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Abstract 
Modern industrial processors, engineering systems and structures, have grown 

significantly in complexity and in scale during the recent years. Therefore, there is an 

increase in the demand for automatic processors, to avoid faults and severe break downs, 

through predictive maintenance. In this context, the research into nonlinear systems 

analysis has attained much interest in recent years as linear models cannot be used to 

represent some of these systems. In the field of control systems, the analysis of such 

systems is conducted in the frequency domain using methods of Frequency Response 

Analysis. Generalised Frequency Response Functions (GFRFs) and the Nonlinear Output 

Frequency Response Functions (NOFRFs) are Frequency Response Analysis techniques 

used for the analysis of nonlinear dynamical behaviour in the frequency domain. The 

problem of Condition Monitoring and Fault Diagnosis has been investigated in the 

perspective of modelling, signal processing and multivariate statistical analysis, data-

driven methods such as neural networks have gained significant popularity. This is 

because possible faulty conditions related to complex systems are often difficult to 

interpret. In such a background, recently, a new data-driven approach based on a systems 

perspective has been proposed. This approach uses a controls systems analysis method 

of System Identification and Frequency Response Analysis and has been shown before as 

a potential technique. However, this approach has certain practical concerns regarding 

real-world applications. Motivated by these concerns in this thesis, the following 

contributions are put forward:     

1. The method of evaluating NOFRFs, using input-output data of a nonlinear 

system may experience numerical errors. This is a major concern, hence the 

development of a method to overcome these numerical issues effectively.         

 

2. Frequency Response Analysis cannot be used in its current state for nonlinear 

systems that exhibit severe nonlinear behaviour. Although theoretically, it 

has been argued that this is possible, even though, it has been impossible in 

a practical point of view. Therefore, the possibility and the manner in which 

Frequency Response Analysis can be conducted for these types of systems is 

presented. 

 

3. Development of a System Identification methodology to overcome the issues 

of inadequately exciting inputs and appropriately capturing system dynamics 

under general circumstances of Condition Monitoring and Fault Diagnosis. 

 In addition to the above, the novel implementation of a control systems analysis 

approach is implemented in characterising corrosion, crack depth and crack length on 

metal samples. The approach is applied to the data collected, using a newly proposed non-

invasive Structural Health Monitoring method called RFID (Radio Frequency 

IDentification) wireless eddy current probing. The control systems analysis approach 

along with the RFID wireless eddy current probing method shows the clear potential of 

being a new technology in non-invasive Structural Health Monitoring systems. 
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Nomenclature 
 

t   Time  

   Time delay index 

( )u t   Input signal to a system 

( )y t   Output response of a system 

ˆ( )y t   Model Predicted or model generated output  

( )e t   Residual or error between ( )y t  and ˆ( )y t   

yn   The maximum lag order or the dynamic order of the output ( )y t  

un  The maximum lag order or dynamic order of the input ( )u t  

cn  The maximum lag order or the dynamic order of the residuals ( )e t  

pn   The total number of terms in the polynomial model 

N   The highest order of nonlinearity to be considered  

pN   The highest nonlinear polynomial order 

sT   Sampling time 

( )ny t   Output response of the nth order nonlinearity  

( )h t   Impulse response of a linear system  

1( , , )n nh t t  nth order Volterra kernel   

z   Forward shift operator  

1z−   Backward shift operator  

nYf  Possible output frequency range contributed by the nth order 

nonlinearity 
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Yf   Possible output frequency range of the complete output of a nonlinear 
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Chapter 1  

 

Introduction 
 

1.1 Background 

Fault Diagnosis (FD) and Condition Monitoring (CM) is a vital aspect of mechanical 

systems, electrical systems and structures. The significance of timely identifying the 

occurrence of faults, its type, location and severity in engineering systems is immense and 

vital. This is due to the high costs that are to be carried from severe damages owing to ill-

timed maintenance due to not being able to identify faults beforehand [1].  

This is done mainly for the aid of safe and optimal operation of systems, as well as its 

components without overstressing. Most systems are set to function within bounded 

limits or functional conditions. Thus increasing its lifetime and efficiency [2]. At the same 

time Condition Monitoring and defect detection in systems and structures is of key 

importance to avoid any severe incidents and losses that can be experienced by carrying 

out well-timed upkeep. 

The process of Condition Monitoring and Fault Diagnosis involves collecting specific 

information from a system and evaluation of the precise condition of a system. Through 

this process, an assessment of the true confidence of the system and its operations is the 

main criteria of Condition Monitoring and Fault Diagnosis. This provides a certain level of 

assurance to the operator in the application of safety-critical purposes. Fault Diagnosis is, 

the accurate detection and isolation of faults, while Condition Monitoring is, the 

observation of a system for the development of faults [2], [3]. Through Condition 

Monitoring, an assessment of the system state in relation to the progress towards faults 

and information about the system safety or its optimum operating level can be 

determined. This information can be utilized to conduct predictive maintenance to avoid 

faults and occurrence of severe break downs [2]. Fault-tolerant functioning and avoidance 

of off-spec operations in mission and safety-critical applications are achieved using on-

line Condition Monitoring and Fault Diagnosis. While off-line diagnosis and monitoring are 

used for complete maintenance of systems and structures [4]. Essentially, there is an 

important need for online, as well as off-line Condition Monitoring and Fault Diagnosis. 

Many Condition Monitoring and Fault Diagnosis (CM-FD) methods that fall under 

different types or schemes have been formulated. These different categories of CM-FD 

methods exhibit various advantages and disadvantages. Hence, depending on the needs 

of the application, a suitable framework should be chosen [3,5,6,8,9]. From the different 

CM-FD schemes, the analytical type and knowledge-based schemes are the most popular 

in industry and research. This is due to the advantages these schemes possess [6]–[8]. 
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However, analytical schemes, which are data-driven and model-based methods, are most 

widely used in practice [5], [7]. This is mainly due to its advantage over knowledge-based 

schemes regarding the amount of prior expert knowledge required and the complexity 

involved in designing knowledge-based schemes.  

The use of black-box models, particularly time-series analysis models and the data-

driven identification of these models for Fault Diagnosis has gained particular interest [9]–

[11]. This is in reason to not requiring much prior information about the physical 

characteristics of the system under consideration, as these can be obtained from the 

system input-output data itself [12].  

In recent advancements of System Identification based FD methods, in particular to 

autoregressive time-series models. Some researchers have taken a control systems 

approach to the CM-FD problem. In regard to both linear and nonlinear systems, the 

authors of [13]–[19] have used the method of Frequency Response Analysis (FRA) through 

the Frequency Response Function (FRF) for linear systems. While in the case of nonlinear 

systems, the Generalised Frequency Response Functions (GFRFs) or the Nonlinear Output 

Frequency Response Functions (NOFRFs) of the identified system model is used to extract 

frequency response based features for CM-FD. The current status of the system dynamics 

is captured through System Identification and the dynamics of the model are analysed 

using Frequency Response Analysis methods. Faults, or a change in system conditions that 

induce dynamical changes, thus can be isolated and recognised. This is the essence behind 

CM-FD through the method of System Identification and Frequency Response Analysis. 

This approach stems from the well-established methodology of analysing system 

dynamics in the field of control systems engineering, for the purpose of designing 

controllers and compensators to achieve desired system responses and system stability 

in the frequency domain.   

 

1.2 Motivation 

The field of CM-FD has been driven towards constant development in order to keep 

in pace with the development of more complex and large-scale systems and structures. 

This is also motivated by the effort to minimise the disadvantages incurred by currently 

available techniques for CM-FD. The recently proposed method of using a control systems 

approach of System Identification and Frequency Response Analysis has been one such 

effort for CM-FD of engineering systems and structures. Especially, in the case of 

nonlinear systems. This is because in the case of nonlinear systems, the currently available 

model-based techniques are mostly based on linear systems Fault Diagnosis [20], [21] 

thus cannot be easily applied and is a relatively difficult task [22]. In order to overcome 

these issues with model-based methods, techniques based on multivariate statistics and 

expert systems have been under study [4], [23]. However, these techniques usually do not 

consider the dynamical behaviour of the system. Therefore, overlooking features that 

could be used potentially for additional insight into the dynamical characteristics of faults.  
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In this context, the approach of System Identification of black-box time-series models 

avoid the requirement of much prior knowledge of the system and overcomes the issue 

when phenomenological modelling is difficult. Furthermore, through the Frequency 

Response Analysis of these identified time-series models, the dynamic nature of the faults 

can be interpreted in the frequency domain. Thus, obtaining credible fault features. 

System Identification (SI) strategies for nonlinear systems time-series models is well 

established and thus have been used in various real-world applications [24]. The 

Frequency Response Analysis (FRA) of these nonlinear models using the GFRFs and 

NOFRFs have been under the subject of several studies [13], [18]. In comparison, with 

regard to CM-FD, the NOFRFs are preferred to the GFRFs, because of its one-dimensional 

nature compared to the multi-dimensional GFRFs. This is because the NOFRFs can be 

interpreted and evaluated with ease compared to the GFRFs [19]. Therefore, the NOFRFs 

are more practical in embedded implementations. However, in the previous studies 

conducted on the SI and FRA approach to CM-FD, in both linear and nonlinear systems, 

some practical concerns involved have been overlooked. 

In order to capture the system dynamics, appropriately using System Identification, 

the system usually has to be persistently excited. However, inadequate inputs which do 

not persistently excite the system are commonly present and at times nothing can be 

done about this. This is because CM-FD has to be carried out without interrupting normal 

operations of the system by feeding different inputs [25]. Furthermore, the dynamic 

model resulting from the System Identification procedures; should be able to dynamically 

reconstruct the system from the data, in order for the model to be analysed in the 

frequency domain accurately. The accurate dynamical reconstruction of a system from its 

data, especially in the nonlinear case, depends on certain specifics of a suitable choice, 

sampling time and the order of the model [26]–[28]. Such concerns are related to System 

Identification explicitly have not been considered in previous studies in the context of CM-

FD using System Identification. 

In the context of Frequency Response Analysis of nonlinear systems, using the 

NOFRFs, the algorithm for extracting NOFRFs using input and output data of the system 

or a model of the system [29] has numerical inaccuracies [30]. Therefore, the NOFRFs 

evaluation has to be done using appropriately chosen gains in the input data. This will 

hinder the process of automatic CM-FD. Furthermore, when considering nonlinear 

systems that exhibit severe nonlinear behaviour, Volterra series based methods, such as, 

the GFRFs or the NOFRFs were not able to be applied. This is because the Volterra series 

does not have a convergent solution around severe nonlinear behaviour. However, it has 

been argued that in theory, a truncated solution should exist given the use of a very high 

order of nonlinearity [31]. The GFRFs cannot be used because of the computational effort 

concerning higher-order nonlinearities and the NOFRFs cannot be used because of 

numerical inaccuracies attained when using higher order nonlinearities, thus causing a 

limitation.  

The SI and FRA approach to CM-FD has shown to be of clear potential in the previous 

studies. However, the concerns mentioned, limits the use of this approach in wider CM-

FD applications. The present study is concerned with overcoming these practical 
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concerns, that are present in the method and to establish the SI and FRA method to CM-

FD. Additionally, an embedded application of NDE&T (Non-Destructive Evaluation and 

Testing) or non-invasive technique for SHM (Structural Health Monitoring) will be 

undertaken. The SI and FRA method to CM-FD will be applied to a recently proposed 

NDE&T technique of wireless eddy current probing for non-invasive SHM through the use 

of RFID (Radio Frequency Identification) technology [32], [33].  

In [32], [33], the respective authors used features from the time-series signal of the 

RFID system to distinguish between different stages of corrosion and different 

progressions of cracks. Even though time-domain features were able to be used in a 

controlled laboratory environment, these time-domain features are highly susceptible to 

even very low noise levels and other external disturbances [34]. Furthermore, the circuitry 

in RFID systems is vulnerable to noise when operated in the outside environment [35]. 

Therefore, to overcome this issue in the practicality of applying this NDE&T method is of 

importance thus the proposition of applying a SI and FRA approach.   

Through this implementation of the SI and FRA method to CM-FD in the context of 

SHM through wireless eddy current probing via RFID technology, a novel SHM technique 

is presented.  

      

1.3 Aims and objectives  

The main aim of the research undertaken is to optimise the SI and FRA approach to 

CM-FD in relation to the concerns mentioned in the previous section. Thus, facilitating the 

use of this approach generally in the wider CM-FD problems. Consequently, applying the 

optimised method to RFID based wireless eddy current probing approach for non-invasive 

SHM to result in a new method of corrosion and crack detection in metallic structures. To 

accomplish this the key objectives will be perused: 

1. Examine the concept of NOFRFs and address the issues of numerical 

inaccuracy present in the current method of evaluating NOFRFs using input-

output data of a system or a model. 

  

2. Investigate severe nonlinear behaviour and the method in which the concept 

of NOFRFs can be applied for the analysis of these types of nonlinear systems. 

 

3. Develop a System Identification methodology addressing the concerns of 

inadequate inputs and dynamical reconstruction. Thus, in combination with 

Frequency Response Analysis, a widely applicable CM-FD methodology. 

 

• Realise the specifics that can be used for accurate dynamical 

reconstruction of system behaviour in the form of time-series black-

box models. 

• The approach to System Identification that needs to be taken to 

overcome the issue of inadequate excitation inputs. 
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4. Develop a novel method to SHM by the implementation of the RFID NDE&T 

technique coupled with SI and FRA approach to CM-FD for the 

characterisation of corrosion and cracks in metals.   

 

 

1.4 Thesis overview  

The thesis is organised into 8 chapters in the following manner; 

• Chapter 2: provides a brief overview of common terminology used in the field 

of CM-FD and introduces the recently proposed approach of a controls 

systems analysis approach of System Identification and Frequency Response 

Analysis. The chapter briefly overlooks the advantages and disadvantages of 

different types of CM-FD methodologies while highlighting the significance of 

hybrid approaches. 

 

• Chapter 3: provides an overview of System Identification procedures. A 

description of linear and nonlinear systems in the time-domain is introduced 

and model structures that can be used with these systems are reviewed. The 

main steps in System Identification are reviewed with different methods used 

in each step. Two of the commonly used model structure selection criteria 

are discussed. 

 

• Chapter 4: introduces the theory of Frequency Response Analysis of linear 

and nonlinear systems. The description of both linear and nonlinear systems 

is provided and the characterisations of the output frequency response in 

relation to these systems are reviewed. The FRF used in characterising linear 

system frequency response and the GFRFs and NOFRFs which can be used to 

describe nonlinear systems in the frequency domain is discussed. The 

concept of NOFRFs has been discussed in detail because of the use of this 

method in the CM-FD of nonlinear systems in this thesis. 

 

• Chapter 5: focuses on a new effective method of extracting NOFRFs that can 

be used with ease with just the input-output data of nonlinear systems. This 

new method is named as the M-LS method for evaluating NOFRFs. The M-LS 

method is shown to extract NOFRFs with significant numerical accuracy than 

the original method. The accuracy of the new method is demonstrated under 

two cases of inputs, general bandlimited and harmonic instances. This 

chapter also demonstrated, the existence of a truncated convergent Volterra 

series, of extremely high order around severe nonlinear behaviour that was 

previously only argued theoretically and was deemed impossible or 

impractical to achieve practically. This was shown using the NOFRFs, which is 

based on the Volterra series, evaluated using the M-LS method. This is a 

significant manifestation of the numerical accuracy in the M-LS method and 
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the efficiency of using the NOFRFs for nonlinear systems analysis now 

possible in the case of severe nonlinear behaviour. 

 

• Chapter 6: presents an identification methodology, based on other previous 

works that can be used in CM-FD mitigating the concerns mentioned earlier 

in Chapter 1 Section 1.2. Therefore, a new identification methodology which 

is an extension to an already existing method is proposed to produce models 

that tend to be dynamically optimum. Furthermore, some steps that need to 

be considered when using System Identification is introduced, in order to 

address the issues mentioned in Chapter 1 of this thesis. 

 

• Chapter 7: presents a novel implementation of System Identification and 

Frequency Response Analysis, on a recently proposed new technology called 

Low Frequency (LF) RFID wireless eddy current probing, for non-invasive 

SHM. It is shown through characterisation of defects on metal samples, LF 

RFID wireless eddy current probing technology coupled with System 

Identification and Frequency Response Analysis has the clear potential of 

being a new technology in SHM.     

 

• Chapter 8: provides concluding remarks for the work presented in this study 

and the future direction of research heading from the work are highlighted.     

 

1.5 Summary of contributions and research outputs  

Novel contributions that stem from the work conducted in the current study are listed 

below: 

1. Chapter 5: A new and effective method that mitigates the numerical 

inaccuracies of the original method of evaluating NOFRFs using just the 

system input-output data has been developed. The numerical accuracy 

achieved by this method is demonstrated under the instance of two different 

types of inputs; general bandlimited and harmonic inputs. It is shown that 

the new method (M-LS method) evaluates NOFRFs with significant accuracy. 

Therefore, the NOFRFs can be used to decompose the output of a nonlinear 

system to its respective output nonlinearities, in the frequency domain. 

Hence to facilitate practical nonlinear system analysis with applications 

including engineering system Fault Diagnosis and SHM. The chapter also 

presents for the first time, the existence of a convergent Volterra series, 

around the regions of severe nonlinear behaviour. Such an existence was only 

theoretically argued in the literature and was considered impossible or 

impractical to achieve. This is, because of the extremely high order required 

to reach such a convergence, due to the computational efforts needed. 

Therefore, in previous studies, the regions of severe nonlinear behaviour 

were not possible to be studied in a pure Frequency Response Analysis 
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framework. However, explicitly, because of the numerical accuracy attained 

by the M-LS method and the NOFRFs being one-dimensional Volterra series 

based frequency functions. It was demonstrated practically, that a 

convergent Volterra series indeed exists in severe nonlinear cases because of 

the convergence achieved by the NOFRFs. This enables the study of severe 

nonlinear behaviour, in a Frequency Response Analysis framework and the 

analysis, design and Fault Diagnosis of such systems.  

 

2. Chapter 6: This chapter proposes a novel method to System Identification, in 

the form of extending an already existing method, in order to achieve models 

that tend to be dynamically optimum. Furthermore, in a CM-FD point of view, 

a novel System Identification methodology is proposed in considering 

previous work done in the field of System Identification, to address the 

concerns mentioned in Chapter 1 of this thesis. These concerns specifically 

relate to using System Identification for CM-FD. Addressing these concerns 

facilitates; the use of a control systems analysis based approach to CM-FD 

through System Identification and Frequency Response Analysis. 

 

3. Chapter 7: In this chapter, the initial investigation of potential new 

technology in SHM is presented. Data on metal samples are collected, using 

a recently proposed technology on non-invasive SHM called LF RFID based 

wireless eddy current probing.  The data is processed and features are 

obtained using System Identification and Frequency Response Analysis. The 

results obtained illustrate a clear indication of this new implementation being 

a potential new technology in the field of SHM.                

 

Based on the work conducted in Chapter 5; on the formulation of the M-LS method. A 

conference paper has been accepted and published.  

• S. R. A. S. Gunawardena and Z. Q. Lang, "An Effective Method for Evaluation of the 

Nonlinear Output Frequency Response Functions from System Input-Output 

Data," 2018 UKACC 12th International Conference on Control (CONTROL), 

Sheffield, 2018, pp. 134-139. 

Furthermore, on the work presented in this chapter regarding the use of NOFRFs on the 

analysis of severe nonlinear systems will be presented in a journal in the future.  
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Chapter 2  

 

Condition Monitoring and Fault 

Diagnosis – Brief Overview and a 

Control Systems Approach 
 

2.1 Introduction 

Throughout the developments in the field of CM-FD, basic terminology and concepts 

have been introduced to categorise different types of faults and the different stages 

involved in Condition Monitoring and Fault Diagnosis. The chapter briefly overlooks at the 

different terminology used and various approaches to Fault Diagnosis and introduces the 

recently proposed control systems analysis approach to CM-FD. The main focus on the 

work undertaken in the current study is this new approach. Advantages and 

disadvantages of the currently available and the industry standard methods to CM-FD are 

reviewed in brief and the use of hybrid versions of these approaches are highlighted. The 

control systems analysis based approach of System Identification and Frequency 

Response Analysis could be looked at in the perspective of being one such hybrid 

approach, in which being a purely data-driven, model-based signal processing method.   

 The clear potential of the new approach is highlighted, especially with regard to the 

dynamic nature of faults. Faults and off-spec conditions induce dynamic changes to the 

system concerned. As such, these dynamic changes can be observed and analysed using 

a systems perspective in which the system is considered in its entirety as a black-box. This 

systems perspective to CM-FD is the motivation behind the use of a control systems 

analysis approach to diagnosing faults and the monitoring of the current condition of 

engineering systems.  
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2.2 A brief overview of Fault Diagnosis, isolation and 

Condition Monitoring 

The process of diagnosing faults can be generally broken down into three important 

steps [1], [5], [7]. 

1) Fault detection.  

The stage at which it is detected whether a problem has arisen or is about to arise. 

In this particular stage, the root cause of the fault is not established. 

2) Fault isolation. 

Using the information collected from the system, the procedure of classification 

of what individual faults that have occurred is determined in this stage. 

3) Fault analysis or identification. 

The procedure of identifying the root cause of the fault is carried out where either 

preventive or remedial measures could be taken. It is in this stage the type of 

fault, its severity and location are determined.  

In particular to what functions a Fault Diagnosis system provides, the process is known as 

Fault Detection, Fault Detection and Isolation (FDI) or Fault Detection, Isolation and 

Analysis (FDIA) [7]. In the literature, however, at times both FDI and FDIA are commonly 

referred to as FDI.    

Faults that affects a system as a whole, can be categorically separated into two main 

types; 

• Additive faults. 

These type of faults affects a system as an addition to the system output by an 

external influence. Essentially the fault signal is added to the system, for 

example, a sensor fault. 

• Multiplicative faults. 

This type of fault acts as parameter changes in the system, where the fault 

influences a variable as a multiplication. This can be translated into an internal 

component of the system being affected. 

 

 

System 

Fault 

Input Output 
System 

Fault 

Input Output 
+ 

Figure 2.1: Example of an additive fault (left) and a multiplicative fault (right). 
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Faults are further categorised within the above mentioned two types according to the 

time dependency of a fault [8] as follows. 

• Abrupt fault: Fault takes the form as a stepwise function. It affects the monitoring 

fault feature as a bias. 

• Incipient fault: Fault increases in a linear manner as time increases, such as a 

ramp. Brings about a drift effect on the monitoring feature. 

• Intermittent fault: A collection of impulses with different amplitudes. 

 

 

Figure 2.2: Illustration of the effect of the time-dependent behaviour of faults on the 

monitoring fault feature  f. (a) abrupt fault, (b) incipient fault and (c) intermittent fault  

[36]. 

 

Throughout the literature [1], [4], [7], [36]–[41] the performance of CM-FD schemes 

are determined by the concepts of fault detectability and fault isolability;   

• Fault detectability: Detectability of faults in the presence of noise, uncertainties 

and unknown disturbances. 

• Fault isolability (ability to isolate a fault): Clear identification and classification of 

a fault that has occurred, even in the presence of other fault occurrences. 

Expanding upon these two concepts the respective authors of [1] and [4] have outlined 

the desirable qualities that should be expected from a fault diagnostic system. A complete 

CM-FD framework should possess these qualities to be considered as a good CM-FD 

method [4]. These qualities are reflected throughout every stage of the Condition 

Monitoring and Fault Diagnosis process. The significant ones that generally apply to most 

techniques are summarised below. 

• Quick detection and diagnosis: Ability to detect and diagnose faults in a timely 

fashion. 

• Precise isolation: Ability to clearly distinguish between the occurred faults. 

• Robustness: Accuracy of diagnosis in the presence of noise and uncertainties. 

• Novelty identifiability: Identification and classification of unknown or new faults. 

• Classification error estimate: Ability to identify the reliability of decisions given. 

• Adaptability: Identifying and easy adaptation to changing environments that 

could change operating conditions. 

• Explanation facility: Capability to clarify the reason for the faults that have arisen. 
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• Multiple fault identifiability: Identification of multiple faults that occurred 

simultaneously. 

 

2.3 Outline of different types of Condition Monitoring and 

Fault Diagnosis schemes 

 

 

Condition Monitoring and Fault Diagnosis schemes and methods can be categorized 

as shown in Figure 2.3. From these different CM-FD schemes that are well-established in 

the industry, the most popular methods of CM-FD [1], [6]–[8], [22], [23], [42] are briefly 

summarised as follows; 

• Model-based CM-FD methods: in general contains a bank of models in which a 

nominal model (no faults) and different fault models (each model contains a 

complete system model with a specific fault induced) are run in parallel with the 

actual system to generate a residual vector, where a set of residuals or errors 

between each model output in the model bank and the actual system, is used for 

FD.  

• Multivariate statistics based CM-FD methods: real-time data from the system 

inputs and outputs are compared using multivariate statistics with a bank of 

system input-output data that is already available.  This bank of data contains 

data from nominal operations as well as specific fault operations.  

• Signal processing methods: use traditional signal analysis tools, such as signal 

frequency spectrum, on the system output for FD and CM.  

• Knowledge-based CM-FD methods: using expert knowledge about the system 

and its faults to diagnose faults using neural networks, fuzzy systems etc.   

Condition Monitoring and Fault 

Diagnosis 

Multivariate 

statistics 

based 

Signal 

processing 

techniques 

Knowledge 

based (expert 

systems) 

Hardware 

Redundancy 

schemes  

Plausibility 

test 

Data-driven 

methods 

Model-based 

methods 

Figure 2.3: Classification of Condition Monitoring and Fault Diagnosis schemes. 
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A brief overview of the different pros and cons, of these CM-FD schemes are 

mentioned in Table 1. Various developments are taking place in the field of FD and CM 

and numerous techniques are being proposed for eliminating many of the disadvantages 

present in current methods. However, many drawbacks still exist [5]–[7], [43] and 

continuous improvements in FD and CM methods are required to overcome these 

disadvantages. This is in reason to keep in pace with the development of more complex 

and large-scale systems in the industry.     

 

Table 1: Pros and Cons of Fault Diagnosis schemes [5]–[7], [42], [44] 

Fault Diagnosis scheme Advantages Disadvantages 

Hardware redundancy 

scheme 

High reliability High cost 

 

Direct fault isolation 

Plausibility test Faults can be categorized according 

to physical laws 

Limited efficiency in 

complex systems 

Less adaptability 

Less novelty detection 

Model-based  High effectiveness in dynamic 

processors 

Efficiency limited to the 

details in plant model 

embedded  

Robust against noise and uncertainty, 

depending on the observer that is 

used to identify faults   

Input signal not exciting 

all dynamics 

Less novelty detection 

in physical models 

Multivariate statistics 

based 

Ability to handle large amounts of 

high dimensional data 

Availability of large 

amounts of data 

Requires lesser prior information 

about the process 

Mainly applied to static 

processes 

Signal processing  Efficiency in steady state situations Limited efficiency in 

dynamic systems 
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An ideal CM-FD framework should be robust against noise and disturbances while 

maintaining sensitivity towards all types of system-wide faults. Furthermore, the 

framework should be sensitive to significant changes in the system to monitor its 

condition or progression towards faults. These could be system wide parameter changes, 

sensor faults and other additional system component faults. However, this should be 

achieved without any occurrences of false alarms or exhibiting false conditions about the 

system [5–10,12,26,27]. These considerations are a reflection of the qualities a CM-FD 

method should attain as discussed in the previous section.  

Achieving the above-mentioned considerations are at times a compromise in the 

individual FD schemes. For instance, model-based Fault Diagnosis systems require prior 

information about the system and possible faults to build accurate models for good fault 

detectability and disturbance rejection [37], [46]. Whilst multivariate statistics based 

methods at times require large amounts of data depending on the complexity of the 

system. This data has to contain both healthy state and faulty state data in order to 

identify faults utilising multivariate statistics [6], [47]. However, [6], [48]–[51] have 

proposed new hybrid CM-FD schemes through the integration of data-driven methods for 

fault isolation and model-based methods for fault detection to attain a good compromise 

between the qualities mentioned before. Therefore, the hybrid methods for CM-FD are 

designed in such a way that they utilise the advantages of more than one methodology to 

overcome some of the individual disadvantages in each respective scheme. Thus, much 

of the research in the field is concentrated on these hybrid techniques to minimize the 

disadvantages of individual FD schemes [4], [52], [53]. 

Hybrid CM-FD techniques based on data-driven model parameter estimation 

approaches have been introduced in the past decade or so and is progressing to be a 

popular area of research in the field [15], [45], [54]–[60]. These range from subspace 

identification techniques, used in extracting state-space models [14], [61]–[63], to System 

Identification techniques which are used in the extraction of linear and nonlinear 

autoregressive time series models [8], [45], [52], [54], [55], [64]. These identified models 

Not robust against noise 

or disturbances 

Knowledge-based 

 

Applicable in situations where high-

fidelity mathematical models are not 

available. 

Expert knowledge about 

faults is required. 

Robust against noise and 

uncertainties 

Overfitting of data 

Training of complex 

model structures 
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are utilized for the purpose of fault detection through either residual generation between 

the model and the actual system or as parameter comparisons [6]–[8], [10], [25], [45], 

[65]. This is similar to traditional model-based FDI methods however, the model in these 

methods are extracted through data-driven model identification techniques. In traditional 

model based FDI, the model is obtained through ordinary differential/difference 

equations (ODEs), which are derived from physical equations and first principles.  

The following section of this chapter will briefly discuss some of the recent 

developments of the data-driven model identification approaches for CM-FD. This section 

also aims to introduce a new data-driven approach for CM-FD that has been recently 

proposed. This new approach is based on a method used in the field of control engineering 

for frequency domain analysis and design of control systems. 

 

2.4 A control systems analysis approach to Condition 

Monitoring and Fault Diagnosis 

A system perspective, system viewpoint or systems approach, is observing all the sub-

procedures or sub-processes or sub-systems within as one whole entity, considering only 

the main inputs and outputs [66]–[68]. The figure below illustrates this briefly. 

 

 

 

 

 

 

 

 

 

 

 

Lang et al. in [66] presented a systems approach to PEC (Pulse Eddy Current) based 

NDE&T for structural defect detection, where a data-driven parameter estimation of a  

continuous-time transfer function model was first extracted and its parameters were used 

as fault specific features. Usually, PEC based NDE&T methods utilize only the output 

response of the PEC probe for diagnosis [66]. The proposed method in [66] uses both the 

excitation input and the system response for feature extraction by identifying a model 

and using the model parameters as fault specific features. Similarly, Munoz et al. in [69] 

proposed an ultrasound-based NDE&T technique coupled with ARX models to diagnose 

Figure 2.4: Example of a process and its sub processes in a system’s perspective. The 

dotted box indicates that complete internal sub-processes are to be considered as just 

one system. The sub-processes or the sub-systems contained within the whole process 

are denoted as SP 

Main 

Outputs 

Main 

Input 

 
SP 3 

SP 4 

SP 2 SP 1 

Sub-process/Sub-system - (SP) 

+ 
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structural faults in wind turbines. This was conducted utilizing residuals generated 

between an ARX model and the actual system outputs. The ARX model used was identified 

when the system was in a nominal state or normal state. Structural faults were identified 

when the mean of the residuals generated deviates from zero. In the same manner, 

Fassois et al. in [14] have used the ARX model based residual generations to identify faults 

in structures subjected to vibrations.  

In the case of nonlinear systems, Fault Diagnosis studies have been conducted using 

the NARX model. Dimogianopoulos et al. in [56] have utilised NARX models for the Fault 

Diagnosis of aircraft systems. The authors carried out the diagnosis of faults by using the 

degree of correlation in the residuals between a previously identified system - nominal 

state NARX predictor model and the actual system outputs. Furthermore, the authors 

presented another method in the same paper where the residuals were used to identify 

a NAR (Nonlinear Auto-Regressive) model. The parameters of the NAR model are then 

compared with baseline NAR parameters for the diagnosis of faults. A similar Fault 

Diagnosis method for sensor and actuator faults in automotive engines based on residuals 

generated between a NARMAX model of the nominal system and the actual system was 

presented by Krishnaswami et al. in [70]. However, in this method, the residuals were 

processed using a certain form of nonlinear parity equations for the diagnosis of faults. 

Black-box time-series models, such as ARX and NARX models, do not require much 

prior information about the physical characteristics of the system under consideration, as 

these are obtained from the system input-output time-series data itself [12]. This is 

because time-series models are based on the correlations between the signals involved 

with the system. Hence, the progress of the dynamics or states of the system in time is 

related to the past changes of these correlations backwards in time [24], [71], [72]. 

However, it is a well-known fact that a discrete-time representation of a continuous-time 

system does not have a unique solution [19], [24], [72]. Especially in the case of nonlinear 

systems, there may exist more than one solution to the identification of the model [24]. 

But given that, the model identification is done appropriately, and the model can correctly 

capture the dynamics of the system. The corresponding frequency response 

characteristics remain unchanged for all local solutions [19].  

Frequency domain characteristics of an input-output system have: a direct 

relationship to its dynamics. This relationship has been used in the field of control systems 

engineering to conduct Frequency Response Analysis of dynamic systems. Frequency 

Response Analysis, is a well-established methodology of analysing and interpreting 

system dynamics for the purpose of designing controllers and compensators to achieve 

desired system responses and system stability [72]–[75]. Hence, by means of Frequency 

Response Analysis of an identified model of a system, the dynamics of the actual system 

can be observed in the frequency domain. Consequently, faults and other off-specification 

conditions that induce dynamic changes in a system can be detected by observing the 

frequency response of the system. Thus, the frequency domain characteristics of the 

system can be used as fault inspecting features. These features are directly linked to the 

system dynamics and will be fault specific since faults or off-specification conditions may 

dynamically affect the system significantly at certain frequencies relative to other faults. 
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Because of this, a dynamic interrelationship between the inspecting features and the 

faults could be comprehended which will be beneficial in fault isolation. Therefore, the 

system frequency response is a better approach and fault features obtained from it are 

better fault indicators than the direct use of black-box models for CM-FD [19], [24]. As a 

result, a comprehensive CM-FD framework for dynamic systems based on System 

Identification and Frequency Response Analysis has clear potential. Such a CM-FD 

framework essentially captures the current status of the system dynamics in the form of 

a time-series model through System Identification. These dynamics are observed by 

projecting the identified model to the frequency domain using Frequency Response 

Analysis. Therefore, any changes to these dynamics are observed via the Frequency 

Response Analysis of the model. If faults and different off-specification conditions of the 

system induce unique dynamic changes in the given system, then these faults and 

conditions could be detected and isolated successfully. Figure 2.5 illustrates the basic 

layout of such a framework. It should be noted that this type of CM-FD method is only 

used for multiplicative fault types, i.e. faults that affect the internal components of a 

system. 

The Frequency Response Analysis of the identified model is conducted depending on 

the complexity of the time-series model obtained. In the case of linear auto-regressive 

models, the well-established Frequency Response Functions (FRFs) are used for the 

Frequency Response Analysis. The extensions of the linear FRFs to the nonlinear case, the 

Nonlinear Output Frequency Response Functions (NOFRFs), first proposed in [29], is used 

for the Frequency Response Analysis of non-linear auto-regressive models.   
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Actual System Inputs Outputs 

Feature extraction 

via Frequency 

response analysis 

System 

Identification 

System model 

Fault inspecting features 

Feature processing  

Baseline set of 

frequency response 

features of the 

system in normal and 

faulty states 
 

Diagnosis result 

Figure 2.5: Basic layout of a CM-FD framework based on System Identification and 

frequency response analysis. Through System Identification the current status of the 

system dynamics is captured in the form of a time-series black-box model (ARX/NARX).  

The black-box model is then projected to the frequency domain via the frequency 

response analysis of the model (FRF/NOFRF). The features extracted from frequency 

response analysis is then compared with a set of prior obtained baseline features for 

processing and diagnosing faults.   
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2.5 Summary  

This chapter aims to briefly introduce the terminologies and concepts that are widely 

used in the field of Condition Monitoring and Fault Diagnosis. Established approaches to 

CM-FD is overviewed in brief with regard to the various advantages and disadvantages 

the respective methods possess. The current progress in CM-FD using System 

Identification is covered in detail to illustrate the current state of the art in this type of 

FDI method and its advantages. Furthermore, the chapter introduces the recently 

proposed control systems analysis approach to CM-FD through System Identification and 

Frequency Response Analysis. The feasibility of such a CM-FD methodology was discussed 

in a qualitative manner. This was with regard to the underlying essence in a control 

systems analysis approach and the dynamic changes faults and off-spec conditions induce. 

The chapter overviewed the current progress of CM-FD through System Identification and 

Frequency Response Analysis while highlighting studies that have experimentally 

validated this concept for practical applications. The current study focuses on this 

approach in the context of the concerns highlighted in Chapter 1.      
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Chapter 3  

 

Introduction to System Identification 
 

3.1 Introduction 

System Identification, is concerned with obtaining mathematical models of dynamic 

systems from the input-output data obtained from the system. Essentially the 

mathematical models attained through the System Identification process should be able 

to map the input data to the output data of the system [24], [72]. In addition, it is crucial 

that the model should be able to provide a description of the underlying system 

behaviour, in order to conduct an analysis of the system dynamics, for the purpose of 

design, control [76], [77] and Fault Diagnosis [8]. 

This chapter aims to provide an outline of the process of linear and non-linear System 

Identification in the context of discrete-time black-box modelling. As mentioned in 

previous chapters, in line with the research conducted in the current study, for the 

purpose of Condition Monitoring and Fault Diagnosis, the system is considered as a black 

box. This is, because in the modelling process, when the system is regarded as a black-

box, knowledge of the physical properties of the system are not considered. Since the 

underlying system dynamics will be captured within the black-box model during the 

identification process. The knowledge of the physical nature of the system or its faults is 

not completely required as this will be obtained from the input-output data generated by 

the system. Also, the use of black-box models will facilitate the analysis of system 

characteristics which cannot be easily represented using physical equations [8], [12]. 

Various types of black-box model structures under different model classes such as; linear, 

non-linear, time-varying, time-invariant, discrete-time, continuous-time, parametric, non-

parametric, etc. are available [78].  

In line with the research undertaken and the work presented, this chapter reviews a 

number of linear and non-linear, discrete-time parametric, black-box model structures. 

Because of the use of parametric models and since the parameters are estimated from 

data parameter estimation and model structure detection are both significant. Essentially 

for accurate Condition Monitoring and Fault Diagnosis. The System Identification process 

needs to capture the true dynamics of the system from the input-output data. This has a 

direct relation to the model structure detection stage and thus attaining of a parsimonious 

representation of the system [24], [68], [72]. Therefore, the model structure detection 

process is of vital importance and is the most challenging stage of the identification 

process. Model structure detection involves in selecting the significant set of model terms, 

by searching from a pool of terms, which can best describe the input-output relationship 

of the system in a parsimonious manner. There are a number of commonly used model 
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structure detection search methods. These methods use certain criteria for the selection 

of terms. The criteria utilized - in these search methods usually come under two main 

modelling objectives, namely, Prediction Error Minimisation (PEM) and Simulation Error 

Minimisation (SEM) [24], [72], [79], [80]. These common search methods and the criteria 

used for model structure detection are also discussed.     

 

3.2 The dynamic nature of linear and non-linear systems  

Given that a system is time-invariant, i.e. the dynamic properties of the system 

remains unchanged over time, and that it satisfies the superposition principle, can be 

defined as linear time-invariant (LTI) systems [72]. Moreover, given the LTI system is 

casual, where the output at a given time is dependent only on the input up to that point 

in time. Then for time t , the system can be well described as a convolution between the 

impulse response ( )h t  of the system and the input signal ( )u t  as; 

 
0

( ) ( ) ( )y t h u t d


  


=

= −  (3.1) 

where ( )y t  is the system output and   is a time delay index. The impulse response 

defines the time domain characteristics of the system and it is the response of the system 

when excited by a unit impulse. Traditional systems theory based on LTI systems is a well-

established area of research. However, it should be noted that usually, the LTI property 

of a system is an approximation which is often justified. 

Non-linear systems are broadly defined as systems that do not hold the superposition 

principle and the behaviour of such a system is much more complex. In the case of LTI 

systems, the output frequency components of the output response are the same as the 

input. However, in non-linear systems, the output response is much richer in its frequency 

components than the respective input signal. This is because nonlinear systems have the 

ability to transfer energy between frequency components and also to frequency 

components that are not present in the input signal [29]. Non-linear systems can be 

described in the time domain, by extending the concept of convolutional integrals for LTI 

systems, equation (3.1), by a series of multi-dimensional convolution integrals, known as 

- the Volterra series. A class of nonlinear systems that are stable at zero equilibrium can 

be explained by the Volterra series in the neighbourhood of the equilibrium as shown in 

equation (3.2) below. 

 

 
1

1
1

( ) ( )

( ) ( , , ) ( )

N

n

n

n

n n n i i
i

y t y t

y t h u t d   

=

+ +

=
− −


=



 = −





 

 (3.2) 

where 
1( , , )n nh    is known as the nth order Volterra kernel representing the time 

domain characteristics of the nth order system nonlinearity, ( )y t  is the system output, 
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( )u t  is the system input, ( )ny t  is called the nth order nonlinear output or the output of 

the nth order nonlinearity of the system where 1, ,n N=  and N  is the highest order of 

nonlinearity [81].  

 

3.3 The procedure of System Identification  

As mentioned before System Identification involves in the development of 

mathematical models for dynamic systems to attain two main objectives; 

• Accurate mapping of the input(s) to the output(s) of the system under 

consideration with the ability to predict new and unseen data. 

 

• Capturing the underlying dynamics of the system within the model. 

The latter objective is of vital importance in the context of CM-FD as system-wide faults 

and changes in the condition of the system affect the system dynamics (see Section 2.4 of 

Chapter 2). Therefore, the identification procedure needs to be able to capture the 

dynamics of the given system accurately in order to precisely assess the system 

operational conditions.     

The methodical approach to System Identification involves the solution of four key 

problems [24], [72]. These key problems are: at times solved together, or iteratively 

depending on the type of identification algorithm and the strategy used [24], [72], [74], 

[82]–[87]. These four steps are summarised below and will be discussed in detail in the 

following sections. 

1) Structure detection 

Depending on the type of system and the data acquired, determination of an 

appropriate structure that parsimoniously maps the input-output variables. 

 

2) Parameter estimation 

For a given model structure the estimation of the parameters that weight 

each model term. 

 

3) Model selection 

Selecting the best model that attains a good bias-variance compromise from 

a set of competing models. 

  

4) Model validation 

Validation of the selected model in accordance with performance criteria and 

validation tests to attain confidence in the model depending on the intended 

purpose of modelling. 
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3.4  Model structure representation 

The System Identification literature offers a variety of different black-box modelling 

structures such as; Volterra series, neural networks, fuzzy models and a host of linear and 

nonlinear auto-regressive time-series model structures [24], [72], [88], [89] are to name 

a few. The scope of this overview will focus on the different discrete-time black-box model 

structures based on linear and nonlinear auto-regressive with exogenous input type. 

Considering the types of model structures reviewed in this section the System 

Identification task is to find a certain functional mapping from the past inputs, 

 ( 1) (1), (2), , ( 1)t u u u t− = −u  and past outputs,  ( 1) (1), (2), , ( 1)t y y y t− = −y  to a 

future output; 

 ( ) ( ( 1) , ( 1) ) ( )y t f t t e t= − − +u y  (3.3) 

where ( )y t  and ( )u t  are the output and input respectively and ( )e t  is the error 

between the predicted output ( ( 1) , ( 1) )f t t− −u y  and the actual output ( )y t  at the 

time sample t . 

 

3.4.1  Linear black-box models 

A commonly accepted standard in System Identification of a generic linear black-box 

model structure [72] is shown in equation (3.4) below. 

 
( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

B z C z
y t u t e t

F z A z D z A z
= +  (3.4) 

where ( )u t  ,  ( )y t   and ( )e t  are the discretised input, output and noise signal 

respectively at the time step t . 1z−  denotes the backward shift operator where 

1 ( ) ( 1)z y t y t− = − . The noise ( )e t is assumed to be independent, zero-mean and white.  
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 (3.5)      

where  1 1 1 1 1, , , , , , , , , , , , , ,
a b c d fn n n n na a b b c c d d f f   is the set of model 

parameters that appropriately weights the relevant lagged input, output or error terms. 

an , bn , cn , dn  and fn  are non-negative integers which relate to the orders of the 

relevant polynomials and are usually known as the model orders or the model dynamic 

orders. In addition, equation (3.4) can be further simplified as;  



 

 

30 | P a g e  

 

 

 
( )

( )
( ) ( )

B z
G z

F z A z
=  (3.6) 

 
( )

( )
( ) ( )

C z
H z

D z A z
=  (3.7) 

where ( )G z  is the input transfer function that describes the dynamics of the system 

which maps the input ( )u t  to the output ( )y t . Usually, the observed output may contain 

additive noise (due to sampling errors etc.) and other external disturbances which are not 

related to the system being excited by the input ( )u t , i.e. uncorrelated disturbances [72]. 

It is assumed that all such extraneous behaviour to be described by the rational transfer 

function ( )H z . 

Some of the most common linear black-box models such as the Auto-Regressive 

model with eXogenous input (ARX) and the Auto-Regressive Moving Average model with 

eXogenous input (ARMAX) can be derived from the generic representation in equation 

(3.4) as shown below. 

 

ARX model: By equating ( ) ( ) ( ) 1C z D z F z= = =  in equation (3.4); 

 
( ) 1

( ) ( ) ( )
( ) ( )

B z
y t u t e t

A z A z
= +  (3.8) 

is the transfer function description of the ARX model. By substituting appropriately from 

equation (3.5) into equation (3.8) and re-arranging, the time-series representation form 

of the ARX model shown in equation (3.8) can be obtained as;   

 1 1( ) ( 1) ( ) ( 1) ( ) ( )
a bn a n by t a y t a y t n b u t b u t n e t= − − −− − + − ++ − +  (3.9) 

 

ARMAX model: By equating ( ) ( ) 1D z F z= =  in equation (3.4) the transfer function 

representation of the ARMAX model can be obtained as shown in equation (3.10) below.  

 
( ) ( )

( ) ( ) ( )
( ) ( )

B z C z
y t u t e t

A z A z
= +  (3.10) 

By substituting the relevant polynomials from equation (3.5) in equation (3.10) the time-

series description of the ARMAX model can be attained as; 

            
1 1

1

( ) ( 1) ( ) ( 1) ( )
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a b

c

n a n b

n c
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3.4.2  Non-linear black-box models    

When a system exhibits nonlinear characteristics (see Section 3.2), the model 

structure to be used to represent such a system must also be nonlinear in order to 

accurately model the system dynamics. The nonlinear extension to the linear ARX model 

given by equation (3.9), the Nonlinear Auto-Regressive with eXogenous input (NARX) 

model [90] has been widely used in research in model identification, analysis and control 

of a variety of complex nonlinear systems [91]–[99]. The NARX model can be represented 

by the difference equation; 

 ( ) ( ( ) ) ( )y t f x t e t= +  (3.12) 

where, 

 ( ) ( ( 1), , ( ), ( 1), , ( ) )y ux t y t y t n u t u t n= − − − −  (3.13) 

yn  and un  denotes the maximum lags in the output and input respectively. The nonlinear 

dynamics are described by the nonlinear mapping function (.)f . The most common form 

of representing the NARX model structure is the polynomial NARX model [24] as shown 

in equation (3.14) below. 
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



=

+

+
= = = = = = +

= +



=



  
 =     

   

− −



     

 (3.14) 

 

where n  is the polynomial order in which 1, , pn N=  and pN  is the highest degree of 

polynomial nonlinearity or the maximum polynomial order. q n p= − . ( ( ) )n x t  is the thn  

order part of the polynomial NARX model. , ( )p qC  refers to the model parameters of the 

thn  degree polynomial terms. For 1n= , 
1( ( ) )x t  will contain all the linear combinations 

of the input and output lagged terms while ( ( ) )n x t  for 2n  will contain the nonlinear 

terms resulting from the thn  order nonlinear polynomial combinations of different input 

and output lagged terms.  

The extension of the linear model structure ARMAX to the nonlinear instance, the 

Nonlinear Auto-Regressive Moving Average with eXogenous (NARMAX) model is also 

widely used in modelling nonlinear systems [24]. The NARMAX model can be represented 

by equation (3.12) where instead; 

 

 ( ) ( ( 1), , ( ), ( 1), , ( ), ( 1), , ( ) )y u cx t y t y t n u t u t n e t e t n= − − − − − −  (3.15) 
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in which cn  denotes the maximum lag in the error term ( )e t . The polynomial NARX 

polynomial model given in equation (3.14) is composed of linear and nonlinear polynomial 

combinations of lagged output and input terms. Likewise, the polynomial NARMAX model 

will be a composition of linear and nonlinear polynomial combinations of the lagged 

output, input and error terms.  

A compact parsimonious description of a wide range of nonlinear systems can be 

modelled by the NARMAX representation. This possesses a great advantage in the context 

of CM-FD. This is because NARMAX models can be used to describe complex systems and 

its faults of nonlinear in nature easily without any prior knowledge of the physics involved 

due to the black-box character of NARMAX models.         

      

3.5 Parameter estimation 

Parameter estimation is the process of estimating a local unbiased solution for a 

parameterized model structure from a set of input and output data acquired from a 

system.  

Depending on the system under consideration, the model structure used and the 

main objective of using model identification, a variety of approaches can be taken for 

parameter estimation. Some of the commonly used methods are the least-squares based 

methods, recursive estimation, maximum likelihood, Bayesian estimation and 

evolutionary algorithms. These different methods have been successfully used to obtain 

unbiased estimates in both linear and nonlinear systems and more details about these 

methods can be found in [24], [72], [100]–[104]. The scope of the research undertaken 

falls under the least-squares (LS) based methods and recursive estimation methods based 

on recursive least squares (RLS). Hence this section of the thesis aims to review these two 

types of parameter estimation methods.  

The black-box time-series models reviewed earlier in this chapter defined in 

equations (3.9), (3.11), (3.14) and (3.15) can be represented in a linear vector equation 

form as;  

 ( ) ( ) ( )y t t e t= +x θ  (3.16) 

where ( )tx  is the vector of lagged variables, also known as the regression vector and θ  

is the parameter vector. Depending on the type of model structure both ( )tx  and θ  will 

take different forms. Denote;  

  ( ) ( 1), , ( )y yt y t y t n = − − φ  (3.17) 

  ( ) ( 1), , ( )u ut u t u t n= − −φ  (3.18) 

and 

  ( ) ( 1), , ( )c ct e t e t n= − −φ  (3.19) 
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In equations (3.17)-(3.19) above,  yn ,  un  and  cn   signifies the maximum lags in the 

output, input and the error respectively. Thus the ARX, ARMAX, NARX and NARMAX model 

structures, represented in equations (3.9), (3.11), (3.14) and (3.15) respectively can also 

be represented in the vector form as given by equation (3.16)  as shown below. 

 

• ARX model structure:   

  ( ) ( ) , ( ) ,
y

y u

u

t t t
 

 = − =   
 

θ
x φ φ θ

θ
 (3.20) 

where  yθ  and  uθ  are the corresponding parameters that weight the output and 

input lag terms in  ( )y tφ  and  ( )u tφ  contained in  ( )tx  respectively.  

 

 

• ARMAX model structure: 

 ( ) ( ) , ( ) , ( ) ,

y

y u c u

c

t t t t

 
 

 = − =   
 
 

θ

x φ φ φ θ θ

θ

 (3.21) 

where cθ  corresponds to the parameters that weight the lagged error terms in 

( )c tφ  contained in ( )tx .  

 

 

• NARX model structure: 

 
 

1

1

2

1 2

( ) ( ) , ( )

( ) ( ) , ( ) , , ( ) ,

y u

N

N

t t t

t t t t

  = − 
  
  

 = =
 
 
 

x φ φ

θ

θ
x x x x θ

θ

 (3.22) 

where ( )n tx  for 1, , pn N=  contains the lagged input-output terms relating to 

thn  degree polynomial NARX model. For 2n  , the vector ( )n tx  is comprised of 

the nonlinear lagged terms resulting from the thn  order nonlinear combinations 

between all the terms within the vector ( ) , ( )y ut t  φ φ . nθ  corresponds to the 

parameters that weight the respective lagged terms contained in ( )n tx .          
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• NARMAX model structure: 

 
 

1

1

2

1 2

( ) ( ) , ( ) , ( )

( ) ( ) , ( ) , , ( ) ,

y u c

N

N

t t t t

t t t t

  = − 
  
  

 = =
 
 
 

x φ φ φ

θ

θ
x x x x θ

θ

 (3.23) 

Similar to the NARX case above however, in the NARMAX instance for 2n   

where 1, , pn N= , the vector ( )n tx  is comprised of the nonlinear lagged terms 

resulting from the thn  order nonlinear combinations between all the terms within 

the vector ( ) , ( ) , ( )y u ct t t  φ φ φ . nθ  corresponds to the parameters that weight 

the respective lagged terms contained in ( )n tx .          

 

The least-squares (LS) method and its variants are the most popular approaches for 

parameter estimation of model structures whose prediction error term,  ( )e t , does not 

depend on previous errors are known as models which are linear-in-the parameters. The 

ARX and the polynomial NARX models both fall under this class, see equations (3.9) and 

(3.13) respectively. This, however, is not the case with the ARMAX and the NARMAX 

models, as seen from equations (3.11) and (3.15). Thus, both ARMAX and NARMAX 

models fall under the category of nonlinear-in-the parameters and require the use of 

recursive parameter estimation methods. 

 

3.5.1 Least squares      

Linear-in-the parameters models can be represented in the matrix format. Therefore, 

a linear regression model can be formulated given past observations of inputs and 

outputs, for L  number of observations at discrete-time sample t   let; 

 

(1)

( )L

 
 

=
 
  

x

Φ

x

 (3.24) 

and 

 

(1)

( )

y

y L

 
 

=
 
  

Y  (3.25) 

where Φ  is the regression matrix containing all the lagged input and output terms. Y  is 

the vector containing L  samples of the observed output of the system. Therefore, the 

linear regression model is described as;  
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 = +Y Φ θ e  (3.26) 

where θ  contains the parameters of the model that corresponds to the respective lagged 

terms within the regression matrix Φ . For ARX type of models ( )tx , in equation (3.24) 

and θ  in equation (3.25) are defined in equation (3.20) accordingly. Similarly for the NARX 

case the corresponding ( )tx  and θ  to form the regression model are defined in equation 

(3.22) respectively.  The estimation of the unknown true parameter vector θ  can be 

evaluated using the LS method as; 

  
1

T T
−

=θ Φ Φ Φ Y  (3.27) 

where θ  contains the estimated parameters of the would-be actual parameters in θ . 

Given, ˆ( ) ( ) ( )e t y t y t= − , where; 

 ˆ( ) ( )y t t= x θ  (3.28)  

is the model estimated output, also known as the model generated output or the model 

predicted output, resulting from the estimated parameters. θ  will be an unbiased local 

solution to θ  if the resulting ( )e t  is a zero-mean white-noise sequence. 

 

3.5.2 Recursive least squares 

The RLS algorithm evaluates the parameters of a given model recursively at each time 

step t  by minimizing a weighted LS cost function given by; 

                                ( )
2

1

( ) ( ) ( 1)
L

L t
RLS

t

J y t t t −

=

= − − x θ  (3.29) 

where  + , known as the forgetting factor, is the weight that is used which 

exponentially gives a lesser weighting to older error samples. The equations involved with 

the RLS algorithm [100] are given by; 

                               ( ) ( ) ( ) ( 1)e t y t t t= − −x θ  (3.30) 

 ( )
1

( ) ( 1) ( ) ( ) ( 1) ( )Tt t t t t t
−

= − + −k P x x P x  (3.31) 

                                ( )1( ) ( ) ( ) ( 1)t t t t −= − −P I k x P  (3.32) 

                               ( ) ( 1) ( ) ( )t t t e t= − +θ θ k  (3.33) 
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3.6 Model structure detection 

The selecting of a subset of regressors or model terms from a superset of candidate 

regressors and the estimation of the corresponding parameters that describe the system 

behaviour is the task of model structure detection. Depending on the manner in which 

the quality of the model is validated, the model’s application and many other factors 

deem what the best subset of regressors are. This step is of vital importance in the 

identification of both linear and nonlinear models, in order to attain a parsimonious 

model that fits the data well while capturing the underlying dynamics of the system 

present within the data. 

Compared to linear models the task of structure detection in nonlinear models is 

significantly difficult. In the case of polynomial NARX and NARMAX models (see Section 

3.4.2) it is often common to select the relevant model terms from a predefined superset 

of candidate terms [88], [105], [106]. In the case of identifying models for the description 

of linear systems, usually, this superset is small. However, this is not the case with 

nonlinear systems. The search space for a model that can describe a nonlinear system 

rapidly becomes extremely large with the increasing complexity of the system. This can 

be illustrated as follows: considering a superset of all polynomial NARMAX model terms 

resulting from a maximum polynomial order 3pN =  and dynamic orders 

3y u cn n n= = = , the search space is evaluated as [24]; 

 
( )!

! !

p

p

n N
S

n N

+
=  (3.34) 

where 9y u cn n n n= + + = . n  is the total number of linear lagged terms that would give 

the nonlinear model terms resulting from all the possible nonlinear polynomial 

combinations. Thus, the superset of model terms that comprise all the linear and 

nonlinear terms for the above scenario is 220S =  terms. Consequently increasing the 

maximum polynomial order to 4pN =  would result in 715S =  and 5pN =  would result 

in 2002S = . As such, an increase in the maximum polynomial order would rapidly 

increase the search space. Therefore, model structure detection methods are necessary 

in order to find a parsimonious description. Furthermore, in the context of real-time CM-

FD, an efficient algorithm for model structure detection is vital even for linear systems as 

brute force approaches are time-consuming.   

The model structure detection problem has to main categories which are linear and 

nonlinear regression. Linear regression is used for the class of models that are linear-in-

the-parameters where the residual error terms are not a function of the model terms. In 

the case of nonlinear-in-the-parameters nonlinear regression is employed.    

 

 

 



 

 

37 | P a g e  

 

 

3.6.1 Linear regression 

A variety of linear regression approaches are available and some of the commonly 

used methods are as follows: 

 

Exhaustive search 

This method involves the comparison of competing models resulting from all possible 

combinations of terms in the superset of candidate model terms. This is a brute force 

approach and can only be used when the search space is very small because of the 

computational cost required. However, in a general sense when considering CM-FD, due 

to the requirement of a relatively fast assessment of system conditions the use of this 

approach is discouraged.  

 

Forward selection 

Adding of model terms from the superset of candidate model terms; one at a time, 

according to a certain criterion, is known as forward selection. The model is first initialised 

as an empty set of terms. From the superset of candidate model terms, each competing 

term is assessed to see how it increases the quality of the model according to a certain 

measure. Further terms are added, in this manner repeatedly until a specific stopping 

criterion is satisfied.  

 

Backward elimination 

In backward elimination, the model is first initialised as a superset of candidate model 

terms. Each term is eliminated one at a time based on certain criteria. The elimination of 

the term should increase the model quality according to a certain measure. This iterative 

process is terminated if a certain stopping criterion is satisfied. Usually, this approach is 

used as a pruning method for models that result from, for example, forward selection. 

 

Stepwise regression 

An iterative combination of forward selection and backward elimination is involved 

in stepwise regression. This method can result in better models than using backward 

elimination, or forward selection separately [107], because some model terms may 

become redundant at future iterations in the forward selection process [106]. Therefore, 

each time after adding a certain term through forward selection, based on a certain 

criterion backward elimination is performed on the current set of terms included in the 

model. The process is carried out until a stopping criterion is met.   
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3.6.2 Criteria for model structure selection and model structure detection 

algorithms 

As discussed throughout Section 3.6, model structure detection involves in the 

selection of appropriate regressors or model terms based on a certain criterion to improve 

the quality of the model. In this section; two criteria that are commonly used for term 

selection are introduced. 

 

Orthogonal Least Squares and the ERR criterion   

A frequently used method for linear regression is the Orthogonal Least Squares (OLS) 

method. The OLS method is used in combination with the Error Reduction Ratio (ERR) 

criterion [108] for the selection of model terms. In order to assess each term 

independently and sequentially, an orthogonal decomposition of the regression matrix is 

carried out [109]. The ERR  is a measure with the capability of describing the contributions 

made by each model term to the observed output variance [24]. Thus based on the 

contribution to maximise the ERR, model terms are selected accordingly [108].  

Once the regression matrix Φ  is orthogonalised to 
1 , ,

sN
 =  W w w , where 

iw  is 

ith auxiliary orthogonal regressor corresponding to the ith regressor in Φ  where 

1, , si N=  and 
sN  is the total number of regressors, the ERR  relating to the respective 

model term or the regressor is given by; 

 
2 T

i i i
i T

g
ERR =

w w

Y Y
 (3.35) 

where ig  is the auxiliary parameter relating to 
iw .   

The Forward Regression OLS algorithm (FRO) [109], [110] is a model structure 

detection method based on the OLS and the ERR  criterion to efficiently choose regressors 

in a forward selection approach. Model terms (regressors) are added at each step using 

the ERR criterion. The FRO algorithm has been studied extensively in real-world 

applications and is often used as a benchmark because of the wide body of literature 

developed for the identification of NARX and NARMAX models [24]. System Identification 

algorithms such as the FRO method formed around the OLS-ERR strategy fall under the 

PEM approach.  

In practice when the data is not well conditioned, it is difficult to assess the actual 

significance of a model term using the ERR criterion [106]. This is because the ERR is 

dependent on the order in which the terms are selected thus the first few terms selected 

will often be able to explain the observed output variance. Hence, after the first few terms 

are selected the ERR associated with further model terms drops rapidly even though 

those model terms might be of actual importance to explain the system dynamics [106], 

[111]. Therefore, downsampling data is advantageous for structure detection as shown in 

[28].  
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Simulation error minimisation 

An alternative approach to PEM such as the OLS-ERR based methods is the SEM 

approach. Piroddi and Spinelli in [106] and Billings and Mao in [86] have used a SEM 

strategy for System Identification. A model term selection criterion based on this 

approach was proposed in [106] and is known as the Simulation error Reduction Ratio 

(SRR). The SRR selects model terms (regressors) based on the ability to predict future 

data and is given by equation (3.36) below. 

 

 

( )
1(M ) (M )

1
i i

j
T

MSSE MSSE
SRR

L

+−
=

Y Y

 (3.36) 

in which the model obtained at the ith  iteration is Mi  and 
1Mi+

 is the model attained at 

the subsequent iteration with the inclusion of the thj  candidate model term. MSSE  is 

the mean squared simulation error between the observed output and the simulation 

output. The simulation output of a model is also known as the model predicted output. 

Thus, jSRR  is defined as the decrease in the MSSE  attained by the inclusion of the thj  

candidate model term which is normalised against the output variance. It is reported that 

the models with a better long rage prediction accuracy can be attained by using criteria 

based on the model predicted output for model structure detection [86], [106]. However, 

such criteria come with higher computational cost due to the repeated simulations that 

are needed to be done for the assessment of models. 

 

3.6.3 Non-linear regression 

Considering the class of model structures which are nonlinear-in-the-parameters 

such as ARMAX and NARMAX models, nonlinear regression methods are to be used for 

the model structure detection problem of these models. The regression matrix of these 

types of models contains lagged residual error terms, ( )e t i−  where 1, , ci n= . 

Furthermore, these lagged residual error terms are dependent on the model structure 

since ˆ ˆ( ) ( 1) ( 1)e t i y t y t− = − − −  where ˆ( ) ( )y t t= x θ  (see Section 3.5). Therefore, linear 

regression based model structure detection methods and criteria mentioned earlier 

cannot be applied directly to nonlinear regression. In [108], modification to the ERR 

based linear regression procedures is introduced as a solution to the nonlinear regression 

problem. This method is summarised as follows;     

1. Assuming the residual errors to be zero as if identifying a NARX/ARX model, 

detect the model structure and estimate all model parameters which do not 

include any of the residual error terms using OLS-ERR based procedures. 

 

2. Evaluate the residual error, ˆ( )e t , between the observed system output ( )y t   

and the estimated output of the model ˆ( )y t  obtained in step 1. 
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3. Using the same OLS-ERR based procedures detect the structure of the noise 

model (the sub model containing the residual error terms), the MA part of 

NARMAX/ARMAX models and estimate the parameters associated with the 

residual error terms. 

 

4. Repeat steps 2 and 3 iteratively until a certain convergence test is satisfied.  

When identifying noise models, the process model (the sub model containing all 

terms not associated with the residual error terms) is to be first identified. 

 

3.7 Model selection 

The process of model selection is distinctively different from structure detection. 

Model structure detection is the procedure of selecting the appropriate lagged terms to 

be included in the model. Model structure detection algorithms often can provide more 

than one competing model from which to choose. An example of this instance is, by 

varying the ERR threshold in the FRO algorithm, the search path of the algorithm changes 

thus providing different competing models. Model selection is the methodology of 

choosing an appropriate model, from a set of candidate models that is able to predict 

unseen data fairly well while attaining a good bias-variance compromise. 

   

3.7.1 Bias-variance trade-off in models 

Bias and variance in model predictions occur due to different sources of error in the 

modelling process. Simply, bias relates to how the well model fits a certain data set. While 

variance relates to, the flexibility of the model to describe different aspects of a system 

(for example, one model to describe different operating points) [72]. 

 In order for a model to be more flexible or less bias, it needs to be more complex. In 

parametric models, this relates to a higher number of terms [112]. Increasing the number 

of terms reduces the error between the model prediction and the observed value. 

However, this leads to the model fitting the data too well, including the noise (overfitting) 

in the data resulting, in a higher variance. Conversely, decreasing the model number of 

model terms leads to a decreased fit and hence a higher bias but a lower variance.  

Given that a new dataset was obtained when the system was in the same operating 

conditions as the dataset for identification was acquired. The performance of the model 

over this unseen data will be poor in both overly complex and overly simple models. This 

is because an overly simple model will not be able to capture the underlying true dynamics 

of the system and an overly complex model is fitted to random noise sequences [24], [72]. 

Thus, the choice of an appropriate model structure is, therefore, a compromise. This 

trade-off depends on the required purpose of the model [72]. 

AIC (Akaike’s Information Criteria), FPE (Final Prediction Error) and BIC (Bayesian 

Information Criteria) are commonly used model selection criteria. These information 
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criteria give a score to models in relation to the error between the models predicted 

output and the observed output and the model complexity. The scoring is such that a 

certain penalty is applied when the model complexity is relatively higher. The models that 

yield the lowest score is to be chosen. In comparison to AIC and FPE, BIC applies a higher 

penalty for a higher model complexity [71]. Therefore, the models that result in 

minimising the BIC score will have a lesser complexity in comparison to models that are 

obtained when minimising the AIC and FPE scores. 

 

3.8 Model validation 

A true description of a system can never be attained from an identified model and at 

best can only be considered as a sufficient representation of certain aspects that are of 

interest [72]. Model validation tests are therefore needed to be carried out on identified 

models. These tests assess whether the model performance is valid and to put certain 

confidence on the model for its intended purpose.  

Model validation tests in System Identification of parametric models are based on 

the residuals produced between the model generated output and the actual output of the 

system [24], [72]. These tests are carried out, utilizing a separate dataset to the dataset 

used for estimating the parameters. To validate models, commonly used methods 

comprised of various correlation tests performed on the residuals. Furthermore, different 

performance indicators are used to examine the goodness-of-fit [68], [72]. 

The residuals represent the fragments of validation dataset that cannot be produced 

or explained by the model. Hence, correlation tests on the residuals are carried out in 

order to know whether;  

• The residuals are white noise sequences. This test is called the autocorrelation 

test and is performed in order to realise that the model can explain the actual 

output appropriately [72]. 

 

• The residuals are not correlated with the input. This test is performed in order to 

validate that the model can explain the necessary part of the dynamics from the 

input to the output [72]. It is known as the cross-correlation test. It should be 

noted that if there is feedback present in the system then, correlations are 

expected in the negative lags between the input and the residuals. If so, the test 

is done concentrating on the positive lags. 

In order to quantify the goodness-of-fit performance indicators such as the MSE (Mean 

Square of Error), RMSE (Root Mean Square Error) are commonly used.           
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3.9 Summary 

In this chapter, the time-domain characteristics of linear and nonlinear systems in 

relation to convolutional integral functions were discussed. Therefore, a detailed 

overview of System Identification and related procedures were provided. Model structure 

representations of both linear and nonlinear time-series were outlined. Different term 

selection methods in linear regression and a commonly used method for nonlinear 

regression in the OLS-ERR framework was discussed. Commonly used model structure 

selection criteria under two different approaches to System Identification in the forward 

selection framework were outlined. System Identification, is the first step that is used as 

a tool for capturing the system dynamics in the CM-FD method based on the control 

systems analysis approach. In the next chapter, the Frequency Response Analysis 

methods are reviewed, in relation to linear and nonlinear systems.      
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Chapter 4  

 

Frequency Response Analysis of 

Dynamic Systems  
 

4.1 Introduction 

In the field of control systems engineering, FRFs are used for in-depth dynamic 

analysis, design and control of various systems [72], [75]. Linear frequency domain 

methods are popularly used in the field of control and are comprehensive tools for both 

implementations of control strategies, as well as analysis and interpretation of system 

dynamics [35]. Across many disciplines of science, especially in engineering, the analysis 

of systems in the frequency domain is thus considered of fundamental importance [72], 

[75]. The GFRF and NOFRF methodologies extend the use of Frequency Response Analysis 

from linear to non-linear systems.  

The frequency response of analysis of an identified ARX model for linear systems can 

be done by transforming the time-domain difference equation of the model into the 

discrete domain ( z - domain) to obtain the discrete FRF. In the case of nonlinear systems, 

the output frequency characterisation is significantly more complex than in the linear 

systems. As such, the Volterra series based methods such as the GFRFs or the NOFRFs can 

be used to project the identified NARX model into the frequency domain. The GFRFs are 

the direct extension of the FRF to the nonlinear instance. In comparison, the NOFRFs show 

the energy transfers from the input to different orders of nonlinearities in the frequency 

domain and it is considered a more natural extension of the linear FRF to the nonlinear 

instance [29]. 

This chapter aims to introduce the basic concepts of Frequency Response Analysis 

and the output frequency characterisation of linear and nonlinear systems. In the context 

of Condition Monitoring and Fault Diagnosis of nonlinear systems, the concept of NOFRFs 

is of interest. This is because the output frequency characterisation of nonlinear systems 

using NOFRFs is similar to the linear FRF. Furthermore, the NOFRFs has clear advantages 

over the GFRFs when concerning computational effort and ease of interpretation. Thus, 

with regard to nonlinear systems Frequency Response Analysis, this chapter focuses more 

on the NOFRFs.   
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4.2 Analysis of linear systems in the frequency domain  

In control systems analysis and design, frequency domain analysis of linear systems 

is carried out using the well-established methodology of linear FRFs. A complete 

description of the steady-state dynamics of a linear system is provided by the linear FRF 

and so, is unique regardless of the time-domain model used to represent the system [72]. 

The quantitative measure of the output spectra of a system in response to an exciting 

input is known as frequency response or Frequency Response Function of that system. 

The FRF of a system is a tool used to observe the system dynamics over a range of 

frequencies. It’s a comparison of, output magnitude and phase, with regard to the input 

as a function of frequency in the format of a bode plot [75]. Essentially the ratio of the 

output spectrum to the input spectrum. In LTI systems the output frequency response, 

for all frequencies  can be explicitly characterised, given the knowledge of the FRF, for 

any input signal as; 

 

 ( ) ( ) ( )Y j G j U j  =  (4.1) 

 

where ( )Y j  and ( )U j  are the frequency spectra of the output and the input 

respectively and ( )G j  is the FRF.  

The FRF can be interpreted as a nonparametric model of a linear system in the 

frequency domain and can be readily evaluated from an identified ARX model. The 

estimated ARX model after System Identification of an actual linear system is given by; 

 

 1 1
ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( 1) ( ) ( 1) ( )

a bn a n by t a y t a y t n b u t b u t n= − − −− − + − ++ −  (4.2) 

 

where ˆ( )y t  is the estimated output from the model and ( )u t  is the actual input to the 

system. 1
ˆ ˆ, ,

ana a  and 1
ˆ ˆ, ,

bnb b  are the estimated parameters corresponding to the 

output and input lagged terms. Re-arranging equation (4.2) and taking the z - transform 

(representing in terms of the forward shift operator) of both sides of the difference 

equation will result in the corresponding estimated z - domain (discrete domain) transfer 

function; 
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 (4.3) 

Over a given set of angular frequency points  , by equating sj Tz e =  [113] in (4.3) the 

corresponding estimated discrete linear FRF can thus be evaluated as; 
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where sT  is the sampling period. It should be noted that due to the periodic and 

symmetric characteristics of the discrete FRF the effective frequencies of interest is given 

by 
2

0 sf   where 2
s

s

f
T

=  is the sampling frequency in radians per second. If 

the ARX model identified can describe the dynamics of the system well, then the 

estimated discrete FRF ( )ˆ
sG j T  evaluated using (4.4) will be a good estimate to the 

actual continuous time FRF ( )G j  of the system. Hence features from ( )ˆ
sG j T  can be 

used effectively for CM-FD of a system that can be adequately described by an ARX model. 

 

4.3 Analysis of non-linear systems in the frequency domain 

It is well-established that the possible output frequency components of linear 

systems are the same as the frequency components contained within the input signal [72], 

[75]. However, this is not the same in the nonlinear instance, in which the output 

frequency response of nonlinear systems is much more complex. A simple example of this 

would be, if the input to a nonlinear system is only composed of a single frequency 

component 1 . Then the corresponding output may contain the input frequency 

component 1 , its super-harmonics such as 
12 , 

13  and sub-harmonics such as 
1 / 2 , 

1 / 3  and so on. However, if the input contains many frequency components, for 

example 1 , 2 ,  3 . Then the possible frequency components of the output will be 

composed of the original input frequencies 1 , 2 ,  3 , the super-harmonics and sub-

harmonics of those frequencies and also frequency components, that arise from the 

intermodulation between the input frequencies such as 
1 2 − , 

1 2 3  − + , 
1 3 +  so 

on with many others. Therefore, nonlinear systems hold a distinct property in comparison 

to its linear counterparts. Explicitly, the output spectra of nonlinear systems are much 

richer and reveal more frequency components than the associated input spectra. Hence, 

it is well known that in the nonlinear instance there is a transference of energy from the 

input frequency modes, to other modes of frequencies, which is known as the nonlinear 

phenomena [29], [114]–[117]. Figure 4.1 illustrates this phenomenon in a more general 

sense.       

Concerning CM-FD of nonlinear systems, it is therefore important to consider the 

behaviour of nonlinear systems as certain faults exhibit nonlinear characteristics [13]. 

Thus linear analysis methods would not be sufficient to characterise these faults and 

nonlinear systems analysis methods are needed to be used [16], [118], [119]. In the 

context of a control systems analysis approach to CM-FD, this section aims to review the 

Frequency Response Analysis methods used for nonlinear systems, the GFRFs and the 

NOFRFs. These are extensions of the linear system Frequency Response Analysis method, 

the linear FRFs, to the nonlinear instance.        
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4.3.1 Output frequency response of non-linear systems  

In Section 4.2 the output frequency response characteristics of linear systems are 

defined by equation (4.1). However, as mentioned above, because of the complex nature 

of the output frequency response of nonlinear systems, equation (4.1) is not valid in the 

nonlinear instance. The time domain description of a class of nonlinear systems that are 

stable at zero equilibrium can be described by the Volterra series as shown in equation 

(3.2) and is discussed in Section 3.2. Based on this description of nonlinear systems Lang 

and Billings in [117] derived an expression to characterise the output frequency response 

( )Y j  of a nonlinear system as; 
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 (4.5) 

where  N  is the highest order of nonlinearity to be considered. ( )nY j  is the frequency 

characteristics of the nth order nonlinear output (output frequency response of the nth 

order nonlinearity) and ( )U j  is the frequency spectra of the input. ....
1

( , , )n nj jH    is 

defined as the nth order GFRF which provides a description of the dynamic characteristics 

Figure 4.1: Comparison between the output frequency responses of linear and 

nonlinear systems.  is the frequency range of the input spectrum. The output 

spectrum of a linear systems is explicitly within this range. While the output spectrum of 

nonlinear systems will contain frequency components that are present in the input and 

other frequency components outside the input frequency range.       

 

   Linear System 

Input spectrum Output spectrum 

  
  

Nonlinear System 

Input spectrum Output spectrum 
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of the nth order nonlinearity in the frequency domain. Thus, the GFRFs are the direct 

extension of the linear FRF to the nonlinear case and similarly, the GFRF is unique 

regardless of the time-domain model used to represent the corresponding nonlinear 

system. The natural extension of equation (4.1) which characterises the output frequency 

response of linear systems to the nonlinear instance is given by the expression in equation 

(4.5) above. 

The generation of the output frequencies of a nonlinear system, as shown by 

equation (4.5) is the sum over the output frequencies contributed by each order of 

nonlinearity,  ( )nY j . Thus by considering the output frequency range 
nYf  of each 

nonlinear order ( )nY j , the frequency range, Yf  of the output response of a nonlinear 

system is much greater [116], [117] such that;  

 
1

n

N

Y Y

n

f f
=

=  (4.6) 

In [116] the authors presented a general algorithm which can be used to evaluate the 

possible output frequency ranges of a nonlinear system, that can be explained using the 

Volterra series, using the frequency range of the input excitation signal. This algorithm 

can be used with any bandlimited frequency range  ,a b  in which the input spectrum 

can be described as; 
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 (4.7) 

 

where 0b a  . The detail description of the algorithm is as follows; 

 

 

 

*

*

*

1

1

0

0

*

*

*

, 1
( ) ( )

, 1
( ) ( )

.

1
( )

( ) , ( ) 0, , 1

0 , (

n

n

N

Y Y

n

i

k

k

Y

i

k

k

k

i

f f

nb na
I when

a b a b

f

nb na
I when

a b a b

where means to take the ineteger part

na
i

a b

I na k a b nb k a b for k i

I nb i a

=

−

=

=

=

  
−   

+ + 


= 


 
−   + + 

  

 
= + 

+ 

= − + − + = −

= − )b
























+

 (4.8) 
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where Yf  and 
nYf  are the possible non-negative frequency ranges of the output 

frequency spectrum  ( )Y j  and the output frequency spectrum of the nth order system 

nonlinear output ( )nY j , respectively. This algorithm can also be applied to the case of 

single tone sinusoidal inputs where a b= . It should be noted, although this algorithm can 

be used for the evaluation of the possible output frequency ranges of nonlinear systems 

as well as the output frequency ranges of each individual nonlinear order. It does not 

provide any information on the exact output frequencies. Lang and Billings in [29] 

introduced the concept of NOFRFs which can provide this information.  

      

4.3.2 Generalised Frequency Response Functions  

The behaviour of nonlinear systems, as discussed earlier, is vastly more complex than 

linear systems. This can be seen from the time domain description of nonlinear systems 

using the Volterra series, as shown in equation (3.2) as compared to the linear counterpart 

shown in equation (3.1), where the time domain dynamics of each order of nonlinearity 

is described by separate multidimensional Volterra kernels. The Fourier transform of the 

time-domain impulse response of a linear system, ( )h t  in equation (3.1) is defined as the 

linear FRF [72]. Similarly, George in [120] introduced the concept of GFRFs  defined as the 

Fourier transform of the Volterra kernels, 
1( , , )n nh    terms in equation (3.2) and the 

GFRF of a nth order nonlinearity is thus given by; 

 

 1 1....
1

( .... )
1 1, ,( ) ( , , ) n n j

n n n n nj jH h e d d        
+ +

− + +

− −

=    (4.9) 

 

Hence the concept of GFRFs is the direct extension of the linear FRF to the nonlinear case. 

As seen from equation (4.9) GFRFs are multidimensional frequency functions and it 

describes the complex dynamics of each order of nonlinearity.  

In linear systems, the FRF can be used explicitly to characterise the output frequency 

response of a linear system as shown in equation (4.1) and discussed in Section 4.2. This, 

however, is not the same in the case of nonlinear systems because of the association of 

high dimensional frequency functions of each order of system nonlinearities [117], [121]. 

To explain this complex relationship between the GFRFs and the system output frequency 

response, Lang and Billings in [117] derived the expression shown in equation (4.5) in 

Section 4.3.2. As discussed earlier this expression characterises the output frequency 

response of nonlinear systems in terms of the GFRFs. It is shown by this expression how 

the nth order nonlinear dynamics (nth order GFRF) operate on the input spectrum to 

produce the output frequency response of the corresponding nonlinearity,  ( )nY j , and 

thus, the sum of all the output spectra of all nonlinearities add up to the actual output 

frequency response, ( )Y j , of the system. 

As discussed earlier nonlinear systems exhibit a distinct property in which there is a 

transference of energy from the input frequencies to other frequencies that are not 
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present in the input. This is because of how the nth order nonlinear dynamics operate on 

the input spectrum to result in the final output frequency response, as mentioned above. 

Thus, this phenomena cannot be completely explained by GFRFs [29]. Lang and Billings 

introduced the concept of NOFRFs in [29] which can comprehensively describe the energy 

transference from the input to different orders of system nonlinearities and thus, the 

generation of new frequency components. The NOFRFs can be considered as another 

extension of the linear FRF to the nonlinear instance and so complements the GFRFs. The 

NOFRFs and its properties will be discussed in detail in the following section along with its 

viability for CM-FD over the GFRFs.   

 

4.3.3 Non-linear Output Frequency Response Functions  

Lang and Billings in [29] introduced the concept of NOFRFs in order to explain the 

energy transfer phenomena of nonlinear systems. The authors, in [29], also introduced 

another concept, which is the natural extension of the input spectrum ( )U j  to the nth 

order nonlinear case and is given by;  
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U j U j d 

  
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= + + =

=   (4.10) 

where ( )nU j  is the nth order nonlinear composition of the input ( )U j  and can be 

considered as the output frequency response of a nth order static nonlinear system [29] 

such as;  

 ( ) ( )ny t k u t=  (4.11) 

in which 1k =  and the output frequency response is given by; 

 ( ) ( )nY j kU j =  (4.12) 

where ( )nU j  is related to the Fourier transform,  .FT , of ( )nu t  such that;  

  
( 1)

1
( ) ( )

(2 )
n

n n

n
U j FT u t

 −
=   (4.13)  

The concept of ( )nU j  is of importance in the explanation of the energy transfer 

phenomena of nonlinear systems and in the definition of the NOFRFs, as shown in [29], 

which will be discussed below. 

The second expression in equation (4.5), the output frequency response of the nth 

order nonlinearity ( )nY j  is restated here as; 
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Equation (4.14) can be written in terms of equation (4.10) as; 
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 (4.15) 

 

Since the expression in the parenthesis in equation (4.15) above is ( )nU j ,  ( )n jY   

therefore can be re-written in the form; 

 

 ( ) ( ) ( )n n nY j G j U j  =  (4.16) 

where 
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 (4.17)  

    

 
nG  in equation (4.17) above is defined as the nth order NOFRF. ( )nG j  is only valid in 

the frequency space    in which; 

 

 
1 1

( ) 0
n

n

i n

i

U j d 
  

 
= + + =

  (4.18) 

 

Thus the output frequency response ( )Y j  of a nonlinear system, shown in equation 

(4.5) in Section 4.3.1, can be explicitly expressed using the NOFRFs  ( )nG j , 1, ,n N=  

[29] by introducing equation (4.16) into equation (4.5) as; 

 

 
1 1

( ) ( ) ( ) ( )
N N

n n n

n n

Y j Y j G j U j   
= =

= =   (4.19) 

 

where  N  is the highest order of nonlinearity to be considered. Therefore, equation (4.19) 

can be defined as the NOFRFs based characterisation of the output frequency response 

of a nonlinear system [29]. It can be seen that this description of the output frequency 

response of nonlinear systems is similar to that of the linear systems description in 

equation (4.1). The authors of [29] outlined three important properties of the NOFRFs 

representation of ( )Y j  and these are summarised as follows; 
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1) The NOFRFs are able to describe ( )nY j  in an identical manner to how the linear 

FRF describes the output frequency response of linear systems, equation (4.1) in 

Section 4.2 and thus the complete characterisation of ( )Y j  in equation (4.19) 

is of a similar nature. 

 

2) For a signal given by equation (4.7), in Section 4.3.1, the valid frequency range   

of the nth order NOFRF ( )nG j  given by equation (4.18) is equal to 
nYf , in 

equation (4.8) of Section 4.3.1, which is the possible output frequency range 

contributed by the nth order nonlinearity. 

  

3) The NOFRFs are input dependent, as seen by equation (4.17). However, it is 

insensitive to a change of the input spectrum ( )U j  by a constant amplitude 

gain. This is shown by equation (4.20) below. 
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Lang and Billings [29] evidently described the energy transfer phenomena and the 

generation of new frequency components using the concept of NOFRFs. In brief, this 

energy transfer mechanism is as follows;  

• The nonlinear composition of ( )nU j  from ( )U j  produces the possible 

frequency components 
nYf  of ( )nY j .  

 

• The NOFRF  ( )nG j  functions like a dynamic filter over the frequency range 

of 
nYf  which operates on  ( )nU j  to produce the nth order output frequency 

response ( )nY j  of the system. This is a clear reflection of the third property 

of the NOFRFs above along with equation (4.15). 

 

• The combined effect of the output frequency responses of all the 

nonlinearities, ( )nY j  for 1, ,n N=  thus produces the final output 

frequency response ( )Y j .  

 

• Hence ( )Y j  will contain more frequency components than the 

corresponding excitation output ( )U j . This is illustrated in Figure 4.2. 
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The NOFRFs ( )nG j  for 2n  , as seen from equation (4.17), is clearly dependent on 

the frequency domain characteristics of the nth order nonlinear dynamics (which is 

described by the GFRF 
1( , , )n nH j j   and the input spectrum. This reliance of ( )nG j  

on the input spectrum is a clear reflection on the fact that the behaviour of nonlinear 

systems in the frequency domain, in general, depends on the system properties and the 

corresponding input as well [116], [117]. 

 

 

 

It is evident from equation (4.17) that the effect ( )U j  has on the nth order NOFRF 

( )nG j  is complex. However, the authors of [29] qualitatively explained the relationship 

between ( )U j  and ( )nG j  by re-writing equation (4.17) as; 
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Figure 4.2: Pictorial representation of how the NOFRFs act on the input spectrum to 

produce the final output frequency response of a nonlinear system.  is the 

nonlinear composition of the input spectrum  is attenuated by the nth order NOFRF 

 to form the output frequency response of the nth order nonlinearity  of 

the system and thus the final output frequency response .       
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In equation (4.21) ; 

• 
1

1 ( )
n

n

i ni U j d   
 == + +

  is the summation of 1 ( )
n

ii U j=  over the n-

dimensional hyperplane 
1 n  = + + . 
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 is the normalisation of 1 ( )

n

ii U j=  in the 

same n – dimensional hyperplane. 

 

• This normalisation of  1 ( )
n

ii U j=  acts as a weight to the GFRF 
1( , , )n nH j j   

at each point of  1 , , n  . 

 

• Thus the nth order NOFRF ( )nG j  can be described as the weighted sum of the 

nth order GFRF 
1( , , )n nH j j   across the n–dimensional hyperplane  

1 n  = + + . 

 

• Therefore, the nth order NOFRF ( )nG j  mainly relies on the corresponding GFRF 

1( , , )n nH j j  . This also points out how  ( )nG j  is formed through the effect 

of the input spectrum ( )U j , revealing the manner in which  
1( , , )n nH j j   

is combined across the n – dimensional hyperplane to form the final output 

frequency response. 

 

The qualitative description above of the NOFRFs emphasises that the NOFRFs are 

sensitive to the dynamics of a nonlinear system because of its key reliance on the GFRFs. 

This is fundamental in using the concept of NOFRFs for the analysis of nonlinear systems 

and thus CM-FD. Furthermore, the NOFRFs is one-dimensional in nature therefore, 

NOFRFs can be easily interpreted and visual analysis of higher order nonlinearities is 

possible [29], [114], [122]. The concept of NOFRFs, unlike the GFRFs, are input dependent 

however, in the case of sinusoidal or harmonic inputs there is an exception. Peng et al. in 

[114], [122] described in detail that the NOFRFs in the instance of a harmonic input is 

explicitly independent of the input. Thus the valid frequency components of the nth order 

NOFRF under a harmonic input (shown in equation (4.18) and can be evaluated using the 

algorithm in equation (4.8))  is equal to the nth order GFRF at the corresponding 

frequencies.       

These are the clear advantages of NOFRFs over the multi-dimensional GFRFs. GFRF 

based Fault Diagnosis schemes have been proposed before in [18]. However, due to the 

multidimensional nature of the GFRFs, as seen from equation (4.9), it is difficult to 

interpret [121]. Therefore, it comes with a significant computational cost to process and 

to extract information due to the amount of memory involved [16].  
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In reason to the ease of use of the NOFRFs, it was proposed as a viable tool for CM-

FD of nonlinear systems by Peng et al. in [13]. The same authors in [119] showed how 

cracks could be detected using NOFRFs. In [19] a feasibility study was conducted in 

structural damage assessment of aluminium plates by identification of a NARX model and 

then using the NOFRFs for the analysis. Furthermore, the concept of NOFRFs has been 

used in many real-world applications of CM-FD [16], [118], [123]–[125].   

 

Evaluation of NOFRFs using a least squares approach 

Equation (4.19), the NOFRFs based description of the output frequency response 

( )Y j  of a nonlinear system, can be represented as; 

 ( )( )

( ) ( )

1 1

1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

N N

n n n

n n

N

R I R I
n n n n

n

N

R R I I R I I R
n n n n n n n n

n

Y j Y j G j U j

G jG U jU

G U G U j G U G U

   

   

       

= =

=

=

= =

= + +

= − + +

 





 (4.22) 

where ( )R
nG   and ( )I

nG   are the respective real and imaginary parts of ( )nG j  while 

( )R
nU   and ( )I

nU   are the real and imaginary parts of ( )nU j  respectively at the 

corresponding frequency point  . Therefore, equation (4.22) can be represented in a 

linear regression format as; 

 

 1 1

1 1

( ), , ( ), ( ), , ( )Re ( ) ( )

( ), , ( ), ( ), , ( )Im ( ) ( )

R R I I R
N N

I I R R I
N N

U U U UY j

U U U UY j

    

    

− −    
=     

    

G

G
 (4.23) 

 

where  1( ) ( ), , ( )
T

R R R
NG G  =G  and   1( ) ( ), , ( )

T
I I I

NG G  =G . 

As mentioned earlier the NOFRFs are insensitive to a change of the input spectrum 

( )U j  by a constant amplitude gain. Using this property of the NOFRFs Lang and Billings 

in [29] presented a LS based approach for the evaluation of NOFRFs to any arbitrary 

nonlinearity. The procedure of evaluating NOFRFs using this method is summarised as 

follows; 

1) Excite the nonlinear system by a set of test inputs where, 

 ( ) , 1 , ,mu t m M =  (4.24) 

to obtain the corresponding outputs ( ) ( )my t ,  1, ,m M= , M N  in 

which 
m ,  1, ,m M=  are appropriately chosen constants.    
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2) Evaluate; 

• the Fourier transform of the original input ( )u t , 
1( )U j ,   

 

• the Fourier transform of ( )nu t , for 1, ,n N= , and calculate the 

corresponding ( )nU j  using equation (4.13)   

 

• the Fourier transform of ( ) ( )my t , ( ) ( )mY j  for 1, ,m M= .    

 

3) Extend equation (4.23) into the matrix form as; 

Re ( )
( ) ( )

Im ( )


 



 
=  

 

Y
AU G

Y
                                                 (4.25) 

where  

  

 

1

1

( )
( )

( )

( ) ( ), , ( )

( ) ( ), , ( )

R

I

T
R R R

N

T
I I I

N

G G

G G






  

  

  
=  
 


=


=

G
G

G

G

G

 (4.26) 

                (1) ( )( ) ( ) , , ( )
T

Mj Y j Y j  =Y  (4.27) 

and 

           

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1

( ), , ( ) , ( ) , ( )

( ), , ( ) , ( ) , ( )
( )

( ), , ( ) , ( ) , ( )

( ), , ( ) , ( ) , ( )

R N R I N I
N N

R N R I N I
M M N M M N

I N I R N R
N N

I N I R N R
M M N M M M N

U U U U

U U U U

U U U U

U U U U

       

       


       

       

− − 
 
 
 − −

=  
 
 
 
  

AU  (4.28) 

to evaluate the estimate of ( )G  using a least squares approach as;  

 
1 Re ( )

( ) ( ) ( ) ( )
Im ( )

T T 
   



−  
 =    

 

Y
G AU AU AU

Y
 (4.29) 

It should be noted that the evaluated estimates of the NOFRFs, ˆ ( )nG j ,  

1, , ,n N=  can only be used over the frequencies where the NOFRF ( )nG j , 

1, ,n N= , is valid. This range of frequencies is equal to 
nYf  given by equation (4.8). The 

LS approach to the evaluation of NOFRFs is a compact simple method that can be used 

with input-output data either directly exciting a nonlinear system or an identified NARX 

model.   
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4.4 Summary 

In this chapter, the output frequency response characteristics of linear and nonlinear 

systems were overviewed and Frequency Response Analysis methods of linear systems, 

the FRF, and nonlinear systems, GFRFs and NOFRFs, were outlined. Output frequency 

response characterisation of nonlinear systems, the description of the nonlinear 

phenomena and analysis of a nonlinear system dynamics in the frequency domain using 

the concept of NOFRFs were reviewed. Hence the potential of using NOFRFs over GFRFs 

for CM-FD of nonlinear systems was discussed. This is because the NOFRFs, even though 

are input dependent, its main reliance on the GFRF as a weighted sum of the input signal 

and its ability to represent nonlinear systems as a one-dimensional frequency function. 

This makes the analysis of nonlinear systems easier to interpret and thus much easier to 

extract fault specific features for CM-FD. This has been demonstrated by several different 

studies as discussed. In the following chapter, the numerical issues in the least squares 

method of evaluating NOFRFs will be discussed and method to address this issue will be 

presented.   
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Chapter 5  

 

An Effective Least Squares Method of 

Evaluating Nonlinear Output 

Frequency Response Functions of 

Nonlinear Systems 
 

5.1 Introduction 

It is well known that nonlinear systems can often produce more output frequency 

components than that contained in the input. The output frequencies of nonlinear 

systems, in general, may contain sub-harmonics, super-harmonics and inter-modulation 

between the frequency components of the input. Hence, there is a transference of energy 

from the input frequencies to other frequencies [24]. The Generalised Frequency 

Response Functions (GFRFs) [120] have been used to study these behaviours of nonlinear 

systems. The GFRFs which are the Fourier Transforms of the multi-dimensional Volterra 

series is inherently multi-dimensional thus require very high computational demands to 

evaluate. Furthermore, due to the multi-dimensional character higher order GFRFs cannot 

be visualised and are therefore difficult to interpret.  

The concept of Nonlinear Output Frequency Response Functions (NOFRFs) is one-

dimensional frequency functions introduced by Lang et al. in [29] as an alternative method 

of analysis of nonlinear systems in the frequency domain. Due to the one-dimensional 

character, the NOFRFs can be much easily visualised and interpreted.  

Peng et al. in [13] have used the NOFRFs as a viable analysis tool for the fault 

detection of nonlinear systems in the frequency domain. The NOFRFs have also found 

applications in SHM to identify cracks in beams and damage in aluminium plates [19], 

[119]. For electrical systems, Chen and Zhai et al. in [123] have applied the NOFRFs in the 

detection of damaged power cable insulations. In [125] the authors proposed a novel 

method of Fault Diagnosis by using features obtained from the NOFRFs and the Dempster-

Shafer theory of evidence to process the features for the isolation of faults. Recently the 

NOFRF concept has also been studied in Fault Diagnosis of hydro generators as well as 

hydro-turbine governing systems in [16] and [118] respectively. In these applications, an 

accurate evaluation of the NOFRFs is essential as the damage is uniquely identified using 

the system frequency features obtained from the NOFRFs. 
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Currently, the NOFRFs can be evaluated using two methods. One is the LS based 

method presented in [29] and the other is the Associated Linear Equations (ALEs) 

approach for the NOFRFs introduced by Bayma et al. in [15]. In [30] the authors compared 

the performance of both these methods in evaluating the NOFRFs. It was shown that even 

though both methods can be used for damage detection, they both have limitations. A 

system model of differential equations and the evaluation of its corresponding ALEs are 

required for the ALEs based approach. While the LS approach does not require a model, 

the system must be excited by test inputs with appropriately chosen amplitudes for the 

evaluation of the NOFRFs. In addition, the LS approach may experience numerical errors 

due to the ill-conditioning of the information matrix and consequently cannot produce 

accurate NOFRFs sometimes. 

The chapter is concerned with the development of a new method for the 

improvement of the LS based NOFRFs evaluation directly using the system input-output 

data. The new method is known as the M-LS method.  In the M-LS method, the 

information matrix for the LS operation at each frequency is constructed according to the 

contribution made by each order of system nonlinearity to the system output response at 

this frequency. This addresses the possible numerical issues associated with matrix 

inversion. The effectiveness of the new method is then demonstrated using simulation 

studies on two different nonlinear systems subject to a general band limited and a 

harmonic input, respectively. The new M-LS method can significantly increase the 

accuracy of the NOFRFs evaluation directly using system testing data and facilitate the use 

of the NOFRFs and associated approaches in many practical applications such as 

engineering system Fault Diagnosis and SHM.  

As a result of addressing the numerical issued in evaluating NOFRFs with the M-LS 

method, novel significant observations were made on the convergence of the Volterra 

series where sever nonlinear behaviour occur. This convergence of the Volterra series 

around the regions of severe nonlinear behaviour was deemed impractical and even 

impossible. However, it has been theoretically argued in [31] that convergence does exist 

given the use of an extremely high order of nonlinearity. With regard to GFRFs being multi-

dimensional, the use of extremely high orders of nonlinearity is impractical due to the 

extensive computational efforts. However, since the NOFRFs are one-dimensional and 

because of the numerical accuracy attained using the M-LS method. In this chapter, the 

convergence analysis of the Volterra series using NOFRFs is revisited. Therefore, the 

theoretical possibility of a convergent Volterra series is validated practically for the first 

time.  
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5.2 The Modified Least Squares method for the evaluation of 

Nonlinear Output Frequency Response Functions  

The valid frequency range of the nth order NOFRF,  ( )nG j , 1, ,n N=  is defined by 

equation (4.18) and is known as the possible output frequency ranges of the nth order 

nonlinearity, denoted as 
nYf  (see Section 4.3.3). This frequency range is the region in the 

frequency space in which the NOFRFs ( )nG j  operate on the respective nonlinear 

composition of the input spectrum ( )U j  which is ( )nU j . 
nYf  can be evaluated using 

the algorithm shown in equation (4.8). Thus from the two expressions, equations (4.8) 

and (4.18),  it is evident that the nth order nonlinear composition of the input spectrum, 

( )nU j ,  is of the form; 

 

 
( )

( )
0

nn Y

n

U j when f
U j

otherwise

 


 
= 


 (5.1) 

 

( )nU j  is evaluated using the Fourier transform as shown in equation (4.13). In 

practice, however, when using a FFT (Fast Fourier Transform) algorithm to obtain the 

frequency spectrum, ( )nU j  is often not zero but relatively small when 
nYf  . This 

can make the information matrix ( )AU  in the original LS method, equations (4.25)-

(4.29), become sparse and ill-posed over certain frequency points, inducing significant 

numerical errors.  

The M-LS method, introduced in this chapter, is formulated to address this issue by 

appropriately constructing the matrix ( )AU  at each frequency point  . This is achieved 

by the use of the algorithm for the evaluation of 
nYf , given by equation (4.8), to determine 

the most relevant terms and only include these terms in the information matrix to 

produce a dense information matrix ( )AU . Denote;  

 

 

 

1 1

1, 2,

1 1

( ) ( )

( ) ( )
( ) , ( )

( ) ( )

( ) ( )

k k

k k

k k

k k

k kk k

k k

k k

k k

n nR I
n n

n nR I
M n M n

n nn nI R
n n

n nI R
M n M n

U U

U U

U U

U U

   

   
 

   

   

   −
   
   
   −
   = =
   
   
   
   
   

au au  (5.2) 
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Thus the matrix ( )AU  in equation (4.28) of the original LS method for evaluating 

NOFRFs can be re-written in terms of the vectors 1, knau  and 2, knau  where 1, ,kn N=  

such that; 

 

 
1,1 1, 2,1 2,( ) ( ) , , ( ) , ( ) , , ( )N N     =  AU au au au au  (5.3) 

 

However instead, given;  

  1 , , , 1 , ,kn N k K =  (5.4) 

 

are the orders of the system nonlinearities which literally contribute to the system output 

frequency response at the frequency  . This can be determined using equation (4.8) 

when    is given. Based on 1, ( )
kn au  and 2, ( )

kn au  for 1, ,k K=  introduced in 

equations (5.2) and (5.4), ( )AU  can be constructed as follows; 

 

 
1 11, 1, 2, 2,( ) ( ) , , ( ) , ( ) , , ( )

k kn n n n     =  AU au au au au  (5.5) 

 

By replacing ( )AU  in equation (4.28) within equation (5.5), much more reliable 

estimates of the NOFRFs, ( )
knG j , 1, ,k K=  can be evaluated. This is best described 

by an example as shown below. 

 

Example 5.1 - Construction of the information matrix ( )AU  according to the 

respective possible output frequency components of the nth order nonlinearity 

 

The M-LS method for a nonlinear system, considering nonlinearities up to the 3rd 

order, i.e. 3N = , and is subjected to a band-limited input over the frequency range of 

 30,55  can be implemented as follows. 

From equation (4.8) with 30a =  and 55b = , it is known that; 

                                                
1

30 , 55Yf =  (5.6) 

    
2

0 , 25 60 , 110Yf =  (5.7) 

    
3

5 , 80 90 , 165Yf =  (5.8) 

Hence for different   over the range of 0, ,165 = , the matrix ( )AU  can be 

constructed as follows:  
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• For 0, ,4 = ; 
11, 2K n= =  and  

 

1,2 2,2

2 2
1 2 1 2

2 2
2 2

2 2
1 2 1 2

2 2
2 2

( ) ( ), ( )

( ), ( )

( ), ( )

( ), ( )

( ), ( )

R I

R I
M M

I R

I R
M M

U U

U U

U U

U U

  

   

   

   

   

 =  

− 
 
 
 −

=  
 
 
 
  

AU au au

 (5.9) 

which will produce 
2

2

ˆ ( )ˆ ( )ˆ ( )
ˆ ˆ( ) ( )

T
R

R

TI
I

G

G




 
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= =   
        

G
G

G
 . 

 

• For 5, ,25 = ; 
1 22, 2, 3K n n= = =  and 

 

1,2 1,2 2,3 2,3

2 3 2 3
1 2 1 3 1 2 1 3

2 3 2 3
2 3 2 3
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=
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3
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 (5.10) 

which will produce 
2 3

2 3
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T
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R

TI
I I
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

  
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G
G

G
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• For 26, ,29 = ;  
11, 3K n= =  and 

 

1,3 2,3

3 3
1 3 1 3

3 3
3 3

3 3
1 3 1 3

3 3
3 3
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 (5.11) 

which will produce 
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• For  30, ,55 = ;  
1 22, 1, 3K n n= = =  and 
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( ), ( ) , ( ) , ( )

( ), ( ) , ( ) , ( )

( ), ( ) , ( ) ,

R R I I

R R I I
M M M M

I I R R

I I R
M M M M

U U U U

U U U U

U U U U

U U U

    

       

       

       

      

 =  

− −

− −
=

AU au au au au

3 ( )RU 

 
 
 
 
 
 
 
 
  

 (5.12) 
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As shown above, the information matrix ( )AU  is constructed appropriately for the 

complete frequency space of the output frequency response, until 165 = , of the 

nonlinear system considered.  

Once the estimate of the NOFRFs has been obtained, the estimate for the output 

frequency spectrum of the system nth order nonlinearity, ˆ ( )nY j , and consequently the 

estimate for the system output frequency spectrum ˆ( )Y j  can be generated using 

equation (4.19). The results can then be used to compare with the actual system output 

spectrum ( )Y j  obtained. In the next section, a comparison is made between the new 

M-LS method and the original LS method for evaluation of NOFRFs under three different 

input types in order to illustrate the significance of the M-LS method. 
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5.3 Comparison of the Least Squares and Modified Least 

Squares based methods of Nonlinear Output Frequency 

Response Functions evaluation 

The accuracy of the evaluated NOFRFs is important to accurately decompose the 

output spectrum into the respective output spectra of each individual nonlinearity. To 

demonstrate the significant accuracy attained in evaluating NOFRFs using the M-LS 

method three different case studies are given in this section.   

 

5.3.1 Comparison for the case of a general input 

To demonstrate the accuracy of NOFRFs under a general input that is described by 

equation (4.7) a nonlinear oscillator with a 5th order nonlinear stiffness as shown in 

equation (5.13) is used. 

 

 3 5
1 3 5( ) ( ) ( ) ( ) ( ) ( )M y t C y t K y t K y t K y t u t+ + + + =  (5.13) 

 

where 0.013M = , 0.0607C = , 1 40K = , 5
3 2.1 10K = −   and 9

5 4.21 10K =  . The 

NOFRFs of the above nonlinear system under the inputs;  

 

 1 2sin(2 ) sin(2 )3
( ) , 1, ,

2
i i

f t f t
u t A i M

t

 



−
=  =  (5.14) 

is evaluated using both the LS and new M-LS method with, 
1 70f = , 

2 50f = , 

10.55, ,10.56t = −  and 9.8i iA =  where 1, ,i M= . 

Figure 5.1 illustrates the input and output spectra, ( )U j  and ( )Y j , produced by 

evaluating the response of the nonlinear system in equation (5.13)  subjected to the input 

is shown in equation (5.14) using the Runge-Kutta 4 (RK-4) algorithm. From Figure 5.1 it 

can be clearly seen the new frequency components generated in the output spectrum. 

Figure 5.2 shows a comparison of the actual output spectrum and the output spectra 

evaluated using equation (4.19) and the NOFRFs obtained from the original LS method 

and the new M-LS method, respectively. The NOFRFs obtained from both methods were 

all evaluated up to the 5th order, i.e. 5N = , with the five excitation amplitudes, i.e. 5M =

, where    1 5, , 1,0.85,0.7,0.55,0.4  = . 
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Figure 5.1: (a) and (b) shows the input and output spectra respectively of the system 

represented by equation (5.13) when excited by the input in equation (5.14) 
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Figure 5.2: Comparison of the actual output spectra with the spectra evaluated using 

the NOFRFs obtained from original LS and M-LS methods, respectively. As seen from the 

figure the NOFRFs evaluated using the M-LS method has good accuracy in re-producing 

the actual output frequency response. The actual output spectrum (Blue), the output 

spectrum produced by NOFRFs evaluated from the original LS method (Red dashed), the 

output spectrum produced by NOFRFs evaluated from the M-LS method (Black dashed).     
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It is clearly observable from Figure 5.2 that the NOFRFs evaluated from the M-LS 

method is much more accurate as the estimate of the output spectrum generated is 

almost the same to the actual. This means that the decomposition of the output spectrum 

( )Y j  to the respective output nonlinearities by the NOFRFs is done appropriately. Thus, 

the NOFRFs ( )nG j  estimated using the M-LS method is more accurate.  

Figure 5.3 shows the respective contributions of each order of nonlinearity in the 

frequency space for a nonlinear system subject to an input excitation given by equation 

(5.14). This is determined by equation (4.8). The accuracy of the M-LS method is due to 

the ( )AU  (from here on the matrix ( )AU  will be referred to as ( )AU  ) matrices at 

each frequency point   only contains the appropriate ( )n R
m nU   and ( )n I

m nU   terms 

according to the relevant contributions made by each order of nonlinearity at that 

particular frequency point as revealed in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1st Order -   

2nd Order -     

3rd Order -   

4th Order -     

5th Order -   

Frequency (Hz) 

Figure 5.3: The space of output frequencies contributed by each order of the 

nonlinearities when a nonlinear system is subject to input excitation given by equation 

(5.14). As seen from the figure each order of nonlinearity will produce frequency 

components in the respective frequency regions . The NOFRFs  

are only valid to these respective frequency regions. The respective NOFRFs operate on 

 which exists at the respective frequency regions  to produce the output 

frequency response of the nth order nonlinearity . Thus in the M-LS method the 

 matrices are constructed appropriately according to the respective contributions 

made by each individual nonlinearity at the frequency point . 
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For example over the frequency range of 100 Hz to 150Hz, as shown in Figure 5.4, it 

can be observed from Figure 5.3 that the nonlinear orders which contribute to the system 

output are different at different frequencies and, consequently, an information matrix 

( )AU  associated with each different points of frequencies should be used to evaluate 

the NOFRFs using the M-LS method in the corresponding case. More specifically, 

• For 100, ,110 = ; Only the 2nd, 4th and 5th orders of nonlinearities contribute 

to the output, therefore; 

 
2 4 5 2 3 3
1 2 1 4 1 5 1 1 1 3 1 3

2 4 5 2 3 3
2 4 5 1 1 3 1 3

2 4 5 3 3
1 2 1 4 1 5 1 1 1 3 1 3

2

( ), ( ) , ( ) , ( ) , ( ) ( )

( ), ( ) , ( ) , ( ) , ( ) ( )
( )

( ), ( ) , ( ) , ( ) , ( ) ( )

R R R I I I

R R R I I I
M M M M

I I I R R R
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U U U U U U

U U U U U U

U U U U U U

           
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           



− − −

− − −
=AU

4 5 3 3
2 4 5 1 1 1 3 1 3( ), ( ) , ( ) , ( ) , ( ) ( )I I I R R R

M MU U U U U U          

 
 
 
 
 
 
 
 
  

 (5.15) 

• For 111, ,129 = ; Only the 2nd and 4th orders of nonlinearities contribute to 

the output, therefore; 

  

2 4 2 4
1 2 1 4 1 2 1 4

2 4 2 4
1 4 2 4

2 4 2 4
1 2 1 4 1 2 1 4

2 4 2 4
2 4 2 4

( ), ( ) , ( ) , ( )

( ), ( ) , ( ) , ( )
( )

( ), ( ) , ( ) , ( )

( ), ( ) , ( ) , ( )

R R I I

R R I I
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I I R R

I I R R
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U U U U

U U U U

U U U U

U U U U

       

       

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AU  (5.16) 
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Figure 5.4: The frequency region between 100 Hz and 150 Hz of Figure 5.1 
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• For 130, ,140 = ; Only the 2nd, 4th and 5th orders of nonlinearities contribute 

to the output, therefore the respective structure of the matrix ( )AU  will be the 

same as shown in equation (5.15). 

 

• For 141, ,150 = ; Only the 4th and 5th orders of nonlinearities contribute to the 

output, therefore; 

 

4 5 4 5
1 4 1 5 1 4 1 5

4 5 4 5
4 5 4 5

4 5 4 5
1 4 1 5 1 4 1 5

4 5 4 5
4 5 4 5

( ), ( ) , ( ) , ( )

( ), ( ) , ( ) , ( )
( )

( ), ( ) , ( ) , ( )

( ), ( ) , ( ) , ( )

R R I I

R R I I
M M M M

I I R R

I I R R
M M M M

U U U U

U U U U

U U U U

U U U U

       

       


       

       

− − 
 
 
 − −

=  
 
 
 
  

AU  (5.17) 

 

Thus, the ( )AU  matrices are formulated differently over different frequencies 

where the NOFRFs are valid to ensure a more accurate evaluation of the NOFRFs at the 

respective frequencies. This prevents the ill-conditioning effect of the information matrix 

that may arise in the original LS method. Also, it should be emphasised that this prevents 

any unwanted energy leakages from different orders of NOFRFs to the regions in which 

other respective NOFRFs are not supposed to exist. 

 

5.3.2 Comparison for the case of a harmonic input 

The nonlinear system used in this case is a duffing oscillator with a 3rd order nonlinear 

stiffness as shown in equation (5.18) below. 

 

 3
1 3( ) ( ) ( ) ( ) ( )M y t C y t K y t K y t u t+ + + =  (5.18) 

 

where 3.84C = , 2
1 (12 )K =  and 6

3 0.1(12 )K = . The parameterized system shown in 

equation (5.18) is excited by a harmonic input ( ) sin( )u t A t= , where 0.4A = . 

 

 
( )

( )
( )

Y j
Trans

U j





=  (5.19) 

 

In order to comprehensively illustrate the comparison, the transmissibility of the 

system shown in equation (5.18) is used. Transmissibility at a particular excitation 

frequency, ( )Trans  , is taken as the ratio of the output spectral magnitude, ( )Y j , to 

the input spectral magnitude, ( )U j  at that respective frequency as shown in equation 

(5.19) above. 
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Figure 5.5: Transmissibility curve of the system shown by equation (5.18) excited with a 

harmonic input amplitude  and NOFRFs generated transmissibility curves. The 

actual transmissibility curve of the system (Blue circle), Transmissibility curve generated 

by NOFRFs evaluated: original LS method (Black dash dot), M-LS method (Red dash dot). 

The NOFRFs from both methods are evaluated using the amplitudes in equation (5.20) 

but the transmissibility curves were evaluated using these NOFRFs at . Thus it is 

evident that the NOFRFs evaluated from the M-LS method has captured the frequency 

domain dynamics of the actual system to a harmonic input significantly well.  
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Figure 5.5 shows the transmissibility curves generated from simulating the ODE 

shown in equation (5.18) using the RK-4 algorithm. The results obtained are from the 

NOFRFs evaluated using the LS and M-LS based methods, respectively. The NOFRFs from 

both methods were generated up to the 7th order, i.e. 7N =  of nonlinearity using 7 input 

amplitudes, i.e. 7M = , which are; 

 

 0.2 , 0.18333 , 0.16667 , 0.15 , 0.13333 , 0.11667 , 0.1A =  (5.20) 

 

As seen from Figure 5.5 the M-LS evaluation of NOFRFs and the resultant 

transmissibility curve generated from these NOFRFs are more accurate compared to the 

transmissibility curve generated using the original LS based method.  

It is worth emphasising that the NOFRFs from both methods were generated using 

the test inputs with amplitudes mentioned in equation (5.20), which are in the range of 

0.1 0.2− . However, the transmissibility curves shown in Figure 5.5 were evaluated using 

the same NOFRFs but for an input of amplitude 0.4A = , which is outside the range of 

amplitudes where the NOFRFs were determined. This implies that the NOFRFs thus 

determined, represent inherent system dynamics and can, therefore, be potentially used 

in many practical applications. 
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5.4 Convergence analysis of Volterra series representation of 

Duffing’s oscillator 

Nonlinear systems, in theory, are needed to be expressed using an infinite Volterra 

series, however, an accurate approximation to the response of the system can be made 

using a truncated series [81], [126]. Therefore, the convergence of the Volterra series is 

vital to adequately represent the responses of nonlinear systems.  

The Volterra series representation of nonlinear systems and methods based on this, 

such as GFRFs and NOFRFs, have been used extensively for the study of nonlinear systems, 

as discussed throughout this thesis. However, analysis based on the Volterra series can 

only be directly applied to weakly nonlinear systems [31], [127], [128]. This is because 

weakly nonlinear systems can be adequately represented by a Volterra series with a finite 

number of nonlinearities, i.e. a convergent Volterra series. Nonlinear systems that exhibit 

severe nonlinear phenomena such as sub-harmonics, chaos and jump [129], [130] are 

known as severely nonlinear systems. Consequently, it is known that the Volterra series 

cannot be directly applied to regions in which a nonlinear system exhibits such behaviour 

[31] because of a divergent Volterra series. The regions in which a nonlinear system would 

reveal this type of behaviour depends on the frequency of excitation, the amplitude of 

excitation and the parameters of the system. Hence the convergence of Volterra series 

depends on these factors [31], [131]. Therefore, in order to apply the Volterra series for 

appropriate analysis of nonlinear systems, convergence criteria are necessary. Such 

criteria to predict the upper limit, the limit in which a system would begin to exhibit severe 

nonlinearities, have been put forward in [31], [131]–[135].          

Convergence analysis and criteria for nonlinear systems that can be represented 

using the Duffing’s oscillator in the frequency domain has been conducted in [31], [134], 

[135]. The Duffing’s oscillator, despite its simple form, has been used as a benchmark 

example in many studies. This is because it is possible to find nearly every reported 

nonlinear phenomenon in Duffing’s equation [136]. In [135] the authors based the 

convergence analysis and the criterion on the NOFRFs. In this section, the convergence 

analysis is revisited using the M-LS method to NOFRFs and novel significant observations 

are made on the convergence of the Volterra series representation of the Duffing’s 

oscillator.  

Initially, the nonlinear system is analysed in the frequency domain using a Response 

Spectrum Map (RSM) diagram in order to visually analyse the regions in which severe 

nonlinear behaviour would occur. RSM diagrams were first introduced by Billings and 

Boaghe in [137] as a frequency domain alternative to the well-known Bifurcation diagrams 

and it was shown to be more accurate than the Bifurcation diagram. Once the regions of 

severe nonlinear behaviour are known these regions are then analysed using the NOFRFs 

evaluated using the M-LS method.  

The observations made gives new insight into the Volterra series representation of 

severe nonlinear systems and the analysis of such systems when exhibiting severe 

nonlinear behaviour.  
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5.4.1 NOFRF based local approximation of severe non-linear oscillator 

exhibiting the jump phenomena 

Analysis of a nonlinear stiffness oscillator exhibiting the well-known jump 

phenomena is conducted using a Duffing’s oscillator given by equation (5.21) which was 

adapted from [138]. 

 

  3
1 3( ) ( ) ( ) ( ) cos( )Fy t C y t K y t K y t A t+ + + =  (5.21) 

 

where 0.96C = , 2
1 (12 )K =  and 6

3 0.1(12 )K = . 
2

F
Ff




=  is the excitation 

frequency F  in Hertz (Hz).    

The nonlinear system shown in equation (5.21) is first analysed using RSP diagrams 

as illustrated in Figure 5.7. The RSP diagram is used to see how the Power Spectral Density 

(PSD) of the output response of the system varies against a change in one aspect of the 

system. The RSP diagram shown in Figure 5.7-top illustrates how the energy in each 

frequency component of the output varies against a change in the excitation frequency, 

Ff . The excitation amplitude A  for this RSP diagram is kept at a constant where 1A = . 

For a constant excitation frequency Af , 2 38F

Af Hz
 = =  (approximate resonant 

frequency of the system), the change in the PSD against a varying excitation amplitude A  

is shown in Figure 5.7-bottom.  

It is evident from Figure 5.7 that for this particular system, in the output frequency 

response, the energy transferred from the excitation input to super harmonics reduces as 

Ff  increases. Thus, the super harmonics higher than the 3rd order diminishes away after 

a certain Ff . However, the energy transferred to the 3rd order superharmonic, even 

though is seen to reduce as Ff  increases, it is relatively much lesser than other higher 

order super harmonics. Hence the significance of the 3rd order super harmonic is retained 

throughout the Ff  range shown. From Figure 5.7-bottom it is seen that for this system, 

given in equation (5.21), for a particular excitation frequency, 38Af Hz= , an increase in 

the excitation amplitude A  seem to increase the energy transferred from the excitation 

input to the higher order harmonics. It is evident from Figure 5.7-bottom that as A  

increases the overall energy in the output frequency components of the given system 

increases.  
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Figure 5.6: RSM diagrams of the nonlinear system shown in equation (5.21) for varying 

excitation frequency fF (top) and varying excitation amplitude A at an excitation 

frequency  fA = 38 Hz (bottom). The colour-map illustrates the log magnitude of the PSD. 

,  and  shows the progression of the 1st, 3rd and 5th order harmonics with a 

changing  fF. , ,  and  shows the progression of the 1st , 3rd, 5th and 7th 

order harmonics with a changing A. 
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Figure 5.7: Transmissibility map of the system shown in equation (5.21). The regions in 

which the jump phenomena occur can be clearly seen from the transmissibility map (in 

the top). Furthermore, the change of the jump location seems to vary with the excitation 

amplitude while the intensity of the jump is higher at relatively lower excitation 

frequencies. For this particular system, for the excitation frequency and excitation 

amplitude ranges shown, a small change in the excitation frequency requires a relatively 

larger change in the excitation amplitude to create the jump.   
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Figure 5.7 shows the transmissibility map of the same system where transmissibility

( )Trans  , is the same as defined in equation (5.19) (see Section 5.3.2). The 

transmissibility map illustrates how the system transmissibility over a range of excitation 

frequencies Ff  changes against a varying excitation amplitude A . It is seen from Figure 

5.7-top that the system given in equation (5.21) exhibits the jump phenomena in which 

there is an abrupt drop in the transmissibility. Figure 5.7 reveals that for this particular 

nonlinear oscillator the location of the jump region and the intensity of the jump changes 

with the excitation amplitude and frequency. Furthermore, it is shown from Figure 5.7-

bottom that for a small change in the excitation frequency a relatively larger change in 

the excitation amplitude is required to achieve the jump.  

The above qualitative analysis of Figure 5.7 is a reflection of the RSP diagrams of the 

system shown in Figure 5.6 in which, as mentioned earlier, lower excitation frequencies 

seem to result in higher energy levels in the output frequency components, especially in 

the sub-harmonics and higher order super harmonics. Furthermore, as the excitation 

frequency increases, for the same excitation amplitude, the energy in the sub-harmonics 

and higher order super harmonics seem to diminish. Therefore, as the excitation 

frequency is increased a relatively higher excitation amplitude is required in order to 

transfer more energy from the excitation input to higher order super and subharmonics 

(Figure 5.6-bottom) in order to achieve a jump as revealed by Figure 5.7-bottom. 

However, it should be emphasised that from Figure 5.7 it is evident, for the system given 

in equation (5.21), the jumps occur with a much higher intensity at relatively lower 

excitation frequencies. Therefore, it is appropriate to state that the excitation frequency 

plays an important role in combination with the excitation amplitude in which a nonlinear 

system exhibits severe nonlinear behaviour. Hence frequency domain analysis is required 

in order to further understand systems that exhibit severe nonlinear behaviour.          

 

NOFRFs based local approximation of the given system 

As discussed above both the excitation frequency and the amplitude defines the 

manner in which severe nonlinear behaviour occurs in the output response and a 

convergent Volterra series at regions where these behaviours occur is a restriction. 

However, it is known that theoretically a convergent Volterra series representation 

around the excitation amplitudes and frequencies where sever nonlinear behaviour occur 

exists [31]. Such a Volterra series, however, can only be achieved by using extremely high 

order GFRFs. Since higher order GFRFs are hyper-dimensional frequency functions, this 

incurs a high computational cost for the evaluation of such GFRFs and thus impractical. 

However, NOFRFs are one-dimensional frequency functions regardless of the order 

considered. Thus, with the numerical accuracy of the M-LS method in evaluating NOFRFs, 

it can be shown that a convergent NOFRFs based representation can be achieved at 

regions of severe nonlinear behaviour. It should be noted that as an inherent property, 

the NOFRFs are invariant of amplitude change, thus it is natural that the convergence of 

the NOFRFs at severe nonlinear regions would be only possible within certain amplitude 

ranges, hence it would be a local approximation. Therefore, it is shown below that the 
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NOFRFs can be used to represent severe nonlinear behaviour at different regions within 

certain amplitude ranges. 

The system given in equation (5.21) is used to generate the transmissibility of the 

system using NOFRFs evaluated from the M-LS method (as similar to the case study in 

Section 5.3.2). The NOFRFs are used to locally approximate the transmissibility of the 

given system, Figure 5.7, at two different amplitude regions. For a comprehensive 

comparison, two types of transmissibility curves are employed. The fundamental 

transmissibility, ( )Trans   as shown in equation (5.19), where 2F Ff  = =  and the 

transmissibility of the third order harmonic frequency of the output response, which is 

given by;  

 3

( 3 )
(3 )

( )

Y j
Trans

U j





=  (5.22) 

where 2F Ff  = = . Ff  is the excitation frequency in Hertz (Hz). ( 3 )Y j   is the output 

response ( )Y j  at the 3rd harmonic frequency and ( )U j  is the frequency spectrum of 

the input at  . 

The normalised mean square error (NMSE) was used as a measure of the closeness 

of fit between the NOFRFs generated and the actual transmissibility curves, which is given 

by;  

 

 
( )

( )( )

2

2
1

( ) ( )
, 2

( ) ( )
L

F NOFRF F

Trans F F

F NOFRF FF

Trans Trans
NMSE f

Trans Trans

 
 

 

−
= =

−




 (5.23) 

 

where LF  is the number of harmonic excitation frequencies used for the generation of 

the transmissibility curves.  

As mentioned earlier the NOFRFs are evaluated at two different amplitude ranges 

1 11 ,H LA A A =    and 
2 22 ,H LA A A =   , where 

1HA  and 
2HA  are the highest amplitudes and 

1LA  and 
2LA  are the lowest amplitudes of the ranges 1A  and 2A  respectively. The 

difference 
1 1 2 2 ,H L H L H LA A A A A− = − =  . The low amplitude region  1 1.3,1.2A =  and the 

high amplitude region  2 99.3,99.2A =  thus , 0.1H LA = . The NOFRFs evaluated at the 

region 1A  is used to generate transmissibility curves at 
1pA , where 

1 1p HA A . Similarly, 

the NOFRFs evaluated at 2A  is used to generate transmissibility curves at 
2pA , where 

2 2p HA A . Thus the NOFRFs obtained at 1A  and 2A  are tested outside the respective 

regions in order verify that the NOFRFs have indeed captured the underlying dynamics. 

The quality of the NOFRFs generated transmissibility curves are assessed using the NMSE 

against the respective true transmissibility curves at 
1pA  and 

2pA .      
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Local approximation of the severe nonlinear dynamics at  1
1.3,1.2A =  

 NOFRFs at 1A  are evaluated using the set of amplitudes within 1A , as shown in Table 2, 

and considering a maximum order of nonlinearity 9N = . Figure 5.8 illustrates that the 

NOFRFs evaluated using this set of amplitudes and can regenerate the transmissibility 

curves at these respective amplitudes well. Table 2 shows how well the NOFRFs generated 

transmissibility curves are in terms of the NMSE. It should be noted that throughout this 

Note: Throughout this section, e refers to the base of 10 and not the Euler’s number, i.e. 

e = 10.    

Table 2: NMSE between actual and NOFRFs generated transmissibility curves. 

NOFRFs evaluation 
amplitudes ( A ) 

TransNMSE  
3TransNMSE  

1.300 4.8656e-15 2.4686e-10 

1.2875 4.0928e-14 7.2178e-10 

1.2750 7.6648e-15 1.2471e-10 

Figure 5.8: Actual and NOFRFs estimated transmissibility curves within the amplitude 

range shown in Table 2. The NOFRFs are evaluated using the amplitudes A shown. In 

comparison to the systems actual transmissibility (line with dot), the NOFRFs generated 

(circle) transmissibility curves are shown to be accurate. This means that the NOFRFs 

evaluated using the given amplitudes are able to regenerate the respective 

transmissibility curves well. The diagram on the left is transmissibility of the fundamental 

frequency, i.e. the excitation frequency. The diagram on the right illustrates the 

transmissibility of the 3rd order harmonic frequency. 



 

 

77 | P a g e  

 

 

1.2625 2.7984e-14 2.1336e-10 

1.2500 2.6736e-16 5.5674e-10 

1.2375 3.1613e-14 7.8171e-11 

1.225 4.2856e-15 3.2823e-10 

1.2125 4.888e-14 8.1695e-10 

1.2000 7.2746e-15 4.8329e-10 

 

 

 

The NOFRFs evaluated should capture the dynamics of the system within the 

amplitude range well. To verify this, the evaluated NOFRFs are used to generate 

transmissibility curves outside 1A . Thus the NOFRFs evaluated are used to generate 

Figure 5.9: Comparison of the actual system transmissibility curves to the NOFRFs 

generated at the excitation amplitude . It is evident that the NOFRFs, of the 

given system, evaluated at  has captured the dynamics well as the NOFRFs generated 

transmissibility curves match well with the actual.   
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transmissibility curves at the amplitude 
1

1.5pA =  as shown in Figure 5.9. From Figure 5.9 

it is evident that the NOFRFs have captured the dynamics, within 1A  well. The NMSE 

between the actual and the NOFRFs generated transmissibility curves of the fundamental, 

( )Trans  ,  and the 3rd order harmonic, 
3(3 )Trans  , at 

1pA  are 1.2416e-4 and 2.2501e-2 

respectively. It should be noted that beyond 
1

1.5pA =  the NOFRFs generated 

transmissibility curves do not fit well with the actual. Therefore, the NOFRFs evaluated 

within 1A  with 9N =  are invalid beyond this amplitude. However, by using an amplitude 

range *
1A  closer to the values beyond 

1
1.5pA =  for the evaluation of NOFRFs would result 

in accurate approximations for 
1

1.5pA  . 

 

 

Figure 5.10 shows the respective contributions made by the output frequency 

response of the nth order of nonlinearity ( ) , 1, ,nY n N =  to the final output response 

( )Y j . Figure 5.10-left illustrates the contributions by ( )nY   at each excitation 

frequency point Ff  while Figure 5.10-right shows the contributions made at the 

corresponding 3rd order harmonic 3 Ff . It is seen from Figure 5.10-left, for ( )Trans  ,  that 

Figure 5.10: The output frequency responses of each order of nonlinearity at each 

excitation frequency point, fF, (left) and 3rd order harmonic of fF (Right). Produced using 

the evaluated NOFRFs with a harmonic input of excitation amplitude . It is 

evident that the NOFRFs based approximation is convergent because the contributions 

made by the highest order of nonlinearity is lower than the corresponding lowest order 

of nonlinearity. 
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all the orders of nonlinearity, except 
9 ( )Y j , have higher contributions than 

1( )Y j  at 

the jump region where [5,10]Ff  . The NOFRFs are convergent at this region because 

the contributions made by 
9 ( )Y j  to the final output response is lesser than 

1( )Y j . 

Thus, the system can be represented by a finite set of nonlinearities. Similarly, for 

3(3 )Trans  , in Figure 5.10-right the highest order of nonlinearity 9 ( 3 )Y j   contributes 

lesser than the lowest order 3 ( 3 )Y j   for the output response at the 3rd order harmonic. 

Therefore, the evaluated NOFRFs are also convergent at the 3rd order harmonic in the 

output response of the system.  

The initial choice of 9N =  was found to be the minimum requirement for the 

NOFRFs to be convergent when testing the evaluated NOFRFs within 1A  itself. That is

9 1( ) ( )Y j Y j   and 9 3( 3 ) ( 3 )Y j Y j   for  
F =  at amplitudes shown in Table 2. 

Furthermore, it was observed that the evaluated NOFRFs remain convergent for 

excitation amplitudes outside 1A  until 
1

1.5pA = . As the evaluated NOFRFs were tested 

for 
1

1.5pA   the NOFRFs were found to be divergent, i.e. 1( ) ( )nY j Y j   for 1n   and 

3( 3 ) ( 3 )nY j Y j   for 3n  . Thus, the fit between the actual and the NOFRFs 

generated transmissibility curves were poor for 
1

1.5pA  .  

 

Local approximation of the severe nonlinear dynamics at  2
99.3,99.2A =  

Similar to the above, a NOFRFs based local approximation was made at the high 

amplitude region 2A . The NOFRFs were evaluated within 2A  using the set of amplitudes 

shown in Table 3. The NOFRFs were evaluated considering a maximum order of 

nonlinearity 13N =  such that it was the minimum value of N  for which the NOFRFs 

exhibited the convergent property at the amplitudes shown in Table 3. That is at these 

amplitudes, when observing the output frequency response of each order of nonlinearity, 

( ) , 1, ,nY n N = , the highest order of nonlinearity, N, should contribute lesser than the 

lowest order at that frequency. Thus 1( ) ( )NY j Y j   and 3( 3 ) ( 3 )NY j Y j   at the 

amplitudes shown in Table 3 for 
F = . Furthermore, it was verified that the 

transmissibility curves regenerated using the evaluated NOFRFs would fit well with the 

actual at 2A .  

In order to verify that the evaluated NOFRFs have actually captured the dynamics 

within 2A , these NOFRFs were tested at the excitation amplitudes 
2

99.35pA =  and 

2
99.4pA =  which are outside 2A . The NMSE between the actual and the NOFRFs 

generated transmissibility curves at these amplitudes are shown in Table 4.  

 

 



 

 

80 | P a g e  

 

 

Table 3: NMSE between actual and NOFRFs generated transmissibility curves. 

NOFRFs evaluation 
amplitudes (A) 

TransNMSE  
3TransNMSE  

99.300 1.6053e-5 1.6104e-4 

99.292 1.4390e-5 2.6120e-4 

99.283 3.2963e-5 9.1425e-5 

99.275 1.7547e-5 1.4727e-4 

99.267 2.6894e-6 1.6563e-3 

99.258 6.4897e-5 8.0240e-4 

99.250 7.3784e-6 1.4369e-4 

99.242 1.9374e-5 3.6998e-4 

99.233 4.5994e-5 3.6176e-4 

99.225 1.3774e-5 3.3659e-4 

99.217 6.2013e-6 8.9426e-4 

99.208 4.3877e-5 9.7498e-4 

99.200 2.3241e-5 2.8465e-4 

 

 

Table 4: NMSE between actual and NOFRFs generated transmissibility curves. 

NOFRFs test amplitudes 
(A) 

TransNMSE  
3TransNMSE  

99.35 3.6900e-4 7.73134e-3 

99.40 1.6216e-3 5.9161e-2 

 



 

 

81 | P a g e  

 

 

It is can be seen from the transmissibility map of the given system, Figure 5.7, in the 

amplitude region  
2 22 , 99.3,99.2H LA A A = =   jumps occur at a lesser intensity than the 

lower amplitude regions. However, when inspecting the RSM diagram of the given system 

at an excitation amplitude 99.3A =  (which is 
2HA ), as shown in Figure 5.11-top. The 

output frequency characteristics for different excitation frequencies is much more 

complex than at lower excitation amplitudes, Figure 5.6-top. This is also evident from the 

transmissibility of the given system at 99.3A =  as shown in Figure 5.11-bottom. At this 

excitation amplitude, the transmissibility curve shows the occurrences of more than one 

jump. Hence it is appropriate to say that for the given system at higher excitation 

amplitudes, exhibits relatively more severe nonlinearities than at lower amplitudes. 

However, a local approximation of the system using the NOFRFs is achieved.  

 

The NOFRFs evaluated at 2A  when tested at 
2

99.35pA =  were able to generate the 

transmissibility curves ( )Trans   and 
3(3 )Trans   which fit well with the actual at all 

frequency points for 
F = . Furthermore, it was verified that the evaluated NOFRFs 

were indeed convergent by observing the output frequency response of each order of 

nonlinearity, ( ) , 1, ,nY n N = , where the highest order of nonlinearity did contribute 

Figure 5.11: RSM (top) and transmissibility (bottom) diagrams of the given system for 

an excitation amplitude . It is seen from both these diagrams that the given 

system at the excitation amplitude  exhibits more severe nonlinear behaviour 

than at lower excitation amplitudes. 
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lesser than the lowest order. However, this wasn’t the case for 
2

99.4pA =  thus the 

NOFRFs evaluated at 2A  is only valid till 
2

99.35pA = .       

 Considering that the difference ,H LA , where 
2 2 1 1,H L H L H LA A A A A = − = −  as 

mentioned earlier, it is worth emphasising that choice of  13N =  for the same ,H LA  at 

higher evaluation amplitudes is a reflection of the characteristics of the given system. This 

is that at higher excitation amplitudes the output response exhibits more severe 

nonlinearities than at lower excitation amplitudes as mentioned earlier. 

Figure 5.12 illustrates the comparison between the transmissibility curves generated 

by the evaluated NOFRFs when tested at 
2

99.4pA = . The fundamental transmissibility 

( )Trans   curve generated by the NOFRFs fits well along all the frequency points and was 

convergent considering ( ) , 1, ,nY n N = . However, 
3(3 )Trans   generated by the 

NOFRFs at this amplitude generally fits well along all the frequency points except at 

3 6 ,15Ff = . This is because at these frequency points the contributions made to the final 

output response at the 3rd harmonic, ( 3 )Y j  , by the output frequency responses of all 

Figure 5.12: Comparison of the actual system transmissibility curves to the NOFRFs 

generated at the excitation amplitude . It is evident that the NOFRFs, of the 

given system, evaluated using the amplitudes shown in Table 3 has captures the dynamics 

fairly well as the NOFRFs generated transmissibility curves match well with the actual 

except for  at the frequency points .    
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the higher orders of nonlinearities ( 3 ) , 5, ,nY j n N =  where 13,N =  were higher 

than the contribution made by the lowest order which is 3 ( 3 )Y j  . This is shown in Figure 

5.13, where the inner axes show a zoomed in section of the outer axes at the frequency 

point 3 15Ff = . 

 

 

Considering the evaluation of NOFRFs at an amplitude region 
* *

* ,H LA A A =   . Given 

the NOFRFs evaluated are able to generate transmissibility curves, outside *A ,  providing 

a good fit with the actual transmissibility curves along all the frequency points considered. 

Also, NOFRFs approximation exhibits convergence when considering the contributions of 

each order of nonlinearity to the output at amplitudes outside *A . Let the maximum 

excitation amplitude outside *A  in which the evaluated NOFRFs can achieve this until be 

*pA , where 
* *p HA A  . Therefore, the NOFRFs from the region *A  is valid until 

*pA .  

In the case of NOFRFs based local approximation of the given system at the region 

 1 1.3,1.2A = , 
*

1.5pA =  while for the case of  2 99.3,99.2A = , 
*

99.35pA = . Recall that 

2 2 1 1,H L H L H LA A A A A = − = − . Thus from the analysis of the above two cases, at excitation 

Figure 5.13: The output frequency responses of each order of nonlinearity at the 3rd 

order harmonics of each excitation frequency point, . Is obtained when the evaluated 

NOFRFs were tested for a harmonic input with an excitation amplitude . The 

inner axes illustrate the outer axes zoomed in at the frequency point .  
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amplitude region *A  where the nonlinear behaviour is relatively more severe, the 

maximum excitation amplitude in which the NOFRFs are valid until, 
*pA , is much closer to 

region *A . This is given that the choice of N  used for the evaluation of NOFRFs is such 

that it is the minimum requirement for the evaluated NOFRFs to be convergent within *A

. However, for the case  2 99.3,99.2A = , it was found that 
*

99.4pA →  when the NOFRFs 

are re-evaluated at the same amplitude range but with a much higher value of N , 

13N . 

From the above analysis, it is evident that the theoretical convergence of the Volterra 

series at regions of severe nonlinear behaviour is indeed possible when using the NOFRFs. 

This is because the NOFRFs are one-dimensional frequency functions based on the 

Volterra series thus enabling the use of higher-order nonlinearities with ease. It should be 

emphasised the use of NOFRFs for such a convergence was achieved because of the 

numerical accuracy in the M-LS method to the evaluation of NOFRFs. Furthermore, it 

should be mentioned that a convergence of a Volterra series based concept, such as the 

NOFRFs, at the regions of severe nonlinear behaviour has not been reported before to the 

best knowledge of the author of this thesis. The observations made above and the ability 

to use the NOFRF to analyse a system that exhibits severe nonlinear behaviour has many 

advantages in analysis, design and Fault Diagnosis of these types of systems. Furthermore, 

this could be an initial step into the analysis of severe nonlinear systems in the frequency 

domain.   

 

5.5 Summary 

This chapter presents an improvement to the original LS method [29] of evaluating 

NOFRFs. It is shown that this new method, the M-LS method, has better accuracy in the 

evaluation of NOFRFs. This higher accuracy is gained by appropriate construction of the 

information matrix used in the least-squares such that only the necessary terms are 

included at each frequency point. This increases the condition number of the information 

matrix but most importantly the decomposition to the respective orders of nonlinearities 

is attained appropriately. This allows the NOFRFs to be evaluated more accurately with 

just the system input-output data. The NOFRFs can be used to decompose the output of 

a nonlinear system to its respective output nonlinearities in the frequency domain and 

therefore facilitate practical nonlinear system analysis with applications including 

engineering system Fault Diagnosis and structural system health monitoring. Because of 

the accurate decomposition of the nonlinearities by the NOFRFs using the M-LS method 

and the NOFRFs being one-dimensional frequency functions based on the Volterra series. 

For the first time, the theoretical convergence of such a method is observed for sever 

nonlinear systems at regions which it was not possible or impractical. This is because of 

the high computational inefficiencies that are inherently present in the multi-dimensional 

nature of the Volterra series based methods such as the GFRFs.  

The system under investigation was analysed qualitatively in detail using a 

transmissibility map and RSM diagrams drawing relationships between both. In this 
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analysis, it was pointed out that the excitation frequency and the amplitude play an 

important part in the exhibition of severe nonlinear behaviour. The exhibition of severe 

nonlinear behaviour was studied at two different amplitude regions. The severe 

nonlinearity that was investigated in this study was the jump phenomenon. The NOFRFs 

of the system evaluated under the two amplitude regions was confirmed to converge at 

the jump phenomenon given the adequate choice of maximum nonlinearity N. It was 

discussed in detail how the choice of N was made. The choice of N, should be high enough 

so that the contribution of the Nth order of nonlinearity to the output should be less than 

the contribution of the corresponding lowest order, at that the respective harmonic. This 

is an initial step and new insight into the analysis of severe nonlinear systems in a pure 

Frequency Response Analysis approach. This will facilitate the analysis, design and Fault 

Diagnosis of systems that exhibit severe nonlinear behaviour.   
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Chapter 6  

 

Data-driven Condition Monitoring 

and Fault Diagnosis Using System 

Identification and Frequency 

Response Analysis 
 

6.1 Introduction 

As mentioned in Chapter 1 and Chapter 2 CM-FD provides the means for safe and 

reliable operation of engineering systems ensuring confidence in the state of the system 

to the user. Through CM-FD necessary information of the state of the system can be 

obtained for predictive maintenance and operation of the system safely. In Chapter 2 

Section 2.4 a control systems perspective to CM-FD through System Identification of 

black-box time-series models and the analysis of these models based on Frequency 

Response Analysis was discussed. By using black-box modelling techniques avoids the 

need for detail physical models, which is often not feasible in practise [22]. Discrete-time 

black-box models of a continuous-time system are not a unique solution, therefore, the 

Frequency Response Analysis is used to obtain unique fault specific features for CM-FD 

(see Section 2.4). The principle behind this approach is that any changes in the physical 

properties of the system can be observed from the changes in the Frequency Response 

Analysis. Thus CM-FD is conducted by observing features extracted from the Frequency 

Response Analysis. In the case of linear systems, the identified ARX model will be analysed 

in the frequency domain using the well-known linear FRFs. Similarly, in the nonlinear 

instance, the identified NARX model will be analysed using the NOFRFs.  

As mentioned in Chapter 4 Section 4.3 and because the significant improvement of 

the extraction of NOFRFs, introduced in Chapter 5, the NOFRFs are more feasible in 

relation to the GFRFs for the Frequency Response Analysis of nonlinear systems, especially 

in the context of CM-FD. Peng et al. in [19] proposed and demonstrated the performance 

of the basic methodology of combining NARMAX modelling and NOFRFs to conduct CM-

FD of engineering systems. Bayma and Lang in [15], built on the idea proposed in [19], 

introduced a comprehensive framework for CM-FD using NARMAX modelling and 

NOFRFs. The authors of [15] proposed the use of a priori trained PCA (Principal 

Component Analysis) algorithm in order to extract representative features from a larger 

set of NOFRFs based frequency domain features. The features where then processed 

using a priori trained neural network based classifier to indicate the status of the system.  
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This chapter mainly focuses on the practical implementation of using System 

Identification and Frequency Response Analysis for CM-FD with the emphasis on System 

Identification. Some of the major practical concerns in using System Identification are; the 

adequate choice of sampling time, inputs which do not persistently excite the system and 

the assurance of evaluating a stable model from the System Identification methodology. 

Inadequate inputs which are not persistently exciting and not being able to excite 

important dynamics of a system are widely present in CM-FD. In the wider context of CM-

FD, at times, nothing can be done about this. This is because CM-FD has to be carried out 

without disrupting normal operations of the system by feeding different inputs [25]. Such 

concerns regarding System Identification have not been considered in the literature in the 

context of FDI, either using SI on its own or even in combination with FRA. Thus, a more 

optimised methodology of System Identification for practical applications is presented.  

The chapter discusses in detail the concepts and the importance of the appropriate 

selection of sampling time, selection of the maximum dynamic order and the formulation 

of a stable model under inadequate excitation inputs. The System Identification 

methodology is formulated considering these concepts by using some of the already 

known methods. However, in order to efficiently produce stable time-series models under 

inadequate inputs a new System Identification algorithm is presented. It should be 

emphasised that a complete System Identification methodology, for CM-FD, that 

addresses the above-mentioned concerns for practical applications has not been 

presented or discussed before in the literature.      

 

6.2 Sampling time, System Identification and nonlinearity 

detection  

Sampling time is a critical factor that needs to be considered for the quality of 

dynamical reconstruction of nonlinear systems from input-output data [28], [139]–[142]. 

It is well known that the performance of structure detection and parameter estimation 

algorithms are affected by the sampling time of the data under investigation [28]. Worden 

et al. in [143] pointed out that the effects of sampling time while does not affect the 

validity of the model but however, produces models that are overly complex. Although 

overly complex model at times is adequate for prediction purposes [143], including more 

terms than required will usually lead to models that exhibit spurious dynamical effects 

that are not actually present in the real system and at worst be numerically unstable [26], 

[27]. If the sampling time or the delay time between samples, sT  is too long the data will 

be undersampled and this will cause a loss of dynamic behaviour that is present within 

the data. Conversely, if the sampling time is too short then the data will be oversampled 

and be highly correlated, i.e. ( ) ( 1)y t y t − , which will result in numerical issues. 

Billings and Aguirre in [28] demonstrated that smaller sampling times favoured 

accurate parameter estimation while higher sampling times improved structure detection 

capabilities. However, the authors also pointed out that as 0sT → , ( 1) ( )y t y t− →  will 

cause numerical problems leading to a deterioration in the accuracy of parameter 
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estimation. It should also be emphasised that in the case where the sampling time is too 

small and ( ) ( 1) ( 2)y t y t y t −  − , the parameter estimation process will give a higher 

weighting to output lagged terms such as ( 1)y t −  and ( 2)y t − . Consequently, this will 

result in a deteriorate in the dynamical effect of a black-box model thus deterring the 

attempt to reconstruct the dynamical mapping of the input ( )u t  of the system to the 

output ( )y t . As such this would affect the detection of the model structure, especially the 

detection and parameter estimation of nonlinear model terms. Therefore, a compromise 

in the selection of sampling time is necessary. Thus, in order to obtain satisfactory results, 

it may be necessary to downsample the observed data appropriately before conducting 

System Identification. The appropriate sampling time can be chosen using several 

available methods [144] and a commonly used method is based on the correlation 

function [145]. In order to accommodate nonlinear correlations the method of selecting 

an appropriate sampling time has been proposed in [28] based on nonlinear 

autocorrelation functions. The performance of this method and its consistency has been 

demonstrated and a rigorous analysis of the method and the justification of its use is 

available in [28], [139], [140]. The specifics of this method are as follows; 

• Considering the correlation functions; 

 

2' 2'
2 2 2 2

( ) E ( ( ) ( ) )( ( ) ( ) ) , 0,1, ,

( ) E ( ( ) ( ) )( ( ) ( ) ) , 0,1, ,

yy c c c

c c cy y

y t y t y t y t

y t y t y t y t

  

  

   = − − − =
 


   = − − − =

 

 (6.1) 

 where  E .  is denoted as the mathematical expectation and the overbars 

represent averaging with respect to time.    

 

• Choose m  such that;  

  2'min ,m y y
  =  (6.2) 

where y  and 2'y
  are the first minimums of ( )yy c  and 2' 2' ( )cy y

  

respectively. For systems that are explicitly known to be linear m y =  can 

be used directly.  

       

• Finally, an appropriate sampling time can be chosen in the range; 

 
20 10

m m
sT

 
   (6.3) 

  

• The above rule is a heuristic relation and not a precise mathematical one, as 

such the range shown in equation (6.3) can be often relaxed to [140]; 

 
25 5

m m
sT

 
   (6.4) 
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6.3 Model term selection criterion and model building  

The selection of appropriate model terms is of vital importance in order for the 

approximate dynamical reconstruction of a system from its input-output data [27], [146]. 

As pointed out in the previous section the sampling time, sT , needs to be considered. 

Furthermore, the choice of maximum dynamic (lag) orders, yn , un  and cn  of the output

( )y t , input ( )u t  and the residuals ( )e t  (also known as embedding dimensions), which 

will be used by a model structure determination algorithm such as the FRO is of 

significance, this has been pointed out in [26]. As discussed in Chapter 3 Section 3.6.2, two 

popularly used model term selection criteria are the ERR based FRO algorithm [109], 

[110] and the SRR based SEMP (Simulation Error Minimisation with Pruning) algorithm 

[106]. However, both these algorithms have shortcomings and are affected by the 

sampling time issue in the context of the approximate dynamical reconstruction of the 

true system dynamics. This section aims to formulate a System Identification 

methodology which will take into account the considerations of sampling time, dynamic 

order and model structure determination.  

 

6.3.1 Choice of maximum dynamic order   

Considering y un n= , the choice of the maximum dynamic order yn  in the context of 

nonlinear System Identification is significant for the discrete dynamical reconstruction of 

the continuous time dynamics from the input-output data of the system. This is because 

the choice of yn  higher than a certain value has been reported to produce spurious 

dynamics in the case of chaotic systems [26] due to the occurrence of unnecessary 

Lyapunov exponents [146].  

Aguirre and Billings in [27] introduced the concept of model structure space (MSS). It 

is the space in which all possible identified model structures can be characterised under. 

The MSS in [27] is defined in terms of the sampling time sT , the dynamic order yn  and 

the total number of process terms pn  in the polynomial model. The authors demonstrated 

that the appropriate model structures resulting in the best-estimated models in the MSS 

lie within certain bounds. The best estimated models are with regard to dynamical 

reconstruction. Thus the sub region   in the MSS in which these best model structures 

lies is in relation to the bounds of sT , yn  and pn , in which ( , , )y p sn n T . Mendes and 

Billings in [147] expanded the initial concept of MSS and the subregion and revealed 

that   should also be defined using the data length L  used, the noise variance and the 

number of noise terms.  

In considering the above and the usual approach that initially the process model 

structure is to be determined first before the noise model is considered, to avoid bias in 

the process model structure selection [24], [72]. The initial choice of sT , yn  ( y un n= )  and 

pn  is thus significant. The choice of sT  can be done using the approach introduced in 
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Section 6.2. For the initial determination of the maximum dynamic orders yn  and un , the 

method of obtaining a reduced set of candidate terms proposed by Wei et al. in [148] can 

be used. This method is introduced in the following section.        

      

6.3.2 Reduced set of candidate model terms 

Wei and Billings in [148] proposed an effective method of obtaining a reduced set of 

candidate model terms for the identification of nonlinear systems. This is based on the 

idea of fitting a locally linear model to the input-output data of a nonlinear system using 

the FRO algorithm. The set of input and output lagged terms or regressors of this local 

linear model,  linΦ , is then used to compose the set of nonlinear model terms (regressors)  

nlΦ . The reduced set of candidate model terms  ,s lin nl=Φ Φ Φ  is then used for the 

identification of the nonlinear model. The authors demonstrated the effectiveness of this 

method and showed that this can be used in various linear-in-parameter model types such 

as polynomial, fuzzy logic, neural network and wavelet-based models. Using a reduced set 

of candidate model terms improves the computational time for the evaluation of the 

nonlinear models. This is because the identification algorithm must only consider a much 

lesser number of terms than an overall full set that includes all possible linear terms and 

the respective nonlinear combination of these. 

The authors of [148] pointed out that if a certain lagged term, with respect to the 

output of a nonlinear system, is significant, thus it is significant in a linearized model as 

well. However, it should be noted that this method does not attempt to construct a 

linearized model representation. It is an initial step of selecting suitable model terms 

(regressors) to represent the linear dynamics of the system present within the data [148].    

 

6.3.3 PEM and SEM approach to model term selection   

The SRR based SEMP algorithm inherently is computationally intensive because of 

the need for running simulations in order to access the importance of each candidate 

regressor or model term [106]. This is a significant issue in the context of nonlinear System 

Identification as the number of candidate model terms is extremely large (see Chapter 3 

Section 3.6). Conversely, the SEMP algorithm, since it is based on the SEM approach is 

reported to be more robust than the PEM counterparts such as the FRO algorithm and 

produces models that have the ability for long term prediction [80], [106]. Furthermore, 

the SEMP algorithm has the capability of removing any terms, which are added in previous 

iterations that become redundant because of the addition of new terms at subsequent 

iterations. Therefore, SEMP is a stepwise regression algorithm and this avoids the addition 

of spurious terms. A major advantage of the SEMP algorithm is that it can guarantee a 

stable model since it minimisers a simulation error based cost function [106]. For the 

specifics of the SEMP algorithm and its variants the reader is directed towards [106], 

[111], [149]–[151]. 
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The OLS-ERR based FRO algorithm is a commonly used model term selection 

algorithm based on the forward selection approach. It is much faster and efficient at 

evaluating significant model terms than the SEMP algorithm because of its PEM based 

OLS-ERR framework. The recently introduced iterative FRO (iFRO) algorithm [83] has the 

ability to take several different orthogonalisation paths to produce competing models. 

This ability of iFRO algorithm overcomes one of the major drawbacks of the original FRO 

algorithm. From these competing models, the best performing model can then be chosen. 

This process can be completed in relatively low time and the iFRO algorithm has a higher 

possibility of achieving a global optimum solution in a PEM sense than the original FRO 

[83]. For specifics on the FRO and the iFRO algorithms, the reader is directed towards [83], 

[109], [110].   

A PEM approach to System Identification aims at finding the optimum one-step ahead 

predictor, ˆ( | 1)y t t − , of the output data [24], [72] where;  

 

  ˆ( | 1) ( ( 1), , ( ), ( 1), , ( ) )y uy t t f y t y t n u t u t n− = − − − −  (6.5) 

 

in which for the NARX case f  is a nonlinear mapping usually of the polynomial form (see 

Chapter 3 Section 3.4.2). The PEM approach asymptotically tends to the correct model 

depending on the amplitude and frequency content of the input excitation ( )u t  [24], [72]. 

However, for the identified model to be able to reconstruct the actual dynamics of the 

system, its ability for long term prediction, i.e. simulation performance, needs to be 

considered as this shows the dynamical features of the model more directly [80], [152]. 

Sjöberg et al. in [88] pointed out that on the basis of the optimal predictor model, the 

optimal simulation model can be evaluated by setting ˆ( ) ( )sy t y t=  and ˆ ˆ( | 1) ( )sy t t y t− =  

in equation (6.5). Therefore,  

 

 ˆ ˆ ˆ( ) ( ( 1), , ( ), ( 1), , ( ) )s s s y uy t f y t y t n u t u t n= − − − −  (6.6) 

where  ˆ ( )sy t  is the model predicted output or the simulated output of the model. This is 

the essence behind the SEMP algorithm. Furthermore, when considering multi-step ahead 

or k – steps ahead predictor models, the PEM criterion tends to the SEM criterion as k and 

the number of observations increases [79], [153], [154]. Thus, the optimal PEM model 

tends to the optimal SEM when considering longer prediction horizons.  

 

6.4 A new method to System Identification based on SEM and 

iFRO 

The iFRO algorithm [83] has the ability to search several orthogonalisation paths in 

order to achieve an optimal solution in a PEM sense. Each term in a given set of candidate 

model terms, 
1 2

{ , , , }
ms s s s  =Φ , will be used as a starting point for the 

orthogonalisation process and several orthogonalisation paths will be searched 
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simultaneously resulting in m  competing models. The best model is chosen based on 

parsimony and the sum of ERR (SERR) values of all terms contained within the 

corresponding models. The simplest models with high SERR values are considered to be 

the most optimum. The search on each orthogonalisation path will be done using a pre-

defined stopping criterion (1 )− , where   is a certain SERR tolerance the model in the 

search path should not attain any higher. 

In the iFRO algorithm, the initial term set sΦ  is chosen from a larger term set 
DΦ . 

The original FRO algorithm is applied to 
DΦ  with a pre-defined tolerance   to obtain

sΦ . Thus applying the iFRO algorithm on sΦ , the term set of the best performing model 

opΦ  is obtained. Further iterations can be performed where each term in opΦ  is selected 

as the first starting point and thus several orthogonalisation paths will be searched using 

all the terms in sΦ .  The best model from this iteration is then chosen as the new best 

model. Setting s op=Φ Φ  and the set of terms in the new best model as opΦ . The process 

is then repeated. It should be noted that the best model obtained in the subsequent 

iteration will be less suboptimal than the model obtained in the previous iteration if the 

stopping criterion (1 )−  is kept unchanged [83]. However, as pointed out by Guo et al. 

in [83], often no further iterations are needed after the first iteration. Therefore, in the 

iFRO algorithm, the forward selection method based on the OLS-ERR can be directed 

towards a certain optimal orthogonalisation path. Furthermore, the most significant 

feature of the iFRO algorithm is that it has been demonstrated it  can be used in System 

Identification even in the presence of inadequate inputs that do not persistently excite 

the system [83]. Thus, its potential in the System Identification strategy proposed in this 

chapter, specifically for Condition Monitoring and Fault Diagnosis. For in detail specifics 

on the iFRO algorithm the reader is directed to [83].     

In this section, an extension to the iFRO algorithm is proposed in which the 

orthogonalisation path taken is directed towards minimising the simulation error of the 

model produced. As such this algorithm will be called the S-iFRO (Simulation error 

minimising iFRO) algorithm.   

Guo et al. in [83] highlighted some important properties of the iFRO algorithm 

considering its iterative process of obtaining a model, these are;  

1. If a correct model term is selected as the first term in the orthogonalisation 

path the algorithm will reach the stopping criterion, (1 )− , relatively faster 

thus resulting in a more parsimonious model. 

 

2. Incorrect terms may contain information of more than one correct term 

thus obtaining a higher ERR value. However, if a correct term is forced to 

be selected as the first, the ERR value of such incorrect terms drops as its 

contribution to the output variance becomes less significant. Therefore, it is 

much unlikely for an incorrect term to be selected in the subsequent steps 

of term selection. 
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3. All correct terms will be significant, from an ERR point, on the correct 

orthogonalisation path.       

 

Considering the above properties of the iFRO algorithm, the choice of the best model 

from a set of m  competing models   1 , , m=  is done explicitly by using the 

respective simulation performance of each model 
k

, 1, ,k m= . Thus, yielding the 

best performing simulation model. This is because more than one competing models in 

 may have the same number of terms. In such an instance comparison with one-step 

ahead prediction errors,  ˆ( ) ( ) ( | 1)pe t y t y t t= − − , and the  SERR  might not yield a 

satisfactory model. This is because some of these models might perform poorly when 

simulated and even be unstable [106]. Thus, the model with the least simulation errors, 

ˆ( ) ( ) ( )s se t y t y t= − , should be considered. Therefore, the models 
k

, k   for  

1, ,k m=  should be compared against the mean squared simulation errors of each 

model, ( )kMSSE , and the model with the least MSSE , i.e.  

 min ( ) | , 1, ,k kMSSE k m=  =  is chosen as the best model.       

Recalling that the model which is found in the subsequent iteration will not be worse 

than the model in the previous iterations, given the stopping criterion is kept unchanged. 

Thus, in consideration of the properties of the iFRO algorithm, mentioned earlier, and the 

iterative procedure of directing the iFRO algorithm to follow an optimum 

orthogonalisation path. The iFRO algorithm can be made to follow an orthogonalisation 

path directed towards an optimum SEM search path. This can be achieved by making the 

choice of the best model throughout the iFRO algorithm using the MSSE , such that; 

  

  min ( ) | , 1 , ,
i ii k k i i iMSSE k m=  =  (6.7) 

 

where i  denotes the respective iteration. i  is the respective best model, i  is the set 

of competing models and im  is the total number of competing models in the thi  iteration. 

It should be strictly followed that for 2i   the competing models, 
ik , in i  are under 

the condition that;  

 

 1( ) ( )
ik iMSSE MSSE −  (6.8) 

 

As such in the thi  iteration if the set of competing models i =  , where   denotes a 

null or an empty set, then the final model is taken as 1i− . This is the essence behind the 

S-iFRO algorithm. 

The models obtained in using the S-iFRO algorithm will tend to obtain the optimal 

simulation model of the system in relation to the input-output data. At each iteration i, 

i  obtained is the best simulation model in i . Thus, the terms that compose i  will 
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be the best combination of terms that can reconstruct the dynamics of the actual system 

among all the competing models. This is because as mentioned in Section 6.3.3, 

simulation performance shows the dynamical features of the model more directly. Hence 

as iterations progress, better models in a dynamical sense will be obtained. Furthermore, 

i  is more likely to have a higher number of correct terms.  

It should be highlighted that given a certain maximum dynamic order, where y un n=

, and that the sampling time sT  is set appropriately. In the perspective of the MSS (see 

Section 6.3.1), in the S-iFRO algorithm, the iFRO part will produce possible models that lie 

in the space of the MSS because of the several orthogonal paths taken. The selection of 

the best model i  is done using the minimum MSSE, subjected to the condition in 

equation (6.8). This implies that as the iterations progress, i  will contain more terms 

that would reconstruct the actual dynamics of the system more accurately. Thus further 

implying that some of the terms in i  would actually be a part of the model structure in 

the sub-region   of the MSS. Recalling that   is the region in which the best model 

structures that could reconstruct the system dynamics well thus attaining the best 

simulation performances. i  would tend to be in this region as the iterations progress. 

Because of the efficiency of the iFRO to search several orthogonal paths [83], this would 

mean that i  will tend to this region efficiently. Thus, the S-iFRO algorithm can obtain 

models that can reconstruct the actual system dynamics present in the data effectively.                   

The S-iFRO algorithm is much more efficient than the SEMP algorithm because of the 

much lesser number of simulations needed to be carried out. In the SEMP algorithm 

model terms are selected in a stepwise regression fashion in which case simulations are 

needed to be carried out every time a term is added or removed. Conversely, in the S-

iFRO algorithm simulations are carried out on the already formed models in the set of 

competing models. However, naturally, the S-iFRO algorithm requires more 

computational effort than the iFRO algorithm. Nevertheless, because of the superior 

efficiency inherently present within the iFRO algorithm in obtaining optimum models and 

the unlikely possibility of requiring a higher number of iterations [83], the number of 

simulations that needed to be conducted will mainly depend on the size of the initial set 

of model terms sΦ  used. Thus, using a reduced set of candidate model terms, obtained 

using the method introduced in Section 6.3.2, would increase the efficiency of the S-iFRO 

algorithm. It should be noted that because of the SEM nature of the S-iFRO algorithm the 

models produced are robust and often could produce unbiased estimates [80], [152], 

[155].  

In the following subsection, a method of obtaining a reduced set of candidate model 

terms based on the method introduced in Section 6.3.2 but using the S-iFRO algorithm is 

presented.  
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6.4.1 Obtaining a reduced set of candidate model terms using the S-iFRO 

algorithm 

The total number of candidate model terms for a nonlinear system can be a large 

number depending on the maximum dynamic order ( y un n= ) used and the highest 

polynomial nonlinearity pN  considered. Using a reduced set of candidate model terms 

significantly reduces the computational effort of identifying a nonlinear model such as a 

NARX model (Section 6.3.2).   

The significant model terms (regressors) of the locally linear model, linΦ , can be 

obtained and a reduced set of linear ( linΦ ) and nonlinear (
nlΦ ) candidate terms, 

 ,D lin nl=Φ Φ Φ , can be composed. By using the S-iFRO algorithm to obtain linΦ , 

because of the SEM nature, the linear model terms obtained will be robust and often 

unbiased [80], [152], [155]. Furthermore, the process can be even done if the system is 

not persistently excited. The reduced set of candidate terms 
DΦ  is then composed using 

these robust linear terms. It should be noted that robustness is in relation to the data and 

the local dynamics present within the data. Furthermore, because of the SEM nature of 

the S-iFRO algorithm and considering that the simulation performance is a direct measure 

of the model dynamics (see Section 6.3.3). The linear model terms (regressors) linΦ  

chosen will describe the true locally linear dynamics. As discussed in Section 6.3.2 a model 

term that is significant in the original nonlinear system will be significant in the linearized 

model. Thus, since the terms in linΦ  are robust, some of these terms should describe the 

nonlinear terms and thus the nonlinear dynamics sufficiently. 

The detailed steps involved in the S-iFRO algorithm including the pre-selection of the 

reduced set of candidate terms are as follows; 

1. Setting an appropriate maximum dynamic order yn  and y un n= . Obtain 

a full set of linear input and output lagged terms (regressors) ,D linΦ .  

 

2. Setting a certain tolerance  , perform the iFRO algorithm on ,D linΦ . In 

each iteration of the algorithm, select the best model using the simulation 

performance in a SEM sense using equation (6.7) along with the condition 

in equation (6.8)  to produce the best simulation model. 

 

3. The terms in the best simulation model are taken as linΦ . Thus compose 

all the nonlinear terms arising from the nonlinear combinations of the 

terms in linΦ  until a certain degree pN  to form 
nlΦ . Thus 

 ,D lin nl=Φ Φ Φ . 

 

4. Perform the iFRO procedures in which the best model i  in each 

iteration i, is chosen in accordance with equation (6.7) subjected to the 

condition in equation (6.8) to produce the final model.        
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One approach of selecting the maximum dynamic order in step 1 above is such that, 

determine the value of yn , y un n= , from a range of values. This would produce several 

locally linear models in following through steps 1 and 2. The locally linear model with the 

least MSSE is then chosen and the corresponding model terms are selected as linΦ  in 

step 3.   

 

Example of a nonlinear System Identification using the S-iFRO algorithm 

The performance of the S-iFRO algorithm in the case of nonlinear System 

Identification in the presence of a disturbance is shown here. The nonlinear system that 

is to be identified is shown in equation (6.9) below. 

 

 3
1( ) 0.2 ( ) ( ) ( ) 5 ( ) ( )y t y t y t K y t y t u t+ + + + =   (6.9) 

 

The nonlinear system in equation (6.9) is subjected to an input ( )u t  where; 

 

 
1 2( ) (sin(2 ) sin(2 ))u t A f t f t = +   (6.10) 

 

in which 
1 10f Hz= , 

2 25f Hz=  and 50A = .  

The S-iFRO algorithm was used with a reduced set of candidate terms in the following 

manner; 

• A locally linear model was first fitted to the data using the S-iFRO algorithm 

to obtain a set of linear model terms ,D linΦ . A reduced set of candidate model 

terms  ,D lin nl=Φ Φ Φ  was formed where 
nlΦ  is the set of nonlinear 

candidate terms composed using ,D linΦ  up to a nonlinear polynomial order 

3pN = . The stopping criteria 4.6(1 ) 10 −− = . 

 

• The S-iFRO algorithm was then used along with 
DΦ  to obtain the final system 

model. The stopping criterion at this stage was used as (1 )−  where 

, ,min( )D lin D linSERR ERR = + , in which ,D linSERR  is the sum of SERR values 

of the terms in ,D linΦ  and ,min( )D linERR  is the corresponding minimum ERR 

value the term set ,D linΦ .       

The system shown in equation (6.9) was subjected to the input in equation (6.10) 

with sampling time 360sT Hz= . A step disturbance was added to the output as shown in 

Figure 6.1 before the identification process.  
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 System Identification was performed using the S-iFRO algorithm as mentioned 

above. Figure 6.2 illustrates the model predicted output or the simulation output against 

the actual output of the system with the added disturbance. Table 5 shows the 

corresponding ERR values of the final model along with the parameter values.  

Table 6 shows the corresponding model with the lowest MSPE (mean square of the 

prediction error) value. It is seen from Table 5 and  

Table 6 that the best simulation model has a four times higher MSSE than the lowest 

MSPE model. However, the MSPE values of both the models are approximately the same 

even though the MSSE values are significantly different. This indicates the model selected 

using the MSSE is more dynamically accurate. The frequency components generated by 

the nonlinearity of the system is very minute compared to the complete output signal 

which is dominated by the frequencies 1f  and 2f . Thus, selecting the best model using 

the MSSE rather than the MSPE produces models that are more dynamically accurate. 

This is significant in the case of CM-FD as the System Identification process needs to be 

able to capture the dynamics of the system present in the data well. However, it should 

Figure 6.1: Output y(t) of the system with added step disturbance. (a) shows the 

complete time series of the output. (b) shows the section of the time series in which the 

disturbance is added. 



 

 

98 | P a g e  

 

 

be noted that it is foremost the iFRO part of the algorithm that produces these competing 

models. This indicates the significant ability of the iFRO to produce dynamically correct 

models. The S-iFRO being an extension of the iFRO selects the most dynamically correct 

model from the competing models produced.        

 

Table 5: Specifics on the best simulation model 

Model term ERR  

2( 1) ( 5)y t y t− −   0.56279 

( 1)y t −   0.4169 

( 5)y t −   0.0168 

( 2)u t −  0.0035 

( 5)u t −  6.6345e-7 

( 4)u t −  7.8074e-6 

MSSE = 1.0348e-4     MSPE = 2.5729e-9 

 

 

Table 6: Specifics on the least MSPE model 

Model term ERR  

3( 1)y t −   0.6373 

( 1)y t −   0.3417 

( 5)y t −   0.0174 

( 2)u t −  0.0035 

( 5)u t −  6.2330e-7 

( 4)u t −  7.8273e-6 

MSSE = 4.0667e-4     MSPE = 2.5727e-9 
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6.5 CM-FD methodology based on SI and FRA optimised for 

practical implementation 

The S-iFRO algorithm proposed in this chapter can address the concerns mentioned 

in Section 6.1 which is part of the main motivations of the current study (see Chapter 1 

Section 1.2). Because of the SEM nature of the S-iFRO algorithm and the inherent 

efficiencies present within the iFRO method. The task of System Identification can be 

conducted even in the presence of inadequate inputs which does not persistently excite 

the system. This, however, will be to a certain degree. The matter of accurate dynamical 

reconstruction is addressed because of the SEM nature of the S-iFRO algorithm. 

Therefore, the models identified will be robust and would be able to reconstruct the 

actual system dynamics present within the data.  

Figure 6.2: Actual output (blue) against the model predicted or the simulation output 

(orange) at the start of the disturbance. It is seen clearly that the model predicted output 

performs well in comparison to the actual output. 
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The issues of numerical accuracy present within the original LS method for the 

evaluation of NOFRFs has been addressed by the proposed M-LS in Chapter 5. It has been 

shown that the NOFRFs can now be applied, using the M-LS method, to locally 

approximate a nonlinear system that exhibits severe nonlinearities. This enables the use 

of the NOFRFs for CM-FD of nonlinear systems of the severe nonlinear type. Thus, with 

the improvements to the NOFRFs presented in Chapter 5 and the proposed S-iFRO 

method for System Identification, the first three objectives of this study (see Section 1.3) 

have been achieved. Consequently, a new methodology for System Identification and 

Frequency Response Analysis of nonlinear systems will be as follows; 

1. Select an appropriate sampling time using the method introduced in Section 

6.2. 

 

2. Identify the model that fits the data using the S-iFRO algorithm with pre-

selection of the reduced set of candidate terms, steps 1 – 4 in Section 6.4.1. 

 

3. Evaluate the NOFRFs of the model using the M-LS method.  

The above methodology proposed for SI and FRA of nonlinear systems is then used with 

the previously proposed framework in [15] for a complete data-driven FDI framework for 

CM-FD of nonlinear systems. The same framework can be used in the case of linear 

systems in which instead of the NOFRFs the linear systems FRF is used in step 3 above.        

 

6.6 Summary 

In this chapter, a new System Identification algorithm called the S-iFRO is proposed. 

This along with the strategies mentioned for selection of sampling time and maximum 

dynamic order, a complete System Identification methodology is presented which 

addresses the practical concerns of using System Identification in CM-FD. The concept of 

MSS was explained in detail. Thus, the importance of sampling time, nonlinearity 

detection and the selection of the maximum dynamic order were discussed extensively 

using the concept of MSS. The significance of achieving a dynamically correct model in the 

System Identification stage of the SI and FRA approach is critical. Accurate dynamical 

reconstruction of a system using input-output data was discussed extensively with regard 

to PEM and SEM approaches. It was pointed out how a SEM approach to System 

Identification produces more dynamically accurate models. However, PEM approaches 

are much more computationally efficient. Therefore, a System Identification algorithm 

that combines the efficiency of PEM and the dynamical accuracy of SEM was considered. 

Thus, the extension proposed to the iFRO algorithm, the S-iFRO, makes certain that the 

model produced in the identification stage is the most dynamically accurate model 

according to the input-output data of the system. A detail discussion of the S-iFRO 

algorithm was presented in order to explain how the algorithm will produce dynamically 

accurate models with regard to the concept of MSS. An example of identifying a system 

with an external disturbance in the output data was shown to highlight the capabilities of 

the proposed algorithm. The inclusion of the M-LS method to the evaluation of NOFRFs 
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further improves the complete CM-FD methodology based on System Identification and 

Frequency Response Analysis. Thus, facilitating the practicality of applying this approach.  
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Chapter 7  

 

Low-Frequency RFID Based Eddy 

Current Probing and Defect 

Characterisation Using System 

Identification and Frequency 

Response Analysis   
 

7.1 Introduction 

LF (Low Frequency) RFID (Radio Frequency IDentification) technology based NDE&T 

(Non-Destructive Evaluation and Testing) or non-invasive technique for SHM has been 

recently proposed [32], [33]. In [32], [33], the respective authors used features from the 

time-series signal of the RFID system to distinguish between different stages of corrosion 

and different progressions of cracks.  

Most RFID reader and tag systems function, according to the principles of inductive 

coupling. Thus, the procedures of power and data transfer are governed by the physical 

principles of magnetic phenomena [35]. The basic theories and details behind the working 

principles of RFID tags can be found in [35]. RFID systems comprise of a reader (primary 

coil) and tag/transponder (secondary coil) and use electromagnetic induction for power 

and data transfer. The reader and the tag are inductively coupled. During which the reader 

transfers power via magnetic induction (the carrier wave) to activate the tag and receives 

data which is stored in the tag memory and also communicates with it. Due to the reader 

coil and tag coil being magnetically coupled, the magnetic field of the tag is reflected upon 

the reader coil as an imaginary impedance. Hence, any variation in the tag magnetic field 

is reflected on the reader through this imaginary impedance (carrier and tag signal). The 

voltage reading taken around the reader coil is a differential voltage which is the result of 

the tag magnetic field inducing currents on the reader coil, that are opposite in direction 

(Lenz’s law) to reader coil currents.   

Considering when a RFID tag is attached to a metal, the electromagnetic coupling 

between the metal and the tag will cause certain changes to the magnetic field produced 

by the RFID tag. This depends on the electrical properties of the metal attached. Since 

these changes are observable from the reader, any changes in the electrical properties of 

the metal will be reflected in the tag magnetic field. Consequently, any changes to the 
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electrical properties of the metal will be observable from the reader. Various defects in 

metals result in changes in its electrical properties. This is the essence behind the concept 

of using RFID for defect characterisation. The viability and effectiveness of this concept 

were illustrated by the authors of [33] and [32]. Essentially the RFID reader tag system 

acts as a wireless probing and sensing mechanism in NDE&T for the purpose of SHM. 

In [33] and [32] the tag response was obtained by filtering the output signal 

(comprising the carrier wave and the tag response) and then applying amplitude 

modulation. The tag response was analysed using traditional signal processing techniques 

of extracting features such as peak amplitude, signal height etc. The authors of [33] 

presented in their results a clear distinction of corrosion characterization and the 

potential of using RFID tags for defect detection in metal structures. Popularly like in other 

eddy current based NDE&T techniques, the features are extracted and the analysis is 

conducted only by way of observing the output response of the probing mechanism. This 

indirectly brings about the assumption that the response signal, that is to be compared 

with a reference signal, is measured not only under the same or similar conditions, but 

also the same input or excitation signal to the probing device. Therefore, this implies that 

even though the features extracted are defect specific to a degree, these features also to 

a certain significance depends on other factors as well. Hence with the type of signal 

processing techniques used and basing the analysis only on the output response results 

in several disadvantages which have to be mitigated for practical implementation. These 

disadvantages are briefly mentioned below [4], [6]. 

• Due to the effect of noise and other disturbances, fault features such as; 

amplitude and phase gets affected. 

• Dynamic interrelationship lacks between the fault and signal. Therefore, a 

comprehensive Fault Diagnosis might not be able to be carried out. 

• Fault features depend on the input signal, other system loads and disturbances 

and other background effects. Therefore, many other factors could influence 

fault features. 

• Many pre-processing steps are to be taken before feature extraction which could 

distort useful information.  

For detecting structural defects such as corrosion, crack etc. and its severity, utilizing 

RFID tags as a sensor, a good Condition Monitoring method should be used which could 

differentiate and determine the defects when multiple defects occur. Furthermore, the 

Condition Monitoring method should be robust against noise, disturbances and other 

uncertainties. Thus, in this chapter, the FDI method proposed in the previous chapter is 

used to characterise defects, in particular; crack length, crack depth and corrosion. The LF 

RFID based eddy current probing method coupled with SI and FRA presented in this 

chapter is novel implementation for SHM. 
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7.2 Experimental rig used for LF RFID based SHM 

The experimental rig that was used to collect data from a LF RFID based NDE&T 

system was a setup used in an EPSRC funded project in collaboration with Network rail, 

the University of Newcastle and the University of Sheffield for rail track defect detection. 

The University of Newcastle has set up the rig for collection of data from different 

corrosion and crack samples using LF RFID based wireless eddy current method. The rig 

was inspected and data was collected to begin preliminary investigations into RFID based 

NDE&T method in a systems perspective for corrosion and crack characterization. Data 

were obtained from different corrosion samples, crack length samples and crack depth 

samples. Figure 7.1 illustrates the experimental setup that was used.  

The RFID tag used is a passive low-frequency ATMEL ATA577 tag that is tuned to 125 

KHz. Both the reader and the tag are tuned to resonate at 125 KHz, hence the input 

voltage to the RFID reader was a square wave with a frequency of 125KHz. RFID tags 

produce a load modulation sequence once it is powered by the carrier wave [35]. This is 

how each tag is uniquely identified when it is used in its usual commercial applications 

[35]. The LF RFID tag is programmed to produce a load modulation sequence of 1’s and 

0’s once it is powered. This sequence will be embedded in the carrier signal through 

amplitude modulation [35]. The experimental setup is the same as the one used by 

authors of [33]. Except the data is not pre-processed after being sampled and digitised. 

The data is directly used for System Identification and Frequency Response Analysis. 

The LF RFID tag when placed on the metal sample, becomes a part of the RFID tag 

antenna. This is because of the mutual inductance that is created between the tag and 

the metal sample. Thus the metal sample acts as a pseudo inductor connected in parallel 

to the tag antenna [33]. Hence the resonant frequency of the tag becomes lower. The 

RFID tag and the metal sample collectively will be called the Tag-Metal system or simply 

Tag-Metal. Because of the mutual inductance between the Tag-Metal and the reader coil, 

the Tag-Metal acts as a pseudo inductance on the reader coil. Consequently, any changes 

in the electrical properties of the metal sample due to defects will be embedded in the 

carrier and tag signal or simply the carrier-tag signal. It should be noted that, even though 

there is a magnetic coupling (mutual inductance) between the reader coil and the metal 

sample, the magnetic coupling between the RFID tag and the metal sample is much 

greater. Also, the distance between the reader and the coil is placed such that this is true 

and thus the RFID tag and the metal sample can be approximated as one isolated system 

[32], [33]. The complete setup of the reader coil, LF RFID tag and the metal sample can be 

considered as one system and will be called the Reader-Tag-Metal system. This is because 

the reader coil and the Tag-Metal are dynamically interrelated to each other via mutual 

inductance. Figure 7.2 illustrates this dynamical interrelationship.  

The Reader-Tag-Metal system has one main input and one main output as shown in 

bold lettering in Figure 7.2. The input voltage to the reader system is the main input which 

will produce the carrier signal while the voltage measurement around the reader coil is 

the main output (carrier-tag signal). This point of view of the complete setup can be 
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considered as observing the RFID reader system, LF RFID tag and the metal sample in a 

systems perspective.  

In the same systems perspective viewpoint it should be noted that the modulation 

sequence, which varies the tag antenna resistance [33], and the distance between the 

RFID reader system and the Tag-Metal (Stand-off distance [33]), can be considered as 

either internal system disturbances or as varying internal parameters or even as main 

inputs to the system. This is an important observation as both of these, the load 

modulation sequence and the Stand-off distance affects the whole Reader-Tag-Metal 

Figure 7.1: (a) Experimental Rig used by The University of Newcastle (b) Diagram of the 

setup  [33] 
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system dynamics in a similar manner. Both these internal disturbances influence the 

current induced by the RFID reader on the Tag-Metal and vice versa but by different 

means; 

• The Stand-off distance directly affects the mutual inductance between 

the RFID reader and the Tag-Metal system. This will affect the current 

induced by the Tag-Metal system on the Reader coil and vice versa. The 

Figure 7.2: Systems perspective to the Reader-Tag-Metal system. The Tag-Metal system 

and the RFID reader system is shown separated outlined by a dashed box. The main input 

(Input voltage to the reader) and the output (Voltage measurement around the reader 

coil) are shown in bold lettering. The distance between the Reader and Tag-Metal can be 

regarded as internal disturbances.    
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Stand-off distance and its effects on the mutual inductance is a 

considerable factor [33], [35]. 
 

• The load modulation effects the resistance of the tag coil. Which in turn 

affects the current produced in the RFID tag. Hence the magnetic field 

produced by the tag. It can be shown by the reader coil voltage readings 

that the effects of load modulation on the main output is much smaller 

considering the Reader-Tag-Metal system output as a whole. This will be 

illustrated in a later part of this section.   
 

Taking the above factors into account the positions of the tag and the reader were 

kept at a constant distance at all times. This was such that the reader coil does not have 

a significant influence on the metal sample however, not too far from the LF RFID tag. This 

is because the mutual coupling between the reader and the tag has to be significant. The 

tag was placed directly on top of the defect region of the metal sample, see Figure 7.1. 

The data collected was sampled at a frequency of 10 MHz and 50,000 data points were 

collected and six such input-output data sets were obtained for each metal sample that 

was used.  

 

7.3 The Reader-Tag-Metal system 

 

Figure 7.3 above is a less abstract view of the Reader-Tag-Metal system. Given that 

the stand-off distance is kept constant the effect of it on the wider Reader-Tag-Metal 

system can be disregarded and does not need to be considered in the analysis. 

In order to understand the effect of the modulation sequence on the system output, 

just the RFID reader and the LF RFID tag without the metal sample (Reader-Tag system) 

was examined. Figure 7.4 – (b) shows the voltage measurement around the reader coil 

(output) of just the Reader-Tag system. Figure 7.4 – (c) illustrates a longer time sequence 

of the same output and Figure 7.4 – (d) shows a zoomed in version of Figure 7.4 – (c) 

around the top region of the output signal. It can be clearly observed from Figure 7.4 – 

(d), the binary sequence is embedded by the modulation sequence of the RFID tag on the 

output signal. However, it is noticeable that the actual size of the amplitude of the 

Figure 7.3: Simple representation of the Reader-Tag-Metal system in terms of inputs 

and outputs. The effect of the stand-off distance is not considered as it is kept constant. 
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embedded modulation sequence is significantly smaller compared to the complete 

amplitude span of the signal. When a metal sample without any defects is placed and the 

output of the Reader-Tag-Metal system is observed. The amplitude modulation seems to 

be very insignificant to the fact that it can be hardly examined without filtering the output 

signal, this is shown in Figure 7.5. This may be because the effect of the metal sample on 

the tag antenna coil, as a pseudo impedance, is much more significant than the change in 

resistance of the antenna coil produced by the modulation sequence. Hence the resulting 

amplitude modulation on the output cannot be observed. Thus, from these observations, 

it can be deduced that the effect of the load modulation of the RFID tag antenna coil has 

a very insignificant effect on the output of the Reader-Tag-Metal system as a whole and 

can be disregarded. Therefore, the complete Reader-Tag-Metal system can be 

approximated as single input single output system (SISO) with the main input as the 

voltage input to the RFID reader system and the main output as the voltage measurement 

around the reader coil as shown in Figure 7.6.   

 

 

 

 

 

Figure 7.4: (a) and (b) Input and Output time-series of the Reader-Tag system (without 

a metal sample) respectively. (c) Longer time sequence of (b). (d) Zoomed in version of 

the top part of the output signal in (c).  

(a) (b) 

(c) 
(d) 
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7.4 Analysis of the Reader-Tag-Metal system using the SI and 

FRA approach with metal samples of various defects  

The analysis of the Reader-Tag-Metal system using System Identification and 

Frequency Response Analysis was done through linear System Identification and the FRF. 

The linear model structure that was used is the ARX model structure. This was in reason 

that a linear ARX model was adequate to explain the system input-output relationship 

exhibiting good simulation results. The metal samples analysed were of three different 

kinds of defects, each sample with one kind of defect. The three types of defects being 

corrosion, crack depth and crack length. Under these three types of defects were samples 

of different severities of each defect were analysed. Table 7 below shows the damages on 

each sample used and the corresponding severities of the damage on different samples.  

The models identified were set to be of the same maximum dynamic order, where 

the input-output dynamic orders were set to 20y un n= = . This choice was made such 

this was the respective dynamic order in which all models obtained showed good 

simulation performance and passed the cross-correlation test between in the input and 

the residuals which lied between the 95% confidence interval. It should be noted that 

none of the models passed the auto-correlation test thus the residuals produced from any 

of the models from all the candidate model orders are not white. This was because of the 

Figure 7.5: Reader-Tag-Metal (Metal sample without any defects) output signal which is 

zoomed in on the top region. It is seen that the effect of the modulation sequence of the 

RFID tag is no longer visible in the output. 

Figure 7.6: Reader-Tag-Metal system approximated as a SISO system.  
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effect of the modulation sequence which is embedded on the output was not considered 

in the modelling process. The Reader-Tag-Metal system was approximated as a SISO 

system when ideally it should be a Multiple Input Single Output (MISO) system as 

discussed in the previous section. Although the effect of the modulating sequence cannot 

be clearly seen on the output signal when a metal sample is placed, Figure 7.5, traces of 

the modulating sequence will be yet embedded in the Reader-Tag-Metal output. 

Therefore, since it is not considered in the modelling process, the model output will not 

contain this feature which is present in the actual system output. Thus, the residuals will 

contain some traces of the modulation sequence. Consequently, the residuals will not be 

white noise. The ACF (Auto-Correlation Function) of the residuals will hence contain a 

periodicity and this approximately matches to the periodicity of the amplitude 

modulation of the Reader-Tag system in Figure 7.4 – (d). This is illustrated in Fig xx below. 

 

Table 7: Metal samples and the respective defects of each sample used in the analysis 

Corrosion metal samples 
(corrosion measured in months 
of exposure) 

Crack depth samples (depth 
measured in mm) 

Crack length samples 
(length measured in mm) 

0 (No corrosion) 0 (No cracks) 0 (No cracks) 

1 2 4 

3 5 8 

6 7 12 

10 9 16 

12  20 

  24 

  28 

  32 

 

Frequency features obtained from the FRFs of the identified models were used for 

comparing the metal samples of the same defect and the progression of the features in 

relation to the severity of each defect. The magnitude values of the FRFs were used as 

features, in particular since the input signal is 125 KHz, the FRF magnitudes at this 

particular frequency was used. This is because of the identified model would only be 

accurate around this frequency. As mentioned earlier in Section 7.2, six sets of input-

output data were collected from each sample thus six different ARX models were 

identified for each sample. Therefore, six different FRFs and resulting in six FRF magnitude 

features at 125 KHz. An average value of the respective FRF magnitudes at 125 KHz was 

then used to compare each sample with the same defect against the different severities 

to observe the progress of the features. The following subsections will look into the 

different defects on metal samples that were examined using the LF RFID NDE&T method 
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and the data obtained analysed using a control systems analysis approach via FRF 

features. 

 

 

 

 

 

 

(a) 

(b) 

Figure 7.7: Periodicity of the residual ACF and Reader-Tag output amplitude modulation. 

The periodicity of the ACF of the residual signal (a) is marked with the red dotted lines. 

The periodicity of the square wave embedded due to the modulating sequence (b) is 

marked with the red dotted lines. Both periods approximately match. 
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7.4.1 Corrosion characterisation  

 

To investigate the progress of corrosion using LF RFID technology base NDE&T 

method the SI and FRA method was applied to the input-output data that was collected 

from six corrosion samples of metal. Each sample having different levels of corrosion. 

• Corrosion samples examined: 0 months, 1 month, 3 months, 6 months, 10 months 

and 12 months.    

Figure 7.9 below illustrates how the FRF magnitude features appear when plotted 

against the number of months each corroded metal sample is exposed to. It can be clearly 

observed from Figure 7.9 that between each sample there is a clear variation with 

overlapping of standard deviations of each feature. Essentially an increasing trend can be 

observed as corrosion increases. This is because of the decrease in conductivity and 

permeability of the metal in the area of corrosion [33]. As the conductivity and the 

permeability reduces the inductance of the metal reduces. Because of the magnetic 

coupling between the metal sample and the RFID tag, the sample acts as a pseudo 

inductance connected in parallel to the tag antenna coil. Thus, resulting in an overall 

increase in the inductance of the parallel combination of the tag coil and the metal. Hence 

the magnetic coupling between the tag and the reader decreases. Thus, increasing the 

overall Tag-Metal magnetic coupling with the reader coil. It should be noted that these 

results are comparable and the trend of the features matches to the result of Ali Imam 

Sunny et al. in [33]. 

 

 

 

Figure 7.8: Corrosion samples: (a) 1 month, (b) 3 months, (c) 6months and (d) 10 months 

exposure. 12 months exposure sample is not shown. This image is taken from [33] has 

these are the same samples used in this research as well. 
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7.4.2 Crack length and crack depth progressions 

Analysis of the progression of crack length and crack depth applying the SI-FRA 

method was done in the exact same manner to the analysis done in corrosion. 

 

Crack length 

To simulate the effects of crack length, a long slit was cut into a metal sheet and the 

crack was incrementally moved into the RFID tag to mimic the progression of a crack, 

Figure 7.11 illustrates this process. The LF RFID tag was moved in 4mm increments after 

each reading was taken, hence nine different crack lengths were examined. 

• Lengths of cracks examined: 0mm, 4mm, 8mm, 12mm, 16mm, 20mm, 24mm, 

28mm and 32mm. 

Figure 7.9: Comparison of different averaged FRF magnitude features for corrosion 

samples against the amount of corrosion the samples were exposed to. An 

increasing trend is observed in the features as the corrosion progresses. However, 

large overlaps of features are seen resulting from the standard deviation of each 

respective feature. 
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The variations of the FRF magnitude features according to different crack lengths are 

illustrated below in Figure 7.10. The features vary approximately in a monotonic manner, 

therefore the values of the FRF magnitude features are inversely proportional to the 

length of the crack. It can be argued that as the crack length increases, a relatively larger 

part of the magnetic field gets trapped within the crack. This is because of the field getting 

2mm 

4mm 

LF RFID tag 

Figure 7.11: Mimicking crack length progression. The RFID tag was moved along the 

crack in 4mm increments to simulate crack growth 

Figure 7.10: Comparison of different FRF magnitude features for crack length samples 

against the length of the crack. A decreasing monotonic like trend is seen between the 

FRF features as the crack length progresses. Some overlap between the features are seen.    
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reflected within the crack walls. Hence reducing the magnetic coupling between the tag 

antenna coil and the metal sample. Thus, reducing the inductance of the Tag-Metal as a 

whole, which reduces the magnetic coupling between the Tag-Metal and the reader coil 

resulting in a lower FRF feature magnitude. 

 

Crack depth  

 

 

The LF RFID tag was placed directly on top of different crack depths in the sample 

shown in Figure 7.12 to take the readings. Five crack depths were examined. 

• The depths of cracks examined: 0mm, 2mm, 5mm, 7mm, 9mm.  

The procedures followed to examine and extract FRF features were exactly the same 

as for crack length samples as well as corrosion samples. Figure 7.13 illustrates the FRF 

feature variation in various crack depths. An increase in depth decreases the feature 

value. This is due to part of the magnetic field bouncing off between the crack walls, thus 

the field gets trapped within the crack. Therefore, the deeper the crack is a larger portion 

of the field gets trapped within the crack. This will result in a decrease in the magnetic 

coupling between the reader and Tag-Metal. 

Observing the FRF feature variations for both the crack length and crack depth it can 

be said that, as the overall dimensions of a crack increases, the FRF feature index would 

decrease, due to the magnetic field being trapped within the crack walls.  

 

 

 

 

 

 

Figure 7.12: Crack depth samples. Slits of different depths cut into the metal is used to 

mimic the effect of a crack at different depths    
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From the above inspection of different defects using FRF magnitude based features, 

there are many overlaps between the features due to the high standard deviations. 

However, by changing the order of the fixed ARX model structure (note that the model 

order was fixed for all the models that were extracted) the overlapping of features could 

be reduced. This is because the parameters of all the models extracted are biased to a 

certain degree because of not taking into consideration the effect of the modulation 

sequence. Thus, as observed in Figure 7.7, the ACF of the residuals are not white and is 

actually periodic in nature. Hence the model parameters are biased. As such a noise model 

is required to be fitted. Fitting such a noise model would reduce the biasness of the 

parameters estimated in the model used and may even reduce the standard deviation of 

the features thus reducing the overlap. It should be emphasised that the SI and FRA 

method was applied directly to the raw without any pre-processing.  Furthermore, the 

models fitted were extracted using the simple least squares method with input and output 

lagged terms in the order of 20y un n= = . Even using such a simple method, however, 

resulted in substantial results which attests to the significant potential of using System 

Identification and Frequency Response Analysis as a CM-FD method. Furthermore, 

physical interpretations of the results were given to the variation of the FRF features in 

relation to the defect and the behaviour of the electromagnetic system. This is significant 

as this demonstrates that the SI and FRA approach to CM-FD can be used to actually 

Figure 7.13: Comparison of different FRF magnitude features for crack depth samples 

against the depth of the crack. A decreasing monotonic like trend is seen between the 

FRF features as the crack depth progresses. Some overlaps between the features are 

observed. 
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interpret the fault features to the physical characteristics of the fault and the wider 

system considered. This is because FRA is an analysis method used in control systems 

analysis to understand the dynamical behaviour of systems in the frequency domain.  

 

7.5 Summary 

The chapter presents a novel implementation of a System Identification and 

frequency response approach to LF RFID technology based wireless eddy current probing 

method for the non-invasive characterising of defects in metal samples. Even though a 

simple System Identification method is used, the results presented show the significant 

potential of the approach. Different levels of exposure to corrosion and crack length and 

depth progression is characterised in relation to variations in FRF magnitude features as 

the severity of the defect increases. A clear physical interpretation of the FRF feature 

variations in relation to each defect type and its corresponding severities were given. This 

attests to the advantage of using a control systems analysis approach to CM-FD in which 

physical interpretation of fault features can be made. Further refinement is however 

needed in order to use this method as a complete SHM tool in practical applications. The 

internal workings of a LF RFID tag was discussed in detail. It was shown that the complex 

Reader-tag-metal system can be approximated as a SISO system. The feasibility and the 

assumptions required were pointed out in a systems perspective. It should be noted that 

the SI and FRA were conducted on the raw data from the RFID reader and no pre-

processing was done on the data. Thus, emphasising that from the results presented, the 

novel implementation of SI and FRA approach to LF RFID based wireless eddy current 

probing is an initial step towards a potential new SHM technology.        
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Chapter 8  

 

Conclusions  
 

8.1 Conclusions and summary 

Previous studies on the controls systems analysis approach to CM-FD have been 

conducted however, the concerns mentioned in considering the System Identification 

aspect has been overlooked. Furthermore, the numerical inaccuracies of the original 

least-squares based method of evaluating NOFRFs have not been addressed.  

In the present study, the numerical inaccuracy aspect of the LS method has been 

addressed and a Modified-Least-Squares method is proposed. In the M-LS method, the 

information matrix for the LS operation at each frequency is constructed according to the 

contributions made by the respective orders of system nonlinearity to the output 

response at the corresponding frequency. The effectiveness of the new method was 

demonstrated under general band limited and harmonic inputs. Because of the accuracy 

attained by the M-LS method the possibility of local approximation of nonlinear systems 

in the regions of severe nonlinear behaviour has been demonstrated using NOFRFs. Hence 

for the first time, the convergence of a Volterra series based method around the regions 

of severe nonlinear behaviour has been demonstrated. This type of convergence of the 

Volterra series has only been theoretically argued because of the requirement of a very 

high order nonlinearities. Because of the multi-dimensional nature of the Volterra series 

and methods based on it such as the GFRFs, such an achievement was deemed impossible 

or impractical. However, because of the one-dimensional nature of the Volterra series 

based NOFRFs and the significant numerical accuracy of the M-LS method to evaluating 

NOFRFs. The existence of such convergence at regions of severe nonlinear behaviour has 

been practically demonstrated using the M-LS method of evaluating NOFRFs. This is 

potentially an initial step for the investigation of severe nonlinear behaviour in the 

frequency domain leading to the analysis, design and Fault Diagnosis of such nonlinear 

systems. In consequence to evaluating NOFRFs accurately using the M-LS method, the 

potential and the ease of use of the NOFRFs in analysis and design of a wider class of 

nonlinear systems in the frequency domain has been facilitated significantly. 

The concerns in regard to System Identification in the controls systems analysis 

approach to CM-FD has been addressed in the present study. Inadequate inputs that do 

not persistently excite the system is a major concern. As CM-FD often needs to be carried 

out without disrupting the normal operations nothing can be done about this. Thus, a CM-

FD method needs to able to identify faults even in such scenarios. Furthermore, in the 

CM-FD approach investigated in the present study observes the dynamic changes of the 

system induced by fault and off-spec conditions using the Frequency Response Analysis 
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of the identified model of the system. System Identification is used as a method of 

capturing the dynamics present within the input-output data. Thus, reconstruction of the 

system dynamics present within the input-output data from System Identifications 

methods needs to be attained to a certain degree of accuracy. The iFRO algorithm has 

been demonstrated to be able to identify the system in the presence of inadequate inputs. 

Since the simulation error is a more direct manner in which to assess the dynamical 

correctness of the identified model, an extension to the iFRO algorithm, the S-iFRO is 

proposed. In the S-iFRO algorithm, the best model from a set of competing models 

produced in every iteration of the iFRO part is explicitly chosen using only the mean 

square of the simulation error performance of the models. As such the iFRO algorithm will 

be directed towards an orthogonalisation path that leads to a dynamically optimum 

model. However, because of the SEM nature of the S-iFRO algorithm searching large initial 

term sets requires considerable computational effort. However, using a reduced set of 

candidate model terms resolves this issue to a certain degree. A method previously 

proposed for the FRO algorithm in obtaining a reduced set of candidate terms is used for 

the S-iFRO. Using the S-iFRO the concerns mentioned earlier related to System 

Identification is mitigated and dynamically optimum models can be obtained. 

In the final chapter of this thesis a novel implementation of control systems analysis 

approach to defect characterisation using LF RFID based wireless eddy current probing is 

implemented. Several sets of data obtained from each defect sample were used to 

identify models thus obtaining several FRFs for each sample. The variation of the average 

FRF magnitudes of each sample along with the standard deviation was compared with 

respect to each defect sample of the same defect type. Clear physical interpretations were 

made in relation to the feature variations of the defects as the severity of the defect 

increases. The SI and FRA analysis was conducted on the raw data without any pre-

processing. This novel implementation along with the results presented shows clear 

potential in the application of SI and FRA approach to LF RFID wireless eddy current 

probing method as new NDT&E tool for SHM.              

                  

8.2 Future work 

Potential improvements and limitations to the work undertaken in this thesis are 

addressed in this section. Several future direction and interests resulting from the work 

are also discussed. 

• Extension of the M-LS method to the MIMO instance and the NOFRFs 

analysis using multi-tone inputs.  

 

The M-LS method of evaluating NOFRFs currently can only be applied to the 

case of Single Input Single Output (SISO) systems. Thus, the method needs to 

be extended into the Multiple Input Multiple Output (MIMO) instance in 

order to extend to the general application of all types of nonlinear systems. 

Furthermore, the M-LS method was studied under the harmonic and general 

band limited instance. However, the new method can also be used with 
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multi-toned inputs, which as not possible before. In order to achieve this an 

algorithm that evaluates the possible output frequencies of a nonlinear 

system under multi-toned inputs need to be used in order to construct the 

information matrix in the M-LS method appropriately. Such algorithms have 

been proposed in the literature and can be used with ease. Analysis of 

nonlinear systems under multi-toned inputs gives significant insight into the 

various dynamical behaviour of the system. Thus, extending the M-LS 

method to the analysis under these kinds of inputs will be substantial for the 

frequency domain analysis of nonlinear systems design and Fault Diagnosis.  

 

• Development of new convergence criteria for the local approximation of 

several nonlinear systems. 

 

The convergence of the NOFRFs around severe nonlinear systems behaviour 

draws in new avenues of research into these types of systems. Although it 

has been shown that these types of systems can now be analysed using 

Frequency Response Analysis methods, no clear theoretical convergence 

bounds or criteria have been investigated. Furthermore, only the case of the 

jump phenomena has been studied. Other severe nonlinear behaviours in 

which the Volterra series was not able to converge needs to be investigated.  

 

• Condition Monitoring and Fault Diagnosis of fast sampled systems. 

 

The identification methodology proposed suggests downsampling of data in 

order for the system to be properly identified and avoid numerical issues. 

However, at times this might not be possible in terms of fast sampled 

systems. A natural suggestion to this would be to formulate the identification 

framework using the delta-domain identification technique. The delta 

domain identification method to NARX model identification has been 

demonstrated to be accurate even at highly sampled instances. The delta 

domain formulation of the ARX/NARX models can be easily formulated into 

a simulation approach in order to be used with the S-iFRO algorithm. Thus, 

this would further extend the control systems analysis approach to Fault 

Diagnosis to the instance of fast sampled systems. One such example of fast 

sampled systems is electronic circuitry in the communications field.  

 

• Fault tolerant control 

 

Fault tolerant control systems aim to optimise control strategies in real-time 

in order for safe operations under faulty conditions. Incorporating the CM-

FD approach into these applications has significant potential. Since the CM-

FD methodology is based on the control systems analysis approach, it can be 

integrated with fault tolerant control applications in a more natural way. The 

information provided by the identified model and the Frequency Response 
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Analysis conducted not only can be used for the diagnosing of fault but also 

to provide dynamic changes that have occurred to appropriately modify the 

control strategies applied to the system.         

 

• LF RFID wireless eddy current probing with SI and FRA  

 

The initial investigations on the potential of using LF RFID wireless eddy 

current probing along with SI and FRA show the clear potential of this new 

technique being used as NDT&E method for SHM. However, the results 

presented only shows that the technology is applicable. In order for this 

technique to be used in practical applications, further investigations are 

required. In practical applications, the RFID data will be subjected to higher 

levels of noise and other disturbances. Thus, the SI and FRA approach has to 

be applied such that these considerations are taken into account. It should 

be noted that the samples used in this investigation were of only one defect 

per sample. However, in the real-world scenarios, there will be occurrences 

of more than one defect with different levels of severity in the area under 

inspection. This would mean more complexities and nonlinearities may start 

to appear in the RFID data. Thus, the use of NARX models and NOFRFs based 

analysis. Hence, further investigations with more complex defect samples 

would be the next step towards developing this technique.  
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