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Abstract

The neuromodulator dopamine (DA) has complex effects on the activity of stri-
atal neurons by changing their excitability and strength of synaptic inputs in
the context of motor control, action-selection, reinforcement learning, and addic-
tion. DA is volume transmitted, it leaves the synaptic cleft and diffuses through
the extracellular space in the striatum. The spatial and temporal distribution of
DA created by this diffusion have not been extensively studied yet. In this thesis
a computational model based on diffusion in a porous medium was developed to
study the spatiotemporal distribution of DA in the striatum. During the devel-
opment of the model a second interesting problem was identified: DA receptors
have slow kinetics. Due to these slow kinetics the DA receptors do not directly
follow the DA concentration, but can integrate over longer timespans. Taking
into account realistic kinetics it is shown that the different DA receptors do not
have markedly different responses to different timescales of DA signals. The full
model incorporates inhomogenous DA uptake, DA axonal tree morphologies, de-
tailed receptor kinetics and spike trains based on rat cell recording. The thesis
shows that spatiotemporal DA maps of a healthy striatum are highly variable in
space and time but the death of dopaminergic axons, as seen in Parkinsons Dis-
ease, reduces the variability of the DA maps and makes them more homogenous.
Furthermore, the DA receptor maps are shown to be correlated to anatomical
features, synaptic positions and locations of reduced local DA uptake, and there-
fore have a component that is stable in time. The code of the full model has
been made available at https://bitbucket.org/Narur/dope-amine/src/, so
that others may also find out that dopamine is a dope amine.
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Preamble

After some internal debate I decided that in my Thesis, presented here, “I” will
be used whenever the text speaks about decisions I made. “We” will be used
in the text when decisions or conclusions have been made in a collaborative
fashion, and when I give explanations, proofs or derivations, It will also be the
default tone of voice.



Chapter 1

Introduction: Dopamine in
the Striatum of the Basal
Ganglia

The Basal Ganglia are a set of subcortical nuclei, that includes the striatum,
globus pallidus, subthalamic nucleus (STN) and the substantia nigra, so named
for its dark color. Of special interest for this work are the striatum, one of the the
principal input structures of the Basal Ganglia, and the subtantia nigra pars
compacta, which sends dopaminergic projections towards the striatum. The
principal neurons of the striatum are medium spiny neurons (MSN) (Kemp and
Powell, 1971), which are a special form of GABA-ergic i.e. inhibitory neurons.
The Basal ganglia is involved in the action selection of motor behavior (Red-
grave et al., 1999; Hikosaka et al., 2000) . On of the first models of basal ganglia
function proposed a separation of pathways starting from the striatum into a
direct and an indirect pathway, based on anatomical separation (Albin et al.,
1989). In this model the direct pathway projects to the Substantia Nigra pars
reticulata and the Globus Pallidus interna, while the projections of the indirect
pathway end up in the Globus Pallidus externa. The direct pathway is named
that way since it directly projects to striatal output structures which in turn
send inhibitory projections to the thalamus, suppressing movement. The direct
pathway promotes movement, since activation of the direct pathway inhibits
the neurons in the output nuclei that suppress movement. The opposing, indi-
rect pathway, suppresses movement, by inhibiting the globus pallidus externa
which in turn inhibits the STN which excites the striatal output structures and
therefore suppresses movement. For this reason these pathways are also often
called Go and No-Go pathways. An interesting feature of this model is that the
anatomically distinct neurons of the different pathways have also physiological
differences. Omne of the most interesting differences is that the neurons of the
different pathways express different dopamine receptors (Gerfen et al., 1990;
Le Moine and Bloch, 1995). These DA receptors are generally classified as D1
and D2 type receptors. In turn the different MSN types are called D1-MSN
and D2-MSN. It should be noted that D1 type receptors are a family containing
the D1 and D5 receptors, and D2 type receptors are a family containing D2,
D3, D4 receptors. However generally the D1 and D2 receptors themselves are



most numerous. These receptor types also have diametrically opposed effects
on the MSNs. Activation of D1 receptors tends to make MSNs more excitable
while activation of D2 receptors tends to make MSNs less excitable (Gerfen and
Wilson, 1996; Surmeier et al., 2007; Gerfen and Surmeier, 2011). Since they are
both DA receptors, that means that in the model different levels of DA lead
to a bias either towards the direct, Go, circuit or towards the indirect, No-Go,
circuit. In the model that means that DA plays an important role in action
selection by biasing the Basal Ganglia either towards action taking or action
suppression. The model is also able to successfully explain the bradykinesia of
Parkinsons disease (PD). One of the clinical signs of PD is the death of dopamin-
ergic neurons in the Substantia nigra pars compacta (Jellinger, 2002). During
PD the amount of dopaminergic neurons innervating the striatum reduces. In
the model it is assumed that this leads to a reduction in DA concentration in
the striatum, biasing the system towards the No-Go pathway which leads to
trouble initiating movement. Sadly, the model turned out to be not entirely
correct, the organization and function of the Basal Ganglia is more complicated
than initially assumed (Redgrave et al., 2010; Calabresi et al., 2014; Nelson and
Kreitzer, 2014). However the interesting problem of the separation of MSNs
into distinct classes with different DA receptors and their modulation through
DA remains. In this work I am less interested about the specific makeup of
the Basal Ganglia circuits, and more about how the MSNs in the striatum are
modulated through DA.

1.1 Dopamine

DA modulates the function of the striatum, however this modulation it is not
as straightforward as I implied above. I made it look like the function of DA
simply changes the excitability of MSNs, however that was an oversimplifica-
tion. DA has complex effects on the activity of striatal neurons and seems to
have a myriad of functions within the Basal ganglia. On a physiological level
it changes their excitability (Day et al., 2008), depending on the type of DA
receptors (D1 or D2) the MSNs posess, and can change the strength of synaptic
inputs (Reynolds et al., 2001; Reynolds and Wickens, 2002). These seemingly
simple physiological effects lead to its diverse roles in motor control (Syed et al.,
2016), action-selection (Redgrave et al., 2010), reinforcement learning (Schultz,
2007), motivation (Phillips et al., 2008) and addiction (Everitt and Robbins,
2005). However what the exact mechanism of DA in all these roles is remains a
matter of debate.

DA usually is being implicated with a motivational function, however the
specifics of this relation are complex and sometimes difficult to unravel. It is
also generally referred to as the reward system, but exactly what this means
with relation to reinforcement and motivation is hard to pin down (Salamone
and Correa, 2012). In popular literature it is often stated that DA codes for
“pleasure” or “liking”, possibly because of its role in reward processing. How-
ever it has been established that “liking” and “wanting” are neurobiologically
dissociable, meaning they do not have to coincide. Furthermore experiments
indicate that DA does not code for “liking”, but infers a motivational “want-
ing” component referred to as incentive salience (Berridge and Robinson, 1998;



Berridge, 2007).

Dopaminergic neurons fire in a way that is consistent with them acting
as a reward prediction error (RPE) (Schultz, 1998), meaning they fire when
an unpredicted reward is presented and show reduced firing when a predicted
reward is not delivered. This RPE type firing has been shown to be causally
linked to cue reward type learning by showing that stimulation of dopaminergic
neurons at the time of reward delivery cancels blocking (Steinberg et al., 2013).
This learning role of the DA system fits well with its function in modifying
synaptic strengths. The RPE responses have not just been detected in the
firing of dopaminergic neurons, but have also been directly measured in the
DA concentration (Hamid et al., 2016). However they are superimposed on a
ramping DA signal that seems to increase with the approach to a goal, which is
believed to be more motivational in nature (Hamid et al., 2016).

DA also plays a role in Action selection believed to be facilitated by the dif-
ferent effects of the D1 and D2 receptors on the excitability of MSNs (Redgrave
et al., 2010). This role in action selection was first proposed due to the motor
symptoms observed in PD. PD first presents clinically as a loss of dopaminer-
gic neurons in the Substantia nigra pars compacta, which is believed to change
dopaminergic signaling which in turn leads to the motor-symptoms. However,
that role in action selection is more complicated than initially imagined in the
simple Go, No-Go pathway model mentioned above. One theory is that DA
influences if behaviour is executed in a goal-directed or habitual fashion (Red-
grave et al., 2010). The disruption of the DA system during PD leads, in this
model, to a an overreliance on behaviour executed in the goal-directed mode.

On top of that DA also plays an important role in drug addiction since a num-
ber of drugs of abuse, e.g. cocaine, directly influence the DA system and there-
fore bypass the normal adaptive processes related to normal rewards(Di Chiara
and Bassareo, 2007). This change of the DA concentration seems to interfere
with the normal motivational and learning function of DA. Addiction seems
to comnsist of two parts: First, context independent e.g. compensatory adap-
tion processes like altered presynaptic release. Second context dependent e.g.
conditioned responses to drug related stimuli (Berke and Hyman, 2000). The
context dependent part of addiction can be seen as a type of learning gone
wrong activating a compulsive stimulus response behavior which could indicate
a mismatch between the goal directed and habitual execution of behaviors.

To complicate matters the differing functions of DA are assumed to happen
on differing timescales (Niv et al., 2007) as does the striatal DA concentration
([DA]) (Schultz, 2007). Fast, abrupt increases in [DA] lasting for ~ 1 — 3s
result from phasic bursts in DA neurons (Roitman et al., 2004), which signal
reward-related information (Schultz, 2007; Grace et al., 2007). Slightly slower
[DA] ramps occur when rats approach a goal location (Howe et al., 2013) or
perform a reinforcement learning task (Hamid et al., 2016). Finally, slow tonic
spontaneous firing of DA neurons controls the baseline [DA] and may change on
a timescale of minutes or longer (Grace et al., 2007). However, if these fast and
slow changes in [DA] actually represent distinct signalling modes has recently
been called into question (Berke, 2018).

On top of all this DA is distinct from other neurotransmitters like GABA
and Glutamate in that it is volume transmitted (Cragg and Rice, 2004; Rice



and Cragg, 2008). It does not just get released at a presynaptic element and
acts by activating the postsynaptic receptors, rather it can leave the synap-
tic cleft (Garris et al., 1994) and distribute in space, activating receptors not
only on the postsynaptic element but farther away. This is corroborated by
finding DA receptors predominantly at extrasynaptic locations (Hersch et al.,
1995; Sesack et al., 1994). Furthermore, Dopamine transporters (DAT), that
remove DA from the extracellular space (ECS) of the striatum are found in ex-
trasynaptic locations (Nirenberg et al., 1996). The efflux of glutamate out of its
synapses is largely limited by the high density of glutamate transporters close to
the synapses (Lehre and Danbolt, 1998). However the density of DAT is much
lower (Garris et al., 1994) and DAT are removing DA at a lower rate than the
glutamate transporters, further strengthening the case for volume transmission
of DA. Volume transmission leads to DA not only having a time-component,
but also a spatial component. This spatio-temporal distribution of DA could
be quite complicated but has not been studied extensively. Often it is even
implicitly assumed that the DA concentration only has a time-component, and
no microscopic spatial structure (e.g. Schultz 2002). Presumably since experi-
mental results usually did not allow for a spatial resolution < 10um (Kelly and
Wightman, 1986).

What should also be kept in mind when thinking about the DA system in
the Basal Ganglia, is that the studies performed use very different experimental
techniques. Some studies measure neural activity of dopaminergic neurons di-
rectly (Schultz, 1998), while others measure DA concentrations (Hamid et al.,
2016; Floresco et al., 2003). Some techniques measure DA concentration di-
rectly (Floresco et al., 2003) while others measure changes relative to a refer-
ence (Hamid et al., 2016). In principle all these measurements should be related,
however how exactly they fit together is not always straightforward. Some fea-
tures e.g. the DA ramps, can be seen in DA concentration measurements, while
seemingly not having a counterpart in the neural activity of dopaminergic neu-
rons. Furthermore, depending on the utilized technique the interpretation of
seemingly similar measurements can be quite different e.g. a value signal mea-
sured with FCSV could masquerade as an RPE type signal (Berke, 2018).

All in all DA has a lot of functions that are related, however the exact nature
of this relation is currently still under debate. DA acts on different timescales
that may or may not represent distinct signalling modes. It interacts with two
different main receptor types D1 and D2 which have opposing effects on the
neurons that express them. Additionally it is volume transmitted which leads
to a spatial component of the DA signal the significance of which is largely
unclear. On top of that studies of the DA system utilize a lot of different
experimental techniques sometimes giving conflicting results whose connection
is unclear. In summary the DA system still poses a lot of open questions on
which a good model could shed some light.

1.2 Theory and Modelling

This thesis is an almost exclusively theoretical work concerned with mathemat-
ical and computational modeling. What is the purpose of such a a work? First,



this thesis is not a big data work. It seems like there is an increasing sentiment
that more data in combination with machine learning (sometimes also called ar-
tificial intelligence) will solve all the problems in neuroscience and other fields.
However I don’t believe this sentiment. Of course machine learning will find its
place in the toolkit of any (neuro-)scientist and it is a powerful tool, however
I believe it will not solve as many problems as promised. Essentially, I think,
these new methods are very effective in finding correlations, together with large
datasets they will be able to find a lot of correlations. However as the old adage
goes ”correlation does not mean causation”. Without knowing why phenomena
are correlated we cannot reach a full understanding of the underlying system.
One task of theory and modelling is finding the mechanisms of correlations.
That means that one goal of theoretical work is not necessarily hypothesis test-
ing, but rather hypothesis generation, which in the eyes of at least one of my
colleagues makes it unscientific. I would like to stress that this is different from
finding a correlation in the data. Finding the correlations is akin to the ques-
tion ”Is there a connection?” while finding the mechanism answers the question
”Why is there a connection?”. The generated hypothesis can then subsequently
be tested, however these tests might not be in the realm of theory anymore.

Hypothesis generation is not the only goal of theory. Theory and modeling
have another purpose: assembly of information. Taking pieces of knowledge and
trying to assemble them into a model which, hopefully, functions as expected.
However if it doesn’t than one of the mechanisms in the model is likely to be
wrong. The goal of the modeler is then to figure out which part does not fit.
This type of theoretical work is more closely related to hypothesis testing, and
therefore in the eyes of my colleague ”real science”.

These two aspects of modeling work cannot always be disentangled, usually
building a model aims to do both. It tests if the parts of the model fit together,
and if they do can predict behavior that has not been measured yet. A func-
tioning model is a powerful tool, since we have full control over all aspects of
it, and can quickly and cheaply do e.g. pharmacological modifications and can
predict what their outcome should be. At this point I also believe we can say we
have a decent grasp of the system that is being modeled, to paraphrase Donald
Knuth: ”Science is what we understand well enough to explain to a computer.”

1.3 Model goals, hopes and dreams

The DA system presents a fruitful landscape for extensive modelling since there
are still a lot of open questions and unexplored connections between different
experimental approaches. However, I had to choose a focus for what kind of
model I wanted to design. After reviewing the literature I decided to design a
model focused on the volume transmission aspect of DA, an aspect I believe has
been largely neglected in past studies. There have been successful attempts on
simulating volume transmission (Dreyer et al., 2010; Dreyer and Hounsgaard,
2012), however usually the focus of these studies was not investigating the spa-
tial structure of the DA concentration in detail but on the averaged DA timelines
that are generated. There seems to be the general opinion that the DA concen-
tration in the striatum can be seen as a monolithical value i.e. it can be seen as
a bath that has the same value independent on location and only changes with
respect to time. Investigating if this is true was the first goal for this model.



The model was designed to study the spatio-temporal distribution of DA in the
striatum, to see if there is a spatial structure, or if the general view that the
DA concentration can be seen as a constant value in space holds. Additionally I
aimed to address the question how DA interacts with its receptors. Here again
the focus was on the spatial distribution of receptor activation as an extension
of the spatial distribution of DA. If there is a spatial structure in the DA or DA
receptor activation then theories of higher order function, like learning and mo-
tor control, should be cognizant of it since the MSNs leading to this higher order
function will, through there receptors, see a signal that is not only dependent
on time but also on there position in the striatum.

The model simulates the DA diffusion and receptor interaction in the stria-
tum while trying to be as biologically realistic as possible. The attempt to make
the model as biologically realistic as possible is used here to get the best pos-
sible results, but also as a test of consistency between models of higher order
function and the known low level details of the DA system. The model is kept
as realistic as possible in places where it is hard to estimate the exact effect of
the modeled details, however approximations are used when it is easy to argue
that the effects will be small e.g. the incorporation of unspecific uptake. As
a secondary goal the model also aims to create a connection between different
experimental approaches, specifically dopaminergic neuron firing and direct DA
concentration measurements.

The model presented in this work can be seen, as a sort of bottom up ap-
proach for the understanding of DA function. In this capacity it does not directly
address high order function as such, however I believe that an incomplete under-
standing of these low order processes will seriously hamper the understanding
of higher order function.

1.4 Thesis Outline

In this thesis I aim to present the computational model of DA diffusion in the
striatum I developed during my PhD studies.

In Chapter 2 I will present a short overview about the basic theory of dif-
fusion, and diffusion in porous media which will be the theoretical foundation
of the computational model.

Chapter 3 will give a short overview about numerical models that can be
used to solve the diffusion equation, with source terms. I will introduce some
common pitfalls and explain the numerical method I used in the work presented
here. Furthermore I will show that the code I developed solves the diffusion
equation correctly.

Chapter 4 introduces the model I developed to generate synthetic axons,
which in turn are used to introduce inhomogeneous uptake and realistic synaptic
positioning into the diffusion model. This chapter also explains the generation
of spiketrains for the dopaminergic neurons.

In Chapter 5 I will introduce the receptor activation model that is based on
realistic receptor kinetics that I developed, at first, to provide realistic source
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and sink-terms for the diffusion model. However, the implications of DA re-
ceptors having kinetics that are not instantaneous are quite broad and will be
discussed in this chapter. The work from this chapter has also already been
uploaded to biorxiv https://doi.org/10.1101/444984 .

Chapter 6 Will show the results of the simulations done with the full model.
Mainly showing that the DA landscape is very inhomogeneous, and that the
anatomy, synaptic positions and uptake distribution, has an important impact

on the DA receptor activation maps.

Chapter 7 will provide a short discussion of the findings of this work.
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Chapter 2

Introduction: Modelling
Dopamine Diffusion

The main part of my thesis treats diffusion of dopamine (DA) in the striatum.
Why am I interested in the diffusion of DA? After all, most models of neural
networks do not explicitly treat diffusion to explain the effects of excitatory or
inhibitory neurons. The difference between these neural network models and
DA neuromodulation is that, in contrast to other neurotransmitters, DA does
not only act on the postsynaptic element but can leave the synaptic cleft and
distribute in the vicinity of the release site (Cragg and Rice, 2004; Arbuthnott
and Wickens, 2007; Liu et al., 2018). This is commonly known as volume trans-
mission. How this extrasynaptic DA distributes in the surrounding extracellular
space (ECS) is governed by diffusive processes. An implicit assumption in this
work is that their is no bulk flow in the ECS. In other words I assume that
the extracellular medium does not flow inside the striatum. In this chapter I
will give some background on the basics of diffusion and the derivation of the
diffusion equation. Although I will refer to DA as the diffusing molecules the
derivations presented in this Chapter are not specific for DA and also apply,
with different parameters, to other volume transmitted molecules in the brain.

2.1 Diffusion basics: Microscopic random walk

First we look at how molecules diffuse in a solution, in our case DA molecules
in water. Of course I did not originally come up with these arguments. The
original, and more thorough, derivations can be found in Einstein (1905) and
Von Smoluchowski (1906). One form or another of these derivations can be
found in any physics textbook treating diffusion e.g. (Feynman et al., 1965).
To help with the derivation I will reduce the problem to its simplest form,
and will only treat a one dimensional case. Diffusion is the result of Brownian
motion, which can be described as a random walk. Molecules in a solution
travel in a straight line and will change direction when they collide with another
molecule. The, in liquids, typically quite short average distance that they travel
unimpeded is called the mean-free path [. Our first simplifying assumptions are
that all the dopamine molecules move with the same speed, the average molecule
speed v, and collide after traveling a distance [, the mean free path. Between
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collision the time 7 = /v passes. After each collision the particles moves into a
new randomly chosen direction. There is no preferred direction so all directions
have the same probability. With these assumptions, how does a large number
of molecules, in one dimension, spread with increasing time? Initially, at ¢ = 0,
we place all the molecules at position x = 0. We define the mean position after
n time-steps as

1 N
(e(n)) = + > win) (2.1)
0

with z;(n) the position of the i-th molecule after n steps. After n steps the
position of a molecule is given by

z(n)=zn—-1)=*l (2.2)

the position after n — 1 steps plus the movement in the last step. Then the
mean position after n steps, combining Eq. 2.1 and Eq. 2.2 is

1 & 1 &
(x(n)) = N E xin—1)+1l= N g zi(n—1) = (x(n—1)). (2.3)
0 0

In the model case, steps in each direction have the same probability, so the
+[ term averages to 0. The mean position of the molecules after n steps is the
mean position after n — 1 steps. We can apply this finding iteratively and find
(x(n)) = (z(0)), the mean position after n steps is the mean position of the
initial distribution. In other words, the molecules spread symetrically around
their initial position. How far do the particles spread? To quantify how far the
molecules travel with respect to the number of steps we choose the mean-square
displacement as our measure. It is defined as

| X
(z*(n)) = I Zwl(n)Q (2.4)
0

since the square of a number cannot be negative, the average displacement
must be larger than zero. Now we use Eq. 2.2 to calculate the mean square
displacement after n steps

(z*(n)) = %me(n — 1) +2l-zi(n—1)+ 17 =(2*(n—1)) +1*. (2.5
0

As before, the term that contains 4 averages to 0. The mean square displace-
ment after n steps is the mean square displacement after n — 1 steps plus 2.
Again we can apply the solution iteratively, and we find that <502(n)> = ni2.
The mean square displacement is proportional to the number of steps. The
number of steps in a time ¢ is n = ¢/7. So the mean square displacement as a
function of time becomes

(1)) = (t> 2 — (f) t = 2Dt (2.6)

T

where in the last step, we defined a diffusion coefficient as

D =1?/2r. (2.7)
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Eq. 2.6 shows that the mean displacement from the origin +/(x2(t)) =
V2Dt, grows with v/£. Which means that molecules travel quickly over short
distances, but take a long time to diffuse long distances. We can intuitively un-
derstand this phenomenon: the movement of the molecules is random so they
are unlikely to travel in the same direction for a large number of consecutive
steps which is required for a large displacement.

We defined the diffusion constant above to be dependent on ! and 7. D gen-
erally depends on the diffusing molecule and the medium of diffusion, since dif-
ferent molecules will have different sizes, and therefore different mean free paths
l in the medium. Furthermore, for a given temperature different molecules will
have different mean velocities v since temperature is a measure for the mean
kinetic energy of the molecules, and kinetic energy depends on mass. In turn
the diffusion coefficient is also dependent on temperature since a higher tem-
perature will lead to higher mean velocities v.

Our approach easily extends to three dimensions. For this we require the
random walk to happen in each given direction. Assuming that the walks in x,
y and z direction are independent of each other we get <x2> = <y2> = <22> =
2Dt. We know that in three dimensions the squared distance to the origin is
r? = x? +y2 + 22, so we get

(r*) = 6Dt. (2.8)

The displacement grows faster in higher dimensions.

Above we restricted movement to a lattice. However the same arguments
can be used to get results for a random walk in arbitrary directions when e.g. in
2 dimensions we let the movement be in a random direction given by the angle 6.
We will still describe the location of the molecules in cartesian coordinates (x,y).
The position in the x direction after n steps will then be z(n) = z(n—1)+cos(0)l,
which since the full circle average of the cosine is 0, will be equal to the above
result. The same is true for the y-coordinate y(n) = y(n — 1) 4+ sin(f)l. In
the case of three-dimensional diffusion we have to add another angle to the
movement direction but the same argument still holds.

2.2 Diffusion basics: Fick’s Laws

The description given in the previous chapter allows us to calculate the dis-
placement of molecules with time. However, it would be infeasible to calculate
the changes of a distribution of DA in a volume by tracking all the dopamine
molecules. What we require is a description that allows us to track how the
distribution of DA in a volume changes in time due to diffusive processes. In
this chapter I will try to use the microscopic description to arrive at such a
evolution equation.

For this derivation we will stick with the random walk model for the molecules
in solution. Again a form of this derivation can be found in any physics text-
book that deals with diffusion (e.g. Feynman et al. (1965)). All calculations
are treated as if movement of the molecules only happens along the = direction,
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allowing us to treat the problem as a one dimensional problem, however the
argument is easily extendable to two, three or more dimensions. First we look
at the net flux of particles across a surface A. In the example we start with two
adjacent volumes that have a number of number of molecules N(z) to the left
of surface A and N(z + h) to the right of the same surface A, as illustrated in
Fig. 2.1. Initially the volumes are separated by a barrier so that there can be
no particle exchange between the two segments. At time t the barrier is removed
so that a particle exchange can happen. What is the flux of particles across the
surface A in the short time interval At after the barrier has been removed?
The molecules are moving around in ran-
dom directions with speed v in the solution.

Since there is no preferred direction half of N(x) N(x+h)
the molecules will move to the left, and the

other half will move to the right. The num- e ® L% o

ber of molecules moving from the left to the o ®e o °
right segment during the short time interval e o o ° o
At is then # °° e

So the flux, the amount of particles flowing
through a unit area per unit of time across the

surface A to the right, is o L °
[ )
. _1N(z) (2.9) . °: e o ©
TR = 5 ANt ' *.% i
e & o ~——
while the flux to the left is
At
. 1 N(z+h) l
=————". 2.10
=TT AN (2.10) . Ay o
e o °
We define the flux j1, as negative since the ° ® e
flux is oriented to the right. The net flux e o° | ® ® .
across the surface A is simply the sum of both ° ° o « °
fluxes:

Figure 2.1: The diffusive flux
(2.11) points from regions with high
concentration to regions with
low concentration.

. _L[N@ Nath
JTIRTIL = 5 | AN AAt |

After expanding the fraction with h? and
rearranging we end up with:

h? [N(z) N(z+h)
= —— - ) 2.12
YN { e AR (2.12)
Concentration is defined as particles per unit volume, so we can substitute
N(z)
= 2.1
Cla) =~ (213)
Furthermore, we define the prefactor
h2
D=— 2.14
2A¢ ( )

We will see below why it is prudent to call this prefactor D. So we are left with

. C(z) C(z+h)
j=D| == - = (2.15)
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When taking the limit of h being infinitesimally small the right hand side be-
comes a spatial derivative leading to

. oC

j=-D o (2.16)
which is commonly known as Fick’s first law, named after Adolf Fick who first
proposed and empirically verified the law (Fick, 1855). The additional minus
sign originates from the definition of the derivative. Eq.2.16 shows that the
molecule flux is proportional to the derivative of the concentration of the dif-
fusing molecules and, due to the negative sign, points from regions of high
concentration to regions of low concentration.

In Eq. 2.14 we defined the proportionality factor D. We stated in Sec-
tion 2.1 that the molecules in the solution perform a random walk with a step
size | and a mean velocity v. Then the distance traveled h in a time At will
be, h = vAt. We can replace At with the mean time between collisions 7 = [ /v
and are left with [ = h = v7. Substituting [ = h and At = 7 into Eq. 2.14 we
arrive at

l2
D= o (2.17)

the diffusion coefficient as defined in Section 2.1. Hence why we called it D
here as well.

The arguments presented here also hold for multiple dimensions. Extending
Fick’s first law to three dimensions requires replacing the derivative in Eq. 2.16
by the three dimensional nabla operator V = (%, 8%, %) Then Fick’s first law
in three dimensions reads

j=-DVC (2.18)

with ; the vector of diffusion.

Fick’s first law allows us to calculate the diffusive flux for a given concen-
tration distribution. It does not describe the changes in a given concentration
distribution directly, however we can use the fluxes to calculate the evolution,
due to diffusion, of a given concentration distribution in time. Eq. 2.16 tells us
where DA flows to if we have a concentration gradient. If there are no sources
or sinks of dopamine in the domain, the only changes of the dopamine concen-
tration at a location x are due to the diffusion flux. This is commonly known
as the continuity equation (in the surface integral form):

9%, j-dS=0 (2.19)

where S is the surface enclosing the volume in which C' is measured. Eq. 2.19

means that the changes of the concentration % are caused by the diffusive flux

j through the surface of the volume V in which C' is measured. The change in
concentration is exactly the amount of diffusive flux out of or into the volume
since the right hand side is zero (no sources or sinks). In short, no DA is
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created or destroyed by diffusion. We can utilize the divergence theorem to
rewrite Eq. 2.19 as a differential equation

oC S

— +V.53=0. 2.20

5 TV (2.20)
which can be interpreted as: the change in concentration %—? is caused by the

sources of diffusive flux. We already know the value of the diffusive flux, so we
can substitute Eq. 2.18 into Eq. 2.20 and arrive at

oc _ D(V-V)C =0, (2.21)
ot
where we implicitly assumed that D is a constant that does not depend on the
location in the test volume. (V-V) is also known as the Laplace operator which
is usually denoted by A or V? and is the sum of all unmixed second derivatives
in cartesian coordinates. So after rearranging we find the diffusion equation in
a homogeneous medium without sources or sinks (Fick, 1855)

oC

— = DV?C, 2.22

Y (2.22)
which is also referred to as Fick’s second law. Eq. 2.22 allows us to evaluate the
changes in DA concentration, purely from the current concentration landscape.
That means if we have a given concentration distribution, we can integrate it
in time and find the concentration landscape at later points in time.

2.3 Diffusion in a porous medium

The equations derived in Section 2.2 are valid for the diffusion of DA in water.
However the brain is not just the ECS but is also full of cells, blood vessels and
other obstacles to free diffusion. We can treat diffusion in he the brain like the
diffusion in a porous two-phase medium (e.g. Nicholson 2001). The phases in
this context are the ECS as the first phase and the cells and other obstacles as
the second phase.

The common approach for treating porous media is by defining a volume
over which the concentration of the diffusing substance, in our case DA, is av-
eraged (Whitaker, 1985). This averaging volume should be small enough to
have local meaning since if it is too large , e.g. half of the striatal volume, lo-
cal concentration fluctuations will be smoothed out. However the dimension of
the averaging volume should be larger than the mean pore diameter (Whitaker,
1969) so that strong, small scale, fluctuations within a pore are smoothed out
and we don’t have to treat those local inhomogeneities. This is directly related
to the size of the phenomenon to be studied. I am not studying the microd-
iffusion within the interstitial space, I am interested in the DA concentration
distribution in a volume of the striatum in the ~ 100um scale. At this scale the
volume averaging approach has the advantage that we do not have to explicitly
treat the geometry of the two phases, i.e. we do not have to know the precise
geometry of the cell-ECS boundary. Below we will also see that, when treating
the diffusion with this approach, the precise geometry of the cell-ECS boundary
does not matter for the diffusive processes.
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As said above, we want
to choose an averaging vol-
ume larger than the mean
pore diameter. What is the
mean pore diameter in the
brain? I decided that the av-
erage size of the interstitial
spaces would be a good esti-
mate for the mean pore di-
ameter d. The size of the
interstitial spaces is around
d = 0.05um (Nicholson and
Phillips, 1981; Sykova and
Nicholson, 2008) so our min-
imum averaging size should
be at least an order of mag-
nitude larger, around lum.
The averaging volume will C
be called V, however it will
contain sub-volumes of both
phases so that the volume

Of. t}_le ECS, denc.)ted by Vo Figure 2.2: Sketch of diffusion in a porous
W%thln the averaging volume pedium. The averaging volume V is moved
will Vo < V. The parameter  through the domain along the black line, to find

o <Co>

X

describing the ratio a spatially averaged continuous value (Cp) for
Vo the discontinuous distribution of Cy. The vol-
a=7 (223)  yumes shown are the averagi 1 V and

Vv ging volume V an

the ECS volume within the averaging volume
Vo = aV. The non-averaged concentration in
the ECS Cj only exists on discontinuous areas
of the tissue volume, whereas the spatially av-
eraged value (Cp) has a continuous value on the
whole domain.

is called the volume fraction,
and is usually taken to be
around 0.15 to 0.2 in the
brain (Lei et al., 2017).

The concentration of the
diffusing substance in the
ECS is Cp, but before the spa-
tial averaging its value is discontinuous because we do not have values of Cj
inside the second phase, the intracellular space. We move the averaging volume
across the whole domain and assign the spatially averaged concentration to the
position of the centroid of this averaging volume leaving us with a smoothed
representation of the concentration of the diffusing substance in the ECS (see
Fig. 2.2). We use an averaging procedure for any variable ¢ (Whitaker, 1969;

Gray and Lee, 1977):

(¢) = L ¢ d*x (2.24)

V v

with the assumption that ¢ = 0 outside of V. That does not mean that there
can be no dopamine inside the non-diffusing phase (in this case the neurons
and glia cells). It simply means that we do not take intracellular dopamine into
account, for the diffusion model. DA uptake and release will be treated purely
as sources and sinks of dopamine (see below).
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We can use the averaging procedure to develop the diffusion equation for
a porous medium. To do this we apply the averaging procedure Eq. 2.24 to
Fick’s first law Eq. 2.18 under the assumption that D is a constant:

<j‘> — D (V). (2.25)

The spatial average of the gradient VCj is not straightforward and leads to
(Gray and Lee, 1977):

(VCo) =V (Co) + % /A Coft d?x. (2.26)

This averaging complicates the equation with another integral over the surface
A, which is the interface between the ECS and the intracellular space. In the
integral 7 (the vector normal to the surface A) points away from the ECS into
the cells. The interpretation of this integral is not straightforward. However
(Lehner, 1979) showed that the function that relates (VCp) to V (Cp) must be
a linear transformation of the form

(VCo) = KV (Cy), (2.27)

which leaves us with Fick’s first law in a porous medium
<5‘> — D"V (Cy) = ~DKV (Cy) (2.28)

here D* = DK is the effective diffusion coefficient in the medium. K is a rank
2 tensor describing the ease of diffusion through the tissue. In a free medium
K = I (where I is the identity matrix) since there is no interface of the two
phases, which leads to the surface integral in Eq. 2.26 to be zero (since the
area A = 0), so that (VCy) = V (Cp). That means we recover Fick’s law for
a free medium, if there is no second phase, a nice sanity check. What is the
meaning of K in the porous medium? K contains the information how the
velocity of diffusion depends on direction in the given medium. Specifically K
can be identified with the reciprocal of a parameter known as tortuosity (\) of
the medium. In an isotropic medium K becomes a scalar since the diffusivity
does not depend on direction. So for an isotropic porous medium we can write

D
:F7

where the square is by convention and related to how tortuosity is defined in
neuroscience. Usually A > 1, so D* < D, meaning that diffusion in a porous
medium like the brain is typically slower than in a free medium. This slowdown
is due to an increase in path length between two points caused by obstacles in
the porous medium. In short, the diffusing molecules have to bypass the cells in
the brain, which increases the length of the shortest path connecting two points.
However it is not possible to calculate the modified diffusion tensor from first
principles directly, but direct measurements for the modified diffusion coefficient
in the rat striatum exist (see Nicholson 2001).

D* (2.29)

What happens if the medium is non-isotropic? An anisotropic medium can
lead to anisotropic diffusion, e.g. if the domain contains an axonal bundle. In
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such a bundle, there will be less obstacles to diffusion along the axons than
perpendicular to them, leading to a higher diffusivity along the main fiber di-
rection than perpendicular to it. This is commonly used in a technique called
diffusion-tensor imaging to map the fiber orientation of bundles (Jones and Lee-
mans, 2011). The general definition of the diffusion tensor in three dimensions
is:
DII D(L’y DZEZ
D*=|Dy, Dy, D, (2.30)
DZ(E DZy DZZ

with the diagonal elements Dg,, Dy, D.. describing the diffusivity along the
cardinal directions of the (cartesian) coordinate system, and the off-diagonal
elements describing correlations between movements along each pair of the car-
dinal components. D* has to be symmetric, since the diffusivity in the e.g.
x — y direction should be the same as the in the y — x direction. Altough
D* can describe general anisotropic diffusion, it does so with respect to the
coordinate system used. That means that the direction of fastest diffusion does
not have to align with any of the cardinal directions, e.g. if an axonal bundle
lies along the x = y = z the direction of fastest diffusion would not be along
any of the cardinal directions. In this case D* will have off-diagonal elements
that are non-zero. In the model I treat the rat striatum as an isotropic medium,
with one diffusion coefficient as described above. However the model code I
wrote to solve the diffusion equation can treat anisotropic diffusion as long as
the anisotropy can be described with a diffusion ellipsoid. This description
assumes that the anisotropy of the diffusion is oriented in a way so that the
direction of highest diffusivity aligns with one of the cardinal directions of the
coordinate system. In such a case there will be no off-diagonal elements of D*
making the numerical solution more efficient and a lot easier. However that is
not a serious limitation since the orientation of the coordinate system of the
model can be chosen freely and it is possible to transform a general D* into
the corresponding D* described by a diffusion ellipsoid. This is equivalent to
changing the coordinate system in which D* has been measured. This change of
coordinate system can be performed by calculating the eigen-decomposition of
D*. The orthogonal eigenvectors will then be the cardinal directions of our new
coordinate system. The eigenvectors will be orthogonal since D* is symmetric.
The diffusion coefficient along each direction will be given by the corresponding
eigenvalues (A1, A2, A3). It is convention to order the eigenvalues from largest
to smallest. The diffusion tensor in the new form is then

A0 0
D:llipse =0 A 0]. (231)
0 A3

So if we want to treat anisotropic diffusion in our model, we will have to align
the direction of highest diffusivity with the coordinate system of our simulation
domain so that we can replace Dy, Dy, D3 in Eq. 3.70 with A1, A2, A3 (see Sec-
tion 3.4 ).

We already derived Fick’s first law for the porous medium. However like

in the free diffusion case, we want an equation that we can use to evolve the
concentration of the neurotransmitter in the porous medium in time. As in the
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free diffusion case we apply the continuity equation Eq. 2.20, however this time
we have to apply spatial averaging before we continue

<a§;0> +(v-7)=0 (2:32)

(we assume again that there are no sources or sinks of neurotransmitter). The
averaging theorem leaves us with

<V-j>=V~<j>+éAj~ﬁd2x (2.33)

This time the surface integral has a more straightforward interpretation. It
describes the diffusive flux through the cell membranes. If the cell membranes
are impermeable to dopamine diffusion i.e. 5 7 = 0 then the surface integral is
zero too, leading us to conclude that for such a model

(v-7)=v-(j). (2.34)

In case of of a permeable membrane with a flux that is proportional to the
gradient across the membrane, with a proportionality coefficient k (as expected
from diffusion) we get .

j-i=k(Co—Cip) (2.35)

where C;,, is the concentration of DA inside the cell phase (which we will set to
0 since we do not treat DA in the cells). This formulation leads to a sink term
which will be treated below.

We still need to find the value for the spatially averaged time derivative
in Eq. 2.32. We use a second spatial averaging theorem from Gray and Lee
(1977), in which the additional surface integral term depends on the velocity
with which the phase interface is moving. For the timescales of the model the
neurons and glia cells in the brain should be stationary, meaning this velocity

is zero, which leads to
9Cy 9 (Co)
— . 2.

< ot > ot (2.36)

In our model we are interested in the concentration of the neurotransmitter
in the ECS, Till now the value (Cp) is still using the spatial averaging over
the whole tissue, as shown in Eq. 2.24; to calculate the concentration in the
ECS, we have to divide by Vj, the volume of the ECS phase, instead of V' the
volume of the tissue. We can use the volume fraction a defined in Eq. 2.23 to
transform between values, of any variable ¢, with respect to the ECS volume
and the full tissue volume: @)

<¢>0 = o

where (¢), is the value of the variable that refers to the ECS.

Combining Eq. 2.28 with Eq. 2.34 and substituting the result together with
Eq. 2.36 into Eq. 2.34 and transforming to the ECS volume with Eq. 2.37
afterwards leads to:

9(Co)g

ot

the diffusion equation for a spatially averaged neurotransmitter in a porous
medium (since o appears on both sides we can remove it). When we compare

(2.37)

= D*V*(Co), (2.38)
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Eq. 2.38 with Eq. 2.22, we can see that they are analogous i.e. they have
the same functional form. That means we can describe the diffusion in the
ECS by free diffusion and concentration C' with a diffusion tensor D*. Where
C describes the volume averaged concentration in the ECS, without us having
to explicitly go through the spatial averaging step. So the main change from
the free diffusion equation to the porous medium equation is the change from
D to D*. That is analogous to stating that diffusion in a porous medium
macroscopically behaves like diffusion in a free medium, but with a (generally)
smaller diffusion coefficient. So as long as we assume our averaging volume to be
large enough solving the modified diffusion equations is equivalent of solving a
full two phase model and spatially averaging afterwards. Due to this equivalence
we will substitute C' = (Cp),,, and in all following equations C' will refer to the
spatially averaged concentration in the ECS, so the equation we will need to

solve in Chapter 3 is

aC
= = D*V? 2.
o vie (2.39)

2.4 Sinks and sources

In the previous section we showed that diffusion in a porous medium behaves
like diffusion in a free medium with a different diffusion tensor. However, we
were only looking at an equation that evolved a given neurotransmitter concen-
tration distribution in time. We used the continuity equation Eq. 2.20 to derive
the evolution equation while assuming that there are no sources or sinks of DA
so that the amount of neurotransmitter in the system is constant. In the model
there will be sources of dopamine due to spiking and processes that remove DA
from the system, e.g. removal of DA through the DA transporter (DAT), which
will be called sinks. Here I will quickly discuss the modes of uptake and release
of dopamine and will deal with the specifics of firing patterns, geometry and
spike trains in Chapter 4.

2.4.1 Sources

How is spiking release treated in the model? Any source of dopamine contributes
on the right hand side of Eq. 2.32 with its source density (q(z)) /a. The source
density relates to the amount of released neurotransmitter

/Uq B = /U () Pz =Q (2.40)

where Q is the amount of neurotransmitter, in mol, in the released vesicle and U
is the full simulation domain. Naturally the spatial averaging should not change
the amount of neurotransmitter released so that the integral over ¢ and (q) are
equal. Of course the contents of a vesicle are not released uniformly in the whole
simulation domain. I model a release event by releasing the entire content of
a vesicle into the ECS instantaneous (which in the context of the numerical
solution means t,ejease < At) and at a single location. Such a point source
release will be smeared out in space by the spatial averaging, but Nicholson
and Phillips (1981) showed that the error due to this smearing is negligible,
so we can replace the spatial averaged point source (¢) with ¢. Furthermore,
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since we will solve the diffusion equation numerically on a discretized grid,
the exact representation of a point source will not be possible anyway (see
Chapter 3). Instead the source be averaged over the discretization volume
(the spatial resolution of the simulation, which can be different from the spatial
averaging V). This leads to the diffusion equation with a source term:

¢ q

— =D*V*C + —. 2.41

ot o ( )
Where we will add a DA concentration of ¢ = Q/Vyezer at the locations and
times where a release event is happening.

Is it reasonable to represent point sources in this discretized manner? From
microscopic diffusion theory we know that the mean travel distance of a molecule
in three dimensions is

r? = 6Dt (2.42)
so we can rearrange and get an estimate for the time in which the average
molecule has traveled a distance r

P

6D

t (2.43)
So if we substitute r with the distance from the center to the corners of a cubical
calculation cell of size Az, r = v/3Axz and use a typical Az of the simulations
(1um) we get travel times of ¢ < 1ms. Dopamine released as a point source
travels through the whole cell in less time than a typical timestep (At = 1ms),
so we can conclude that the assumption that the released dopamine distributes
in the calculation cell in a timestep is reasonable.

Where and when quantal release is going to happen in the model is governed by
axonal geometry, active site positioning and the spiketrains of the dopaminergic
neurons which I will treat in detail in Chapter 4.

Theoretically another source of dopamine is given by the unbinding from
dopamine receptors. The relative importance of this source term depends largely
on the kinetics of the receptors. However this topic requires a more extended
treatment that will be given below and Chapter 5.

2.4.2 Sinks

With only sources of DA and no removal eventually the whole simulation domain
would fill with an arbitrarily high DA concentration. Of course that doesn’t
happen since there are processes that remove DA. In the model we consider two
forms of uptake. Linear unspecific uptake through the cell membranes which
is quite slow, and specific, much faster, uptake of DA through the dopamine
transporters (DAT).

The linear removal term models unspecific uptake through the cell mem-
brane. Assuming that the cell membranes are not fully impermeable to dopamine
so that we have to consider the flux across the ECS-ICS interface in the model.
Nicholson (2001) showed that volume averaging for a flux of the form shown in
Eq. 2.35 leads to an uptake term

aC :
o = heC=-kC (2.44)
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where o is the volume average over the surface area over which the diffusive
flux across the phases takes place. Like in the case of D* the parameter K
can be derived from experiments and is 0.007~! (Rice and Cragg, 2008). For
this linear uptake model I treat C;, = 0, for simplicity. This treatment can
be motivated by the assumptions that the intracellular compartment is large
with respect to the extracellular one so that the local concentration behind the
cell-membrane is low and there is some process that binds DA molecules re-
moving them from the diffusion balance. Of course there can be other linear
processes that remove dopamine from the ECS, e.g. enzymatic destruction of
DA in the ECS. Adding any of these processes just requires a modification of
the removal rate k. However to keep the model simple I choose to ignore them.
As it stands the linear unspecific removal, is a quite slow process. For a DA
concentration of Cy = 20nM the removal rate is going to be 9C'/0t = 0.14nM/s.

In addition of the linear removal term, there is specific, much faster, uptake
of dopamine through the dopamine transporters. This uptake follows Michaelis
Menten kinetics (see e.g. Nicholson 1995):

9c _ 1 <VWC> _ (2.45)
ot a \K,, +C

For this mechanism dopamine binds to the dopamine transporter (DAT) and is
transported into the cell after binding. The processes are the same as for the
receptor binding in Chapter 5. Implicitly it is assumed that the binding to the
transporter is fast with respect to the dopamine fluctuations, so that a chemical
equilibrium is reached. Under this assumption the fraction f of DAT that is
bound to dopamine can be estimated with the help of the dissociation constant,
here called K,,

C

K, +C

which only differs from the uptake rate by the maximum uptake rate V.. =
[DAT]™** kp which is a combination of the amount of DAT in the ECS and the
rate with which DAT transports dopamine into the cell (k7). This means that
the maximum uptake rate is reached when all DAT are occupied and are trans-
porting dopamine into the cell. Since individual DATs should have the same
transport rate kp (being the same molecule and all), V;,,4, scales directly with
the concentration of transporters in the ECS, which we will use in Sec. 4 to cal-
culate the V;,,4, for inhomogeneous uptake. I will give the uptake constant V4.
in units of uMs~! with respect to the volume of the tissue V (dividing by a will
then give the value for the ECS). This value is usually given between 0.6 M s~1
to 1.0 uMs~—1 (Nicholson, 1995; Wightman et al., 1988). With this V,,4. the
removal rate at e.g. 20 nm dopamine would be around dC/dt = 340.0 nMs~*
which is orders of magnitude faster than the uptake due to diffusion through
the cell membrane.

f= (2.46)

Even though in the striatum the uptake depends primarily on DAT (Morén
et al., 2002), there are other processes that remove dopamine from the ECS.
Dopamine is also taken up by serotonergic transporters (Berger and Glowinski,
1978) or ,in areas with low levels of DAT, norephinephrine transporters (Morén
et al., 2002). We ignore uptake through serotonergic transporters since they
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have a very low affinity for dopamine (K,, = 78 uM; Larsen et al., 2011). How-
ever uptake through the serotonergic transporters could be comparatively more
important in a Parkinsonian case when the amount of DAT declines with the
amount of dopaminergic neurons (see Chapter 4).

Another sink of dopamine is given by the binding of dopamine to its recep-
tors. As for the source term due to receptor binding the relative importance of
this sink term depends largely on the kinetics of the receptors. However this
topic requires a more extended treatment that will be given below and in Sec. 5.

2.4.3 Diffusion with sinks and sources and reaction terms

Finally we can combine the diffusion equation in a porous medium with source
terms Eq. 2.41 with the sink terms from Eq. 2.45 and Eq. 2.44 to arrive at

8C’_ 2 g_ ! _l VmaxC
Sr=Dvie+doyc a@%+c> (2.47)

which can be used to calculate the DA concentration map, over time, from a
given initial map.

During the work on this project I also decided to implement interaction of
dopamine with its receptors. Which is extensively discussed in Chapter Chap-
ter 5. Here it should just be noted that when DA binds or unbinds from its
receptors it is added or subtracted from the free DA in the ECS, the diffusing
DA. If the binding and unbinding is fast it will have an influence on the diffusion
processes by changing the available DA concentration in the ECS. I assume that
receptors are not freely diffusing through the ECS but are locked in place in the
cell membrane. So for the receptor component the diffusion coefficient is set to
Dyecp = 0. Instead of just solving the diffusion equation, we will now have to
solve a system of equations for each spatial location

8CDA 2 q ! 1 VmachA
D'Vt L K Opy— L [ YmazCba
ot Vv DA+a ba— K., +Cpa
— k5 CpaCpr + K 4Cpa—p1 (2.48)
0Cpa—
% =kD'CpaCp1 — k5 Cpa—p (2.49)

where Cpy4 is the DA concentration, Cpa_p1 the concentration of D1 re-
ceptor bound to DA and Cp; the concentration of free D1 receptor. The
amount of free receptor and bound receptor are linked by the equation C3{* =
Cp1+Cpa—p1 where C5* is the total concentration of receptors. The system
shown here just treats one receptor type. More receptors add another equation
but with different parameters. Binding to the receptor removes the DA from
the ECS acting as a sink term for DA while unbinding returns DA to the ECS.

These equations do not have an analytical solution, so that Chapter 3 will
show which numerical methods I used to solve them.
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Chapter 3

Introduction: Numerical
Methods

In this chapter I will introduce numerical methods that can be used to solve
parabolic partial differential equations like the the diffusion equation for a
porous medium with source and sink terms that we derived in Chapter 2:

oC o g 1 VimaC

There is a analytical solution to Eq. 3.1 for a steady state, spherically sym-
metric problem with k& = 0 (Simpson and Ellery, 2012). However we want to
study the time evolution of the DA distribution, so calculating the steady state
solution will not be sufficient. Furthermore, the distribution of DA in the model
will not be spherically symmetric at all times. Since there is no analytical solu-
tion for the general case I am going to use a numerical method to solve Eq. 3.1.
In this chapter I will give an overview over the considerations that were made
while choosing the numerical method for solving Eq. 3.1 and give some detail
on how the chosen method influenced the setup of the model. I will motivate
the use of a finite difference method (FDM) and describe how to construct such
a method. Furthermore I will present considerations about stability and noise
dampening of such FDM methods. I will describe how to expand FDM to more
than one dimension, and introduce the precise method I am utilizing. I will also
shortly talk about iteration, which is necessary for incorporating sink terms.
I will also explain what kind of boundary conditions are implemented in the
model.

3.1 Finite Difference Methods

3.1.1 Why a Finite Difference Method (FDM)?

In the model Eq. 3.1 is solved by a high order FDM described in Gu et al.
(2003). What is a FDM and why did I choose one for my solver? There
are a number of different methods for solving partial differential equations like
Eq. 3.1. The most common ones are Finite Element Methods (FEM), Finite
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Volume Methods (FVM) and FDM. In all of this schemes the simulation do-
main is discretized, that means the value of the quantities to be calculated are
only evaluated on a discrete set of points. This is done to transform differential
equations into algebraic equations that can be solved by a computer. In the
case of FEM schemes, the operators themselves are discretized by an appropri-
ate method, e.g. a galerkin method (Ern and Guermond, 2013). However since
this process is quite complicated and unfamiliar to me I decided against using a
FEM. In FVM the idea is to draw a small volume around each point on which
the field is to be evaluated, the changes of the value are then due to the flux
through the surface of the drawn volume. FVM methods are conceptually closer
to the surface integral formulation of the continuity equation Eq. 2.19 than to
the differential version shown in Eq. 2.20 (see Section 2.2). As such FVM
methods have the advantage of being automatically conservative, beause fluxes
out of one volume have to be equal to the same flux entering a neighboring vol-
ume. Since evaluating a flux through a surface is fairly straightforward, FVM
methods can easily deal with grids that have non uniform cell shapes and there-
fore are well suited to model volumes with arbitrary boundaries. FVM methods
are also well suited for dealing with parameter discontinuities (e.g. changing
diffusion coefficient D) when the cell boundaries are aligned with the disconti-
nuity. However even though FVM have these advantages I decided use a FDM
for solving Eq. 3.1. Why? FDM schemes work directly with the equation to be
solved. The idea is to replace the derivatives in the presented equation by an
algebraic equation that gives an approximation of these derivatives. That can
be a quite tedious and complicated task if the given grid is non-uniform. How-
ever we can choose the shape of the domain we want to solve Eq. 3.1 on. We
do not treat the biological geometry explicitly as explained in Section 2.3 so
the shape of our domain is largely left to our devices. So we can choose a cubic
domain, and divide this domain into uniform cubic cells so that the discretiza-
tion is easy within the framework of an FDM. Furthermore, we do not expect
there to be large abrupt changes in the diffusion constant D so the problem
that FDM might have with discontinuities is of no concern for our model. Since
we can choose a uniform grid and we do not expect discontinuities FVM and
FDM perform equally well in our case (Botte et al., 2000). When employing
higher order methods FDM codes on a uniform grid can even be more accurate
(Hoffmann and Chiang, 2000). FDM methods are simple in their formulation
and have no disadvantages that apply to our problem. So I decided to use an
FDM method for discretizing the simulation domain, and solving Eq. 3.1.
Because of this choice our domain for the simulation of diffusion will be a cube
with uniform cubical voxels with a given side-length h.

3.1.2 Finite Differences

In a FDM we want to replace the derivatives in the equation with algebraic
approximations to these derivatives. For illustrative purposes I will show some
examples on a one-dimensional diffusion equation with a source term q (see
Section 2.2)

oC 0?C

5 = D(%2 +q. (3.2)
Before replacing the derivatives with their algebraic equivalents we need to
discretize the space. We will use a uniform one dimensional grid, that means
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we are replacing the domain [0,L] with a set of grid points
x; =1th,i=1,...,N, (3.3)

furthermore we call C7* the function on the grid that gives C(x;,t,), where ¢,
is the n-th timestep. If we require that Eq. 3.2 is fulfilled on the discrete grid
points we arrive at

2

00Et) _ p T Olwsta) +alei ). (3.0
We still have the derivatives in the equation, which we would like to replace
with algebraic expressions that approximate the derivatives. To come up with
these expressions we will utilize the Taylor series (see e.g. Bronstein et al. 2004),
a series expansion that allows us to estimate the value of a function f(z) at point
x + h from the value of the function at point z under the assumption that f is

smooth

Flath) = @)+ 1175, T 51 o,

hof(@) WoPf(z) =~ _ f: W o'f(z) (3.5)

Now we can use Taylor series to calculate an estimate of C7',; on the uniform
grid

ocy n hj o2Cr
or 2! Ox?
where O(h3) denotes a leading term “of order” h® and h is the spatial resolution.

This can now be easily rearranged (while silently dropping the n superscript
denoting time) to an algebraic expression for the first derivative

n,=C"+h +O(h®) (3.6)

9C;  Cip1—C;  h G

h ASC;
or h 2! 922

h

+0(h?) = + O(h) (3.7)
where A} = C;y1 — C; denotes the first forward difference operator in the x
direction. We can see that the term we dropped is of order h. That means the
error of our approximation, also called the truncation error, behaves linear in
h. Doubling the resolution, and correspondingly halving h = 0.5h will halve the
truncation error of the approximation of the first derivative. We can apply the

same reasoning for defining the forward difference operator in time, which we
will call A

Eq. 3.2 contains a second derivative in space, so we will also need an alge-
braic expression for this second derivative. We can write another Taylor series

0Ci , Gho°C: | Rh)70°C: | | (3.8)

i+2 = C; + 2h
Cirz=Cit2h 4 537 31 o

which we can combine with Eq. 3.6 in such a way that the 9C;/Jx term vanishes
to get
0?C;  Ciyo —2Ci1 +C; 23C; AZ+
= —h === O(h 3.9
Ox? h? Ox3 + h? +O(h) (3:9)
with A2F the second forward difference in the x direction. Now we have an
algebraic expression for the second derivative which again has a leading error

28



of order O(h). However, we also require an extra point, C;;2, to calculate this
derivative. Generally adding one more points adds another O(h) to the next
derivative. So we can write
o"C; ARt
dxn  hm

where the forward differences can be applied recursively as

+ O(h) (3.10)

AMC; = AT (ARG, (3.11)

Similar to these forward differences, there are also backwards differences, de-
noted by A7, defined in an analogous way but starting with
0C;  h? 92%C;

T (3.12)

Ci_1=C;—h
instead.

Having an error that is first order in the spatial resolution is not necessarily
the best case, since doubling the resolution only halves the truncation errors.
It is possible to increase the order of the error term for the approximation in
the forward and backward difference schemes by adding more points. We can
combine Eq. 3.6 with Eq. 3.8 weighted by a factor A, and arrive at

oC; h? 92C; h3 93C;
Ciy1+AC; 10 = (1+A)Ci+(142A4)h o +(1+4A)§ 92 +(1+8A)§ 63653?3)

Now what we want is to remove the second order error term before we rearrange.
We have to choose A = 1/4 so that the O(h?) term vanishes in Eq. 3.13. Then
we can rearrange again and get a O(h?) estimate for the first derivative, using
the forward difference operator

0C; . —CZ'+2 + 4C¢+1 —3C; h? 8301

Ox 2h 31 923

+O(h®). (3.14)

With the leading error term being O(h?) doubling the resolution reduces the
approximation error to 1/4. Higher order forward difference operators can be
constructed in an analogous manner by adding more points and removing ever
higher order terms. However these higher order operators require more and
more points, which complicates treating boundaries considerably. Furthermore,
calculating the estimates of the derivatives becomes progressively more compu-
tationally expensive since the amount of operations required to calculate one
estimate also grows with the number of points involved. The higher order back-
ward difference operators can be constructed in an analogous manner.

There is another trick to increase the order of the approximation of the
derivative without adding any more points. We can combine the forward and
backward difference operator by simply adding them and defining a new operator

A;— + A; =Ciq1 — Ci_1=0C; (315)

the central difference operator. By looking at Eq. 3.6 and Eq. 3.12 we can see
that the term of O(h) is removed by the combination and we are left with an
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approximation of the derivative that is O(h?)

oc;  sC; )
o = 5 TOW). (3.16)

Again higher order operators can be generated by adding more points, how-
ever the approximation with the central difference operator (Eq. 3.15) has a
truncation error of one order higher then the forward or backward difference
operator when using the same amount of points. Generally it is advantageous
to use higher order operators since they make the calculated estimates more ac-
curate, however this advantage always has to be balanced against the increased
computational costs and possible boundary problems.

3.1.3 Solvers

With the help of the finite difference operators we can now rewrite the diffu-
sion equation Eq. 3.2, a partial differential equation, as an algebraic equation
whose solution will give an approximate result of the original solution. However,
this can be achieved by using different (e.g forward difference, backward differ-
ence) operators, giving rise to different numerical schemes. I will present the
a few simple numerical schemes and their problems to introduce some possible
problems and to show what we are looking for in a numerical method. These
considerations can also be found in works about FDM or general numerical
methods, e.g. Langtangen (2013a); Press et al. (1988).

Explicit (Forward) Euler

For the most intuitive numerical scheme, called the forward Euler scheme, we
use the central difference operators in space, and the forward difference operator
in time to replace the derivatives in Eq. 3.2 leading to

AfC = D§,6,.C +q. (3.17)

Writing out all the operators (and this time not dropping the time superscript)
leaves us with

cptt-or o — 200 + G
=D Al R Ltgp (3.18)
an algebraic equation that approximates the original differential equation. Look-
ing at Eq. 3.18 we notice that we can assume, when starting with some initial
conditions, that we know all quantities C™ the values at the current timepoint.
The only unknown quantity, is C?“, the concentration one step into the future.
We can rearrange to solve for C7*

At
CItt = O + D5 (O = 207 + O ) + At - gf (3.19)

which is commonly known as the Euler forward scheme. We will also define the
dimensionless parameter v = D%, also known as the Fourier number. Which
will turn out to be an important parameter for the stability behavior of the
method. Now we can use Eq. 3.19 to start from given initial conditions and
evolve them through time indefinitely. However when attempting this we also

realize that we will require a set of points outside of the domain, in which we
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want to calculate our solution. For example, to calculate C?H we will require
a point at Cf'. These points are known as boundary conditions since they are
at the boundary of the domain, and in this example we will choose them to be
C(0) = C(L) = 0 at all points in time t.

To test the validity of the Euler forward scheme we can simulate an example,
in this case a discontinuous step, and see how it develops in time. All parameters
are in arbitrary units. In the example we choose the spatial resolution h = 0.01,
the diffusion coefficient D = 0.1 and adjust the time resolution At so that we
arrive at the desired v. The initial conditions for this example are a step of size
1.0 that extends from =z = 0.4 to x = 0.6.

In Fig. 3.1 it is clear that the parameter we called v is of critical importance
for the validity of the solution. For v = 0.25 the solution gives a smooth solution,
however for v = 0.5 we see a sawtooth shaped noise on top of the solution. The
scheme leads to unrealistic growing solutions for v > 0.5. Why is that?

The explicit euler scheme, is unstable for values of ¥ > 0.5. Even though
for v = 0.5 the solution does not have an unrealistic growth behavior, we can
see that the solution is not smooth. The reason for this is the high frequency
noise that is present in the discontinuous initial conditions. The Euler forward
scheme does not suppress high frequency noise, so that initial noise remains as
a saw-tooth pattern in the solution. One reason for this stability problem is
that we calculate the change of C' by extrapolating the rate of change of C' with
the help of the current values of C. With longer timesteps the error of th this
extrapolation grows, which leads to unwanted behavior. Generally all explicit
patterns have these stability problems. So even if we would increase the order
of this scheme we would still have to retain a timestep, small enough to prevent
the solution from showing unrealistic growth. Is there a pattern that does not
have these stability problems?

Implicit (Backward) Euler

We can choose not to extrapolate from the current timestep. If we use the back-
ward temporal difference operator A; instead of the forward temporal difference
operator in Eq. 3.2 we arrive at

A7 C = D6,5,C +q (3.20)

which is very similar to Eq. 3.17 except for the backwards finite difference
operator. So we are left with the algebraic equation
or—cr! n, =200 +Cr
=D+ L . 3.21
A7 3 +q; (3.21)

for which we assume that we know all values at timestep ¢ = n — 1 and we
are looking for all values at t = n. We can rearrange like we did above, again
substituting v = D% and arrive at

Cr = u(Cly — 200 +C1y) = O 4 At - g (3.22)
which can be further rearranged to

(14 2v)CP —vCPy —vC | = O+ At - ¢ (3.23)
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Figure 3.1: Solving the one dimensional diffusion equation with the Euler for-

ward method. Each panel shows an example for the initial conditions given

at the top. The solution is has no obvious problems for v = 0.25 (a).

Even

though the solution seems to distribute as expected from a diffusion problem
for v = 0.5, there is sawtooth noise visible on top of the solution (b).The forward
Euler solution becomes unstable for v > 0.5 (¢) showing unrealistic growth in

the solution.



However, this is not an explicit formula for calculating the new timestep,
since the value C}' is coupled to the value at neighboring cells. Instead of an
explicit solution formula Eq. 3.23 describes a system of equations that needs
to be solved in its entirety to arrive at a solution C™ at all spatial locations. To
work further with the system of algebraic equations in Eq. 3.23 we will write

it in its matrix form .
AZ¥ =10 (3.24)

with matrix A, the vector of known values b and the solution to be computed
Z. The system of equations resulting from Eq. 3.23 can be written as the matrix
A:

A()’O A()’l 0 ..................................... 0
v 142v —v h :
0. v, 1+2v v
_....'71/ 1+2V'-'*V O
: v 14+2v —v
O a0 AN,Nfl AN,N
(3.25)
the vector b containing the values of the current timestep
of
C’ffl
b= (3.26)
CnTy
C’;\lfl

7= : ) (3.27)

Where N = N, is the number of gridpoints and values at the boundaries
are given by the boundary conditions

cyt=c) oy t=c(). (3.28)

It is not instantly clear from Eq. 3.23 what the terms in the first and last
row of A should be. These terms describe the interaction of the solution with
the chosen boundaries. In our example we have explicit boundary conditions
so the values at the boundaries are C(0) = C(L) = 0. We have to fill the
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solution, as is, in the first and last row. That means Apy = Ay ny = 1 and
Ap,1 = An,n—1 =0, so that the first equation of the system Az = b will read

A oClr + Ag 1 CTH = CF = C(0). (3.29)

Now we have a finished matrix version of Eq. 3.23. To advance a timestep we
have to solve Eq. 3.24 once, which requires significantly more operations than
the explicit version shown above. Matrix A does not change with time, so we
can use the same matrix in all timesteps. We can use Gaussian elimination to
find the solution to Eq. 3.24. However this method requires O(n?) arithmetic
operations (Fang and Havas, 1997), where n is the number of unknowns. So
for a system with double the size we would require 8 times as many operations,
making this method too computationally expensive for any system of reasonable
size. However, this problem can be fixed. When we look at the matrix A, we
can see that the matrix is largely empty, i.e. A is a so called sparse matrix.
Furthermore, A only has entries on the main diagonal and its two neighboring
diagonals, a property that is commonly called tri-diagonal. For these type of
matrices an efficient algorithm, the Thomas-algorithm, exists (Thomas, 1949),
which can solve our problem in O(n) operations. This enables us to solve sys-
tems of a realistic size in a reasonable time.

Again we can test our solution, and will do so for different parameters of v
(see Fig. 3.2). Independent of the parameter v the solutions are all smooth.
There are no physically unrealistic instabilities for » > 0.5 as observed in the
explicit method. Furthermore, we also do not see the sawtooth noise we saw at
v = 0.5 for the explicit method. The implicit Euler method is unconditionally
stable, and suppresses high frequency noise. So even for high v it leads to a
smooth solution. This scheme already has noticeable advantages over the Euler
forward scheme, however we would still like to improve on the truncation error
behavior.

Crank Nichsolson Scheme

Both of the methods shown above use the central difference operator J, in space.
So that both of these methods are second order O(h?) in space. (Here we use
the O-notation with respect to the truncation error, meaning that havling the
timestep will reduce the truncation error by 0.5 = 0.25, a factor of 4.) How-
ever for the time evolution they either use the forward or backward difference
operator in time. Both of these operators have a truncation error of O(At). So
both methods are first order in time.

Here we will show a method that is also second order in time, first proposed
in Crank and Nicolson (1947). The easiest way to increase the order of the
truncation error in time would be using a central difference operator in time.
However, for the time derivation this is not straightforward. Since replacing
the first time derivative with the central difference operator §; = C"*+1 — Cn—1
removes the value we would want to solve C"™ from the formula. However we can
use a trick to get a type of central difference operator for the timestep too. This
trick contains of solving our algebraic problem on all the spatial grid points, but
requiring the solution in time between the timesteps, at t = n + 0.5At leading
to

0:C(z,t + 0.5At) = D§,6,C(z,t + 0.5At) + q(z,t + 0.5A%). (3.30)
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Figure 3.2: Solving the one dimensional diffusion equation with the Euler back-
ward method. Each panel shows an example for the initial conditions given
at the top. Independent of v the solution behaves well and shows no obvious
numerical problems. The Euler backward method is unconditionally stable.



Here we chose the virtual timestep to be 0.5At for the central difference on the
left hand side, so that we can write the algebraic equation as

n+l _ -~ O”*% _ 20?*% C«"*%
C; cr p it i T 0 n+l (3.31)
2005AL) 212 e '

On the left hand side we now only have values aligned with the timegrid, but
on the right hand side we require the values at times between the current and
next timestep. Usually we do not calculate this value. However, we can replace
this value by the arithmetic mean of the current timestep and the timestep to

be calculated X
CitE = o05(Cr O (3.32)

which we can substitute into Eq. 3.31. That leaves us with an expression not
unlike the one resulting in the implicit method (Eq. 3.23)

1
(L40)C = SOR = S0P = S(CF =207 +CF) + 5 (a7 7). (3.33)

Again we can write a matrix equation, this time with the matrix

AOO AO,l Ot 0
—%1/ 1+v —%u
R
A= :
_%1/ -1+u..'—%y 0
: —%l/ 1+v —%V
O .0 AN,N—l AN,N
(3.34)

which looks very similar to Eq. 3.25. It also contains the same factors Ago =
Anny =1and Ap1 = Anx n—1 = 0 when using the same boundaries as above.
The vector b then evaluates to

C(0)
(1=v)CP + 5(C5 + CF) + (@l + qf)

b= : . (3.35)

(1- V)CJT\LIA + %(C}\l] + 017\1772) + %(q]’%tll + q}‘vfl)
C(L)

Since the matrix A is tridiagonal again, we can use the Thomas algorithm again
to solve this system.

As in the previous cases we can test the solution for different values of v
(Fig. 3.3). The solution does not become unstable for large v, but we see
artifacts in the solutions with large v that only vanish slowly over a couple
of timesteps (Fig. 3.4). We can see that after the initial timestep artifacts
persist. These artifacts are a common problem with the straightforward Crank
Nicholson scheme, which tends to show non-physical oscillations for larger values
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Figure 3.3: Solving the one dimensional diffusion equation with Crank-Nicholson
method. Each panel shows an example for the initial conditions given at the top.
The Crank-Nicholson does not become unstable for large v but shows spurious
oscillations for large v (c).

of v. However the Crank Nicholson scheme has the advantage that it has a
truncation error of O(A#?). So it is second order in time. We will not reproduce
the calculation for the truncation error here, but it can be found in Langtangen
(2013b). The Crank Nicholson method is second order in time, but unsuitable
for use with larger v since these produce artifacts in the solution.

3.1.4 Stability, Noise Suppression and other Errors

In the previous section we found, by utilizing numerical experiments, that the
forward Euler method becomes unstable for values of v > 0.5, while the back-
wards Euler method experiences no such instabilities. We also found that the
Crank-Nichsolson method does not become unstable, but shows oscillations for
large values of v. However we do not want to perform a numerical experiment
for all possible numerical schemes, we would rather like a systematic way to
check the stability of these numerical schemes (at least in the case without non-
linear terms). This systematic way of testing the stability of FDM used to solve
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Figure 3.4: Solving the one dimensional diffusion equation with Crank-Nicholson
method. The Oscillations in the Crank Nicholson scheme persist for quite a few
timesteps (v = 4.0).

linear partial differential equations is generally known as von Neumann stability
analysis, and was first described in Crank and Nicolson (1947) and was later
treated in more detail in Charney et al. (1950).

Here I will quickly go through the steps of this method and also discuss the
results of the numerical experiments presented before in the light of stability

analysis. In our example we solve the one dimensional diffusion equation, here
without sources

oC 0?C

We start with the definition of the error of our solution as
=N -Cr (3.37)

where ;' denotes the numerical solution to the problem and C}* the excact
solution to the discretized problem. Since C7* is exact, the error term has to
fulfill the discretized equation too, otherwise V' would not be a solution of
the scheme. If we find a solution for the discretized version of Eq. 3.36 this
solution will also be a solution for the error term e}’ which can be understood by
rearranging Eq. 3.37. That means any conclusion about the numerical solution
will also be applicable to the error term. To find this solution we start with
an analytical solution for Eq. 3.36 under the assumption that the domain is
infinitely sized (or the boundaries are periodic). A usefull Ansatz is given by

C(z,t) = Qe etk (3.38)

where the amplitude @ and the wavenumber & = 27/ can be chosen arbitrarily

(with A the wavelength of the wave). Substituting Eq. 3.38 into Eq. 3.36 gives
the constraint that

a = —Dk? (3.39)

and with this constraint, Eq. 3.38 solves the one dimensional diffusion equation
without sources. Since all wave numbers k lead to solutions of Eq. 3.36 linear
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combinations of Eq. 3.38 will also be solutions. That means that a general
solution can be written as

C(z,t) = Z ape PFteike (3.40)

k=—o0

which is a superposition of an infinite number of wave solutions, commonly also
recognized as a Fourier transform. One thing that can be gleamed from the an-
alytical solution is that the amplitude of all wavenumbers is suppressed in time
by the e~ P *t term. That means that high wavenumbers, associated with fast
oscillations in space, are damped faster than oscillations with smaller wavenum-
bers. This is a characteristic of the diffusion equation. Diffusion smooths the
solution by damping high frequency oscillations.

What does that mean for our numerical schemes? We can analyze our nu-
merical schemes by using a discretized version of the solution, and see how it
evolves timestep by timestep. The analytical solution on the discrete points of
our grid is

cr = e~ Dk*nAt —ikjh _ pn,—ikjh (3.41)

where we replaced the spatial index ¢ with j to not have it confused with the
imaginary number ¢ = /—1 and choose the amplitude factor Q to be 1 for
convenience. We also combined the damping factor up to this point t into
one amplitude term A™. The damping factor tells us how an oscillation with
wavenumber k£ grows in amplitude over n timesteps which can be used to test
the stability behavior of a solution.

Euler Forward

To analyze the stability of the numerical solution we want to know what the
amplification factor of one timestep A' = A is. If the amplification factor A is
larger than one, than the solution will grow in every timestep, which will lead
to unrealistic exponential growth of this solution.

For this we have to insert Eq. 3.41 into the discretized version of Eq. 3.36
for the numerical scheme we are interested in. For example for the Euler forward
scheme we substitute Eq. 3.41 into Eq. 3.18 and are left with

eFIMAF A = A"D[3,6,¢™") (3.42)

where we can pull the exponential term in front of the time-difference operator
since it has no time terms, and the A™ in front of the central difference operator
in space since it has no space-terms. After applying the difference operators we
arrive at the left hand side

o An+1 _ An o A -1
ikjh — A" ikjh 4
e N (3.43)

while the right hand side leaves us with

AnD(eik(j+1)h _ 2eikjh + eik(jfl)h) — An%eijkh(efikh 4 eikh _ 2) (344)
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when we combine both parts again and divide by A™ and e**7" we arrive at

A-1 D, _, i

Tt :ﬁ(e kh +e kh _ 2) (345)
D
:2ﬁ(cos(kzh) -1) (3.46)
D 5 (kh
=— 4ﬁsm (2> (3.47)
where we used the identities 2cos(kh) = e~"#" 4 ¢*h and —2sin?(kh/2) =
cos(kh) — 1. Now we can replace v = Aht2D and solve for A, the amplification
factor in one timestep
kh

A =1— 4usin? (2> . (3.48)

So what does that mean? When is a solution stable? If [A| > 1 the solution
grows in every timestep. That means we get exponential growth of the amplitude
in time. Of course that is behavior that we do not want since it will make the
solution unstable as seen in the v = 0.51 case of Fig. 3.2. So for stability we
require |A| < 1. In Eq. 3.48 we see that A > 1, but A can assume values of
A < —1, so for all stable parameters it is required that

4vsin® (?) <2. (3.49)

We know that

sin? <k2h) <1. (3.50)

So for the worst case we set Eq. 3.50 to 1 and get the stability criterion

v < (3.51)

1
5"
As observed in Fig. 3.2 the FEuler forward scheme becomes unstable for v > 0.5.
The Euler forward scheme is only conditionally stable. However already for
v = 0.5 we can see problems when Eq. 3.50 is 1. For this combination the
solution does not decay in time and the oscillations are not damped. Eq. 3.50
becomes one if kh/2 = 7/2, so when we substitute our definition for k = 27/
and solve for lambda we get A = 2h. Therefore the shortest possible wavelength
does not decay for v = 0.5. This unrealistic, since in the analytical solution
short wavelengths are suppressed strongest. This is especially troubling if the
initial conditions, or source terms, are discontinuous and add artificial high
frequency terms to the solution, since these will not decay. That means for the
euler forward scheme v < 0.5 should be chosen.

The stability criterions for the Euler backward and Crank Nicholson scheme
can be derived in the same way, by substituting Eq. 3.41 into the appropriate
algebraic version of the diffusion equation. I will not show all the (tedious) steps
here but rather will just present the results.
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Euler Backward

Performing the stability analysis for the Euler backward scheme leaves us with
an amplification factor of

1

= — 3.52

1+ dvsin? (5) (3.52)
for which |A| < 1 is always true. That means that the Euler backward scheme
is unconditionally stable.

Crank Nicholson

The stability analysis for the Crank Nicholson scheme gives an amplification
factor of
1 — 2usin? ( %)
=T (3.53)
14 2vsin (7)
This amplification factor stays |A| < 1 for all values for v. However if 1 —
2usin®(kh/2) < 0 the solution flips sign on every timestep, which will lead to
artifacts in the form of artificial oscillations (as shown in Fig. 3.4). That means
the Crank Nicholson scheme is unconditionally stable, but to avoid numerical
oscillations v < 0.5 is required.
Stability analysis is not restricted to one dimension, or just the numerical
schemes presented here. It is a quite general method that can be used for
all finite difference schemes, as long as their are no non-linear terms. Since we
said above that the errors of the numerical solution have to fulfill the same dis-
crete difference equation as the analytical solution, we can also conclude that
errors are dampened with time if the amplification factor |A| < 1.

Numerical Diffusiom

One thing to keep in mind for FDM, FVM, and generally all methods that
operate on a grid is a phenomenon called numerical diffusion (Andersson et al.,
2011). This phenomenon describes an increased diffusivity along the grid lines,
which can be easily understood when we picture a spherical area of high DA
concentration on the grid. In the real system the diffusion coefficient will be the
same in all directions, meaning diffusion will have the same speed independent
of reaction. However in the discretized model there is only a limited amount of
directions the material can be transported in, where transport will be fastest
along the grid directions, and slower along diagonals in space. This effect is more
prominent in lower order methods, but is not abolished by high-order methods,
since it is a consequence of the discretization. When looking at explicit schemes
this effect becomes more obvious, e.g. for a 2D first order Euler scheme it is
clear that in one timestep there can be no flow along the diagonals, since the
calculation of the new concentration in a cell only depends on the neighboring
cells. That means for a flow along the diagonals it needs at least two timesteps
(since the cell on the diagonal is adjacent to the neighbors of the cell where
the flow originates). However that also means that the diffusion along the grid
directions is faster, since the equation approximates the flow out of the cell to an
accuracy within the truncation error. This effect is weaker in implicit and high
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order methods, since implicit methods link the whole domain together (through
the system of equations to be solved) and higher order methods generally have
smaller errors, suggesting a high order implicit method for our model.

Conclusion

So what do we conclude from these results? Our numerical method should be
unconditionally stable, and should not experience unrealistic oscillations. Since
DA is delivered to the system from point sources the method should dampen
high frequency oscillations that may be caused by such a delivery mode. This
is not an artificial consideration, since diffusion itself suppresses high frequency
oscillations so the chosen method should reflect that. Implicit solvers, which
are often noise dampening, are commonly used to solve the diffusion equation
in reaction diffusion systems (Ruuth, 1995). Sometimes implicit methods are
not used in computational fluid dynamics because they dampen strong discon-
tinuities, like e.g. shockfronts. However this feature is desirable in our case in
which we only solve diffusion, but not bulk flows, and there are no shockfronts.
We choose a high order method to reduce numerical errors as much as possible
since it has been shown that first order methods, even for sufficiently reduced
timesteps, can produce results that are plausible but incorrect (Ruuth, 1995).

3.2 Boundary Conditions

So far we assumed that the boundary conditions of our problems are known.
We knew the value of the solution at the boundaries, these type of boundary
conditions are commonly called Dirichlet type boundaries. However, for our
simulations of DA diffusion in the brain these types of boundaries are imprac-
tical, since problems arise when we have to decide what value the boundaries
should have. This is always a problem when boundary conditions are not defined
by the problem itself. If we set the boundaries to a fixed concentration, it will
distort the behavior within the domain. For example if we set the boundaries to
Cpa = 0, they will act as a sink of DA, since the diffusive flux will always point
outwards at the boundaries. Furthermore, since we do not know the common
DA concentration a priori choosing any fixed concentration at the boundaries
will always pull the system towards that boundary value.

This can be easily understood if we picture an“empty” (Cpa = 0 in the full
volume) simulation domain, with non-zero boundaries. For these boundaries
the diffusive flux will point inwards, and the domain will flood with DA from
the boundaries inwards. Another type of possible boundaries would be reflective
boundaries, where all flux across the boundary is reflected back into the domain.
However, those type of boundaries would also lead to pronounced boundary
effects since the DA could not flow across the boundary. Release events close
to boundaries, e.g. in a corner of the simulation domain, would have a different
time-concentration profiles than release events in the center of the domain.

To avoid these unrealistic and problematic effects I use periodic boundaries
where if the diffusive flux crosses a boundary, it enters the domain again on the
opposite site. So if it flows out to the left, it flows back in from the right side
of the domain. Of course at first glance that seems like an unrealistic topology
for diffusion in the brain. But with periodic boundaries we act as if we embed
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the simulation domain in a much larger system where the neighboring domain
behaves similarly to our domain. Sometimes there will be a diffusive flux across
the boundary, which will be similar to the flux that flows out of the simulated
domain into the neighboring domains. We close the system as a torus so that all
boundaries have a realistic inflow and outflow rate of DA. As an added benefit
it will make the analysis of the resulting data easier with respect to Fourier-
transformations (see Section 6.1.5).

So, how do we implement periodic boundaries in our model? For periodic
boundaries the last point in the domain is a neighbor to the first point. So e.g.
for the implicit Euler scheme we have to change the matrix A to reflect this new
neighborhood

14+2v —v O., v
—v 1+2V et %4 '
0., —v. 142w —v T
o 14w e o
—v 1+2v —v
. 0 v 1+2v

Where we don not need any explicit boundary terms for the vector b anymore.
We can just solve the system Ax = b, and have periodic boundaries in our model.
This can easily be done for other numerical schemes too. Periodic boundaries are
fairly simple to implement in the matrix equations by just writing the equations
under the assumption that the last point in one direction is a neighbor to the first
point in the same direction. One problem presents itself though. To efficiently
solve the matrix equation we usually want to use the Thomas-algorithm, which
only works on tridiagonal matrices. However the matrix for the system with
periodic boundaries is no longer tridiagonal. Solving a non-tridiagonal matrix
will require a lot more operations, and will make these schemes prohibitively
expensive, computation-wise. Luckily we can use a trick to help us (as described
in e.g. Teukolsky et al. (1992)). We can use the Sherman-Morrison formula

A lywT AL

TN—1 _ 4—1 _
(Aduw” )" =A T 07A T

(3.55)
to calculate the inverse of the modified matrix (A+wuv”)~!. For this calculation
we need the inverse of the matrix A, but then we only have to perform a few
matrix-vector products. We have to calculate A='u and vTA~!, which if we
know the inverse of A, are equivalent to matrix multiplications. We also have
to calculate v7 A~1u but this is just a matrix vector product since we can reuse
previous results. This is useful since we can choose both vectors u and v, so
that the matrix A, which we have to inverse, will be tridiagonal. This can be
achieved by the choice of

u = [-(14+2v) 0....... 0 —v] (3.56)
and
ol =1[1 0....... 0 —1%5) (3.57)



We can see that with this choice we can solve a matrix A" so that A = (A" +uv?),
where the modified matrix

A070 -V O
—v 14+2v —v
0. —v, 1+2v —v
'._."—y 1+2y.-'—1/ .-.0
—-v 14+2v —v
.0 -V AN,N

with Ao = 2(1+2v) and Ay = (1+20) + 1%
can use the Thomas-algorithm to solve the tridiagonal matrix A and then
use the Sherman-Morrison formula to calculate the solution for the original,
non-tridiagonal system. The method outlined here is not limited to the Euler-
backward method, or nearly tridiagonal systems but can be used for nearly
arbitrary replacements of rows or columns. Furthermore, we can even use a
form of the Sherman-Morrison formula if storage of the full inverse matrix A~1
is impractical (again see Teukolsky et al. (1992)). For that we can solve

is tridiagonal. So we

(A" + uv)z =b (3.59)
with A" and u as defined above. We solve two auxiliary problems
Ay=b Az=u (3.60)

and can construct the solution z with the formula

r=y— Lf(vyz)] P (3.61)

which is just the Sherman Morrison formula without explicitly storing the in-
verse of matrix A~'. This was also used for the implementation of our diffusion
model.

It should also be noted that for the reaction diffusion system with receptors
the system to be solved is not tridiagonal, but block tridiagonal. For these
kind of problems the Woodsbury Formula replaces the Sherman-Morrison for-
mula, however the application is functionally the same. For more details on this
process see (Teukolsky et al., 1992).

3.3 Higher Dimensions

Of course we are not only interested in problems in one dimension. We aim to
solve the diffusion equation in the brain, a system that is commonly assumed to
have three spatial dimensions. So how do the methods for the one dimensional
system translate to higher dimensions? Let us look at the two dimensional
diffusion equation
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If we want to define a two dimensional Crank-Nicholson scheme we follow the
same steps as in the Crank-Nicholson parts of Section 3.1.3,but this time for
both of the spatial dimensions. When replacing all the derivatives with the
appropriate finite difference operators we get

(3.62)

5:C(x,t + 0.5AL) = (3.63)
D (6,0,C(z,t + 0.5AL) + 6,0,C(z, t + 0.5AL)) + q(a, t + 0.5AL).

which is very similar to Eq. 3.30. Applying the difference operators leaves us
with
v

(L+20)CPf = S (O + CP + CRfL + Ol = (3.64)

1%
(1-2v)C}; + 5( ;T O+ O + O y)

which we can transform into a more readable form by using the central difference
operators

Ve Voo ntl _ Ve | Vo m
(1- 5655 - §6y)Ci’j =(1+ 5535 + §§y)Ci’j. (3.65)

This can be solved straightforward as a matrix problem of the form Az = b,
where the vector b should contain all the concentrations of the whole domain

e.g.

b= 2 (3.66)

_C]T\L/z,Ny‘_
However, there is a problem with this solution. Due to the appearance of mixed
central differences d,delta, the matrix A in this problem will not be tridiagonal
anymore, since it will link some points to points that are far away in the vector
b leading to off diagonal entries. The matrix will be banded, but will have a
high bandwidth. Which makes it expensive to solve the matrix directly. One
possible solution is splitting the system so that we can solve it in multiple steps,
but without having to solve a matrix that is not tridiagonal, a method first
proposed for the diffusion equation in Peaceman and Rachford (1955). This is
commonly known as operator splitting. In this specific case, where we will try
to split the equation along physical dimensions, it is also known as dimensional
splitting. To do this we can consider the equation

(1 - %55) (1 - g(sj) optt = (1 + %55) (1 n gég) cr; (3.67)

which approximates Eq. 3.65 reasonably well up to terms quadratic in v. The
error introduced by the splitting procedure is known as the splitting error and
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would, in this case, be O(At?). What do we get by solving the approximate
equation rather than the original one? We can solve Eq. 3.67 in two steps, by
utilizing an intermediate solution C*

(1-38) iy = (1+502) cry
(1-5e2)crt = (1+562) ciy (3.68)

We only have to be careful to evaluate the right-hand side of both steps correctly.
Other than in the 1D case, the right hand side now does not have only terms
in the direction which the matrix on the left hand side couples together, but
also off-axis components. However since we already know the values of the
previous timestep, it is straightforward to evaluate these off-axis terms. In
other words, we can fill the vector on the right hand side before we solve the
system of equations. The advantage is that the matrices on the left hand sides
of Eq. 3.68 are both tridiagonal, and therefore can be solved quite efficiently.
Note that, Eq. 3.68 is not a solution for the whole domain, but has to be solved
column by column. Of course one question remains, does Eq. 3.68 actually solve
Eq. 3.677 We can show that it does by multiplying the top equation by 1+ %(53
and the bottom equation by 1 — %62 leading to

(1o 52) (1= 522) iy = (14 502) (1+ ) e,
(1-22) (1-2)ort = (1-22) (14582 ¢, Bo9)

showing the correctness of the splitting scheme.

The method shown here is known as approximate factorization of the fi-
nite difference operator and is the operator splitting method that is used in
the method we eventually implemented. There are other operator splitting
schemes, e.g. the well known alternating difference implicit (ADI) schemes us-
ing the method described in Douglas (1962); Chang et al. (1991). One reason
to use this approximate factorization splitting scheme over the ADI schemes is
that, together with the right finite difference operators, it can fix the oscillation
problems of Crank-Nicholson scheme (Lawson and Morris, 1978).

3.4 Choice of Numerical Method

With these considerations in mind, what method did I choose to solve the re-
action diffusion equation? For accuracy I want to use a high order method.
The method should implicit, or if it is based on the Crank-Nicholson scheme
it should fix the problem that this scheme has with oscillations. The scheme
should be oscillation damping, since this is a characteristic of the diffusion equa-
tion. Also since the source of DA in the system is spiking release, I expect high
frequency components on DA injection, since the spiking release will be creating
local discontinuities. The method should be computationally fairly cheap to be
solved, so preferably a method that uses operator splitting so that I can use ef-
ficient algorithms for tridiagonal matrices. What also needs to be considered is
the nonlinear uptake term due to Michaelis Menten uptake. Usually non-linear
terms are also operator split, and solved iteratively.
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With all these constraints I decided to implement the method described in
Liao et al. (2002) and Gu et al. (2003). This chapter will be a quick summary
of the reasoning in Gu et al. (2003) with some explanations for better under-
standing and callbacks to previous chapters. The method can be used to solve
a system of the form

0?C 9?C 0*C

Ct:Dlw+D287y2+D3ﬁ+f(Caxay,Zyt) (3.70)

where D,, are diagonal matrices of dimension n xn and C is a vector of length n.
Luckily the system we want to solve (Eq. 2.47) is such a system. For the pure
diffusion part the dimension will be n = 1 since we are only treating DA, but the
method can also deal with multiple diffusing and interacting substances, which
will be useful for the treatment of DA receptors. We can also assign different
diffusion coeflicients along each cardinal direction, which enables us to also treat
anisotropic diffusion, using the diffusion ellipsoid, as described in Section 2.3.

The method is based on a Crank Nicholson method and uses an approximate
factorization operator splitting approach together with the pade approximation.
This makes it fourth order O(h*) in space and removes the problems that the
Crank Nicholson scheme has with oscillations (Lawson and Morris, 1978; Liao
et al., 2002). So how is it constructed? The standard central difference operator
for the second derivative §2 has a second order truncation error. A straightfor-
ward way to get a higher order method in space would be to use a higher order
central difference operator, constructed by adding more points as described in
Chapter 3.1.2. A short form to write the O(h?*) central difference operator for
the second derivative is

1 1
(Cz )ij = ﬁ (1 — 12(5%) 632802] (371)

However evaluating this high order operator requires five points as opposed to
the three points required for the lower order operator. This can be problematic
for boundary conditions, but could be solvable with the repeated application of
the Sherman-Morrison formula. The problem that is much harder to solve is
that a an operator with more points considered, leads to a matrix with higher
banwidth (in this case bandwidth 5) which will be more computationally ex-
pensive to solve than a simple tri-diagonal matrix. To construct a high order
method with a small stencil Gu et al. (2003) the Pade approximant can be used.
This approximant often gives better approximations than the Taylor series trun-
cation that we used to construct the finite difference operators before (Baker
et al., 1996). The high order compact approximation of the second derivative is
then (Adam, 1977)
Cooiy = 2%, (3.72)
TR 5
where C,, is the second derivative along the x-direction. Since §2 is not applied
twice in this approximant its evaluation only requires three points, the point on
which we evaluate the derivative and its neighbors. After replacing Eq. 3.70
with a Crank Nicholson scheme and using the high order compact stencil and
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requiring a function term of the form f(z,y, z,t) the system to be solved becomes

2
n+1 n _VI 61 n+1 mn
Ciir — Ci _?W(Cijk + Cir)
v 52
P (O )
2 1+ (02/12) ¥ J
Vv 63 n+1 n
T Ty @2/ig) Gk O
At ., n
"‘7(]%‘??1 + fin) (3.73)

which is still recognizable as a Crank Nicholson type scheme. Here we choose the

factor v, = 2 fﬂm for generality, but for isotropic diffusion (D = D, = D, = D)

and the same gpatial resolution in all directions (h = h, = hy = h.) all factors
v = v, = vy = v, are the same. However the method can accommodate a
rectangular spatial discretization, or non-isotropic diffusion. After rearranging
and approximate factorization as shown in Section 3.3, we end up with a three
step approach (for details see Liao et al. (2002) and Gu et al. (2003))

2
14 & 2252 o — .74
2 v, 2w 2 v
1 xT 162 1 Yy y62 1 z 262 n
<+12+2$><+12+2y UETRECRE AL

At 52 5, 62
=1+ = 14+ ¥ 14+ 22 n+1 n

62 v * 3k

(1 + —1; - 255) k= Ci (3.75)
53 v 2 n+1 *

1+ 75— 50 ) O = Ci (3.76)

which requires us to solve three tri-diagonal systems. Again, like in Section
3.3 there are terms in all spatial directions on the right hand side of the first
step. However, as before, they only depend on C™ we can fill the vector on
the right hand side before we solve the first system of equations. Taking into
account splitting and truncation errors, this algorithm is fourth order in space
and second order in time (for a derivation of the order see Gu et al. 2003). Of
course we required f = f(z,y,z,t), however our uptake terms both depend on
C and the Michaelis Menten term is even nonlinear. So the method still needs
to be modified to accommodate this functional term. In Gu et al. (2003) this
is solved by applying a predictor corrector algorithm to solve for an approxi-
mation of fi"'"1 7k which leads to an iterative scheme. However applying this
type of algorithm requires an iteration over all three steps of the method, which
is quite inefficient. In Gu et al. (2003) a way to rewrite the algorithm is pre-
sented, so that the iteration only has to be performed on the last step of the
algorithm, saving a lot of computations. The final version of the algorithm, also
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implemented in my simulation code, then becomes
572" Vg 2 *3%
I+6—+—52 I+5—+Vy52 I+5—+—52
12 12 12 ik

At Yy <2 &3 n
+5 <]++ <I++ 5><I+12)(ijk)> (3.77)

57w
<z+ % 255) Cie =i (3.78)
I 252 At (0 ort
5t (1) ) o
. At 82\
= Cz]k + 2 (I + 12) ( ijk z_]k:C]k + At(ft)z]k) (379)

where J Z . denotes the local Jacobi matrix, which contains the derivatives along
all dimensions of the function term. For example for a two-dimensional function
linking the concentrations of two molecules

CDA, CDI
reraemhy = [ 1E L o) (3:80)
the Jacobi matrix is
no__ 8fl/ac’DA afl/aCVD1 " (3 81)
igk — 6f2/(9CDA 8f2/80D1 ijk. :

To solve nonlinear problems with high accuraccy Eq. 3.79 is solved with New-
tons iteration

2 At 2 m— m
(H‘Sz S (I % )ngl 1> ot

* At 62 n41m—1 ne1m—1 p4r1m—1 n
:Cijk+ 2 < >( 172—1 _szl Cz]—;e_l +At(ft)z]k) (382)

where m denotes the number of the iteration, and C”;H =CrL 17k 1s used to start
the first iteration. This is (nearly) the final algorithm I implemented. In each
timestep we can solve Eq. 3.77 and Eq. 3.78 once for each “column” in space,
so for a cubical domain with N voxels in each dimension we have to solve N?
columns , of N voxels, for each of the first two steps. The timestep is then
finished by iterating Eq. 3.82 for each column.

In the algorithm I stands for the identity matrix, the matrix version of a one.
In the case where we only solve the DA diffusion without any other substances,
like DA receptors, all the I in the algorithm can be replaced by ones. In this
case the Jacobi matrix also becomes a simple derivative of the functional term,
since the uptake term here only explicitly depends on C' it is simply df/0C. It
should also be noted that since the uptake term in our model has no explicit

49



time dependency the f; term is 0. Gu et al. (2003) also provides a method to
implement Dirichlet boundaries into the algorithm. But we will use periodic
boundaries, which we will integrate by using the Sherman Morrison formula on
equations Eq. 3.77, Eq. 3.78 and Eq. 3.82.

The method we up to now is fourth order O(h*) in space. However since it is
based on the Crank Nicholson scheme it is only second order in time O(A?). To
make the method also fourth order in time as described in Gu et al. (2003) we
use Richardson extrapolation (Richardson et al., 1927), a sequence acceleration
method to cancel the O(A?) error term making the method fourth order (since
the Crank Nicholson truncation error has no third oder terms). This is a similar
idea than for higher order finite difference operators, where lower order terms
are summed so that the lower order error term cancels. For the method given
here this can be done by calculating

40At/2 _ CAt
= f

where C'2%/2 is the solution at t = t + At calculated with stepsize At and C'A/2
is the solution ¢ = ¢ + At calculated with two steps stepsize At/2. That means
making the algorithm fourth order in time requires three times as much work
as the second order solution. Nevertheless our implementation implements the
full scheme.

(3.83)

The matrix problems are all solved with the help of the LAPACK library
(Anderson et al., 1999).

3.4.1 Receptor Terms

Eq. 2.47 also contains the interaction between DA and receptors. However
the numerical method we chose above is already well suited for dealing with a
solution of multiple interacting components. Interacting components are imple-
mented by having C' in Eq. 3.70 as a vector of dimension n and D, being a
a diagonal matrix of corresponding dimensionality. In our case the entries of
D, will be zero for all entries concerning receptors, since the receptors do not
diffuse. However the extra components have to be considered for the iteration
of the functional term in Eq. 3.82. That means that the resulting matrices that
need to be solved for the iteration are no longer tridiagonal but block tridiago-
nal, since an entry Cjj; has multiple components. In the implementation I solve
the resulting systems of equation with a band-matrix solver. Which is still fairly
efficient since the bandwidth of the matrix is usually quite low. Treating the
receptors as a full reaction-diffusion system is necesarry if the receptor kinetics
are fast enough so that the source/sink terms in the diffusion equation are not
negligible. However, if the receptors are slow and the sink terms due to binding
are negligible (i.e. when the Michaelis Menten uptake rate is at least an order
of magnitude larger than the rate at which DA binds to its receptors) we can
treat the DA diffusion independent of the receptor binding. In this we solve the
diffusion equation without receptors and calculate the resulting receptor acti-
vation by using an explicit fourth order Runge Kutta scheme on the resulting
DA timeline. Our tests have shown that in our implementation the runtime for
this reduced system is around 5 times shorter than the full solution.
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3.4.2 Validation

I tested my implementation of the method presented in this chapter on a few
numerical test cases. First I compared the analytical solution for an extended,
spherical symmetric, source with linear uptake (Nicholson, 2001) to the solution
my implementation produces.

Fig. 3.5 shows the illustrative snapshot of this test at ¢ = 100ms. Due to
the discretization our source is not really spherically symmetric, but rather a
cube of a volume of 8um?, the volume of a low resolution (h = 2um) voxel. For
comparison we chose the same physical initial conditions for the high resolution
case, filling 8 of the voxels of size 1m? with the initial concentration of DA. The
linear uptake constant in the test case is K = —1.0s~!. The solution for the high
resolution case is nearly indistinguishable from the analytical solution. After
100ms the maximum error is €,,4, = 1.3% with an average error of ecqn =
0.3%. As expected the lower resolution solution is less accurate and shows
larger errors (emar = 6.3%, €mean = 1.1%). The dopamine distribution along
one of the diagonals (z=50, x=y), has a slightly smaller width than the solution
along the main diagonals, showing a slight numerical diffusion effect as described
above.

I also tested the implementation of periodic boundary conditions by generat-
ing initial conditions that have a voxel with higher concentration of dopamine in
the center of the domain, in one corner, and in the middle of one domain bound-
ary. The initial conditions, and results after 20ms are shown in Fig. 3.6. The
flow through the boundaries works as expected and creates the same dopamine
distribution as the point source in the middle of the domain. In this test there
was no uptake.

To test if the interaction between DA, its receptors and Michaelis Menten
uptake are simulated correctly I filled the whole domain of size d = 100um? and
resolution h = 1um with a given dopamine concentration Cps = 500nM and
let the system evolve for 0.5s with d; = 0.001s. I then compared the resulting
solution with the solution for the reaction and uptake terms calculated with
the“odeint” solver from the python package “scipy” (Jones et al., 2001-). In
this example we use “scipy” to solve just the reaction and uptake terms, i.e. the
solution for one cell, while our code solves the reaction for the whole domain.
The solutions should be the same since there is no concentration gradient in our
initial conditions, that means there is no diffusive flux between the voxels of our
full simulation making the whole domain behave like one giant voxel with only
uptake and reaction terms. The solutions were virtually identical, so I conclude
that the nonlinear and reaction terms are solved correctly Fig. 3.7.

For the simulation I used the following parameters: Vinqp = 4.0uMs™ !, K,, =
0.21uM, CP! = 1.6uM, CP2 = 012uM, kD' = 05uM—1s7t KDL =
33.3uM~ts™ kODflf = 0.83571, kfj%c = 0.83s~! . Initially the concentration
of receptor ligand complex of both receptors is 0.

Our implementation solves reaction and diffusion terms correctly and also
handles the periodic boundaries as expected. That means we have a tool that
can solve the diffusion and reaction diffusion equation with uptake terms and
cross terms describing receptor binding/unbinding accurately on a cubical do-
main with periodic boundaries.
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Figure 3.5: Comparison of analytical and numerical solution for an extended
source. Shown are the analytical solution to the diffusion of an extended source,
and the numerical solutions for resolutions h = 1um and h = 2um after 100
timesteps of length 1ms, ¢ = 100ms. The solution with h = 1pm solution is
nearly indistinguishable from the analytical solution (emaz = 1.3%, €mean =
0.3%). The h = 2um solution naturally deviates more from the analytical
solution, (€mar = 6.3%, emean = 1.1%). The h = 1pm diagonal solution shows
the result on a diagonal (x=y). The solution behaves like the h = 1um solution
but has a slightly smaller width showing a slight numerical diffusion error.
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Figure 3.6: Numerical simulation of DA diffusion without uptake for a periodic
boundary test-case. The initial conditions have a voxel with high DA in the
center off the domain, in the lower left corner of the shown 2D slice, and in
the middle of the lower boundary of the 2D slice. The simulated dopamine
distribution is shown at ¢ = Oms (initial) and ¢ = 20ms demonstrating that
dopamine at the boundaries flows back in from the opposite sites of the domain.
The correct solution for periodic boundaries.
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Figure 3.7: Numerical test simulation for the reaction and receptor interaction
terms. Shown is the solution calculated with our code for a domain with initial
conditions uniformly filled with DA and no bound receptors. Also shown is a
comparison solution calculated with the “odeint” solver of the python package
“scipy”. The solutions agree very well, showing that our diffusion code also
solves the nonlinear and reaction parts accurately.



Chapter 4

Preliminaries: Axonal
Trees, Uptake and Synaptic
Release

I discussed sources and sinks of DA briefly in Section 2.4. However, there I
only presented a quite abstract treatment of DA sources and sinks, focused on
how to incorporate appropriate terms into Eq. 2.47. However in this chapter I
want to show how to determine the spatial and temporal distribution of sources
and sinks in the model.

The only source of DA in my model is spiking release from dopaminergic
synapses, even though there are some reports of possible non-spiking DA release
e.g. modulated through cholinergic interneurons (Threlfell et al., 2012). This
is due to two reasons, firstly because it is unclear how and if the non-spiking
release works. How much DA is released, in what relation to acetylcholine? Is
all non-spiking release related to cholinergic interneurons? Secondly, I believe
that the first iteration of a model should be relatively simple, and the principle
source of DA seems to be spiking release from synapses located on dopaminergic
axons (Liu et al., 2018).

Sinks of DA are treated in more detail in this chapter too. The focus wil
be on the faster, more important uptake, mechanism, Michaelis Menten up-
take through the DA transporter (DAT) rather than diffusion through the cell
membranes mentioned in Section 2.4. Where are these DAT, and therefore
the uptake caused by them, located? They seem to be exclusively located on
dopaminergic neurons where they can be found on both axonal and dendritic
projections (Nirenberg et al., 1996). Dopaminergic neurons projecting to the
striatum do not reside in the striatum themselves (Smith and Kieval, 2000;
Ungerstedt, 1971; Bjorklund and Dunnett, 2007), so the DAT on the dendritic
projections are of no importance to my model. However, their axons do project
to the striatum, where their DAT will act as sinks of DA.

That means the principal sources and sinks of DA in the striatum are located
on the axons of dopaminergic neurons. In this chapter I will introduce the model
I developed to generate synthethic axonal trees, and how I use them to calculate
the uptake distribution and DA release site distribution in the striatum.
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The code used to generate the trees can be found at https://bitbucket.
org/Narur/dope-amine/src/ in the Make-Axons-uptake-dist file.

4.1 Growing Axonal Trees

Since both sources and sinks of DA are located on the axonal trees of the
dopaminergic neurons, their geometry can be used to calculate local uptake and
release of DA. The best source of these axonal geometries would be reconstruc-
tions of actual dopaminergic neurons. Dopaminergic neurons in the substantia
nigra pars compacta and ventral tegmental area have massive unmyelinated
axonal arbors (Pissadaki and Bolam, 2013; Matsuda et al., 2009), which is the-
orized to make them more susceptible to external stressors, and might be the
reason why they degenerate in Parkinson’s disease (Pissadaki and Bolam, 2013;
Haddad and Nakamura, 2015). Their sheer size makes it quite complicated to
reconstruct a large number of them, but do we need a large number to simulate
a small cubical striatal volume with a width of 100 — 200um? The short an-
swer is yes. Not only do dopaminergic neurons have large axonal arbors, there
is also considerable overlap of dopaminergic neurons covering the same striatal
volume. Generally, it is stated that between 100 and 200 dopaminergic neurons
can influence the same striatal neuron (Matsuda et al., 2009; Arbuthnott and
Wickens, 2007). Since our simulation volume is much smaller than the extend of
dopaminergic axonal arbors (= 1mm?; Prensa and Parent 2001; Matsuda et al.
2009), it will also be under the influence of 100 — 200 dopaminergic neurons. As
said before, it is hard to reconstruct a large number of dopaminergic neurons
in animal experiments. However there were some successful attempts in recon-
structing a few of those neurons (Matsuda et al., 2009). I developed a method
that generates synthetic axons by using the reconstructions from Matsuda et al.
(2009) and some inference from other neurons as a guideline for how the realistic
axons look like.

4.1.1 Topological Axonal Growth

Our model should be as simple as possible, but have the ability to generate
axonal trees that are a decent approximation for the axonal trees described in
(Matsuda et al., 2009). As a first simplification I will assume that the axon
is a binary tree. That means that if an axonal segment branches it will split
into exactly two child segments. Splitting into more than two segments is only
rarely observed and can be modeled as an aggregation of bifurcations Verwer
and Van Pelt (1985, 1990). Therefore it is not considered here. I am using a
two step approach. In the first step I generate a topological tree. This topo-
logical tree will consist of branches n; which in turn will be made up of steps
with a length Al. Each branch will have a length [ = kA, attached to it, where
k =0,1,2,... Each branch, except for the very first (root) branch will have a
parent, the branch that is connected to it and is closer to the root. Branches can
either be terminal (they have no children), or they can end in a branching point,
that means that they are the parent to exactly two child-branches. Branches
that have the same parent are called siblings. In going with the tree analogy,
the outermost branches in the tree, are called leaves.
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How do we grow such a tree? We
are using a Galton-Watson process
like it is described in Binzegger et al.
(2004). We grow the tree iteratively
from the root upwards. For each iter- .
ation of the tree growth each branch, (child)
that has not been terminated, has
three possible options. It can grow
longer increasing its length by Ay,
with probability pe;. It can create a T
branching point, terminating its own
growth process while spawning two terminal segments
child segments, with probability ps,;
and it can simply stop growing with Figure 4.1: Sketch of a binary tree.
probability p.. Since these are the All branches are connected to the root
only options the probabilities have to branch. Branch 1 is the parent to
fulfill the condition branches 2 and 3, so 2 and 3 are siblings,
and children of 1. All outer branches are
called leaves.

Dbr + Pet + Dst = 1 (41)

The exact values of these probabilities are parameters to be chosen in a way
that gives us a realistic axonal tree.

When does the tree stop growing? If the probabilities are chosen so that
Del + 2pb7‘ <1 (42)

the trees are self terminating, that means they will eventually stop growing
without any explicit stop condition. Eq. 4.2 means that in each iteration, each
branch spawns on average < 1 branches. That means the amount of branches is
decaying, so that it will stop growing on its own because all branches are termi-
nal. However our simulations showed that this condition produces quite small
trees with far less segments than the ~ 10000 (Matsuda et al., 2009) segments
we are aiming for. Most of the self terminating trees have < 1000 segments. Of
course sometimes there can also be exceptionally large trees, however I decided
that our axon growing algorithm should not be based on statistical outliers.
So in our case we relax this requirement and only keep the requirement from
Eq. 4.1. However, that means we have to explicitly terminate the tree. This is
done by choosing a termination parameter, Nj-ov , = that leads to the tree ter-
minating when this number of branches has been crossed. In our tree model we
achieve this by tracking the amount of branches on the tree during the growth
process, when it crosses Nj'%* , = the current iteration over all leaves is still
allowed to finish, but for the next iteration we set py. = 0 and increase pg;
accordingly. Then no new branches can be spawned and the tree will terminate
leaving us with a tree that has a few more than Ny¢7 . = branches. In some
cases the tree growth can still terminate after only a few segments, to prevent
this, we require a minimum amount of branches =~ 100 to accept a topological
tree for farther processing. With this algorithm we can generate topological
trees, however we end up with py,, pe; and N{-2% , — as our set off parameters
for which we have to find sensible estimates. We can use Eq. 4.1 to find a value
for the missing probability reducing the amount of missing parameters by one.
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First we look at pe;. The probability that a branch has grown to its final
number of steps k" is

P(kF ™ = k) = (1= por + pot)*(por + pot) = P51 —per).  (4.3)

For the length of a branch it does not matter if it branches or just stops growing,
since both processes end the growth process of the branch. From Eq. 4.3 we
see that the number of steps of a branch is described by a geometric distribution
(Bronstein et al., 2004). For this distribution the mean the number of steps in
a branch is given by k™" = 1/(1 — pe;), and the mean length of the branches
is given by | = k"¢“*Al. In this model I chose the length increment Al = 1um.
Axons in general tend to have very few very small segments (Binzegger et al.,
2004), so choosing a very small length increment seems unnecessary and would
only increase computational cost of tree generation. Now we can link the pa-
rameter pe; to the physical parameter of the average branch length, which is
given to be 30.9 + 21.6um (Matsuda et al., 2009). With Al = 1um we choose
Per = 0.9677 leading to an average branch length of k"¢“*Al = 31.0 4+ 30.5um
which matches the experimentally measured branch length. Without much fur-
ther work we can also decide what the N2 . parameter should be for a given
tree, since the total branch length of a (constructed) axonal tree will be given by
liotar = Nprax k™" Al, so for an average tree we choose N** , = 17000
to match the average axonal tree length of around 500,000um given in Mat-
suda et al. (2009). We can choose larger or smaller N7 . = to make trees
with larger or smaller total branch length. By design, in this growth model,
the branch length distribution will always follow a geometric distribution. It
seems that the branch length distribution, independent of neuron type, is ap-
proximately exponential (Binzegger et al., 2004) which fits well with our tree
model since the geometric distribution is the discrete version of the exponential
distribution. However, since dopaminergic axons are much larger than most
other unmyelinated axons, more research into their branch length distribution
would useful to further constrain our growth model. However, the branch length
distribution of real axons does have a lack of short (< 10um) fibers with respect
to the exponential distribution (Binzegger et al., 2004). To keep our model sim-
ple we do not address this problem. However depending on what the generated
axons are to be used for that might have to be addressed in the future. One
possibility to address this problem would be to make p.; length dependent, so
that it is larger at smaller k.

For the topological tree we still have one parameter to estimate, pp.. To
estimate this parameter we analyze general axonal trees a little further and
have to infer some information from non-dopaminergic axons. However since
dopaminergic neurons are quite large, it would be good if the parameter esti-
mation would be based on something that is quite general for multiple (or all)
axon types. There are multiple ways to describe the topology of a topological
tree. One important concept is the depth of a branch, which is given by the
number of branches that have to be traversed to reach the beginning of the
root branch (where the root branch itself is counted too). The height of the
tree is then given by the maximum depth of all of its branches. Sadly this is
not a very helpful measure in our case, since the height of a tree is usually
related to the amount of branches in the tree, which is likely to be much larger
in dopaminergic neurons than in most other neurons (compare Matsuda et al.
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Horton-Strahler

Figure 4.2: Example binary tree annotated with the depth of each branch (left),
and the Horton-Strahler number of each branch (right). The Horton-Strahler
segments are the maximum chains of branches with the same order. The height
of the tree is 5 (the highest depth of any branch), while the Strahler number is
3 (the HS-order of the root)

2009 and Binzegger et al. 2004). However there are other descriptions that can
be used e.g. the method proposed in Strahler (1952) that has been used on
axonal trees in Binzegger et al. (2004). In this method each branch is assigned
a Horton-Strahler number, beginning from the leave branches. In this descrip-
tion all leave branches have order 1. Branches that are not leaves are assigned
order k + 1, if both children have the same order k. However, if the children of
a branch have differing order than the branch has order max(k;, k) where k;
and k, are the orders of the children. In this descriptions multiple connected
branches that have the same order k, together form a Horton-Strahler (HS)
segment of order k. The root branch is contained in the HS segment with the
highest order I called the Strahler number. An example of this is shown in
Fig. 4.2. The Strahler number is the number of times a tree has to be pruned
until the whole tree has been removed. Pruning here refers to the process of
removing all end branches, i.e. all HS segments of order 1. Afterwards the HS
order of the remaining tree branches is adjusted by subtracting one from each
still exisiting HS segment. After pruning the remaining tree for I times the
whole tree has been pruned. After I — 1 pruning steps, only the HS segment
containing the root is left. The advantage of this ordering scheme is that it can
describe the principal features of branching of any type of binary tree structure
with only two numbers (the bifurcation ratio and length ratio, described below)
Binzegger et al. (2004). Both of these ratios depend on the Strahl-levels.

The bifurcation ratio of order k, by, is the ratio of the number of HS-segments
with order k and the number of HS-segments with order & + 1

Ni,

b = .
"7 Nen

(4.4)

The bifurcation ratio is always by > 2. since each higher order HS-segment,
spawns at least two lower order HS-segments. However it can be much larger.
In our example tree in Fig. 4.2 the first order bifurcation ration would be
by = 3.5 since there are 7 first order HS-segments, but only 2 second order
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Figure 4.3: The bifurcation index calculated for 1000 trees plotted against the
branching probability pyr for different tree sizes. The shaded areas are the lo
environment of the calculated bifurcation index. It is clear that the bifurcation
index is independent of the number of branches on the tree, at least for large
trees.

segments. The length ratio is constructed similarly but instead of the number
of HS segments, the length of HS-segments enters, so that the length ratio is
defined as

Ly

Lit1

Ui (4.5)

where Ly is the average length of HS-segments of order k. However, here we will
not pay a lot of attention to the length ratio, since there does not seem to be
a global length ratio that is valid for all axon types. Since we do not know the
length ratio for the dopaminergic neurons we can not use it to determine any
parameters. However, there is a global bifurcation ratio that is independent of
axon type and order of the bifurcation ratio b = 3.32 (Binzegger et al., 2004).
That means that all axons have a similar bifurcation ratio, possibly related to
some common growth mechanism (Binzegger et al., 2004).

For our current problem that means, that we might have a handle on deter-
mining py, since it is the parameter that controls the branching behavior of the
axonal trees. I performed a parameter search for this parameter by comparing
the bifurcation ratio of our simulated trees with this global bifurcation ratio.
Since we already know that p.,; = 0.9677 the parameter space to search is fairly
small, since Eq. 4.1 has to be fulfilled. Furthermore we want a tree that is
not self-terminating, so py,. > 0.162. I generated 1000 trees for three different
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Njew .o = (9000, 17000, 25000) for each parameter 0.0322 > p;, > 0.162 in
steps of 0.0001 and calculated the bifurcation index average over all Strahl lev-
els. Fig. 4.3 shows the results of this parameter search. The bifurcation index
is independent off the number of axonal branches. This should be true since all
trees have a similar bifurcation index. We chose to use pp, = 0.0192 so that our
our axonal trees have an average bifurcation index beonstructed = 3.19 £ 0.26.
With all parameters estimated we can now generate topological axonal trees for
dopaminergic neurons, with plausible biological parameters. In this tree model,
we do not model the initial axonal growth, projecting from the SNc¢ or VTA
to the striatum, but only the extensive tree within the striatum. However, this
is not a model of how axons grow in reality and should not be taken as such,
it is a simple algorithm to generate synthetic axons with empirically fitting
parameters.

4.1.2 Making Flat Axons 3D

Now we have a method that creates topological axonal trees. However, in this
current form we can not use them for their final task, calculating the location
of synapses and DAT in our simulation domain. The trees are still flat, and
have no three dimensional structure. In this chapter I will show how the flat,
topological trees are turned into 3D structures.

Conceptually this is quite straightforward. We start traversing the tree from

the beginning of the root branch. There are three cases we have to treat. First,
we have to grow out a segment for the k steps of its given segment length
I = kAx. This growth will be fairly straight, but occasionally the axon will have
a kink and shear out of direction (Katz, 1985b). The second case, a branch has
grown out to its final length 1 and branches into new children. At this point we
have to create a branch point with all its related angles, and start growing the
new branches following the procedure of case one. The third case is the trivial
case in which the branch just stops growing.
How are we traversing the tree? We will make the tree 3D starting from the root
growing towards the leaves. After finishing with the root branch, we will create
the branch-point and then process all branches of depth 1, growing them out
until they terminate or branch again. We continue this for leaves at increasing
depth until we have traversed the tree to its full height. This way, we can make
sure that the branch points always connect to the new branches of the tree,
which would be much harder if we would grow the tree e.g. from the leaves
towards the root. After reaching all leaves of the tree, we will have 3D position
information for all steps of length Al in the tree.

Here we will work in cartesian coordinates. A diagram for relevant angles
is shown in Fig. 4.4. How do we grow out the branches to their full length?
Without loss of generality we will start the root at the origin #; = (0,0,0)
in direction d = (0,0,1) and grow it one step into this direction. Now before
growing the next step, we check check if the node is shearing out of direction in
this step, it does so with probability p.pgir, which is a free parameter that will
be constrained later. If it does not shear out of direction the branch just keeps
growing in the direction d and the next segments position starting position will
be ¥ = Zo + Ald. However if the branch kinks we have to modify the direc-
tion vector d appropriately before calculating the starting position of the next
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step. We do this in two steps, ﬁrst we change the direction vector d by turning
it an angle € around a vector dmt, in the zy-plane, perpendicular to d. This
may seem arbitrary, however as step two we turn the modified dmod around the
old direction vector d by an angle ¢ that is randomly chosen to be between 0°
and 360°. So all arbitrary choices about the rotation axis of the first rotation
are meaningless since the second rotation is random and uniformly distributed.
The first rotation kinks the growth direction away from the old growth direc-
tion, this kink makes the new direction lie anywhere within a cone of opening
angle € projected from the old growth direction. The second rotation then ran-
domly chooses one of the directions along the cone. In our model € follows a
normal distribution with e = 17° +20° (Katz, 1985b). This seems to be a fairly
uniform value for axons, since in experiments the kinking angle for axons from
different species could not be distinguished. Of course it would be beneficial
to have more encompassing measurements for dopaminergic neurons, but these
measurements seem a reasonable substitute. It should also be noted that the
measured values are from 2D cell cultures, so the 3D kinks might look different.
However our kinking procedure reconstructs this 2D kink and turns it in space
by a random angle. After the kink the next segments position starting position
is calculated as ¥;11 = &; + Alcfnew, as in the straight growth case. We keep
growing the branch step by step, always tracking the direction vector, until the
end of the branch is reached.

On reaching a branch point we
have to create a branch.  Other
than for the case of the axon kink-
ing we have to actually generate 2
new branches. First step will be de-
ciding on the branch shape. That
means we have to find the appropri-
ate angles, in this case we need the
branch opening angle a that describes
the angle enclosed between the two
new branches, and the angle that the
left branch encloses with its parent
branch . Choosing the left angle
here is a convention. The branch is
fully described with these two angles,
since the sum of the three angles on the branch has to be 360° (see Fig. 4.4). It
seems that axons generally have an opening angle that is normally distributed
with a mean between 60° and 90°, and a standard deviation of 30° (Katz,
1985a). So in the model I draw the opening angle « from a normal distribution
with o = 70° £ 30°. The angle g is also drawn from a normal distribution with
B = 145°+17°, where the width of the distribution is chosen to match the values
in (Katz, 1985a) and the mean is Bmean = 180 — umean/2 so that the branching
does not have a preferred direction. Now with the angles « and 8 we can per-
form the branching, in a plane. For this we turn the growth direction leading
into the branch point, d by an angle 6 around a vector drot perpendicular to d
lying in the xy-plane, analogous to the shearing procedure above. This is done
for both the new branches, however each new branch will be assigned a different
direction vector. For the left branch the turning angle will be § = 180° — £,

We wanna be 3D! i 5@

Figure 4.4: Relevant angles on branch
points.
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Figure 4.5: An example of a synthethic axonal tree generated with our algo-
rithm. The colors are chosen, so that on each branchpoint at least one of the
new branches has a different color.

and for the right branch we will turn by § = a + 8 — 180%"¢. After performing
the branching in a plane we will turn each of the new direction vectors by the
same uniform randomly chosen angle 0° < ¢ < 360° around the original growth
direction, to have the branching be a genuinely 3D process. Again the starting
position of the next segment is calculated by ¥;11 = &; + Ald. In short, when
choosing the angles appropriately, branching is just application of the kinking
process to each child branch.

After performing the full procedure, from the root to the leaves we are left
with a 3D representation of an axonal tree Fig. 4.5. It looks similar to real
trees (compare Matsuda et al. 2009). By design we also match the branching
ratio, branch length distribution and bifurcation ratio of dopaminergic neurons.
However, we also want to investigate the size of the axonal tree, and how it
depends on parameters. Is the axonal tree covering roughly the right volume?
Or do our 3D trees cover a totally different volume than the trees reconstructed
in experiments? All the angles are biologically motivated by experiments, how-
ever the probability of change in direction pcpqq- is still a free parameter that
we have to constrain.

4.1.3 Validation and Parameter Estimation

What is a good measure to for the volume the created axons enclose? Mat-
suda et al. (2009) describe the arbors as covering an ”oval volume that extends
1.5 —2.0mm rostrocaudally, 0.7 — 1.0mm dorsoventrally and 1.0 — 1.5mm medi-
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Figure 4.6: An example of an axonal tree with the points of its convex hull
(green stars) and its minimum volume enveloping ellipse (MVEE).

olaterally”. We want to use a similar measure for the axons we generate, and
compare the sizes. For this purpose I will use the minimum volume enveloping
ellipsoid (MVEE). That is the smallest ellipsoid that encloses all points of the
axonal tree. We can use this directly with the points that describe the endpoints
of all branch steps in an axonal tree. However since the number of points is very
large (= 500000) that is a very slow process. To speed it up, we calculate the
convex hull of the point cloud that makes up our axonal tree as a preprocessing
step. That means we find the the set of points that describe the volume that
contains all other points in the point cloud. That can be done quite quickly.
If the enveloping ellipse contains these hull-points it will also contain all other
points. This new set of points is much smaller than the full point cloud, so that
we can calculate the MVEE in a reasonable time. For these two operations,
calculating the convex hull and the MVEE, I use the Computational Geometry
Algorithms Library The CGAL Project (2018). Fig. 4.6 shows an example
of an axon with the points of its convex hull marked and circumscribed by its
MVEE. We can study the parameters of this ellipse as a proxy for the volume
covered by the axon. Mainly, we know the axes lengths of the ellipsoid, so we
can compare the dimensions with the values given in Matsuda et al. (2009).

We still need to constrain pepqir, S0 we have to find out if it has an influence
on the size of the enveloping ellipse. For studying single parameters we always
create 1000 trees with the standard parameter set, containing the kink angle
distribution € = 17° £ 20° and the branching angle distribution o = 70° + 30°.
The amount of branches in these standard trees is Ny anches = 17000. For each
tree we calculate the MVEE and the length of the three axes describing the
ellipsoid and calculate the mean and standard deviation for all three axes. We
find that p.nqi- has a quite pronounced effect on the spanned volume of the
created trees Fig. 4.7. The lengths of the different axes are more similar in
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Figure 4.7: The spanned volume of synthetic axonal trees matches experimental
values for a probability of direction change per step of pcpgi- = 0.1. Plotted are
the average axes lengths, ordered by size, of the MVEE of 1000 3D trees with the
same generation parameters but different p.pq;-- The bars denote one standard
deviation. Shaded areas are the biological ranges of the oval volume covered
by dopaminergic axons. Colors denote length of the (longest,middle,shortest)
axes in order (green,orange,blue). The per step probability for a kink has a
strong influence on the spanned volume of the created tree. The generated trees
are fairly round, that is the axes length for largest to smallest are not wildly
different.

our axons than in the biological ranges given in Matsuda et al. (2009). That
means the volume that our axons cover is closer to spherical than for biological
axons. This is not too suprising, since we did not put in any mechanism that
would force a strong asymetry on the generated axons. However Fig. 4.7 also
shows that for a sensible choice of p.p4:» = 0.1 our axonal trees grow to a similar
size as the real axonal trees while being slightly rounder. A reasonable result
for the simplicity of the model. We could try to make the axonal trees more
asymmetric, but that would make our model more complicated for only little
benefit since the data in Matsuda et al. (2009) is based on only a few axonal
trees and might therefore suffer from sampling effects. So improving the model
would most likely only give the illusion of an accuracy that is not really there.
With pepgir = 0.1 we now have all the parameters for the generation of the full
3D synthetic axonal trees.

To investigate how inaccuracies in the estimation of the other parameters

might influence the spanned volume of the axonal trees I did a small parameter
study. This is to make sure that small changes in the given parameters do not
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lead to huge changes in the 3D structure of the created trees. First I investigated
how the size of the topological tree influences the covered volume, Fig. 4.8.
There is a tendency for larger trees to cover a slightly larger volume, but it
is not very pronounced. The reason for this is probably that after the initial
growth of the tree, a lot of the growth processes will not be on the borders of the
tree, meaning it will not grow in size, but rather become more densely covered
internally. This is conceptually analogous to the displacement of a particle in
a random walk. A tree with more branches overall will have more branches
at a larger depth, which is analogous to a particle performing more steps in a
random walk. Here depth is a proxy for the amount of steps in the walk since it
describes how many branches are between the final position of the endpoint of
this subbranch and the starting location. However, the average height of a tree
does not grow linear with the number of branches. We can calculate the average
height of the trees used in this study, by investigating their topological trees. We
find that the for the trees with Ny,qncnes = 9000 the average height is 62, while
the average height of the trees with Nyranches = 25000 is 72. The average height
increases only slowly with the absolute branch number. So in this analogy, larger
trees have only a few more steps in the random walk. Furthermore the distance
to the starting point only grows with the square root of the number of steps (see
Chapter 2.1), meaning that the more steps are taken the slower the distance
grows. Both of these effects together explain why even trees that have a lot
more branches, are not covering a much larger volume Fig. 4.8.

I performed experiments with the other parameters, the branching and kink-
ing angles Fig. 4.9. I find that the branching angle mean and standard devi-
ation have barely any effect on the covered volume. At least in the parameter
space close to our chosen parameters. This is a reassuring result, since it means
that the specific choice of the branching angle is of limited importance and the
branching angle is experimentally not very well constrained. I find that larger
mean kink angles and standard deviations both reduce the size of the covered
volume. All these results can be understood in the context of the random walk
analogy. The branch points already change the direction vector so strongly that
the new direction vector is essentially random. So making the average branch
angle larger does not change the system with respect to the maximum displace-
ment. The same is true for the branch angle standard deviation. However larger
kink angles, and standard deviations, lead to the branches growing less straight,
effectively reducing the step size of the random walk. Reducing the maximum
displacement and therefore the covered volume. This also explains why pc.pgir SO
strongly influences the size of the covered volume. Since it controls the length
of “straight” steps. For pcpgir = 0 all branching points would be connected by
straight segments. So the average random walk step-length would be the aver-
age branch length. However this step length is reduced because the connecting
branches kink. If they kink stronger the step length is reduced, so the covered
volume becomes smaller Fig. 4.9 c,d. If they kink more often the step length
and therefore the covered volume reduce Fig. 4.7.

Generally the axonal growth model worked quite well. All important pa-

rameters are well constrained and our synthetic axons match experimentally
measured parameters of real axons.
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Figure 4.8: The number of branches has only a small influence on the spanned
volume of the axonal trees. Plotted are the average axes lengths, ordered by
size, of the MVEE of 1000 3D trees with the same generation parameters but
a different number of branches on the topological tree. Error bars denote one
standard deviation. Larger trees tend to cover a larger volume but the effect is
not very pronounced.
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Figure 4.9: Mean branching angle (a) and standard deviation of branching
angle (b) have only very minor influence on the covered volume of the axonal
tree. Mean king angle (c¢) and kink angle standard deviation (d) have a more
noticeable effect. Plotted are the average axes lengths, ordered by size, of the
MVEE of 1000 3D trees with the same generation parameters but different mean
branching angle (a), branching angle standard deviation (b), mean king angle
(c) and kink angle standard deviation (d). Error bars denote one standard
deviation.



4.2 Inhomogenous Uptake

We generated a set of realistic synthetic axonal trees. So as a next step we
have to combine these axons with the numerical diffusion model Chapter 3.
We already discussed that DAT can only be found on the dopaminergic ax-
ons (Nirenberg et al., 1996). Furthermore, DAT can be found all along the
dopaminergic axons but is absent from synapses (Hersch et al., 1997). In line
with experimental data (Nirenberg et al., 1997) we will model the uptake as if
the DAT are uniformly distributed along the axonal length. Hersch et al. (1997)
and Nirenberg et al. (1997) find no DAT at synapses. With this distribution of
DAT we model the inhomogeneous DA uptake in the striatum by calculating
the uptake in each voxel by tracking how much length of axon passes through
the voxel. Of course axons have a diameter and therefore an area attached
to them. However, since the distribution is modeled as uniform, each length
of axon will have the same amount of DAT attached to it and will therefore
contribute equally. Therefore, an uptake value V., is assigned to each voxel
depending on the length of axon passing through it. The assumption here is
that the amount of DAT in a voxel is controlled by the length of axon in that
voxel. The amount of DAT is then directly related to the maximum uptake
rate Vi,q, in this voxel (see Section 2.3). However, that means we have to
calculate the length of axon passing through each voxel. We already have all
the the ingredients, the shape of our domain (cubical, filled with equal sized
cubical voxels) and the synthetic axons. We just have to bring them together.
For each axon we position the middle of our simulation domain on the center
of the MVEE of the axon. Now parts of the axon are within the simulation
domain. We can calculate how much of the axon is within each voxel in the
simulation domain. This is a conceptually straightforward application of geom-
etry. To ease the complexity of this task I made heavy use of the Computational
Geometry Algorithms Library The CGAL Project (2018) again. An example of
the result of this process is given in Fig. 4.10.

We do this for as many axons as we expect to contribute to our simulation
domain (Fig. 4.11), which in the simulations for the healthy case will be 100
(Matsuda et al., 2009; Arbuthnott and Wickens, 2007). Here all the axons in
our domain will also be centered on our domain. Which again we chose for
simplicity. An improvement might be to successively slide the center of the
axons MVEE out of the domain with growing axon number. However, since the
covered volume of the axon is usually larger than the size of the domain (which
is either a cube with side length 100um or 200um) the differences should be
small.

Now we have calculated how much axon-length is in each voxel of the simu-
lation domain, but we still need to translate this into a maximum uptake rate
Vimasz for each voxel. We do not know what the exact number of DAT is per
um of axon. However, we know that the bulk uptake constant in the striatum
is = 5uM (Nicholson, 1995; Wightman et al., 1988). If we know the average
length of axon per voxel, and we assign a fitting V;,,4./length we can calculate
Vinaz for each voxel. To find the average length per voxel, we filled 1000 simu-
lation domains with 100 axons with a given number of branches Ny,qnches €ach
and calculated the resulting length per voxel for the 100um and 200um domain
size. The average length per voxel, l,,.¢1, depends on the size of the axonal
trees. Longer trees lead to a larger length per voxel, since they are denser. In
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Figure 4.10: Simulation domain with length of axon per voxel after growing one
axon through the domain. Transparent areas have no axonal length in them.
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Figure 4.11: Simulation domain with length of axon per voxel after growing 20

and 100 axons through the domain.
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Figure 4.12: Axonal trees with more branches lead to a larger length in voxel.
However the largest axonal trees also lead to a broader distribution. Histograms
showing the distribution of length per voxel, for 1000 domains each filled with
100 axons with the given number of branches.

return smaller trees lead to smaller lengths per voxel (Fig. 4.11). For the final
diffusion simulations all the generated axonal tree will have Np,qnehes = 17000.
This way all axons have roughly the average total axonal length. This was cho-
sen since the distribution of 1,041 = length/voxel values is already fairly broad
even for the same number of branches. Creating trees with different branch
numbers would make the distribution even broader, leading to a higher chance
that the simulations we run have fairly different maximal uptake values V4.
The average length per voxel for the chosen Ny.qnehes = 17000 and the domain
with voxel size 1um i8S lyoger = 0.75um/vozel. That means that in our simu-
lation 1um of axon has to have enough DAT to account for a V4, of around
6.7uMs~t. Which we will use to transform the length of axon in each voxel
to an uptake constant. Somewhat perplexing is that we find a slightly higher
value of length/voxel as expected for the simulation with voxel size 2um, we
find a value of lyoze; = 7.6pum/voxel, whereas we would expect a value closer
t0 lyozel = 6pumuozel ™! purely from the larger volume of the voxel. The con-
version constant is chosen accordingly for the larger simulations. This way of
calculating the maximum uptake rate for each voxel means that our simulations
will have slightly different global V;,., depending on their specific length of
axon per voxel. However this methodology can be adjusted if necessary to give
exactly the same global V,,,, for a set of realizations, simply by adjusting the
conversion factor accordingly for each realization.

4.2.1 Inhomogenous Uptake: Validation

Does a domain with inhomogeneous uptake and the same average V4, as a
flat uptake also produce the same uptake behavior? Generally V.. is a linear
factor, and should therefore add up linearly. To confirm this I designed a simula-
tion to measure V,,,4, and compare the flat uptake case, with the inhomogeneous
uptake case.

In this simulation we use a virtual DA sensing electrode with an elliptical
cross section as described in Kelly and Wightman (1986). Our virtual electrodes
sensing surface is an ellipse with major axis a = 30um and minor axis b =
10pm, which equals a sensing surface of 235um? (Kelly and Wightman, 1986).
For the simulation we fill the whole domain with 10uM of DA simulate the
time-course of the DA concentration with homogeneous uptake, and with 5
different realizations of inhomogeneous uptake. The measurement of the DA
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Figure 4.13: The averaged value of V;,4, for an inhomogeneous uptake model
equals the uptake of a flat uptake model with the same V4. Plotted are the
measured V,,,, for the inhomogeneous uptake case, against the V., calculated
by averaging the inhomogeneous V,,,4, over the whole domain. The blue crosses,
denote the values for individual samples in the domain. The orange x show the
average over all sample points in one simulation. The grey line is the line of
identity. It is clear that the averaged inhomogeneous V;,,., equals the flat V,,, 4.
values.

concentration is performed by placing our virtual electrode at a randomly chosen
location in the simulation domain with a randomly chosen orientation along the
major cartesian axes and averaging all the voxels that are inside the elliptical
area. The goal here is to measure the DA concentration from a similar sampling
area as is done in real experiments for calculating the maximum uptake rate
Vinaz- To see if our simulation would give different values of V4, in a version
of the experiment where the electrodes measurements are error free and there
are no adverse effects created by the implantation of the electrode. For the
test of Viqe I initialized the whole domain with a Cps = 100uM and let it
develop for 4s. Then I took the measured concentration at the beginning and
at the end for each sample and divide by the elapses time to get the V4, value.
This procedure matches the experimental procedure used in Wightman et al.
(1988). In the homogeneous case the bulk removal of DA is equal to V4, for
high Cpa. Fig. 4.13 shows that inhomogeneous uptake leads to similar bulk
removal behavior than homogeneous uptake would. That means if we want
to simulate a domain with that has an average uptake of V,,,, we can simply
match the average uptake value of our inhomogeneous V4 -
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Figure 4.14: 2D slice of the inhomogeneous Vi, distribution used for the
comparison between flat and inhomogeneous uptake used in Fig. 4.15 and
Fig. 4.16. The local V4, is quite variable, having areas of above V4, >
10puM s~ but also areas with nearly no uptake.

4.2.2 Differences Between Homogenous and Inhomogenous
Uptake

It is also interesting to know how large the differences are between the inhomoge-
neous and homogeneous uptake case. To determine these differences I simulated
one realization of a striatal cube of size 100um with a voxel size of 1um. For
this realization 100 axons were created and grown through the simulation cube.
The average length per voxel for this realization was 0.86um, which results in
an average Vinge = 5.36uM s~ with the Va0 /1 value we calculated before. A
slice through the inhomogeneous V;,,, distribution of this realization is shown
in Fig. 4.14.

The first experiment started with homogeneous initial conditions of Cpa =
30nM and was evolved in time without any sources of DA. The results of this
experiment are shown in Fig. 4.15, for snapshots after 10ms, 30ms and 50ms.
As expected Cpy declines uniformly in the flat uptake case. In the inhomo-
geneous case we see a decline of a similar magnitude, fitting with our previous
experiments in Fig. 4.13. However different to the decline in the flat uptake
case, the decline is not fully uniform. In some areas the decline is faster, leading
to lower concentrations of Cp4, and in others it is slower leading to a higher

remaining Cpa. Fig. 4.15 also shows the absolute (AC = C’gf‘t — Cmhy and

relative 6C = AC/ C{,ljt difference between the flat and inhomogeneous case.
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We chose the convention so that, for residuals and errors, the blue areas show
areas where the inhomogeneous case has lower C'p4 than the flat case. When
comparing Fig. 4.15 with Fig. 4.14 we can see that the areas of lower C'p4 in
Fig. 4.15 can be identified with areas of higher V,,,,,. in Fig. 4.14, however this
identification is not immediately obvious from Fig. 4.14 alone. A few features
that can be identified are the area of elevated V., in the middle of the frame,
that coincides with the depression in Cp4 at the same location. There is also
a chain of elevated V)4, in the bottom right corner, that can be seen in the
residuals, especially at 10ms. So how large are the differences? The average
absolute difference after 50ms is ~ 1.0nM which equals a difference of about
10%. The inhomogeneous uptake case shows a noticeable difference, but does
this difference remain in a system with dopamine release?

To test this I used the same realization and simulated its DA concentration
during periods with ongoing synaptic release, a more realistic scenario. I used
100 resting state spike trains (Chapter 4.3), one for each axon, and let the
dopaminergic synapses release DA (Chapter 4.4). The simulation was run for
the flat and inhomogeneous uptake case. I made sure that in both simulations
the same set of synapses released DA for each arriving spike, so that I could treat
this simulation like the one without DA sources discussed above. The results are
shown in Fig. 4.16. The distribution in the Cp 4 do not seem qualitatively dif-
ferent, since the instantaneous C'p 4 distribution seems to be dominated by the
release events. However, there is a quantitative difference between the flat and
inhomogeneous case, that is revealed by the absolute and relative differences.
As in the previous experiment the relative difference is ~ 10%. We can also
observe that the locations of lower and higher C'p 4 have a fairly stable position
even in these simulation snapshots that are seconds apart. This is as expected
since the differences in the C'p4 are due to a quasi anatomical difference in both
models. The V,,,, distribution does not change with time. However the V4.
distribution would differ for a different set of axons, which would be akin to a
different animal.

Incorporating inhomogeneous uptake into our simulation makes a quanti-
tative difference to the flat uptake case of about 10%, however there are no
immediately obvious qualitative changes.

4.3 Spike Trains

For our model of DA diffusion we require a model of the firing patterns that the
dopaminergic neurons, projecting to the Striatum exhibit. The firing patterns
are required for a biologically plausible diffusion model. We model our firing
patterns according to the firing patterns described in Hyland et al. (2002). Here
we describe how the spike trains used in the diffusion model are generated. We
will also describe why we chose to model the spike trains as we did. We tried
to find a balance between accurately reproducing the firing patterns found in
Hyland et al. (2002) and keeping the model simple.
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Figure 4.15: Simulations with flat and inhomogeneous uptake distribution dif-

fer, by about 1nM or

~
~

10% averaged over the domain. Comparison between

flat and inhomogeneous uptake. Shown are, from top to bottom, the DA con-
centration for the flat and inhomogenous uptake case, their relative difference
and their absolute difference. Snapshots after 10, 30,50ms are shown from left
to right. This simulation started with a uniform Cp 4 = 30nM initial condition.
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Figure 4.16: Even though there is no qualitative difference between the cases
the flat and inhomogeneous case differ, average over the domain, by about 3nM
equaling ~ 10%. Comparison between flat and inhomogeneous uptake. Shown
are, from top to bottom, the DA concentration for the flat and inhomogeneous
uptake case, their relative difference and their absolute difference. Snapshots
after 5,8, 11s are shown from left to right. In this simulation all axons fire with
their resting state firing rate and synapses release DA accordingly. The locations
where Cp 4 is lower or higher in the inhomogeneous case are fairly stable in time,
since they are primarily due to the, not changing, V., distribution.



4.3.1 Baseline Spike Train Types

Hyland et al. (2002) classifies the baseline firing of dopaminergic neurons along
two axes: irregular/regular and high-bursting/low-bursting. Neurons classified
as regular firing fire in a clockwork fashion with a relatively constant Inter-
Spike interval(ISI). Irregular firing neurons do not exhibit this clockwork firing,
but have a broader distribution of ISIs. In Hyland et al. (2002) it is noted that
regular-firing cells tend to be nearly exclusively low-bursting. For this reason we
model three different spike train types for our neurons. Irregular high-bursting,
irregular low-bursting and regular low-bursting. For purposes of simplification,
but also to heighten the difference between the different firing patterns we model
the low-bursting spike trains without any bursts. We chose the ratios between
the different spike train types according to Hyland et al. (2002) with 25% regular
firing neurons, 55% irregular firing neurons and 20% (high-)bursting neurons.
In the rest of this section I will describe how we model the different spike train

types.

Irregular Spike Trains

To model irregular neuronal firing we utilize a gamma-distribution (a generalized
version of the exponential distribution, equals an exponential distribution for a
shape parameters k = 1.0). For one spike train we successively pull ISIs from
a gamma distribution with a given shape parameter k and a rate parameter
chosen so that the firing rate matches our desired firing rate. When generating
a set of spike trains we pull the firing rate from a normal distribution with
f = 4.0+ 0.8Hz. This is not the exact firing rate distribution measured for
the irregular firing neurons in Hyland et al. (2002), but we decided to have the
same firing rate distribution for irregular and regular firing neurons, to reduce
effects based on firing frequency. The shape parameter k is chosen to be 3.0 for
all neurons. The resulting CV distribution has a similar mean but is narrower
than the measured distribution (our simulation C'V = 0.57 +0.01, Hyland et al.
(2002) CV = 0.66+0.22 ). For these parameters the mean reduced activity time,
as calculated in Hyland et al. (2002) is similar to the values measured in hyland
(= 160ms) however the distribution of the reduced activity period is much
narrower. Besides these inaccuracies we use this model to keep the spiketrain
generation reasonably simple. Fig.4.17 can be used to compare with Hyland
et al. (2002), showing a reasonably similar ISI histogram and autocorrelogram.

Regular Spike Trains

Regular firing is modeled by choosing a mean ISI for the regular firing neuron to
match the desired rate ISI = 1/rate. The ISIs are then pulled from a normal
distribution around the mean ISI with a width chosen to match the desired CV,
% = CV - 1/rate. The rates for the regular firing are pulled from a normal
distribution with rate = 4.0+ 0.8 Hz to match the data of Hyland et al. (2002).
We choose the CV distribution as CV = 0.35 £ 0.15 which means our regular
neurons will be firing more regularly than the measured neurons in Hyland
et al. (2002). This is done to increase the effect of the regular firing. The ISI
histogram and autocorrelogram of a representative regular spiketrain are shown
in Fig. 4.17
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Figure 4.17: The ISI-Histograms and Auto-correlograms of our generated spike
trains match with the ISI Histograms and Auto-correlograms of Hyland et al.
(2002). Plotted are the ISI Histogram (a) and Auto-correlogram (b) of a rep-
resentative irregular spiketrain with rate = 4.0Hz and k = 3.0. The ISI His-
togram (c) and Auto-correlogram (d) of a representative regular spiketrain with
rate = 4.0Hz and CV = 0.25. The ISI Histogram (e) and Auto-correlogram (f)
of a representative high-bursting spiketrain with rate = 4.0Hz, k = 3, A = 2.7

and ratepy,rsts = 0.82.



High Bursting Spike Trains

We generate the high bursting spike trains as irregular high bursting spike trains.
We start with an irregular spike train with shape parameter £k = 3.0 and the
rate from a normal distribution rate = 4.0 = 0.8 keeping it comparable to the
low-bursting spike trains. However before the irregular spike train is generated
as described in Section 4.3.1 the rate is modified to accommodate the frequent
bursts that will will appear in this spike train. For this we reduce the rate so
that ratemodified = Tate — (ratepyrses - Spikespurse). We then pull the time of
the next burst from an exponential distribution depending on the rate of bursts
ratepyrsts = 0.82 = 0.2 according to Hyland et al. (2002), where we choose the
values from the analysis of bursts with at least two spikes. When a burst occurs
we pull the number of spikes in the burst from a Poisson distribution with an
expected number of spikes of A = 2.740.5 as found in Hyland et al. (2002). The
intraburst spike interval is generated by making a short regular spike train with
an ISI normally distributed around an average ISI = 1/rate;ntra—purst With
width 0.25 % IS1. When the burst is over the normal irregular firing continues
until another burst arrives. This method generates spiketrains with a very
similar fraction of spikes in burst to that measured in Hyland et al. (2002). It
should be mentioned that the CV for these spiketrains tends to be slightly higher
CV =1.240.3 than the CV of the measured spiketrains C'Viryiang = 0.944+0.22.
The ISI histogram and autocorrelogram of a representative bursting spiketrain
are shown in Fig.4.17

4.3.2 Reward-Bursting

A burst response, mimicking a reward response is also implemented in our spike
train generator. This reward response adds a burst at a given time to a fraction
of the spike trains. In the default model the fraction of bursting neurons is
chosen to be 0.7, according to fraction of reward-responding neurons in Tobler
et al. (2003). This fraction is distributed equally to the baseline fractions.
That means that e.g. 70% of the high-bursting, regular and irregular firing
neurons are chosen to show a reward burst. The reward bursts are modeled, like
the bursts in the high-bursting case, albeit with a higher intra-burst frequency
fre = 31.3 £ 8.0Hz and a slightly higher number of spikes per burst A =
3.0+£0.5 as reported in Hyland et al. (2002) for rewards. To avoid a correlation
between the starts of the bursts we jitter the beginning of all events (rewarding
or otherwise) by adding a jitter time which is uniformly distributed between 0
and maxjittertime. Lhe model default is max jittertime = 100ms.

4.4 Synapses, Positioning and Release

The created axonal trees are also used to distribute synapses in the simulation
domain. The number of synapses on each of the 100 axons is calculated by
dividing the length of each given axon in the simulation domain by the mean
distance of dopaminergic synapses on one axon, 7.6um (Arbuthnott and Wick-
ens, 2007). Then the calculated number of synapses is distributed along each
axon, in the simulation cube. For each synapse I randomly choose one of the
corresponding axons single step components in the simulation domain and slide
the synapse to a random position along this axonal branch step. Repeating this
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procedure for all the axons in the domain leaves us with a set of synapses for
each axon. As a check we calculate the volume density of synapses in our simu-
lation domain. As we showed above, the average length in voxel, for 100 axons
in the simulation domain is 0.75um for the domain with voxel size 1um, and
7.6pm for the domain with voxel size of 2ym. Each of these domains contains a
total of Nyoger = 100% = 108 voxels. So the number of synapses in the domain
is then

lvo:r:eleozel
Noynapses = ———— 4.6
which gives a number of synapses NJ2°0, ... ~ 10° for the 100um domain and
styoga ses ~ 10° for the 200um domain. With the volumes of 10%um? and

8 - 10°um? we can now calculate the number density Psyn Of synapses in our
simulations, when using the generated axonal trees. These number densities are
Py = 0.1pm?® and p200 = 0.125um?, which is nearly exactly the biological value
of 0.104pum? (Arbuthnott and Wickens, 2007). This provides strong evidence for
the validity of the axonal growth model because we did not fit any parameters
to match this value.

However it should be noted that, since the branches of even one axon have
a fairly erratic distribution in the simulation domain (see Fig. 4.10), the dis-
tribution of the synapses in the domain is not very different than for random
synapse placement Fig. 4.18.

Release Events

There is still a step missing for the handling of release events. We already have
the synaptic positions for each axons, and the spiketrains for each spiketrain.
However, we still have to figure out when and how much DA should be released
when a spike arrives at a dopaminergic synapse. To keep this simple, we will
restrict the release event to a few parameters. We assume that a synapse has a
probability p with which it will release a certain amount of DA Q+og. @ is also
called the quantal size. We choose () = 30004300, as described in Pothos et al.
(1998); Pothos (2002), the same as choosen in Dreyer et al. (2010). Generally
the quantal release size is assumed in the order of a few 1000 molecules of DA
(Garris et al., 1994; Rooney and Wallace, 2015), however a few measurements
with larger quantal sizes also exist (Jaffe et al., 1998). In our model the Quantal
release size is a fixed value for one simulation. However it is likely that quantal
release size is subject to activity dependent changes (Montague et al., 2004)
which we do not incorporate into our model for now the sake of simplicity.

The second question that remains is the probability of release. I did not find
any direct measurements of this quantity. However Dreyer et al. (2010) uses
the tissue content of dopamine, the quantal release size, the average fraction
of the terminal content released per spike, and the total density of release sites
to estimate the release probability as p ~ 6% which Is also used in our model.
Again we keep the release probability constant in our simulation. It is known
that D2 autoreceptors influence the release of DA. A likely candidate for this
effect is the release probability (Dreyer and Hounsgaard, 2012). This automod-
ulation is a candidate for a future iteration of the model, since the model can
already calculate the receptor activation of the dopamine receptors concurrently
to CDA-
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4.5 Receptor Distribution

The full model, with the receptor components (see Sec. 2.4.3 and Sec. 5)
requires the distribution of DA receptors within the cubic simulation domain.
Both types of DA receptors, D1 and D2, are modelled as uniformly distributed
in the simulation domain i.e. the concentration of receptors is the same in all
locations.

This distribution has been chosen since we do not model single MSNs in our
domain and therefore cannot identify receptors with their corresponding MSN.
However, the MSNs are homogenously distributed in the striatum, at least at
the scale of our model. Furthermore we assume that each MSN of the same
type (D1 or D2) has roughly the same amount of receptors on its extracellular
membrane. The Combination of the homogenous MSN distribution and the
equal amount of receptors on each MSN then leads to the modeled receptor
distribution that is independent of location.
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Chapter 5

Receptor Kinetics

As mentioned in Chapter 2.4 the DA diffusion interacts with the DA recep-
tors. Which can be treated as source and sinks terms in the diffusion model.
However when researching the appropriate parameters for the kinetics of bind-
ing and unbinding, which are required for the system of equations, I found some
measurements that indicated that these receptors are binding and unbinding
only very slowly. What that means for DA signaling is going to be discussed
in this chapter. This chapter is, except for a few changes, a reproduction of
the preprint uploaded on biorxiv https://doi.org/10.1101/444984. For this
reason this chapter comes with its own results and methods section.

The receptor kinetics interact with the diffusion model is through the inter-
action terms. However the conclusions that can be reached from the starting
point of slow receptor kinetics are interesting in their own right. So this chapter
will present this reasoning.

In this chapter all values encased in [ ] denote concentrations of the enclosed
compound.

5.1 Why are Receptor Kinetics Important?

DA acts on two different main receptor types, D1 and D2. Based on different
DA affinities of D1 and D2 receptors (D1R and D2R), it is often assumed that
striatal medium spiny neurons (MSN) respond differently to tonic and phasic DA
changes, depending on which DA receptor they express predominantly (Dreyer
et al., 2010; Surmeier et al., 2007; Grace et al., 2007; Schultz, 2007; Frank
and O’Reilly, 2006). According to this “affinity-based” model the low affinity
D1Rs (i.e. high dissociation constant KB! = 1.6uM; Richfield et al., 1989)
cannot detect tonic changes in [DA] because the fraction of occupied D1Rs is
small (=~ 1%) at baseline [DA] (20nM), see Methods) and does not change
much during tonic, low amplitude [DA] changes. However, D1Rs seem well
suited to detect phasic, high amplitude [DA] increases because they saturate
at very high [DA]. By contrast, D2Rs have a high affinity (i.e. low dissociation
constant K51 = 25nM; Richfield et al., 1989) leading to ~ 40% of D2Rs being
occupied at baseline [DA] (20nM). Due to their high affinity, D2Rs can detect
low amplitude, tonic increases/decreases in [DA]. However, as D2Rs saturate at
a relatively low [DA] > 2- K BQ, they seem unable to detect high amplitude,
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phasic increases in [DA]. This suggests that D1 and D2 type MSNs differentially
encode phasic and tonic changes in [DA] solely because of the different affinities
of D1Rs and D2Rs (Schultz, 2007). However, this view is incompatible with
recent findings that D2R expressing MSNs can detect phasic changes in [DA]
(Yapo et al., 2017; Marcott et al., 2014).

The affinity-based model assumes that the reaction equilibrium is reached
instantaneously, whereby the receptor binding affinity can be used to approx-
imate the fraction of receptors bound to DA. However, this assumption holds
only if the receptor kinetics are fast with respect to the timescale of the DA
signal, which is typically not the case. For instance, D1Rs and D2Rs unbind
from DA with a half-life time of ¢, 5 ~ 80s (Burt et al., 1976; Sano et al., 1979;
Maeno, 1982; Nishikori et al., 1980), much longer than phasic signals of a few
seconds (Robinson et al., 2001; Schultz, 2007; Hamid et al., 2016). Moreover,
the fraction of bound receptors might be a misleading measure for the effect
of DA signals, since the abundances of D1R and D2R are quite different (see
below). Therefore, we developed a model of receptor binding based on the ki-
netics and abundances of D1Rs and D2Rs to re-evaluate current views on DA
signalling in the striatum.

5.2 Receptor Kinetics: Methods and Materials

The receptor kinetics model was implemented in Python. The scripts used to
generate the data and figures can be accessed here: https://bitbucket.org/
Narur/abundance_kinetics/src/.

5.2.1 Kinetics Model

In the instant kinetics model the fraction of occupied D1 and D2 receptors
(fp1 and fps) are calculated directly from the concentration of free DA in the
extracellular space, [DA], and the dissociation constant Kp:

[DA]

1= %o+ DA

(5.1)

However, the dissociation constant is an equilibrium constant, so it should only
be used for calculating the receptor occupancy when the duration of the DA
signal is longer than the time needed to reach the equilibrium. As this is typi-
cally not the case for phasic DA signals (see main text), we developed a model
incorporating slow kinetics.

When DA and one of its receptors are both present in a solution they con-
stantly bind and unbind. During the binding a receptor ligand complex (here
called DA-D1 or DA-D2) is formed. We call the receptor ligand complex an
occupied DA receptor. Note that although in the following part we provide the
equations for D1 receptors, the same equations apply for D2 receptors (with
different kinetic parameters). In a solution binding occurs when receptor and
ligand meet due to diffusion, with high enough energy and a suitable orientation,
described as:

DA + D1 £ DA-DI. (5.2)
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Accordingly, unbinding of the complex is denoted as:

DA-D1 2%, DA + DI. (5.3)

The kinetics of this binding and unbinding, treated here as first-order reactions,
are governed by the rate constants k,, and kg that are specific for a receptor
ligand pair and temperature dependent. Since both processes are happening
simultaneously we can write this as:

DA + D1 =2 DA-DI. (5.4)

kot

The rate at which the receptor is occupied depends on [DA], the concentration

of free receptor [D1] and the binding rate constant k:

dDA —D1]™"

— = kon - [DA] - [D1]. (5.5)

The rate at which the receptor-ligand complex unbinds is given by concentration
of the complex [DA — D1] and the unbinding rate constant k g:

wi — —kyq - [DA - D1]. (5.6)

The equilibrium is reached when the binding and unbinding rates are equal, so
by combining Eq. 5.5 and Eq. 5.6 we obtain:

kon - [DA] - [D1] = kg - [DA — D1]. (5.7)
At the equilibrium the dissociation constant Kp is defined as:

_ [DA][D” _ ko
Kp = [DA—D1] kf: (58)

When half of the receptors are occupied, i.e. [DA—D1] = [D1], Eq. 5.8 simplifies
to Kp = [DA]. So at equilibrium, Kp is the ligand concentration at which half
of the receptors are occupied.

Importantly, for fast changes in [DA] (i.e. over seconds) it takes some time
until the changed binding (Eq. 5.5) and unbinding rates (Eq. 5.6) are balanced,
so the new equilibrium will not be reached instantly. The timescale in which
equilibrium is reached can be estimated from the half-life time of the bound
receptor. The half-life time assumes an exponential decay process as described
in Eq. 5.6 and is the time required so that half of the currently bound receptors
unbind. If [DA] = 0, and there is no more binding, the half life time of the
receptors can be calculated from the off-rate by using t, /5 = In(2)/k,ys. Signal
durations should be of the same order of magnitude (or longer) than the half-life
time in order for the instant kinetics model to be applicable.

We calculated the time course of occupied receptor after an abrupt change in
[DA] by integrating the rate equation, given by the sum of Eq. 5.5 and Eq. 5.6:

d[DA — D1]

——— = kon[DA|[D1] = koss[DA = D1]. (5.9)
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To integrate Eq. 5.9 we substitute
[D1] = [D1""] — [DA — D1] (5.10)

where [D1%!] is the total amount of D1 receptor (bound and unbound to DA)
on the cell membranes available for binding to extracellular DA.

To model the effect of phasic changes in [DA] we choose the initial receptor
occupancy [DA — D1](t = 0) = [DA — D1]° and the receptor occupancy for
the new equilibrium at time infinity [DA — D1|(t = c0) = [DA — D1]* as the
boundary conditions. With these boundary conditions we get an expression for
the time evolution of the receptor occupancy under the assumption that binding
to the receptor does not significantly change the free [DA]:

[DA — D1)(t) =
([DA — D1]° — [DA — D1]®) - ¢~ (kon[DAFhos )t
+[DA — D1]>. (5.11)

For our slow kinetics model we solved Eq. 5.9 for each receptor type and
arbitrary DA timecourses numerically employing a 4th order Runge Kutta solver
with a 1 ms time resolution.

We did not take into account the change in [DA] caused by the binding and
unbinding to the receptors since the rates at which DA is removed from the
system by binding to the receptors is much slower than the rate of DA being
removed from the system by uptake through DA transporters. For example the
rate at which DA binds to the receptors is:

([DA — D1] + [DA — D2))

dt
EPYDA][D1]+kD2(DA][D2] (5.12)
[DA]
= -

At a DA concentration of [DA] = 1puM with a D1 and D2 occupancy of
[DA — D1] ~ 20.0nM and [DA — D2] ~ 40nM (the equilibrium values for
[DA] = 20nM) and kD! = 52-107nM~1s71, kD2 = 3.3 - 107 4nM 1571
[D1] ~ 1600.0nM, [D2] = 40.0nM and [DA] = 1uM the rate of DA removal
through binding to the receptors is:

[DA] binding

However, the DA removal rate by Michaelis-Menten uptake through the DA
transporters at this concentration would be:

[DA] uptake B [DA]
dt = Vinaz (DA + K, (5.14)
uM 1uM
- 4= . "7 1
0 s 1pM +0.21puM (5.15)
M
= —3.3“7. (5.16)
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Where V4. is the maximal uptake rate, and K, the Michaelis-Menten constant

describing the [DA] concentration at which uptake is at half the maximum
[DA] uptake [DA] binding

rate. As | >> |

uptake process and not by binding to the receptors. Therefore, we neglected

the receptor-ligand binding for the DA dynamics in our model. However, for

faster DA receptors this effect would become more important.

, the DA dynamics are dominated by the

5.2.2 Receptor Parameters

An important model parameter is the total concentration of the D1 and D2
receptors on the membrane ([D1]!°! and [D2]*!) that can bind to DA in the
extracellular space of the striatum. Our estimate of [D1]*° and [D2]%*°? is based
on radioligand binding studies in the rostral striatum (Richfield et al., 1989,
1987). We use the following equation, in which X is a placeholder for the
respective receptor type, to calculate these concentrations.

€- membrane
[DX]*t = [DX])™ . —PX (5.17)
APprain

The experimental measurements provide us with a the number of receptors
per unit of protein weight [D1]"™ and [D2]™. To transform these measurements
into molar concentrations for our simulations, we multiply by the protein content
of the wet weight of the rat caudate nucleus e, which is around 12% (Banay-
Schwartz et al., 1992). This leaves us with the amount of protein per g of wet
weight of the rat brain. Next we divide by the average density of a rat brain
which is pprein = 1.05g/ml (DiResta et al., 1990) to find the amount of receptors
per unit of volume of the rat striatum. Finally, we divide by the volume fraction
a, the fraction of the brain volume that is taken up by the extracellular space
in the rat brain, to obtain the receptor concentration of the receptor in the
extracellular medium. The procedure ends here for the D1 receptors since there
is no evidence that D1 receptors are internalized in the baseline state (Prou
et al., 2001). However, a large fraction of the D2 receptors is retained in the
endoplasmatic reticulum of the neuron (Prou et al., 2001), reducing the amount
of receptors that contribute to the concentration of receptors in the extracellular
medium by fmembrane the fraction of receptors protruding into the extracellular
medium.

In addition to the receptor concentration, the kinetic constants of the re-
ceptors are key parameters in our slow kinetics model. In an equilibrium mea-
surement in the canine caudate nucleus the dissociation constant of low affinity
DA binding sites, corresponding to D1 receptors (Maeno, 1982), has been mea-
sured as Kg = 1.6uM (Sano et al., 1979). However, when calculating K4 (using
Eq. 5.8) from the measured kinetic constants (Sano et al., 1979) the value is
KP1 =2.6uM. Tobe more easily comparable to other simulation works (Dreyer
et al., 2010) and direct measurements (Richfield et al., 1989; Sano et al., 1979)
we choose K gjlj L' = 1.6pM in our simulations. For this purpose we modified both
the kD1 = 0.00025min='nM~1 and kf}lf = 0.64min~! rate measured (Sano
et al., 1979) by ~ 25%, making kD! = 0.0003125min~1nM ! slightly faster
and kg}f = 0.5min~" slightly slower, so that the resulting KP! = 1.6uM. The
kinetic constants have been measured at 30 C and are temperature dependent.
In biological reactions a temperature change of 10 C' is usually associated with
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a change in reaction rate around a factor of 2-3 (Reyes et al., 2008). However,
the conclusions of this paper do not change for an increase in reaction rates by
a factor of 2 — 3 (see Fig. 5.2). It should also be noted that the measurement
of the commonly referenced K, (Richfield et al., 1989) have been performed at
room temperature.

The kinetic constants for the D2 receptors were obtained from measurements
at 37°C of high affinity DA binding sites (Burt et al., 1976), which correspond
to the D2 receptor (Maeno, 1982). The values are k2?2 = 0.02min~'nM !
and k;f;?f = 0.5min~!, which yields KB2 = 25nM, in line with the values
measured in (Richfield et al., 1989). As the off-rate of the D1 and D2 receptors
k(?flf = 0.64min"'nM~! and k(?f?f = 0.5min~! is quite similar, the difference in
KB? =25nM and KP1 = 1.5uM is largely due to differences in the on-rate of
the receptors. This is important because the absolute rate of receptor occupancy
depends linearly not only on the on-rate, but also on the receptor concentration
(see Eq. 5.5), which means that a slower on-rate could be compensated for by
a higher number of receptors.

Measured values
Parameter Source
[D1]™ in pmol/mg protein 2840 (Richfield et al., 1989)
[D2]™ in pmol/mg protein 696 (Richfield et al., 1989)
€ 0.12 (Banay-Schwartz et al., 1992)
a 0.2 (Sykova and Nicholson, 2008)
Pbrain N g/ml 1.05 (DiResta et al., 1990)
fmembrane 1.0 (Prou et al., 2001)
fmembrane 0.2 (Prou et al., 2001)
kDLorig in nm~lmin=1 0.00025 (Sano et al., 1979)
ko i in min ! 0.64 (Sano et al., 1979)
ko'f{ in nm~tmin=! 0.02 (Burt et al., 1976)
ko’ff in min=! 0.5 (Burt et al., 1976)
Derived Parameters
Parameter Source
[D1] in nM ~ 1600 Bq.(5.17)
[D2] in nM ~ 80 Eq.(5.17)
kDLused in nm~Imin=1 | 0.0003125 see Text
kZ}f’“SEd in min~! 0.5 see Text

Table 5.1: Receptor parameters

The parameters that we used in the simulations are summarized in Tab. 5.1.

5.2.3 Dopamine Signals

In this model we assumed a baseline [DA] of [DA]*°"¢ = 20 nM (Dreyer et al.,
2010; Dreyer, 2014; Venton et al., 2003; Suaud-Chagny et al., 1992; Borland
et al., 2005; Justice Jr, 1993; Atcherley et al., 2015). We modelled changes in
[DA] to mimic DA signals observed in experimental studies. We use three types
of single pulse DA signals: (long-)burst, burst-pause and ramp.
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The burst signal mimics the result of a phasic burst in the activity of DA
neurons in the SN, e.g. in response to reward-predicting cues (Pan et al., 2005).
The model burst signal consists of a rapid linear [DA] increase (with an am-
plitude A[DA] and rise time ¢,;s.) and a subsequent return to baseline. The
return to baseline is governed by Michaelis Menten kinetics with appropriate
parameters for the dorsal striatum V., = 4.0 LLM871 and K,, = 0.21 uM
(Bergstrom and Garris, 2003) and the nucleus accumbens V4, = 1.5 /J,MS_I
(Dreyer and Hounsgaard, 2013). In our model the removal of DA is assumed
to happen without further DA influx into the system (baseline firing resumes
when [DA] has returned to its baseline value). Unless stated otherwise, the long-
burst signals are used with a A[DA] = 200 nM and a rise time of t,;5c = 0.2 s
at Vinae = 1.5 pMs™!, similar to biologically realistic transient signals (Cheer
et al., 2007; Robinson et al., 2001; Day et al., 2007).

The burst-pause signal has two components, an initial short, small amplitude
burst (A[DA] = 100 nM, t,;se = 0.1 s), with the corresponding [DA] return to
baseline (as for the long burst above). However, there is a second component
in the DA signal, in which [DA] falls below baseline, simulating a pause in DA
neuron firing. The length of this firing pause is characterized by the parameter
tpause- This burst-pause [DA] signal reflects the DA cell firing pattern consisting
of a brief burst followed by a pause in activity (Pan et al., 2008; Schultz, 2016).

The ramp DA signal is characterized by the same parameters as the burst
pattern, but with a longer ¢,;s., and a smaller A[DA].

5.2.4 Behavioural Task Simulation

To determine whether DA receptor occupancy can integrate reward signals over
minutes, we simulated sequences consisting of 50 trials. Each sequence had a
fixed reward probability. The trials contained either a long burst DA signal
(mimicking a reward) or a burst-pause DA signal (mimicking no reward) at
the beginning of the trial according to the reward probability of the sequence.
The inter trial interval was 15 &+ 5s (Fig. 5.7 and Fig. 5.6). We choose this
highly simplistic scenario to reflect DA signals in a behavioural task in which the
animal is rewarded for correct performance. However, here the specifics of the
task are not relevant as our model addresses the integration of the DA receptor
occupancy over time. Although we chose to use the burst-pause type signal as
shown in Fig. 5.1e as a non-rewarding event, the difference to a non-signal are
minimal after the end of the pause (Figs. 5.3 and 5.4). Each sequence started
from a baseline receptor occupancy, assuming a break between sequences long
enough for the receptors to return to baseline occupancy (around 5 minutes).
For the simulations shown in Fig. 5.4 all trials started exactly 15 s apart.

We simulated all reward probabilities from 0% to 100% in 10% steps. For
each reward probability we ran 500 sequences, and calculated the mean receptor
occupancy over time (single realisations shown in Fig. 5.7a, b). To investigate
whether the receptor occupancy distinguished between different reward proba-
bilities we applied a simple classifier to the receptor occupancy timeline.

The classifier was used to compare two different reward probabilities at a
time. At each time point it was applied to a pair of receptor occupancies,
e.g. one belonging to a 50% and one to a 30% reward probability sequence.
The classifier assigned the current receptor occupancy to the higher or lower
reward probability depending on which one was closer to the mean (over 500
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sequences) receptor occupancy of that reward probability. As we knew the
underlying reward probability of each sequence we were able to calculate the
true and false positive rates and accuracy for each time point in our set of 500
sequences for both the DIR and D2R (Fig. 5.6). The accuracy was calculated
based on all time points between 200 and 800s within a sequence to avoid the
effect of the initial “swing-in” and post-sequence DA levels returning to baseline.

5.3 Receptor Kinetics: Results and Discussion

To provide a realistic description of receptor kinetics, the binding and unbinding
rates that determine the receptor affinity are required. The available experimen-
tal measurements indicate that the different D1R and D2R affinities are largely
due to different binding rates, while their unbinding rates are similar (Burt
et al., 1976; Sano et al., 1979; Maeno, 1982; Richfield et al., 1989). We incor-
porated these measurements into our slow kinetics model (see Chapter 5.2)
and investigated the model in a variety of scenarios mimicking DA signals on
different timescales.

Firstly, to examine our model at baseline [DA], we investigated receptor
binding for a range of affinities (Fig. 5.1a), reflecting the range of measured
values in different experimental studies (Neve and Neve, 1997). We report the
resulting receptor occupancy in terms of the concentration of D1Rs and D2Rs
bound to DA (denoted as [D1 — DA] and [D2 — DA], respectively). Due to
the low affinity of D1Rs, slow changes in [DA] only lead to small changes in
the fraction of bound D1 receptors. However, there are overall more D1Rs
than D2Rs (Richfield et al., 1989), and ~ 80% of D2Rs are retained in the
endoplasmatic reticulum (Prou et al., 2001). Therefore, the concentration of
D1Rs in the membrane available to extracellular DA is a lot higher than the
concentration of D2Rs (e.g. 20 times more in the nucleus accumbens; Nishikori
et al., 1980; Methods). Thus, in our simulation, the actual concentration of
bound D1Rs ([D1 — DA] ~ 20nM) was, at DA baseline, much closer to the
concentration of bound D2Rs ([D2 — DA] ~ 35nM) than suggested by the
different D1 and D2 affinities alone. We further confirmed that this was not
due to a specific choice of the dissociation constants in the model, as [D1 — D 4]
and [D2 — DA] remained similar over the range of experimentally measured
D1R and D2R affinities (Neve and Neve, 1997) (Fig. 5.1a). This suggests that
[D1 — DA] is at most twice as high as [D2 — DA] instead of 40 times higher as
suggested by the difference in fraction of bound receptors. Therefore, [D1— DA
and [D2— DA] might be better indicators for the signal transmitted to MSNs as
the fraction of bound receptors neglects the different receptor type abundances.

Next, we investigated the effect of slow [DA] changes (Grace, 1995; Schultz,
1998; Floresco et al., 2003) by exposing our model to changes in the [DA] base-
line. For signalling timescales that are long with respect to the half-life time of
the receptors (tsipw >> lyyg = 80s), we used the dissociation constant to calcu-
late the steady state receptor occupancy. We found that for slow changes to a
range of [DA] baselines, [D1— DA] and [D2— D A] were also similar (Fig. 5.1b).
Thus, we conclude that D1R and D2R occupancy reacts similarly to slow, low
amplitude [DA] changes because of the different abundances of D1 and D2 re-
ceptors. This is contrary to instant kinetics models which suggest that D2Rs
are better suited to encode slow or tonic changes in [DA].
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Figure 5.1: Impact of slow kinetics on DIR and D2R binding. (a, b) Equi-
librium values of absolute concentration of receptors bound to DA vary as a
function of receptor affinities (a) and baseline [DA] (b), but are overall sim-
ilar for D1 and D2 receptors. In (a) baseline [DA] was fixed at 20 nM, and
in (b) KB = 1.6puM and K5? = 25nM. ‘x’ and +’ indicate the model de-
fault parameters. Coloured bands mark the range of values for up to +20%
different receptor abundances. (c) For a large step up from [DA] = 20nM to
[DA] = 1uM, and (d) a step down from [DA] = 1uM to [DA] = 20nM, D1 and
D2 receptor occupancy approached their new equilibrium (EQM, grey dotted
lines) only slowly (i.e. over seconds to minutes). (e, f) Effect of different phasic
DA signals (top panels) is very different in the slow kinetics model (coloured
traces in middle and bottom panels; left scales) compared to the instant kinetics
model (dashed grey traces, right scales). The timing of the maximum receptor
occupancy (‘x’ and ‘o’ for D1 and D2, respectively) coincides for instant kinet-
ics (purple symbols) with the [DA] peak (combined x and o in top panel), while
for slow kinetics (black symbols) it coincides with the offset of the [DA] signal
instead (combined x and o in top panel).



To study the impact of faster [DA] signals, we measured the step response
of the model to a [DA] change from 20nM to 1uM. This is quite a large change
compared to phasic DA signals in vivo (Robinson et al., 2001; Cheer et al., 2007;
Hamid et al., 2016), which we choose to illustrate that our results are not just
due to a small amplitude DA signal. We found that binding to both receptor
subtypes increased very slowly. Even for the high affinity D2Rs it took more
than 5s to reach their new equilibrium (Fig. 5.1c). Thus, unlike the instant
kinetics model, our model suggests that the D2Rs will not saturate for single
reward events, which last overall for up to =~ 3s. Note that the non-saturation
is independent of the abundance of the receptors and is only determined by
the kinetics of the receptors (see Chapter 5.2). Due to their slow unbinding,
D1Rs and D2Rs also took a long time to return to baseline receptor occupancy
after a step down from [DA] = 1uM to [DA] = 20nM (Fig. 5.1d). Thus, we
conclude that with slow kinetics of receptor binding both D1Rs and D2Rs can
detect single phasic DA signals and that both remain occupied long after the
[DA] has returned to baseline.

Next, we investigated [D1 — DA] and [D2 — DA] for a phasic DA increase
(mimicking reward responses; Robinson et al., 2001; Cheer et al., 2007), a phasic
DA increase followed by a decrease (mimicking responses to non-reward, salient
stimuli; Schultz, 2016), and a prolonged DA ramp (mimicking goal approach;
Howe et al., 2013; Hamid et al., 2016). In the instant kinetics model the D1Rs
mirrored the [DA] time course, since even at [DA] = 200nM they are far from
saturation, whereas the D2Rs showed saturation effects as soon as [DA] >
2-KDDQ7 leading to differing D1 and D2 time courses (Fig. 5.1e, f). Importantly,
in our model with slow kinetics, the time courses of [D1 — DA] and [D2 — D A]
were similar for each of the three types of phasic DA signals.

While in our model we assumed slow kinetics based on neurochemical esti-
mates of wildtype DA receptors (Burt et al., 1976; Sano et al., 1979; Maeno,
1982), recent genetically-modified DA receptors, used to probe [DA] changes,
have apparent fast kinetics (Sun et al., 2018; Patriarchi et al., 2018). Although
their kinetics strongly changed between receptor variants and may not reflect
the kinetics of the wildtype receptor, we examined our model also in the con-
text of faster DA kinetics and found that the similarity between [D1 — DA] and
[D2 — DA] can be observed even if the actual kinetics were a 100 times faster
than assumed in our model (Fig. 5.2). Therefore, our results do not depend
on the exact kinetics parameters or potential temperature effects, as long as
the parameter changes are roughly similar for D1 and D2 receptors. We chose
the fastest tested kinetics to be 100 times faster than the measured value, since
then the binding rate is in the range of the diffusion limited maximum reaction
rate in the Alberty-Hammes-Eigen model (Alberty and Hammes, 1958; Eigen
and Hammes, 1963). That means that the diffusion of the DA to the recep-
tor becomes the limiting rate step. So even if the receptor kinetics are faster,
the binding could not happen with a higher rate. There are estimates for the
diffusion limit an order of magnitude faster (Kuo-Chen and Shou-ping, 1974),
however these calculations assume that the enzyme (in our case the receptor)
can guide the ligand along its surface to its active zone. This is unlikely to be
an applicable description for the D1 and D2 receptors since they are embed-
ded in the cell membrane. The Alberty-Hammes-Eigen model, which assumes
that the receptor can only be approached from a half-sphere in space, therefore
seems like a better estimator for the diffusion limited reaction rate. Taking into
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account different affinity states for D1Rs and D2Rs (Richfield et al., 1989) also
preserved the similarity of time courses of D1R and D2R occupancy (Fig. 5.8).
Finally, pauses in the DA firing following aversive stimuli (Schultz, 2007) that
lead to reductions in [DA] (Roitman et al., 2008), also have a similar effect on
DI1R and D2R occupancy (Fig. 5.9¢).

Another striking effect of incorporating receptor kinetics was that a pha-
sic increase in [DA] kept the receptors occupied for a long time (Fig. 5.1e).
However, when a phasic increase was followed by a decrease, [D1 — DA] and
[D2 — DA] quickly returned to baseline. This indicates that burst-pause fir-
ing patterns observed in DA cells for aversive or salient non-rewarding signals
(Schultz, 2016) can be distinguished from pure burst firing patterns (which only
lead to a phasic increase in [DA]) on the level of the MSN DA receptor occu-
pancy. This supports the view that the fast component of the DA firing patterns
(Schultz, 2016) is a salience response, and points to the intriguing possibility
that the pause following the burst can, at least partly, revoke the receptor-ligand
binding induced by the burst (see also Fig.5.3). This effect even persists in a
sequence of burst and burst-pause events (Fig. 5.4). Thereby, the burst-pause
firing pattern of DA neurons could effectively signal a reward false-alarm.

The similarity of [D1 — DA] and [D2 — DA] responses to both slow and
fast [DA] changes indicates that the different DA receptors respond similarly
independent of the timescale of [DA] changes. To understand why the D1Rs
and D2Rs respond similarly, we considered the relevant model parameters in
more detail. The binding rate constants of D1Rs and D2Rs differ by a factor of
~ 60 (kD1 = 0.0003125nm " tmin~! and kD2 = 0.02nm~'min~!; Burt et al.,
1976; Sano et al., 1979; Maeno, 1982; Chapter 5.2), suggesting faster D2Rs.
However, experimental data suggests that there are ~ 40 fold more unoccupied
D1 receptors (= 1600nM) than unoccupied D2 receptors (= 40nM) on MSN
membranes in the extracellular space of the rat striatum (Nishikori et al., 1980).

Therefore, the absolute binding rate W—F = kop - [DA] - [DX] differs only
by a factor of ~ 1.5 between the D1Rs and D2Rs. That is, the difference in the
kinetics of D1Rs and D2Rs is compensated by the different receptor numbers,
resulting in nearly indistinguishable aggregate kinetics (Fig. 5.1e, f). This is
consistent with recent experimental findings that D2R expressing MSNs can
detect phasic [DA] signals (Yapo et al., 2017; Marcott et al., 2014).
Incorporating the slow kinetics in the model is crucial for functional con-
siderations of the DA system. Currently, following the instant kinetics model,
the amplitude of a DA signal (i.e. peak [DA]) is often considered as a key sig-
nal e.g. in the context of reward magnitude or probability (Hamid et al., 2016;
Tobler et al., 2005; Morris et al., 2004). However, as DA unbinds slowly (over
tens of seconds; Fig. 5.1d) and the binding rate changes approximately linearly
with [DA], the amount of receptor occupancy primarily depended on the area
under the curve of the [DA] signal (Fig. 5.5). Therefore, DA ramps, even with
a relatively small amplitude (Fig. 5.1f and Fig. 5.9), were very effective in
increasing DA receptor binding. In contrast, for locally very high [DA] (e.g. at
corticostriatal synapses during phasic DA cell activity; Grace et al., 2007) the
high concentration gradient would only lead to a very short duration of this
local DA peak and thereby make it less effective in occupying DA receptors.
The dynamics introduced by the slow kinetics had further effects on the
timecourse of DA signalling. With instant kinetics the maximum receptor oc-
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Figure 5.2: Similarities between D1 and D2 responses persist even if kinetics
are much faster than our estimate. Fast kinetics were implemented by multi-
plying kon and kofrr by ¢ as indicated, keeping Kp constant. Absolute D1R
occupancy ([D1-DAJ; left column) and D2R occupancy ([D2-DA]; right column)
were examined for burst-pause DA signals (a, b), burst-only DA signals (c,
d), and the behavioural sequence (e, f) (i.e. same simulation scenarios as in
Fig. 5.1e and Fig. 5.4). D1Rs and D2Rs reacted very similarly to each other
in all [DA] signal scenarios even if their kinetics were up to 100x faster because
the difference between the aggregate D1 and D2 binding rates (Eq. 5.5) only
differs by a factor of 1.5. Furthermore, the D2Rs do not show visible saturation
effects even for ¢ = 100. Faster kinetics mostly affected the amplitude of the
receptor response and the time it takes to return to baseline receptor occupancy.
However, only for ¢ = 100 the pauses dropped slightly below baseline receptor
occupancy (a, b). On a longer time scale with repetitive DA bursts (e, f) D1Rs
and D2Rs integrated the DA bursts over time for ¢ = 1 and ¢ = 2. This is
because the half-time of the receptors were 80 s (for ¢ = 1), while the DA burst
signal was repeated every 15 s. Thereby, [D1-DA] and [D2-DA] were dominated
by the repetition of the signal rather than by the impact of individual DA burst
signals. In contrast, for ¢ = 10 the change in receptor occupancy was domi-
nated by the single pulses, since the half-life time was 8s, whereby the receptors
mostly unbind in between DA pulses.
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a long burst event. Burst-pause events did not lead to an accumulation of
occupied receptors over time and were, except during the short bursts, identical
to the none events (note the overlapping green and orange curves), in line with
a “false alarm” signal over a range of occupancy levels.
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Figure 5.5: In the slow kinetics model the peak change in absolute receptor
occupancy of D1Rs (a) and D2Rs (b) increased linearly with the area under
the curve (AUC) of the DA pulses and parameter variations as in Fig. 5.9a-c
(but with more parameter values). Here A[DA|™% marks burst-only DA pulses
with varying peak amplitudes (50, 100, 150, 200, 250, 300, 350, 400, 500, 600,
700, 800, 900, 1000 nM), t,;s. indicates ramping DA signals with with varying
rise times (0.2, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 s) and V},,4, indicates burst-
only DA pulses with varying Vi,.. (1.0, 1.5, 2.0, 2.5, 3.0, 2.5, 4.0 in uMs~1).
This indicates that D1Rs and D2Rs act as slow integrators of the DA signal and
explains why ramps are an effective signal to occupy DA receptors.



cupancy was reached at the peak [DA] (Fig. 5.1e, f). By contrast, for slow
kinetics the maximum receptor occupancy was reached when [DA] returned to
its baseline (Fig. 5.1e) because as long as [DA] was higher than the equilibrium
value of [D1-DA] and [D2-DA], more receptors continued to become occupied.
Therefore for all DA signals, the maximum receptor occupancy was reached
towards the end of the pulse (Fig. 5.1e, f and Fig. 5.9).

Another effect of the slow kinetics was that DA receptors remained occupied
long after the DA pulse is over (Fig. 5.1e, f). This allowed the integration of
DA pulses over minutes (Fig. 5.7a, b and Fig. 5.4). We investigated potential
functional consequences of this integration by exposing the model to a sequence
of trials modeling a simple behavioural experiment with stochastic rewards (see
Chapter 5.2). We found that both D1R and D2R occupancy coded for reward
probability (Fig. 5.7 and Fig. 5.6), consistent with functional roles of DA
signalling in motivation. However, this does not preclude potential DA roles
on shorter time scales, such as the invigoration of movements (Roesch et al.,
2009) or fast updates of state value (Hamid et al., 2016), as a sensitive readout
mechanism could also detect small increases in [D1-DA] and [D2-DA] (Lamb
and Pugh Jr, 1992).
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Figure 5.6: (a) True positive rates for the classification in a sample session (70%
vs 30% reward probability) based on the receptor occupancy (see Methods) of
D1 (orange) and D2 (blue) receptors. After a short ‘swing-in” the receptors
could distinguish between a 70% and a 30% reward rate. (b) Accuracy of the
classifier for a range of reward probability differences for the D1 (orange) and D2
(blue) receptors (see Methods) for individual sessions and corresponding session
averages.

Overall, our slow kinetics model of DA receptor binding casts doubt on sev-
eral long-held views on DA signalling. Our model indicates that both D1R and
D2R systems can detect [DA] changes, independent of the timescale, equally
well.  Although, D1Rs and D2Rs have opposing effects on the excitability
(Flores-Barrera et al., 2011) and strength of cortico-striatal synapse of D1 and
D2 type MSNs (Centonze et al., 2001), we challenge the current view that dif-
ferences in receptor affinity introduce additional asymmetries in D1 and D2
signalling. Instead of listening to different components of the DA signal, D1
and D2 MSNs seem to respond to the same DA input, increasing the differential
effect on firing rate response of D1 and D2 MSNs.
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Figure 5.7: Integration of DA signals over minutes in a simulation of a be-
havioural task. (a, b) Timecourse of D1 (a) and D2 (b) receptor occupancy
for sequences of 50 trials with a reward probability, as indicated, in each trial.
Rewarded trials were modelled with a long DA burst, non-rewarded trials with
a burst-pause DA timecourse. (c, d) Decoding accuracy of the difference in re-
ward probability based on the D1 (c¢) and D2 (d) receptor occupancy by a simple
classifier. Each data point indicates the decoding accuracy from a simulation
scenario with the difference in reward probability indicated by the colour. Sin-
gle dots correspond to simulations with different absolute reward probabilities.
The colour indicates the difference in reward probability (e.g. a 10% difference
in purple occurs for 80% vs. 90%, 70% vs. 80%, etc.), and the squares denote
the corresponding averages. Red line indicates chance level performance, and a
perfect classifier would be at 1.0 true and 0.0 false positive rate. Note that the
classification is similar for D1 and D2 receptors, yielding near perfect classifica-
tion already at 40% reward difference.
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Figure 5.8: Impact of slow kinetics on D1R and D2R binding with 10% of D1R
in a high affinity state (D17%9") and 10% of D2 receptors in a low affinity state
(D2"v) (Richfield et al., 1989). The D1"9" state was modelled by increasing
the on-rate of the D1R but keeping its off-rate constant, creating a receptor iden-
tical to the D2"9" receptor. We choose this model since the high affinity state
kinetics of the D1R are currently unknown, and a faster on-rate could poten-
tially have the strongest effect on our conclusions. Correspondingly, we modelled
the D2/ receptor as a D2R with slower on-rate, which was largely equivalent
to simply reducing [D2!%!] since the D2"* receptors were predominantly un-
occupied during baseline DA and bound only sluggishly to DA during phasic
signals. The main effect of incorporating the different receptor affinity states
was a change in the respective equilibrium values of absolute concentration of
receptors bound to DA. (a) The receptor occupancy at baseline [DA] = 20nM
was dominated by the high affinity states for both receptors, even though only
10% of the D1R were in the high state. As in our default model also D1 recep-
tors were occupied at baseline, enabling them to detect tonic DA signals. (b)
The amount of bound D1R and D2R stayed within the same order of magnitude
over a range of baseline [DA]. ‘x’ and +’ indicate the model default parame-
ters. (c) As in the default model, for a large step up from [DA] = 20nM to
[DA] = 1uM, and (d) a step down from [DA] = 1uM to [DA] = 20nM, D1
and D2 receptor occupancy approached their new equilibrium (EQM, grey dot-
ted lines) only slowly (i.e. over seconds to minutes). As the [D1-DA] changes
were dominated by the D17%9" component, they were very similar to the D2R
responses. (e, f) The effect of different phasic DA signals (top panels) was still
very different in the slow kinetics model accounting for affinity states (coloured
traces in middle and bottom panels; left scales) compared to the instant kinetics
model (dashed grey traces, right scales). As in the default model, the timing
of the maximum receptor occupancy (‘x’ and ‘o’ for D1 and D2, respectively)
coincides for instant kinetics (purple symbols) with the [DA] peak (combined
x and o in top panel), while for slow kinetics (black symbols) it coincides with
the offset of the [DA] signal instead (combined x and o in top panel). The main
difference to the default model is the higher occupancy of the D1R, caused
by the D1"9" component. There is not a two-component unbinding since the
D1"9" and D1'°" have similar off-rates, but differing on-rates. Overall, also for
receptors with two affinity states, DA ramps are very effective in occupying the
receptors.
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Chapter 6

Variable DA maps and
Unchanging Receptor Maps

This chapter is divided into two parts. The first part treats a set of simulations
that were designed to understand the distribution of the instantaneous DA
concentration in the striatum. These simulations have no receptor influence,
and do not treat receptors. We set out to model DA diffusion in the striatum
to investigate if the DA signal in the striatum is fairly homogenous, as often
implicitly assumed, or if it has a more complicated structure than that.

The second part treats a set of simulations that was aimed at understand-
ing the distribution of the DA receptor activation in the striatum, and how it
relates to the DA maps. We were interested to see if the DA receptor maps are
direct copies of the DA maps, or if they show a different temporal or spatial
behavior than the DA maps. I will show an analysis of the spatial structure of
the DA maps, the activation of receptors, and how these two relate to each other.

6.1 The Spatiotemporal DA Distribution

6.1.1 Simulations: Technical Data

To investigate the structure of the spatiotemporal DA distribution I simulated a
model with default parameters (see Suppl. Table 1) for 30s simulation time.
These simulations had a rewarding burst at ¢ = 15s and t = 22s and were
performed for a voxel resolution of h = 1um and h = 2um, on a cube of 1003
voxels each, resulting in simulation volumes of 100um and 200um. Temporal
resolution was At = 1ms. Furthermore, I started with a model of 100 axons,
but I also simulated models with 55 and 10 axons respectively. The simulations
with fewer axons use the same axon geometries and spiketrains as the 100 axon
models, with some of the axons removed. When removing axons, I made sure
that the remaining axons have a similar distribution of spiking patterns (20%
high-bursting, 55% irregular, 25% regular) by retaining a similar fraction of
axons associated with spiketrains of the fitting type. I also made sure that 70%
of the remaining axons participate in the reward bursts. The axon removal was
done to simulate Parkinson’s Disease (PD) since one of the common clinical signs
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of PD is the death of dopaminergic neurons. I simulated 3 realizations of each
dataset. However, since there was no qualitative difference between them, most
of the data shown is from the first simulation (run-1). For run-1 I also performed
simulations with a homogeneous, flat, uptake distribution, the same spiketrains
and the same sequence of pseudorandom numbers. This simulation showed the
quantitative (=~ 10%) difference we observed in Section 4.2.2 but otherwise no
qualitative differences, so these results are not shown. Furthermore for run-1 a
small parameter study for different quantal release sizes ¢ = 3000; 6000; 9000
and release probabilities p = (0.03;0.06;0.09; ) (bold are the default values) was
performed. The simulation with @ = 9000 is of special interest, since it is a
representation of L-DOPA treatment, which is known to increase quantal sizes
(Pothos et al., 1998). One realization of one set of parameters has a runtime of
~ 36h and creates around ~ 200G B of data. In the analysis we focused largely
on the 100um simulations, results are also valid for the 200um cubes (data not
shown).

6.1.2 The Spatial and Temporal Distribution of DA is
Highly Variable

The DA signal is usually quoted as having a baseline component of around 20 —
30nM (Venton et al., 2003; Suaud-Chagny et al., 1992; Borland et al., 2005) that
increases by a few 100nM (Cheer et al., 2007; Robinson et al., 2001; Day et al.,
2007) at a reward burst. In our simulation Averaging the DA concentration
over the simulation cube and plotting it for the time before, during and after
the reward burst starting at ¢ = 15s (see Fig. 6.1a, 6.2a, 6.3) produces the
expected result. The DA concentration starts from a baseline concentration of
30nM and rises to a peak of ~ 200nM during the reward burst, returning to
the baseline after the reward burst.

This description usually evokes a picture of a DA concentration, that is
mostly homogeneous in space and time, with the exception of the occasional
reward bursts. We even treated in in this way in Chapter 5. This picture is
analogous to a bathtub that is constantly being filled from a faucet while being
drained through a drain. When the drainage rate matches the filling rate, the
water surface would be mostly flat and level. However, our simulations indicate
that this is not an accurate description of the DA distribution, even during
baseline firing. Fig. 6.1b shows a volume render of the DA distribution during
baseline firing. It is clear that the distribution is not very uniform, even though
the average concentration is at ~ 30nM. The same can be seen in slices before,
and during the burst Fig. 6.1e, f. This simulation is not an outlier, we see
this behavior in all our simulations, see also Fig. 6.2c, e The DA distribution
is not a homogeneous monolithic value, but is made up of a large number of
single events. More akin to the water-surface of a bathtub constantly pelted
with waterbombs, making large splashes on impact. How variable is the DA
distribution at a point in time? The coefficient of variation (CV), CV = o/pu,
with the standard deviation ¢ and mean u, of the DA concentration in space
can be used to quantify such a variability.

The signal is highly variable with an average (averaging variances and means)
spatial CV = 4.02; 4.07; 3.93 for the 3s period before the burst for the three
different runs. This changed a little during the burst, 15.0s < t < 15.5s where
the CV = 2.27; 2.27; 2.27 respectively. The CV during the burst is most likely
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Figure 6.1: DA distribution is very inhomogeneous. Even though the timeline of
DA averaged over the simulation cube (a) reproduces measured DA timesignals.
The 3D DA distribution (b) is very variable in space. as is timesignal of DA at
a a specific location (50,50,50) is highly variable (c), even when averaged over
a cubical volume of size 9um (d). The spatial distribution of DA in 2D slices
of the simulation cube, during baseline firing (e) and during a reward burst (f)
is also highly variable. The distribution is characterized by peaks and troughs
rather than an average value with small fluctuations. Inhomogeneities can be
alleviated, but not removed, when the signal is averaged over a cubical volume
of size 9um. In both the baseline (g) and during burst (h) case.
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Figure 6.2: The high variability of the DA distribution is space and time is a
feature seen in all realizations, as is the reduction of this variability in the PD
case. Data shown here is from run-2. The timeline of DA averaged over the
simulation cube reproduces measured DA timesignals in the healthy case (blue)
(a). The average concentration of DA does not change in the PD case, but
during the burst the DA increase is reduced (orange) (a). The healthy single
location (50,50,50) timesignal (blue) is highly variable, but in the PD case the
timesignal becomes more uniform (orange) (b). The 2D slices in the healthy
case show a highly variable DA distribution during baseline (c¢) and burst (e)
firing of the dopaminergic neurons. In the PD case the spatial DA distribution
becomes more uniform during both the baseline (d) and burst (f) firing.
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case show a highly variable DA distribution during baseline (¢) and burst (e)
firing of the dopaminergic neurons. In the PD case the spatial DA distribution
becomes more uniform during both the baseline (d) and burst (f) firing.



lower since the mean concentration increases. The spatial distribution of DA is
highly variable and can not be compared to a nice and calm bathtub. However,
this can be somewhat alleviated by averaging a sub-volume of the DA distribu-
tion. As was done for a volume of size 93um? and the first run. Each location
in the simulation cube was replaced by the average of the surrounding cube mo-
tivated by the size of MSN whose diameter is around d ~ 10pm and therefore a
volume the DA signal might be averaged over. The signal is less variable when
looking at this sub-volume averaged signal Fig. 6.1g, h with C'V = 0.38 before
and CV = 0.40 during the burst, which is not surprising since averages tend
to smear out discontinuities. However, the original distribution remains highly
variable, and we do not know what weighting MSNs perform on the DA signal,
e.g. dendrites could have stronger weights. We will focus on investigating the
spatial structure further. The CV analysis was also performed for the simu-
lation in the larger cube Fig 6.3, and we found that the CV is lower before
CV = 1.53 and during CV = 0.84 the burst. Again this is likely because the
simulation is already averaged over a volume of 23m. The release events in this
case are already distributed to the full 2um voxel, which reduces the variance
of the simulation run. The DA distribution is highly variable, during burst and
baseline firing, and can not be adequately described as a homogenous signal in
the striatum.

The DA distribution is not only highly variable in space, but also in time.
Fig. 6.1c, Fig. 6.2b and Fig. 6.3b show the local DA timeline for the middle
(50, 50,50) of the cube. For these single locations the DA distribution is quite
variable in time, due to release events often happening relatively close by. Since
these release events are discontinuous, they change the concentration by a large
margin in a small timewindow. These are features that look like spikes in the
DA timelines. For each run 10 timelines (9 randomly chosen locations and
the center) where analyzed. The average CV in time (for each realization) for
these runs are C'V = 0.96;0.79; 0.99 before and CV = 1.53;1.69; 1.60 during the
burst. As another test the first realization was averaged over a cubical volume
as described above with the result shown in Fig. 6.1d. The timeline stays
quite variable even for the sub-volume averaged case (C'V = 0.53 before and
CV = 0.55 during burst). For the timewise signal the CV increases during the
burst since the number of close by release events increases, making the signal
more irregular during the burst. In this case the increase in the mean can not
compensate for the increase in variability. The spatiotemporal DA distribution
is highly variable in space and time.

6.1.3 Why is the Spatial and Temporal DA Distribution
Inhomogeneous?

The DA distribution is inhomogeneous since it is the result of a large number
of release events being released while the DA is being taken up by the DAT.
Going back to the bathtub analogy, the DA is not supplied by a steady stream
but by a sequence of water-bombs. How long is one of these release events
visible? Is it reasonable that we see around 30 recent release events (identified
as such by a Cpa > 0.1uM) in the baseline firing case (Fig. 6.1c, Fig. 6.2b
and Fig. 6.3b)? I was asked this at a conference so I will provide a short
answer here. The answer is for the 100um cube. For the larger cube some of
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the arguments have to be scaled accordingly.

Fig. 6.4 shows the comparison of a single release event (@) = 3000) with
and without uptake simulated for 50ms. Uptake plays a relatively minor role
for the time development in the first 10 — 20ms. The concentration reduces
mainly because the DA diffuses. We see that the released DA does not really
spread much farther after the initial expansion to about a diameter of d =
20pum. Diffusive spreading becomes less and less important with time after the
release, due to the mean mean molecule displacement growing with /% (see
Section 2.1). We can see that after 50ms the uptake and no uptake case differ
strongly. Since uptake becomes relatively more important since the diffusive
spreading becomes slower and slower.

A single release event of () = 3000 stays noticeably above the average con-
centration of Cpa =~ 30nM for around 10ms (Fig. 6.4). With the diameter of
20um found above, it is possible to calculate how many release events should be
visible on average in one of the slices shown. The simulation domain is covered
by 100 axons. Each axon has an average firing rate of 4H z. That means there is
a spike every 2.5ms, since the sum frequency is around 400H z. With a release
probability of p = 0.06 and around 1000 synapses per axon, that means that
every 2.5ms around 60 release events appear in the simulation cube. Since we
estimated the livetime with 10ms that means at all times around 200 release
events are recognizable as such in the simulation volume of 100um. Since one
release event has a diameter of around 20um in a 2D slice one fifth of the release
events will be visible. All the release events that overlap with the slice. That
means in a 2D slice plot we will see ~ 40 release events. Which is close to
what we observe in Fig. 6.1e and Fig. 6.2c. These release events are the main
source of inhomogeneity in the cube. Since where they can be seen the Cpy4 is
elevated above baseline, leading to the patchy, inhomogeneous structure.
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Figure 6.5: The DA concentration timeline averaged over the cube (left) does
not show a decreased mean during baseline firing in the PD case (orange) but
has a much smaller response to burst firing of dopaminergic neurons than the
healthy (blue) case. In the case of L-DOPA medication (red) the average DA
concentration increaes in our model, and the increase during bursting is also
recovered. The Onset PD case (green) is still very similar to the healthy case.
The single location DA concentration (right) is highly variable in time, in the
healthy case (blue), but becomes more uniform in the PD case.
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6.1.4 Simulation of PD and Levodopa Treatment

Some of the simulations have a reduced number of axons, simulating Parkinson’s
Disease (Nr. of axons=10) or early Parkinson’s Disease (Nr. of axons=>55).
One of the simulations has reduced number of axons (Nr. of axons=10) and
an increased quantal size ) = 9000, this simulation is titled L-DOPA. For
the volume averaged timeline in the PD case the average DA concentration
does not reduce during baseline firing Fig. 6.5a, 6.2a, 6.3a. A reduced
number of dopaminergic axons, even by 90% does not lead to a decrease in
average DA concentration during baseline firing. This agrees with the findings
in Dreyer (2014) and has been experimentally demonstrated in Castaneda et al.
(1990). We do find a reduction in burst signaling though. The PD simulation
shows a much smaller increase Cp4 during reward bursts (Fig. 6.5a, 6.2a,
6.3a) matching experimental studies Sandberg and Phillips (2009) and other
simulations (Dreyer, 2014).

The early Parkinson’s case however, leads to only minor changes in the time-
line while the L-DOPA case has a generally elevated DA baseline concentration,
while having a stronger response to the burst than the PD case. Furthermore,
in the L-DOPA case the elevated DA concentration remains much longer than
in the healthy case. Why does the baseline DA concentration not reduce when
dopaminergic axons are removed? Because dopaminergic axons are also the lo-
cation of the DAT. That means when dopaminergic axons are removed there
are less sources of DA but there is also less DA uptake. This is a homeostatic
mechanism where the average DA concentration does not reduce with reduced
number of axons. However, in the L-DOPA case, each synapse releases more
DA than usual, which overwhelms the now reduced uptake and leads to a higher
concentration of DA. It is possible that in a real animal other uptake mecha-
nisms, not modeled in this model, could reduce the increase of the DA tone in
the L-DOPA case.

What happens to the DA distribution in the PD case? Before we concluded
that the DA signal is highly inhomogenous in the healthy case. However in
the Parkinson case, the DA signal becomes a lot less variable in both time,
and space. The time-signals for single locations, are a lot less variable than
in the healthy case Fig. 6.5b, 6.2b, 6.3b, C'V = 0.36;0.28;0.47 before and
CV =0.44;0.57;0.46 during the burst. There are fewer strong excursions in the
DA time-signal, since due to the reduced amount of axons there are a lot less
release sites and release events. At single spatial locations, the instantaneous
DA concentration is higher than in the healthy case for large sections of time
due to the reduced uptake. Generally since there are less release events and less
uptake the DA timesignals are less variable. We did not investigate the single
location timelines for the L-DOPA and early PD case.

What happens to the spatial distribution? The spatial DA distribution is
a lot more homogeneous in the PD case than in the healthy case before CV =
1.35;1.48;1.52 and during C'V = 1.32;1.35; 1.40 bursting Fig. 6.6 and Fig. 6.7.
For the PD case more of the locations in space have a DA concentration close
to the average concentration than in the healthy case. The variability of the
early PD case is reduced slightly CV = 3.13 before and CV = 1.87 during the
burst. However that is hardly noticeable. In the L-DOPA case the average
concentration increases, however the spatial distribution stays as invariable as
in the PD case CV = 0.96 before (Fig. 6.6) and C'V = 0.97 during the burst
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(Fig. 6.7). The decrease in CV with respect to the PD case is most likely
due to the increase in mean concentration (The only difference between the PD
simulation and the L-DOPA simulation is the quantal size, all spikes and release
events are equal). That means PD also reduces the spatial variability of the
DA signal. This reduction in variability is due to a combination of a reduced
number of release sites and reduced uptake. Fewer release sites mean fewer
release events so there are fewer peaks of DA. Furthermore, there is less uptake
in the whole domain, which means there are also fewer areas with very low DA
concentration, which means there are also less troughs in the DA concentration.
These combined effects make the spatial DA distribution more homogeneous as
a whole.
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Figure 6.8: The example image with a given oscillation of spatial frequency
150 cycles/mm in the y-direction and 50 cycles/mm in the x direction and
some added noise (a) has a very simple 2D spectrum (b). The spectrum is
symmetric along the x and y axis, so that the full information is contained in
one quadrant of the spectrum. The full spectrum is shown as is convention.
Averaging the spectrum by radial frequency distance from the origin produces
a 1D spectrum (c) in which the directional information about the frequency of
the structures is lost.

6.1.5 Fourier Analysis

To characterise the DA signal in the striatum, I next examined the spatial struc-
ture of the DA maps in more detail. This was done using a 3D discrete Fourier
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transformation (DFT) to investigate the spatial power-spectral density (PSD)
of the DA maps. The 3D fourier transform of our data, a spatial cube at a given
t, will leave us with a 3D spectrum. This spectrum will not have units in a time-
wise frequency, e.g. 1/s, but will give a spatial frequency e.g. cycles/mm. The
spectrum will not inform us how much power is in an oscillation of a quantity in
time, but will inform us about oscillations in space. An oscillation in space can
be identified with the size of a given structure e.g. 250cycles/mm is a spatial
frequency that corresponds to a structure with the size of a full cycle of 4um. A
toy example, showing an image with an oscillation 150cycles/mm in y direction,
50cycles/mm in z direction (with added noise) can be seen, together with its
2D spectrum in Fig. 6.8. The spectrum is symmetric along the x and y axis,
however it is convention to show all 4 quadrants. The 2D spectrum still has
different directions. The different direction correspond to physical directions.
That means an entry on a diagonal would mean that the image contains a spa-

tial component with a spatial frequency fgiag = 1/ f2 + fy2 , along the direction

of the diagonal. The multidimensional spectrum can be hard to analyze but can
be radially averaged which turns it into a 1D spectrum where the frequency fip
corresponds to the average of a quarter annulus around the center with radius f
Fig. 6.8c. In the toy example, both the x and y component are at the correct
position in the 1D spectrum. They don’t interact because they are components
in directions perpendicular to each other.

This technique was applied to our 3D data. After performing the 3D DFT we
were left with a 3D spectrum that contains the spatial frequencies in different
directions Fig. 6.9. However, since there is no term that creates a systematic
asymmetry in our simulations, we would expect the spatial 3D spectrum to be
spherically symmetric, an expectation that proves correct Fig. 6.11. A system-
atic asymmetry would mean that structures in one direction would be larger,
or have larger amplitude. Since the spectrum is approximately spherically sym-
metric, we average over directions and get a 1D spectrum (Fig. 6.11d) that
we can use to investigate the strength of components of different sizes in the
DA map. However, a preprocessing step is necessary. Release events have to
be removed from the timestep in which they first appear. Their high amplitude
makes them act as a stepwise discontinuity which introduces strong components
in all frequency bands (this is why we use a numerical method that damps high
frequencies). To recover a more meaningful spectrum, release events are median
filtered with the points around them for the timestep in which they happen
Fig. 6.12.

Temporal Fourier Analysis

Synapses releasing DA create a strong high frequency component that subse-
quently decays, driving the spectrum towards lower frequencies and larger struc-
tures Fig. 6.9 and Fig. 6.10. The diffusion equation damps high frequency
terms (see Chapter 3) driving the spectrum towards lower frequencies.

The PD spectra tend to have less power in the high frequency component
than the spectra of the healthy case Fig. 6.13. This goes along with our
conclusion from above that the spatial distribution of DA in the PD case is a
lot less variable than in the healthy case. The power spectrum of the PD is made
up of mostly larger structures, whereas the healthy case spectrum contains more
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Figure 6.11: The 3D power spectrum for the DA map is approximately spher-
ically symmetric. Shown are representative 2D slices of the healthy system at
t = 14086ms. The spectrum is symmetric in the zy-plane (a), the zz-plane (b)
and the yz-plane. Showing that the system is spherically symmetric. Because
of the spherical symmetry we can average all directions and end up with 1D
power spectrum (d) without losing important information.
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Figure 6.12: To keep our power spectrum free from artifacts caused by very high
single voxel values, we have to remove the quantal release events for the timestep
when they appear. Single voxels with very high concentrations (a, arrows) cause
an artifact in the power spectrum that spreads high over all frequencies (c¢) and
is spherically symmetric, so it also shows up in the radially averaged spectrum
(e). When the outlier voxels are removed, by using a median filter on them and
their sorrounding (b) the artifact free multidimensional spectrum is recovered
(d) whihc also leads to an artifact free radially averaged spectrum (f). The high
value voxels are not removed from the simulation, they are just removed for the
spectral analysis of the timesteps when they appear.



high frequency i.e. small scale fluctuations. In the healthy case the spectrum
has stronger small scale structure. However the one time spectrum is not the
final step for this analysis. Fig. 6.9 and Fig. 6.10 show that the spectrum can
change with time, and even single release events can replenish, for some time,
the high frequency components in a DA map. In our simulations we use the
same spiketrains for the healthy and PD case, that means it is very unlikely that
the PD case has release events at a point in time, when the healthy case has not.
However when comparing different realizations looking just at one snapshot can
be misleading. To compare PD and healthy case in a systematic way we plot
the spectra for a set of times together with the median spectrum. The median
spectrum is the spectrum for which half of the spectra at a given frequency have
higher power and the other half have lower power. We apply this method to the
1s before the burst at ¢t = 21s plotting a spectrum every 5ms in Fig. 6.14 and
Fig. 6.15.
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Figure 6.13: In the PD case the DA distribution is more uniform (a) than in
the healthy case (b), shown in 2D slices. This is reflected in the power spectra
where the PD case has barely any high frequency (small structure) components
(c). The spectrum of the healthy case shows more higher frequency components
(d) that can also be seen in the DA distribution map.

Our parameter study with different quantal sizes, and release probabilities
shows that the spectral shape is not meaningfully changed by either of those pa-
rameters, neither in the healthy nor in the PD case (Fig. 6.14 and Fig. 6.15).
That means the spatial structure of the DA map is only weakly dependent on
release probability and Quantal size. However it is clear that the healthy case
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spectra have generally a flatter power spectral distribution. The DA maps for
the healthy case have stronger, high frequency components than the PD case.
Generally the distribution of spectra in the PD case is wider, that means in
time the spatial structure can vary more. However the PD spectra are strongly
biased towards lower frequencies Fig. 6.15. That means the spatial structure
of the PD case is made up of a few large physically large components, whereas
the healthy case spectrum has a larger variety of sizes.

Does the power spectrum change during a reward burst? In the rising phase
it becomes slightly shifted towards higher frequencies, in the healthy and PD
simulations, but afterwards it returns quickly to its pre-burst shape (Fig. 6.16
and Fig. 6.17). Indicating, that the reward burst does not change the struc-
tural makeup of the DA map strongly or in a lasting manner.

What do we take from this? Can we explain why the power spectra look
as they do? The DA distribution in a healthy striatum is not the result of a
gradual release of dopamine. It is the result of a constant bombardment with
dopamine release events. The distribution has a fairly consistent structure, be-
cause the bombardment is being constantly kept up. The DA release replenishes
the spectrum from the high frequency end. Then diffusion lets these high fre-
quency components decay quickly and shifts them towards lower frequencies.
That means the High frequency components in the healthy case are the result
of continuing release. In the PD disease case the spectrum is shifted towards
larger structures. That means that changes in the concentration of DA are more
gradual in space. Since they correspond to lower spatial frequencies. The rea-
son why the spectrum for the PD case is shifted to lower frequencies is largely
because their is no continuing replenishment of the high frequency components.
If DA gets releases it distributes much farther.

Knowing this we can also understand why the L-DOPA increases the DA
concentration, but does not recover the spectrum of the healthy system. Even
in the L-DOPA case the high frequency components are not constantly replen-
ished like in the healthy case. Diffusion itself biases the system the system
towards lower frequencies, even with a larger quantal size. For the beginning
PD case, the spectrum is slightly biased towards smaller components, the re-
duced amount of release events (Fig. 6.18) means that the replenishment of
the high frequency components is less effective.

6.1.6 Conclusions

The instantanteous DA distribution is highly variable and shows strong com-
ponents at high spatial frequency that are replenished by continuing release
events. When dopaminergic axons die during PD it has an effect on the distri-
bution of DA in the striatum. However this effect is not, as naively expected,
a plain decrease in the DA concentration. Rather, during baseline firing, the
reduced total frequency of spiking leads to release events happening less fre-
quently, which leads to a DA distribution that is a lot more homogeneous than
in the healthy case.

It should also be noted that the Fourier analysis method shown here would
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be well suited for comparing our simulation with experimental measurements of
the instantaneous DA concentration as is now possible (Patriarchi et al., 2018),
since the spectrum is not specific to a single realization. Spectra as shown in
Fig. 6.18 should be a fairly general feature for the same cases (healthy/PD).
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Figure 6.14: The quantal release size and the release probability of synaptic
release have no qualitative effect on the power spectrum in the healthy case
during baseline firing. Shown are the time spectra every 5ms for a second of
baseline firing (grey lines) and the median power spectrum (orange) of all the
instant spectra. This is shown for simulations with different quantal release sizes
@ = 3000; 6000; 9000; (from left to right) and different release probabilities
p = 0.03; 0.06; 0.09; from top to bottom. The spectra have high frequency
components most of the time, half of the spectra show a strong component at
the highest measurable frequency, replenished by the frequent spiking release.
In the healthy case the DA distribution is very bumpy. The observed banding
is probably due to the development of the spectrum in between timesteps.

6.2 DA Receptor Activation Maps

6.2.1 Simulations: Technical Considerations

We also ran simulations where we simulated the DA concentration and the DA
receptors. Again we used the default parameters (see Suppl. Table 1). We
run simulations for 3 different realizations, but will only show the results of one
here since there were no qualitative differences. All results presented are with a
resolution of h = 1um and a cube size of 100um, I ran a set larger simulations
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Figure 6.15: The quantal release size and the release probability of synaptic
release have no qualitative effect on the power spectrum in the PD case during
baseline firing. Shown are the time spectra every 5ms for a second of baseline
firing (grey lines) and the median power spectrum (orange) of all the instant
spectra. This is shown for simulations with different quantal release sizes Q =
3000; 6000; 9000; (from left to right) and different release probabilities p =
0.03; 0.06; 0.09; from top to bottom. Other than in the healthy case the spectra
generally lack high frequency (> 200cycles/mm) components since these high
frequency components are not replenished by spiking, making the spectrum
biased to larger structures, and therefore a more uniform DA map.
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Figure 6.16: During the rewarding burst, in the healthy case, the power spec-
trum is biased towards smaller structures due to the increased number of spiking
release events. Shown are the power spectra every 5 ms in the interval given
above each panel, and the median power spectrum in this timeframe (a-e). The
average DA concentration in the cube, color coded with the intervals shown in
(a-e) is shown in (f). The power spectrum does not change majorly before the
burst, or in the phase where the DA declines. During the burst the spectra

shows stronger high frequencies components since, during the burst, they are
replenished even faster than in during baseline firing.
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Figure 6.17: During the rewarding burst, in the PD case, the power spectrum
shows an increase in high frequency components, however ultimately it does not
gain any major high frequency components even during the reward burst. Shown
are the power spectra every 5 ms in the interval given above each panel, and the
median power spectrum in this timeframe (a-e). The average DA concentration
in the cube, color coded with the intervals shown in (a-e) is shown in (f). The
power spectrum does not change majorly before the burst, or in the phase where
the DA declines. During the burst their is a slight increase in higher frequency
components &~ 250cycles/mm but the DA distribution stays biased towards
larger structures even during reward bursts.
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Figure 6.18: The spectrum during baseline firing shows extensive high frequency
components in the healthy case (a), which start to be suppressed in early onset
PD (b) and are gone in clinical PD (c). The applicaton of L-DOPA does not
recover the structure of the DA map (d). Shown are the power spectra every
5ms in a 1s period of baseline firing (grey) and the median spectrum (orange).
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Figure 6.19: The D1 receptors react very slowly to the changes in DA because
of their slow kinetics. Shown are the receptor activation map (a) and the cube
average DA concentration (b). During the 10s leading up to the burst starting
at 250s the absolute differences in the D1 map (c) and the relative differences
(d) are quite small. The maximum difference 2%. The difference map between
the D1 activation at 252s and 250s, before and after the reward burst, show a
small but systematic increase in D1 activation, by up to 2.5%. Generally, even
a DA burst changes the D1 activation map only slightly.
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Figure 6.20: The instantaneous DA map is only weakly correlated with the D1
receptor activation map during baseline firing (a). In the rising phase of the
burst ¢t = 250.5s the correlation is slightly elevated (b). However the the D1
receptor activation map before (¢) and during (d) the reward burst is nearly
perfectly correlated with the all-time mean DA concentration map of this simu-
lation, before (e) and during (f) the burst. Due to the slow D1 receptors, the D1
activation maps only change very sluggishly, while the instantaneous DA map
is highly variable. All values are normalized to the range [0 : 1].
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Figure 6.21: The D1 receptor activation is correlated with maps of that try
to predict D1 activation from anatomical constraints. Independent if the D1
receptor activation is predicted in a healthy (left) system or a PD case (right).
The predicted D1 activation maps derived from synaptic positions (a, b) are
strongly correlated with the actual D1 activation maps (¢,d). There is also a
slight anti-correlation between the Length in voxel (LiC) maps (e,f), a proxy for
the strength of inhomogenous uptake, and the D1 activation. More synapses
in the vicinity of a given location lead to higher average DA concentration and
therefore to higher D1 activation, causing the positive correlation between D1
and the synapse maps. Higher Length in voxel, means stronger uptake which in
turn means lower average DA concentration at this location. This in turn leads
to lower D1 activation, causing the anti-correlation between D1 and LiC.
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Figure 6.22: The predicted D1 activation maps derived from synaptic locations
predict the D1 activation maps well, in the healthy (left) and PD (right) case.
There is a linear relationship between the two quantities, shown in scatter plots
here.

(h = 2pm), however 1 did not get to analyzing them yet. The simulations
have different simulated runtimes, depending on the chosen receptor kinetics.
As mentioned in Chapter 5 the receptors need at least a multiple of their
half life times until they reach an equilibrium state with the surrounding DA
concentration. In our simulations this is true for each voxel, since each voxel
will have a slightly different DA environment. We can speed this process up
by starting the receptors at a value close to the equilibrium of the average DA
concentration. However, the receptors will still need some time to get into a
state of local equilibrium. That means we have to simulate a swing-in period
for each run. The duration of this swing in period will depend mainly on the
half-life time of the receptors. For the measured receptor kinetics, as mentioned
in Chapter 5 the half-life time is &~ 80s. For our swing in we choose at least
3 half-life times. That means for the slowest receptors we have a swing in
time of 240s, simulated time. Afterwards we let the simulation run for another
60s and place a reward burst at 250s, 260s, and 270s of the total simulation
time. Since the receptors develop slowly I only saved the state of the simulation
every 10ms. For the receptors with 10 times faster kinetics (here called ¢ = 10
like in Chapter 5), I multiplied the on and off rate by ¢ = 10 to keep the
dissociation constant the same. These simulations require a shorter swing in
time, since the receptors are faster. I ran the simulation for 60s where the first
40s was considered swing in time, I places a burst at 45s, 50s and 55s. For
this simulation the results were also written out every 10ms. The fast receptor
simulations, 100 times faster than the measured values, had a runtime of 30s
with bursts after 15s and 22s. The simulations with ¢ = 1 and ¢ = 10 did
run with the decoupled DA and receptor method. So there was no feedback
of the receptor binding on the the DA distribution. A test with the ¢ = 1
simulation showed that the differences were < 0.01% to the full system. We ran
the full model for the g = 100 receptors. To get a feel for the impact of receptor
binding and unbinding on the instantaneous DA map. The effect is around an
order of magnitude weaker than the effect that incorporating non-homogenous
uptake has on the DA concentration Fig. 6.23 (compare to Fig. 4.15). In the
simulation the maximum error, when comparing the DA concentration with and
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without the influence of receptor binding, is below 15% with a mean error of 2%.
From that we conclude that even for quite fast receptors, the DA concentration
distribution is only weakly effected by the receptor binding and unbinding. It
is definitely viable to run the slow receptor simulations, without feedback of
receptors on the DA maps.
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Figure 6.23: The instantaneous DA concentration maps with (a) and without
(b) the feedback on the DA due to receptor binding, for receptors that are 100
times faster than default, are fairly similar as shown by the absolute difference
map (c) and the relative error map (d) between them. The average error is
around 2%, making the receptor feedback, even for ¢ = 100 receptors, roughly
one order of magnitude less important than the consideration of inhomogeneous
uptake. It is a valid course of action to not consider this feedback to save
computational time.

Each simulation was run for the healthy system with 100 axons and the PD
case with 10 axons. The runtime of these simulations was around 14days for the
q = 1 case, 3 days for the ¢ = 10 case, and 9days for the ¢ = 100 case. Where
the ¢ = 1 case was time-intensive because of the long swing in time, while the
q = 100 case was time-intensive because the full solver is slower.
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6.2.2 Receptor Activation Maps are Correlated with Anatom-
ical Features

The D1 and D2 receptor activation maps are highly correlated in space. Which
is not surprising, since in the model they have the same off rate k,r¢. That
means that they only differ by a linear scaling factor, as long as none of the
two populations are close to saturation. Their correlation coefficient over 20
seconds with two bursts (245s to 265s) in run-1 for the healthy case was p =
0.9930 & 7.7 - 107° and in the PD case p = 0.9935 & 2.4 - 10~%. They are
nearly perfectly correlated. For this reason I will only analyze the D1 receptor
activation maps in this chapter, since all the finding are also applicable to the
D2 receptor activation maps.

In Chapter 5 we already talked about how the kinetics of the D1 receptors
are slow. This remains true even in the case of a constantly changing DA map,
with a lot of high frequency components. The DA receptors are very sluggish,
and integrate the faster components very slowly. That means the receptor map
is very stable in time, Fig. 6.20 and changes only slowly. Over 10s of baseline
firing, its maximum change is ~ 2%. During a burst the maximum increase of
the receptor activation is ~ 2.5% while on average the change in a single voxel
is closer to 1%. Even though the DA map is highly dynamic, and very variable,
the receptors are not. However, the receptor activation map is not flat. There
is spatial structure visible that is retained even throughout bursting.

What determines this structure? Is it random, or is it caused by a feature of
the DA landscape? The instantaneous DA concentration maps is only weakly
correlated with the D1 activation map (p = 0.090 & 0.053 measured over 10s),
however it is nearly perfectly correlated with the running mean DA concen-
tration map p = 0.986 Fig. 6.20. I did not calculate statistics for the mean
DA correlation, however the mean DA concentration does barely change with
time, and since D1 is also very sluggish they both stay correlated. Why this
strong correlation to the time-averaged DA map? The reason is most likely the
slowness of the receptors. It is most likely not correlated to the all-time average
of the DA map, but to a weighted average over a time-frame of a few half-life
times into the past. Since the receptor half life time for the ¢ = 1 case is = 80s
this is likely to be very similar to the all time average for this simulation, since
even an activation from the beginning of the simulation ¢ = 0 would have only
decayed to 12.5% of its starting magnitude at ¢t = 240s.

Now we can ask another question, what determines the the values of the
time-averaged DA maps? The instantaneous DA map is created by spiking
release events, the location of these spiking release events may seem random
however, we know that synapses do not change position. Some locations will
have a higher average DA-concentration, just because they are closer to more
synaptic release sites. However, there is another process that shapes the time-
averaged DA map, inhomogeneous uptake.

To investigate if the synaptic placement can be used to predict the recep-
tor activation maps we calculate a predicted DA concentration map from the
placement of synapses. We know the placement of synapses in each simulation,
however the placement itself is unlikely to be a good descriptor of the mean DA
concentration, since most voxels do not have any synapses in them. However,
a synapse does not just exert its influence on the voxel it is in buthas a sphere
of influence since DA release events spread over a certain distance. What we
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want to do is to calculate a predicted receptor activation map from the synapse
locations. We do this by placing a kernel, a function that describes the relative
importance of a synapse with respect to the distance to this synapse, over each
synapse. What is the range and shape of this kernel? To describe the range
for the kernel we use the range parameter ¢, which might have different mean-
ing depending on the kernel. We tried a few, kernel functions but settled on a
Gaussian kernel )

K(r)= s (6.1)

with a range parameter of ¢ = 5um in the end, since it showed slightly better
performance than other kernels. However trying out different kernels showed
that the kernel function itself is not too important. We found a strong degree
of correlation > 0.4 between the predicted map and the receptor activation for
linear maps, where the relative importance declines linearly from K(0) = 1 to
K(c) =0 and even for flat Kernels

Kr)y=1—-(r<c); 0= (r>c

that essentially count the amount of synapses in a radius ¢ around a voxel.
The range parameter itself proofed to be of higher importance. Kernels gener-
ally perform well when their sphere of influence has a radius between 5um and
15um, which fits well with the distance that a release event covers Fig. 6.4.
We also try to see if the map of the length of axon in a (computing) cell (LiC),
is correlated with the receptor activation maps. Since it is directly related to
the inhomogeneous uptake.

The synaptic maps are highly correlated with the D1 receptor activation
maps. The gaussian kernel with range parameter ¢ = 5, which gives it a full
width at half maximum of ~ 11um has a correlation coefficient of p = 0.553
Fig. 6.21. The synapse map of the flat kernel with range ¢ = 10 was also
strongly correlated p = 0.485, as was the linear kernel map with the same range
p = 0.536. We also find a weak anti-correlation between the D1 activation map
and the axonal LiC p = —0.088. That means that the receptor activation maps
are highly correlated with the predictive synaptic maps. they are also weakly
anti-correlated with the Length of axon in a voxel, which a proxy for the uptake
at a given location. There is a strong linear dependency between the D1 receptor
maps predicted from the synapse positions and the actual receptor activation
maps Fig. 6.22. This holds true in the healthy and the PD case, that means
that the death of axons does not change the relationship between the synaptic
positioning and the receptor activation maps.

So how does this correlation between the synaptic maps and the D1 recep-
tors come to be? Are the synaptic maps correlated with the instantaneous DA
concentration? They are, but only slightly Fig. 6.24. This is not too sur-
prising since the synaptic maps are not changing in time while the DA maps
are highly variable. However, generally the DA concentration is very slightly
positively correlated with the synaptic maps in the healthy p = 0.048 4+ 0.040
and in the PD case p = 0.056 £ 0.1052. That means that locations that have a
higher influences of synapses get a slightly higher DA concentration than loca-
tions with lower influences. These slight influences, can be picked up by the D1
receptors since they integrate over a fairly long time, therefore becoming more
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correlated to the synaptic maps. Due to their long integration times the slow D1
receptors are very good sensors for small differences in the average concentration
of DA. So even though the Synaptic maps are only very weakly correlated with
the instantaneous DA concentration, it is enough to be picked up by the D1
receptors. The same holds true for the slight anti-correlation of the length in
voxel with the instantaneous DA concentration Fig. 6.24 (p = —0.010£0.010
for the healthy and p = —0.030 + 0.031). Here the slightly reduced DA con-
centration also gets picked up by the slowly integrating receptors. That means
that anatomical properties are reflected in the activation maps of D1 receptors.

Correlation with DA
]
DA concentration in nM
Correlation with DA
DA concentration in nM

|
‘J\td‘»‘h‘-uwuauj‘ul“LJ;-'LI- al

246 248 250 252 254 ) 246 248 250 252 254
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Figure 6.24: The synaptic maps are only weakly correlated with the instanta-
neous DA concentration (orange). The correlation is weak but fairly consistent
in the healthy (left) and PD (right) case. The consistent positive correlation
can be integrated by the slow receptors very effectively, leading to the correla-
tion between the synapse map and the D1 activation. In the same vane, the
LiC maps are very weakly anti-correlated (blue) with the instantaneous DA
concentration, the time integration of the receptors leads to a stronger correla-
tion between LiC and the D1 activation. For comparison the instantaneous DA
concentration (green) is also plotted.

Does this only work for slow receptors? No, the correlation with the synaptic
and LiC maps persist even for receptor kinetics up to 100 times faster than the
measured values Fig. 6.25. The correlation stays high for all tested receptor
kinetics in a 10 second window Fig. 6.26. There is not a lot of dynamic in
the ¢ = 1 case, so the correlation with the synapse maps is very stable p =
0.553 +0.0008 The D1 activation is more variable for the faster receptors. The
average correlation stays nearly the same for the ¢ = 10 receptors (p = 0.551 +
0.0060) and stays elevated even for the ¢ = 100 receptors (p = 0.328 4+ 0.0163
in the 10 second window shown). Furthermore, the anti-correlation with the
LiC map also persists for different receptor kinetics, but also stays weaker than
the correlation with the synaptic map with p = —0.0880 £ 0.0002 in the ¢ =1
case, p = —0.0802 4+ 0.0016 in the ¢ = 10 case and p = —0.0861 £ 0.0046 in the
q = 100 case.

How can this be if the receptors are correlated with the synaptic maps due
to their long integration time? It seems, the integration time does not have to
be extensively long, for the receptors to pick up on the differences in the average
DA concentration map. The slow receptors have a half-life time of ¢; 5 = 80s so
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Figure 6.25: The synaptic maps (a,b) still correlate strongly with the D1 maps
(c,d), even for 10 times (left) and 100 times (right) faster receptors than in
the base model. The correlation of the D1 maps with the LiC maps (e,f) also
remains for faster receptors.
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Figure 6.26: The correlation between the synase maps and the D1 activation
maps is consistently high, even for receptors ¢ times faster than the default
receptors (left). The average amount of D1 activation is less variable for slower
receptors. The ¢ = 10 and ¢ = 100 simulations had an elevated baseline DA,
and therefore higher D1 activation. However, even though the D1 activation is
more variable for ¢ = 100 receptors, they still show a considerable correlation
with the synaptic maps.

a signal 240s ago still contributes with 12.5% of its value. The integration has
a span in time of a least 3t;,,. However, systematic differences in the average
concentration, as caused by the synaptic maps, can already show up for a lot
shorter integration times. For receptors with ¢ = 10 times faster kinetics, the
integration still happens over a timeframe of &~ 24s. Which leads to nearly the
same correlation to the synaptic map then the ¢ = 1 receptor Fig. 6.25, and
Fig. 6.26. Even for the ¢ = 100 receptors, that integrate over only = 2.5s,
the correlation with the synaptic map persists. Does this make sense? When
we think of of the axonal spiking we know that the average firing rate of the
dopaminergic neurons is 4Hz. That means in the 2.5s integration time, each
axon will fire around 10spikes. With a releae probability of p = 0.06 that means
that each axon fires around 1 — (0.94!° ~ 50%) of its synapses at least once. So
it is not completely unreasonable that the synapti map can have an imprint on
the average DA concentration when integrating over this timeframe. However,
the correlation for the faster receptors is lower than for the ¢ — 1; 10; receptors.
Indicating that this effect will vanish for even faster receptors.

In the end we find that the anatomy, synapses and LiC, can lead to a total
correlation with the D1 receptors of up to p = 0.6 for relatively slow receptors
up to ¢ = 10, and still correlate with p = 0.4 to the receptor activation maps
of fast receptors. Anatomical properties have a non-negligible influence on the
D1 receptor activation maps, even if the D1 receptors are up to 100 times faster
than measured.

6.2.3 Conclusion

After analyzing our simulations we are left with two main findings. First, the
spatiotemporal DA distribution is highly variable. The DA landscape in space
is very inhomogeneous and characterized by the constant bombardment with
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release events. Accordingly single location timelines of the DA concentration
are also highly variable. However, that changes during PD. The reduction in
release events leads to a much flatter, more homogeneous distribution of DA
in space, but also for the single location timelines. These very different DA
distribution maps during the healthy and PD case are also reflected in the spatial
Fourier transforms, where the PD simulations lack the high spatial frequency
components of the healthy case.

Second, The DA receptor activation maps are strongly correlated with anatom-
ical factors. Mainly the distribution of synaptic locations, but also the distri-
bution of the inhomogenous uptake. This correlation is caused by the receptors
integrating the small systematic DA differences caused by these anatomical fac-
tors. However, that does not only work for very slow receptor kinetics, but also
for receptor kinetics that are 100 times faster than the measured values. In
other words, the receptors do not need to integrate for a very long time to pick
up the small systematic differences in the mean DA concentration caused by the
anatomical structures. An integration time of & 3s is already enough.
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Chapter 7

Discussion

I developed a model for DA diffusion in the striatum that is essentially made
up of two parts, a solver for the reaction diffusion equations and a generator
for synthetic dopaminergic axons. The full model can be found on https:
//bitbucket.org/Narur/dope-amine, in the hope that it can be used by oth-
ers too. In the course of the development of the diffusion model I also designed
a DA receptor activation model that incorporates the slow receptor kinetics of
the DA receptors, instead of letting them be infinitely fast.

7.1 Significance of Findings

There has been a 3D diffusion model of DA in the striatum before (Dreyer
et al., 2010; Dreyer and Hounsgaard, 2013; Dreyer et al., 2016) however it used a
smaller domain ~ 20um and did not explicitly study the tempo-spatial structure
of the DA distribution. It incorporates a model of receptor binding, however it
uses the instant kinetics model, which makes it quite different from my model.

We designed the model to investigate if the DA signal is monolithic in space.
The model predicts that the DA distribution is highly variably in both space
and time, differing strongly from the view of commonly used models e.g. for
reinforcement learning that essentially implicitly assume that the DA concen-
tration is a flat monolithic signal in the striatum (e.g. Schultz 2007). I show,
with the help of Fourier transformations, that the source of this highly variable
DA signal is the constant spiking release from the dopaminergic axons. Dif-
fusion does not smooth out these DA maps. Furthermore my model predicts
that in the case of PD the spatial DA distribution becomes more homogenous
since the quantal release events that make the DA maps very variable become
rarer, so that diffusion has the chance to flatten out the map. The treatment
with Levodopa does not recover the variability of the healthy DA maps. As
predicted by Dreyer (2014) my model also shows passive stabilization in the PD
case, the average DA concentration does not reduce during the baseline firing
indicating that a reduced DA baseline is not the reason for the motor symptoms
of PD. However, the spatio temporal structure of the DA signal changes in the
PD case, which could be the starting point for further investigations into how
these motor symptoms arise.
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A way to experimentally test these predictions of spatially variable DA maps
would be to compare the spectra of the model DA maps, with the spectra of
measured DA maps with the recently developed method of Patriarchi et al.
(2018) and Sun et al. (2018).

When investigating the receptor activation maps, my model differs consid-
erably from the model presented in (Dreyer et al., 2010). This is due to the
fact that the receptors in my model have relatively slow kinetics, where in the
dreyer model the react essentially instant to changes in DA concentration. An
exciting finding of the model is that the calculated receptor activation maps
have a spatial structure that are strongly correlated with anatomical factors
like synaptic positions and the inhomogenous uptake map, which means that
the receptor activation maps have a component that is quite stable in time,
since the anatomical factors should not change. This remains true even if the
receptors are simulated with kinetics up to 100 times faster than the measured
values. This finding is interesting in the light of the identification of spatially
compact neuronal clusters, that are stable for days, in the striatum (Barbera
et al., 2016). Of course that does not mean that these clusters are necesarrily
formed by a mechanism related to spatially varying DA receptor activation.
There are models predicting clustering independent of a spatially varying DA
receptor map (Humphries et al., 2009). Nevertheless this finding presents a new
approach for the formation of these clusters, that might even work in tandem
with other clustering approaches.

The model shows that the instantaneous DA concentration does not change
qualitatively when incorporating inhomogenous DA uptake. However there are
quantitative changes with a mean difference of around 10 % of the instantaneous
DA concentration. With the knowledge that the DA receptors, even if they are
fairly fast, can and do pick up small changes in the DA concentration I think
that inhomogenous uptake should be taken into account for simulations looking
at the activation of DA receptors.

The model demonstrated that there is a spatial structure for both the DA
and the DA activation maps. Both don’t behave as the monolithic signal, inde-
pendent of spatial location, that is often used for models of learning and motor
control. The DA maps themselves are highly variable in space and time, however
this variability is smoothed out by the slow kinetics of the dopamine receptors.
What these spatial inhomogenities mean for the models of learning and motor
control still has to be addressed. However the model presented here could be
used as a starting point for these questions. A possible next step to address the
effects of the spatial structure of the DA signal would be to combine a spatially
resolved neural network simulation of MSNs with our model and directly inves-
tigate the effects of the spatiotemporal inhomogenities of DA on the network.

Investigating the spatial structure of the DA signal was not the only goal of
my model. I was also trying to test if there are inconsistencies in the under-
standing of DA signaling. One inconsistency revealed itself when I incorporated
the DA receptor activation into the model of DA diffusion. Specifically when I
incorporated receptor kinetics for the DA receptors.

I found that when taking into account the kinetics of the DA receptors, which
are quite slow, the commonly assumed separation of receptor types for different
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temporal DA signals, D1 receptors detect fast high amplitude signals while D2
receptors detect slow small amplitude signals (Dreyer et al., 2010; Surmeier
et al., 2007; Grace et al., 2007; Schultz, 2007; Frank and O’Reilly, 2006), breaks
down. Hinting that our understanding of the processing of different temporal
components of the DA signal is lacking. I showed that even for receptors that
have kinetics up to 100 times faster than the measured kinetics the separation
of DA signal-type and receptor type does not hold true. It is true that our
findings are based on a limited number of, fairly old, experiments (Burt et al.,
1976; Sano et al., 1979; Maeno, 1982; Richfield et al., 1989). However the instant
kinetics, model essentially argues with no experimental backing and has also
never been formally stated, instead it is the result of an implicit assumption.
This assumption being that the dissociation constant describes the fractional
occupation of the dopamine receptors well. Some recent experiments, using
genetically altered DA receptors, cast doubt if the DA receptors are really as
slow as assumed in our model (Patriarchi et al., 2018; Sun et al., 2018). However,
the kinetics of these genetically modified receptors are unlikely to be the same as
a wildtype receptor, since their dissociation constants differ from the wildtype
receptor by a factor of ten or more. That means that their kinetics are at least
by a factor of v/10 ~ 3 different (assuming, that the on rate is faster and the
off rate is slower by the same factor). On top of that the kinetics measured
in Sun et al. (2018) still fall within the factor 100 range for which our model
predicts a similar response for D1 and D2 receptors independent of the timescale
of the signal. Furthermore, it is unlikely that the DA receptors are much faster
than 100 times their measured value, since then the would have reaction rates
in excess of the estimate for the theoretical maximum for enzymes that are
embedded in a membrane (Alberty and Hammes, 1958; Eigen and Hammes,
1963).

Another point to consider with respect to this receptor kinetics dilemma is
that, according to our diffusion model, the single location DA concentration
time-signal is highly variable even in the baseline firing case. It is unlikely that
the strong spike-like increases in DA concentration, in these time signals con-
tain useful information, since the spiking release at the dopaminergic synapses
is a stochastic process. That means that the delivery of one spikelike increase,
caused by a release event, can not be controlled very precisely by the dopamin-
ergic axon firing the spikes. This is exasperated by the low probability of release
on an arriving action potential (p = 0.06). In other words, this means that the
single-location DA time-signal is very noisy. If the DA receptors are very fast,
to the point where the react nearly instantaneous, they would track all of this
noise, which would need to be removed by some other process later. It is unlikely
that this noise can be removed by spatial averaging, since the spatially averaged
DA concentration timeline is still quite noisy Fig. 6.1. However, slower recep-
tor kinetics could act as a low-pass filter, removing some of this noise already
at the receptor activation stage. Therefore I would argue that it is unlikely that
the receptors are nearly instantaneous.

Of course the final goal is to strengthen or dismiss this reasoning with a bet-
ter estimate of these kinetic parameters. There seems to be a large body of work
on the intracellular cascade started by the DA receptors(Lindskog et al., 2006;
Nair et al., 2015). However, the beginning step, the kinetics of the binding and
unbinding of the DA receptors to DA is not well constrained by experiments. I
hope that my work can motivate new measurements of these kinetics to better
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constrain the model of DA receptor binding.

7.2 Outlook

The developed model is freely available and will hopefully be used by other
researchers to investigate DA and its receptors and their spatiotemporal distri-
bution. There are still exciting avenues of research to be done with the model.

Currently the model is still quite simple, and some straightforward exten-
sions could be incorporated e.g. feedback of D2 autoreceptors on spiking release.

As mentioned above combining the DA diffusion model with neural network
models directly could give a better understanding on how the spatiotemporal in-
homogenities of the DA distribution influence learning and motor control. Such
a combined model would also be useful to follow up on the spatially clustered
striatal neurons. Investigating pharmacological manipulations, or the effect of
different spiketrain types on the spatiotemporal structure of DA and its recep-
tors are also exciting options for future research. which could be combined with
a combined DA diffusion neural network model.
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Diffusion Parameters

Parameter Source
Dpa in pm?s~1! 320.0 (Nicholson, 1995)
! 0.2 (Sykovéa and Nicholson, 2008)
Quantalsize in molecules | 3000 + 300 (Pothos et al., 1998)
Release prob. p 0.06 (Dreyer and Hounsgaard, 2012)
Vinaw in pMs™! -5.0 (Nicholson, 1995; Wightman et al., 1988)
K, in nM 0.21 (Nicholson, 1995)
Kunspecific in pMs™1 -0.007 (Cragg et al., 2001)
At in ms 1,0
DA receptor parameters
Parameter Source
CHM¥ in nM ~ 1600 see Chapter 5
CHs* in nM ~ 80 see Chapter 5
kD2 in nm~tmin~1 0.02 (Burt et al., 1976)
kg;gf in min~! 0.5 (Burt et al., 1976)
EDLin nm~tmin~1 0.0003125 see Chapter 5
kfflf in min~1 0.5 see Chapter 5
Spiketrain parameters
Parameter Source
firreguiar 0.55 (Hyland et al., 2002)
freguiar 0.25 (Hyland et al., 2002)
Soursting 0.2 (Hyland et al., 2002)
ratéreguiar in Hz 4.0+£0.8 (Hyland et al., 2002)
CVyegular 0.35+£0.15 (Hyland et al., 2002)
rateirregular i1 Hz 4.04+0.8 (Hyland et al., 2002)
Eirregular 3.0 (Hyland et al., 2002)
ratepursting in Hz 4.0+0.8 (Hyland et al., 2002)
kvursting 3.0 (Hyland et al., 2002)
ratepyrsts 10 Hz 0.82+0.2 (Hyland et al., 2002)
A 2.7+05 (Hyland et al., 2002)
fintraburse iIn Hz 22.5+5.2 (Hyland et al., 2002)
MAL cventjitter N MS 100 (Hyland et al., 2002)
freward 0.7 (Hyland et al., 2002)
Axon generation parameters
Parameter Source
() in degree 70.0 (Katz, 1985a)
Oalphaindegree 30.0 (Katz, 1985a)
(€) in degree 17.0 (Katz, 1985b)
Oepsilon 11 degree 20.0 (Katz, 1985b)
Njraz 17000 (Matsuda et al., 2009), see Chapter 4
Asynapse I pm 7.6 (Arbuthnott and Wickens, 2007)
Pbranch 0.0192 see Chapter 4
Del 0.9677 see Chapter 4
Dchdir 0.1 see Chapter 4

Supplemental Table. 1: Receptor parameters
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