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Abstract

This research is devoted to studying a particular class of modules and a specific
class of rings that are called multiplication modules and multiplication rings. Let
R be a ring. A left R-module M is called a multiplication module if for every
submodule N of M , N = IM for some ideal I of R. If M is a left ideal of R
then M is called a left multiplication ideal. A ring R is called a left (resp. right)
multiplication ring if for each pair of ideals I and J of R where J ⊆ I, there exists
an ideal J ′ of R such that J = J ′I (resp, J = IJ ′). R is a multiplication ring if
it is a left and right multiplication ring.

The thesis is a collection of three papers. Each paper is a chapter in the the-
sis which investigates an aspect of such classes of modules and rings. The first
paper is published in the Journal ‘Communications in Algebra’ [3], and we have
already submitted the second Paper. The preliminaries of all these papers are
put together in a joint section.

In the first paper [3], we assume that all rings are commutative. A characteri-
zation of multiplication rings with finitely many minimal prime ideals is given:

Each such ring is a finite direct product of rings
n∏
i=1

Di where Di is either a

Dedekind domain or an Artinian, local, principal ideal ring. In particular, each
such ring is a Noetherian ring. As corollaries, subclasses of such rings are de-
scribed (semiprime, Artinian, semiprime and Artinian, local, domain, etc.).

In the second paper [4], we study multiplication modules over (not necessarily
commutative) rings. Several criteria are given for a direct sum of modules to be a
multiplication module. For a multiplication noncommutative ring, the following
facts are proved: the commutativity of the product of prime ideals and the com-
mutativity of the product of a prime ideal and an ideal that is not contained in it.
Moreover, the endomorphisms ring of a multiplication module is studied, and new
classes of modules are introduced and studied: epimorphic module, monomorphic
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module, and automorphic module.

In the third paper [5], we study multiplication modules over commutative rings
in terms of the ideal θ(M). Several characteristics and properties of a (faith-
ful) multiplication module are given. We prove that θ(IM) = θ(I)θ(M) if M
is a faithful multiplication R-module and I is a multiplication ideal of R with
zero annihilator. In addition, two cancellation laws are presented. Furthermore,
we study the product of two submodules of a (faithful) multiplication module.
Several properties and applications of such operation are presented. We present
a version of Chinese Remainder Theorem, and a version of Krull’s Intersection
Theorem, seen through the paradigm of multiplication modules. Moreover, some
cases of embedding a multiplication R-module into R are given.
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Chapter 1

Introduction

In this chapter, we present an overview of the main results of this work. Any
missing terminology is given in the next four chapters.

1.1 Notation

Throughout this thesis, unless otherwise stated, all rings contain 1, and a module
means a left module. ‘⊂’ means proper inclusion, and card(I) denotes the cardi-
nality of the set I. N, Z and R stand for the set of natural numbers, the set of
integers, and the set of real numbers, respectively. Mn(R) is the ring of (n × n)
matrices over the ring R, and Eij ∈ Mn(R) are the matrix units.

An R-module is called a cyclic if it is 1-generated. For an R-module M , CycR(M)
indicates the set of all its cyclic submodules, and we denote by annR(M) its
annihilator. M is called faithful if annR(M) = 0. For a submodule N of M ,
the set [N : M ] := annR(M/N) = {r ∈ R | rM ⊆ N} is an ideal of the ring
R that contains the annihilator of the module M , annR(M) = [0 : M ]. The
ideal θ(M) :=

∑
C∈CycR(M)[C : M ] is the companion ideal of an R-module M .

Clearly, θ(M) is an ideal of R, and annR(M) ⊆ θ(M). If M is an ideal of R then
M ⊆ θ(M). A submodule N of an R-module M is called a direct summand of M
if M = N ⊕N ′ for some submodule N ′ of M . We use SubR(M) to denote the set
of all submodules of M , and Sub⊕R(M) to denote the set of all direct summand
submodules of M . The set (SubR(M),⊆) is a partially ordered set (a poset, for
short). Tor(M) is the set of all elements of M that are annihilated by regular
elements (non-zero-divisors) of R. Clearly, Tor(M) is a submodule of M . M is
called a torsion-free module if Tor(M) = {0}. HomR(M,N) is the set of all R-
module homomorphisms from the R-module M to the R-module N . EndR(M) is
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the ring of endomorphisms of an R-module M . EpiR(M) and MonR(M) denote
the set of all epimorphisms and monomorphisms from M to M , respectively.
Obviously, EpiR(M) ⊆ EndR(M) and MonR(M) ⊆ EndR(M). The group of
automorphisms of an R-module M is AutR(M). Clearly, AutR(M) ⊆ EpiR(M)
and AutR(M) ⊆ MonR(M). For an R-module homomorphism f : M → N ,
ker(f) denotes the kernel of f , im(f) denotes the image of f , and the cokernel of
is denoted by coker(f).

A proper ideal of a ring R is an ideal that is distinct from R. I . R means
that I is an ideal of the ring R. Let I(R) be the set of ideals of the ring R.
Then the set (I(R),⊆) is a poset. A ring R satisfies the a.c.c. if it satisfies the
ascending chain condition of the ideals of R, and R satisfies d.c.c. if it satisfies
the descending chain condition of the ideals of R. CR is the set of all regular
elements in R. A nonzero ring R is a domain if it is a commutative ring in which
the zero ideal is a prime ideal, i.e., CR = R \ {0}. PID indicates the principal
ideals domain, a domain where all its ideals are cyclic. An ideal I of R is called
an idempotent ideal if I2 = I. Max(R) means the set of all maximal ideals of
the ring R, and Spec(R) means the set of all prime ideals of R. Notice that
Max(R) ⊆ Spec(R). R is a local ring if R has only one maximal ideal, and
we write (R,m), i.e., R is a local ring with the unique maximal ideal m. An
R-module M is locally cyclic if Mm is cyclic for every m ∈ Max(R). A chain in
Spec(R) is a sequence P0 ( P1 ( · · · ( Pn of prime ideals of R. The height of
P , ht(P ), is defined as ht(P ) = max{n |P0 ( P1 ( · · · ( Pn = P is a chain
in Spec(R) }. The Krull dimension, or, in short, the dimension of R, dim(R),
is given by dim(R) = max{ht(m) |m ∈ Max(R)}. Furthermore, the dimension
of an R-module M , dimRM , or dimM , is equal to the dimension of the ring
R/annR(M).

Let R be a commutative ring. T(R) is the total ring of fractions of R. An ideal
I of a commutative ring R is invertible if [R :T (R) I]I = R.

1.2 The thesis outline

An R-module M is called a multiplication module if every submodule of M
is equal to IM for some ideal I of the ring R. In addition, if M is a left ideal of
R then M is called a left multiplication ideal. An R-module M is a multipli-
cation R-module iff N = [N : M ]M for every submodule N of M (Lemma 4.1).
The set of all multiplication R-modules is denoted by Modm(R). In case R is a
commutative ring, Modm(R) contains R, all cyclic R-modules, and all invertible
ideals of R. In the general case, a cyclic module is not necessarily a multiplication
module, and therefore the set of all cyclic R-modules is not a subset of Modm(R).
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The map µM : I(R)→ SubR(M), I 7→ IM , respects inclusion, i.e., I ⊆ J implies
IM ⊆ JM , it is a homomorphism of posets. An R-module M is a multiplication
module iff the map µM is a surjection.

A ring R is said to be a left multiplication ring (resp, a right multiplication
ring) if for every two ideals I and J of R where J ⊆ I, there exists an ideal J ′ of
R such that J = J ′I (resp, J = IJ ′). A ring R is called a multiplication ring
if it is a right and left multiplication ring. In case R is a commutative ring, R
is a multiplication ring iff I(R) ⊆ Modm(R). Examples of multiplication rings
are Dedekind domains, principal ideal domains and rings all ideals of which are
idempotent.

In 1948, Krull [30] orginally introduced the concept of a multiplication commu-
tative ring as a generalization of the concept of Dedekind domain. Larsen and
McCarty [34] proved that if every prime ideal of a commutative ring R is a mul-
tiplication ideal then R is a multiplication ring. In [36], Mott proved that a
multiplication ring with finitely many minimal prime ideals is Noetherian. Chap-
ter 3 is a classification of multiplication commutative rings with finitely minimal
primes.

In 1981, Barnard [14] presented the notion of multiplication modules over com-
mutative rings. The first systematic study of multiplication modules over commu-
tative rings was done by Elbast and Smith [21]. They provided many character-
izations and properties of such modules and their submodules. The fundamental
theorem of abelian group could be described as every finitely generated Z-module
is a finite direct sum of multiplication modules. Beside getting an approach to
transfer the concepts from Ring Theory into Module Theory, this result moti-
vated some authors to study the characteristics and properties of multiplication
modules over a commutative ring. For example, Barnard [14], P. F. Smith [42],
D. D. Anderson [8], and Y. Alshaniafi and S. Singh [2].

Let M be a finitely generated faithful multiplication module over a commutative
ring R. El-bast and Smith in [21], had shown that IM = JM iff I = J for
every two ideals I and J of the ring R. Alshaniafi and Singh in [2], generalized
this result for a faithful multiplication module as follows: IM = JM iff I = J
for every ideals I and J of R that contained in θ(M). Such result is called the
cancellation law of multiplication modules. In Corollary 2.85, we show that there
is a bijection between SubR(M) and I(θ(M)) where M is a faithful multiplication
module over a commutative ring R. Naoum in [37, Theorem 3.2], proved that if
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M is a finitely generated multiplication module then EndR(M) ∼= R/annR(M).
In Lemma 4.23(6), we prove that the endomorphisms ring of a multiplication
module over a commutative ring is commutative.

There are only few examples show that a faithful multiplication module over a
commutative ring R cannot be embedded into R. Singh and Alshaniafi gave an
example for a faithful multiplication module over a von Neuman regular ring
that cannot be embedded into R (section 4 in [41]). The question of embedding
a faithful multiplication R-module into R has been tackled by El-bast and Smith
in [21], and by Singh and Alshaniafi in [41]. Section 5.3 provides some cases of
embedding a multiplication module over a commutative ring R into R.

In 2003, Ameri in [6], defined the product of two submodules N and K of a
multiplication module M over a commutative ring R, N.K, or, NK, as follows:

N.K = IJM.

Clearly, NK is a submodule of M . In ([6, Theorem 3.4]), he proved that if M is
a multiplication module then the presentation of the submodule NK is indepen-
dent, i.e., if N = IM = I ′M and N = JM = J ′M where I ′ and J ′ are ideals of
R then NK = IJM = I ′J ′M . Aziz and Jayaram in [13], provided some appli-
cations of the product of submodules of a multiplication module. In most cases,
this definition of the product of two submodules of a multiplication R-module
M is not efficient to move from SubR(M) into I(R) and vice verse because the
presentation of a submodule of M in the form IM where I is an ideal of R is not
unique. In case M is a faithful multiplication R-module, Lemma 2.80 shows that
every submodule N of M has a unique representation INM where IN is an ideal
of θ(M). In Corollary 2.85, we establish a bijection between the set of all sub-
modules of M , Sub(M), and the set of all ideal of R that are contained in θ(M),
I(θ(M)), i.e., there is (1-1) correspondence between Sub(M) and I(θ(M)). This
bijection respects inclusion (Corollary 2.82), i.e., if N1, N2 ∈ Sub(M) such that
N1 ⊆ N2 then IN1 ⊆ IN2 where IN1 and IN2 are the correspondents ideals of N1

and N2, respectively in I(θ(M)). In this situation, the ideal INIK in I(θ(M))
corresponds the submodule NK, i.e., N.K := INIKM . Section 5.2 provides the
properties of the product of two submodules of a faithful multiplication module
with several applications.

The algebras of polynomial integro-differential operators over a field K of charac-
teriastic zero (introduced in [15]),

In = K〈x1, . . . , xn, ∂1, . . . , ∂n,

∫
1

, . . . ,

∫
n

〉,
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have many interesting properties that almost opposite to the ones of the algebra
of polynomial differential operators An = K〈x1, . . . , xn, ∂1, . . . , ∂n〉, the Weyl al-
gebra (where ∂i and

∫
i

are the partial derivations and integrations with respect to
the variable xi). In particular, the algebras In are neither left nor right Noethe-
rian and non-simple. Futhermore, the classical Krull dimension of the algebra In
is n and all ideals of In are idempotent ideals, [15]. Therefore, the algebras In are
multiplication rings (Corollary 4.45). This result motivated us to study the class
of multiplication modules over noncommutative rings.

There are only very few results in the literature about multiplication modules
over noncommutative rings. In [44], Tuganbaev gave some properties of multipli-
cation modules over noncommutative rings, but most of his results are over a full
right invariant ring, which is a ring that satisfies the condition that every right
ideal is an ideal. The class of full right invariant rings is larger than the class
of commutative rings, but it is much smaller than the class of noncommutative
rings. Chapter 5 is a study of multiplication modules over noncommutative rings.

The main findings of the thesis are as follows:

• Characterization of multiplication commutative ring with finitely
many minimal primes, and its corollaries.

The next theorem is a description of the class of multiplication rings with finitely
many minimal prime ideals.

Theorem 1.1 Let R be a commutative ring with finitely many minimal prime

ideals. Then the ring R is a multiplication ring iff R ∼=
n∏
i=1

Di is a finite direct

product of rings where Di is either a Dedekind domain or an Artinian, local
principal ideal ring.

The next corollary is a description of semiprime multiplication commutative rings
with finitely many minimal prime ideals.

Corollary 1.2 Let R be a semiprime commutative ring with finitely many mini-

mal prime ideals. Then R is a multiplication ring iff R ∼=
n∏
i=1

Di is a finite direct

product of rings where Di is either a Dedekind domain or a field.
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Proof. The corollary follows from Theorem 1.1. 2

The next corollary is a description of Artinian multiplication commutative rings.

Corollary 1.3 Let R be an Artinian commutative ring. Then R is a multiplica-
tion ring iff it is a finite direct product of Artinian, local, principal ideal rings.

Proof. The corollary follows from Theorem 1.1. 2

The next corollary is a description of semiprime Artinian multiplication commu-
tative rings.

Corollary 1.4 Let R be a semiprime Artinian commutative ring. Then R is a
multiplication ring iff it is a finite direct product of fields.

Proof. The corollary follows from Corollary 1.2 and Corollary 1.3. 2

The next theorem is a description of multiplication domains.

Theorem 1.5 Let R be a domain. Then R is a multiplication ring iff R is either
a field or a Dedekind domain.

Proof. The theorem follows from Theorem 1.1. 2

Corollary 1.6 Let R be a commutative ring with finitely many minimal prime
ideals. Then

1. R is a local multiplication ring iff R is either a local Dedekind ring or an
Artinian, local, principal ideal ring.

2. R is a local multiplication domain iff R is a local Dedekind ring.

3. R is a local, Artinian, multiplication ring iff R is an Artinian, local, prin-
cipal ideal ring.
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In Theorem 3.10, we give a characterization of multiplication commutative rings
containing a unique minimal prime ideal and which is not maximal. In this
situation, R is a multiplication ring iff it is a Dedekind domain.

• Incomparability of the annihilators.

Proposition 1.7 gives an interesting property of a multiplication module over a
noncommutative ring. The proof and corollaries of Proposition 1.7 in Section 4.1.

Proposition 1.7 Let M be a multiplication R-module and M1,M2 be R-modules
such that annR(M1) ⊆ annR(M2) and the direct sum of R-modules M1

⊕
M2 is

an epimorphic image of the R-module M . Then M2 = 0.

• Five criteria for a direct sum of modules to be a multiplication mod-
ule.

Let R be a ring (not necessarily commutative). We give several criteria for a
direct sum of R-modules to be a multiplication R-module.

To formulate the first criterion (Theorem 1.11) we need to introduce the following
concepts.

The intersection, orthogonality and strong orthogonality conditions.

Definition 1.8 We say that the intersection condition holds for a direct sum
M =

⊕
λ∈ΛMλ of nonzero R-modules Mλ if for all submodules N of M ,

N =
⊕
λ∈Λ

N ∩Mλ.

Definition 1.9 Let M =
⊕

λ∈Λ Mλ be a direct sum of nonzero R-modules with
card(Λ) > 2, aλ = annR(Mλ) and a′λ = ∩µ6=λaµ. We say that the orthogonality
condition holds for the direct sum M if

a′λMµ = δλµMµ for all λ, µ ∈ Λ

where δλµ is the Kronecker delta. Clearly, a′λ 6= 0 for all λ ∈ Λ (since all Mλ 6= 0).
In particular, aλ 6= 0 for all λ ∈ Λ.
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Definition 1.10 Let M =
⊕

λ∈ΛMλ be a direct sum of nonzero R-modules with
card(Λ) ≥ 2. We say that the strong orthogonality condition holds for the
direct sum M if for each set of R-modules {Nλ}λ∈Λ such that Nλ ⊆Mλ, there is
a set of of ideals {Iλ}λ∈Λ of R such that

IλMµ = δλµNλ for all λ, µ ∈ Λ.

The set of ideals {Iλ}λ∈Λ is called an orthogonalizer of {Nλ}λ∈Λ.

In particular, the orthogonality condition holds for M =
⊕

λ∈ΛMλ iff the set of
ideals {a′λ}λ∈Λ is an orthogonalizer of {Mλ}λ∈Λ. If the orthogonality condition
holds for M =

⊕
λ∈ΛMλ and {Iλ}λ∈Λ is an orthogonalizer of {Mλ}λ∈Λ then

Iλ ⊆ a′λ for all λ ∈ Λ.

Theorem 1.11 is the first criterion for a direct sum of modules to be a multi-
plication module which is given via the intersection and strong orthogonality
conditions.

Theorem 1.11 Let M =
⊕

λ∈ΛMλ be a direct sum of nonzero R-modules with
card(Λ) ≥ 2. Then M is a multiplication R-module iff the intersection and strong
orthogonality conditions hold for the direct sum M =

⊕
λ∈ΛMλ.

Furthermore, if M =
⊕

λ∈ΛMλ is a multiplication R-module then

1. the R-modules Mλ are multiplication modules, and

2. for each submodule N of M and each ideal I of R such that N = IM ,
N

⋂
Mλ = IMλ for all λ ∈ Λ.

A compressor of a submodule.

Definition 1.12 Let N be an R-submodule of M . An ideal J of the ring R is
called a compressor of N (in M) if N = JM .

Any sums of compressors of N is a compressor of N . The set of all compressors
of N (in M) is denoted by I(N,M). The set I(N,M) is a non-empty set iff
[N : M ] is a compressor of N ([N : M ]M = N), and in that case [N : M ] is the
largest compressor of N . Notice that [N : M ]M ( N , in general.

Orthogonalizers and their properties.
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Let N be a submodule of a multiplication R-module M . Then the set

I(N,M) := {I / R | IM = N} (CINM)

is a non-empty set which is closed under addition of ideals (if I, J ∈ I(N,M)
then I + J ∈ I(N,M)). The sum

I(N,M) =
∑

I∈I(N,M)

I (CINM1)

is the largest element of the set I(N,M) (w.r.t. inclusion). Clearly, I(N,M) =
[N : M ].

Let M = {Mλ}λ∈Λ and N = {Nλ}λ∈Λ be sets of R-modules such that Nλ ⊆ Mλ

for all λ ∈ Λ. Let I(N ,M) be the set of all sets of ideals {Iλ}λ∈Λ such that
IλMµ = δλµNλ for all λ, µ ∈ Λ, i.e., the set contains all the orthogonalizers for N .
In general, the set I(N ,M) could be an empty set. In particular, if M = {M}
and N = {N} then I(N ,M) = I(N,M).

Lemma 1.13 Let M = {Mλ}λ∈Λ be a set of R-modules such that their direct
sum M =

⊕
λ∈ΛMλ is a multiplication module. Then for every set of R-modules

N = {Nλ}λ∈Λ such that Nλ ⊆Mλ for all λ ∈ Λ, the set I(N ,M) is a non-empty
set.

Proof. The result follows from Theorem 1.11. 2

Suppose that I(N ,M) 6= ∅. Then the set I(N ,M) is closed under addition
(componentwise): if sets I = {Iλ}λ∈Λ and J = {Jλ}λ∈Λ belong to I(N ,M) then
I + J = {Iλ + Jλ}λ∈Λ ∈ I(N ,M). So, the sum in I(N ,M),

I(N ,M) :=
∑

I∈I(N ,M)

I

is the largest element of the set I(N ,M) w.r.t. componentwise inclusion, i.e.,
I ⊆ J iff Iλ ⊆ Jλ for all λ ∈ Λ. The set I(N ,M) is called the largest orthog-
onalizer in I(N ,M).

The next theorem is the second criterion for a direct sum of modules to be a
multiplication module.

Theorem 1.14 Let M =
⊕

λ∈Λ Mλ be a direct sum of nonzero R-modules with
card(Λ) ≥ 2. Then M is a multiplication module iff

1. the R-modules Mλ, where λ ∈ Λ, are multiplication modules, and
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2. for each submodule N of M , I(N ,M) 6= ∅ where N = {N ∩Mλ}λ∈Λ and
M = {Mλ}λ∈Λ, and N = (

∑
λ∈Λ Iλ)M for all/some {Iλ}λ∈Λ ∈ I(N ,M).

Orthogonal set of ideals.

Definition 1.15 A set of ideals {aλ}λ∈Λ of a ring R is called an orthogonal set
of ideals of R if aλaµ = 0 for all λ 6= µ .

The next theorem is the third criterion for a direct sum of modules to be a
multiplication module which is given via orthogonal ideals.

Theorem 1.16 Let M =
⊕

λ∈ΛMλ be a direct sum of nonzero R-modules with

card(Λ) ≥ 2, a := annR(M) and R := R/a. Then M is a multiplication module
iff

1. the ring R contains a direct sum of nonzero orthogonal ideals a′ =
⊕

λ∈Λ a′λ
such that Mλ = a′λM for all λ ∈ Λ, and

2. for each submodule N of M , N = b′M for an ideal b′ of R such that
b′ =

⊕
λ∈Λ b′λ is a direct sum of ideals b′λ = b′ ∩ a′λ of R for all λ ∈ Λ.

Theorem 1.17 is the fourth criterion for a direct sum of modules to be a multipli-
cation module which is given via the orthogonality and intersection conditions.

Theorem 1.17 Let M =
⊕

λ∈ΛMλ be a direct sum of nonzero R-modules with
card(Λ) ≥ 2. Then M is a multiplication module iff

1. the R-modules Mλ are multiplication modules where λ ∈ Λ,

2. the intersection condition holds for the direct sum M =
⊕

λ∈ΛMλ, i.e., for
any sumbodule N of M , N =

⊕
λ∈Λ(N ∩Mλ), and

3. the orthogonality condition holds for the direct sum M =
⊕

λ∈ΛMλ, i.e.,
for all λ, µ ∈ Λ, a′λMµ = δλµMµ.

EndR(M)-stable submodule of M .

Definition 1.18 A submodule N of an R-module M is called an EndR(M)-stable
submodule (resp., EndR(M)-invariant submodule) if f(N) ⊆ N (resp., f(N) =
N) for every 0 6= f ∈ EndR(M).
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Definition 1.19 We say that the EndR(M)-stability condition holds for an
R-module M if every submodule N of M is an EndR(M)-stable submodule.

Theorem 1.20 is the fifth criterion for a direct sum of modules to be a multipli-
cation module given via the orthogonality and EndR(M)-stability conditions.

Theorem 1.20 Let M =
⊕

λ∈ΛMλ be a direct sum of nonzero R-modules with
card(Λ) ≥ 2. Then M is a multiplication module iff

1. the R-modules Mλ are multiplication modules where λ ∈ Λ,

2. every submodule N of M is an EndR(M)-stable submodule, and

3. the orthogonality condition holds for the direct sum M =
⊕

λ∈ΛMλ.

The proofs of the theorems/criteria above are given in Section 4.2. In addition,
Section 4.2 contains many applications and results based on these criteria.

Two ideals I and J of a ring R are called incomparable if neither I ⊆ J nor J ⊆ I.
We say that I and J commute if IJ = JI.

• Commutativity of prime ideals of a multiplication noncommutative
ring.

Theorem 1.21 1. Let R be a left multiplication ring. Then PQ = QP for all
incomparable prime ideals P and Q of R.

2. Let R be a left and right multiplication ring. Then

(a) IP = PI for all ideals I and P such that I * P and P is a prime
ideal of R.

(b) PQ = QP for all prime ideals P and Q of R.

The proof of such theorem with some applications is concluded in Section 4.3.

• Embedding of a projective multiplication R-module into the ring R.

Theorem 1.22 Let R be a commutative ring and M be a projective multiplication
R-module. If there is a regular element a ∈ CR such that aM is a submodule of a
cyclic submodule say C of M then the R-module M is isomorphic to an ideal of
R.
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Section 5.3 contains the proof of Theorem 1.22 and some cases of embedding a
multiplication R-module into R.

Let R be a commutative ring and N,K be submodules of an R-module M . Sup-
pose that compressors of N and K in M are existed, i.e., N = IM and K = JM
for some ideals I and J of R.

• Product of submodules of a (faithful) multiplication module over a
commutative ring.

In Section 5.2, we give some properties and applications of the product of two
submodules of a faithful multiplication modules over a commutative ring.

The next theorem is a version of Chinese Remainder Theorem that fits multipli-
cation module over a commutative ring.

Theorem 1.23 Let M be a faithful multiplication module over a commutative
ring R. If N and K are submodules of M such that IN + IK = θ(M) then
M/NK ∼= (M/N)× (M/K).

The next proposition can be considered as a version of Krull’s Intersection The-
orem, seen through the paradigm of multiplication modules.

Proposition 1.24 Let R be a commutative ring and M be a faithful Artinian
multiplication module. If N ⊆ rad(M) is a submodule of M . Then there exists

n ∈ N such that Nn = 0, i.e.,
n⋂
i=1

N i = 0 for some n ∈ N .

The proof of the above two results are concluded in Section 5.2.
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1.3 The thesis structure

The goals of the thesis are:

• to characterize the class of multiplication commutative rings with finitely many
minimal prime ideals;

• to give several criteria for a direct sum of modules to be a multiplication module
over a noncommutative ring;

• to present some applications of the cancellation law of multiplication modules;

• to study the product of two submodules of a faithful multiplication module over
a commutative ring; and,

• to identify the conditions under which a projective multiplication module over
a commutative ring R can be embedded into the ring R.

The thesis consists of five chapters and is organized as follows:

In Chapter 2, we collect the necessary definitions, concepts and results that are
used in the thesis. Section 2.2 provides a survey on multiplication modules over
commutative rings.

In Chapter 3, the class of multiplication commutative rings containing only
finitely many minimal prime ideals is studied, Theorem 1.1 is proved, and some
corollaries are obtained. In addition, we prove some properties of finitely gen-
erated prime ideals with zero annihilators of a multiplication commutative ring
(Section 3.1).

The Chapter 4 is organized as follows: Several characterizations and properties
of multiplication modules over rings (not necessarily commutative) are given in
Section 4.1. Section 4.2 is divided into two parts. The first part includes the
proofs of the criteria mentioned above for a direct sum of modules to be a multi-
plication module. In the second part, applications are given. In Section 4.3, the
class of multiplication noncommutative rings is studied. Additionally, some char-
acteristics of a subclass of multiplication modules: fully-multiplication modules
are given. In Section 4.4, some properties of the endomorphism ring of a multipli-
cation module are obtained. In addition, some classes of modules are presented:
epimorphic modules, monomorphic modules and automorphic modules (Definition
4.56). Some characterizations and properties of such modules are given.
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Chapter 5 is devoted to studying some aspects of multiplication modules over
a commutative ring. Section 5.1 presents some new properties of the compan-
ion ideal θ(M) of a multiplication module M and provides some applications of
the cancellation law of multiplication modules. Furthermore, two cancellation
laws that depend on the original cancellation law are given (Theorems 5.14 and
5.16), and some well-known results of finitely generated faithful multiplication
modules are generalized into faithful multiplication modules (Proposition 2.84
and Corollary 5.23). Also, we give an explicit description of the ideal θ(M) of a
faithful multiplication module M where M is a finite direct sum of submodules
(Proposition 5.22). In Section 5.2, the product of two submodules of a faithful
multiplication module is studied. Some properties and application of such oper-
ation are given. Moreover, we provide a notion of divisor submodule and the the
idea of greatest common divisor of two submodules of a module M . In Section
5.3, some cases of embedding a multiplication module into its ring are presented.
Finally, in Section 5.4, we give some properties of multiplication modules over
rings: Artinian rings, Noetherian ring, PID, and von Neuman regular ring.



Chapter 2

Background

This chapter consists of two parts. In the first part, we provide the essential back-
ground from both commutative and noncommutative algebra that we need for
this work. In the second part, we collect some results on multiplication modules
over a commutative ring that are used in the proofs of the thesis.

2.1 Review of related topics in Ring and Mod-

ule Theory

In this section, we recall some relevant concepts and known results in Ring and
Module Theory.

2.1.1 Definitions and some properties

Let I and J be ideals of a ring R. The next lemma gives some properties of the
ideal [I : J ].

Lemma 2.1 Let R be a commutative ring and I, J and K be ideals of R. Then

1. annR(I) ⊆ [J : I].

2. If K ⊆ I ⊆ J then [K : I] ⊇ [K : J ].

3. [[I : J ] : K] = [[I : K] : J ] = [I : JK].

4. For any collection {Jλ |λ ∈ Λ} of ideals of R such that I ⊆ Jλ for all λ ∈ Λ,

15
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(a) [I :
∑

λ∈Λ Jλ] =
⋂
λ∈Λ[I : Jλ].

(b) [
⋂
λ∈Λ Jλ : I] =

⋂
λ∈Λ[Jλ : I].

Proof. The statements follow from the definition of the ideal [I : J ]. 2

Let R be a commutative ring and M be an R-module. D. Anderson in [8] defined
the ideal θ(M) as follows: θ(M) =

∑
m∈M [Rm : M ].

Lemma 2.2 Let R be a commutative ring and M be an R-module.

1. annR(M) ⊆ θ(M).

2. If I is an ideal of R then I ⊆ θ(I).

3. If N is a submodule of M then θ(N) ⊇
∑

m∈N [Rm : M ].

Proof. Statements 1 and 2 are trivial. Since θ(N) =
∑

m∈N [Rm : N ] ⊇∑
m∈N [Rm : M ], the statement 3 follows. 2

The Jacobson radical of a commutative ring R, J(R), is used in studying the
radical of a multiplication modules over a commutative ring.

Definition 2.3 Let R be a commutative ring. The Jacobson radical of a ring R,
J(R) :=

⋂
m∈Max(R) m where Max(R) is the set of maximal ideals of R.

The next lemma is a description of the ideal J(R) where R is a commutative ring.

Lemma 2.4 ([31, Proposition 3.2.3]) Let R be a commutative ring and r ∈ R.
Then r ∈ J(R) iff 1− ra is a unit in R for every a ∈ R.

Definition 2.5 A commutative ring R is called a local ring if it has only one
maximal ideal.

The next lemma is a criterion for a commutative ring to be a local ring.



CHAPTER 2. BACKGROUND 17

Lemma 2.6 ([11, Proposition 1.6]) Let R be a commutative ring. R is a local
ring iff the set of non units of R is an ideal of R.

Definition 2.7 Let R be a commutative ring. The radical of I, rad(I), equals to
the set {a ∈ R | an ∈ I for some n ∈ N}.

Let I be an ideal of a commutative ring R. The next lemma is a description of
rad(I).

Lemma 2.8 ([11, Proposition 1.14]) Let R be a commutative ring and I be an
ideal of R. Then rad(I) =

⋂
I⊆P∈Spec(R) P where Spec(R) is the set of all prime

ideals of R.

Definition 2.9 Let R be a commutative ring. The nil radical, or, the prime
radical of a commutative ring R, nil(R), equals to rad(0) =

⋂
P∈Spec(R) P .

Clearly, nil(R) is the set of all nilpotent elements of R, and nil(R) ⊆ J(R).

Lemma 2.10 ([11, Proposition 1.11]) Let R be a commutative ring. Then

1. If I is an ideal of R such that I ⊆
⋃n
i=1 Pi where Pi ∈ Spec(R) and n ≥ 1

then I ⊆ Pi for some i.

2. If {Ii | 1 = 1, . . . , n} is a set of ideals of R and P ∈ Spec(R) such that⋂n
i=1 Ii ⊆ P then Ii ⊆ P for some i.

Definition 2.11 Let R be a commutative ring and I be an ideal of R. An ideal
P ∈ Spec(R) is called a minimal prime ideal of I if I ⊆ P and there is no
p′ ∈ Spec(R) such that I ⊆ P ′ ( P . A prime ideal P is called a minimal prime
of the ring R if it is a minimal prime of the zero ideal.

Definition 2.12 A proper ideal Q of a ring R is called primary if whenever
ab ∈ Q for a, b ∈ R then either a ∈ Q or b ∈

√
Q := {r ∈ R | rn ∈ Q for some

n ∈ N}.

Clearly, every prime ideal of a commutative ring R is primary.

If Q is a primary ideal then P :=
√
Q is necessarily a prime ideal. It is called the

associated prime ideal of Q. In this case, Q is called a P -primary ideal.

The next lemma provides some properties of the primary ideals of a commutative
ring.
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Lemma 2.13 ([11, Proposition 4.1]) Let R be a commutative ring. Then

1. An ideal Q of R is primary iff R/Q 6= 0 and every zero divisor in R/Q is
nilpotent, and

2. If Q is a primary ideal then rad(Q) :=
√
Q is the smallest prime ideal

contains Q.

Definition 2.14 A nonzero ideal I of R is called an essential ideal provided that
if I ∩ J = 0 for some ideal J of R then J must be zero.

Lemma 2.15 ([29, Theorem 76]) Let R be a commutative ring and M be a
finitely generated R-module. If I is an ideal of R such that IM = M then
I + annR(M) = R.

Lemma 2.16 ([11, Proposition 2.6])(Nakayama’s Lemma) Let R be a commu-
tative ring and M be a finitely generated R-module. If IM = M where I is an
ideal of R that is contained in J(R) then M = 0.

Two ideals I and J of a commutative ring R are called coprime ideals, or, comax-
imal ideals if I + J = R.

Lemma 2.17 ([33, (316, P.69)])(Chinese reminder theorem) Let R be a com-
mutative ring and {I1, . . . , In} be a finite set of pairwise coprime ideals of R, i.e.,
Ii + Ij = R for all i 6= j. Then

R/
n⋂
i=1

Ii ∼=
n∏
i=1

R/Ii.

Definition 2.18 Let R be a ring. An ideal I of R is called a semiprime ideal of
R if I satisfies the following condition: if an ∈ I for some n ∈ N then a ∈ I. If
the zero ideal is a semiprime ideal then R is called a semiprime ring.

Definition 2.19 A ring R is called a simple ring if it doesn’t have a proper ideal
besides the zero ideal.

Definition 2.20 Let R be a commutative ring. R is said to be von Neuman
regular ring if for every element a ∈ R there exists b ∈ R such that a = ba2.
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Clearly, If R is a von Neuman regular ring then every ideal I of R is idempotent,
i.e., I2 = I.

Definition 2.21 Let R be a commutative ring and M be an R-module. N1 (
N2 ( · · · ( Nk is called a chain of submodules of M of length k. The length
of the R-module M , `(M), is the largest length of any of its chains. If no such
largest length exists, we say that M has infinite length.

Definition 2.22 A chain of submodules of R-module M : 0 = N1  N2  · · ·  
Nn−1  Nn = M such that Ni+1/Ni is simple for i = 0, . . . , n − 1 is called a
composition series of the module M .

An R-module M has a finite length iff it has a finite composition series: 0 =

N1  N2  · · ·  Nn−1  Nn = M , and then `(M) =
n−1∑
i=0

`(Ni+1/Ni).

2.1.2 Noetherian and Artinian rings

Definition 2.23 A ring R is said to be a Noetherian ring if for every ascending
chain of ideals I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · , there exists k ∈ N such that Ik = Ik+1 =
· · · . Equivalently, R is Noetherian iff every ideal of R is finitely generated.

Definition 2.24 A ring R is said to be an Artinian ring if for every descending
chain of ideals I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · , there exists k ∈ N such that Ik = Ik+1 =
· · · .

The next lemmas are used in the proof of Theorem 1.1.

Lemma 2.25 ([11, Lemma 7.11])(Primary decomposition theorem) Let R be
a commutative Noetherian ring. Then every proper ideal of R has a primary
decomposition, i.e., every ideal of R is a finite intersectin of primary ideals of R.

Lemma 2.26 ([11, Lemma 7.11]) Let R be a commutative Noetherian ring.
Then

1. ([19, Chapter 2, Proposition 13]) The prime radical of R, nil(R), is the
intersection of all minimal prime ideals of R.
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2. ([11, Corollary 7.15]) The prime radical of R, nil(R), is a nilpotent ideal.

Lemma 2.27 ([11, Proposition 8.1]) Let R be an Artinian commutative ring.
Then Spec(R) = Max(R).

A commutative ring R is called a zero-dimensional ring if Max(R) = Spec(R).

Lemma 2.28 ([11, Proposition 8.3]) Let R be an Artinian commutative ring.
Then R has finitely many maximal ideals.

Lemma 2.29 ([11, Proposition 8.1]) Let R be a local Artinian commutative ring
with a maximal ideal m. Then the following statement are equivalent.

1. The maximal ideal m is principal.

2. Every ideal of R is principal.

Lemma 2.30 ([11, Theorem 8.5]) A commutative ring R is Artinian iff R is
Noetherian and zero-dimensional.

Lemma 2.31 ([11, Proposition 8.6]) Every Artinian commutative ring is a finite
product of local Artinian rings. This decomposition is unique up to isomorphism.

Clearly, if (R,m) be a local Artinian commutative ring then there exists n ∈ N
such that 0 = mn = mn+1 = · · · . In addition, if R is semiprime then m = 0, i.e.,
R is a field.

An element a of a commutative ring R is called a zero divisor if there exists
0 6= b ∈ R such that ab = 0. An element of a ring that is not a zero divisor is
called regular, or a non-zero-divisor.

For an R-module M , let Z(M) = {r ∈ R | rm = 0 for some 0 6= m ∈M}. Z(M)
is the set of all annihilators of non-zero elements in M .

Lemma 2.32 ([29, Theorem 82]) Let R be a Noetherian commutative ring and
M be a finitely generated R-module. If I is an ideal of R where I ⊆ Z(M) then
there exists a nonzero element x ∈M such that Ix = 0.
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Proposition 2.33 Let R be a Noetherian commutative ring. Then every ideal I
of R with zero annihilator contains a non-zero-divisor.

Proof. Suppose that I ⊆ Z(I). By Lemma 2.32, there exists 0 6= a ∈ I such that
aI = 0 (contradiction to annR(I) = 0). So, I * Z(I), i.e., there is 0 6= b ∈ I
such that bx 6= 0 for all 0 6= x ∈ I). Now, suppose that rb = 0 for some r ∈ R.
Then (rb)x = b(rx) = 0 where x ∈ I. Therefore, rx = 0 for all 0 6= x ∈ I. So,
r ∈ annR(I) = 0, i.e., r = 0. Hence, b is a non-zero-divisor. 2

Let R be ring and M be an R-module. We say that the module M is a Noetherian
module if for every ascending chain of submodules of M , N1 ⊆ N2 ⊆ · · · ⊆ Nn ⊆
· · · , there exists k ∈ N such that Nk = Nk+1 = · · · , i.e., M is Noetherian module
iff M satisfies a.c.c. on submodules of M . M is an Arinian module iff M satisfies
d.c.c. on submodules of M .

Every Artinian ring is Noetherian, but it is not true that every Artinian module

is Noetherian. For example, let M = Z[
1

p
]/Z is Artinian, but it is not Noetherian

as Z-module where p is a prime number.

The next lemma gives a sufficient condition for a module over Noetherian (resp;
Artinian) to be Noetherian (resp; Artinian) module.

Lemma 2.34 ([43, Proposition 3.5]) If R is a Noetherian (resp; Artinian) com-
mutative ring and M is a finitely generated R-module then M is Noetherian (resp;
Artinian) R-module.

Lemma 2.35 ([24, Proposition 4.8]) An R-module M has a finite length iff M
is both Artinian and Noetherian.

2.1.3 Multiplicatively closed set and localization

A non-empty subset S of a commutative ring R is called a multiplicatively closed
subset iff SS ⊆ S, 1 ∈ S and 0 /∈ S. Among examples of multiplicatively closed
sets are the set of units of the ring R, the set of non-zero-divisors of R and 1 + I
where I is a proper ideal of R.

Define a relation, ≡, on R × S which is defined as follows: (a, s) ≡ (b, t) iff
(at − bs)u = 0 for some u ∈ S. Clearly, this relation is an equivalence relation.
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Let a/s denotes the equivalence class of the element (a, s) of R × S. Let S−1R
denotes the set of all equivalence classes. Now, we can put a ring structure on
S−1R by defining addition and multiplication as follows:

(a/s) + (b/t) = (at+ bs/st)

and
(a/s)(b/t) = (ab/st).

If R is a domain and S = R \ {0} then S−1R is called by the field of fractions of
R. If R is a commutative ring and S is a set of nonzero divisors of R then S−1R
is called the total quotient ring or the ring of fractions, and it is denoted by T (R).

Let R be a commutative ring and P ∈ Spec(R). Then S = R \P is a multiplica-
tively closed set. We write RP for S−1R in this case. The process of passing from
R to RP is called localization at P . The elements a/s where a ∈ P form an ideal
PP of RP . If b/t /∈ PP then b /∈ P , i.e., b ∈ S, and therefore b/t is a unit in RP .
So, if I is an ideal of RP such that I * PP then I = RP , Hence, PP is a unique
maximal ideal of RP , i.e., (RP , PP ) is a local ring.

The construction of S−1R can be carried through with an R-module M in place
of the ring R. Define a relation ≡ on M × S as follows: (m, s) ≡ (m′, t) iff
u(sm′−tm) = 0 for some u ∈ S. This relation is an equivalence. Let m/s denotes
the equivalence class of the element (m, s). S−1M means the set of all equivalence
classes of ≡. S−1M is a S−1R-module via the action S−1R × S−1M → S−1M ,
(r/s,m/s′) 7→ rm/ss′.

The next three lemmas are some of the technical lemmas of the thesis.

Lemma 2.36 ([11, Corollary 3.15]) Let R be a commutative ring and let K and
N be submodules of an R-module M . If K is finitely generated then S−1[N :
K] = [S−1N : S−1K].

Lemma 2.37 ([11, Corollary 3.4]) Over a commutative ring R, the operation
S−1 of localization at S commutes with formation of sums, finite intersection,
product, and quotient. Precisely, if N and K are submodules of an R-module M
and I is an ideal of R then

1. S−1(N +K) = S−1N + S−1K.

2. S−1(N ∩K) = S−1N ∩ S−1K.

3. S−1(IM) = (S−1I)(S−1M).



CHAPTER 2. BACKGROUND 23

4. S−1(M/N) ∼= S−1M/S−1N .

Lemma 2.38 ([11, Proposition 3.8]) Let R be a commutative ring and M be an
R-module then the following statements are equivalent.

1. M = 0.

2. MP = 0 for every P ∈ Spec(R).

3. Mm = 0 for every m ∈ Max(R).

2.1.4 Invertible ideals and some specific rings

For a commutative ring R, let S be the set of non-zero-divisors. Then T(R) =
S−1R is called the total quotient ring of R, or, the ring of fractions of R.

An ideal I of a commutative ring R is called an invertible ideal if [R :T(R) I]I = R
where [R :T(R) I] = {x ∈ T(R) |xI ⊆ R}.

Lemma 2.39 ([11, Proposition 9.6]) Let R be a commutative ring. If I is an
invertible ideal of R then I is finitely generated.

Definition 2.40 A domain R is called a principal ideal domain , PID for short,
if every ideal of R is cyclic.

Definition 2.41 A domain R is called a discrete valuation domain, DVD for
short, if R is a principal ideal domain with a unique maximal ideal m such that
m 6= 0.

Definition 2.42 A domain R is called a Dedekind domain if every nonzero
ideal of R is a finite product of prime ideals of R.

The next lemmas gives criteria for a domain to be a Dedekind domain.

Lemma 2.43 ([11, Corollary 9.4] and [11, Corollary 9.3]) Let R be a domain.
Then the following statements are equivalent.

1. R is a Dedekind domain.
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2. Every proper ideal is a unique finite product of prime ideals. (Counted with
multiplicity)

3. R is Noetherian with dim(R) = 1 such that every local ring Rp is DVD for
every p ∈ Spec(R).

Lemma 2.44 ([12, Basic properties 13.1.1] Let R be a domain. Then R is a
Dedekind domain iff every ideal of R is projective.

Definition 2.45 A domain R is called an almost Dedekind domain if Rm is
discrete valuation ring for every m ∈ Max(R).

Lemma 2.46 ([40, Remark 1.3]) A Noetherian, almost Dedekind domain is a
Dedekind domain.

2.1.5 The algebras of polynomial integro-differential op-
erators over a field K of characteristic zero

The algebras of polynomial integro-differential operators over a field K of char-
acteristic zero are

In = K〈x1, . . . , xn, ∂1, . . . , ∂n,

∫
1

, . . . ,

∫
n

〉,

where ∂i and
∫
i

are the partial derivations and integrations with respect to the
variable xi.

The algebras In have many interesting properties (see [15]). These algebras, In,
are neither left nor right Noetherian and non-simple. Furthermore, the classical
Krull dimension of the algebra In is n.

The next lemma gives some properties of the ideals of In that are used in the
thesis.

Lemma 2.47 ([15, Corollary 3.3]) Let a be an ideal of In. Then

1. a is an idempotent ideal, i.e. a2 = a.

2. ab = ba for every pair of ideals b and a of In.
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2.1.6 Matrix ring

Let Mn(R) be the ring of all matrices over a commutative ring R. If I is an ideal
of the ring R then Mn(I) = {[aij] ∈ Mn(R) | aij ∈ I for all 1 6 i, j 6 n} is an
ideal of the ring Mn(R).

Lemma 2.48 ([17, Proposition 1.5.4]) Let R be a commutative ring and J be an
ideal of Mn(R). Then there exists an ideal I of R such that J = Mn(I).

It follows from Lemma 2.48 that there is (1-1) correspondence between the ideals
of the commutative ring R, I(R), and the ideals of the ring Mn(R), I(Mn(R)).

The next lemma is used in the proof of Corollary 4.43.

Lemma 2.49 Let R be a commutative ring, and let I and J be ideals of R. Then

1. Mn(IJ) = Mn(I)Mn(J).

2. I ⊆ J iff Mn(I) ⊆ Mn(J).

Proof. 1. It is clear that Mn(IJ) = IJE11 ⊕ IJE12 ⊕ · · · ⊕ IJEnn where IJEij =
n∑
k=1

(IEik)(JEkj) ∈ Mn(I)Mn(J). So, Mn(IJ) ⊆ Mn(I)Mn(J) ⊆ Mn(IJ), i.e.,

Mn(IJ) = Mn(I)Mn(J).

2. It follows from the fact the ideal {aij | [aij] ∈ Mn(I)} = I. 2

2.1.7 Direct sum and direct product

Let {Mi}i∈I be a set of R-modules.
⊕

i∈IMi denotes the external direct sum of
modules, and defined as

⊕
i∈IMi := {(mi)i∈I |mi ∈ Mi and mi = 0 for almost

all i ∈ I}. If there is no assumption on the number of nonzero component then
it is denoted by

∏
i∈IMi, and called by the direct product of the R-modules Mi.

It is clear that if I is finite then
⊕

i∈IMi =
∏

i∈IMi. On the other hand, the
sum of R-submodules of M, S =

∑
i∈I Ni =

⊕
i∈I Ni iff every element of S can

be expressed uniquely a finite sum of elements in Ni, i ∈ I iff Ni

⋂
(
∑

j 6=iNj) = 0
for all i ∈ I, and then it is called an internal direct sum.
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An R-module M is said to be decomposable if M is isomorphic to M1

⊕
M2 where

M1 and M2 are nonzero R-modules. Otherwise, M is called an indecomposable
module.

Lemma 2.50 ([18, Proposition 17]) Let R be a ring, M be an R-module and
{Ni}i∈I be a set of R-modules. Then

1. HomR(
⊕

i∈I Ni,M) ∼=
∏

i∈I HomR(Ni,M).

2. HomR(M,
∏

i∈I Ni) ∼=
∏

i∈I HomR(M,Ni).

2.1.8 Idempotents

Let R be a commutative ring. An element e of R is said to be an idempotent
element if e2 = e.

The elements 1 and 0 are called trivial idempotents.

Definition 2.51 Two idempotents e1 and e2 in a commutative ring R are called
orthogonal if e1e2 = 0.

Notice that the sum of two orthogonal idempotents is idempotent, and if e is an
idempotent then 1− e is an idempotent, too.

Lemma 2.52 ([10, Corollary 6.20]) Let R be a commutative ring. Then there
is (1− 1) correspondence between a direct sum decomposition of the ring R, R =
n⊕
i=1

Ii where Ii are ideals of R, and the set of orthogonal idempotents {e1, . . . , en}

such that e1 + · · · + en = 1 where ei ∈ Ii for all i. Moreover, Ii = Rei, i.e.,

R =
n⊕
i=1

Rei.

Definition 2.53 An idempotent e in a commutative ring R is called primitive if
it could not be expressed as a sum of nonzero orthogonal idempotents.

The next lemma is a criterion in which idempotent is a primitive idempotent.
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Lemma 2.54 Let e be an idempotent element in a commutative ring R. Then e
is primitive iff the ideal Re is indecomposable.

Proof. It follows from Lemma 2.52. 2

Lemma 2.55 ([45, Corollary 7.3.6]) Let R be a commutative ring and I be a
nilpotent ideal of R. If 1 = e1 + · · · + en is a sum of orthogonal idempotents in
R/I then we can write 1 = f1 + · · · + fn where {fi}ni=1 is the set of orthogonal
idempotents of R such that fi + I = ei. If ei are primitive then so are fi. In
such case, we say that the primitive orthogonal idempotents in R/I can be lifted
to primitive orthogonal idempotents in R.

Definition 2.56 A commutative ring R is called a semiperfect ring if R/nil(R)
is semisimple and the primitive orthogonal idempotent in R/nil(R) can be lifted
to primitive orthogonal idempotents in R.

Lemma 2.57 ([39, Lemma 4.1]) Let R be a semiperfect commutative ring. Then
R can be written as Re1

⊕
· · ·

⊕
Ren where {ei}ni=1 are primitive orthogonal idem-

potents and Rei is a local ring for all 1 6 i 6 n.

The next corollary is used in the proof of Theorem 1.1.

Corollary 2.58 Let R be a commutative ring where Spec(R) is finite such that
every pair of prime ideals is coprime. If nil(R) is nilpotent then R is a finite
direct sum of local rings. In particular, a Notherian commutative ring with every
pair of distinct minimal prime ideals is coprime, is a direct sum of local rings.

Proof. Let Spec(R) = {P1, . . . , Pn}. Since every pair of primes is coprime, by
(Chinese reminder theorem), Lemma 2.17,

R/nil(R) ∼=
n∏
i=1

R/Pi.

Let {e′1, · · · , e′n} the correspondent primitive orthogonal idempotents of the di-
rect sum decomposition of R/nil(R) where e′i ∈ R/Pi. Since nil(R) is nilpotent
then the primitive orthogonal idempotents in R/nil(R) can be lifted to primitive

orthogonal idempotents in R, {ei}ni=1, by Lemma 2.55, i.e., R =
n∏
i=1

Rei where

Rei is a local ring for all 1 6 i 6 n, by Lemma 2.57. 2
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2.1.9 Endomorphisms ring

Let R be a ring and M be an R-module. The ring of endomorphisms of the
module M over R is denoted by EndR(M), and defined as EndR(M) := {f | f ∈
HomR(M,M)}. EndR(M) is a ring with respect to (f + g)(m) = f(m) + g(m)
and (fg)(m) = f(g(m)) for every f, g ∈ EndR(M) and for every m ∈M .

Let R be a commutative ring and f : R→ EndR(M), r 7→ fr where fr : M →M ,
m 7→ rm. Clearly, f is a ring homomorphism. Suppose that M is a faithful
R-module. If r ∈ ker(f) then fr = 0, i.e. rm = 0 for every m ∈ M . Therefore
r = 0 (since M is faithful). Hence R can be embedded in EndR(M).

Let E = EndR(M). Clearly, an R-module M is an E-module with respect to
E×M →M , (f,m) 7→ f(m). If RM is a faithful module then R ⊆ E ⊆ E where
E = EndE(M) (since M is a faithful E-module).

2.1.10 Exact sequence

A sequence of R-modules N
f−→ M

g−→ K is said to be an exact sequence if
im(f) = ker(g). A short exact sequence is an exact sequence of the form 0 →
N

f−→M
g−→ K → 0. in this case, f is monomorphism and g is epimorphism.

The short exact sequence 0→ N
f−→M

g−→ K → 0 is called isomorphism to a short

exact sequence 0 → N ′
f−→ M ′ g−→ K ′ → 0 if for every R-modules isomorphisms

θ : N → N ′ and α : K → K ′, there exists anR-module isomorphism ϕ : M →M ′.

The short exact sequence 0 → N
f−→ M

g−→ K → 0 is said to be split if either of
the following equivalent statements holds:

1. there exists g′ : K →M such that gg′ = I,

2. there exists f ′ : M → N such that f ′f = I, or

3. there exists an isomorphism of sequence with the sequence

0→ N
f ′−→ N ⊕K g′−→ K → 0.

.

Lemma 2.59 ([11, Proposition 2.9] Let 0 → M1
f−→ M2

g−→ M3 → 0 be a short
exact sequence of R-modules and N be an R-module. Then
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1. 0→ Hom(N,M1)
f?−→ Hom(N,M2)

g?−→ Hom(N,M3) is exact where g?(h
′) =

gh′ and f?(h) = fh for every h′ ∈ Hom(N,M2) and h ∈ Hom(N,M1).

2. 0→ Hom(M3, N)
g?−→ Hom(M2, N)

f?−→ Hom(M1, N) is exact where f ?(h) =
hf and g?(h′) = h′g for every h ∈ Hom(M3, N) and h′ ∈ Hom(M2, N).

2.1.11 Free and projective modules.

Let R be a commutative ring and M be an R-module. The set of elements B =
{mi}i∈I of M is said to be linearly independent over R provided that

∑
i∈I rimi =

0 with ri ∈ R for every i ∈ I and ri = 0 for almost all i implies that ri = 0 for
all i. B is a basis of M over R if B is linearly independent over R and generates
M . An R-module M is said to be a free module if M has a basis.

Lemma 2.60 ([26, Theorem 2.1]) Let R be a commutative a ring and M be an
R-module. Then the following statements are equivalent.

1. M is a free R-module.

2. M is the internal direct sum of a family of cyclic R-modules, each of which
is isomorphic to R.

3. M is isomorphic to a direct sum of copies of the R-module R.

Definition 2.61 An R-module M is said to be projective if for every surjective
R-module homomorphism θ : K → N and every R-module homomorphism α :
M → N , there exists an R-module homomorphism ϕ : M → K such that θϕ = α.

Lemma 2.62 ([46, Proposition 2.2.1]) An R-module M is a projective iff it is a
direct summand of a free module.

The projective resolution of M is an exact sequence

· · · → Pn+1
dn+1−−−→ Pn → · · · → P1

d1−→ P0
d0−→M

where Pj is projective R-module for all j. If there exists n such that Pj = 0 for
all j ≥ n+ 1, then we say that M has finite resolution of length ≤ n.

Lemma 2.63 ([46, Lemma 2.2.5]) Let R be a ring. Then every R-module has a
projective resolution.
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2.1.12 Ext-groups

A sequence of R-modules

· · · → Cn−1 dn−1

−−−→ Cn dn−→ Cn+1 → · · ·

is called a chain complex if dndn−1 = 0 for every n. The cohomology groups of the
chain complex is defined as Hn(C) := ker(dn)/im(dn−1).

Let M and N be R-modules. Then the Ext-groups between them are defined as
follows:

ExtnR(M,N) = Hn(Hom(Pn,N)), n > 0

where · · · → Pn+1
dn+1−−−→ Pn → · · · → P1

d1−→ P0
d0−→ M is any projective resolution

of M .

Lemma 2.64 ([32, Theorem 7.1]) Let M1 and M2 be two R-modules. Then

Ext1
R(M1,M2) = 0 iff every short exact sequence on the form 0 → M1

f−→ M
g−→

M2 → 0 is split.
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2.2 Preliminaries

In this section, we collect some of the results of multiplication modules over com-
mutative rings that are used later.

We start this section with a criterion for a commutative ring to be a multiplication
ring.

Lemma 2.65 ([23, Theorem 3.4]) Let R be a commutative ring. Then R is a
multiplication ring iff every prime ideal R is a multiplication ideal.

Lemma 2.66 Let R be a commutative ring. Then

1. Every cyclic R-module is a multiplication module. In particular, the ring R
is a multiplication R-module and every principal ideal ring is a multiplica-
tion ring.

2. Every invertible ideal of R is a multiplication ideal. In particular, a com-
mutative Dedekind domain is a multiplication ring.

Proof. 1. Any cyclic R-module is isomorphic to a factor ring of R, and statement
1 follows.

2. Suppose that I is an invertible ideal of R. Then [R :T (R) I]I = I?I = R. Let
J be an ideal of R such that J ⊆ I. Then J = RJ = (II?)J = (I?J)I. As I?J is
an ideal of R, I is a multiplication ideal. 2

We need to the following definition to move to Theorem 2.68 which is a criterion
for a module over a commutative ring to be a multiplication module.

Definition 2.67 Let R be a commutative ring, M be an R-module and m ∈
Max(R),

1. Tm(M) = {x ∈ M : (1 − q)x = 0 for some q ∈ m}. In case M = Tm(M),
M is called m-torsion. Notice that Tm(M) is submodule of M .

2. M is called m-cyclic, if there exists x ∈M and q ∈ m such that (1−q)M ⊆
Rx.
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Theorem 2.68 ([21, Theorem 1.2]) Let R be a commutative ring. Then an R-
module M is a multiplication module iff for every m ∈ Max(R), either M =
Tm(M) or M is m-cyclic.

Lemma 2.69 ([14, Lemma 2]) Let R be a commutative ring and S be a mul-
tiplicatively closed subset of a ring R. If M is a multiplication R-module then
S−1M is a multiplication S−1R-module.

Here is another criterion for a module over a commutative ring to be a multipli-
cation module.

Theorem 2.70 ([42, Theorem 2]) Let {Mλ}λ∈Λ be a collection of multiplication
R-submodules of M such that M = Σλ∈ΛMλ. Let A = Σλ∈Λ[Mλ : M ]. Then the
following statements are equivalent.

1. M is a multiplication module.

2. annR(m) + A = R for all m ∈M .

3. For any m ∈ Max(R), either M is m-torsion or there exist elements z ∈
∪λ∈ΛMλ and q ∈ m such that (1− q)M ⊆ Rz.

The next theorem is a criterion for a direct sum of modules to be a multiplication
module over a commutative ring.

Theorem 2.71 ([21, Theorem 2.2])Let {Mλ}λ∈Λ be a collection of R-modules
such that card(Λ) ≥ 2 and M =

⊕
λ∈ΛMλ. Then M is a multiplication module

iff

1. Mλ is a multiplication module for all λ ∈ Λ, and

2. For every λ ∈ Λ, there exists an ideal Aλ of R such that AλMλ = Mλ and
AλM

′
λ = 0 where M ′

λ =
⊕

µ6=λMµ.

The next theorem is a characterization of a faithful multiplication module over a
commutative ring.
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Theorem 2.72 ([21, Theorem 1.6]) Let R be a commutative ring and M be a
faithful R-module. Then M is a multiplication module iff M satisfies the following
conditions:

1. for every set of ideals {Iλ}λ∈Λ of R,
⋂
λ∈Λ(IλM) = (

⋂
λ∈Λ Iλ)M , and

2. for every submodule N of M and an ideal A of R such that N ⊂ AM there
exists an ideal B of R such that B ⊂ A and N ⊆ BM .

The companion ideal, θ(M), of an R-module M is a useful tool in studying
multiplication modules.

The next results are about some characteristics of a multiplication R-module M
in terms of the ideal θ(M).

Lemma 2.73 Let R be a commutative ring and M be an R-module.

1. ([9, Lemma 1.1]) If M is a multiplication R-module and N is a submodule
of M then M = θ(M)M and N = θ(M)N .

2. ([1, Lemma 1.3]) M is a multiplication R-module iff θ(M) + annR(m) = R
for all m ∈M iff Rm = θ(M)m for all m ∈M .

3. ([9, Theorem 2.3]) If M is a faithful multiplication R-module then

(a) θ(M) is a multiplication ideal of R.

(b) θ(M) is an idempotent ideal of R.

4. ([2, Theorem 1.3]) If M is a faithful multiplication R-module then θ(θ(M)) =
θ(M).

The next three lemmas are technical lemmas of the thesis.

Lemma 2.74 ([21, Corollary 1.4]) Let I be a multiplication ideal of a commu-
tative ring R and M be a multiplication R-module. Then IM is multiplication
module.

Lemma 2.75 ([9, Lemma 2.1]) Let R be a commutative ring and M be multi-
plication R-module. If I is an ideal of R such that IM is finitely generated then
I ⊆ θ(M).
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Lemma 2.76 ([9, Lemma 2.1]) Let R be a commutative ring and M be a mul-
tiplication R-module. If I is a finitely generated ideal of R where I ⊆ θ(M) then
IM is finitely generated.

The next lemma is a criterion for a multiplication module over a commutative
ring R to be finitely generated in terms of the ideal θ(M).

Lemma 2.77 ([9, Corollary 2.2]) Let M be a multiplication R-module. Then
the following statements are equivalent.

1. The R-module M is finitely generated.

2. θ(M) = R.

3. The R-module θ(M) is finitely generated.

In particular, every multiplication module over Noetherian commutative ring is
finitely generated.

Y. Alshaniafi and S. Singh provide a cancellation law of a faithful multiplication
module over a commutative ring R as follows:

Lemma 2.78 ([2, Theorem 1.4]) Let R be a commutative ring and M be a faith-
ful multiplication R-module. If I and J are two ideals of R that are contained in
θ(M) then IM = JM iff I = J .

By Lemmas 2.77 and 2.78, if M is a finitely generated faithful multiplication
R-module and I and J are two ideals of R then IM = JM iff I = J .

We can generalize Lemma 2.78 without faithfulness condition as follows:

Corollary 2.79 Let R be a commutative ring and M be a multiplication R-
module. If I and J are two ideals of R then IM = JM iff Iθ(M) + annR(M) =
Jθ(M) + annR(M).
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Proof. Let R̄ = R/annR(M), Ī = (I + annR(M))/annR(M) and J̄ = (J +
annR(M))/annR(M). Clearly, M is a faithful multiplication R̄-module and ĪM =
J̄M . By Lemma 2.78, Īθ(M)R̄ = J̄θ(M)R̄. Hence, Iθ(M)+annR(M) = Jθ(M)+
annR(M). the converse is obvious. 2

As a corollary of Lemma 2.78, we have the following interesting properties which
we use widely in the thesis.

Lemma 2.80 [2, Theorem 1.5] Let R be a commutative ring and M be a faithful
multiplication R-module. Then

1. If I and J are two ideals of R then IM = JM iff I
⋂
θ(M) = J

⋂
θ(M).

2. For every ideal I of R, I
⋂
θ(M) = Iθ(M).

3. Every submodule N of M could be written as a unique form IM where I is
an ideal of R that is contained in θ(M).

We can remark that Lemma 2.78 shows that if M is a faithful multiplication
module and IM = JM where I and J are ideals of R then I ∩ θ(M) = Iθ(M) =
Jθ(M) = J ∩ θ(M).

Lemma 2.81 ([42, Theorem 9]) Let R be a commutative ring and M be a faithful
multiplication R-module and I and J are two ideals of R. Then IM ⊆ JM iff
M = [J : I]M .

Corollary 2.82 Let M be a faithful multiplication R-module and IM ⊆ JM
where I and J are ideals of R. Then Iθ(M) ⊆ Jθ(M).

Proof. By Lemma 2.81, M = [J : I]M . Therefore, by Lemma 2.78, θ(M) = [J :
I]θ(M). Consequently, Iθ(M) = [J : I]Iθ(M) ⊆ Jθ(M). 2

In section 4.3, we give an example shows that a submodule of a multiplication
module is a multiplication module is not necessary to be multiplication. P. F.
Smith [42] addressed the question of under which conditions a submodule of a
multiplication module would be a multiplication module in the following lemma.
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Lemma 2.83 ([42, Theorem 10]) Let M be a finitely generated faithful multipli-
cation R-module. If N is a submodule of M and I is an ideal of R then

1. N is a multiplication module iff [K : M ] = [K : N ][N : M ] for each
submodule K of N .

2. I = [IM : M ].

3. IM is a multiplication module iff I is a multiplication ideal of R.

4. N is a multiplication module iff [N : M ] is a multiplication ideal of R.

The next proposition is a generalization of Lemma 2.83 to study multiplication
submodules of a faithful multiplication module without need the condition of
finitely generated.

Proposition 2.84 Let M be a faithful multiplication R-module. If N is a sub-
module of M and I is an ideal of R then

1. N is a multiplication module iff [K : M ]θ(M) = [K : N ][N : M ]θ(M) for
each submodule K of N .

2. Iθ(M) = [IM : M ]θ(M).

3. IM is a multiplication module iff Iθ(M) is a multiplication ideal of R.

4. N is a multiplication module iff [N : M ]θ(M) is a multiplication ideal of R.

Proof. 1. Suppose that N is a multiplication module and K is a submodule of
N . Then K = [K : N ]N = [K : N ][N : M ]M and K = [K : M ]M , as well.
Therefore, by Lemma 2.78,

[K : N ][N : M ]θ(M) = [K : M ]θ(M).

Conversely, suppose that [K : N ][N : M ]θ(M) = [K : M ]θ(M) for any submodule
K of N . Let L be a submodule of N . Then

L = [L : M ]M = [L : M ]θ(M)M = [L : N ][L : M ]θ(M)M = [L : N ]N

(Since L is a submodule of M and M is a multiplication module), and therefore
N is a multiplication module.



CHAPTER 2. BACKGROUND 37

2. Since Iθ(M)M = IM = [IM : M ]M = [IM : M ]θ(M)M , by Lemma 2.78,
Iθ(M) = [IM : M ]θ(M).

3. Suppose that Iθ(M) is a multiplication ideal of R. Then IM = Iθ(M)M
is a multiplication module, by Lemma 2.74. Conversely, suppose that IM is a
multiplication module. Let J be an ideal of R such that J ⊆ Iθ(M). Then
J ⊆ θ(M), and therefore, by Corollary 2.80, J = Jθ(M). By statements 1 and 2,

J = Jθ(M) = [JM : M ]θ(M) = [JM : IM ][IM : M ]θ(M) = [JM : IM ]Iθ(M),

and hence, Iθ(M) is a multiplication ideal.

4. It follows from statement 3 (since N = [N : M ]M). 2

Let R be a commutative ring and M be an R-module. I(θ(M)) denotes by the set
of ideals of R that are contained in θ(M). In case M is a faithful multiplication
module over a commutative ring R.

The next corollary shows that there is a (1-1) correspondence between SubR(M)
and I(θ(M)).

Corollary 2.85 Let R be a commutative ring and M be a faithful multiplication
R-module. Then the map λθ : SubR(M) → I(θ(M)), N = IM 7→ Iθ(M) is a
bijection respects the inclusion, i.e., if N ⊆ N ′ then I ⊆ I ′ where I and I ′ are
the correspondent ideals of N and N ′, respectively in I(θ(M)).

Proof : 1. The map λθ is well-defined : Suppose N = IM . Using the equality
M = θ(M)M , I have N = IM = Iθ(M)M . Hence,

λθ(IM) = Iθ(M)θ(M) = Iθ(M)

(since θ(M)2 = θ(M), by Lemma 2.73). So, λθ(IM) ∈ I(θ(M)). It remains to
show that if N = I∗M for another ideal I∗ of R then Iθ(M) = I∗θ(M). It holds,
by Lemma 2.80.

2. λθ is a surjection : Given J ∈ I(θ(M)). Then J = Jθ(M) = λθ(JM).

3. λθ is an injection : Given two submodules N and N∗ of M . Then N = IM
and N∗ = I∗M for some ideals I and I∗ of R. Suppose that λθ(N) = λθ(N

∗),
i.e., Iθ(M) = I∗θ(M), by Lemma 2.80. Then

N = IM = Iθ(M)M = I∗θ(M)M = N∗,

i.e., λθ is an injection.
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Moreover, the existing bijection between SubR(M) and I(θ(M)) respects the
inclusion, by Corollary 2.82. 2

The next theorem gives a criterion for a faithful multiplication module to be
finitely generated.

Theorem 2.86 ([21, Theorem 3.1]) and ([21, Proposition 3.4]) Let M be a faith-
ful multiplication R-module. Then the following statements are equivalent.

1. M is finitely generated.

2. For all ideals I and J of R such that IM ⊆ JM , I ⊆ J .

3. for every submodule N of M there exists a unique ideal I of R such that
N = IM .

4. IM 6= M for every proper ideal I of R.

5. QM 6= M for every Q ∈ Max(R).

6. PM 6= M for every minimal prime ideal P of R.

Corollary 2.87 Let R be a domain and M be a faithful multiplication R-module.
Then M is finitely generated. In particular, a multiplication domain is a Noethe-
rian ring.

Proof. As R is a domain, R has only one minimal prime which is 0. By Theorem
2.86, M is finitely generated. 2

Lemma 2.88 Let I be an ideal of a ring R. Then I is an invertible ideal iff I
is a multiplication ideal which contains a nonzero divisor. In particular, If R is
a domain then I is a multiplication ideal iff I is invertible ideal.

Proof. If I is an invertible ideal then I is a multiplication module, by Lemma
2.66 . Let K = T(R) be the total ring of fractions of R. As I is an invertible
ideal of R, [R :K I]I = R. So, 1 = ab where a ∈ I and b ∈ [R :K I]. Now,
suppose that ra = 0 for some r ∈ R. Then r = r(1) = r(ab) = (ra)b = 0, i.e.,
a is a nonzero divisor. Conversely, suppose that I is a multiplication module
with a nonzero divisor c. Then Rc = [Rc : I]I (since I is a multiplication ideal).
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Now, R = RcR(1/c) = ([Rc : I]I)RcR(1/c) ⊆ [R :K I]I ⊆ R. Therefore,
[R :K I]I = R, i.e., I is an invertible ideal. 2

It is known that every proper ideal of a commutative ring is contained in a
maximal ideal, whereas it is not always true that every proper submodule of an
R-module M is contained in a maximal submodule. For example, as a Z-module,
Z is not contained in any maximal Z-submodule of Q.

The next corollary shows that that case holds for a proper submodule of a nonzero
multiplication module over a commutative ring.

Corollary 2.89 ([21, Theorem 2.5]) Let R be a commutative ring and M be a
nonzero multiplication R-module. Then every proper submodule of M is contained
in a maximal submodule of M .

The next lemma provides an explicit description of maximal submodules of a
multiplication module.

Lemma 2.90 ([21, Theorem 2.5]) Let R be a commutative ring and N be a sub-
module of a nonzero multiplication R-module M . Then N is a maximal submodule
of M iff there exists Q ∈ Max(R) such that N = QM and QM 6= M .

Let M be an R-module. We recall that the radical of M , rad(M), is the intersec-
tion of all maximal submodules of M .

Lemma 2.91 ([21, Corollary 2.6]) Let R be a commutative ring and N be a
submodule of a multiplication R-module such that M = N + rad(M). Then
N = M .

Lemma 2.92 ([21, Theorem 2.8]) Let R be a commutative ring with only finitely
many maximal ideals. If M is a multiplication R-module then M is cyclic. In
particular, if R is an Artinian ring then every multiplication R-module is cyclic.

Theorem 2.93 Let M be a faithful multiplication R-module. Then rad(M) =
J(R)M .

Proof. It follows from Lemma 2.90 and Theorem 2.72. 2
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Definition 2.94 Let R be a commutative ring. A proper submodule N of a
nonzero R-module M is called a prime submodule of M if [N : K] = [N : M ] for
every submodule K of M such that N ⊂ K ⊆M .

The next lemma is a criterion for a proper submodule of an R-module M to be
prime.

Lemma 2.95 Let R be a commutative ring. A proper submodule N of an R-
module M is prime iff for every r ∈ R and m ∈ M , if rm ∈ N and m /∈ N then
r ∈ [N : M ].

Proof. (⇒) Suppose that N is a prime submodule and rm ∈ N such that m /∈ N .
Then N ⊂ N + Rm ⊆ M . It follows that r ∈ [N : N + Rm], and therefore
r ∈ [N : M ].

(⇐) Suppose that N ⊂ K ⊆ M , i.e. there exists x ∈ K \ N . The goal is to
prove that [N : K] = [N : M ]. Clearly, [N : M ] ⊆ [N : K]. Now, suppose
that r ∈ [N : K]. So, rx ∈ N , and by assumption, r ∈ [N : M ]. Hence,
[N : K] ⊆ [N : M ]. 2

Theorem 2.96 ([21, Theorem 2.10]) Let R be a commutative ring and M be a
multiplication R-module. If P ∈ Spec(R) such that annR(M) ⊆ P and PM 6= M
then PM is a prime submodule of M .

Corollary 2.97 ([21, Corollary 2.11]) Let R be a commutative ring and N be a
proper submodule of a nonzero multiplication R-module M . Then the following
statments are equivalent.

1. N is a prime submodule of M .

2. [N : M ] is a prime ideal of R.

3. N = PM for some prime ideal P of R with ann(M) ⊆ P .

A submodule N of an R-module M is a minimal prime submodule if there is a
prime submodule N ′ of M such that N ′ ⊆ N then N ′ = N .

Theorem 2.92 shows that a multiplication module with only finitely many maxi-
mal submodules is cyclic. The next proposition is a companion result.
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Proposition 2.98 ([21, Theorem 3.7]) Let R be a commutative ring and M be
a faithful multiplication R-module such that M has only finitely many of minimal
prime submodules. Then M is finitely generated.

The next lemma is a description of the endomorphism ring of a finitely generated
multiplication module.

Lemma 2.99 ([37, Corollary 3.3]) Let R be a commutative ring and M be a
finitely generated multiplication R-module. Then EndR(M) ∼= R/annR(M) is
finitely generated.



Chapter 3

Characterization of
multiplication commutative rings
with finitely many minimal prime
ideals

Throughout this chapter all rings are commutative. A ring R is called a multi-
plication ring if for every pair of ideals I and J of R where J ⊆ I then J = I ′I
for some ideal I ′ of R.

In this chapter, we give a classification of the commutative multiplication rings
with finitely many minimal prime ideals.

3.1 Finitely generated prime ideals of a multi-

plication ring with zero annihilators

In this section, we present some properties of finitely generated prime ideals with
zero annihilator of a multiplication ring. The results of this section are used in
proofs of the subsequent section.

Proposition 3.1 Let R be a multiplication ring. Then every finitely generated
prime ideal with zero annihilator is a maximal ideal. In particular, if R is a
multiplication domain then every nonzero prime ideal of R is a maximal ideal.

Proof. Let P ∈ Spec(R) where P is finitely generated with zero annihilator, and
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suppose that P ( J ⊆ R where J is an ideal of R. Since R is a multiplication
ring, P = IJ for some ideal I of R. It follows that

I ⊆ P = IJ ⊆ I (since P is a prime ideal and J ( P ). Hence, I = P . As
P is a finitely generated multiplication ideal with zero annihilator and P = PJ ,
by Lemma 2.77 and Lemma 2.78, J = R, i.e., P is a maximal ideal of R. The
result holds for a multiplication domain because every nonzero ideal is a finitely
generated ideal with zero annihilator, by Corollary 2.87. 2

Proposition 3.2 Let R be a multiplication ring. If P is a finitely generated
prime ideal of R with zero annihilator then R ) P ) P 2 ) · · · ) P n ) · · ·
is a strictly descending chain of ideals such that all R-modules P n/P n+1 are
isomorphic to the simple R-module R/P .

Proof. Since the ideal P is a finitely generated R-module, so are all its powers
P n, n ≥ 1.

(i) All R-modules {P n}n≥0 have zero annihilator: Suppose that rP n = 0 for some
nonzero element r ∈ R and n ≥ 0, we seek a contradiction. Clearly, n ≥ 2 since
P 0 = R 3 1 and annR(P ) = 0. We assume that n is the least possible. Then
(rP n−1)P = 0, and so, rP n−1 = 0 (since annR(P ) = 0), a contradiction.

By Proposition 3.1, the ideal P of R is a maximal ideal. In particular, R = P 0 6=
P .

(ii) The ideals {P n}n≥0 are distinct: Suppose this is not the case, we seek a con-
tradiction. we can choose the least natural number n ≥ 0 such that P n = P n+1.
Clearly, n ≥ 1. The R-modules P n are finitely generated faithful multiplication
modules. By Lemma 2.78, the equality P n = P n+1 implies the equality P = R,
a contradiction.

(iii) For all n ≥ 0, the R-modules P n/P n+1 are isomorphic to the simple R-module
R/P : Recall that P is a maximal ideal of the ring R. Hence, the R-module R/P
is simple. Clearly, the R-modules P n/P n+1 are R/P -modules and R/P is a field.
By the statement (ii), the R-modules P n/P n+1 are nonzero. To prove that the
statement (iii) holds it suffices to show that the R-module P n/P n+1 is simple.
Given an ideal J of R such that P n+1 ( J ⊆ P n, we have to show that J = P n.
The ring R is a multiplication ring. So, the inclusions P n+1 ⊆ J and J ⊆ P n

yield the equalities P n+1 = IJ and J = J ′P n for some ideals I and J ′ of R.
Therefore, P n+1 = IJ ′P n, and, by Lemma 2.78, P = IJ ′. Hence, either P = I or
P = J ′ (since P is a prime ideal). Hence, either P n+1 = PJ or J = P n+1. The
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second case is not possible, by the choice of J . So, P n+1 = PJ . Then, by Lemma
2.78, J = P n, as required. 2

Proposition 3.3 Let R be a multiplication domain and P be a nonzero prime
ideal. Then IP = I ∩ P for every ideal I of R such that I * P .

Proof. Since R is a multiplication domain, every ideal of R is finitely generated,
by Corollary 2.87. Since I∩P ⊆ I and I is a multiplication ideal of R, I∩P = I ′I
for some ideal I ′ of R. Also, there is an ideal I? of R such that IP = I?(I ∩ P )
(since IP ⊆ I ∩ P and I ∩ P is a multiplication ideal). So, PI = I?I ′I. By
Lemma 2.77 and Lemma 2.78, P = I?I ′. Since P is a prime ideal then either
I? = P or I ′ = P . If I? = P then IP = (I ∩ P )P , and, by Lemma 2.77 and
Lemma 2.78, I = I ∩ P , and so I ⊆ P (a contradiction). Therefore I ′ = P , and
hence I ∩ P = IP . 2

Proposition 3.4 Let R be a multiplication domain. Then for each P ∈ Spec(R),
P n is a P -primary ideal for any n ∈ N.

Proof. As R is a multiplication domain, every ideal is finitely generated, by
Corollary 2.87. Suppose that IJ ⊆ P n and I * P n. We have to show that
J ⊆ P . Since R is a multiplication ring, IJ = KP n for some ideal K of R. Now,
since I * P n, there exists a natural number n′ such that n′ < n and I ⊆ P n′

and I * P n′+1 (notice that P 0 = R). So, there exists an ideal I? of R such that
I = I?P n′ . As IJ = KP n = I?P n′J and P n′ is a finitely generated multiplication
ideal with zero annihilator, KP n−n′ = I?J ⊆ P , by Lemma 2.78. As I? * P and
P is a prime ideal, J ⊆ P . Hence, P n is P -primary. 2

The following three lemmas are obvious.

Lemma 3.5 Let R =
∏

i∈I Ri be a direct product of rings. Then R is a multipli-
cation ring iff all rings Ri are multiplication rings.

Lemma 3.6 Let R be a multiplication ring and I be an ideal of R. Then R/I is
a multiplication ring.

Lemma 3.7 Let R be a multiplication ring. Then S−1R is a multiplication ring
where S is a multiplicatively closed subset of R.
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The next theorem is a description of local multiplication rings with nilpotent
maximal ideal which are not fields.

Theorem 3.8 Let (R,m) be a local ring and m is nilpotent. Then the ring R is
a multiplication ring iff it is an Artinian, principal ideal ring. If so, then m = (x)
for some element x of R and {(xi) | i = 0, 1, . . . ., ν+1} are the only distinct ideals
of R where mν+1 = 0 and mν 6= 0, and Ass(R) = {m}.

Proof. (⇒) Let K = R/m (the residue field of m). Then V = m/m2 is a vector
space over K.

(i) dimK(V ) = 1: Given a nonzero subspace U of V . We have to show that
U = V . Clearly, U = I/m2 for some ideal I such that m2 ( I ⊆ m. Since the
ring R is a multiplication ring, I = Jm for some ideal J of R which is necessarily
equal to R (since m2 ( I and (R,m) is a local ring), i.e., I = m, and so U = V ,
as required.

(ii) m = (x) for some x ∈ R: Fix an element x ∈ m \ m2. By statement (i),
m = Rx+m2. Then m = Rx+(Rx+m)2 = Rx+m3 = · · · = Rx+Rxν+mν+1 = Rx
since mν+1 = 0.

(iii) The ring R is Artinian: By the statement (ii), the length `(R) of the R-

module R is equal to
ν+1∑
i=0

`(mi/mi+1) = ν + 1 < ∞, and the statement (iii)

follows.

(iv) {(xi) | i = 0, 1, . . . , ν + 1} are the only distinct ideals of R; in particular, R
is a principal ideal ring: Let I be a nonzero ideal of R. We may assume that
I 6= R, i.e., I ⊆ m. Then there exists a unique natural number i such that
I ⊆ mi but I * mi+1. We claim that I = mi. Fix an element y ∈ I such that
y ∈ mi \mi+1. Since mi = (xi), y = xiu for some element u ∈ R such that u /∈ m
(since y /∈ mi+1), i.e., u is a unit of R. Then mi = (xi) = (xiu) = (y) ⊆ I ⊆ mi,
and so I = mi = (xi). If (xs) = (xt) for some natural numbers s and t such that
0 6 s 6 t 6 ν + 1 then s = t, by the Nakayama Lemma, and the statements (iv)
follows.

(⇐) Since the ring R is a principal ideal ring, it is a multiplication ring. 2

3.2 Proof of Theorem 1.1

Theorem 1.1 is a classification of multiplication rings with finitely many minimal
prime ideals.
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We start this section with the following result which is used in the proof of
Theorem 3.10.

Lemma 3.9 ([7, Theorem 1.1]) Let R be a local ring. Then all multiplication
R-modules are cyclic. In particular, if R is a multiplication ring then all ideals
of R are cyclic.

For a ring R, we denote by Min(R) and Max(R) the sets of minimal prime and
maximal ideals of R, respectively.

The next theorem is a description of multiplication rings that have a unique
minimal prime ideal which is not maximal. The theorem is used in the proof of
Theorem 1.1.

Theorem 3.10 Let R be a ring such that Min(R) = {p} and p is not a maximal
ideal. Then R is a multiplication ring iff R is a Dedekind domain. If so, then
p = 0.

Proof. (⇒) (i) p = 0: Since p is a unique minimal prime ideal of the ring R
and it is not maximal, it is properly contained in every maximal ideal of R. Let
m ∈ Max(R). Then p ( m and p = am for some ideal a of R such that p ⊆ a
(since R is a multiplication ring). Hence a = p (since p is a prime ideal and
p ( m), i.e., p = pm. Then localizing at m, we have the equality of Rm-modules,
pm = pmmm. The ring R is a multiplication ring hence so is the local ring (Rm,mm).
By Lemma 3.9, the Rm-module pm is cyclic. By applying the Nakayama Lemma
to the equality pm = pmmm, we must have pm = 0 for all m ∈ Max(R). Therefore,
p = 0.

(ii) R is a domain (by the statement (i)).

(iii) All maximal ideals of R has height 1: This statement follows from the state-
ment (ii) and Proposition 3.1.

(iv) For every maximal ideal m, Rm is a discrete valuation ring: The ring (Rm,m
′ =

mm) is a local multiplication domain. By Lemma 3.9, every ideal is 1-generated.
In particular, m′ = (x) for some element x ∈ R. We have to show that every
proper ideal I of Rm′ (I 6= 0, Rm) is equal to xiRm for some i > 1. There is a
unique natural number i > 1 such that I ⊆ m′

i
but I  m′

i+1
. Notice that I = yR

for some y ∈ m′
i \m′i+1

. Then y = xiu for some u ∈ Rm \m′, a unit of Rm. Hence,
I = yRm = xiuRm = xiRm.
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(v) R is a Dedekind domain: This follows from the statement (iv) and [11, The-
orem 9.3].

(⇐) Recall that every nonzero ideal of a Dedekind domain R is a unique finite
product of maximal ideals. Hence, every ideal of R is a multiplication module,
i.e., R is a multiplication ring. 2

Example. Let K be a field. Then the local ring R = K[x](x)[y, z]/(y
2, yz, z2) =

D
⊕

Dy
⊕

Dz is not a multiplication ring where D = K[x](x) is a local Dedekind
domain, and p = Dy

⊕
Dz is a unique minimal prime which is not a maximal

ideal and p2 = 0.

Proof. If R were a multiplication ring then, by Theorem 3.10, p = 0, a contra-
diction. 2

Proof of Theorem 1.1. (⇒) Recall that the set Min(R) is a finite set then R is
a Noetherian ring, by [36, Theorem 11], and so, the prime radical n = ∩p∈Spec(R)p
is a nilpotent ideal. Let M = Min(R) ∩ Max(R) = {m1, . . . ,mt} and M′ =
Min(R) \Max(R) = {p1, . . . , ps}.

(i) IfM′ = ∅, i.e., Min(R) = Max(R) =M = {m1, . . . ,mt} then R ∼=
∏

mi∈Min(R) Ri

is a product of Artinian, local principal ideal rings: Since Min(R) = Max(R), the
ring R is an Artinian ring. Hence it is a finite direct product of Artinian local

rings, say R =
n∏
i=1

Ri. Since R is a multiplication ring, so are the rings Ri. By

Theorem 3.8, the rings Ri are Artinian, local, principal ideal ring.

Till the end of the proof we assume that M′ 6= ∅, i.e., M := Max(R) \ M =
Max(R) \Min(R) 6= ∅.

(ii) Every maximal ideal m ∈M contains a unique minimal prime ideal p(m) that
necessarily belongs to M′: The maximal ideal of R contains at least one minimal
prime ideal, say, p = p(m). Suppose that p′ is another minimal prime ideal that
is contained in m, we seek a contradiction. The ring Rm is a local multiplication
ring with the maximal ideal m′ = mRm.

Claim: pm = 0 and p′m = 0.

By Lemma 3.9, every ideal of the ring Rm is 1-generated. In particular, m′ =
(x) and pm = (x′) for some elements x, x′ ∈ R. Since pm ⊆ m′ and Rm is a
multiplication ring, we must have pm = am′ for some ideal a of Rm that contains
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pm. Since m′ * pm and pm is a prime ideal, we must have a ⊆ pm, i.e., a = pm,
and so pm = pmm

′. Since pm is a finitely generated Rm-module and (Rm,m
′) is a

local ring, pm = 0, by the Nakayama Lemma. The proof of the claim is complete.

Since p 6= p′ and p, p′ ⊆ m, we must have pm 6= p′m which contradicts to the fact
pm = 0 = p′m, by the Claim.

For each pi ∈M′, let V(pi) = {m ∈ Max(R) | pi ⊆ m} = {m ∈M| pi ⊆ m}.
(iii) Max(R) = M

∐
V(p1)

∐
. . .

∐
V(ps), a disjoint union: The statement (iii)

follows from the statement (ii).

(iv) All minimal prime ideals of R are co-prime ideals: Recall that Min(R) =
{p1, . . . , ps,m1, . . . ,mt} and m1, . . . ,mt are maximal ideals. So, it suffices to show
that pi + pj = R for all i 6= j, but this follows from the statement (iii). In more
detail, if pi + pj 6= R then there is a maximal ideal that contains both pi and pj,
a contradiction (see the statement (iii)).

(v) R/n ∼=
∏

p∈Min(R) R/p: This fact follows from the statement (iv).

Let 1 =
∑

p∈Min(R) ep be the corresponding sum of orthogonal primitive idem-

potents in R/n. Since the set of minimal primes is a finite set, the ring R is a
Noetherian ring, by [36, Theorem 11]. Hence, n is a nilpotent ideal. So, we can
lift the decomposition above to 1 =

∑
p∈Min(R) e

′
p, a sum of primitive orthogonal

idempotents in R. So,

R ∼=
∏

p∈Min(R)

R(p)

where R(p) := e′pR are local rings with unique minimal prime ideals by the state-
ment (ii). Since R is a multiplication ring, the rings R(p) are also multiplication
rings, by Lemma 3.5. Now, the implication (⇒) follows from Theorem 3.8 and
Theorem 3.10.

(⇐) This implication follows from Lemma 3.5, Theorem 3.8 and Theorem 3.10.
2



Chapter 4

Multiplication modules over
noncommutative rings

Throughout this chapter R is a ring (not necessarily commutative), unless stated
otherwise.

In this chapter, we present some properties and characterizations of multiplica-
tion modules over an arbitrary ring, we give several criteria for a direct sum of
modules to be a multiplication module, and we provide some properties of mul-
tiplication noncommutative rings. Furthermore, we present some properties of
the endomorphisms ring of a multiplication module, and we introduce and study
some new classes of modules: epimorphic modules, monomorphic modules, and
automorphic modules.

4.1 Multiplication modules over (not necessar-

ily commutative) ring

In this section, several characterizations and properties of the class of multipli-
cation modules over an arbitrary ring are given. The results of this section are
used in proofs of the subsequent sections.

Lemma 4.1 An R-module M is a multiplication module iff N = [N : M ]M for
any submodule N of M .

Proof. (⇒) Let N be a submodule of the multiplication module M . Then there
exists an ideal I of R such that N = IM . Hence,

N = IM ⊆ [N : M ]M ⊆ N.

49
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This implies that N = [N : M ]M .

(⇐) This is implication is obvious. 2

Let N be a submodule of M . Then [N : M ]M ⊆ N , and so we have a short exact
sequence of modules

0→ [N : M ]M → N → N/[N : M ]M → 0. (NMM)

Lemma 4.2 An R-module M is a multiplication module iff C = [C : M ]M for
every C ∈ CycR(M).

Proof. (⇒) Lemma 4.1.

(⇐) Suppose that C = [C : M ]M for every cyclic submodule C of M . Let N be
a submodule of M and I =

∑
C∈CycR(N)[C : M ]. Then

IM =
∑

C∈CycR(N)

[C : M ]M =
∑

C∈CycR(N)

C = N.

Hence, M is multiplication module. 2

Proposition 4.3 Any homomorphic image of a multiplication module is a mul-
tiplication module.

Proof. LetM be a multiplicationR-module and f : M → N be anR-epimorphism.
For each submodule K of N , f−1(K) = IM for some ideal I of R. Now,
K = f(f−1(K)) = f(IM) = If(M) = IN . Hence, N is multiplication mod-
ule. 2

Proposition 4.4 Let M be an R-module. Then M is a multiplication R-module
if the following two conditions hold:

1. ∩λ∈ΛIλM = (∩λ∈ΛIλ)M for every non-empty set of ideals {Iλ |λ ∈ Λ} of
R, and

2. for any submodule N of M and an ideal I of R such that N ⊂ IM , there
exists an ideal J of R such that J ⊂ I and N ⊆ JM .
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Proof. Let N be a submodule of M and S be the set of ideals I ′ of R such that
N ⊆ I ′M . Clearly, R ∈ S. The ideal A =

⋂
I′∈S I

′ is the smallest element in S
since, by condition 1, N ⊆

⋂
I′∈S I

′M = AM . Now, suppose that N ⊂ AM , we
seek a contradiction. Then, by condition 2, there exists an ideal B of R such that
B ⊂ A and N ⊆ BM . Therefore B ∈ S. This contradicts to the minimality of A
and hence, N = AM , i.e., M is a multiplication module. 2

Proposition 4.5 is a criterion for a module to be a multiplication module.

Proposition 4.5 Let M be an R-module. Then M is a multiplication R-module
iff for every nonzero submodule N of M , M/N is a multiplication module such
that [N : M ] * annR(M).

Proof. (⇒) Let N be a nonzero submodule of M . Then N = [N : M ]M (Lemma
4.1). Since N 6= 0, we must have [N : M ] 6⊆ annR(M). By Proposition 4.3, the
factor module M/N is a multiplication module.

(⇐) Let N be a nonzero submodule of the R-module M and I = [N : M ]. By
the assumption, IM 6= 0 (since I * annR(M)) and M/IM is a multiplication
module. So, by Lemma 4.1,

N/IM = [N/IM : M/IM ](M/IM) = [N : M ](M/IM) = 0,

and therefore N = IM . Hence, M is a multiplication module. 2

Proposition 4.6 Let M be a multiplication R-module. Then

1. If N and K are submodules of M such that M/N ∼= M/K then N = K.

2. If f : M → R is an R-homomorphism then for every m ∈ M , f(m)M ⊆
Rm.

Proof. 1. Since M is a multiplication module and M/N ∼= M/K, N = [N :
M ]M = annR(M/N)M = annR(M/K)M = [K : M ]M = K.

2. Since M is a multiplication module, Rm = IM for some ideal I of R. Now,
f(m)M ⊆ f(Rm)M = f(IM)M = If(M)M ⊆ IM = Rm. Hence, f(m)M ⊆
Rm. 2

Proposition 4.7 Let M be a semisimple R-module such that [N : M ] * annR(M)
for every simple submodule N of M . Then M is a multiplication module.
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Proof. Let K be a submodule of M . Since M is a semisimple module, K =⊕
i∈IMi is a direct sum of simple submodules Mi of M . As Mi is simple and

[Mi : M ] * ann(M), [Mi : M ]M = Mi. Now,

K =
∑
i∈I

Mi =
∑
i∈I

[Mi : M ]M = (
∑
i∈I

[Mi : M ])M.

Hence, M is a multiplication module, by Lemma 4.1. 2

LetM be anR-module. Anderson in [8], defined the ideal θ(M) =
∑

C∈CycR(M)[C :

M ] where R is a commutative ring. In case I is an ideal of R, it is clear that
I ⊆ θ(I).

Lemma 4.8 Let M be a multiplication R-module. Then M = θ(M)M .

Proof. SinceM is a multiplicationR-module, M =
∑

C∈CycR(M)C =
∑

C∈CycR(M)[C :

M ]M = (
∑

C∈CycR(M)[C : M ])M = θ(M)M , by Lemma 4.2. 2

The next lemma provides a sufficient condition for a multiplication module to be
finitely generated.

Lemma 4.9 Let M be a multiplication R-module. If θ(M) is a finitely generated
R-module then the R-module M is finitely generated.

Proof. Since θ(M) =
∑

C∈CycR(M)[C : M ] and the R-module θ(M) is finitely

generated, θ(M) =
n∑
i=1

Rθi for some elements θi ∈ [Ci : M ] where Ci are cyclic

submodules of M . Now, by Lemma 4.8,

M = θ(M)M =
n∑
i=1

RθiM ⊆
n∑
i=1

Ci ⊆M,

i.e., M =
n∑
i=1

Ci is a finitely generated R-module. 2

Corollary 4.10 If R is a left Noetherian ring then every multiplication R-module
is finitely generated.
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Proof. The corollary follows from Lemma 4.9. 2

Proof of Proposition 1.7. Let f : M → M1

⊕
M2 be an epimorphism and

p1, p2 be the projections of the module M1

⊕
M2 onto M1 and M2, respectively.

For i = 1, 2, let fi = pif and Ki = ker(fi). Then M/Ki
∼= Mi. So,

[K1 : M ] = annR(M1) ⊆ annR(M2) = [K2 : M ].

Since the R-module M is a multiplication module, we have K1 = [K1 : M ]M ⊆
[K2 : M ]M = K2, by Lemma 4.1. Let k2 ∈ M2. Then (0, k2) = f(m) for some
element m ∈ M . Clearly, f1(m) = p1(0, k2) = 0, i.e., m ∈ K1. Since K1 ⊆ K2,
0 = f2(m) = p2f(m) = p2(0, k2) = k2, i.e., M2 = 0. 2

Corollary 4.11 Let M be a multiplication R-module and M1,M2 be R-modules
such that annR(M1) = annR(M2) and the direct sum of R-modules M1

⊕
M2 is

an epimorphic image of the R-module M . Then M1 = M2 = 0. 2

Proof. The corollary follows from Proposition 1.7. 2

Proposition 4.12 shows that every multiplication module M does not admit a
direct summand which is isomorphic to M .

Corollary 4.12 Let R be a ring and M be a multiplication R-module. If M ∼=
M ⊕N where N is an R-module then N = 0.

Proof. Since M ∼= M
⊕

N , annR(M) = annR(N) ∩ annR(M). So, annR(M) ⊆
annR(N). Hence, by Proposition 1.7, N = 0. 2

Ideals {ai | i ∈ I } of a ring R are called incomparable if ai * aj for all distinct
elements i, j ∈ I.

Corollary 4.13 Let M be a multiplication R-module and the direct sum of nonzero
R-modules

⊕
i∈IMi with card(I) ≥ 2 is an epimorphic image of M . Then the

set of ideals {annR(Mi) | i ∈ I} are incomparable. In particular, all the ideals
{annR(Mi) | i ∈ I} are distinct and the modules {Mi | i ∈ I} are not pairwise
isomorphic. In particular, annR(Mi) 6= 0 for all i ∈ I.

Proof. Let ai = annR(Mi). Suppose that ai ⊆ aj for some i 6= j. Then the direct
sum Mi

⊕
Mj is an epimorphic image of M such that ai ⊆ aj. By Proposition

1.7, Mj = 0, a contradiction. 2
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Corollary 4.14 Let a direct sum of R-modules M =
⊕

i∈IMi be a multiplication
module with card(I) ≥ 2. Then the set of ideals {annR(Mi) | i ∈ I} are incompa-
rable. In particular, none of the direct summands Mi is a faithful R-module, i.e.,
annR(Mi) 6= 0 for all i ∈ I.

Proof. The corollary follows from Corollary 4.13. 2

For a module N and a set I, we denote by N (I) a direct sum of I copies of N .

Corollary 4.15 Let M be a multiplication R-module. Then every nonzero factor
module of M cannot be of the type N (I) for some nonzero R-module N and a set
I of cardinality ≥ 2.

Proof. This follows from Proposition 1.7. 2

Corollary 4.16 Let M be a nonzero multiplication R-module. If M is a free
R-module then M ∼= R.

Proof. If M is free R-module, i.e., M ∼= R(I) for some I then, by Corollary 4.15,
the set I must be a single element and hence M ∼= R. 2

Let R be a ring and R̂ be the set of isomorphism classes of its simple modules.
Let M be a semisimple R-module. Then M =

⊕
V ∈R̂M(V ) where M(V ) is

the sum of all simple submodules of M isomorphic to V . The module M(V ) is
called the isotypic component of M corresponding to V , or, briefly, the V -isotypic
component of M .

Corollary 4.17 Let M be a multiplication R-module. Every semisimple factor
module of M is a direct sum of non-isomorphic simple modules, (i.e., each isotypic
component is a simple module) with incomparable annihilators.

Proof. The corollary follows from Corollary 4.13. 2

Corollary 4.18 Let 0 → M1 → M → M2 → 0 be a short exact sequence of
R-modules where M1 and M2 are non-zero R-modules and ai = annR(Mi) for
i = 1, 2. If M is a multiplication module and either a1 ⊆ a2 or a2 ⊆ a1 then the
short exact sequence is not split. In particular, Ext1

R(M2,M1) 6= 0.

Proof. If the short exact sequence were split then M ∼= M1 ⊕M2. By Corollary
4.13, the ideals a1 and a2 would be incomparable as M is a multiplication module,
a contradiction. 2
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4.2 Criteria for a direct sum of modules to be a

multiplication module

In the first part of this section, the proofs of the five criteria stated in the Intro-
duction are given for a direct sum of modules to be a multiplication module. In
the second part, applications are given.

Proof of Theorem 1.11. (⇒) Since M is a multiplication module, for each
submodule N of M there is an ideal I of R such that

N = IM = I(
⊕
λ∈Λ

Mλ) =
⊕
λ∈Λ

IMλ ⊆
⊕
λ∈Λ

N
⋂

Mλ ⊆ N,

i.e., N =
⊕

λ∈ΛN
⋂
Mλ and N

⋂
Mλ = IMλ, and so, the intersection condition

holds for M .

Let {Nλ}λ∈Λ be a set of R-modules such that Nλ ⊆ Mλ for all λ ∈ Λ. Clearly,
Nλ is a submodule of M . So, there exists an ideal Iλ of R such that Nλ = IλM =⊕

µ∈Λ IλMµ, and so IλMµ = δλµNλ for all λ, µ ∈ Λ, i.e., the strong orthogonality
condition holds.

(⇐) Let N be a submodule of M . We have to show that N = IM for some ideal
I of R. By the intersection condition, N =

⊕
λ∈ΛNλ where Nλ = N

⋂
Mλ ⊆

Mλ. For the set {Nλ}λ∈Λ, let {Iλ}λ∈Λ be a set of ideals that satisfies the strong
orthogonality condition (IλMµ = δλµNµ for all λ, µ ∈ Λ). Then I =

∑
λ∈Λ Iλ is

an ideal of R such that

IM =
∑
λ,µ∈Λ

IλMµ =
∑
λ,µ∈Λ

δλµNµ =
∑
λ∈Λ

Nλ =
⊕
λ∈Λ

Nλ = N,

as required. 2

Lemma 4.19 Suppose that a direct sum of nonzero R-modules M =
⊕

λ∈Λ Mλ is
a multiplication module. Let N be a submodule of M , N = {Nλ := N

⋂
Mλ}λ∈Λ

and M = {Mλ}λ∈Λ. Then for all {Iλ}λ∈Λ ∈ I(N ,M), N = (
∑

λ∈Λ Iλ)M .

Proof. (
∑

λ∈Λ Iλ)M =
∑

λ,µ∈Λ IλMµ =
∑

λ,µ∈Λ δλµNλ =
∑

λ∈ΛNλ = N , by Theo-
rem 1.11. 2

The next theorem is an explicit description of the largest orthogonalizer I(N ,M)
in I(N ,M).
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Theorem 4.20 Suppose that a direct sum M =
⊕

λ∈Λ Mλ of nonzero R-modules
with card(Λ) ≥ 2 is a multiplication module. Let aλ = annR(Mλ), M ′

λ :=⊕
µ 6=λMµ and a′λ = annR(M ′

λ) =
⋂
µ6=λ aµ. Let N be a submodule of M , N =

{Nλ := N
⋂
Mλ}λ∈Λ and M = {Mλ}λ∈Λ. Then I(N ,M) = {Iλ}λ∈Λ where

Iλ = I(Nλ,Mλ)
⋂

a′λ for all λ ∈ Λ (Mλ is a multiplication R-module as an epi-
morphic image of the multiplication R-module M , so I(Nλ,Mλ) makes sense).

Proof. Let J = {Jλ}λ∈Λ ∈ I(N ,M). Then Jλ ⊆ Iλ for all λ ∈ Λ, by the
maximality of I(N ,M). By the very definition, Iλ ⊆ I ′λ := I(Nλ,Mλ)

⋂
a′λ for

all λ ∈ Λ. To finish the proof of the theorem it suffices to show that {I ′λ}λ∈Λ ∈
I(N ,M). For all λ 6= µ, I ′λMµ = 0 (since I ′λ ⊆ aµ). Finally,

Nλ = IλMλ ⊆ I ′λMλ ⊆ I(Nλ,Mλ)Mλ = Nλ.

Hence, Nλ = I ′λMλ, as required. 2

Proof of Theorem 1.14. (⇒) If M is a multiplication module then so is every
module Mλ (since Mλ is an epimorphic image of M , Proposition 4.3), and so the
condition 1 holds. The condition 2 holds, by Lemma 4.19.

(⇐) Let N be a submodule of M . Since Mλ is a multiplication module for all λ ∈
Λ, I(Nλ,Mλ) makes since. Let I ′λ = I(Nλ,Mλ)∩a′λ where a′λ = annR(

⊕
µ 6=λMµ).

Then {I ′λ} ∈ I(N ,M), i.e., I(N ,M) 6= ∅, and therefore, by condition 2, N =
(
∑

λ∈Λ Iλ)M . Hence, M is a multiplication module. 2

The next corollary is an explicit description of the element I(M,M).

Corollary 4.21 Suppose that a direct sum of nonzero R-modules M =
⊕

λ∈ΛMλ

is a multiplication module where card(Λ) ≥ 2, aλ = annR(Mλ) and a = annR(M).
Let M = {Mλ}λ∈Λ. Then

1. I(M,M) = {a′λ}λ∈Λ and a′λ := ∩µ6=λaµ 6= ∩µ∈Λaµ = annR(M) for all
λ ∈ Λ.

2. Let π : R → R = R/a, r � r := r + a. Then
∑

λ∈Λ a′λ =
⊕

λ∈Λ a′λ in R

and a′λ 6= 0 for all λ ∈ Λ where {a′λ} is a set of orthogonal ideals.

3. M = a′M where a′ =
∑

λ∈Λ a′λ. In particular, a′λMµ = δλµMµ for all
λ, µ ∈ Λ.
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4. For each submodule N of M , N = b′M for some ideal b′ of R such that
b′ =

⊕
λ∈Λ b′λ is a direct sum of ideals b′λ of R such that b′λ ⊆ a′λ for all

λ ∈ Λ.

Proof. 1. By Theorem 4.20, I(M,M) = {Iλ}λ∈Λ where

Iλ = I(Mλ,Mλ) ∩ a′λ = R ∩ a′λ = a′λ.

Since card(Λ) > 2 and Mλ 6= 0 for all λ ∈ Λ, a′λ 6= 0 for all λ ∈ Λ, by Theorem
1.11.

2. Suppose that the sum
∑

λ∈Λ a′λ is not a direct sum. Then there is a nonzero

element aλ ∈ a′λ that can be written as a sum
∑

µ 6=λ aµ for some elements aµ ∈ a′µ.

As the R-module M is faithful, 0 6= aλM = aλMλ = (
∑

µ6=λ aµMλ) = 0, a

contradiction. Hence, the sum
∑

λ∈Λ a′λ is a direct sum, and, by statement 1,

a′λ 6= 0 for all λ ∈ Λ.

3. a′M =
∑

λ,µ∈Λ a′λMµ =
∑

λ,µ∈Λ δλµMλ =
∑

λ∈ΛMλ = M , by statement 1.

4. This statement follows from Theorem 4.20. 2.

Proof of Theorem 1.16. (⇒) This implication follows from Corollary 4.21.

(⇐) It suffices to show that the conditions of Theorem 1.11 are satisfied for
the module M =

⊕
λ∈ΛMλ where Mλ = a′λM . Let N be a submodule of M .

By condition 2, there is an ideal b′ such that N = b′M =
⊕

λ∈Λ b′λM where
b′λ = b′ ∩ a′λ. Let Nλ = b′λM . Then

N =
⊕
λ∈Λ

Nλ ⊆
⊕
λ∈Λ

(N ∩Mλ) ⊆ N,

i.e., Nλ = N ∩Mλ, and so, the condition 1 of Theorem 1.11 holds. By the very
definition of Nλ, Nλ = b′λM = b′λMλ, and for all λ 6= µ,

b′λMµ ⊆ a′λMµ = a′λa
′
µM = 0 ·M = 0,

i.e., b′λMµ = 0. So, the condition 2 of Theorem 1.11 holds, as required. 2

Proof of Theorem 1.17. (⇒) This implication follows from Theorem 1.11 and
Corollary 4.21.

(⇐) Let N be a submodule of M . Then, by the intersection condition, N =⊕
λ∈ΛNλ where Nλ = N ∩Mλ. Since Mλ is a multiplication module, Nλ = JλMλ
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for an ideal Jλ of R. Then we have Nλ = Jλa
′
λMλ, by the orthogonality condition.

Let Iλ = Jλa
′
λ. Then the conditions 1 and 2 of Theorem 1.11 are satisfied since

a′λa
′
µ ⊆ a = annR(M), and so,

IλMµ = IλIµMµ ⊆ a′λa
′
µMµ ⊆ aM = 0.

Therefore the implication (⇐) follows from Theorem 1.11. 2

The next corollary is a criterion for a direct sum of simple modules to be a
multiplication modules.

Corollary 4.22 Let M =
⊕

λ∈ΛMλ be a direct sum of simple R-modules. We
keep the notation of Corollary 4.21. Then M is a multiplication R-module iff for
all λ, µ ∈ Λ, a′λMµ = δλµMµ.

Proof. (⇒) By Corollary 4.21, I(M,M) = {a′λ}λ∈Λ where M = {Mλ}λ∈Λ, and
the implication follows.

(⇐) Suppose that a′λMµ = δλµMµ for all λ, µ ∈ Λ. Clearly, the simple R-
modules {Mλ}λ∈Λ are pairwise non-isomorphic. So, if N is a submodule of M
then N =

⊕
λ∈ΛN ∩Mλ. Let

Supp(N) = {λ ∈ Λ |N ∩Mλ 6= 0, i.e., N ∩Mλ = Mλ}.

Then

N =
⊕

λ∈Supp(N)

Mλ =
⊕

λ∈Supp(N)

a′λMλ = (
∑

λ∈Supp(N)

a′λ)M. 2

The next lemma introduces some properties of the endomorphisms ring of a mul-
tiplication module.

Lemma 4.23 Let M be a multiplication R-module. Then

1. EpiR (M) = AutR (M).

2. The EndR(M)-stability condition holds for the R-module M . In particular,
if f ∈ EndR(M) then for all g ∈ EndR(M), g(im(f)) ⊆ im(f).

3. If N is a submodule of M then N is an EpiR(M)-invariant submodule, i.e.,
for every f ∈ EpiR(M), f(N) = N .
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4. If M =
⊕

i∈IMi and f ∈ HomR (M,N) where N is an R-module then
f(M) =

⊕
i∈I f(Mi).

5. If M =
⊕

i∈IMi then EndR(M) =
∏

i∈I EndR(Mi), i.e., the inclusion∏
i∈I EndR(Mi) ⊆ EndR(M) is an equality. In particular, HomR (Mi,Mj) =

0 for all i 6= j; and AutR (M) ∼=
∏

i∈I AutR (Mi).

6. If R is a commutative ring and C is a cyclic submodule of the R-module
M then for every f ∈ EndR(M), f |C = rC : C → C, m 7→ rm for some
element r = r(f) ∈ R. Futhermore, the ring EndR(M) is a commutative
ring.

Proof. 1. Let f ∈ EpiR (M). Then M/ker(f) ∼= M . Since M is a multiplication
module,

ker(f) = [ker(f) : M ]M = annR(M/ker(f))M = annR(M)M = 0,

and therefore f ∈ AutR (M).

2. Let N be a submodule of M and f ∈ EndR(M). Then N = IM for some ideal
I of R. So,

f(N) = f(IM) = If(M) ⊆ IM = N,

i.e., N is an EndR(M)-stable submodule.

3. Let N be a submodule of M and f ∈ EpiR(M). By statement 2, f(N) ⊆ N .
By statement 1, there exists g ∈ AutR(M) such that gf = fg = 1, and therefore

N = 1N = g(f(N)) ⊆ f(N) ⊆ N,

i.e., N = f(N). Hence, N is an EpiR(M)-invariant submodule.

4. By Theorem 1.11, ker(f) =
⊕

i∈I(ker(f) ∩Mi). Hence f(M) ∼= M/ker(f) =⊕
i∈IMi/ker(f) ∩Mi

∼=
⊕

i∈I f(Mi), and so, f(M) =
⊕

i∈I f(Mi).

5. Statement 5 follows from statement 2 since f(Mi) ⊆ Mi for all i ∈ I and
f ∈ EndR(M).

6. Statement 6 follows from statement 2. 2

Proof of Theorem 1.20. (⇒) It follows from Theorem 1.17 and Lemma 4.23.

(⇐) In view of Theorem 1.17, it suffices to prove that the intersection condition
holds for the direct sum M =

⊕
λ∈ΛMλ. For each λ ∈ Λ, let jλ : M → M
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be a composition of the projection homomorphism M → Mλ and the inclusion
homomorphism Mλ →M . Clearly, jλ ∈ EndR(M), and

N ⊆
∑
λ∈Λ

(N ∩Mλ) =
⊕
λ∈Λ

(N ∩Mλ) ⊆ N

since N is EndR(M)-stable, i.e., N =
⊕

λ∈Λ(N ∩Mλ), and so, the intersection
condition holds. Hence, by Theorem 1.17, the R-module M is a multiplication
module. 2

The refinement condition.

Definition 4.24 Let M be an R-module. We say that two of its decompositions
into direct sum of submodules, M =

⊕
i∈IMi and M =

⊕
j∈J Nj, satisfy the

refinement condition if M =
⊕

i∈I,j∈JMi ∩ Nj. We say that the module M
satisfies the refinement condition if every two of its direct sum decomposition
satisfy the refinement condition.

Let M be an R-module and E = EndR(M). Then the R-module M is a direct
sum of its submodules iff the identity map 1 : M → M , m 7→ m is a sum of
orthogonal idempotents, that is 1 =

∑
λ∈Λ eλ where eλeµ = δλµeλ and for every

element m ∈M , eλm = 0 for all but finitely many λ.

In more detail, if M =
⊕

λ∈ΛMλ then 1 =
∑

λ∈Λ eλ where eλ is the projection
onto Mλ. Conversely, if 1 =

∑
λ∈Λ eλ is a sum of orthogonal idempotents then

M =
⊕

λ∈ΛMλ where Mλ = eλM .

Proposition 4.25 is a criterion for a module to satisfy the refinement condition.

Proposition 4.25 Let M be an R-module and E = EndR(M). Then the R-
module M satisfies the refinement condition iff for any two sums of orthogonal
idempotents in E, 1 =

∑
i∈I ei and 1 =

∑
j∈J fj, eifj = fjei for all i ∈ I and

j ∈ J .

Proof. (⇒) Suppose that an R-module M satisfies the refinement condition. Let
1 =

∑
i∈I ei and 1 =

∑
j∈J fj be sums of orthogonal idempotents in E. Then

M =
⊕

i∈IMi =
⊕

j∈JMj where Mi = eiM and Mj = fjM . Since the R-module
satisfies the refinement condition,

M =
⊕

i∈I,j∈J

Mi ∩Mj,
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and 1 =
∑

i∈I,j∈J eifj is the correspondent sum of orthogonal idempotents such
that eifj = fjei for all i ∈ I and j ∈ J .

(⇐) Suppose that M =
⊕

i∈IMi and M =
⊕

j∈JMj and 1 =
∑

i∈I ei, 1 =∑
j∈J fj are the correspondent sum of orthogonal idempotents. Since eifj = fjei

for all i ∈ I and j ∈ J ,

1 =
∑

i∈I,j∈J

eifj

is a sum of orthogonal idempotents. Hence, eifjM = Mi ∩ Mj and M =⊕
i∈I,j∈J(Mi ∩Mj). 2

Definition 4.26 For an R-module M , let Dec(M) = DecR(M) be the set of all
its direct sum decompositions. We say that a direct sum decomposition

⊕
i∈IMi

is finer than a direct sum decomposition
⊕

j∈J Nj and write
⊕

i∈IMi ≥
⊕

j∈J Nj

if I =
∐

j∈J Ij is disjoint union of non-empty subsets Ij such that for each j ∈ J ,
Nj =

⊕
i∈Ij Mi.

The set (Dec(M),≥) is a partially ordered set (a poset, for short). Let maxDec(M)
be a set of maximal elements of Dec(M).

Definition 4.27 ds.dim(M) = sup{card(I) |M =
⊕

i∈IMi ∈ Dec(M)} is called
the direct sum decomposition dimension.

If an R-module M satisfies the refinement condition and maxDec(M) 6= ∅ then
maxDec(M) contains a unique decomposition, say

⊕
i∈IMi, and so, ds.dim(M) =

card(I).

Corollary 4.28 Let M be a multiplication module such that M =
⊕

i∈IMi =⊕
j∈J Nj and L be a submodule of M . Then

1. M =
⊕

i∈I,j∈JMi∩Nj, i.e., every multiplication module satisfies the refine-
ment condition, and

2. L =
⊕

i∈I,j∈J L ∩Mi ∩Nj.

Proof. By Theorem 1.11, Mi =
⊕

j∈IMi∩Nj for all i ∈ I. Then M =
⊕

i∈IMi =⊕
i∈I,j∈JMi∩Nj, and statement 1 holds. Statement 2 follows from Theorem 1.11

and statement 1. 2

Definition 4.29 Let R be a ring. The ideal uniform dimension of R, iu.dim(R),
is the supremum of cardinalities of sets I such that for some set of ideals {ai}i∈I
of R,

∑
i∈I ai =

⊕
i∈I ai.
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Proposition 4.30 Let M be a multiplication R-module. Then ds.dim(M) ≤
iu.dim(R/annR(M)).

Proof. The proposition follows from Corollary 4.21. 2

Definition 4.31 Let R be a ring. Then m.dim(R) = sup{ds.dim(M) |M is a
multiplication R-module} is called the multiplication dimension.

Corollary 4.32 Let R be a ring. Then m.dim(R) ≤ sup{iu.dim(R/annR(M)) |M
is a multiplication R-module} ≤ sup{iu.dim(R/annR(M)) |M is an R-module}.

Proof. The corollary follws from Proposition 4.30. 2

Multiplication modules are a unique direct sum of indecomposable
modules.

The next proposition shows that there is a unique decomposition of a multiplica-
tion module as a direct sum of indecomposable modules (if such decomposition
exists).

Proposition 4.33 Let M be a multiplication R-module. Suppose that M =⊕
i∈IMi =

⊕
j∈J Nj are direct sums of indecomposable R-modules. Then there

is a bijection σ : I → J such that Mi = Nσ(i) for all i ∈ I.

Proof. By Theorem 1.11, Mi =
⊕

j∈JMi ∩ Nj for all i ∈ I. The module Mi is
indecomposable. So, Mi = Nσ(i) for a unique σ(i) ∈ J . If i 6= i′ then σ(i) 6= σ(i′),
i.e., the map

σ : I → J, i 7→ σ(i),

is an injection. By symmetry, there is an injection τ : J → I, j 7→ τ(j), such
that Nj = Mτ(j). Clearly, στ(j) = j and τσ(i) = i for all j ∈ J and i ∈ I. So,
σ = τ−1, and the result follows. 2

Definition 4.34 The set of nonzero R-modules {Mλ}λ∈Λ where card(Λ) > 2 is
called homomorphically independent if HomR (Mλ,Mµ) = 0 for all λ 6= µ
where λ, µ ∈ Λ.

We say that a direct sum M =
⊕

λ∈ΛMλ has enough complements if for every
direct summand K of M , there is a subset Λ′ ⊆ Λ such that M =

⊕
λ∈Λ′Mλ

⊕
K.
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Proposition 4.35 Let a direct sum of nonzero R-modules M =
⊕

λ∈ΛMλ where
card(λ) > 2 be a multiplication R-module. Then

1. The set {Mλ}λ∈Λ is homomorphically independent.

2. If Mλ is indecomposable and K is a nonzero direct summand submodule of
M then either Mλ ⊆ K or Mλ ∩ K = 0. Moreover, if M =

⊕
λ∈ΛMλ is

direct sum of indecomposable modules then Sub⊕R(M) = {
⊕

λ∈Λ′Mλ |Λ′ ⊆
Λ}, i.e., M has enough complements.

3. If all R-modules Mλ, λ ∈ Λ, have direct sum with enough complements then
the R-module M has enough complements.

Proof. 1. It follows from Lemma 4.23.

2. If K is a nonzero direct summand submodule of M then there exists a sub-
module K ′ of M such that M = K

⊕
K ′. By Theorem 1.11,

Mλ = Mλ ∩K
⊕

Mλ ∩K ′.

So, either Mλ ⊆ K or Mλ ∩K = 0 (since Mλ is indecomposable). Therefore, by
Theorem 1.11, K =

⊕
λ∈Λ(Mλ ∩K) =

⊕
λ∈Λ′Mλ where Λ′ ⊆ Λ.

3. For every λ ∈ Λ, let Mλ =
⊕

i∈Iλ Ni. Clearly,
⊕

λ∈Λ(
⊕

i∈Iλ Ni) is a direct
sum decompositionof M . Let K be a direct summand of M , i.e., there exists a
submodule K ′ of M such that M = K

⊕
K ′. By Theorem 1.11, Mλ = Mλ ∩

K
⊕

Mλ ∩ K ′, i.e., Mλ ∩ K is a direct summand of Mλ. So, by statement 2,
Mλ ∩ K =

⊕
i∈I′λ⊆Iλ

Ni. Therefore, by Theorem 1.11, K =
⊕

λ∈Λ(K ∩Mλ) =⊕
λ∈Λ(

⊕
i∈I′λ⊆Iλ

Ni), i.e., M has enough complements. 2

Corollary 4.36 Let a direct sum of nonzero R-modules M =
⊕

i∈IMi where
card(I) > 2 be a multiplication R-module. If N is an indecomposable submodule
of M then N ⊆Mi for some i ∈ I.

Proof. By Theorem 1.11, N =
⊕

i∈I(N ∩Mi). Since N is an indecomposable
submodule, N = N

⋂
Mi for some i ∈ I, i.e., N ⊆Mi for some i ∈ I. 2

Corollary 4.37 Let M =
⊕

i∈IMi be a direct sum of indecomposable R-submodules
of M where card(I) > 2. If M is a multiplication module and N is an indecom-
posable direct summand of M then N = Mi for some i ∈ I.
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Proof. Since N is a direct summand of M , there exists a submodule K of M
such that M = N

⊕
K. By Theorem 1.11, N =

⊕
i∈I(N

⋂
Mi). It follows that

there exists i ∈ I such that N = N
⋂
Mi (since N is indecomposable). Again, by

Theorem 1.11, since M = N
⊕

K and Mi is a submodule of M ,

Mi = (Mi

⋂
N)

⊕
(Mi

⋂
K) = N

⊕
(Mi

⋂
K).

It follows that Mi = N (since Mi is indecomposable and N 6= 0). 2

Definition 4.38 An R-module M satisfies the direct sum cancellation prop-
erty if M = K

⊕
L = K

⊕
L′ where K, L and L′ are R-modules then L = L′.

Lemma 4.39 Every multiplication module satisfies the direct sum cancellation
property.

Proof. Let M be a multiplication R-module such that M = K
⊕

L = K
⊕

L′

where K, L and L′ are R-modules. Then, by Theorem 1.11, L = (K ∩L)⊕ (L∩
L′) = L ∩ L′ which follows that L ⊆ L′. Similarly, L′ ⊆ L. 2

Definition 4.40 Let R be a ring. An R-module M satisfies the summand
property if K + L and K ∩ L are also direct summands of M for all direct
summands K and L of M .

Proposition 4.41 Every multiplication module satisfies the summand property.

Proof. Let K and L be direct summand submodules of M . Then M = L⊕L∗ =
K⊕K∗ for some submodule L∗ and K∗ of M . Since M is a multiplication module,

K = (K ∩ L)⊕ (K ∩ L∗),

by Theorem 1.11. Therefore K ∩L is a direct summand submodule of K. Hence,
K ∩ L is a direct summand submodule of M . Now, since K + L is a submodule
of M = L ⊕ L∗, K + L = L ⊕ (K ∩ L∗), by Theorem 1.11. Since K is a direct
summand submodule of M and L∗ is a submodule of M , K ∩ L∗ is a direct
summand submodule of L∗, by Theorem 1.11, i.e., L∗ = (K ∩ L∗) ⊕ K ′ where
K ′ = K∗ ∩ L∗. So,

M = L⊕ L∗ = L⊕ ((K ∩ L∗)⊕K ′) = (L⊕ (K ∩ L∗))⊕K ′ = (K + L)⊕K ′.

Hence, K + L is a direct summand submodule of M . Hence, M satisfies the
summand property. 2

Let M be a multiplication module with a direct sum decomposition. The next
corollary gives an intersection decomposition for every submodule of M .
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Corollary 4.42 Let M =
⊕

λ∈ΛMλ be a direct sum of nonzero R-modules where
card(I) > 2. If M is a multiplication module then for each submodule N of M ,
N =

⋂
λ∈Λ(N +M ′

λ) where M ′
λ =

⊕
µ6=λMµ.

Proof. By Theorem 1.11, N =
⊕

λ∈ΛN
⋂
Mλ. So, for every λ ∈ Λ, N + M ′

λ =
N ∩Mλ ⊕M ′

λ, and the corollary follows. 2

4.3 Multiplication rings

Recall that a ring R is a multiplication ring iff for every two ideals I ⊆ J of R,
I = KJ = JK ′ for some ideals K and K ′ of R.

Corollary 4.43 Let R be a multiplication commutative ring. Then Mn(R) is a
multiplication ring.

Proof. Let I and J be ideals of Mn(R) such that I ⊆ J . Then, by Lemma 2.48,
there exists ideals I ′ and J ′ of R such that I = Mn(I ′) and J = Mn(J ′). By
Lemma 2.49, I ′ ⊆ J ′ (since I ⊆ J), and therefore there exists an ideal L of R
such that I ′ = LJ ′ (Since R is a multiplication ring). Therefore, by Lemma 2.49,

Mn(I ′) = Mn(LJ ′) = Mn(L)Mn(J ′),

and hence, Mn(R) is a multiplication ring. 2

Lemma 4.44 Let R be a ring such that all its ideals are idempotent ideals. Then
R is a multiplication ring.

Proof. Let I and J be ideals of R such that J ⊆ I. Then J = J2 ⊆ JI ⊆ J .
i.e., J = JI. Hence, I is a left multiplication module. Similarly, I is a right
multiplication module, and hence, R is a multiplication ring. 2

Corollary 4.45 The algebras In, n ≥ 1, of polynomial integro-differential oper-
ators over a field of characteristic zero are (left and right) multiplication rings.

Proof. By [15, Corollary 3.3(3)], every ideal of all In is an idempotent ideal. So,
the result follows from Lemma 4.44. 2

Lemma 4.46 Let R be a left multiplication ring and I be an ideal of R. Then
IP ⊆ PI for all prime ideals P of R such that I * P .
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Proof. Let P be a prime ideal of R such that I * P . The ring R is a left
multiplication ring. So, the inclusion of ideals IP ⊆ I implies that JI = IP ⊆ P
for some ideal J of R. Since I * P and the ideal P is prime, we must have
J ⊆ P , and so IP = JI ⊆ PI. 2

Proof of Theorem 1.21. 1. The prime ideals P and Q are incomparable. So,
by Lemma 4.46, QP ⊆ PQ ⊆ QP , and so PQ = QP .

2(a). The ring R is a left multiplication ring. So, by Lemma 4.46, IP ⊆ PI for
all prime ideals P of R such that I * P . The ring R is a right multiplication
ring. So, its opposite ring is a left multiplication ring. Hence, PI ⊆ IP for all
prime ideals P of R such that I * P . Hence, IP = PI.

2(b). We can assume that P 6= Q otherwise the equality PQ = QP is obvious.
Then either P * Q or Q * P , hence PQ = QP , by the statement (a). 2

Example. Let R be the ring of upper triangular 3 × 3 matrices over a field K.
The ring R is not a multiplication ring.

Proof. Let Eij be the matrix units. Then the ideals P1 = (E11, E33) and P2 =
(E11, E22) are prime ideals of the ringR such that P1 6= P2 (sinceR = KE22⊕P1 =
KE33⊕P2. Since P1P2 6= P2P1, the ringR is not a multiplication ring, by Theorem
1.21. 2

Corollary 4.47 Let R be a multiplication ring. Then I ∩ P = IP = PI for all
ideals I and P such that I * P and P is a prime ideal of R.

Proof. Since I is a multiplication ideal and I ∩P is a submodule of I, I ∩P = JI
for some ideal J of R. As JI ⊆ P and I * P , J must be contained in P . So, by
Theorem 1.21,

I ∩ P = JI ⊆ PI = IP ⊆ I ∩ P,
i.e., I ∩ P = IP = PI. 2

Let R be a ring and I be an ideal of R. We denote by V(I) the set of all prime
ideals of R that contain the ideal I.

Corollary 4.48 Let R be a multiplication ring and I be an ideal of R. If J =
n∏
i=1

Pi where Pi is a prime ideal such that Pi /∈ V(I) for all 1 6 i 6 n then

IJ = JI.



CHAPTER 4. MULTIPLICATION MODULES OVER
NONCOMMUTATIVE RINGS 67

Proof. It follows from Theorem 1.21. 2

Remark. We proved in Corollary 4.45 that In are multiplication rings. V.
Bavula in [15], proved that the product of ideals of In is commutative. So, there
is a subclass of the class of multiplication noncommutative rings such that the
product of ideals is commutative. Let ς denotes such subclass.

Let R ∈ ς and I and J be two ideals of R such that I ⊆ J then I = Iθ(J). For,

I = LJ = Lθ(J)J = θ(J)(LJ) = θ(J)I

for some ideal L of R (since θ(J) is an ideal of R).

Fully-multiplication modules.

Definition 4.49 An R-module M is called a fully-multiplication module if every
submodule of M is a multiplication module.

If M is a fully-multiplication R-module then every submodule of M is so. But,
it is not true that every multiplication module is a fully-multiplication module.

Example. Let R = K[x, y]/(x2, xy, y2). Since R is a commutative ring, R is a
multiplication R-module. Let I = (x, y) and J = (x). Since the ring (R, I) is a
local ring, I2 = 0 and 0 6= J ⊆ I, the R-module I is not a multiplication module
(since otherwise there is an ideal J ′ of R such that 0 6= J = J ′I ⊆ I2 = 0, a
contradiction). 2

The next proposition gives a sufficient condition for a multiplication module to
be a fully-multiplication module.

Proposition 4.50 Let M be a multiplication R-module. If IN = N ∩ IM for
every submodule N of M and every ideal I of R then M is a fully-multiplication
module.

Proof. Let N be a submodule of M and K a submodule of N . Then K is a
submodule of M , and therefore K = IM for some ideal I. By the assumption,
K = K ∩N = IM ∩N = IN . Hence, N is a multiplication module. 2

Corollary 4.51 Let R be a commutative multiplication ring. Then every multi-
plication R-module is fully-multiplication.
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Proof. It follows from Lemma 2.74. 2

The next corollary gives a criterion for a faithful multiplication module over a
commutative ring to be a fully-multiplication module in terms of the ideal θ(M).

Corollary 4.52 Let R be a commutative ring and M be a faithful multiplication
R-module. Then

1. If N = IM is a multiplication submodule of M where I is an ideal of θ(M)
then I is a multiplication ideal.

2. M is a fully-multiplication module iff θ(M) is a fully-multiplication R-
module iff every prime ideal that contained in θ(M) is a multiplication ideal.
In addition, if M is finitely generated then M is a fully-multiplication mod-
ule iff R is a multiplication ring.

Proof. 1. Let J be an ideal of R such that J ⊆ I. Then JM ⊆ IM = N . So,

JM = J?(IM) = (J?I)M

(since N = IM is a multiplication module). By Lemma 2.78, J = J?I, i.e., I is
a multiplication ideal.

2. Suppose that M is a fully-multiplication module. Let I be an R-submodule
of θ(M). Then IM is a submodule of M , and therefore it is a multiplication
module (since M is a fully-multiplication module). So, by 1, I is a multiplication
submodule of θ(M). Conversely, suppose that θ(M) is a fully-multiplication R-
module and N be a submodule of M . Then, by Corollary 2.80, N = IM for
some ideal of R such that I ⊆ θ(M). So, I is a multiplication ideal. Hence, by
Lemma 2.74, IM = N is a multiplication module, i.e., M is a fully multiplication
module, as required. The second equivalence in the statement follows from ([23,
Theorem 3.4]). In case, M is finitely generated then θ(M) = R, by Lemma 2.77,
and hence, M is a fully-multiplication module iff R is a multiplication ring. 2

4.4 The ring of endomorphisms of a multipli-

cation module

In the first part, we give some properties and applications of the endomorphisms
ring of a multiplication module. In the second part, we introduce new classes of
modules: epimorphic modules, monomorphic modules and automorphic modules.
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Let M be a multiplication module, E = EndR(M) and E = EndE(M). If R is a
commutative ring then there is a natural ring homomorphism

R→ E, r 7→ (x 7→ rx) (4.1)

with kernel annR(M). In particular, every E-module is also an R-module.

The following proposition is a description of E-submodules and E-submodules of
M .

Proposition 4.53 Let R be a commutative ring, M be a multiplication R-module,
E = EndR(M) and E = EndE(M). Then

1. SubR(M) = SubE(M).

2. For each submodule N of the R-module M , [N : M ]RM = [N : M ]EM = N
where [N : M ]R = annR(M/N) and [N : M ]E = annE(M/N).

3. For each submodule N ′ of the E-module M , [N ′ : M ]RM = [N ′ : M ]EM =
N ′.

4. M is a faithful multiplication module over the commutative ring E.

5. If M is finitely generated E-module then E = E.

Proof. 1. By Lemma 4.23.(2), every R-submodule of M is an E-submodule. By
(4.1), the converse is also true.

2. The R-module M is a multiplication module, hence [N : M ]RM = N . Now,

N = EN = E[N : M ]RM ⊆ [N : M ]EM ⊆ N,

by the statement 1. Therefore, [N : M ]EM = N (since E[N : M ]R is an ideal of
the ring E and E[N : M ]RM = N).

3. Statement 3 follows from statements 1 and 2.

4. Recall that the ring E is a commutative ring, Lemma 4.23.(6). Statement 4
follows from statement 3.

5. By statement 4, M is a faithful finitely generated multiplication module over
the commutative ring E. So, by Lemma 2.99, the inclusion E ⊆ E is equality. 2

Theorem 4.54 is a comparability theorem forR-endomorphisms of a multiplication
R-module M .
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Theorem 4.54 Let R be a ring, M be an Artinian multiplication R-module and
f ∈ EndR(M). Then for all n � 0 (all but finitely many), the ideals of the ring
R, annR(ker(fn)) and annR(im(fn)), are comparable iff either f ∈ AutR(M) or
f is nilpotent.

Proof. (⇒) The R-module M is an Artinian module, therefore,

M = ker(fn) + im(fn)

for all n� 0. Let x ∈ ker(fn)∩ im(fn). Since im(fn) is a multiplication module,
Rx = Ifn(M) for some ideal I of R. Now, since x ∈ ker(fn),

0 = fn(Rx) = fn(Ifn(M)) = If 2n(M) = Ifn(M) = Rx.

Therefore,
M = ker(fn)⊕ im(fn).

By Proposition 1.7, if the ideals of the ring R, annR(ker(fn)) and annR(im(fn)),
are comparable then either ker(fn) = 0 or im(fn) = 0, i.e., either either f ∈
AutR(M) or f is nilpotent.

(⇐) This implication is obvious. 2

Let R be a commutative ring and M be an R-module. Then for all r ∈ R,
rM : M →M , m 7→ rm is an endomorphism of M .

Proposition 4.55 Let R be a commutative ring and M be a multiplication R-
module such that annR(M) is a prime ideal of R. Then rM is either zero or
monomorphism for every r ∈ R.

Proof. As ker(rM) is a submodule of M and M is a multiplication module,
ker(rM) = IM for some ideal I of R. So,

0 = rM(IM) = r(IM) = rIM,

i.e., rI ⊆ annR(M), and so either r ∈ annR(M) or I ⊆ annR(M) (since annR(M)
is a prime ideal), and so ker(rM) = 0. Hence, rM is either zero or monomorphism
for every r ∈ R. 2

Epimorphic, monomorphic and automorphic modules.

Definition 4.56 An R-module M is called epimorphic if every nonzero endo-
morphism of M is epimorphism, i.e., EndR(M) = EpiR(M) ∪ {0}.
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An R-module M is called monomorphic if every nonzero endomorphism of M
is monomorphism, i.e., EndR(M) = MonR(M) ∪ {0}.
An R-module M is called automorphic if every nonzero endomorphism of M is
automorphism, i.e., EndR(M) = AutR(M) ∪ {0}.

Lemma 4.57 An R-module M is automorphic iff EndR(M) is a division ring.

Proof. The lemma is obvious. 2

Theorem 4.58 Let R be a ring and M be an R-module. If M is an epimorphic
multiplication module then M is automorphic.

Proof. Since M is a multiplication R-module, EpiR(M) = AutR(M), by Lemma
4.23 (1). Since M is epimorhic, EndR(M) = EpiR(M) ∪ {0} = AutR(M) ∪ {0}.
Hence, M is automorphic. 2

Theorem 4.59 Let M be an epimorphic R-module, E = EndR(M) and m =
{f ∈ E | ker(f) 6= 0}. Then

1. (E,m) is a local ring such that E/m is a division ring.

2. (1 + m)? = AutR(M) ∩ (1 + m) where (1 + m)? is a group of units of the
multiplicative monoid (1 + m).

3. The ring epimorphism π : E −→ E/m, f 7−→
−
f := f + m induces the

group homomorphism π′ : AutR(M) −→ (E/m)?, f 7−→
−
f := f + m where

(E/m)? = (E/m) \ {0} is the group of units of the division ring E/m (see,
statement 1). Then π′ is a group epimorphism with ker(π′) = (1 + m)?.
In particular, (1 + m)? is a normal subgroup of AutR(M) and (E/m)? ∼=
AutR(M)/(1 + m)?.

Proof. 1. Clearly, E := EpiR(M) ∪ {0} = AutR(M) tm and Em ⊆ m. Now,

mE ⊆ mAutR(M) ∪mm ⊆ m ∪m = m.

Hence, m is an ideal of the ring E, i.e., E is a local ring. Since E = AutR(M)tm
is a local ring, the factor ring E/m is a division ring (since any nonzero element
of E/m is invertible).
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2. The inclusion (1 + m)? ⊆ AutR(M) ∩ (1 + m) is obvious. Let f ∈ AutR(M) ∩
(1 +m).We have to show that f ∈ (1 +m)?, i.e., f−1 ∈ 1 +m. Clearly, f = 1 +m
for some m ∈ m. Then

1 = f−1f = f−1(1 +m) = f−1 −m′

where m′ = −f−1m ∈ m. Hence, f−1 = 1 +m′ ∈ 1 + m, as required.

3. Since π′
−1

((E/m)?)
st.1
= π′

−1
((E/m) \ {0}) ⊆ AutR(M) (as E = AutR(M)tm),

the group homomorphism π′
−1

is an epimorphism with

ker(π′) = (π′
−1

)(
−
1) = π−1(1) ∩ AutR(M) = (1 + m) ∩ AutR(M)

st.2
= (1 + m)?,

and therefore (1+m)? is a normal subgroup, and so (E/m)? ∼= AutR(M)/(1+m)?.
2

For anR-moduleM , let I(M) =
⋂

06=f∈EndR (M) im(f) and n(M) = {f ∈ EndR(M) | f(M) =

I(M)}∪ {0}. It is clear that n is a right ideal of EndR(M). If M is a multiplica-
tion R-module then n is an ideal of EndR(M) (Since M satisfies the EndR(M)-
stability condition, by Lemma 4.23(2)).

Lemma 4.60 Let M be an R-module. Then

1. M is epimorphic iff I(M) = M iff n(M) = EndR(M).

2. If M is a multiplication R-module then I(M) is an EndR(M)-stable sub-
module.

Proof. 1. It is trivial, by Definition 4.56.

2. It follows from Lemma 4.23 (2). 2

Proposition 4.61 Let M be an R-module such that I(M) 6= 0 and n(M) 6= 0.
Then the R-module I(M) is epimorphic.

Proof. Take an element 0 6= f ∈ n(M). Let 0 6= α ∈ EndR(I(M)). Then

I(M) ⊇ α(I(M)) = αf(M) ⊇ I(M)

since 0 6= αf ∈ EndR(M), and so α(I(M)) = I(M). Hence, I(M) is an epimor-
phic R-module. 2

The next corollary is a description of the ideal n(I(M)).
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Corollary 4.62 Let M be an R-module such that I(M) 6= 0 and n(M) 6= 0.
Then n(I(M)) = EndR(I(M)).

Proof. It follows from Proposition 4.61 and Lemma 4.60 (1). 2

Proposition 4.63 Let M be a multiplication R-module such that N be an es-
sential submodule. If f|N ∈ Mon(N) then f ∈ Mon(M).

Proof. Since M is a multiplication module and N is a submodule of M , by Lemma
4.23 (2), N is an EndR(M)-stable submodule, i.e., f|N ∈ EndR(N). It is clear
that ker(f|N) = ker(f) ∩N . So, if f|N ∈ Mon(N) then

0 = ker(f|N) = ker(f) ∩N.

Therefore ker(f) = 0 (since N is an essential submodule). Hence, f ∈ Mon(M).
2

Corollary 4.64 Let M be a multiplication R-module and N be an essential sub-
module of M . If for every f ∈ EndR(M), f|N ∈ Mon(N) then M is monomorphic
module.

Proof. It follows from Proposition 4.63. 2



Chapter 5

Multiplication modules over
commutative rings

Throughout the chapter R is a commutative ring.

In this chapter, we present some applications of the cancellation law of multi-
plication modules, we generalize some known results, and we give some cases of
embedding of a multiplication module into its ring. Also, we study the product of
two submodules of a (faithful) multiplication module. Several properties and ap-
plications of such operation are presented. Furthermore, we study multiplication
modules over some rings.

5.1 Multiplication modules and the ideal θ(M)

In this section, we give some characterizations of a multiplication module in
terms of the ideal θ(M), we present some applications of the cancellation law of
multiplication modules over commutative rings, we give an explicit description
of the minimal prime submodules of a faithful multiplication module, and we
present two cancellation laws which depends on the original cancellation law in
their proofs. Furthermore, we generalize some known results.

Let m be a maximal ideal of a ring R. Definition 2.67 shows that the maximal
ideal m identifies two subclasses of R-modules which are called m-cyclic modules
and m-torsion modules.

We recall that an R-module M is locally cyclic if Mm is cyclic Rm-module for

74
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every m ∈ Max(R).

The next corollary presents some characterizations of multiplication modules.

Corollary 5.1 Let M be an R-module and m ∈ Max(R). Then

1. M is a multiplication module iff for every m ∈ Max(R) such that θ(M) ⊆ m,
Mm = 0.

2. If M is multiplication module then M is m-torsion iff M = mM .

3. If M is finitely generated locally cyclic module then M is a multiplication
module.

4. If M is finitely generated multiplication module then for every m ∈ Max(R),
M is m-cyclic.

Proof.

1. (⇒) Suppose that M is a multiplication module and m ∈ Max(R) such that
θ(M) ⊆ m. Then, by Lemma 2.73(1),

M = θ(M)M ⊆ mM ⊆M,

i.e., M = mM . So, for every x ∈M ,

Rx = IM = I(mM) = m(IM) = mx

where I is an ideal of R (since M is a multiplication module). It follows that
there exists q ∈ m such that (1− q)x = 0. Therefore (Rx)m = 0 for every x ∈M ,
and hence, Mm = 0.

(⇐) Suppose that m ∈ Max(R). Then we have two cases. If θ(M) ⊆ m then, by
assumption, Mm = 0. So, (Rx)m = 0 for every x ∈ M , i.e., there exists q ∈ m
such that (1 − q)x = 0, and hence, M is m-torsion. If θ(M) * m then there
exists y ∈ M such that [Ry : M ] * m. By maximality of m, [Ry : M ] + m = R.
It follows that there exists q′ ∈ m such that (1 − q′)M ⊆ Ry, and hence, M is
m-cyclic. Hence, by Theorem 2.68, M is a multiplication module.

2. (⇐) Suppose that M = mM . Since M is a multiplication module,

Rm = IM = ImM = m(IM) = mm

for every m ∈ M where I is an ideal of R. Therefore, there exists a ∈ m such
that (1− a)m = 0, i.e., M is m-torsion.
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(⇒) Suppose that M is m-torsion. Then for every m ∈ m, there exists q ∈ m
such that (1− q)m = 0, i.e., m = qm. So, M ⊆ mM ⊆M , i.e., M = mM .

3. Let N be a submodule of M and m ∈ Max(R). Then Nm is a submodule of
Mm. By assumption Mm is cyclic, i.e., it is a multiplication module. Therefore

Nm = [Nm : Mm]Mm = [N : M ]mMm = ([N : M ]M)m,

by Lemma 2.36 (since M is finitely generated). Hence, N = [N : M ]M , as
required. 2

4. Let m be any maximal ideal in R. Since M is finitely generated multiplication
R-module, θ(M) = R, by Lemma 2.77. Therefore θ(M) * m, i.e., there exists
x ∈M such that [Rx : M ] * m. So, there exists q ∈ m such that (1− q)M ⊆ Rx,
i.e., M is m-cyclic.

Characterizations of a multiplication R-module M in terms of the ideal
θ(M).

Lemma 5.2 Let M be a multiplication R-module. Then M is a locally cyclic
module, i.e., for every m ∈ Max(R), Mm is cyclic. In particular, if θ(M) ⊆ m
then Mm = 0.

Proof. Let m ∈ Max(R). Then we have two cases. If θ(M) ⊆ m then, by
Corollary 5.1(1), Mm = 0. If θ(M) * m then there exists x ∈ M such that
[Rx : M ] * m. Therefore, by maximality of m, [Rx : M ] + m = R. So, 1 = a+ r
for some elements a ∈ m and r ∈ [Rx : M ] which implies that (1 − a)M ⊆ Rx,
i.e., M is m-cyclic. Therefore Mm ⊆ (Rx)m ⊆ Mm, i.e., Mm = (Rx)m. Hence, M
is locally cyclic. 2

Example: Every ideal of an almost Dedekind domain is locally cyclic (Defi-
nition 2.45). There are some examples of almost Dedekind domains which are
not Noetherian (see [35]). Let D? be an almost Dedekind domain which is not
Noetherian. Then there exists an ideal I of D? such that I is not finitely gener-
ated. Suppose that I is a multiplication ideal of D?. Then, by Lemma 2.87, I is
finitely generated, a contradiction. Hence, I is a locally cyclic ideal which is not
multiplication. 2

Lemma 5.3 Let M be a multiplication R-module and m ∈ Max(R). Then (1 +
m)−1M is a cyclic (1 + m)−1R-module. In particular, if θ(M) ⊆ m then (1 +
m)−1M = 0.
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Proof. Let m ∈ Max(R). Then we have two cases. If θ(M) ⊆ m then M = mM .
So, by Corollary 5.1(2), M is m-torsion, i.e., for every x ∈ M there exists a ∈ m
such that (1−a)x = 0. Therefore (1+m)−1M = 0. If θ(M) * m then there exists
y ∈M such that [Ry : M ] * m. So, by maximality of m, m+[Ry : M ] = R. Thus
1 = q + a where q ∈ m and a ∈ [Ry : M ]. Therefore (1− q)M = aM ⊆ Ry, i.e.,
M is m-cyclic. So, (1+m)−1M ⊆ (1+m)−1Ry ⊆ (1+m)−1M , i.e., (1+m)−1M =
(1 + m)−1Rx, and hence, (1 + m)−1M is a cyclic (1 + m)−1R-module. 2

Theorem 5.4 Let M be an R-module. The following statements are equivalent.

1. M is multiplication module.

2. For every m ∈ Max(R) such that θ(M) ⊆M , Mm = 0.

3. For every m ∈ Max(R) such that Mm 6= 0, Mm is a cyclic Rm-module, and
for every submodule N of M , [N : M ]m = [Nm : Mm].

4. For every m ∈ Max(R) such that θ(M) ⊆M , (1 + m)−1M = 0.

5. For every m ∈ Max(R) such that (1 + m)−1M 6= 0, (1 + m)−1M is a cyclic
(1 +m)−1R-module, and for every submodule N of M , (1 +m)−1[N : M ] =
[(1 + m)−1N : (1 + m)−1M ].

6. For all x ∈M , Rx = θ(M)x.

Proof. (1⇒ 2) It follows from Corollary 5.1(1).

(2 ⇒ 3) Let m ∈ Max(R) such that Mm 6= 0. So, by statement 2, θ(M) * m,
i.e., there exists x ∈ M such that [Rx : M ] * m. By maximality of m, [Rx :
M ] + m = R. It follows that there exists q′ ∈ m such that (1 − q′)M ⊆ Rx. It
follows that Mm ⊆ (Rx)m ⊆Mm, i.e., Mm = (Rx)m, and hence, Mm is a cyclic Rm-
module. Now, let N be a submodule of M and q ∈ m. If r ∈ [N : (1− q)M ] then
r(1 − q) ∈ [N : M ]. So, (r/1) ∈ [N : M ]m. Hence, [N : (1 − q)M ]m ⊆ [N : M ]m.
Now, we have

[N : M ]m ⊇ [N : (1−q)M ]m ⊇ [N : Rx]m = [Nm : (Rx)m] = [Nm : Mm] ⊇ [N : M ]m,

and therefore [N : M ]m = [Nm : Mm].

(3 ⇒ 6) Suppose that Rx 6= θ(M)x for some x ∈ M . Then, by Lemma 2.18,
annR(x)+θ(M) 6= R. So, there exists m ∈ Max(R) such that annR(x)+θ(M) ⊆ m
which follows that Mm 6= 0 (since (Rx)m 6= 0). Therefore, by statement 3, Mm is
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cyclic, i.e., there exists y ∈ M such that Mm = (Ry)m. Again, by statement 3,
we have

θ(M)m ⊇ [Ry : M ]m = [(Ry)m : Mm] = [(Ry)m : (Ry)m] = Rm,

a contradiction (since θ(M) ⊆ m), and hence, θ(M)x = Rx.

(1⇒ 4) It follows from Lemma 5.3.

(4 ⇒ 5) Let m ∈ Max(R) such that (1 + m)−1M 6= 0. So, by statement 2,
θ(M) * m, i.e., there exists y ∈ M such that [Rx : M ] * m. By maximality of
m, [Rx : M ] + m = R, i.e., there exists q′ ∈ m such that (1 − q′)M ⊆ Rx. It
follows that (1 + m)−1M ⊆ (1 + m)−1(Rx) ⊆ (1 + m)−1M , i.e., (1 + m)−1M =
(1+m)−1(Rx), and hence, (1+m)−1M is a cyclic (1+m)−1R-module. Now, let N
be a submodule of M and q ∈ m. If r ∈ [N : (1− q)M ] then r(1− q) ∈ [N : M ].
So, (r/1) ∈ (1 + m)−1[N : M ]. Hence,

(1 + m)−1[N : (1− q)M ] ⊆ (1 + m)−1[N : M ].

Now, we have (1+m)−1[N : M ] ⊇ (1+m)−1[N : (1−q)M ] ⊇ (1+m)−1[N : Rx] =
[(1 +m)−1N : (1 +m)−1(Rx)] = [(1 +m)−1N : (1 +m)−1M ] ⊇ (1 +m)−1[N : M ],
and hence, (1 + m)−1[N : M ] = [(1 + m)−1N : (1 + m)−1M ].

(5 ⇒ 6) Suppose that Rx 6= θ(M)x for some x ∈ M . As annR(x) ⊆ m, (1 +
m)−1M 6= 0. So, by statement 4, (1 + m)−1M is cyclic, i.e., there exists y ∈ M
such that (1 + m)−1M = (1 + m)−1(Ry). Again, by statement 4, we have

(1 + m)−1θ(M) ⊇ (1 + m)−1[Ry : M ] = [(1 + m)−1(Ry) : (1 + m)−1M ] =

[(1 + m)−1(Ry) : (1 + m)−1(Ry)] = (1 + m)−1R,

a contradiction (since θ(M) ⊆ m), and hence, θ(M)x = Rx.

(6⇒ 1) It follows from Lemma 2.73(2). 2

We recall that a nonzero R-module M is called a second module if annR(M) =
annR(M/N) for all proper submodules N of M . Moreover, M is called a prime
module if annR(M) = annR(N) for all proper submodules N of M .

Proposition 5.5 Let M be a nonzero multiplication module. Then

1. If M is a second module then M is simple.

2. If M is a prime module then M is finitely generated.
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Proof. 1. Let N be a proper submodule of M . As M is a second multiplication
module,

N = [N : M ]M = annR(M/N)M = annR(M)M = 0.

Hence, M is simple.

2. Let 0 6= m ∈M . Then, by Lemma 2.73,

R = annR(Rm) + θ(M) = annR(M) + θ(M) = θ(M)

(since M is prime module). Hence, by Lemma 2.77, M is finitely generated. 2

Proposition 5.6 Let N be a finitely generated submodule of a multiplication R-
module M . If annR(N) ⊆ θ(M) then M is finitely generated. In particular, if
annR(N) = annR(M) then M is finitely generated.

Proof. As M is a multiplication module, N = θ(M)N , by Lemma 2.73(1). Since
N is finitely generated and annR(N) ⊆ θ(M), by Lemma 2.15,

R = θ(M) + annR(N) = θ(M).

Therefore, by Lemma 2.77, M is finitely generated. 2

Proposition 5.7 Let M be a faithful multiplication R-module. Then for every
x ∈M , [annR(Rx)M : M ] = annR(Rx).

Proof. Clearly, [0 : x] ⊆ [[0 : x]M : M ]. Let r ∈ [[0 : x]M : M ]. Then
rM ⊆ [0 : x]M , and therefore, by Lemma 2.18,

rθ(M) ⊆ [0 : x]θ(M) ⊆ [0 : x].

Since M is a multiplication R-module, by Lemma 2.73(1), Rx = θ(M)x. So,
x = sx for some s ∈ θ(M). Now, rx = r(sx) = (rs)x = 0 (since rs ∈ rθ(M) ⊆
[0 : x]). Hence, r ∈ [0 : x], i.e., [0 : x] = [[0 : x]M : M ]. 2

Faithful multiplication submodules of a finitely generated faithful mul-
tiplication module.

Lemma 2.80(3), gives a description of a submodule of a faithful multiplication.
The next corollary describes a faithful multiplication submodule of a finitely
generated faithful multiplication module.
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Corollary 5.8 Let M be a finitely generated faithful multiplication R-module.
Then every faithful multiplication submodule N of M can be written as N = IM
for some multiplication ideal I of R with zero annihilator such that I ⊆ θ(N).
This representation is unique.

Proof. θ(N) =
∑

m∈N [Rm : N ] ⊇
∑

m∈N [Rm : M ]. So,

θ(N)M ⊇
∑
m∈N

[Rm : M ]M =
∑
m∈N

Rm = N.

Since N is a faithful multiplication module, θ(N) is a multiplication ideal, by
Lemma 2.73(3). Therefore, by Lemma 2.74, θ(N)M is a multiplication module.
Since N is a submodule of θ(N)M , N = J(θ(N)M) = (Jθ(N))M for some ideal
J of R, i.e., N = IM for some ideal I of R with I ⊆ θ(N). To show that I is
a multiplication ideal, suppose that I ′ is an ideal of R such that I ′ ⊆ I. Then
I ′M ⊆ IM = N . As N is a multiplication module, there exists an ideal J ′ of R
such that

I ′M = J ′N = J ′(IM) = (J ′I)M (?)

Since M is a finitely generated multiplication module, θ(M) = R, by Lemma
2.77. So, I ′ and J ′I are contained in θ(M). By (?) and cancellation law (Lemma
2.78), I ′ = J ′I, and hence, I is a multiplication ideal. Uniqueness follows from
the cancellation law as θ(M) = R. 2

For a faithful R-module M , let MF.Sup(M) = {N |N is a faithful multiplication
submodule of M} and Iθ = {I | I is a faithful multiplication ideal of R and
I ⊆ θ(IM)}.

Corollary 5.9 Let M be a finitely generated faithful multiplication R-module.
Then there exists a bijection between MF.Sup(M) and Iθ.

Proof. Since M is a finitely generated faithful multiplication module, every faith-
ful multiplication submodule N can be written by a unique way as IM such that
I is a faithful multiplication ideal with I ⊆ θ(N), by Corollary 5.8. Let

f : MF.Sup(M)→ Iθ, N 7−→ I

where I is a multiplication ideal with zero annihilator and N = IM where I ⊆
θ(N). This map is a bijection for:

1. By Corollary 5.8, it is well-defined.
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2. f is a surjection: Given I ∈ Iθ. Then, by Lemma 2.74, IM is a faithful
multiplication module (as M is faithful multiplication module), and therefore
IM ∈ MF.Sup(M).

3. f is an injection: Given two ideals N and N ′ ∈ MF.Sup(M) such that f(N) =
f(N ′). Then N = IM and N ′ = I ′M for some faithful multiplication ideals I and
I ′ of R such that I ⊆ θ(N) and I ′ ⊆ θ(N ′), respectively. Since f(N) = f(N ′),
I = I ′. So N = IM = I ′M = N ′, and hence, f is an injection. 2

The ideal θ(M) of a (faithful) multiplication R-module M .

Proposition 5.10 Let M be a faithful multiplication R-module. Then for every
prime ideal P of R, either θ(M) ⊆ P or θ(M) +P = R. Moreover, if θ(M) * P
then R/Pθ(M) ∼= (R/P )× (R/θ(M)).

Proof. Suppose that θ(M) * P . Then there exists r ∈ θ(M) \ P . Since M is a
faithful multiplication R-module, θ(M) is multiplication ideal of R, by Corollary
2.73(1). Therefore, by Lemma 2.73(2) and Lemma 2.73(4),

R = θ(θ(M)) + [0 : r] = θ(M) + [0 : r].

As [0 : r]r = 0 ∈ P and r /∈ P , [0 : r] ⊆ P . Hence, θ(M)+P = R. The statement
R/Pθ(M) ∼= (R/P )× (R/θ(M)) follows from Lemma 2.17. 2

Proposition 5.11 Let M be a faithful multiplication R-module. Then θ(M) is
an essential ideal of R.

Proof. Let I be an ideal of R such that θ(M) ∩ I = 0. So, by Theorem 2.72,
0 = (θ(M) ∩ I)M = θ(M)M ∩ IM = M ∩ IM = IM . Therefore I = 0 (since M
is faithful), and hence, θ(M) is an essential ideal of R. 2

Let I be a multiplication ideal with zero annihilator in a ring R and M be a
faithful multiplication R-module. The next corollary provides a description of
the ideal θ(IM).

Corollary 5.12 Let M be a faithful multiplication R-module. If I is a multipli-
cation ideal of R with zero annihilator then θ(IM) = θ(I)θ(M) = θ(I) ∩ θ(M).
Furthermore, IM is finitely generated iff M and I are both finitely generated.
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Proof. Since M is a faithful multiplication R-module and I is a multiplication
ideal of R, IM is a faithful multiplication module, by Lemma 2.74. So, by Lemma
2.73(1),

θ(IM)IM = IM = θ(I)Iθ(M)M = θ(I)θ(M)(IM).

Since IM is a faithful multiplication module and θ(I)θ(M) ⊆ θ(IM), θ(I) ∩
θ(M) = θ(I)θ(M) = θ(IM), by Lemmas 2.80(2) and by Lemma 2.78. The
another equivalence follows from Lemma 2.77. 2

Proposition 5.13 Let M be a multiplication R-module. If N is a faithful multi-
plication R-submodule of M then θ(N) ⊆ θ(M). In particular, if M has a finitely
generated faithful multiplication submodule then M is finitely generated.

Proof. Since N is a multiplication module, N = θ(N)N , by Lemma 4.8. By
Lemma 2.73, N = θ(N)θ(M)N (since N is a submodule of a multiplication
module M). Therefore, by Lemma 2.78, θ(N) = θ(N)θ(M) (since N is a faithful
multiplication module). By Corollary 2.80 (since M is a faithful multiplication
module),

θ(N) = θ(M)θ(N) = θ(M) ∩ θ(N),

and hence, θ(N) ⊆ θ(M). In case N is finitely generated, θ(N) = R, by Lemma
2.77, and therefore θ(M) = R, i.e. M is finitely generated, by Lemma 2.77. 2

Further two cancellation laws.

In Theorem 5.14 and Theorem 5.16, we give two cancellation laws which rely on
the original cancellation law (Lemma 2.78) in their proofs.

Theorem 5.14 (The first companion cancellation law) Let M be a faithful mul-
tiplication module. If I is a faithful multiplication ideal of R and IN = IK where
N and K are submodules of M then Nθ(I) = Kθ(I). Moreover, if I is finitely
generated then N = K.

Proof. As M is a multiplication module and IN = IK, I[N : M ]M = I[K :
M ]M . Therefore, by Lemma 2.78,

I[N : M ]θ(M) = I[K : N ]θ(M)

(Since M is a faithful multiplication module). Again, by Lemma 2.78 (since I is
a faithful multiplication ideal),

[N : M ]θ(M)θ(I) = [K : M ]θ(M)θ(I).

So, Nθ(I) = Kθ(I). If I is finitely generated then θ(I) = R, by Lemma 2.77,
and hence, N = K. 2
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Corollary 5.15 Let R be a multiplication domain and M be a faithful multipli-
cation module. If N and K are R-submodules of M such that IN = IK for some
ideals I of R then N = K.

Proof. It follows from Theorem 5.14 (since every ideal of the ring R is finitely
generated faithful multiplication ideal, by Corollary 2.87). 2

Theorem 5.16 (The second companion cancellation law) Let M be a faithful
multiplication module and I be a faithful multiplication ideal of R where IM
is finitely generated. If IN = IK where N and K are submodules of M then
N = K.

Proof. As M is a multiplication module and IN = IK, I[N : M ]M = I[K :
M ]M . So, by Lemma 2.78,

I[N : M ]θ(M) = I[K : M ]θ(M)

(Since M is a faithful multiplication module). Again, by Lemma 2.78 (As I is a
faithful multiplication ideal),

[N : M ]θ(M)θ(I) = [K : M ]θ(M)θ(I).

By Corollary 5.12, [N : M ]θ(IM) = [K : M ]θ(IM), and therefore [N : M ] =
[K : M ], by Lemmas 2.74 and 2.77. Hence, N = K (since M is a multiplication
module). 2

Corollary 5.17 Let M be a faithful multiplication R-module and I be a finitely
generated multiplication ideal with zero annihilator such that I ⊆ θ(M). If IN =
IK where N and K are submodules of M then N = K.

Proof. It follows from Theorem 5.16 and Lemma 2.76. 2

Minimal prime submodules of a nonzero faithful multiplication module.

We recall that a proper submodule N of an R-module M is a minimal prime
submodule if it is a prime submodule and if there is a prime submodule N ′ such
that N ′ ⊆ N then N ′ = N .

Proposition 5.18 Let N be a proper submodule of a nonzero faithful multipli-
cation R-module. Then N is a minimal prime submodule iff N = PM for some
minimal prime ideal P of R such that θ(M) * P .
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Proof. (⇒) Let N be a minimal prime submodule of M . Then, by Corollary
2.97, N = PM for some prime ideal P of R such that PM 6= M . Clearly,
θ(M) * P . To prove P is a minimal prime ideal of R, suppose that there is
P ′ ∈ Spec(R) such that P ′ ⊆ P . It follows that P ′M ⊆ PM = N and P ′M is a
prime submodule of M , by Corollary 2.97. So, by minimality of N , P ′M = PM .
Therefore P ′θ(M) = Pθ(M), by Lemma 2.78. Since θ(M) * P , by Proposition
5.10, P + θ(M) = R. It follows that

P ′ = P ′P + P ′θ(M) = P ′P + Pθ(M) = P (P ′ + θ(M)).

Since P ′ is a prime ideal of R, either P ⊆ P ′ or P ′+θ(M) ⊆ P ′. If P ′+θ(M) ⊆ P ′

then θ(M) ⊆ P ′, a contradiction. Therefore P ⊆ P ′, i.e., P ′ = P , and hence, P
is a minimal prime of R.

(⇐) Suppose that P is a minimal prime ideal of R such that θ(M) * P . Then,
by Corollary 2.97, PM is a prime submodule of M . To prove PM is a minimal
prime submodule, suppose that N ′ = P ′M ⊆ PM where P ′ is a prime ideal with
P ′M 6= M . So, by Corollary 2.82, P ′θ(M) ⊆ Pθ(M) ⊆ P . Since P is a prime
ideal and θ(M) * P , P ′ ⊆ P , i.e., P ′ = P (since P is a minimal prime ideal),
and hence, PM is a minimal prime submodule of M . 2

The next proposition is a multiplication module’s version of Lemma 2.10.

Proposition 5.19 Let M be a faithful multiplication R-module. If N1, N2, . . . , Nn

are submodules of M and K = PM is a prime submodule of M where P is a

prime ideal of R such that
n⋂
i=1

Ni ⊆ K then Ni ⊆ K for some 1 ≤ i ≤ n.

Proof. Since M is a multiplication module, Ni = IiM for some ideal Ii of R.

By Theorem 2.72, K = PM ⊇
n⋂
i=1

Ni =
n⋂
i=1

(IiM) = (
n⋂
i=1

Ii)M . Therefore, by

Corollary 2.82,

(
n⋂
i=1

Ii)θ(M) ⊆ Pθ(M) (?).

Notice that, by Theorem 2.72,
n⋂
i=1

(Ii
⋂

θ(M))M = (
n⋂
i=1

Ii)θ(M)M =
n⋂
i=1

(IiM)

implies that
n⋂
i=1

(Ii
⋂

θ(M)) = (
n⋂
i=1

Ii)θ(M), by Lemma 2.78. So, by ?,

n⋂
i=1

(Ii
⋂

θ(M)) ⊆ Pθ(M) ⊆ P.
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Therefore, by Lemma 2.10, Ii
⋂
θ(M) ⊆ P for some 1 ≤ i ≤ n. Hence, by

Theorem 2.72,

(Ii
⋂

θ(M))M = IiM = Ni ⊆ PM = K,

as required. 2

Corollary 5.20 Let M be a faithful multiplication R-module with finitely many
maximal submodules. If rad(M) ⊆ K for some prime submodule K of M then K
is a maximal submodule. In particular, if rad(M) = 0 then every prime submodule
is a maximal submodule.

Proof. It follows from Proposition 5.19. 2

Let N and K be submodules of an R-module M . It is not always that [N : M ] =
[N : K][K : M ] is true (Always [K : N ][N : M ] ⊆ [K : M ]).

Corollary 5.21 Let N be a multiplication submodule of a faithful multiplication
R-module M . If K is a submodule of N such that [K : M ] ⊆ θ(M) then [K :
M ] = [K : N ][N : M ]. In particular, if K is finitely generated submodule N then
the result holds.

Proof. Since M and N are multiplication modules and K is a submodule of N ,

[K : M ]M = K = [K : N ]N = [K : N ][N : M ]M,

and therefore Lemma 2.78,

[K : M ]θ(M) = [K : N ][N : M ]θ(M).

Since [K : M ] ⊆ θ(M), by Corollary 2.80,

[K : M ]θ(M) = [K : M ].

Since [K : N ][N : M ] ⊆ [K : M ],

[K : N ][N : M ]θ(M) = [K : N ][N : M ],

and hence, [K : M ] = [K : N ][N : M ].

If K = [K : M ]M is a finitely generated then, by Lemma 2.75, [K : M ] ⊆ θ(M),
and hence, the result holds. 2
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The ideal θ(M) where M is a multiplication module and has a direct
sum decomposition.

The next proposition gives an explicit description of the ideal θ(M) where M is
a finite direct sum of its submodules and it is a faithful multiplication module.

Proposition 5.22 Let M be a faithful multiplication R-module. If M = N
⊕

K
for some R-submodules N and K of R. Then

1. θ(M) = [N : M ]θ(M)
⊕

[K : M ]θ(M). Moreover, the ideals [N : M ]θ(M)
and [K : M ]θ(M) are multiplication ideals.

2. If I ⊆ θ(M) then I = ([N : M ] ∩ I)
⊕

([K : M ] ∩ I)

3. θ(M) =
∑

x∈N [Rx : M ]
⊕∑

y∈K [Ry : M ].

4. [N : M ]θ(M) is an idempotent ideal of R.

Proof. 1. Since M is a multiplication module,

M = N
⊕

K = [N : M ]M
⊕

[K : M ]M = ([N : M ]
⊕

[K : M ])M.

By Lemma 2.78,

θ(M) = ([N : M ]
⊕

[K : M ])θ(M) = [N : M ]θ(M)
⊕

[K : M ]θ(M).

As M is a faithful multiplication module, θ(M) is a multiplication ideal, by
Lemma 2.73(3), and therefore, by Theorem 1.14, the statement 1 holds.

2. As M is a faithful multiplication module, θ(M) is a multiplication ideal, by
Lemma 2.73(3). So, by Theorem 1.11 and by Lemma 2.80(2),

I = (I ∩ [N : M ]θ(M))
⊕

(I ∩ [K : M ]θ(M)) = (I ∩ [N : M ] ∩ θ(M))
⊕

(I ∩ [K :
M ] ∩ θ(M)) = ([N : M ] ∩ I)

⊕
([K : M ] ∩ I).

3. Since M = N
⊕

K is a multiplication module, N and K are multiplication
modules, by Theorem 1.14. Therefore, by Lemma 4.8 and by Corollary 5.21,

M = N
⊕

K = θ(N)N
⊕

θ(K)K

=
∑
x∈N

[Rx : N ]N
⊕∑

y∈K

[Ry : K]K

=
∑
x∈N

[Rx : N ][N : M ]M
⊕∑

y∈K

[Ry : K][K : M ]M
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=
∑
x∈N

[Rx : M ]M
⊕∑

y∈K

[Ry : M ]M

= (
∑
x∈N

[Rx : M ]
⊕∑

y∈K

[Ry : M ])M.

Therefore, by Lemma 2.78, θ(M) =
∑

x∈N [Rx : M ]
⊕∑

y∈K [Ry : M ].

4. Since [N : M ][K : M ]M ⊆ N ∩ K = 0 and M is a faithful module, then
[N : M ][K : M ] = 0. By Lemma 2.73(3) and statement 1,

[N : M ]θ(M) = [N : M ]θ2(M)

= [N : M ]θ(M)([N : M ]θ(M)
⊕

[K : M ]θ(M))

= [N : M ]2θ2(M)

= ([N : M ]θ(M))2,

and therefore [N : M ]θ(M) is an idempotent ideal. 2

P. Smith in ([42, Corollary 1 of Theorem 10]) proved that If M is a finitely
generated R-module such that annR(M) = Re for some idempotent element e of
R then N is a multiplication submodule of M iff [N : M ] is a multiplication ideal
of R. The next corollary is a generalization of such corollary without need the
condition of finitely generated.

Corollary 5.23 Let M be a multiplication R-module such that annR(M) = Re
for some idempotent element e of R. Then N is a multiplication submodule of M
iff [N : M ]θ(M) is a multiplication ideal of R.

Proof. Suppose that N is a multiplication R-submodule of M . Let S = Re and
T = R(1 − e). Then R = S

⊕
T , and therefore M is faithful multiplication

T ∼= R/S-module. N is a multiplication T -module for if K is a T -submodule of
N then K is an R-submodule of N , and therefore (since N is a multiplication
R-module),

K = [K : N ]N

= [K : N ][N : M ]M

= ([N : M ]S
⊕

[N : M ]T )[K : N ]M

= [K : N ][N : M ]TM = ([K : N ]T )N.
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So, by Proposition 2.84, [N :T M ]θ(MT ) is a multiplication ideal of T . Now,

[N : M ]θ(M) = ([N : M ]S
⊕

[N : M ]T )θ(M)

= (S
⊕

[N : M ]T )θ(M)

= Sθ(M)
⊕

[N : M ]T 2θ(M)

= Sθ(M)
⊕

[N :T M ]θ(MT ),

and hence, [N : M ]θ(M) is a multiplication ideal, by Theorem 2.71. The converse
is obvious, by Lemma 2.74. 2

5.2 Product of two submodules of a faithful mul-

tiplication module

Let N and K be submodules of an R-module M . Suppose that N = IM and
K = JM for some ideals I and J of R. Ameri in [6], defined the product of N
and K, NK, or, N.K, as follows:

NK := IJM.

If M is a multiplication module M then every submodule N of M is equal to IM
for some ideal I of R. This prsentation of N is not always unique. Ameri proved in
([6, Theorem 3.4]), that the presentation of the submodule NK in a multiplication
module M is independent, i.e., if N = IM = I ′M and K = JM = J ′M where
I ′ and J ′ are ideals of R then NK = IJM = I ′J ′M . Aziz and Jayaram in
[13], provided some applications of the product of submodules of a multiplication
module.

Lemma 2.80 shows that every submodule N of M has a unique representation
INM where IN is an ideal of θ(M). Corollary 2.85 shows that there is a bijection
between the set of all submodules of M , Sub(M), and the set of all ideal of R
that are contained in θ(M), I(θ(M)). This bijection respects inclusion (Corollary
2.82), i.e., if N1, N2 ∈ Sub(M) such that N1 ⊆ N2 then IN1 ⊆ IN2 where IN1

and IN2 are the correspondents ideals of N1 and N2, respectively in I(θ(M)). In
that situation, the ideal INIK in I(θ(M)) corresponds the submodule NK, i.e.,
N.K := INIKM .

In this section, we apply such operation to a faithful multiplication R-module.
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The next proposition gives some properties of the product of submodules of a
faithful multiplication module.

Proposition 5.24 Let M be a faithful multiplication R-module. If N , K and L
are submodules of M then

1. NK is a submodule of M such that INK = INIK.

2. NM = N .

3. Nn ⊆ N where n ∈ N.

4. NK ⊆ N ∩K.

5. N(K + L) = NK +NL.

6. If IN + IK = θ(M) then NK = N ∩K.

7. For every p ∈ Spec(R), (NK)p = NpKp.

8. For every p ∈ Spec(R) and n ∈ Z, (Nn)p = (Np)
n.

Proof. 1. Since NK = INIKM , NK is a submodule of M , and therefore,
by Lemma 3.33, NK = INKM . Hence, By cancellation law (Lemma 2.78),
INK = INIK (since INKM = INIKM).

2. Clearly, IM = θ(M). So, NM = INIMM = INθ(M)M = INM = N .

3. Nn =

n times︷ ︸︸ ︷
N · · ·N =

n times︷ ︸︸ ︷
IN · · · IN M = InNM ⊆ INM = N .

4. NK = INIKM ⊆ (IN ∩ IK)M
Theorem 2.72

= INM ∩ IKM = N ∩K.

5. N(K+L) = (INM)(IKM + ILM) = (INM)((IK + IL)M = (IN(IK + IL))M =
(INIK + INIL)M = NK +NL.

6. By Lemma 2.73, N ∩K = θ(M)(N ∩K) = (IN + IK)(INM ∩ IKM)
Theorem 2.72

=
(IN + IK)(IN ∩ IK)M = ((IN ∩ IK)IN + (IN ∩ IK)IK)M ⊆ (IKIN + INIK)M =
INIKM = NK. So N ∩K ⊆ NK. Hence, by statement 4, the result holds.

7. (NK)p = (INIKM)p
Lemma 2.37

= INpIKpMp = NpKp (since Mp is a faithful
multiplication Rp-module, by Lemma 2.69).

8. It follows from statement 7 and statement 3. 2

Definition 5.25 Let M be a faithful multiplication R-module. A submodule N
of M is called an invertible submodule if there exists a submodule N? of M
such that NN? = M .
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Corollary 5.26 Let M be a faithful multiplication R-module. A submodule N of
M is invertible iff there exists a submodule N? of M such that ININ? = θ(M).

Proof. Suppose that N is an invertible submodule. Then there exists a submodule
N? of M such that NN? = M which implies that ININ?M = M . Therefore, by
Lemma 2.78 and Lemma 2.80(2),

θ(M) = ININ?θ(M) = ININ? ∩ θ(M),

i.e., θ(M) ⊆ ININ? . Conversely, suppose that θ(M) ⊆ ININ? . Then, by Corollary
2.80, θ(M) = ININ? ∩ θ(M) = ININ?θ(M), and therefore M = ININ?M = NN?,
i.e., N is invertible.

Proof of Theorem 1.23. As IN+IK = θ(M), by Lemma 5.24 (6), NK = N∩K.
Let f : M/NK −→ (M/N)× (M/K), x+NK 7→ (x+N, x+K).

1. f is well-defined: suppose that x + NK = y + NK where x and y ∈ M .
Then x − y ∈ NK = N ∩ K, i.e., x − y ∈ N and x − y ∈ K. Therefore
(x+N, x+K) = (y +N, y +K).

2. f is homomorphism: for every x+NK and y +NK ∈M/NK,

f((x+NK) + (y +NK)) = f(x+ y +NK)

= (x+ y +N, x+ y +K)

= (x+N, x+K) + (y +N, y +K)

= f(x+NK) + f(y +NK)

. Also for every r ∈ R,

f(r(x+NK)) = f(rx+NK)

= (rx+N, rx+K)

= r(x+N, x+K)

= rf(x+NK).

3. f is injection: given x+NK ∈ ker(f). Then f(x+KN) = (x+N, x+K) =
(N,K). So, x ∈ K ∩N = KN , i.e., x+KN = KN , and therefore ker(f) = 0.

4. f is surjection: Since IN + IK = θ(M), N + K = M , by Lemma 2.73(1). So,
for every x ∈ M , x = n + k where n ∈ N and k ∈ K. So, every element in
(M/N) × (M/K) is written as (aK + N, aN + K) where aK ∈ K and aN ∈ N .
Now, f(aK + aN +NK) = (aK + aN +N, aN + aK +K) = (aK +N, aN +K). 2
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Lemma 5.27 Let M be a finitely generated faithful multiplication R-module and
N be a submodule of M where [N : M ] is a finitely generated ideal of R. If
NK = N for some submodule K of M such that K ⊆ rad(M) then N = 0.

Proof. As M is a finitely generated faithful multiplication module, θ(M) = R, by
Lemma 2.77, and therefore IN = [N : M ]. By assumption, INIKM = NK = N =
INM . Therefore, by Lemma 2.78, INIK = IN (since M is a finitely generated
faithful multiplication R-module). By Theorem 2.93, rad(M) = J(R)M . So,
K = IKM ⊆ rad(M) = J(R)M . Therefore IK ⊆ J(R), by Corollary 2.82. Now,
I have INIK = IN where IN is finitely generated. So, by Nakayama’s Lemma,
IN = 0, and hence, N = 0, as required. 2

Proof of Proposition 1.24. By Lemma 2.92, M is cyclic. So, M ∼= R (since
M is faithful), and therefore R is Artinian which implies that R is Noetherian.
Therefore [Nn : M ] is finitely generated. By lemma 5.24, we have

N ⊇ N2 ⊇ · · · ⊇ Nk ⊇ · · ·

Since M is artinian, there exists n ∈ N such that NNn = Nn+1 = Nn. Therefore
by Lemma 5.27, Nn = 0. 2

Proposition 5.28 Let M be a faithful multiplication R-module. Then

1. If N and K are multiplication submodules of M then NK is a multiplication
submodule of M .

2. If N and K are faithful multiplication submodules of M then θ(NK) =
θ(IN)θ(IK)θ(M)

Proof. 1. Since N and K are multiplication submodules of M , by Proposition
2.84(3), IN and IK are multiplication ideals, and therefore, by Lemma 2.74, INIK
is a multiplication ideal of R. Again, by Lemma 2.74, INIKM = NK is a
multiplication submodule of M .

2. By Corollary 4.52, IN and Ik are faithful multiplication ideals. So, by Lemma
2.74, INIK is a faithful multiplication ideal. So, by Corollary 5.12 and Lemma
2.77,

θ(NK) = θ(INIKM) = θ(INIK)θ(M) = θ(INIK)θ(M) = θ(IN)θ(IK)θ(M).

2

Divisors of an R-module.
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Definition 5.29 Let M be an R-module and N be a submodule of M . We say
that N divides M , N |M , if N = IM for some ideal I of R. In this case, N is
called a divisor of M .

If M is a multiplication module then all submodules of M are divisors. If K|N
and K|N ′ then K is called a common divisor of N and N ′.

Lemma 5.30 Let M be an R-module. Then

1. 0|N and N |N .

2. M is a multiplication module iff every submodule of M is divisor. In ad-
dition, if M is fully-multiplication module and N,K are submodules of M
such that N ⊆ K then N is a divisor of K.

3. If N |K and K|N where K is a finitely generated faithful multiplication
module then K = IN where I is an invertible ideal of R.

4. If N |K then JN |K for all ideals J of R.

5. If N |K and N |L then N |(IK + JL) where I and J are ideals of R.

6. If L|K and N |K where K is a faithful multiplication module then (L∩N)|K.

7. N |K iff N = [N : K]K.

Proof. The statements 1, 2, 4 and 5 are trivial.

3. Since N |K and K|N , N = IK and K = JN where I and J are ideals of
R. So, K = JN = JIK, and therefore, by Lemma 2.78, R = JI, i.e., I is an
invertible ideal of R.

6. Since L|K and N |K, L = IK and N = JK where I and J are ideals of R. By
Theorem 2.72, (since K is a faithful multiplication module), L∩N = IK∩JK =
(I ∩ J)K, i.e., (L ∩N)|K.

7. Let N |K. Then N = IK for some ideal I. Now, N = IK ⊆ [N : K]K ⊆ N ,
i.e., N = [N : K]K. The converse is trivial. 2

Definition 5.31 Let M be an R-module, and let N and K be submodules of
M . Then the greatest common divisor submodule, gcd (N,K), is a submodule L
satisfies the following:

1. L|K and L|N , and
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2. if L′|K and L′|N where L′ is a submodule of L then L′|L.

If N and K are multiplication submodules of an R-module M then gcd(N,K) =
N ∩K.

Proposition 5.32 Let N and K be submodules of an R-module M . Then gcd(N,M)

is exists. Moreover, it is unique where gcd(N,M) =
∑

K|N andK|M

K.

Proof. It follows from Definition 5.31. 2

5.3 Embedding of a multiplication R-module

into the ring R

We recall that there are a very few examples of a faithful multiplication module
that cannot be embedded into their rings. In this section, we deduce some cases
of embedding of a multiplication module into its ring.

Embedding of a projective multiplication R-module into the ring R.

Proof of Theorem 1.22. We have the following commutative diagram:

M

R C 0
��

g

��

aM

//f //

where f is an epimorphism (since C is a cyclicR-module), aM is theR-homomorphism
aM : M →M , m 7→ am, and g is an R-homomorphism such that aM = fg. Since
a ∈ CR and M is a projective R-module, the map aM is a monomorphism . Hence,
so is the map g. 2

The next corollary shows that the cyclic module C in Theorem 1.22 is unique (up
to isomorphism).
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Corollary 5.33 The cyclic module C in Theorem 1.22 is isomorphic to the cyclic
R-module R/annR(M).

Proof. In the proof of Theorem 1.22, we have shown that the map aM : M →M ,
m 7→ am, is a monomorphism. Then aM ⊆ C ⊆ M , and so, annR(M) =
annR(aM) ⊇ annR(C) ⊇ annR(M), i.e., annR(C) = annR(M). 2

Corollary 5.34 Let R be a domain. Then every projective multiplication R-
module is isomorphic to an ideal of R.

Proof. Let M be a projective multiplication module. We may assume that M 6= 0
(otherwise, the statement is obvious). Let C be a nonzero cyclic submodule of M .
Then C = IM for a nonzero ideal I of R (since M is a multiplication R-module).
Choose a nonzero element a of I. Then a ∈ CR and aM ⊆ IM = C. By Theorem
1.22, M is isomorphic to an ideal of R. 2

The next corollary is a description of projective multiplication module over a
commutative Dedekind domain.

Corollary 5.35 For a commutative Dedekind domain R, all projective multipli-
cation modules are precisely ideals of R.

Proof. Suppose that R is Dedekind domain. Then, by Lemma 2.44, every ideal
of a Dedekind domain R is projective, and, by Lemma 2.66(3), every ideal of R is
multiplication. Conversely, every projective multiplication module is isomorphic
to an ideal of R, by Corollary 5.34. 2

Multiplication modules over a principal ideal domain.

For an R-module M , we recall that T(M) is the set of elements in M which
can be annihilated by a regular element of R. If T(M) = 0 then M is called a
torsion-free module.

The next lemma is used in the proof of Proposition 5.37.

Lemma 5.36 ([25, Theorem 3.3]) Let R be a principal ideal domain. Then every
finitely generated R-module is isomorphic to a direct sum of a free module F and
T (M) where T (M) = {m ∈M | rm = 0 for some regular element r ∈ R}.
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Proposition 5.37 Let R be a principal ideal domain and M be a multiplication
R-module. Then M ∼= R.

Proof. Since θ(M) is a principal ideal, By Lemma 4.9, M is a finitely generated .
So, by Lemma 5.36, M ∼= F

⊕
T (M) where F is a free module. Therefore F is a

multiplication module, by Theorem 1.11. So, by Corollary 4.16, F is isomorphic
to R. Since T(M) is a submodule of M and M is a multiplication module,
T(M) = IM for some ideal I of R. So, M ∼= R

⊕
IM . Hence, by Proposition

1.7, IM = 0 (Since annR(R) = 0). 2

Embedding a torsion-free multiplication R-module into R.

Proposition 5.38 Let M be a torsion-free multiplication R-module. If there
exists 0 6= m ∈ M such that m = cx where c is a regular element of R and
x ∈ M then M can be embedded into R. In particular, if R is a domain then
every torsion-free multiplication R-module isomorphic to an ideal of R.

Proof. Since M is a multiplication module, Rm = IM for some ideal I of R. It
follows that cx ∈ IM , i.e., c ∈ I. So, for every m′ ∈M , cm′ = rm for some r ∈ R.
Let f : M → R, m′ 7→ r′c where r′m = cm′. If rc = r′c then r = r′ (since c is
a regular element), and therefore f is well-defined. Clearly, f is homomorphism,
and therefore M/ker(f) ∼= f(M) ⊆ R. Let m? ∈ ker(f). Then 0 = f(m?) = r?c
for some r? ∈ R where cm? = r?m. Since c is a regular, r? = 0, i.e., cm? = 0.
So, m? = 0 (since M is free-torsion), and therefore ker(f) = 0. Hence, M is
isomorphic to an ideal of R. 2

5.4 Multiplication modules over some rings

In this section, we study multiplication modules over some specific rings: Artinian
rings, Noetherian rings, domains, and von Neuman regular rings.

Corollary 5.39 Let M be an Artinian multiplication R-module. Then

1. If M is faithful then R is an Artinian ring.

2. M is a Noetherian R-module.
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Proof. 1. Since M is an Artinian multiplication module, M is cyclic, by Theorem
2.92. So, M ∼= R/ann(M). Since M is faithful, R is an Artinian ring.

2. Since M is an Artinian multiplication module, M is cyclic, by Theorem 2.92.
So, M ∼= R/annR(M). It follows that R/annR(M) is Artinian, and therefore
R/ann(M) is Noetherian. Hence, by Lemma 2.34, M is a Noetherian module. 2

Corollary 5.40 Let R be a ring. If the ring R has a faithful multiplication
Noetherian module M then R is Noetherian.

Proof. Let I1 ⊆ I2 ⊆ · · · ⊆ Ik ⊆ · · · be an ascending chain of ideals of R.
Then I1M ⊆ I2M ⊆ · · · ⊆ IkM ⊆ · · · is an ascending chain of submodules
of M . Since M is Noetherian, IiM is finitely generated, and by Lemma 2.75,
Ii ⊆ θ(M) for all i ∈ N . Also, since M is Noetherian, there exists n ∈ N such
that InM = In+1 = · · · . By cancellation law, Lemma 2.78, In = In+1 = · · · , and
hence, R is Noetherian. 2

For an R-module M , recall that Z(M) = {r ∈ R | rm = 0 for some 0 6= m ∈M}.

Proposition 5.41 Let R be a Noetherian domain and M be a nonzero faithful
multiplication R-module. Then Z(M) = 0.

Proof. Suppose that a ∈ Z(M), and I = Ra. Since M is multiplication module
over a Noetherian ring, M is finitely generated, by Lemma 2.77. So, by Lemma
2.32, Im = 0 for some 0 6= m ∈ M . Now, As M is a multiplication module,
Rm = JM for some ideal J of R. So, 0 = Im = IJM which implies that IJ = 0
(since M is faithful). Therefore either J = 0 or I = 0 (since 0 is a prime ideal).
If J = 0 then m = 0 (a contradiction). Hence, I = Ra = 0, i.e., Z(M) = 0. 2

Proposition 5.42 Let R be a local Artinian ring with a maximal ideal m. If m
is multiplication ideal then R is a multiplication ring.

Proof. Since R is an Artinian and m is a multiplication ideal, by Lemma 2.92, m
is a principal ideal. Therefore, by Lemma 2.29, every ideal of R is principal, i.e.,
every ideal of R is multiplication ideal. Hence, R is a multiplication ring. 2

Corollary 5.43 Let R be a Noetherian ring. Then every faithful multiplication
ideal is an invertible ideal.
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Proof. It follows from Proposition 2.33 and Lemma 2.88.2

The next theorem is a criterion for a commutative ring to be a domain.

Theorem 5.44 Let R be a commutative ring. Then R is a domain iff every
multiplication ideal is invertible. Moreover, if R is a multiplication domain iff R
is a Dedekind domain.

Proof. (⇒) It follows from Lemma 2.88.

(⇐) Let 0 6= a ∈ R such that ab = 0 for some b ∈ R. Since Ra is a multiplication
ideal, By assumption, Ra is an invertible ideal. Therefore Ra contains a nonzero
divisor, by Lemma 2.88, say x = ra for some r ∈ R. Now,

xb = (ra)b = r(ab) = 0,

and therefore, b must be zero. Hence a is a non-zero-divisor, i.e., R is a domain.
2

Primary submodules of a multiplication module.

Elbast and Smith in [21] investigated prime submodules of a multiplication R-
module. By the same manner, we study primary submodules of a multiplication
module over commutative rings.

Definition 5.45 A proper submodule N of a nonzero R-module M is called a
primary submodule provided for all r ∈ R and x ∈ M if rx ∈ N such that
x /∈ N then there exists n ∈ N such that r ∈

√
[N : M ].

Clearly, every prime submodule of M is primary, by Lemma 2.95.

Lemma 5.46 Let N be a proper submodule of a nonzero multiplication R-module
M . Then N is a primary submodule iff [N : M ] is a primary ideal of R.

Proof. Suppose that N is a primary submodule of M . Let ab ∈ [N : M ] such that
a /∈ [N : M ] for some a, b ∈ R. Then there exists m ∈M such that am /∈ N , but
b(am) = (ab)m ∈ N . As N is primary, there exist n ∈ N such that bn ∈ [N : M ],
and therefore [N : M ] is a primary ideal of R.
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Conversely, suppose that [N : M ] is a primary ideal of R. Let rx ∈ N for some
r ∈ R and x ∈ M \ N . As M is a multiplication module, [Rx : M ] * [N : M ],
but, [Rx : M ]Rr ⊆ [N : M ]. Since [N : M ] is a primary submodule and
[Rx : M ] * [N : M ], there exists n ∈ N such that rn ∈ [N : M ], and hence, N is
a primary submodule. 2

Theorem 5.47 Let N be a proper submodule of a multiplication R-module M .
Then N is a primary submodule iff N = IM for some primary ideal I of R with
annR(M) ⊆ I and IM 6= M .

Proof. The only part is obvious, by lemma 5.46, Take I = [N : M ]. Conversely,
suppose that N = IM for some primary ideal I of R with annR(M) ⊆ I and
IM 6= M . Let ax ∈ N where a ∈ R and x ∈ M \ N . The goal is to prove that
an ∈ [N : M ] for some n ∈ N. Since M is a multiplication module, [Rx : M ] * I.
We have Ra[Rx : M ]M ⊆ IM = N . By Corollary 2.82 and Lemma 2.80(2),
Ra[Rx : M ] = Ra[Rx : M ]θ(M) ⊆ Iθ(M) ⊆ I. Since I is a primary ideal and
[Rx : M ] * I, an ∈ I ⊆ [IM : M ] = [N : M ], as required. 2

We recall that a ring R has a primary decomposition property if every proper ideal
of R is a finite intersection of primary ideals of R.

Let R be a ring. If R has a primary decomposition property then, by Theorem
5.47 and by Theorem 2.72, every submodule of a faithful multiplication R-module
is a finite intersection of primary submodules of M , i.e., M has a primary decom-
position property, too.

Corollary 5.48 Let R be a ring and M be a finitely generated faithful multi-
plication R-module. If M has a primary decomposition property then R has the
same property.

Proof. Let I be an ideal of R. Since M is a multiplication module and IM is a
submodule of M , IM has a primay decomposition, i.e.,

IM =
n⋂
i=1

Ni

where Ni is a primary submodule of M for all 1 ≤ i ≤ n ∈ N. By Theorem 5.47,
Ni = QiM ifor some primary ideal Qi of R. So, by Theorem 2.72,

IM =
n⋂
i=1

QiM = (
n⋂
i=1

Qi)M.



CHAPTER 5. MULTIPLICATION MODULES OVER
COMMUTATIVE RINGS 99

Therefore, by Lemma 2.78, I =
⋂n
i=1Qi (Since θ(M) = R, by Lemma 2.77), i.e.,

I has a primary decomposition. 2

Remark: For an R-module M , let I?(R) be the set of all ideals I such that
IM 6= M . If M be a faithful multiplication R-module then, by Corollary 2.97,
there a bijection between prime submodules of M and the prime ideals in I?(R).
Also, by Theorem 5.47, there is a bijection between the primary submodule of M
and the primary ideals of I?(R). Notice that, by Theorem 2.86, if M is finitely
generated then by I?(R) = I(R)\{R}. In this case, we can refer to an associated
prime submodule PM of a primary submodule QM such that P is an associated
prime ideal of an primary ideal Q where P and Q ∈ I?(R). In some sense, if
K = QM is a primary submodule of M then the associated prime submodule of
K is

√
K =

√
QM =

√
QM , by Theorem 2.72. 2

The next result discusses multiplication modules over a von Neumann regular
ring.

Proposition 5.49 Let R be a von Neumann regular ring and M be a multipli-
cation R-module. Then

1. M is a fully-multiplication module.

2. If M is faithful then for every x ∈ M , M = Rx
⊕

[0 : x]M. In particular,
if M contains an element with zero annihilator then M is cyclic.

Proof. 1. Let N be a submodule of M . Then N = IM for some ideal I of R.
Since R is a von Neumann regular ring, I is an idempotent ideal, and so, by
Lemma 4.44, I is a multiplication ideal. Therefore, by Lemma 2.74, IM = N is
a multiplication submodule, i.e., M is a fully multiplication module.

2. Since M is a multiplication R-module, Rx = IM for some ideal I of R.
As I2 = I, Rx = IM = I2M = I(IM) = Ix. Therefore, by Lemma 2.18,
I + [0 : x] = R. Let a ∈ I

⋂
[0 : x]. Then aM ⊆ Rx and there exists b ∈ R such

that a = ba2. So,
aM = ba2M ⊆ ba(rx) = 0.

Hence, a = 0 (since M is faithful), i.e., R = I
⊕

[0 : x] which implies that
M = IM

⊕
[0 : x]M = Rx

⊕
[0 : x]M . 2
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