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Abstract

Potato dormancy break is a commercially important process that leads to losses during

crop storage. Dormancy release involves the activation of buds on the tuber surface.

Although much is known about hormonal and environmental triggers for dormancy re-

lease, there is a lack of knowledge on the metabolic processes stimulated by these fac-

tors, enabling bud growth to occur. In this thesis I report on experiments designed to

characterise and investigate the earliest metabolic changes occurring as tuber buds exit

dormancy and start to sprout.

The majority of previous work focused on changes in the tuber rather than the buds,

due to their size limiting analysis. To tackle this problem, I have developed a mass

spectrometry approach using individually dissected buds from tubers at different time

points in storage, studying cultivars showing a range of genetically determined dormancy

characteristics grown under both field and greenhouse conditions.

These investigations identified elements of the citric acid (TCA) cycle as very early

markers of bud release from dormancy across a range of storage and growth conditions

for a diverse set of tuber cultivars. Moreover, a quantitative analysis indicated that at

certain stages the TCA cycle was functioning in a non-cyclic manner, a phenomenon

reported in other biological systems. These results provide an insight into the earliest

metabolic events in tuber bud sprouting, providing lead markers that may be of interest

to the industry as novel approaches to measuring tuber condition during storage.

In the final part of the thesis I report on the development and application of a

method to image metabolite distribution around tuber buds as they leave dormancy. An

optimisation process is described which allows detection of TCA metabolites in sections

of tubers, providing the foundation for future work analysing where and when shifts in

TCA metabolites occur within tubers during bud sprouting.

All the data presented in this thesis are available on request from Prof. Andrew

Fleming, Department of Animal and Plant Sciences, University of Sheffield (contactable

at a.fleming@sheffield.ac.uk).
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Chapter 1

Introduction

Potato dormancy break is an agronomically important process, so understanding and

controlling it has been tackled from various research perspectives. These vary from engi-

neering controlled environments for optimal storage (Heltoft et al. 2016), to monitoring

changes in physiology, such as respiration rate(Li 1985). In this thesis, a plant devel-

opment approach is used. Taking this viewpoint, I focus on the fact that potatoes are

modified stems with highly reduced, shortened internodes that are radially expanded

(Peterson et al. 1985). At each stem node, there are axillary buds, which are referred

to as eyes in the context of tubers (Teper-Bamnolker et al. 2012). Each axillary bud

comprises tiny leaf primordia around a meristem. The eyes of a potato are thus develop-

mentally equivalent to the axillary buds typically observed along the aerial stems of most

plants (Li 1985). These axillary buds are initially dormant but can become activated (via

environmental triggers or an endogenous programme) to form the branches which define

the plant architecture. The dormancy habit of a potato is therefore equivalent to the

dormancy habit observed in shoots, whereby an overwintering stage of minimal growth

is followed by rapid growth once favourable environmental conditions prevail. This new

growth occurs at sites formed or determined in the previous season: the axillary buds

(Wang et al. 2014).

Potato tubers are thus part of an evolutionary ancient vegetative propagation and

overwintering strategy, developed to ensure rapid growth of the plant once a temporary

harsh environment (winter) has passed. In the wild, this allows the aerial organs to die

back in the winter and regenerate at the beginning of the next growing season because

the tuber remains protected below the soil. During re-growth, the swollen tuber acts as

a source of stored carbon, nutrients and energy, ensuring the new “branches” derived

from the tuber can rapidly grow to the surface and establish the new photosynthetic

shoot required for plant survival and further growth.
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In an agronomic setting, the endogenous dormancy of tubers was exploited in pre-

Columbian South America for 4000 years, providing human populations with a ready

source of nutrition which could be stored over winter (Burton 1989). Since then, the

potato has gained influence in Europe and North America as a major staple crop. How-

ever, the tendency, indeed requirement, for the tuber to eventually break dormancy and

activate the growth of the axillary buds presents an agronomic challenge, since upon

loss of dormancy the storage material (mainly starch) within the tuber is rapidly broken

down, making the tuber essentially inedible or, at the very least, of limited nutritional

value. The widespread commercial use of potatoes, both directly as a foodstuff or as the

raw material for a wealth of high-value processed material, which deliver nutrition to the

public all-year round, depends upon the ability to restrain the tendency for tubers to

sprout during storage (Lu et al. 2012). This tension between the developmental program

of the tuber (sprouting of axillary buds) and the agronomic requirement (repression of

sprouting of axillary buds) provides the context for the studies reported in this thesis.

1.1 Meristems, axillary meristems and the cell cycle

All plant cells are ultimately derived from meristems, the most important of which are the

root and shoot apical meristems (RAM and SAM, Dodsworth 2009). These meristems are

represented schematically in Figure 1.1. Apical meristems are niches of stem cells at the

growing tips of the roots and shoots, which generate new cells required for organogenesis

and growth. Active apical meristems are in a continuous state of proliferation; the future

potential for growth is maintained by retaining a subset of daughter cells in the stem cell

niche, whilst the other daughter cells leave the meristem and develop into new organs.

In the SAM, the size of the stem cell niche is maintained by means of the WUS-

CLAVATA system, an intricate negative feedback loop between transcription factors

and locally acting peptide signals (Figure 1.1 A). WUSCHEL (WUS) is expressed in the

organising centre, and encodes a homeodomain protein that promotes the maintenance

of stem cell properties. WUS also promotes the expression of CLAVATA3 (CLV3) in

adjacent tissue layers. CLV3 is expressed in the central zone of the meristem and inhibits

WUS at the transcript level. This negative feedback allows the SAM to be maintained

at a constant size, even though the cell population is dynamic and proliferating, leading

to the regeneration of cells in this organ (Öpik & Rolfe 2003).

Hormones, in particular auxins, also play a role in the maintenance of the stem

cell niche. Auxin also provides positional cues for the pattern of organ initiation; for

example, the arrangement of leaf primordia around a growing meristem gives rise to

phyllotaxy. This patterning process in the differentiating daughter cells is tightly linked
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B

Figure 1.1: Schematic representation of the shoot and root apical meristems
A: The shoot apical meristem (SAM), including the main zones in the organ, and regulatory

proteins involved in meristem control and maintenance in the WUS-CLAVATA feedback loop

(superimposed). B: The root apical meristem (RAM) including the main zones in the organ,and

the route of PIN-mediated auxin flow (black arrows). Adapted from Öpik & Rolfe (2003)

to the KNOX-ARP transcription factor module, which acts to define the early determi-

nation of groups of cells (?). Cell fate is defined by these patterning systems, which lead

cells into developmental pathways that ultimately lead to full differentiation and the de-

velopment of leaves or inflorescences. As such, active SAMs represent tightly controlled

stem cell systems: they produce all the cells in a plant in a stable and sustained way

and, via the patterning system, dictate the position and fate of organ primordia. Thus,

SAMs control the fundamental post embryonic form of the plant.
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A similar mechanism operates in the RAM (Friml et al. 2002). Figure 1.1B shows the

flow of auxin towards the quiescent centre, directed by PIN proteins. In the RAM, the

auxin fountain travels through the root cap, epidermis and vasculature, and the auxin

maximum maintains the stem cell niche. Although the relative auxin levels have the

opposite effect of that seen in the SAM (with an inverted auxin fountain and stem cell

maintenance at the auxin maxima), the same molecular toolbox is used to control stem

cell niche maintenance in the RAM.

A key aspect of the SAM and RAM’s sustained ability to generate new cells is their

“stemness” which prevents any overt cell specialisation. In shoots, the development of

photosynthesis is a key indicator of differentiation, and cells of the SAM do not show

signs of this activity (they are not green and do not contain chloroplasts, Mason et al.

2014). This presents a challenge for the plant, since, while being the centre of high

metabolic and anabolic activity, meristems lack the ability to generate carbon, energy

or reducing power which typifies photosynthetic cells. This means that active meristems

must be strong nutrient sinks within the plant; they require a stable external provision of

substrate for growth. Simultaneously, by definition the lack of differentiation means they

also lack the overt vascular system which the rest of the plant is able to use to redistribute

material such as photosynthates (Öpik & Rolfe 2003). This metabolic challenge for an

active meristem is one that we will return to later in this thesis.

A B

Figure 1.2: Schematic representation of axillary meristem formation
A: an organ primordium developing from the shoot apical meristem. Quiescence is assigned to

a pocket of cells adjacent to the meristem. B: the position of axillary meristems once organs

have expanded fully. The axillary meristem remains close to the site of organ initiation, whilst

the shoot apical meristem grows away. (Öpik & Rolfe 2003)

As well as providing new cells which enter various pathways of differentiation and

growth, SAMs also have the ability to lay down new meristems (Janssen et al. 2014).

These meristems are an important component of the plant’s capacity to respond to
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environmental conditions (Wang et al. 2014). These new meristems are generated at

intervals, simultaneously to a new organ primordium. This is shown in Figure 1.2 A.

Pockets of stem cells are laid down at the boundary between the apical meristem and

the new organ, leading to a meristem in the axil of each fully expanded leaf. This is

shown in Figure 1.2 B. On formation these axillary meristems are dormant and it is their

coordinated activation and differential growth that generate a mature plant’s stereotypi-

cal architecture. For example, in plants where the SAM exerts strong apical dominance,

the axillary meristems remain suppressed and the plant will develop a columnar, un-

branched structure. In contrast, in plants with weaker apical dominance the axillary

meristems are activated and start to generate new cells. The growth of these cells (and

their progeny) leads to visible branches, thus the plant develops a bushier habit. The

suppression-activation status of axillary meristems is to some extent set by the endoge-

nous developmental programme of the plant, but the actual release of axillary meristem

potential is often highly influenced by the local environment in which the plant exists

(Waldie & Leyser 2018). This fundamental property gives plants their highly plastic

response to environmental cues. It is seen above ground (for example in the patterning

of branches) and also below ground, where lateral root branch formation and growth

is highly influenced by local availability of key nutrients. Roots are often capable of

detecting pools of nutrients and proliferating to maximise their exploitation.

At the organ initiation stage, when new axillary meristems form, they tend not to

be proliferative. The stem cells are laid down in a quiescent state. Quiescent cells have

an arrested cell cycle, yet retain the capacity to initiate proliferation. The cell cycle

is a universal phenomenon in eukaryotes, describing the controlled series of events by

which DNA is replicated and separated into two new nuclei and, generally, two new

daughter cells (Öpik & Rolfe 2003). Variations on this common theme exist, including

the capacity for replication of DNA without the formation of new cells (polyploidy) and

the ability of cells to exit an active progression through the cell cycle and enter a phase

of quiescence. In axillary meristems this quiescent state is thought to be imposed in the

G1 phase prior to DNA replication at S phase (Hartmann et al. 2011. This is represented

schematically in Figure 1.3. It is thought that these cells only carry out rather basic

housekeeping and cell respiration processes, remaining stem-like without dividing. The

fact that these groups of quiescent cells are grouped together in relatively accessible

and predictable positions in plants (axillary buds) makes them an attractive system to

investigate some basic biological processes. As meristem activation can be triggered

by cues such as injury or hormonal switches, it is possible to trace the trajectory of

processes associated with reactivation in vivo. A detailed developmental series can then

be investigated following an artificial trigger for quiescence exit. Previous work in this
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area has focussed on the activation of axillary meristems along stems of Arabidopsis and

tomato, and has led to the characterisation of a complex interaction of hormones (auxin,

strigolactones and cytokinins) involved in the release of suppression of axillary buds,

as well as various transcription factors (Janssen et al. 2014). However the metabolic

Figure 1.3: Schematic representation of the cell cycle
There are a number of key points in the life of a cell when status is checked (e.g. for DNA

damage) before progress can take place. These checkpoints reflect different stages in a cell’s life:

G1 and G2 feature growth, DNA synthesis occurs during S phase, and mitosis takes place during

M phase. Quiescent cells usually arrest at the G1-S transition, marked in black. Quiescent

cells can remain arrested at a checkpoint for prolonged periods of time, yet retain the ability

to proceed to cell division. Öpik & Rolfe (2003)

processes that must underpin (and indeed drive) the growth resulting from switching by

the established hormonal/transcription factor modules remains under-investigated.

In a study by Liu, et al., proteomic analyses were able to distinguish between dor-

mancy, growth and a transitional state as three separate phases in potato dormancy

break, but the metabolic changes linked to these alterations in the proteome are un-

known (Liu et al. 2014). The ready accessibility of axillary buds (eyes) on potato tubers

and the well characterised metabolic events that occur in the tuber during sprouting,

such as sweetening, weight loss and increases in respiration, plus its relevance to com-

mercial agriculture, make this an attractive system to investigate this problem.
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1.1.1 What is known about bud dormancy and sprouting in

potato tubers?

Our basic understanding, gleaned from research in the 1980s posited that potato tuber

dormancy has two distinct phases: endodormancy and ecodormancy (sometimes referred

to as ecto-dormancy, or simply dormancy where it does not need to be distinguished from

endodormancy, Burton 1982). During endodormancy, growth inhibiting compounds are

present at high levels and the tuber is unable to respond to any growth promoting

environmental cues. Over the course of the storage season, these growth inhibitors are

gradually degraded, until the tuber is dormant; by this point it can sprout in response to

environmental cues, but only if those cues are present in sufficient strength. Eventually,

the levels of growth inhibiting compounds become low enough for dormancy to break

and sprouting is guaranteed as long as the potato is viable. Building on this classical

understanding, some of the phytohormone dynamics involved in potato dormancy break

and sprouting have been identified. These are represented schematically in Figure 1.4

and described below.

It is thought that abscisic acid (ABA) is the main endodormancy promoting hor-

mone; it is observed to decline steadily after harvest (Figure 1.4 A, Campbell et al.

2010). In contrast, the plant hormones gibberellic acid (GA) and cytokinin (CK) are

associated with dormancy exit and can be thought of as sprouting promoters (Hart-

mann et al. 2011). Specifically, GA appears to contribute to bud growth and elongation,

but this is only possible once background CK levels are sufficiently high (Figure 1.4 B,

Bromley et al. 2014). Free CK availability is modulated by a CK riboside phosphory-

lase (CKP1). CKP1 interconverts CK from its nucleoside form to the free base form,

and hence modulates the plant’s ability to perceive it. Other plant hormones, such as

brassinosteroids and ethylene are also associated with dormancy, although their role is

less clearly elucidated. Both brassinosteroids and ethylene are thought to prolong the

period of endodormancy, postponing the time point when tissues become sensitive to

dormancy-ending compounds (Figure 1.4 C and D, Aksenova et al. 2013). However,

the data are somewhat inconsistent, and there is no particularly good evidence of this

information being applied successfully to prolonging dormancy in a commercial setting.

For example, poor application of ethylene treatment can lead to damaging effects on

processing properties (Bethke 2014).

Another way in which potato tubers change during dormancy involves the use of

their starch reserves (Davies 1984). As a key part of the potato’s overwintering strategy,

the tuber contains very large starch deposits to fuel the rapid growth of new shoots once

the environment becomes favourable again. This starch undergoes breakdown to release
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A B

C D

Figure 1.4: Schematic representation of the classical understanding of potato dormancy,
integrated with more recent phytohotmone data
A: The change in ABA (Abscisic acid) concentration over time since harvest. ABA levels

decline steadily, and endodormancy ends once it falls below a critical level. B: The change in

cytokinin(CK) concentration over time since harvest. CK levels increase steadily; once they

pass a critical theshold, buds become responsive to GA. C: Changes to sprouting probability,

over time since harvest, in response to an increase in ethylene. The addition of ethylene is

represented by the vertical dotted line. Ethylene can stabilise dormancy, if applied at the correct

moment during development. D: Changes to sprouting probability, over time since harvest, in

response to increases in brassinosteroids. The addition of brassinosteroids is represented by

the vertical dotted line. Brassinosteroids are associated with prolonging dormancy, possibly by

promoting quiescence. For all panels, the x axes represent the time since harvest. The dashed

horizontal lines represent the threshold for the bud becoming responsive to dormancy ending

cues, such as GA (gibberellic acid). Specific references are outlined in the text. The whole

system is reviewed in Aksenova et al. (2013).

soluble sugars, such as sucrose, as the buds grow to form new plants. In a commercial

setting, the relative abundance of sucrose and various reducing sugars has been used as

a proxy for tuber activity and depth of dormancy. The main concept underpinning this

metric is that the starch reserves in the tuber are mobilised at the point of dormancy

break to facilitate sprout growth via the supply of soluble sugars. This has been described

as senescent sweetening since the 1960s (Burton 1982). The mobilisation of carbon is

associated with amylose activity and it is postulated that this is a key step towards
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growth after dormancy break (Huiling et al. 2014).

Carbohydrate mobilisation is clearly a key function of the potato tuber. The primary

function of this organ is to store reserves for the next growing season. This implies that

changes in metabolism are a potentially useful way to understand the stage of dormancy

break; the switch from quiescence to growth must involve a change in resource utilisation

and transport. However, there are several factors that may cause tuber sugar levels to

vary independently of dormancy status, such as cold temperature storage, undermining

the generality of reducing sugar concentration as a metric. Whilst sugar mobilisation is

certainly necessary for growth, it is not reliably diagnostic of dormancy break. However,

a more detailed look at these processes may reveal linked molecular markers that can

distinguish between the different sweetening processes. For example, Zhang et al. have

mined the potato genome for a change in amylase expression in response to cold induced

sweetening, and the pattern seems to differ in comparison to sprouting potatoes (Zhang

et al. 2018). In another study, Herman et al. were able to distinguish between low

temperature sweetening driven by invertase, and senescent sweetening by phosphorylase

(Herman et al. 2016). To what extent this metabolic switch is simply a requirement for

the process of dormancy break and to what extent it might actually be a driver or key

cog in the activation process is discussed below.

1.2 Metabolism and cell division

Most of the work on metabolism potentially being intimately linked to cell division and

differentiation has been performed on non-plant systems. A summary of this work is

given below, followed by its use as a framework for understanding plant differentiation

and the role of metabolism in plant meristems.

Metabolic reconfiguration is an important aspect of cell specialisation, which in turn

is an important feature of multicellularity, by which eukaryotic organisms can achieve

high levels of complexity and produce sophisticated structures. Cell differentiation al-

lows cells to specialise and act in concert to carry out processes more efficiently than

individual cells, allowing organisms to organise cells into tissues that are optimised for a

particular function, such as light interception or nutrient uptake. Basic cellular house-

keeping processes, such as respiration and DNA repair, are key to all cells, but the

process of specialisation involves tailoring metabolism and optimising it for a particular

function. This differentiation entails many processes, including gene expression, enzyme

activity and nutrient transport changes. In general, it is a unidirectional change, for

specialised cells are metabolically constrained and few endogenous conditions will per-

mit the process to be fully reversed. The loss of pluripotency generally involves both a
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reduction in the breadth of daughter cell fates and the vigour of cell division.

A moderately well studied system for this is the specialisation of animal embryos,

where the switch from proliferating to differentiated status involves an alteration in

metabolism (for review, see Shyh-Chang et al. 2013). However, substantially more effort

has been put into studying the reverse process in mammalian tumours, the development

of which involves an aberrant return to a proliferating habit. One recurrent observation

from these tumour studies is that these cells differ metabolically from surrounding tissues.

In particular, the tricarboxylic acid (TCA) or Krebs cycle and oxidative phosphorylation

tend to be replaced by aerobic glycolysis (Vander Heiden et al. 2009). There is continuing

controversy as to whether this is an emergent property of the switch to proliferation or

an integral part of the change.

As early as the 1930s, Warburg proposed that aerobic glycolysis plays a causal role in

carcinogenesis. This concept has been revisited recently, in light of progress in our under-

standing of carcinogenesis (Garber 2004). In particular, it has been observed that prolif-

erating and differentiated cells have different requirements, and it is therefore proposed

that they are metabolically optimised differently. Proliferating cells need to replicate

their structures rapidly in order to be able to divide. In healthy, differentiated cells, the

limiting factor for growth is often energy substrate supply, which is carefully budgeted.

In tumour cells, however, this limiting factor is removed due to misregulation of gene

expression and metabolism, meaning that it is possible for cells to accumulate matter

and extract chemical energy at a fast rate. For these rapidly proliferating cells, it is more

advantageous to accumulate monomers for building cell structures as rapidly as possible

than to maximise ATP extraction from the substrate. In the absence of a functioning

external regulation system, tumours can undertake this rapid turnover of substrates,

which is beneficial to individual cells, but has detrimental effects on the energy status of

surrounding tissues (Banerjee 2018).

The metabolic status of proliferating tumour cells in eukaryotes has been compared

to unicellular systems responding to different environmental conditions (Chen et al.

2007). For example, yeast metabolise differently under high stress or high nutrient

conditions. Under stressful conditions, respiration is carried out as ATP-efficiently as

possible, as the cell’s survival is in the balance. On the other hand, under high nutrient

conditions, yeast cells become proliferative and carry out fermentation. Glycolysis allows

cells to exploit the resources much more rapidly than oxidative phosphorylation, which

is advantageous in the short term for multiplication, even though the waste products

have a higher energetic value than those of the TCA cycle. Yeast cells are capable of

switching between these metabolic modes. Cells that are capable of detecting a pool

of nutrients and adjusting their metabolism accordingly have a substantial competitive,
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and hence selective advantage in a patchy habitat.

The switch in metabolism seen in such unicellular systems can be used as a simple

conceptual model for the conflicting interests of proliferating cells and the multicellular

organisms of which they form a part. In more general terms, individual interests are

served by rapidly metabolising nutrient sources at the expense of ATP efficiency. This

is particularly true when nutrient sources are available; it is advantageous for cells to

act as strong sinks and outcompete other cells. In multicellular organisms, regulation

usually prevents this, forcing cells into a slower, more ATP-efficient regime. This is of

benefit to the entire organism.

Alternative interpretations to the Warburg effect playing a causal role in the de-

velopment of proliferative capacity have also been proposed. When discussing embryo

systems, it has been suggested that mitochondrial number and development status are

also involved in the change in metabolism associated with proliferation (Shyh-Chang

et al. 2013). During early mammalian embryogenesis, there are a number of cell di-

visions without any net embryo growth before implantation. This means that the cell

contents are repeatedly divided without being replenished, leading to cells with small

volume and a small number of immature mitochondria (Rahman et al. 2013). A pref-

erence for aerobic glycolysis under these conditions could be explained by the fact that

it takes less time and resource investment to establish a functional glycolysis pathway

in the cytoplasm than to produce enough mitochondria with full TCA capacity. How-

ever, in oncological studies, there does not seem to be clear evidence of mitochondrial

defects being involved in early carcinogenesis. Whilst mitochondrial defects do appear

in tumours, they tend to arise much later than detectable changes in metabolism (Van-

der Heiden et al. 2009). Greater clarity is required on the sequence of metabolic events

associated with a switch to a proliferative habit to identify the drivers in the process. A

better understanding of the order in which metabolic changes appear could be used to

understand whether altered mitochondrial properties are causally involved in the switch,

or an emergent property. A competing interpretation of these observations could hinge

on the fact that mitochondrial processes operating at a lower level lead to a reduction

in their rate of development, by means of interrupted positive feedbacks, as opposed to

vice versa.

Another putative advantage of cytoplasm-based respiratory pathways is that aerobic

glycolysis bypasses oxidative phosphorylation. This process is involved in ATP synthesis,

using the products of the TCA cycle in an electron transport chain, leading to ATP

synthase. Oxidative phosphorylation can produce Reactive oxygen species (ROS), which

are particularly deleterious in the context of DNA replication before cell division. The

exclusion of the mitochondrial steps of cell respiration may thus protect proliferating cell
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lineages from accumulating excessive DNA damage. Limiting ROS exposure could be

part of the DNA protection mechanism in stem cells (Rahman et al. 2013).

From the above summary, it is clear that in mammalian and microbial research

there has been extensive interest in exploring the concept that rapidly dividing cells

may benefit from or require an altered oxidative metabolism compared to non-dividing

cells (which have generally formed the “norm” for classical biochemical analysis). The

transfer of these oncological concepts into plant biology has been extremely limited so

far, despite the availability of the relatively accessible and well characterised meristem

systems described above (see section 1.1). However, there is emerging evidence that

the TCA cycle varies, in terms of dominance over nutrient flows in the cell, in response

to changes in cell status (Zhang et al. 2018). For example, heterotrophic plant cells

are much more likely to carry out the full, conventional TCA cycle for efficient ATP

synthesis, compared to photosynthesising tissues (for review, see Sweetlove et al. 2010).

The identification of some TCA changes in different plant tissues bodes well for

the application of some of the animal approaches and metabolic ideas to the study of

axillary meristems. From a technical point of view, a major challenge is that meristems

are relatively small, so the use of conventional biochemical techniques is very difficult.

However, continued advances in mass spectrometry have opened the door to comparing

the metabolic profiles of quiescent, proliferative and transitioning tissue samples. These

advances are described in the next section.

1.3 Mass spectrometry

There have been recent technological innovations that make it tractable to apply a

metabolomics approach to the question of meristem quiescence (for review see Heyman &

Dubery 2015). For a long time, studying the biochemistry of meristems was extremely

laborious. For example, cytohistology studies of shoot apical meristem development

in plants relied on histochemistry, which tended to be highly targeted for particular

substrates with known colour development protocols, meaning analysis proceeded on a

metabolite-by-metabolite basis. Often these involved complex enzyme series, at a time

when purified enzymes were not readily available. Another major limitation of these

approaches is that they are too specific to permit a non-targeted scan, capturing a wide

range of molecules. For example, Fosket and Miksche visualised three metabolites by

staining them individually on separate tissue sections (acid phosphatase, protein-bound

sulfhydryl and succinic dehyrogenase - Fosket & Miksche 1966). In spite of the labour

involved, these classical approaches have continued to be applied; with Kerk and Feldman

using immunolocalisation to study the formation of the quiescent centre in the root apical
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meristem in response to ascorbate oxidase (Kerk & Feldman 1995). A major limitation

here is that immunolocalisation involves raising antibodies against desired antigens in a

mammal, then producing them by cell culture, limiting the scale of different molecules

that can be analysed. Whilst this study was informative, potentially linking ascorbate

oxidase to cell cycle arrest at the G1 to S transition, this information could not be

integrated into the context of a larger metabolic network at the time.

Recent technological innovations, particularly advances in mass spectrometry, could

help to vastly improve our understanding of axillary meristems and their metabolism (Lee

et al. 2012). Mass spectrometry is a technique used to analyse the relative abundance

of ions in a sample. Analysis involves ionising sample molecules and accelerating these

ions across an electromagnetic field. Differences in time of flight assort ions by their

mass/charge ratio, producing a profile of the relative abundance of different moieties in

a sample. This spectrum can be used to identify and discriminate between molecules

to a very high mass resolution and capture related ions that differ because of post-

translational modifications. Current mass spectrometers are highly sensitive, making

them suitable for detecting differences in concentration on a biologically relevant scale.

These innovations lend mass spectrometry the power to accurately analyse samples as

small as dormant meristems.

In later chapters, mass spectrometry is used to track changes in the abundance of

organic acids at intervals along a developmental series, responding to a quiescence-ending

trigger. The sensitivity is great enough to detect changes in the pools of intermediates

associated with enzyme-catalysed cycles, which fluctuate at the very low concentrations

associated with biological systems. This allows the progress of in vivo reactions to be

monitored at intervals. This developmental metabolomics approach is used in this thesis

to elucidate metabolic changes linked to growth responses.

One of the most exciting innovations in the field of biological mass spectrometry

has been the development of mass spectrometry imaging (MS-I, Horn et al. 2012). The

most established method uses the MALDI platform (Matrix Assisted Laser Desorp-

tion/Ionization, illustrated schematically in Figure 1.5), but other ionisation systems

operate on similar principles. MALDI imaging involves taking readings from a tissue

sample mounted on a moving stage (Figure 1.5 A). Metabolic profiles are generated

for each point on a grid (Figure 1.5 B); individual masses can be extracted from the

dataset and plotted at their coordinates on a colour intensity scale (Figure 1.5 C). These

metabolite heat maps provide information on the spatial distribution of a metabolite and

co-occurring moieties. This imaging can achieve a spatial accuracy of 10µm and be used

to visualise differences in the composition of individual cells in situ. Another, related

MS-I system is Desorption Electro-Spray Ionization (DESI, Figure 1.6, Tata et al. 2014).
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DESI uses some of the same principles as MALDI, including a moving stage, but uses a

solvent spray to ionise molecules. Whilst less established than MALDI imaging, DESI

seems promising for the highly soluble molecules discussed in chapters 3 and 4. Both of

these ionising heads can be coupled to extremely sensitive spectrometers, maintaining

the extraordinarily robust mass identification discussed above.

However, there are caveats associated with a metabolomics approach to be considered.

One limitation of mass spectrometry is that it tends to be a descriptive technology.

Whilst it is possible to generate very large datasets and identify disciminant data points,

this does not provide much biological insight on its own. The data need to be integrated

into a biological understanding of the processes taking place in the tissue and the role the

key masses are thought to play in these. The challenge of mass spectrometry is deriving

meaning from the technique’s substantial output. Integrating the data generated into the

context of the literature reviewed here is essential for this technology to be informative.

In summary, advanced mass spectrometry provides a tool to begin to investigate

the metabolic processes linked to the exit from quiescence to active growth in axillary

buds following exit from dormancy, yet its application in this context has been limited.

A previous study utilised these mass spectrometry innovations to examine metabolic

processes in tomato axillary meristems (Steels 2012), thus providing the foundation for

the analysis of potato tuber buds. The relevance of this experimental system in agronomy

is described in the following section.

1.4 The agronomic relevance of potato sprouting

The control of axillary meristem activity is of particular agricultural importance in the

case of the potato. As indicated earlier, tubers form as swollen underground stems, with

shortened internodes and radial expansion, and each tuber possesses several meristems

within small buds (often referred to as eyes), which are developmentally defined as

axillary meristems. When formed, these axillary meristems are quiescent and cannot be

activated. However, these meristems gradually become capable of reactivation after a

period of time, at which point they become responsive to several environmental cues (see

Aksenova et al. 2013 for review). Activation of the axillary meristems is key to sprouting,

which leads to loss of tuber integrity and, essentially, wastage from a commercial point

of view.

The potato industry is hugely important to the United Kingdom. According to

the FAO the UK produced over 5.4 million tonnes of potatoes in 2016, including 270

thousand tonnes for the export market, mainly in the form of seed potatoes. It is the

UK’s most important non-cereal crop. The country is reliably over 80% self-sufficient
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Figure 1.5: Schematic representation of MALDI imaging
A: A schematic illustration of the MALDI laser firing pattern on a tissue section, represented

by red circles. B: Each time the MALDI laser fires on a point on the tissue, shown inl A, a full

mass spectrum is collected by TOF-MS. C: An individual m/z bin, representing a moiety, can

be extracted from all the mass spectra like B and mapped on a colour intensity scale, linked to

the positional information from A. This creates a heat map for ion distribution in a sample.

in this crop (2016 imports represented 3.5% of consumed potatoes) and it is one of

the staple components of the national diet (FAO 2017). In addition to contributing to

fresh and processed food, it can be used in industrial products such as adhesives and
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Figure 1.6: Schematic representation of the the DESI ionisation system
Our Desorption Electro-Spray Ionization (DESI) platform mixes a solvent flow with N2 gas to

create a spray. This desorbs ions for analysis. The moving stage allows mass spectra to be

linked to positional information, making it possible to visiualise the distribution of moieties in

a tissue section.

biodegradable plastic replacements. This latter example is not currently a particularly

large use of potato in the UK, but interest is growing.

The storage of this important food crop can be problematic. If potatoes sprout in

storage, they are no longer fit for human consumption or for processing. This sprouting

is associated with sugar mobilisation, softening and rapid respiration, all of which nega-

tively affect nutritional and processing properties. The probability of sprouting depends

on length of time in storage, chemical treatment and variety. However, perturbations in

the field and in storage, such as drought or disease outbreaks, can also promote prema-

ture dormancy break. Cold storage (approximately 3◦C) promotes potato sweetening,

which has negative effects on processing properties, meaning it is not a practical so-

lution (Herman et al. 2016). From a broader perspective, the environmental penalties

associated with potato production are substantially higher if waste at the end of the

production chain is extensive.
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Potato storage is more challenging than that of cereals, because the nature of tubers

makes them fundamentally different from seeds (Matsuura-Endo et al. 2006). The tuber

tissue is of uniform ploidy (tetraploid), entirely maternal and never desiccated. The

control of tubers and dormancy maintenance is therefore very different from that of seeds.

Tubers continue to contain relatively high levels of water and metabolise moderately

throughout dormancy, meaning that different cues are involved in release. There are

also fewer pressures for multi-season dormancy, as potato tubers do not generate a seed

bank.

Prolonging potato dormancy is highly desirable, because of the problems associated

with late dormancy and dormancy break and their impact on processing quality. One of

the ways in which potato quality can be compromised is with an increase in acrylamide

risk (Mottram & Dodson 2002). Acrylamide formation potential is a function of sugar

availability for a given background level of suitable amino acids, in particular asparagine,

and available water (Muttucumaru et al. 2016). Acrylamide forms via the Maillard

reaction between reducing sugars and asparagine, with the reaction occurring at cooking

temperatures in the presence of water. It is believed that acrylamide is potentially a

high risk carcinogen in humans, in part due to high levels of dietary exposure (Tareke

et al. 2002). Potato is particularly vulnerable to acrylamide formation, due to its amino

acid composition, tissue water status and the scale of consumption. Acrylamide risk

is potentially promoted by several storage factors, including cold, hormonal activity,

irradiation and sprouting, further limiting the use of otherwise obvious refrigeration-

based storage mechanisms.

Recently, there have been efforts to reduce the acrylamide risk in potatoes by ge-

netically modifying them so that less asparagine is synthesised. In 2014, J. R. Simplot

company achieved USDA approval for the cultivation of the Innate low asparagine tu-

bers, and are now in the process of bringing the second generation to market (Simplot

2018). However, the European Union (EU) maintains a low level of cultural acceptance

of this kind of technology, meaning that uptake in the UK is unlikely. Furthermore, there

are other negative processing effects of potato sweetening that would not be resolved by

low asparagine levels, so studies into improving storage and understanding of dormancy

remain pertinent. Potato processors currently use sugar levels as the basis of consumer

rejection of potato batches, with associated waste and cost. By generating better pre-

dictive markers, sprouting-vulnerable tubers could be identified earlier or more reliably,

leading to a prioritisation of their use to reduce potential waste and cost to the industry.

Currently, most potato tubers are treated with Chlorpropham (CIPC) in storage to

delay bud break (Kleinkopf et al. 2003). CIPC does not target dormancy directly, rather

it is a mitotic inhibitor, leading to incorrect chromosome sorting during cell division
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(Vaughn & Lehnen 1991). This loss of cell division capacity means that the sprouting

process cannot occur. This mechanism of CIPC action has led to some concerns pertain-

ing to its large scale use, since it is thought to have carcinogenic potential and there is

some evidence of endocrine disruptive activity in mammals (Orton et al. 2011 and Nak-

agawa et al. 2004). It is also considered to be a potential threat to aquatic ecosystems

and occupationally exposed users (Passananti et al. 2014).

This evidence of CIPC toxicity is particularly problematic for the potato industry,

as the EU is displaying a shift in the policies underpinning its regulatory framework.

The use of a threat based regulatory principle is increasingly common, as opposed to

hazard-based frameworks. This makes increased regulation of CIPC likely, leading to

the effectiveness of application procedures being compromised. In the case of potato

sprouting, the safety margin for successful inhibition has already been eroded substan-

tially by regulation (Paul et al. 2016). Therefore, more severe regulation could eliminate

CIPC as an effective future treatment for sprouting. Although CIPC alternatives are

beginning to be commercialised, none of these strategies replicates the original efficacy

of CIPC. In many cases the new tools need to operate together to prevent sprouting

(Huang et al. 2014). Improving fundamental knowledge of the metabolic events in buds

during sprouting could inform new approaches or identify targets for the development of

new suppressors.

In view of these regulatory hurdles, it would be highly beneficial to understand the

endogenous process of dormancy break and sprouting better. Much of the sophisticated

previous work has focussed on hormones and aspects of whole tuber biochemistry. In

the near future, these studies are likely to harness the publicly available genome (Potato

Genome Sequencing Consortium 2011). Much less attention has been paid to the role

of the axillary bud containing the quiescent meristem. However, from a developmental

point of view the activity or signalling from these small pieces of tissue is likely to play

a key role in regulating the process of sprouting, from initial dormancy release to the

overall regulation of storage material breakdown as metabolites are mobilised from the

tuber to the activated bud. The new ideas and evidence from the fields of oncology and

microbial metabolomics, coupled with the technological advances occurring in metabolite

analysis and metabolite imaging, make the potato tuber an intriguing system to provide

a deeper understanding of fundamental biology (meristem activity) and to address a key

agronomic challenge (potato sprouting).
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1.5 Summary

Recent technological innovations coupled with advances in our understanding of the

potential role of metabolism in cell and developmental biology provide a novel approach

to understanding potato dormancy and sprouting. The aim of this study is to use

axillary meristems on the surface of potato tubers as a model system to characterise the

metabolic changes that occur as quiescent cell populations re-enter proliferation after a

phase of dormancy. This will provide both a new insight into a fundamental aspect of

plant biology and a potential route to improving post-harvest crop storage.

1.5.1 Objectives

• Core science: Elucidate the metabolic changes associated with the switch from

quiescence to a proliferation and growth in potato tuber axillary meristems. By

identifying the pathways represented by these metabolite patterns, gain a func-

tional understanding of the metabolic events involved in dormancy release and

sprouting.

• Industry: As a result of the above, identify metabolic pathways that could be

used to diagnose dormancy break before tuber quality is compromised, decreasing

waste. The identification of particular pathways may also reveal novel targets for

new sprouting suppressor development for commercial application.

1.5.2 Hypotheses

• Meristems undergoing release from dormancy to sprouting display a stereotypical

trajectory of metabolic change.

• Different metabolic profiles can be used to distinguish meristems at different stages

of dormancy release. Once the trajectory associated with the metabolic change

has been elucidated, it will be possible to identify where a sample representing a

snapshot in the dormancy break process fits into the sequence of metabolic changes.

• Analysis of the trajectory of metabolic change will inform on the underlying molec-

ular basis of dormancy release.

• Dormancy release and sprouting involve altered spatial patterns of metabolites

around and within the axillary meristem, linked to the metabolic pathways under-

pinning the process.
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1.5.3 Approach

• Set up in vitro system for analysing release of potato tuber meristems from dor-

mancy, based on Hartmann et al. 2011.

• Use the in vitro system to characterise metabolic profiles by carrying out mass

spectrometry of meristems and their surrounding tissue in a series representing

different stages of dormancy release.

• Compare the responses of molecular markers to dormancy release in different culti-

vars in order to test the universality of findings. A partial pedigree of the cultivars

studied cann be found in Figure A.1 on page 168.

• Interrogate the data to identify potential metabolic pathways involved in the re-

lease or maintenance of quiescent cell status, relating individual metabolites to the

literature.

• Use MS imaging to characterise local changes in metabolism occurring during dor-

mancy release. This will make it possible to link metabolism to stem cell status

and highlight any spatial organisation and local transport.
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Chapter 2

Metabolic profiles in tuber buds

during the release from dormancy

2.1 Introduction

This chapter reports changes in metabolic profiles associated with potato dormancy

break, in particular, examining dormancy release at the bud level. A key innovation

is the application of mass spectrometry techniques to these extremely small (less than

1mm) features on the potato tuber. Innovations in instrument versatility and sensitivity

mean that developmental metabolomics is now sophisticated enough to examine these

features (for review, see Heyman & Dubery 2015). A single 3 minute analysis of a 10mg

sample can detect 2’500 masses in a 750Da window. The power of these instruments

lends itself to the untargeted analysis of very small plant organs.

The metabolomics approach used in this chapter is predicated on the idea that these

structures contain quiescent meristem complexes, similar to those found in leaf axils.

It is postulated that the switch from meristem quiescence to actively proliferating in-

volves metabolic configuration, and metabolic changes are key to these buds’ capacity to

change their function. In many ways, these potato tuber buds are comparable to axillary

meristems in the aerial parts of related plants, such as those examined by Steels (2012).

A crucial additional element in potatoes is endodormancy. The process of dormancy

break is not fully understood but involves a concerted interaction of genetic and environ-

mental factors, mediated by hormonal signalling (for review, see Aksenova et al. 2013).

It is a core part of the plant’s overwintering strategy. In the wild, the aerial parts of the

plant die back and do not regrow until winter has passed and conditions are favourable.

In an agricultural context, tubers are deeply dormant at harvest (endodormancy) and

not responsive to external growth promoting stimuli and sprouting probability is low.
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During endodormancy, changes required for sprouting proceed gradually. After endodor-

mancy is complete, buds become primed and are responsive to a narrow range of stimuli,

including the phytohormone GA and factors such as light and temperature (Peterson

et al. 1985). At later points in dormancy, sprouting is effectively guaranteed; buds are

very responsive to environmental changes. This is illustrated schematically in Figure

2.1 on page 22. The exact length of dormancy is influenced by genetic factors, varying

substantially by cultivar. Perturbations, both in the field and in storage, may radically

reduce the expected dormancy length. Dormancy can be artificially prolonged using the

sprouting inhibitor CIPC, but this mechanism is independent of meristem reactivation;

it perturbs cell division, blocking continued growth (Vaughn & Lehnen 1991).

Figure 2.1: Schematic representation of potato dormancy.
At harvest, sprouting probability is low. It increases gradually during endodormancy. Sprout-

ing probability increases rapidly once tubers are primed and responsive to external stimuli.

After endodormancy is complete, buds become responsive to a narrow range of stimuli, includ-

ing the phytohormone GA. The sprouting probability continues to increase, until the tuber is

highly susceptible to a wide range of factors, such as light and temperature. The length of

endodormancy and sprouting probability absolute values are cultivar- and season-dependent.

Current understanding of endodormancy points towards two contrasting hormonal

signals. ABA inhibits sprouting and is abundant in freshly harvested tubers, declining

during storage. CK, on the other hand, is found at low levels after harvest, increasing

steadily during storage. Once the relative levels of these hormones pass a threshold,

the tuber becomes responsive to growth promoters such as GA (Hartmann et al. 2011).
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However, these whole tuber dynamics do not capture the changes at the meristem level.

Quiescent axillary meristems are typically arrested at the G1-S phase transition of the

cell cycle (Öpik & Rolfe 2003). As the quiescent cells in the tuber buds regain the

competence to proliferate, their metabolism changes. The change in cell function has

huge implications for their energetic status. The meristems use tuber nutrient reserves

to generate new aerial plant tissue. Rapid cell division and contents replication requires

a very different kind of metabolic strategy, compared to quiescence. This implies that

there should be changes to the meristem leading up to a visible change in bud size.

Throughout this chapter the concept of a metabolic switch being core to sprouting

is corroborated by examining the internal anatomy of tuber buds, then characterising

their metabolic responses to growth promoters in a detailed development series. Markers

from these experiments are compared to samples at various points in storage and across

a range of cultivars. I predict that this metabolic switch involves a stereotypical set of

changes, yielding markers for staging tubers and predicting sprouting behaviour. The

identity of these markers and their associated biochemistry are explored in later chapters.

2.1.1 Hypotheses

• Tubers undergoing dormancy release display a set of stereotypical changes to their

metabolic profiles.

• Different metabolic profiles can be used to distinguish tuber buds at different stages

of dormancy release.

• The markers in the metabolic profiles are independent of cultivar and the type of

dormancy ending signal.

2.2 Materials and Methods

2.2.1 Plant Material

Solanum tuberosum tubers of cv. King Edward, Desiree, Maris Piper and Russet Bur-

bank were grown in the field under commercial conditions (Yorkshire, United Kingdom)

during the seasons 2014-2017 and supplied by Glynn Harper (Agriculture and Horti-

culture Development Board, Sutton Bridge). Solanum tuberosum tubers of cv. King

Edward were grown at the Arthur Willis Environment Centre (AWEC). Original seed

potatoes were purchased from Suttons Consumer Products Limited. After the first sea-

son, potatoes were propagated from spare samples. Seed potatoes were planted in 15L

23



pots in M3 compost. They were irrigated by hand and grown under a 12hr light regime

at 20◦C during the day and 12◦C during the night. Illumination was ambient light and

supplementary light (200flux at bench level) if the ambient fell below 1000flux. Tubers

were collected once the plants senesced.

2.2.2 Potato Growing Conditions

Solanum tuberosum tubers of cv. King Edward, Desiree, Maris Piper and Russet Bur-

bank were grown in the field (Yorkshire, UK) during the seasons 2014-2017. After harvest

they were stored at Sutton Bridge Crop Storage Research in their controlled environ-

ments. After cooling, they were kept in 1 tonne boxes in the dark at 4◦C before transport

to TUoS at regular intervals (as indicated in the relevant Results sections).

Solanum tuberosum tubers of cv. King Edward were grown at AWEC. Tubers were

planted in 15L pots with M3 compost and grown in the greenhouse. The photoperiod

was 12 hours of ambient light with supplementary light (200flux at bench level) if the

ambient falls below 1000flux. Daytime temperature was 20◦C and nighttime tempera-

ture 12◦C. The plants were hand irrigated and harvested after 12 weeks (once the canopy

started to die back). After harvest, tubers were stored in the dark at 7◦C, in paper bags.

2.2.3 Assays of sprouting potential

A GA treatment based on Hartmann et al. (2011) was used to characterise the dormancy

status of stored tubers and produce staged samples for metabolic analysis. Samples

were prepared by removing the apical primordium from a tuber with a #4 Korkborer

(8mm diameter), slicing it to a height of 5mm with a razor blade and placing it in a

48-well plate (Themo Scientific, 11mm diameter). The primordium-containing potato

discs were surface sterilised by submerging them in excess 50% bleach for 15 minutes.

After surface sterilisation, tuber discs are transferred to wells containing sterile filtered

buffer in the lamina flow hood (buffer contains 20mM MES, 300mm D-mannitol, 5mM

ascorbic acid, pH 6.5). The buffer was filtered using a 0.45µm pore syringe filter. The

tuber discs were washed by transferring them into a new well of buffer every 15 minutes,

3 times. Samples were treated by submersion in excess 0.45µm-filtered 50µM GA or

control (filtered water) for 5 minutes. Treated potato discs were placed on moist filter

paper in 12-well plates (Themo Scientific, 25mm diameter), sealed, and wrapped in

aluminium foil. The multiwell plates were kept in a growth cabinet at 22◦C. Potato

discs were observed daily and their sprouting phenotype scored as follows: no change,

swollen bud, some growth (≤1mm) and growth (>1mm). Preliminary analysis compared

control and treated discs for 7 days. Early data suggested that during the first 4 days
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after treatment there was no visible effect. Primordia were dissected out of the potato

discs at 0, 1, 2 and 3 days after treatment and frozen for metabolite analysis. Concentric

cores (16mm diameter) of the apical primordium were taken at the same time as the GA

treatment and frozen. These were stored at -80◦C for later sugar analysis. A limitation

of my preliminary use of the Hartmann in vitro was contamination and rotting in the

multiwell plates. All the solutions used were filtered and used inside the flow hood, so

the issue was ascribed to the tubers themselves. In order to reduce the frequency of

sample decay, a surface sterilisation step was introduced to the process.

Surface sterilisation involves immersion in a bleach solution. A range of bleach con-

centrations were trialled to identify optimal cleaning effects without damaging the meris-

tems. This involved 15 minute surface sterilisation with bleach before buffer wash and

treatment. Three bleach concentrations were used: 10, 25 and 50% v/v in water. After

7 days, GA-treated samples had an average sprouting level of 0.75 at 50% bleach, com-

pared to 0.15 at 10% bleach. 50% bleach was also the only concentration that yielded

enough sample survival to differentiate between GA and control samples. 50% bleach

was used in all subsequent experiments (Data not shown). All reagents were purchased

from Sigma Aldrich, unless otherwise specified.

2.2.4 Histology and microscopy

Tuber buds at various stages of sprouting were embedded in Technovit 7100 resin (TAAB

Laboratories Equipment Ltd), sectioned, stained and visualised using light microscopy,

as described below.

Small (less than 5x5 mm) samples containing the apical bud were collected in Eppen-

dorf and dehydrated in an ethanol series by vacuum infiltrating them in excess 10%, 30%

and 50% ethanol (v/v) for 20 minutes at each concentration at room temperature. The

samples were vacuum infiltrated in formalin fixative (50:5:10:35 ethanol:glacial acetic

acid:37% formaldehyde:water v/v/v/v) for 30 minutes, then sealed and kept at room

temperature for at least 16 hours.

The formalin fixative was replaced with 100% ethanol and vacuum infiltrated for 30

minutes, then sealed and kept at room temperature for at least 16 hours. The ethanol

was replaced with 1:1 Technovit liquid 1:ethanol (100%) v/v and vacuum infiltrated

infiltrated for 30 minutes, then sealed and refrigerated (4◦C) for at least 16 hours. The

Technovit 1-ethanol was replaced with 100% Technovit liquid 1 and vacuum infiltrated

infiltrated for 30 minutes, then sealed and refrigerated (4◦C) for at least 16 hours. The

Technovit liquid 1 was replaced with Technovit liquid 1 with hardener powder (1 g per

100ml) and vacuum infiltrated infiltrated for 30 minutes, then sealed and refrigerated
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(4◦C) for at least 72 hours.

Samples were embedded in histoform moulds (volume 1ml) or Eppendorf caps (vol-

ume circa 300µl). The embedding resin was produced by mixing Technovit liquid 1 (with

hardener powder - 1g per 100ml) and Technovit hardener liquid 2 (15:1 v/v). Samples

could be adjusted with forceps for 7-10 minutes after mixing, followed by incubation at

37◦C for 1 hour.

Samples were mounted on blocks using Technovit 3040 resin. The mounting blocks

were given a smooth surface by placing them face down on aluminium foil and filling them

with Technovit 3040 resin (1.5ml yellow powder:0.5ml Technovit 3040 liquid v/v) and

allowing them to set for 30 minutes. Embedded samples were attached to the mounting

blocks using the same Technovit 3040 resin and allowed to set for 1 hour. Samples in

histoform moulds were attached to the blocks before removal, then levered out once the

resin dried.

Embedded samples were sectioned using Leica RM 2245 microtome to a thickness

of 12µm. Sections were transferred with forceps and floated on a drop of water on a

slide. Slides were dried on a hot plate at 65◦C. Sections were stained with Toluidine

Blue O (0.1% w/v in 100mM pH7.0 phosphate buffer - K2HPO4, KH2PO4). Toluidine

Blue O (TBO) was incubated for 1 minute at 65◦C, rinsed twice with water at room

temperature and dried on the 65◦C hotplate. Slides were imaged using an Olympus

BX51 microscope at 4x magnification and captured using an Olympus DP71 camera

and Cell-A software.

Potato tuber buds were also imaged using the Hitachi Tabletop Scanning Electron

Microscope TM3030 and TM3030Plus software. Small (<5mm) pieces of fresh tuber

were excised and mounted using OCT (Optimal cutting temperature compound, Sigma

Aldrich). The sample was placed in the imaging vacuum and cooled to -20◦C. The images

were collected in standard mode with a voltage of 15kV and a magnification of 80-100x.

Analysed samples came from the in house tuber growing and storage system described

in 2.2.2. Tubers were either sampled directly or after in vitro treatment according to

2.2.3. All solvents were HPLC grade purchased from ThermoFisher, unless otherwise

specified.

2.2.5 Methanol-Chloroform extractions

Potato buds’ metabolites were extracted using the methanol-chloroform method (Walker

2013). LC-MS grade solvents and distilled, deionised water were used throughout. Sam-

ples were kept on ice and a refrigerated centrifuge at 4◦C was used throughout. Two

mixes of solvents were used: Solvent A (MeOH:CHCl3:H2O - 2.5:1:1 - v/v/v) and solvent
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Table 2.1: Methanol-Chloroform extraction solvents

Solvent
Name

Composition
(solvents)

Ratios (v, v/v or
v/v/v)

µl solvent per mg
tissue

A MeOH:CHCl3:H2O 2.5:1:1 10
B MeOH:CHCl3 1:1 5
C H2O 1 3.5
D CHCl3 1 2

B (MeOH:CHCl3 - 1:1 - v/v) and these were scaled to match the sample fresh weight.

This is summarised in Table 2.1 on page 27. The quantities quoted refer to 1mg of tissue.

10µl of pre-chilled solvent mixture A was added to the potato bud sample, excised

using a scalpel from the apical region of a tuber, and collected in a 1.5ml Eppendorf

tube. A 3mm steel ball bearing (Ital Ball) was added to each tube. These were shaken

in the fastprep (MP Biomedicals) for 40 seconds at 4.0m.s−1 to grind the tissue. The

ground samples were vortexed for 10 seconds and left on ice for 5 minutes.

Samples were then vortexed for 10 seconds and centrifuged at 14’000rpm and 4◦C for

2 minutes. The supernatant was transferred into a pre-chilled storage tube. The pellet

was re-extracted with 5µl of pre-chilled solvent mixture B, then vortexed for 10 seconds

and kept on ice for 10 minutes. Samples were vortexed for 10 seconds and centrifuged

at 14’000rpm and 4◦C for 2 minutes. The supernatant was transferred into the same

pre-chilled storage tube and supernatant A.

The aqueous and organic phases of the supernatant mix were separated by adding

3.5µl chilled, distilled, deionised water and 2µl chloroform per mg of tissue in the sample.

Supernatant mixes were vortexed for 10 seconds and centrifuged at 14’000rpm and 4◦C

for 15 minutes. The aqueous phase was pipetted into a separate tube, vortexed for 10

seconds and centrifuged at 14’000rpm and 4◦C for 2 minutes. 2µl of the aqueous phase

was added to 198µl of Methanol to produce diluted samples for analysis. Extracts were

stored at -20◦C before analysis, or -80◦C for long term (more than 2 weeks) storage.

Thawed extracts were vortexed for 10 seconds and centrifuged at 14’000rpm and 4◦C for

2 minutes before pipetting them into the autosampler analysis vials.

The repeated centrifugation steps were particularly important in this process, be-

cause starch does not precipitate and form a good pellet in this solvent combination.

The samples from the methanol-chloroform extraction process are analysed by mass
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spectrometry, and early experiments had problems with blocked tubes hampering analy-

sis. By repeatedly cleaning the sample through centrifugation, the risk of starch granules

blocking the capillary tubes is reduced.

All solvents were LC grade purchased from Sigma Aldrich, unless otherwise specified.

The Chloroform was from ThermoFisher.

2.2.6 ESI-TOF-MS

Metabolite extracts were analysed using a QSTAR - an electrospray ionisation - time of

flight - mass spectrometer. 75µl samples were injected using a 1090 UPLC autosampler

with an in-line 0.5 µm pore KrudKatcher Classic filter (Phenomenex), and flow rate of

10µl.min−1. The autosampler ran 90% methanol (v/v) between samples, including a 15

minute backwash to waste programme.

Spectral data were collected in negative ionisation mode with a mass window of 50-

850Da and scan rate of 1 per second. A malate standard solution (10µg.ml−1 w/v)

was analysed before, after every tenth sample and at the end of every batch run, to

corroborate calibration and sensitivity. Technical replicates were obtained by treating

the long sample runs as 3 separate sets of 60 scans.

2.2.7 Data analysis

For each biological replicate, centroided scans were summed over 1-minute segments,

producing 3 technical replicates. Data were simplified through binning, using an in-house

macro first described by Overy et al. (2005), combining recorded mass measurements to

an accuracy of ±0.1Da. Noise reduction was achieved by only including masses that

appeared in all 3 technical replicates in subsequent analysis. Subsequent analysis used

average percentage ion intensities to normalise differences between samples.

Percentage ion counts and binned m/z values were imported into Simca-P+ (14.1)

for multivariate analysis, in accordance with Eriksson et al. (2006). Analysis usually

took the form of a principal component analysis (PCA). Data could also be subsetted

to explore a narrower question, such as treatment differences at a particular time point.

The loading plots of these were used to select masses for use in supervised analyses

(orthogonal partial least squares: OPLS) and marker selection.
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2.3 Results

In this chapter a system for generating metabolic profiles linked to dormancy status in

tubers is established, with the overarching goal of identifying markers that can predict

tuber dormancy status and the subsequent sprouting phenotype.

Having established an optimised set of reliable protocols, the question was explored

in detail in the short dormancy cultivar King Edward’s and the medium dormancy

cultivar Maris Piper. These categories were designated on the basis of advice from Dr

Harper from Sutton Bridge and reflected the patterns I observed in subsequent analysis

and when I handled commercially stored material (Harper, G. priv. comm). Subsequent

experiments looked at a wider set of varieties, to examine the reproducibility of candidate

markers. As a result of this work, a set of markers (defined as masses (m/z) detected by

the mass spectrometry) are described which can be used to define the dormancy status

in extracts of tuber buds from a range of potato varieties.

2.3.1 Method validation

The main focus of this chapter was to identify and characterise metabolic markers as-

sociated with dormancy break. One important precursor to this is establishing a robust

analysis technique that captures differences between samples reliably. This includes op-

timal sample extraction for analysis. Very concentrated samples run the risk of ion

suppression, whereas very dilute samples may present detection challenges.

Figure 2.2, Panel A shows a principal component analysis (PCA) score plot of a

dilution test. Three samples were run at at two different levels of dilution. Methanol-

chloroform extracted tuber buds were diluted 10- or 100-fold in methanol before running

in negative mode on the mass spectrometer. The concentrated (10-fold) samples are less

clustered than the dilute samples. This clustering is based on very large quantities of a

small subset of ions in the concentrated samples. A number of less abundant ions are

not detected at all in these concentrates samples. This is illustrated by Figure 2.2, Panel

B, showing differences in m/z 380 detection in the dilution test.

Preliminary work revealed an issue with starchy samples blocking the capillary tubing

in the mass spectrometers. 0.5 µm pore Krudkatcher inline filters were introduced.

Before applying them the putative issue of carryover between samples was examined.

Figure 2.3, Panel A shows a PCA score plot of a filter test. Krudkatcher filters were

tested by injecting malic standards or samples, followed by a methanol blank. There

does not seem to be an issue with carryover between samples, as there is clean separation

between the groups. Based on Figure 2.3, Panel B, malate levels are high in the standard
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Figure 2.2: Metabolic profiling dilution tests
Three samples were run at at two different levels of dilution. Data were simplified by binning to

a mass accuracy of ±0.1Da and using the in-house noise reduction macro. Methanol-chloroform

extracts from tuber buds were diluted 10- or 100-fold in methanol before running in negative

mode on the mass spectrometer. A: PCA score plot of a dilution test. Point colour refers

to dilution level. Point labels refer to sample identity. Axes are components 1 and 2 of the

PCA model. Ellipse = 95% confidence (Hotelling T2). Total n = 6. B: Differences in m/z 380

detection in a dilution test. The Y axis shows the percentage of the total ion count for m/z

380. X axis labels refer to dilution level. Line colour refers to sample identity.

and low in the blanks. The other mass is only detected in the potato samples (Figure

2.3, Panel C). There does not seem to be an issue with carryover, based on the blanks

injected after samples.

2.3.2 Structure of the dormant tuber bud

As outlined in the introduction, the process of dormancy break is not fully understood

and involves a concerted interaction of genetic and environmental factors, mediated by

hormonal signalling. At harvest, tubers are deeply dormant (endodormancy); they are

not responsive to external stimuli and sprouting probability is low. During endodor-

mancy, processes required for sprouting proceed gradually. After endodormancy is com-

plete, buds become primed and are responsive to a narrow range of stimuli, including the

phytohormone GA and factors such as light and temperature (Peterson, et al. 1985). At

this point, sprouting is effectively guaranteed. This is illustrated schematically in Figure

2.1 on page 22.

In this chapter, dormancy break is investigated at the tuber bud level. Tuber buds are

quiescent axillary meristems. Sections of embedded samples reveal the internal structure.

Images from this process are shown in Figure 2.4 on page 32. Figure 2.4 A shows a
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Figure 2.3: Inline filter tests
0.5 µm pore Krudkatcher filters were tested by injecting Malic standards or samples, followed

by a methanol blank. Data were simplified by binning to a mass accuracy of ±0.1Da and using

the in-house noise reduction macro. A: PCA score plot of a filter test. There does not seem to

be an issue with carryover between samples, as there is clean separation between the groups.

Point labels and point colour refers to sample identity. Axes are components 1 and 2 of the

PCA model. Ellipse = 95% confidence (Hotelling T2). Total n = 9. B: Differences in m/z

133.2 detection. Malate levels are high in the standard and low in the blanks. The Y axis

shows the percentage of the total ion count for a m/z 133.2 (Putative malate). X axis labels

and line colour refer to sample identity. C: Differences in m/z 353.2 detection. Most masses are

only detected in the potato samples. The Y axis shows the percentage of the total ion count

for a m/z 353.2. X axis labels and line colour refer to sample identity. Samples are displayed

in order of injection. There does not seem to be an issue with carryover.

longitudinal section of a dormant bud containing the apical meristem (arrow) and two

dormant surrounding leaf primordia. A cross-section of a dormant bud (Figure 2.4 B)

reveals the central meristem sheathed by several primordia (arrows), indicating that

during tuber growth the meristem generates a number of leaf primordia which then,
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Figure 2.4: Sections of dormant potato tuber buds.
Buds were fixed in formalin anf embedded in Technovit plastic resin. 12µm sections were

stained with TBO and imaged using an Olympus BX51 microscope. Scale bars are 200µm.

A: a longitudinal section of a bud. The arrowhead indicates the meristem, sheathed by leaf

bases. B: a transverese section of a bud. The central meristem is surrounded by a spiral of

leaf primordia and leaf bases, highlighted by the arrows. C: a longitudinal section of a bud.

Meristem, primordium and leaf bases are visible. Arrowheads indicate specialised tissues: the

epidermis and connections to the vascular bundle. D: longitudinal section of tissue adjacent to

a bud. The arrowhead indicates the area of the cortex with large numbers of small cells, ready

to expand and grow the plant.

along with the meristem from which they were generated, enter a phase of dormancy.

These leaf primordia are associated with differentiated vascular and epidermal tissue

(Figure 2.4 C) and subtending the bud a dense region of cortex is visible (Figure 2.4 D).

The entire bud is dormant while the meristem is quiescent, with no obvious cell division

or cell expansion occurring.

A detailed examination of the effects of GA, compared to naturally occuring dor-

mancy break, is illustrated in Figure 2.5 on page 34. Figure 2.5 shows four scanning

electron micrographs of tuber buds at various stages of storage. Figure 2.5 A and B are
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untreated and differ in the length of their storage; Figure 2.5 A was imaged 1 week after

harvest, whereas Figure 2.5 B was imaged 12 weeks after harvest. Figure 2.5 C and D

are water- and GA-treated outputs of the in vitro assay described in 2.2.3 after 96 hours

respectively. This material had been stored for 8 weeks before treatment.

Figure 2.5 A is at 80x magnification. It shows a deeply dormant bud, with at least 2

leaf bases, largely covered by 2 fairly old leaflike structures. A fully developed stoma is

clearly visible on the older leaf to the left. Figure 2.5 B, at 100x magnification, shows a

rosette of leaf primordia. At least 11 of these are present and at least 9 display stomata

or trichomes on the leaf surface. Figure 2.5 C, at 100x magnification, shows a small pair

of leaf primordia in a recess, covered by a shrivelled leaf scale coming down from the

top right corner. The leaf primordium on the left shows several stomata, although the

central part of the bud structure is obscured by the protective leaf. Figure 2.5 D, at 100x

magnification, shows a compact bud with 7 leaf primordia. To the left of the image is a

shrivelled sheathing leaf, out of focus because it is at a different plane compared to the

top of the bud. The outer 5 leaf primordia have stomata and 3 of them show substantial

damage and shrivelling. The bud is raised, relative to the surrounding tissue.

As indicated in the Introduction, following formation, tubers undergo a period of

endodormancy after which sprouting initiation increases in response to exogenous fac-

tors. We exploited the observation that exogenous supply of GA can be used to trigger

sprouting to set up a standardised system whereby we could isolate tubers buds at pre-

cise, reproducible stages of dormancy release/sprouting. A robust system for staging

buds facilitates comparison between buds at different stages of sprouting, thus allowing

the identification of metabolic changes that might be occurring at these stages.

2.3.3 Synchronising dormancy release

In order to generate a standardised system, tubers (cv. King Edward’s) were grown

under glass with a photoperiod of 12 hours and staggered planting dates. This makes

it possible to simultaneously sample material that has been stored for a range of time

periods. Resampling stored material at intervals can also corroborate development-linked

patterns, as batch effects are controlled. As sampling is destructive, this is the only way

to track the fate of tubers, whilst collecting metabolic data. The design of these staggered

planting experiments is illustrated in Figure 2.6 on page 35.

In addition to the staggered planting, dormancy break was artificially initiated us-

ing an in vitro system of controlled bud dormancy release, based on that described by

Hartmann et al. (2011). This uses treatment with GA as a sprout initiator, allowing

differences in response to be calculated. In initial experiments, buds from field-grown
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Figure 2.5: Scanning electron micrographs of potato buds.
3mm pieces of potato tuber containing buds were imaged using a scanning electron microscope.

Tuber tissue was stuck to stubs with OCT and cooled to -20◦C. Scale bars are 1 mm. A: bud 1

week after harvest at 80x magnification; B: bud 12 weeks after harvest at 100x magnification;

C: bud 8 weeks after harvest, treated with water in vitro for 96 hours prior to imaging at 100x

magnification; D: bud 8 weeks after harvest, treated with GA in vitro for 96 hours prior to

imaging at 100x magnification.

King Edward tubers were used. As shown in Figure 2.7 on page 35, after168 hours the

GA and control-treated apices could be distinguished from controls, with GA treatment

leading to larger visible buds (Figure 2.7A). However, the SAM is large, so subsequent

values were quoted as proportion >1mm. At t=168 hours, 66% of GA-treated apices

were greater than 1mm, whereas only 30% controls were this size (Figure 2.7B). The in

vitro system thus produces two populations of buds with a predictable sprouting fate.

The pattern observed in experiments such as that in Figure 2.7 changed during tuber

storage. During endodormancy, none of the buds sprouted, regardless of treatment. By

the time tubers had exited endodormancy and were in a primed and responsive state (see

schematic in Figure 2.1), samples were responsive to the GA trigger (Figure 2.7). Tubers

that had been stored for a long time sprouted at a high rate, regardless of treatment. In

the short dormancy cultivar King Edward, I found this plant material was unresponsive
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Figure 2.6: Design of staggered planting experiments under controlled environment.
Seed tubers are planted every 2 weeks and harvested after 12 weeks of growth (Green). Har-

vested tubers are stored at 7◦C in the dark (Blue). Analysis is carried out for several batches

simultaneously (Red dashed line). These have been in storage for a range of time periods. This

design controls for batch effect and allows resampling of material to take place.

A B

Figure 2.7: Sprouting rate of treated buds in the in vitro system.
Explanted buds were treated with either GA (50 µM) or with water and measured at daily

intervals (values in hours). There is negligible visible response during the first 72 hours after

treatment. This process lends the ability to predict meristem fate before the emergence of a

visible phenotype. Cultivar: King Edward, Glasshouse grown. n=48. A: Changes in bud length

(mm), comparing GA- and control-treatment over time (hours). The dotted line represents the

industry standard of 2mm buds. Error bars represent Standard error of the mean. B: The

proportion of sprouts >1mm, comparing GA- and control-treatment over time (hours).

to GA for the first 4-6 weeks after harvest. After a GA sensitive window of a further 6-8

weeks, sprouting could be expected, irrespective of treatment, 12-14 weeks after harvest.
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In addition to the whole tuber aspect of dormancy progress, there was a discernible

developmental gradient within the tuber of bud sprouting. Each tuber contains a group

of buds, generally arranged in a spiral in which the bud opposite the stolon can be

termed the apical bud. Visual inspection of tubers during sprouting suggested that the

apical meristem exerted dominance over the rest of the tuber, with a much lower level of

sprouting in the meristems at the stolon end, compared to the apical bud. In preliminary

experiments, analysis of explanted stolon and apical buds substantiated these observa-

tions, with a much lower level of sprouting observed in the stolon meristems compared to

the apex. Initial experiments in which metabolic profiles were obtained from the apical

bud and the surrounding stolon buds also indicated that buds are metabolically distinct

based on their developmental ranking. Methanol-chloroform extracts from ranked tuber

buds (1 to 6, with “1” specifying the apical bud) were analysed in negative and positive

mode (Figure 2.8). In the PCA plot of data obtained in negative mode (Figure 2.8 A)

there is a clear distribution of tuber rank, apart from the apical bud of sample ”R”.

The other apices generally cluster well depending on rank. This distribution is matched

by the highlighted m/z in the respective loadings plot (Figure 2.8 B), with notably m/z

191.0, 133.0, 115.0 potentially having a large influence in discriminating the apical buds

from the stolon buds.

When the samples were analysed in positive mode (Figure 2.8 C) although there was

some clustering of the apical buds at the origin, the pattern was less clear than that

observed in negative mode analysis. Similarly, the loading plots analysis (Figure 2.8 D)

was less informative. Some of the influential masses in this plot, such as 398.4 (putative

solanidine) are linked to glycoalkaloids which potato tubers use as an anti-herbivory

defence mechanism.

Overall, the analysis presented in Figure 2.8 substantiated the visual impression that

dormancy release/sprouting behaviour was influenced by relative developmental rank of

a bud on the tuber. In all subsequent analyses care was taken to use the apical bud of

each tuber (unless otherwise specified) to minimise the influence of initial developmental

stage of the bud on the results obtained analysing the progression from dormancy to

sprouting (Teper-Bamnolker et al. 2012).

A number of markers are highlighted as interesting in Figure 2.8B. These are high-

lighted at many stages in this chapter. The identity, abundance and consistent influence

over a range of analyses make them particularly inyeresting. A detailed discussion of how

these m/z markers are identified is presented in Chapter 3. However, at this early stage,

these m/z markers were putatively identified on the basis of mass as key components of

the Krebs cycle, as shown in Table 2.2 on page 38. A comprehensive description of this

methodology and subsequent experimental steps are explored in 3.3.1, on page 68.
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Figure 2.8: Multivariate analysis the effect of bud position on metabolic profiles.
Extracts from ranked tuber buds (1 to 6, if available) were analysed in negative and positive

mode. Data were simplified by binning to a mass accuracy of ±0.1Da. On PCA score plot:

Ellipse = 95% confidence (Hotelling T2). On Loadings plot: Each point refers to an individual

m/z bin, labeled accordingly. A: PCA score plot of a negative apical dominance test. Point

labels (N-R) refer to tuber identity. Point colour refers to bud rank. Axes are components

1 and 2 of the PCA model. Total n = 24. B: PCA loadings plot of an apical dominance

test (Negative ionisation). Axes are loadings for components 1 and 2 of the PCA model.The

highlighted m/z; 145, 191 and 133 are influential. C: PCA score plot of an apical dominance

test (Positive ionisation). Point labels (N-R) refer to bud identity. Point colour refers to bud

rank. Axes are components 1 and 2 of the PCA model. Total n = 15. D: PCA loadings plot

of a negative apical dominance test. Axes are loadings for components 1 and 2 of the PCA

model.

2.3.4 Metabolic profiles in response to GA treatment

Having established a robust system for sprouting initiation and identification of which

bud to use for analysis, I performed a time-course metabolomic analysis of isolated apical

buds from field grown Maris Piper tubers. These were treated with GA in January,

approximately 3 months after harvest, using a similar system to that in secton 2.2.3. In

the context of the schematic representation of dormancy in Figure 2.1 on page 22, these
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Table 2.2: Putative identificaton of metabolic markers

Markers are putatively identified, based on their m/z (Da), based on database search of
KEGG and Solcyc. Masses of interest were selected from loadings plots in chapter 2.

Masses for associated ions were identified in the dataset.

Detected negative ion m/z
(±0.1 Da)

Putative
metabolite

Molecule exact mass
(Da)

191.0 Citrate 192.027
133.0 Malate 134.022
115.0 Fumarate 116.011
173.0 Aconitate 174.016
145.0 Ketoglutarate 146.022
131.0 Oxaloacetate 132.006

samples were towards the right of the graph, and were responsive to growth promoters.

The results of this analysis are presented in Figures 2.9 and 2.10.

Figure 2.9A,B on page 39 show the results of an Orthogonal Partial Least Squares

(OPLS) analysis of buds either treated with GA or mock inoculated with water, with

time since treatment with GA used as a Y-variable. The points are colour-coded with

time since GA treatment used as a continuous variable. A supervised analysis produces

the clear time-based distribution in the score plot (Figure 2.9A), with samples at time

points 0h, 24h, 48h and 72h separating from each other, irrespective of treatment. Based

on this, the loadings plot in Figure 2.9B can be used to infer that m/z 191 and 133 are

most influential in dictating this temporal distribution, although they do not explain the

distribution perfectly.
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Figure 2.9: Multivariate analysis of field grown cv. Maris Piper metabolic profiles,
treated with GA in a development series.
Extracts from cv. Maris Piper tubers, analysed on the QSTAR in negative ionisaton mode.

Samples from stored tubers were treated with GA or a control (water), and flash frozen at

24 hour intervals. Data were simplified by binning to a mass accuracy of ±0.1Da. OPLS

and PCA Ellipse = 95% confidence (Hotelling T2). On loadings plots, each point refers to an

individual m/z bin, labeled accordingly. A: OPLS score plot of the development series. Point

labels refer to treatment (G or W) and point colour refers to time since treatment (in hours).

Axes are scaled components 1 and 2 of the OPLS model, based on the time since treatment.

Total n = 36. B: OPLS loadings plot of the development series. Axes are loadings for the

predictive component and orthogonal component of the OPLS model. Time since treatment

is in blue. C: PCA score plot of untreated samples from the development series. Point labels

refer to treatment (W) and point colour refers to time since treatment (in hours). Axes are

components 1 and 2 of the PCA model. Total n = 19. D: PCA loadings plot of untreated

samples in the development series. Axes are loadings for components 1 and 2 of the PCA

model.

This may be caused by the spread of control samples being poorly explained by time

since treatment, as seen in Figure 2.9C,D.These figure parts refer to a PC analysis of

the mock-inoculated (water-treated) samples. This score plot shows poor discrimination

based on time since treatment, i.e. there is no clear response to time since treatment.
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Figure 2.10: Multivariate analysis of cv. Maris Piper metabolic profiles from the con-
trolled environment, treated with GA in a development series.
Extracts from GA treated cv. Maris Piper tubers, analysed on the QSTAR in negative ionisaton

mode. Samples from stored tubers were treated with GA, and flash frozen at 24 hour intervals.

Data were simplified by binning to a mass accuracy of ±0.1Da. OPLS and PCA Ellipse = 95%

confidence (Hotelling T2). On loadings plots, each point refers to an individual m/z bin, labeled

accordingly. Total n = 17. A: PCA score plot of GA treated samples from the development

series. Point labels refer to treatment (GA) and point colour refers to time since treatment (in

hours). Axes are components 1 and 2 of the PCA model. B: PCA loadings plot of GA treated

samples in the development series. Axes are loadings for components 1 and 2 of the PCA

model. C: OPLS score plot of the development series. Point labels refer to treatment (G) and

point colour refers to time since treatment (in hours, blue=0, green=24, lime=48, red=72).

Axes are scaled components 1 and 2 of the OPLS model, based on the time since treatment. D:

OPLS loadings plot of the development series. Axes are loadings for the predictive component

and orthogonal component of the OPLS model. Time since treatment is in blue.

The PCA loadings plot (Figure 2.9D), highlights the same m/z (191, 133 and 115) as

having the major influence on the distribution observed as highlighted in Figure 2.9B.

Focussing on the GA-treated samples in this analysis, an unsupervised PCA and an

OPLS analysis were carried out (Figure 2.10 on page 40), with Panels A and B referring
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to PCA plots. The score plot Figure 2.10 A indicates a better grouping of samples by

time since treatment, compared to the analysis of the water-treated data set shown in

Figure 2.9 C. Figure 2.10 B shows a loadings plot for the data shown in Figure 2.10 A,

and reveals that the key metabolites in this process remain m/z 191 and 133. These

markers correspond to those identified in Figure 2.9 B (above).

To explore this pattern in more detail, a supervised analysis of the GA-treated dataset

was carried out. The output of this OPLS is illustrated in Figure 2.10, C and D. Figure

2.10 C shows an OPLS score plot, arranging samples by time since GA treatment, i.e.

the OPLS forces the data to distribute according to time since treatment. The points

are colour-coded with time since GA treatment used as a continuous variable. Figure

2.10 D illustrates the loadings plot for this OPLS. When time since treatment is used as

an explanatory variable, the key markers from Figure 2.10 B remain influential, but do

not covary unequivocally with the Y variable (time since GA treatment). The repeated

appearance of these markers suggests involvement in GA-activated potato bud sprouting.

2.3.5 Metabolic profiles along time in storage

The data in the previous section indicated that excised buds from field grown tubers

(Maris Piper) stored for a set time could be distinguished by metabolic profiling in re-

sponse to a GA-treatment which triggered sprouting. Since it is known that tendency for

sprouting increases with time in storage, I proceeded to perform a series of experiments

in which apical buds from tubers of the short dormancy variety King Edward’s (grown

in controlled environment) were analysed by a similar metabolic profiling approach but

after different times in storage. The staggered planting system shown in Figure 2.6 (on

page 35) provides a useful way to study this process, since by growing samples in a

controlled environment, developmental comparisons can be made without the complica-

tions of seasonality. This approach also allows any impacts caused by unusual, outlier

batches to be identified, since multiple sets of tubers are eventually sampled for the

same time point, which is not possible for field grown samples. Thus in the following

figures (Figures 2.11 and 2.12), tuber samples were harvested at different calendar times

to cover time in storage at weekly intervals from 2 to 8 weeks (see Table 2.3 on 42). The

relationship between the samples in Figures 2.11 and 2.12 are summarised in Table 2.3.

The same population of tubers was resampled at a later date to capture any metabolic

changes occurring during storage.

At each time point (weeks in storage) apical buds were excised and treated with

either GA (50µm) or water control (section 2.2.3). Buds were then flash-frozen after

72h and Methanol-chloroform extracts (section 2.2.5) analysed by mass spectrometry in
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negative ionisation mode. The results are shown in Figure 2.11 on page 43. A PCA score

plot for all data (GA and water-treated) (Figure 2.11 A) shows a moderate separation

(by time in storage)along component 2. This distribution is matched by the highlighted

m/z in the PCA loadings plot shown in Figure 2.11 B, with m/z 191 being particularly

influential. m/z 133 is associated with a small cluster of GA-treated samples.

When the water-treated controls alone are analysed in an unsupervised PCA score

plot (Figure 2.11 C), there is separation according to storage time along component 1.

The samples that were harvested 2-4 weeks before analysis are on the negative half of

the component 1 axis, whereas those stored for 6-8 weeks are almost all on the other

half. All the highlighted m/z on the PCA loadings plot (shown in Figure 2.11 D) co-vary

with this gradient. Yet again, the markers, m/z 191, 133 and 115 are the key ions, as

also highlighted in Figures 2.9 and 2.10.

The tuber batches used for the analysis shown in Figure 2.11 were re-sampled and

analysed in a similar way but at later time points (as shown in Table 2.3) to obtain

further information on the shift in metabolic profiles in apical buds during storage. The

results are shown in Figure 2.12 on page 44 and provide data on tubers sampled 3-7

weeks after harvest. Due to poor clustering in the initial PCA, a supervised OPLS was

used to analyse these data, with time since harvest as a predictive variable.

Figure 2.12 A shows an OPLS score plot for all samples (GA-treated and water-

treated controls). The nature of the supervised analysis means that there is good clus-

tering of samples by time since harvest along component 1. This distribution makes it

possible to identify influential markers from the OPLS loadings of these data, shown

in Figure 2.12 B, with m/z 133.2 and 115.2 being most influential. The discrepancy of

0.2Da between these m/z and the ions identified previously (e.g. Figure 2.11 on 43) can

be attributed to minor changes in instrument calibration, leading to issues when binning

masses to ±0.1Da.

Table 2.3: Staggered Planting Design

Correspondence between samples in Figures 2.11 and 2.12
Time since harvest (weeks)

Planting date Data in Figure 2.11 Data in Figure 2.12

02/07/2015 8 N/A
17/07/2015 6 7
31/07/2015 4 5
13/08/2015 2 3
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Figure 2.11: PCA of cv. King Edward metabolic profiles from the controlled environment
staggered planting system.
Extracts from the staggered planting system, analysed on the QSTAR in negative ionisaton

mode. Samples from stored tubers were treated with GA or a water control, and flash frozen

after 72 hours. Data were simplified by binning to a mass accuracy of ±0.2Da. PCA Ellipse =

95% confidence (Hotelling T2). On loadings plots, each point refers to an individual m/z bin,

labeled accordingly. A: PCA score plot of the harvest series. Point labels refer to treatment

(GA or CTRL) and point colour refers to time since harvest (in weeks). Axes are components

1 and 2 of the PCA model. Total n = 15. B: PCA loadings plot of the harvest series. Axes are

loadings for components 1 and 2 of the PCA model. C: PCA score plot of untreated samples

from the harvest series. Point labels refer to treatment (CTRL) and point colour refers to time

since harvest (in weeks). Axes are components 1 and 2 of the PCA model. Total n = 8. D:

PCA loadings plot of untreated samples in the harvest series. Axes are loadings for components

1 and 2 of the PCA model.

Figure 2.12 C and D focus on the water-treated (control) samples from this experi-

ment. Figure 2.12 C shows an OPLS score plot with a clear distribution along component

1, which is associated with m/z 133.2 in the loadings plot in shown in Figure 2.12 D.

There is a small cluster of outliers with a strong association with m/z 133.2, but all the

other relatively freshly harvested samples (3 weeks after harvest) seem to co-vary along
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Figure 2.12: OPLS of cv. King Edward metabolic profiles from the controlled environ-
ment staggered planting system.
Extracts from the staggered planting system, analysed on the QSTAR in negative ionisaton

mode. Samples from stored tubers were treated with GA or a water control, and then flash

frozen. Data were simplified by binning to a mass accuracy of ±0.2Da. OPLS Ellipse = 95%

confidence (Hotelling T2). On loadings plots: Each point is labeled as its m/z bin. Weeks since

harvest, is in blue. A: OPLS score plot of the harvest series. Point labels refer to treatment (GA

or CTRL) and point colour refers to time since harvest (in weeks, red=7, green=5, blue=3).

Axes are components 1 and 2 of the OPLS model, based on the number of weeks since harvest.

Total n = 35. B: OPLS loadings plot of samples from the harvest series. Axes are loadings for

the predictive component and orthogonal component of the OPLS model. C: OPLS score plot

of untreated samples in the harvest series. Point colour refers to time since harvest (in weeks,

green=5, blue=3). Axes are components 1 and 2 of the OPLS model, based on the number

of weeks since harvest. Total n = 17. D: OPLS loadings plot of untreated samples from the

harvest series. Axes are loadings for the predictive component and orthogonal component of

the OPLS model.

the horizontal axis. m/z 115.2 and 191.2 are also influential.

In order to extend the analysis of bud metabolite profiles during storage, an experi-

ment was performed in which apical buds were harvested at time point 4, 8, 12 and 14

weeks after harvest, i.e. beyond the 8 storage weeks analysed in the previous datasets.
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In this experiment buds were flash frozen immediately after washing with buffer (i.e. not

treated with GA), then analysed in negative ion mode as previously described. These

data are shown in Figure 2.13 on page 46.

Figure 2.13 A shows a PCA score plot for these data, labelled according to time since

harvest (in weeks). The data for week 12 cluster unusually along component 2, perturbing

any other effects. To circumvent this issue, a supervised OPLS was performed, with time

since harvest as the predictive variable. The score plot for this analysis is shown in Figure

2.13 B. In this analysis the buds taken and analysed from tubers at different time points

in storage are clearly discriminated.

According to the OPLS loadings plot, shown in Figure 2.13 C, some key markers ex-

plain a lot of the variation observed in these samples, but are orthogonal to the time since

harvest. m/z 133.2, 115.2 and 191.2 are all influential, but the unusual characteristics of

the 12 week samples in this analysis obfuscates any storage-time linked pattern.

2.3.6 Field grown tubers

To follow on from the work in glasshouse-grown tubers, and test the generality of the

observations made, tests were performed on field grown tubers. Tubers were from 4

established commercial cultivars with different dormancy habits: cv. King Edward,

Maris Piper, Desiree and Russet Burbank. These were grown in Yorkshire in 2016 and

transported to Sutton Bridge Crop Storage Research, where they were cooled and stored

under commercial conditions. Samples were sent to the University of Sheffield at 4

week intervals for processing and analysis during the 2016-2017 storage season. At each

sampling date I performed a time-course metabolomic analysis of isolated apical buds,

capturing metabolic profiles and responses to GA treatment.

Cv. King Edward

A key question to investigate was the reproducibility of my results from glasshouse-grown

tubers. Field grown cv. King Edward tubers were analysed in October, November and

December 2016. The results of these analyses are presented in Figures 2.14 and 2.15.

Figure 2.14 on page 47 shows the score and loadings plots of an OPLS analysis of control

buds, with the sampling month used as a Y-variable. By using Month as a Y-variable,

the samples are separated along the horizontal axis in Figure 2.14A, as clearly denoted

by the colours. The supervised analysis means that co-varying bins can be identified

from the loadings plot in Figure 2.14B. Based on this loadings plot, m/z 191.2 (in red) is

influential along the seasonal axis. There are other influential markers, several of which

are also influential on these axes.
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Figure 2.13: Multivariate analysis of cv. King Edward metabolic profiles from the con-
trolled environment staggered planting system.
Extracts from the staggered planting system. Samples from stored tubers were not treated

with GA and were analysed on the QSTAR in negative ionisaton mode. Data were binned to a

mass accuracy of ±0.1Da. Ellipse = 95% confidence (Hotelling T2). A: PCA score plot of the

harvest series. Point colour refers to time since harvest (in weeks). Axes are components 1 and

2 of the PCA model. Total n = 48. B: OPLS score plot of samples in the harvest series. Point

colour refers to time since harvest (in weeks, red=14, yellow=12, green=8, blue=4). Axes are

components 1 and 2 of the OPLS model, based on the number of weeks since harvest. Total n

= 48. C: OPLS loadings plot of untreated samples from the harvest series. Axes are loadings

for the predictive component and orthogonal component of the OPLS model. Each point is

labeled as its m/z bin. Weeks since harvest is in blue.

Figure 2.15 on page 48 displays data for the GA-treated samples, prepared in the

same experimentas Figure 2.14. Figure 2.15A and B show the data for samples treated

with GA in October. They are the score and loadings plot of an OPLS that uses time

since GA-treatment as a Y-variable. This yields the familiar well-separated pattern in

Figure 2.15A. Based on Figure 2.15B, none of the previously discussed m/z markers

dominate the loadings. In contrast, Figure 2.15C and D show an OPLS analysis of

samples treated with GA in December. Whilst the score plot, Figure 2.15C, resembles
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Figure 2.14: An OPLS of field grown King Edward samples, by month.
A: An OPLS score plot of field grown King Edward samples, at t=0 in the in vitro. Samples

are coloured and labelled by month of analysis. The supervised analysis arranges samples along

the horizontal axis, based on month of analysis. B: an OPLS loadings plot of field grown King

Edward’s samples. Each point refers to a m/z bin. The Y-variable, Month, is on the far right

side of the horizontal axis. Bins that co-vary with the month lie close to the pq axis. n=36,

months = October, November, December 2016.

Figure 2.15A quite closely, there is a key difference in the loadings: m/z 133 and 191.2

are clearly key metabolites in the distribution of samples in December.

Cv. Desiree

Data for another relatively short dormancy cultivar, Desiree, are presented in Figures

2.16 and 2.17. Field grown cv. Desiree samples were analysed in October, November

and December 2016 and January 2017. Figure 2.16 on page 49 shows PCA plots from

control samples. Figure 2.16A is a score plot for components 2 and 3, which show good

separation along the (horizontal) component 2 axis. Figure 2.16B is the loadings plot for

the PCA. As in Figure 2.16A, the axes refer to components 2 and 3. m/z 191 and 133,

important markers throughout this chapter, align closely to the horizontal axis, implying

influence.

Figure 2.17 on page 50 shows PCA score and loadings plots for GA-treated Desiree

bud profiles. Figure 2.17A and B show the data for samples treated with GA in October,

coloured and labelled according to time since treatment. Figure 2.17A, the score plot,

shows separation into 2 quadrants, with t=0 and 24 on the left and t=48 and 72 on

the right. The corresponding loadings plot, in Figure 2.17 B, shows 191 and 133 in

influential positions on the far right of the axis. In contrast, the January GA-treated

samples, Figure 2.17C and D, lose this pattern. The loadings plot, Figure 2.17D, looks

deceptively similar to Figure 2.17B. However, upon examination of the score plot in
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Figure 2.15: OPLS of GA-treated, field grown King Edward samples, by time since
treatment.
Samples were treated in vitro with GA and collected at t=0, 24, 48 and 72. Panels A and B:

Samples prepared in October 2016. Panels C and D: Samples prepared in December 2016. A:

An OPLS score plot of field grown King Edward samples, in October. Samples are coloured

and labelled time since treatment (in hours). The supervised analysis arranges samples along

the horizontal axis, based on time since treatment. B: an OPLS loadings plot of field grown

King Edward’s samples, treated with GA in October. Each point refers to a m/z bin. The

Y-variable, Time (since treatment, in hours), is on the far right side of the horizontal axis. Bins

that co-vary with the time since treatment lie close to the pq axis. n=24. C: An OPLS score

plot of field grown King Edward samples, in December. Samples are coloured and labelled

time since treatment (in hours). The supervised analysis arranges samples along the horizontal

axis, based on time since treatment. B: an OPLS loadings plot of field grown King Edward’s

samples, treated with GA in December Each point refers to a m/z bin. The Y-variable, Time

(since treatment, in hours), is on the far right side of the horizontal axis. Bins that co-vary

with the time since treatment lie close to the pq axis. n=24.

Figure 2.17C, it is clear that the temporal pattern has been lost in this PCA.
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Figure 2.16: An OPLS of field grown Desiree samples, by month.
A: PCA score plot of field grown Desiree samples, at t=0 in the in vitro. Samples are coloured

and labelled by month of analysis. The axes are components 2 and 3 of the PCA model. B:

a PCA loadings plot of field grown Desiree samples. Each point refers to a m/z bin. A and

B axes are linked: samples that cluster on the PCA score plot are influenced by masses in

the same region of the loadings plot. n=48, months = October, November, December 2016,

January 2017.

Cv. Russet Burbank

The long dormancy cultivar, Russet Burbank, was used to generate the data in Figures

2.18 and 2.19. Due to a later harvest time compared to the cultivars discussed above,

Russet Burbank samples were analysed in December 2016, and January, February, March

2017. Figure 2.18 on page 51 shows results of an OPLS analysis of control samples, using

sampling month as a Y-variable. This produces the separation observed in the score

plot, Figure 2.18A, with a spectrum of samples corresponding to storage month. In the

loadings plot, Figure 2.18B, the Month is at the far right of the plot. The highlighted

m/z correspond to the markers observed in earlier analyses. m/z 133 appears to be

orthogonal to the Y-variable, whereas m/z 191 lies on the same axis, if not particularly

far from the origin.

Figure 2.19 on page 52 shows plots from OPLS analysis and PCAs of GA-treated

Russet Burbank samples. The OPLS plots in Figure 2.19 A and B refer to the earliest

sampling month, December. In the score plot, Figure 2.19A, the samples are coloured

and labeled by time since GA-treatment. The separation observed is generated by setting

the time since treatment as a Y-variable. This can be seen on the far right of the loadings

plot in Figure 2.19B. According to these loadings, m/z 133 is highly influential, though

not completely in line with time since treatment, m/z 191 is also at the edge of the

metabolite cluster, suggesting it co-varies with the Y-variable. Samples for Figure 2.19C

and D were analysed in March. Figure 2.19C is a PCA score plot, with samples labelled

49



A B

C D

Figure 2.17: OPLS of field grown GA-treated Desiree samples, by time since treatment.
Samples were treated in vitro with GA and collected at t=0, 24, 48 and 72. Panels A and B:

Samples prepared in October 2016. Panels C and D: Samples prepared in January 2017. A:

PCA score plot of field grown Desiree samples, in October. Samples are coloured and labelled

time since treatment (in hours). B: PCA loadings plot of field grown Desiree samples, treated

with GA in October. Each point refers to a m/z bin. A and B axes are linked: samples that

cluster on the PCA score plot are influenced by masses in the same region of the loadings plot.

n=12. C: PCA score plot of field grown Desiree samples, in January. Samples are coloured and

labelled time since treatment (in hours). D: PCA loadings plot of field grown Desiree samples,

treated with GA in January. Each point refers to a m/z bin. C and D axes are linked: samples

that cluster on the PCA score plot are influenced by masses in the same region of the loadings

plot. n=12.

and coloured by time since GA-treatment. The samples lie very close to the vertical

axis, clustering according to this grouping. Looking at the PCA loading plot in Figure

2.19D, it is key that m/z 133 is influential in generating this distribution.

Cv. Maris Piper

The final analysed cultivar was Maris Piper. Data from these tubers are presented

in Figures 2.20 and 2.21. These were harvested at the same time as the cv. Russet
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Figure 2.18: An OPLS of field grown Russet Burbank samples, by month.
A: An OPLS score plot of field grown Russet Burbank samples, at t=0 in the in vitro. Samples

are coloured and labelled by month of analysis. The supervised analysis arranges samples along

the horizontal axis, based on month of analysis. B: an OPLS loadings plot of field grown Russet

Burbank samples. Each point refers to a m/z bin. The Y-variable, Month, is on the far right

side of the horizontal axis. Bins that co-vary with the month lie close to the pq axis. n=48,

months = December 2016, January, February, March 2017.

Burbank tubers discussed above, but had shorter dormancy, leading to sampling in

December 2016, January and February 2017. Figure 2.20 on page 53 shows an OPLS

analysis of control samples from the sampling period. The storage month is used as a

Y-variable, leading to the separation seen in the score plot in Figure 2.20A. The loadings

are displayed in Figure 2.20B. The Y-value, harvest month, is displayed to the far right

of the horizontal axis. m/z 133 and 191 are both clearly influential, although only

m/z 133 varies along the horizontal component as much as the orthogonal component.

Data for GA-treated December and February (freshly harvested and starting to sprout

respectively) are displayed in Figure 2.21 on page 54. Figure 2.21A and B display OPLS

data for December samples. The time since treatment with GA is used as a Y-variable,

leading to the separation of data points on the bases of these scores in Figure 2.21A.

The loadings plot in Figure 2.21B shows strong influence from m/z 133, whereas most

of m/z 191’s influence is orthogonal to the time since treatment. The February OPLS

loadings plot, Figure 2.21D shows the opposite pattern. m/z 191 co-varies strongly with

time since GA-treatment, whereas m/z 133 is orthogonal. The pattern in the February

score plot, Figure 2.21C is similar to that in Figure 2.21A, suggesting that this is a fair

comparison.
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Figure 2.19: OPLS and PCA plots of GA-treated field grown Russet Burbank samples,
by time since treatment.
Samples were treated in vitro with GA and collected at t=0, 24, 48 and 72. Panels A and B:

Samples prepared in December 2016. Panels C and D: Samples prepared in March 2017. A: An

OPLS score plot of field grown Russet Burbank samples, in December. Samples are coloured

and labelled time since treatment (in hours). The supervised analysis arranges samples along

the horizontal axis, based on time since treatment. B: an OPLS loadings plot of field grown

Russet Burbank samples, treated with GA in December. Each point refers to a m/z bin. The

Y-variable, Time (since treatment, in hours), is on the far right side of the horizontal axis. Bins

that co-vary with the time since treatment lie close to the pq axis. n=12.Panel C: A PCA score

plot of field grown Russet Burbank samples, in March. Samples are coloured and labelled time

since treatment (in hours). D: a PCA loadings plot of field grown Russet Burbank samples,

treated with GA in March. Each point refers to a m/z bin. n=12.

2.4 Discussion

Potato tuber dormancy break is a commercially important biological process. This trait

is an artefact of wild potatoes’ overwintering strategy, which has important implications

for industry. Tuber sprouting has important consequences for shelf life and process-

ing properties, therefore optimising storage and utilisation practices are important to
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Figure 2.20: An OPLS of field grown Maris Piper samples, by month.
A: An OPLS score plot of field grown MarisPiper samples, at t=0 in the in vitro. Samples are

coloured and labelled by month of analysis. The supervised analysis arranges samples along

the horizontal axis, based on month of analysis. B: an OPLS loadings plot of field grown Maris

Piper samples. Each point refers to a m/z bin. The Y-variable, Month, is on the far right side

of the horizontal axis. Bins that co-vary with the month lie close to the pq axis. n=36, months

= December 2016, January, February 2017.

minimise waste-related losses.

The biological mechanisms underpinning the process have been studied from a num-

ber of perspectives, but usually focus on whole tuber dynamics.This chapter frames the

question of dormancy break at the bud level and examines the associated metabolic

profile changes. This approach links a very practical agronomic question to ideas about

meristem quiescence found in plant developmental biology.

2.4.1 System and assumptions

The buds analysed in this chapter are quiescent axillary meristems. Our current under-

standing of axillary meristem quiescence suggests that these entire structures are arrested

at the transition between G1 and S cell cycle phases. Upon reactivation, they regain com-

petence and proliferate rapidly. This reversible cell cycle exit does not involve cell spe-

cialisation; function is limited to housekeeping and cell respiration processes. Quiescent

meristems remain stem-like, without dividing. The release of quiescence is an essential

part of tuber sprouting; as dormancy breaks, meristems become proliferative. Here, I

suggest this process is closely linked to changes in their metabolism. This chapter uses a

mass spectrometry approach to capture metabolic profiles changing with sprouting and

discover markers linked to different stages of sprouting.

Samples in this chapter build on Hartmann’s GA work by using their in vitro system

to generate experimental material. A closer examination of the internal structures is a
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Figure 2.21: OPLS of GA-treated field grown Maris Piper samples, by time since treat-
ment.
Samples were treated in vitro with GA and collected at t=0, 24, 48 and 72. Panels A and B:

Samples prepared in December 2016. Panels C and D: Samples prepared in February 2017. A:

An OPLS score plot of field grown Maris Piper samples, in December. Samples are coloured

and labelled time since treatment (in hours). The supervised analysis arranges samples along

the horizontal axis, based on time since treatment. B: an OPLS loadings plot of field grown

Maris Piper samples, treated with GA in December. Each point refers to a m/z bin. The

Y-variable, Time (since treatment, in hours), is on the far right side of the horizontal axis.

Bins that co-vary with the time since treatment lie close to the pq axis. n=12. C: An OPLS

score plot of field grown Maris Piper samples, in February. Samples are coloured and labelled

time since treatment (in hours). The supervised analysis arranges samples along the horizontal

axis, based on time since treatment. D: an OPLS loadings plot of field grown Maris Piper

samples, treated with GA in February. Each point refers to a m/z bin. The Y-variable, Time

(since treatment, in hours), is on the far right side of the horizontal axis. Bins that co-vary

with the time since treatment lie close to the pq axis. n=12.

useful way to corroborate some assumptions about the system. Material was fixed and

sectioned to confirm the idea that GA-treatment elicits proliferation (Hartmann et al.

2011). The internal anatomy of the sampled buds is illustrated in Figure 2.4 on page
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32. These images reveal the typical shape of these structures, in many ways resembling

a classical shoot apical meristem. These buds include a central meristem, surrounded by

leaf primordia and sheathed in leaf bases. There is further evidence that these structures

are operating like activated meristems; they are linked to the cortex, which contain the

tuber’s stored reserves. This ties into the tuber’s function as an overwintering structure

with a large nutrient store. Meristems are heterotrophic and require the import of

nutrients to sustain their activity (Janssen et al. 2014). The buds use tuber reserves to

rapidly regenerate the aerial structures during the subsequent growing season.

As illustrated in Figure 2.4 on page 32, these entire tuber buds contain a number

of tissue types, including leaf primordia, epidermis and the meristem. Liquid extracts

lose this spatial resolution, but capture the whole structure associated with sprouting.

This entire feature is in a state of arrested development during dormancy, and undergoes

reactivation during sprouting.

Figure 2.5 on page 34 presents high resolution images of buds exiting dormancy.

Figure 2.5 A and B capture the endogenous process: over the course of storage, the

buds grows from the small, recessed structure seen in Figure 2.5 A to the larger and

more elaborate rosette in Figure 2.5 B. It is not possible to attribute the difference in

the texture of the outer leaves to senescence, as it could be an artefact of the imaging

process, leading to damage. However, there is a clear difference in the arrangement of

leaf primordia. The youngest leaf bases emerge from the bud in Figure 2.5 B and have a

more clearly flattened shape. In Figure 2.5 A the leaf bases are still contained within the

depression and the primordia are rounder in shape. Figure 2.5 C and D compared the

responses to water- and GA-treatment after 96 hours. The control in Figure 2.5 C clearly

shows that after 8 weeks in storage the bud largely resembles the freshly harvested one

in Figure 2.5 A. there are only a small number of visible leaf primordia and they are

all contained within the cavity and covered by the protective older leaf. In contrast,

Figure 2.5 D is much more protuberant. It is not at the same stage as Figure 2.5 B, with

fewer leaf bases visible, but a substantial change has occurred in the 96 hours since it

resembled Figure 2.5 C. Crucially, individual cells are visible and there doesn’t appear to

be any inappropriate elongation. This suggests that the observed growth and emergence

is driven by cell division, rather than changes in turgidity and cell wall dynamics, leading

to cell enlargement. There is no evidence that the cells are elongating in response to

treatment; the meristem is genuinely proliferative. This supports the subsequent use of

GA as a sprouting initiator to examine the metabolic dimensions of potato sprouting; it

seems to be a reasonably good mimic for the process, rather than an elongation driver.

Even though the data in this chapter mask some of the smaller features in the bud

complex, sampling was carried out on a much finer scale compared to much of the existing
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literature. Previous studies have framed their questions on the whole tuber scale, for

example examining hormone signalling (for review, see Aksenova et al. 2013). This is

a substantially more mature area of research. The maintenance of dormancy during

early storage is thought to involve insensitivity to growth promoters such as GA. As

endodormancy progresses, ABA levels fall and CK levels increase; once threshold levels

of these are reached, the meristem becomes primed to respond to cues. At this point

GA perception is possible and it can elicit growth. This model underpins the schematic

in Figure 2.1 on page 22.

The Hartmann et al. (2011) in vitro system of controlled dormancy release is used

throughout this chapter to assess the endodormancy status of stored material and pro-

duce staged samples for metabolic profiling. Figure 2.7 on page 35 supports the idea that

GA promotes sprouting in primed, weakly dormant tuber buds - a week after treatment,

control samples show significantly lower levels of sprouting compared to the GA treated

ones. This is in spite of the potential growth stimulating effects of manipulating the

buds and transferring them from storage at 7◦C to a growth cabinet at 22◦C.

The pattern observed in experiments such as that in Figure 2.7 changes during tuber

storage. During endodormancy, none of the buds sprout, regardless of treatment. After

endodormancy, samples are primed and responsive to the GA trigger (as shown). Tubers

that have been stored for a long time sprout at a high rate, regardless of treatment; the

change in temperature associated with the in vitro is enough to trigger dormancy break.

The length of time associated with these stages in variable and depends on genetic

and environmental factors. Some influential forces are stochastic, such as conditions

encountered in the field or perturbation in storage. However, cultivars and genetic

backgrounds also have a substantial impact.

2.4.2 Development series

In this chapter, the GA-treatment in vitro system was an important tool for improving

the consistency of the dormancy status of biological material when examining potato

sprouting. As such, the system could be used to answer a range of interesting and valu-

able questions. For example, identifying the switch from endodormant to primed could

be a commercially useful study target. Here it was used as the basis of a development

series and to identify the window of interest for analysis. The metabolomics approach

used here is better suited to questions pertaining to the switch from quiescence to prolif-

eration, rather than GA-sensitivity. Data presented here are associated with metabolic

changes occurring before a visible sprouting response would be observed. Based on the

sprouting time observed in primed, weakly dormant tuber buds treated with GA, 0-72
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hours after treatment is the key window for observation.

The in vitro system was used to generate samples for metabolic profiling. A key

innovation in this study was the application of mass spectrometry to these very small

samples. The mass spectrometry captured the rapid metabolic reconfiguration associated

with sprout initiation. A key aspect of the mass spectrometry platform used in this

chapter was the ability to perform non-targeted mass scans. The non targeted platform

yields a global look at changes in the metabolome. In addition to a non targeted platform,

an unsupervised analysis (using multivariate techniques such as principal component

analysis) can be used to explore the data. This allows patterns to be found without

assumptions about the system biasing the outcome. In this analysis, the PCA loadings

plots were useful decision tools for marker selection for subsequent study (Overy et al.

2005). Influential variables in these plots were considered candidate markers. From these

markers, key metabolic changes in response to meristem reactivation were examined.

Marker identity and associated biochemistry are discussed in later chapters.

Based on Figure 2.9A on page 39, it is possible to discriminate metabolically between

treated and control samples after 24 hours. This suggest that there are rapid changes as

the buds prepare to sprout. In GA-treated samples, there is a time-linked distribution

of these profiles, as seen in Figure 2.10 A and C. Lead m/z markers can be identified

from the loadings plots (Figure 2.10 B and D). This allows metabolic changes that co-

occur with sprout initiation and have been captured in these datasets to be identified.

A detailed discussion of how these m/z markers are identified is presented in Chapter 3.

However, at this early stage, these m/z markers were putatively identified on the basis

of mass as key components of the Krebs cycle, as shown in Table 2.2 on page 38. A

comprehensive description of this methodology and subsequent experimental steps are

explored in 3.3.1, on page 68.

The development series design offered a system with a robust control system. The

changes in metabolism in response to a growth promoter could be separated from ma-

nipulation effects, such as responses elicited by temperature changes, physical damage

or microbial activity. This allowed a time series in association with the treatment to be

analysed and any potential metabolic switches to be captured.

When this experimental design used primed, but dormant material, it was ideal for

dissecting responses directly involved in the switch to growth (“primed” material as

discussed in Figure 2.1 on page 22). Competent cells reacted to the growth promoter

by switching their metabolic strategy, meaning a well controlled time lapse could be

produced. This is in contrast to subsequent experiments, such as the storage series. The

experiments involving a storage series may have been a better reflection of the endogenous

process, but needed to infer the sprouting initiation time point, so the process could not
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be captured in such fine detail.

2.4.3 Apical dominance

A contrasting approach exploited the developmental gradient present in tubers, produced

by apical dominance. The apical bud produces a zone of inhibition, restricting the

growth of adjacent buds (Teper-Bamnolker et al. 2012). When treated with GA, apical

buds displayed a much greater sprouting response than those at the stolon end (60%

compared to 10% at stolon end, preliminary data). This represents a naturally occurring

sprouting gradient system. Using this naturally occurring apical dominance meant that

the tuber identity can be used as an alternative prediction for clustering. If the buds

were metabolically equivalent, it would follow that minor differences between tubers

would explain most of the variation. Figure 2.8 on page 37, particularly Figure 2.8 A,

demonstrates that sampled apices were more similar to each other than to lateral buds

from the same tuber, in terms of metabolic profiles. Key markers identified from this

separation could be linked to the differences in endodormancy status. It is interesting

that several of the same markers appear to be influential on the loadings plots for Figure

2.8 and Figure 2.10. This suggests that the differences in apical and stolon buds are

linked to the response to GA discussed above. The apical buds are more metabolically

active than stolon buds, and this appears to involve the same processes as the growth

promotion seen in response to GA-treatment.

2.4.4 Storage series

Interesting as the effects of apical dominance are, they do not tackle the main commercial

question. Once the apical meristem has sprouted, the tuber loses processing properties

rapidly (Burton 1982). The design that produced the data for Figures 2.11 to 2.13 on

page Pages 43, 44 and 46 represents the closest experimental system to the agricultural

question underpinning this chapter. Stored material from the staggered planting regime

was sampled repeatedly to track metabolic changes taking place as dormancy progressed.

Different batches were examined simultaneously to capture changes in response to storage

time, but resampling at intervals meant that outlier batches could be identified and

consistent patterns were independent of events in the growth season. This is illustrated

in Table 2.3.

Figures 2.11 and 2.12 link the same m/z markers found in the development series and

apical dominance analyses to the distribution of profiles along the storage gradient. This

is a promising corroboration of the in vitro system. It suggests the long term release of

dormancy in storage is associated with the same metabolic changes driven by the growth
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promoter GA. This implies it is a useful model system in which to conduct experiments

to examine the question of potato dormancy break.

Figure 2.13 on page 46 is more equivocal, suggesting that there are larger-scale

changes to the bud metabolic profile during storage. This could mean that the GA-

challenge system is a key tool for examining changes in metabolic ability as sprouting

ability increases. Sprouting-linked changes are of most interest, as opposed to any other

processes co-occurring during storage. This dataset contains useful information about

other changes associated with storage, but it somewhat limited given the difficulties in

inferring the exact timing of sprouting initiation in the absence of GA.

2.4.5 Cultivars

The final section of this chapter examines metabolic profiles from a range of cultivars.

So far, most of the data presented have been from glasshouse grown cv. King Edward

tubers. The following figures aim to test the generality of those observations and use

genetic background as a variable. The markers identified in King Edward support the

hypothesis that metabolic profiles can be used to stage tubers with relation to dormancy

status. The fact that the same markers (m/z 133, 191, 115) appeared in response to

artificial dormancy ending cues, apical dominance and different storage timings bodes

well for their generality as useful tools for monitoring dormancy break. By expanding

into a range of cultivars, I aimed to ascertain whether the changes I observed were

stereotypical in a range of potato cultivars that differed in dormancy length.

Figure 2.14 and 2.15 on pages 47 and 48 examine cv. King Edward tubers that were

grown in the field in Yorkshire 2016. Once harvested, these were transported to Sutton

Bridge Crop Storage Research, cooled by 1◦C per day to a temperature of 4◦C. Once

cooled, they were kept at 4◦C in 1t boxes until it was couriered to the University of

Sheffield for analysis. As such, these data aim to bridge the gap between observations

from glasshouse grown tubers and standard industry practice.

On the basis of the OPLS analysis in Figure 2.14 on page 47, I conclude that m/z

191.2 is a key marker for the metabolic changes occurring in tubers during storage. This

is corroborated by the patterns observed in Figure 2.15 on page 48 - m/z 191.2 shows

different levels of influence in samples treated with GA in October (Figure 2.15A and

B) and December (Figure 2.15C and D). This may reflect differences in tubers’ capacity

to perceive and respond to GA, triggering the same set of metabolic changes observed

in previous experiments.

Figures 2.16 and 2.17 on pages 49 and 50 present PCA data for the medium-length

dormancy cultivar, Désirée. The unsupervised analysis in Figures 2.16A produces a good
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level of separation along component 2, closely linked to m/z 133 and 191 in Figures 2.16B.

This evidence, from a distantly related tuber lineage, strongly supports the generality of

the observations made using the in-house system.

The GA-response PCAs, in Figure 2.17 on page 50, show that in October (Figure

2.17A and B), m/z 191 and 133 are clearly influential in separating t=0/24 from t=48/72

along component 1. This suggests that GA is successfully triggering a response in Octo-

ber, and that m/z 133 and 191 are diagnostic of this response. By January, the temporal

pattern in response to GA is lost: m/z 133 and 191 remain key variables, but they do not

lead to time-based separation. This may mean that, by January, all buds are committed

to sprouting, therefore there is a limited GA-response. The fact that m/z 191 and 133

vary may reflect that the sampled buds were all at slightly different points along the

reactivation process.

The longest dormancy cultivar studied is Russet Burbank. Sampling these tubers

was possible until March 2017, which represents the limit of non-treated potato tuber

storage. Russet Burbank is also a well studied cultivar, as it is the most important in

the USA. Data for this cultivar are presented in Figure 2.18 and Figure 2.19on pages 51

and 52.

Figure 2.18 on page 51 is an OPLS plot of bud metabolic profiles, separated by

month of analysis. In the OPLS loadings plot (Figure 2.18 on page 51B) m/z 133 is

clearly separated from the central cluster, but orthogonal to the sampling month. On

the other hand, m/z 191, on the edge of the central cluster is very close to the y-variable

axis and may be more informative as a covarying marker.

A similar pattern can be observed in Figure 2.19 on page 52B; m/z 191 covaries well

with the time since GA-treatment, whereas m/z 133’s influence is more equivocal. By

March, as illustrated in Figure 2.19 on page 52C and D, there is a really good separation

by time since treatment along component 2, which is well explained by m/z 133. This

shows a change in the relative influence of m/z 191, in favour of 133 over the storage

period.

Data for the final cultivar, Maris Piper, are shown in Figure 2.20 and Figure 2.21 on

pages 53 and 54. Maris Piper has an intermediate dormancy length, similar to Désirée.

The OPLS loadings plot in Figure 2.20B on page 53 shows that the key markers, m/z

191 and 133 are both separate from the central cluster of metabolite bins, although

they are both orthogonal to the sampling month. As m/z 133 is in the bottom left

quadrant, it does co-vary with the y-variable, although it is as important as m/z 191 on

the orthogonal component.

Figure 2.21 on page 54A and B refer to an OPLS analysis of GA-treated bud metabolic

profiles in December. Figure 2.21B is the loadings plot. Much like the Loadings plot
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in Figure 2.20B, m/z 133 is in the bottom-left quadrant, meaning it does co-vary with

the Y-variable (time since treatment with GA), but is also influences the orthogonal

component. m/z 191 is mostly orthogonal to the time since treatment, suggesting it is

not a discriminant marker at this stage in storage.

Figure 2.21C and D are OPLS plots for buds treated with GA in February. In

contrast to Figure 2.21B, this loadings plot (Figure 2.21D) shows m/z 191 close to the

same component axis as time since treatment, showing it as an influential variable. m/z

133, on the other hand, is largely orthogonal to the Y-variable, suggesting it does not

explain the observed GA-response.

In conclusion, the key m/z markers from the detailed glasshouse King Edward study

are influential on the seasonal plots (Figures 2.14, 2.16, 2.18 and 2.20). In many cases the

same ones appear in the GA-response plots at the earliest sampling point (Figures 2.15,

2.17, 2.19 and 2.21B). By the latest time point (GA+72hours), these GA treatment

temporal patterns have often dissipated (Figures 2.15 and 2.17D) or even flipped (Fig-

ures 2.19 and 2.21D) so that m/z 191 and 133 swap axis of influence. All this suggests

that the changes observed in cv. King Edward are stereotypical of potato dormancy

break and cultivar independent.

2.4.6 Conclusions

The data discussed in this chapter produce some highly promising m/z markers for the

diagnosis of dormancy status. Metabolic profiles have characteristic patterns, linked to

the dormancy status of sampled material. All four of the the contrasting experimental

designs seem to corroborate each other (GA treatment, staggered planting, field grown

cultivars and bud apex-stolon rank), as the same ions shape the loadings plots indepen-

dently. The main markers in the metabolic profiles are generallyindependent of cultivar

and the type of dormancy ending signal used. This suggests the experiments were suc-

cessful in capturing endogenous dormancy release process; tuber buds sprouting display

a set of stereotypical changes to their metabolic profiles. The next chapter will take these

markers forward for more specific and detailed biochemical analysis. This information

will be linked to the underlying mechanisms involved in the process of dormancy break.
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Chapter 3

The role of TCA cycle activity

during early dormancy release in

tuber buds

3.1 Introduction

The results described in Chapter 2 led to the putative identification of a number of

metabolites linked to the TCA cycle as early markers of the exit from dormancy/entry

to sprouting in potato tubers. In this chapter techniques will be used to definitively

identify these metabolites, followed by a series of experiments to investigate the potential

role of altered TCA metabolism during sprouting. Before describing the results of these

experiments, let us first consider the biological context of sprouting and published ideas

on how metabolism might be linked to the observed growth phenomenon.

At first sight, the link between metabolism and growth appears trivial. Clearly

growth requires energy and the synthesis of macromolecules to provide the structures for

growth. In plant cells there is the added element that maintenance of turgor is needed

via uptake of water into the vacuole to physically drive growth, but nevertheless it seems

obvious that a general increase in metabolism will accompany an increase in growth

(Öpik & Rolfe 2003). However, especially when considering the initiation of cell division-

associated growth, the mechanistic role of metabolism may become more complicated.

A key (and still puzzling) observation in this area stems from research performed in

the 1930s which led to the identification of the Warburg effect in oncology. It has been

revisited many times, due to the recurrent observation that metabolism changes in an

unexpected way during the development of aberrantly proliferating cells associated with

mammalian tumours (for review, see Garber 2004). Essentially, despite the requirement
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for a high growth rate, tumours often display a preference for an aerobic glycolytic

pathway rather than an oxidative pathway. These cells appear to favour an apparently

less efficient mechanism for energy production, despite there being an apparent need

for high energy supply. The fundamental proposition (which remains contentious) is

that the observed metabolic reconfiguration associated with the Warburg effect plays a

causal role in the development of rapidly expanding cancerous tissues (Vander Heiden

et al. 2009).

In biology, cell specialisation tends to be a unidirectional process. As gene expres-

sion changes during cell specialisation, a lineage becomes committed to an increasingly

narrow range of fates. A consequence of this differentiation is an eventual loss of the

ability to carry out cell division. Thus, starting from embryogenesis, and continuing

during post-embryonic development, stem-like properties become increasingly rare so

that, eventually, only relatively small numbers of adult stem cells are present to perform

damage repair functions.

A key property of oncogenesis is the inappropriate resumption of rapid cell division

in somatic cells, which lose these constraints on cell division. Concurrently cells gain the

ability to rapidly utilize nutrients from surrounding tissues. Acting as a strong sink is

a key component of tumour evolution: in order to proliferate at the distinctively high

rate, cells need to replicate their contents rapidly, performing anabolism. To accomplish

this, tumours demand the rapid catabolism of any available resources, and this fuels

the anabolic processes required for their growth. During carcinogenesis, the normal

controls preventing runaway metabolism are lost, so the developing tumour can divert

and appropriate vast quantities of substrate, which eventually leads to the detrimental

symptoms associated with it in a medical context (Banerjee 2018).

On a metabolic level, this fast breakdown of substrate has been linked to aerobic

glycolysis. Although the necrotic centre of tumours can develop anoxic conditions, a

reduction in the intensity of the canonical TCA cycle and oxidative phosphorylation

in favour of the reactions usually associated with fermentation is observable before this

characteristic develops. There are a range of explanations for this phenomenon, including

mitochondrial immaturity in newly divided cells (glycolysis takes place in the cytoplasm

and does not depend on mitochondria), decrease in the DNA damage risk by ROS

associated with oxidative phosphorylation, or the Warburg effect (Rahman et al. 2013).

According to the Warburg effect, aerobic fermentation could be taking place because

cancer cells are not ATP starved; chemical energy is not the rate limiting factor for them

to thrive. By bypassing the TCA cycle and oxidative phosphorylation, tumour cells can

perform the initial breakdown of macromolecules, required to repurpose them, without

investing time and substrate into the production of a functional system of oxidative
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phosphorylation. Warburg proposed that the ability to implement this change had a

causal role in the development of cancerous traits.

A non pathological system that demonstrates a similar change in function has been

observed in a unicellular context (Chen et al. 2007). These authors observed that yeast

metabolise differently under stress or high nutrient conditions. Stress promotes a highly

ATP efficient metabolic strategy in order to maximise the probability of survival. How-

ever, yeast is capable of detecting pools of nutrients and switching to a system of fer-

mentation and proliferation in order to exploit new resources and use them more rapidly

than competitors. In the yeast model, the features described in mammalian carcino-

genesis provide a simple conceptual model for metabolic changes in association with

proliferation; this system demands speed and simplicity to allow the rapid exploitation

of carbon resources, which might be better served by non-oxidative catabolism provided

ATP generation is not limiting.

Plant multicellularity evolved independently of the animal equivalent, so many of the

controls in place to prevent aberrant cell division are unrelated to those observed in an

oncology setting. However, plants possess cells that have an interesting parallel; meris-

tems are pools of stem cells that remain proliferative and avoid specialisation (Öpik &

Rolfe 2003). In the case of quiescent meristems, there can be a long hiatus in the active

cell division process. followed by a relatively rapid activation of cell division, fueled by

catabolism of carbon stores which, with respect to the size of the meristem, provide a

massive excess of resource. However, in plants the reactivation of cell division in the qui-

escent meristem is not maladaptive for the organism (in contrast to mammalian cancer),

rather an important tool in plant plasticity, mediating responses to environmental cues

through development (Dodsworth 2009).

Such metabolic comparisons between plant and animal cell proliferation events have

been little explored and the results described in Chapter 2 provide an entry point for

the exploration of such ideas, which will be investigated further in this chapter.

Sugar measurements have retained value in an agricultural setting because sugar lev-

els covary with other potato quality factors. For example, high levels of reducing sugars

are suboptimal in processing because they lead to browning during cooking and high

risk of acrylamide formation. Acrylamide is a toxic product of the Maillard reaction,

where the amino acid asparagine reacts with reducing sugars under cooking temper-

atures. Acrylamide is a carcinogen and it is now thought that dietary exposure is a

genuine health risk (Mottram & Dodson 2002).

However, sucrose and reducing sugar levels are not the most dependable marker,

as they can be perturbed by a range of factors. For example, there are substantial

differences between cultivars in sugar composition, and many environmental factors can
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also influence sugar dynamics, such as cold induced sweetening, associated with low

temperature phosphorolysis of starch (Herman et al. 2016). Clearly, most of the changes

in starch-related metabolism are occurring at the tuber level, so it is difficult to relate

changes in reducing sugar levels measured in tuber tissue to what is taking place at the

meristem level. As alluded to in previous chapters, a key innovation in this thesis is to

consider the question of potato dormancy break at the bud level, and the examination of

the question from a plant development perspective. A comparison of the findings at bud

level to bulk changes at tuber level would provide an insight into just how metabolically

different these two tissues are, and potentially provide an insight into how the two tissues

are coordinated at a metabolic level.

As indicated at the beginning of the introduction, the results described in Chapter 2

provide putative identities of a number of metabolites linked to the TCA cycle. Although

profiling is a powerful technique to provide leads on interesting metabolites, the confir-

mation of metabolite identity requires the application of further analytical techniques,

and this chapter uses tandem mass spectrometry to identify moieties of interest discussed

in chapter 2. The premise of tandem mass spectrometry, or MS/MS, is that different

isobaric molecules will have different labile groups. A narrow mass window of interest is

selected and these moieties are bombarded with neutral gas, leading to the production

of many fragment ions, which are detected during the second mass spectrometry phase.

Differences in structural properties mean that isobaric molecules lose different labile side

groups, yielding different fragment fingerprints. Comparisons between samples can con-

firm that the same molecule is observed at a given mass, and standard solutions can be

used to generate an expected fingerprint for identification.

The overarching objective of this chapter is to examine the identity of the markers

discussed in Chapter 2 and put them into a plant metabolism context. The concepts from

animal and yeast systems, discussed above, point to other proliferative cell types and the

ways in which they modify metabolism to facilitate growth. When these questions are

applied in a plant development context, they also have agronomic importance. Current

potato storage best practice is examined to produce a baseline level of understanding of

the current process.

3.1.1 Hypotheses

• The metabolic changes associated with dormancy break in (described in Chapter 2)

correspond to altered aspects of primary metabolism; specifically the TCA cycle.

• The TCA-linked metabolism of deeply dormant tissues shows a different pattern

to samples approaching sprouting
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• The changes in TCA-metabolite pattern that occur in buds during sprouting pro-

vide a more consistent assay of tuber growth status than the traditional analysis

of sugar levels in tubers, particularly across when comparing different cultivars.

3.2 Material and Methods

3.2.1 Marker identification using online databases

Mass/charge markers from chapter 2 were putatively identified using the online databases

Kanehisa et al. (2018), SolCyc (2018), CHEMnetBASE (2015) by means of their exact

mass search function. Outputs from the search were eliminated to leave plausible can-

didates, based on their monoisotopic exact mass, association with plant biochemical

pathways and structural suitability for ionisation. SolCyc (2018) was particularly use-

ful, in that candidate mass identities were all found in related species, as opposed to

animal or pharmaceutical contexts.

3.2.2 Tandem Mass Spectrometry

Marker identification was confirmed using tandem mass spectrometry. In silico frag-

mentation patterns were predicted using ChemDraw. These were corroborated using

standard solutions of the predicted TCA cycle intermediates.

Concentrated standard solutions (0.1 g/ml w/v in) 100% methanol were analysed

on the QSTAR in negative ionisation mode. A product ion (to the nearest Dalton)

was selected, then analysed to produce a fragmentation pattern for the ion of interest.

Sample extracts, produced as in 2.2.5 were analysed using the parameters established

for each m/z of interest. Sample extracts from buds treated with GA and control, for

t=0-48 were examined and their fragmentation pattern was compared to the predicted

pattern and the standard solution. In this way, marker identification was confirmed

across sample types.

3.2.3 Pathway analysis

Once m/z markers were identified, the data were reexamined to extract m/z of linked

metabolites. The relative intensity of these m/z in GA-treated samples, compared to

controls (% total ion count, GA value/control value), were mapped on metabolic network

diagrams on a color intensity scale.

Solcyc had an automated version of this process. Full datasets with automated

putative identities could be uploaded to solcyc using an equivalent formula. This mapped
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putative mass identities to a global Solanum metabolic network. Solcyc allowed any

responsive pathways to be identified. However, it lacked an export function, so identified

metabolites from pathways of interest were examined manually (as above) when looking

for consistent patterns between datasets.

3.2.4 Sugar extraction from potato tissue

Sugars were extracted from tuber tissue using an ethanol series. Samples were concentric

cores of material used in the in vitro assay from Chapter 2. 80% ethanol (v/v, adjusted

to pH 4.0 with glacial acetic acid) was heated to 80◦C. 50µl of hot ethanol was added

to 100mg of tissue, then vortexed. An additional 250µl of hot ethanol was added to the

sample, which was incubated on a heating block at 80◦C for 10 minutes. The sample

was centrifuged at 14000rpm for 5 minutes and the supernatant was decanted.

The pellet was resuspended in 50µl of hot 80% (v/v) pH4.0 ethanol by vortexing.

An additional 250µl of hot ethanol was added to the sample, which was incubated on

a heating block at 80◦C for 10 minutes. The sample was centrifuged at 14000rpm for 5

minutes and the supernatant was decanted into the same tube as above.

The pellet was resuspended in 50µl of hot 50% ethanol (v/v) by vortexing. An

additional 250µl of hot ethanol was added to the sample, which was incubated on a

heating block at 80◦C for 10 minutes. The sample was centrifuged at 14000rpm for 5

minutes and the supernatant was decanted into the same tube as above.

The pellet was resuspended in 50µl of hot 18Ω ultrapure distilled deionised water

by vortexing. An additional 250µl of hot water was added to the sample, which was

incubated on a heating block at 80◦C for 10 minutes. The sample was centrifuged at

14000rpm for 5 minutes and the supernatant was decanted into the same tube as above.

The combined supernatants were flash frozen in liquid nitrogen and freeze dried at

-40◦C. The residue was resuspended in 500µl of 18Ω ultrapure distilled deionised water

for sugar analysis.

3.2.5 Enzyme-linked spectrophotometric assay of sugars in potato

extracts

Sugar extracts from tuber tissue were analysed using an enzyme-linked spectrophoto-

metric assay. This used a pH8.0 100mM HEPES, 5mM MgCl2, 4mM NAD and 1mM

ATP (w/v in water) assay cocktail. 20µl of extract was added to 980µl of the assay

cocktail and mixed. Absorbance was calibrated at 340nm.

1µl of hexokinase (5 enzyme activity units) was added to the solution and mixed.
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The change in absorbance at 340nm was measured until it stabilised. 1µl of G6PDH (5

enzyme activity units) was added to the solution and mixed. The change in absorbance

at 340nm was measured until it stabilised. 1µl of PGI (5 enzyme activity units) was

added to the solution and mixed. The change in absorbance at 340nm was measured

until it stabilised. 2µl of invertase (2mg/ml w/v, 5 enzyme activity units) was added

to the solution and mixed. The change in absorbance at 340nm was measured until it

stabilised.

Glucose concentration is proportional to the change in absorbance due to the addition

of G6PDH. Fructose concentration is proportional to the change in absorbance due to

the addition of PGI. Sucrose concentration is proportional to the change in absorbance

due to the addition of Invertase.

3.3 Results

3.3.1 Identifying ions

The results presented in Chapter 2 identified a number of key m/z moieties that repro-

ducibly and under different conditions acted as robust markers of the tuber bud sprouting

process. In particular, m/z 191.0, 133.0 and 115.0 were consistently highlighted as po-

tential markers for sprouting. Table 2.2 on page 38 lists these markers and putatively

identifies them, based on an exact mass search of Kanehisa et al. (2018), as citrate (m/z

191.0), malate (m/z 133.0), and fumarate (m/z 115.0). A knowledge of basic biochem-

istry leads to a clear association of these metabolites with the Krebs cycle, the core

and universal biochemical pathway of oxidative metabolism. Using this as lead, other

metabolites associated with the Krebs cycle were analysed in a targeted fashion within

datasets reported in Chapter 2, leading to the identification of peaks for aconitate (m/z

173.0), ketoglutarate (m/z 145.0) and oxaloacetate (m/z 131.0).

Initial characterisation of m/z by comparison with available databases is a powerful

method for the putative identification of metabolites. However, further analysis is gen-

erally required for full confirmation of metabolite identity. To do this, putative mass

identities were confirmed using tandem mass spectrometry. In this process, ions in a

mass window are fragmented, yielding a MS/MS fingerprint of product ions, created

by the loss of labile side groups. These MS/MS spectra can be compared to predicted

fragment patterns or experimental data from standard solutions. For example, Figure

3.1 on page 69 shows malate and three of its predicted fragments. Figure 3.1 A shows

the molecular structure of malate. Figure 3.1 B-D show malate product ions, their exact

masses, and the bonds broken to produce these fragments. This process was repeated for
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all metabolites listed in Table 2.2 is first presented in Chapter 2 on page 38, but will be

discussed in more detail here. Figure 3.2 on page 70 shows the observed MS/MS spectra

for these eight organic acids.

A

B

C

D

Figure 3.1: Malate in silico fragmentation pattern
The software Chemdraw was used to generate predicted fragmentaton patterns for metabolites

of interest. Malate is illustrated as an exemplar. Chemdraw predicts the mass of product

ions when a particular bond is broken. A: The structure of malate, including the exact mass.

Panels B, C and D: 3 sets of malate product ions, depending on the fragmentation. Masses

and formulae of predicted fragments are displayed.

Figure 3.2 G shows the product ions for malate, discussed above in Figure 3.1 on page

69. The parent ion, m/z 133, (corresponding to Figure 3.1 A) was successfully detected.

In addition there are peaks for product ions at m/z 115 (corresponding to Figure 3.1 B),
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A B

C D

E F

G H

Figure 3.2: Organic acid fragmentation patterns
Standard samples of TCA cycle intermediates were fragmented using tandem MS to yield a

fragmentation pattern. These MS/MS fingerprints were the basis for corroboration of puta-

tively identified m/z. A: Citric acid (m/z 191.0); B: Aconitate (m/z 173.0); C: Isocitric acid

(m/z 191.0), D: Ketoglutarate (m/z 145.0); E: Succinate (m/z 117.0); F: Fumarate (m/z 115.0);

G: Malate (m/z 133.0); H: Oxaloacetic acid (m/z 131.0)

m/z 89 (corresponding to Figure 3.1 D) and m/z 71 (corresponding to Figure 3.1 C).

Figure 3.2 A and C should be considered in conjunction with Figure 3.3 on page 72.

These data relate to the fragment pattern of the isomers citrate and isocitrate, overlain

in Figure 3.3 C. The original datasets are unable to discriminate between citrate and
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isocitrate, because they have the same exact mass (this includes Table2.2). However, as

seen in Figure 3.3 A and B, there is a key structural difference, due to the location of

the hydroxyl group. This is possibly best illustrated by the key differences in their IU-

PAC name: citrate (Figure 3.3 A) is 2-Hydroxypropane-1,2,3-tricarboxylic acid, whereas

isocitrate (Figure 3.3 A) is 1-Hydroxypropane-1,2,3-tricarboxylic acid. As the position

of the hydroxyl group in citrate makes the molecule symmetrical, breaking C1 −C2 and

C2 − C3 yields the same product ions: m/z 85 and 111. By having the hydroxyl group

on C1, isocitrate is more likely to lose the hydroxyl and a carboxyl group independently.

This yields the additional, larger fragments at m/z 155 and 173, highlighted with the

red dashed line in Figure 3.3 C.

Figure 3.2 C shows the fragment pattern of aconitic acid. In addition to the parent

ion (m/z 173) there are peaks at m/z 85, 111 and 129. For Ketoglutarate (Figure 3.2

D) the key fragment ions correspond to m/z 57, 73 and 101. The succinate MS/MS

spectrum (Figure 3.2 E) shows peaks at the parent ion (m/z 117) and at m/z 99 and 73.

Fumarate and Oxaloacetate (Figure 3.2 F and H respectively) only have one detected

product ion each; m/z 71 and m/z 87 respectively.

Each organic acid’s MS/MS detection protocol was applied to a set of six contrasting

samples. Their preparation was equivalent to that in Figure 2.9 in chapter 2 on page

39. Tuber buds were GA-treated or mock-inoculated with water. These buds were

dissected and flash frozen at t=0, 24 and 48 hours from treatment, Then extracted in

MeOH/CHCl3. Figure 3.4 on page 73 shows the MS/MS spectra for fumarate as an

example. Figure 3.4 A is the standard solution, also reported in Figure 3.2 F (above).

Figure 3.4 B, D and F are water-treated controls, Figure 3.4 C, E and G are GA-treated.

Figure 3.4 B and C were frozen immediately after treatment. Figure 3.4 D and E were

dissected 24 hours after treatment. Figure 3.4 F and G were sampled at t=48 hours.

All seven spectra display a peak at m/z 115 (parent ion) and/or m/z 71. This confirms

that the previously detected ion at m/z 115 is a match for fumarate.

As indicated at the beginning of this section, all of the metabolites listed in Table2.2

on page 38 and corroborated by MS/MS in Figures 3.1 to 3.4 correspond tocomponents of

theTricarboxylic (Krebs) cycle, shown schematically in Figure 3.5 on page 74. The masses

of ions of interest are displayed below the name of each organic acid. In subsequent

figures, where possible, components are arranged in the order the metabolites occur in

the pathway (for example Figure 3.2). This makes it easier to group components visually

and infer any pattern changes. Where the TCA cycle is discussed as a whole, Figure 3.5

will be used as a basic framework for reference.

Having established that the lead m/z markers identified in Chapter 2 were linked with

the TCA cycle, I revisited the data sets to provide an overview of the entire pathway
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A B

C

Figure 3.3: Citrate Isomers
Differences in the molecular structure of citrate and isocitrate means they can be discriminated

by MS/MS. A: Molecular structure of citric acid. It is symmetrical, with a hydroxyl group

and carboxyl group on C3. Breaking C2 − C3 and C3 − C4 yields the same product ions. B:

Molecular structure of isocitric acid. The carboxyl group is on C3, whereas the hydroxyl group

is on C4. The position of the hydroxyl group means that breaking C2 − C3 and C3 − C4 yield

different product ions. C: MS/MS fragmentation pattern of citric and isocitric acid. The red

dashed line indicates two product ions that are predominantly linked to isocitrate.

under different conditions and at different time points in the sprouting process.
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A

B C

D E

F G

Figure 3.4: Tandem Mass Spectrometry of samples
MS/MS protocols, established for each metabolite, were applied to contrasting samples from

2.9 in chapter 2 to corroborate metabolite identification. Here, Fumarate is illustrated as

an exemplar. The diagnostic product ion m/z 71.1 is detected in all samples. A: Fumarate

standard solution. B: Water-treated, t=0 hours. C: GA-treated, t=0 hours. D: Water-treated,

t=24 hours. E: GA-treated, t=24 hours. F: Water-treated, t=48 hours. G: GA-treated, t=48

hours.

Figure 3.6 on page 75 displays summary data for the relative intensity of TCA cycle

intermediates in apical buds, normalised against the stolon bud. These data correspond

to those presented in Chapter 2 in Figure 2.8 A and B (glasshouse grown cv. King Ed-
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Figure 3.5: TCA cycle
The putatively identified markers correspond to components of primary metabolism. These

metabolites are key to the TCA cycle. Detected m/z for each metabolite are displayed below

their names.

ward tubers). The tubers were sampled directly, without GA treatment, while they were

dormant, but plausibly susceptible to dormancy-ending cues. The red dashed line indi-

cates a 1:1 ratio, i.e. equal intensity in the apex and stolon buds. Apart from succinate

and ketoglutarate, all the metabolites clearly show a different level in the apical bud,

compared to the stolon bud. Malate and fumarate are detected at substantially higher

relative intensities in the apical buds (marginally significant, p<0.1, 2-tailed 1-sample

t-test). Citrate and aconitate were marginally lower in the apical buds (marginally sig-

nificant, p<0.1, 2-tailed 1-sample t-test). The only metabolite to be tested as having a

significantly different relative level from 1 was Oxaloacetate. It is present at much lower

levels in the apical bud, which has been previously described as less dormant than other

meristems on the same tuber (highly significant, p=0.0092, 2-tailed 1-sample t-test).

These data are undermined by low levels of replication, although the paired nature of

the data adds to the power of the analysis.
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Figure 3.6: Pathway differences in apical and stolon buds
The relative abundance of TCA cycle intermediates in apical bud (ratio with stolon bud). Red

dashed line indicates a 1:1 ratio. Ratios were performed on proportion of ion count (%). Error

bars are SEM. n=5

Figure 3.7 on page 77 schematically represents changes in the levels of TCA pathway

metabolites in apical buds at different times after GA-treatment. Each of the panels in

Figure 3.7 uses the framework in Figure 3.5, with a colour intensity scale to indicate

metabolite levels in GA treated samples, normalised against controls. Hot colours indi-

cate that a metabolite was detected at higher levels in the GA-treated samples, compared

to the controls and cold colours reflect lower detected levels after GA treatment. Sam-

ples that are coloured green had roughly similar levels in treated and control samples.

Figure 3.7 A represents timepoint t=0, immediately after treatment. Most of the path-

way is green and yellow, indicating a moderate increase in detected levels of metabolites,

notably citrate, fumarate and malate. The only metabolite to show decreased levels is

oxaloacetate. Figure 3.7 B (at 24 hours after GA treatment) shows a contrasting pattern.

Although fumarate is more abundant in comparison to the control samples, all the other

metabolites show decreased levels. By 48 hours after treatment (Figure 3.7 C) higher

levels for most metabolites in the pathway are present, compared to the pattern shown
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in Figure 3.7 C, returning to a scenario not dissimilar from that observed at t=0. Figure

3.7 D shows the pattern of accumulation at 72 hours after GA treatment. Very high

levels of malate and citrates are observed, and aconitate and ketoglutarate levels are also

relatively high. Succinate and oxaloacetate levels remain similar to those observed at

t=48, but the level of fumarate is strongly decrease relative to earlier time points.

The changes in relative metabolite level over time after treatment with GA are sum-

marised in Figure 3.8 on page 78. In all the panels the red dotted line indicates a 1:1

ratio between GA-treated samples and the controls. Figure 3.8 A displays the change in

citrate levels with time since treatment. The level remains fairly close to the red line over

the first 48 hours, then increases dramatically at 72 hours. Similarly, both aconitate and

ketoglutarate show a rise in relative level by 72 hours (Figure 3.8 B and C), and malate

shows a dramatic increase in level at this time point (Figure 3.8 F), whereas succinate

(Figure 3.8 D) and oxaloacetate do not show an increase at 72hrs. It is noteworthy that

six of the seven metabolites analysed show a reproducible drop in relative level at 24

hours after treatment, with the exception of fumarate (Figure 3.8 E) which shows a rise,

followed by a continual decrease over the subsequent 48 hours, which is a distinct pattern

from those observed for the other TCA metabolites.

Figure 3.9 on page 79 schematically represents changes in the TCA pathway in buds

excised from tubers after a time in storage (3, 5 or 7 weeks) and incubated for 72

hours after treatment with GA, as in Chapter 2 Figure 2.12. Each of the panels in

Figure 3.9, like those in Figure 3.7 uses the framework in Figure 3.5, with a colour

intensity scale to indicate metabolite levels in response to GA treatment. Hot colours

indicate that a metabolite was detected at higher levels in the GA-treated samples,

compared to the controls, with cold colours reflecting lower levels with GA. Figure 3.9A

shows the data for samples after 3 weeks in storage. The citrate and aconitate levels

have increased compared to controls,whereas ketoglutarate and oxaloacetate levels are

relatively unchanged. Succinate, fumarate and malate are all detected at lower levels

compared to the water-treated control samples.

At 5 weeks after harvest (Figure 3.9 B), succinate, fumarate, malate and oxaloacetate

are all detected at lower levels, compared to the water-treated samples, with the rest of

the pathway being relatively unchanged, apart from an increase in ketoglutarate levels.

Finally, Figure 3.9 C shows the TCA metabolite pattern for buds treated with GA after

storage for 7 weeks. Unlike the previous time points, the majority of samples display

similar levels of metabolites in control and GA-treated samples, apart from ketoglutarate

and oxaloacetate, which are detected at lower levels compared to controls.

A deeper insight into the altered responsiveness to sprouting triggers during tuber

storage is shown in Figure 3.10 on page 81. Samples in this figure are extracts of buds
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t=0
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t=24

C

t=48
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t=72

Figure 3.7: TCA cycle configuration in response to GA treatment
The relative abundance of TCA cycle intermediates in GA-treated buds (ratio with water-

treated buds). Data relate to samples in 2.9 in chapter 2. Ratios were performed on proportion

of ion count (%). Hot colours indicate an ion was more abundant in GA-treated samples than

controls. Cold colours indicate an ion was less abundant in GA-treated samples than controls.

The colour scale is displayed below the 4 panels. n=38. A: t=0 hours from treatment. B: t=24

hours from treatment. C: t=48 hours from treatment. D: t=72 hours from treatment.

excised from tubers after a time in storage (2, 4, 6 and 8 weeks) and incubated for 72

hours after treatment with GA. Note this is using a log2 scale to ensure that scaling

factors have the same visual impact regardless of whether they represent increases or
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Figure 3.8: Changes in metabolite relative levels in response to GA treatment
The relative abundance of TCA cycle intermediates in GA-treated buds (ratio with water-

treated buds) against time since treatment (hours). Data relate to samples in 2.9 in chapter 2.

Red dashed line indicates a 1:1 ratio. Ratios were performed on proportion of ion count (%).

n=38. A: Citrate; B: Aconitate; C: Ketoglutaric; D: Succinate; E: Fumarate; F: Malate; G:

Oxaloacetic.

reductions in metabolite levels, with the red dotted line representing the 1:1 ratio between

GA-treated and water-treated control samples. Metabolites on the x axis are arranged

in the order they appear in the TCA cycle. These data were also presented in chapter 2

in Figure 2.11 on page 43. For treatments at 2 weeks after harvest, all the metabolites
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A

3 weeks

B

5 weeks

C

7 weeks

Figure 3.9: TCA cycle configuration during storage
The relative abundance of TCA cycle intermediates in GA-treated buds (ratio with water-

treated buds) at various points in storage. Data relate to samples in 2.12 in chapter 2, 72

hours after GA-treatment. Ratios were performed on proportion of ion count (%). Hot colours

indicate an ion was more abundant in GA-treated samples than controls. Cold colours indicate

an ion was less abundant in GA-treated samples than controls. The colour scale is displayed

below the 4 panels. n=36 A: 3 weeks in storage; B: 5 weeks in storage; C: 7 weeks in storage.

were detected at lower levels in the GA-treated samples than in the controls. Citrate and

malate showed the lowest relative levels, leading to a non-uniform response around the

pathway. By week 4 in storage, there was a marked change in metabolite response, with
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aconitate, ketoglutarate and succinate accumulating to high levels after GA treatment,

malate and oxaloacetate falling to low levels, and citrate and succinate being essentially

non-detectable. Overall, at 4 weeks in storage the TCA response to GA with respect

to metabolite level was highly asymmetric. At 6 weeks in storage the response to GA

treatment was similar for to that observed at 4 weeks for aconitate, ketoglutarate and

succinate, but there were markedly higher levels of malate, oxaloacetate and citrate. By

8 weeks in storage the response of metabolite levels to GA treatment was more similar

across all steps of the TCA cycle, the main exception being fumarate which showed a

marked relative increase in level compared with control treated samples.

3.3.2 Enzyme-linked spectrophotometric analysis of sugars

In contrast to the focus in this thesis on the molecular events occurring in buds during

sprouting, most investigations on tuber growth have analysed tuber tissue, with a specific

emphasis on the gross changes in carbohydrate metabolism that occur (since these have

direct consequences on processing and product quality). To provide a link between these

classical studies and the work reported here on buds, we performed an analysis of sugar

levels during sprouting. These data were produced, in part, by Tom Grand during his

M. Res. project.

Using an enzyme-linked spectrophotometric assay, sugar levels (glucose, fructose and

sucrose) were analysed in four tuber varieties (King Edward, Desiree, Maris Piper, Rus-

set Burbank) at different time points after storage in a commercial storage unit (Sutton

Bridge Crop Storage Research Centre). Each of the varieties displays a different dor-

mancy trait, with King Edwards showing the shortest period of dormancy and Russet

Burbank the longest. As a consequence, for some varieties (e.g., King Edward) samples

do not extend beyond December, whereas others (Russet Burbank) extend into March.

Due to differences in the timing of harvest and transport, not all varieties have data

for the early time points (October, November) and this should be borne in mind when

comparing the datasets.

The results of the analysis are shown in Figure 3.11 on page 82. These tuber samples

were excised at the same time as buds discussed in chapter 2 (2.4.5, on page 59). Three

of the four cultivars showed an increase in glucose and fructose level during storage, but

this was not apparent in Maris Piper (Figure 3.11 C). At the end of the storage period

analysed for each cultivar, the level of sucrose was lower than at preceding time points,

though the pattern was different for each cultivar. Again Maris Piper (Figure 3.11 C)

showed a very minor decrease in sucrose level during storage, whereas in the other three

cultivars the changes in level were more dramatic. It is noticeable that in the two varieties
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Figure 3.10: Pathway configuration changes with storage
The relative abundance of metabolites in GA-treated buds (ratio with water-treated buds) in

the order they appear in the TCA cycle. Data relate to samples in 2.11 in chapter 2, 72 hours

after GA-treatment. These were stored for 2-8 weeks after harvest. Ratios were performed on

proportion of ion count (%). Data are displayed on a log2 scale. Red dashed line indicates

a 1:1 ratio. Note: Values equating to 0 have been excluded (4 weeks in storage: citrate and

fumarate). n=15

with data for the earliest sampling point (October) (King Edward and Desiree, Figure

3.11 A and B), sucrose levels were initially very low, rose during storage, then fell to

lower values at a late stage in storage. Thus, although there was a general tendency for

lower sucrose during storage, there was a more complicated temporal dynamics.

When the ratio of the two hexose sugars glucose and fructose were compared, both

over time within a cultivar and between different cultivars (Figure 3.12 on page 83) a

complicated pattern emerged. Overall, apart from post-October Desiree samples, glucose
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Figure 3.11: Changes in sugar concentration in tuber tissue
Changes in glucose, fructose and sucrose concentration in potato tuber tissue during storage

across a range of cultivars (µmol/g fresh weight). Samples were collected from the apical end of

tubers at the same time as buds were prepared for GA-treatment. Data are based on enzyme-

linked spectrophotometry. Error bars are SEM. Bars are grouped by sugar and coloured by

month of analysis. Biological replicates: A: cv. King Edward, n=90; B: cv. Desiree, n= 42; C:

Maris Piper, n=36; D: cv. Russet Burbank, n=144.

was consistently detected at higher levels than fructose. In King Edward the ratio fell

and rose during storage, in Desiree it fell dramatically during early storage, and in Maris

Piper and Russet Burbank the changes in glucose - fructose ratio were more minor.

Similarly, when the ratio of sucrose to total hexose level was analysed (Figure 3.13

on page 83) a complex picture emerged. For three varieties (Russet Burbank, King

Edward and Desiree) the final sucrose - hexose ratio measured in storage was lower than

preceding values, but the overall temporal pattern was complicated. Russet Burbank

showed a dramatic fall in ratio in January, whereas King Edward and Desiree showed a

more nuanced fall in sucrose/hexose ratio in December. In contrast, Maris Piper showed

a slight increase in sucrose - hexose ratio during storage. Unfortunately for this variety

the data points for November/December are not available, since it would be interesting to

gauge whether the low level was preceded by a higher sucrose - hexose ratio (as observed

in the other varieties).
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Figure 3.12: Change in hexose composition with tuber storage
Changes in hexose composition in potato tuber tissue during storage across a range of cultivars

(Glucose-Fructose concentrations’ ratio). Samples were collected from the apical end of tubers

at the same time as buds were prepared for GA-treatment. Data are based on enzyme-linked

spectrophotometry. Bars are grouped by cultivar and coloured by month of analysis. n=312

biological replicates. Red dashed line indicates a 1:1 ratio.

Figure 3.13: Change in sugar composition in tuber storage
Changes in sugar composition in potato tuber tissue during storage across a range of cultivars

(Sucrose-Hexose concentrations’ ratio). Samples were collected from the apical end of tubers

at the same time as buds were prepared for GA-treatment. Data are based on enzyme-linked

spectrophotometry. Bars are grouped by cultivar and coloured by month of analysis. n=312.

Red dashed line indicates a 1:1 ratio.
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3.3.3 The TCA cycle in field grown tubers

Figure 3.14 on page 85 schematically represents the levels of TCA pathway metabolites

in field-grown King Edward apical buds at 72 hours after GA-treatment relative to water

treated controls also at 72 hours after treatment. The patterns of TCA metabolites are

shown for tubers harvested and treated at different time points after harvest (October,

November, December), with dormancy status of the tubers decreasing from October (en-

dodormant) through to December (starting to sprout). Each of the panels in Figure 3.14

uses the framework in Figure 3.5, with a colour intensity scale to indicate metabolite

levels in GA treated samples, normalised against controls. Hot colours indicate that

a metabolite was detected at higher levels in the GA-treated samples, compared to the

controls and cold colours reflect relatively lower detected levels after GA treatment. Sam-

ples that are coloured green had roughly similar levels in treated and control samples.

represents Immediately after harvest (Figure 3.14 A, October), most of the pathway is

green and yellow, indicating a moderate increase in detected levels of metabolites in

response to GA, notably citrate, ketoglutarate and oxaloacetate. The only metabolite

to show substantially decreased levels is fumarate. Figure 3.14 B (samples from tubers

in November, 4 weeks after coming into storage) shows a contrasting pattern. Although

ketoglutarate remains as abundant in the GA-treated samples as the controls, the other

metabolites show decreased levels, with fumarate and malate particularly depleted. Ox-

aloacetate was not successfully detected in the control samples, meaning it could not be

plotted on this colour intensity scale. By December (by which time buds were beginning

to sprout), the associated metabolite pattern (in Figure 3.14 C) is in some ways similar

to the pattern observed in October (Figure 3.14 A), as yellow and green dominate. This

is the first time-point where fumarate is detected at the same level in the GA-treated

samples as the controls.
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Figure 3.14: TCA cycle configuration in cv. King Edward
The relative abundance of TCA cycle intermediates in King Edward GA-treated buds (ratio

with water-treated buds) at t=72 hours after treatment. Data relate to samples in 2.15 in

chapter 2. Ratios were performed on proportion of ion count (%). Hot colours indicate an ion

was more abundant in GA-treated samples than controls. Cold colours indicate an ion was

less abundant in GA-treated samples than controls. The colour scale is displayed below the 3

panels. n=36. A: GA treatment in October. B: GA treatment in November. (Oxoaloacetate

= 0% total ion count in the controls) C: GA treatment in December.

The only metabolite detected at lower levels in the December GA-treated buds (rela-
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tive to controls) is ketoglutarate. At this time point, oxaloacetate is the metabolite that

shows the greatest increase in level, compared to the controls.

Figure 3.15 on page 87 schematically represents the levels of TCA pathway metabo-

lites in field-grown Desiree apical buds at 72 hours after GA-treatment, relative to

control-treated tubers. Again, these were analysed at various time points after harvest

(October through to January), as indicated, with the colour intensity scale being similar

to that described for Figure 3.14. Figure 3.15 A represents samples analysed in October,

immediately after harvest. Most of the pathway is yellow, indicating a moderate relative

increase in detected levels of metabolites after GA-treatment, notably aconitate, ketog-

lutarate, succinate and fumarate. The only metabolites to show substantially decreased

relative levels at this early dormancy stage were citrate and isocitrate (which were not

distinguishable in this analysis). Oxaloacetate was more abundant in the GA-treated

samples than the controls. By November (Figure 3.15 B, 4 weeks after coming into

storage) a contrasting pattern is observed. By this dormancy stage, all the TCA cycle

intermediates were detected at similar levels in control and GA-treated samples, apart

from oxaloacetate, which was depleted in the treated samples. Figure 3.15 C (Decem-

ber), shows a similar pattern to Figure 3.15 B, but with values generally shifted slightly.

By January, buds were beginning to sprout. The associated metabolite pattern (Figure

3.15 D) shows that all the GA-treated samples had a relatively high concentration of

TCA cycle intermediates, with malate and fumarate being particularly enhanced.

Figure 3.16 on page 88 schematically shows the levels of TCA pathway metabolites

in field-grown Russet Burbank apical buds at 72 hours after GA-treatment relative to

water-treated controls. Again, tubers were analysed at various time points after harvest

(December through to March), as indicated, with the colour intensity scale being similar

to that described for Figure 3.14. Figure 3.16 A represents samples analysed in December,

shortly after harvest. Most of the pathway is green or yellow, indicating a moderate

increase in detected levels of metabolites, in GA-treated samples, relative to controls,

notably citrate, ketoglutarate, succinate, fumarate and malate. The only metabolites to

show substantially decreased relative levels were aconitate and oxaloacetate. By 4 weeks

after coming into storage (Figure 3.16 B, January), all the TCA cycle intermediates were

detected at similar levels in control and GA-treated samples, apart from oxaloacetate,

which was depleted in the GA-treated samples, and malate, which was relatively more

abundant. Figure 3.16 C (February), shows a slight general shift upwards in metabolite

levels in response to GA-treatment, notably in fumarate and oxaloacetate, with lower

relative levels of aconitate. By March buds were beginning to sprout and the associated

metabolite pattern (Figure 3.16 D) shows that aconitate is now the most abundant

metabolite, compared to controls. At the same time there is a general depletion of
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fumarate, malate and oxaloacetate.

A

October

B

November

C

December

D

January

Figure 3.15: TCA cycle configuration in cv. Desiree
The relative abundance of TCA cycle intermediates in Desiree GA-treated buds (ratio with

water-treated buds) at t=72 hours after treatment. Data relate to samples in 2.17 in chapter

2. Ratios were performed on proportion of ion count (%). Hot colours indicate an ion was more

abundant in GA-treated samples than controls. Cold colours indicate an ion was less abundant

in GA-treated samples than controls. The colour scale is displayed below the 4 panels. n=48.

A: GA treatment in October. B: GA treatment in November. C: GA treatment in December.

D: GA treatment in January.
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Figure 3.16: TCA cycle configuration in cv. Russet Burbank
The relative abundance of TCA cycle intermediates in Russet Burbank GA-treated buds (ratio

with water-treated buds) at t=72 hours after treatment. Data relate to samples in 2.19 in

chapter 2. Ratios were performed on proportion of ion count (%). Hot colours indicate an ion

was more abundant in GA-treated samples than controls. Cold colours indicate an ion was

less abundant in GA-treated samples than controls. The colour scale is displayed below the 4

panels. n=48. A: GA treatment in Decemver. B: GA treatment in January. C: GA treatment

in February. D: GA treatment in March.
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Figure 3.17: TCA cycle configuration in cv. Maris Piper
The relative abundance of TCA cycle intermediates in Maris Piper GA-treated buds (ratio

with water-treated buds) at t=72 hours after treatment. Data relate to samples in 2.21 in

chapter 2. Ratios were performed on proportion of ion count (%). Hot colours indicate an ion

was more abundant in GA-treated samples than controls. Cold colours indicate an ion was

less abundant in GA-treated samples than controls. The colour scale is displayed below the 3

panels. n=36. A: GA treatment in Decemver (Aconitate and fumarate = 0% total ion count

in the controls. B: GA treatment in January. C: GA treatment in February.
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Finally, Figure 3.17 on page 89 schematically portrays the levels of TCA pathway

metabolites in field-grown Maris Piper apical buds at 72 hours after GA-treatment rela-

tive to control treated samples, with data shown for tubers at various times after harvest

(December, January, February). Each of the panels in Figure 3.17 uses the colour inten-

sity framework in Figure 3.14. Figure 3.17 A represents samples analysed in December,

shortly after harvest. Aconitate and fumarate were not successfully detected in the

controls, meaning they could not be plotted on this colour intensity scale. Apart from

succinate, all the successfully detected TCA cycle intermediates were relatively more

abundant in the GA-treated samples. Citrate and isocitrate (which were not distin-

guishable in this analysis) and malate showed the highest relative levels. Figure 3.17 B

(samples produced in January, 4 weeks after coming into storage) shows a contrasting

pattern. By this time, citrate and isocitrate were detected at similar levels in control and

GA-treated samples, and aconitate levels were very low. By February, when buds were

beginning to sprout (Figure 3.17C), most of the pathway is green or yellow, indicating

a moderately higher level in the detected levels of metabolites in GA-treated samples,

relative to controls. The most noticeable exceptions are citrate and isocitrate, which is

substantially less abundant in GA-treated samples relative to controls at this stage of

storage.

3.4 Discussion

This chapter examines the biochemical implications of the changes associated with dor-

mancy break in Chapter 2. It aims to link these markers to the functional changes

associated with potato sprouting. During dormancy break, quiescent meristems reacti-

vate and re-enter proliferation. This has major implications for the energetic budget of

the cells involved. Here, m/z markers from Chapter 2 are identified as metabolites and

put into the context of the change in metabolism associated with sprouting.

3.4.1 Identification of TCA metabolites as lead markers for

early sprouting

The moieties identified from loadings plots in chapter 2 were used as the basis of

metabolic database searches to characterise putative identities for the various m/z mark-

ers. Although such databases are obviously invaluable for this process, one must be aware

that, depending on database source, there may be a bias in the outputs. For example, for

studies on plant metabolomics the SolCyc (2018) database is particularly useful, since

it only includes metabolites from Solanaceae plants. This can be contrasted with other
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databases (e.g. Kanehisa et al. 2018) which are almost exclusively based on animal and

pharmacological datasets. Bearing in mind the extraordinary wealth and distinctiveness

of much of plant metabolism, screening an inappropriate database can easily lead to

problems in accurate identification of metabolites. A good strategy (as implemented

here) is to use a variety of databases in a structured way to first provide plant-plausible

putative identities then, using, e.g., Kanehisa et al. (2018) to provide metabolic con-

text for candidate moiety identities. This makes it easier to exclude isobaric molecules

that are highly unlikely to occur in our research context and identify metabolic path-

ways which can be associated with the biological process being studied, thus providing

potential insight.

Our analysis identified the top three m/z markers as m/z 191, 133 and 115 (highly

influential in chapter 2 loadings plots - e.g. Figure 2.12 C). In Table 2.2 on page 38 and

the associated section in this Chapter (3.3.1 on page 68) these are putatively identified

as citrate, malate and fumarate. These metabolites are all core to primary metabolism

since they are key components of the Tricarboxylic acid or Krebs cycle (TCA) cycle. The

other three rows in Table 2.2 correspond to other TCA cycle components; aconitate,

ketoglutarate and oxaloacetate. These were not identified as highly influential in the

loadings plots shown in Chapter 2, but a re-examination of the relevant raw datasets

revealed that these moieties were all detected at the relevant m/z.

The initial identification of metabolites and relevant metabolic pathways discussed

above is a very useful first step in the process of linking a metabolomic approach to

a biological problem. However, unequivocal identification of the metabolite identities

requires further analytical steps. In this investigation this was performed by Tandem

Mass Spectrometry.

These mass-based putative identifications have been corroborated using tandem MS.

The basic principle underpinning tandem MS (or MS/MS) is that ions break in a stereo-

typical pattern, through the loss of labile groups. After the ion of interest is selected,

it is fragmented using collision gas, and these product ions generate a spectrum. This

spectrum has characteristic peaks that are linked to the structure of the precursor ion,

so isobaric ions can be distinguished and identification confirmed.

A metabolite’s MS/MS spectrum pattern can be predicted using in silico fragmenta-

tion (Figure 3.1 on page 69). In software such as ChemDraw, it is possible to calculate the

masses of product ions obtained by breaking a particular bond in a candidate molecule.

In Figure 3.1 A, the precursor ion malate is shown. The subsequent panels reveal the

product ions expected from the removal of hydroxyl and carboxyl groups in various com-

binations, and the masses of these product ions. These in silico fragment patterns are

used to interpret sample MS/MS spectra. m/z identity can be corroborated by linking
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fragments to the loss of known labile groups.

Where available, a better approach than the in silico fragmentation in Figure 3.1 is

to compare a standard solution of a metabolite to sample from the experiment. These

spectra are shown in Figure 3.2 on page 70 for eight organic acids associated with the

TCA cycle. Each of these solutions yields a spectrum with a small number of peaks,

corresponding to the product ions produced by the collision gas between MS runs. If

Figure 3.2 G is compared to Figure 3.1, it is possible to see that the peaks correspond

to hydroxyl and carboxyl group loss. m/z 115 could be the product ion shown in Figure

malchemdraw B, where a hydroxyl group is lost. Figure 3.1 D has a mass of m/z 89;

this peak corresponds to the loss of a carboxyl group. The peak at m/z 71 appears to

coincide with the ion produced by the loss of a hydroxyl and a carboxyl group.

Each of the organic acids examined in Figure 3.2 yield a fragmentation spectrum

that is suitable to corroborate the putative identification in Table 2.2. A particularly

interesting pattern is seen in Figure 3.2 A and C; the isomers citrate and isocitrate. There

is a difference in the fragmentation pattern of citrate and isocitrate; this is explored in

more detail in Figure 3.3 on page 72. The structural differences between citrate and

isocitrate (Figure 3.3 A and B respectively) mean that only isocitrate can produce the

fragment 2-Hydroxyethanoic acid, producing extra product ions, compared to citrate.

Citrate can only lose carboxyl groups or an ethanoic fragment. This isomer example

also illustrates how MS/MS can be used to identify metabolites; isobaric molecules will

fragment in different patterns, even when they share molecular domains. In the case of

citrate/isocitrate, it makes it possible to confirm that a mixed sample contains isocitrate.

The standard spectra in Figure 3.2 are used as the basis to corroborate the iden-

tification of metabolites in sample extracts. Figure 3.4 on page 73 shows the MS/MS

spectra for a fumarate standard and six contrasting tuber extracts, run using the same

method. Data in Figure 3.4 A are the same as those in Figure 3.2 F. Fumarate was suc-

cessfully detected in all these samples; the product ion (m/z 71) is visible in all spectra

and the precursor ion is visible in Figure 3.4 B, C, E and G. The precursor ion may be

absent from Figure 3.4 D and E because it was present at low levels, meaning all target

ions were fragmented. This process was repeated for all the metabolites illustrated in

Figure 3.2; this corroborates that the metabolites corresponding to the moieties of in-

terest in chapter 2 are correctly identified in Table 2.2, for a range of studied treatment

combinations.
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3.4.2 The role of TCA metabolism in sprouting

The metabolites discussed so far in this chapter all correspond to components of the

TCA cycle, illustrated schematically in Figure 3.5 on page 74. As discussed in the intro-

duction, it has been suggested that this conventional depiction of the TCA cycle, with a

focus on ATP generation, is a simplification, and it may function in a variety of config-

urations and fluxes. The configuration depends on factors such as resource availability

and the balance of demands on the system. It is proposed that in a heterotrophic system,

like a proliferating meristem, particularly one with large nutrient reserves like a tuber,

ATP is not the limiting factor. Under these conditions, ATP efficiency may be sacrificed

in favour of faster metabolism and more productive, so the cell division necessary for

growth and establishment can occur (Sweetlove et al. 2010). The subsequent section of

the Discussion examines whether potato buds exhibit a noncanonical TCA cycle config-

uration during the early stages of sprouting and, if so, what the biological relevance of

such a configuration might be.

Starting with the analysis of the developmental series of buds on a tuber (as described

in Chapter 2, Figure 2.8), the apical bud sprouts much earlier than the others, and bud

metabolic profiles differ on the basis of their rank. Figure 3.6 on page 75 illustrates

the differences between the TCA cycles of apical and stolon buds. If their TCA cycles

were identical, the ratios would cluster on the 1:1 red dotted line shown in this Figure.

In addition, if the TCA cycle were operating in its conventional configuration, but at

different intensities, a uniform scaling of all metabolites would be expected. However, the

data in Figure 3.6 show a nonuniform distribution of the relative level of TCA metabolites

in the apical and stolon buds. Malate, fumarate and ketoglutarate all showed higher

levels in the apical buds relative to the stolon buds, whereas aconitate and oxaloacetate

were all less abundant in the apical buds relative to the stolon buds. It should be noted

that these data refer to paired samples; each value corresponds to the ratio between

an individual apical bud and its furthest bud, thus controlling for tuber and storage

conditions. Although all the buds are dormant and non-growing, their TCA metabolite

patterns show different distributions around the canonical cycle. We know that the

apical bud is closer to breaking dormancy than the stolon bud, so the data are consistent

with the hypothesis that TCA metabolite pattern changes as dormancy status changes,

with an increase in malate and a fall in oxaloacetate potentially being linked to an exit

from dormancy and concurrent increased propensity for sprouting. These changes can be

interpreted in the context of the ideas discussed in Sweetlove et al. (2010); changes in cell

function and energy demands as buds gain sprouting competence lead to reconfigurations

of the primary metabolism strategy adopted.
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Our analysis of bud response to GA-induced sprouting also supported a role for

a non-canonical TCA metabolism acting during the first 72h of bud growth. As can

be seen in the data presented in Figure 3.7 on page 77, the relative change in TCA

metabolites in response to GA is not uniform across the timepoints. During the first 24

hours there is a general decrease in all metabolite around the cycle but with the marked

exception of fumarate (Figure 3.7 B (t=24)). By 72 hours after GA-treatment (Figure

3.7 D), the citrate-ketoglutarate half of the cycle is stimulated, but fumarate troughs and

malate peaks. This could suggest that succinate and fumarate are being bypassed in the

sprouting tissue, i.e. the process is not acting as a cycle. These data are presented as time

courses for each metabolite in Figure 3.8. There is an increase in the relative abundance

of each metabolite as time since treatment progresses, apart from fumarate (Figure 3.8

E), i.e. a non-uniform process. Succinate and oxaloacetate levels (Figure 3.8 D and G)

stabilize between t=48 and t=72, whereas citrate and malate levels (Figure 3.8 A and

F) increase the most at this time point. The increase in aconitate and ketoglutarate

relative levels (Figure 3.8 B and C) is pretty uniform over t=24-72. Presented in this

form, it is clear that the pattern of metabolite accumulation in the TCA pathway is

not a simple stimulation of all metabolite levels. One must be careful in inferring fluxes

from measurements of pool size, so actual measurements of flux would need to be done

to absolutely confirm interpretation of these data. Although such flux measurements

have been done, they generally involve much larger tissues where a steady state can be

achieved (e.g. Bethke 2014). Performing such experiments in small buds which are in

a highly dynamic state would be technically extremely challenging. Nevertheless, even

with these caveats, it is difficult to reconcile our data with a uniform change in TCA

metabolism occurring either across the developmental series or in response to sprouting

triggers. The alternative, more plausible interpretation is that in these instances a

sizeable proportion of the tissue contains a TCA pathway which is not configured in

the conventional pattern linked with oxidative metabolism for the generation of ATP.

It seems most likely that a non-canonical TCA pathway is active during the exit from

dormancy and the entry to sprouting.

To investigate whether the TCA markers identified in the work discussed above might

have relevance to tubers maintained under storage for different lengths of time, I per-

formed this analysis on the data for the harvest series discussed in Chapter 2 Figures 2.11

and 2.12. These samples were stored for between 3-7 and 2-8 weeks (as discussed in Table

2.3) respectively, prior to undergoing the GA-sprouting/metabolomic test assay.

Figures 3.9 and 3.10 on Pages 79 to 81 present the data for stored tubers in a similar

format to Figures 3.7 and 3.8. Figure 3.9 on page 79 presents the TCA cycle data

also found in chapter 2 Figure 2.12; extracts were produced 3, 5 and 7 weeks after
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harvest. These data refer to buds sampled 72 hours after treatment; in terms of dormancy

status Figure 3.9 B is probably the closest to Figure 3.7 D. The pattern observed across

Figure 3.9 is like that in Figure 3.7 D, apart from the absence of a malate peak. The

pathway appears to contain 3 groups, showing coordinated responses. This suggests

the pathway is not operating in a cycle configuration, but contain more closely linked

units of activity. Metabolites appear grouped into 3 functional groups: citrate-aconitate,

succinate-fumarate-malate and ketoglutarate-oxaloacetate.

Figure 3.10 on page 81 presents the TCA cycle for data from a second, independent

harvest series test, previously discussed in chapter 2 Figure 2.11; tuber buds were sampled

2, 4, 6 and 8 weeks after harvest. For 4 and 6 weeks after harvest, the data roughly mirror

the pattern observed in Figure 3.9; the relative intensity of the metabolites is high for

part of the cycle (aconitate, ketoglutarate and succinate) and falls dramatically for the

other half. The freshest sample, 2 weeks after harvest, shows a uniform, if moderately

repressed TCA cycle, with lows for malate and citrate in the GA-treated sample. The

pattern is also quite uniform in week 8 after harvest; apart from the fumarate value,

most relative metabolite intensities fall just below the 1:1 line.

Figure 3.10 presents a wider sampling window than Figure 3.9, but the data for weeks

3-6 after harvest seem to suggest the same non-canonical form of the TCA pathway, in

which different parts of the pathway operate independently, as opposed to cycling. In the

more extreme parts of the sampling window (2, 7 and 8 weeks after harvest), GA-treated

buds do not seem to differ substantially from the controls. In the case of samples from 2

weeks after harvest, this lack of discrimination may reflect the buds’ inability to perceive

and respond to GA-treatment. By 7-8 weeks after harvest, the water-treated controls

may be sprouting autonomously, reducing the measured differences.

The analyses discussed above were all performed using the King Edward cultivar. To

investigate whether the TCA metabolites identified as potential sprouting markers in this

cultivar held true in other cultivars (with different dormancy phenotypes), I performed a

similar analysis on the cultivars Maris Piper, Desiree and Russet Burbank. This analysis

is discussed om section 3.4.3.

3.4.3 Comparison of TCA metabolites with other potential metabolic

markers for sprouting

Tuber sprouting has long been known to be linked with major changes in carbohydrate

metabolism in the tubers, with starch breakdown leading to the accumulation of hexoses,

with major knock-on outcomes on the commercial use of the tubers (Burrell, M. priv.

comm.). To investigate how the novel TCA markers described above linked with the
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timing and extent of changes in carbohydrate metabolism during sprouting, I performed

a series of enzyme-linked spectrophotometric assay to quantify sugar levels in tuber

tissue.

The efficacy of these markers in predicting dormancy status needs to be looked at in

the context of more conventional markers. Figures 3.11 to 3.13 on Pages 82 to 83 present

data from an enzyme-linked spectrophotometric assay to quantify sugar levels in tuber

tissue. These data are associated with the samples presented in chapter 2 Figures 2.14

to 2.21, so there is information on the metabolome associated with these sugar patterns.

The data presented are in Figure 3.11 on page 82. A key observation is that the

quantity of sugars in tuber tissue varies by cultivar. Cv. Maris Piper (Figure 3.11 C)

has lower and more consistent sugar levels than cv. Russet Burbank (Figure 3.11 D), thus

cultivar type influences the study window and the absolute levels of sugars. However,

some patterns are fairly consistent; glucose and fructose increase during the storage

period and sucrose decreases, possibly after an initial spike (most evident in Figure

3.11 A and B, which have data for October). The patterns observed reflect the release

of reducing sugars from starch reserves as dormancy progresses and the metabolism of

sucrose pools.

A caveat that is worthy of note is that storage conditions may alter tuber sugar levels

independently of dormancy status. In particular, stresses such as cold storage are asso-

ciated with tuber sweetening (Bethke 2014), thus, even if sugar levels were normalised

against normal cultivar levels, they could be a misleading indication of dormancy status.

Bearing this caveat in mind, the composition of sugars was examined in more detail

to relate the gross pattern to the possible endogenous processes generating the sugars

measured.

Data shown in Figure 12 3.12 on page 83 are the glucose - fructose ratio for the data

presented in Figure 3.11. This ratio is informative for the following reasons. Firstly,

starch is a polymer of glucose, so using starch as a resource pool for hexoses will yield

higher levels of glucose than fructose. When sucrose is hydrolysed by invertase it pro-

duces a glucose and a fructose molecule, so the expected ratio is 1:1. If sucrose breakdown

is by sucrose synthase, then UDP-Glc and fructose is generated, thus generating more

fructose than glucose, meaning the glucose - fructose ratio from sucrose is below 1:1.

The value of this ratio yields information about the nutrient pools being used and the

enzymes involved. Apart from cv. Desiree, all the values in Figure 3.12 are above the

1:1 ratio line, suggesting that the reducing sugars come from a range of sources, but not

predominantly sucrose. In general, the glucose - fructose ratio falls over the course of

the storage period; consistent with a switch from using starch as a nutrient source to

metabolising sucrose.
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Another important analysis of these data is the sucrose - hexose ratio, presented in

Figure 3.13 on page 83. The sucrose - hexose ratio provides information on the sink

strength of a sample, as the capacity to metabolise sucrose into free hexoses is often

linked to sink strength. It also demonstrates that pools of sucrose are being consumed.

The data for cv. Russet Burbank show a clear decrease in the sucrose - hexose ratio as

storage proceeds. This is the expected pattern: as the bud becomes more metabolically

active during sprouting, it regains the ability to use sucrose from the surrounding tissues.

However, the pattern is not observed across all cultivars. For the cv. King Edward and

Desiree, there is an initial increase in the sucrose - hexose ratio, but this is followed by

a decline in the ratio. In cv. Maris Piper, there is no observed reduction over storage

time, and the value of the sucrose - hexose ratio is always very low, compared to the

other cultivars.

Based on the data presented here, the metabolic markers identified as influential in

chapter 2 are TCA cycle intermediates. Not only are these moieties identified consistently

and in tandem, fragmentation patterns confirm this identification. Previously discussed

datasets reveal interesting TCA cycle patterns. There are very few examples of a uniform

change to the entire cycle, suggesting that the process of dormancy break involves a

reconfiguration of metabolism, not merely a stimulation of the process. In contrast, the

sugar data show strong cultivar-based differences in the pattern detected during storage.

This corroborates one of the basic assuptions underlying this thesis: whilst sugar level

does vary in relation to dormancy break, it is a highly variable property and not the

most reliable marker.

3.4.4 The TCA cycle in field grown samples

The analyses discussed above were all performed using the King Edward cultivar, grown

in a glasshouse. As discussed, during the early part of dormancy (endodormancy), GA is

associated with a limited response in the TCA cycle metabolites, including suppression

of the succinate-fumarate-malate part of the loop (see Figure 3.9 on page 79). By 7

weeks after harvest (Figure 3.9C), there is a relative increase in these metabolites in

the presence of GA, whilst ketoglutarate and oxaloacetate levels are relatively low. To

investigate whether the TCA metabolites identified as potential sprouting markers in the

King Edward cultivar held true in other cultivars (with different dormancy phenotypes),

I performed a similar analysis on the cultivars Maris Piper, Desiree and Russet Burbank,

as well as investigating the metabolite patterns in field grown tubers of cv. King Edward.

Figure 3.14 on page 85 is roughly equivalent to Figure 3.9 on page 79. Both show

data for the TCA cycle in King Edward buds at various points in storage. They key
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difference between these datasets is that the data in Figure 3.14 refer to potatoes grown

and stored under commercial conditions in 2016. These data are not on exactly the same

timescale, but the similarities in the metabolite pattern are striking. Figure 3.14A and B

show data for potatoes treated with GA in October and November respectively. In both

of these, the most depleted metabolite (compared to control samples) is fumarate.In

endodormant samples 3 and 5 weeks after harvest ( Figure 3.9A and B), fumarate is

also the key depleted metabolite. This may reflect a general suppression of metabolic

responsiveness to GA during endodormancy. This pattern is completely altered at the

December sampling point (Figure 3.14C), when tubers were starting to sprout. During

ecodormancy, the samples appear more responsive to GA, but display a depletion in the

relative levels of ketoglutarate. This pattern in partially mirrored in Figure 3.9 (storage

for 3, 5 and 7 weeks), which displays a depletion in ketoglutarate and oxaloacetate. As

ketoglutarate is a key exit point from the TCA cycle, linked to arginine biosynthesis,

this asymmetry may reflect resources being redirected towards protein synthesis.

Having examined the change in metabolic response to GA trigger during storage with

both glasshouse and field grown King Edward, the same question was examined during

storage of cultivars with different dormancy characteristics: Desiree (short dormancy),

Maris Piper (medium dormancy) and Russet Burbank (long dormancy).

The data for Desiree, presented in Figure 3.15 on page 87, are dominated by relative

changes in oxaloacetate levels. There were the highest of all the TCA cycle metabolites in

October (Figure 3.15A), but fell dramatically in November and December, where it is the

only TCA cycle intermediate that doesn’t conform to a uniform, whole cycle pattern at

these timepoints (Figure 3.15B and C). The final sampling time point, January, features

a major change in the relative abundance of malate and fumarate (Figure 3.15D). All

the other metabolites increase moderately, including oxaloacetate for the first time in

this cultivar’s analysis.

Figure 3.16 on page 88 shows that changes in oxaloacetate also dominate the changes

in the TCA configuration for cv. Russet Burbank. As with Desiree, Figure 3.16A and

B, representing December and January, show a depleted oxaloacetate concentration,

compared to controls. In January, there is also a higher level of malate in response

to GA, compared to the other metabolites. By February (Figure 3.16C), malate levels

have fallen, and fumarate is the most enhanced metabolite. In the final sampling month,

March (Figure 3.16D), fumarate and malate are strongly depleted, resembling the pattern

seen in King Edward in November (Figure 3.14B).

Figure 3.17 on page 89 shows that citrate is key to the TCA cycle differences in

cv. Maris Piper buds. Figure 3.17A shows the data for December, the first available

sampling month. Citrate, isocitrate and malate are detected at much higher levels in
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GA-treated samples, compared to the controls. Aconitate and fumarate were not suc-

cessfully detected in the controls. If these values are below the limits of detection, the

relative abundance of these moieties would fall in a hot colour category, as they are

more abundant in treated samples. By January (Figure 3.17B), the citrate levels are

similar in GA-treated and control samples, whereas aconitate is depleted in the presence

of GA. Malate and fumarate are still more abundant with treatment, but the difference

is less striking than in Figure 3.17A. During the final sampling month, February (Figure

3.17C), the citrate and isocitrate are severely depleted in GA treated samples, compared

to controls, suggesting a reconfiguration in the pathway over the storage period.

In synthesis, whilst there are mixed patterns in the cultivar data at the point of

harvest, for the mid storage samples, the TCA pathway response to GA is uniform

(Figures 3.14A, 3.15B and C, 3.16B and C, 3.17B). This potentially indicates the use of

starch breakdown products in a conventional TCA cycle, with varying levels of intensity.

Then, as endodormancy ends, there is a gradual shift towards asymmetry in the relative

levels of metabolites in response to GA. The “cycle” appears to break down, polarising

different parts of the pathway: in the final sampling month, 3 of the cultivars show

depletion in the most responsive metabolite (Ketoglutarate: Figure 3.14C, Oxaloacetate

and malate: Figure 3.16D, and Citrate: Figure 3.17C). The succinate-fumarate-malate

part of the loop seems to respond separately to the citrate-aconitate-isocitrate. This may

link to the fact that ketoglutarate (via glutamate) and oxaloacetate (via acetyl CoA and

aspartate) are key entry and exit points for the TCA cycle, interacting with amino

acid synthesis, so these patterns may underlie changes in the fluxes of carbon in these

samples. As proliferating cells demand proteins required for basic cellular housekeeping

and continuing division, the TCA cycle may adapt to drive amino acid biosynthesis,

rather than maximum ATP yield.

3.4.5 Conclusions

The data in this chapter confirm the identification of the metabolic markers from Chapter

2 as organic acids from the TCA cycle, leading to the analysis of the pathway as a whole.

The subsequent data show that the TCA pathway has a stereotypical set of asymmetrical

responses to the various dormancy ending cues examined. These are potentially linked

to the synthesis of amino acids from ketoglutarate and oxaloacetate.

An additional step that was beyond the scope of this chapter would be metabolite

quantification with liquid chromatography (LC-MS). By running samples through a col-

umn, there is an additional separation step, meaning moieties are separated on the basis

of their interaction with the column before they reach the spectrometer. This can be
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particularly useful to separate isomers, as they may have the same labile groups but in-

teract differently with the column (although the key isomers in this chapter fragmented

differently). LC also helps clean samples up and remove any large molecules that poten-

tially cause ion suppression by absorbing most of the ionising energy. By reducing these

matrix effect, a clearer picture of the quantities of different moieties can be inferred. It

is possible to apply tandem MS after the LC step, identifying a metabolite with a high

degree of confidence.

The sugar data suggest that there is an increase in reducing sugar availability during

storage. The glucose - fructose ratio implies that resource utilisation changes during

storage, supporting the other metabolic conclusions about the process. However, cultivar

differences mean this is not as reliable a marker as the m/z markers discussed in Chapter

2 and identified in this chapter.
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Chapter 4

Visualising the spatial distribution

of key metabolites during dormancy

release in tuber buds

4.1 Introduction

Chapters 2 and 3 contain intriguing results about the Krebs cycle and its role in the

reactivation of dormant potato buds. However, these data refer to liquid samples, ex-

tracted from dissected apices. Therefore, the resolution of tissue specificity is limited by

my ability to dissect the primordia and distinguish unsprouted meristems from adjacent

leaf bases. This constrains any inferences that can be made about the markers’ role in

quiescent meristem reactivation. The meristem only represents a fraction of the anal-

ysed tissue. One way to resolve the issue of heterogeneous samples containing several

cell types is to perform mass spectrometry imaging. By performing analysis of tissue sec-

tions, rather than liquid extracts, spatial patterns are preserved, meaning that metabolic

fingerprints can be linked to anatomical features. This approach also permits in silico

dissection: mass spectra associated with particular regions of interest can be selected

and examined in more detail.

So far, the majority of mass spectrometry imaging in plants has used a MALDI

(Matrix-assisted laser desorption ionization) platform (for a recent review, see Heyman

& Dubery 2015). MALDI uses a laser beam to ionise metabolites from freeze dried tissue

sections that have been sprayed with a chemical matrix and analysed in a vacuum. This

has proved itself to be a useful approach for improving the sophistication of analyses by

adding a spatial element. For example, Yoshimura et al. 2012 were able to use MALDI-

MSI to demonstrate anthocyanin accumulation in the pericarp of black rice. It was
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already known that these compounds were abundant, but tissue specific accumulation

had important implications for understanding the underlying processes and assessing the

potential importance for human nutrition.

More recently another method for visualising metabolite distribution in tissues has

been developed: DESI (Desorption electrospray ionization). DESI uses a fine solvent

spray to ionise tissue samples. Unlike MALDI, it does not require matrix application to

the sample surface, and analysis can take place at ambient pressure. These factors make

the experimental procedure simpler than MALDI. It has also been reported that DESI

shows good ionisation efficiency for small molecules. DESI has been used most widely

in the context of human disease. A range of examples are discussed in the review by

Banerjee 2018. Intriguingly, this review reports on Banerjee and Mazumdar’s earlier find-

ings imaging Krebs cycle intermediates in prostate cancer biopsies, in particular citrate

(Banerjee & Mazumdar 2012). In another example of DESI-MSI in oncology, Marguilis

et al. (2018) identified fumarate as a key marker for detecting malignant microlesions

associated with skin cancer. These animal examples are deeply encouraging since they

both corroborate some of the ideas from Chapter 3 about the Warburg effect and cell

division, and they show that Krebs cycle intermediate detection ought to be possible

using this technique. Furthermore, the similarities to the electrospray ionisation (ESI)

techniques used in Chapter 2 mean that it should ionise a similar subset of metabolites

as the molecular species discussed earlier in this thesis, again suggesting that DESI could

be a good approach for the visualisation of these TCA metabolites.

The application of DESI to plant systems has been limited so far. There are several

examples of tissue printing being used in conjunction with DESI (e.g. Tata et al. 2014),

but I have found only one published example of direct DESI imaging of a cryosection, as

part of a technical advance paper by Li et al. 2013. In this paper, the authors report good

detection of tissue-specific metabolite patterns in cross sections of cassava tubers, a tissue

not dissimilar to potato tubers. This article also presents data for tissue imprints. The

imprints approach benefits from reduced risk of metabolome degradation by intracellular

enzymes, as the imprint does not contain a full suite of cellular material. However, the

process of imprinting is associated with risks of contamination and disruption of tissue

patterns. These limitations are deemed acceptable on low spatial resolution images, such

as those in Tata et al. (2014), who imaged prints of tubers responding to various levels

of Pythium ultimum infection, but do not lend themselves to high spatial resolution

analysis.

Since the DESI platform is not well established in plant systems, I decided to vali-

date the approach before addressing my main question. I used a training system based

on phenolics accumulation after injury. Wounding potato tubers leads to the rapid ac-
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cumulation of phenolic compounds which should be relatively easy to detect by mass

spectrometry (Burrell 1984). I therefore first optimised and tested the DESI approach

using this simple experimental system, before then attempting to characterise the dis-

tribution of the TCA metabolites identified in Chapter 2 and 3 as being early markers

of sprouting.

4.1.1 Hypotheses

• DESI mass spectrometry imaging can be used to detect masses in fresh tuber

sections.

• TCA markers identified from liquid extracts show a non-uniform distribution on a

tissue section.

• Tubers at different stages of dormancy release have differing spatial patterns of

TCA metabolism.

4.2 Materials and Methods

4.2.1 Plant material

Solanum tuberosum tubers of cv. King Edward were grown at AWEC. Tubers were

planted in 15L pots with M3 compost and grown in the greenhouse. The photoperiod

was 12 hours of ambient light with supplementary light (200µM at bench level) if the

ambient falls below 1000µM. Daytime temperature was 20◦C and nighttime temperature

15◦C. The plants were hand irrigated and harvested after 12 weeks (once the canopy

started to die back). After harvest, tubers were stored in the dark at 7◦C, in paper bags.

4.2.2 Samples for phenolics analysis

Glass house grown tubers were analysed for differences in phenolics accumulation in

association with injury. Tuber apices were excised and either hand sectioned and flash

frozen, or aged in potassium phosphate buffer for 24 hours. The fresh samples prepared

by hand sectioning excised pieces of tuber to <1mm thickness; these were attached to

slides with OCT, then flash frozen. To ensure minimal contamination of the surface

of sections, or loss of samples, slides were places in 50ml falcon tubes during the flash

freezing step. Sections were freeze dried overnight, then stored in petri dishes at -20◦C

until analysis. Buffer aged samples were excised as 8mm diameter discs with a cork borer

(depth 5mm) and placed on buffer-soaked filter paper in a conical flask. The potassium
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phosphate buffer was 0.2M KH2PO4, adjusted to pH 5.0 with 0.2M K2HPO4, prepared

in distilled water. The flask was stoppered with a sponge bung and placed in a growth

chamber at 22◦C and long day lighting for 24 hours. After this time had elapsed, the

tuber discs were hand sectioned, flash frozen and freeze dried as above.

4.2.3 Phenolics detection with DESI

A coumaric acid detection assay was developed using a 1mg.ml−1 (equivalent to 6mM)

standard solution. Coumaric acid was dissolved in MeOH to the desired concentration

and spotted on a polysine slide in 2µl aliquots. Once the optimal parameters had been

identified, the limits of detection for this method were estimated using a dilution series.

Six concentrations were investigated, as detailed in the table below.

Table 4.1: Coumaric acid standard curve

Quantities of coumaric acid used in the standard curve in Figure 4.4
Quantity

(w/v)
Concentra-

tion
(M)

Quantity per mm−2

(mol.mm−2)
Quantity per pixel

(mol.px−1)

1mg.ml−1 6mM 1.7nmol 426pmol
10µg.ml−1 60µM 17pmol 4.26pmol
100ng.ml−1 600nM 170fmol 42.6fmol
1ng.ml−1 6nM 1.7fmol 426amol
10pg.ml−1 60pM 17amol 4.26amol
Methanol 0 0 0

This dilution series was used to estimate the limits of detection (LOD) of the current

setup. Spotted slides were imaged in negative ionisation mode, using a 95% MeOH:5%H2O

(v/v) spray, operating at a 1µl.min−1 flow rate. The pixel size used was 50x50µm. The

imaging pattern file used the same area selection in the imaging software (Waters High

Definition Imaging software - HDI), offset appropriately to correspond to the correct

spot, in order to ensure the sampled areas were comparable. 6 technical replicates were

generated from each spot analysis by summing 300 scans (5 minutes of data) to generate

each data point. The mean values and standard error of the mean are discussed in the

results section below.
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4.2.4 Phenolics in tuber sections

The samples prepared in section 4.2.2 were analysed using the same method developed

in section 4.2.3: in negative ionisation mode, using a 95% MeOH:5%H2O (v/v) spray,

operating at a 1µl.min−1 flow rate. Freeze dried sections were mounted on PolySine

slides using UHU solvent free liquid paper glue (UHU). The slides were photographed

using a dissecting microscope at 10x magnification, in order to generate an accurate

pattern file to set the sampling area in HDI. With a pixel size of 50x50µm, the total

imaging time was approximately 3-4 hours and the file size around 300MB. Spots of

standard solution (as in Table 4.1) were added to some sections to estimate the quality

of metabolite recovery on the tissue, which is a more complex matrix than the slides in

section 4.2.3.

4.2.5 Data processing

Data were processed in HDI, which automatically sets the 100 most abundant peaks and

prepares them for display on heat maps, although this value can be adjusted easily. The

m/z bins were linked to x-y data, and was plotted on a colour intensity scale at these

coordinates. The image of the section (from the pattern file step) was superimposed on

this heat map to assist in linking patterns with sample topography. To assist with data

and image alignment, the most abundant ion (m/z 255.2) was selected. This showed clear

boundaries between the sample and the slide. Using a ubiquitous m/z for alignment

meant that any patterns displayed by other m/z could be attributed to features in

the sample. Regions of interest were drawn onto heat maps and full spectra for these

regions exported for detailed analysis in other software. This allows in silico dissection

of the images, so different regions of the tissue sample can be examined for contrasting

metabolic profiles, as seen in chapter 2.

4.2.6 Malate detection with DESI

A malic acid detection assay was developed using a 1mg.ml−1 (equivalent to 7.5mM)

standard solution. Malic acid was dissolved in MeOH to the desired concentration and

spotted on a polysine slide in 2µl aliquots. Spots of standard solution corresponded to the

concentrations in Table 4.2. Once the optimal parameters had been identified, the limits

of detection for this method were estimated using a dilution series. Six concentrations

were investigated, as detailed in the table below.

This dilution series was used to estimate the limits of detection (LOD) of the current

setup. Spotted slides were imaged in negative ionisation mode, using a 95% MeOH:5%H2O
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(v/v) spray, operating at a 1µl.min−1 flow rate. The pixel size used was 50x50µm. The

imaging pattern file used the same area selection in HDI, offset appropriately to cor-

respond to the correct spot, in order to ensure the sampled areas were comparable. 5

technical replicates were generated from each spot analysis by summing 600 scans (10

minutes of data) to generate each data point. The mean values and standard error of

the mean are discussed in the results section below.

4.2.7 TCA cycle metabolites in tuber sections

Glasshouse grown tubers were analysed 0 and 6 weeks after harvest, using the same

method developed for the serial dilution of malate. Samples were ionised in negative

ionisation mode, using a 95% MeOH:5%H2O (v/v) spray, operating at a 1µl.min−1 flow

rate. Freeze dried hand sections, containing meristems, were mounted on PolySine slides

using UHU solvent free liquid paper glue (UHU). The slides were photographed using a

dissecting microscope at 10x magnification, in order to generate an accurate pattern file

to set the sampling area in HDI. With a pixel size of 50x50µmm, the total imaging time

was approximately 3-4 hours and the file size around 300MB.

The glasshouse tubers were analysed again using cryosections, 2 and 8 weeks after

harvest. Flash frozen tuber meristems were mounted in OCT and thaw mounted (blade

at -15◦C, cabinet at -20◦C) onto polysine slides. The sections were 50µm thick. A Leica

cryomicrotome was used. In the final experiments, samples were freeze dried overnight

at -50◦C before analysis. The slides were photographed using a dissecting microscope at

10x magnification, in order to generate an accurate pattern file to set the sampling area

in HDI. With a pixel size of 50x50µmm, the total imaging time was approximately 3-4

Table 4.2: Malic acid standard curve

Quantities of malic acid used in the standard curve in Figure 4.5
Quantity

(w/v)
Concentra-

tion
(M)

Quantity per mm−2

(mol.mm−2)
Quantity per pixel

(mol.px−1)

1mg.ml−1 7.5mM 2.09nmol 522pmol
10µg.ml−1 75µM 20.9pmol 5.22pmol
100ng.ml−1 750nM 209fmol 52.2fmol
1ng.ml−1 7.5nM 2.09fmol 522amol
10pg.ml−1 75pM 20.9amol 5.22amol
Methanol 0 0 0
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hours and the file size around 300MB. Samples were analysed using the same method

as that used for the serial dilution of malate: negative ionisation mode, using a 95%

MeOH:5%H2O (v/v) spray, operating at a 1µl.min−1 flow rate.

4.2.8 Data processing

Data were processed in HDI, which automatically sets the 100 most abundant peaks and

prepares them for display on heat maps, although this value can be adjusted easily. The

m/z bins were linked to x-y data, and was plotted on a colour intensity scale at these

coordinates. The image of the section (from the pattern file step) was superimposed

on this heat map to assist in linking patterns with sample topography. To assist with

data and image alignment, the most abundant ion (m/z 255.2) was selected. This showed

clear boundaries between the sample and the slide. Using a ubiquitous m/z for alignment

meant that any patterns displayed by other m/z could be attributed to features in the

sample. 0.4mm2 regions of interest were drawn onto heat maps and full spectra for these

regions exported for detailed analysis in other software. This allows in silico dissection

of the images, so different regions of the tissue sample can be examined for contrasting

metabolic profiles, as seen in chapter 2.

4.3 Results

4.3.1 Phenolics

To explore the potential of the DESI-MS imaging platform, a series of experiments

were carried out in a well studied potato system: phenolics accumulation after injury

(Burrell 1984). Previous experiments have shown that following injury there is a rapid

accumulation of specific phenolic compounds in tuber tissue, such as coumaric acid.

This well characterised response was used as a test system for the DESI system - is

DESI able to detect a known biochemical response in potato tubers? If so, this would

provide a good indication that it would be worth exploring the potential of the system

to characterise the spatial distribution of the TCA intermediates identified in previous

chapters as being part of the early events of sprouting. Thus, the experimental pipeline

established and optimised for the analysis of phenolics in tubers would provide the basis

for further analysis focussed on TCA metabolites.

Figure 4.1 on page 108 shows a standard curve for coumaric acid detection on a poly-

sine slide. A slide was spotted with a serial dilution of coumaric acid in methanol, as

described in 4.2.3 on page 104 and imaged using DESI in negative mode, with a phenolics-
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optimised method. Scans acquired over 5 minute intervals were summed, producing 6

analytical replicates per spot, and the mean ion intensity of the m/z corresponding to

coumaric plotted against the molarity of the standard solution. With the exception

of the data for the 600nM spot, the standard curve is approximetely linear on a log10

scale over the range 6mM-60pM. As the most dilute sample intensity(60pM) was consis-

tently detected at a higher intensity than the control (1-tailed t-test, p=0.0006, t=4.482,

df=10), I conclude that it is above the limits of detection for this method.

Figure 4.1: The standard curve of coumaric acid detection by the DESI.
Each point represents a different concentration of coumaric acid in methanol, diluted in 100-

fold steps. This is represented on a log10 scale. The control (100% methanol) is represented

by the dashed line. The confidence interval of this line is too narrow to be presented on this

scale. The error bars are standard error of the mean. n=6 .

Having established that I could reliably detect the coumaric acid standards over a

wide range of concentration, I proceeded to investigate whether the same method could

detect coumaric acid and related phenolic compounds in tubers and whether an increase

in these metabolites was detected after tuber wounding.

Hand section of tubers were either immediately flash-frozen, attached to a glass slide

with OCT then freeze dried overnight prior to DESI analysis, or were incubated in

phosphate buffer for 24hrs to induce clear wound-induced colouration prior to the same

preparation for DESI. Examples of such sections are shown in Figure 4.2A (fresh) and
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Figure 4.3A (24 hr post-wounding) on pages 109 and 110 respectively.

A B

C: Cinnamic acid D: Coumaric acid

Figure 4.2: Metabolite distribution in a fresh tuber section
The hand section was flash frozen and freeze dried, then analysed by negative mode DESI MSI.

A: A 10x magnification stereo microscope image of the tissue section. The box with the black

dashed line shows the analysed area, whereas the red dashed line showed the part of the image

used as in the data overlay in panels B, C and D. The triangles point to the apical bud (white),

leaf bases (black), epidermis (light grey) and cortex (dark grey). B: a heat map showing the

distribution of m/z 255.23, the most abundant marker, overlaid on a light microscope image

of the tissue section. The maximum intensity on the colour scale is 10085 ion counts. The

pixels are smoothed using linear interpolation. C: a heat map showing the distribution of m/z

164.04, putatively identified as cinnamic acid, overlaid on a light microscope image of the tissue

section. The maximum intensity on the colour scale is 64 ion counts. The pixels are smoothed

using linear interpolation. D: a heat map showing the distribution of m/z 148.05, putatively

identified as coumaric acid, overlaid on a light microscope image of the tissue section. The

maximum intensity on the colour scale is 20 ion counts. The pixels are smoothed using linear

interpolation.
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A
B

C: Cinnamic acid D: Coumaric acid

Figure 4.3: Metabolite distribution in a tuber piece, sectioned after 24 hours in pH 5.0
buffer
The hand section was flash frozen and freeze dried, then analysed by negative mode DESI

MSI. A: A 10x magnification stereo microscope image of the tissue section. The box with the

black dashed line shows the analysed area, whereas the red dashed line showed the part of

the image used as in the data overlay in panels C and D. The triangles point to the apical

bud (white), growing rootlets (black), epidermis (light grey) and cortex (dark grey). B: a heat

map showing the distribution of m/z 255.23, the most abundant marker, overlaid on a light

microscope image of the tissue section. The maximum intensity on the colour scale is 92674

ion counts. The pixels are smoothed using linear interpolation. C: a heat map showing the

distribution of m/z 164.03, putatively identified as cinnamic acid, overlaid on a light microscope

image of the tissue section. The maximum intensity on the colour scale is 335 ion counts. The

pixels are smoothed using linear interpolation. D: a heat map showing the distribution of m/z

148.04, putatively identified as coumaric acid, overlaid on a light microscope image of the tissue

section. The maximum intensity on the colour scale is 327 ion counts. The pixels are smoothed

using linear interpolation.

The metabolic profile of each section was analysed by DESI, in negative mode, using

the same parameters as the dilution series described above. Figures 4.2B and 4.3B

display heatmaps of the most abundant detected metabolite, m/z 225.23, superimposed

on a light microscope image of the fresh tuber hand section (the fresh tuber data are
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presented in Figure 4.2, the buffer aged data in Figure 4.3). This metabolite was used

to align the MS images and the light microscope images so that other metabolites of

interest could be correctly linked to topographical information in the sections. In both

fresh and treated tissue, m/z 255.23 was most abundant in the bud region of the analysed

tuber sections.

Figures 4.2C and 4.3C show heatmaps of m/z 164.04, which is putatively identified

as cinnamic acid on the basis of an earlier test of a standard spotted on a slide. m/z

164.04 is substantially less abundant than m/z 255.23, but is also found in the bud region

in both fresh and treated tissue, (with a higher ion count being recorded in the treated

tissue). Figure 4.2D 4.3D are heatmaps of m/z 148.05, which is putatively identified as

coumaric acid on the basis of an earlier test of a standard spotted on a slide. Again,

the coumarate is detected at a higher ion intensity in the treated tissue. The heatmaps

are all plotted on individual scales; the maximum ion intensities for the cinnamic and

coumaric acid m/z are 4-5 times higher in the treated samples, compared to the fresh

tuber tissue. The cinnamic acid and coumaric acid signals are particularly evident in

the tuber skin and in the buds.

A B

Figure 4.4: PCA analysis comparing regions of interest from the phenolics method DESI
images
A PCA of regions of interest from 8 DESI images. Samples were analysed in negative mode

with a phenolics-optimised method. 3x0.8mm2 regions of interest were created for each image,

and the data extracted. Data were simplified by binning to a mass accuracy of ±0.1Da. A:

The PCA score plot from the phenolics image regions of interest. Point label and colour

refers to sampling time. Axes are components 1 and 2 of the PCA model. N=8. Ellipse =

95% confidence (Hotelling T2). B: PCA loadings plot from the phenolics image regions of

interest. Each point refers to an individual m/z bin, labelled accordingly. Axes are loadings

for components 1 and 2 of the PCA model.

3 regions of interest (ROI) were drawn on the images in 4.2, 4.3 and three further
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biological replicates for each treatment (selected replicate images are presented in Ap-

pendix B). Each ROI was 8 pixels in size (200µm2) and drawn on the bud region. Full

spectra (m/z 50-850) for each ROI were extracted and binned. As described in chap-

ter 2, the binning involves collating the 3 ROIs for each tissue sample, using the noise

reduction macro to simplify the data. Each ROI is treated as technical replicates, and

each processed biological replicate was analysed to produce the PCAs in Figure 4.4 on

page 111.

In Figure 4.4A (the PCA scores plot), each point represents the collated data for 3

regions of interest, a process performed for 4 biological replicates for each treatment.

There is clear separation along component 1 between the tubers hand sectioned imme-

diately and those aged in Phosphate buffer for 24 hours. The loadings plot, Figure 4.4B

can be used to investigate the identity of markers producing this pattern, as was done

in Chapter 2. Whilst the putatively identified phenolics compounds are not in evidence

in the loadings plot, the most abundant mass, m/z 255.2 is visible in the bottom-left

quadrant, close to the component 1 axis.
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4.3.2 Malate detection

Having established a reliable protocol for the detection of phenolics in wounded tubers,

I worked on developing a detection method for my metabolites of interest from Chapters

2 and 3. This involved optimising the total ion count on a slide spotted with a stan-

dard solution of malic acid and a TCA cycle mix. Having optimised the detection of

concentrated (7.5mM) malic acid, a dilution series was generated.

Figure 4.5 on page 114 shows a standard curve for malic acid detection on a polysine

slide. A slide was spotted with a serial dilution of malic acid in methanol, as described

in Table 4.2.6 on page 105 and imaged using DESI in negative mode, with a malate-

optimised method. Scans acquired over 10 minute intervals were summed, producing

5 analytical replicates per spot, and the mean ion intensity of the m/z corresponding

to malate plotted against the molarity of the standard solution. With the exception of

the data for the 75µM spot, the standard curve is approximately linear on a log10 scale

over the range 7.5mM-75pM. The most dilute sample intensity(75pM) was consistently

detected at a higher intensity than the control, but this result was not significant (1-tailed

t-test, p=0.1075, t=1.37, df=8), so I conclude that it is at the limits of detection for

this method. The next most concentrated sample (7.5nM) was detected at significantly

higher levels than the controls (1-tailed t-test, p=0.0008, t=4.636, df=8), so the dilution

series appears to have captured the detection method’s effective range.
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Figure 4.5: The standard curve of malic acid detection by the DESI.
Each filled point represents a different concentration of malic acid in methanol, diluted in 100-

fold steps. This is represented on a log10 scale. The control (100% methanol) is represented

by the dashed line. The confidence interval of this line is too narrow to be presented on this

scale. The error bars are standard error of the mean. n=6.

114



4.3.3 The distribution of TCA cycle intermediates in hand sec-

tions of tubers

The next 5 Figures (Figures 4.6 to 4.10) refer to an experiment performed on hand

sectioned potato tubers, stored for 0 or 6 weeks. The experiment closely resembles the

preparation of the phenolics samples above, except that the independent variable is the

time tubers spent in storage.

Figure 4.6 on page 116 outlines the preparatory steps undertaken to analyse a fresh

hand section (analysed during the week of harvest). Figure 4.6A shows the region anal-

ysed by DESI (black box). This region contains an apical bud, hand sectioned longitu-

dinally. The leaf bases are visible at the bottom-middle of the box. There is a colour

difference between the cortex and vascular bundle in the tuber. The red box outlines the

region used in data overlays in subsequent panels. Figure 4.6B shows the distribution

of the abundant marker ion, m/z 255.2. Here it is used to align the data to the image

of the sample. There is some detection of the ion outside the tuber region, but there is

a clear pattern aligning the peak intensities to anatomical features. Figure 4.6C shows

the three regions of interest drawn onto the sample, which are used to produce the data

for Figure 4.10, below. These regions correspond to the bud area, as the emphasis in the

analysis will be on differences in response to storage in this region.

Figure 4.7 on page 117 shows the distribution of 3 different TCA cycle metabolites:

citrate (A), malate (B), fumarate (C) and a composite of all three (D). The detection

of m.z 114.9, corresponding to fumarate (Figure 4.7D) was higher than the other two

metabolites. By plotting them on individual scales in Figure 4.7D, it is possible to see

where they co-occur without being overwhelmed by fumarate’s superabundance. Malate

(Figure 4.7B) appears to be more abundant in the cortex part of the analysed region,

whereas citrate has several hot spots in the bud region. In comparison, fumarate is fairly

ubiquitous.
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C

Figure 4.6: Analysis of a fresh tuber hand section
The hand section of tissue was flash frozen, freeze dried and analysed in negative mode DESI

MSI. A: A 10x magnification stereo microscope image of the tissue section. The box with the

black dashed line shows the analysed area, whereas the red dashed line showed the part of the

image used as in the data overlay in panels B, C and Figure 4.7. The triangles point to the

apical bud (white), vasculature (black), epidermis (light grey) and cortex (dark grey). B: a

heat map showing the distribution of m/z 255.2, the most abundant metabolite, overlaid on

a light microscope image of the tissue section. The maximum intensity on the colour scale is

583 ion counts. The pixels are smoothed using linear interpolation. C: a heat map showing

the distribution of m/z 255.2, highlighting the regions of interest used in later analysis (see

4.10), overlaid on a light microscope image of the tissue section. The maximum intensity on

the colour scale is 230 ion counts. The pixels are smoothed using linear interpolation.
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A: Citric acid B: Malic acid

C: Fumaric acid D: Combined

Figure 4.7: Metabolite distribution in a fresh tuber hand section
The hand section of tissue was flash frozen, freeze dried and analysed in negative mode DESI

MSI. A: a heat map showing the distribution of m/z 190.9, putativelty identified as citric acid,

overlaid on a light microscope image of the tissue section. The maximum intensity on the

colour scale is 45 ion counts. The pixels are smoothed using linear interpolation. B: a heat

map showing the distribution of m/z 133.0, putatively identified as malic acid, overlaid on a

light microscope image of the tissue section. The maximum intensity on the colour scale is 54

ion counts. The pixels are smoothed using linear interpolation. C: a heat map showing the

distribution of m/z 114.9, putatively identified as fumaric acid, overlaid on a light microscope

image of the tissue section. The maximum intensity on the colour scale is 115 ion counts. The

pixels are smoothed using linear interpolation. D: a heat map showing the distribution of all

three TCA cycle markers, overlaid on a light microscope image of the tissue section. Each

moiety is displayed on its own colour intensity scale. The maximum intensity on the fumaric

acid colour scale (blue) is 115 ion counts. The maximum intensity on the malic acid colour

scale (green) is 54 ion counts. The maximum intensity on the citric acid colour scale (red) is

45 ion counts.

The analysis of the stored counterparts of Figures 4.6 and 4.7 was less successful

than the fresh samples, leading to later modifications of this method. Figure 4.8 on
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page 119 outlines the preparatory steps undertaken to analyse a hand-section of stored

tuber (analysed 6 weeks after harvest). Figure 4.8A shows the region analysed by DESI

(black box). This region contains an apical bud, hand sectioned longitudinally. The leaf

bases are visible to the left of the box. There is a colour difference between the skin

and tuber cortex. The red box outlines the region used in data overlays in subsequent

panels. Figure 4.8B shows the distribution of the abundant marker ion, m/z 255.2. Here

it is used to align the data to the image of the sample. It is much less abundant than

the previous sample: the scale in this image has a maximum of 105 counts, more than

5 times lower than 4.6B. Figure 4.8C shows the three regions of interest drawn onto the

sample, which are used to produce the data for the PCA plot in Figure 4.10, below.

These regions correspond to the bud area, as the emphasis in the analysis will be on

differences in response to storage in this region.

Figure 4.9 on page 120 shows the distribution of 3 different TCA cycle metabolites:

citrate (A), malate (B), fumarate (C) and a composite of all three (D). The detection

of m.z 114.9, corresponding to fumarate (Figure 4.9D) was higher than the other two

metabolites, but all are limited. They are plotted on the same scale in Figure 4.9D;

showing that coverage is limited. In spite of the limited detection in this and replicate

samples, Figure 4.10 was generated to compare the normalised data from these stored

tubers to the samples discussed above (analysed shortly after harvest).

Figure 4.10 on page 121 shows a PCA analysis of the 5 hand sections that were

run successfully using the malate detection method. Samples were either fresh samples

(analysed on the week of harvest)or Stored samples (analysed 6 weeks after harvest).

Each point in the PCA score plot (Figure 4.10A) represents the output of 3 binned

regions of interest, all from the same section. Thus, the data processing macro is used

to simplify the technical replicates, so the score plot only displays biological replicates.

The Fresh samples (analysed on the week of harvest) are aligned along the component

1 axis, whereas the two Stored samples (analysed 6 weeks after harvest) vary along the

component 2 axis. The PCA loadings plot (Figure 4.10B) displays the loadings from

this principal component analysis. m/z 115, which corresponds to fumarate, is evident

and aligns to component 2, which is linked to the difference between fresh and stored

tubers. However, the limited detection in some of the samples make interpretations of

this analysis limited.
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Figure 4.8: Analysis of a stored tuber hand section
The hand section of tissue was flash frozen, freeze dried and analysed in negative mode DESI

MSI. A: A 10x magnification stereo microscope image of the tissue section. The box with the

black dashed line shows the analysed area, whereas the red dashed line showed the part of the

image used as in the data overlay in panels B, C and Figure 4.9. The triangles point to the

apical bud (white), additional buds (black), epidermis (light grey) and cortex (dark grey). B:

a heat map showing the distribution of m/z 255.2, the most abundant metabolite, overlaid on

a light microscope image of the tissue section. The maximum intensity on the colour scale is

105 ion counts. C: a heat map showing the distribution of m/z 255.2, highlighting the regions

of interest used in later analysis (see 4.10), overlaid on a light microscope image of the tissue

section. The maximum intensity on the colour scale is 15000 ion counts.
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A: Citric acid B: Malic acid

C: Fumaric acid D: Combined

Figure 4.9: Metabolite distribution in a stored tuber hand section
The hand section of tissue was flash frozen, freeze dried and analysed in negative mode DESI

MSI. A: a heat map showing the distribution of m/z 190.9, putativelty identified as citric

acid, overlaid on a light microscope image of the tissue section. The maximum intensity

on the colour scale is 29 ion counts. B: a heat map showing the distribution of m/z 132.9,

putatively identified as malic acid, overlaid on a light microscope image of the tissue section.

The maximum intensity on the colour scale is 45 ion counts. C: a heat map showing the

distribution of m/z 114.9, putatively identified as fumaric acid, overlaid on a light microscope

image of the tissue section. The maximum intensity on the colour scale is 91 ion counts.

D: a heat map showing the distribution of all three TCA cycle markers, overlaid on a light

microscope image of the tissue section. Each moiety is displayed on its own colour intensity

scale. The maximum intensity on the fumaric acid colour scale (blue) is 45 ion counts. The

maximum intensity on the malic acid colour scale (green) is 45 ion counts. The maximum

intensity on the citric acid colour scale (red) is 45 ion counts.
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A B

Figure 4.10: PCA analysis comparing regions of interest from the handsection DESI
images
A PCA of regions of interest from 8 DESI images. Samples were analysed in negative mode with

a TCA-cycle optimised method. 3x0.8mm2 regions of interest were created for each image, and

the data extracted. Data were simplified by binning to a mass accuracy of ±0.1Da. A: The PCA

score plot from the DESI image regions of interest. Point label and colour refers to sampling

time. Axes are components 1 and 2 of the PCA model. N=8. Ellipse = 95% confidence

(Hotelling T2). B: PCA loadings plot from the DESI image regions of interest. Each point

refers to an individual m/z bin, labelled accordingly. Axes are loadings for components 1 and

2 of the PCA model.

4.3.4 The distribution of TCA cycle intermediates in tuber

cryosections

The next 5 Figures (Figures 4.11 to 4.15) refer to an experiment performed on potato

tubers, cryosectioned after storage for 2 or 8 weeks. The experiment closely resembles the

hand sectioned samples above, except that the samples were sectioned to 60µm thickness

and were not freeze dried.
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C

Figure 4.11: Analysis of a fresh tuber cryosection
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI. A: A 10x

magnification stereo microscope image of the tissue section. The box with the black dashed line

shows the analysed area, whereas the red dashed line showed the part of the image used as in

the data overlay in panels B, C and Figure 4.12. The triangles point to the apical bud (white),

additional bud (black), epidermis (light grey) and cortex (dark grey). B: a heat map showing

the distribution of m/z 255.2, the most abundant metabolite, overlaid on a light microscope

image of the tissue section. The maximum intensity on the colour scale is 5480 ion counts.

C: a heat map showing the distribution of m/z 255.2, highlighting the regions of interest used

in later analysis (see Figure 4.15), overlaid on a light microscope image of the tissue section.

The maximum intensity on the colour scale is 5480 ion counts. The pixels are smoothed using

linear interpolation.
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A: Citric acid B: Malic acid

C: Fumaric acid D: Combined

Figure 4.12: Metabolite distribution in a fresh tuber cryosection
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI, building on

the data in 122. A: a heat map showing the distribution of m/z 190.9, putativelty identified as

citric acid, overlaid on a light microscope image of the tissue section. The maximum intensity

on the colour scale is 62 ion counts. The pixels are smoothed using linear interpolation. B: a

heat map showing the distribution of m/z 133.0, putatively identified as malic acid, overlaid on

a light microscope image of the tissue section. The maximum intensity on the colour scale is

56 ion counts. The pixels are smoothed using linear interpolation. C: a heat map showing the

distribution of m/z 114.9, putatively identified as fumaric acid, overlaid on a light microscope

image of the tissue section. The maximum intensity on the colour scale is 688 ion counts. The

pixels are smoothed using linear interpolation. D: a heat map showing the distribution of all

three TCA cycle markers, overlaid on a light microscope image of the tissue section. Each

moiety is displayed on its own colour intensity scale. The maximum intensity on the fumaric

acid colour scale (blue) is 688 ion counts. The maximum intensity on the malic acid colour

scale (green) is 56 ion counts. The maximum intensity on the citric acid colour scale (red) is

62 ion counts.
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Figure 4.11 on page 122 outlines the preparatory steps undertaken to analyse a

cryosection of a fresh tuber (analysed 2 weeks after harvest). Figure 4.11A shows the

region analysed by DESI (black box). This region contains an apical bud, hand sec-

tioned longitudinally. The bud is visible in the middle-right of the box. There is a colour

difference between the epidermis and the tuber cortex. The red box outlines the region

used in data overlays in subsequent panels. Figure 4.11B shows the distribution of the

abundant marker ion, m/z 255.2. Here it is used to align the data to the image of the

sample. There is a clear pattern aligning the peak intensities to anatomical features.

Figure 4.11C shows the three regions of interest drawn onto the sample, which are used

to produce the data for Figure 4.15, below. These regions correspond to the bud area, as

the emphasis in the analysis will be on differences in response to storage in this region.

Figure 4.12 on page 123 shows the distribution of 3 different TCA cycle metabolites:

citrate (A), malate (B), fumarate (C) and a composite of all three (D). The detection

of m.z 114.9, corresponding to fumarate (Figure 4.12D) was higher than the other two

metabolites. By plotting them on individual scales in Figure 4.12D, it is possible to see

where they co-occur without being overwhelmed by fumarate’s superabundance. Malate

(Figure 4.12B) appears to be more abundant in the cortex part of the analysed region,

whereas there are several citrate hot spots in the bud and epidermis region. In compar-

ison, fumarate is fairly ubiquitous.

Figure 4.13 on page 125 outlines the preparatory steps undertaken to analyse a

cryosection (analysed 8 weeks after harvest). Figure 4.13A shows the region analysed

by DESI (black box). This region contains an apical bud, hand sectioned longitudinally.

The leaf bases are visible to the left of the box. There is a colour difference between

the epidermis and tuber cortex. The red box outlines the region used in data overlays

in subsequent panels. Figure 4.13B shows the distribution of the abundant marker ion,

m/z 255.2. Here it is used to align the data to the image of the sample. There is some

detection of the ion outside the tuber area, but also a clear correspondence with the bud

area. Figure 4.13C shows the three regions of interest drawn onto the sample, which are

used to produce the data for the PCA plot in Figure 4.10, below. These regions corre-

spond to the bud area, as the emphasis in the analysis will be on differences in response

to storage in this region. It also excludes the high intensity stripe at the bottom of the

analysed region (particularly noticeable in 4.13C), which appears to be an experimental

artefact, as it doesn’t correspond to any anatomical features.
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Figure 4.13: Analysis of a stored tuber cryosection
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI. A: A 10x

magnification stereo microscope image of the tissue section. The box with the black dashed

line shows the analysed area, whereas the red dashed line showed the part of the image used

as in the data overlay in panels B, C and Figure 4.14. The triangles point to the apical bud

(white), leaf base (black), epidermis (light grey) and cortex (dark grey). B: a heat map showing

the distribution of m/z 255.2, the most abundant metabolite, overlaid on a light microscope

image of the tissue section. The maximum intensity on the colour scale is 15000 ion counts.

The pixels are smoothed using linear interpolation. C: a heat map showing the distribution of

m/z 255.2, highlighting the regions of interest used in later analysis (see Figure 4.15), overlaid

on a light microscope image of the tissue section. The maximum intensity on the colour scale

is 15000 ion counts. The pixels are smoothed using linear interpolation.
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A: Citric acid B: Malic acid

C: Fumaric acid D: Combined

Figure 4.14: Metabolite distribution in a stored tuber cryosection
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI, building on

the data in 4.13. A: a heat map showing the distribution of m/z 190.9, putativelty identified as

citric acid, overlaid on a light microscope image of the tissue section. The maximum intensity

on the colour scale is 140 ion counts. The pixels are smoothed using linear interpolation. B: a

heat map showing the distribution of m/z 132.9, putatively identified as malic acid, overlaid on

a light microscope image of the tissue section. The maximum intensity on the colour scale is

100 ion counts. The pixels are smoothed using linear interpolation. C: a heat map showing the

distribution of m/z 114.9, putatively identified as fumaric acid, overlaid on a light microscope

image of the tissue section. The maximum intensity on the colour scale is 1110 ion counts.

The pixels are smoothed using linear interpolation. D: a heat map showing the distribution of

all three TCA cycle markers, overlaid on a light microscope image of the tissue section. Each

moiety is displayed on its own colour intensity scale. The maximum intensity on the fumaric

acid colour scale (blue) is 1110 ion counts. The maximum intensity on the malic acid colour

scale (green) is 100 ion counts. The maximum intensity on the citric acid colour scale (red) is

120 ion counts.

Figure 4.14 on page 126 shows the distribution of 3 different TCA cycle metabolites:

citrate (A), malate (B), fumarate (C) and a composite of all three (D). The detection
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of m.z 114.9, corresponding to fumarate (Figure 4.14D) was higher than the other two

metabolites.The pattern is very similar to that discussed above for 4.12.

In spite of the limited detection in replicate samples, Figure 4.15 was generated to

compare the normalised data for fresh and stored tuber samples. Figure 4.15 on page 127

shows a PCA analysis of the 5 cryosections that were run successfully using the malate

detection method. Each point in the PCA score plot (Figure 4.15A) represents the output

of 3 binned regions of interest, all from the same section. Thus, the data processing macro

is used to simplify the technical replicates, so the score plot only displays biological

replicates. The Fresh samples (here labelled “NOV” and analysed 2 weeks after harvest)

cluster to the left on component 1, whereas the two Stored samples (here labelled “OCT”

and analysed 8 weeks after harvest) are to the right of the component 1 axis. The

PCA loadings plot (Figure 4.15B) displays the loadings from this principal component

analysis. The red highlighted m/z, corresponding to TCA cycle intermediates, are to the

left of the component 1 axis, which is linked to the difference between fresh and stored

tubers. However, the limited detection in some of the samples has limited the number

of replicates, making interpretation of this analysis limited.

A B

Figure 4.15: PCA analysis comparing regions of interest from the cryosection DESI
images
A PCA of regions of interest from 8 DESI images. Samples were analysed in negative mode with

a TCA-cycle optimised method. 3x0.8mm2 regions of interest were created for each image, and

the data extracted. Data were simplified by binning to a mass accuracy of ±0.1Da. A: The PCA

score plot from the DESI image regions of interest. Point label and colour refers to sampling

time. Axes are components 1 and 2 of the PCA model. N=8. Ellipse = 95% confidence

(Hotelling T2). B: PCA loadings plot from the DESI image regions of interest. Each point

refers to an individual m/z bin, labelled accordingly. Axes are loadings for components 1 and

2 of the PCA model.
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4.3.5 The distribution of TCA cycle intermediates in GA- and

control-treated tubers

A B

C

Figure 4.16: Analysis of a tuber cryosection, treated with GA for 72 hours
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI. A: A 10x

magnification stereo microscope image of the tissue section. The box with the black dashed

line shows the analysed area, whereas the red dashed line showed the part of the image used

as in the data overlay in panels B, C and Figure 4.20.The triangles point to the apical bud

(white), leaf primordia (black) and cortex (dark grey). B: a heat map showing the distribution

of m/z 255.2, the most abundant metabolite, overlaid on a light microscope image of the tissue

section. The maximum intensity on the colour scale is 104 ion counts. C: a heat map showing

the distribution of m/z 255.2, highlighting the regions of interest used in later analysis (see

Figure 4.20), overlaid on a light microscope image of the tissue section. The maximum intensity

on the colour scale is 104 ion counts.
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The next 5 Figures (Figures 4.16 to 4.20) refer to an experiment performed on potato

tubers stored for 8 weeks, treated with GA or water, incubated for 72 hours, then cryosec-

tioned. The experiment closely resembles the experimental design used extensively in

chapter 2, except that the samples are 60µm sections and a DESI imaging approach

was used. Figure 4.16 on page 128 outlines the preparatory steps taken to analyse data

for a GA-treated cryosection. Figure 4.16A shows a dissection microscope image of the

cryosection. This is quite a small sample, with only the meristem and leaf primordia vis-

ible, and several mm of tuber tissue below. The black box illustrates the region analysed

by DESI. The red box outlines the region used in data overlays in subsequent panels.

Figure 4.16B shows the abundance of the positioning marker ion, m/z 255.2, used to

align the data to the sample image. The ion is detected outside the tuber sample, but

there are intense peaks corresponding to the leaf primordia and meristem. Figure 4.16C

shows the three 0.4mm2 regions of interest used to extract data for Figure 4.20, below.

These areas are drawn over the meristematic tissue and associated organ primordia. Fig-

ure 4.17 on page 130 shows the distribution of 3 different TCA cycle metabolites: citrate

(A), malate (B), fumarate (C) and a composite of all three (D). These data are derived

from the same sample as Figure 4.16. The detection of m.z 114.9, corresponding to fu-

marate (Figure 4.17D) was higher than the other two metabolites. By plotting them on

individual scales in Figure 4.17D, it is possible to see where they co-occur without being

overwhelmed by fumarate’s abundance. Citrate and malate have intense peaks in the

meristem, but were not successfully detected elsewhere (Figure 4.17A and B). Fumarate,

in contrast, has a more diffuse distribution (Figure 4.17C).
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A: Citric acid B: Malic acid

C: Fumaric acid D: Combined

Figure 4.17: Metabolite distribution in a tuber cryosection, treated with GA for 72 hours
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI. A: a heat

map showing the distribution of m/z 191.0, putativelty identified as citric acid, overlaid on a

light microscope image of the tissue section. The maximum intensity on the colour scale is

44 ion counts. B: a heat map showing the distribution of m/z 133.0, putatively identified as

malic acid, overlaid on a light microscope image of the tissue section. The maximum intensity

on the colour scale is 26 ion counts. C: a heat map showing the distribution of m/z 115.0,

putatively identified as fumaric acid, overlaid on a light microscope image of the tissue section.

The maximum intensity on the colour scale is 27 ion counts. D: a heat map showing the

distribution of all three TCA cycle markers, overlaid on a light microscope image of the tissue

section. Each moiety is displayed on its own colour intensity scale. The maximum intensity on

the fumaric acid colour scale (blue) is 27 ion counts. The maximum intensity on the malic acid

colour scale (green) is 26 ion counts. The maximum intensity on the citric acid colour scale

(red) is 44 ion counts.
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A B

C

Figure 4.18: Analysis of a tuber cryosection, treated with control (water) for 72 hours
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI. A: A 10x

magnification stereo microscope image of the tissue section. The box with the black dashed

line shows the analysed area, whereas the red dashed line showed the part of the image used

as in the data overlay in panels B, C and Figure 4.20.The triangles point to the apical bud

(white), leaf primordia (black), additional buds (light grey) and cortex (dark grey) B: a heat

map showing the distribution of m/z 255.2, the most abundant metabolite, overlaid on a light

microscope image of the tissue section. The maximum intensity on the colour scale is 100

ion counts. C: a heat map showing the distribution of m/z 255.2, highlighting the regions of

interest used in later analysis (see Figure 4.20), overlaid on a light microscope image of the

tissue section. The maximum intensity on the colour scale is 100 ion counts.

Figure 4.18 on page 131 shows the same analysis steps as Figure 4.16, but shows a

representative control (water-treated) sample cryosection. Figure 4.18A is a dissection

microscope image of the cryosection depicted in the subsequent panels. The black box

represents the analysed area, whereas the red box shows the image used in subsequent

overlays. Due to the damage to the main meristem (top left corner of the red box),

the analysis focused on a secondary meristem for this sample. There is a large leaf

primordium emerging from it. A similar structure is also visible on the other side of the
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section. Figure 4.18B shows the distribution of m/z 255.2. The pattern was used to align

the image to the data - there are hotspots on the leaf primordium, along the epidermis

and to the top right of the sample. It is worth noting that, whist the maximum intensity

in this image is comparable to Figure 4.16B, there are proportionally more pixels in the

red-yellow (intense) part of the colour scale. Figure 4.18C shows the regions of interest

used in subsequent analyses. These correspond to the leaf primordium, the base of the

main meristem and the epidermal layer between them. The binned version of these data

are shown in Figure 4.20, below. Figure 4.19 on page 133 shows the distribution of the 3

different TCA cycle metabolites: citrate (A), malate (B), fumarate (C) and a composite

of all three (D). Malate detection was low, limited to 4 individual pixels in the entire

sample (Figure 4.19B). In comparison, citrate and fumarate were more diffuse (Figure

4.19A and C).
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A: Citric acid B: Malic acid

C: Fumaric acid D: Combined

Figure 4.19: Metabolite distribution in a tuber cryosection, treated with control (water)
for 72 hours
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI. A: a heat

map showing the distribution of m/z 191.0, putativelty identified as citric acid, overlaid on a

light microscope image of the tissue section. The maximum intensity on the colour scale is

27 ion counts. B: a heat map showing the distribution of m/z 133.0, putatively identified as

malic acid, overlaid on a light microscope image of the tissue section. The maximum intensity

on the colour scale is 17 ion counts. C: a heat map showing the distribution of m/z 115.0,

putatively identified as fumaric acid, overlaid on a light microscope image of the tissue section.

The maximum intensity on the colour scale is 76 ion counts. D: a heat map showing the

distribution of all three TCA cycle markers, overlaid on a light microscope image of the tissue

section. Each moiety is displayed on its own colour intensity scale. The maximum intensity on

the fumaric acid colour scale (blue) is 66 ion counts. The maximum intensity on the malic acid

colour scale (green) is 17 ion counts. The maximum intensity on the citric acid colour scale

(red) is 27 ion counts.
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A B

C D

Figure 4.20: Multivariate analyses comparing regions of interest from the GA and control
treated tuber DESI images
Multivarieate analyses of regions of interest from 7 DESI images. Samples were analysed in

negative mode with a TCA-cycle optimised method. 3x0.8mm2 regions of interest were created

for each image, and the data extracted. Data were simplified by binning to a mass accuracy

of ±0.1Da. A and B are PCA plots, C and D are OPLS plot. A: The PCA score plot from

the DESI image regions of interest. Point label and colour refers to treatment. Axes are

components 1 and 2 of the PCA model. N=7. Ellipse = 95% confidence (Hotelling T2). B:

PCA loadings plot from the DESI image regions of interest. Each point refers to an individual

m/z bin, labelled accordingly. m/z 115 is highlighted in red. Axes are loadings for components

1 and 2 of the PCA model. C: The OPLS score plot produced by designating treatment as a

Y-variable. Point label and colour refers to treatment. Axes are components 1 and 2 of the

OPLS model. N=7. Ellipse = 95% confidence (Hotelling T2). OPLS loadings plot from the

DESI image regions of interest. Each point refers to an individual m/z bin, labelled accordingly.

The treatment (Y-variable) is in blue. m/z 115 is highlighted in red. Axes are loadings for

components 1 and 2 of the OPLS model.
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Data from images shown in Figures 4.16 to 4.19 and replicates were used to gener-

ate the multivariate analyses in Figure 4.20 on page 134 (selected replicate images are

presented in Appendix B). In total, 7 freeze-dried cryosections were run successfully us-

ing the malate-optimised detection method. Figure 4.20A and B show the results of a

principal component analysis (PCA) of data extracted from regions of interest of these 7

sections (following the processing protocol used to produce Figures 4.16 and 4.18C). Fig-

ure 4.20A shows the score plot: each point represents the output of 3 binned regions of

interest in a single section, summarising technical replicates. Thus, each point represents

an individual biological replicate. However, even though the GA-treated samples cluster

well, the separation is not good enough to confidently distinguish them from controls,

although m/z 115 (putative fumarate) is a key discriminant marker. Figure 4.20C and D

show the results of an OPLS analysis, separating samples by treatment along component

1 in the score plot (Figure 4.20C). Whilst m/z 115 is not the most discriminant marker,

it is at the edge of the loadings plot cluster.

4.3.6 The distribution of TCA cycle intermediates in stored

tubers

The next 7 Figures (Figures 4.21 to 4.27) depict DESI-MS images of cryosections from

glasshouse grown tubers in a planting seres. The samples were stored for 2, 8 or 14 weeks

before sampling for imaging (i.e. harvested in January 2019, November 2018 and October

2018 respectively). The samples were analysed using the malate-tuned instrumental

parameters, as above. Figure 4.21 on page 136 shows the processing steps associated with

preparing these data for analysis and a representative image for the samples harvested

in October 2018 (14 weeks before analysis). Figure 4.21A is a dissecting microscope

image of the tuber cryosection analysed in subsequent panels. The black box outlines

the region sampled by DESI and the red box corresponds to the image overlay. The top

right edge of the sample is the epidermis, with a slightly sprouting meristem in the box.

Figure 4.21B shows the distribution of m/z 255.2, used to align the sample and data. It

is particularly abundant in the meristem and adjacent region. Figure 4.21C shows the 3

regions of interest used to generate Figure 4.27.
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Figure 4.21: Analysis of a tuber cryosection, harvested in october, 14 weeks before
analysis
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI. A: A 10x

magnification stereo microscope image of the tissue section. The box with the black dashed line

shows the analysed area, whereas the red dashed line showed the part of the image used as in

the data overlay in panels B, C and Figure 4.27. The triangles point to the apical bud (white),

leaf primordia (black), epidermis (light grey) and cortex (dark grey). B: a heat map showing

the distribution of m/z 255.2, the most abundant metabolite, overlaid on a light microscope

image of the tissue section. The maximum intensity on the colour scale is 546 ion counts. C:

a heat map showing the distribution of m/z 114.8, highlighting the regions of interest used in

later analysis (see Figure 4.27), overlaid on a light microscope image of the tissue section. The

maximum intensity on the colour scale is 150 ion counts.
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A: Citric acid B: Malic acid

C: Fumaric acid D: Combined

Figure 4.22: Metabolite distribution in a tuber cryosection, harvested in October, 14
weeks before sampling
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI. A: a heat

map showing the distribution of m/z 191.0, putativelty identified as citric acid, overlaid on a

light microscope image of the tissue section. The maximum intensity on the colour scale is

650 ion counts. B: a heat map showing the distribution of m/z 133.0, putatively identified as

malic acid, overlaid on a light microscope image of the tissue section. The maximum intensity

on the colour scale is 500 ion counts. C: a heat map showing the distribution of m/z 115.0,

putatively identified as fumaric acid, overlaid on a light microscope image of the tissue section.

The maximum intensity on the colour scale is 150 ion counts. D: a heat map showing the

distribution of all three TCA cycle markers, overlaid on a light microscope image of the tissue

section. Each moiety is displayed on its own colour intensity scale. The maximum intensity

on the fumaric acid colour scale (blue) is 150 ion counts. The maximum intensity on the malic

acid colour scale (green) is 500 ion counts. The maximum intensity on the citric acid colour

scale (red) is 650 ion counts.

Figure 4.22 on page 137 shows shows the distribution of 3 different TCA cycle metabo-

lites: citrate (A), malate (B), fumarate (C) and a composite of all three (D). In the case

of all 3 metabolites, their detection is highest in the bud area. The maximum detec-

tion of fumarate (Figure 4.22C) is 255, about a third of the levels for malate (B - 717)
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and citrate (A - 808). Based on the overlay (D), which can normalise these detection

differences, there are no particular regions accumulating one metabolite in favour of the

rest.

A

B

C

Figure 4.23: Analysis of a tuber cryosection, harvested in November, 8 weeks before
sampling.
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI. A: A 10x

magnification stereo microscope image of the tissue section. The box with the black dashed line

shows the analysed area, whereas the red dashed line showed the part of the image used as in

the data overlay in panels B, C and Figure 4.27. The triangles point to the apical bud (white),

leaf primordia (black), epidermis (light grey) and cortex (dark grey). B: a heat map showing

the distribution of m/z 255.2, the most abundant metabolite, overlaid on a light microscope

image of the tissue section. The maximum intensity on the colour scale is 139 ion counts. C:

a heat map showing the distribution of m/z 114.9, highlighting the regions of interest used in

later analysis (see Figure 4.27), overlaid on a light microscope image of the tissue section. The

maximum intensity on the colour scale is 175 ion counts.

Figure 4.23 on page 138 shows the arrangement of a representative sample harvested
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in November, 8 weeks before analysis. Figure 4.23A is a dissecting microscope image of

the cryosection. The vertical line in the middle of the black box is the epidermis. There

are two visible layers in the tuber tissue: the vasculature separates the epidermis and the

main cortex. The main bud has 2 leaf bases. The black box outlines the analysed region

and the red box is the region used in subsequent data overlays. Figure 4.23B shows

a heatmap of m/z 255.2, used to align the data and image. There are hotspots in the

meristem region and along the bottom edge of the sample. Figure 4.23C shows the regions

of interest used to prepare Figure 4.27; here they correspond to the bud region. Figure

4.24 on page 140 shows the distribution of 3 different TCA cycle metabolites: citrate (A),

malate (B), fumarate (C) and a composite of all three (D). The overlay is particularly

useful as the maximum detected levels of fumarate (C - 175) are substantially lower than

citrate (A - 477) and malate (B - 506) levels. All these metabolites were abundant in

the region below the bud, although citrate is the only once detected at high levels in the

meristem itself. Figure 4.25 on page 141 shows the processing of representative image

from samples harvested in January, 2 weeks before analysis. Figure 4.25A is a dissection

microscope image of the cryosection. The red box outlines the picture used in subsequent

sata overlays, whereas the black box outlines the analysed region. The horizontal line

at the bottom of these boxes is the epidermis. There is a recessed bud near the middle,

at the edge of the black box. Figure 4.25B shows the distribution of m/z 255.2. This is

used to align the data to the picture; there is a hotspot in the meristem region. Figure

4.25C shows the location of regions of interest used to generate data for Figure 4.27.
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A: Citric acid B: Malic acid

C: Fumaric acid
D: Combined

Figure 4.24: Metabolite distribution in a tuber cryosection, harvested in November, 8
weeks before sampling
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI. A: a heat

map showing the distribution of m/z 191.0, putativelty identified as citric acid, overlaid on a

light microscope image of the tissue section. The maximum intensity on the colour scale is

477 ion counts. B: a heat map showing the distribution of m/z 133.0, putatively identified as

malic acid, overlaid on a light microscope image of the tissue section. The maximum intensity

on the colour scale is 506 ion counts. C: a heat map showing the distribution of m/z 115.0,

putatively identified as fumaric acid, overlaid on a light microscope image of the tissue section.

The maximum intensity on the colour scale is 175 ion counts. D: a heat map showing the

distribution of all three TCA cycle markers, overlaid on a light microscope image of the tissue

section. Each moiety is displayed on its own colour intensity scale. The maximum intensity

on the fumaric acid colour scale (blue) is 175 ion counts. The maximum intensity on the malic

acid colour scale (green) is 506 ion counts. The maximum intensity on the citric acid colour

scale (red) is 477 ion counts.
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Figure 4.25: Analysis of a tuber cryosection, harvested in January, 2 weeks before analysis
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI. A: A 10x

magnification stereo microscope image of the tissue section. The box with the black dashed

line shows the analysed area, whereas the red dashed line showed the part of the image used

as in the data overlay in panels B, C and Figure 4.27. The triangles point to the apical bud

(white), epidermis (light grey) and cortex (dark grey). B: a heat map showing the distribution

of m/z 255.2, the most abundant metabolite, overlaid on a light microscope image of the tissue

section. The maximum intensity on the colour scale is 137 ion counts. C: a heat map showing

the distribution of m/z 114.9, highlighting the regions of interest used in later analysis (see

Figure 4.27), overlaid on a light microscope image of the tissue section. The maximum intensity

on the colour scale is 150 ion counts.
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A: Citric acid B: Malic acid

C: Fumaric acid D: Combined

Figure 4.26: Metabolite distribution in a tuber cryosection, harvested in January, 2
weeks before sampling
The cryo section of flash frozen tissue was analysed by negative mode DESI MSI. A: a heat

map showing the distribution of m/z 191.0, putativelty identified as citric acid, overlaid on a

light microscope image of the tissue section. The maximum intensity on the colour scale is

150 ion counts. B: a heat map showing the distribution of m/z 133.0, putatively identified as

malic acid, overlaid on a light microscope image of the tissue section. The maximum intensity

on the colour scale is 96 ion counts. C: a heat map showing the distribution of m/z 115.0,

putatively identified as fumaric acid, overlaid on a light microscope image of the tissue section.

The maximum intensity on the colour scale is 75 ion counts. D: a heat map showing the

distribution of all three TCA cycle markers, overlaid on a light microscope image of the tissue

section. Each moiety is displayed on its own colour intensity scale. The maximum intensity on

the fumaric acid colour scale (blue) is 75 ion counts. The maximum intensity on the malic acid

colour scale (green) is 96 ion counts. The maximum intensity on the citric acid colour scale

(red) is 150 ion counts.
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Figure 4.27: Multivariate analyses comparing regions of interest from the glasshouse
grown, stored tuber DESI images
Multivarieate analyses of regions of interest from 20 DESI images. Samples were analysed in

negative mode with a TCA-cycle optimised method. 3x0.8mm2 regions of interest were created

for each image, and the data extracted. Data were simplified by binning to a mass accuracy

of ±0.1Da. A and B are PCA plots, C and D are OPLS plot. A: The PCA score plot from

the DESI image regions of interest. Point label and colour refers to time since harvest (weeks).

Axes are components 1 and 2 of the PCA model. N=20. Ellipse = 95% confidence (Hotelling

T2). B: PCA loadings plot from the DESI image regions of interest. Each point refers to an

individual m/z bin, labelled accordingly. m/z 133 and 191 are highlighted in red. Axes are

loadings for components 1 and 2 of the PCA model. C: The OPLS score plot with time since

harvest as a Y-variable. Point label and colour refers to time since harvest (weeks). Axes are

components 1 and 2 of the OPLS model. N=20. Ellipse = 95% confidence (Hotelling T2). D:

OPLS loadings plot from the DESI image regions of interest. Each point refers to an individual

m/z bin, labelled accordingly. The weeks since treatment point (Y-variable) is in blue. m/z

191 is highlighted in red. Axes are loadings for components 1 and 2 of the OPLS model.
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Figure 4.26 on page 142 shows the distribution of 3 different TCA cycle metabolites:

citrate (A), malate (B), fumarate (C) and a composite of all three (D). the 3 metabolites

were detected at comparable maximum levels. However, citrate’s hotspot (Figure 4.26A)

appears to be larger than malate’s (Figure 4.26B) - approximately 20 pixels, compared

to 5. The number of pixels containing substantial amounts of fumarate was lower again

(Figure 4.26C).

Data from regions of interest for these images (Figures 4.21 to 4.26) and replicates

were analysed to produce the multivariate plots in Figure 4.27 on page 143 (selected

replicate images are presented in Appendix B). In total, 21 freeze-dried cryosections

were analysed successfully using the malate optimised method. There were 6-9 repli-

cates for each timepoint. Figure 4.27 A and B show the results of a principal component

analysis (PCA) of of data extracted from regions of interest of these 21 sections (follow-

ing the processing protocol used to produce Figures 4.21, 4.23 and 4.25C). The scores

plot in Figure 4.27A shows poor separation between time points: the November samples

seem distinct from the others, in spite of being the central time point. m/z 191 (putative

citrate), 133 (putative malate) and 115 (putative fumarate) are highlighted in the load-

ings plot in Figure 4.27B; they remain influential in the distribution of these samples.

Figure 4.27C and D show the results of an OPLS analysis, separating samples by number

of weeks since harvest along component 1 of the score plot. m/z 191 (putatively citric

acid) is a key discriminant marker in this analysis, one of very few clearly separate from

the cluster of metabolites in 4.27D.

4.4 Discussion

4.4.1 The detection of phenolic compounds by DESI imaging

Before embarking on the MS imaging aspect of the dormancy project, the power of our

DESI platform needed to be investigated in a well established system. Here, I examine

DESI-MS-I’s ability to detect phenolic compound accumulation in injured tubers. By

investigating the established phenomenon of phenolics in tuber tissue, I am able to

explore the potential of the DESI system, thus validating any downstream results for

TCA markers.

The first step in this DESI validation process was the establishment of a protocol

for phenolics detection and an associated standard curve. This involved optimising the

instrument parameters on a slide spotted with standard solutions: 6mM coumaric and

cinnamic acid, dissolved in MeOH. The coumaric acid was serially diluted in 100-fold

steps and imaged using the phenolics protocol in negative mode to produce Figure 4.1
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on page 108 - a standard curve for coumaric acid detection on a polysine slide. The

concentrations used are listed in Table 4.2.3 on page 104. With the exception of the

600nM sample, the trend is linear on a log10 scale, indicating that there is limited ion

suppression and the lowest concentration is above the limits of detection. On this basis,

the phenolics detection method was deemed suitable for the analysis of tissue sections.

Representative images from the control and injured tubers are shown in Figures 4.2

and 4.3, on pages 109 and 110. 4 replicate images were analysed for each treatment, and

regions of interest were used to create metabolic profiles of key anatomical features for

Figure 4.4 on page 111.

Figure 4.2 shows metabolite heat maps for a fresh tuber section, which was flash

frozen immediately after sectioning. Figures 4.2B clearly shows the most intense peak

is located in the bud area of the sample. The regions of interest were drawn in this

area. Figure 4.2C and D show the distribution of (putatively identified) phenolic com-

pounds cinnamic and coumaric acid respectively. Here, the phenolic compounds are also

abundant in the bud and on the surface of the tuber.

Figure 4.3 shows metabolite heat maps for a piece of tuber that was aged in Phosphate

buffer before hand sectioning. It was flash frozen immediately after sectioning. Figure

4.3B shows the most intense peak, which is not only located in the bud area of the

sample, but on the peel. The regions of interest were drawn in the bud rootlet area.

Figures 4.3C and D show the distribution of (putatively identified) phenolic compounds

cinnamic and coumaric acid respectively. The phenolic compounds are also abundant

in the bud and on the surface of the tuber, but more so in the rootlets than the main

body of the bud. The colour intensity scale for these phenolics is substantially higher,

compared to those in Figure 4.2C and D, whereas Figure 4.2A is comparable to Figure

4.3A, suggesting they are more abundant.

Figure 4.4 collates the metabolic profiles of regions of interest from the phenolics

images. Figure 4.4A shows very clear separation of the two groups of samples: t=0

hours (control, not treated with buffer) and t=24 hours (aged in buffer for 24 hours).

This is promising for the potential to perform in silico dissection of samples and compare

metabolic profiles of different tissue types in a small sample. Figure 4.4B and loadings

plots like it could be used to infer metabolic differences, as in Chapter 2.

On the basis of the quality of these data, and the ability to detect the expected

changes in metabolism, it was decided to develop a method for the detection of the TCA

cycle intermediate, malic acid.
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4.4.2 The detection of TCA cycle compounds by DESI imaging

On the strength of the phenolics experiments, a TCA cycle metabolite detection protocol

was developed. This entailed using a polysine slide, spotted with concentrated (7.5mM

dissolved in MeOH) solutions of malate and citrate. Once the instrument parameters

had been optimised on these concentrated solutions, a standard curve was produced

(Figure 4.5 on page 114). This standard curve covers a mM-pM range, which represents

biologically relevant concentrations. Apart from the 75µMsample, they are all linear on a

log10 scale, and all but the most dilute sample are significantly different from the controls.

This represents a good starting point for the detection of TCA cycle intermediates in

biological tissue.

The following figures show the results for representative samples in an imaging ex-

periment, comparing fresh (analysed on the week of harvest Figures 4.6 and 4.7) and

stored (analysed 6 weeks after harvest Figures 4.8 and 4.9) potatoes. Figure 4.10 shows

the results of a PCA, comparing all the samples successfully run in this experiment.

Figures 4.6 and 4.8 on pages 116 and 119 show the data analysis process. Figures 4.6

and 4.8A show a 10x magnification stereo microscope image of the sample. The black

box shows the area chosen for analysis in the HDImage software. The red box represents

the area used for image overlays in the 6 subsequent panels for each sample.

Figures 4.6 and 4.8B show the distribution of the most abundant metabolite, m/z

255.2. Once the data have been processed, the heat maps need to be aligned to the

analysed regions in the microscope images. By selecting a ubiquitous marker, it is

possible to identify the margin of the sample and therefore the bud area. Figures 4.6

and 4.8C show the 3 regions of interest (ROIs) that are drawn onto each sample to

produce the data for Figure 4.10. This concept could also be used for other forms of in

silico dissection, for example normalising bud data against the cortex to identify local

changes in metabolite abundance.

Figures 4.7 and 4.9 show TCA cycle data for representative samples in this exper-

iment. Figure 4.7 on page 117 shows the distribution of citrate, malate and fumarate

in a representative fresh tuber hand section. Focussing on the composite image (Fig-

ure 4.7D), the green (malate) is more abundant in the cortex, whereas fumarate and

citrate (co-occur as purple) are more abundant in the bud region of the sample. Un-

fortunately, none of the stored tuber hand sections ran particularly successfully (with

m/z 255.2 counts 5x lower than the fresh sample). The data are presented in Figure

4.9 on page 120, but malate and citrate (4.9B and A) only occur in 6 pixels, hampering

data interpretation. This also limits the interpretation of Figure 4.10 on page 121. Not

only are there fewer replicates than planned, due to the removal of the worst samples,
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views such as Figure 4.9A surely raise some questions on the validity of comparing these

data, even when normalised against their individual total ion count. The fact that m/z

115 (fumarate) is clearly discriminant may be more of a reflection on the success of its

detection, rather than any functional changes.

Following from this hand sectioning experiment, a similar but more sophisticated

sample preparation approach was trialled. These samples were cryosectioned to 60µm

thickness. The following figures show the results for representative samples in an imaging

experiment, comparing fresh (analysed 2 weeks after harvest Figures 4.11 and 4.12) and

stored (analysed 8 weeks after harvest Figures 4.13 and 4.14) potatoes. Figure 4.10 shows

the results of a PCA, comparing all the samples successfully run in this experiment.

These data are presented using the same layout as above. Again, Figures 4.11 and 4.13

on pages 122 and 125 show the data analysis process. Figures 4.11 and 4.13A show a

10x magnification stereo microscope image of the sections. Here, there is a clear, visible

difference between epidermis and cortex tissue. The black box shows the area chosen

for analysis in the HDimage software. The red box represents the area used for image

overlays in the 6 subsequent panels for each sample.

Figures 4.11 and 4.13B show the distribution of the most abundant metabolite, m/z

255.2. Again, this ubiquitous marker uis used for image alignment purposes. Figures 4.11

and 4.13C show the 3 regions of interest (ROIs) that are drawn onto each sample to

produce the data for Figure 4.15.

Figures 4.12 and 4.14 show TCA cycle data for representative samples in this exper-

iment. Figure 4.12 on page 123 shows the distribution of citrate, malate and fumarate

in a representative fresh tuber hand section. Focussing on the composite image (Figure

4.12D), there appears to be a difference in the distribution of citrate (red) and malate

(green); the citrate is on the topmost layer of the epidermis, whereas malate is relatively

more abundant at the boundary between the epidermis and the cortex. Fumarate is

more abundantly detected in absolute terms, but does not appear to have a major spa-

tial pattern. In Figure 4.14 on page 126, the pattern is somewhat different. Assuming

the high intensity patch at the bottom of the analysed area is an experimental artefact,

malate (B, green) is relatively more abundant in the bud area. Two malate hotspots are

visible in the leaf primordia. In comparison, citrate (A, red) is not particularly intense

outside the questionable area. Fumarate (C, blue) has some key peaks at the base of the

bud structure.

The data from this experiment were analysed by PCA. these results are presented in

Figure 4.15 on page 127. A key advantage of the regions of interest used to generate this

figure, is that suspect areas, which resemble analytical defects (for example, the stripe

in Figure 4.14), can be excluded from subsequent analysis. Comparing the metabolic
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profiles of the 5 successfully analysed samples, there seems to be separation between

stored (8 weeks, “OCT”) and fresh (2 weeks, “NOV”) samples along component 1 (Figure

4.15A). The ubiquitous markes, m/z 255.2, is visible close to the component 2 axis of the

loadings plot (Figure 4.15B), suggesting that it is not linked to the observed separation.

The TCA cycle markers (in red) are not the clearest loadings, but do appear close to

the component 1 axis. The more discriminant metabolites (m/z 143, 157, 171 and 199)

are all in a similar mass range to the metabolites of interest discussed so far and may

warrant further investigation.

4.4.3 Changes in TCA metabolite distribution with GA treat-

ment

In this experiment, the GA treatment in vitro system, used extensively in Chapters

2 and 3, is examined using the DESI imaging platform. The following figures show

the results for representative samples in an imaging experiment, comparing GA-treated

(flash-frozen and sectioned 72 hours after treatment - Figures 4.16 and 4.17 on pages 128

and 130) and water-treated controls (flash-frozen and sectioned 72 hours after treatment

- Figures 4.18 and 4.19 on pages 131 and 133) bud cryosections. Figure 4.20 on page 134

shows the results of a multivariate analysis, comparing all the samples successfully run

in this experiment.

The data continue to be presented using the same layout as section 4.4.2, above.

Figures 4.17 and 4.19 show the data analysis process. Figures 4.17 and 4.19A show a

10x magnification stereo-microscope image of the sample. The black box shows the area

chosen for analysis in the HDI software. The red box represents the area used for image

overlays in the 6 subsequent panels for each sample.

Figures 4.17 and 4.19B show the distribution of m/z255.2, the marker used for image

and data alignment. In the case of 4.17B, the ion intensity is quite low, making the

interpretation of sample boundaries difficult. Figures 4.17 and 4.19C show the regions

of interest used to extract data for the multivariate plots in Figure 4.20.

Figures 4.16 and 4.18 on pages 128 and 131 show the distribution of TCA cycle

metabolites for the sections shown in Figures 4.17 and 4.19. Figure 4.16 was treated

with GA and incubated for 72 hours, Figure 4.18 was treated in the same way with a

water mock.

Focusing in the composite images (Figures 4.16 and 4.18D), the GA-treated sample

clearly lacks adequate data coverage. Whilst the TCA cycle markers appear more abun-

dant in the bud region, I am reluctant to infer a pattern based on 10px. Figure 4.18D, on

the other hand, has better overall detection. Based on this, I would describe fumarate
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as widely distributed, whilst citrate is conspicuously absent from the leaf primordium

(black arrow in Figure 4.19A).

The data poverty in Figure 4.16 and some replicates makes the multivariate anal-

ysis plots (Figure 4.20) difficult to interpret confidently. The fumarate ion (m/z 115)

separates along component 1 of the PCA loadings plot (Figure 4.20B), even though the

samples separate approximately by treatment along component 2 of the PCA scores plot

(Figure 4.20A). Frankly, this pattern could be caused by a different subset of metabolites

being detected in individual sections, rather than a biological mechanism. This was a

potentially very interesting experiment to match data from Chapters 2 and 3, but it was

not successfully executed here.

4.4.4 Changes in DESI images of glasshouse grown cv. King

Edward tuber buds during storage

Figures 4.21 to 4.27 show the results of the most successful and promising DESI imag-

ing experiment I have performed to date. Tubers stored for 2, 8 and 14 weeks were

cryosectioned, freeze dried and imaged. These data are presented using the same lay-

out as above, with 2 figures showing a representative sample for each timepoint and a

multivariate analysis of all 20 successful samples in Figure 4.27 on page 143.

Figures 4.21, 4.23 and 4.25 on pages 136, 138 and 141 show the data analysis process.

Figures 4.21, 4.23 and 4.25A show 10x magnification dissecting microscope images of

the cryosections used in subsequent panels. The analysed regions are in black and the

data overlay regions are in red. m/z 255.2, the abundant positioning moiety is shown in

Figures 4.21, 4.23 and 4.25B. This was used to align sections to DESI data. Figures 4.21,

4.23 and 4.25C shows the regions of interest used to generate data for the multivariate

analysis shown in Figure 4.27.

Figures 4.22, 4.24 and 4.26 on pages 137, 140 and 142 show heatmaps of organic acids

for each of the sections shown in Figures 4.21, 4.23 and 4.25. The sample in Figure 4.22

was stored for 14 weeks, the one in Figure 4.24 for 8 weeks, and Figure 4.26 for 2 weeks.

Focusing on the composite image (Figure 4.22D) of the longest stored tubers, the

three TCA cycle markers all appear more abundant in the sprouting bud. The detected

levels of citrate and malate are substantially more intense than fumarate, but the pattern

is similar in many ways.

8 weeks after harvest (Figure 4.24), there is a similar pattern. The fumarate, which

is less abundant than malate and citrate, seems to be approximately 100µm below the

bud (Figure 4.24C), compared to citrate (Figure 4.24A) and malate (Figure 4.24B). If

reproducible, this would be an interesting observation about the spatial organisation of

149



the metabolic reconfiguration discussed in this thesis.

The freshly harvested sample, in Figure 4.26, potentially has a similar pattern. Fu-

marate (Figure 4.26C) is only detected in 8px, but the overall intensity of this sample is

substantially lower than Figures 4.22 and 4.24. Malate (Figure 4.26B) and citrate (Fig-

ure 4.26A) are displayed on comparable intensity scales. Malate appears to be diffusely

distributed in the cortex (20px - 500µm), whilst citrate appears to be specifically located

in the bud region (intense in 16px - 400µm).

Data from this experiment were analysed by PCA and OPLS; the results are shown

in Figure 4.27 on page 143. Due to the imperfect separation in the PCA (Figure 4.27A

and B), the OPLS is examined in detail. When separated by time since harvest (Fig-

ure 4.27C), component 1 of the loadings plot (Figure 4.27D) clearly highlights citrate

(m/z191) as a discriminant marker.

With improved lateral resolution (not explored in this chapter) and ion counts of

100-500 per pixel in key markers (as seen in this subsection, above), it would be possible

to generate separate regions of interest for different tissue types, such as bud, cortex and

vasculature. This would enable a detailed study of the patterns mooted in the discussion

of Figure 4.24C and Figure 4.26B (above). This would make it possible to determine if

replicate regions of interest cluster by sample or a specific tissue type, and hence identify

any bud specific metabolic changes.

4.4.5 Conclusions

The data in this chapter show that DESI is a promising platform for the study of plant

metabolic markers. The phenolics section (4.3.1 and 4.4.1) aimed to confirm that data

can be produced via DESI imaging of plant sections, i.e. the phenolics study was used

as a “training system” for method development. With a few minor modifications of

the basic protocol, I was able to detect phenolic compounds in tuber hand sections and

detect differences between fresh and buffer-aged samples.

Following on from this basis, I generated a method (optimised on a malate standard

solution slide) for the detection of TCA cycle intermediates via DESI. In subsequent

analyses I was able to detect TCA cycle intermediates in potato tuber buds. Whilst

these images have some limitations, they show promising results for this approach in

mass spectrometry imaging.

There is certainly room for improvement of the method in terms of replication and

signal intensity. For example, I was unable to reliably produce a large dataset like the

one discussed in Figures 4.21-4.27. In that experiment I was able to take 20 replicates

from a batch of 24 forward for multivariate analysis. In the GA-treatment data discussed
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in 4.3.5, on the other hand, only half the analysed samples are shown, due to very limited

signal detection in several samples.

Some of the replication issues are straightforward to solve. For example, there is

a visible qualitative difference in the cryosections that ran successfully. With more

experience and replicates, these characteristics could be formalised into a specific set

of requirements for a DESI-suitable sample. Increasing the consistency in sectoning for

DESI would hopefully resolve some of the signal intensity consistency issues identified

with the method reported in this chapter.

The spatial resolution used with the DESI method in this chapter is much coarser

than that obtainable with MALDI. Here, I consistently used a spatial resolution of

50µm. Future work exploring the limits of resolution in DESI would definitely be worth

exploring, but it is worth noting that MALDI has been used at a spatial resolution of 5-

10µm (Horn et al. 2012). Whether DESI can achieve this resolution may require technical

developments, so at present the limited resolution represents a clear and substantial

drawback of my approach in its current state.

Due to the limitations in signal intensity consistency and spatial resolution, I can

at present only make limited interpretation of the pattern of TCA metabolites in the

region of sprouting tuber buds. Some of the image data are consistent with the results

obtained in Chapters 2 and 3 that TCA metabolites accumulate around tubers buds on

sprouting. However at present these observation should be treated as indicative only,

with more work needed to conclusively show these metabolites specifically accumulate

in the bud region of the tuber.

The use of effective in silico dissection presents a potentially interesting future ap-

proach to metabolomics. As the sophistication of spectrometers coupled to imaging

heads approaches parity with those used for liquid sample analysis, such in silico dis-

section may be used more frequently. In this chapter, only buds were examined, but,

different regions of interest for different organs could be selected, generating data for

multivariate analysis comparing different features on the same section. A similar ap-

proach is sometimes used in medical biopsies, which are analysed by mass spectrometry

imaging for high throughput detection of malignant areas (Marguilis et al. 2018). This

suggests that the approach may rapidly become standard, with the data reported here

as an exemplar for plant tissue.
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Chapter 5

Final discussion

5.1 Overview

This thesis aimed to tackle the agronomically important question of dormancy break

in potato tubers, using advanced analytical chemistry techniques. By approaching the

system from a developmental biology paradigm and using advanced biochemical and an-

alytical techniques (metabolomics), I aimed to generate novel insights into the process

for use by industry, as well as exploring some fascinating fundamental plant biology.

The use of metabolomics in biological systems is gaining traction, particularly in animal

and medical fields (e.g .Banerjee 2018), as well as in the area of plant science (e.g. Lee

et al. 2012). Metabolomics represent a snapshot of a sample’s phenotype; a particu-

larly valuable characteristic in a dynamic system. Coupling this approach to a mass

spectrometry imaging technique allows the biological system to be explored in terms of

spatial differences, in addition to changes over time. This is particularly relevant in the

context of the plant meristem system as the basis of dormancy, as these intricate struc-

tures contain several distinct cell types on a micrometer scale. Unravelling the spatial

and temporal patterns of altered biochemistry that accompany and underpin dormancy

break will provide insight into both potential molecular markers by which the process

can be measured, and identify biochemical targets for future work aimed at developing

agrichemicals or storage procedures to ameliorate wastage in the agricultural setting (for

review, se Aksenova et al. 2013).
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5.2 Approach to potato dormancy research

5.2.1 Developmentaland metabolic approaches

A major strength of this developmental biology approach is that it bridges a conceptual

gap. Research on potatoes has lagged in recent decades, with key aspects of the revolu-

tion in molecular biology passing them by (for recent commentary, see Stokstad, 2019).

Innovations in genomics and the rate of data production by new sequencing techniques

have favoured research into model species with responsive genomes. Whilst this has

included closely related species, such as Solanum lycopersicum and Nicotiana tabacum,

the potato has not been a focus of intense research. Potato propagation is largely clonal,

making backcrossing and introgression of new genes laborious. Compared to tomato,

it also has a longer generation time and requires more space, making it a less natural

choice for lab research. Tomato and tobacco are also substantially higher value produce.

Furthermore, the potato’s commercially important trait, the tuber, is not a shared fea-

ture with these relatives, so there is no directly applicable research from other systems.

These characteristics of potato mean that it is an ideal candidate for the application

of a sophisticated developmental approach to tuber dormancy. This is a feature unique

to potato in the economically important Solanaceae (the main other tuber crop is the

distantly related the yam, a monocot from a selection of Dioscorea species, Burton,1989).

A fundamental assumption underpinning this thesis is that meristem dynamics are

key to potato tuber dormancy. This assumption is validated by the fact that apical

dominance is a well characterised trait in tubers (Teper-Bamnolker et al. 2012). This

has been characterised in studies focusing on hormonal dynamics across the tuber. It is

also a long established observation that there is an apex-stolon gradient in reducing sugar

availability (Davies 1984), suggesting that this apical dominance trait is associated with

local differences in resource utilisation. These factors corroborate the idea that potato

dormancy is a system defined by meristem interactions.

In research with an agronomic focus, the major unit of study for potato dormancy

still tends to be the tuber, or even at the 1 tonne storage box level. When literature

considers the potato tuber as a whole, it limits bud measurements to total length or

similar measures. This is in spite of the established observation that tubers contain a

reducing sugar concentration gradient, from stolon to apical bud. In contrast, this study

focuses on the micrometer scale, emphasising that the meristem is the key functional unit.

There have been recent efforts to examine the apical dominance interaction between

tuber meristems, which taps into concepts from developmental biology, and the role

plant hormones play in this system (Bromley et al. 2014). However, the majority of
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potato dormancy research still operates with the tuber (or the tuber storage room) as

the principal functional unit. By viewing the problem of potato dormancy break as a

stem cell dynamic function, I could tap into a large amount of sophisticated molecular

and cell biology work, ranging from branching in other plant systems (e.g. Zhang et al.

2018) to the Warburg effect in oncogenesis (e.g. Vander Heiden et al. 2009).

The importance of meristem activity in potato dormancy break opens a number of

interesting opportunities for comparison with related systems. For example, meristem

quiescence in tomato axils was examined by a previous graduate student in my research

group (Steels 2012). This study yielded a number of interesting insights into the process

associated with quiescent meristem reactivation, including the fact that organic acids

would be a useful marker to examine. However, potato dormancy has a number of

additional characteristics, compared to tomato axils. Whilst the trigger for tomato axil

activation tends to involve damage cues and the loss of the apex, potato dormancy

break has different drivers. Most notably, the process is linked to the ecological process

of dormancy as an overwintering strategy (Burton,1989). This suggests the existence of

in-built timekeeping mechanisms, which are able to distinguish between otherwise similar

autumnal and vernal cues. This suggests that it is not only useful and informative to look

at potato dormancy break as a meristem quiescence system, but it is also a particularly

interesting and distinct plant meristem quiescence system to study.

Another distinguishing feature, compared to tomato axils, that arises from this over-

wintering function is that the potato tuber meristem is not nutrient limited. The function

of the entire tuber’s storage reserve is to enable the meristem to survive the winter and

produce one growing stem during the next field season. Whilst human selection and

the intensity of the environmental stresses associated with the species’ Andean natural

range may explain the extreme size of this storage reserve, the fact remains that sub-

strate is not a limiting factor for sprouting tubers. The change in resource utilisation by

the meristem as it exits dormancy suggests that metabolic strategies may be a key, and

previously uncharacterised aspect of potato dormancy break.

Other cell systems certainly adapt their metabolic strategies in response to changing

environments. For example, under high nutrient conditions, yeast switch from conven-

tional respiration to aerobic fermentation (Chen et al. 2007). There are a range of factors

driving this switch. For example, at a high population density, oxygen may become de-

pleted. Furthermore, the reactions associated with anaerobic fermentation only require

a functional glycolysis pathway; a newly divided cell does not need to replicate its mito-

chondria in order to carry out this process. This may give lineages of yeast a competitive

advantage in exploiting patches of resources more quickly than those producing a full

suite of TCA cycle and ATP synthase electron transport chain proteins.
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Metabolic changes during cell proliferation have also been observed in mammalian

tumour systems. This has been described as the Warburg effect, also known as aero-

bic glycolysis. This process is distinct from lactic fermentation, which, in animals, is

associated with anoxia or other stressors. The Warburg effect, in contrast, is observed

in proliferative cells, even in the presence of oxygen. It has been suggested that this

metabolic switch may be a driver for the proliferation (for review, see Garber 2004).

As in the yeast systems discussed above, the ability to rapidly process available nutrient

sources is a prerequisite for the tumour’s increased cell division rate. A key characteristic

in the evolution of oncogenic lineages is the ability to rapidly utilise nutrient sources and

act as strong sinks, outcompeting other cell lineages, in a similar way to the yeast dis-

cussed above (Vander Heiden et al. 2009). The Warburg effect does seem to be reflected

in my data: in Chapter 3 an asymmetric TCA cycle is detected repeatedly, suggesting a

key metabolic dimension to the process.

However, a tumour system represents an aberrant return to proliferation: it drains

the organism’s resources in an unsustainable way. In contrast, plant meristems, whilst

proliferative, are tightly controlled systems, into which nutrients are actively invested.

Therefore, mammalian embryogenesis may represent a more comparable, well studied

system (for review, see Shyh-Chang et al. 2013). In both embryonic stem cells and

meristems, proliferation is controlled and most of the daughter cells are funnelled into cell

specialisation processes. By comparing the two systems,, the key minimum requirements

for a cell before its next division can be conceptualised. An extreme example of this

basic cell can be seen in human embryology. The 4 divisions between the zygote and

the morula stage are known as cleavage, because there is no net growth of the embryo.

Even in this scenario, there are essential processes required. The genome needs to be

replicated before it next divides, which demands a suite of housekeeping genes, DNA

polymerases and histones for chromosome condensation. In addition to this, the enzymes

for a functional glycolysis pathway need to be produced. Cleavage also increases the cell

surface area/volume ratio, increasing the need for phospholipids. It has been suggested

that there is a lag in TCA cycle competence, due to the time taken for mitochondria to

replicate and mature in a separate process to cell division (Rahman et al. 2013).

Whilst a cleaving morula is an extreme example of cell division with a reduced growth

and synthesis cell cycle phase, it can provide insight into the potato sprouting process

and the underpinning requirements. In chapter 3, I proposed that some of the TCA

fluxes observed are linked to the biosynthesis of amino acids. The process of rapid

cell proliferation clearly demands the synthesis of a range of key proteins, in this case,

plausibly fed from the starch reserves, via a version of the TCA cycle. Even in the

event of mitochondrial immaturity hampering the oxidative phosphorylation part of cell
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respiration, some version of the TCA cycle is required to facilitate the conversion of the

tuber’s nutrient reserves into the macromolecules required for continued proliferative

growth.

5.2.2 The TCA cycle and tuber sprouting

The key finding of this thesis is that primary metabolism changes during potato dor-

mancy break in a stereotypic pattern. The data in chapter 2 show that tuber buds at

different stages of storage differ; as dormancy weakens, the relative abundance of a small

set of metabolic markers varies. The identity of these moieties is explored in Chapter 3,

confirming the original hypothesis that specific changes in metabolism are core to this

process, linking the concepts from the Warburg effect (above) and more conventional

measures of reducing sugar availability. Finally the imaging work in Chapter 4 suggests

that these primary metabolism changes are specifically associated with the meristem

region. This validates the use of a developmental biology approach with a focus on

meristem dynamics. As this work examines potato dormancy break from an unorthodox

perspective, it has raised a number of interesting questions to follow.

From a metabolomics point of view, I would be most interested in tracing the fate of

sugars being used by a meristem at various stages of dormancy break. This could take

the form of a 14C pulse-chase experiment, similar to the original studies used to delineate

the TCA cycle. This would help distinguish between large pools of stored metabolites

(such as malate in a vacuole) and metabolites actively participating in cell respiration.

A linked future study of interest would be to examine the amino acid dynamics in

the tuber. My metabolomic methods were tailored to maximise the detection of organic

acid. While there may be amino acid information in the datasets, this may not be com-

prehensive. For example, phenylalanine is usually analysed in positive ionisation mode,

rather than the negative mode used in most of the analyses reported here. It would also

be interesting to see if any of the cultivar-specific differences in TCA cycle markers link

to the relative abundance of different amino acids. This could have interesting reper-

cussions for low asparagine cultivars that have been developed to minimise acrylamide

formation risk (Simplot 2018). For example, these lines may have altered dynamics in

the ketoglutarate part of the TCA cycle. It would be interesting to observe the down-

stream effects of perturbing amino acid dynamics on the TCA cycle and dormancy. This

may present interesting data, which might suggest that fluxes can be tipped back into a

cycle form (and hence preserve endodormancy) by modifying associated reactions.

The molecular markers discussed in chapters 2 and 3 also provide a framework for

comparing tuber responses to any novel dormancy control agents. An ideal candidate
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would prolong an endodormancy-like profile, rather than allowing metabolic activation

or damage responses to occur. Current approaches are quite simplistic. For example, the

major commercial sprout suppression chemical, CIPC, does not prolong true dormancy,

but perturbs cell division, thus disrupting sprout growth (Vaughn & Lehnen 1991).

Sugar levels can give an indication of the dormancy state of a tuber, but they can be

perturbed by a number of factors, such a variety, field conditions and temperature in

storage (Herman et al. 2016). This means current practice is not a precise predictor of

dormancy state, so new metabolite markers identified in this thesis could contribute to

improving assessment of procedures.

5.3 DESI as a Mass Spectrometry Imaging platform

Chapter 4 introduces a mass spectrometry imaging platform, Desorption electrospray

ionization (DESI), a relatively new modification of the more established Matrix Assisted

Laser Desorption Imaging (MALDI). DESI uses a fine spray of solvent to ionise sample

sections, mounted on a moving stage, so spectra can be linked to positional information

and anatomical features in the original sections, as they are rastered relative to the

solvent source.

Mass spectrometry imaging is an increasingly popular method in analysing plant

material (for review, see Heyman & Dubery 2015). In the case of my project, it adds an

important dimension to the quality of the data. The samples analysed in Chapters 2 and

3 were effectively meristem enriched, rather than a single tissue type. The quality of my

dissection was limited by the size of the feature of interest and the importance of avoiding

temperature and injury related degradation. The samples largely resembled the section in

Figure 4.16A on page 128. Whilst every effort was made to remove the tuber cortex, some

was inevitably found in the sample. However, the mass spectrometry imaging approach

allows regions of interest to be selected, effectively yielding a detailed in silico dissection.

This in silico dissection also allows control for bud size, which varies substantially during

the course of dormancy break. Solvents were scaled to sample mass in the extractions

for chapter 2, but this post-processing approach ensures comparable quantities of plant

tissue are being discussed. Whilst the production of these mass spectrometry images

was a lower throughput approach than the analysis of liquid extracts, I would be more

confident in assigning differences identified in the multivariate analysis to the buds in

particular when using this region of interest approach.

Imaging also allows the spatial organisation of processes to be examined. The con-

centration of TCA cycle metabolites in the bud region in Figures 4.22, 4.24 and 4.26 in

Chapter 4 emphasises the need to target this part of the tuber when assessing dormancy
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break. The process observed clearly involves changes at the bud level, as opposed to a

whole tuber process. In the samples harvested at intervals in Figures 4.22, 4.24 and 4.26

on pages 137, 140 and 142, the more freshly harvested samples (short time in storage)

show a diffuse pattern of TCA cycle intermediates, particularly of malate, whilst the

samples from 14 weeks after harvest (longer time in harvest) show very high levels of

these organic acids specifically in the bud.

5.3.1 Comparison with MALDI imaging

This thesis has used a DESI platform for the imaging part of the study. This is closely

related to the substantially more established MALDI platform, also available in our mass

spectrometry suite. The Waters Synapt G2Si ion mobility spectrometer used for the

DESI imaging also has a MALDI ionisation source, meaning both potential experimental

approaches share specifications, in terms of sensitivity and mass resolution. I chose to run

these experiments using the new DESI, due to the nature of my metabolites of interest

and earlier work. The organic acids discussed in Chapter 3 are soluble in methanol

based solvents and were detected using electrospray ionisation in Chapter 2. In view of

this, the electrospray-based desorption system in the DESI was optimal for subsequent

analysis. DESI has been used previously on relevant organic acids in a medical context

(Marguilis et al. 2018). This was a strength compared to a MALDI approach: the laser-

based ionisation approach would have a different selectivity. Assessing the impact of this

was beyond the scope of this thesis, but would be an interesting avenue for future work.

There are also practical advantages to consolidating DESI as an alternative to MALDI

in mass spectrometry imaging. DESI ionisation takes place at room temperature and

ambient atmosphere conditions, making sample introduction and handling substantially

easier. Furthermore, DESI is a matrix-free approach. The application of matrix to

MALDI samples is a complex process, and involves the introduction of foreign solutes,

which need to be taken into account during data analysis.

However, the electrospray ionisation system is a mixed blessing.It was certainly the

optimal approach for my metabolites of interest, and it presents the possibility of re-

sampling sections repeatedly, which cannot be done in MALDI. However, MALDI has

some specific advantages, beyond being a more established system. For example, I used

a horizontal resolution of 50µm, whereas MALDI reports resolutions of 5-10µm (Horn

et al. 2012). I was reluctant to explore this further, as there was no way of assessing the

accuracy of this parameter directly. In contrast, with MALDI, the laser burns a visible

scar in the matrix, which can be measured. However, I was not able to generate a similar

impression from my DESI spray to confirm the distance between adjacent spray tracks.
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Another limitation of DESI is that it is a relatively new technique, certainly in the

analysis of plant tissue (Liu et al. 2014 have a relevant publication). This was the first

large scale study conducted on the DESI in our research group and there are very few

published analyses using plant tissue. This means that standard protocols are not fully

established and further development of the method to fully establish the reliability of

the output data needs to be done. Nevertheless, the initial results reported here are

encouraging.

5.3.2 Future imaging work

Data in Chapter 4 demonstrate that the markers identified in Chapter 3 are closely

associated with the meristem bud complex. This would not have been possible without

using mass spectrometry imaging. Specifically using DESI MS-I has ensured that these

imaging data are as comparable as possible to the work underpinning Chapters 2 and 3.

As discussed above, the TCA cycle markers identified have raised a number of in-

teresting questions about amino acid biosynthesis. Future work could include the de-

velopment of an imaging protocol for the detection of amino acids such as glutamate

and aspartate and their precursors since they might represent interesting intermediates

in the complex metabolic changes occuring. This could also link into characterising the

meristem’s utilisation of resources from the main tuber. The importance of storage com-

pound mobilisation in this process suggests that an imaging approach would be optimal

in this study to visualise the precise pattern of metabolite in the source tissue (tuber)

and sink (bud).

An additional experiment that would be worth performing would be tandem MS

(MS/MS) of the cryosections, in order to confirm that the moieties detected at key

masses truly correspond to those discussed in chapter 3. This is within the capabilities

of the Waters Synapt G2Si ion mobility spectrometer used.

5.4 Final conclusion

In conclusion, this thesis found a previously uncharacterised role for TCA cycle fluxes

in potato dormancy break. This links in with some concepts reviewed by Sweetlove

et al. (2010) and ideas from oncology about the nature of proliferation. The breadth of

conditions examined in Chapter 2 (hormone treatment, storage, bud rank and cultivar)

and the consistency with which these markers were influential suggests that changes to

TCA dynamics are a core part of meristem reactivation in potato dormancy break. The

data presented in Chapter 3 raise some interesting questions on what is fundamental
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to a cell before division. This links with some of the embryology data discussed above.

A fascinating extension of this work would be to track co-occurring changes in amino

acid abundance. The final data chapter cements the idea that the meristem is a key

unit for dormancy. The TCA cycle intermediates are clearly localised in the bud region,

suggesting this is the site of metabolic reconfiguration driving dormancy break.
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Appendix A

Cultivar pedigree

Figure A.1, on page 168 is a partial pedigree of the 4 tuber cultivars studied throughout

this thesis. Single vertical lines indicate progeny produced through open pollination,

whereas horizontal bars indicate controlled crosses between cultivars. Where the lines

could have been confusing, crossing a number of generations (e.g. Beauty of Hebron x

Magnum Bonam and Peterson’s Victoria x Herald), I have endeavoured to use double

or dashed lines to minimise crossovers and make them distinct. All of this information,

including detailed referencing, is now available through the Potato Pedigree Database

(Potato Pedigree Database (2016)). The database has been relaunched since I first tried

to access it, and now includes very detailed pedigrees of all listed cultivars in a fully

searchable form. The original version of Figure A.1 lacked crucial detail, as I was unable

to trace the ancestors of Desiree beyond the parental level. The database is fully available

in English - before this became available, I found tracing Dutch and German cultivars

substantially more challenging than ones of British origin. Interestingly, Russet Burbank

and King Edward, which had the most different dormancy habits, were the most closely

related. Maris Piper is the result of an introgression from Solanum andigena, possibly

making it the most genetically distinct o the cultivars studied, in spite of having 4 lines of

descent from Paterson’s Victoria. With data from Desiree, it becomes clear that it is not

particularly distantly related to King Edward and Russet Burbank; it is 3 generations

from their common ancestor, Early Rose.
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Figure A.1: Partial pedigree of studied cultivars
A partial pedigree of the 4 tuber cultivars studied throughout this thesis (Russet Burbank,

Kind Edward, Maris Piper, Desiree. In bold). Single vertical lines indicate progeny produced

through open pollination, whereas horizontal bars indicate controlled crosses between cultivars.

Where the lines could have been confusing, crossing a number of generations (e.g. Beauty

of Hebron x Magnum Bonam and Peterson’s Victoria x Herald), I have endeavoured to use

double or dashed lines to minimise crossovers and make them distinct. All of this information,

including detailed referencing, is now available through the Potato Pedigree Database (Potato

Pedigree Database (2016)).
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Appendix B

Replicate DESI images

A: m/z 255.2

B: m/z 164

C: m/z 148

Figure B.1: DESI image of a fresh tuber hand section
The hand section was flash frozen and freeze dried, then analysed by negative mode DESI MSI,

using a coumarate-optimised method. A: a heat map showing the distribution of m/z 255.2;

B: a heat map showing the distribution of m/z 164; C: a heat map showing the distribution

ofm/z 148
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A: m/z 255.2

B: m/z 164

C: m/z 148

Figure B.2: DESI image of a fresh tuber hand section
The hand section was flash frozen and freeze dried, then analysed by negative mode DESI MSI,

using a coumarate-optimised method. A: a heat map showing the distribution of m/z 255.2;

B: a heat map showing the distribution of m/z 164; C: a heat map showing the distribution of

m/z 148
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A: m/z 255.2

B: m/z 164

C: m/z 148

Figure B.3: DESI image of a fresh tuber hand section
The hand section was flash frozen and freeze dried, then analysed by negative mode DESI MSI,

using a coumarate-optimised method. A: a heat map showing the distribution of m/z 255.2;

B: a heat map showing the distribution of m/z 164; C: a heat map showing the distribution of

m/z 148
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A: m/z 148

B: m/z 164

Figure B.4: DESI image - aged in buffer
The hand section was flash frozen and freeze dried, then analysed by negative mode DESI MSI,

using a coumarate-optimised method. A: a heat map showing the distribution ofm/z 148; B: a

heat map showing the distribution of m/z 164
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A: m/z 255.2

B: m/z 164

C: m/z 148

Figure B.5: DESI image - aged in buffer
The hand section was flash frozen and freeze dried, then analysed by negative mode DESI MSI,

using a coumarate-optimised method. A: a heat map showing the distribution of m/z 255.2;

B: a heat map showing the distribution of m/z 164; C: a heat map showing the distribution of

m/z 148
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A: m/z 255.2

B: Region of interest

C: TCA markers

Figure B.6: DESI image of a fresh tuber hand section
The hand section was flash frozen and freeze dried, then analysed by negative mode DESI MSI,

using a malate-optimised method. A: a heat map showing the distribution of m/z 255.2; B:

Region of interest; C: a heat map showing the distribution of three TCA markers
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A: m/z 255.2

B: Region of interest

C: TCA markers

Figure B.7: DESI image of a fresh tuber hand section
The hand section was flash frozen and freeze dried, then analysed by negative mode DESI MSI,

using a malate-optimised method. A: a heat map showing the distribution of m/z 255.2; B:

Region of interest; C: a heat map showing the distribution of three TCA markers
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A: m/z 255.2

B: Region of interest

C: TCA markers

Figure B.8: DESI image of a fresh tuber hand section
The hand section was flash frozen and freeze dried, then analysed by negative mode DESI MSI,

using a malate-optimised method. A: a heat map showing the distribution of m/z 255.2; B:

Region of interest; C: a heat map showing the distribution of three TCA markers
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A: m/z 255.2

B: Region of interest

C: TCA markers

Figure B.9: DESI image - tuber stored for 6 weeks
The hand section was flash frozen and freeze dried, then analysed by negative mode DESI MSI,

using a malate-optimised method. A: a heat map showing the distribution of m/z 255.2; B:

Region of interest; C: a heat map showing the distribution of three TCA markers
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A: m/z 255.2

B: TCA markers

Figure B.10: DESI image - tuber stored for 6 weeks
The hand section was flash frozen and freeze dried, then analysed by negative mode DESI

MSI, using a malate-optimised method. A: a heat map showing the distribution of three TCA

marker m/z 255.2; B: a heat map showing the distribution of three TCA markers
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A: m/z 255.2

B: Region of interest

C: TCA markers

Figure B.11: DESI image of a fresh tuber cryosection
The cryosection was flash frozen and freeze dried, then analysed by negative mode DESI MSI,

using a malate-optimised method. A: a heat map showing the distribution of m/z 255.2; B:

Region of interest; C: a heat map showing the distribution of TCA markers
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A: m/z 255.2

B: Region of interest

C: TCA markers

Figure B.12: DESI image of a fresh tuber cryosection
The cryosection was flash frozen and freeze dried, then analysed by negative mode DESI MSI,

using a malate-optimised method. A: a heat map showing the distribution of m/z 255.2; B:

Region of interest; C: a heat map showing the distribution of three TCA markers

180



A: m/z 255.2

B: TCA markers

Figure B.13: DESI image of a stored tuber cryosection
The cryosection was flash frozen and freeze dried, then analysed by negative mode DESI MSI,

using a malate-optimised method. A: a heat map showing the distribution of m/z 255.2; B: a

heat map showing the distribution of three TCA markers
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