the one
that is the most promising according to the function Θ if no input separates
any undistinguished state pair. The function Φ computes the number of
undistinguished state pairs that would be separated by the given input x if
it was applied in the given node ri. The function Θ is used if Φ returns 0
for all inputs. It counts the successors rj of the given ri on the given input
x that have the same current set C(rj) as one of the processed nodes that
cannot be refined. The authors of [HT15] defined that an input x refines a
node ri if the states in C(ri) do not produce the same output symbol when
the input x is applied, that is, x refines ri if there exist s, s′ ∈ C(ri) such that
λ(s, x) 6= λ(s′, x). If the algorithm cannot refine any leaf node and there is
still an undistinguished state pair in Q, a new IADS tree containing only the
root is created.

Figure 3.1 captures the construction of IADSs for the Mealy machine in
Figure 4.1. The algorithm starts with the root r0 of IADS T0. It analyses all
potential successors of r0 on each input and chooses ‘b’ because it separates
6 state pairs. The values needed for the comparison of inputs are in the table
in Figure 3.1; the best ones for each node are emphasised. Input ‘b’ refines r0
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Figure 3.1: Construction of incomplete adaptive distinguishing sequences

into nodes r1 and r2 such that C(r1) = {A,C} and C(r2) = {B}. Both nodes
cannot be refined by any input, however, |C(r1)| > 1 means that r1 may be
separated. As both the functions Φ and Θ return 0 for all inputs, the lowest
input in the lexicographical order, input ‘a’, is chosen for r1. Fortunately, next
input ‘a’ refines the new node r3. The successor cannot be further refined and
so a new IADS T1 is initialized because state pairs (A,D) and (B,E) are not
distinguished. The set F of current sets that belong to nodes which cannot
be refined should contain {B} and {D} as r2, r4 and r5 cannot be refined
(this is not specified in the proposed algorithm). Input ‘a’ is the only one
that can refine the root r6 of IADS T1 such that an undistinguished state
pair is separated. The remaining undistinguished state pair (A,D) obviously
cannot be separated in T1 as both states lead to state E on the chosen input
‘a’. Nevertheless, the algorithm commands to analyse both successors. Node
r7 cannot be refined so it should update F . Node r8 could be refined but the
last state pair cannot be separated. Hence, Θ estimates the most promising
input; both ‘a’ and ‘b’ lead to nodes with the current states in F so that ‘c’
is chosen. Similarly to node r1, input ‘a’ is chosen for the new successor r9 as
it is lexicographically the lowest. However, the current state of the successor
{E,B} was observed on the path from the root and so the successor is not
added to T1; this is a safety check for cycles. The last IADS T2 is sketched
in Figure 3.1 up to the point when the separating sequence ‘cb’ of the last
undistinguished state pair (A,D) is formed. The algorithm does not specify
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3. Existing Methods ...................................
how HSIs are obtained from the constructed IADSs. There can be several
IADSs that separate a pair of states. If one adds the sequence separating
of a particular state pair into the HSIs of both states when the state pair is
distinguished for the first time, then HSIs formed for the Mealy machine in
Figure 4.1 are listed in the comparison table in Figure 4.2.

The reported complexity of the algorithm is O(nl(n2p + n2)) = O(n4p)
if each constructed IADS distinguishes two or more states not previously
distinguished. The parameter l is an upper bound on the length of constructed
IADSs; it is set to n− 1 to be possible to construct a fully distinguishing set
of IADSs. The idea of IADSs was adopted in a parallel algorithm that has
exponential time complexity in the worst case as it tries all sequences until
all state pairs are distinguished [HT16].
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Chapter 4
Splitting Tree with Invalid Inputs

Separating sequences for state identification are essential elements in testing
and active learning. Both testing methods and learning algorithms need
sequences that distinguish a particular state from the given subset of states
and such sequences should be together minimal in some sense to be efficient
in the testing or learning task. If the state can be separated by a sequence
from the other states, then it is obvious that the aim is to have the shortest
such sequence. However, if several sequences are needed to separate the
state from others, then there is usually a trade-off between the number
of separating sequences and their total length. This chapter proposes an
extension to the existing algorithm such that one is able to construct efficiently
a small number of separating sequences for any subset of states. The existing
algorithm constructs a splitting tree (ST) for machines that possess an
adaptive distinguishing sequence (ADS) that can be built from the constructed
splitting tree [LY94]. The extension called ST-IADS constructs a splitting
tree even for machines with no ADS. Before the extension is proposed in
Section 4.4 and described on a running example in Section 4.5, its benefits
are sketched in Section 4.1. Section 4.2 introduces the structure of splitting
tree and what a valid input means. Algorithms for the construction of state
identification sequences from the splitting tree are proposed in Section 4.3.

4.1 Motivation Example

The primary motivation to develop a new construction algorithm of separat-
ing sequences was that the new testing method (Chapter 11) and learning
algorithm (Chapter 15) require sequences that distinguish the given state
from the subset of states. Such sequences cannot be easily constructed by any
method introduced in Chapter 3; the most suitable method for this task would
be the algorithm for the construction of incomplete adaptive distinguishing
sequences (Section 3.3.4), however, it was not known to the author of this
thesis at the time when the proposed extension was developed. As the new
method should construct separating sequences for any subset of states and
the number of such sequences should be as small as possible, the task would
reduce to the construction of an adaptive distinguishing sequence (ADS) if the
given subset of states included all states. Fortunately, there is an algorithm
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Figure 4.1: Mealy machine without an ADS

of complexity O(pn2) that constructs an adaptive distinguishing sequence of
length up to n(n−1)

2 if there exists one [LY94]. The algorithm does not have
to produce the shortest ADS but it is fast and based on a splitting tree that
can easily provide required separating sequences for a subset of states. The
only issue to solve is that the algorithm works only for machines with an
ADS.

The structure of a splitting tree (ST) and the procedure constructing sepa-
rating sequences for a subset of states led to a discovery that harmonized state
identifiers (HSI) can be easily formed based on the splitting tree. Moreover,
the number of sequences in HSIs is implicitly minimized as the approach
tries to minimize the number of separating sequences for all subsets of states.
This also follows from the relation between ADS and HSIs that a DFSM has
an ADS if and only if it has HSIs that are singletons (Section 1.6.1). Note
that HSIs are formed from the ST in a different way to how Section 3.3.3
describes.

The HSI construction methods described in Section 3.3 are compared with
the approach based on the new extension ST-IADS on the Mealy machine
defined in Figure 4.1. The machine has 5 states, A–E, 3 inputs, a–c, and 2
outputs, 0 and 1. It has no ADS and so some HSIs need to contain more
than one sequence. Figure 4.2 shows the comparison of the constructed
HSIs and two data structure used to construct HSIs. The SSS algorithm
(Section 3.1.2) fills the state pair array with the shortest separating sequences
of all state pairs as depicted in the top left of Figure 4.2. The orange lines
show how the HSI of state C is formed from SSS. The splitting tree on the
right of Figure 4.2 is created by both the ST-MSS algorithm (Section 3.1.3)
and the new ST-IADS method. They follow different designs but for this
small example the resulting splitting tree is the same. Nevertheless, HSIs
constructed from the ST are different. HSIs from ST-MSS according to
Section 3.3.3 (without prefixes) are equal to the ones formed from SSS. HSIs
from ST-IADS are equal to the ones constructed from the CSet {aa, b, cb}
according to Section 3.3.1. The approach based on incomplete adaptive
distinguishing sequences (Section 3.3.4) builds different HSIs than all four

36



................................. 4.1. Motivation Example
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Figure 4.2: Construction of HSIs – a comparison of five different approaches

other methods. These three different HSIs constructed by five different
approaches are listed in the comparison table in the bottom left of Figure 4.2;
their differences are highlighted in red. The HSIs are compared on the average
numbers of sequences and inputs per state. The numbers are below each of
the three HSIs and the best values, that is, the minimal ones, are highlighted
in green.

What does the primary motivation of a new construction method mean in
the context of the example? Assume that state C needs to be separated from
states A and E, and then state E is to be distinguished from states A and
B. In the former case, one would like to obtain the state verifying sequence
‘baa’ of state C that uniquely identifies C amongst all states. Although state
E has no state verifying sequence, sequence ‘aa’ separates it from A and B
which is the requirement of the latter case. No HSI construction method
produces both sequences for these two sets of states, nevertheless, they can be
easily constructed from ST-IADS as Section 4.3 will describe. To sketch the
construction of sequences from the splitting tree, consider a related learning
scenario such that the machine is expected to be in one of states A, C or E
and one wants to identify the state. The node of the ST that contains all
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4. Splitting Tree with Invalid Inputs ............................
the states A,C and E, and has the smallest number of states is found and
its separating sequence is applied to the machine. According to the observed
response, a subset of states in which the machine can be after that sequence
is considered in the next step. In the example, the separating sequence ‘b’ of
node r1 is queried and let assume that the response is 0. Then the machine
is in state C or A if it was in A or C, respectively. The same procedure is
repeated with this subset of two states, that is, r2 is used as a separating
node of C and A and so ‘aa’ is queried. According to the response, one can
thus derive the state the machine was in at the beginning of the identification
process and the state it entered at the end.

4.2 Splitting Tree for Incomplete Adaptive
Distinguishing Sequences

Splitting tree (ST) as a data structure holding refinement of the set of states
is used in many algorithms. It was sketched in Section 3.1.3 but this section
describes it in detail and introduces the requirements that need to hold to
create an adaptive distinguishing sequence (ADS) based on the ST.

The notion of splitting tree was introduced in [LY94], however, such a tree
without the requirements on included sequences was previously described in
[Gil62] as well. A splitting tree (ST) is a successor tree such that:. each node is labelled with a subset of states S′,. the root is labelled with the set of all states S,. each internal node has assigned a sequence w that separates S′,. the label of every parent is the union of disjoint sets of states labelling

its children, and. each edge to child r is labelled with the response of states of r to the
sequence w assigned to the parent of r.

An ST is complete if all states are separated, that is, if there are exactly
n leaves and each corresponds to one state. Note that the labels of leaves
of an ST always form a partition of all states. For easier access in the
implementation, each internal node also possesses the set of next states
δ∗(S′, w). If the separating sequences in internal nodes are minimal, then it is
sufficient to label the edges by an output symbol in response to the separating
input that is the last input of w.

4.2.1 Input Validity Types

An adaptive distinguishing sequence cannot be constructed from an arbitrary
splitting tree. All sequences of the ST need to be composed of valid inputs.
An input x is valid for a subset of states S′ if every two distinct states si and
sj of S′ either respond differently to x, λ(si, x) 6= λ(sj , x), or they lead to
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different states on x, δ(si, x) 6= δ(sj , x). Therefore, an input x is invalid for
S′ if there are two different states in S′ such that both respond equally to
x and both lead to the same state. There are three types of a valid input
x with respect to the partition π given by the leaves of ST as proposed in
[LY94]:

a) Two or more states of S′ respond with different outputs to input x, that
is, |λ(S′, x)| > 1.

b) All states of S′ respond with the same output, |λ(S′, x)| = 1, but they
lead to more than one block of π on x, that is, states of δ(S′, x) are not
in a single block of π.

c) Neither of the above, that is, all states produce the same output and
lead to the same block of π.

Inputs can also be divided by their ability to separate some states regardless
of their validity. An input x is called separating if two or more states of the
subset of states S′ respond differently, that is, |λ(S′, x)| > 1. Otherwise, the
input x is called transferring. This corresponds to the notion of the shortest
separating sequence of a state pair. The shortest separating sequence is
always formed of transferring inputs followed by a single separating input.
Note that every valid input of type a) is separating and valid inputs of type
b) and c) are transferring.

An example of a splitting tree with valid and invalid separating sequences
is shown on the right of Figure 4.2. If a sequence contains an invalid input, it
is called invalid. The separating sequences of nodes r0, r1 and r2 are invalid
because they merge some states. Two states are merged by a sequence u
if they respond equally and lead to the same state on u. The second and
other occurrences of a state are underlined in the set of next states in each
node with an invalid sequence in Figure 4.2. Only the sequence ‘cb’ of node
r3 is valid as it does not merge any states. Notice that the first symbols of
sequences ‘aa’ and ‘cb’ of nodes r2 and r3 are transferring which will be more
obvious in Section 4.5 where the construction of the ST is described on the
example.

A splitting tree that contains an invalid sequence cannot be the basis for
an ADS but several incomplete adaptive distinguishing sequences (IADS) can
be formed from it. Therefore, such a splitting tree is referred to as ST-IADS.

4.3 State Identification Sequences From ST-IADS

Splitting tree that is complete can be a basis for the construction of separating
sequences of all state pairs (Section 3.1.3), characterizing sets (Section 3.2.4)
or harmonized state identifiers (Section 3.3.3), however, there is alternative
construction approach than just collecting particular sequences of ST nodes.
The approach simply follows the chosen separating sequence and extends it by
another one that separated the reached next states. This is repeated until no
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4. Splitting Tree with Invalid Inputs ............................
states can be separated. By doing this, new longer separating sequences can
be formed and subsequently the number of needed sequences can be reduced.
This is significant for testing of finite-state machines because HSIs are often
applied at the end of every test sequence, so halving their number also halves
the amount of testing.

Algorithm 4 describes how to obtain a sequence from a given ST that
separates the given state s from all other states of the given subset of states
S′. The state s is separated by the returned sequence from all the other states
in S′ in the best case which depends on separating sequences stored in the ST.
At first, the lowest common ancestor of the leaves corresponding to states in S′
including s is located in the ST by calling the function getSeparatingNode
defined in Algorithm 5. A state pair array separatingNodes that is a part
of the ST in the implementation helps with this search. It stores the node
of ST that separates the associated state pair, for example, r1 is stored for
state pair (A,E) and separatingNodes[(C,D)] = r2 of the ST in Figure 4.2. It
is sufficient to compare separating nodes of (|S′| − 1) state pairs that relate
to a chosen state sk ∈ S′. The lowest common ancestor r for S′ is the one
of compared nodes that contains the most states because it is the root of
subtree that contains the leaves corresponding to all the states of S′. This
follows from the property of ST that the label of every parent is the union of
disjoint sets of states labelling the children. The separating sequence of r is
then appended to w that stores the resulting separating sequence for s; w is
initially empty. The procedure of locating the lowest common ancestor for S′
and appending its separating sequence is then repeated with updated S′ and
s until S′ contains just s. The subset of states S′ is replaced with the states
reached by the separating sequence of r from the states of S′ that responded
with the same output as the reference state s to the separating sequence of
r. The reference state s is then transferred to its next state as well. Now it
should be clear how the separating sequences ‘baa’ and ‘aa’ for the subsets of
states {A,C,E} and {A,B,E} mentioned in the end of Section 4.1 are obtained.

Algorithm 4: getSeparatingSequenceFromST(s ∈ S′, S′ ⊆ S,ST)
1 w ← ε
2 while |S′| > 1 do // there is si ∈ S′ not separated from s
3 r ← getSeparatingNode(S′)
4 v ← r.separatingSequence
5 w ← w · v
6 S′ ← {δ∗(si, v) | si ∈ S′ ∧ λ∗(si, v) = λ∗(s, v)}
7 s← δ∗(s, v)
8 return w

The time complexity of Algorithm 4 depends on the number nd of states
in the given S′ that are separated from the given s; nd < |S′|. If all different
states of S′ are distinguished from s, nd = |S′| − 1. The algorithm separates
at least one state of S′ in every main cycle (lines 2–9) so it does at most
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Algorithm 5: getSeparatingNode(S′ ⊆ S)
1 select a pivot sk from S′

2 return the node of ST.separatingNodes[(sk, si)], sk 6= si ∈ S′, with the
most states

nd cycles, and it compares at most |S′| separating nodes to find the lowest
common ancestor r by getSeparatingNode(S′). Therefore, it runs in
O(nd · |S′|) = O(|S′|2). Considering that the next states are stored in r,
updating S′ does not increase time complexity.

It is easy to build harmonized state identifiers with Algorithm 4 at hand.
The HSI of a state sk is formed by successive calls getSeparatingSequence-
FromST(sk, S

′, ST) for subset S′ of states that are not separated from sk by
a sequence which was already added to the HSI. In such a way, Algorithm 6
constructs an HSI for each state. If the constructed HSI of a state contains
just one sequence, then its construction takes O(n2) which follows from the
time complexity of getSeparatingSequenceFromST. The complexity
does not increase even if the constructed HSI contains several sequences
because the sum of the numbers nd of distinguished states for each call of
getSeparatingSequenceFromST is equal to n. Therefore, Algorithm 6
constructs HSIs of all states from the ST in O(n3).

Algorithm 6: getHarmonizedStateIdentifiersFromST(ST)
1 foreach sk ∈ S do
2 HSIk ← ∅
3 S′ ← S
4 while |S′| > 1 do // there is si ∈ S′ not separated from sk

5 w ← getSeparatingSequenceFromST(sk, S
′,ST)

6 add w to HSIk

7 S′ ← {si ∈ S′ | λ∗(si, w) = λ∗(sk, w)}

8 return HSI as a collection of HSIk of all states

The construction method of an adaptive distinguishing sequence (ADS)
from a complete ST was proposed in [LY94] and Algorithm 7 extends it to
work even if the ST contains invalid separating sequences. A set of incomplete
adaptive distinguishing sequences (IADS) is thus returned in general instead of
a single ADS. The algorithm returns an ADS if the complete ST has no invalid
sequence. The idea is the same as in getSeparatingSequenceFromST
but the separating sequences are stored in nodes of the tree representing
IADS instead of appending them one after another. All responses (different
branches) are handled as there is no reference state s.

The tree structure of IADS is recalled before Algorithm 7 is described in
detail. An IADS can be represented by a successor tree such that:. each node rj is labelled with the initial set I(rj), the current set C(rj)

and an input xj ,
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. all edges leading from an internal node rj are labelled with distinct

output symbols produced by states of C(rj) in response to xj , and. if λ∗(s, u) labels the path from the root r0 to a node rj where s ∈ I(r0)
and u is the input sequence formed of xi’s on the path (without xj of
rj), then the state s is in I(rj) and δ∗(s, u) is in C(rj).

This definition implies that for every root r0 holds I(r0) = C(r0). Nevertheless,
I(r0) = S is not required here for IADSs compared to the description in
Section 3.3.4. It is required only for ADSs that need to distinguish all states
and so they have exactly n leaves. The omitted requirement on IADSs is
transferred to the following property of a set of IADSs. A set D of IADSs is
fully distinguishing if every pair of distinct states is distinguished by some
IADS from D [HT15]. This enforces a construction algorithm to include every
state in at least one root of IADS. The length of an IADS is the depth of its
tree representation.

Algorithm 7: getIADSsFromST(ST)
1 push S into undistinguished
2 foreach S′ ∈ undistinguished do
3 create a new IADS Ti with the root r such that I(r) = C(r) = S′

4 push r into unprocessedNodes
5 foreach rj ∈ unprocessedNodes do
6 rST ← getSeparatingNode(C(rj))
7 u · xj ← rST .separatingSequence
8 foreach xk ∈ u in their order do
9 rj .input ← xk, y ← λ(C(rj), xk)

10 create a successor rk with the edge from rj labelled with y
11 I(rk)← I(rj), C(rk)← δ(C(rj), xk)
12 rj ← rk

13 rj .input ← xj

14 foreach y ∈ λ(C(rj), xj) do
15 create a successor rk with the edge from rj labelled with y
16 C(rk)← {δ(sj , xj) | sj ∈ C(rj) ∧ λ(sj , xj) = y}
17 I(rk)← {sj ∈ I(rj) | δ∗(sj , dk) ∈ C(rk) where dk is the

sequence of xi’s along the path from the root of Ti to rk}
18 if |C(rk)| > 1 then push rk into unprocessedNodes
19 else if |I(rk)| > 1 then push I(rk) into undistinguished

20 return IADSs Ti’s

Algorithm 7 uses two queues to construct a fully distinguishing set of IADSs.
The first queue called undistinguished includes subsets of states that are not
distinguished from each other by any constructed IADS; it contains initially
the set of all states. The second queue called unprocessedNodes is for the leaves
rj of the current IADS Ti such that their current sets C(rj) contain several
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Figure 4.3: Incomplete adaptive distinguishing sequences from ST-IADS

states which means that they can be separated. Each root of a new IADS
Ti is initialized with a subset of states from undistinguished and pushed into
unprocessedNodes to start the construction of Ti. For each unprocessed node
rj of Ti the lowest common ancestor is found by getSeparatingNode in
ST and its separating sequence is then divided into the transferring sequence
u and the separating input xj . If u is not empty, a chain of successors
representing u is appended to rj and rj then points to the new leaf. All these
successors have the same initial state and differ in the current sets that are
updated by each input of u. The separating input xj is assigned to the leaf
rj and divides its initial and current sets according to the responses. Each
successor rk corresponds to the states of C(rj) that produce the same output
to xj . Their initial and current sets are updated accordingly (lines 16 and
17 of Algorithm 7). The initial and current sets are implemented as arrays
so the correspondence between initial and current states is easily accessible,
and the node rST with its successors in the splitting tree provides enough
information to form successors of rj and their current sets. Finally, if the
successor rk can be further separated, then it is added to unprocessedNodes.
If rk cannot be separated but its initial set contains several states, then
these states, that were not distinguished, are pushed into undistinguished. A
fully distinguishing set of IADSs constructed by Algorithm 7 from the ST in
Figure 4.2 is shown in Figure 4.3. There is usually no need to store the chain
of successors representing the transferring inputs. Therefore, a shortened
version of IADSs can be introduced such that each node stores a separating
sequence instead of a single input as proposed in [Sou14]. Then, lines 8–12 of
Algorithm 7 would be omitted and lines 13–17 would work with the entire
separating sequence u · xj instead of just with xj .

At most n− 1 separating sequences are needed to distinguish all states. A
suitable separating sequence is found in the ST by getSeparatingNode
in O(n). Therefore, Algorithm 7 runs in O(n2) if the shortened version of
IADSs is constructed. Otherwise, it also depends on the length of separating
sequences in the ST because the chain of successors corresponding to each
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sequence needs be created; the time complexity is O(n3) if all separating
sequences have the length at most n.

All three algorithms constructing state identification sequences work with
any splitting tree, however, getIADSsFromST can build an ADS only from
the ST that has valid separating sequences. The ST-MSS algorithm (Sec-
tion 3.1.3) thus cannot be used to prove the existence of an ADS and generally
it results in more sequences than by the use of ST-IADS. A characterizing
set can be formed from the ST as the collection of all separating sequences
(Section 3.2.4) and also as a union of HSIs or sequences of IADSs, which is
equivalent.

4.4 ST-IADS Construction Algorithm

This section proposes the extension to the existing algorithm [LY94] such
that the existing algorithm constructing a splitting tree with valid separating
sequences is not disrupted by the extension. It means that the extension is
not employed if the given machine has an adaptive distinguishing sequence
(ADS) and so a splitting tree with only valid sequences is constructed. As the
extension allows one to create incomplete adaptive distinguishing sequences
(IADS), it is referenced as the ST-IADS algorithm and its part corresponding
to the existing algorithm from [LY94] is referenced by the ST-ADS algorithm.

The ST-IADS algorithm is described in Algorithms 8–12 such that Al-
gorithm 8 captures the main part and the others handle the case when no
valid separating input is found for a subset of states. The algorithm is first
roughly sketched and then discussed in detail in the following paragraphs.
The idea of the algorithm is to gradually refine the partition of
states given by the labels of leaves until all leaves contain only one
state. Compared to the ST-MSS algorithm (Section 3.1.3) that processes the
leaves containing several states in the order of the length of their expected
separating sequence, the ST-ADS orders the leaves for processing according
to the number of states in their labels. This helps with the search for a
valid separating sequence of a subset of states. If the states of a leaf have a
separating input, then it is used to refine the subset of states by appending
the corresponding successors to the leaf. Otherwise, the leaf is stored in a
collection of leaves that also need a separating sequence of several inputs.
These leaves are then processed in a similar manner as the SSS algorithm
(Section 3.1.2) does, that is, links between them are found first and subse-
quently if one is separated, it can separate the others that have a link to it.
In other words, when a subset rj of states is separated with a sequence w,
another subset ri can be separated with the sequence x · w where x labels
the link from ri to rj , that is, states of ri transfer to states of rj on x. In
the case of the ST-ADS algorithm, the links, or transitions between subsets
of states, are restricted to valid inputs. Therefore, some leaves do not have
to be distinguished as they do not have a valid separating sequence. The
extension is thus employed such that even invalid inputs are considered for
the links from the undistinguished leaves. As the extension is designed to
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Figure 4.4: Cases I–III of splitting a node during the construction of a ST

find the best invalid separating sequence according to a particular score if
there is no valid one, it explores all the shortest invalid separating sequences.
Hence, auxiliary nodes representing the subsets of states reached by these
sequences are created; they are also stored after they are analysed as they
may be reused later.

Figure 4.4 shows a hypothetical construction of a splitting tree for a machine
with 7 states A–G. Three possible ways how a separating sequence can be
formed and a node be split are explained on this small example. After the
input ‘a’ separates some states of the root of the splitting tree, there are
three leaves included in a set called partition, see the splitting tree on the
left of Figure 4.4. The nodes r1 and r2 are processed first as they have the
most states amongst the leaves. If there is a valid input of type a) that
separates some states, the node is split immediately as the case I on the right
of Figure 4.4 shows. If there is no separating input for a node, the node is
pushed in the set dependent. The function initTransOnValidInputs then
creates links between nodes according to the transition function. Assume
that the next states of A, B and C on the input ‘b’ are states D, E and F,
respectively, and D, E, F lead to A, D, E on ‘b’. Therefore, the cases II and
III show a link ‘b’ from r1 to r2. The link ‘b’ from r2 first points to r0 because
it includes all states A, D, E. If the sequence assigned to r0 was invalid, then
an auxiliary node r′3 only with states A, D, E would be created in order to
maximise the chance of discovery of a valid separating sequence. In the case II,
‘a’ is a valid input for r0 and so the link ‘b’ points from r2 to r0. The function
processDependent forms the separating sequence ‘ba’ for r2 and then ‘bba’
for r1 and splits the nodes accordingly. In the case III, separating sequences
for nodes r2 and r1 would be constructed in a similar way using a separating
sequence for the auxiliary node r′3. It can happen that there is no valid input
for r′3 and thus no valid sequence for r1 and r2. Both nodes then remain
in dependent and the function initTransOnInvalidInputs creates links
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4. Splitting Tree with Invalid Inputs ............................
between nodes even for invalid inputs. The next call of processDependent
then finds the best invalid sequences for the nodes and splits them.

There are several structures that the algorithm handles. Every node r of
the splitting tree ST contains a set of states, a separatingSequence and the
associated next states δ∗(r.states, r.separatingSequence). A state pair array
separatingNodes as a part of ST stores for each state pair (si, sj) a node r of
ST that separates si and sj , that is, both si, sj are in r.states but they are in
different states of the children of r. A set partition represents the leaves of ST;
it is implemented as a priority queue such that the leaves with the most states
in states are on the top. Nodes with states that do not have a separating input
are stored in an array dependent. An array of lists transitionsTo is filled with
the links between these nodes before they are processed in the order given by
a priority queue dependentPriorityQueue. For each node r in dependent, bestr
stores an input, the node next reached by the input and a score reflecting how
good is to start the separating sequence with input. The bestr.score is then
used when r is pushed into dependentPriorityQueue that favours nodes with
the lowest score. Besides a minimal DFSM M , the ST-IADS algorithm takes
an input parameter validOnly that when true forces the algorithm to follow
the existing ST-ADS algorithm. Hence, null representing no splitting tree is
returned if M has no ADS and validOnly is true.

Algorithm 8 starts with separating all states in the root of ST using the
stOut input ↑ if the given machine M produces state outputs. Separating
a leaf r consists of appending new nodes to r and updating partition and
ST.separatingNodes if r is a part of ST. It is described by the function sepa-
rate on lines 5–9 of Algorithm 8. New successors of r are formed of states of r
that respond to the separating sequence of r in the same way; the last output
symbol of their response, that is, the response to the separating input, labels
the edge from r to the successors. The condition on line 7 of Algorithm 8
ensures that only successors of r present in ST lead to updates to partition
and ST.separatingNodes. This is necessary because the update is not desired
when auxiliary nodes are separated during the search for the best invalid
separating sequence. After partition is initialized with the current leaves of
ST, the main cycle (lines 11–35) starts. In each cycle, one leaf r with the
most states is processed such that it is separated if it has a separating input.
Otherwise, it is stored in dependent. An exception is if r has no valid input
and valid inputs are required by validOnly. Then the ST-IADS algorithm
returns null as the sign that there is no ADS for the given machine. To
find out if r has a valid separating input, r is first analysed. The function
analyse(r) defined on lines 14–20 checks each input x and stores it as the
separating sequence of r if it is a valid separating input. Otherwise, all x and
the related next states δ(r.states, x) are remembered if x is valid or invalid
inputs are allowed. Invalid transferring inputs that merge all states into one,
that is, |δ(r.states, x)| = 1, are not stored as they cannot begin a separating
sequence. The leaf r could have already been analysed as an auxiliary node
so the analysis is not repeated due to the condition on line 13. After all
leaves of ST with the same number of states were analysed and checked, those

46



............................4.4. ST-IADS Construction Algorithm

Algorithm 8: Construction of a splitting tree (ST-IADS)
input :A minimal DFSM M with n states
input : validOnly allows to use only valid inputs if true
output :A splitting tree ST of M or null if validOnly and M has no ADS

1 r.states ← all n states of M // r is initially the root of ST
2 ST.separatingNodes[(si, sj)]← null for all state pairs (si, sj)
3 if M has state outputs then
4 r.separatingSequence ← ↑
5 separate(r):
6 create successors of r by grouping states of r.states with the same

response to r.separatingSequence
7 if r is in ST then
8 add the successors to partition
9 ST.separatingNodes[(si, sj)]← r ∀si, sj in different successors

10 else partition ← {r} // if M is a Mealy machine
11 while |partition| 6= n do
12 r ← pop a node from partition with the most states
13 if r is not analysed then
14 analyse(r):
15 foreach input x ∈ X do
16 if x is a valid separating input then
17 r.separatingSequence ← x
18 break
19 else if x is a valid transferring input or (not validOnly

and (|λ(r.states, x)| > 1 ∨ |δ(r.states, x)| > 1)) then
20 store x and next states δ(r.states, x)

21 if validOnly and r has no valid input then return null // no ADS
22 if r.separatingSequence is assigned then separate(r)
23 else push r into dependent
24 if |dependent| > 0 and ∀p ∈ partition: |p.states| < |r.states| then
25 foreach r ∈ dependent do
26 initTransitionsOnValidInputs(r)
27 processDependent()
28 if |dependent| > 0 then
29 if not validOnly then
30 foreach r ∈ dependent do
31 initTransitionsOnValidInputs(r)
32 if r has no valid separating sequence then
33 initTransitionsOnInvalidInputs(r)

34 processDependent()
35 else return null // no ADS

36 return ST
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4. Splitting Tree with Invalid Inputs ............................
pushed into dependent are separated by sequences of several inputs (lines
25–35). At first, only valid separating sequences are used such that links
on valid inputs are prepared by initTransitionsOnValidInputs (Algo-
rithm 9) for every node in dependent and then they are gradually processed by
processDependent (Algorithm 10). If some of them are still not separated
after that (they remain in dependent), either the process is repeated using
invalid inputs or the algorithm exits with null if only valid inputs are allowed.
The function initTransitionsOnValidInputs on line 31 is called for every
node of dependent but the implementation calls it only for new auxiliary
nodes that are added to dependent by initTransitionsOnValidInputs or
by initTransitionsOnInvalidInputs (Algorithm 11). As the ST-IADS
algorithm has the property that each node is separated by a valid sequence if
there is a valid one, initTransitionsOnInvalidInputs is called only if no
valid separating sequence was found so far for r.

Algorithm 9: initTransitionsOnValidInputs(r)
1 (bestr.input, bestr.next, bestr.score) ← (null, null, ∞)
2 foreach valid transferring input x of r do
3 rx ← getSeparatingNode(δ(r.states, x))
4 if rx ∈ dependent then
5 add (r, x) to transitionsTo[rx]
6 else if separating sequences of rx and bestr.next are not valid and

|r.states| < |rx.states| then
7 rx ← a (stored or new) node with states equal to δ(r.states, x)
8 if rx is not analysed or rx.separatingSequence is not set then
9 if rx is not analysed then

10 analyse(rx)
11 if rx.separatingSequence is assigned then
12 bestr ← (x, rx, score(r, x, rx))

13 push rx into dependent if it is not there
14 add (r, x) to transitionsTo[rx]
15 else if score(r, x, rx) < bestr.score then
16 bestr ← (x, rx, score(r, x, rx))
17 else if score(r, x, rx) < bestr.score then
18 bestr ← (x, rx, score(r, x, rx))

19 store bestr
20 if bestr.next has a valid separating sequence then
21 push r with bestr.score into dependentPriorityQueue

Algorithm 9 describes the function initTransitionsOnValidInputs that
initializes bestr of the given node r and links from r on each valid transferring
input x. In the case of the ST-ADS algorithm, this function chooses the
best valid input of type b) and stores the links on valid inputs of type c),
see Section 4.2.1 for input validity types. A valid input x of type b) means
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that the next states δ(r.states, x) are covered by more than one block of
the current partition. Therefore, there is a node rx with the sequence that
separates the next states. The best input out of those of type b) should lead
to a node with the shortest separating sequence. This is exactly what is done
on lines 17–18 of Algorithm 9 as the function score (Algorithm 12) returns
the length of separating sequence of rx if it is valid. A valid input x of type c)
transfers the states of r into another block of the current partition. It means
that the node rx representing such a block of states is a leaf in dependent
because a valid input does not merge states, that is, |r.states| = |δ(r.states, x)|,
and the leaves are processed in the order of the size of states. Therefore,
a link from r to rx on x is stored into transitionsTo (lines 4–5) so that
r can be separated based on rx when a separating sequence is found for
rx. The node rx that includes all next states is located in the ST as the
lowest common ancestor of the leaves corresponding to the next states; the
function getSeparatingNode is defined in Algorithm 5. In the case of
the ST-IADS algorithm, rx can have an invalid separating sequence. Lines
6–16 optimizes the choice of invalid separating sequence starting with a valid
transferring input x of type b). If rx has invalid separating sequence and
more states than r, then there could be a better separating sequence for the
next states δ(r.states, x). Therefore, an auxiliary node including just these
states is created and analysed (if it was not). However, once a rx with a valid
separating sequence is observed, the condition on line 6 is false and thus no
other auxiliary nodes are created. Auxiliary nodes created for the previous
inputs are already analysed and stored but do not have a separating sequence
assigned as they are not processed unless another node leads to them; the
condition on line 8 allows these nodes to be used again. If the condition
on line 8 is satisfied, then the auxiliary node is added to dependent and a
link to it from r is stored to transitionsTo. Analysed auxiliary nodes with
a separating sequence are like the internal nodes of ST, therefore, the score
for them is calculated and compared against the best score (lines 15–16). If
one does not want to optimize the choice of invalid separating sequences,
hence the number of sequences in HSIs can be larger, then lines 6–16 can
be omitted. The function score favours valid sequences so bestr.next gets
the node with the shortest valid separating sequence if there is one. Finally,
if a node rx with a valid separating sequence is found, then r is sorted into
dependentPriorityQueue according to the score calculated for the best such
rx.

Nodes in dependent are processed using processDependent described in
Algorithm 10 after their links were initialized either by initTransitionsOn-
ValidInputs or by initTransitionsOnInvalidInputs. Besides the links
both functions fill dependentPriorityQueue with nodes r for which the sepa-
rating sequence can be constructed based on the chosen bestr’s. Algorithm 10
goes through all nodes r in dependentPriorityQueue that is sorted according
to the scores given by bestr’s. If r is not yet separated, its separating sequence
is set to the one of the bestr.next prepended by x leading to bestr.next from
r. After separating r, r is removed from dependent. As r is now separated,
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Algorithm 10: processDependent()

1 while dependentPriorityQueue is not empty do
2 pop r from dependentPriorityQueue with the lowest score
3 if r is not separated then
4 r.separatingSequence ← bestr.input · bestr.next.separatingSequence
5 separate(r)
6 foreach (p, x) ∈ transitionsTo[r] do
7 if p is not separated and score(p, x, r) < bestp.score then
8 bestp ← (x, r, score(p, x, r))
9 push p with bestp.score into dependentPriorityQueue

10 pop r from dependent

it can help other nodes in dependent that lead to it. Therefore, all links
(p, x) in transitionsTo leading to r are checked and if a predecessor p is better
separated based on r, it is pushed to dependentPriorityQueue with its new
score(p, x, r).

Algorithm 11: initTransitionsOnInvalidInputs(r)
1 foreach invalid separating input x of r do
2 if score(r, x,null) < bestr.score then
3 bestr ← (x,null, score(r, x,null))

4 foreach invalid transferring input x of r such that |δ(r.states, x)| > 1 do
5 rx ← getSeparatingNode(δ(r.states, x))
6 if rx.separatingSequence is not assigned or not valid then
7 rx ← a (stored or new) node with states equal to δ(r.states, x)
8 if rx is not analysed then
9 analyse(rx)

10 push rx into dependent if it is not there
11 add (r, x) to transitionsTo[rx]
12 if rx.separatingSequence is assigned then
13 if score(r, x, rx) < bestr.score then
14 bestr ← (x, rx, score(r, x, rx))

15 push r with bestr.score into dependentPriorityQueue

Algorithm 11 checks all invalid inputs after all valid transferring inputs
are checked by initTransitionsOnValidInputs and no valid separating
sequence was observed for the given node r. At first, all invalid separating
inputs are checked if any of them can improve the best separating score
initialized in initTransitionsOnValidInputs. Then all invalid transferring
inputs x that do not merge all states are processed in a similar way as the
valid ones were in Algorithm 9. If the lowest common ancestor rx of the
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leaves corresponding to the next states δ(r.states, x) was not processed or has
an invalid separating sequence, an auxiliary node relating just to the next
states is considered as rx instead. It is analysed if it was not, and pushed into
dependent as its separating sequence may be needed to obtain the best invalid
sequence for r. The link from r to rx is stored as well. If rx already has a
separating sequence, it is checked whether rx is a better basis for the best
separating sequence of r and so whether bestr.score can be improved. Finally,
r is pushed into dependentPriorityQueue with the best score encountered so
far. Note that r can be added to dependentPriorityQueue with a better score
later in processDependent after one of its rx’s that is not separated gets a
separating sequence.

Algorithm 12: score(r, x, rx)
1 w ← x · rx.separatingSequence if rx is not null else x
2 if w is a valid separating sequence of r.states then return |w|
3 (a, b, c, d, e, nr)← (0, 0, 0, 0, |w|, |r.states|)
4 foreach response z ∈ λ∗(r.states, w) do
5 S′ ← {s ∈ r.states | λ∗(s, w) = z} // states of successor
6 if |S′| = |δ∗(S′, w)| then // w valid for S′

7 b← b+ 1 // number of valid successors
8 else
9 a← a+ |S′| // number of states in invalid successors

10 d← d+ |S′| − |δ∗(S′, w)| // undistinguished states

11 c← c+ 1 // number of successors

12 return (((a · nr − b) · nr − c) · nr + d) · nr + e

The last part of the ST-IADS algorithm to describe is the scoring function
in Algorithm 12. The function score(r, x, rx) analyses how the states of
r would be separated by the sequence w = x · rx.separatingSequence, or
only by x if the given rx is null. If w is a valid sequence for r.states, then
the length of w is returned. Otherwise, a higher score is returned so that
valid sequences are favoured. As the ultimate aim is to have the smallest
number of separating sequences for a given subset of states, this scoring
function prioritises invalid sequences that are valid for the maximum total
number of states in the successors for which the sequence does not merge
any two states. A successor ri of r is valid if r.separatingSequence is valid
for ri.states, that is, |ri.states| = |δ∗(ri.states, r.separatingSequence)|. A ri is
a successor of r, |λ∗(ri.states, r.separatingSequence)| = 1. If some states of
ri are merged by r.separatingSequence, ri is an invalid successor of r. The
number of undistinguished states of an invalid successor ri is the difference
between the number of states in ri and the number of their next states on
r.separatingSequence, that is, |ri.states| − |δ∗(ri.states, r.separatingSequence)|.
There are five parameters a–e to compare invalid separating sequences. The
parameter a represents the total number of states in invalid successors, b is
the number of valid successors, c is the number of all successors of r, d is
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the total number of undistinguished states, and e is the length of w. As the
score of the best sequence is the lowest, the parameters b and c that are signs
of a good separating sequence decrease the score and the parameters a, d
and e are rather bad signs so that they increase the score. The priority of
parameters how they influence the score is given by their alphabetical order.
The parameter a estimates for how many states another separating sequence
will be needed, for example in the construction of HSIs. Therefore, the higher
a the less likely the sequence is chosen to be the separating sequence of r.
The parameters b and c provide a ratio of the number of ‘good’ successors to
their total number and c also represents how well the states of r are divided
by w; the higher c the more state pairs are likely to be separated by w. The
parameter d estimates how many states will remain undistinguished when a
state is asked to be separated from the others in r.states. The parameters
are connected together by the formula on line 12 of Algorithm 12 to get one
number evaluating the invalid sequence w. The number nr of states in r is
employed in the formula to order the parameters in the resulting score by their
priority. Note that d < a ≤ nr and b < c < nr as there is always an invalid
successor that contains at least two states. Therefore, only e could interfere
with d if e ≥ nr, but it is acceptable as d provides just an estimate that does
not have to be precise and this interference thus penalizes sequences that
are too long. The scoring function could be implemented differently which
influences the choice of invalid separating sequences and not the correctness
of the algorithm.

The time complexity of the existing ST-ADS algorithm is O(n2p) where
n = |S| and p = |X| ([LY94, Theorem 3.2]). There are at most n − 1
refinements of the partition and so the resulting ST has at most 2n − 1
nodes (n leaves and at most n − 1 inner nodes). Each node r is analysed
in O(np) as all states of r and at most all inputs are checked. The function
initTransitionsOnValidInputs (Algorithm 9) prepares links in O(np) and
it is called at most n times as dependent contains less than n nodes in total
during the entire construction. All valid transferring inputs are checked when
links are formed and for each input the lowest common ancestor of the next
states is found by getSeparatingNode in O(n). Each node of dependent is
processed by Algorithm 10 once and it allows one to check all links stored
in transitionsTo. The total number of links is in O(np) which is also the
complexity of processDependent in Algorithm 10. Therefore, the ST-ADS
algorithm runs in O(n2p). Moreover, all separating sequences are of length
at most n− 1 so the space complexity of the splitting tree is O(n2) if there is
an ADS [LY94]. The proposed pseudocode is based on the implementation of
the ST-ADS algorithm proposed in [Sou14] rather than the original one from
[LY94] as [Sou14] simplifies dealing with valid inputs of types b) and c).

The proposed extension potentially increases the time and space complexity
a lot. In the worst case O(2n) (auxiliary) nodes representing all subsets of
states could be analysed. This can be easily avoided by omitting lines 6–16 of
Algorithm 9 and lines 6–11 of Algorithm 11 that try to find a better invalid
separating sequences by introducing auxiliary nodes. Without these lines, the
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Figure 4.5: Construction of splitting tree – analysis of the root node

ST-IADS algorithm still works but may result in more sequences in HSIs built
from the resulting ST. Nevertheless, the number of created auxiliary nodes
is restricted by the transition and output functions of the given machine so
that it hardly reaches huge numbers. A possible improvement that could
result in lower number of separating sequences in HSIs is the use of a scoring
function also on valid sequences. This would mean adjusting the existing ST-
ADS algorithm, not just extending it as was done by the proposed ST-IADS
algorithm.

4.5 Running Example

The ST-IADS algorithm is described in this section how it builds the splitting
tree showed in Figure 4.2 for the Mealy machine M defined in Figure 4.1. An
example describing just the ST-ADS algorithm can be found in [Sou14, LY94].

The algorithm starts with the root r0 of ST that contains all states A–E.
As M does not have state outputs, r0 is the only node in partition (line 10
of Algorithm 8). The root is then popped from partition and analysed. The
analysis of all three input symbols is captured in Figure 4.5 where the scoring
function is also explained. Inputs ‘a’ and ‘b’ are separating as the states
respond on them with 2 different outputs; input ‘c’ is transferring. Notice
that states and next states in the root r0 have the colour of the corresponding
output. As all inputs merges some states, there is no valid input for r0 and
null would be returned as the sign that M has no ADS if validOnly was true.
The root is thus added to dependent that is immediately processed by pro-
cessDependent because partition is empty and there is no valid transferring
input that could be checked by initTransitionsOnValidInputs. However,
dependentPriorityQueue is empty so that processDependent exits and r0
is still in dependent. Hence initTransitionsOnInvalidInputs is called to
prepare links from r0.

initTransitionsOnInvalidInputs first calculates the score for the invalid
separating input ‘a’ such that r0 with 5 states would have 4 states in the
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Figure 4.6: Search for the best successor on invalid transferring input ‘c’

invalid successor, 1 valid successor out of 2 successors, 2 undistinguished
states and the separating input has the length of 1. score(r0, a, null) is thus
2336. States A, D and B, E merge in their corresponding successors on input
‘b’, therefore, there is no valid successor of r0 on ‘b’ and so the corresponding
score 3086 is worse than on ‘a’. The invalid transferring input ‘c’ does not
merge all states and so it is checked if it can begin a better invalid separating
sequence than ‘a’. The lowest common ancestor rx of the leaves relating to
the next states δ(r0.states, c) is the root itself and as it has no separating
sequence assigned yet, an auxiliary node r′1 is created; r′1.states = {A, C, D,
E}. The analysis of r′1 for all inputs is shown in Figure 4.6; ‘a’ and ‘c’ are
invalid transferring for r′1 and ‘b’ is invalid separating. The node r′1 is then
added to dependent and a link (r0, c) is stored into transitionsTo[r′1]. As r′1
does not have a separating sequence yet, it cannot improve the best score for
r0 and so r0 with the score of 2336 relating to the invalid separating input ‘a’
is pushed into dependentPriorityQueue.

The next cycle of ‘foreach’ loop on line 30 of Algorithm 8 chooses to
initialize links from the node r′1. The node has no valid input so again
initTransitionsOnInvalidInputs is called. After the score of 677 is
calculated for the invalid separating input ‘b’, both transferring inputs are
processed. In both cases auxiliary nodes are created; r′2.states = δ(r′1.states,
a) = {B,E} and r′3.states = δ(r′1.states, c) = {A,D,E}. A valid separating
input ‘a’ is found for the auxiliary node r′2 during the analysis of inputs.
Only ‘a’ is thus analysed. Therefore, score(r′1, a, r′2) can be immediately
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Figure 4.7: Analysis and separating node r2 with states A,C,D

calculated but the value of 1002 does not improve the best score for r′1
relating to input ‘b’. The node r′2 is then reused to calculate the score for
the auxiliary node r′3 on invalid transferring input ‘a’. The score is worse
than the best one set by the invalid separating input ‘b’; the scores differ just
by 1 because of the length of separating sequence ‘aa’. The states of node
r′3 are transferred to themselves on input ‘c’ which means that ‘c’ cannot
start the shortest separating sequence of a good score; such nodes can be
thrown away already during the analysis of inputs. After r′3 is processed
by initTransitionsOnInvalidInputs, dependentPriorityQueue is filled up
with r′3 (score 121), r′1 (677) and r0 (2336). processDependent pops r′3
first and sets ‘b’ as its separating sequence. Then, it tries to improve the best
of r′1 but score(r′1, c, r′3) = 682 is not better. The same happens to r′1 that
is popped from dependentPriorityQueue next. It gets ‘b’ as the separating
sequence and score(r0, c, r′1) = 2337 does not improve the best so that r0 is
separated with ‘a’. Analyses of inputs for r′2 and r′3 and the calculation of
scores are shown in Figure 4.6. Notice that separating sequence ‘cb’ has the
score worse than the selected separating input ‘a’ just because of its length.

Separating the root r0 with ‘a’ results in two new leaves and the update of
partition and ST.separatingNodes. One leaf represents state B and so it will
not be further processed. The second leaf r1 represents the other states A, C,
D, E. ST.separatingNodes is thus updated to point to r0 for all state pairs
associated with state B. Both leaves form the current partition, however, r1 is
popped from partition right at the start of the second cycle of the main loop
(line 12 of Algorithm 8). Fortunately, r1 is the same as the auxiliary node
r′1 and as r′1 was analysed and has a separating sequence ‘b’, r1 is separated
with ‘b’ directly. Node r′1 with its successors just replaces r1 in the ST in the
implementation.
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4. Splitting Tree with Invalid Inputs ............................
The current partition is updated to contain two singletons representing

states B and E, and the leaf r2 that includes states A, C, D. The splitting tree
in the current form is shown on the left of Figure 4.7. The node r2 is popped
from partition and analysed as it is not stored amongst the auxiliary nodes.
It has no valid separating sequence which leads to storing it to dependent.
Right after that the algorithm tries to find a separating sequence as there is
no other leaf with the same number of states in partition. This time there
is a valid transferring input and a separating sequence is already assigned
to the node to which the input leads. Thus, bestr for r2 is initialized in
initTransitionsOnValidInputs with input ‘c’ leading to r′3 and the score
of 122. Node r1 as the lowest common ancestor of the leaves containing states
A, C, E is first considered instead of r′3 but as r1 also contains state D and
its sequence ‘b’ is invalid, r′3 is chosen. As the separating sequence ‘b’ of r′3 is
invalid, r2 is not pushed into dependentPriorityQueue and so the first call of
processDependent (line 27) does not change anything. All the shortest
invalid separating sequences for r2 need to be compared to choose the one
that separates it. The auxiliary nodes created during the search for the best
invalid sequence are shown in Figure 4.7. In the case of r′5 relating to states
A and D, inputs ‘a’ and ‘b’ are not visualized as they merge the states so that
they cannot begin a separating sequence. The node r′6 has a separating input
‘b’ so that only this input is used and shown. After all the needed auxiliary
nodes are created, analysed and connected by links, nodes of dependent are
processed by Algorithm 10 as sketched at the bottom of Figure 4.7. The
implementation checks all inputs in one pass so that alphabetically lower
inputs with the minimal score are favoured. Six auxiliary nodes were created
and two of them were later reused. As n = 5 and the total number of explored
nodes is 9 + (6− 2) = 13, the space complexity seems to be closer to Θ(n2)
than in Θ(2n).
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Chapter 5
Experiments

The new extension proposed in the previous chapter is evaluated on the
construction of harmonized state identifiers (HSI) in order to address the
research question RQ I.2. As the aim of the thesis is to design an efficient
learning technique, the experiments in this chapter only show the additional
value of the proposed extension and do not aim to provide a thorough
evaluation. HSIs are first constructed for randomly generated machines and
then for models of real systems.

Harmonized state identifiers are formed in the experiments using three
approaches. The first one follows Section 3.3.2 and forms HSIs from the
shortest separating sequences (SSS). The second approach gets separating
sequences of all state pairs from the splitting tree using Algorithm 4 and then
collects the sequences that relate to each state. The third approach follows
Algorithm 6 and forms HSIs from the splitting tree.

5.1 Randomly Generated Machines

The suite of 13 600 randomly generated machines is described in Appendix C.1.
There are 4 machine types, each represented equally with 3 400 machines
such that a half of them has 5 inputs and the other 1 700 machines have 10
inputs. The number of states ranges from 10 to 1000 and there are 17 state
groups of 100 machines. For each machine it is recorded the total number of
sequences in the constructed HSIs of all states, the total length of sequences
in the HSIs, and the time that is needed for the construction of HSIs of all
states by each method.

The results of construction of HSIs for deterministic finite automata are
shown in Figure 5.1. The three figures on the left present the results for
machines with 5 inputs and those on the right for machines with 10 inputs.
All six figures show 1 and 3 quartiles that are calculated from 100 values for
each of 17 state groups. In order to compare the total number and the total
length of sequences when the number of states varies, the values are divided
by the number of states and the average number of sequences, respectively.
The first two figures thus capture the number of sequences per a single state.
The figures in the middle show the length that each separating sequence
would have if the constructed HSIs had the average number of sequences
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5. Experiments .....................................
(calculated from the 100 values for each state group and each method). The
last two figures show the construction time.
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Figure 5.1: Comparison of the HSI construction methods on DFA with 5 inputs
on the left and on DFA with 10 inputs on the right. 1 and 3 quartile calculated
for 100 machines per each state group
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................................ 5.2. Models of Real Systems

The first two approaches form HSIs out of the (shortest) separating se-
quences of all state pairs which results in many sequences that consist of 2
symbols on average. On the other hand, the third approach constructing
HSIs directly from the splitting tree builds a small number of sequences that
are longer than 5 symbols on average. As both the second and the third
approaches create the same splitting tree, the higher construction time of the
third approach is thus due to the construction of separating sequences from
the splitting tree using Algorithm 6 that calls getSeparatingSequence-
FromST (Algorithm 4) repeatedly. Moreover, it means that the construction
time of a splitting tree is similar to the running time of the SSS algorithm,
that is, the time complexity of the proposed extension ST-IADS is O(n2p)
for randomly generated machines. Note that just few machines have adap-
tive distinguishing sequence and so the new extension is employed for most
machines.

Comparison of the three approaches is very similar as shown in Figure 5.1
for the other machine types. In fact, only the results for DFA with 5 inputs
significantly distinguish the first and second approaches. The results for the
other three machine types and both numbers of inputs look like the results
for DFA with 10 inputs, that is, the three figures on the right of Figure 5.1.
All the results with visualizations can be found in the repository FSMmodels
v1.31.

The real contribution of the proposed extension can be observed when
the constructed HSIs are used. Section 12.1 presents the comparison of
testing methods on the randomly generated machines (the same as in these
experiments) and two methods significantly improve their performance by the
use of HSIs constructed from the splitting tree instead of from SSS. These two
methods are the HSI-method (Section 9.5) and the SPY-method (Section 9.7),
and they are only two that use harmonized state identifiers. Their ‘improved’
versions are referred by ‘HSI/ST’ and ‘SPY/ST’, respectively.

5.2 Models of Real Systems

Harmonized state identifiers are constructed for the models of real systems in
order to compare the three construction approaches. The models peterson2,
sched4 and sched5 are deterministic finite automata with 50, 97 and 241
states and 18, 12 and 15 inputs, respectively. Appendix C.2 describes the
models in more detail.

Table 5.1 shows the parameters of HSIs constructed by the three approaches
for the three DFA models. There are two numbers to describe each collection
of HSIs: the total number of sequences (Seqs) and the total number of input
symbols (Syms) that equals to the total length of sequences in HSIs of all
states. The construction time is missing in Table 5.1 but it can be summarized
for all three models as follows. The second approach is twice as slow as the

1https://github.com/Soucha/FSMmodels/releases/tag/v1.3

59

https://github.com/Soucha/FSMmodels/releases/tag/v1.3
https://github.com/Soucha/FSMmodels/releases/tag/v1.3
https://github.com/Soucha/FSMmodels/releases/tag/v1.3


5. Experiments .....................................
first one and the third approach needs four times more time that the first
approach.

peterson2 sched4 sched5
HSI construction method Seqs Syms Seqs Syms Seqs Syms

From SSS 439 881 760 1601 2176 4609
From ST-StatePairSepSeqs 301 865 672 1425 2080 4417
From ST 268 914 537 1589 1649 4883

Table 5.1: Comparison of three approaches for the construction of HSIs on the
total number of sequences (Seqs) and symbols (Syms) in the constructed HSIs
for the models of real systems

The results show that the third approach that uses the new extension
ST-IADS constructs HSIs with fewer sequences in total than the other two
approaches. However, the difference is much smaller than in the case of
randomly generated machines (Section 5.1). The same holds for the total
length of sequences that is high enough to have the longest sequences on
average but the average length of sequences for all the approaches is between
2 and 3 symbols. Therefore, the constructed HSIs are very similar in terms
of the parameters. This is reflected in the performance of testing methods
that use HSIs. Such methods are the HSI-method and the SPY-method.
Section 12.2 presents the comparison of testing methods on the models of
real systems (the same ones as used in this experiment). Both the HSI- and
SPY- methods perform very similarly regardless of whether they use HSIs
from SSS (the first approach in this experiment) or from the splitting tree
(the third approach here).
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Chapter 6
Conclusion

This part of thesis summarized different approaches for the construction of
state identification sequences such as separating sequences of state pairs,
characterizing set and harmonized state identifiers (HSI). Chapter 4 described
the new ST-IADS algorithm that extends the existing ST-ADS algorithm in
the construction of a splitting tree with invalid inputs. The new extension
allows one to construct a splitting tree for any deterministic finite-state
machine, not only for those having an adaptive distinguishing sequence.
Moreover, HSIs derived from such a splitting tree consist of a lower number
of sequences that are generally longer than in the case of HSIs formed
of the shortest separating sequences of all state pairs. This was evaluated
experimentally as Chapter 5 reported. The evaluation is however not sufficient
to answer the research question (RQ) I.2 because the influence of the number
and the lengths of sequences in a constructed HSI on the total length of test
sequences is demonstrated in the next part of the thesis.

The main purpose why the new ST-IADS algorithm was designed is not
just for the construction of HSIs but to easily construct a sequence separating
a state from a subset of states (RQ I.1). Such a sequence is returned by the
function getSeparatingSequenceFromST defined in Algorithm 4. This
function is a key point of the new testing method, the S-method, that is
proposed in the next part of thesis.
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Part II

Testing Methods
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Chapter 7
Introduction

Deterministic finite-state machines (DFSM) can be tested for the presence of
faults as was sketched in Section 1.2 in the introduction chapter of the thesis.
Each fault revealed by testing can be corrected which results in a more reliable
system and thus testing improves the quality of a system under development.
This is particularly useful in software development. For instance, any fault in
a safety-critical application does not mean just the loss of money but may
result in death or serious injuries to people. Therefore, it is very important
to make an effort and test the system to reduce the risk of unpleasant effects.

This part of thesis deals with testing of systems that:. have a specification in the format of a deterministic finite-state machine
that is minimal and completely specified, and. can be reliably reset to their unique initial states.

The first condition on systems allows the use of a testing method that creates
a test suite of several test sequences based on the specification of the system.
The second condition enables one to apply these test sequences in the same
state of the system. If the reset is not available, the constructed test suite
is a singleton and the test sequence is called a checking sequence for the
given specification. Nevertheless, the machine is then required to be strongly
connected so that every state of the machine can be reached and tested. In
addition, most testing methods constructing a checking sequence work only
for machines with a preset or adaptive distinguishing sequence or with a
verifying set, however, many machines do not have these sequences. This
part about testing methods for resettable DFSMs is based on the overview
of this field proposed in [Sou15] that describes standard testing methods for
both resettable machines and machines without reset that require a checking
sequence. Systems that include a fault differ from their specifications but
the type of fault influences the difference between the specification and
the implementation that represents the system. There are several types of
faults and also many testing methods that deal with different types of faults.
Therefore, this part focuses only on testing methods that tackle the problem
when the implementation can have more states than the specification.

The next chapter gives basic definitions used in testing and specifies re-
quirements on testing methods to give a guarantee about the absence of
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7. Introduction .....................................
more states in the implementation. Then, the standard testing methods are
described in Chapter 9 and novel testing methods are proposed in Chapter 10
and Chapter 11. The new testing methods are based on a new sufficient
condition that guarantees the absence of a particular number of additional
states in the implementation if the constructed test suite meets particular
requirements. The new sufficient condition combines two existing ones and it
is described and proven in Chapter 8. Chapter 12 describes experiments that
compare the new testing methods against the standard ones. Chapter 13
concludes this part of thesis.

7.1 Research Questions

II.1 Is there a sufficient condition for test suite completeness weaker than
the most advanced conditions on which the H- and SPY- methods are
based?

II.2 Is there a technique constructing m-complete test suites smaller than
the standard testing methods?
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Chapter 8
Test Suite Completeness

The process of testing was sketched in Section 1.2 and this chapter specifies
the used notions and defines conditions that are usually employed to test
implementations that may comprise more states than their specifications.
Deterministic finite-state machines (DFSM) as introduced in Section 1.6 are
used to specify the following key notions that relate to the testing task.. The specification is a DFSM M = (S,X, Y, s0, DM , δM , λM ). The num-

bers of states, inputs and outputs are denoted by n, p, q, respectively,
that is, n = |S|, p = |X| and q = |Y |.. The implementation is a DFSM N = (Q,X, Y ′, q0, DN , δN , λN ) with
m = |Q|. It usually holds that Y ⊆ Y ′, otherwise some outputs expected
by the specification cannot be produced by the implementation which
corresponds to output faults.. Extra states (ES) is a notion used to describe that the implementation
has more states than the specification. If both the specification and
the implementation are minimal, then there are l extra states where
l = m− n.. Test suite (TS) is a set T of test sequences, or just tests, ti such that
T aims to test whether a property of the specification holds in the
implementation.. A testing method creates a test suite based on the specification.. The implementation N passes a test suite T if it responds to all test se-
quences with the outputs that are expected according to the specification,
that is, ∀ti ∈ T : λ∗N (q0, ti) = λ∗M (s0, ti). Otherwise, N fails T .. The fault domain FT is a set of all possible implementation that pass
the test suite T .

Other requirements on the specification, the implementation and a testing
method will be described after two definitions are proposed. The first one
defines a relation between two machines and the second specifies a property
of a test suite. M and N range over DFSMs with the above given definition
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8. Test Suite Completeness................................
and the subscripts of the transition and output functions are omitted when
they are clear from the context.
Definition 8.1. Two DFSMs M and N are output-different, or distinguishable
by w, if there is an input sequence w ∈ X∗↑ that separates the initial states
s0 of M and q0 of N , that is, λ∗M (s0, w) 6= λ∗N (q0, w).

DFSMs M and N are said to be U -distinguishable if there is a w ∈ U that
separates their initial states.
Definition 8.2. A test suite T is m-complete with respect to a reduced DFSM
M with n states if and only if for each DFSM N such that M and N are
output-different and N has at most m states there is a test sequence ti ∈ T
that separates the initial states s0 of M and q0 of N , that is, M and N are
distinguishable by ti. An m-complete test suite is said to be closed for l extra
states where l = m− n.

The following proposition directly follows from Definition 8.2.
Proposition 8.3. If the implementation N passes an m-complete test suite
for the specification M but M and N are output-different, then N must have
more than m states.

Proposition 8.3 specifies Theorem 2 of [Moo56] for m-complete test suites.
The proof follows from Definition 8.2 as all output-different N with up to m
states are distinguished by a test sequence of the m-complete T so that N
needs to have more thanm states. The use of Proposition 8.3 is a standard way
to give a precise guarantee about the number of states in the implementation.
The restrictions on the related machines and testing methods with which this
part of thesis deals are given as follows.. The specification M is minimal, that is, M is initially connected and

every two states si 6= sj ∈ S are distinguishable.. Both the specification M and the implementation N are completely
specified, that is, DM = S ×X and DN = Q×X.. The implementation is resettable so that all test sequences can be tested
from the same unique state.. All considered testing methods construct m-complete test suites, that
is, the constructed test suites are closed for the given number of extra
states l = m− n.

Key notions related to testing and the restriction considered in this thesis
were described. Before the sufficient conditions of test suite completeness
are introduced, some basic notions are defined as follows. The notions of
convergence and state domains are described in the next two sections.. A set of sequences U is initialized if it contains the empty sequence ε.. The access sequence s̄i of state si is a sequence that leads from the initial

state to state si, that is, δ∗(s0, s̄i) = si.
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...............................8.1. Convergence of Sequences

. A state cover S̄ for M is a set of access sequences of all states of M , that
is, ∀si ∈ S ∃s̄i ∈ S̄ : δ∗M (s0, s̄i) = si. State cover S̄ is usually initialized
so that the initial state is reached by the empty sequence. It is also often
prefix-closed and minimal, that is, there is exactly one access sequence
for each state.. A transition cover U for M is a set of sequence such that each defined
transition is included in a sequence of U , that is, ∀(s, x) ∈ D ∃uxv ∈ U :
δ∗M (s0, u) = s. Transition cover U is usually the one-input extension of
the minimal prefix-closed state cover S̄, that is, U = S̄ ·X.. The letter T is overloaded to represent both a test suite T as a set of
sequences and the related output function T : X∗ ×X∗↑ → Y ∗ that is
defined as T (u, v) = λ∗(δ∗(s0, u), v) for all uv ∈ T and thus it describes
the response to the suffix v from state reached by the prefix u.. Two test sequences u and v in T are T -separable if both are extended by
a w in T such that w separates the states reached by u and v, that is,
∃w : uw, vw ∈ T ∧ T (u,w) 6= T (v, w).

Notice that whenever a sequence w is considered for the purpose of a transfer
from one state to another, the stOut input is not included as it does not
change the target state, that is, w ∈ X∗. However, if w is considered for the
purpose of its response, for example, w is a separating sequence, then it is
reasonable to append ↑ to each input x ∈ X in the case of DFSMs, that is,
w ∈ X∗↑ .

8.1 Convergence of Sequences

Convergence and divergence of test sequences with respect to a set of machines
are important notions that enable one to use properties of regular languages
in testing. Regular languages are equivalent to finite-state machines, however,
this fact was not utilized for testing before the notions of convergence and
divergence were proposed in [SP09a, SPY12]. The structure of a DFSM was
described only by the sets of access and separating sequences but the relations
between the sequences were missing.
Definition 8.4. Given a set of FSMs F , two tests are F-convergent, if they
converge in each FSM of F , that is, both test sequences lead from the initial
state to the same state in each FSM of F ; and two tests are F-divergent, if
they diverge in each FSM of F , that is, both test sequences lead from the
initial state to different states.

Definition 8.4 can be applied to different sets of machines but the two
most important are F representing the fault domain FT of DFSMs that
pass the test suite T and F corresponding only to the specification M . Two
sequences u and v are thus FT -convergent if for each N ∈ FT , it holds that
δ∗N (q0, u) = δ∗N (q0, v); u and v FT -converge [SP09a]. Similarly, u and v are
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8. Test Suite Completeness................................
M -convergent in state s if δ∗M (s0, u) = δ∗M (s0, v) = s. The curly brackets
representing a set are omitted in the case of a single machine for simplicity,
that is, M -convergent or M -divergent is used instead of {M}-convergent or
{M}-divergent. Moreover, the set is omitted totally when it is clear from the
context. A necessary condition for two test sequences to be FT -convergent
(FT -divergent) is that they need to be M -convergent (M -divergent). This
follows from the fact that the specificationM always passes its test suite T and
so M is always in FT . There is also a sufficient condition for FT -divergence.
Two test sequences u and v are FT -divergent if they are T -separable.

The convergence relation is reflexive, symmetric and transitive, which
means that it is an equivalence relation over the set of tests [SPY12]. Tests
ui ∈ T can be thus partitioned into corresponding equivalence classes

[ui] = {uj ∈ T | ui and uj are FT -convergent}.

The following properties hold for any u, v ∈ T such that [u] = [v] [SPY12,
Lemma 1]:

(i) ∀w ∈ X∗↑ : [uw] = [vw] and (ii) ∀t ∈ T : [u] 6= [t] =⇒ [v] 6= [t].

As the equivalence classes group sequences that lead to the same state, the
behaviour on all extensions of these sequences is the same and so T can be
extended to work with the equivalent classes as follows. If there is u′ ∈ [u]
that is in T , then [u] ∈ T . The function T is defined for a class [u] and a
sequence w as T ([u], w) = T (u′, w) where u′ ∈ [u] and u′w ∈ T . If there is a
sequence w such that T ([u], w) 6= T ([v], w), then [u], [v] are T -separable.

Equivalence classes are derivable from a pairwise comparison of tests based
on their convergence and divergence, however, other notions are needed to
describe relations between those classes.
Definition 8.5. Given a test suite T for the specificationM , a set of tests in T
is FT -convergence-preserving if all its M -convergent tests are FT -convergent;
a set of tests in T is FT -divergence-preserving if all its M -divergent tests are
FT -divergent.

For example, a set of two T -separable tests is FT -divergence-preserving
because all machines that pass T respond differently to each of the two tests
and so the two test sequences are FT -divergent. With the convergence it is a
little harder as there is no simple sufficient condition for two or more tests to
be FT -convergent. The next theorem states a sufficient condition of two tests
to be FT -convergent.
Theorem 8.6. Given a test suite T for an FSM M and l = m− n ≥ 0, let u
and v be M -convergent tests in T , such that, for any sequence w of length l,
there exist tests u′ ∈ [u], v′ ∈ [v] and an FT -divergence-preserving state cover
for M in T containing {u′, v′} · pref(w). Then, u and v are FT -convergent.

Theorem 8.6 is the same as [SPY12, Theorem 2] except the denotation.
Its proof is based on two lemmas [SPY12, Lemma 3 and Lemma 4]. The
former lemma contains a mistake in [SPY12] as an assumption is not strong
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enough to cover all possible cases. Hence, a revised version is proposed in
the following lemma to correct the original one. The changed assumption is
in bold and an explanation of the flaw in [SPY12, Lemma 3] is discussed in
Appendix D.2.
Lemma 8.7. (revised [SPY12, Lemma 3]) Given a test suite T and an FSM
M , let u and v be tests in T which are M -convergent in state s and N ∈ FT

be an FSM, such that u and v are N -divergent. Let also w be a shortest input
sequence, such that w separates states reached by u and v in N . Then,
for each proper prefix w′ of w such that {u, v} · pref(w′) is FT -divergence-
preserving, the tests in {u, v}·pref(w′) reach at least |w′|+|δ∗M (s, pref(w′))|+1
distinct states in N .

Lemma 8.7 is proven by induction on the length of prefix w′ (equally to
the proof of [SPY12, Lemma 3]). The base case of the induction (w′ = ε)
holds as |ε|+ |{s}|+ 1 = |{q, q′}|. Let w = wk · w′k for all 0 ≤ k < |w| such
that |wk| = k. There are two cases for the inductive step in which the bound
on distinct states in N is proven based on the bound that holds for shorter
prefixes. The cases are if state sk+1 reached by wk+1 from s is in the set of
states δ∗M (s, pref(wk)), and if it is not in the set.
Case 1: If sk+1 was not reached by any prefix of wk from s, then uwk+1

is M -divergent with all u · pref(wk). The same holds for the prefix v. As all
these tests are in an FT -divergence-preserving set, the M -divergent sequences
are also FT -divergent and so N -divergent as well. In addition, the states
qk+1, q

′
k+1 reached by wk+1 from q and q′ are different because the suffix w′k+1

(of w = wk+1 · w′k+1) separates them. Therefore, the states qk+1, q
′
k+1 are

different from all states in δ∗N ({q, q′},pref(wk)) are reached by wk+1 which
correspond to the rise of the bound by considering a longer prefix of one more
symbol and one new state reached by wk+1 inM compared to δ∗M (s, pref(wk));

|wk|+ |δ∗M (s, pref(wk))|+1+2 = |wk+1|+ |δ∗M (s, pref(wk))∪δ∗M (s, wk+1)|+1.

Case 2: If sk+1 = δ∗M (s, wk+1) ∈ δ∗M (s, pref(wk)), then the bound rises just
by 1 compared to the bound related to wk. The rise by 1 corresponds to the
last input symbol x of wk+1 = wk ·x. Let Uk+1 be a set of all proper prefixes of
wk+1 that are in the form of extensions of u M -convergent with uwk+1, that is,
Uk+1 = {wj ∈ pref(wk) | uwj , uwk+1 are M -convergent}. If there was a prefix
wj ∈ Uk+1 such that the states reached by it in N from q, q′ responded to the
separating suffix w′k+1 differently, then it would contradict the assumption
that w is the shortest that separates q, q′; wj ·w′k+1 would separate them and
|wj | < |wk+1|. Therefore, both states reached by each prefix of Uk+1 respond
equally to w′k+1, that is, ∀wj ∈ Uk+1 : |λ∗N (δ∗N ({q, q′}, wj), w′k+1)| = 1. Note
that the states reached by a prefix wj of w in N from q, q′ are N -divergent,
that is, δ∗N (q, wj) 6= δ∗N (q′, wj). If all the responses of state pairs reached
by wj ∈ Uk+1 to w′k+1 are different from the response of qk+1 or q′k+1 where
qk+1 = δ∗(q, wk+1) and q′k+1 = δ∗(q′, wk+1), then the bound holds as at
least one of qk+1, q

′
k+1 is distinct from all states reached by {u, v} · pref(wk).

Otherwise, that is, both responses of qk+1, q
′
k+1 to wk+1 are produced by

some states reached by sequences of {u, v} · pref(wk), there are two cases.
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Figure 8.1: The bound from Lemma 8.7 for convergent sequences

The case when at least one of qk+1, q
′
k+1 is different from all these states

is not interesting as the bound holds. The other case when both qk+1, q
′
k+1

are reached by some sequences of {u, v} · pref(wk), is proven based on the
following Lemma 8.8. Let Vz be a set of all sequences of Uk+1 that lead
from q to a state that responds to w′k+1 with output sequence z, that is,
Vz = {wj ∈ Uk+1 | λ∗N (δ∗N (q, wj), w′k+1) = z}, and let wz be the shortest
sequence of Vz. If wk+1 is the shortest prefix that reaches states previously
reached by {u, v} · pref(wk), then sequences of Vz reach from q and q′ at
least |Vz|+ 1 distinct states as wz reaches two distinct states and the other
prefixes reach at least one new distinct state. Therefore, the total number
of distinct states reached by prefixes of wk is

∑
z∈Z(|Vz|+ 1) = |Uk+1|+ |Z|

where Z = {λ∗N (δ∗N (q, wj)) | wj ∈ Uk+1}. There are at least two different
responses to w′k+1, that is, |Z| ≥ 2. Hence, there is at least one more distinct
state in N than the bound set for wk. A minimal example is sketched in
Figure 8.1 where wi ∈ Vz′ , wj ∈ Vz, i < j, qk+1 = qi and q′k+1 = qj . Both
qi, q

′
i are needed to satisfy the bound for wi, however, qj , q

′
j are also different

from all previous so that |wj |+ |δ∗M (s, pref(wj))|+ 1 < |δ∗N ({q, q′},pref(wj))|.
One of qi, q

′
i and one of qj , q

′
j correspond to those whose responses are in Z.

As the bound is not tight, it also holds for wk+1 that does not reach any
‘new’ distinct state; one of qj , q

′
j could be considered that is used instead.

Lemma 8.8 below is used to prove that there cannot be another prefix that
would lead to states reached by sequences of Uk+1. Therefore, each additional
distinct state, like the one of qj , q

′
j , is considered for at most one longer prefix,

like the wk+1, to prove that the bound holds.
Both cases describe that the bound holds if a longer prefix wk+1 is consid-

ered. Therefore, Lemma 8.7 is proven.
Lemma 8.8. Let w be the shortest separating sequence of states s and s′ in a
minimal completely specified DFSM M , and let S′ be a set of any n′ different
states of M , that is, |S′| = n′ > 1. Then, there are at most n′ − 1 proper
prefixes of w that reach a pair of states of S′, that is, |{wk ∈ (pref(w) \ {w}) |
δ∗(s, wk), δ∗(s′, wk) ∈ S′}| ≤ n′ − 1.

Lemma 8.8 is based on the well-known fact that the shortest separating
sequence of any state pair has length up to n− 1.
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Proof. Lemma 8.8 is proven by induction on the size of S′. Given w according
to Lemma 8.8, let w = wk · w′k for all 0 ≤ k < |w| such that |wk| = k.

Base case: n′ = 2. If there are i < j such that δ∗({s, s′}, wi) = δ∗({s, s′}, wj),
then w would not be the shortest as wi · w′j would separate s and s′ as well.
Hence, every two states can be reached by proper prefixes of w at most once.
Inductive step: Let the result hold for all S′ of size up to n′. Assume S′′

of n′ + 1 states and wk as the longest prefix of w that transfer s, s′ to a pair
of states si, sj of S′′. Then, w′k separates si and sj , and it also partitions all
states of S′′ according to their responses z to w′k, that is, the partition is
formed of disjoint block of states Bz = {s ∈ S′′ | λ∗M (s, w′k) = z}. If any two
states from different blocks of the partition were reached by a proper prefix
wi of wk, then w would not be the shortest as wi ·w′k would separate s and s′
as well. Therefore, if a proper prefix wi of wk reaches a pair of states of S′′,
the states are from a single block Bz. Each block Bz has at most n′ states
because there are n′ + 1 states and at least two blocks that are not empty.
As the result holds for all n′ and only one pair of states of S′′ is reached by
wk, the result holds for n′ + 1 as well.

Based on Lemma 8.7, one can easily derive that for each proper prefix
w′ of w such that {u, v} · pref(w′) is covered in an FT -divergence-preserving
state cover S̄ of M , the tests in S̄ reach at least |w′|+ n+ 1 distinct states in
N . This is described formally in [SPY12, Lemma 4] followed by a proof. If
w′ has length m− n, then m+ 1 distinct states are reached in N that can
be distinguished from M . However, as N is considered to have at most m
states, this is a contradiction and it follows that u and v are FT -convergent.
Theorem 8.6 is proven.

The flaw in [SPY12, Lemma 3] was pointed out in [KK15], however, no
correction was provided. A more general framework was proposed instead.
Its proof thus also proves Theorem 8.6 that is a specification of the framework
proposed in [KK15]. The framework called deduction pattern allows to bound
the number of states that are reached by a set of sequences. An amended
version for completely specified machines is proposed in the following theorem.

Theorem 8.9. (amended [KK15, deduction pattern 13]) For each completely
specified DFSM N , a set U ⊆ T and natural number k with 0 < k ≤ |U |, a
sufficient condition for |δ∗N (q0, U)| ≤ k is that there exists a function f and
l = max(0,m− |{f(u) | u ∈ T}| − k + 1) such that

(i) f(u) = f(u′) for every subset {u, u′} of T with δ∗N (q0, u) = δ∗N (q0, u
′),

(ii) {(u′, f(uu′)) | |u′| ≤ l} is the same for every u ∈ U .

If k = 1, then Theorem 8.9 gives a sufficient condition of convergence of
sequences in U . Unfortunately, Theorem 8.9 is not constructive and it is
not shown how to find a function f to prove the convergence of sequences.
Therefore, a different approach was developed as the next section describes.
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8.2 State Domains of Test Sequences

The previous section indicated that one can partly encode the transition
function of a particular machine by proving convergence of test sequences. One
usually needs to know which test sequences are FT -divergent and which are
already proven to be FT -convergent. Instead of handling just sets of sequences,
this section describes a more convenient structure to store information about
divergence of test sequences.

The structure is called a state domain, or simply a domain, and it is
described by a function that assigns to each test sequence t of T a subset
of states that could be reached by t according to the comparison with the
fixed access sequences s̄ of states. The domain function φT,S̄ : X∗↑ → P(S) is
defined for all test sequences t in T such that φT,S̄(t) = {s ∈ S | t, s̄ are not
FT -divergent}. The domain function can be immediately extended to classes
of convergent sequences as ΦT,S̄([t]) = {s ∈ S | [t], [s̄] are not FT -divergent}.
Note that the subscripts are used in the definitions to indicate the dependency
on the particular test suite T and state cover S̄, however, the subscripts will
be omitted as these sets of sequences are clear from the context. The domain
functions on tests and their equivalence classes are denoted deliberately by
different symbols, lower- and upper-case of a Greek letter, respectively. For
each test t ∈ T , it holds that the domain of [t] is the intersection of domains
of individual tests in [t] with respect to any state cover formed of sequences
convergent with the access sequences of S̄, that is,

ΦT,S̄([t]) =
⋂

t′∈[t],Ū∈U

φT,Ū (t′) ⊆
⋂

t′∈[t]
φT,S̄(t′)

where U = {Ū | ∀s̄ ∈ S̄ ∃u ∈ [s̄] : u ∈ Ū}.
Figure 8.2 captures an example of domain functions for test sequences

‘aaa’, ‘ab’, ‘ba’, ‘caa’ and ‘cbb’. Responses to the sequences are given by the
Mealy machine in Figure 4.1 and they identify only the states A, B and E.
The test sequences with responses are visualized as a testing tree on the left
of Figure 8.2. A testing tree is a prefix tree such that each node corresponds
to the state reached from the initial state by the sequence labelling the
path from the root of the tree; root corresponds to the initial state. Nodes
representing identified states are coloured and are called state nodes. All
nodes are arbitrarily numbered and the state domains corresponding to their
access sequences are shown at their bottom right (except state nodes). For
instance, the domain of test sequence ‘b’ (node 5) contains only A and E
because state B responds to ‘a’ differently; ‘a’ is a separating sequence of B
(node 2) and the state reached by ‘b’ (node 5). The state reached by ‘c’ (node
7) is distinguished from both B (node 2) and E (node 1) so that φ(c) = {A}.
This indicates the convergence of ‘c’ and ‘ε’ that is the access sequence of state
A. Assume that all conditions are fulfilled and the convergence is confirmed.
Then, convergent classes of the five test sequences can be visualized as a
convergent graph on the right of Figure 8.2. A convergent graph is created from
a testing tree such that the subtree of a node reached by sequence u is merged
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into the state node rs of state s if u is proven to be convergent with s̄. Nodes
of a convergent graph represent convergent classes and are called convergent
nodes. In Figure 8.2, the nodes are labelled with the number of testing tree
nodes that correspond to convergent sequences. For example, nodes 1 and 8
represent convergent class [a] (and state E) in the convergent graph. Access
sequences ‘a’ and ‘ca’ of nodes 1 and 8 are convergent because the sequences
‘ε’ and ‘c’ represented by nodes 0 and 7 (predecessors of nodes 1 and 8) were
confirmed to be convergent. Similarly, nodes 5 and 10 represent convergent
class [b]. Notice that the domain Φ([b]) provides better information about
the correspondence to a particular state node than the state domains φ of
both sequences separately; Φ([b]) ⊆ φ(b) ∩ φ(cb) = {A,E} ∩ {A,B} = {A}.
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S̄ = {ε, a, aa}

Figure 8.2: State domains of test sequences ‘aaa’, ‘ab’, ‘ba’, ‘caa’ and ‘cbb’

How can domain functions help? Domains keep track of FT -divergence. It
is really easy because as soon as a new test t is added to T , each prefix t′ of t in
T is compared against the access sequences of states and state s is eliminated
from the domains of t′ and [t′] if t′ and s̄ are separated by the related suffix of
t. This is nice but domains are really helpful because they can be employed
to prove FT -convergence of two tests as well as completeness of the entire
test suite. Before Theorem 8.6 is rephrased using domains, let us describe
a condition when a subset of test sequences U is FT -divergence-preserving.
As a reminder, two tests are FT -divergent if they are T -separable. A set of
tests U ⊆ T is FT -divergence-preserving if every two tests in U that lead
to different states in M have FT -convergent tests that are T -separable, that
is, ∀u, v ∈ U : δ∗M (s0, u) 6= δ∗M (s0, v) =⇒ ∃u′ ∈ [u], v′ ∈ [v] : u′, v′ are
T -separable.

Theorem 8.10. Given a test suite T for a DFSM M , a minimal state cover
S̄ for M and l = m− n ≥ 0, let ti and tj be M -convergent tests in T , ti and
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tj are FT -convergent if the following conditions hold for all sequence w of
length up to l, that is, for w = ε as well.

1) There are t′i ∈ [ti] and t′j ∈ [tj ] such that t′iw, t′jw ∈ T

2) States reached by the access sequences in S̄ are identified in T , that is,

∀s ∈ S : Φ([s̄]) = {s}.

3) States reached by tiw, tjw are identified in T , that is,

∃s ∈ S : Φ([tiw]) = {s} = Φ([tjw]).

4) For each prefix w′ of w that leads to a different state than w, the
M -divergence of the related access sequences is preserved in FT by
distinguishing them with a separating suffix, that is,

∀w′ ∈ pref(w) : δ∗M (s0, tiw
′) 6= δ∗M (s0, tiw) =⇒

(∀([u], [v]) ∈ {[tiw′], [tjw′]} × {[tiw], [tjw]} : [u], [v] are T -separable).

Proof. Theorem 8.10 is proven by showing that all requirements of Theo-
rem 8.6 are met. The condition 1 of Theorem 8.10 ensures that T contains
all extensions of [ti] and [tj ] that have length up to l. It satisfies the first
part of Theorem 8.6 that such sequences exist in T . The second part of
Theorem 8.6 is that these sequences need to be included in an FT -divergence-
preserving state cover. The conditions 2, 3 and 4 are in Theorem 8.10 for this
purpose. The condition 2 ensures that there is an FT -divergence-preserving
state cover because a domain is a singleton containing state s only if the
related sequence is T -separable from the access sequences of all states dif-
ferent from s. Let U be an FT -divergence-preserving state cover such that
U = S̄. U is gradually extended with sequences of {ti, tj} · pref(w). If U is
to remain FT -divergence-preserving, then each sequence ta that should be
added needs to be T -separable from all sequences in T with respect to the
FT -convergent sequences. At first, each sequence ta is distinguished from all
M -divergent access sequences of S̄. This is ensured by the condition 3 of
Theorem 8.10. Note that ta does not have to be T -separable with exactly s̄i

if they are M -divergent but with at least one sequence u that is proven to
be FT -convergent with s̄i. The same holds for ta itself, hence, any t′a ∈ [ta]
and any u ∈ [s̄i] can prove FT -divergence of ta and s̄i. The only thing that
remains to ensure is what the condition 4 captures. As U is extended with
ta’s of {ti, tj} ·pref(w), U begins to contain sequences that are not yet proven
to be FT -convergent with the access sequence of a state. These sequences
also need to be shown to be divergent if they are M -divergent. As ti, tj are
M -convergent, any extension of them is convergent as well. Therefore, it is
sufficient to compare extensions of only one of those to find out if they are
M -divergent; for a prefix w′ of w if tiw′ and tiw are M -divergent, then tjw′
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and tjw are also M -divergent. If w′ is a prefix of w and tiw′, tiw lead to dif-
ferent states, then there are four pairs of M -divergent sequences that need to
be proven to be FT -divergent. The pairs are (tiw′, tiw), (tjw′, tiw), (tiw′, tjw)
and (tjw′, tjw). Again, any sequence FT -convergent with these four sequences
can be extended by a separating sequence instead of these four sequence to
show their T -separability. If all four conditions of Theorem 8.10 are fulfilled,
all M -divergent sequences of U are T -separable and so FT -divergent. Hence,
U is FT -divergence-preserving state cover for M containing {ti, tj} · pref(w)
which gives FT -convergence of ti and tj according to Theorem 8.6.

Using domains thus allows one to derive FT -convergence but domains also
provide a different view on test sequences. Domains were used to construct a
checking sequence and so-called state recognition patterns (SRP) reduced the
domains based on tests in a test suite under construction in [KK12]. One of
these SRPs is described in the following theorem. It works only if no extra
state is assumed, that is, m = n.
Theorem 8.11. Given a test suite T for a reduced DFSM M with n states,
n = m, and an FT -divergence-preserving minimal state cover S̄, for any
tests u and v in T if there is a sequence w such that uw, vw ∈ T and
Φ([uw]) ∩ Φ([vw]) = ∅, then u and v are FT -divergent.

Proof. Each test sequence needs to be convergent with exactly one access
sequence of S̄ as S̄ is FT -divergence-preserving and minimal, and m = n.
Empty intersection of domains Φ([uw]),Φ([vw]) means that every access
sequence s̄ ∈ S̄ is FT -divergent from [uw] or [vw]. Hence, there would not
be a state that would correspond to the state reached by uw if uw and vw
were convergent, that is, [uw] = [vw]. As this holds for any N ∈ FT , uw
and vw need to be FT -divergent. No single sequence w can lead from a
state (reached by convergent sequences u, v) to different states (reached by
divergent sequences uw, vw). Therefore, u and v are FT -divergent.

Note that there are (so far) two ways to reduce the domain of u, that
is, to show that [u] is FT -divergent with an access sequence s̄ of S̄. Either
there is a separating extension of u and s̄ so that [u], [s̄] are T -separable,
or Theorem 8.11 is used if n = m. Theorem 8.11 contains a possible self-
reference as the intersection of Φ([uw]),Φ([vw]) can be empty due to the
use of Theorem 8.11. As all test sequences have finite length and this ‘self-
reference’ needs to start somewhere, separating sequences need to reduce
domains before Theorem 8.11 can be used.

8.3 Sufficient Conditions

Completeness of a test suite provides a guarantee on the number of states in the
tested implementation as Proposition 8.3 describes. There are several sufficient
conditions of an m-complete test suite but also some necessary conditions,
for example, an m-complete test suite needs to include a transition cover,
that is, all transitions are traversed during the testing [PBY96]. Sufficient
conditions usually specify properties or types of test sequences such that the
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test suite T is m-complete if they hold or are present in T . The goal is to have
conditions that are both necessary and sufficient. If this is hard to achieve,
the weaker sufficient conditions are available, the smaller m-complete test
suite can be constructed. This section proposes a new sufficient condition
that combines two most advanced sufficient conditions which makes it the
weakest sufficient condition of an m-complete test suite. The first advanced
sufficient condition, called here the H-condition, covers most of other sufficient
conditions as it is more general. The second advanced sufficient condition,
called here the SPY-condition, employs the convergence of sequences. Both
conditions are defined and explained before the new sufficient condition called
the S-condition is proposed.

The H-condition was proposed first just for n-complete test suites in
[PBY96] and then generalized for m-complete test suites in [DEFY05]. The
following theorem defines its revised version for reduced completely specified
machines.
Theorem 8.12. (H-condition) A test suite T is m-complete with respect to
the reduced completely specified machine M with n states if T contains the
set P of sequences S̄ ·X≤m−n+1 where S̄ is a minimal state cover of M and
the following conditions hold:

1. for each u ∈ S̄ and each v ∈ P such that δ∗(s0, u) 6= δ∗(s0, v), there
should be two sequences uw, vw ∈ T such that λ∗(δ∗(s0, u), w) 6=
λ∗(δ∗(s0, v), w); and

2. if m > n, then for each u ∈ P \ S̄ and each v ∈ pref(u) \ S̄ such that
δ∗(s0, u) 6= δ∗(s0, v), there should be two sequences uw, vw ∈ T such
that λ∗(δ∗(s0, u), w) 6= λ∗(δ∗(s0, v), w).

The first condition of Theorem 8.12 is divided into two cases in the literature.
At first, all access sequences u ∈ S̄ are made T -separable from each other
and then each sequence of P that is not in S̄ is distinguished from all access
sequences u ∈ S̄ that lead to a different state. The second condition of
Theorem 8.12 describes that every two sequences of P that are not in S̄,
one is a prefix of the other, and lead to different states, need to be made
T -separable by extending with a separating sequence. If no extra state
is considered, the second condition is not needed as it verifies transitions
between potential extra states. As the new S-condition proposed below is a
generalization of the H-condition, its proof also proves the H-condition and
so the proof of Theorem 8.12 is not presented here. The original proof was
proposed in [DEFY05] and the proof of the S-condition is largely based on it.

The SPY-condition was proposed [SPY12] and its revised version is captured
in the following theorem.
Theorem 8.13. (SPY-condition) Suppose that T is a test suite for a DFSM
M and FT is the corresponding fault domain of machines with up to m states.
If T contains an FT -convergence-preserving initialized transition cover for M ,
then T is an m-complete test suite for M .
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Figure 8.3: Tests verifying δ(si, x) = sj according to the H- and SPY- conditions

The proof of Theorem 8.13 in [SPY12] shows that each machine N in FT

needs to be equivalent to M due to the isomorphism between states of M
and N . The initial states correspond to each other as T contains their access
sequence, that is, ε ∈ T as T is initialized. All M -convergent sequences of
the transition cover are FT -convergent and so they lead to the same state in
every N , that is, there is one to one correspondence between states of M and
states of N . All transitions of M are tested as T contains transition cover.
Therefore, Theorem 8.13 holds.

Both the H- and SPY-conditions have the same approaches to m-complete-
ness as both verify each transition if it is implemented correctly. The difference
is how they verify the correct implementation of a transition. Consider test
sequences that are in a test suite according to both conditions for the purpose
of verification that the transition on input x leads from state si to state
sj . These tests are sketched in Figure 8.3; test sequences required by the
H-condition are on the left and those required by the SPY-condition are in
the middle and also on the right where they are grouped according to their
FT -convergence that was already proven. The test suites are depicted as a
tree. A tree is a suitable representation because it eliminates the redundancy
of common prefixes; each test labels a path from the root to a leaf and a
common prefix of any two tests lead to the same node.

The H-condition verifies the transition by extensions of s̄ix that form a
verifying subtree. A verifying subtree contains all sequences of length m− n,
all domains related to these sequences are singletons, and each prefix of these
sequences that leads to a different state is T -separable. A verifying subtree
has depth at least m− n but mostly it is more than that because there are
separating sequences that extends those fixed sequences of length m− n.
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The SPY-condition aims to create the verifying subtree, however, it uses the

verifying subtree to prove FT -convergence of sequences s̄ix and s̄j . According
to Theorem 8.6, there needs to be two verifying subtrees, one extending s̄ix
and one s̄j . In addition, not only prefixes of sequences in the subtree are
T -separable from their extensions that lead to different states but also the
same prefixes in the other subtree need to be T -separable. This may result
in a bigger verifying subtree than in the case of the H-condition. Moreover,
there are two such subtrees. On the other hand, the SPY-condition allows one
to distribute the sequences of a verifying subtree over convergent sequences
which may lead to a smaller test suite.

To sum up the comparison of the two sufficient conditions, the H-condition
requires one verifying subtree to verify the target state of a transition (si, x)
but all of its sequences need to extend the fixed s̄ix. The SPY-condition
proves the convergence of the target state δ(si, x) and the related state sj

by extending each with a verifying subtree that can be distributed over the
convergent sequences but all sets including the same sequence of length m−n
from both verifying subtrees need to be FT -divergence-preserving. Note
that verifying subtrees extend all s̄j implicitly in the case of the H-condition
because they are formed of the subtrees that verify target states of transitions
leading from sj . Nevertheless, subtrees of s̄ix and s̄j are not related by the
H-condition and there is no requirement on the sequences from different
subtrees to be separated.

The new sufficient condition combines both described conditions in a way
that one can choose transitions which will be proven just by a verifying subtree
appended to the target state and which will be verified by the convergence,
that is, by Theorem 8.6 or by Theorem 8.10. In addition, as some sequences
are proven to be FT -convergent, sequences of any verifying subtree can be
then distributed over the convergent sequences. Therefore, the H-condition
is generalized by allowing one to extend convergent sequences instead of
fixed access sequences s̄ix and the SPY-condition is weakened that some
sequences s̄ix do not have to be proven to be FT -convergent with the related
s̄j . Nevertheless, all sequences s̄ix are FT -convergent with the related s̄j in
the end (without being proven to be convergent during the construction of T
using Theorem 8.6) because the entire test suite T is m-complete. The new
sufficient condition follows.
Theorem 8.14. (S-condition) A test suite T ism-complete with respect to the
reduced completely specified DFSM M with n states and the corresponding
fault domain FT if S̄ is an initialized minimal state cover of M and the
following conditions hold:

1. for each state s ∈ S and each sequence v of length up to m− n+ 1, T
contains a sequence uv such that u is convergent with s̄, that is,

∀s ∈ S ∀v ∈ X≤m−n+1 ∃u ∈ [s̄] : uv ∈ T,

2. for each access sequence s̄i ∈ S̄ and its extension v of length up to
m − n + 1 that leads to state sk, T secures that the sequence s̄iv is
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FT -divergent with the access sequences s̄j ∈ S̄ that are different from s̄k,
for example, by making them T -separable, that is,

∀si, sj ∈ S ∀v ∈ X≤m−n+1 ∃ui ∈ [s̄i] ∃uj ∈ [s̄j ] ∃w ∈ X∗↑ :
δ∗(si, v) 6= sj =⇒

(
uivw, ujw ∈ T ∧ T (uiv, w) 6= T (uj , w)

)
,

3. if m > n, then for each access sequence s̄ ∈ S̄ and its extension v of
length up to m−n+ 1 that leads to state sk, T secures that the sequence
s̄v is FT -divergent with all sequences s̄v′ that lead to states different
from sk and where v′ is a prefix of v, for example, by making them
T -separable, that is,

∀s ∈ S ∀v ∈ X≤m−n+1 ∀v′ ∈ pref(v) ∃u, u′ ∈ [s̄] ∃w ∈ X∗↑ :
δ∗(s, v) 6= δ∗(s, v′) =⇒

(
uvw, u′v′w ∈ T ∧ T (uv,w) 6= T (u′v′, w)

)
.

Theorem 8.14 requires by the first condition that all extensions appear in
the test suite T , and the other two conditions correspond to the ones of the
H-condition defined in Theorem 8.12. As the definition of the S-condition is
the same as the one of the H-condition except the use of convergence, the
proof is an amendment of the original proof of the H-condition that was
proposed in [DEFY05].

Proof. Assume a test suite T that satisfies all the requirements of Theo-
rem 8.14, and a DFSM N ∈ FT with m states such that N and M are
distinguishable. Let w be the shortest input sequence that distinguishes some
state si ∈ S from δ∗N (q0, s̄i), that is, λ∗M (δ∗M (s0, s̄i), w) 6= λ∗N (δ∗N (q0, s̄i), w).
Note that there is no prefix u of w such that s̄i · u ∈ S̄ because w would not
be the shortest separating sequence; the extension of u in w would separate
sj = δ∗M (si, u) from δ∗N (q0, s̄j). Obviously, s̄i · w cannot be in T as N would
be distinguished from M and so N /∈ FT which contradicts the assumption.
The access sequence s̄i is extended with all sequences of length up to m−n+1
in T according to the condition 1 of Theorem 8.14. Hence, w consists of a
prefix wk of length m− n+ 1; w = wk · w′k and |wk| = m− n+ 1.

Let R be a set of the access sequences of all states and sequences formed
of s̄i extended with the prefixes of wk, that is, R = S̄ ∪ s̄i · pref(wk). The
number of sequences in R is m+ 1 because there is n states and m− n+ 1
non-empty prefixes of wk. As N has at most m states, there are at least
two N -convergent sequences in R. Let u, v ∈ R be N -convergent, that is,
δ∗N (q0, u) = δ∗N (q0, v). They are also M -convergent because all M -divergent
sequences in R are FT -divergent as well due to the conditions 2 and 3 of the
S-condition. There are three possible cases for u and v with respect to the
state cover S̄.
1) u, v ∈ S̄. All access sequences in S̄ are extended with a separating

sequence in T according to the condition 2 of Theorem 8.14. Therefore,
this case is not possible if N passes T .
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2) u ∈ S̄ and v /∈ S̄. Let v′ be the extension of v in s̄iw and u = s̄j .

Then, v′ distinguishes sj from δ∗N (q0, s̄j) because u, v are M - and N -
convergent, that is, λ∗M (sj , v

′) = λ∗M (δ∗M (s0, v), v′) 6= λ∗N (δ∗N (q0, v), v′) =
λ∗N (δ∗N (q0, u), v′). As v′ is a proper suffix of w and so a shorter sequence,
it contradicts the assumption that w is the shortest that distinguishes
states of M and N reached by an access sequence of S̄.

3) u, v /∈ S̄. Let u = s̄i · u′ and u be shorter than v, that is, u is a prefix
of v, and let v′ be the extension of v in s̄iw. Then, u′v′ distinguishes
si from δ∗N (q0, s̄i) because u, v are M - and N -convergent. Again, it is a
contradiction as |u′v′| < |w|.

Neither of the three cases above is possible so that there cannot be such
a separating sequence w. For each distinguishable DFSM with at most m
states, there is a sequence in T that distinguishes it from M , hence, T is
m-complete.

Note that if m = n, then Theorem 8.11 about reasoning based on empty
intersection of domains can be employed to secure FT -divergence in the
condition 2 of Theorem 8.14. Otherwise, there is (so far) only one way to
prove FT -divergence in general for m ≥ n and that is making sequences
T -separable.
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Chapter 9
Existing Methods

Testing methods tend to produce test suites of several sequences if the test suite
is to be m-complete. Therefore, the system under test (the implementation)
needs to be resettable in order to apply all test sequences and observe their
responses. There are several testing methods creating tests that begin in
the initial state. This chapter describes the standard testing methods in
the following sections and sketches others in Section 9.8. The description
of methods is based on their overview proposed in [Sou15]. Comparisons of
some standard testing methods can be found, for example, in [SL89, Ura92,
DEFM+05, ES13]. The author of the thesis has implemented most of the
testing methods and so they can be employed for an experimental comparison
with the new testing methods proposed in the subsequent chapters.

All standard testing methods verify each transition of the reduced com-
pletely specified specification M according to the H-condition (Theorem 8.12)
or the SPY-condition (Theorem 8.13). Any test suite needs to include a tran-
sition cover U for M and each sequence of U is extended with all sequences
of length m − n if the H-condition is to be satisfied. Therefore, let S̄ be
a minimal initialized state cover for M , P be a set of all access sequences
extended with all sequences of length m−n+1, and R be a set of the maximal
sequences of P (a maximal sequence has no extension in the set), that is,

P = S̄ ·X≤m−n+1 and R = P \ (S̄ ·X≤m−n).

Note that P is a minimal transition cover if m = n. The sets P and R simplify
the description of most standard testing methods. The methods differ mainly
in the way how they verify the reached state that is the target state of
a transition. For this purpose, different sequences for state identification
introduced in Section 1.6.1 are used. As some of these sequences (or sets of
sequences) correspond to a particular state, a special concatenation operator ◦
is introduced to simplify the description when, for example, a harmonized
state identifier Hi of state si should extend each sequence u that leads to si.
The special concatenation operator ◦ is defined for a set U of sequences and
a set of sets Vi such that there is a set of sequences Vi for each state si,

U ◦ Vi = {u · v | u ∈ U, v ∈ Vi such that Vi corresponds to si = δ∗(s0, u)}.

The definition can be easily adjusted if Vi is a single sequence, for example, a
state verifying sequence.
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9.1 ADS-method

The ADS-method proposed in [Sou15] uses an adaptive distinguishing se-
quence (ADS) for the verification of the target state. Given an ADS in the
form of a verifying set as defined in Section 1.6.1, let di be the state verifying
sequence of state si. Then, a test suite T is formed as follows:

T = P ◦ di

Note that an ADS does not have to exists for M so that this method fails if
there is no ADS.

9.2 SVS-method

The SVS-method proposed in [Sou15] is similar to the ADS-method as it uses
state verifying sequences (SVS) to verify the target state. However, the entire
verifying set (VSet) needs to be appended to each sequence of P that is not
maximal because otherwise the divergence of different sequences would not
be confirmed. The SVS-method is similar to the UIOv-method proposed in
[CVO89] but it does not aim to construct a checking sequence that is just
n-complete. A test suite is created as follows:

T = (P \R) ·VSet ∪ R ◦ SVSi

If a state si does not have an SVSi, then a state characterizing set Wi is
used instead so that the SVS-method can be used for all reduced completely
specified machines.

9.3 W-method

TheW-method is the oldest testing method. It was proposed in [Vas73, Cho78]
and it simply appends a characterizing set W to each sequence of P .

T = P ·W

9.4 Wp-method

The Wp-method, or the partial W-method, was introduced in [FKA+91] and
similar to the W-method it appends a characterizing set W to each sequence
of P except the maximal ones. The target state of a maximal sequence is
verified with the corresponding state characterizing set Wi. Nevertheless,
each state characterizing set Wi must be a subset of the characterizing set
W . Then, a test suite T is formed as follows:

T = (P \R) ·W ∪R ◦Wi
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9.5 HSI-method

The HSI-method proposed in [Pet91] uses harmonized state identifiers (HSI)
for the verification of transitions. As for any two states si, sj there is a common
separating prefix in the HSIs Hi and Hj for states si and sj respectively, the
HSIs are sufficient to verify the target state of each sequence of P , that is,

T = P ◦Hi

9.6 H-method

The H-method proposed in [DEFY05] is similar to the HSI-method but
it chooses separating sequences on the fly instead of using fixed HSIs. It
basically follows the H-condition (Theorem 8.12) so that it extends P with
separating sequences of two different states reached by particular sequences
of P . Formally, the stepwise construction of a test suite T is described in the
following four steps:
1) T = P .
2) For each s̄i, s̄j ∈ S̄ such that si 6= sj , if T does not contain a common

separating extension w of s̄i and s̄j (that is, ¬∃s̄i · w, s̄j · w ∈ T :
λ∗(si, w) 6= λ∗(sj , w)), then add such s̄i · w and s̄j · w to T .

3) For each s̄i ∈ S̄, v ∈ P \ S̄ such that si 6= sv = δ∗(s0, v), if T does not
contain a common separating extension w of s̄i and v (that is, ¬∃s̄i ·
w, v · w ∈ T : λ∗(si, w) 6= λ∗(sv, w)), then add such s̄i · w and v · w to T .

4) If m > n, then for each u, v ∈ P \ S̄ such that u ∈ pref(v) and su =
δ∗(s0, u) 6= sv = δ∗(s0, v), if T does not contain a common separating
extension w of u and v (that is, ¬∃u ·w, v ·w ∈ T : λ∗(su, w) 6= λ∗(sv, w)),
then add such u · w and v · w to T .

The H-method is one of advanced testing methods that produce small test
suites compared to the other methods. Nevertheless, it is not clear how the
separating extensions w’s are chosen in the steps 2–4. Hence, the following
sections describe an implementation of the H-method and a running example
of the construction of a test suite by the H-method. The original paper does
not provide the implementation details, hence, the implementation is based
on the version in [Sou15] developed by the author of the thesis.

9.6.1 Implementation

Algorithm 13 captures all four steps of the H-method such that the work of
step 2 is delegated to the function distinguish (Algorithm 14) and the work
of steps 3 and 4 to the recursive functions distinguishFromStateCover
(Algorithm 15) and distinguishFromSet (Algorithm 16), respectively.

Each two access sequences u, v in S̄ are to be separated by a common
extension in the step 2. This is done by the function distinguish defined in
Algorithm 14. It first obtains a common extension w′ in T by the function
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Algorithm 13: H-method
input :A minimal DFSM M with n states
input :A number of extra states l; m = n+ l
output :An m-complete test suite T for M

1 T ← S̄ ·Xm−n+1 // step 1
2 foreach u, v ∈ S̄ such that u 6= v do // step 2
3 distinguish(u, v)
4 foreach v ∈ (S̄ ·X \ S̄) do // step 3
5 distinguishFromStateCover(v, S̄, l)
6 if l > 0 then // step 4
7 foreach v ∈ (S̄ ·X \ S̄) do
8 distinguishFromSet(v, ∅, l)

9 return T

getBestPrefixOfSeparatingSequence (Algorithm 17) such that the
shortest separating sequence w of the states reached by uw′ and vw′ is
estimated to enlarge T the least. Then, uw′w and vw′w are added to T . Note
that one of uw′w, vw′w can already be in T . If u and v were already separated
in T , then getBestPrefixOfSeparatingSequence would return the
estimated number e of new symbols extending T equal to 0 and so no
sequence is added to T .

Algorithm 14: distinguish(u, v)
1 (e, w′)← getBestPrefixOfSeparatingSequence(u, v)
2 if e > 0 then
3 w ← shortest separating sequence of δ∗(s0, uw

′), δ∗(s0, vw
′)

4 add uw′w, vw′w to T if not there already

The function distinguish does the main work also in the steps 3 and 4.
Algorithm 15 describes the recursive function distinguishFromStateCover
that is called for each v ∈ P \ S̄ as step 3 requires. Every such v is then
distinguished from each access sequence in S̄ that leads to a state different
from the one reached by v. Similarly, step 4 is implemented by Algorithm 16
such that the recursive function distinguishFromSet is called for each
v ∈ P \ S̄. All prefixes u of such v that are not in S̄ are collected in a set V
so that u, v can then be easily distinguished and the condition of step 4 is
fulfilled.

The function getBestPrefixOfSeparatingSequence described in Al-
gorithm 17 is used in the function distinguish to check extensions of the
given sequences u and v if there is a common extension in T that separates
states reached by u and v. If there is not such an extension, then the function
returns the prefix of a separating sequence of the states reached by u and
v such that the prefix is a common extension of both u and v in T and the
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Algorithm 15: distinguishFromStateCover(v, S̄, depth)
1 if depth > 0 then
2 foreach x ∈ X do
3 distinguishFromStateCover(vx, S̄, depth− 1)

4 foreach u ∈ S̄ such that δ∗(s0, u) 6= δ∗(s0, v) do
5 distinguish(u, v)

Algorithm 16: distinguishFromSet(v, V , depth)
1 if depth > 0 then
2 add v to V
3 foreach x ∈ X do
4 distinguishFromSet(vx, V, depth− 1)
5 pop v from V

6 foreach u ∈ V such that δ∗(s0, u) 6= δ∗(s0, v) do
7 distinguish(u, v)

entire separating sequence adds minimal number of symbols to T when it
is appended to u, v in T . The function compares all extensions of u, v in
T by trying to start with each input x. If ux and vx are included in T ,
then a recursive call is made to check extensions of ux, vx in T unless x
separates states reached by u, v or x transfers these states to the same state.
In the former case (line 5 of Algorithm 17), the function returns that the
given sequence are already distinguished in T . In the latter case (line 6),
another input x is considered as no separating sequence can start with x. The
recursive call of the function returns two values, an estimate e of symbols that
enlarge T and a sequence w′ that is an extension of the given ux and vx in
T and also is a prefix of the separating sequence of states reached by ux, vx.
If e is 0, then ux and vx are distinguished in T and so u, v are distinguished
as well. Otherwise, e is compared with minEstimate that stores the minimal
estimate amongst inputs x considered so far. minEstimate is updated if e
is lower or equal (line 9). Then, also bestPrefix is updated with xw′. Note
that the equality in the condition on line 9 means that longer extensions are
favoured in the selection. This aims to select extensions that are not proper
prefixes of other extensions and so the number of sequences in T does not
increase when the chosen separating sequence is appended to u and v.

If an input x does not start extensions of both u and v in T , then the
function estimateGrowthOfT estimates the number of symbols that would
be added to T to distinguish the given states su and sv if the separating
sequence began with x. Algorithm 18 defining estimateGrowthOfT
assumes that one of sequences u, v is extended with x in T . Therefore, it
returns 1 if x separates the given states. If x cannot begin the shortest
separating sequence because the states go on x to themselves or to a single
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Algorithm 17: getBestPrefixOfSeparatingSequence(u, v)

1 su ← δ∗(s0, u), sv ← δ∗(s0, v)
2 minEstimate ← 2n, bestPrefix ← ε
3 foreach x ∈ X do
4 if there are wu, wv such that uxwu, vxwv ∈ T then
5 if λ∗(su, x ↑) 6= λ∗(sv, x ↑) then return (0, ε)
6 if δ(su, x) = δ(sv, x) then continue
7 (e, w′)← getBestPrefixOfSeparatingSequence(ux, vx)
8 if e = 0 then return (0, ε)
9 if e ≤ minEstimate then minEstimate ← e, bestPrefix ← xw′

10 else
11 e← estimateGrowthOfT(su, sv, x)
12 if there is no w such that uxw ∈ T or vxw ∈ T then e← e+ 1
13 if e < minEstimate then minEstimate ← e, bestPrefix ← x

14 return (minEstimate, bestPrefix)

state, then 2n is returned. Note that twice the number of states is always
greater than twice the length of the shortest separating sequence of a state
pair. Otherwise, estimateGrowthOfT estimates that T would be enlarged
by 2 · |w| + 1 symbols where w is the shortest separating sequence of next
states of su, sv on x such that w would be appended to both ux, vx and
+1 stands for one x appended to either u or v. The function assumes that
no prefix of w is an extension of ux or vx in T , therefore, the estimate is
always higher than or equal to the actual number of symbols that enlarge
T by appending w to ux, vx. Note that instead of constructing w for every
call of estimateGrowthOfT the H-method possesses a state pair array
(SPA) of all separating sequences encoded by connections between cells of the
SPA. This SPA provides for each state pair both the length of the shortest
separating sequence and information if an input can begin a separating
sequence [Sou15]. The separating sequence w is then obtained based on the
connections between the cells of SPA only once for each call of distinguish.
The estimate e returned by estimateGrowthOfT is increased by 1 if both
u, v are not extended with x (line 12 of Algorithm 17). Then, it is compared
with minEstimate and if e is lower, then bestPrefix is updated with x. Finally,
minEstimate and bestPrefix are returned as the values capturing the best way
to distinguish the given u and v.

Algorithm 18: estimateGrowthOfT(su, sv, x)
1 if λ(su, x) 6= λ(sv, x) then return 1
2 if δ({su, sv}, x) = {su, sv} or |δ({su, sv}, x)| = 1 then return 2n
3 let w be the shortest separating sequence of δ(su, x) and δ(sv, x)
4 return 2 · |w|+ 1
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9.6.2 Running Example

This section describes how the H-method creates a test suite of the 5-state
Mealy machine defined in Figure 4.1. A test suite usually contains sequences
with common prefixes, therefore, it is suitable to represent the test suite as a
successor tree called here a testing tree. As the H-method and other advanced
testing methods compare the responses of individual test sequences, it is
good to store also outputs in the testing tree. Therefore, a testing tree can
be thought of as a deterministic finite-state machine such that every state
except the initial one has exactly one incoming transition. An example of
testing tree is in Figure 9.1 where nodes are numbered in the order when
they extended the test suite T .

The H-method starts with a transition cover that is then extended to form
S̄ ·Xm−n+1. The transition cover is constructed gradually according to the
length of access sequences and the alphabetical order. At first, sequences of
1 input are added to the test suite T . Sequences ‘a’ and ‘b’ are the access
sequences of states E and C, respectively. Therefore, they are extended in the
next step of the transition cover construction as captured in Figure 9.1. By
adding sequences ‘aa’, ‘ab’ and ‘ac’, T contains access sequences to all states;
the initial state A is reached by the empty sequence ε. A transition cover is
included in T after states C, B and D are extended with all three inputs. The
testing tree then has 16 nodes; note that the root is labelled with 0. Consider
1 extra state, that is, l = 1 and m = n + 1 where n = 5. All the maximal
sequences of the current test suite T are thus extended with each input. It is
done in the order of the number of the related leaves, that is, all sequences
added to T are in a queue that directs their further extensions. The step 1 of
the H-method ends with 49 nodes; the last added sequence is ‘accc’.

The step 2 distinguishes pairs of access sequences in S̄. First, it calls the
function getBestPrefixOfSeparatingSequence on sequences ε and ‘a’.
They reach states A and E that are already distinguished in T by the common
extension ‘aa’. Note that the states are also separated by ‘b’ but the function
searches in depth first so that ‘aa’ is observed earlier. Similarly, the sequence
ε is distinguished from the access sequence ‘b’ of state C and the access
sequence ‘aa’ of state B by the extensions ‘aa’ and ‘a’, respectively. The
function getBestPrefixOfSeparatingSequence has more work with
the access sequences of states A and D. Both extensions ‘a’ and ‘b’ transfer
states to a single state, hence, they cannot start a separating sequence. The
next extension to check is ‘ca’ that transfer states A, D into states E, B
respectively. The corresponding nodes 16 and 46 of the testing tree are
leaves so that getBestPrefixOfSeparatingSequence(‘ca’, ‘acca’) gets
estimates for each input at first. Then, it returns (2, ‘a’) because ‘a’ is the
shortest separating sequence of E, B and it needs to be appended to both
sequences so T would grow by 2 symbols. Nevertheless, this extension is not
needed as the next extension ‘cb’ distinguishes states A, D so that T is again
not enlarged. Similarly, the other pairs of access sequences in S̄ are found to
be already distinguished in T . The step 2 thus does not add any node to the
testing tree.
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Figure 9.1: H-method: testing tree after verifying transition (A,c)

Figure 9.1 captures processing of the first sequence ‘c’ of P by the step
3. The function distinguishFromStateCover first recursively calls itself
with one-input extensions of ‘c’. Therefore, sequences ‘ca’, ‘cb’, ‘cc’ and ‘c’
are distinguished from the fixed access sequences of states in this order. The
sequence ‘ca’ reaches state E that can be easily distinguished from A by the
extension ‘b’ (node 49 of the testing tree). The sequence ‘b’ also separates E
from C and D but ‘a’ needs to be appended to ‘ca’ to distinguish it from the
access sequence of B. It is similar with the extension of ‘cb’; ‘aa’ distinguishes
C from A, B and D, and ‘b’ distinguishes C from E. An interesting case comes
when ‘cc’ leading to A is to be distinguished from the access sequences of other
states. First, it is distinguished from E by appending ‘b’. To distinguish ‘cc’
from ‘b’ associated with state C, the function distinguishFromStateCover
checks the extensions in T as follows. Input ‘a’ is missing after ‘cc’ but it can
start a separating sequence ‘aa’ such that w on line 3 of Algorithm 18 would
be ‘a’ and the estimate e gets 3 as ‘a’ is an extension of ‘b’ in T . Therefore,
minEstimate is updated to 3 and bestPrefix to ‘a’ on line 13 of Algorithm 17.
The next input is ‘b’ that extends both ‘cc’ and ‘b’ in T . The function is
thus called on their successors that correspond to states C and A. No input
extends ‘ccb’ so that only the estimates are calculated for each input. The
best estimate is 3 that corresponds to the separating sequence ‘aa’ (it is
not 4 because ‘a’ extends ‘bb’ in T ). Algorithm 18 thus returns (3, ‘a’) and
bestPrefix is updated to ‘ba’ because of the equality in the condition on line
9. There is no better estimate and so ‘aa’ is appended to ‘ccb’ (nodes 55
and 57 of the testing tree) and ‘a’ extends ‘bba’ (node 56); the separating
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sequence is appended to both sequences simultaneously, hence the alternation
of node numbers. Note that if the separating sequence ‘aa’ was chosen, T
would grow only by 2 symbols instead of estimated 3 as the entire sequence
already extends ‘b’ in T . However, the number of test sequences and the
total number of inputs in T would be greater than in the case of separating
sequence ‘baa’; ‘ccaa’ would be a new test sequence, that is, plus 4 symbols, in
contrast to the chosen case that just extends current sequences by 3 symbols.
The condition on line 9 thus tries to optimize locally the number of sequences
in the resulting test suite. The step 3 also appends ‘cb’ to ‘cc’ before it starts
to process the sequence ‘ab’. Notice that ‘c’ is distinguished from all access
sequences of other states due to the extensions appended to its successors,
that is, sequences ‘ca’, ‘cb’ and ‘cc’. Moreover, ‘c’ is also distinguished from
all its successors so that the step 4 will have no work with this sequence.

9.7 SPY-method

The SPY-method proposed in [SPY12] employs the convergence relation
(Definition 8.4) to reduce test branching and thus the number of sequences
in the resulting test suite T . Test branching is the branching of the testing
tree that groups test sequences with common prefixes. The method aims to
meet the SPY-condition (Theorem 8.13) that requires an FT -convergence-
preserving initialized transition cover included in T . It is accomplished by
verification of all transitions. A transition from state si to state sj on input x
is verified if s̄i ·x and s̄j are proven to be FT -convergent. The SPY-method first
creates an FT -divergence-preserving, initialized, prefix-closed and minimal
state cover S̄ and then employs Theorem 8.6 to verify all transitions. Note
that transitions included in the state cover are verified as S̄ is prefix-closed
so that s̄i · x = s̄j .

Harmonized state identifiers Hi are used like in the HSI-method to verify
the reached state. However, compared to the HSI-method the SPY-method
distributes sequences of a HSI over convergent sequences. This way the
number of sequences in the resulting test suite T can be reduced. A separating
sequence of Hi extends a current test sequence such that minimal symbols
are appended and no new test sequence is added to T (if it is possible). The
following two sections describe the implementation explaining the details
of the SPY-method and a running example that shows how a test suite is
created by this method.

9.7.1 Implementation

Algorithm 19 is an adapted version of the SPY-method proposed in the
original paper [SPY12] with a small space optimization. The original version
stores all classes of convergent sequences. The author of the thesis found out
that only convergent classes of the fixed access sequences of states are needed
in the algorithm and so only those are handled [Sou15].
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The SPY-method starts with the construction of a state cover S̄ and

harmonized state identifiers Hi. Those are then concatenated accordingly
to form an FT -divergence-preserving state cover which is a precondition in
Theorem 8.6 to prove the convergence of two sequences. Each transition (s, x)
such that s̄ · x is not proven to be convergent with s̄x, where sx = δ(s, x), is
verified by appending HSIs to the extensions of s̄·x and s̄x. A queue U helps to
traverse the extensions from the shortest ones to the ones of the given maximal
length l that represents the number of extra states. For each extension u and
each separating sequence w from the corresponding HSI, a suitable sequence
to extend is chosen using the function appendSeparatingSequence called
on lines 8 and 9 of Algorithm 19. When all extensions of the length up to l
are appended to both convergent classes and all reached states are verified
by appending the related HSIs, sequences s̄ · x and s̄x are FT -convergent
and their convergent classes can be merged. Note that the classes of their
successors are merged as well; for instance, sequences of [s̄ · x · x′] enlarge the
convergent class [s̄i] if δ(sx, x

′) = si and transition (sx, x
′) is already verified.

As a reminder, the special concatenation operator ◦ is defined to extend each
sequence u of the first set with the set of sequences Hi that is associated with
the state δ∗(s0, u).

Algorithm 19: SPY-method
input :A minimal DFSM M with n states
input :A number of extra states l; m = n+ l
output :An m-complete test suite T for M

1 Hi ← harmonized state identifier of si, for all si ∈ S
2 T ← S̄ ◦Hi

3 foreach unverified transition (s, x) such that sx = δ(s, x) do
4 U ← {ε} // a queue of sequences X≤l

5 while U is not empty do
6 pop u from U
7 foreach w ∈ Hi such that the related si = δ∗(sx, u) do
8 appendSeparatingSequence([s̄], xuw)
9 appendSeparatingSequence([s̄x], uw)

10 if |u| < l then U ← U ∪ u ·X
11 merge [s̄ · x] and [s̄x], and the convergent classes of their successors
12 return T

Algorithm 20 describes the function appendSeparatingSequence that
chooses a sequence ubest of the given convergent class such that it is the most
suitable for the extension by the given sequence w. The objective function is
to minimize branching of the testing tree and so the total number of sequences
in T . Therefore, the default value of ubest is the shortest sequence of the
given class [u]. If there is u′ in [u] with a maximal extension w′ that is a
prefix of w, then the function chooses such u′ that has the longest w′. A
sequence is maximal in a set if it is not a proper prefix of another sequence
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in the set. Notice that the function checks whether w is already in T (line 4
of Algorithm 20). The choice of ubest thus minimizes the number of added
symbols to T even if there is no other option than to add a new test sequence
to T . Finally, the function appendSeparatingSequence either enlarges T
with a new test sequence ubest · w or appends the related suffix of ubest · w to
the test sequence in T that is maximal and is a prefix of ubest · w.

Algorithm 20: appendSeparatingSequence([u], w)
1 ubest ← the shortest u′ ∈ [u], maxLength ← −1
2 foreach u′ ∈ [u] do
3 w′ ← the longest prefix of w such that u′w′ ∈ T
4 if w′ = w then return
5 if there is no v such that u′w′v ∈ T and |w′| > maxLength then
6 ubest ← u′, maxLength ← |w′|

7 add ubest · w to T

9.7.2 Running Example

This section describes how the SPY-method constructs a test suite for the
5-state Mealy machine defined in Figure 4.1. The testing tree in Figure 9.2
captures the test suite with verified transitions (A,c) and (E,b) and the four
transitions verified by the state cover. Nodes of the testing tree are numbered
in order of their creation, that is, when the input labelling the incoming edge
was added to T . Consider 1 extra state and that the HSIs are obtained from
the splitting tree using Algorithm 6. The HSIs for the machine are listed in
Figure 4.2.

The method first builds a minimal prefix-closed state cover S̄ (nodes 0–4
of the testing tree). The access sequences are then extended with the related
separating sequences of the fixed harmonized state identifiers. The separating
sequences in HSIs are sorted first in the increasing order of their length and
then alphabetically, therefore, for example, the access sequence ‘a’ of state E
is extended with ‘b’ before ‘aa’ (nodes 7 and 8). An FT -divergence-preserving
state cover is formed of the first 16 nodes of the testing tree. Transitions for
verification are ordered according to time when they were explored during
the construction of the state cover; the first transition is (A,c), the second
(E,b), and then transitions from state C, B and D in this order.

The first transition to verify is always verified by appending all separating
sequences to a single access sequence because the convergent classes are
singletons initially. In the example, the separating sequences ‘aa’ and ‘cb’
of harmonized state identifier of state A extend both ‘c’ and ε (in fact,
only ‘c’ is extended as both sequences are already extensions of ε). The
first transition (A,c) leads back to A, hence, the sequences ‘c’ and ε. One
extra state is considered so that the target states of extensions of one input
need to be verified as well. Therefore, ‘ca’ and ‘cb’ are extended with the
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Figure 9.2: SPY-method: testing tree after verifying transitions (A,c) and (E,b)

separating sequences ‘b’ and ‘aa’, and ‘cc’ is extended with ‘aa’ and ‘cb’. The
corresponding extensions of ε are already in T . The testing tree with 29 nodes
satisfies Theorem 8.6 so that ‘c’ and ε are FT -convergent. The convergent
classes are thus: state A: [ε] = {ε,c,cc,ccc} (nodes 0, 5, 18, 27), state B:
[aa] = {aa,caa,ccaa} (nodes 3, 17, 26), state C: [b] = {b,cb,ccb,cccb} (nodes
2, 6, 19, 28), state D: [ac] = {ac} (node 4) and state E: [a] = {a,ca,cca}
(nodes 1, 16, 25).

The second transition is (E,b) that leads to state B. Therefore, the sequence
‘ab’ and the access sequence ‘aa’ of B are considered for the extension. First,
the HSI of B is appended to both sequences. It is just the separating sequence
‘a’ and it already extends ‘aa’ so only node 29 (sequence ‘aba’) is added
to the testing tree. This sequence is extended immediately after with ‘aa’
as the separating sequence of state D reached by ‘aba’; ‘aa’ also extends
‘aaa’. The HSI of D also contains sequence ‘cb’. In its case, the function
appendSeparatingSequence is called first with the arguments [a], ‘bacb’
and then with [aa], ‘acb’. The function finds better sequences to extend than
the shortest ones in both cases; sequence ‘ca’ is chosen from [a] and ‘caa’
from [aa]. Therefore, T grows only by 5 inputs that correspond to the suffixes
of test sequences ‘cabacb’ and ‘caaacb’. The testing tree would get only 4
new nodes if the shortest sequences were extended but T would increase by 2
new test sequences and 10 new symbols in total. Similarly, the extension ‘b’
with the separating sequence ‘a’ of the reached state B extends ‘ccaa’ instead
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of ‘aa’ for the price of saving some symbols. After appending a few more
separating sequences, the testing tree with 51 nodes satisfies Theorem 8.6 and
so transition (E,b) is verified as ‘ab’ and ‘aa’ are FT -convergent. Nevertheless,
only two sequences in total become convergent with the access sequence of a
state, particularly, the sequences ‘ab’ and ‘cab’ are merged into the convergent
class related to state B; [aa] = {aa,caa,ccaa,ab,cab} (nodes 3, 17, 26, 7, 20).

9.8 Other Methods

The PDS-, FF-, SC-, P- and KK- methods are amongst the other testing
methods that create complete test suites.

The PDS-method proposed in [Sou15] uses a preset distinguishing sequence
(PDS) to verify the target state of each sequence of P , that is, it constructs
an m-complete test suite T = P ·PDS. The drawback is that the construction
of a PDS has exponential time complexity as the shortest one can have length
that is exponential in the number of states [LY94]. Fortunately, an adaptive
distinguishing sequence (ADS) can substitute PDS and so broaden the range
of machines for which the testing method creates a test suite [HJUY09]; all
machines having a PDS have an ADS and there are machines with an ADS
that have no PDS.

The FF-method, or the Fault Function-based method, produces a test
suite in accordance to the chosen fault function that describes how the
implementation can look. It was proposed in [PY92] and it generalizes the
HSI-method such that a smaller test suite can be constructed if just particular
types of faults can occur. Therefore, it coincides with the HSI-method if all
faults are possible and the implementations in the fault domain are restricted
just by the assumed number of states m.

The SC-method, or the State-Counting method, proposed in [PY05] creates
m-complete test suites for unreduced partially-specified DFSM. As partial
machines can have several minimal forms, the method needs to deal with
more general properties of an FSM so that it is unnecessarily complex for
minimal completely-specified DFSM.

The P-method proposed in [SP09b] is the only method that aims to be
efficient in the construction of a p-complete test suite where p ≤ n. It was
proven that a test suite T is p-complete if either p < n and T contains
an FT -divergent set with p + 1 tests, or p = n and T contains an FT -
convergence-preserving initialized transition cover for M which corresponds
to the SPY-condition (Theorem 8.13). The construction approach is different
from all other methods as it is based on finding a maximal clique in a so-
called divergence graph. Nevertheless, the method is not defined for a general
m-completeness so that it is not included in the experiments.

The KK-method proposed in [KK15] provides a generic framework to
construct m-complete test suites. It is a goal-oriented search where goals
are properties of the specification that need to be secured to hold in the
implementation. Several so-called deduction patterns were proposed to check
if a goal is satisfied or not. Unfortunately, the method is too general and some

95



9. Existing Methods ...................................
parts are not clear how to implement them, therefore, it was not implemented
and so it is missing in the experiments.
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Chapter 10
SPYH-method

The idea of a new testing method emerged from the analysis of the most
advanced testing methods described in the previous chapter, the SPY-method
and the H-method. Their implementations favour different parts of the design.
The H-method uses a fixed state cover that is extended with separating
sequences chosen on the fly. On the contrary, the SPY-method uses separating
sequences of fixed harmonized state identifiers but appends them to different
access sequences that were proven to be convergent with the one in the
fixed state cover. This chapter describes a new testing method called the
SPYH-method in the same way as was recently proposed in [SB18]. The
method is a straightforward combination of the SPY- and H- methods. After
the idea of the method is sketched, its implementation is described in the
following section and the chapter is concluded with a running example of how
the SPYH-method creates a test suite.

The SPYH-method is very similar to the SPY-method as it aims to satisfy
the SPY-condition (Theorem 8.13). It gradually verifies transitions by proving
the convergence but for the verification of the reached state it uses the
approach of the H-method, that is, the separating sequences are chosen on
the fly. The approach of choosing a separating sequence was also adapted to
work with classes of convergent sequences.

The order in which unverified transitions are processed influences the size
of the resulting test suite. Therefore, a small optimization is proposed. The
optimization sorts unverified transitions according to the sum of the lengths
of the related access sequences, in particular, the value |s̄|+ |s̄x| is used for
transition (s, x) leading to state sx where s̄, s̄x are the fixed access sequences
in S̄. The convergent classes related to states that are closer to the initial one
increase in their sizes sooner than the others and so there are more convergent
sequences to choose from when transitions from these states are to be verified.
Hence, when a separating sequence is to extend an access sequence, there
is a higher chance that only a few symbols are appended to a current test
sequence than that the entire test sequence enlarges the test suite.
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10.1 Implementation

The SPYH-method is implemented as a combination of approaches and
functions from the implementations of the SPY- and H- methods. The main
difference is handling convergent sequences as the SPYH-method works with
all convergent classes, not only those related to the access sequences of fixed
state cover like in the SPY-method. Classes are stored and represented
as convergent nodes (CN) of a convergent graph. A convergent graph is a
transition diagram of a DFSM. Initially, it corresponds to the testing tree
that captures traces of test sequences. Then, two subtrees are merged when
the sequences leading to the roots of the subtrees are proven to be convergent.
Such a merge can create a cycle in the convergent graph, therefore, it has
no longer a tree structure. The corresponding merge is done every time two
sequences become FT -convergent. Finally, the convergent graph represents
the specification M on which the construction of the test suite T is based.
The example of a convergent graph (still in a tree-like structure) is depicted
on the right of Figure 8.3. Convergent nodes thus group prefixes of test
sequences such that these prefixes are convergent if they reach the same
convergent node. Whenever any following algorithm uses a convergent class
[.], the implementation works with the corresponding convergent node.

Algorithm 21: SPYH-method
input :A minimal DFSM M with n states
input :A number of extra states l; m = n+ l
output :An m-complete test suite T for M

1 T ← S̄

2 foreach s̄ ∈ S̄ do
3 SPYH-distinguish([s̄], S̄)
4 sort unverified transitions according to |s̄|+ |s̄x| calculated for each

transition (s, x) and sx = δ(s, x); the first one has minimal value
5 foreach unverified transition (s, x) such that sx = δ(s, x) do
6 add s̄ · x to T if not there
7 SPYH-distinguishFromSet([s̄ · x], [s̄x], a copy of S̄, l)
8 merge [s̄ · x] and [s̄x], and the convergent classes of their successors
9 return T

Algorithm 21 captures the main flow of the SPYH-method. It first builds
a minimal prefix-closed state cover S̄ that is then made FT -divergence-
preserving using the function SPYH-distinguish. Every sequence of S̄ needs
to be distinguished from each other in order to construct an FT -divergence-
preserving S̄.

The proposed optimization sorts the unverified transitions that are then
processed in the sorted order. An unverified transition (s, x) first needs to be
covered in T (line 6) and then both [s̄ · x], [s̄x], where sx = δ(s, x), need to be
extended to satisfy Theorem 8.6. SPYH-distinguishFromSet takes care of
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suitable extensions satisfying all requirements so that both convergent classes
(and CNs as well) can then be merged as they become convergent. Finally,
the m-complete test suite is returned.

SPYH-distinguish described in Algorithm 22 follows the version in the
H-method but it works with convergent classes. Therefore, the function for
the comparison of extensions was rewritten and the separating sequence w′w
are not added directly to T but using appendSeparatingSequence defined
in Algorithm 20 for the SPY-method.

Algorithm 22: SPYH-distinguish([u], V )
1 foreach [v] ∈ V such that δ∗(s0, u) 6= δ∗(s0, v) do
2 (e, w′)← SPYH-getBestPrefixOfSepSeq([u], [v])
3 if e > 0 then
4 w ← shortest separating sequence of δ∗(s0, uw

′), δ∗(s0, vw
′)

5 appendSeparatingSequence([u], w′w)
6 appendSeparatingSequence([v], w′w)

Algorithm 23 specifies the function SPYH-distinguishFromSet that is
also inspired by its version in the H-method. There are several changes
compared to Algorithm 16 of the H-method. SPYH-distinguishFromSet
extends two sequences simultaneously as both s̄·x and s̄x (and their extensions)
are to be in an FT -divergence-preserving state cover according to Theorem 8.6.
The required extensions of the length up to l do not have to be already in
T , therefore, lines 7 and 8 of Algorithm 23 adds them gradually by one
symbol. A change is also that SPYH-distinguish is called (lines 1 and
2) before the recursive call of SPYH-distinguishFromSet (line 9). It
means that the separating sequences appended to u can cover some of the
required extensions and sequences appended to these extensions can have
these separating sequences as prefixes. Hence, the total number of test
sequences could be reduced by this small change. The condition on lines
2, 5 and 10 checks if the given class [v] is convergent with the fixed access
sequence of a state. If it is, then the class is already in V as V gets a copy of
S̄ when SPYH-distinguishFromSet is called. The set V is used to store all
convergent classes from which the given [u], [v] are to be distinguished, that
is, the classes of fixed access sequences and proper prefixes of u, v.

The last part of the SPYH-method is the function that checks all common
extensions of the given classes and chooses the best prefix of a separating
sequence that should extend T . SPYH-getBestPrefixOfSepSeq in Algo-
rithm 24 has the same flow as getBestPrefixOfSeparatingSequence
of the H-method but it was adapted to work with convergent classes, that
is, sets of sequences. There are again variables minEstimate and bestPrefix
that hold information about the best way found so far to distinguish the
given sequences. The calculation of estimate was changed. The length of
access sequences are included as well if a new test sequence is to enlarge T .
The function hasLeaf defined on lins 5–6 checks whether the given class
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Algorithm 23: SPYH-distinguishFromSet([u], [v], V , depth)

1 SPYH-distinguish([u], V )
2 if ∀s̄ ∈ S̄ : s̄ /∈ [v] then SPYH-distinguish([v], V )
3 if depth > 0 then
4 add [u] to V
5 if ∀s̄ ∈ S̄ : s̄ /∈ [v] then add [v] to V
6 foreach x ∈ X do
7 appendSeparatingSequence([u], x)
8 appendSeparatingSequence([v], x)
9 SPYH-distinguishFromSet([ux], [vx], V, depth− 1)

10 if ∀s̄ ∈ S̄ : s̄ /∈ [v] then pop [v] from V
11 pop [u] from V

contains a sequence that is maximal in T and so it provides information if the
chosen separating sequence can easily extend a current test sequence. The
function is implemented as a property of convergent nodes that keep track
which sequences reach the nodes but do not continue to the successors. The
initial estimate of the number of symbols that extend T assumes that the
shortest separating sequence w will extend both classes and it also assumes
that no prefix of w extends any sequences of the convergent classes. There-
fore, minEstimate gets twice the length of w plus the lengths of the shortest
sequences u, v of the given classes if they do not contain a maximal sequence.
All inputs are then compared if they begin a common extension that lead to
a better estimate. If both classes have an extension starting with an input x,
then it is the same as in the H-method (lines 12–16 of Algorithm 24), that
is, SPYH-getBestPrefixOfSepSeq is recursively called on the successors.
Otherwise, it depends on which of the classes have such an extension (lines
18–23 and 25–30). The function estimateGrowthOfT defined in Algo-
rithm 18 initializes e with an estimate of the number of symbols added to T
by appending a separating sequence. If just x separates the reached states
(e = 1), then only the class that is not extended with x is checked whether
it contains a maximal sequence and if not, the length of the shortest access
sequence increases e (lines 22 and 29). Otherwise, the other class needs to be
checked as well (lines 19–21 and 26–28). If e is lower than minEstimate, both
minEstimate and bestPrefix are updated accordingly. Finally, both variables
are returned as the values capturing the best way to distinguish the given [u]
and [v].

Meaningful average time and space complexity are not easy to derive as
they are really dependent on the structure of the machine under test, that
is, access sequences of states and their separating sequences, the number of
states n, the number of inputs p and others. The space complexity for the
SPYH-method includes the resulting testing tree, the convergent graph and a
state pair array of all separating sequences. The convergent graph represents
the machine under test in the end so that it takes O(n) space. The SPA has
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Algorithm 24: SPYH-getBestPrefixOfSepSeq([u], [v])
1 Let u, v be the shortest sequences of the given classes
2 su ← δ∗(s0, u), sv ← δ∗(s0, v)
3 minEstimate ← 2|w| where w is the shortest separating sequence of su, sv

4 bestPrefix ← ε
5 hasLeaf([u]):
6 returns true if there is u′ ∈ [u] that is maximal in T
7 if not hasLeaf([u]) then minEstimate ← minEstimate + |u|
8 if not hasLeaf([v]) then minEstimate ← minEstimate + |v|
9 foreach x ∈ X do

10 if there are u′ ∈ [u] and wu ∈ X∗↑ such that u′xwu ∈ T then
11 if there are v′ ∈ [v] and wv ∈ X∗↑ such that v′xwv ∈ T then
12 if λ∗(su, x ↑) 6= λ∗(sv, x ↑) then return (0, ε)
13 if δ(su, x) = δ(sv, x) then continue
14 (e, w′)← SPYH-getBestPrefixOfSepSeq([ux], [vx])
15 if e = 0 then return (0, ε)
16 if e ≤ minEstimate then minEstimate ← e, bestPrefix ← xw′

17 else
18 e← estimateGrowthOfT(su, sv, x)
19 if e 6= 1 then
20 if hasLeaf([u]) then e← e+ 1
21 else if not hasLeaf([ux]) then e← e+ |u|+ 1
22 if not hasLeaf([v]) then e← e+ |v|
23 if e < minEstimate then minEstimate ← e, bestPrefix ← x

24 else if there are v′ ∈ [v] and wv ∈ X∗↑ such that v′xwv ∈ T then
25 e← estimateGrowthOfT(su, sv, x)
26 if e 6= 1 then
27 if hasLeaf([v]) then e← e+ 1
28 else if not hasLeaf([vx]) then e← e+ |v|+ 1
29 if not hasLeaf([u]) then e← e+ |u|
30 if e < minEstimate then minEstimate ← e, bestPrefix ← x

31 return (minEstimate, bestPrefix)

space of O(n2). However, the testing tree depends on test sequences. Its size
is bounded by the total length of test sequences, that is, the size of test suite,
but it is usually much smaller because each common prefix of several test
sequences is stored in the testing tree just once. The upper bound of the
size of test suite is possible to derive by considering the W-method. Each
test sequence has three parts: the access sequence of a state, the input of the
tested transition, the extension of length up to the given l and a separating
sequence. Its length is thus at most (n − 1) + 1 + l + (n − 1) which is in
O(2n + l). The number of test sequences is bounded by n · pl+1 · (n − 1)
because there is n access sequences that are extended with all sequences of the
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length up to l+ 1 and at most n− 1 separating sequences are then appended.
Together, the size of test suite is in O((2n+ l)(n2pl+1)) which is in O(n3pl+1)
if n is strictly greater than l. This is important bound as the standard testing
methods have the same (worst case) space complexity O(n3pl+1).

The worst case time complexity can be calculated based on Algorithms 21–
24. The most time is spent in the function SPYH-distinguish. It is called
approximately (n + np · pl · 2) times; for each of n access sequences (line 3
of Algorithm 21) one call plus for each of at most np unverified transitions
and each of their pl extensions there are two calls. The exact number
of extensions is pl+1−1

p−1 as the sum of a geometric progression. Inside the
function, the given class [u] is distinguished from particular classes in V .
For the first n calls of SPYH-distinguish the size of V is n and for the
other calls |V | is at most n+ l. All common extensions of the given classes
are checked by SPYH-getBestPrefixOfSepSeq (line 2 of Algorithm 22).
There are very different numbers of extensions for different classes during
the construction, therefore, let bound them by the (worst case) size of
test suite, that is, n3pl+1. The separating sequence w can be obtained
proportionally to its length so that at most in O(n). The last bit is two calls
of appendSeparatingSequence (Algorithm 20). This function chooses
one sequence of the given class and appends w to it. Let assume that
every class has the same number of convergent sequence in the end, that
is, there are n classes so that each has n2pl+1 sequences. However, as each
sequence of the class is checked for an extension that is a prefix of the
given w, appendSeparatingSequence runs in O(n3pl+1). Altogether,
the SPYH-method spends O((n2 + 2npl+1(n + l))(n3pl+1 + n + n3pl+1)),
or O((n5 + n4l)p2l+2 + (n5 + n3 + n2l)pl+1 + n3), time with the function
SPYH-distinguish. The other parts like the construction of state cover,
sorting unverified transitions or merging convergent classes, do not change
the estimated complexity so that the worst case time complexity of the
SPYH-method is O((n5 + n4l)p2l+2).

10.2 Running Example

This section explains how the SPYH-method creates a test suite assuming
1 extra state for the 5-state Mealy machine defined in Figure 4.1. The process
is very similar to the SPY-method. First, a minimal prefix-closed state cover S̄
is obtained; the related nodes of the testing tree are highlighted in Figure 10.1.
The access sequences in S̄ are then made T -separable and so FT -divergent.
States A, B are separated by ‘a’ that already extends the access sequence ε of
A but it needs to be appended to ‘aa’ that relates to B. Similarly, ‘aa’ extends
‘b’ to separate states A and C. After C, E are separated by appending ‘b’
to both access sequences (nodes 14 and 15), all state pairs are distinguished
so that the testing tree with 16 nodes contains an FT -divergence-preserving
state cover.

Unverified transitions are then sorted such that transition (A,c) with the
value of 0 (|ε| + |ε| as it leads back to A) will be verified first, the second
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transition will be (C,b) leading to A (value 1 = |b| + |ε|), the third and
the fourth are (C,a) and (B,c) with the value 3 (|b| + |aa| and vice versa
respectively), and so on. Equally to the SPY-method, all sequences that
verify the first transition (A,c) are appended to the fixed access sequences
as the convergent classes are initially singletons. The state reached by ‘c’
is first distinguished from B by appending ‘a’ (node 16), then from C by
‘aa’ (node 17) and from D by ‘cb’ (nodes 18 and 19). The verification of
the states reached by ‘ca’, ‘cb’ and ‘cc’ is done in a similar way but using
different separating sequences. All the appended separating sequences also
extend the access sequence ε, however, no node is added to the testing tree
as the sequences are already in T . The test sequence ‘cccb’ is the last one
needed to verify transition (A,c); Theorem 8.6 is satisfied by the testing tree
with 29 nodes. In this moment, the convergent graph ends to look like a tree.
Node 8 merges into node 0 which implies that also nodes 18 and 27 become
convergent with the access sequence of state A. Similarly, nodes 1, 16 and 25
representing state E are merged together, nodes 2, 9, 19 and 28 relate to C,
nodes 3, 17, 26 relate to B, and only node 4 relate to D.
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Figure 10.1: SPYH-method: testing tree after verifying transitions (A,c), (C,b)

The second transition to verify is (C,b) that leads to A. After appending
‘aa’ to ‘bb’ (nodes 29 and 30) that separates the reached A from both B
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10. SPYH-method....................................
and C, the separating sequence ‘cb’ is to be appended to [bb]. The function
appendSeparatingSequence chooses ‘cbb’ to be extended instead of ‘bb’
which saves some symbols as ‘cbb’ is maximal in T and can be extended
without branching. It is a benefit from the SPY-method. Then, the sequences
‘bba’ and ‘bbb’ are verified by the separating sequences ‘aa’ and ‘b’. Note again
that these separating sequences are checked if they extend the corresponding
access sequence in T ; in this case the presence of ‘aaa’, ‘ab’, ‘baa’ and ‘bb’ is
required in T . The last extension to verify is ‘c’, that is, [bbc] is to be shown
to reach state A. As the sequence ‘cbbc’ from [bbc] is already in T , ‘bbc’
is not needed to be added so far. The first benefit of the H-method is that
the function SPYH-getBestPrefixOfSepSeq estimates that it is better
to extend a sequence related to B with the separating sequence ‘b’ (node
39) than append the separating sequence ‘a’ to ‘cbbc’. It is because ‘cbbc’ is
extended with ‘b’ and there is a maximal sequence convergent with the access
sequence ‘aa’ of state B. The second benefit comes immediately after when the
function advices to extend ‘cbbcb’ with ‘aa’ instead of appending a separating
sequence to ‘cbbc’. Again, it saves several symbols in the resulting test suite.
The next separating sequence ‘cb’ is appended to ‘cbbc’ to distinguish it
from the access sequence ‘ac’ of state D. This reveals inefficiency of the
implementation. The sequence ‘cbbc’ was not maximal so that the entire
sequence ‘cbbccb’ enlarged T , that is, plus 6 symbols. If ‘cb’ was appended
to ‘bbc’, the test suite would grow just by 3 symbols. The problem is that the
implementation works with current convergent classes/convergent nodes and
does not consider the ‘predecessors’. In the example, the sequences ‘bb’ and
‘cbb’ are convergent but only ‘cbb’ is extended with ‘c’ and so the algorithm
looks just at ‘cbbc’ when it works with the related class and does not take
advantage of ‘bb’ that could be extended with ‘c’ and thus be in the handled
class. This efficiency issue is solved by the S-method proposed in the following
chapter. The sequences ‘bba’, ‘bbb’ and ‘bbc’ also need to be distinguished
from ‘bb’ and from ε as it is a requirement for proving the convergence of ‘bb’
and ε. It is usually fulfilled by the separating sequences that are appended
to distinguish individual extensions from the fixed access sequences. After
transition (C,b) is verified, node 14 is merged into node 0 and the successive
merge updates the convergent graph as it is shown in Figure 10.2. Convergent
nodes are labelled with the numbers of nodes of the testing tree and the
leaves (maximal sequences in T ) are underlined.

104



.................................. 10.2. Running Example

0,8,14,18,24,27,31,38,42

1,16,25,29

3,17,26,30

5,20,33

a/0

39

b/1

a/1

15,21,34

b/1

4

12

13

a/1

a/1

10

11

b/1

c/0

c/0

a/1

2,9,19,28,32,35,43

6,22,36,40

7,23,37,41

a/0

a/1

b/0

A

E C

B D

b/0 c/0

Figure 10.2: Convergent graph after verifying transitions (A,c), (C,b)
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Chapter 11
S-method

A novel method called the S-method is proposed in this chapter. It was
developed in the reaction to the drawbacks of the advanced testing methods,
namely the H-, SPY- and SPYH- methods, and due to the requirements of a
new active-learning approach that will be proposed in Chapter 15. The idea
and novelty of the testing method is described first, followed by a section
about the implementation of the method and a section explaining the method
on an example.

The S-method employs the concept of convergence so that it is very similar
to the SPY- and SPYH- methods. Nevertheless, there are several changes
compared to these two methods.. S-condition: The method creates an m-complete test suite based on

Theorem 8.14 that describes the weakest sufficient condition, the S-
condition.. State domains: The domain function Φ introduced in Section 8.2 is used
to keep track of the divergence of convergent classes. It has two benefits.
The conditions specified in Theorem 8.6 to prove the convergence of
two sequences are easily checked using domains (Theorem 8.10). If
no extra state is considered, empty intersection of domains reduces
domains of predecessors which eliminate the need of appending some
separating sequences and thus it minimizes the size of the resulting test
suite (Theorem 8.11).. Separating sequences from the splitting tree: Instead of using fixed sepa-
rating sequence (the SPY-method) or constructing a separating sequence
to distinguish a state pair (the H- and SPYH- methods), the S-method
uses the splitting tree (Chapter 4) to obtain separating sequences that
reduce the given domain the most.. Predecessor convergent nodes: The choice of a sequence to extended
with the chosen separating sequences is not restricted to only the related
convergent class. If there is no maximal sequence in the class, then
the convergent classes of predecessors are checked because it is usually
better to extend their maximal sequence than add a completely new test
sequence to T .
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11. S-method......................................
. Test suite update: After a change to the specification, one can want to

reuse some test sequences that were already tested and that correspond
to the new specification. The S-method is able to extend the given test
suite and make it m-complete with respect to the new specification. This
is very helpful in active learning as will be described in Section 15.5.

The approach of the S-method can be summarized in two steps. At first,
a prefix-closed FT -divergence-preserving state cover S̄ is constructed. Then,
all transitions uncovered by S̄ are verified by following Theorem 8.10, that
is, separating sequences obtained from the splitting tree are appended and
so they reduce domains in order to satisfy the conditions of Theorem 8.10.
These two steps also describe the SPY- and SPYH- methods but they do not
utilize domains and the splitting tree.

11.1 Implementation

The S-method stores the test suite as a testing tree and uses a convergent
graph to handle convergent sequences (like the SPYH-method). Convergent
nodes of the convergent graph represent classes of convergent test sequences.
In addition, they keep track of maximal test sequences in T and each node
handles the related domain Φ. For an easier description, nodes of the testing
tree reached by an access sequence of the fixed state cover S̄ are called state
nodes (SN), and convergent nodes that contain a state node are called reference
nodes (RN). Algorithm 25 captures the two general steps of the S-method, the
construction of S̄ and processing unverified transitions. Besides the mentioned
major improvements, there are three small optimizations described in the
following paragraphs.

The first step, that is, the construction of an FT -divergence-preserving state
cover, is optimized by favouring sequences already in T as the fixed access
sequences when S̄ is created. It will be described in detail by Algorithm 26
that defines the function S-createDivergencePreservingSC.

The second optimization is sorting the unverified transition in the same way
as in the SPYH-method, that is, by the sum of lengths of access sequences
related to the origin and target states of a transition. Note that a possible
improvement could be achieved by the choice of a different objective function
and/or selecting the ‘best’ transition to verify every time based on the current
test suite. This would require more effort than just comparing static values.

The third optimization relates to the way how the S-method chooses
separating sequences. It is based on the domains. The smaller domain, the
higher chance of less separating sequences needed to be appended. Therefore,
when a transition (s, x) is chosen to be verified, the related classes [s̄x] and
[s̄x], where sx = δ(s, x), are extended with all sequences of length up to l first
(lines 6–8 of Algorithm 25) before any separating sequence is appended. These
extensions are required for proving the convergence so they would extend the
classes anyway but as it is done at first, they can reduce the domains and so
the size of test suite.
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Algorithm 25: S-method
input :A minimal DFSM M with n states
input :A number of extra states l; m = n+ l
input : Incomplete test suite T and state cover S̄; empty sets by default
output :An m-complete test suite T for M

1 ST ← a splitting tree for M by Algorithm 8 (validOnly is false)
2 S-createDivergencePreservingSC(T , S̄)
3 sort unverified transitions according to |s̄|+ |s̄x| calculated for each

transition (s, x) and sx = δ(s, x); the first one has minimal value
4 foreach unverified transition (s, x) such that sx = δ(s, x) do
5 proveConvergence ← estimate if proving convergence of s̄x, s̄x helps
6 foreach u ∈ X l do
7 S-appendSeparatingSequence([s̄], xu)
8 if proveConvergence then

S-appendSeparatingSequence([s̄x], u)
9 S-distinguishFromSet([s̄ · x], (proveConvergence ? [s̄x] : null), ∅, l)

10 if proveConvergence and [s̄x], [s̄x] are not merged yet then
11 merge [s̄x] and [s̄x] so that Φ([s̄x] = [s̄x]) gets Φ([s̄x]) ∩ Φ([s̄x]),

do the same merge and update of domains for their extensions
12 if l = 0 then merge [v], [s̄v] if Φ([v]) = {sv} and sv = δ∗(s0, v)

13 return T

Following the S-condition (Theorem 8.14) has its pitfalls. The S-condition
allows one to choose if the verifying subtree will extend either only [s̄x] or
both [s̄x] and [s̄x], see Figure 8.3 that sketches these two choices. However,
it does not say when one choice is better than the other. The S-method thus
estimates the usefulness of having the convergence proven, that is, whether
[s̄x] = [s̄x] helps. The boolean variable proveConvergence is true if there
is an unverified transition (su, xu) such that su is reached by a sequence
of length up to l from sx, that is, ∃u ∈ X≤l : δ∗(sx, u) = su. In other
words, there is a chance that proving convergence of s̄ · x and s̄x provides
new convergent sequences that can be extended to prove another unverified
transition. At least the last unverified transition thus takes the advantage
of the S-condition and the verifying subtree extends only [s̄x]. The variable
proveConvergence controls if the convergent class [s̄x] is to be extended with
the verifying subtree (lines 8 and 9 of Algorithm 25) and if the classes are
to be merged (line 10). Note that the condition on line 10 also checks if the
classes were not merged. It is because they could be merged in the function
S-appendSeparatingSequence if no extra state was considered (l = 0) and
the domain Φ([s̄x]) became {sx}. This is essentially the condition to which
Theorem 8.10 reduces if l = 0. Such a merge of convergent classes is made
also on line 12 of Algorithm 25.

Algorithm 26 defines S-createDivergencePreservingSC and specifies
thus how an FT -divergence-preserving state cover is created. The function
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11. S-method......................................
takes two parameters, a test suite T and the related state cover S̄ ⊆ T . Both
T and S̄ are empty sets unless the S-method is provided with an incomplete
test suite T and the related S̄. At first, consider the case when S̄ is empty
and so it needs to be constructed. The reason for a new construction method
of a state cover is explained on an example. Assume that the machine
has an adaptive distinguishing sequence that begins with input ‘b’ for all
states. If the ADS is appended to the access sequence of every state, one
gets a divergence-preserving state cover. The choice of access sequence thus
influences the resulting test suite. Consider the access sequence ‘a’ of state
A and both ‘aa’ and ‘ab’ lead to state B. Sequence ‘aa’ would be chosen as
the access sequence of B if the standard construction algorithm was used
because it checks 1-input extensions in the alphabetical order. A sequence
starting with ‘ab’ would be added to T later as the ADS needs to extend the
access sequence ‘a’ of A. Therefore, if ‘ab’ is chosen as the access sequence of
B, ‘aa’ may not be added to T at all; transition (A,a) could be verified by
extending sequences convergent with ‘a’ except ‘a’ itself. This is solved by
S-createDivergencePreservingSC that first checks if a sequence in T
can be the access sequence of a state that is not covered by S̄ yet. As only
sequences that are 1-input extensions of an access sequence in S̄ are checked,
all access sequences in S̄ are the shortest for each state and S̄ is prefix-closed.
The shortest access sequences are chosen because it is likely that they will be
extended with several sequences in T which would lead to a bigger test suite
if longer access sequences were selected. Access sequences are chosen in two
steps. First, all access sequences of a particular length are checked if their
1-input extensions are in T and can be access sequences of states uncovered
by S̄ (lines 8–16 of Algorithm 26). Then, the same check is processed but
for all 1-input extensions (or rather only for those that are not in T ). Both
steps are controlled by two queues, U stores access sequences of length k
that are already in S̄ and V stores access sequences of length k + 1 that are
currently added to S̄. After all extensions of sequences in U are checked, k is
increased so that U gets V . This is repeated until all states are covered by S̄.
When a sequence u is chosen to be the access sequence of state s, the ‘main’
separating sequence w is obtained from the splitting tree and uw is added
to T (lines 13–14). This is also the case of the initial state s0 and its access
sequence ε (lines 1–4). The ‘main’ separating sequence has the same prefix
for all states because it starts with the sequence of the root of the splitting
tree. If an incomplete S̄ is given, then all 1-input extensions are still checked
by traversing the access sequences in S̄ (lines 15–16) and thus S̄ is updated
to be a state cover. When the state cover is constructed, the convergent
graph coincide with the testing tree and the domains of all convergent nodes
are initialized such that a state s is in Φ([u]) only if [u] and [s̄] are not T -
separable. Finally, S-createDivergencePreservingSC calls the function
S-distinguish for each state which makes S̄ FT -divergence-preserving.

Algorithm 27 describes the function S-distinguish that is adapted to work
with separating sequences from the splitting tree compared to its versions in
the H- and SPYH- methods. First, the function obtains domain of convergent
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Algorithm 26: S-createDivergencePreservingSC(T , S̄)
1 if ε /∈ S̄ then
2 add ε to S̄ as the access sequence of s0
3 w ← getSeparatingSequenceFromST(s0, S)
4 add w to T
5 U ← {ε}
6 while |U | > 0 do
7 V ← ∅
8 foreach s̄ ∈ U and each x ∈ X such that s̄x ∈ T do
9 checkTargetState(s, x):

10 if δ(s, x) is not covered by S̄ then
11 add s̄x to S̄ as the access sequence of δ(s, x)
12 add s̄x to V
13 w ← getSeparatingSequenceFromST(δ(s, x), S)
14 add s̄xw to T
15 else if s̄x ∈ S̄ then
16 add s̄x to V

17 foreach s̄ ∈ U and each x ∈ X such that s̄x /∈ T do
18 checkTargetState(s, x)
19 U ← V

20 update domains Φ
21 foreach s ∈ S do
22 S-distinguish([s̄], ∅)

classes which the given class [u] is to be distinguished from based on the
domain Φ([u]) and the given V . States associated with the classes in domain
are considered for the construction of a separating sequence w from the
splitting tree (lines 5 and 6). The sequence w is then appended to [u] and
to all classes in domain that produce a different response to w than u (lines
8–10). These classes are removed from domain as they are distinguished
by w from [u]. Subsequently, all remaining classes in domain are compared
against [u] whether they are not distinguished because a part of w appended
to a different class could form a sequence that separates [u] from a particular
class in domain. If there is still a class in domain, the process of getting a
separating sequence w and appending it is repeated until all classes in domain
are distinguished from [u]. The choice of w does not consider extensions of
the related classes in T as both the H- and SPYH- methods do. This could
optimize the resulting test suite even more but the S-method puts this time
effort rather into the search for the best sequence to extend. This new feature
will be described by the function S-appendSeparatingSequence.

The function S-distinguishFromSet defined in Algorithm 28 is similar
to its version in the SPYH-method. It is a recursive function that passes all
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Algorithm 27: S-distinguish([u], V )

1 su ← δ∗(s0, u)
2 U ← {[v] ∈ V | su 6= δ∗(s0, v) ∧ not S-areDistinguished([u], [v], ∅)}
3 domain ← ({[s̄] | s ∈ Φ([u])} ∪ U) \ {[u]}
4 while domain is not empty do
5 S′ ← {δ∗(s0, v) | [v] ∈ domain}
6 w ← getSeparatingSequenceFromST(su, S

′)
7 S-appendSeparatingSequence([u], w)
8 foreach [v] ∈ domain such that λ∗(su, w) 6= λ∗(δ∗(s0, v), w) do
9 w′ ← the shortest prefix of w that separates su and δ∗(s0, v)

10 S-appendSeparatingSequence([v], w′)
11 remove [v] from domain
12 domain ← {[v] ∈ domain | not S-areDistinguished([u], [v], ∅)}

extensions of the length up to l and creates thus the verifying subtrees of the
given two classes. As the S-condition allows one to create only one verifying
subtree for the price of not proving the convergence, the second class [v] does
not have to be given; ‘null’ is passed instead. This is reflected by the conditions
on lines 2, 5, 7 and 8 when the function wants to deal with the class [v]. Lines
4–5 and 8–9 updates V such that V contains convergent nodes (convergent
classes) that are not reference nodes but are predecessors of the current CN
[u], [v] on the path from the original CN for which S-distinguishFromSet
was called from Algorithm 25. Note that classes [ux], [vx] used on line 7 are
already in T because of the third small optimization mentioned above (all
extension of the length up to l are appended in advance).

Algorithm 28: S-distinguishFromSet([u], [v], V , depth)
1 S-distinguish([u], V )
2 if v 6= null and ∀s̄ ∈ S̄ : s̄ /∈ [v] then S-distinguish([v], V )
3 if depth > 0 then
4 add [u] to V
5 if v 6= null and ∀s̄ ∈ S̄ : s̄ /∈ [v] then add [v] to V
6 foreach x ∈ X do
7 S-distinguishFromSet([ux], (v 6= null ? [vx] : null), V, depth− 1)
8 if v 6= null and ∀s̄ ∈ S̄ : s̄ /∈ [v] then pop [v] from V
9 pop [u] from V

Appending the chosen separating sequence w to the convergent class [u] is
done by S-appendSeparatingSequence defined in Algorithm 29. It starts
the same as in the SPY-method, that is, the best sequence ubest is chosen
from [u] such that it is extended with the longest prefix w′ of w and ubestw

′ is
maximal in T (lines 2–6). If [u] is already extended with w, the function does
not add anything to T and exits (line 4). If there is no such sequence in [u],
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Algorithm 29: S-appendSeparatingSequence([u], w)
1 ubest ← the shortest u′ ∈ [u], maxLength ← −1
2 foreach u′ ∈ [u] do
3 w′ ← the longest prefix of w such that u′w′ ∈ T
4 if w′ = w then return
5 if there is no v such that u′w′v ∈ T and |w′| > maxLength then
6 ubest ← u′, maxLength ← |w′|

7 if maxLength = −1 and ubest 6= ε then
8 minLength ← |ubest|
9 visited ← {[u]}

10 tbest ← ε
11 push ([u], ε) into the queue predecessors
12 while predecessors is not empty do
13 ([v], tv)← pop first from predecessors
14 foreach v′ · x ∈ [v] such that v′ is the shortest in [v′] do
15 if [v′] /∈ visited then
16 if there is v′leaf ∈ [v′] that has no extension in T then
17 ubest ← v′leaf , tbest ← xtv
18 clear predecessors
19 break
20 if |v′xtv| < |ubesttbest| then
21 ubest ← v′, tbest ← xtv

22 if |xtv| < minLength and v′ 6= ε then
23 push ([v′], xtv) into predecessors
24 push [v′] into visited
25 if ∀s̄ ∈ S̄ : s̄ /∈ [v] then break

26 w ← tbest · w
27 add ubest · w to T and update domains accordingly
28 if l = 0 then merge [v], [s̄v] if Φ([v]) = {sv} and sv = δ∗(s0, v)

ubest is initialized with the shortest sequence of the class. The difference from
the SPY-method is that the function searches through the predecessors of CN
associated with [u] (lines 8–26). A predecessor of CN r means a node rp of the
convergent graph such that there is a directed path from rp to r. Note that the
condition on line 7 checks if [u] does not relate to the initial state. Basically,
the search tries to find a maximal sequence v′leaf in a predecessor [v′] such
that the path tv′ from [v′] to [u] is the shortest possible and it is shorter than
ubest that is the shortest sequence of [u] initially. The function uses a queue
predecessors to traverse the predecessors and a set visited to keep track of the
visited CNs and not to repeat the search from them. The condition on line 20
checks if the predecessor can form a shorter sequence than found so far in the
case that no maximal sequence is discovered and thus a new test sequence
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needs to be added to T . Such a shorter sequence can exist because the access
sequences do not have to be the shortest when an incomplete test suite is
given to the S-method. If [v] is not a reference node, then the cycle checking
all sequences of [v] stops (line 25) because only reference nodes can have
several different predecessors. When a predecessor with a maximal sequence
is found or there is no such predecessor, ubest is extended with w (and added
to T if it is a new test sequence). Subsequently, the domains Φ are updated
in the following way. Nodes of the testing tree on the path of ubestw are
traversed from the leaf to the root and the related suffix of ubestw is checked
if it separates any state of the related domain. Domains Φ are implemented
to store references to particular convergent nodes instead of states. Therefore,
it is possible to use the domains of reference nodes differently than just to
store the reference to themselves as each RN is distinguished from the others.
The domain Φ of an RN stores the references to convergent nodes that are
not distinguished from the RN, except the reference to itself. This way, the
update of domains along the path of ubestw really updates all domains in the
convergent graph that are affected by ubestw. If no extra state is considered,
S-appendSeparatingSequence checks whether any CNs can be merged
due to their identification as a particular RN (line 28).

The last part of the method to describe is the function S-areDistinguished
comparing the given convergent classes if there is a different response to a
common extension. As the function is recursive and it works with a possibly
cyclic graph, it uses a set C to store visited convergent nodes and so the stop
condition is ensured.

Algorithm 30: S-areDistinguished([u], [v], C)
1 su ← δ∗(s0, u), sv ← δ∗(s0, v)
2 if [u] = [v] or su = sv then return false
3 if λ(su, ↑) 6= λ(sv, ↑) then return true
4 isRNu ← ∃s̄ ∈ S̄ : s̄ ∈ [u], isRNv ← ∃s̄ ∈ S̄ : s̄ ∈ [v]
5 if isRNu or isRNv then
6 if isRNu and isRNv then return true
7 if isRNu then
8 if (su, [v]) ∈ C then return false
9 add (su, [v]) to C

10 else
11 if (sv, [u]) ∈ C then return false
12 add (sv, [u]) to C
13 else if l = 0 and Φ([u]) ∩ Φ([v]) = ∅ then return true
14 foreach x ∈ X such that [ux], [vx] ∈ T do
15 if T ([u], x) 6= T ([v], x) or S-areDistinguished([ux], [vx], C) then
16 return true

The space complexity of the S-method is similar to the one of the SPYH-
method, that is, the size of test suite that was estimated to O(n3pl+1) where
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p is the number of inputs. In addition to the testing tree, every convergent
node possesses a domain of size bounded by the size of the convergent graph
if node is a reference node, and with size up to n otherwise. The convergent
graph does not grow much during the construction because most of convergent
nodes that are not reference nodes are used to prove the convergence and
so they are merged when a transition is verified. Nevertheless, before the
verifying subtrees are merged, the size of the convergent graph, or the number
of convergent nodes, can be estimated to O(n3pl) as there are pl · (n − 1)
sequences of length n+ l + n2; the length of separating sequences from the
splitting tree is theoretically in O(n2). Only reference nodes can contain
almost any convergent node in their domains, therefore, the space complexity
of the convergent graph in the implementation (CN + domains) is O(n4pl).
Hence, the worst case space complexity of the S-method is O(n4pl + n3pl+1).

The time complexity can be estimated based on Algorithms 25–30. Let
start with S-appendSeparatingSequence and assume that every of the n
reference nodes corresponds to at most n2pl+1 sequences in the end and so any
convergent class can be bounded by this number. The separating sequence w
obtained from the splitting tree has the length in O(n2). The first part of
Algorithm 29 (lines 2–6) thus runs in O(n4pl+1). It is not so hard to pass
through at most n+ l predecessors as CNs keep track of the related maximal
sequences. Much harder is the update of domains (line 27). Assume that w ex-
tends uv where u is an access sequence of length in O(n) and v is an extension
of length l. First, the algorithm checks n2 + l convergent nodes with at most n
RNs in their domains. They are compared with the RNs on the related suffix
of length at most n2 + l. Then, at most n RNs are checked with respect to
the sequence of the length up to n2 +n+ l. The domain of an RN can contain
O(n3pl) convergent nodes. The most dominant factor is thus n6pl and so S-
appendSeparatingSequence runs in O(n4pl+1 +n6pl). This is immediately
used to derive the time complexity of S-distinguish (Algorithm 27) that
calls S-appendSeparatingSequence n(1+n+ l) times in the worst case. In
addition, it calls S-areDistinguished (Algorithm 30) l+ n(n+ l) times and
at most n separating sequences are obtained from the splitting tree. The func-
tion S-areDistinguished compares the successors of the given CNs so that
it is bounded by the size of convergent graph, that is, O(n3pl). S-distinguish
thus runs in O(n(1+n+l)(n4pl+1+n6pl)+(l+n(n+l))(n3pl)+n·n2) and so in
O(n6pl+1 +n8pl). A divergence-preserving state cover is created (or updated)
by S-createDivergencePreservingSC such that a separating sequence
is obtained for each state, domains are then updated in O(n7) and finally S-
distinguish is called n times. The testing tree and the convergent graph are
bounded by O(n3) before the domains are updated in Algorithm 26 because
each access sequence of state has the length at most n−1 and is extended with
the separating sequence of the length in O(n2). Therefore, the comparison of
n RNs with all other O(n3) convergent nodes takes O(n7) time as the succes-
sors to compare are also bounded by O(n3). The worst case time complexity
of S-createDivergencePreservingSC is O(n ·n2 +n7 +n(n6pl+1 +n8pl))
that is O(n7pl+1 + n9pl). Algorithm 25 puts all together. First, the splitting

115



11. S-method......................................
tree is constructed in O(2n) but usually it is in O(n2), see Section 4.4. Then,
S-createDivergencePreservingSC is called and transitions are sorted in
O(n2p2). For each unverified transition, every extension of the length up to
l is appended to both related classes and the classes are merged when the
transition is verified. S-distinguish is called from S-distinguishFromSet
for each such extension to verify the transition. For these extensions, S-
appendSeparatingSequence takes just O(ln2pl+1 + n5pl) time because
the sequences have at most n+ l symbols. The merge of two classes can be
estimated to run in O(n3pl) as there are pl · n sequences of the length up to
l+n2 and l is assumed to be smaller than n. Therefore, the S-method runs in
O(2n +(n7pl+1 +n9pl)+n2p2 +np((ln2pl+1 +n5pl)+pl(n6pl+1 +n8pl)+n3pl))
which corresponds to O(n7p2l+2 + n9p2l+1) plus O(2n) to construct the split-
ting tree.

11.2 Running Example

This section describes how the S-method creates a test suite for the 5-state
Mealy machine defined in Figure 4.1. The beginning of the construction is
captured by the testing tree in Figure 11.1. Nodes of the testing tree are
numbered according to the time of their creation. After the method obtains
the splitting tree shown in Figure 4.2, it creates the testing tree with 10 nodes
that captures all 5 access sequences extended with the separating sequence ‘aa’
(or just ‘a’ in the case of the access sequence ‘aa’ of state B). The state cover
is then made divergence-preserving by appending the separating sequence
‘cb’ to the access sequences of A and D (nodes 10–13), and the separating
sequence ‘b’ to the access sequences of C and E (nodes 14 and 15). The
unverified transitions are sorted like in the SPYH-method, hence, the first
one to verify is (A,c) and the second is (C,b). Their verification is captured
in Figure 11.1 and described in the following paragraphs.

The verification of (A,c) starts with appending 1-input extensions to the
classes [c] and [ε] because the transition leads back to A. As the convergent
classes are still singletons, there is only one convergent sequence to extend.
After appending the 1-input extensions (nodes 16 and 17), node 10 reached
by ‘c’ is distinguished from reference nodes 1 (state E) and 2 (state B) so that
the domain Φ([c]) = {A,C,D}. The separating sequence ‘aa’ is obtained from
the splitting tree as the best for distinguishing A from the other two states.
When it is appended (node 18), the domains Φ([caa]), Φ([ca]), Φ([c]) and
Φ([ε]) are updated in this order by the related suffix of ‘caa’. The domains
of CNs that are not yet distinguished from the RN of state A would be also
updated if they were distinguished from the RN of A by ‘caa’. Sequence ‘aa’
reduces Φ([c]) to {A,D} so that another separating sequence is needed. The
splitting tree provides sequence ‘cb’ that is appended just to ‘c’ (node 19)
because the access sequence ‘ac’ of state D is already extended by ‘cb’. The
function S-distinguishFromSet then transfers the verification process to
[ca]. The domain Φ([ca]) = {A,C,D,E}, hence, appending the separating
sequences ‘b’ to ‘ca’ and to the access sequence ‘ac’ of B is sufficient to identify
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Figure 11.1: S-method: testing tree after verifying transitions (A,c) and (C,b)

the related CN (Φ([ca]) = {E}) and also distinguish it from [c] that is in V
when S-distinguish is called. Similarly, the separating sequences ‘aa’ and
‘b’ are appended to ‘cb’ (nodes 22–24) and the sequences ‘aa’ and ‘cb’ to ‘cc’
(nodes 25–28). Then, transition (A,c) is verified and the convergent node
corresponding to node 10 of the testing tree (with 29 nodes) can be merged
into the reference node of state A. Reference nodes group these nodes of the
testing tree: nodes 0, 10, 17 and 27 relate to state A, nodes 2, 18 and 26 to B,
nodes 4, 11, 19 and 28 to C, only node 7 to D, and nodes 1, 16 and 25 to E.

Transition (C,b) as the second transition to verify is also extended with each
input at first. Input ‘a’ extends ‘bb’ (node 29), input ‘b’ extends ‘cbb’ that
was already in [bb] (node 30), and input ‘c’ employs the improvement of the
S-method. As there are only ‘bb’ and ‘cbb’ in [bb] and they are not maximal,
the method searches in the predecessors and it finds ‘ccb’ in [b]. Input ‘c’
is thus prepended with ‘b’ and such a sequence is appended to ‘ccb’ (nodes
31 and 32). This local optimization enlarged T just by 2 inputs instead of
addition a new test sequence of length 3. The extensions ‘a’ and ‘b’ distinguish
[bb] from the reference nodes of states B and E so that Φ([bb]) = {A,C,D}.
Hence, the separating sequences ‘aa’ and ‘cb’ are appended to‘bb’ and ‘ccbb’
that are in [bb]. This verifies [bb] and so S-distinguish is called on [bba]
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11. S-method......................................
that is already distinguished from RN of state B. The sequence ‘bba’ leads
to state E that can be separated from A, C and D by ‘b’. As [bba] has no
maximal sequence, its predecessors are checked and ‘cccb’ is found in [b]. It
means that ‘cccb’ is first extended with ‘ba’ as a transfer sequence and then
‘b’ is appended (nodes 35–37). This time, the improvement saves 1 symbol
and 1 test sequence; ‘bbab’ would be added to T if ‘bab’ did not extend ‘cccb’.
After appending ‘aa’ to ‘cbbb’ (nodes 38 and 39), all maximal sequences of
the predecessors were extended and so the other separating sequences are
appended to the shortest sequence of the related classes. The test suite is
thus enlarged with new test sequences ‘bbbb’, ‘bbcaa’ and ‘bbccb’. Then,
transition (C,b) is verified because the testing tree with 47 nodes satisfies the
conditions of Theorem 8.10. The convergent node including node 14 is then
merged into the reference node of state A. The convergent graph after the
merge is shown in Figure 11.2; nodes are labelled with the related nodes of
the testing tree and the leaves are underlined.
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Figure 11.2: Convergent graph after verifying transitions (A,c), (C,b)
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Chapter 12
Experiments

The three previous chapters described the standard and two new testing
methods. The methods were implemented by the author of the thesis in
the FSMlib (Appendix A) in order to compare their performances. The
experimental evaluation is done on two sets of machines as the following
sections describe. The first set comprises randomly generated finite-state
machines (described in Appendix C.1) and the second one consists of three
models of real systems (described in Appendix C.2).

Most machines in the experiments do not have an adaptive distinguishing
sequence (ADS) because machines with ADS are rare amongst all possible
DFSMs. Hence, the ADS-method is not included in the comparison. The
experiments thus compare the SVS-, W-, Wp-, HSI-, H-, SPY-, SPYH- and S-
methods. In addition, there are two versions of the HSI- and SPY- methods
according to the harmonized state identifiers (HSI) that they use. The
results labelled with ‘HSI’ and ‘SPY’ belong to the methods using the HSIs
constructed from the shortest separating sequences (SSS) as Section 3.3.2
describes. The labels ‘HSI/ST’ and ‘SPY/ST’ relate to the methods that use
the HSIs constructed from the splitting tree ST-IADS using Algorithm 6. The
characterizing set and state characterizing sets for the W- and Wp- methods
are constructed from SSS (Section 3.2.3) and then reduced using the LS-SL
algorithm defined in Algorithm 2.

Each method constructs an m-complete test suite T for each machine. A
constructed T is described by four values: the number of tests (|T |), the total
number of symbols (the sum of the lengths of all tests), the construction time
and the exploration efficiency. The first two measures the size of constructed
test suite and so they address the research question (RQ) II.2, the third
measure captures the performance of a testing method, and the exploration
efficiency (EE) is a new objective developed by the author of the thesis. The
EE is calculated as the number of edges in the testing tree of T divided by the
total number of symbols in T . As it is based on the testing tree, it permits
one to evaluate how much of the implementation will be explored by tests
even in the implementation with much more states than the specification.
The exploration efficiency also captures how much effort would be put in
the exploration of the implementation because the size of the testing tree
is divided by the total number of symbols. In addition, it captures how
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many prefixes of tests are overlapping with other tests, for example, the fixed
access sequences are covered by several tests. In other words, the value of 1
minus the value of exploration efficiency represents the duplicated sequences
that transfer the machine from the initial state to some other states. The
exploration efficiency is thus higher (and better) if a testing method constructs
longer sequences that do not overlap much.

Testing No extra state 1 extra state 2 extra states
Method |T | TL EE |T | TL EE |T | TL EE
Wp 20 76 0.57 59 280 0.46 174 1015 0.38
HSI 23 88 0.55 68 330 0.44 203 1192 0.37
HSI/ST 20 80 0.59 59 293 0.48 174 1055 0.40
H 19 72 0.60 56 279 0.48 168 1003 0.40
SPY 12 67 0.82 39 257 0.68 124 913 0.56
SPY/ST 10 62 0.85 37 243 0.68 108 859 0.61
SPYH 17 70 0.61 44 254 0.52 130 893 0.44
S 10 66 0.86 28 231 0.77 84 807 0.68

Table 12.1: Testing methods compared on the Mealy machine (Figure 4.1)

The testing methods are first compared on the 5-state Mealy machine
defined in Figure 4.1. Each method constructs 3 test suites depending on the
number l of extra states that is 0, 1 or 2. Table 12.1 shows the results for
most methods. The columns labelled with ‘TL’ contain the total numbers
of symbols. The values that are the best for each column are highlighted
in green. The S-method thus shows promising improvement in the size of
constructed test suites. Notice that ‘SPY/ST’ is the second due to the use of
HSIs constructed from the splitting tree.

12.1 Randomly Generated Machines

Randomly generated machines are employed in order to evaluate the new
testing methods. Appendix C.1 describes the suite of 13 600 machines that
were generated using the generator in the FSMlib (Appendix B). There are
4 machine types, each represented equally with 3 400 machines such that a
half of them has 5 inputs and the other 1 700 machines have 10 inputs. The
number of states ranges from 10 to 1000 and there are 17 state groups of 100
machines. The testing methods construct 3 m-complete test suites for each
machine. The three test suites differ as the number l of extra states ranges
from 0 to 2. The parameters of the constructed test suites are grouped in
order to describe each state group of 100 machines. All machines and the
results are available in the repository FSMmodels v1.31.

Figure 12.1 and Figure 12.2 show the result for Moore machines with 5
inputs. On the right of each figure, there is a comparison of the testing
methods on the state group of machines with 1 000 states. The boxplots

1https://github.com/Soucha/FSMmodels/releases/tag/v1.3
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Figure 12.1: Moore machines with 5 inputs and no extra state: the size of a
test suite and the number of test sequences, 1 and 3 quartile calculated for 100
machines per each state group

121



12. Experiments.....................................

0 100 200 300 400 500 600 700 800 900 1 000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SVS

W

Wp
HSI

HSI/ST

H
SPY

SPY/ST

SPYH

S-method

Number of states

E
x
p
lo

ra
ti

o
n

effi
ci

en
cy

0 100 200 300 400 500 600 700 800 900 1 000
0

5

10

15

20

25

30

35

40

45

50

SVS

W
Wp

HSI
HSI/ST

H
SPY

SPY/ST

SPYH

S-method

0

0.2

0.4

0.6

0.8

1

Number of states

R
u
n

n
in

g
ti

m
e

in
se

co
n

d
s

Figure 12.2: Moore machines with 5 inputs and no extra state: the exploration
efficiency of the test suite and the running time of the testing methods, 1 and 3
quartile calculated for 100 machines per each state group
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Figure 12.3: Mealy machines with 100 states and 5 inputs: values for 0, 1 and
2 extra states

show the median, 1 and 3 quartiles, and whishers capturing minimum and
maximum values for the 100 Moore machines.

The SPYH-method creates smaller test suites than the standard testing
methods including the H- and SPY- methods. However, if the splitting tree
ST-IADS is used to construct HSIs, both the HSI- and SPY- methods create
even smaller test suites. Nevertheless, the smallest test suites are constructed
by the S-method. There is significant gap between the S-method and the
others in the number of tests. The exploration efficiency just emphasizes the
improvement by the S-method. The relative order of the SPY, H, SPYH,
HSI/ST, SPY/ST and S methods holds for the other three machine types
and for machines with 10 inputs as well.

The main drawback of the S-method is its running time. Less than a
minute for the construction of n-complete test suite of Moore machine with
1 000 state and 5 inputs is not that bad but the trend shows that scaling
up to bigger models would be hard. Moreover, assuming an extra state in
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the construction also increases the running time as shown in Figure 12.3.
A better choice thus would be the use of the SPY-method with the HSIs
constructed from ST-IADS if one had fixed time for the construction of an
m-complete test suite.

Figure 12.3 captures the results of Mealy machines with 100 states and
5 inputs. The objectives are shown with respect to the increasing number
of extra states considered during the construction of test suites. The total
number of symbols, the number of test sequences as well as the running time
grow exponentially for all methods. It corresponds to pl extensions that need
to be included in order to prove the absence of l extra states. Note that the
running time of all the standard methods is close to 0, hence, they are not
visible on the bottom right plot of Figure 12.3.

12.2 Models of Real Systems

The testing methods are also evaluated on three models of real systems. The
models are described in Appendix C.2. They are referred as peterson2,
sched4 and sched5. All three are deterministic finite automata and they
have 50, 97 and 241 states and 18, 12 and 15 inputs, respectively.

The results capturing the constructed test suites for each model are shown
in Figure 12.4. The testing methods assumed three numbers of extra states,
0, 1 and 2. As the size of test suites grows exponentially with the increasing
number l of extra states, the total number of symbols and the number of test
sequences are divided by pl where p is the number of inputs.

The new SPYH- and S- methods perform well if no extra state is assumed.
However, if one or two extra states are considered, both methods construct
just a little smaller test suites that the H-method. The best method for
these three models of real systems is the SPY-method. It performs slightly
worse than the S-method when no extra state is assumed but otherwise, it
creates the smallest test suites. Moreover, it does not depend on the type
of harmonized state identifiers (HSI) that it works with. Both SPY and
SPY/ST that obtain HSIs from the shortest separating sequences (SSS) and
from the splitting tree ST-IADS, respectively, construct almost the same test
suites in terms of their sizes. In contrary, the HSI-method that also uses
these two different HSIs creates quite different test suites. HSI/ST constructs
bigger test suites than the HSI-method using HSIs from SSS. This may reflect
that HSIs from ST-IADS consist of more input symbols in total than HSIs
from SSS as Table 5.1 shows for the three models of real systems. The
SPY-method employs the convergence of sequences and so the sequences of
HSIs can overlap each other in order to reduce the size of resulting test suite.
However, the HSI-method only appends HSIs to particular sequences so that
it does not take an advantage of the longer separating sequences constructed
from the splitting tree.
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Chapter 13
Conclusion

The second part of this thesis is about testing of resettable deterministic
finite-state machines. It provided both theoretical and algorithmic insight
into this research field with long history. First, sufficient conditions for m-
completeness that ensure a guarantee of the absence of particular faults were
discussed (Section 8.3). Then, an overview of the standard testing methods
was given in Chapter 9. The H- and SPY- methods as the most advanced
ones were accompanied with a running example which their construction
approach of test suites was described on.

There are several contributions done by the author of the thesis. In the
testing theory, a flaw was discovered and so an amended Lemma 8.7 was
proposed in order to prove that two sequences are FT -convergent. The
use of state domains provides new means of the identification of states as
Theorem 8.11 defines. A new sufficient condition for m-completeness called
the S-condition was proposed and thus the research question (RQ) II.1 is
answered positively. The condition is more general than the standard ones
and so it allows one to construct even smaller test suites.

Two new testing methods were proposed, namely the SPYH-method (Chap-
ter 10) and the S-method (Chapter 11). They were experimentally evaluated
against the standard testing methods on randomly generated machines and on
models of real systems. The result of experiments are described in Chapter 12.
The S-method significantly outperforms the other testing methods on the
randomly generated machines in terms of the size of constructed test suites.
Hence, RQ II.2 has also a positive answer that there is a testing method
constructing small test suites. Harmonized state identifiers (HSI) constructed
from the splitting tree ST-IADS as proposed in Chapter 4 improve the perfor-
mance of both the HSI- and SPY- methods on randomly generated machines.
In contrast, they do not help the HSI-method on the models of real systems.
RQ I.2 can be thus answered that the ST-IADS is a new technique that helps
to create smaller test suites via constructed HSIs. If one has fixed time for
the construction of a test suite, then the SPY-method using HSIs constructed
from ST-IADS seems to be a good choice according to the experimental
evaluation.

Overall, this part of thesis proposed new ways how the testing of finite-state
machine can be improved.
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Part III

Active-Learning Algorithms
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Chapter 14
Introduction

Interaction with a system can supply enough information to create a model
of any system. Such a model then provides not just a description of how the
system works but also a valuable insight into the behaviour of the system. An
analysis of the model can reveal a fault in the system design or an improvement
how to work with the system more efficiently. In addition, if the model has
particular properties, it can be used for testing the system as was described
in Part II.

This part of thesis deals with active learning of systems that:. can be modelled as a deterministic finite-state machine that is completely
specified and initially connected, and. can be reliably reset to their unique initial states.

These two conditions simplify the learning and ensure that it is possible to
derive a correct model of the system from an interaction of finite length. It is
based on the theorem by Gold that each finite automaton is identifiable in the
limit from positive and negative examples [Gol72]. This theorem initiated the
field of active learning, particularly automata active learning as the concern
was the learning of deterministic finite automata (DFA), or regular languages.
Deterministic finite-state machine (DFSM) is a superclass of DFA but it is
still in the class of regular languages and so there is a finite automaton for
any DFSM. Therefore, the theorem holds even for DFSM (the first condition).
Machines need to be resettable (the second condition) because the theorem
requires one to observe all possible outputs which also relates to connectedness.
One can learn only states that are reachable from the initial state, therefore,
the model of a system is at least initially connected. The condition of having
specified a transition on each input from all states has two purposes. First,
it simplifies the learning as working with incomplete machines has several
obstacles, for example, partially specified machines do not have a minimal
form in general or there does not have to be a separating sequence of a
state pair. Second, it allows one to explore any part of the system by trying
arbitrary sequence of inputs which can reveal a rare anomaly in the system.
Most systems are not completely specified but there are techniques to extend
them so that the active-learning approaches described in this part of the
thesis can be used even for such systems.
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The following section introduces terms used in active learning of finite-state

machines. Chapter 15 proposes the observation tree approach and three
new learning algorithms, in particular the H-learner (Section 15.3), the SPY-
learner (Section 15.4) and the S-learner (Section 15.5). Standard learning
algorithms are described in Chapter 16 and all algorithms are compared on
three experiments in Chapter 17. A summary of the algorithms and their
interpretation of the General Learning Framework proposed in Section 15.6
are described in Section 16.8. Chapter 18 concludes this part of the thesis.

14.1 Active Learning

This section introduces terms used in active learning of finite-state machines
including a black box, a teacher, types of queries, and a counterexample. All
terms are described and then explained on an example in Figure 14.1.
Active learning is an interaction of a learning algorithm with a system

usually called a black box. A learning algorithm, or a learner, tries to infer
the inner representation of the black box. The representation constructed by
a learner is called a conjectured model, or simply a conjecture or a hypothesis.
The interaction between the learner and the black box is provided by a teacher
that abstracts and simplifies the learning task. This is the standard setting
of active learning of finite-state machines adopted from the field of active
automata learning. The difference between these two field will be discussed
in the following chapter.

A black box (BB) is a system whose inner representation is not available
but it provides observable responses to applied inputs. In the case of active
learning, a black box is assumed to be modelled by a finite-state machine.
The type of FSM is known in advance and the input alphabet X is given.
A conjectured model should correspond to the BB in the end of learning,
hence, it has the same type and the same input alphabet as the black box.
Formally, the conjectured model is a DFSM M = (S,X, Y, s0, DM , δM , λM )
and the black box is a DFSM N = (Q,X, Y ′, q0, DN , δN , λN ). The numbers
of states, inputs and outputs of M are denoted by n, p, q, respectively, that
is, n = |S|, p = |X| and q = |Y |. The black box has m states and it holds
that Y ⊆ Y ′ as the conjecture model can produce only outputs that were
observed as a response of the black box. Both models can differ in transition
and output functions during the learning as the sets of states do; |S| ≤ |Q|.
However, when the learning ends, both models should be output-equivalent.
It means that there is a bijective function γ mapping states of M to states
of the black box, that is, γ : S → Q, and the correspondence of transition
and output functions, γ(δM (s, x)) = δN (γ(s), x) and λM (s, x) = λN (γ(s), x),
hold for all defined transitions (s, x) ∈ DM ∪ {S × {↑}}. Moreover, DN =
{(γ(s), x) | (s, x) ∈ DM} and Y = Y ′. Notice the correspondence between
the conjectured model and the specification (defined for testing of finite-state
machines in Chapter 8), and between the black box and the implementation
in testing. They are defined equally because they have very similar task in
both testing and learning as was depicted in Figure 1.4.
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A learning algorithm, or a learner, aims to create a conjectured model
that is output-equivalent to the black box. As the black box is unknown to
the learner, a completely specified conjectured model is constructed based
only on the observed responses to the input sequences that the learner asked.
The learner analyses these traces, that is, input-output sequences, and finds
separating sequences that identify different states of the black box. Separating
sequences are then used to define all transitions from revealed states of the
black box and thus to create a completely specified conjectured model. States
of the black box are identified both by separating sequences that show their
uniqueness and by their access sequences. As the black box is assumed to
be resettable, once the responses to separating sequences distinguish a state
from the others already revealed, its access sequence is remembered and the
learner can reach this state and test transitions leading from it by resetting
the system and asking this access sequence. Learning algorithms differ in
the way they store and analyse traces, which separating sequences they use
and how they use them, and what they can say about the correctness of the
conjectured model with respect to the black box.

A teacher for active-learning algorithms, also called a minimally adequate
teacher [Ang86], is an abstraction that simplifies the learning. The teacher
provides a learning algorithm with information about the black box. A learner
can ask two essential types of queries that the teacher answers. The first type
of query is asking for an output to the given input. The second type of query
requires a check of equivalence between the black box and the conjectured
model inferred by the learning algorithm. The teacher can also cover a mapper
and a query filter. A mapper translates abstract symbols used by the learner
to more complex messages required by the system. A query filter answers
queries that were asked previously or the response is known to the teacher
because of a special property of the black box, such as prefix-closedness of
the language described by the BB.

The first query type depends on the type of DFSM that models the black
box. If the black box specifies a regular language, usually modelled by a DFA,
or the black box is a classifier, usually modelled by a Moore machine, then the
teacher provides a membership query (MQ) to decide which class the queried
sequence belongs to. Otherwise, an output query (OQ) is in question. The
teacher replies to a MQ with the last output symbol and to an OQ with a
sequence of all output symbols observed along the path following the queried
input sequence. That is, for all input sequence u and x ∈ X↑:

MQ(u · x) = λN (δ∗N (q0, u), x) and OQ(u) = λ∗N (qc, u),

where qc is the current state of the black box. Instead of OQ taking only one
sequence, a specified OQ providing only output to the given suffix is more
appropriate for active-learning algorithms:

OQ(u, v) = λ∗N (δ∗N (q0, u), v).
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Both types of output queries are covered in the definition of output-providing
function T :

T (u, v) =
{
OQ(u, v) if OQs are allowed,
MQ(u · v) if only MQs are allowed.

∀u, v ∈ X∗↑

Note that the machine is reset before each query T as both MQ and OQ are
defined to start in the initial state. Therefore, the learning algorithm can ask
another version of T if it wants to continue querying without reset. A query
T (v) does not reset the black box and the teacher replies either with OQ(v)
or with MQ(u · v) according to which type of output query is allowed. The
previous queried sequence u starting in the initial state is remembered for
the purpose of MQ by the teacher. Formally,

T (v) =
{
OQ(v) if OQs are allowed (without reset),
MQ(u · v) if only MQs are allowed (u remembered).

∀v ∈ X∗↑

In testing, T represents both a test suite and a function returning the
responses to the test sequences. This is adopted in learning. As soon as an
input sequence uv is queried by T (uv) or by T (u, v), the response is obtained
by the particular type of function T and the sequence uv is added to the
set T which could be called a query suite.

The second query type is called an equivalence query (EQ). The learner
provides the teacher with the conjectured model M and asks to check it
against the black box. The teacher compares the model and the black box
and if they produce the same response to each input sequence, that is, they
are output-equivalent, then the teacher replies with success. However, if there
is an input sequence w for which the outputs differ, then the teacher returns
this sequence w that is called a counterexample (CE).

Counterexamples play a vital role for most active-learning algorithms.
Therefore, they were analysed thoroughly. Let su be the state reached by u
from the initial state of the conjectured model M , that is, su = δ∗M (s0, u).
Each state s is identified by a unique access sequence s̄. Hence, s̄u denotes
the access sequence of state reached by u in M . The following theorem is an
adjusted version of Theorem 2 in [SHM11] where a proof can be found.
Theorem 14.1. (Counterexample Decomposition). For every counterexample
w there exists a decomposition w = u · x · v into a prefix u, an input x, and a
suffix v such that T (s̄u · x, v) 6= T ( ¯sux, v).

Theorem 14.1 says that a ‘new’ state of the black box that has not yet
been identified and captured by the conjectured model can be revealed by
a suffix v queried from particular states. Suffix v is a separating sequence
of the state reached by u · x, that is, δ∗M (s0, u · x), and the new state that
is the next state of the state δ∗M (s0, u) on x, that is, δM (δ∗M (s0, u), x) after
updating δM . Theorem 14.1 states that there exists a decomposition but
there can be more than one such decomposition. This would be the case
when the counterexample reveals more than one state or it contains a cycle.
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Figure 14.1: Active learning of finite-state machines

Figure 14.1 shows a general process of active learning on a specific machine.
All general notions are coloured whilst all relating to the particular example
are in black. In the example, the black box is modelled by a 4-state DFA with
the accepting state D. Consider an intuitive learner, it starts with resetting
the black box and asking for the state output of the initial state, that is, it
queries T (ε, ↑) with the response of 0 as state A is rejecting. Then, it tries
both inputs. First, T (a) returns 0 as the reached state C is rejecting. The
learner considers the reached state equal to the initial one as they are not
separated, hence, it defines the transition (A,a) to lead back to A. The next
query is T (ε, b). The output of 1 reveals a new state that is identified by
the access sequence of ‘b’ and is separated from A by ↑. Let the state be
called D to correspond with the black box. The learner then wants to define
transitions from D, therefore, it asks T (a) and T (b, b). Both queries return
0 and so the learner assumes that both transitions (D,a) and (D,b) lead to
state A. The conjectured model is thus completely specified as depicted in
Figure 14.1 and the learner decides to ask an EQ. The teacher checks the
provided model against the black box and replies with the counterexample
‘aaba’. The learner then asks an OQ on the CE, that is, T (ε, aaba). In
order to answer, the teacher resets the black box and then applies gradually
all four input symbols and accumulates the observed outputs as shown in
Figure 14.1. The response 0000 to the OQ captures the inconsistency between
the conjectured model and the black box as the output of the conjecture
model to ‘aaba’ is 0010. Therefore, the learner needs to refine the conjectured
model to be consistent with the observed responses. This is done with the
help of further output queries which reveal a new state and the learning cycle
of creating a completely specified conjectured model repeats. Notice that the
outputs from the black box and the conjectured model to a CE do not have
to differ in the last symbol if T implements OQs. Sequence ‘aab’ would be a
counterexample for the 2-state conjectured model in Figure 14.1.
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If the system is not completely specified, that is, transitions on some inputs

are missing, then there are several approaches how to deal with this type of
machines. A teacher that acts as a mapper can respond with the ‘invalid’
output symbol to any input that is not allowed in the current state of the
system and either let the system remain in the current state or reset it into
its initial state. All learning algorithms in the following chapters thus relax
on this and assume that the black box is completely-specified.

14.2 Research Questions

III.1 Is there an active-learning framework more general than Observation
Pack [BDGW96] that the standard learning algorithms implement? A
framework is more general if a learner implementing the framework
can utilize techniques decreasing the number of queries compared to
techniques available in a less general framework.

III.2 Is there a learner that can learn a black box system using less amount of
interaction with the black box than the standard learning algorithms?
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Chapter 15
Observation Tree Approach

The aim of this thesis is to show that it is possible to learn finite-state
machines from reasonable interaction with them and at the same time
with a minimal help of the teacher. This is a slightly different objective
than the field of active learning has had for the last three decades. This
chapter starts with a brief summary of the development in the field of active
learning of finite-state machines. Drawbacks are emphasized as they are
addressed by the observation tree approach that is gradually introduced
along with the related work. After the key structure, the observation tree, is
described, a learner based on the observation tree approach is presented in
Section 15.1. Three novel learning algorithms that implement the observation
tree approach are proposed along with a description of their implementation
and a running example in Sections 15.3–15.5. The chapter is concluded
with a new learning framework that describes a general flow such that any
active-learning algorithm implements it (Section 15.6). A brief description of
the approach with a sketch of novel learners is published in [SB19].

The field of automata active learning began with the well-known L* algo-
rithm in 1986 [Ang86]. It learns a deterministic finite automaton in polyno-
mial time of the number of states of the black box and the maximal length
of a counterexample returned to an equivalence query. The focus of the
research reduced to the questions of how to derive a completely specified
conjectured model using additional membership queries and how to process a
counterexample (see Theorem 14.1 for the decomposition of a CE). Trying
to reveal states intentionally was omitted and passed to the teacher as its
responsibility. This is most obvious in the second oldest learning algorithm,
the Discrimination tree algorithm [KV94], that needs a counterexample to
reveal almost every state of the black box so that the number of equivalence
queries is proportional to the number of states of the black box. Besides the
number of EQs, the main measure to compare the learning algorithms was
the number of membership queries. Unfortunately, this measure was adopted
to compare algorithms that learn reactive systems usually modelled by Mealy
machines [Nie03]. The number of output queries represents how many times
such a reactive system is reset but it does not say anything about the time
spent on processing a query. It means that the length of queries was not
considered as an important factor.
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The aforementioned goal of efficient learning has two parts that depend on

each other. Interaction with the system is characterized both by the number
of resets during the learning and by the total number of symbols that are
queried. On the one hand, one can reduce the interaction with the black box
by a proper analysis of observed traces. The standard learning algorithms
(Chapter 16) do not analyse the traces and so they often query sequences
that do not add any new knowledge. A particular reason is that they use
a fixed set of separating sequences. On the other hand, elimination of the
dependency on the counterexamples relates to an exploration of the black box
just by the learner itself. It means more output (or membership) queries that
aim to reveal states of the black box that are not included in the conjectured
model. Imagine a learner that queries less symbols than the standard learning
algorithms to construct a completely specified conjectured model; it could
be due to the analysis of the observed traces. The difference of the symbols
queried by the standard learning algorithms and by the learner could then be
used by the learner to explore the black box using random output queries.
The chance of finding a new state grows with the number of symbols that
were queried. However, it can happen that no additional knowledge about
the black box is gained. If the learner does not provide any guarantee about
the correctness of the conjectured model, it is no better than the standard
learning algorithms and the gain due to the analysis of the observed traces is
lost. Therefore, the exploration should be guided by the learner to provide a
guarantee if no new state is revealed.

A guarantee on the conjectured model can be based on the testing theory.

Active learning is like testing of an evolving specification.

The correspondence of testing and learning can be seen in several aspects.
Both tasks work with access and separating sequences to identify states.
In the basic case when a testing method does not consider extra states,
separating sequences are applied after each transition to identify it in the
implementation. This is the same for all learning algorithms when they try to
define each transition and thus construct a completely specified conjectured
model. The correspondence of testing and active learning was discussed
in [BGJ+05] and recently a category-theoretic formalism that establishes
formal relations between algorithms for learning and testing was published in
[vHSS17]. Nevertheless, learning utilizing the extensive testing theory was
not proposed.

The first attempt to use testing in active learning is the recent learning
algorithm called in this thesis the Quotient algorithm (Section 16.5). It is
inspired by the oldest testing method, the W-method (Section 9.3). The only
difference from the oldest learning algorithm, the L* algorithm, is that the
Quotient algorithm uses the most suitable learning structure, an observation
tree (OTree). An observation tree groups observed traces into a prefix tree
in the same way as test sequences are grouped in the testing tree. This
provides another correspondence between testing and active learning because
this chapter demonstrates that an OTree plays a key role in efficient active
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Figure 15.1: A sketch of observation tree with some state-relating parts coloured

learning and Part II showed that the state-of-the-art testing methods use
directly the testing tree to construct the smallest test suites. OTree is the
most suitable structure to store observed traces because it provides an easy
access to all traces and thus eliminates duplicate queries, and observed traces
can be easily analysed, for example, to find out which separating sequences
are queried from particular states. Moreover, it is like a machine of the same
type as the black box and the conjectured model. Hence, the correspondence
between an OTree and the two models is obvious as all handle inputs in the
same way. As observation trees are in fact equal to the testing trees, an
example of observation tree can be found in Figure 10.1 or Figure 11.1. A
general structure of OTree is sketched in Figure 15.1. Subtrees relating to
states s0, si and sj together with their fixed access sequences are highlighted
with different colours to show which sequences identify particular states of
the black box. All three subtrees contain common extensions w0i, w0j and wij

that indicate separating sequences (without the corresponding outputs that
are different). The state reached by s̄iu from the initial state is also depicted
in Figure 15.1 to show how nodes of OTree are labelled. If a node represents
an identified state of the black box, it is called a state node (SN) and is
denoted ni,ε where i corresponds to the related state si in the conjectured
model and the fixed access sequence s̄i. Otherwise, the node is reached by
an extension u from an SN ni,ε, therefore, it is denoted ni,u. Note that for
each node ni,u only the closest SN is considered; there is no SN nj,ε such that
s̄j = s̄i · v′ and u = v′ · v. Any node reached by v from the initial state can
be alternatively denoted nv, that is, ni,u = ns̄iu.

How the testing theory can help to learn more efficiently and achieve the
given goal? The answer is simple: use a sufficient condition for an m-complete
test suite. For example, the S-condition (Theorem 8.14). First, it states what
one needs to observed to construct a completely specified conjectured model
M , that is, the observation tree needs to include an n-complete test suite for
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M . Second, it can direct the exploration and give a guarantee after responses
to all sequences of an (n+ l)-complete test suite for M were observed where
l is the number of considered extra states. The guarantee would be in this
case that the reduced conjectured model with n states is either a correct
representation of the black box or the black box has more than n+ l states.
There is just one obstacle. In the first phase when no extra state is considered,
a testing method can construct separating sequences based on the completely
specified specification and knows the target state of each transition. This is
missing in the learning. Fortunately, this does not limit the learning because
there is at least one separating sequence for each state pair, otherwise the
states would not be revealed if they were not distinguished from the others. In
the case of undefined transitions, these separating sequences can be gradually
queried until the target state is identified as one of the states. This idea
is not new. The GoodSplit algorithm (Section 16.6) also queries observed
separating sequences to identify target states of each transition. This process
is called making the observation tree closed (for 0 extra states). As indicated,
the term can be extended to work with extra states. The observation tree is
closed for l extra states if it contains an (n+ l)-complete test suite for the
conjectured machine M with n states. From this perspective, all the standard
learning algorithms always make their learning structure closed for 0 extra
states and then ask an equivalence query.

The idea of extra states in active learning is not completely new. A theoretic
framework called an observation pack (OP) was proposed in 1996 [BDGW96].
It basically describes what is captured in Figure 15.1. There are components
for each state such that these components groups sequences with the common
prefix of the related access sequence. It was shown that both the L* algorithm
and the Discrimination tree algorithm implement the framework and that
the number of equivalence queries can be reduced by checking states reached
by extensions of all access sequences such that these suffixes have length
up to l. It comes with the price of increasing the number of membership
queries (the concern was just regular languages and DFA). As all extensions
of length up to l are checked, the complexity of the number of MQs contains
pl where p is the number of inputs. If l is chosen to be logn, then there is a
polynomial-time learning algorithm that needs O( n

log n) equivalence queries
to learn a DFA. Further lower and upper bounds on the number of EQs and
MQs were derived in [BDGW94b]. Nevertheless, those bounds are based on
the worst case scenarios that are hardly possible if at all. As will be shown in
Chapter 17, a clever learner using just one extra state needs a very few EQs
(if any) to learn a model of real systems. The L* algorithm also does not need
so many equivalence queries even though it does not consider any extra state.
It is because L* queries many sequences (that are not necessary) to construct
a complete model but the sequences reveal new states unintentionally. The
concept of observation pack with a ‘lookahead’ was not implemented to show
its performance experimentally but there is an important difference from the
observation tree approach. The OP was defined to compare reached states
using fixed sets of separating sequences. Therefore, its idea corresponds to
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the HSI-method (Section 9.5). The observation tree approach is more general
as it allows one to follow any sufficient condition for an m-complete test
suite. It also means that if there will be a better sufficient condition for an
m-complete test suite than the S-condition, it can be directly used to improve
an active-learning algorithm. Note that the authors of OP also described a
possible parallelization of the L* algorithm [BDGW94a].

15.1 General Idea

This section summarizes the observation tree approach and discusses aspects
in which the approach differs from the standard active-learning setting.

The observation tree approach consists of two phases. The first phase
corresponds to the work of the standard learning algorithms, that is, it
constructs a completely specified conjectured model by asking output (or
membership) queries. The second phase explores the black box in order to
reveal other states. Both phases aim to meet a sufficient condition for an
(n + l)-complete test suite for the conjectured model M with n states and
l as the number of considered extra states. In the first phase, l equals to
0 and it is greater than 0 in the second phase. Both phases are repeated
several times during the learning. The second phase always starts right after
the first one constructs a complete conjectured model M . Whenever an
inconsistency between the observation tree T and M appears in the second
phase, it stops and the learning continues by the first phase. An inconsistency
means that there is a sequence u with the observed response z that differs
from the expected output given by λM , that is, T (ε, u) = z 6= λ∗M (s0, u). The
second phase also stops if the observation tree is closed for the given maximal
number of extra states and either there is no counterexample returned on an
equivalence query or EQs are not allowed.

Why would EQs not be allowed? Equivalence query is an abstract con-
struct that requires detailed knowledge about the black box to check if the
given conjectured model differs. Such a perfect oracle answering any EQ is
not available in practice. Therefore, the teacher answering EQs is usually
approximated by a testing method or a random walk that tries to find a
counterexample. Hence, the user may want the learning algorithm to learn
completely itself and so equivalence queries do not have to be implemented by
the provided teacher; in fact, then there is no ‘teacher’ as output queries are
just responses of the black box and thus the teacher does not teach anything.
Another case is that the user can be just satisfied with the guarantee provided
by the observation tree approach that the resulting conjectured model is
correct with respect to the given maximal number of extra states. Note that
any number l of considered extra states cannot guarantee the equivalence
of the conjectured model and the black box because there always can be a
DFSM that passes (n+ l)-complete test suite but has more than n+ l states
[Moo56]. Therefore, the concept of extra states cannot substitute equivalence
queries.
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How does the observation tree approach differ from the standard learning

algorithms if the equivalence queries are approximated by a testing method?
There are conceptual and practical differences. On the one hand, the obser-
vation tree approach does not eliminate the concept of a teacher but in this
particular case, it shifted the workload from the teacher to the learner. It
means that the number of EQs is lowered and they can be implemented by a
different way than by a testing method; an expert as a human teacher would
also be happy to analyse the model fewer times. On the other hand, the
observation tree approach does not require a teacher as was mentioned in the
previous paragraph. If the teacher approximates the equivalence queries by a
testing method, it queries several test sequences before it finds a counterex-
ample, however, these queries are not available to the learner. The learner
then can query completely different sequences to gain the same knowledge
that the learner would get out of the test sequences used by the teacher.
Moreover in this case, both the learner and the teacher should be considered
as one learner because both interact with the black box to learn its model. It
is thus reasonable that they should share the observed responses to minimize
the interaction with the black box and not doing the same thing twice. A
teacher is for the observation tree approach the last (optional) check that the
black box has or has not more that n+ l states.

The observation tree approach is specified in Algorithm 31 that describes
a general structure of a learner based on the approach.

Both phases of the observation tree approach aim to meet the same sufficient
condition which means satisfying conditions for each transition. Therefore,
the phases are wrapped in a cycle that processes each unverified transition
(lines 3–14 of Algorithm 31). An inconsistency can occur in both phases
(lines 9–14) but after the inconsistency is resolved, the learner always enters
the first phase; the number of considered extra states l gets 0 on line 13.
Note that any inconsistency results in the increase of the number of states
in the conjectured model. After the observation tree is made closed for the
given maxExtraStates, the stop conditions are checked. If no counterexample
is obtained, the conjectured model with the guarantee of its correctness is
returned and the learning stops.

15.2 Common Properties and Optimizations

The next three sections propose new learning algorithms that implement the
observation tree approach but aim to satisfy different sufficient conditions
for an m-complete test suite. In particular, the H-learner in Section 15.3 is
based on the H-condition (Theorem 8.12), the SPY-learner in Section 15.4
on the SPY-condition (Theorem 8.13), and the S-learner in Section 15.5 on
the S-condition (Theorem 8.14). All three learners have several common
properties and optimizations. These are described in this section.

All three learners work with the observation tree (OTree) as the main
learning structure. As shown in Figure 15.1, a node of OTree is denoted
ni,u where u is the sequence labelling the path from the closest predecessor
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Algorithm 31: Learner based on the observation tree approach
input :A teacher providing information about the black box through

output and equivalence queries
input :maxExtraStates as the maximal number of extra states to be

considered during learning
output :A conjectured model M

1 repeat
2 for l← 0 to maxExtraStates do

// make the observation tree T closed for l extra states
3 while there is an unverified transition do
4 (s, x)← choose an unverified transition
5 if l = 0 then // t is not defined in M
6 identify state δ(s, x) using adaptive separating sequences
7 else
8 verify transition (s, x) using testing theory, l extra states
9 if observed responses and outputs of M differ then

10 resolveInconsistency(T,M):
11 query appropriate sequences that reveal a new state
12 update the conjectured model M
13 l← 0 // assume 0 extra states again as
14 break // some transitions are not defined in M

15 if equivalence query returns a counterexample w then
16 query w and resolveInconsistency(T,M)
17 until M is correct or EQs are not allowed or the user is satisfied with M

ni,ε that is a state node (SN) corresponding to the state si. For an easier
description, let Ei,u denote the subtree with node ni,u as its root, that is,
Ei,u = {w | s̄iuw ∈ T}. The subtrees Ei,u called distinguishing sets are
repeatedly compared in all learners in order to find separating sequences
and identify the correspondence between nodes and an SN. To reduce the
number of such comparisons and to keep track during the identification of
nodes, the learners employ domains as were introduced in Section 8.2. A
domain φ is implemented as a set tied to every node of OTree rather than
a function of sequences. For each node ni,u, the domain φ is defined as
φ(s̄iu) = {sj ∈ S | ¬∃w ∈ Ei,u ∩ Ej,ε : T (s̄i · u,w) 6= T (s̄j , w)}. A node ni,u

is called consistent with a state sj , or equivalently with a state node nj,ε, if
sj is in its domain, that is, they are not separated by an observed common
extension. Note that the terms ‘separating’ and ‘be separated’ are extended
to nodes of OTree in the meaning of the states that they represent.

Section 8.2 introduced the domain function Φ of classes of convergent
sequences besides the domain function φ. The SPY-condition and the S-
condition use the convergence of test sequences that allows one to construct
smaller test suites. Hence, both the SPY-learner and the S-learner employ
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a convergent graph as the secondary learning structure and domains of
convergent nodes as well. A convergent node (CN) denoted as [u] is a node
of the convergent graph such that it groups sequences that are proven to
be convergent (with u). Initially, each convergent node [u] relates only to u,
therefore, the convergent graph corresponds to the observation tree. Instead
of grouping sequences, CNs are implemented to store the related nodes of
OTree, that is, a CN [u] contains at least node nu. A convergent node that
contains a state node is called a reference node (RN); a RN [s̄i] contains
the SN ni,ε relating to s̄i. Similarly to the implementation of φ, Φ is not
implemented as a function but as a set tied to particular convergent node.
Such a set does not contain states but references to CNs. The content of Φ
of a CN depends on whether the CN is an RN or not as follows:
– If a CN is an RN [s̄i], then Φ of [s̄i] includes all CNs that are consistent

with [s̄i].

– If a CN [u] is not an RN, then its Φ contains references to RNs that are
consistent with [u].

Similarly to the nodes of OTree, convergent nodes [u], [v] are consistent if
there is no sequence w such that T (u′, w) 6= T (v′, w) for all u′ ∈ [u] and
v′ ∈ [v]. Note that the same is used in the testing S-method. This definition
of Φ helps to reach and update all CNs that can be affected by the last query.
For example, if a CN [u] is in Φ of an RN [s̄i] and the last queried sequence
w extends Ei,ε, then the CN [u] is checked if it is separated from [s̄i] by the
corresponding suffix of w. If [u] and [s̄i] become separated, they are removed
from the domain of each other.

One part of the goal is to minimize both the number of symbols queried
during the learning and the number of resets of the black box. It is reflected by
the way how the observation tree is extended. The observation tree approach
focuses on reactive system that are usually modelled by DFSMs or Mealy
machines rather than on regular languages represented by DFA. Therefore,
it benefits from the possibility to query a sequence u one by one symbol
using the output query T (u) that does not reset the black box. There are
two advantages. First, if an inconsistency is observed in the middle of a
requested query, the rest of the sequence does not have to be applied to the
black box and some interaction is saved. Second, the learner can extend the
last queried sequence and so save a reset of the black box. All three new
learners benefit from both advantages. It means that they analyse the traces
after the response to (almost) each symbol is observed and thus they can
choose a suitable symbol to query next and whether the black box is to be
reset first. The sufficient conditions that the learners aim to meet ask for the
verification of each transition. Hence, after the learner queries a sequence
u to verify a particular transition, it then checks if an extension of u can
help to verify another transition. Algorithm 32 describes how the observation
tree is extended with one node. The learners remember the current state
of the black box by the corresponding node nodeBB of the observation tree.
Therefore, they know if the black box needs to be reset before input x is
queried from node ni,u, that is, x extends sequence s̄iu. Note that the domain
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φ(s̄iux) is initialized with all states that have the same state output as the
reached state because there is no sequence from ni,ux except the stout input ↑
(line 11 of Algorithm 32). The variable nodeBB points to the root of OTree
when the learning starts as the black box is reset into its initial state.

Algorithm 32: query(ni,u, x)
1 Let yt be the output of the incoming transition and ys be the state

output of the successor node ni,ux

2 if OQs are allowed and BB is DFSM then
3 (yt, ys)← (nodeBB = ni,u) ? T (x ↑) : T (s̄iu, x ↑)
4 else
5 yt ← (nodeBB = ni,u) ? T (x) : T (s̄iu, x)
6 if BB is DFSM then
7 ys ← T (↑)
8 else if BB is DFA or Moore then
9 ys ← yt

10 else ys ← ε // BB is Mealy
11 φ(s̄iux)← all states with the same state output ys

12 nodeBB ← ni,ux

There are two other aspects that are common for all three learners. The
first one is a so-called adaptive separating sequence that is used to identify the
target state of a transition in the first phase of the observation tree approach.
The second aspect is the inconsistency between the observation tree T and
the conjectured model M . Both aspects are introduced in the following two
subsections.

15.2.1 Adaptive Separating Sequences

The target state of a transition needs to be identified when the transition
is to be defined. Node ni,x representing the target state of transition (si, x)
is identified if its domain Φ is singleton because then it is consistent with
a single reference node. If the convergence of sequences is not considered,
such as by the H-learner, Φ corresponds to φ. How to make domain Φ (or
φ) of a node ni,u singleton? It is sufficient to query the observed separating
sequences of RNs that are in Φ([s̄iu]) from [s̄iu]. In the case of the H-learner,
it reduces to querying the observed separating sequences of SNs related to
states in φ(s̄iu) from ni,u.

The choice of separating sequences can be optimized to minimize the
interaction with the black box. The best case would be if particular separating
sequences were grouped into an adaptive distinguishing sequence (ADS). Then,
only one sequence would be necessary to identify any reached state. However,
a lot of machines do not have an ADS or the state verifying sequences of ADS
are not queried from the related reference nodes. Therefore, the aim is to
choose the best so-called adaptive separating sequence that is like an ADS but
it does not have to separate all the given RNs. In fact, an adaptive separating
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sequence is like incomplete adaptive distinguishing sequence (IADS), see
Section 3.3.4. Both sequences try to distinguish the most states of a subset
of all states but an IADS is constructed based on the completely specified
specification and an adaptive separating sequence considers only extensions
of the given RNs captured in the observation tree.

An adaptive separating sequence can be represented as a successor tree
with nodes labelled with input symbols and edges by outputs. For simplicity,
consider first the case without the convergence of sequences, that is, an
adaptive separating sequence is to be constructed to distinguish the most
states of φ(s̄iu). Each node of the adaptive separating sequence is thus tied
to a set of states that are consistent under the separating sequence leading to
the node. It means that the root of adaptive separating sequence is tied with
the domain φ(s̄iu). The set of states in any other node then represents the
domain φ(s̄iu) after the separating sequence leading to the node is queried
and corresponding outputs are observed.

Figure 15.2 shows two adaptive separating sequences. Let the domain
φ(s̄iu) of a node ni,u contain five states A–E of a Mealy machine. There are
only two input symbols, ‘a’ and ‘b’, and three outputs, 0–2. States A and D
respond to ‘a’ with unique outputs, 1 and 2 respectively. Therefore, they are
separated by ‘a’ from the other states. States B, C and E output 0 on ‘a’ but
there is input ‘b’ that separates their next states. Unfortunately, the sequence
‘ab’ from nB,ε is not observed in the OTree yet. Therefore, B remains in the
domain φ(s̄iu) regardless of the output on ‘b’. Thus, ni,u would relate to
either E or B if ni,u produced 0 on ‘a’ and then ni,u·a responded with 1 to
‘b’. The second adaptive separating sequence captures the scenario if the first
input is ‘b’. Both states D and E respond to ‘b’ with 2. There is no observed
separating sequence for their next states, therefore, another sequence would
need to be queried from ni,u to identify the node if the node produced 2 on
‘b’. Notice that an input does not have to separate the related set of states
immediately. The purpose of ‘a’ after ‘b’ produced 0 is the transfer of the
next states of A, B and C to the states that can be separated by another ‘a’.

A distinguishing score is introduced to compare adaptive separating se-
quences. The score represents the probability that the node will not be fully
identified and how many states will not be separated. Therefore, the lower
the score, the better. It assumes that the node really corresponds to a state
of its domain. This means that the score does not consider extra states. The
score is calculated for each node of an adaptive separating sequence as follows:

scorei =


#statesi−1

#statesparent−1 i is a leaf node,∑
j∈successors

1
#successors · scorej otherwise.

The score of the root then represents the distinguishing score of the sequence.
If the distinguishing score is the same for more sequences, the shortest is
selected. The length of an adaptive separating sequence is

∑
i∈leaves #statesi ·

|wi|, where wi is the separating sequence leading to the leaf i.
The distinguishing score depends only on leaves with more than one state

as can be seen in Figure 15.2. Only the branch on 0 of the first adaptive
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Figure 15.2: Calculating distinguishing score of adaptive separating sequences

separating sequence contributes to the score. Both leaves have two states
and three states (B, C, E) relate to their parent. Therefore, the score of the
leaves is the same, 2−1

3−1 = 1
2 . Both leaves are equally probable so the score of

their parent is 1
2 ·

1
2 + 1

2 ·
1
2 = 1

2 . As there are three successors of the root, the
calculated score is divided by 3 and the distinguishing score is thus 1

6 . It is
similar for the second adaptive separating sequence in Figure 15.2 where only
the second branch from the root matters. Notice that the second sequence is
better even if it is longer.

Adaptive separating sequences are implemented to work with nodes of
OTree instead of states in the sets tied to each node. If the convergence of
sequences is not employed, each state in the set tied to a node of adaptive
separating sequence is represented by at most one node of OTree. If a
node of OTree has no successor on a particular input, then the number
of undistinguished states is increased; an example is captured on the left
adaptive separating sequence in Figure 15.2 where the state B is in both
lowest leaves because the OTree node nB,a has no successor on ‘b’. The
number of undistinguished states is then added to the number of OTree nodes
in the set tied to a node of adaptive separating sequence which gives the total
number of states used to calculate the distinguishing score. In the case of the
H-learner (no convergence of sequences), the root of an adaptive separating
sequence is thus tied with a set of state nodes that correspond to the states
in φ(s̄iu). If the convergence of sequences is employed, each state in the
set tied to a node of adaptive separating sequence can be represented by
several nodes of OTree. This reflects that the root is tied with Φ([s̄iu]) which
is a set of reference nodes and each RN as well as each CN consists of the
nodes of OTree that are convergent. Adaptive separating sequences do not
work directly with the CNs because the convergent graph can contain a cycle
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and the chosen separating sequence would not have to be queried from the
corresponding RNs.

The learners choose the best adaptive separating sequences by a recursive
function. The function compares scores for all inputs that can be applied to
the given set of nodes (or set of set of nodes). The root is initialized by the
related state nodes (or the reference nodes). The function then calls itself
with the corresponding successor nodes of OTree according to a chosen input.
The distinguishing score is accumulated and whenever a local score is higher
than the best score found so far, the search for a better input is pruned. A
local score is employed for the comparison of different inputs and the related
subtrees of OTree.

There is a small optimization related to the choice of separating sequence.
If the target state of transition (si, x) is to be identified (no extra state is
considered), it can happen that the state output uniquely identifies the target
state amongst the states of the conjectured model. There is no need to query
any other symbol from the reached node. However, it can help to reveal a new
state, especially when the learning starts and the next states of the initial
state are not distinguished from the initial state. Let a ∈ X be the very first
queried input and the reached state δM (s0, a) cannot be distinguished from s0,
that is, the state outputs are the same (or the black box is a Mealy machine).
Then, a is the most likely input that reveals new information. In the case
of DFA and Moore machine that have outputs tied to states, there is no
difference between inputs. However, transition outputs can be compared for
DFSM and Mealy machine only if the input symbols are the same. Therefore,
the learners choose the input x which was applied the last. Repeating a thus
allows one to compare the initial state with the next state δM (s0, a) by the
outputs of the transitions on a and the outputs of reached states. Consider
that a did not distinguish δM (s0, a) from s0, that is, T (ε, a) = T (a, a). The
next input is queried from the initial state. Let b be the second input. Then,
there are two most likely inputs that could reveal new information. Both
a and b applied in δN (q0, b) could distinguish the state from the initial one.
Nevertheless, a had its opportunity to show whether it is a separating input.
In addition, if b appears to be separating, then it can identify the next state
δ∗M (s0, b · b) by querying b again. The learners follow the mentioned rule that
if the target state is identified directly by its state output then the last input
is repeated. In the example, b would be queried again, that is, T (b, b).

15.2.2 Types of Inconsistency

There are four basic types of inconsistency of the observation tree T and the
conjectured model M .

I Empty domain φ: A node ni,u with φ(s̄iu) = ∅ represents a state of the
black box that is not modelled in the conjectured model M .

II Inconsistent domain φ: A node ni,u is identified as a state sj , that is,
δ∗M (si, u) = sj , but then it is separated from nj,ε and so sj /∈ φ(s̄iu).
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III Empty CN domain Φ: A convergent node [s̄iu] is separated from all
reference nodes so that Φ([s̄iu]) = ∅. There is a CN [v] that groups
sequences that are divergent in the black box.

IV Wrong merge of CNs: In the first phase when 0 extra states are considered
and some transitions are not defined, a convergent node [u] can be
identified as a state sj but during merging it into the RN [s̄j ] it is found
out that [u] and [s̄j ] are divergent.

Any inconsistency indicates that the black box has more states than the
conjectured model. Therefore, the learners ask additional queries to observe
the inconsistency I that reveals a node ni,u representing a new state. It is
important to find such node ni,u that is a successor of a state node, that
is, u is just an input x. Then, the new state can be easily connected to
the current states of the conjectured model, in particular a transition (si, x)
is defined to lead to the new state sj . It means that sometimes it is not
sufficient to observe the inconsistency I and the inconsistency II needs to
be resolved first to reveal another instance of inconsistency I that meets the
mentioned criterion. Note that the types of inconsistencies are numbered by
their priority and the learners resolve first the inconsistency with a higher
priority (a lower Roman numeral).

The inconsistency II of a node ni,u is easy to resolve if there is a predecessor
ni,v, u = v · v′, that is identified as a state sk, that is, δ∗M (si, v) = sk. See
an illustrating sketch in Figure 15.3. Let ni,u be identified as sj and w be
a separating sequence of ni,u and nj,ε. Then, the query s̄kv

′w reveals an
inconsistency of either ni,v if T (s̄k, v

′w) 6= T (s̄iv, v
′w), or nk,v′ if T (s̄kv

′, w) 6=
T (s̄j , w). As both v, v′ are shorter than u, the inconsistency is revealed
closer to a state node. Therefore, resolving the inconsistency II results in
the inconsistency I of a node ni,x for an input x unless the convergence of
sequence is considered and there is no such predecessor ni,v. It can happen
that the closest predecessor that is identified as a state is the state node ni,ε.
It is only possible if ni,u was identified based on its Φ. If ni,u was identified
using its φ and it was separated from the identified state, then the domain φ
would be empty and so the inconsistency I would be resolved first. The case
when the closest identified predecessor is the state node is resolved like the
inconsistency III because Φ([s̄iu]) is empty.

Figure 15.4 shows a part of reasoning behind resolving the inconsistency III.
An empty domain Φ([s̄iu]) means that for each RN [s̄k] there is a separating
sequence w from a node in [s̄iu] that separates [s̄k] and [s̄iu]. These sequences
are used to reveal the inconsistency II or even the inconsistency I. First,
similarly to resolving the inconsistency II, the closest identified predecessor is
found. Let [s̄i] be the RN of the closest identified predecessor and consider
ni,u as the witness of the empty CN domain. Note that ni,u does not have
to exist, hence, u would be queried from ni,ε. For each state sk in φ(s̄iu) a
separating sequence w as mentioned is queried both from ni,u and nk,ε. There
are three cases that can happen with respect to the observed responses to the
separating sequence. The first one is that all states are eliminated from φ(s̄iu)
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Figure 15.3: Resolving inconsistency II: inconsistent state domain of node ni,u
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Figure 15.4: Resolving inconsistency III: empty domain of convergent node [s̄iu]

as T (s̄iu,w) 6= T (s̄k, w). It means the inconsistency I is observed in ni,u. The
second and third cases result in the inconsistency II because the separating
sequence w reveals that [s̄i] or [s̄k] contain divergent sequences, that is, nodes
corresponding to different states of the black box. In particular as Figure 15.4
sketches, if T (s̄iu,w) 6= T (viu,w), then si /∈ φ(vi), and if T (s̄k, w) 6= T (vk, w),
then sk /∈ φ(vk).

The inconsistency IV happens when the domain Φ([u]) is {[s̄j ]} so that
[u] is to be merged into [s̄j ], and the following hold. There is a cycle (or the
self-loop of a state) in the ‘subtrees’ of [u] and [s̄j ] such that a CN [uv′] is
identified as a state sj in the first round and in the next round its successor
[uv′v′] should be merged into the same RN [s̄j ] but they are separated by w.
Note that there can be several cycles of v′. Let v be the sequence that leads
to the separated CNs that cannot be merged and v′′ is a suffix of v without
the cycles v′. It is sufficient to query vw from nj,ε and nu and in some cases
v′′w from nj,ε to separate [u] from [s̄j ] and so reveal the inconsistency III of
[u].
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Resolving inconsistencies II, III and IV is formalized in Algorithm 33 that
is used by the SPY- and S- learners. The H-learner does not consider the
convergence of sequences, therefore, it has much easier work as only the
inconsistencies I and II can be observed. Each node ni,u of OTree has in the
implementation the attribute state that represents the corresponding state if
it is known, that is, if the node was identified.
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Algorithm 33: resolveInconsistency(T , M)
1 let ni,u be a witness of inconsistency
2 if ni,u.state is set and ni,u.state /∈ φ(s̄iu) then // Incons. domain
3 let ni,u′ be the closest predecessor of ni,u such that ni,u′ .state is set

and is in φ(s̄iu
′), and let u = u′ · v and sk = ni,u.state

4 ni,u.state ← null
5 if ni,u′ is an SN, that is, u′ = ε and u = v then
6 foreach sj ∈ φ(s̄iu) do
7 if there is v′ ∈ [s̄i] such that v′v ∈ T and a sequence w

separates nv′v from [s̄j ] then
8 if s̄jw /∈ T then querySeqAndCheck(nj,ε, w)
9 if s̄iuw /∈ T then querySeqAndCheck(ni,u, w)

10 else
11 w ← separating sequence of ni,u and nk,ε

12 let sj be ni,u′ .state
13 if s̄jvw /∈ T then querySeqAndCheck(nj,ε, vw)
14 else if Φ([s̄iu]) is empty then // Empty CN domain
15 let ni,u′ be the closest predecessor of ni,u such that ni,u′ .state is set

and is in φ(s̄iu
′), and let u = u′ · v and sk′ = ni,u′ .state

16 ni,u.state ← null
17 if ni,u′ is not an SN, that is, u′ 6= ε then
18 if s̄k′v /∈ T then querySeqAndCheck(nk′,ε, v)
19 consider nk′,v instead of ni,u in the following
20 foreach sj ∈ φ(s̄iu) do
21 if there is a separating sequence w of [s̄iu] and [s̄j ] then
22 if s̄iuw /∈ T then querySeqAndCheck(ni,u, w)
23 if s̄jw /∈ T then querySeqAndCheck(nj,ε, w)

24 else // Wrong merge
25 let [s̄j ] be the RN to which [s̄iu] should merge
26 let v be the transfer sequence that revealed the merge to be wrong
27 w ← separating sequence of [s̄jv] and [s̄iuv]
28 if s̄iuvw /∈ T then querySeqAndCheck(ni,u, vw)
29 if s̄jvw /∈ T then querySeqAndCheck(nj,ε, vw)
30 if there is a prefix v′ of v such that [s̄jv

′] = [s̄j ] then
31 let v′ is the longest one that loops back to [s̄j ] and v = v′v′′

32 if s̄jv
′′w /∈ T then querySeqAndCheck(nj,ε, v′′w)
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15.3 H-learner

The H-learner aims to make the observation tree closed for the specified
number of extra states l according to the H-condition (Theorem 8.12). It
means that each state node is extended with all sequences of length up to
l + 1 where l is the currently-considered number of extra states. Each such
reached node ni,u needs to be identified, that is, |φ(s̄iu)| = 1 for all si and
|u| ≤ l + 1. Moreover, nodes ni,uv and ni,u such that |uv| ≤ l + 1 and
δ∗M (si, uv) 6= δ∗M (si, u) need to be observably separated. The idea of the
H-learner is based on the H-method (Section 9.6).

How an adaptive separating sequence is chosen to identify the target state
of a transition was described in Section 15.2.1. A similar procedure is also
followed in the case of verification of transitions in the second phase of the
observation tree approach. The only difference is that the target state is
known and thus the adaptive separating sequence is not adaptive because
a particular response is expected. The chosen sequence is a state verifying
sequence in the best case as then no other sequence needs to be queried to
verify the given transition. Note that all transitions covered by sequences of
length up to l+ 1 need to be verified; the chosen separating sequences aim to
reduce the domains φ of nodes ni,u with u ≤ l + 1. If the domain does not
become a singleton after the chosen separating sequence is queried, another
sequence is selected for the undistinguished states in φ(s̄iu).

The H-learner makes the observation tree closed for an increasing number
l of extra states. For each l it verifies each transition one by one. As each
transition is verified for l extra states, in order to make the transition verified
for l + 1 it is sufficient to reduce the domains of all successors ni,ux where
|u| = l, to singletons and check that predecessors of ni,ux are separated from
ni,ux if they correspond to a different state. Assume that the domains are
singletons and there is ni,v that corresponds to a different state than ni,ux

and v is a prefix of ux. Let sj = δ∗(si, v) and sk = δ∗(si, ux). There is
wj ∈ Ei,v ∩ Ek,ε and wk ∈ Ei,ux ∩ Ej,ε such that wj separates ni,v from nk,ε

and wk separates ni,ux from nj,ε. If ni,v and ni,ux are not separated in the
OTree, then there is not w ∈ Ei,v ∩ Ei,ux that would distinguish ni,v and
ni,ux. Therefore, it is sufficient to query either wj from ni,ux or wk from ni,v.
The H-learner chooses the latter option so it queries s̄i · v · wk. The sequence
is usually shorter than s̄i · ux · wj and additionally it can help to reduce the
domain of a successor.

15.3.1 Implementation

This section provides a more detailed description of the H-learner. The
learning algorithm is specified using Algorithms 34–39 and then described on
a running example in the following section.

The H-learner maintains three structures: the observation tree T , the
conjectured model M and the queue Unchecked used to keep track of nodes
of the OTree that is to be checked. A node ni,u is checked if all its successors
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Algorithm 34: H-learner
input :A teacher
input :maxExtraStates
output :A conjectured model M

1 l← 0
2 add n0,ε that corresponds to the initial state s0 to the queue Unchecked
3 while Unchecked is not empty do
4 ni,u ← the first node in unchecked
5 if |u| > l then
6 l← l + 1
7 if l > maxExtraStates then
8 if EQ allowed then
9 l← l − 1

10 if there is a previous CE w and δ∗(s0, w) 6= T (w) then
11 H-updateWithCE(w)
12 continue
13 if there is a counterexample w obtained on EQ then
14 H-applyAndCheck(n0,ε, w)
15 if no SN was revealed then H-updateWithCE(w)
16 continue

17 break // stop learning

18 if there is x ∈ X that was not queried from ni,u then
19 query(ni,u, x)
20 if the response reveals a new state then
21 H-updateDomains(ni,ux)
22 H-tryExtendQueriedPath(ni,ux)
23 else H-identify(ni,ux)
24 else if there is a successor ni,ux with |φ(s̄iux)| > 1 then
25 H-identify(ni,ux)
26 else if there is ni,v undistinguished from a successor ni,ux such that

v is a prefix of ux and sk = δ∗(si, v) 6= δ∗(si, ux) then
27 w ← the shortest separating sequence of ni,ux and nk,ε

28 H-applyAndCheck(ni,v, w)
29 else
30 add all successors ni,ux that are not state nodes to Unchecked
31 remove ni,u from Unchecked
32 if user is satisfied with M then break
33 return the conjecture M
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are consistent with a single state node, that is, φ(s̄iu · x) is singleton for all
x ∈ X, and they are separated from their predecessors that correspond to a
different state. Algorithm 34 describes the processing of nodes in Unchecked
and the stop condition. The learning stops if l exceeds maxExtraStates and
there is no counterexample if EQs are allowed (lines 7–17). If a node ni,u has
a successor on each input x (lines 18–23), all domains φ(s̄iu ·x) are singletons
(lines 24–25), and divergent predecessors are separated (lines 26–28), then
the node is checked and all its successor are pushed back in Unchecked (lines
30–31). Unchecked is also changed inside the function H-updateDomains if
a new state is revealed. Notice that if EQs are allowed, l is decreased (line 9)
so that the algorithm always assumes at most l extra states.

Algorithm 35: H-updateDomains(nu)
1 foreach nv such that u = v · w do
2 if nv is an SN, that is, nv = ni,ε then
3 remove si from the domains of all nodes that are separated by w
4 else
5 remove from φ(v) all states which SNs are separated from nv by w

6 if there is a nj,v with empty domain then // new state found
7 add a new state sk to the conjecture M ; nj,v = nk,ε

8 add sk to the domains of all nodes that are not separated from nk,ε

9 fill Unchecked with all state nodes ni,ε sorted by |s̄i|; the shortest first

The function H-updateDomains in Algorithm 35 checks all parents up
to the root from the given node nu whether they are separated by the
corresponding suffix of u. The node nu is a leaf as u is the last queried
sequences. If a predecessor nv, u = v · w, is a state node ni,ε (lines 2–3),
then all consistent nodes are compared under the related suffix w. Nodes
are consistent if there is no common sequence that would separate them.
If a consistent node nj,u′ is separated by w from ni,ε, si is removed from
its domain φ(s̄ju

′). Only nodes nj,u′ with |u′| ≤ l are sufficient to consider
as ‘nodes near leaves’ have so sparse distinguishing set Ej,u′ that they are
unlikely to be separated from all state nodes and become new states of the
conjectured model. If the predecessor nv is not a state node and w separates
it from a state node nj,ε in φ(v) (lines 4–5), then sj is removed from the
domain.

A state sk is added to the conjectured model if a domain becomes empty
(lines 6–9 of Algorithm 35). All nodes of OTree are then compared with the
new state node nk,ε. If a node nj,u′ is consistent with nk,ε, sk enlarges its
domain φ(s̄ju

′). The detection of a new state invalidates transitions of the
conjectured model so that all previously checked nodes need to be checked
again. Therefore, the queue Unchecked is filled up with the state nodes only.
The state nodes are sorted by the length of their access sequences for the
reason of efficiency. The closer to the root a new state node is revealed, the
less amount of queried symbols is spent.
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The H-learner usually needs to apply a sequence of several inputs to obtain

intended information. Therefore, Algorithm 36 proposes the function H-
applyAndCheck that repeats the function query (Algorithm 32) for all
inputs of the given sequence w and then checks for any changes. Not all inputs
are applied if the observed response is unexpected so a new state is revealed.
In such a case, the function stops querying and calls H-updateDomains that
identifies the new state node. Then, the learning continues from the reached
node ni,u by the call of H-tryExtendQueriedPath.

Algorithm 36: H-applyAndCheck(ni,u, w)
1 for j ← 1 to |w|; w = x1 · . . . · x|w| do
2 if s̄iuxj /∈ T then query(ni,u, xj)
3 consider ni,uxj instead of ni,u

4 if an unexpected response is observed then break
5 H-updateDomains(ni,u)
6 H-tryExtendQueriedPath(ni,u)

The function H-identify that selects which sequence is to be applied next
is described in Algorithm 37. If the given node ni,u·x is already consistent with
just one state node, then the incoming input x is taken as the next queried
sequence (lines 1–2). This choice was discussed at the end of Section 15.2.1.
There are two options if the domain φ(s̄iux) is not singleton. The reached
state is to be either verified or identified. If the state is known, that is,
δ∗M (si, u · x) is defined, then verification by a separating sequence happens
(lines 3–4). Otherwise, the state is to be identified using adaptive separating
sequences (lines 5–6). Note that a necessary condition for verification is
|u| > 0 because the transition function δ is defined by identification of next
states of state nodes (u = ε). The choice of adaptive separating sequences
was described in Section 15.2.1. The separating sequence w for the purpose
of verification is chosen from the distinguishing set Ej,ε of the related state
sj . It separates the most state nodes of states in φ(s̄iux) from nj,ε and is the
shortest among such sequences. It means that w or its prefix is also in Ek,ε

for sk ∈ φ(s̄iux), the responses from nj,ε and nk,ε are different, and this holds
for as many states sk of φ(s̄iux) as possible. After a sequence is selected,
H-applyAndCheck is called in order to query the chosen sequence w.

When a selected sequence is applied and domains are reduced accordingly,
the algorithm tries to continue with querying from the reached leaf node.
There is a function H-tryExtendQueriedPath captured in Algorithm 38
for this purpose. If the given leaf node ni,u has been just recognized as a new
state node, then it is extended by the first input symbol of the input alphabet
X and the next state is identified (lines 1–6). Otherwise, the previous nodes
up to the closest state node ni,ε are checked whether they can be extended.
In fact, the check goes from the closest state node ni,ε so a suitable node ni,v,
u = v · v′, with the shortest access sequence is extended first. There are three
requirements on the node ni,v: it is not identified as |φ(s̄iv)| > 1; it could be
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Algorithm 37: H-identify(ni,ux)

1 if |φ(s̄iux)| = 1 then
2 w ← x // attempt to reveal new information
3 else if δ∗(si, ux) is defined to sj then // verification
4 w ← the shortest sequence that separates nj,ε from the most SNs

that relate to states in φ(s̄iux)
5 else // identification
6 w ← the shortest adaptive separating sequence that has the lowest

probability of not identifying states in φ(s̄iux)
7 H-applyAndCheck(ni,ux, w)

an extra state or its next state, that is, |v| ≤ l + 1; and there is a sequence w
starting with v′ that separates some states of φ(s̄iv) (line 7). The separating
sequence w has the fixed prefix v′ and the rest is derived by the functions
used in H-identify to select (adaptive) separating sequences. State nodes of
states in φ(s̄iv) follow v′ and the reached nodes form a domain φ′(s̄iu) used
in the functions that choose a sequence. Note that these two functions work
with nodes and not with states as it was explained in Section 15.2.1. The
domain φ′(s̄iu) can be smaller than φ(s̄iv) because v′ does not have to be
observed from some state nodes. As H-Algorithm 37 specifies on lines 3–6, the
chosen sequence w′ is a separating sequence if δ∗M (si, u) is defined. Otherwise,
w is an adaptive separating sequence starting with v′. If there is not such
a predecessor ni,v, then the given leaf node is extended only if it could be
an extra state or its next state. In such a case, the function H-identify is
called (line 12 of Algorithm 38).

Algorithm 38: H-tryExtendQueriedPath(ni,u)
1 if ni,u is a state node, that is, u = ε then
2 query(ni,ε, x), where x is the alphabetically lowest input symbol
3 if the response reveals a new state then // φ(s̄ix) is empty
4 H-updateDomains(ni,x)
5 H-tryExtendQueriedPath(ni,x)
6 else H-identify(ni,x)
7 else if there is ni,v such that u = v · v′, |v| ≤ l + 1 and there is a

separating sequence w = v′ · w′ reducing φ(s̄iv) then
8 consider such ni,v with the shortest v
9 φ′(s̄iu)← {nj,v′ | sj ∈ φ(s̄iv) ∧ s̄jv

′ ∈ T}
10 w′ is the shortest (adaptive) sequences that separates the most nodes

in φ′(s̄iu), it is obtained as in Algorithm 37 lines 3–6
11 H-applyAndCheck(ni,u, w)
12 else if |u| ≤ l + 1 then H-identify(ni,u)

The last piece of the H-learner is the processing of a counterexample w.
Each obtained counterexample (CE) is first queried and domains are update
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accordingly. However, a CE can contain redundant information, such as
unnecessary loops, and so be quite long. Then a new state is not possible
to reveal by the standard approach in H-updateDomains because ‘close
to leaves’ nodes have spare distinguishing sets. It means that such a node
does not have enough outgoing sequences that would separate the node from
all state nodes. The inconsistency is captured by the inconsistency II, see
Section 15.2.2. That is, there is a node ni,u such that δ∗(si, u) /∈ φ(s̄iu) if the
response of the conjectured model M to the given CE w is still incorrect.

Algorithm 39: H-updateWithCE(w)
1 let w′ be the shortest prefix of w such that δ∗(s0, w

′) /∈ φ(s̄0w
′)

2 for j ← |w′| down to 1; w = x1 · . . . · x|w| = uj · xj · vj do
3 let si = δ∗(s0, uj) and sk = δ(si, xj)
4 if s̄kvj /∈ T then
5 H-applyAndCheck(nk,ε, vj)
6 if a new state is revealed then break
7 if s̄ixjvj /∈ T then
8 H-applyAndCheck(ni,xj , vj)
9 if a new state is revealed then break

The function H-updateWithCE in Algorithm 39 describes which se-
quences are further queried based on the given counterexample. The function
follows Theorem 14.1 of the decomposition of a counterexample. There is a
suffix vj that distinguishes the next state of state si on xj from the assumed
next state sk = δM (si, xj). A new state is thus revealed if vj is queried from
both ni,xj and nk,ε. However, which of suffixes of w is the distinguishing
one? All suffixes are queried gradually from the shortest one until the distin-
guishing one is found and a state is revealed. Moreover, some of the shortest
suffixes are already queried so they are not considered. Let w = w′ · w′′ such
that δ∗M (s0, w

′) /∈ φ(w′). Then all suffixes of w′′ were queried because the
function H-updateWithCE queries vj from nk,ε and xj · vj from ni,ε where
xj · vj = vj−1. Therefore, vj ’s are usually queried from the related nk,ε by
the previous loop on j, that is, when j was j + 1. As w′′ was queried, it
distinguished nk,ε of sk = δ∗M (s0, w

′) from node nw′ . If w′ is the shortest
prefix of w with the property, then w′′ = vj was not probably queried from
related ni,xj so w′′ is the first suffix to query.

The H-learner needs to store the observation tree that is like a testing
tree constructed by the H-method in the end of learning. Hence, the worst
case space complexity can be estimated to O(n3pl+1) as was derived in
Section 10.1. The time complexity depends on the size of the observation tree
because the observed traces are compared repeatedly to identify particular
states. The H-learner thus spends most of the time by updating domains
in H-updateDomains. Let |T | denote the size of the observation tree so
that |T | ∈ O(n3pl+1). Assume the worst case. The last queried sequence
u consists of the access sequence of length n − 1, an extension of length
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l + 1 and a separating sequence of length in O(n). As l is usually smaller
than n, l ∈ O(n) and so |u| ∈ O(n). Note that separating sequences are
chosen from the observed ones that are the shortest, hence, the length in
O(n). There are O(n + l) nodes and n state nodes to check during the
processing u. These O(n + l) nodes are compared with at most n SNs on
the related suffix of u that has length in O(n+ l). Hence, these comparisons
run in O(n(n+ l)2) which is O(n3). Much harder is the update of domains
of state nodes. The number of consistent nodes is bounded by |T |. Thus, n
state nodes, each with O(|T |) consistent nodes to compare on the sequence
of length in O(n), give the running time O(n2|T |) in the worst case. The
total time complexity in the worst case is estimated by the assumption that
the function H-updateDomains is called for each node of the observation
tree (after it is added to the OTree). It means that the H-learner runs in
O(n2|T |2), that is, O(n8p2l+2), in the worst case.

15.3.2 Running Example

The H-learner was proposed and described in detail in the previous section.
This section shows the learning by the algorithm on an example. The
black box is represented by a DFA in Figure 15.5. It has binary input
alphabet X = {a, b} and 4 states A–D such that only D is accepting, that
is, λN (q, ↑) = 1 if and only if q = D. Figure 15.5 shows the state behaviour
table (output and transition functions) and the state diagram of the machine.
Algorithms 34–39 are followed to learn this black box. Only one extra state
is considered, that is, maxExtraStates = 1, as it suffices to learn such a small
machine without the need of a counterexample. The teacher is able to provide
output queries (OQ).

↑ a b

A 0 C D
B 0 C C
C 0 B D
D 1 A B

Λ ∆

Astart C

BD

a

b a,ba
b

a

b

Figure 15.5: Black box represented by a 4-state DFA with the accepting state D

The learning starts with the reset of the black box and querying ↑ to obtain
the output of the initial state; output query 1 is T (ε, ↑). The root n0,ε of the
observation tree (OTree) with the relating initial state s0 of the conjectured
model are created. According to Algorithm 34, Unchecked is filled up with
n0,ε and the root is chosen for checking first. Its access sequence (ε) has the
length of 0 which equals to the value of l. Therefore, the condition on line 5
of Algorithm 34 is not satisfied and the algorithm goes directly to check the
next states of the initial state.

159



15. Observation Tree Approach ..............................

1 T (ε, ↑) = 0
2 T (a) = 0
3 T (a) = 0
4 T (ε, b) = 1 =⇒ s1

5 T (a) = 0
6 T (a) = 0

Output Queries 1
0

2
0

3
0

a

a

4
1

5
0

6
0

a

a

b

s0

s1

s0start

s1

a

ba

↑

s0

0

s1

1

s0, s1

Figure 15.6: The first 6 output queries reveal the state D (s1)

The first 6 output queries with the constructed observation tree and the
conjectured model are depicted in Figure 15.6. Moreover, Figure 15.6 also
shows a separating sequence that distinguishes states s0 and s1, or A and D
in the black box. Note that a node of OTree is labelled with the number of
the related output query and the state output in the lower part. State nodes
are then marked with the labels next to the nodes.

The target state on the input ‘a’ is checked first. T (a) replies with 0 so that
the reached state cannot be distinguished from the initial state by the state
output. The additional feature of the H-learner takes place here. According
to the function H-identify (Algorithm 37), the next input to query is again
‘a’. The target state could be distinguished from the initial one if they had
different output on ‘a’; output query 3 is T (a). Unfortunately, the output
is the same so another input is tried from the initial state. The target state
on ‘b’ responds with 1 that reveals a new state s1. The conjectured model
thus contains two states, the rejecting initial s0 and the accepting s1, with a
self-loop on ‘a’ from s0 and a transition on ‘b’ from s0 to s1. The input ↑
forms the separating sequence of the states; it is depicted in bottom left of
Figure 15.6.

The black box is currently in the state corresponding to n1,ε. Therefore,
the algorithm queries T (a) to obtain the output of the next state of s1 on ‘a’.
The input ‘a’ was chosen because it is the lowest alphabetically. The observed
output is 0 and thus the next state is assumed to be s0. A transition on ‘a’
from s1 to s0 is added to the conjectured model as Figure 15.6 shows. Similarly
to the query 3, T (a) is queried again to try to reveal new information.

The queue Unchecked is filled up with all state nodes as a new state has
just been revealed. Particularly, it contains n0,ε and n1,ε in this order. Both
successors of n0,ε are identified because |φ(a)| = |φ(b)| = 1. Therefore, the
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7 T (b, b) = 0
8 T (b) = 0 =⇒ s2

9 T (b) = 1

Output Queries 1
0

2
0

3
0

a

a

4
1

5
0

6
0

a

a

7
0

8
0

9
1

b

b

b

b

s0

s1

s2

s0start

s1 s2

a

b ba

b

↑

b

s2

0

s0

1

s0, s2
0

s1

1

s0, s1, s2

Figure 15.7: The next 3 output queries reveal the state B (s2)

algorithm checks the next states of s1. The first one (on ‘a’) is identified and
the second has not been observed yet. Thus, the output query 7 is T (b, b)
that replies with 0. The transition on ‘b’ from s1 is assumed to lead to s0.
Nevertheless, the function H-identify asks for another query on ‘b’ as it is
the input by which the current state is reached; output query 8 is T (b). The
expected output is λM (s0, b) = 1, however, the observed output is 0. The
node n1,b thus cannot relate to s0 and a new state s2 is revealed. The function
H-updateDomains (Algorithm 35) eliminates s0 from the domain φ(bb) so
it becomes empty. The state s2 is introduced and is added to all domains of
nodes consistent with n1,b = n2,ε. The domains φ(a), φ(ba) and φ(bbb) are
the most important because they relate to next states. These next states
will be needed to identify again. This is reflected in the conjectured model
in Figure 15.7 by dashed transition lines. With state s2, a new separating
sequence ‘b’ was observed. The updated adaptive separating sequence is
shown in bottom left of Figure 15.7. The sequence is immediately used to
identify the next state of s2; output query 9 is T (b). It responded as s0
so that the transition on ‘b’ from s2 leads to s0 as the current conjectured
model in Figure 15.7 shows. The query 9 was asked due to the function
H-tryExtendQueriedPath (Algorithm 38) that called H-identify.

All state nodes fill the queue Unchecked again and are processed in the
order s0, s1 and s2. The successor of the root node on ‘a’ is not identified as
it is consistent with both n0,ε and n2,ε. Therefore, an (adaptive) separating
sequence of these state nodes is chosen and applied in n0,a; output query 10 is
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10 T (a, b) = 1
11 T (ba, b) = 1
12 T (bb, a) = 0
13 T (b) = 1

Output Queries 1
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a,b
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b

↑

b

s2

0

s0

1

s0, s2
0

s1

1

s0, s1, s2

Figure 15.8: The next 4 output queries make the OTree closed for 0 extra states

T (a, b). The output 1 identifies the state relating to n0,a as s0. Therefore, the
transition on ‘a’ from s0 is again confirmed to lead back to s0. The transition
on ‘a’ from s1 is confirmed in the same way; the separating sequence ‘b’ is
applied in the successor n1,a. The remaining undefined transition is the one
leading from s2 on ‘a’. The state reached by this transition has the same
output as states s0 and s2; T (bb, a) = 0. Therefore, the separating sequence
‘b’ is applied to identify the target state δM (s2, a). The output 1 distinguishes
the state from s2 so that the target state is assumed to be s0. Then, a
completely specified conjecture is formed as the observation tree is closed
for 0 extra states, see Figure 15.8. A new state was not revealed so that
the shortest adaptive separating sequence remains the same (bottom left of
Figure 15.8).

Algorithm 34 defines that the number l of considered extra states is incre-
mented by 1 if the OTree is closed for the current l. It means that transitions
leading from the next states will be verified next. The queue Unchecked is
now filled up with n0,a, n1,a, n2,a and n2,b in this order. Both transitions
from n0,a are observed (line 19 in Algorithm 34) but the successor on ‘a’ is
not identified (line 25 in Algorithm 34). Hence, the function H-identify
chooses the separating sequence ‘b’ to verify n0,aa to correspond to s0; output
query 14 is T (aa, b). H-applyAndCheck (Algorithm 36) then reveals a new
state s3 as the observed output 0 does not match the expected one. Note
that H-updateDomains first reduces φ(aa) to {s2} and then eliminates s0
from φ(a) that becomes empty and a new state is observed with a separating
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14 T (aa, b) = 0 =⇒ s3

15 T (b) = 1
16 T (baa, b) = 1
17 T (bba, a) = 0
18 T (b) = 0
19 T (bbb, a) = 0
20 T (b) = 0
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1
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s1
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s0, s1, s2

Figure 15.9: The next 7 output queries complete the 4-state DFA

sequence ‘ab’. As ‘ab’ does not separate s0 and s2, there is no observed adap-
tive distinguishing sequence. Both shortest adaptive separating sequences, ‘b’
and ‘ab’, thus need to be applied to identify a node in the worst case. The
sequences merged into one with the common prefix ↑ are shown bottom left in
Figure 15.9. Note that both sequences have the same Distinguishing score of
1
4 but ‘b’ is shorter and so it is preferable for the identification. The black box
is currently in n3,ab. Therefore, the function H-tryExtendQueriedPath
looks at n3,a and n3,ab whether their domains can be reduced by extending
the current path in the OTree. The domain φ(s̄3a) is {s2} so that it does not
need any further separating sequence. However, φ(s̄3ab) contains all states
but s1 and thus H-identify with n3,ab is called. The state relating to the
node is not known as the transition δM (s2, b) is not defined; φ(s̄2b) = {s0, s3}.
Hence, the preferred adaptive separating sequence is applied; output query
15 is T (b). Notice that the algorithm could be wiser here and apply ‘ab’
separating s0, s3 that are the expected states of n3,ab. After 1 is observed,
the domain φ(s̄3ab) is reduced to {s0, s3}. Then, the algorithm makes the
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21 T (baa, a) = 0
22 T (b) = 0
23 T (aa, a) = 0
24 T (a) = 0
25 T (b) = 0
26 T (aab, a) = 0
27 T (b) = 0
28 T (aaa, b) = 1

Output Queries
1
0

2
0

3
0

23
0

24
0

25
0

b

a

28
1

b

a

14
0

26
0

27
0

b

a

15
1

b

b

a

10
1

b

a

4
1

5
0

6
0

21
0

22
0

b

a

16
1

b

a

11
1

b

a

7
0

12
0

17
0

18
0

b

a

13
1

b

a

8
0

19
0

20
0

b

a

9
1

b

b

b

b

s0

s1

s2

s3

s4

s0start s3

s1 s2

s4
a

b a,ba
b

a

a

b
a

b

Figure 15.10: Theorem 8.12, condition 2. is used to eliminate possible extra
states

OTree closed for no extra state again by applying ‘b’ in n1,aa and ‘ab’ in
the other two unidentified successors. Figure 15.9 shows the observation
tree with the completely specified conjectured model after 20 output queries.
The observation tree is closed for 0 extra states and the conjectured model
matches the black box so the learning would stop if an equivalence query was
asked.

Next 14 output queries verify that there is not one extra state. Output
query 28 is particularly interesting as its purpose is not to reduce the domain
of a node. It follows lines 26–28 of Algorithm 34 that describe the second
condition of the H-condition (Theorem 8.12). If this condition was not
covered, for example, ‘b’ was not queried in n3,aa, then there would be a
5-state machine distinguishable from the 4-state conjecture. Figure 15.10
shows both the observation tree after 28 output queries and a possible 5-state
model of the black box if output query 28 is missing. The query completes
the separating sequence ‘ab’ that distinguishes nodes n3,a and n3,aa. Without
this sequence, both nodes can relate to the same extra state s4 although they
relate to different states as it is captured by their domains φ(s̄3a) = {s2} and
φ(s̄3aa) = {s3}.
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Figure 15.11: Observation tree closed for 1 extra state by the H-learner

The final observation tree that is closed for 1 extra state is shown in
Figure 15.11. The last 6 output queries verify target states of both transitions
from n3,b. The queries can be derived from the OTree in Figure 15.11 as the
nodes are labelled with the number of the related output query.

The H-learner asked 34 output queries T , applied 17 resets and queried
68 input symbols in total to learn the model of the black box. It provides a
guarantee that the model is correct or the black box has more than 5 states as
1 extra state was considered during the learning. Moreover, the conjectured
model was correct after 20 output queries (10 resets and 36 queried symbols)
when the completely specified 4-state DFA were constructed.
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15.4 SPY-learner

The SPY-learner is another implementation of the observation tree approach.
It is inspired by the SPY-method (Section 9.7) and it aims to satisfy the
SPY-condition (Theorem 8.13). It means that the convergence of sequences is
employed and a fixed set of harmonized state identifiers is used for verification
of transitions in the second phase of the observation tree approach.

The use of convergence of sequences enables the learner to derive a com-
pletely specified conjectured model faster in terms of the interaction with
the black box. The reason is that when a transition is defined by identifying
the target state, the last queried sequence u (that identified the target state)
can be often extended to verify another transition, such as the one that
leads from the target state and starts the separating suffix of u (used to
identify the target state). On the other hand, this comes with a price of more
difficult resolving of inconsistency as described in Section 15.2.2. However, it
is sufficient to make Φ([s̄ix]) singleton in order to identify the target state of
transition (si, x) in the first phase of the observation tree approach.

Harmonized state identifiers (HSI) are formed of the shortest separating
sequences captured in the observation tree. HSIs are extended when a new
state node nk,ε is revealed. For each state si the shortest separating sequence
of ni,ε and nk,ε is added to the HSIs of si and sk. HSIs are then used in
the second phase of the observation tree approach to construct requested
suffixes that are needed to be queried from particular CNs to verify the related
transitions. Requested suffixes depend on the number l of extra states and
are constructed like in the SPY-method.

The SPY-learner makes the observation tree closed for the increasing l
gradually. When all transitions are verified for l extra states, l is increased
by 1 and all sequences are considered to be convergent only with themselves
until their convergence is proven for the increased l. Unfortunately, it means
that the convergence of sequences is utilized only when a transition was just
verified and a particular requested suffix can extend the last queried sequence.
All other requested suffixes are queried from the related state nodes as they
are reached by the shortest access sequences. Hence, the other convergent
sequences are not used. The choice of the state nodes to extend them aims
to minimize the number of queried symbols. This is the difference from the
testing method that can extend any convergent sequence with zero cost in
terms of the length of access sequences.

The following sections describe the implementation of the SPY-learner with
an explanation on a running example.

15.4.1 Implementation

The implementation of the SPY-learner is proposed in Algorithms 40–48.
The observation tree approach is followed so that l specifies the number of
extra states that are currently considered, and nodeBB points to the node of
OTree that corresponds to the current state of the black box. Besides the
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observation tree T and the conjectured model M , the SPY-learner maintains
the convergent graph, requested suffixes if l > 0 and keeps track of unverified
transitions.

Algorithm 40 describes the main learning cycle of the SPY-learner. The
cycle is controlled by the boolean variable learnt that becomes false if the
stop condition is met, that is, the observation tree is closed for the given
maxExtraStates and there is no counterexample (or EQs are not allowed at
all), or the user is satisfied with the conjectured model M . Before the main
cycle starts, the convergent graph and domains are initialized in the function
SPY-generateRequestedSuffixes that is also called (line 25) when l was
just increased (line 16) and the learning structures are to be initialized as
l did not reach maxExtraStates. If there is an inconsistency between the
observation tree T and the conjectured model M , then it is resolved by
the function resolveInconsistency defined in Algorithm 33; the function
querySeqAndCheck in resolveInconsistency is implemented by SPY-
querySeqAndCheck. Otherwise, for each unverified transition, the target
state is either identified using SPY-identifyNextState if l = 0 (lines
10–11), or verified by a requested suffix (lines 12–14). For each transition
(sj , x) leading to sk, there are requested suffixes for both sj and sk. The
requested suffix for the origin state sj are prioritized (line 13). Note that
ni,u.state represents for each node the state of the conjectured model to which
the node corresponds, that is, ni,u.state = δ∗M (si, u). In the first phase of the
observation tree approach when l = 0, ni,u.state does not have to be set as
some transitions are not defined yet. The function SPY-getNodeToExtend
called on line 9 checks if the last queried sequence can be extended and in
some cases explained later, it can set ni,u to null.

The function SPY-generateRequestedSuffixes in Algorithm 41 de-
scribes how the requested suffixes are constructed for the given l. For 0 extra
states, HSIs are not known, hence, all transitions that are not covered by
the state cover S̄ are marked ‘unverified’. Moreover, the convergent graph
and domains are initialized (lines 2–5). In order to verify a transition (si, x)
that leads to sj , a set U of requested suffixes is generated for state sj as
U = X≤l ◦ HSIk where all sequences start in sj . A set of requested suf-
fixes for si is then x · U . As a reminder, the operation ◦ is a concatenation
that depends on the reached state, for example, U contains HSIj of state
sj , then it contains x′ · HSIk′ where sk′ = δM (sj , x

′), then it can contain
x′ · x′′ ·HSIk′′ where sk′′ = δ∗M (sj , x

′x′′) if l > 1, and so on. The function
SPY-generateRequestedSuffixes checks immediately whether all the
generated requested suffixes are already queried from the related state nodes.
If they are queried, the transition is verified but it is marked ‘confirmed’
because the corresponding convergent classes need to be merged which is
done in the function SPY-processIdentified. Otherwise, the transition is
marked ‘unverified’.

Algorithm 42 describes the function SPY-processIdentified that first
checks if there is a new state node revealed and if not, it merges convergent
nodes that were proven to be convergent. There are two merging functions:
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Algorithm 40: SPY-learner
input :A teacher
input :maxExtraStates
output :A conjectured model M

1 l← 0 // the number of extra states currently considered
2 initialize the OTree T with the root n0,ε (the initial state s0 of M)
3 SPY-generateRequestedSuffixes(l)
4 learnt ← false
5 while not learnt do
6 if T and M are inconsistent then
7 resolveInconsistency(T , M)
8 else if there is an unverified transition then
9 (ni,u, x)← SPY-getNodeToExtend(nodeBB)

10 if l = 0 and ni,u is not null then
11 SPY-identifyNextState(ni,u, x)
12 else if ni,u is not null then
13 w ← a requested suffix to verify transition (ni,u.state, x) such

that if there is no suffix for ni,u.state, then take one assigned
to sk = δ(ni,u.state, x) and consider nk,ε instead of ni,u

14 SPY-queryAndCheckEach(ni,u, w)
15 else
16 l← l + 1
17 if l > maxExtraStates then
18 if EQs are allowed then
19 if there is a counterexample w obtained on EQ then
20 l← l − 1
21 SPY-querySeqAndCheck(n0,ε, w)
22 continue

23 learnt ← true
24 else
25 SPY-generateRequestedSuffixes(l)
26 SPY-processIdentified()

27 if user is satisfied with M then learnt ← true
28 return the conjecture M
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Algorithm 41: SPY-generateRequestedSuffixes(l)
1 foreach transition (si, x) not covered by S̄ do
2 if l = 0 then
3 generate a part of convergent graph covering the subtree of ni,x

4 initialize Φ by φ for each node of the subtree
5 mark (si, x) unverified
6 else
7 requested suffixes to verify (si, x) such that sj = δ(si, x) are:

x ·X≤l ◦HSIk for si and X≤l ◦HSIk for sj

8 if all these are queried from ni,ε and nj,ε, respectively then
9 mark (si, x) confirmed

10 else
11 mark (si, x) unverified
12 remember those requested suffixes that were not queried

one for the case when l = 0 and one when l > 0. If l = 0, each identified
convergent node, that is, CN with a single RN in its domain Φ, is merged into
the corresponding reference node. This merging takes place in the convergent
graph that needs to remain deterministic and so the successor CNs on common
inputs are merged as well. In the end of the first phase of the observation
tree approach, the convergent graph looks like the conjectured model as it
contains just the RNs. If a CN [v] is to be merged in an RN [s̄k], then the
following is done.

(i) The inconsistency IV (wrong merge) is checked by [v], that is, [s̄k] must
be in Φ([v]).

(ii) Each node ni,u in [v] is assumed to correspond to sk, that is, ni,u.state
= sk.

(iii) Each CN [u] ∈ Φ([s̄k]) that is separated from [v] is removed from Φ([s̄k])
and [s̄k] is eliminated from Φ([u]).

(iv) The inconsistency III (empty CN domain) is checked by each CN consid-
ered in (iii).

(v) If the predecessor of [v] is an RN [s̄i] such that v = s̄ix, then the transition
(si, x) is marked as ‘verified’, is defined to lead to sk and is added to the
conjectured model M .

If a CN [v] is to be merged in another CN [u] such that both are not RNs,
then the domain of the merged CN is an intersection of Φ([v]) and Φ([u]).
The second merging function, when l > 0, is similar but the actual merging
does not take place. The convergent graph is not changed for l > 0. Instead,
each node of the observation tree possesses an attribute if it is already proven
to be in the related RN or not. If a CN [u] is to be ‘merged’ in an RN
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[s̄k], then all requested suffixes for sk that are queried from a node of [u] are
eliminated. Moreover, if all the requested suffixes related to a transition are
queried, the transition is marked ‘confirmed’ in order to be processed by this
merging function.

Algorithm 42: SPY-processIdentified()
1 if there is ni,u with empty domain φ(s̄iu) then
2 SPY-makeStateNode(ni,u)
3 else if l = 0 and M and T are consistent then
4 foreach CN [s̄iu] such that Φ([s̄iu]) = {[s̄j ]} do
5 merge [s̄iu] into [s̄j ] and then recursively their successors
6 - during merge: update Φ, check for inconsistency, mark ‘verified’

any transition that starts and ends in RNs - add it to M , and
each nv.state gets sk if [v] merged into the RN [s̄k]

7 else if M and T are consistent then
8 foreach confirmed transition (si, x) such that sj = δ(si, x) do
9 mark (si, x) verified

10 merge [s̄ix] into [s̄j ] and then recursively their successors
11 - during merge: eliminate requested suffixes queried from a node

just merged to an RN, mark ‘confirmed’ any transition that has
all requested suffixes queried

After the inconsistency I for a node ni,u is observed, that is, φ(s̄iu) is empty,
the learning structures are updated by the function SPY-makeStateNode
defined in Algorithm 43. It first checks whether ni,u is a child of a state
node. If not, another instance of the inconsistency I is revealed by querying
sequences that aim to reduce the domain φ of the parent ni,u′ of ni,u (lines
2–14). Figure 15.12 sketches how other inconsistency I is found. First, the
state sj corresponding to the parent ni,u′ is considered and its state node (SN)
nj,ε is extended with x where u = u′ · x. If the parent is not identified yet,
any state of its domain φ(s̄iu

′) is considered as sj . The function looks at nj,x

and its domain φ(s̄jx). As the domain of ni,u is empty, for each SN there is a
sequence separating the SN and ni,u. When such a separating sequence w is
queried from nj,x, it eliminates the corresponding state sk from φ(s̄jx) or sj

from φ(s̄iu
′), see Figure 15.12. If the latter case happens, either the domain

φ(s̄iu
′) can become empty and thus a new instance of the inconsistency I is

found, or ni,u′ was identified as sj (line 13 of Algorithm 43) and thus φ(s̄iu
′)

is inconsistent, or another sj of φ(s̄iu
′) is tried to be eliminated from the

domain. Note that ni,u′ .state is ‘null’ if the node is not identified. If nj,x

responds to all separating sequences w’s like ni,u, then φ(s̄jx) becomes empty
and a new instance of the inconsistency I is found as well.
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sk ∈ φ(s̄jx)
φ(s̄iu) = ∅

T (s̄iu,w) 6= T (s̄k, w) =⇒ query s̄jxw

=⇒ φ(s̄iu
′) or φ(s̄jx) reduced

Figure 15.12: Resolving inconsistency I if the parent of inconsistent node ni,u

is not a state node

Algorithm 43: SPY-makeStateNode(ni,u)
1 let ni,u′ be the parent of ni,u and u = u′ · x
2 if ni,u′ is not an SN, that is, u′ 6= ε then
3 if φ(s̄iu

′) is empty then return SPY-makeStateNode(ni,u′)
4 while φ(s̄iu

′) is not empty do
5 let sj be ni,u′ .state if it is set and it is in φ(s̄iu

′), otherwise let sj

be any state in φ(s̄iu
′)

6 SPY-querySeqAndCheck(nj,ε, x, false)
7 foreach sk ∈ φ(s̄jx) do
8 w ← separating sequence of ni,u and nk,ε

9 SPY-querySeqAndCheck(nj,x, w, false)
10 if sj /∈ φ(s̄iu

′) then break
11 if φ(s̄jx) or φ(s̄iu

′) is empty then
12 return SPY-makeStateNode(nj,x or ni,u′ respectively)
13 else if sj = ni,u′ .state then
14 return // inconsistent domain φ(s̄iu

′)

15 add a new state sk to the conjecture M ; ni,u = nk,ε

16 update HSIs with separating sequences queried from nk,ε

17 add sk to the domains of all nodes that are not separated from nk,ε

18 l← 0
19 SPY-generateRequestedSuffixes(l)
20 SPY-processIdentified()

Algorithm 43 continues on line 15 if ni,u is a child of an SN, that is, u
is an input x. Then, a new state node nk,ε is created in the place of ni,x.
It corresponds to the new state sk of the conjectured model. As was men-
tioned, separating sequences of nk,ε and other SNs form the harmonized
state identifier of sk and update HSIs of the other states. Domains φ are
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updated with sk such that the state is added to the domain of each node
nj,v that is consistent with nk,ε, that is, there is no separating sequence
of nj,v and nk,ε Before the convergent graph and domains Φ are initial-
ized by SPY-generateRequestedSuffixes and SPY-processIdentified,
the number l of extra states is reset to 0. Notice that the function SPY-
querySeqAndCheck is called on lines 6 and 9 with the third parameter set
to false.

The third parameter of the function SPY-querySeqAndCheck prevents
from a cyclic call of SPY-makeStateNode with the same node ni,u. Algo-
rithm 44 describes the function SPY-querySeqAndCheck. It queries all
symbols of the given sequence w one by one such that query (Algorithm 32)
is called only on symbols that are not already queried from the related node.
After the entire sequence is queried from the given node, ni,u points to the
reached leaf node of the observation tree. The observed response is analysed
by the function SPY-updateDomains that updates all domains that are
affected by the suffix of w which was just queried. If the processing of identi-
fied nodes is allowed (which is by default), then SPY-processIdentified is
called.

Algorithm 44: SPY-querySeqAndCheck(ni,u, w, fullCheck = true)
1 for j ← 1 to |w|; w = x1 · . . . · x|w| do
2 if s̄iuxj /∈ T then
3 query(ni,u, xj) and update [s̄iuxj ], Φ([s̄iuxj ]) accordingly
4 consider ni,uxj instead of ni,u

5 SPY-updateDomains(ni,u)
6 if fullCheck then SPY-processIdentified()

There is another way how to query a sequence from a particular node. It is
defined by the function SPY-queryAndCheckEach in Algorithm 45. The
difference from SPY-querySeqAndCheck is that SPY-queryAndCheck-
Each analyses the responses after the output to each input symbol is observed.
It means that SPY-queryAndCheckEach is more flexible in terms of
the minimization of the interaction with the black box. It stops querying
immediately after an inconsistency is observed due to the analysis of the
observed traces. It is used when a transition is to be identified or verified
and no inconsistency is observed. In contrast, SPY-querySeqAndCheck is
called when an observed inconsistency is to be resolved so that the response
to the entire sequence is more desirable than the inconsistencies revealed
by individual symbols. If a transition is to be verified, that is, l > 0, SPY-
queryAndCheckEach also checks whether some of requested suffixes were
queried (line 5 of Algorithm 45).

Both SPY-querySeqAndCheck and SPY-queryAndCheckEach call
the function SPY-updateDomains to analyse the observed responses. It is
defined in Algorithm 46. For the given leaf node nu, the function checks all
nodes nv along the path u in the order from nu to the root of the observation
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Algorithm 45: SPY-queryAndCheckEach(ni,u, w)
1 for j ← 1 to |w|; w = x1 · . . . · x|w| do
2 if s̄iuxj /∈ T then
3 query(ni,u, xj) and update [s̄iuxj ], Φ([s̄iuxj ]) accordingly
4 if l > 0 then
5 check suffixes of s̄iuxj if they are requested from the states

reached by the related prefixes; mark ‘confirmed’ any
transition that has all requested suffixes queried

6 SPY-updateDomains(ni,u)
7 SPY-processIdentified()
8 if an inconsistency is observed then return
9 consider ni,uxj instead of ni,u

tree. Let u = v ·w. If nv is an SN of si, then si is eliminated from the domains
φ of all nodes nv′ that were consistent with ni,ε but now are separated by
w. Moreover, if [v′] is in Φ([s̄i]), it is removed from the domain and [s̄i] is
eliminated from Φ([v′]). If nv is not an SN, then the domain φ(v) is reduced
such that every state si is removed from φ(v) if ni,ε was just separated from
nv by w. The domain Φ([v]) and the domains of RNs are updated in the
same way as in the case when nv is an SN (lines 6–8 of Algorithm 46). Note
that there cannot be an RN [s̄k] in Φ([v]) if sk is not in φ(v′) of a v′ ∈ [v].
After any domain is updated, it is checked for an inconsistency or whether
the related CN is identified in the case of Φ and l = 0. There are two
types of inconsistency with respect to φ and one type with respect to Φ, see
Section 15.2.2 for their description. A convergent node [v] is identified if
Φ([v]) is singleton.

Algorithm 46: SPY-updateDomains(nu)
1 foreach nv such that u = v · w do
2 if nv is an SN, that is, nv = ni,ε then
3 remove si from the domains of all nodes that are separated by w
4 else
5 remove from φ(v) all states which SNs are separated from nv by w
6 foreach [v′] ∈ Φ([v]) do
7 if nv and [v′] are separated by w then
8 remove [v′] from Φ([v]) and [v] from Φ([v′])

9 remember any node nv with empty or inconsistent domain φ(v), and
if l = 0, then any node nv with CN domain Φ([v]) of size less than 2

Algorithm 47 describes the function SPY-identifyNextState that is
called in the first phase of the observation tree approach to identify the target
state of a particular transition. It first makes sure that the transition is cap-
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tured in the observation tree (line 1) and then basically follows Section 15.2.1
in the choice of separating sequence w. If the target state is identified im-
mediately by its unique state output, that is, the domain Φ of the reached
node ni,ux is singleton, then the input of the transition is repeated (line 3).
Otherwise, an adaptive separating sequence would be chosen according to
Section 15.2.1. Nevertheless, that procedure is used only if the domain Φ
contains more than 2 RNs. It is because a separating sequence for the case of
|Φ([s̄iux])| = 2 can be chosen much more easily, that is, without calculating
the Distinguishing score. The shortest separating sequence is selected. In the
end, the chosen sequence w is queried using SPY-queryAndCheckEach.

Algorithm 47: SPY-identifyNextState(ni,u, x)
1 SPY-queryAndCheckEach(ni,u, x)
2 if ni,ux.state is set then
3 w ← x // attempt to reveal new information
4 else if Φ([s̄iux]) = {[s̄j ], [s̄k]} then
5 w ← the shortest separating sequence of nj,ε and nk,ε

6 else
7 w ← the shortest adaptive separating sequence that has the lowest

probability of not identifying RNs in Φ([s̄iux])
8 SPY-queryAndCheckEach(ni,ux, w)

The last part of the SPY-learner to describe is how it chooses which node
should be extended. It is specified by the function SPY-getNodeToExtend
in Algorithm 48. It is called in both phases of the observation tree approach
before a separating sequence to identify or verify a transition is chosen, in
particular, it is called from the main learning cycle in Algorithm 40. The
function receives the leaf node ni,u reached by the last queried sequence as
a parameter. It first finds the predecessor ni,u′ of ni,u that is the closest to
ni,u and is proven to correspond to ni,u′ .state. If ni,u′ is not equal to ni,u,
then a possible extension is checked with respect of the value of l. If l = 0,
then there could be an adaptive separating sequence reducing the domain
Φ([s̄iu

′x]) and starting with u′′ where u = u′xu′′. After such an adaptive
separating sequence is queried (line 7), SPY-getNodeToExtend returns
null to notify the main learning cycle in Algorithm 40 that no other sequence
is to be appended. It is similar in the case of l > 0 but requested suffixes
are checked instead of selecting an adaptive separating sequence. Moreover,
requested suffixes of the predecessors of ni,u′ are checked as well (lines 10–12).
A different extension of ni,u happens if the predecessor ni,u′ is ni,u, that is,
ni,u is proven to correspond to a state sk, and the following conditions hold.
There needs to be a transfer sequence v from sk such that v consists of verified
transitions and there is either an unverified transition from δ∗M (sk, v) or a
requested suffix for that reached state. In addition, v needs to be shorter
than the shortest access sequence of a state that has unverified outgoing
transition in order to be more efficient than resetting the black box and
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querying another sequence. If all this holds, v is queried and ni,uv returned
together with an input x that represents either the unverified transition or
the prefix of the requested suffix for δ∗M (sk, v). A separating sequence can be
thus chosen and appended to ni,uv (or ni,uvx) in the main learning cycle. Note
that if an inconsistency is observed in SPY-querySeqAndCheck and is not
resolved by SPY-makeStateNode, this information is propagated back to
the main learning cycle in Algorithm 40 immediately. This is also the case
when SPY-querySeqAndCheck is called in resolveInconsistency. If no
extension of ni,u happens in SPY-getNodeToExtend, the function chooses
a node and an input symbol x that should be extended next (lines 17–20 of
Algorithm 48). If l = 0, then the state node nj,ε is returned such that s̄j is
the shortest access sequence and there is unverified transition from sj . If
l > 0, the function calculates for each unverified transition (si′ , x) that leads
to a state sj′ , an estimate of the number of queried symbols spent on the
access sequences in order to verify the transition. The estimate is obtained as
the number of requested suffixes multiplied by the length of the related access
sequence s̄i′ or s̄j′ . The transition (si′ , x) that has the smallest estimate is
assumed to be verified with the least effort, therefore, the related state node
ni′,ε and x are returned.

The space complexity of the SPY-learner can be estimated by the size of
the observation tree T and the size of the convergent graph. The size of T
denoted by |T | was derived in Section 10.1 to be in O(n3pl+1). The size of the
convergent graph with the domains Φ is O(n4pl) as was derived in Section 11.1.
Hence, the worst case space complexity of the SPY-learner is O(n4pl +
n3pl+1). The SPY-learner spends most of the time by comparing the observed
traces in the functions SPY-updateDomains and SPY-processIdentified.
Although SPY-updateDomains deals with the domains Φ of convergent
nodes, its worst case running time is the same as for H-updateDomains,
that is, O(n2|T |). It is because of the assumption that there is not a common
sequence much longer than n that would not be a separating sequence of
the compared nodes. It means that either there is a separating sequence
of length in O(n) or the corresponding suffix is not queried from the node
with which nv is compared in H-updateDomains. As in the case of H-
updateDomains, SPY-updateDomains could be called |T | times. The
function SPY-processIdentified compares traces when a CN [v] is to be
merged in an RN [s̄k]. The size of the domain Φ of an RN is bounded by the
size of T and [v] can be compared with [s̄k] on all successors such that their
number is also bounded by |T |. Therefore, reducing of Φ([s̄k]) by [v] is done
in O(|T |2). Note that this estimate cannot be reached as the domain Φ of
an RN never contains all CNs, the CNs are not compared on all convergent
nodes, and the convergent graph is most of the time smaller than T . In the
worst case, each CN representing a single node of the OTree is merged in
an RN and this is done n times as the convergent graph is reset to be like
the OTree after a new state is revealed. It means that in total the domain
Φ of an RN is checked n · |T | times in SPY-processIdentified. Thus, the
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Algorithm 48: SPY-getNodeToExtend(ni,u)

1 let ni,u′ be the closest predecessor of ni,u such that ni,u′ .state is set
2 let sj be the state with the shortest access sequence s̄j such that there is

an unverified transition from sj

3 if u 6= u′ then
4 if l = 0 then
5 let u = u′ · x · u′′
6 if there is an adaptive separating sequence w of RNs in Φ([s̄iu

′x])
such that w starts with u′′ then

7 SPY-queryAndCheckEach(ni,u′x, w)
8 return (null, ↑)
9 else

10 if there is a requested suffix w for nv.state such that v is a prefix
of s̄iu

′, vv′ = s̄iu and w starts with v′ then
11 SPY-queryAndCheckEach(nv, w)
12 return (null, ↑)

13 else // the leaf is identified, let sk be ni,u.state
14 if there is a transfer sequence v of verified transitions from sk such

that |v| < |s̄j | and there is an unverified transition (δ∗M (sk, v), x) or
a requested suffix starting with x for state δ∗M (sk, v) then

15 SPY-querySeqAndCheck(ni,u, v)
16 return (ni,uv, x)

17 if l = 0 then return (nj,ε, x) where x is unverified from sj

18 foreach unverified transition (si′ , x) such that sj′ = δM (si′ , x) do
19 calculate its value as |s̄i′ | · ri′ + |s̄j′ | · rj′ where ri′ , rj′ are the numbers

of requested suffixes for si′ , sj′ to verify the transition (si′ , x)
20 return (ni′,ε, x) related to (si′ , x) with the minimal value

worst case time complexity of the SPY-learner is O(n2|T |2 + n|T |3) which is
O(n8p2l+2 + n10p3l+3).

15.4.2 Running Example

This section describes how the SPY-learner learns the deterministic finite
automaton defined in Figure 15.5. The setting is the same as for the H-learner
(Section 15.3.2), that is, learning with 1 extra state is considered and the
teacher provides output queries (OQ) so that the learner can query symbols
of a sequence one by one.

The learning starts with the reset of the black box and obtaining the state
output of the initial state; output query 1 is T (ε, ↑). The first symbol of
the input alphabet is then queried and as the reached state is immediately
identified as the initial state, the symbol repeated; output queries 2 and 3
are T (a). The conjectured model thus contains only the initial state s0 and
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1 T (ε, ↑) = 0
2 T (a) = 0
3 T (a) = 0
4 T (ε, b) = 1 =⇒ s1

5 T (b) = 0
6 T (b) = 0 =⇒ s2

Output Queries 1
0

2
0

3
0

a

a

4
1

5
0

6
0

b

b

b

s0

s1

s2

s0start

s1 s2

b

b

si HSIi

s0 ↑ b
s1 ↑
s2 ↑ b

Figure 15.13: The first 6 output queries reveal 3 states of the black box

its self-loop on input ‘a’. All three nodes of the observation tree, n0,ε, n0,a

and n0,aa, are assumed to be convergent. Hence, the leaf node n0,aa that
corresponds to the current state of the black box is considered as its own
closest identified predecessor ni,u′ in the function SPY-getNodeToExtend.
The branch on lines 13–16 of Algorithm 48 is thus processed. There is just one
unverified transition and that is (s0, b). As there is not a transfer sequence
v of verified transitions that would be shorter than the access sequence
of s0 which is 0, (n0,ε, b) is returned by SPY-getNodeToExtend. SPY-
identifyNextState then calls SPY-queryAndCheckEach so that the
black box is reset and ‘b’ is queried; output query 3 is T (ε, b). The output 1
makes the domain φ(b) empty and so SPY-makeStateNode is called from
SPY-processIdentified. As the parent of n0,b is a state node, lines 2–14
of Algorithm 43 are skipped. The new state is added to the conjectured
model as s1 and n0,b becomes the related state node n1,ε. The harmonized
state identifiers of both states contain only the separating sequence ↑. SPY-
processIdentified then merges n0,a into n0,ε because φ(a) contains just
s0 and so Φ([a]) = {n0,ε}. The transition (s0, a) is thus verified to lead
to s0. Both transitions from s1 are the only ones unverified. The learner
then returns back to the main cycle in Algorithm 40 (without finishing SPY-
identifyNextState). Note that this immediate return is done in any call
of SPY-queryAndCheckEach if an inconsistency or a new state is revealed
during its processing.

SPY-getNodeToExtend chooses to extend the current leaf node n1,ε

with the unverified symbol ‘b’; ‘b’ is preferable because it leads to n1,ε = nb.
Hence, SPY-identifyNextState calls SPY-queryAndCheckEach and
the output 0 identifies n1,b as s0. The small optimization feature described
in the end of Section 15.2.1 takes place here again as ‘b’ is then chosen (line
3 of Algorithm 47) to be queried once again; output query 6 is T (b). The
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output 0 does not match the expected 1 produced by s0 on ‘b’. It means that
the domain φ(bb) becomes empty because n0,ε and n1,b are now separated
by ‘b’ and so SPY-updateDomains eliminates s0 from the domain. SPY-
makeStateNode makes n1,b a new state node n2,ε, adds s2 to the conjectured
model and extends domains of ‘a’, ‘aa’, ‘bb’ and ‘bbb’ with s2. The current
observation tree, conjectured model and updated harmonized state identifiers
are shown along with the related output queries in Figure 15.13. No successor
of a state node is consistent with just one state node, therefore, all four
transitions that are not covered by the state cover {↑, b, bb} are unverified.

The variable nodeBB points to n2,b when SPY-getNodeToExtend is
called from the main learning cycle. As φ(bbb) = {s0, s2} and so n2,b is
not identified, n2,ε is considered as the closest identified predecessor in SPY-
getNodeToExtend and the branch on lines 4–8 of Algorithm 48 is processed.
There is an adaptive separating sequence ‘b’ that can reduce the domain
Φ([bbb]) that corresponds to φ(bbb) as [bbb] contains only the node n2,b. Hence,
‘b’ is queried from the leaf node n2,b (without resetting the black box). SPY-
getNodeToExtend returns (null, ↑) so that no other sequence is queried
before the function is called again in the next round of the main learning cycle.
The output 1 on ‘b’ identifies n2,b as s0, hence, n2,b is merged in [ε] in SPY-
processIdentified. As a consequence, the leaf node n2,bb is merged in [b]
which means that it is identified as s1. There is an unverified transition from
the initial state s0, therefore, SPY-getNodeToExtend returns (n0,ε, a).
The black box is reset in order to query the separating sequence ‘b’ of s0
and s2 that are consistent with the target state of (s0, a) represented by the
node n0,a; output query 8 is T (a, b). The transition is identified to lead to s0
as the response to ‘b’ is 1. The nodes n0,a and n0,aa are merged in [ε] and
the leaf node n0,ab is merged to the reference node of s1, that is, [b]. In the
next round of the main learning cycle, SPY-getNodeToExtend chooses
‘a’ to extend the current leaf node n0,ab because it is an unverified transition
from the corresponding state s1 and the shortest access sequence of a state
with an unverified transition is s̄1 = b. It means that it would require more
symbols to query before the transition could be tested and this way it can
be tested immediately; output query 9 is T (a). The separating sequence ‘b’
is then queried and the output 1 identifies the target state of (s1, a) as s0.
It is similar with the last unverified transition (s2, a). The access sequence
of s2 is ‘bb’ but s2 can be reached by the verified transition (s1, b) from
the current leaf node n0,abab that is identified as s1. According to line 15 of
Algorithm 48, ‘b’ is queried to reach a node that should correspond to s2;
output query 11 is T (b). The target state of the unverified transition responds
with 0, that is, T (a) = 0, so that the separating sequence ‘b’ is appended to
identify the state to correspond to s0. At this point, the observation tree is
closed for 0 extra states so that the conjectured model is completely specified.
Both structures are shown in Figure 15.14. The number l of extra states is
increased to 1 and the SPY-learner enters the second phase of the observation
tree approach. Figure 15.14 also captures the harmonized state identifiers
and all requested suffixes that are needed to verify the transitions that are not
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covered by the state cover S̄. The requested suffixes are based on the number l
of extra states and the HSIs as defines SPY-generateRequestedSuffixes
in Algorithm 41. For example, the transition (s2, b) leads to s0, therefore,
the requested suffixes for s0 contains HSI0 which is just ‘b’. As l = 1, it also
contains ‘a’ and ‘b’ extended with the HSI of the reached state, that is, s0
leads to itself on ‘a’ so that ‘ab’ is in the related requested suffixes and on ‘b’
it leads to s1 that is identified by the state output so that just ‘b’ is sufficient.
The requested suffixes for the origin state of a transition are the requested
suffixes for the target state prepended with the related input, that is, ‘bab’
and ‘bb’ are the requested suffixes for s2 with respect to the transition (s2, b).
Note that the stout symbol is not shown in the requested suffixes as the
state output is obtained on the input that reaches the particular state. The
requested suffixes that are already queried are strikeout in Figure 15.14.

The first requested suffix that is queried is ‘aab’ for s0; output query 14
is T (aa, b). The observed output 0 does not match the expected one that
would produce state δ∗M (s0, aab). Therefore, l is set to 0 after a new state
node n3,ε is created from n0,a and the conjectured model, the convergent
graph and domains are updated. The node n0,a was identified as s0, hence,
just HSI0 is updated with the separating sequence ‘ab’ of states s0 and s3.
The updated HSIs are shown in Figure 15.15. The following 9 output queries
identify the target states of unverified transitions and allow to construct
a completely specified conjectured model with 4 states as also captured in
Figure 15.15. First, output queries 15 and 16 defines the transition (s2, b)
as n3,a is identified as s2 because of its unique response to ‘↑b’. Then, the
black box is reset and transferred to the state corresponding to s1 in order
to verify the transition on ‘a’ by the separating sequence ‘ab’. Note that the
target state of (s1, a) could correspond to s0 or s3 because of the response to
‘b’ (output query 10). The last unverified transition is from s2 on ‘a’. As s2
can be reached from the current leaf node n1,aab only by single ‘b’ which is
less than the length of its access sequence ‘bb’, the SPY-learner queries ‘b’
and then identifies (s2, a) using ‘ab’; output queries 20–23. After 23 output
queries, 5 resets and 26 symbols queried in total, the conjectured model
matches the black box so that the learning would stop if an equivalence query
was asked. Nevertheless, the SPY-learner aims to provide the guarantee of 1
extra state. Hence, it generates requested suffixes for each state to verify the
transitions that are not covered by the state cover {ε, a, b, bb}. The requested
suffixes are shown on the bottom left of Figure 15.15; the strikeout ones are
already captured in the observation tree.

The second phase of the observation tree approach in the case of the SPY-
learner is captured in terms of the final observation tree in Figure 15.16. It
starts with SPY-getNodeToExtend that chooses which transition should
be verified first. The transitions are compared according to their values that
are calculated based on the number of requested suffixes and the length of
the access sequences of the related states (lines 18–20 of Algorithm 48). For
instance, (s1, a) has 2 requested suffixes for s1 that is reach by ‘b’ so that its
value is 1 · 2 = 2. The transition (s3, b) has the value of 3 because there are 2
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7 T (b) = 1
8 T (a, b) = 1
9 T (a) = 0
10 T (b) = 1
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12 T (a) = 0
13 T (b) = 1
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Figure 15.14: The next 7 output queries complete a 3-state conjectured model

requested suffixes for s3 and one requested suffix for the target state s1, that
is, 1 ·2 +1 ·1 = 3. The lowest value is 2 and the first processed transition with
this value is (s1, a), hence, it is selected to be verified first. Note that the
transition (s2, b) has also the value of 2 but its value is calculated after the one
for (s1, a). After both ‘aaab’ and ‘ab’ are queried from n1,ε (output queries
24–26), the values of unverified transitions are calculated again because some
requested queries could be captured in the observation tree after n1,a is
merged in [ε]. Unfortunately, this is not the case so that (s2, b) is chosen to be
verified next. It leads to s3 and thus after (s2, b) is verified by ‘bab’, the last
queried sequence is extended with ‘b’ to eliminate the requested suffix ‘abb’
for s3 (output queries 27–29). The transition (s3, b) is the next to be verified
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14 T (aa, b) = 0 =⇒ s3

15 T (a) = 0
16 T (b) = 0
17 T (b, a) = 0
18 T (a) = 0
19 T (b) = 1
20 T (b) = 0
21 T (a) = 0
22 T (a) = 0
23 T (b) = 0
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Figure 15.15: The next 10 output queries complete the 4-state DFA

as there are only two related requested suffixes, ‘baab’ and ‘bbb’, for s3. After
both are queried (output queries 30–33), not just (s3, b) is verified but also
(s2, a). It is because the requested suffixes, ‘aab’ and ‘ab’, are queried from
n1,aabb and n2,babb (nodes 20 and 11 in Figure 15.16) and these nodes are
merged to the RN of s2 after (s3, b) is verified. As the current leaf node n2,bbb

(node 33) is identified as s3, the requested suffix ‘aaab’ of the last unverified
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Figure 15.16: Observation tree closed for 1 extra state by the SPY-learner

transition (s3, a) can be immediately queried. The learning is finished by the
last requested suffix ‘aab’ queried from n2,ε.

The SPY-learner learns the 4-state DFA using 39 output queries, 11 resets
of the black box and 57 symbols queried in total and it provides a guarantee
that the model is correct or the black box has more than 5 states. The
conjectured model was completely specified and with 4 states just after 23
output queries, 5 resets and 26 queried symbols.
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15.5 S-learner

A new learning algorithm called the S-learner is proposed in this section
including two subsections that describe its implementation and explain how
it learns on a running example. The S-learner implements the observation
tree approach but instead of an adaptation of testing theory, it uses a testing
method directly in the second phase of the approach. The testing method
is the S-method (Chapter 11) and thus the S-learner aims to meet the
requirements of the S-condition (Theorem 8.14).

The S-learner is very similar to the SPY-learner as it utilizes the conver-
gence of sequences to construct a completely specified conjectured model
faster. However, it does not deal with requested suffixes or harmonized
state identifiers because the S-method can handle the second phase of the
observation tree approach. The S-method can extend the given observation
tree T (which is a testing tree in the testing terminology) such that it returns
test sequences that are not covered by T but together with T they form an
(n+l)-complete test suite for the given machineM with n states and the given
number l of extra states. Such additional test sequences are called requested
queries from the perspective of the S-learner. Note that the S-method can
plan and optimize which sequences are to be extended for different reasons
and so it saves some symbols and resets compared to the SPY-learner that
may extend a single sequence several times.

The way how the number l of extra states is handled is changed compared
to both the H- and SPY- learners. When a new state node is revealed, l is
reset to 0 which is the same for all the learners. However, after a completely
specified conjectured model is constructed, l is set to ES that represents the
maximal number of extra state that was considered so far. The reason is
that once it was considered ES extra states to reveal a new state node, it is
likely that this number will be needed to reveal another state. In addition,
a test suite for l + 1 extra states usually extends test sequences of a test
suite for l extra states, that is, an (n + l + 1)-complete test suite usually
includes an (n + l)-complete test suite. Therefore, if test sequences of the
(n + l + 1)-complete test suite are queried directly without querying test
sequences of the (n + l)-complete test suite before, then several resets of
the black box and many symbols are saved. Moreover, the S-method can
optimize (n+ l + 1)-complete test suite based on a smaller T that does not
contain (n+ l)-complete test suite, in a different way due to the convergence
of sequences. Why not consider the given number maxExtraStates of maximal
extra states as l directly? There are two reasons. First, the size of an
(n + l)-complete test suite grows exponentially in the number l so that an
(n+ l + 1)-complete test suite has roughly p-times more sequences than an
(n+ l)-complete test suite where p is the number of input symbols. Hence, the
learner could spend a lot of time querying longer sequences before it would
query a sequence that reveals an inconsistency even though this sequence
would be short and included in a test suite for a less number of extra states.
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Second, the user can provide the number maxExtraStates greater than it is
needed to reveal all states without an equivalence query.

The use of a testing method may seem like a combination of a standard
learning algorithm and a teacher that implements equivalence queries using a
testing method. However, the difference from the standard learning algorithms
was discussed in Section 15.1 and is summed up as follows. First, the S-
method creates a test suite as an extension of the observed traces. Second,
the S-learner has the responses to the test sequences that are queried before
an inconsistency is observed. Both differences usually do not hold in the
setting of a standard learning algorithm and EQ approximated using a testing
method.

15.5.1 Implementation

The S-learner is implemented in the same way as the SPY-learner. Its
implementation is proposed in Algorithms 49–53 with references to the
functions of the SPY-learner that are identical to the one of the S-learner. It
maintains the observation tree T , the conjectured modelM and the convergent
graph. The main learning cycle is a little changed as the S-learner handles
the second phase of the observation tree approach differently.

Algorithm 49 describes the main learning cycle that is controlled by the
boolean variable learnt. Before the learning starts, l, ES and the structures
are initialized and all transitions from the initial state s0 are marked ‘un-
verified’. The main learning cycle thus starts with verification of transitions
by identification of their target states (lines 9–11). After all transitions are
verified, l is increased (lines 15–16) and the S-method generates the requested
queries (lines 26–27) if l did not reach the given maxExtraStates. The re-
quested queries are then gradually queried from the longest one (line 13).
After all requested queries are queried, the observation tree is closed for l
extra states and l is increased again. If maxExtraStates is reached, then
the learning stops unless a counterexample is obtained. In such a case, the
counterexample is queried and processed (line 22) which results in an incon-
sistency. Any inconsistency observed other than I means a new state node
is processed by the function resolveInconsistency (Algorithm 33). The
calls of querySeqAndCheck in resolveInconsistency are implemented
by S-querySeqAndCheck. Note that an inconsistency can appear both
during the identification (lines 10–11) and during the verification (line 13).
In addition, the learning can be stopped by the user (line 28).

The function S-querySeqAndCheck is similar to its version in the SPY-
learner. The only difference is that the response to each input is compared
with the expected output if the function is called to query a requested query (a
call on line 13 of Algorithm 49). If the outputs differ, then the function stops
querying. The queried suffix is then analysed using SPY-updateDomains
defined in Algorithm 46. The function S-processIdentified is called in the
end if the call of S-querySeqAndCheck is not from S-makeStateNode
that sets the third argument to false; the argument fullCheck prevents from
an infinite loop by calling S-makeStateNode on the same node.
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Algorithm 49: S-learner
input :A teacher
input :maxExtraStates
output :A conjectured model M

1 l← 0 // the number of extra states currently considered
2 ES ← 1 // the maximal number of extra states considered so far
3 initialize the OTree T with the root n0,ε (the initial state s0 of M)
4 mark all transitions from s0 ‘unverified’
5 learnt ← false
6 while not learnt do
7 if T and M are inconsistent then
8 resolveInconsistency(T , M)
9 else if there is an unverified transition then // l = 0

10 (ni,u, x)← S-getNodeToExtend(nodeBB)
11 if ni,u is not null then S-identifyNextState(ni,u, x)
12 else if there is a requested query w then // l > 0
13 S-querySeqAndCheck(n0,ε, w) where w is the longest one
14 else
15 if l > 0 then ES ← ES + 1
16 l← ES
17 if l > maxExtraStates then
18 if EQs are allowed then
19 if there is a counterexample w obtained on EQ then
20 l← 0
21 if ES > 1 then ES ← ES − 1
22 S-querySeqAndCheck(n0,ε, w)
23 continue

24 learnt ← true
25 else
26 T ′ ← S-method(M , l, T )
27 get requested queries as T ′ \ T

28 if user is satisfied with M then learnt ← true
29 return the conjecture M

Algorithm 50: S-querySeqAndCheck(ni,u, w, fullCheck = true)
1 for j ← 1 to |w|; w = x1 · . . . · x|w| do
2 if s̄iuxj /∈ T then
3 query(ni,u, xj) and update [s̄iuxj ], Φ([s̄iuxj ]) accordingly
4 if w is a requested query and outputs differ then break
5 consider ni,uxj instead of ni,u

6 SPY-updateDomains(ni,u)
7 if fullCheck then S-processIdentified()
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Algorithm 51 specifies the function S-processIdentified that is like its

version in the SPY-learner. The only difference is that S-processIdentified
does not contain the case of l > 0 because it is not needed. The convergent
graph remains to look like the conjectured model when l is increased. The
S-learner does not need to keep track of which sequences are proven to be
convergent as it can guarantee that the observation tree is closed for l extra
states when all requested queries are queried. Until then, the requested
queries can be imagined as possible counterexamples so that if there is an
inconsistency, the exploration stops and the inconsistency is resolved.

Algorithm 51: S-processIdentified()
1 if there is ni,u with empty domain φ(s̄iu) then
2 S-makeStateNode(ni,u)
3 else if l = 0 and M and T are consistent then
4 foreach ni,u such that Φ([s̄iu]) = {[s̄j ]} do
5 merge [s̄iu] into [s̄j ] and then recursively their successors
6 - during merge: update Φ, check for inconsistency, mark ‘verified’

any transition that starts and ends in RNs - add it to M , and
each nv.state gets sk if [v] merged into the RN [s̄k]

The function S-makeStateNode is also similar to the one in the SPY-
learner but the S- version has less work to do as it does not have to update
harmonized state identifiers. At first, a suitable node ni,u is found such that
it needs to have empty domain and its parent is a state node (lines 2–14 of
Algorithm 52). Then, it is possible to make a new state node from ni,u. The
corresponding new state sk is added to the conjectured model (line 15) and
also to all domains φ of nodes that are consistent with the new state node nk,ε

(line 16). The convergent graph is initialized to copy the observation tree and
the transitions not covered by the state cover S̄ are marked ‘unverified’. The
target states of some of these transitions can already be identified. Hence,
S-processIdentified is called in the end. Note that the same initialization
of the convergent graph and domains Φ is also done in the SPY-learner but
inside the function SPY-generateRequestedSuffixes.

The function S-identifyNextState is the same as SPY-identifyNext-
State defined in Algorithm 47 but the calls of SPY-queryAndCheckEach
on lines 1 and 8 are replaced with the S- version. The S- version of SPY-
queryAndCheckEach is also defined by the SPY- version. There are two
changes to Algorithm 45 that describes SPY-queryAndCheckEach. The S-
version is not called when l > 0, therefore, lines 4 and 5 of Algorithm 45 can
be omitted. The call of SPY-processIdentified on line 7 is replaced by S-
processIdentified. It is similar in the case of S-getNodeToExtend that
is called only if l = 0. It means that Algorithm 53 describes the function S-
getNodeToExtend like SPY-getNodeToExtend (Algorithm 48) without
the parts relating to the case when l > 0. There is a small change. If the
given leaf node is identified as a state sk and there is an unverified transition
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Algorithm 52: S-makeStateNode(ni,u)
1 let ni,u′ be the parent of ni,u and u = u′ · x
2 if ni,u′ is not an SN, that is, u′ 6= ε then
3 if φ(s̄iu

′) is empty then return S-makeStateNode(ni,u′)
4 while φ(s̄iu

′) is not empty do
5 let sj be ni,u′ .state if it is set and it is in φ(s̄iu

′), otherwise let sj

be any state in φ(s̄iu
′)

6 S-querySeqAndCheck(nj,ε, x, false)
7 foreach sk ∈ φ(s̄jx) do
8 w ← separating sequence of ni,u and nk,ε

9 S-querySeqAndCheck(nj,x, w, false)
10 if sj /∈ φ(s̄iu

′) then break
11 if φ(s̄jx) or φ(s̄iu

′) is empty then
12 return S-makeStateNode(nj,x or ni,u′ respectively)
13 else if sj = ni,u′ .state then
14 return // inconsistent domain φ(s̄iu

′)

15 add a new state sk to the conjecture M ; ni,u = nk,ε

16 add sk to the domains of all nodes that are not separated from nk,ε

17 l← 0
18 foreach transition (sj , x) not covered by S̄ do
19 generate a part of convergent graph covering the subtree of nj,x

20 initialize Φ by φ for each node of the subtree
21 mark (sj , x) unverified
22 S-processIdentified()

from this state, then the node is immediately returned along with the input x
of the unverified transition (line 8). The other part of the function correspond
to the ones in SPY-getNodeToExtend. The function tries to extend the
leaf node ni,u with an adaptive separating sequence if ni,u is not identified as
a particular state. It tries to extend ni,u with a ‘short’ transfer sequence v
leading to a state with an unverified transition if the leaf node is identified.
Otherwise, it returns the state node that is reached by the shortest access
sequence and has an unverified transition leading from the corresponding
state.

There are several places where the S-learner can be optimized in terms
of the interaction with the black box. One such optimization is to analyse
requested queries and query first those that are more likely to reveal an
inconsistency. This could be done based on the conjectured model and the
observed traces.

The S-learner is almost the same as the SPY-learner. The worst case space
complexity is O(n4pl + n3pl+1) as derived in Section 15.4.1. Note that both
the observation tree and the convergent graph are shared with the S-method
so that there is no increase in the space complexity. The functions SPY-
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Algorithm 53: S-getNodeToExtend(ni,u)

1 let ni,u′ be the closest predecessor of ni,u such that ni,u′ .state is set
2 let sj be the state with the shortest access sequence s̄j such that there is

an unverified transition from sj

3 if u 6= u′ then
4 let u = u′ · x · u′′
5 if there is an adaptive separating sequence w of RNs in Φ([s̄iu

′x])
such that w starts with u′′ then

6 SPY-queryAndCheckEach(ni,u′x, w)
7 return (null, ↑)
8 else // the leaf is identified, let ni,u.state be sk

9 if there is an unverified transition (sk, x) then return (ni,u, x)
10 if there is a sequence v of verified transitions from sk such that

|v| < |s̄j | and there is an unverified transition (δ∗(sk, v), x) then
11 S-querySeqAndCheck(ni,u, v)
12 return (ni,uv, x)

13 return (nj,ε, x) where x is unverified from sj

updateDomains and S-processIdentified take most of the time. Their
time complexities were estimated in Section 15.4.1 to O(n2|T |) and O(|T |2),
respectively. SPY-updateDomains is called at most |T | times during the
learning and S-processIdentified at most n · |T | times. A lot of time is
also consumed by the S-method that is called at most n + l times, that is,
O(n) times. In the worst case, the S-method runs in O(n7p2l+2 + n9p2l+1)
as was derived in Section 11.1. In total, the worst case time complexity of
the S-learner is O(n2|T |2 + n|T |3 + n8p2l+2 + n10p2l+1) which is O(n8p2l+2 +
n10(p3l+3 + p2l+1)).

15.5.2 Running Example

This section provides an explanation how the S-learner learns on an example.
The black box is represented by the 4-state deterministic finite automaton
defined in Figure 15.5. The learning setting is the same as in Section 15.3.2
and Section 15.4.2 that describe the running example for the H-learner and the
SPY-learner, respectively. It means that at most 1 extra state is considered
during the learning and that the teacher is able to answer output queries.

The S-learner starts with obtaining the state output of the initial state
after it resets the black box; output query 1 is T (ε, ↑). Then, it tries the
first input by calling S-queryAndCheckEach from S-identifyNextState.
As the observed output does not differ from the one of the initial state s0
and so the reached state is identified as s0, the input ‘a’ is queried again
due to the small optimization described in the end of Section 15.2.1. The
response is also the same, hence, n0,aa is merged to [ε] that represents the
reference node of state s0. The function S-getNodeToExtend then chooses
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which node to extend by which input. As there is an unverified transition
on ‘b’ from s0, the function returns the current leaf node n0,aa and ‘b’ as
the input that should extend that node. This is due to the condition on
line 9 of Algorithm 53 that is one of few parts where the S-learner differs
from the SPY-learner. S-identifyNextState is called with n0,aa and ‘b’ as
arguments. The response to the output query T (b) is 0 like for the previous
queries, therefore, the transition (s0, b) is defined to lead back to s0. The
input ‘b’ is then queried again as S-identifyNextState defines and the
output does not match the expected one. Therefore, the inconsistency I is
revealed, see Section 15.2.2 for the types of inconsistency. S-makeStateNode
(Algorithm 52) is thus called such that n0,aabb is the inconsistent node ni,u

because φ(aabb) = ∅. Unfortunately, the parent of n0,aabb is not a state node
and so another instance of the inconsistency I needs to be revealed according
to lines 3–14 of Algorithm 52. The parent n0,aab is identified as s0, hence,
‘b’ as the input leading from n0,aab to n0,aabb is queried from n0,ε (line 6 of
Algorithm 52). Note that S-querySeqAndCheck is called with the third
argument set to false so that S-processIdentified is not called after the
input is queried. The response to ‘b’ is 1, hence, the domain φ(b) becomes
empty and S-makeStateNode calls itself on line 12. A new state node n1,ε is
created from n0,b. The state s1 is added to the conjectured model and to the
domain φ(aabb) of node n0,aabb that is the only one consistent with n1,ε. After
the convergent graph and domains Φ are initialized, S-processIdentified
is called and n0,aa is found to be a witness of the inconsistency I as φ(aa) is
empty.

1 T (ε, ↑) = 0
2 T (a) = 0
3 T (a) = 0
4 T (b) = 0
5 T (b) = 1

=⇒ a new state
6 T (ε, b) = 1

=⇒ s1

7 T (a, b) = 1
=⇒ s2 and s3

Output Queries 1
0

2
0

3
0

4
0

5
1

b

b

a

7
1

b

a

6
1

b

s0

s1s2

s3

s0start s2

s1 s3

a

b a

Figure 15.17: The first 7 output queries reveal all 4 states of the black box
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S-makeStateNode is called with n0,aa as the parameter. The parent n0,a

is not a state node but is identified as s0. Hence, ‘a’ is checked that it is
queried from n0,ε (line 6 of Algorithm 52) and the domain φ(a) is considered
in the cycle on lines 7–10. The separating sequence of n0,aa and n0,ε is
‘b’ and thus it is queried from n0,a. The output 1 eliminates s0 from φ(a)
not because of the sequence ‘b’ but because of the new separating sequence
‘ab’. S-makeStateNode calls itself again (line 12 of Algorithm 52) and
the new state s2 is created. Nevertheless, even the new state node n2,ε is
not consistent with n2,a so that the domain φ(aa) remains empty and thus
S-makeStateNode is called once again from S-processIdentified. This
time, the parent of the inconsistent node is a state node, hence, the node
is transformed into a state node and state s3 is added to the conjectured
model. The first 7 output queries that revealed all 4 states of the black box
is shown in Figure 15.17 along with the corresponding observation tree and
the current conjectured model. Note that s2 and s3 are swapped compared
to the learning by the H- and SPY- learners.

The S-learner needs further 14 output queries to construct a completely
specified conjectured model; these queries are captured in Figure 15.18. It
starts with an extension of the last queried sequence in order to define the
transition (s1, b); n2,b is identified as s1 due to its unique state output 1 and
‘b’ is chosen to be identified first because it is the symbol leading to n2,b.
The target state is identified as s3 because of the response to the separating
sequence ‘b’; output query 9 is T (b). S-getNodeToExtend then finds the
separating sequence ‘ab’ that reduces Φ([s̄3b]) and queries it (lines 4–7 of
Algorithm 53). As there is an unverified transition from s1 that has the access
sequence of length 1, the next output query resets the black box and queries
this transition on ‘a’; output query 12 is T (b, a). The separating sequences
‘b’ and ‘ab’ are then queried to identify the target state as s0; output queries
13–15. The S-learner is implemented to call S-getNodeToExtend only
after the chosen transition is verified, therefore, n1,ab (node 13 in Figure 15.18)
was not extended even though it was identified as s1 immediately due to
its unique state output. The last undefined transition is (s3, a) and it is
shorter to query ‘b’ from the current leaf node n1,aab (node 15) to reach a
node related to s3 than reset the black box and query the access sequence ‘aa’
of s3. The next output query is thus T (b) and ‘ab’ follows. As the response
to the separating sequence ‘b’ is 1, the target state of (s3, a) is either s0 or
s2. Therefore, the separating sequence ‘ab’ is queried from n3,a. Then, all
transitions are defined so that the conjectured model is completely specified
and the learning would stop if an equivalence query was asked. The S-learner
increases the number l of extra states to 1 and calls the S-method. The
S-method constructs a splitting tree based on the provided conjectured model
and then extends the observation tree to include an (n + l)-complete test
suite for the conjectured model with n states. It returns the test sequences
that are not captured by the given observation tree. Both the splitting tree
and the test sequences (called requested queries) are shown in Figure 15.18.
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8 T (b) = 0
9 T (b) = 0
10 T (a) = 0
11 T (b) = 0
12 T (b, a) = 0
13 T (b) = 1
14 T (ba, a) = 0
15 T (b) = 1
16 T (b) = 0
17 T (a) = 0
18 T (b) = 1
19 T (aa, a) = 0
20 T (a) = 0
21 T (b) = 0
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0
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0
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0
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0
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a
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1
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0
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a

b

b

b

a

6
1

12
0
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0

15
1

16
0

17
0

18
1

b

a

b

b

a

13
1

b

a

b

s0

s1s2

s3

s0start s2

s1 s3

a

b a,ba
b

a

b

↑

b

s3

0

ab

s2

0

s0

1

1

0

s1

1

Splitting Tree

aaab
abaab
babbb
baaabab
ababbaab

Requested Queries

Figure 15.18: The next 14 output queries complete the 4-state DFA

The requested queries are queried gradually from the longest one as it is
shown in the final observation tree in Figure 15.19. The S-learner learns
the correct model of the black box defined in Figure 15.5 using 36 output
queries, 11 resets of the black box and 55 symbols queried in total. Moreover,
a guarantee is provided. The model is either output-equivalent to the black
box or the black box has more than 5 states as 1 extra state was considered
during the learning. Note that the completely specified 4-state DFA was
learnt after 21 output queries, 6 resets and 26 queried symbols.
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Figure 15.19: Observation tree closed for 1 extra state by the S-learner

192



............................. 15.6. General Learning Framework

15.6 General Learning Framework

The observation pack was proposed in [BDGW96] as a unifying theoretical
framework for the standard active-learning algorithms. Nevertheless, it is not
general enough to cover the three new learners that were proposed in the
previous sections. Hence, this section proposes a General Learning Framework
(GLF) that unifies and abstracts all active-learning algorithms rather from
the implementation point of view.

The General Learning Framework consists of 4 steps called Choose, Identify,
Update and Check. Algorithm 54 describes the GLF in a pseudocode. There
are two loops, a main one and a nested one. Each algorithm needs to have
a stop condition, for example, that there is no counterexample obtained on
an equivalence query. The condition stops the main loop and is checked in
the step Check. In addition, the step can update inner variables like the
considered number of extra states in the case of the learner based on the
observation tree approach. The other three steps are included in the inner
loop. The loop identifies the target state of a selected transition. At first, the
step Choose selects a transition for identification. The step Identify identifies
the target state and then the learning structures are updated by the step
Update.

Algorithm 54: General Learning Framework
1 repeat
2 while there is an unverified transition do
3 t← choose an unverified transition (Choose)
4 identify the target state of t (Identify)
5 check and update unverified transitions (Update)

6 check the stop criterion and update unconfirmed transitions (Check)
7 until stop criterion is met

After the standard active-learning algorithms are introduced in the next
chapter, Section 16.8 describes how each learning algorithm specifies the
General Learning Framework so that it can be seen its unifying contribution.
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Chapter 16
Standard Learning Algorithms

All active-learning algorithms specify the General Learning Framework (Sec-
tion 15.6) and in fact they implement the observation tree approach but using
a different learning structure. They are restricted to the first phase of the
observation tree approach so that they do not consider extra states. All the
algorithms handle two sets of sequences but they differ in the way how they
store these sets and how they extend the sets during the learning. The first
set includes access sequences that lead to recognized states. Recognition, or
identification, is done by separating sequences covered in the second set.

This chapter describes active-learning algorithms for resettable machines.
The L* algorithm, the Discrimination tree algorithm, the Observation pack
algorithm, the TTT algorithm and the Quotient algorithm are ordered by
the time of their proposal and by their efficiency as well. The GoodSplit
algorithm is the sole representative of unsupervised learning as it does not
require a teacher. On the other hand, the learned model does not have to be
a correct representation of the black box. All algorithms are described on the
DFA defined in Figure 15.5 and their comparison on this reference machine
follows in the next chapter. Note that the stOut symbol ↑ is not counted
among queried symbols. The last section of this chapter summarizes the
algorithms and shows how they implement the General Learning Framework.

16.1 L* algorithm

The L* algorithm was proposed by Angluin in 1986 [Ang86] and it implements
the idea of finite automata identification by Gold [Gol72]. L* was adjusted to
learn Mealy machines in [Nie03] but was also adapted to learn deterministic
finite cover automata [Ipa12] and indirectly I/O automata using interface
automata [AV10]. The TL* algorithm is a direct extension of L* that learns
temporal guards on transitions after L* learns underlying state diagram
[LAD+11]. L* was generalized for nondeterministic machines, residual finite-
state automata in particular, in the NL* algorithm [BHKL09] and then even
for universal and alternating automata so the UL* and AL* algorithms were
proposed in [AEF15]. The most promising application of active learning and
testing seems to be adaptive model checking (AMC) [GPY02] and grey box
checking [EGPQ06] that are based on black box checking [PVY99]. Both
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. . . ... ...

· · · T (s̄i, ej) · · ·

... ... . . .
...

...
...

E

ej

S̄ si

S̄ ·X \ S̄

Figure 16.1: An observation table (S̄, E, T )

AMC and grey box checking use testing as a task separated from the learning,
hence, it duplicates a lot of queries that the learner already asked. AMC
employs L* to learn a model that is then passed to the model checker. If a
discrepancy is found, it is checked against the system and a counterexample
is returned to L* if the discrepancy is not confirmed in the system. On the
other hand, if all properties hold in the conjectured model, the W-method is
employed to test the model against the system. AMC thus provides a software
verification. Grey box checking uses knowledge about parts of the system that
are so-called white boxes because the definition of their behaviour is available
as source code for example. Another adaptive approach is called Active
Continuous Quality Control [WNS+13]. It extracts separating sequences
from the observation table used by the L* and the separating sequences
are employed when one learns the model of updated system. Experimental
evaluation of this so-called adaptive learning was reported in [HMvdP18]. Two
systems, ToDoMVC and SSH, were learnt by two versions of the L* algorithm
and the W-method (Section 9.3) was used to approximate equivalence queries.
In [AKT+14], several implementations of bounded retransmission protocol
were learnt by L* using automatic abstract refinement that allows one to
work with infinite value domains.

L* uses an observation table to capture the learning process. An observation
table (OT) is a triple (S̄, E, T ), where S̄ is a nonempty finite prefix-closed
set of access sequences, E is a nonempty finite suffix-closed set of separating
sequences and T is a finite function of pairs of input sequences. An OT
is commonly visualized as a table with rows labelled with sequences of
(S̄ ∪ (S̄ · X)), that is, access sequences and their successors, columns are
labelled with separating sequences of the set E and T describes the content
of cells. Figure 16.1 shows a sketch of OT. T is the output query defined in
Section 14.1. It takes two input sequences, the label u of the row and the
label v of the column, and maps them to the output of their concatenation;
the related cell contains T (u, v). The black box is reset before each output
query T .

An observation table is assumed to be closed and consistent before an EQ
is asked. Let row(s̄) denote the row of OT labelled with s̄, that is, row(s̄) = f
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where f(e) = T (s̄, e) for all e ∈ E. An OT is closed if for each u ∈ S̄ · X
there is s̄ ∈ S̄ such that row(u) = row(s̄). In other words, each next state
is identified as a state with the access sequence in S̄. An OT is consistent
if for all s̄i, s̄j ∈ S̄ such that row(s̄i) = row(s̄j) hold that for all x ∈ X
row(s̄i · x) = row(s̄j · x). In other words, equal states reached by different
access sequences need to lead to the same next states.

If an OT is closed and consistent, a conjectured modelM based on it can be
constructed. S̄ is taken as the set of states S and transitions are given by the
definition of a closed OT. Such a conjectured model is consistent with the OT,
that is, λ∗M (s, e) = T (s̄, e) ∀s ∈ S ∀e ∈ E, because of the suffix-closedness
property of the set E. Moreover, if all row(s̄) of s ∈ S are unique, then the
conjectured model is minimal because of the prefix-closedness property of the
set S̄.

The L* algorithm starts with S̄ = {ε}, that is, the access sequence of
the initial state, and E filled with ↑ if the black box has outputs by states
(Moore, DFA and DFSM) and with all input symbols if the black box has
outputs on transitions (Mealy, DFSM). In the main learning loop, the OT is
made consistent and closed. Then the algorithm creates a conjectured model
based on the OT and asks an EQ. If a counterexample is returned, the OT is
extended and the cycle is repeated. If the conjectured model is correct, the
learning stops.

Making the table consistent and closed follows the definitions of both
properties. If the OT is not consistent, then there are s̄i and s̄j in S̄ and
x ∈ X such that row(s̄i) = row(s̄j) and row(s̄i · x) 6= row(s̄j · x). Therefore,
there is e ∈ E such that T (s̄i · x, e) 6= T (s̄j · x, e). The inconsistency of s̄i and
s̄j is solved by adding x · e to E as this sequence distinguishes them. The OT
is thus enlarged by a column labelled with a new separating sequence each
time the OT is found to be inconsistent. If the OT is not closed, then there
is s̄ ∈ S̄ and x ∈ X such that row(s̄ · x) is different from each row with label
in S̄. Therefore, s̄ · x is added to S̄ as the access sequence of a new state.
The OT is extended by |X| rows that represent the next states of the new
state, that is, for all xi ∈ X a row with label of s̄ · x · xi is added.

There are several methods for processing a counterexample (CE) and
extending the OT appropriately. Only the original one proposed by Angluin
extends the set S̄ which is the way how the OT can become inconsistent.
Therefore, the L* algorithm does not have to check the consistency of OT after
other CE processing methods as they extend only the set E. Nevertheless,
some methods add only one sequence to E which could break the suffix-
closedness of the set. The conjectured model based on such OT thus does
not have to be minimal and its output can be different to the one stored
in the OT. This issue can be solved by the semantic suffix closedness that
adds additional separating sequences to E. A discussion on semantic suffix
closedness with a running example follows the description of CE processing
methods in the next sections.

It was proven that the L* algorithm learns in terms of membership queries
polynomially in the number of states and the length of the longest counterex-
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ample [Ang86]. The time complexity is similar because the analysis of the
observed responses is a comparison of rows of the OT. The size of OT depends
on the CE processing method but can be estimated such that it has at most
np rows and n columns where n is the number of states of the black box and
p is the number of inputs. The length of labels of rows and columns depend
on obtained counterexamples. Let w be the longest counterexample. Then,
there are at most np · n output queries of length n + |w| and the number
of comparisons of rows can be bounded by np · n · n · |w|. Therefore, the
worst case time complexity is also polynomial in the number of states and
the length of w.

16.1.1 AllPrefixes

The first method for processing a counterexample was proposed by Angluin
in the original paper of the L* algorithm [Ang86]. The method, called here
AllPrefixes, simply adds the CE and all its prefixes to S̄. This preserves
the prefix-closedness of the set S̄ but it may break consistency of the OT.
Therefore, consistency needs to be checked. As S̄ is a set, only sequences that
are not in S̄ are added. Besides the extension of the set S̄, the OT is also
enlarged accordingly; all sequences of S̄ ∪ S̄ ·X become labels of their unique
rows in the OT.

16.1.2 OneSuffix - binary search

Rivest & Shapire showed in [RS93] that the consistency of the OT does
not have to be checked if only the set E is extended by a counterexample.
Moreover, they proposed a method for such extension of E. Their method,
called here OneSuffix - binary search, finds a separating suffix v of the CE
(Theorem 14.1) using binary search. The suffix v then extends E and thus
reveals a new state. Unfortunately, a new conjectured model based on the
extended OT can still have an incorrect output on the CE as the suffix-
clossedness property of E was broken. Note that this issue does not restrict
the L* algorithm to learn a correct model but it asks more EQs than it is
necessary. Semantic suffix closedness (Section 16.1.7) can solve this issue by
adding a particular suffix of v.

16.1.3 AllSuffixesAfterLastState

Shahbaz proposed a method that does not break the suffix-closedness of E in
[Sha08]. His method, called here AllSuffixesAfterLastState, finds the longest
prefix u of the given counterexample w such that u is the label of a row of
the OT. Then the remaining suffix v of the CE, that is, w = u · v, extends
the set E with all its suffixes. Therefore, E remains suffix-closed and the
conjectured model will be minimal. As E is a set, only sequences that are
not in E are added.
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16.1.4 Suffix1by1

The method Suffix1by1 was proposed by Irfan in [Irf10, IOG10]. It chooses
the shortest suffix v of the given counterexample that stops the OT from being
closed and adds it with all of its suffixes to the set E. In particular, Suffix1by1
extends the OT with the suffixes of the CE. It starts with the shortest one that
is not in E. If the OT is not closed after a suffix extended it, no further (longer)
suffix is added. After the OT is made closed again, that is, S̄ is enlarged, the
given CE is checked again. Further suffixes are added by the same procedure
if the sequence is found to be a counterexample for the updated conjecture.
The method is an optimized version of the AllSuffixesAfterLastState method,
especially for long counterexamples generated by a random walk.

16.1.5 SuffixAfterLastState

A combination of ideas behind the OneSuffix - binary search method and the
AllSuffixesAfterLastState method is a new method called SuffixAfterLastState.
It adds only one suffix v of the given counterexample to the set E. The suffix
v is found such that the longest prefix u of the CE t included in S̄ ∪ S̄ ·X
is determined at first. Then, the longest suffix v is found in the remaining
sequence w (t = u ·w) such that v satisfies Theorem 14.1, that is, the response
on v of the black box differs from the output of the conjectured model. As
for the OneSuffix - binary search method, the suffix-closedness of E can be
broken so semantic suffix closedness (Section 16.1.7) should be checked.

16.1.6 Other Counterexample Processing Approaches

There are many other possible ways to split a counterexample and extend
the OT. Isberner & Steffen inspired by the OneSuffix - binary search method
proposed an abstract framework for counterexample analysis in [IS14]. They
showed 3 new searches for a separating suffix (Theorem 14.1). Particularly,
the exponential search, the partition search and the eager search. However,
any search technique can be employed to find such a suffix and thus used as
a part of the L* algorithm.

16.1.7 Semantic Suffix Closedness

Steffen et al. proposed the notion of semantic suffix closedness [SHM11] as
follows.
Definition 16.1. Let M be the conjectured model for the observation table
(S̄, E, T ). Then E is called semantically suffix closed for M , if for any
two states s1, s2 ∈ S and any decomposition v1 · v2 ∈ E of any suffix with
T (s̄1, v1 · v2) 6= T (s̄2, v1 · v2) there is also row(s′1) 6= row(s′2) where s′1, s′2 are
successors of s1, s2 in M on v1, that is, s′1 = δ∗(s1, v1) and s′2 = δ∗(s2, v1).

They claimed that every conjectured model constructed from an OT with
semantically suffix closed E is minimal. An algorithm for making the set
E semantically suffix closed was also proposed. It finds a new separating
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1 T (ε, ↑) = 0
2 T (a, ↑) = 0
3 T (b, ↑) = 1
4 T (ba, ↑) = 0
5 T (bb, ↑) = 0

Output Queries State S̄ ∪ S̄ ·X ↑
s0 ε 0
∼ s0 a 0
s1 b 1
∼ s0 ba 0
∼ s0 bb 0

s0start

s1

a

ba,b

Figure 16.2: Initial closed observation table and the related conjectured model

sequences so the conjectured modelM becomes minimal. Particularly, ifM is
not minimal, there are two undistinguished states s1, s2. Let e be the sequence
from E that distinguishes these two states, that is, T (s̄1, e) 6= T (s̄2, e). Then,
there needs to be a suffix d of e that will reveal a new state after d extends
the OT. This comes from the fact that some successors of s1, s2 are not
distinguished in the conjectured model. The proposed algorithm follows the
path on e from both states and when the states collapse in M , the remaining
part of e is the wanted suffix d.

Unfortunately, this does not work if there is a cycle among undistinguished
states and the separating sequence e follows such a cycle. The following
example captures this issue and also shows a conjectured model constructed
from the OT with semantically suffix closed set E that is not minimal.
Therefore, semantic suffix closedness is not a sufficient condition for the
conjectured model to be minimal.

Consider the 4-state DFA shown in Figure 15.5. It operates on the binary
alphabet {a, b} and only state D is accepting, that is, it responds with the
output of 1. At first, the L* algorithm asks output queries on the empty
sequence and inputs ‘a’ and ‘b’. Output query 3, T (b, ↑), reveals a new state
s1 (corresponding to state D) as the obtained output differs from the output
of the initial state s0. Therefore, two more output queries T are asked before
the OT becomes closed (and consistent). Figure 16.2 shows the current OT
and the conjectured model constructed from it.

Assume that the teacher returns the shortest counterexample, ‘aab’, to the
equivalence query asked with respect to the current conjectured model. Note
that a sequence in the format ‘(aa)ib’ for any i > 0 is a counterexample.

AllPrefixes adds sequences ‘a’, ‘aa’ and ‘aab’ to the set S̄. Then separating
sequences ‘b↑’ and ‘ab↑’ are formed during the procedure of making the OT
consistent. The OT is filled by output queries and is found closed. The
second EQ confirms that the conjecture is correct.

AllSuffixesAfterLastState extends the set E with suffixes ‘ab’ and ‘b’. The
procedure of making the OT closed then reveals states C and B of the black
box so the model is learnt.

Suffix1by1 adds first the suffix ‘b’ to the set E so state B of the black box
is revealed by the procedure of making the OT closed. Then, the given CE
‘aab’ is found to be a counterexample even for the 3-state conjectured model,
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State S̄ ∪ S̄ ·X ↑ ab
s0 ε 0 01
s2 a 0 00
s1 b 1 00
∼ s0 ba 0 01
∼ s0 bb 0 01
∼ s0 aa 0 01
∼ s1 ab 1 00

s0start s2

s1

a

b

a

b
a,b

Figure 16.3: Observation table extended with ‘ab’ and the updated model

therefore, the suffix ‘ab’ extends E. State C of the black box is observed and
the conjectured model is correct after the OT is made closed again.

Both OneSuffix - binary search and SuffixAfterLastState identify ‘ab’ as
the separating suffix of the CE. Figure 16.3 shows the closed OT after ‘ab’
extended the set E. State s2 corresponding to state C of the black box is
revealed and the conjectured model is updated. The set E = {↑, ab} of the
OT in Figure 16.3 is semantically suffix closed according to Definition 16.1.
Nevertheless, the conjectured model constructed from the OT (Figure 16.3)
is not minimal as states s0 and s2 are undistinguishable. It also means that
the conjectured model does not respond correctly to some sequences whose
observed outputs are stored in the OT. These wrong outputs are red in the
OT in Figure 16.3.

Another separating suffix is needed to resolve this inconsistency. The
procedure proposed in [SHM11] advices to find undistinguishable states and
then to follow the path of the separating sequence from E. The separating
sequence for states s0 and s2 is ‘ab’. However, the states collapse in the
conjectured model in the very end of the sequence so there is no nonempty
suffix. In this case, one could employ any other method to find a separating
suffix of ‘ab’, for example, Suffix1by1. The suffix ‘b’ needs to be added to
reveal the last state and make the conjectured model consistent with the
observation table.

In conclusion, the running example showed that the semantic suffix closed-
ness is not a sufficient condition for consistency of the conjectured model
with respect to the observation table. Nevertheless, undistinguishable states
in the conjectured model means that additional suffix needs to extend the set
E to make the conjectured model consistent with the observed traces. Some
output queries can be saved in general if the suffix-closedness of E is not a
requirement.

The L* algorithm learns the reference DFA using 2 equivalence queries.
Using AllPrefixes for processing a CE, it asks 33 output queries and 105
symbols in total. AllSuffixesAfterLastState needs only 28 output queries and
78 symbols to learn. The other three CE processing functions use 29 output
queries and 80 symbols (81 symbols in the case of Suffix1by1). The number
of resets is always the same as the number of output queries.
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16.2 Discrimination Tree algorithm

Kearns & Vazirani proposed a completely different approach to learning than
L* has in [KV94]. Their algorithm captures knowledge about the black box
in a decision tree. The tree was later called a discrimination tree (DT) and
so even the algorithm.

Each node of DT contains a sequence. Sequences of inner nodes form the
set E of separating sequences. Access sequences of the set S̄ label leaves
of the tree. Edges are labelled with outputs on the separating sequence of
the corresponding parent node. Labels of edges are given by output query
T (s̄, e) defined in Section 14.1. A DT is a decision tree and thus the following
property holds for each two access sequences s̄i and s̄j stored in the leaves of
DT. Let nij be the common ancestor of the leaves relating to s̄i and s̄j in
the DT that separates them, that is, T (s̄i, eij) 6= T (s̄j , eij) where eij is the
separating sequence stored in nij . Then both si and sj produce the same
output on each separating sequence that labels a predecessor of nij in the
DT. These outputs are labels of the related edges on the path from the root
to nij .

An important procedure of the Discrimination tree algorithm is sifting.
Sifting is an identification, or classification, of an input sequence using the
DT. A sequence u is to be identified with which access sequence (state) is
consistent. An output query T (u, e) is asked for each separating sequence e
of inner node on the path to the leaf with the consistent state. Particularly,
T (u, e) where e is the separating sequence of the root node is queried first.
The successor with the incoming edge labelled with the observed output is
chosen to be processed next. If it is a leaf, the consistent state is found.
If it is an inner node, another output query T (u, ei) is asked but with the
separating sequence ei of the inner node. This procedure is repeated until a
leaf is reached or there is no child under the observed output. If the output
does not match any label of edges from the inner node ni, a new state is
revealed and u is its access sequence. A new leaf node labelled with u is
appended to ni and the edge gets a label of the observed output.

The Discrimination tree algorithm starts with the root of the DT labelled
with the empty sequence that stands for the access sequence of the initial
state. If the black box has outputs by states, that is, Moore, DFA or DFSM,
the current root is appended under a new one with label of ↑. The output
of the initial state labels the edge from the root to the leaf with the empty
sequence.

A conjectured model is constructed from the DT such that the set S̄ of
access sequences represents the set of states S. The transition on x ∈ X
from the state s is formed in the way that the sequence s̄ · x is sifted through
the DT and the next state is identified. If no new state is revealed and a
complete conjectured model is created, then an EQ is asked.

Figure 16.4 shows the first completely specified conjectured model and
the related discrimination tree in the case of learning the reference DFA
(Figure 15.5). The first output query T (ε, ↑) asks for the state output of
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1 T (ε, ↑) = 0
2 T (a, ↑) = 0 (sift)
3 T (b, ↑) = 1 (sift) =⇒ s1

4 T (b, ↑) = 1 (state output)
5 T (ba, ↑) = 0 (sift)
6 T (bb, ↑) = 0 (sift)

Output Queries
↑

ε
s0

0

b
s1

1

s0start

s1

a

ba,b

Figure 16.4: Discrimination tree and the related conjectured model after the
first 6 output queries

the initial state s0. The output is also used to label the edge leading to the
leaf of DT relating to s0. The next two output queries identify next states
of s0. State D reached by ‘b’ in the black box is accepting in contrast with
the initial state, therefore, the third output query T (b, ↑) reveals a new state
s1 during the procedure of sifting. The implementation of the algorithm in
FSMlib (Appendix A) then requires an additional query to add a new state
to the conjectured model with a correct state output. Output queries 5 and
6 identify next states of s1 by sifting as Figure 16.4 shows.

The DT algorithm finds in the counterexample obtained in response to an
EQ the shortest prefix that is not consistent with the conjectured model. It
means that prefixes starting from the shortest one are sifted through the DT
and if the identified state does not match the state reached in the conjectured
model by following the path of the same prefix, then the prefix is chosen. Let
v = u · x be the shortest such prefix and x its last input. As state si reached
on v in the conjecture is different from state sj reached on v in the black box,
the previous states are also different. Therefore, the DT algorithm finds the
separating sequence eij of si and sj and prepends it with the last input of v so
a new separating sequence e = x · eij is created. The separating sequence eij

labels the common ancestor node in the DT of both leaves related to states si

and sj . A new inner node with the separating sequence e replaces the leaf of
the DT that relates to the state sk reached by the prefix u in the conjectured
model, that is, the one before the last input of v was applied. Another output
query is asked on the access sequence of sk and e which provides the label to
the edge leading to the leaf related to sk. The second leaf is created with the
access sequence u and an incoming edge labelled with T (u, e).

Figure 16.5 shows how the obtained counterexample ‘aab↑’ is processed
and how it updates the DT and the conjectured model M . According to M
in Figure 16.4, the output is 0 on the first two symbols as the conjectured
model stays in the initial state s0 on ‘a’. It corresponds to output queries 7
and 8 that provide the outputs of the black box. However, the outputs on the
next input (‘b’) of the CE are not equal so that the states reached on prefix
‘aa’ in M and the black box need to be different. Output query 9 identifies
the reached state as s0. It should be s1 according to the conjectured model.
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7 T (a, ↑) = 0 (sift)
8 T (aa, ↑) = 0 (sift)
9 T (aab, ↑) = 0 (sift) =⇒ s2

10 T (ε, b ↑) = 11 (update DT)
11 T (aa, b ↑) = 00 (update DT)
12 T (aa, ↑) = 0 (state output)
13 T (a, b ↑) = 11 (update conjecture)
14 T (ba, b ↑) = 11 (update conjecture)
15 T (bb, b ↑) = 00 (update conjecture)
16 T (aaa, ↑) = 0 (sift)
17 T (aaa, b ↑) = 11 (sift)
18 T (aab, ↑) = 0 (sift)
19 T (aab, b ↑) = 11 (sift)

Output Queries
↑

b↑

aa
s2

00

ε
s0

11

0

b
s1

1

s0start

s1 s2

a

b
a,b

a

b

Figure 16.5: Updated model and the DT after processing the first CE aab ↑

A new separating sequence is created from the last input ‘b’ concatenated
with the separating sequence of s0 and s1 which is ↑. The sequence ‘b↑’ labels
a new inner node that replaces the leaf related to s0 because s0 was reached
by the prefix ‘aa’ in M . The prefix ‘aa’ becomes the access sequence of the
new state s2. Next two output queries obtain the labels of edges from the
new inner node. The conjectured model is then updated. State s2 is added
with the output derived by output query 12 and next three queries update
transitions that led to s0. Note that the conjectured model is created from
scratch by the original algorithm, therefore, some output queries are saved
by updating only related transitions. Transitions from s2 are identified by
sifting (output queries 16–19).

The DT algorithm asks next equivalence query on the complete 3-state
conjecture and the counterexample ‘aab↑’ is returned again. The reason
can be seen in Figure 16.5. State s2 relates to the access sequence ‘aa’
stored in the DT, however, this is not reflected in the conjectured model as
δ∗M (s0, aa) = s0. In addition, the conjectured model is not consistent with
the DT because λ∗M (δ∗M (s0, aa), b ↑) = 11 that does not match the label 00 of
the corresponding edge in the DT.

The separating sequence ‘ab↑’ derived from the CE is sufficient to reveal
the last state and finish the learning. The Discrimination tree algorithm asks
3 equivalence queries, 32 output queries and 76 symbols in total. The number
of resets is equal to the number of output queries.
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16.3 Observation Pack algorithm

The Observation pack algorithm combines the Discrimination tree algorithm
and the L* algorithm. It was proposed by Howar in [How12]. The name
of the algorithm refers to the theoretical notion of observation pack (OP)
proposed by Balcazar et al. in [BDGW96] but the idea of the algorithm does
not follow the idea of observation pack.

The structure for learning is a discrimination tree (DT) with component
tables in leaves. A component table (CT) looks like an observation table (see
Section 16.1) but all row labels relate to a single state of the conjectured model.
Formally, a component table CTi is a quadruple (Ui, s̄i, Ei, T ), where Ui is
a finite set of input sequences labelling rows, s̄i ∈ Ui is the access sequence
of state si, Ei is a finite set of separating sequences labelling columns, and
output query T defines outputs stored in cells for all u ∈ Ui and all e ∈ Ei.
A component table CTi is closed if the content of all rows are equal to
the row labelled with s̄i, that is, for all u ∈ Ui and for all e ∈ Ei holds
T (u, e) = T (s̄i, e). Component tables were originally called components,
however, a new name is introduced as component tables do not match the
notion of components of the observation pack in [BDGW96]. In contrast to a
component of the observation pack that groups sequences with the same prefix,
a closed component table groups all observed sequences leading to a consistent
state. States are consistent if they respond equally to all separating sequences.
The purpose of component tables is to eliminate repeated output queries
in the Discrimination tree algorithm and reduce the number of equivalence
queries.

The learning starts with the component table CT0 relating to the initial
state. The set E0 of separating sequences is initialized with all input symbols.
Moreover, if the black box has outputs by states, then E0 also contains the
input ↑ and CT0 is appended to the root of the discrimination tree labelled
with ↑. Otherwise, CT0 is the root of DT. Figure 16.6 shows the initialization
for the 4-state DFA defined in Figure 15.5. Transitions in the conjectured
model are assumed to lead back to the initial state that is the only state
initially.

1 T (ε, a) = 0
2 T (ε, b) = 1
3 T (ε, ↑) = 0

Output Queries
↑

CT0 a b ↑
ε 0 1 0

0

s0start a,b

Figure 16.6: The first 3 output queries initialize CT0 and the DT

A complete conjectured model is constructed if all transitions are defined
and all component tables are closed. Then an equivalence query is asked.
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4 T (a, ↑) = 0 (sift)
5 T (a, a) = 0
6 T (a, b) = 1
7 T (a, ↑) = 0
8 T (b, ↑) = 1 (sift) =⇒ s1

9 T (b, ↑) = 1 (state output)
10 T (b, a) = 0
11 T (b, b) = 0
12 T (b, ↑) = 1

Output Queries
↑

CT0 a b ↑
ε 0 1 0
a 0 1 0

0

CT1 a b ↑
b 0 0 1

1

s0start

s1

a

b

Figure 16.7: Next 9 output queries reveal state s1

The target state of a transition is determined by sifting through the
discrimination tree, see Section 16.2 for the notion of sifting. In the running
example, T (a, ↑) and T (b, ↑) are asked to identify the next states of the
initial state on ‘a’ and ‘b’ respectively. When a leaf of the DT is reached
so that a related component table CTi is known, a new row labelled with
the sifted sequence is added and filled with corresponding output queries
T . Identification of both transitions from the initial state of the reference
machine is captured in Figure 16.7. In addition, state s1 (D in Figure 15.5)
is revealed as its state output differs from the output of the initial state.
Therefore, a component table CT1 is created with one row labelled with the
access sequence of s1. The set E1 of separating sequences is equal to E0.
Generally, the initialization of Ei depends on the CE processing approach
that is discussed later.

There are two ways to reveal a new state: sifting and unclosed component
table. The former one revealed state s1 as there was not a suitable successor
in the discrimination tree. State s2 is observed by the latter approach.
Figure 16.8 shows the identification of transitions from s1 on both inputs.
Both target states of the transitions seem to be consistent with s0 after sifting
(output query 13 and 17). However, when the row of CT0 is filled in for ‘bb’,
CT0 becomes unclosed. Note that ‘b’ is the access sequence of s1 so ‘bb’
covers the transition on ‘b’ from s1. The difference is observed in the column
labelled with ‘b’ (output query 19). It means that a new state s2 is revealed
as the reached state differs from s0 and so CT0 is split to become closed again.
The DT is updated such that the separating sequence ‘b’ replaces the leaf
with CT0 and both CT0 and CT2 are successors of the new inner node. The
separated component table CT2 contains only the row labelled with ‘bb’. The
updated DT with the consistent conjectured model is shown in Figure 16.8.

The conjectured model with 3 states is completely specified after 31 output
queries and an equivalence query can be asked. The counterexample (CE)
‘aab↑’ is obtained. The Observation pack algorithm is proposed with three CE

206



..............................16.3. Observation Pack algorithm

13 T (ba, ↑) = 0 (sift)

14 T (ba, a) = 0

15 T (ba, b) = 1

16 T (ba, ↑) = 0

17 T (bb, ↑) = 0 (sift)

18 T (bb, a) = 0

19 T (bb, b) = 0 =⇒ s2

20 T (bb, ↑) = 0

21 T (bb, ↑) = 0 (state output)

Output Queries
↑

b

CT2 a b ↑
bb 0 0 0

0

CT0 a b ↑
ε 0 1 0
a 0 1 0
ba 0 1 0

1

0

CT1 a b ↑
b 0 0 1

1

s0start

s1 s2

a

ba

b

Figure 16.8: Next 9 output queries reveal state s2

processing functions: AllGlobally, OneGlobally and OneLocally. Depending
on the chosen function, component tables are extended with a suffix/suffixes
of the given CE. AllGlobally adds all suffixes (that are not present) of the CE
to all component tables, therefore, it is similar to AllSuffixesAfterLastState
(Section 16.1.3) of the L* algorithm. OneGlobally and OneLocally find the first
(longest) separating suffix v of the CE as SuffixAfterLastState (Section 16.1.5)
does. The difference between the two is the choice of component tables
that are extended by the chosen suffix. OneGlobally adds the suffix to
all component tables which corresponds to SuffixAfterLastState in the L*
algorithm, OneLocally adds the suffix v only to CTi where si = δ∗M (s0, u)
and the obtained CE is u · v. Note that AllGlobally does not need additional
output queries to process a counterexample. In the case of the running
example, OneGlobally and OneLocally ask two output queries T to find the
distinguishing suffix ‘ab↑’ of the given CE ‘aab↑’. OneLocally adds the suffix
to CT0 as the transition from s0 on ‘a’ leads back to the initial state.

All component tables extended by separating suffixes are filled in by output
queries and some tables become unclosed. Figure 16.9 shows the case of
the running example. The state reached by ‘a’ responds to ‘ab↑’ with 000
that differs from the output of the initial state s0. Therefore, a new state s3
is revealed and CT3 is separated from CT0. The separating sequence ‘ab↑’
updates the DT as Figure 16.9 shows.

Initialization of Ei depends on how a new state si is revealed and on the
CE processing function. If a new state is observed during the procedure of
sifting and OneLocally is used to process a CE, then Ei is initialized with
all input symbols and ↑ in the case of state outputs. If a component table
CTj is found unclosed and CTi is separated from CTj , then Ei contains all
sequences of Ej . Otherwise, that is, sifting reveals a new state and AllGlobally
or OneGlobally is used, all sets of separating sequences are the same so Ei

gets all sequences of E0.
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CT0 . . . ab↑
ε . . . 011
a . . . 000
...

...
...

=⇒ s3

↑

b

CT2 a b ↑
bb 0 0 0

0

ab↑

CT3 a b ↑ ab↑
a 0 1 0 000

bba 0 1 0 000
bbb 0 1 0 000

000

CT0 a b ↑ ab↑
ε 0 1 0 011
ba 0 1 0 011

011

1

0

CT1 a b ↑
b 0 0 1

1

s0start s3

s1 s2

a

b a,ba

b

Figure 16.9: State s3 revealed by the separating suffix ‘ab↑’ of CE ‘aab↑’

Figure 16.9 shows the DT and the conjectured model after s3 was revealed.
The algorithm asks further output queries to identify target states of transi-
tions from s3 and then the conjectured model is correct which is proven by
an equivalence query. In total, the Observation pack algorithm asks 2 EQs to
learn the reference DFA (Figure 15.5). The numbers of output queries T and
queried symbols differ for each CE processing function. The number of resets
equals to the number of output queries. Using the AllGlobally function, 68
OQs are asked and 199 symbols are queried in total. OneGlobally asks 52
OQs and 136 symbols. OneLocally has the best results, with only 47 OQs
and 120 queried symbols. Nevertheless, notice in Figure 16.7 and Figure 16.8
that some output queries are repeated.

16.4 TTT algorithm

The TTT algorithm improves the Discrimination tree algorithm. It was
proposed by Isberner et al. in [IHS14]. The name of the algorithm comes
from the use of three tree-like structures for learning: a spanning tree, a
discrimination tree and a discriminator trie.

A discrimination tree (DT) is described in Section 16.2. On the one hand,
the leaves of DT contain access sequences of states of the conjectured model.
The spanning tree ensures that the set S̄ of these access sequences is prefix-
closed. On the other hand, the inner nodes of DT include separating sequences.
The discriminator trie helps to make the set E of all separating sequences
suffix-closed. If S̄ is prefix-closed and E is suffix-closed, then the conjectured
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model is consistent with such DT; this also holds for the L* algorithm, see
Section 16.1.

The difference from the DT algorithm is the processing of a counterexample.
Therefore, the learning is the same up to the first equivalence query. Initial-
ization and identification of transitions by sifting is described in Section 16.2.
In the case of the reference DFA (Figure 15.5), Figure 16.4 shows the first
output queries with the related DT and the consistent conjectured model.

An obtained counterexample is split to a prefix u, an input x, and a
suffix v according to Theorem 14.1. Let su be the state reached by u in the
conjectured model M , that is, su = δ∗M (s0, u). Then the next state of su on x
is observed to be a new state as it is distinguished from the current next state
δM (su, x) by the separating sequence v. The original paper does not propose
the way how the decomposition is derived. A function similar to OneSuffix -
binary search (Section 16.1.2) is thus employed. The access sequence of the
new state is formed from the access sequence of su appended with x instead of
taking u · x directly. This ensures the prefix-closedness of all access sequences
that are stored in the leaves of the DT and the spanning tree. The suffix v
is used as a temporary discriminator that labels the new inner node of the
DT. A discriminator is another name for a separating sequence introduced
by the authors of TTT. The new inner node replaces the leaf related to
si = δM (su, x), the leaf is shifted under the new inner node and the second
leaf is created for the new state. The conjectured model is then updated
accordingly. All transitions leading to si are confirmed by sifting through the
new subtree, that is, an output query with the separating sequence v is asked
for each transition. Sifting then also identifies transitions from the new state.

Figure 16.10 shows processing the counterexample ‘aab’ obtained for the
2-state conjecture depicted in Figure 16.4. The entire CE is first queried to
obtain the correct response on it (output query 7). Then the CE is split into
halves, that is, a prefix (‘a’) and a suffix (‘ab’) of about the same length. The
access sequence of state reached by the prefix is used instead of the prefix
in the next output query on the suffix. Output query 8 is thus T (ε, ab) as
δM (s0, a) = s0 and ε is the access sequence of s0. The output differs from
the response of the black box on the entire CE. The CE is decomposed into
the prefix u (ε), the input symbol x (‘a’) and the suffix v (‘ab’). Note that
the processing function would check a longer suffix if the prefix u · x was not
only one symbol so it was possible to split it and consider a longer suffix.
The new state s2 separated by ‘ab’ from the initial state s0 gets ‘a’ as the
unique access sequence because it is reached by ‘a’ from s0 that has the access
sequence ε. If the CE was ‘aaaab’ and its decomposition 〈aa, a, ab〉, then the
access sequence of the new state would still be ‘a’ as δ∗M (s0, aa) = s0.

The DT is updated in the described way. The separating sequence ‘ab’
labels the new inner node that has two leaves as successors. One leaf relates
to the initial state and the second to the new state s2. All transitions leading
to s0 (that was split) are updated in the conjectured model (output queries
10 and 11) and transitions from s2 are identified by sifting (output queries
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7 T (ε, aab) = 000

8 T (ε, ab) = 01 =⇒ s2

9 T (a, ↑) = 0 (state output)

10 T (ba, ab) = 01 (update model)

11 T (bb, ab) = 01 (update model)

12 T (aa, ↑) = 0 (sift)

13 T (aa, ab) = 01 (sift)

14 T (ab, ↑) = 1 (sift)

Output Queries

↑

ab

a
s2

00

ε
s0

01

0

b
s1

1

s0start s2

s1

a

b

a

b
a,b

Figure 16.10: Update of the DT and the model after state s2 is revealed

12–14). The updated discrimination tree and the conjectured model are
shown in Figure 16.10.

The main improvements over the DT algorithm are a check of the consis-
tency between the conjectured model and the DT, and a refinement of the
DT according to the discriminator trie.

All outputs labelling edges of the DT are checked against the output
function of the conjectured model during the consistency check. It means
that for each state si and each edge e of the DT on the path from the root to
the leaf related to si such that z labels e and v is the separating sequence
of node where e starts, λ∗M (si, v) is checked if it equals to z. If not, the
conjectured model is not consistent with the DT and the access sequence of
such si extended with v is used as a new counterexample. This is captured
in Figure 16.10 as λ∗M (s2, ab) = 01 but the output should be 00 according to
the current DT. Therefore, the counterexample ‘aab’ is employed again. The
suffix ‘b’ is identified as a new separating sequence and the last state s3 is
revealed, see Figure 16.11. As the DT is again updated in place of the leaf
relating to s0, both transitions leading to the initial state are queried with
the new separating suffix ‘b’ (output queries 17 and 18). Transitions from s2
are then identified by sifting through the updated DT (output queries 19–22).

The last three output queries are used in the process of refinement of
the Discrimination Tree. Each new separating sequence is added to the DT
as a temporary discriminator (blue dashed inner node in the figures). All
discriminators need to be as short as possible to reduce the number of queried
symbols during sifting. Moreover, for each discriminator w = x · v such that
w separates states si and sj there is a sequence v separating the next states
δM (si, x) and δM (sj , x). This holds for each complete minimal machine. The
algorithm tries to shorten each new discriminator such that the updated
discriminator is formed from a used separating sequence prepended with an
input symbol. Used separating sequences are stored in the discriminator trie.
Initially, it contains only ε in the case of Mealy machine or ↑ if the black box
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15 T (ε, b) = 1 =⇒ s3

16 T (aa, ↑) = 0 (state output)

17 T (ba, b) = 1 (update model)

18 T (bb, b) = 0 (update model)

19 T (aaa, ↑) = 0 (sift)

20 T (aaa, ab) = 00 (sift)

21 T (aab, ↑) = 0 (sift)

22 T (aab, ab) = 00 (sift)

23 T (a, b) = 1 (finalization)

24 T (aaa, b) = 1 (finalization)

25 T (aab, b) = 1 (finalization)

Output Queries
↑

ab

a
s2

00

b

aa
s3

0

ε
s0

1

01

0

b
s1

1

=⇒

↑

b

aa
s3

0

ab

a
s2

00

ε
s0

01

1

0

b
s1

1

Figure 16.11: The inconsistency reveals state s3 and the DT is then finalized

has outputs by states. If the algorithm is unable to find a suitable shorter
discriminator, the new discriminator remains temporary. The reason is the
inconsistency of the conjectured model and the DT. This is the case of the
sequence ‘ab’ separating states s0 and s2 in the running example. Its inner
node of the DT shown in Figure 16.10 remains temporary until the consistency
check finds a counterexample and the DT is updated as Figure 16.11 shows.

There can be several temporary discriminators. The algorithm looks gradu-
ally at the roots of temporary subtrees, that is, the temporary discriminators
whose parents are not temporary. If there is a suitable discriminator that sep-
arates some of the states in the temporary subtree, the shortest discriminator
replaces the one in the root of the subtree. The chosen discriminator is added
to the discriminator trie so it becomes ‘used’. A suitable discriminator means
that all used separating sequences remain suffix-closed if the discriminator
is added to them. After a shorter discriminator w is chosen to replace the
temporary one in the inner node ni, the subtree is refined according to the
outputs of related states on the chosen separating sequence w. If several
states in the subtree have the same output on w, then the discriminator of
their common ancestor labels a new successor of ni. This successor becomes
the root of a subtree in which all these states are distinguished. As some
state-relating leaves change their position in the DT, additional output queries
are required. Particularly, Figure 16.11 shows the first transformation of the
DT. The algorithm first looks at the first child of the root. States in the
subtree are s2, s3 and s0. They are distinguished by ‘b’ and as ‘b↑’ is ‘b’
for DFA so the used separating sequences remain suffix-closed if ‘b’ replaces
‘ab’. State s2 was not identified by the separating sequence ‘b’, therefore,
all transitions leading to it need to be queried with the suffix ‘b’ (output
queries 23–25). This verifies transitions according to the updated DT shown
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on the right in Figure 16.11. Finally, the temporary discriminator ‘ab’ is
found suitable to be added to the discriminator trie. The 4-state conjectured
model is consistent with the DT so the second (and the last) equivalence
query is asked. The consistency is checked after the refinement stops when
no temporary discriminator can be replaced or all discriminators are in the
discriminator trie.

The proposal of the TTT algorithm is not clear in some aspects. Therefore,
some changes and specifications were done, such as the choice of the CE
decomposition function or the update of the conjectured model after a change
of the DT. The reference machine (Figure 15.5) is learnt using 2 EQs, 25
output queries, 25 resets and 64 symbols queried in total.

16.5 Quotient algorithm

Petrenko et al. proposed a new inference approach in [PLG+14]. The al-
gorithm is called here the Quotient algorithm as it gradually infers partial
models, quotients, of the given black box. The structure for learning is an
observation tree so that many output queries are saved because no sequence
is queried twice or more. The idea of the algorithm was captured in the
Direct hypothesis construction (DHC) algorithm that was proposed previ-
ously in [SHM11]. The Quotient algorithm inspired the development of the
observation tree approach (Chapter 15) and it implements the approach but
just the first phase as no extra states are considered during the learning.

The algorithm implements the W-method in the context of active learning.
The W-method is the oldest testing method that uses the same characterizing
set W to verify all states reached by particular access sequences. In fact, the
Quotient algorithm does the same as the L* algorithm but it stores observed
traces in the observation tree (OTree) instead of the observation table. Besides
the observation tree, the algorithm keeps the set E of separating sequences.
All sequences of E are queried from each state that is reached and needs to
be identified; the node of the observation tree associated with such a state is
‘extended’ by E. The set E contains initially all symbols of the input alphabet
X and then is extended by separating suffixes of obtained counterexamples.

Each node of the observation tree is either a state node or consistent with
a state node. All state nodes are distinguished, that is, for each pair of state
nodes there is a common sequence leading from both state nodes such that
the outputs along the paths are different. Two nodes are consistent if they
are not distinguished in the observation tree.

The learning by the Quotient algorithm is described on the reference DFA
(Figure 15.5). Figure 16.12 shows the observation tree after the first 3 output
queries that identify the initial state. The algorithm starts with the root of
observation tree and the conjectured model contains just the initial state
s0. If the black box has outputs by states, the first output query asks for
the output of the initial state. The root of observation tree is extended by
E so that a unique identification of the initial state s0 is obtained. In the
example, s0 is recognized by {↑ → 0, a→ 0, b→ 1}, see Figure 16.12. Nodes
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1 T (ε, ↑) = 0

2 T (ε, a) = 0

3 T (ε, b) = 1 =⇒ s0

Output Queries

extend node 1

1
0

2
0

a

3
1

b

s0 s0start

Figure 16.12: The first 3 output queries identify the initial state s0

4 T (a, a) = 0

5 T (a, b) = 1

6 T (b, a) = 0

7 T (b, b) = 0 =⇒ s1

8 T (ba, a) = 0

9 T (ba, b) = 1

10 T (bb, a) = 0

11 T (bb, b) = 0 =⇒ s2

12 T (bba, a) = 0

13 T (bba, b) = 1

14 T (bbb, a) = 0

15 T (bbb, b) = 1

Output Queries

extend node 2

ext. 3

ext. 6

ext. 7

ext. 10

ext. 11

1
0

2
0

4
0

a

5
1

b

a

3
1

6
0

8
0

a

9
1

b

a

7
0

10
0

12
0

a
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1

b

a

11
0

14
0

a

15
1

b

b

b

b

s0

s1

s2

s0start

s1 s2

a

b
a,b

a

b

Figure 16.13: The observation tree and the conjecture after 15 output queries

of OTree are numbered according to their creation, that is, by the number of
the related output query.

The aim of the algorithm is to make the observation tree closed (for 0 extra
states). An observation tree is closed (for 0 extra states) if all successors of
state nodes are extended by E and are consistent with state nodes. Therefore,
nodes 2 and 3 are extended using output queries 4–7 to identify the next
states of s0, see Figure 16.13. The subtree of the extended node is then
compared with subtrees of state nodes so a consistent one is found. If a node
is distinguished from all state nodes, then this node becomes a new state
node and the conjectured model is enlarged by one state. This is the case
of node 3 in Figure 16.13. The output assigned to the node differs from the
state output of s0 (node 1). Therefore, a new state s1 is revealed. Transitions
from the new state need to be identified. Hence, its successors are extended
by E; output queries 8–11 extend nodes 6 and 7 that are successors of node 3
relating to s1. This procedure is repeated until the observation tree is closed.
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16 T (aa, b) = 0 (CE) =⇒ s3 (node 2)

17 T (aa, ab) = 01 (ext. 4)

18 T (ab, b) = 0

19 T (ab, ab) = 01

20 T (baa, b) = 1 (ext. 6)

21 T (bbaa, b) = 0 (ext. 10)

22 T (bbba, b) = 0 (ext. 11)

Output Queries

ext. 5

4
0

17a
0

17b
1

b

a

16
0

b

5
1

19a
0

19b
1

b

a

18
0

b 8
0

20
1

b

12
0

21
0

b

14
0

22
0

b

Figure 16.14: Identification of next states using the new separating suffix ‘ab’

The conjectured model is checked for consistency with the closed observation
tree. Access sequences of states are prefix-closed because only a successor of
a state node can become a new state node. All successors of state nodes are
identified by E and consistent with state nodes. Therefore, the conjectured
model is well defined. The consistency is thus checked for all children of state
nodes’ successors. All these nodes need to be consistent with a state node
determined by the transition function δM . Formally, a node reached by u
from s0 cannot be distinguished from state node relating to δ∗M (s0, u). For
example, node 4 is checked whether it is consistent with s0 as δ∗M (s0, aa) = s0
according to the conjectured model in Figure 16.13. If an inconsistency
is found, there is a sequence w distinguishing the node from the assumed
state node. The sequence w extends the set E and thus the observation tree
becomes unclosed. The entire procedure of ‘closing’ by applying E in all
successors of state nodes is repeated again. This inconsistency would be the
type II if domains were used, see Section 15.2.2 for the types of inconsistency
between the observation tree and the conjectured model.

An equivalence query is asked after the observation tree is closed and the
conjectured model is consistent with it. The obtained counterexample is
processed easily. It is added to the observation tree by querying the suffix
that is not yet in the tree. Then, the current conjectured model is checked
against the updated observation tree so that an inconsistency is found. The
inconsistency is again fixed by the extension of E and ‘closing’ the observation
tree.

The counterexample ‘aab’ is obtained to the first equivalence query in the
running example. Output query 16 then asks for its unobserved suffix and
the last state s3 is revealed by the consistency check. Next 6 output queries
make the observation tree closed as Figure 16.14 shows. The learning ends
by the second equivalence query.

The Quotient algorithm learns the reference DFA using 2 equivalence
queries, 22 resets and output queries and 66 symbols queried in total.
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16.6 GoodSplit algorithm

The GoodSplit algorithm was proposed by Eisenstat and Angluin for the
ZULU competition in [EA10]. The aim of the competition was to learn a
DFA with the restricted number of membership queries and without equiv-
alence queries. Therefore, the GoodSplit algorithm is a representative of
unsupervised active-learning algorithms. The number of MQs allowed to ask
in the competition was not big enough to learn the model properly or provide
a guarantee like the observation tree approach does (extra state coverage).
The idea behind was thus to infer a very accurate model as soon as possible.

The algorithm was proposed for learning DFA only, therefore, its adjustment
is done to learn DFSMs and work with both types of output queries. Moreover,
a CE processing function is added so that all learning algorithms can be
compared as the last EQ proves the correctness of the conjectured model.

A set of observed traces was originally used for learning. Nevertheless, the
implementation in FSMlib (Appendix A) uses an observation tree instead as
it is more compact and several actions can be done easier with this structure,
for example, a comparison of states reached by different access sequences.

There are four steps repeated until a stop condition is met. The steps
are: 1) find a consistent state node for each next state, 2) identify next
states, 3) check the stop condition and update distinguishing sequences, and
4) make random queries. The stop condition was originally the given number
of allowed output queries. Nevertheless, the version extended by the author of
the thesis receives a parameter maxDistinguishingLength according to which
the algorithm stops when the length of distinguishing sequences exceeds its
value. If equivalence queries are allowed, then an EQ is asked after the length
of maxDistinguishingLength is reached. The CE processing is described later.

The first step is to find a consistent state node for each successor of state
nodes. A state node is a node of the observation tree that represents a
particular state of the conjectured model. Successors of state nodes then
relate to next states. Two nodes are consistent if they are not distinguished
in the observation tree, that is, there is no common sequence leading from
both nodes such that outputs along this sequence are different. The step also
covers querying the sequences leading to the next states. Figure 16.15 shows
the first step in the case of learning the reference DFA (Figure 15.5). After
the output of the initial state s0 is observed, both transitions are queried.
The third output query reveals a new state s1 as its output differs from the
one of s0. The conjectured model is thus updated and transitions leading
from s1 are queried (output queries 4 and 5). All successors are consistent
with a state node (all with s0) as there are no two states with the same state
output. Moreover, all successors are consistent with just one state node and
thus they are identified. Hence, the second step does not do anything now
and will be explained by its use in the running example.

The algorithm possesses a variable l that determines the current length
of distinguishing sequences in use. The set E contains all such sequences.
Initially, l = 1 so E is filled up with all input symbols. Then it depends on
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1 T (ε, ↑) = 0

2 T (a, ↑) = 0 (close)

3 T (b, ↑) = 1 (close) =⇒ s1

4 T (ba, ↑) = 0 (close)

5 T (bb, ↑) = 0 (close)

Output Queries 1
0

2
0

a

3
1

4
0

a

5
0

b

b

s0

s1

s0start

s1

a

ba,b

Figure 16.15: The first 5 output queries close the observed traces

the type of output queries T . If only membership queries are allowed, then E
contains all sequences of the length up to l, that is, E = X≤l. Otherwise, E
includes all sequences of the length l, that is, E = X l; output queries provide
an output sequence so the response to the prefixes of queried sequences is
obtained as well. Sequences of E are successively queried from the successors
of state nodes to distinguish them and to reveal a new state.

The third step of the algorithm checks if l is to be increased and if the stop
criterion is met. The variable l is increased by 1 if the fraction of applied
extensions and all possible extensions of successors of state nodes (such that
the extensions are sequences of E) is greater than 90 %. In the running
example, the observation tree in Figure 16.15 has 3 leaves that represent
successors of state nodes. Each of these leaves can be extended by both
sequences of E = {a, b}. This gives 6 possible extensions. None of these
was applied, that is, no sequence of E was queried from any successor of a
state node. All 6 extensions would need to be queried in order to increase
l by 1. If l is increased and it becomes greater than the given parameter
maxDistinguishingLength, then the algorithm either stops or asks an EQ (if it
is allowed).

The learning of the reference machine continues with the fourth step because
the condition of the third step for increasing l is not met. The purpose of
the fourth step is to reveal a new state. A successor ni of a state node
and a sequence e of E such that e is not queried from ni are chosen at
random. The sequence e is then queried from ni and from the state node
nj that is consistent with ni if e was not queried from nj . There is only
one such nj because the second step ensures that the successors of all state
nodes are consistent with only one state node. The number of randomly
extended successors depends on the number of states in the conjectured model.
The fourth step makes d|S|/2e random choices of successors to extend. An
exception to this is if there are not so many available extension or a new state
was revealed by the queried sequence. The latter case is an improvement
to the original algorithm. It forces the algorithm to update the conjectured
model first instead of querying next random sequences.
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6 T (a, a) = 0 (random)

7 T (bb, b) = 0 (random) =⇒ s2

8 T (bba, ↑) = 0 (close)

9 T (a, b) = 1

10 T (ba, b) = 1

11 T (bba, b) = 1

12 T (bbb, b) = 1

13 T (bba, a) = 0

14 T (bbb, a) = 0

15 T (ba, a) = 0 (random)

Output Queries
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next
states
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0
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0
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1
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0
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0
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0
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1

b

b

b
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s1

s2
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s1 s2

a

b
a,b

a

b

Figure 16.16: All sequences of length 1 were queried after 15 output queries

The conjectured model in Figure 16.15 has 2 states, therefore, just one
successors is extended in the fourth step. Output query 6 (Figure 16.16) does
not reveal any new information. The next output query is asked again by the
fourth step because all next states are still identified and only 1 of 6 possible
extensions was applied so no previous step is required. Fortunately, the query
reveals a new state s2. Therefore, the conjecture is updated and the first step
ensures that both transitions from s2 are queried (output query 8).

The next 4 output queries asked by the second step of the algorithm
identify the next states. The identification is needed for successors that are
consistent with several state nodes. States s0 and s2 have the same state
output, therefore, they need to be distinguished by a separating sequence.
The sequence is chosen from the set E. Only b ∈ E separates the states.
Therefore, it is applied in all successors of state nodes as they all are consistent
with both states nodes. The choice of a separating sequence is described later
in general.

The conjectured model has now 3 states and all transitions are identified
as it is shown in Figure 16.16. There are 8 possible extension of state nodes’
successors and 5 were applied. Hence, l is not increased and the fourth step
selects 2 successors to extend (3 states → d3/2e = 2). A new state is not
revealed so the condition of the third step is checked again. Because 7 of 8
extensions is still lower than 90 %, the algorithm continues with the fourth
step. It should ask 2 random queries but there is only one possible extension.
Therefore, output query 15 is asked and the algorithm starts the main loop
again. There is no change to the conjecture so the first two steps is skipped.
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All possible extension were queried and thus the condition for increasing l
is met; l = 2 and E = {aa, ab, ba, bb} (E would also contain a and b if MQs
were only allowed).

Fortunately, the second randomly selected sequence and successor (of 16
possible extensions) reveal the last state s3 (output query 17). The successors
of all state nodes were observed and are consistent with a state node, therefore,
the first step only adds s3 to the conjectured model. The second step then
chooses ‘ab’ to identify next states (Figure 16.17). The reason why ‘ab’ is
chosen follows.

The choice of a separating sequence maximizes the minimum number of
the consistent state nodes that are distinguished after the sequence is queried.
Consider a successor of a state node that is consistent with ci state nodes. For
each sequence e ∈ E, the maximum number ge of consistent state nodes that
produce the same output on e is derived. This number is then subtracted
from ci. The number de of consistent state nodes from which e was not
queried is also subtracted. Sequences of E are compared according to the
calculated result r; r = ci−ge−de. If two sequences have the same r, the one
with lower de and then the alphabetically lower is chosen as the separating
sequence.

The calculation of state nodes with the same output depends on the type
of allowed output queries. It is straightforward in the case of membership
queries (MQ). For each e ∈ E = X≤l the sequence e either was queried
from a state node so an output is observed or the output is missing. On
the other hand, only a prefix can be observed in the case of output queries
(OQ). Therefore, an output trie is build for each e ∈ E = X l. An output trie
groups the outputs of all consisted state nodes produced on a particular e.
An edge relates to an output symbol. Each node of an output trie contains
a counter of state nodes that produce the output labelling the path to the
node and the remaining suffix of e was not queried. The root of an output
trie thus captures the number de of state nodes from which the related e was
not queried.

Two output tries are shown on the bottom left of Figure 16.17. They are
constructed to evaluate ‘aa’ and ‘ab’ after s3 is revealed. All unidentified
transitions can lead to either s0 or s3. The set of consistent state nodes of
the nodes relating to the next states thus contains nodes 1 (s0) and 8 (s3).
The output on ‘aa’ from the node 1 is 00, however, only the prefix ‘a’ was
observed with the output of 0 from the node 8. Therefore, the related output
trie has 1 in the successor of the root and in the leaf as well. Both state nodes
have an output sequence on the entire sequence ‘ab’; the node 1 responds
with 01 and 8 with 00. Inner nodes of the related output trie have the counter
of 0 and ones in the leaves as Figure 16.17 shows. The number me/z of state
nodes producing the same output sequence z on e is calculated as a sum of
the values of nodes along the path labelled by z in the related output trie
(excluding the root). The maximum number ge is then selected from me/z’s.
In the case of the output tries in Figure 16.17, gaa = maa/00 = 1 + 1 = 2 and
gab = mab/00 = mab/01 = 1. Note that a state node appears in several sums
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16 T (bbb, ba) = 10

17 T (bba, ab) = 00 =⇒ s3

18 T (a, ab) = 00

19 T (ba, ab) = 01

20 T (bbb, ab) = 00

21 T (bbaa, aa) = 00

22 T (bbaa, ab) = 01

23 T (bbab, bb) = 00

24 T (a, ba) = 10

25 T (bba, ba) = 10 (extend)
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Figure 16.17: Sequence ab reveals the last state

if the entire e was not observed from the node. In fact, me/z represents the
number of state nodes that will not be distinguished if e is applied and z is
observed. Therefore, if only a prefix of e was queried and z′ was observed,
then each me/z such that z′ is a prefix of z needs to include such state node.
Moreover, the sequences are compared on r = ci − ge − de, the higher r the
better. Therefore, the maximum number ge needs to be the lowest possible.
This implies that all me/z need to be small in order to e be chosen. It means
that it is better if the sequence e was queried from all consistent state nodes.
Output tries of sequences ‘ba’ and ‘bb’ are similar to the one of ‘aa’ so their
evaluation result is 0 as well; ci = 2, de = 0 and ge = 2. Therefore, ‘ab’
is selected as its r = 2 − 1 − 0 = 1 is the highest. The described rules for
selecting a separating sequence improve the original ones that were proposed
for DFA (binary outputs) and MQs only.

Further random extensions are applied after all transitions of the 4-state
conjectured model were defined. The algorithm repeats the fourth step until
18 of 20 possible extensions are applied. Then an equivalence query proves
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that the conjectured model is correct if maxDistinguishingLength is 2 and
EQs are allowed. The first step is processed again after the main loop ends to
make the conjecture consistent with the observation tree. Notice that output
query 25 in Figure 16.17 asks ‘ba’ in the state node of s3 because the sequence
was randomly selected to be queried from node 2 (output query 24) that is
identified as s3. Each random query needs to be also observed from the state
node that correspond to the successor from which the random query is asked.

Counterexamples obtained from EQs are processed similarly to other algo-
rithms. EQs were not allowed originally so that this is an extension of the
algorithm. A separating suffix v is first identified by the SuffixAfterLastState
function (Section 16.1.5). Then maxDistinguishingLength and l are updated
to maxDistinguishingLength = l = |v| and v is queried from the related nodes.
The first node is a state node relating to δ∗M (s0, u · x), where u · x · v is a
decomposition of the given counterexample. The second node is the successor
of state node relating to δ∗M (s0, u) on x. This ensures that a new state is
revealed and the separating sequence of the new state is included in E as l
was enlarged accordingly.

The GoodSplit algorithm with maxDistinguishingLength = 2 learned the
reference machine with 35 output queries and 35 resets, 1 EQ and 136 symbols
were queried in total. Note that the order of randomly selected extensions
can be different and thus the numbers differ as well.

16.7 Other Learning Algorithms

There are many other learners in the literature. Prior to the L* algorithm,
Angluin proposed the ID algorithm [Ang81]. It assumes that the access
sequences of all black-box states are given. One thus needs to learn only
separating sequences. The IDS algorithm [MS10] is an incremental version of
the ID algorithm. An incremental learning algorithm produces a sequence
of conjectured models that finitely converge to the model of black box.
In addition, an incremental learning algorithm reuses knowledge of one
conjectured model to create a subsequent version.

Both the ID and IDS algorithms work with predefined set of sequences. It
is similar to passive inference where a learner infers a model from given traces.
Examples of passive learning algorithms are RPNI [OG92] and RPNI2 [Dup96].
A combination of passive and active inference was described in [DLDL08]
such that the proposed Query-driven State Merging (QSM) algorithm learns
from given traces but is allowed to pose additional membership queries. The
Congruence Generator Extension (CGE) algorithm [Mei10] is similar to the
incremental RPNI2 but it uses string rewriting systems representing a finite
congruence generator to represent and manipulate automata. Hence, the
conjectured model state set is more compact than equivalence relation on
input strings used by the other learners.

Theory of testing was incorporated to learning by Zhu in [Zhu96] that
interprets the axioms of test adequacy criteria as properties of inductive
inference to relate it with software testing. The learning-based testing (LBT)
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was then proposed in [Mei04]. A LBT approach is a heuristic method that
is based on learning a black-box system using tests as queries. An example
of LBT method is the IKL algorithm [MS11] that learns Kripke structures
modelling reactive systems. An exhaustive survey of approaches considering
both learning and testing is described in [AMM+18].
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16.8 Summary of the Algorithms

This section compares the active-learning algorithms in two aspects. First, it
summarizes the main differences amongst the algorithms. Second, it describes
how they implement the General Learning Framework (GLF) proposed in
Section 15.6. There are several surveys of learning automata and finite-state
machines in the literature. An insight and a comparison of variants of L* is
proposed in [BJLS05]. De la Higuera proposed several overviews: [DlH05]
states the use of grammar inference, [DlH10a] includes an extensive seminar on
learning and several notions from the seminar are then discussed in [DlH10b].
Similarly, Prajapati summarized learning models and approaches to grammar
inference in [Pra11].

All learning algorithms work with two sets, a state cover of access sequences
and a set of separating sequences. The algorithms differ in the way how
they handle these two sets. The difference is captured for some learners in
Table 16.1. All the standard learning algorithms use a fixed state cover and
a fixed set of separating sequences. In contrast, the three learners based
on the observation tree approach are more flexible as they allow to choose
separating sequences or access sequences on the fly. Hence, they can optimize
the amount of interaction with the black box.

Algorithm State cover Separating sequences

L*, Quotient fixed fixed CSet

DT, TTT fixed fixed HSI

H-learner fixed chosen on the fly

SPY-learner chosen on the fly from
convergent sequences fixed HSI

S-learner chosen on the fly from
convergent sequences chosen on the fly

Table 16.1: Access and separating sequences used by the learning algorithms

Table 16.2 describes implementations of the GLF by each of 7 learning
algorithms. All standard algorithms select a transition (s, x) leading from a
state s ∈ S in the step Choose. The learner based on the observation tree
approach also deals with transitions leading from next states if they assume
extra states. The step Identify depends on the structure that stores the set E.
Separating sequences are chosen from E to identify the reached state. The
structures for learning are then updated in the step Update. This finishes the
inner loop as Algorithm 54 describes. The step Check depends on the result of
asked equivalence query in most cases. If a counterexample is obtained, it is
processed. Moreover, additional procedures like a consistency check precede
that in some cases.
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Algorithm Choose Identify Update Check

L*
select row
of a next
state

fill the row
using T

find equal
row or

extend S

EQ + OT
extension

according to
the CE

DT select (s, x) sift s · x
update the
conjecture or

the DT

EQ + DT
update

according to
the CE

OP select (s, x)

sift s · x +
fill the row

in the
reached CTi

update the
conjecture or
the DT and
split CTi

EQ + DT and
CTi’s update
according to

the CE

TTT select (s, x) sift s · x
update the
conjecture or

the DT

EQ + DT
update,

consistency
check and

finalization of
discriminators
according to

the CE

Quotient select (s, x) apply E

fix
inconsistency
or add the CE

after EQ

GoodSplit select (s, x)

apply the
most distin-
guishing
sequence

reduce the
set of

successor’s
consistent
nodes

check l and
maxDistin-

guishingLength
+ random
queries

H-learner
SPY-learner
S-learner

select (s, x)
with the
shortest s

apply the
most

informative
sequence

reduce the
domain of
the next
state

assume one
more extra

state

Table 16.2: Interpretation of GLF by the learning algorithms
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Chapter 17
Experiments

The three new learners proposed in Chapter 15 are tested and compared
against the standard active-learning algorithms (Chapter 16) on three case
studies described in Appendix C. At first, the algorithms are experimentally
evaluated on randomly generated machines. Then, they learn several models
of real systems and the last experiment is to learn a model of the artificial
environment GridWorld. This chapter presents the results on these three case
studies.

The learners are allowed to ask output queries (OQ) in all three case studies,
that is, they obtain a sequence of outputs returned by black box in response to
the given input sequence. The teacher in the first two case studies knows the
model to be learnt, therefore, the shortest counterexample is always returned
in response to an equivalence query if the provided conjectured model differs
from the black box. The teacher in the third case study does not know the
environment as it is provided by an external tool, hence, equivalence queries
are approximated by the SPY-method (Section 9.7). The teachers in the
first two and the third case studies are implemented by TeacherDFSM and
TeacherBB, respectively (their implementation is described in Appendix A).

There are several measures which the algorithms can be compared on. The
numbers of equivalence and output queries are the standard ones. However,
the research question RQ III.2 asks for a comparison on the amount of
interaction. The interaction with a black box is better captured by the number
of resets of the black box and the total number of input symbols that were
queried. The total number of queried input symbols is abbreviated to ‘Symbols’
in the results and it excludes the stOut symbol ↑. The implementation of
learners asks ↑ after each regular input symbol in the case of machines with
state outputs but no additional knowledge is provided when one works with
Moore machines or DFA. Learning Mealy machines would seem to be twice
faster than learning of the corresponding Moore machines if the stOut symbol
counted on. The learning time, or the time that is needed to learn the correct
model by a learner, is also one of common measures. A new measure is the
exploration efficiency (EE). It is developed by the author of the thesis in order
to capture the efficiency of the learner’s queries to explore the black box. It is
calculated as the number of edges in the observation tree divided by the total
number of queried symbols. Hence, it permits one to evaluate how much of

225



17. Experiments.....................................
Algorithm EQs OQs Resets Symbols EE [%]

L*AllPrefixes 2 33 33 105 26.7
L*AllSuffixesAfterLastState 2 28 28 78 29.5
L*Suffix1by1 2 29 29 81 28.4
L*SuffixAfterLastState 2 29 29 80 28.8
L*OneSuffix-binarySearch 2 29 29 80 28.8
OPAllGlobally 2 68 68 199 16.6
OPOneGlobally 2 52 52 136 16.9
OPOneLocally 2 47 48 120 17.5
DT 3 32 32 76 23.7
TTT 2 25 25 64 31.3
Quotient 2 22 22 66 34.8
GoodSplit: l = 2 1 35 35 136 26.5
H-learner: 0 ES 2 20 10 36 52.8
H-learner: 1 ES 1 34 17 68 48.5
SPY-learner: 0 ES 2 23 5 26 84.6
SPY-learner: 1 ES 1 39 11 57 66.7
S-learner: 0 ES 1 21 6 26 76.9
S-learner: 1 ES 1 36 11 55 63.6

Table 17.1: Comparison of the learners on the 4-state DFA (Figure 15.5)

the black box is explored and how much effort was put in it. The greater the
value, the better the learner is. Note that if a learning algorithm, such as the
L* algorithm, does not use the observation tree (OTree), the queried input
sequences can be still put in a prefix tree (which OTree is) and calculate the
exploration efficiency.

All the learners were explained on a single machine, the 4-state DFA
defined in Figure 15.5. Moreover, the amount of interaction needed for the
learning of that machine concluded the running example of each learner.
Therefore, Table 17.1 summarizes the first comparison of the described
learning algorithms. The last six rows of Table 17.1 presents the result of the
three new learners. As the learners use the observation tree for learning and
ask output queries for single inputs, the number of output queries equals to
the number of nodes of the resulting observation tree. The number of edges
of OTree is the number of nodes minus one. Then, it is easy to compute
the exploration efficiency (EE) in the last column of Table 17.1 for the new
learners. For example, the EE of the S-learner assuming 1 extra state (ES) is
(36− 1)/55.

Table 17.1 shows promising results for the new learners that are based on
the observation tree approach. The H-, SPY- and S- learners need much less
interaction with the black box than any standard learning algorithm if they
do not consider extra states (‘0 ES’ versions). Moreover, if they assume 1
extra state, they still learn with less interaction and they would not need the
help of teacher, that is, the learn without any counterexample. Note that

226



............................ 17.1. Randomly Generated Machines

any algorithm asks at least one equivalence query (if it is allowed) in order
to confirm that the conjectured model is finally correct, that is, the EQ is
the last one just before the learning stops. The GoodSplit algorithm and the
S-learner with 0 ES also need only 1 EQ.

17.1 Randomly Generated Machines

The first case study consists of 13 600 randomly generated machines. The
machines are described in detail in Appendix C.1. They were generated using
the generator in the FSMlib (Appendix B). They can be grouped according
to their machine type, the number of states and the number of inputs. There
are 4 machine types, each represented equally with 3 400 machines such that
a half of them has 5 inputs and the other 1 700 machines have 10 inputs.
The number of states ranges from 10 to 1000 and there are 17 state groups
of 100 machines. Each machine is learnt by each learner and the results are
analysed statistically for each state group, that is, quartiles are calculated
over 100 values. All machines and the results are available in the repository
FSMmodels v1.31.

Figures 17.1–17.3 show the result for deterministic finite state machines
(DFSM) with 5 inputs. The boxplots on the right of each figure present
the values of machines with 1 000 states such that the whiskers represent
the minimum and maximum values. As the teacher provides the shortest
counterexample (CE) in response to an EQ, all CE processing functions
of the L* algorithm that find a distinguishing suffix perform equally. The
AllPrefixes function (Section 16.1.1) is a little worse than the others, hence,
it is shown separately. The performance of the other CE processing function
is captured by Suffix1by1 (Section 16.1.4). The results of the GoodSplit
algorithm (Section 16.6) are not shown at all because it asks much more
output queries than the other learners and so it was not possible to learn
machines with hundreds of states.

Figure 17.1 captures the standard measures, that is, the numbers of output
and equivalence queries. On the one hand, one can see that all the three new
learners outperform the standard learning algorithms in terms of the number
of output queries when they do not consider extra states, that is, they follow
only the first phase of the observation tree approach. On the other hand,
the new learners assuming 1 extra states are the only ones that can learn a
correct model without any counterexample provided by the teacher.

The numbers of output and equivalence queries depend on each other. This
can be seen in Figure 17.1 on the performance of the learning algorithms
that use the discrimination tree (DT). The DT and TTT algorithms ask
a lot of EQs so that almost all states of the black box are revealed using
counterexamples provided by the teacher. This has a positive effect on the
number of output queries that is quite low. The trade-off between the numbers
of output and equivalence queries is also captured by the versions of the

1https://github.com/Soucha/FSMmodels/releases/tag/v1.3
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Figure 17.1: DFSMs with 5 inputs: the numbers of output and equivalence
queries, 1 and 3 quartile calculated for 100 machines per each state group

228



............................ 17.1. Randomly Generated Machines

0 200 400 600 800 1 000
0

200 000

400 000

600 000

800 000

L*AllPrefixes
L*Suffix1by1

OPAllGlobally

OPOneGlobally

OPOneLocally

DT

TTT
Quotient

H: 0 ES

H: 1 ES

SPY: 0 ES

SPY: 1 ES

S: 0 ES

S: 1 ES

Number of states

Total number of queried symbols

0 200 400 600 800 1 000
0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

80 000

L*AllPrefixes
L*Suffix1by1

OPAllGlobally

OPOneGlobally

OPOneLocally

DT

TTT

Quotient

H: 0 ES

H: 1 ES

SPY: 0 ES

SPY: 1 ES

S: 0 ES

S: 1 ES

Number of states

Number of resets

Figure 17.2: DFSMs with 5 inputs: the total number of symbols queried during
the learning and the number of resets of the black box, 1 and 3 quartile calculated
for 100 machines per each state group

229



17. Experiments.....................................

0 200 400 600 800 1 000
0

0.2

0.4

0.6

0.8

1

L*
OPAllGlobally

OPOneGlobally
OPOneLocally
DTTTT

Quotient

H: 0 ES

H: 1 ES

SPY: 0 ES

SPY: 1 ES

S: 0 ES

S: 1 ES

Number of states

Exploration efficiency

0 200 400 600 800 1 000
0

1 000

2 000

3 000

4 000

5 000

6 000

0

2

4

6

8

10

L
* A

ll
P

re
fi
x
es

L
* S

u
ffi

x
1
b
y
1

O
P

A
ll
G

lo
b
a
ll
y

O
P

O
n
eG

lo
b
a
ll
y

O
P

O
n
eL

o
ca

ll
y

D
T

T
T
T

Q
u
ot
ie
nt

H
:
0
E
S

H
:
1
E
S

SPY: 0 ES

SPY: 1 ES

S: 0 ES

S: 1 ES

Number of states

Running time in seconds

Figure 17.3: DFSMs with 5 inputs: the exploration efficiency (the size of the
observation tree divided by the total number of queried symbols) and the learning
time, 1 and 3 quartile calculated for 100 machines per each state group

230



............................... 17.2. Models of Real Systems

OP algorithm. The AllGlobally version asks the most OQs as it queries the
distinguishing suffix from all reached states. Hence, it explores the black box
more than the OneGlobally and OneLocally versions and thus it has a higher
chance to reveal another state of the black box that is not modelled in the
conjecture yet. This is confirmed by the lowest number of equivalence queries
amongst the three versions of the OP algorithm.

The interaction with the black box is better captured in Figure 17.2 that
shows the total number of input symbols queried during the learning and
the number of resets of the black box. There is a significant gap between
the performance of the three new learners assuming no extra state and the
standard learning algorithms in both measures. Moreover, the H- and S-
learners assuming 1 extra state are also better than the standard algorithms
(except the TTT and Quotient algorithms in the total number of queried
symbols). This is exceptional because they learn using as much interaction
with the black box as the best standard learning algorithms but in fact they
do not need the teacher and provide the guarantee of 1 extra state.

Figure 17.3 shows the exploration efficiency and the learning time. The
exploration efficiency of the three new learners is higher (and thus better)
than the standard learning algorithms have and it holds even if the learners
assume 1 extra state. The price for the great performance of the new learners
is their learning time. It is much higher as the standard algorithms do not
analyse the observed traces.

There are other 7 groups of machines for which the results are not visualized
here; there are Mealy and Moore machines and deterministic finite automata,
each with 5 and 10 inputs, plus DFSMs with 10 inputs. Nevertheless, the
observed trends and relative orders of the learners is almost the same for the
other 7 combinations of the machine type and the number of inputs. The
results can be found in the repository FSMmodels v1.3.

17.2 Models of Real Systems

The second case study consists of three models of real systems. The models
were used to evaluate the standard learning algorithms by the research group
around the LearnLib as Appendix C.2 describes in detail. The smallest model
peterson2 has 50 states and 18 inputs, the model sched4 has 97 states and
12 inputs and the largest model sched5 has 241 states and 15 inputs. All
three are deterministic finite automata so that they have only two outputs.

Tables 17.2–17.4 show the results of learning the three models. Similarly
to the first case study, the CE processing function Suffix1by1 of the L*
algorithm represents the results of all CE processing functions (except the
AllPrefixes). It is because the teacher responds to an EQ with the shortest
counterexample and the values are almost the same for all CE processing
functions. The GoodSplit algorithm was able to learn the models with the
parameter maxDistinguishingLength l set to 2. All learners were allowed to
ask equivalence queries. The order of learners in Tables 17.2–17.4 is given
by the amount of direct interaction with the black box, that is, the sum of
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Learning algorithm Resets Symbols EQs Seconds EE [%]

SPY-learner: 0 ES 1 233 9 340 33 2.34 21.0
S-learner: 0 ES 1 235 9 351 38 2.64 20.9
H-learner: 0 ES 1 337 10 057 44 0.32 20.0
TTT 1 811 12 693 49 0.01 10.2
DT 3 773 23 340 49 0.01 5.5
L*Suffix1by1 16 235 122 906 18 0.06 12.5
SPY-learner: 1 ES 16 534 125 676 1 246.71 13.8
Quotient 17 052 127 251 2 0.07 13.4
H-learner: 1 ES 15 595 131 769 1 4.81 23.9
S-learner: 1 ES 15 455 136 982 1 28.52 12.5
OPOneLocally 18 704 137 296 2 0.05 11.8
OPOneGlobally 19 602 144 835 2 0.05 11.8
L*AllPrefixes 19 458 147 762 14 0.08 12.5
OPAllGlobally 27 709 244 570 2 0.10 22.3
GoodSplit: l = 2 262 752 2 222 603 1 311.57 11.9

Table 17.2: Learning peterson2: learners are sorted by the amount of interac-
tion, that is, the number of resets of the black box plus the number of input
symbols queried during the learning

the number of resets and the number of input symbols queried during the
learning. The number of output queries are not shown as they correspond
to the number of resets in the case of the standard learning algorithms; the
three new learners ask more output queries than the number of resets they
use but this measure does not contribute to the evaluation of real interaction
with the black box.

The results on peterson2 in Table 17.2, on sched4 in Table 17.3 and on
sched5 in Table 17.4 are very similar in terms of relative comparisons of
the learning algorithms. All three models provide a confirmation that the
three new learners based on the observation tree approach outperform the
standard learning algorithms if they do not consider extra states. Moreover,
the assumption of only one extra state is sufficient to learn a correct model
without the need of teacher. Note that at least one equivalence query is asked
by each learner and it is the last one that confirms that the conjectured model
is output-equivalent to the black box. Even with the assumption of 1 extra
state, the new learners learn using less interaction with the black box than
most standard learning algorithms.

17.3 GridWorld

The third case study is to learn the GridWorld map E that is described in
Appendix C.3. It can be modelled by a deterministic finite-state machine
with 32 states, 5 inputs, 5 state outputs and 2 transition outputs. The
GridWorld is accessed as an external system from the point of view of the
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Learning algorithm Resets Symbols EQs Seconds EE [%]

SPY-learner: 0 ES 2 007 25 334 68 9.14 14.3
S-learner: 0 ES 2 017 25 438 65 9.09 14.0
H-learner: 0 ES 2 307 28 913 78 0.55 11.0
TTT 3 606 43 757 94 0.03 5.5
DT 11 805 110 183 96 0.05 2.2
S-learner: 1 ES 14 107 178 965 1 181.94 9.8
H-learner: 1 ES 14 254 190 634 1 5.42 14.8
SPY-learner: 1 ES 15 908 203 289 1 350.83 9.0
Quotient 16 741 206 793 4 0.14 8.3
OPOneLocally 18 322 224 021 18 0.10 6.3
L*Suffix1by1 18 655 231 131 15 0.16 7.4
OPOneGlobally 21 736 269 173 4 0.12 6.4
L*AllPrefixes 23 235 283 013 12 0.19 7.6
OPAllGlobally 63 670 1 056 247 4 0.60 18.4
GoodSplit: l = 2 149 591 1 944 084 2 42.87 7.8

Table 17.3: Learning sched4: learners are sorted by the amount of interaction,
that is, the number of resets of the black box plus the number of input symbols
queried during the learning

learner implemented in the FSMlib (Appendix A). Therefore, the teacher
approximates equivalence queries (EQ) by a testing method, the SPY-method
(Section 9.7) in particular. The three new learners are not allowed to ask
EQs as they can substitute the approximated EQs by the second phase of
the observation tree approach.

Table 17.5 shows the results of learning the GridWorld map E by 6 different
learning algorithms. The order of the learners in Table 17.5 is given by the
GridWorld simulation steps in the last column. The simulation steps captures
precisely the amount of interaction that a learner together with the teacher
needs in order to learn the correct model. Note that the number of extra
states (ES) assumed by the SPY-method was selected for each standard
learning algorithm the lowest possible such that the teacher can still find
a counterexample if the conjectured model has not 32 states. Only the
TTT, Quotient and L*AllPrefixes are considered from the standard learning
algorithms because they can represent the others in the terms of results. The
most efficient of the standard learning algorithms is the Quotient algorithm
that however needs 4 EQs (implemented by the SPY-method assuming 0
ES). All three new learners can learn the correct model with the assumption
of only one extra state. Therefore, when they assume 2 extra states, they
also do not need the teacher but they provide a stronger guarantee about
the states of the black box. Notice that the learners are comparable with
the standard learning algorithms in terms of interaction with the black box
even if they assume 2 extra states. It is not mentioned in Table 17.5 but the
S-learner assuming 1 ES learns the map E only in 7 894 simulation steps and
in the next 23 228 steps the learner verifies the absence of another state. The
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Learning algorithm Resets Symbols EQs Seconds EE [%]

S-learner: 0 ES 7 726 125 168 67 502.87 10.6
SPY-learner: 0 ES 7 991 129 662 48 368.31 11.0
H-learner: 0 ES 8 578 138 719 164 10.72 8.4
TTT 12 496 201 131 235 0.21 4.4
DT 47 162 555 475 240 0.32 1.6
S-learner: 1 ES 57 725 957 847 1 5 178.73 7.4
H-learner: 1 ES 55 969 964 841 1 121.70 11.6
Quotient 65 941 1 069 076 5 0.88 6.3
OPOneLocally 69 127 1 113 735 50 0.64 4.9
SPY-learner: 1 ES 67 485 1 125 628 1 24 704.79 6.9
L*Suffix1by1 72 339 1 177 436 19 1.54 5.8
L*AllPrefixes 82 099 1 309 732 13 1.62 5.9
OPOneGlobally 83 321 1 356 484 5 0.78 5.0
OPAllGlobally 271 345 5 690 809 5 3.99 10.7
GoodSplit: l = 2 725 301 12 120 266 1 42.87 6.1

Table 17.4: Learning sched5: learners are sorted by the amount of interaction,
that is, the number of resets of the black box plus the number of input symbols
queried during the learning

S-learner with 1 ES has one of the highest learning time in the previous two
case studies as it analyses the observed traces a lot. In the case of GridWorld
where each simulation step takes some time, one can see in Table 17.5 that
the learning time of the S-learner assuming 1 ES is one of the lowest.
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Learning algorithm Resets Symbols EQs Seconds Steps
S-learner: 1 ES 486 9 784 0 620 31 122
H-learner: 1 ES 1 026 10 028 0 829 41 434
Quotient 1 110 7 487 4 615 48 652
+ SPY-method: 0 ES 377 4 835
SPY-learner: 1 ES 1 801 17 415 0 1 345 74 651
S-learner: 2 ES 2 005 51 300 0 3 443 156 357
H-learner: 2 ES 4 185 44 325 0 3 314 186 274
TTT 1 363 7 870 11 4 145 378 793
+ SPY-method: 2 ES 6 864 131 212
SPY-learner: 2 ES 9 630 96 493 0 8 134 432 450
L*AllPrefixes 3 444 28 062 8 4 664 445 285
+ SPY-method: 2 ES 5 641 115 749

Table 17.5: Learning GridWorld map E: learners are sorted by the number of
simulation steps (last column) that corresponds to the amount of interaction,
that is, the number of resets of the black box plus the number of symbols
queried during the learning by both the learner and the teacher. The teacher
approximates equivalence queries by the SPY-method.
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Chapter 18
Conclusion

The third part of the thesis is about active learning of deterministic finite-state
machines that are completely specified, initially connected and resettable.
Chapter 15 proposed the observation tree approach that utilizes the testing
theory (discussed in Part II) in the learning. The H-learner (Section 15.3), the
SPY-learner (Section 15.4) and the S-learner (Section 15.5) are new active-
learning algorithms that implement the observation tree approach. The
research question (RQ) III.1 is addressed as the observation tree approach
is more general than the framework of Observation Pack (OP). The OP
framework does not allow one to choose neither different separating sequences
for state identification (used by the H- and S- learners) nor different access
sequences (used by the SPY- and S- learners). Therefore, the new learners
based on the observation tree approach do not implement the OP framework.

The standard learning algorithms are described in Chapter 16 and ex-
plained on a running example. They were extended by the author to work
with Definition 1.1 of deterministic finite-state machine and so work for
deterministic finite automata or Mealy or Moore machines as well. Semantic
suffix closedness (Section 16.1.7) was shown not to be a sufficient property of
observation table in order to make a minimal conjectured model.

Section 15.6 proposed the General Learning Framework (GLF) that unifies
all active-learning algorithms from the implementation point of view. The
implementation of GLF by each learner is described in Section 16.8 that also
summarizes the basic differences of the learning algorithms.

The experimental evaluation of all the active-learning algorithms was
conducted on three case studies. The results described in Chapter 17 confirmed
the improvement in the learning performance by the new learners based on the
observation tree approach. If the three new learners follow only the first phase
of the observation tree approach and thus do not assume extra states, then
they can be directly compared with the standard learning algorithms. The
new learners outperformed the standard ones in the interaction with the black
box, usually with a significant gap. If the learners based on the observation
tree approach assume at least one extra state, they provide a guarantee about
the number of states of the black box with respect to the number of states of
the conjectured model and the assumed number of extra states. It is thus
harder to compare their performance with the standard learning algorithms.
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Nevertheless, the results showed that even though the new learners assume
one or two extra states, they interact with the black box comparably to the
standard algorithms. Moreover, they can learn a correct model without any
counterexample provided by the teacher. Hence, RQ III.2 is addressed as
well in positive manner. The only drawback seems to be the learning time
that is much higher than that of the standard learning algorithms because
the new learners analyse observed traces in depth. Nevertheless, the third
case study showed that the time spent on the communication with the black
box can be much higher than the construction time of output queries to be
asked. Therefore, the effort in the analysis of observed traces and querying
minimal symbols can result in the lowest learning time.
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Chapter 19
Conclusions

This thesis deals with three different fields of research that were shown to
closely relate to each other. Each research field is explored in a separate
part of the thesis. Part I describes state identification sequences and how to
construct them. Part II deals with testing of finite-state machines and active
learning of finite-state machines is described in Part III. Each part introduces
the corresponding research field, the standard methods are described and a
contribution is made.

The contribution in each part is a new algorithm. The ST-IADS algorithm
constructs a splitting tree for any minimal deterministic finite-state machine
and the separating sequences constructed easily from the splitting tree can
separate any subset of states with a very few sequences (if not just one). The
S-method is a new testing method that employs the ST-IADS algorithm,
state domains, and a new sufficient condition for an m-complete test suite
(the S-condition). As the S-method combines these novelties, it can become
the state-of-the-art testing method. Moreover, it is the first testing method
that can extend a given test suite efficiently to become m-complete. The
observation tree approach provides a way to utilize the testing theory in active
learning. Three new learners, the H-, SPY- and S- learners, were developed
based on the observation tree approach. Their improvement to the learning
performance was demonstrated in experiments.

All the proposed algorithms were experimentally evaluated on a great
suite of machines, see Appendix C for the description of case studies. The
results show that the improvements by the contributions are promising but
in some cases further evaluation should be conducted as the next chapter
discusses. It was shown that the sequences from the splitting tree ST-IADS
form harmonized state identifiers (HSI) of less but longer sequences than
in the case of HSIs formed of the shortest separating sequences. The S-
method constructs the smallestm-complete test suites for randomly generated
machines and performs very well in the case of the models of real systems when
no extra state is considered. Nevertheless, HSIs formed of the sequences from
ST-IADS improve the performance of the SPY-method to the extent that it
is the best testing method assuming one or two extra states in the case of the
models of real systems. The S-learner employs the S-method when it assumes
1 extra state and so the interaction with the black box is greatly reduced
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19. Conclusions.....................................
which was captured on randomly generated machines and the learning of the
GridWorld map. The models of real systems as well as randomly generated
machines confirmed that all the three new learners significantly outperform
the standard learning algorithms if they do not assume any extra state.

The aim of the research was to show that the performance of an active-
learning algorithm and a testing method can be improved. It was accomplished
as now there is a learner that learns efficiently without teacher and a testing
method that constructs small m-complete test suites.
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Chapter 20
Future Work

The thesis covers three different research fields and proposes several new ideas
in each part. Therefore, some ideas were not possible to implement or to
test properly due to time requirements. This last chapter describes what was
postponed for future work.

The ST-IADS construction algorithm in Part I could be improved in two
ways. Valid inputs could be compared according to their separating ability
before an input is chosen to separate a given subset of states. Different
scoring functions could be introduced and compared which one leads to better
results. The new approach constructing harmonized state identifiers (HSI)
and incomplete adaptive distinguishing sequences (IADS) from the splitting
tree ST-IADS should be compared against the method proposed in [HT15].

Part II proposes several new ideas to testing of finite-state machines. The
new S-condition provides a way to reduce the test suite size, however, it needs
more research in order to be used to the full extent by a testing method.
Particularly, it is not known when to prove the convergence of two sequences
and when it is not necessary; the S-method introduced just one possible way
to decide it. The S-method uses only separating sequences constructed from
the splitting tree ST-IADS but an improvement in the size of resulting test
suite could be achieved if it also considers the sequences that are already in
the test suite. The performance of the S-method should be evaluated more
on real systems as the SPY-method with HSIs constructed from ST-IADS
performed better on the three models of real systems.

The observation tree approach proposed in Part III is very general so that
new learners based on it can be easily developed. There are two improve-
ments that the author had in mind. In the first phase of the approach, the
construction of adaptive separating sequences could consider the (partially
specified) conjectured model besides the observed traces. The empty intersec-
tion of convergent nodes’ domains as described by Theorem 8.11 could be
also employed in order to reduce the amount of interaction with the black box
needed to learn a completely specified model. Unfortunately, both possible
improvements would lead to even more complex learners. The new learners
were evaluated on a lot of machines but further experiments could test the
dependence on the number of inputs and/or outputs. The length of pro-
vided counterexamples could also be investigated. Very long counterexamples

243



20. Future Work ....................................
obtained for example by random walk or system simulation are harder to
analyse than the shortest optimal ones. Learning more models of real systems
would give the new learners more confidence that they really outperform the
standard learning algorithms. Such an experiment could be the inference of
SIP and other protocols using the network simulator ns-31.

The next step could be to transfer acquired knowledge to testing and
learning of machines without reset and extended finite-state machines.

1https://www.nsnam.org/
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Appendix A
FSMlib

The implementation of all proposed algorithms, the standard active-learning
algorithms and the testing methods is included in the FSMlib. The FSMlib is
a C++ library for handling finite-state machines, their testing and learning.
It was developed by the author of the thesis and it is available as open
source under GNU GPLv3 on GitHub. The version v3.31 refers to the
implementations used for the comparisons and experiments described in this
thesis. There are other tools for handling FSMs, especially their learning.
Such tools are LearnLib [RSB05, RSBM09] and libalf [BKK+10]. LearnLib
is a JAVA framework with GUI for experimenting with the learning process.
In contrast, libalf is a C++ library with dispatcher for a remote run and a
JAVA native interface. After the ZULU competition, LearnLib was upgraded
to Next Generation LearnLib (NGLL) that provides even an interface for the
integration of libalf [MSHM11]. NGLL was supported by European project
CONNECT [GIB+12] aiming to provide interoperability interface among
various systems. Nevertheless, both tools focus only a particular types of
model and do not allow to generalize the algorithms to work with other types
of DFSMs easily. Moreover, they do not consider testing or the construction
of separating sequences as an important part of the learning. Hence, the
FSMlib was created.

Besides the algorithms, the FSMlib also includes an implementation of the
abstract concept of teacher for active-learning algorithms. There are three
teachers, TeacherDFSM, TeacherRL and TeacherBB. TeacherRL differs from
the other two in the type of provided output queries and TeacherBB imple-
ments equivalence queries differently than the other two teachers. Teachers
contain counters of resets, output queries, queried symbols and equivalence
queries. The values of counters are then the results of experiments. On
request, they can remember all queried sequences and then provide the size of
the observation tree which is used for the calculation of exploration efficiency.

TeacherDFSM and TeacherBB allow output queries (OQ) in contrast to
TeacherRL that is restricted to membership queries (MQ) as it focuses on the
learning of regular languages. In fact, both TeacherDFSM and TeacherRL
are the same as they hold a model of the black box but they differ in the
response to an output query T . TeacherDFSM replies with an output sequence

1https://github.com/Soucha/FSMlib/releases/tag/v3.3
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A. FSMlib .......................................
observed on the given input sequence and TeacherRL responds only with the
last observed output symbol. TeacherBB does not possess a model of the
black box and can only interact with it through output queries (OQ) that
are also available to the learner.

Answering an equivalence query is easy for TeacherDFSM and TeacherRL
as they know the black box but it needs to be approximated in the case of
TeacherBB. TeacherBB is initialized with a testing method and the number l
of extra states such that the testing method builds an (n+ l)-complete test
suite for the given conjectured model with n states and the test sequences
are then queried. If the observed response to a test sequence differs from the
output defined by the conjectured model, the test sequence is returned as a
counterexample. The entire test suite is thus queried only if the conjectured
model is correct or the black box has more than n + l states. In the case
of TeacherDFSM and TeacherRL, the product machine of the conjectured
model and the black box is considered to answer an EQ. Its transitions are
checked in the breadth-first search (BFS) order from the initial state so the
first observed inconsistency reveals the shortest counterexample. Particularly,
both models follow an input sequence u and if different outputs are observed,
u is returned as a counterexample. Sequences to check are sorted by their
length from the shortest, that is, the stOut input symbol is checked first
if the state outputs differ. Sequence of the same length are checked in the
alphabetical order. If a sequence u reaches s in the conjectured model and
q in the black box and there is a shorter sequence u′ that lead to the same
states, then no sequence starting with the prefix u is checked thereafter. This
is equivalent to keeping track of visited states in the product machine to find
out when to stop checking. Note that this approach does not require to have
any model reduced compared to the case of TeacherBB that minimize the
conjectured model first in order to provide it to the testing method.
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Appendix B
Generator of Random Finite-State
Machines

The FSMlib includes a generator of random deterministic finite-state machines.
An initially-connected machine of the given type is generated for the given
n, p, q where the type can be DFSM, DFA, Mealy or Moore machine, and
n, p, q are the numbers of states, inputs and outputs, respectively. If the
generated machine does not meet the given specific property, such as to be
minimized, strongly connected or to have an adaptive distinguishing sequence,
the generation of a new machine is repeated until the property holds for the
machine. If several machines with the same properties are requested, then it
it checked that they are different.

For each type of DFSM, all transitions are generated randomly at first,
that is, the C function rand provides an integer that modulo n represents
the target state of a transition. States, inputs and outputs are numbered
from 0 to n − 1, p − 1 and q − 1, respectively. Some transitions are then
changed in order to create an initially connected machine with n states. The
change of transitions is done in the following way. Let R ⊆ S be a set of
states reachable from the initial state s0; s0 ∈ R. If there is a state s that is
not reachable from s0, that is s /∈ R, a transition connecting two states in R
is changed to join s to R. Let e be a transition from a state si ∈ R to a state
sj ∈ R such that if it is erased from the state diagram, each state in R is
still reachable from s0. The edge e is changed to lead from si to s so that s
becomes reachable from s0. Changing of the transition function is repeated
until R = S.

All q outputs should be captured by the output function of the generated
machine. Therefore, there are limits for q. A DFA has always at most 2
different outputs, a Moore machine at most n different outputs, a Mealy
machine at most n · p different outputs and a DFSM can have up to n+ n · p
different outputs. If the given q is greater than the limit, then the maximal
number is considered instead for q. The output function is first initialized
randomly such that the output is obtained as rand modulo q for each state
and/or transition. If an output is not present in the output function, then a
state or a transition with the output that occurs more than once in the output
function is found and its output is changed to the one with no occurrence.
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This way, it is ensured that each output is captured by the output function
at least once.
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Appendix C
Description of Case Studies

There are three case studies which are used to compare the proposed algo-
rithms with the standard ones. All algorithms are compared on the randomly
generated machines first. Then, experiments are conducted on the models
of real systems. The third case study compares just the active-learning
algorithms as it is about the learning an artificial environment provided
by an external tool. The case studies are described in the following three
sections. The models of the first two case studies along with the results of all
experiments can be found in the GitHub repository FSMmodels v1.31.

The first two case studies ran on the High Performance Computing cluster
Iceberg of the University of Sheffield with Intel Xeon E5-2650v2 @ 2.6 GHz
and 6 TB RAM (used max 128 GB). The third case study ran on a laptop
with Intel Core i7-2620M @ 2.7 GHz and 6 GB RAM.

C.1 Randomly Generated Machines

The first case study consists of 13 600 machines that were created by the
generator described in Appendix B. There are two groups of 1 700 machines
for each of the four types of DFSM; the machine types are DFSM, Mealy and
Moore machines, and DFA, and each type is represented by 3 400 machines.
One group contains machines with 5 inputs and the machines in the other
group have 10 inputs; p is 5 or 10. All machines except DFA have 5 outputs;
q is 5 (or 2 for DFA). All machines are also strongly connected and minimal.
For each machine type and each p, there are 17 ‘state groups’ of 100 different
machines with the same numbers of states. The state groups are referred by
the related number of states. There are 10 state groups with n as multiples
of 10 in the range from 10 to 100 states. Then, there are 7 state groups with
n up to 1000, in particular, these state groups have 150, 200, 300, 400, 600,
800 and 1000 states. Only few machines have an adaptive distinguishing
sequence (ADS); they usually have lower number of states (up to 100) and
higher number of inputs (p = 10).

1https://github.com/Soucha/FSMmodels/releases/tag/v1.3
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C.2 Models of Real Systems

The second case study includes three models of real systems that were used
to evaluate active-learning algorithms in [BJLS05, How12, IHS14]. The
models are examples of Calculus of Communicating Systems (CCS) and
their definition can be found in the Edinburgh Concurrency Workbench2.
peterson2 is the smallest one and it models the Peterson’s mutual exclusion
protocol3. The other two models are schedulers4, sched4 and sched5 in
particular. All three models are deterministic finite automata (DFA) so that
they are completely specified and have 2 outputs. The numbers of states and
inputs are shown in Table C.1.

Name States Inputs

peterson2 50 18
sched4 97 12
sched5 241 15

Table C.1: DFA models of real systems

The DFA models are included in the LearnLib. The model peterson2
was used for an experimental evaluation of the L* algorithm (Section 16.1)
in [BJLS05]. The OP algorithm (Section 16.3) with its 3 counterexample
processing functions was tested on all three models in [How12]. The experi-
ments in [IHS14] then employed peterson2 and sched4 to evaluate the TTT
algorithm (Section 16.4).

C.3 GridWorld in the Brain Simulator

The third case study is to learn an artificial environment such that its
model is not available to the teacher. Hence, the teacher is implemented by
TeacherBB that interacts with the environment only through output queries.
The environment is the map E shown at the top of Figure C.1 and it is a part
of the GridWorld scenario of the Brain Simulator5 developed by GoodAI.

The partial model at the bottom of Figure C.1 captures a part of the map
E shown above it such that the map is formed of the grid of tiles and every
tile is modelled by a state. The model is a deterministic finite-state machine
so that output symbols are both by states and on transitions. The agent that
is directed by the user can move into four directions and thus to explore the
map. If the adjacent tile in a particular direction is not accessible, that is, it
is outside the map or there is a wall, then the agent stays on the same tile
and the output C is received as the response to the input corresponding to
the direction. Otherwise, the agent moves in the chosen direction and the

2http://homepages.inf.ed.ac.uk/perdita/cwb/
3http://homepages.inf.ed.ac.uk/perdita/cwb/Examples/ccs/peterson-2.cwb
4http://homepages.inf.ed.ac.uk/perdita/cwb/Examples/ccs/sched.cwb
5https://www.goodai.com/brain-simulator
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Figure C.1: GridWorld map E and its part modelled by a DFSM

output F is obtained as the response. Each tile can contain an object. The
agent asks the input ↑ in order to detect which object is on the tile where
the agent stands; there is usually nothing (the output N). In total, there are
5 inputs that the agent can query (4 directions and 1 to wait on the same
tile), 2 transition outputs (C and F) and 5 state outputs (N and 4 different
objects).

The learnt model of the GridWorld map E is visualized in Figure C.2 using
the FSMvis that is a part of the FSMlib (Appendix A). The DFSM model
has 32 states that correspond to each tile of the map E in Figure C.1.
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Mapping to
Figure C.1:

Inputs
0 - stay
1 - left
2 - right
3 - up
4 - down

State outputs
0 - N
i - Oi

Transition outputs
0 - F
2 - C

Figure C.2: Learnt model of the GridWorld map E visualized using the FSMvis.
States, inputs and outputs are numbered from 0
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Appendix D
Flaws in the Related Work

This appendix describes two flaws detected in the related work.

D.1 IADS construction algorithm

Section 3.3.4 sketched the greedy algorithm proposed in [HT15, Algorithm 1].
Unfortunately, the proposed algorithm is not correct and this section points
out the inconsistencies. Algorithm 55 describes the greedy algorithm as it
was proposed originally except different notation and a typo on line 8 fixed.
A node ri of IADS is defined by the values of functions (I, C, i, o) where I, C
are the initial and current sets and i, o are input and output strings labelling
the path from the rood to ri; the root is defined as (S, S, ε, ε).

The main issue of the algorithm is that it does not have to stop as a pair of
states (si, sj) in Q cannot be separated for two reasons. Either the provided
number l is smaller than the length of the shortest separating sequence of
si and sj , or any separating sequence of si and sj cannot be created by the
algorithm due to the definition of Θ and N .

The former case depends on the condition on line 8 of Algorithm 55 that
stops the extension of the current IADS if its height (of the corresponding
tree) reaches the given number l. As the condition is inside the main cycle
(line 3) on undistinguished pairs of states, the same IADS is created over and
over if a pair of states can be distinguished only by a sequence longer than l.

The latter case depends on unclear conditions on lines 17 and 23. N is
defined as a set of sets of nodes (a set of Nx for all x ∈ X) whereas F is a
set of current sets. Hence, the condition N ⊆ F on line 17 is not formally
correct as the sets do not contain elements of the same type. The condition is
commented in [HT15] as follows. “If the current sets of all possible children
of the current node are in set F , there is no point in investigating this node
any more”. The condition thus should be ∀x ∈ X∀rj ∈ Nx : C(rj) ∈ F .
The condition on line 23 is also misleading. On the one hand, if one follows
only Algorithm 55, then the variable index remains −1 and so the condition
on line 23 holds only if the condition on line 17 holds. As F is initialized
to empty set and N is non-empty for each node ri, the condition on line
17 is not true unless F is enlarged. Hence, no current set would be added
to F following this approach and so this pruning heuristic does not work.
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Algorithm 55: Greedy algorithm constructing IADSs
input :FSM M , natural number l
output :A set of trees (IADSs) T

1 Q← {(si, sj) ∈ S × S | i < j}
2 T← ∅ and F ← ∅
3 while Q 6= ∅ do
4 N ← ∅, a← 0, h← 0
5 ri ← (S, S, ε, ε) as the root of a new tree Tk

6 while ri is defined do
7 max← 0, index← −1
8 if |i(ri)| < l then
9 foreach x ∈ X do

10 foreach y ∈ λ(C(ri), x) do
11 generate a new node rj

12 I(rj)← {s ∈ I(ri) | λ(δ∗(s, i(ri)), x) = y}
13 i(rj)← i(ri) · x
14 o(rj)← o(ri) · y
15 C(rj)← {δ∗(s, i(rj)) | s ∈ I(rj)}
16 add rj to Nx

17 if N ⊆ F then
18 add C(ri) to F
19 else if ∀x ∈ X : Φx(Q,Nx) = 0 then
20 index ← argminx∈XΘx(F,Nx)
21 else
22 index ← argmaxx∈XΦx(Q,Nx)
23 if index = −1 then
24 add C(ri) to F
25 else
26 foreach rj ∈ Nindex do
27 if no proper ancestor of ri have a current set C(rj)

then
28 add rj and the edge (ri, rj) to Tk

29 ri ← next unprocessed leaf rj of Tk

30 for all pair of leaf nodes ri, rj ∈ Tk, ri 6= rj do
31 if s ∈ I(ri), s′ ∈ I(rj) then
32 pop (s, s′) from Q
33 push Tk to T once

34 return T
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Moreover, Θ would always return 0 so that it would be useless. On the other
hand, if the description of the algorithm in [HT15] is taken into account,
the condition on line 23 should represent that the node ri cannot be refined.
According to [HT15], input x refines a node ri if the states of C(ri) do not
produce the same output to x. It would thus be impossible to construct
separating sequences containing a so-called transferring input that transfers
states to a different set of states but do not distinguish them. For example,
the separating sequences ‘baa‘ or ‘cb‘ captured in Figure 3.1 could not be
created by following the described approach. Neither of approaches lead to a
correct algorithm. In addition, the use of Φ and Θ for input selection does
not have to be sufficient. The authors stated that if for all inputs Φ is 0
and there are several inputs with minimal value Θ, then the lexicographic
order can be used. Nevertheless, it may mean that a separating sequence
is not constructed as the needed input is not selected. An example is in
Figure 3.1 where ‘a‘ is chosen for node r9 and then the construction stops
by the condition on line 28 (cycle check), however, if ‘b‘ or ‘c‘ were selected,
then some states could be separated.

A minor note is that the algorithm contains unused variables a, h and max.
The set of possible successors N is initialized on line 4, however, it should be
reset for each node, hence, it should be initialized with empty set on line 7
instead.

D.2 Convergence of Test Sequences

Section 8.1 defined the convergence of test sequences and pointed out that
[SPY12, Lemma 3] contains a flaw. This section describes the flaw on an
example. At first, the original lemma is defined and the wrong assumption is
in bold.
Lemma D.1. ([SPY12, Lemma 3]) Given a test suite T and an FSM M , let u
and v be tests in T which areM -convergent in state s and N ∈ FT be an FSM,
such that u and v are N -divergent. Let also w be a shortest input sequence,
such that M and N are {uw, vw}-distinguishable Then, for each proper
prefix w′ of w such that {u, v} ·pref(w′) is FT -divergence-preserving, the tests
in {u, v} · pref(w′) reach at least |w′| + |δ∗M (s, pref(w′))| + 1 distinct states
in N .

The revised version defined in Lemma 8.7 assumes that w separates
states reached by u and v in N instead of a weaker assumption of that
M and N are {uw, vw}-distinguishable.

Figure D.1 sketches a particular example of four test sequences, uabb, ubb,
vabb and vbb, on two DFSMs M and N such that u, v are sequences and ‘a’,
‘b’ are input symbols. According to Lemma 8.7, u, v areM -convergent in state
s and N -divergent, that is, δ∗M (s0, u) = δ∗M (s0, v) = s and δ∗N (q0, u) = q 6=
q′ = δ∗N (q0, v). If w is the shortest sequence such that uw or vw distinguishes
M and N , then w is ‘bb’ in this example. Consider w′ = ‘b’ as a proper prefix
of w and assume that {u, v} · pref(w′) is FT -divergence-preserving. Then the
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but ‘bb’ does not separate q and q′ → ‘abb’ needed

Figure D.1: Convergence of sequences – a flaw in [SPY12, Lemma 3]

tests in {u, v} · pref(w′), that is, u, v, ub and vb, should reach at least 4
distinct states in N according to the original [SPY12, Lemma 3]; |w′| = 1 and
δ∗M (s, {ε,b}) = {s, s4} so that the bound is |w′| + |δ∗M (s, pref(w′))| + 1 = 4.
However, the four tests reach just three distinct states, q, q′ and q4, in N .
Figure D.1 thus captures a counterexample that the original requirement on w
is not sufficient. If the sequence ‘abb’ is considered instead of ‘bb’ as it is the
shortest one that separates q and q′, then the bound on the number of distinct
states holds. Note that if w separates q and q′, then it also distinguishes M
and N because there are two different responses to w in N but just one in M .
Hence, the original statement holds as well but does not have to be stated
explicitly in the revised lemma.

The proofs of [SPY12, Lemma 3] and its revised version in Lemma 8.7
differ only in the Case 2, that is, when state sk+1 reached by wk+1 from
s is in the set of states δ∗M (s, pref(wk)). In the original proof of [SPY12,
Lemma 3], it was sufficient to show that if uw distinguishes M and N , then
uwk+1 needs to be N -divergent with all {u, v} · pref(wk) because of the FT -
divergence-preserving set covering them and the following fact. If uwk+1 was
N -convergent with a uwj or vwj such that j ≤ k, then w would not be the
shortest extension of u that distinguishes M and N because wj · w′k+1 could
be used instead. Unfortunately, this reasoning is not sufficient for Lemma 8.7
as there can be a shorter sequence than w that is the extension of u or v and
distinguishes M and N but it does not separate states q and q′ reached by
u, v in N . An example is captured in Figure D.1 where w′1 = ‘bb’ of w =
‘abb’ can be used straight from q to distinguish M and N but the response
to ‘bb’ is the same as from q′ so ‘bb’ does not separate them.
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