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Abstract

In this thesis, I present a series of mathematical models for describing

the infection dynamics of two lethal intracellular pathogens, namely

Francisella tularensis and Ebola virus. Through the construction of

both stochastic and deterministic models, a multi-disciplinary ap-

proach is used to account for the key processes that dictate disease

progression. Each model describes the dynamics of a population of

host cells, with the analysis of interactions between individual cells

and single bacteria or virus particles allowing for greater detail to be

included. Throughout this thesis, the theory of birth-and-death pro-

cesses, matrix analytic methods and numerical simulation algorithms

are used to study the stochastic processes. In addition to these tech-

niques, a Bayesian approach to statistical inference is applied in order

to parametrise each of the models with relevant infection data.
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Chapter 1

Introduction

1.1 Biological introduction

The first lines of defence against pathogens are physical barriers such as the

skin and mucosa. Following the entry of a pathogen into the body, the second

line of defence is provided by the innate immune response (Sompayrac (2008)).

Although the innate immune response is a network of different cell types and

proteins that depend on each other to quickly and effectively contain infection,

the single most important cell is the macrophage (Murray & Wynn (2011)).

Present in tissues throughout the body, macrophages detect foreign bodies and

take them up into phagosomes through a process known as phagocytosis. Once

internalised, these phagosomes fuse with lysosomes that contain chemicals capable

of destroying the pathogen contained within (Underhill & Goodridge (2012)).

In addition to actively killing invading pathogens, macrophages also produce

cytokines, proteins that facilitate communication between cells of the immune

system. It is these signals that recruit cells such as neutrophils to sites of infection

(Murphy & Weaver (2016)). Neutrophils are the most abundant leukocyte in

the body and are short-lived, surviving for around five days after they leave

the bone marrow. Similar to macrophages, neutrophils phagocytose pathogens,

exposing them to lethal chemicals. However, as neutrophils often release biocidal

chemicals extracellularly, there is always damage to host tissues through this

killing (Bardoel et al. (2014)). For this reason it is important that the turnover
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1.1 Biological introduction

of neutrophils is controlled, otherwise neutrophils with a prolonged lifespan adopt

a pro-inflammatory phenotype and cause further damage (Kolaczkowska & Kubes

(2013)). A second role of macrophages is in presenting peptide molecules in order

to initiate an adaptive immune response. Whilst the innate immune response acts

immediately and is sometimes capable of resolving infection, in some cases the

infection can only be contained and an adaptive immune response is required to

clear the pathogen (Trinchieri (2003)). Although adaptive immune responses

often take days to set in, the dependency on innate immune cells to present

antigen results in a response that is specific to the invading pathogen (Hoebe

et al. (2004)). Furthermore, adaptive immune responses have the advantage that

they can also provide immunity to secondary infections.

In the chapters that follow, two specific pathogens are considered, the bac-

terium Francisella tularensis and the Ebola virus. An overview of each pathogen

is provided in the following sections.

1.1.1 Francisella tularensis

Francisella tularensis is a gram-negative, facultative bacteria and the causative

agent of tularemia (Oyston et al. (2008)). Of the four subspecies, F. tularensis

subspecies tularensis is the most lethal, and the SCHU S4 strain of this sub-

species is considered in Chapters 3 and 4. F. tularensis is currently listed as a

category A bioterrorism agent by the Centers for Disease Control and Prevention

(CDC), indicating that it can be easily disseminated and has the potential to

have a major impact on public health (Center for Preparedness and Response

(2017)). Previously, the concept of weaponising F. tularensis involved dispersing

the bacterium as an aerosol that could be used to infect a population over a large

area (Christopher et al. (1997)). For this reason, it is particularly important

to study respiratory tularemia, with this route of infection also resulting in the

highest case fatality rate of up to 30% when left untreated. The case fatality rate

is, however, below 2% following antibiotic treatment. The main reason for F. tu-

larensis being classified as a category A bioterrorism agent is due to the striking

feature that the initial dose required for a 50% probability of infection, known
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Figure 1.1: Intracellular life cycle of a F. tularensis bacterium by Oyston et al.

(2004)

as the 50% infectious dose (ID50), is fewer than 10 colony forming units (CFUs).

Here, colony forming units are a measure of viable bacteria. As a comparison,

between 8,000 and 50,000 spores must be inhaled to produce pulmonary anthrax

(Oyston et al. (2004)). This, coupled with the method of dissemination, has the

potential to result in a large number of cases, causing a strain on health services

to provide antibiotic treatment quickly.

Following inhalation of F. tularensis bacteria, the primary cell type that is

initially infected is alveolar macrophages, with this cell type representing almost

80% of all infected cells in the lungs of mice after 24 hours (Hall et al. (2008)).

Following phagocytosis, bacteria are able to escape the phagosome before fusion

with lysosomes can occur, thus preventing their killing. Once bacteria are present

in the cytosol, they undergo multiple rounds of replication until the rupturing of

the cell releases these bacteria into the extracellular environment, where they can

continue to infect cells and disseminate to other organs (Jones et al. (2012)). The
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intracellular life cycle of F. tularensis is depicted in Figure 1.1. For approximately

72 hours, these events go undetected by the host immune response, however, this

is then followed by a sharp increase in the production of pro-inflammatory cy-

tokines such as IFN-γ and TNF-α. This sudden upregulation of pro-inflammatory

cytokines is reminiscent of a ‘cytokine storm’, preventing the clearance of infection

and inducing widespread necrosis that is instead damaging to the host (D’Elia

et al. (2013)).

Neutrophils are among the first circulating immune cells to be recruited to the

site of infection and are present in large numbers in the lungs of mice, comprising

over half of all infected cells at three days post infection (Hall et al. (2008)).

However, instead of helping to resolve infection, F. tularensis bacteria infect neu-

trophils and prolong the lifespan of these usually short lived cells to 48 hours, such

that they adopt a pro-inflammatory phenotype and contribute to further damage

to the host (Allen (2013); Schwartz et al. (2012)). The unregulated inflammatory

response results in widespread organ and system failure and is ultimately the

cause of death.

1.1.2 Ebola virus

Ebola virus (EBOV) is a negative-sense single-strand RNA virus that causes

Ebola virus disease (EVD). This lethal disease often results in severe haemor-

rhagic fever characterised by multiple organ failure and has a case fatality rate of

between 45% and 90% (Prescott et al. (2017)). Most significantly, a large scale

epidemic in West Africa between 2014 and 2016 resulted in almost 30,000 cases

with over 11,000 fatalities (CDC (2017)). Although this case fatality rate is not

consistent with the range previously quoted, this is likely due to the difficulty in

calculating such rates. It is often not possible to accurately estimate the number

of individuals who succumb to infection and not due to other causes. Further-

more, factors such as access to healthcare can lead to vastly different case fatality

rates between populations. Despite this, the scale of the West African epidemic

is indicative of the infectious nature of EBOV and, along with the high mortality

rate, is the reason why EBOV is also classified as a category A bioterrorism agent

by the CDC.
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The structure of an EBOV virus particle consists of an RNA molecule that com-

prises seven genes, each encoding a different viral protein. A depiction of this

structure is provided in Figure 1.2. Nucleoprotein (NP) and VP30 form the capsid

that contains the RNA molecule and together are referred to as the nucleocapsid.

The L and VP35 proteins form the polymerase complex which transcribes and

replicates the EBOV genome, whilst VP24 and VP40 are involved in the assem-

bly and budding of new virus particles. Glycoproteins (GP) form ‘spikes’ on the

envelope of the virus particle that are important for virus entry into cells. Fig-

ure 1.2 depicts the intracellular life cycle of an Ebola virus particle. The virion

first enters cells through a vesicle by endocytosis or macropinocytosis. Following

acidification of the vesicle, its membrane and that of the virus fuse to allow the

release of the nucleocapsid into the cytosol and transcription of the viral genome

can begin. Initially, transcription of the viral genome from a negative to positive

sense enables viral protein synthesis, particularly NP, by host cell ribosomes. Ac-

cumulation of NP then triggers a switch from transcription to replication. Due to

a lack of proofreading capabilities, the RNA polymerase is notoriously error-prone

when replicating the viral genome. This has advantages for the virus, allowing

genetically diverse populations to form that enable the virus to adapt to different

environments (Barr & Fearns (2010)). However, it can also result in the for-

mation of defective particles that may have deficiencies in both their ability to

enter host cells, as well as their ability to replicate once inside. When sufficient

levels of nucleocapsids and envelope-associated proteins have been synthesised,

virus assembly occurs at the cell membrane and is followed by the release of virus

particles (Knipe et al. (2007)).

During human infection, EBOV initially associates with macrophages, with

this cell type able to support high levels of viral replication. Infected macrophages

are activated and produce large amounts of pro-inflammatory cytokines, such as

IFN-γ, but are impaired in their ability to present antigen (McElroy et al. (2018)).

Despite this, fatal cases of EVD show indicators of early T-cell activation, with

increased levels of IFN-γ and IL-2. However, this early activation is followed by

a sharp increase in lymphocyte apoptosis which is unusual given that lympho-

cytes themselves have not been shown to become infected. Instead it is believed
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Figure 1.2: Intracellular life cycle of an Ebola virus particle by Messaoudi et al.

(2015)

that increased levels of the anti-inflammatory cytokine IL-10 might prevent a sus-

tained T-cell response. On the other hand, non-fatal cases correlate to a balanced

immune response, with lower but more robust levels of T-cell activation in the

earlier stages of infection. Ultimately, death of the host is likely to result from

the build up of necrotic debris as a result of high levels of virus replication, and

coagulation abnormalities due to the pro-inflammatory response (Prescott et al.

(2017)).

1.2 Objectives of this thesis

It is evident, given the description of F. tularensis and Ebola virus, that both

pathogens pose a significant risk to a population. The aim of this thesis is there-

fore to use mathematical modelling as an approach to help mitigate this risk.

With F. tularensis, when considering isolated cases, the majority of infections

can be resolved following antibiotic treatment. However, since infection is still
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lethal in approximately 2% of treated individuals, this suggests that early detec-

tion and administration of treatment is required to ensure survival. The difficulty

therefore arises when considering a population of individuals who are exposed to

airborne F. tularensis bacteria. To optimise treatment strategies, it is first neces-

sary to understand the amount of bacteria each individual is exposed to. Provided

with this information, it must then be determined how likely it is that the im-

mune response of the individual is capable of clearing the infection and, in the

case where it cannot, the time period during which treatment will remain most

effective. The answers to these questions are best provided by a dose-and-time

response model. For this reason, a stochastic within-host model of F. tularensis

infection that can describe this dose dependency is introduced in Chapter 3. This

then forms the central level of a multi-scale model that connects the intracellu-

lar, within-host and population-level scales, thereby using an understanding of

the exact biological mechanisms to predict the effects on a population. Where

possible, stochastic descriptors offer an approach to analytically study the dy-

namics of the model that does not require the solution of the often intractable

Kolmogorov differential equations (Section 2.2.4). The matrix analytic methods

that allow these descriptors to be evaluated have become increasingly effective

in recent years, due in part to computational improvements, and provide an ef-

ficient algorithmic approach that exploits specific underlying structures of the

stochastic process (Section 2.3). However, when the space of states becomes too

large, even these algorithms become difficult to implement and approximative

simulation techniques are instead employed (Section 2.4). The use of in vitro

and in vivo infection data allows each level of the model to be parametrised in a

Bayesian setting, an approach that allows for uncertainty in parameter estimates

to be quantified (Section 2.5).

This dose-and-time response approach can be used to identify the average

length of the therapeutic window given a known initial dose of pathogen. Natu-

rally, however, the progression of disease differs between individuals and therefore

so does the length of this therapeutic window. An alternative approach could

therefore be to find methods of extending this window of opportunity. For this, a

detailed understanding of the early progression of the disease prior to symptom

onset is required. In Chapter 4, this level of detail is accounted for in an agent
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based model (ABM) that describes a murine response to the inhalation of F.

tularensis bacteria. It is demonstrated how, in the form of birth-and-death pro-

cesses with catastrophe, some of the most simple stochastic processes can be used

to approximate the more complex dynamics of the ABM. These approximations

allow parameter inference to be performed efficiently, which as a result yields an

accurate estimate for the intracellular replication rate of F. tularensis bacteria, a

parameter that is identified as being crucial for dictating how fast the infection

progresses.

Unlike F. tularensis, there is currently no approved vaccine or antiviral treat-

ment for Ebola virus, which is reflected in the extremely high case fatality rates.

Furthermore, due to this high mortality rate and the potential for person-to-

person transmission, experiments involving live EBOV must be conducted in

Containment Level 4 (CL-4) laboratories, often restricting the types of experi-

ments that can be performed (Knipe et al. (2007)). Minigenome replicon systems

offer an approach to study the transcription and replication of the EBOV genome

by using a shortened genome that does not contain the viral genes, and can there-

fore be carried out in CL-2 laboratories (Tao et al. (2017)). However, the safest

approach yet to study virus kinetics is using mathematical modelling. In order

to develop therapeutics, it is necessary to first understand how the infection pro-

gresses. For this reason, a model of EBOV is developed in Chapter 5 that builds

on traditional models of viral kinetics by also accounting for the stochastic in-

tracellular dynamics of infected cells. In doing so the model can be compared to

multiple in vitro experiments, and from this the types of data that provide the

most learning can be identified. Chapter 5 concludes with the derivation of the

basic reproduction number, R0, an indicator of whether or not the infection will

spread. Here, a stochastic approach is used to represent the intracellular dynam-

ics of a single infected cell, with this being the first known effort to compute R0

for EBOV in this manner.
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Chapter 2

Mathematical background

In many biological processes, the presence of small numbers of molecules means

that, from a modelling perspective, it is no longer appropriate to describe these

processes using a deterministic approach. One of the most striking features of F.

tularensis infection is that an initial dose of as few as ten bacteria is sufficient

to cause infection. In such a case, deterministic models would only be able to

describe the polarised scenarios where infection either takes hold or the bacterial

population becomes extinct. For this reason, stochastic processes are primarily

the tool used throughout this thesis to model the response to infection. By cap-

turing the natural randomness associated with small populations, it is possible to

gain insight into features, such as the probability of population extinction, that

cannot be accurately studied using deterministic models alone. In saying this,

it is important to understand that stochastic models can introduce unnecessary

mathematical detail and complexity, and a balance between both modelling tech-

niques is required. Although the majority of models described here are stochastic,

deterministic approaches have also been applied, reflecting the necessity for this

balance.

This chapter begins with an introduction to probability and an overview of

stochastic processes required for the development of the mathematical models

detailed in the remaining chapters. Analytical approaches used to study such

processes are outlined, and when these methods are difficult to apply, two dif-

ferent stochastic simulation algorithms are also described. Standard results are
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provided for a well-known type of stochastic process, known as a birth-and-death

process, with these results extended in Chapter 4 to account for catastrophes

within a population. Bayesian approaches to parameter inference are also intro-

duced, thereby facilitating a method for comparing experimental data with the

mathematical models developed.

2.1 Introduction to probability

In this section I introduce ideas from probability theory necessary for defining and

interpreting stochastic processes. The definitions provided here are equivalent to

those in Allen (2003) and Taylor & Karlin (1998).

A random variable, X, can be described as a variable that takes on its value by

chance, where this value is determined by the outcome of a random phenomenon.

Let S be the set of values X can assume, then the probability that X takes a

value less than or equal to a real number, x ∈ S, defines the distribution function

FX(x), that is,

FX(x) = Pr(X ≤ x) , x ∈ S .

If the number of possible values that X can assume is finite, the random variable

is discrete and the probability mass function (p.m.f), f(x), defines the probability

that X assumes a specific value

f(x) = Pr(X = x) , x ∈ S .

However, if Pr(X = x) = 0 for every x ∈ S, X is a continuous random variable.

In this case, if there exists a non-negative function fX(x) such that

Pr(a < X ≤ b) =

∫ b

a

fX(x) dx , a, b ∈ S , a < b ,

then fX(x) is called the probability density function (p.d.f) for the random variable

X. A well-known example of a continuous random variable that has particular

importance for stochastic processes is described by the exponential distribution.
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Definition 1. A non-negative random variable X is said to be exponentially

distributed with parameter λ > 0 if the probability density function is

fX(x) =




λe−λx x ≥ 0 ,

0 x < 0 .

Suppose now that two independent random variables, X1 andX2, have probability

density functions fX1(x) and fX2(x) respectively. The probability density function

of their sum, Z = X1+X2 is given by the convolution of the individual probability

density functions

fZ(z) =

∫ +∞

−∞
fX1(z − x) fX2(x) dx =

∫ +∞

−∞
fX1(x) fX2(z − x) dx .

By considering the sum of n exponential random variables, each with equal rate,

the Erlang distribution can be defined.

Definition 2. Let X1, X2, ..., Xn be n independent exponentially distributed ran-

dom variables, each with rate λ > 0. The sum Z = X1 + X2 + ... + Xn is an

Erlang(n, λ) distributed random variable with probability density function

fZ(z) =





λzzn−1e−λz

(n− 1)!
z ≥ 0 ,

0 z < 0 .

An important concept that can help to characterise the probability density func-

tion is the expected value of X, or the average value that X assumes. In general,

for a function, g, of a discrete random variable, the expectation of g(X) is given

by

IE [g(X)] =
∑

x∈S

g(x)f(x) ,

whilst for a continuous random variable, this same quantity is given by

IE [g(X)] =

∫

x∈S
g(x)fX(x) dx .

With this, probability generating functions can also be defined. These are an

important concept when studying stochastic processes as they provide a method
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for characterising the process that avoids solving an often intractable system of

differential equations. For the purpose of this thesis, it is only necessary to define

the probability generating function of a discrete random variable.

Definition 3. The probability generating function (p.g.f), PX(z), of a discrete

random variable X is

PX(z) = IE
[
zX
]

=
+∞∑

j=0

Pr(X = j) zj ,

for some z ∈ R.

The probability generating function can be used to compute the probability that

X assumes a specific value,

Pr(X = x) =
1

x!

d(x)

dz(x)
PX(z)

∣∣∣∣
z=0

,

as well as defining the kth factorial moment of X

IE

[
X!

(X − k)!

]
=

d(k)

dz(k)
PX(z)

∣∣∣∣
z=1

, k ≥ 0 .

2.2 Stochastic processes

In outlining key properties of stochastic processes, this section makes use of defi-

nitions and results from Allen (2003); He (2014); Latouche & Ramaswami (1999);

Renshaw (2011) and Taylor & Karlin (1998).

Stochastic processes are simply a collection of random variables but can be

more formally defined as follows:

Definition 4. A stochastic process is a collection of random variables X = {X(t) :

t ∈ T} where T is some index set and X(t) denotes a single random variable

defined on a state space SX. A stochastic process may also be a collection of n

random vectors, X = {X1(t), X2(t), ..., Xn(t) : t ∈ T}.

The index set, T , is often used to denote time, where time is treated here as a

continuous entity, such that T = {t : t ∈ [0,+∞)}. Although the index set is

12
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continuous, each of the stochastic processes described throughout this thesis have

a discrete state space, SX. Furthermore, many of these stochastic processes satisfy

the memoryless Markov property, and are therefore referred to as continuous

time Markov processes (CTMP). The Markov property intuitively states that the

future state of a stochastic process depends only on its current state and not any

previous states.

Definition 5. The stochastic process X = {X(t) : t ∈ [0,+∞)} is called a

continuous time Markov process (CTMP) if the following condition holds true:

For any sequence of real numbers satisfying 0 ≤ t0 < t1 < ... < tn < tn+1,

Pr(X(tn+1) = in+1 |X(t0) = i0, ..., X(tn) = in) = Pr(X(tn+1) = in+1 |X(tn) = in) .

2.2.1 Transition probabilities

Transition probabilities provide a way of relating the state of a stochastic process

at different time points and are defined as

pi,j(s, t) = Pr(X(t) = j |X(s) = i) s < t .

If the transition probabilities depend only on the length of the interval, t − s,

rather than s and t explicitly, that is,

pi,j(s, t) = Pr(X(t) = j |X(s) = i) = Pr(X(t− s) = j |X(0) = i) = pi,j(0, t− s) ,

then they are referred to as homogeneous and are instead denoted by pi,j(t− s).
The most natural way to represent the transition probabilities is in a matrix,

P (t), known as the probability transition matrix. The matrix P (t) is a square

matrix of order |SX| whose (i, j)th entry is equal to the transition probability

pi,j(t). Since a stochastic process only transitions between states within its state

space, it follows that each row of P (t) sums to one.

2.2.2 Generator matrix

Closely related to the transition probabilities are the transition rates, which are

often specified when initially defining a stochastic process. Let qi,j denote the

13
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transition rate from state i ∈ SX to state j ∈ SX. Provided that the transition

probabilities pi,j(t) are continuous and differentiable for t ≥ 0, and satisfy

pi,j(0) = 0 , i 6= j , pi,i(0) = 1 ,

the transition rates are defined as

qi,j =





lim
∆t→0+

pi,j(∆t)− pi,j(0)

∆t
= lim

∆t→0+

pi,j(∆t)

∆t
for i 6= j ,

lim
∆t→0+

pi,i(∆t)− pi,i(0)

∆t
= lim

∆t→0+

pi,i(∆t)− 1

∆t
for i = j .

Since each row of the transition probability matrix sums to one, it can be shown

that

qi,i = −
∑

j=0,j 6=i

qi,j . (2.1)

As with transition probabilities, transition rates can be represented by a matrix

Q = (qi,j), referred to as the generator matrix. From (2.1) it follows that the

diagonal entries of Q are equal to the negative of the sum of all remaining entries

in the corresponding row, and thus the sum of each row of Q is zero.

2.2.3 Classification of states

For the stochastic processes studied in this thesis, states for which the process

can enter but cannot leave are incorporated to represent, for example, the fate of

an infected cell. These particular states are referred to as absorbing states and

are more formally defined as follows:

Definition 6. A state i in a CTMP is absorbing if the transition rate qii = 0.

Consider a CTMP, X = {X(t) : t ≥ 0}, with a single absorbing state. If X(0) =

i, then since there is a non-zero probability that X enters and remains in the

absorbing state, there is a non-zero probability that X will never return to state

i. In this case, state i is known as transient and it therefore follows that all

non-absorbing states are transient.
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2.2.4 Kolmogorov differential equations

The forward and backward Kolmogorov differential equations describe the rate

of change of the transition probabilities. If P (t) = (pi,j(t)) is the probability

transition matrix, then the forward Kolmogorov differential equation is given in

matrix form by
dP (t)

dt
= QP (t) P (0) = I ,

where I is the identity matrix. The backward Kolmogorov differential equations

can also be expressed in matrix form as

dP (t)

dt
= P (t)Q P (0) = I .

These matrix equations define a linear system of equations, and thus their solution

may be written as

P (t) = P (0) exp(Qt) ,

where the matrix exponential is defined as

exp(Qt) =
+∞∑

k=0

(Qt)k

k!
.

2.2.5 Phase-type distributions

Consider a Markov process X with state space SX = {0} ∪ {1, ..., N} where 0 is a

single absorbing state and the remaining N states are transient. The generator

matrix for this process can be written as

Q =

(
0 0T

t T

)
,

where the matrix T is a square matrix of order N containing the transition

rates between transient states, and t is a column vector of size N containing the

transition rates from each transient state to the absorbing state. Suppose that

τ is a vector containing the probability that X begins in each transient state,

and let T ∗ be a random variable denoting the time until absorption of X into the

absorbing state 0. The random variable T ∗ follows a phase-type distribution with

representation (τ ,T ).
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Definition 7. A non-negative random variable T ∗ has a phase-type (PH) distri-

bution if its distribution function is given by

F (t) = Pr(T ∗ ≤ t) = 1− τ T exp(T t)1 t ≥ 0 ,

where 1 is an (N × 1) column vector of ones.

The similarity between the distribution function for a phase-type and exponential

random variable is due to the phase-type distribution being a matrix generali-

sation of the exponential distribution. For example, consider a Markov process

consisting of only two states with a single transition occurring from the first state

to the second state. The time until absorption into the second state follows an

exponential distribution, and thus the exponential distribution can be seen as

the most simple of phase-type distributions. From here it is possible to see how

a phase-type representation can be constructed for distributions related to the

exponential distribution. However, as the following theorem indicates, it is possi-

ble to approximate any non-negative probability distribution using a phase-type

distribution.

Theorem 1. The set of PH-distributions is dense in the set of probability distri-

butions on the non-negative half-line (He (2014) - Theorem 1.2.1).

This result can be utilised when studying stochastic processes for which the

Markov property is not satisfied and so the inter-event times are not exponentially

distributed. In order to do this, a method for choosing the phase-type represen-

tation is required such that the phase-type distribution closely approximates the

chosen distribution well.

2.2.6 Phase-type approximation

In Chapter 3, a PH distribution is used to approximate a log-normal distribu-

tion. The method for finding an appropriate PH representation utilises a moment

matching algorithm described by Osogami & Harchol-Balter (2006). This algo-

rithm finds a phase-type representation such that the first three moments of the

phase-type distribution agree with those of the distribution being approximated.
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1 2 n− 2 n− 1 n

p

1− p

λY λY λY λY pXλX1

(1− pX)λX1

λX2

absorbing
state

Erlang two phase Coxian

1

Figure 2.1: A depiction of the underlying Markov process of an EC distribution.

Since phase-type distributions are partly parametrised by a matrix T whose or-

der is equal to the number of transient states, N , the number of parameters to

approximate is of order N2. For this reason the search space is narrowed by

considering a subset of phase-type distributions known as Erlang-Coxian (EC)

distributions. The structure of the underlying Markov chain of an EC distribu-

tion is depicted in Figure 2.1. By restricting the search space in this manner,

Osogami & Harchol-Balter (2006) show that closed form expressions for each of

the six parameters p, λY , λX1 , λX2 , pX and n can be found such that the first

three moments of the chosen distribution agree with those of an EC distribution.

2.2.7 Birth-and-death processes

Birth-and-death processes are specific examples of CTMPs that have particular

importance when modelling populations. Let X = {X(t) : t ≥ 0} be a birth-

and-death process with state space SX = {0, 1, 2, ...}, the one-step transition

probabilities satisfy

pi,i+j(∆t) =





λi∆t+ o(∆t) j = 1 ,

µi∆t+ o(∆t) j = −1 ,

1− (λi + µi)∆t+ o(∆t) j = 0 ,

o(∆t) otherwise .

Therefore, with each jump the state of the process can either increase by one,

indicating a birth event, or decrease by one, indicating a death event. Figure 2.2
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0 1 2 3 4 · · ·

λ0 λ1 λ2 λ3 λ4

µ1 µ2 µ3 µ4 µ5

Figure 2.2: A depiction of a birth-and-death process with birth rate λn and

death rate µn.

depicts a birth-and-death process as described here. The generator matrix for a

birth-and-death process has a tri-diagonal structure and is given by

Q =




−λ0 λ0

µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2

. . . . . . . . .



,

where only non-zero entries have been reported. Although the birth rate, λi, and

death rate, µi, can take any form, a commonly studied case is when both rates are

linear. In this case λi = λi and µi = µi, i ∈ SX, where λ and µ are the respective

per individual birth and death rates. Note that when assuming linear rates, state

0 becomes an absorbing state that represents population extinction, from which

there is no recovery. In the following sections, standard results are provided for

this process as well as the special case when µ = 0, where the process reduces to

a simple birth process.

Linear birth process (µ = 0)

For a simple birth process with linear rates and initial population size X(0) = n0,

the transition probabilities satisfy the Kolmogorov differential equations

dpn0(t)

dt
= −λn0pn0(t) ,

dpn(t)

dt
= λ(n− 1)pn−1(t)− λnpn(t) n > n0 ,
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where pn(t) = Pr(X(t) = n |X(0) = n0). Integrating each differential equation

sequentially yields the solution

pn(t) =

(
n− 1

n0 − 1

)
e−λn0t

(
1− e−λt

)i−n0
n ≥ n0 ,

which can be seen as the probability density function of a negative binomial

distribution. Because of this, the probability generating function can immediately

be shown to be

G(z; t) =

(
ze−λt

1− z + ze−λt

)n0

.

Linear birth-and-death process (µ 6= 0)

Although a birth-and-death process includes just a single additional event com-

pared to a simple birth process, this results in a much more complex structure.

For a birth-and-death process, if pn(t) is defined as above, the Kolmogorov dif-

ferential equations are given by

dp0(t)

dt
= µp1(t)

dpn(t)

dt
= λ(n− 1)pn−1(t) + µ(n+ 1)pn+1(t)− (λ+ µ)npn(t) n > 0 .

This system of equations is not as easily solved as the analogous equations for

a simple birth process, therefore an approach is instead introduced that utilises

the probability generating function. By multiplying the Kolmogorov differential

equations by zn and summing over all possible values of n,

+∞∑

n=0

dpn(t)

dt
zn = λ

+∞∑

n=0

npn−1(t)zn − λ
+∞∑

n=0

pn−1(t)zn + µ
+∞∑

n=0

npn+1(t)zn

+ µ

+∞∑

n=0

pn+1(t)zn − (λ+ µ)
+∞∑

n=0

npn(t)zn .

The left hand side of this equation can be recognised as the derivative of the

probability generating function with respect to time, whilst terms in the right

hand side have the form of the derivative with respect to z. Therefore, if G(z; t)
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2.3 Quasi-birth-and-death process

is the probability generating function for a birth-and-death process, this satisfies

the partial differential equation

∂G(z; t)

∂t
= (λz − µ)(z − 1)

∂G(z; t)

∂z
, G(z; 0) = zn0 .

As shown by Renshaw (2011), the solution to this partial differential equation is

G(z; t) =

(
µ(1− z)− (µ− λz)e−(λ−µ)t

λ(1− z)− (µ− λz)e−(λ−µ)t

)n0

,

from which the transition probabilities can be obtained as

pn(t) = αn0βn
n∑

i=0

(
n0

i

)(
n0 + n− i− 1

n− i

)[
1− α− β

αβ

]i
,

where

α(t) = µβ(t)/λ and β(t) =
λ− λe−(λ−µ)t

λ− µe−(λ−µ)t
.

Therefore, despite introducing just a single additional event to a simple birth

process, the transition probabilities have increased in complexity from following

a negative binomial distribution to following the convolution of a binomial and

negative binomial distribution. It is important to note that G(0; t) = p0(t) is the

probability that the population has become extinct before time t, and is given

here by α(t).

In Chapter 4, an extension of a birth-and-death process, known as a birth-

and-death process with catastrophe will be considered, where the catastrophe

event represents the instantaneous elimination of the entire population. Although

introducing a catastrophe event further increases the complexity, it is shown that

the transition probabilities still have the same form as described here for a birth-

and-death process.

2.3 Quasi-birth-and-death process

Just as the PH distribution is a matrix generalisation of the exponential distri-

bution, quasi-birth-and-death (QBD) processes are a matrix generalisation of the

birth-and-death process.
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Definition 8. Consider a bivariate CTMP X = {(X(t), Y (t) : t ≥ 0} with state

space SX = {(n,m) : n ≥ 0, 1 ≤ m ≤ M}. The first coordinate, n, is called the

level and the second coordinate, m, is called the phase. The term level can also

be used to denote the subset of states

L(n) = {(n, 1), (n, 2), ..., (n,M)} , SX =
⋃

n≥0

L(n) .

The Markov process X is a quasi-birth-and-death (QBD) process if one-step tran-

sitions can only occur between states (n,m) and (n′,m′) with n′ = n, n + 1 or

n− 1.

A QBD process is therefore similar to a birth-and-death process in that the latter

may only transition between adjacent states, whereas a QBD process may only

transition between states in the same or adjacent levels. Because of this, the

generator matrix for a QBD process has the same tri-diagonal structure as that

of a birth-and-death process, although the generator matrix is now block tri-

diagonal,

Q =




Q0,0 Q0,1

Q1,0 Q1,1 Q1,2

Q2,1 Q2,2 Q2,3

. . . . . . . . .



.

The matrices Qi,i contain the transition rates between states in level i, whilst

Qi,i+1 and Qi,i−1 contain the transition rates from states in level i to those in

level i+ 1 and i− 1 respectively.

2.4 Stochastic simulation algorithms

Consider a multivariate Markov process X = {X(t) : t ≥ 0}. As seen previously

for a birth-and-death process, the complexity of X does not have to increase

greatly before solving the Kolmogorov differential equations becomes too diffi-

cult. For this reason, it is often simpler to construct numerical realisations of the

process X, noting that these numerical realisations are not equivalent to solving
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the Kolmogorov differential equations numerically (Gillespie (2007)). These nu-

merical realisations can prove to be a valuable tool for verifying analytic results

for simpler processes as well. Two approaches for simulating Markov processes are

described here, the first is an exact method, known as the Gillespie algorithm,

that constructs realisations through determining the next reaction to occur at

each time step. The second approach, known as tau-leaping, is an approximative

algorithm that can benefit from reduced computational times.

2.4.1 Gillespie algorithm

Suppose that the Markov process X, currently in state x, is described by a series

of reactions, Rj, 1 ≤ j ≤ M , such that aj(x)∆t is the probability that reaction

Rj occurs in a short time interval (t, t + ∆t). Let J be the set of indices of

these reactions, and I be the set of species for which X describes the dynamics.

The vector νj is the state change vector and describes how each species changes

following the occurrence of reaction Rj. The Gillespie algorithm for obtaining a

single realisation of X is then described in Algorithm 2.1. Although exact, this

method is not efficient when a single population is large, or the time-scale at

which a population evolves is vastly different to the remaining populations. In

such a case, a0(x) =
∑M

j=1 aj(x), the total rate at which any reaction occurs, will

be large. Since the mean time between reactions is 1/a0(x), this results in only

small increments in time being made at each step of the algorithm. As a result of

this, long computational times can be required to construct a single realisation,

a problem that can be avoided through implementing a tau-leaping procedure.

2.4.2 Tau-leaping

The tau-leaping algorithm is based on an assumption, often referred to as the leap

condition, that for a time interval of length τ , the value of aj(x) does not change

significantly for each reaction, Rj. As a result of this, the number of times that

reaction Rj occurs in this interval is a Poisson random variable with mean aj(x)τ .

Therefore, instead of determining at each step the single reaction to next occur,

as in the Gillespie algorithm, the number of times that each reaction occurs is

considered simultaneously, with the state of X then updated accordingly.
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Select tmax, the maximum time point for which a realisation of X will

be constructed. Set t = 0 and x, a vector describing the initial state

of X.

while t < tmax do

1. Compute aj(x) for j = 1, ...,M and a0(x) =
∑M

j=1 aj(x).

2. Sample u1, u2 ∼ U(0, 1). The next reaction to occur is then the

reaction, Rk, that satisfies
∑k−1

j=1
aj(x)

a0(x)
< u1 ≤

∑k
j=1

aj(x)

a0(x)
.

3. Update the state of the process X using the state change vector

and increment time:

x→ x+ νk,

t→ t− log(u2)/a0(x).

end

Algorithm 2.1: A Gillespie algorithm to obtain a single realisation of

a CTMP.

Since the Poisson distribution is unbounded, if the realisation of X is near a

boundary of its state space, it is possible that the tau-leaping algorithm will

attempt to send the realisation to a state outside of the state space of X. To

prevent this from happening, a method described by Cao et al. (2006) is used

here that involves defining a subset of states for each reaction, referred to as the

critical region. If the current state of the process, x, is in the critical region for a

specific reaction, this reaction will occur at most once during the next time step,

thus ensuring that the realisation is contained within states in the state space

of X. Furthermore, since selecting a step length, τ , that is too small eliminates

the main advantage of tau-leaping, the method described here also optimises the

step length whilst still satisfying the leap condition. Algorithm 2.2 details the

tau-leaping algorithm that is later applied in sections 3.3.2 and 3.4.2. In this

algorithm, vi,j is defined as the change in species i due to reaction j, such that

νj = (v1,j, v2,j, ..., vN,j).
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Select tmax, the maximum time point for which a realisation of X will

be constructed. Set t = 0 and x, a vector describing the initial state

of X.

while t < tmax do

1. Identify the critical reactions, that is, reactions that, if occur nc

times, result in the realisation entering a state not in the state

space of X. Let Jc and Jncr be the sets of indices of the critical

and non-critical reactions respectively.

2. Compute:
µi(x) =

∑

j∈Jncr

vi,jaj(x) , ∀ i ∈ I

σ2
i (x) =

∑

j∈Jncr

(vi,j)
2aj(x) , ∀ i ∈ I

τ ′ = min
i∈I

{
max(εxi, 1)

|µi(x)| ,
max(εxi, 1)2

σ2
i (x)

}
.

3. If τ ′ < 10/a0(x), there is little benefit in performing tau-leaping.

Instead perform 100 steps of a Gillespie algorithm in order to

reach a different region of the state space and return to 1.

4. Compute ac0(x) =
∑

j∈Jc aj(x) and sample τ ′′ ∼ Exp (ac0(x)).

5. Set τ = min(τ ′, τ ′′):

Each non-critical reaction occurs kj ∼ Poisson(aj(x)τ) times.

If τ = τ ′: no critical reactions occur.

If τ = τ ′′: a single critical reaction occurs once, with the

reaction determined in the same manner as in a Gillespie

algorithm.

6. Update the state of the realisation and increment time:

x→ x+
∑

j∈J kjνj

t→ t+ τ .

end

Algorithm 2.2: A tau-leaping algorithm to obtain a single realisation

of a Markov process.
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2.5 Bayesian inference

In this section I describe an algorithmic approach to infer model parameters

within a Bayesian framework. This algorithm, along with experimental results,

is then used throughout this thesis. The algorithms and theory described here

follow work by Toni et al. (2009).

In a Bayesian setting, the process of inference revolves around updating an

individual’s prior beliefs about a model parameter after observing data, where

the updated beliefs take into account both the prior beliefs and the data. Let θ

be a model parameter whose true value is unknown, the prior beliefs regarding

this parameter are then encoded in the prior distribution, denoted π(θ). Prior

distributions can be referred to as informative, whereby the beliefs of the indi-

vidual are able to shape the distribution, with greater density assigned to those

values that are more likely believed to be the true value. However, in some cases

there is not sufficient evidence available to justify an informative prior. In such a

case the prior distribution encodes this ignorance by considering that θ can take

any value within a certain range with equal probability. Priors of this type are

often referred to as non-informative priors.

Once the prior distributions are specified, the prior beliefs are updated in the

light of the data using Bayes’ rule

π(θ |X) =
π(θ)π(X | θ)∫

θ
π(X | θ)π(θ) dθ

, (2.2)

where π(θ |X) is the posterior distribution and π(X | θ) is the likelihood of ob-

serving the data, X, given θ. Evaluating the posterior beliefs is often made

complicated because of the integral in the denominator, however, since this is

simply a normalising constant that ensures the posterior probabilities sum to

one, (2.2) can be written in the simpler form

π(θ |X) ∝ π(θ)π(X | θ) .

Further complications can also arise when inferring parameters for computational

or simulation-based models, as in this case there is usually no mathematical form

for the likelihood. The following likelihood free method provides an approach to

obtain the posterior distribution without evaluating the likelihood function.
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2.5.1 Approximate Bayesian computation

Approximate Bayesian computation (ABC) intuitively involves simulating data

from a model for multiple parameter values and comparing how ‘close’ the sim-

ulated and observed data are in order to infer the true value of each parameter.

Consider a model M with a parameter θ and observed data D. By sampling θ∗

from its respective prior distribution, θ∗ ∼ π(θ), simulated data D∗ ∼ π(D|θ∗)
can be obtained in order to provide a sample (θ∗,D∗) from the joint distribution.

The posterior distribution can then be constructed by accepting parameters such

that the simulated data matches the observed data. Provided that enough it-

erations are performed, this algorithm will always provide the exact posterior

distribution. However, in practice the simulated and observed data will never

match exactly. For this reason, the ABC algorithm requires only that the sim-

ulated and observed data are close, with how close they are determined by a

chosen measure of distance. The distance function is specific to the inference

problem but should be chosen by taking into account the importance of each

observation or set of results. An algorithm for obtaining an approximate sample

of the posterior distribution is detailed in Algorithm 2.3.

2.6 Global sensitivity analysis

The models that are developed here for host-pathogen interactions will involve

multiple parameters representing the key underlying biological mechanisms. These

parameters will ultimately be inferred using relevant data sets, however, at this

point it is also important to identify the parameters that have the greatest ef-

fect on the model output. It is then preferable that during the inference steps,

the parameters where the most learning occurs are the parameters that are also

the most important. It is not important to confine the estimate of a particular

parameter if varying that parameter results in little change in the model output.

Local sensitivity analysis is one method to identify influential parameters by

considering the derivative of the model output with respect to individual param-

eters. The main disadvantage of this approach is that it does not allow for the

evaluation of simultaneous changes in all model parameters (Zhang et al. (2015)).
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Choose the desired posterior sample size, N , the acceptance threshold

ε, and set i = 0. Let the observed data be stored in the vector x.

while i < N do

1. Sample θ∗, from the prior distribution π(θ)

2. Simulate a data set x∗ from π(x |θ∗)
3. If d(x,x∗) ≤ ε, accept θ∗ into the posterior sample and set

i→ i+ 1.

end

Algorithm 2.3: Approximate Bayesian Computation (ABC) rejection

sampling algorithm to obtain an approximate sample of the posterior

distribution (Toni et al. (2009)).

For this reason a global sensitivity analysis algorithm is applied here, more specif-

ically the Sobol approach to global sensitivity analysis. This method is described

in detail in Saltelli et al. (2004) and Sobol (1993) with only the most important

details provided here.

Consider a model that is parametrised by a vector of parameters, θ = (θ1, θ2, ..., θn),

such that the model output is described by Y = f(θ). Each parameter may be

thought of as a random variable that can vary over a known range. Since Y

is a function of these parameters, it is also a random variable with variance

V (Y ). The idea behind the global sensitivity analysis algorithm is to ask how

the variance of this model output would change if the value of a parameter is

known, that is, to consider the conditional variance V (Y | θi = θ∗i ). Since the true

value, θ∗i , is not known, the averaged conditional variance is instead considered,

IE [V (Y | θi = θ∗i )], where the expectation is with respect to θi, and the variance

is taken over all remaining parameters, θj, j 6= i.

The law of total variance allows the variance of the model output to then be

written as

V (Y ) = IE [V (Y | θi)] + V (IE [Y | θi]) ,
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from which the first order sensitivity index for parameter θi may be defined as

Si =
V (IE [Y | θi])

V (Y )
.

In addition to studying the reduction in model output variance obtained when

fixing a single parameter, it is also useful to consider the case where the values of

multiple parameters are fixed. In particular, let V (IE
[
Y |θ−θj

]
) be the expected

reduction in variance that results from fixing all parameters excluding θj. It then

follows that

ST i =
IE [V (Y |θ−θi)]

V (Y )
= 1− V (IE [Y |θ−θi ])

V (Y )
,

is the sum of each sensitivity index that involves fixing parameter θi. For this

reason, ST i is referred to as the total effect term for parameter θi.

To obtain these conditional variances, Sobol (1993) showed that a function f ,

integrable over [0, 1]n, may be decomposed as

f(θ) = f0 +
∑

i

fi(θi) +
∑

i<j

fij(θi, θj) + ...+ f12...n(θ1, θ2, ..., θn) . (2.3)

Provided that each term in (2.3) has zero mean, squaring both sides and inte-

grating yields
∫
f 2(θ) dθ − f 2

0 = V (Y ) =
∑

i

Vi +
∑

i<j

Vi,j + ...+ V12...n ,

where f0 = IE [Y ] and

Vi = V (IE [Y | θi]) ,

Vij = V (IE [Y | θi, θj])− V (IE [Y | θi])− V (IE [Y | θj]) ,
...

V12...n = V (IE [Y | θ1, θ2, ..., θn])−
(∑

i

V (IE [Y | θi]) +
∑

i<j

V (IE [Y | θi, θj]) + ...

)
.

It is generally believed that if Si and ST i can be computed for all parameters,

then a fairly complete description of the model can be obtained in terms of its

global sensitivity analysis properties, where greater values of the sensitivity index

indicate that a parameter has greater importance. The Python package SALib is

used in this thesis to compute the sensitivity indices when necessary.
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2.7 Agent based modelling

An agent based model (ABM) is a stochastic model used to describe populations

of interacting agents (Bauer (2009)). The main advantage of ABMs is that each

agent, for example a cell or bacterium, has its own set of attributes and obeys its

own set of rules. An ABM is therefore able to account for heterogeneity within the

population, thus enabling an understanding of how the microscopic rules of the

agents affect the macroscopic behaviours of the population (Gorochowski (2012)).

This heterogeneity is difficult to incorporate into the CTMPs described previously

since each unique cell type would need to be represented by a different random

variable. For example, modelling the number of infected and uninfected cells

already requires two random variables, one for each population. Suppose now

that each cell is also distinguished by its expression of a specific surface marker,

this then requires four random variables to model each unique cell type. From

here it is simple to see that the CTMP approach is not well-suited to describing

populations of interacting agents when each agent has multiple attributes. A

second advantage of ABMs is in the way they are defined. Through specifying

rules for each agent, this acts as a natural way of constructing a model to mimic a

biological system that is both appealing to biologists and mathematicians (Bauer

(2009)).

One downside to agent based modelling can be that the complex network

of interacting agents results in long simulation times. For this reason it is not

always possible to parametrise ABMs from experimental observations, and so

ABMs sometimes offer more of an exploratory role in determining the behaviour

of populations. In Chapter 4, I describe how an ABM may be constructed to

model bacterial infections, in addition to developing approximations that reduce

the computation time.
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Chapter 3

A multi-scale model for

Francisella tularensis infection

In this chapter I focus on the dose dependent effects of Francisella tularensis in-

fection on a population of susceptible individuals, with the aim of developing a

dose and time response model that can quantify the risk of the airborne release

of bacteria to such a population. When considering the threat posed by chemi-

cal or biological warfare, compared to chemical agents, quantifying the risk to a

population from biological agents has the added complexity of time. The initial

dose of a chemical agent is ultimately the amount available to cause a response,

whereas biological agents have the capability to proliferate once inside the host.

Moreover, the process of microbial growth can take days, whereas the toxic effects

of chemical warfare agents can be seen within hours or minutes. It is therefore

necessary to understand the speed and extent of this replication, and thus the

length of time following exposure to the agent, as well as the initial dose received

(Huang & Haas (2009)). Since the timescale of infection is often of the order

of days, the window of opportunity for effective medical treatment is narrow. A

greater understanding of the relationship between this timescale, the probability

of response, and the initial dose would therefore provide valuable information to

guide optimal treatment, in order to prioritise those most at risk.

The need to understand the effects that the initial dose has on the time and
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probability of response has resulted in attempts to incorporate time into existing

dose response models, such as the classical exponential and beta-Poisson models.

This has previously been performed by allowing for a time dependency of the

model parameters (Chen (2007); Huang & Haas (2009)). However, in choosing

convenient statistical distributions, such as the exponential distribution, the link

between the dose response model and the underlying biological mechanisms that

dictate the level of bacterial replication is tenuous. Previous modelling efforts

have not made use of parameters with a clear and intuitive interpretation. For

example, in the beta-Poisson model described by Haas (1999), α is a shape pa-

rameter of the beta distribution used to incorporate variability in the probability

that an organism survives to initiate infection. Therefore, the exact biological

meaning of this parameter with regards to the infection dynamics is not trivial.

An alternative approach is proposed in Pujol et al. (2009) whereby a stochas-

tic mechanistic model is used to explicitly account for the interactions between

immune effector cells and pathogens, in addition to accounting for the period of

time an individual is exposed to the agent. Most recently, a Markov chain model

developed by Wood et al. (2014) addresses the concerns associated with classical

dose response models by considering the key interactions between F. tularensis

bacteria and host phagocytes within the lung space. By defining a response to

correspond with the onset of symptoms, and relating this to the number of ex-

tracellular bacteria within the lung space, the probability of response and time

to response are studied in a dose dependent manner. In this chapter I extend the

original model by Wood et al. (2014), that only accounts for within-host dynam-

ics, through the development of a multi-scale model that also addresses two key

disadvantages of the existing model.

The first disadvantage is the consideration of a deterministic time for the time

until rupture of an infected phagocyte. In assuming this, the variability in the

time until rupture between different phagocytes, observed to follow a log-normal

distribution, is not explicitly incorporated into the model. Secondly, the number

of bacteria released when an infected phagocyte ruptures is found by evaluating

a deterministic logistic growth process, representing the intracellular replication
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of bacteria, at the deterministic time until rupture. In doing this it is then only

possible to obtain a constant value for the number of bacteria released, thereby

assuming that all phagocytes release the same number of bacteria when rup-

turing and not accounting for inter-phagocyte variability. In order to address

these limitations, a stochastic within-phagocyte model is developed to incorpo-

rate the intracellular dynamics of F. tularensis that also accounts for the observed

log-normally distributed time until rupture. Using this, the distribution of the

number of bacteria released by a rupturing phagocyte can be obtained and used

to help parametrise and revise the within-host model, providing a link between

within-phagocyte and within-host dynamics.

This chapter is organised in four sections. In Section 3.1, a description is pro-

vided of each of the models that form the three levels of the multi-scale model,

namely the within-phagocyte, within-host, and population-level models. To anal-

yse the within-phagocyte and within-host models, I make use of matrix analytic

methods to determine a number of quantities of interest. These methods, previ-

ously employed by Gómez-Corral & López-Garćıa (2012) in the context of mod-

elling competition between two species, provide an approach to analytically study

the models that does not rely on solving the Kolmogorov equations. Moreover,

by exploiting the structure of the underlying Markov process, the methods de-

scribed here are far more efficient than those previously provided by Wood et al.

(2014), reducing the overall computational time. In Section 3.2, these matrix

analytic methods are further used to perform a local sensitivity analysis on the

within-host model. A Bayesian analysis is used in Section 3.3 to parametrise the

within-phagocyte and within-host models, with comparisons made between previ-

ous parameter estimates obtained by Wood et al. (2014). Results for each model

are presented in Section 3.4, with the advantages of incorporating inter-phagocyte

variability visible through the computation of the rupture distribution. It is also

shown how predictions made by the population-level model can be used to influ-

ence the design of microbiology facilities, mitigating the risk to individuals inside.
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3.1 Mathematical models

In this section I provide a description of the within-phagocyte, within-host and

population-level models that contribute to the individual levels of the multi-scale

model. Methods to obtain stochastic descriptors for the within-phagocyte and

within-host model are presented, along with how these descriptors are used to

provide a link between levels.

3.1.1 Within-phagocyte model

The first level of the multi-scale model is a within-phagocyte model, which is used

to replicate the dynamics of intracellular F. tularensis bacteria following phago-

cytosis by a host phagocyte. This model should represent the key stages of the

intracellular life cycle, including the escape of bacteria from the phagosomes where

they initially reside, the replication of bacteria within the cytosol of the phago-

cyte, and the subsequent rupturing and death of the phagocyte (Cowley & Elkins

(2011)). The replication and rupture stages of the intracellular life cycle can be

modelled using a continuous-time Markov process X = {X(t) : t ≥ 0} that has

the structure of a birth-and-death process with total catastrophe (Di Crescenzo

et al. (2008); Karlin & Tavaré (1982)). At any time t ≥ 0, X(t) represents the

number of bacteria contained within the cytosol of the infected phagocyte. Prior

to a rupture event occurring, X behaves like a birth-and-death process (Allen

(2003)) over states N = {1, 2, ...}, however, the moment that a rupture event

occurs, the process instantaneously transitions to state B. This absorbing state

represents the rupturing of the infected phagocyte, releasing its bacterial con-

tents back into the extracellular environment, and is therefore referred to as the

rupture state. The state space of X can then be written as SX = N ∪ {B}.
The birth and death rates for any state n ∈ N are not only chosen to reflect

the competition between bacteria for intracellular resources, such as iron, but

also to keep to the same assumptions made by Wood et al. (2014) in their model

of intracellular replication. Previously, a deterministic logistic growth process

was used to represent the competition between bacteria, therefore the birth and
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death rates here should be chosen such that, prior to a rupture event, X is the

stochastic equivalent. From Allen (2003), this means choosing birth rates, λn,

and death rates, µn, such that

λn − µn = λn
(

1− n

C

)
,

where λ is the per bacterium birth rate and C is the carrying capacity on the

size of the population of intracellular bacteria within a single infected phagocyte.

If replication of bacteria is proportional to the number of intracellular bacteria

then λn = λn, and µn can be found accordingly. This results in the following

respective birth and death rates for the stochastic logistic growth process

λn =





λ(C−1)
C

if n = 1,

λn otherwise,
µn =





0 if n = 1,

λn2

C
otherwise.

The rate µ1 is intentionally set to zero since a positive rate would indicate that

phagocytes are capable of clearing their bacterial load. Although this is possible,

only phagocytes succumbing to bacterial infection are later considered in the

within-host model, as described in Wood et al. (2014).

The initial state of X corresponds to the number of bacteria initially taken up

by the phagocyte. Results by Golovliov et al. (2003) suggest that phagocytosis

of F. tularensis bacteria is relatively ineffective in monocytic cells so that, during

the early stages of infection, only one or two intracellular bacteria are observed

on average. From this, it is assumed here that a single phagocyte will only

phagocytose a single bacterium, and thus the process X will always begin in state

X(0) = 1. Furthermore, it is assumed that once infected, an increase in the

bacterial load of a phagocyte is due solely to intracellular replication, and not

further phagocytosis. This assumption is also consistent with Wood et al. (2014).

The key reason for developing this within-phagocyte model is to determine

the distribution of the number of bacteria released when an infected phagocyte

ruptures, herein referred to as the rupture distribution. Provided that state B

represents the rupturing of the infected phagocyte, the number of bacteria re-

leased through this rupture event is equal to the state that X enters state B
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from. The mechanism of phagocyte rupture is believed to be caspase-3 depen-

dent (Wickstrum et al. (2009)), with Santic et al. (2010) showing that bacterial

escape into the cytosol is both essential and sufficient for triggering caspase-3 ac-

tivation. This would suggest that extensive bacterial replication is not required

for infected phagocyte death to occur, and therefore the rate of rupture in the

within-phagocyte model should be independent of bacteria load. Further reason

for this assumption is given in a recent study by Brock & Parmely (2017). In

this study, macrophages were infected with F. tularensis bacteria and after 24

hours were stained to detect cells with compromised membranes, an indicator

of cell death. Bacteria were also stained a separate colour such that confocal

microscopy could be used to enumerate cells based on their bacterial load. It was

observed that over 25% of cells containing 1-5 bacteria had compromised mem-

branes, whilst the same was true for only 50% of cells containing greater than

100 bacteria. This suggests that high levels of intracellular F. tularensis alone

are neither sufficient nor necessary for the induction of cell death. Due to the

assumption that the rate of rupture is independent of bacterial load, X may be

thought of as a stochastic logistic growth process where t = 0 marks the start of

a ‘clock’ that counts up towards the time until rupture of the phagocyte. At the

moment the clock ‘rings’, signalling the rupture event, X immediately transitions

into the rupture state B, from whichever state X is in. Let T rupture be a random

variable denoting the time taken for X to reach the rupture state.

Previously, Lindemann et al. (2011) have quantified the release of lactate

dehydrogenase (LDH), a cytosolic enzyme that acts as an indicator of membrane

disruption, in order to measure the rupturing of human macrophages following

infection with F. tularensis. Using this data, Wood et al. (2014) have then applied

maximum likelihood estimation methods to suggest that T rupture is log-normally

distributed, T rupture ∼ logN(3.72, 0.385). However, instead of incorporating the

full distribution of the time until rupture into their within-phagocyte model,

Wood et al. (2014) take the number of bacteria released in a rupture event to be

equal to their deterministic logistic growth process evaluated at the median time

until rupture, Median[T rupture]. This results in a constant number of bacteria
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B
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λ1 λ2 λ3 λN−1 λN

µ2 µ3 µN−1 µN µN+1

logN(3.72, 0.385)

1

Figure 3.1: A depiction of the within-phagocyte model with log-normally dis-

tributed rupture times transitioning the process into the absorbing state B. Mean

rupture time is IE [T rupture] = 44.4h.

being released from every rupture event.

In the within-phagocyte model developed here, the focus is to incorporate the

full distribution of T rupture in order to obtain the rupture distribution. In doing

so it is not true that every inter-event time is exponentially distributed, the time

until a rupture event is now log-normally distributed, and because of this the

process X is no longer Markovian. A depiction of the within-phagocyte model

with log-normally distributed rupture times is given in Figure 3.1. To resolve

this issue, PH distributions are used, in particular, the property that the family

of PH distributions is dense within the family of non-negative distributions (He

(2014) - Theorem 1.2.1). The Markovian property can therefore be retained by

approximating the log-normal distribution, T rupture ∼ logN(3.72, 0.385), using

the PH distribution T rupture ∼.. PH(η,T ).

In order to approximate the log-normal distribution, consider an auxiliary

Markov process W = {W (t) : t ≥ 0} with state space SW = {I, II, ..., Z} ∪ {B},
where state B is the same absorbing state as in SX. Furthermore, let qi,j de-

note the transition rate between states i, j ∈ SW. The set of transition rates

{qi,j : i, j ∈ SW} and the number of transient states, Z, may then be selected

such that the time taken to reach state B is approximately logN(3.72, 0.385) dis-

tributed. This means that W may be thought of as the ‘clock’ on the time until
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I II III VII VIII B

qI, II qII, III qIII, IV qVII, VIII qVIII, B

qVII, B

1

Figure 3.2: A depiction of the one-dimensional Markov process W associated

with the PH(η,T ) distribution considered, so that the time to reach state B

approximately follows a logN(3, 72, 0.385) distribution. Only non-zero transition

rates identified by T have been included.

rupture. As W transitions across states in SW, the rupture event becomes ever

nearer.

Using the PH-approximate procedure introduced in Section 2.2.6 and imple-

mented in the statistical software R, an approximative PH distribution is ob-

tained. By specifying the first three moments of T rupture ∼ logN(3.72, 0.385)

numerically, the procedure selects the number of transient states that comprise

SW, in addition to the initial probability vector and the matrix of transition rates.

Here, a total of eight transient states are chosen, such that SW = {I, II, ..., V III}∪
{B}, whilst η = (1, 0, 0, 0, 0, 0, 0, 0)T and

T =




−0.1447 0.1447 0 0 0 0 0 0

0 −0.1447 0.1447 0 0 0 0 0

0 0 −0.1447 0.1447 0 0 0 0

0 0 0 −0.1447 0.1447 0 0 0

0 0 0 0 −0.1447 0.1447 0 0

0 0 0 0 0 −0.1447 0.1447 0

0 0 0 0 0 0 −0.3396 0.0003

0 0 0 0 0 0 0 −0.0127




.

The structure of the process W, along with a plot depicting how accurately the

log-normal distribution is being approximated are provided in Figure 3.2 and

Figure 3.3 respectively. With this, the log-normal distribution can be replaced

by the PH approximative distribution in the within-phagocyte process and X
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Figure 3.3: Plot showing how accurately the PH(η,T ) distribution approxi-

mates the desired logN(3.72, 0.385) distribution. The histogram represents 5×103

samples from the PH(η,T ) distribution, the red curve is the probability density

function for a logN(3.72, 0.385) distribution.

can now be represented as in Figure 3.4. The result of this is that X is now

a bivariate Markov process, X = {X(t) = (i, j) : i ∈ N, j ∈ SW}. Each state

(i, j) of X represents that at a particular time instance, there are i intracellular

bacteria, with the rupture clock in state j. Thus, arrows indicating transitions

between rows of states in Figure 3.4 represent the rupture clock moving towards

the rupture event, whilst arrows indicating transitions between columns of states

represent the stochastic logistic growth process for the number of intracellular

bacteria. Once the component j reaches the absorbing state B, the number of

bacteria released is given by the corresponding value i at the instant this occurs.

Given the vector η, the rupture clock will always start in state I ∈ SW at

time t = 0. However, when F. tularensis bacteria first enter a host phagocyte,

there is a period of approximately one hour where the bacteria are contained

within a phagosome and are unable to replicate (Golovliov et al. (2003)). This

phagosomal stage is not currently accounted for in the within-phagocyte model

since bacterial replication is allowed to start from t = 0. Although bacterial
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Figure 3.4: Diagram representing the within-phagocyte process X where the

approximate PH distribution can be seen as a clock for the rupture event.

replication does not start immediately, the rupture clock does begin counting

down as soon as a bacterium enters the phagocyte. Therefore, in order to account

for the delay in replication, the assumption is made that during the first hour,

the process X can only transition between states in the ‘clock’ phase. That is, if
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the process depicted in Figure 3.4 starts in state (i, j) = (1, I) at time t = 0, then

during the first hour X is only allowed to transition between states in the first

column. By not allowing transitions along rows of states, this represents that

replication of bacteria does not occur. To implement this, the probability that

the auxiliary process W is in each of the transient states I, II, ..., V III at time

t = 1 must be determined. These probabilities, found by evaluating the first row

of the probability transition matrix of W at t = 1, are equal to

p =
(
eT
)

1
=
(
0.8653, 0.1252, 9.0586× 10−3, 4.3693× 10−4,

1.5806× 10−5, 4.5742× 10−7, 1.0732× 10−8, 4.6926× 10−13
)
.

This vector of probabilities now describes the initial probability vector for the

component j of the process X at time t = 0, replacing the existing vector η. One

concern with this approach is that it could be possible for the process W to enter

the rupture state B within one hour, corresponding to a phagocyte rupturing

prior to the infecting bacterium escaping the phagosome. However, given the

initial probability vector, p, the chance of such an event occurring in this case is

negligible.

Truncation of the state space

Currently, the within-phagocyte model allows for an infinite number of bacteria to

be present in the cytosol of an infected phagocyte, N = {1, 2, ...}. If intracellular

bacterial replication was instead represented by a deterministic logistic-growth

process, the carrying capacity, C, would act as a threshold that the population of

intracellular bacteria could not exceed. For a stochastic logistic growth process

there is no threshold on the size of the population, instead the population will

tend towards the carrying capacity before fluctuating around it. The population

is able to exceed the carrying capacity since λn = λn > 0 for any choice of n, in

particular n = C. However, in order to use matrix analytic methods to compute

stochastic descriptors for the within-phagocyte model, it is necessary for there

to be a finite number of states, such that the infinitesimal generator matrix has

finite dimension. This can be achieved by choosing a threshold N such that the
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probability of the population of intracellular bacteria exceeding N is arbitrarily

small. The state space of X can then be truncated to include only those states that

X is likely to reach, that is, {(i, j) : i ∈ {1, 2, ..., N}, j ∈ {I, II, ..., V III}}∪{B},
with states {(i, j) : i ∈ {N + 1, N + 2, ...}, j ∈ {I, II, ..., V III}} being discarded

(Gómez-Corral & López-Garćıa (2015)).

To find this threshold, N , let αN(i,j) denote the probability that given the initial

state (i, j) ∈ {(m,n) : m ∈ {1, 2, ..., N}, n ∈ {I, II, ..., V III}}, component i in

process X reaches the value N + 1 prior to being absorbed into state B. This can

be interpreted as the probability that X enters a state outside of the truncation

before reaching the rupture state. The aim is to then choose N such that αN(1,j) < ε

for j ∈ {I, II, ..., V III} and a sufficiently small value of ε.

Suppose that the transient states of X are organised into levels, such that level

i is defined as

L(i) = {(i, j) : j ∈ {I, II, ..., V III}} , 1 ≤ i ≤ N ,

and the levels are ordered according to L(1) ≺ L(2) ≺ . . . ≺ L(N). Using this

particular grouping of states, levels can then be thought of as columns of states

as depicted in Figure 3.4. If αNi =
(
αN(i,I), ..., α

N
(i,V III)

)T
, that is, αNi is a vector

containing the probabilities that X transitions to a state outside of the truncation

provided it begins in each state of level i, then first step arguments can be applied

to give the matrix equation




αN
1

αN
2

...

αN
N−1

αN
N




=




A11 A12

A21 A22 A23

. . .
. . .

. . .

AN−1,N−2 AN−1,N−1 AN−1,N

AN,N−1 AN,N







αN
1

αN
2

...

αN
N−1

αN
N




+




0

0
...

0

AN,N+118




,

where 18 is a (8 × 1) column vector containing only ones. The matrices Ai,i−1,

Ai,i, Ai,i+1 each have dimension (8 × 8), since this is the number of states in

each level, and contain the respective probabilities that the process X transitions

from states in level L(i) to states in levels L(i − 1), L(i) and L(i + 1) in one
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jump. Furthermore, since one-jump transitions can only occur between states in

the same or adjacent levels, X has the structure of a QBD process. The non-zero

entries of Ai,i−1, Ai,i, Ai,i+1 are given respectively by

(Ai,i−1)j,j = µi


λi + µi +

∑

j′=I
j′ 6=j

qj,j′ + qj,B




−1

i = 2, ..., N, j = I, II, ..., V III ,

(Ai,i)j,l = qj,l


λi + µi +

∑

j′=I
j′ 6=j

qj,j′ + qj,B




−1

i = 2, ..., N, j, l = I, II, ..., V III ,

(Ai,i+1)j,j = λi


λi + µi +

∑

j′=I
j′ 6=j

qj,j′ + qj,B




−1

i = 2, ..., N, j = I, II, ..., V III .

Given the block tridiagonal structure of the matrix in the previous matrix equa-

tion, the solution to this can be found in a recursive manner using a block-

Gaussian elimination process. This results in Algorithm 3.1 which can be used

to find the truncation value, N . Since N ≥ C, an initial prediction of the

truncation value is N = C, which is then incremented until αN(1,j) < ε for all

j ∈ {I, II, ..., V III}. A value of ε = 10−5 has been used here to determine N .

Rupture size distribution

Following the truncation of the state space of X, it is possible to find the rupture

distribution, the key result from the within-phagocyte model that will provide

a link between the intracellular and within-host dynamics. Given the previous

grouping of states into levels, the probability that an infected phagocyte releases

k bacteria when it ruptures is equivalent to the probability that X transitions to

state B from a state in level L(k). Therefore, let R
(k)
(i,j) denote the probability that,

given X(0) = (i, j), X enters state B from level L(k). First step arguments can be

applied to obtain the following matrix equation for R
(k)
i =

(
R

(k)
(i,I), ..., R

(k)
(i,V III)

)T
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N = C

while αN1,j ≥ ε for any j ∈ {I, II, ..., V III} do

H1 = I8 −A1,1

for n = 2, ..., N do

Hn = I8 −An,n−1H
−1
n−1An−1,n −An,n

end

αNN = H−1
N AN,N+118 for n = 2, ..., N do

αNn = H−1
n An,n+1α

N
n+1

end

N → N + 1

end

Algorithm 3.1: To obtain the truncation value, N , for the within-

phagocyte model.




R
(k)
1

R
(k)
2

...

R
(k)
k
...

R
(k)
N−1

R
(k)
N




=




A11 A12

A21 A22 A23

. . .
. . .

. . .

Ak,k−1 Ak,k Ak,k+1

. . .
. . .

. . .

AN−1,N−2 AN−1,N−1 AN−1,N

AN,N−1 AN,N







R
(k)
1

R
(k)
2

...

R
(k)
k
...

R
(k)
N−1

R
(k)
N




+




0

0
...

bk
...

0

0




,

where the matrices Ai,i−1, Ai,i and Ai,i+1 are defined as previously for the trun-

cation of the state space. The (8× 1) column vector bk contains the probabilities

that X enters state B from each state in level L(k), that is, each of the states

{(k, I), (k, II), ..., (k, V III)} and has entries given by

(bk)j = qj,B


λk + µk +

V III∑

j′=I
j′ 6=j

qj,j′ + qj,B




−1

, j ∈ {I, ..., V III} .

Solving this matrix equation in the same recursive manner as before leads to

Algorithm 3.2 for computing the rupture distribution. This algorithm takes into
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H1 = I8 −A1,1

for n = 2, ..., N do

Hn = I8 −An,n−1H
−1
n−1An−1,n −An,n

end

for k = 1, ..., N do
sk = bk

for n = k + 1, ..., N do

sn = An,n−1H
−1
n−1sn−1

end

R
(k)
N = H−1

N sN for n = N − 1, ..., 1 do

R
(k)
n = H−1

n

(
An,n+1R

(k)
n+1 + sn

)

end

Rk = pR
(k)
1

end

Algorithm 3.2: To compute the distribution of the number of

bacteria released when an infected phagocyte ruptures.

account the one hour delay for the time the infecting bacterium spends in the

phagosome by computing an averaged rupture distribution, weighted over the

possible states that the ‘rupture clock’ can be in after one hour. Recall that

the probability that X is in each of the states in the first level after one hour is

stored in the vector p. Let Rk denote the probability that a phagocyte releases

k bacteria on rupture, provided it was initially infected by a single bacterium.

After taking into account the effects of the phagosomal delay, it then follows that

Rk = pR
(k)
1 .

3.1.2 Within-host model

The within-host model proposed here is a birth-death-rupture model that repli-

cates the dynamics of F. tularensis infection within the lung of an infected individ-

ual after inhaling an initial dose of bacteria. The model is largely an extension of
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an original model by Wood et al. (2014) that utilises the within-phagocyte model

to address previous limitations regarding inter-phagocyte variability. Within the

lung, bacteria can be killed by host immune responses or through phagocytosis,

provided that the phagocyte is activated. If the phagocyte is not capable of killing

the ingested bacterium, the bacterium can escape the phagosome and enter the

cytosol, resulting in proliferation and rupture of the host phagocyte, as described

by the within-phagocyte model. These three key events of extracellular bacterial

death, phagocytosis resulting in bacterial survival, and phagocyte rupture are in-

corporated into the within-host model, along with their effect on the population

of bacteria and host phagocytes. The events are detailed as follows

• Phagocytosis and bacterial survival (rate α > 0 (h−1)): This event

refers to the phagocytosis of bacteria by an uninfected phagocyte that re-

sults in the bacteria escaping the phagosome, replicating, and ultimately

leading to the rupture of the phagocyte.

• Extracellular bacterial death (rate µ > 0 (h−1)): This event encom-

passes the effects of multiple host defence mechanisms that result in bac-

terial death, including the complement system, antibodies, antimicrobial

peptides and activated phagocytes (Jones et al. (2012)). It is important to

note that, although phagocytosis is also incorporated into this event, here it

refers to phagocytosis followed by effective killing of the ingested bacterium.

• Rupture of infected phagocytes (rate δ = Median(T rupture)−1 (h−1)):

Following phagocytosis that results in bacteria escaping the phagosome and

proliferating, infected phagocytes will ultimately rupture and die. The num-

ber of bacteria released when they rupture is determined from the within-

phagocyte model by means of the rupture distribution.

In Wood et al. (2014), these three events are referred to respectively as survival,

death and birth. The term survival relates to bacteria entering an intracellular

replicative niche where they escape the dangers of immune defence mechanisms,

whilst the term birth indicates the instantaneous increase in the population of

extracellular bacteria that results from the rupture of an infected phagocyte.
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The within-host model can be described using a continuous-time two-dimensional

Markov process Y = {Y (t) = (B(t), P (t)) : t ≥ 0}, where B(t) denotes the num-

ber of extracellular bacteria and bacteria-containing phagocytes at time t ≥ 0,

and P (t) represents the number of bacteria-containing phagocytes at time t ≥ 0,

so that B(t) ≥ P (t) for all times t ≥ 0. The variable B(t) is defined in this

manner since the within-host model does not explicitly account for the intracel-

lular infection dynamics, however, this also highlights one of the advantages of a

multi-scale framework. Incorporating the intracellular life cycle directly into the

within-host model would add another level of complexity, resulting in a model

that is both more difficult to study analytically and more time consuming to

simulate. Instead, through developing the within-phagocyte model, the rupture

distribution can be used to characterise these intracellular stages of infection and

then applied to the within-host model to allow for variability between phagocytes.

An initial state of Y, given by Y (0) = (k, 0), represents that k bacteria have

reached the lung space following inhalation, whilst initially there are zero infected

phagocytes. When the total population of bacteria reaches a threshold M ∈ N,

a response is said to occur, representing the onset of symptoms in the infected

individual (Wood et al. (2014)). This state M , herein referred to as the response

state, is one of two absorbing states of Y; the other is state 0 and represents the

elimination of bacteria from the lung before a response can occur; see Figure 3.5.

Although state 0 cannot be reached if Y is already absorbed into the response

state, M , this is not to say that individuals cannot recover once they display

symptoms of tularemia. The purpose of this model is to determine how likely it

is, and how long it takes, for an individual to show symptoms following exposure

to a specific dose and does not currently consider recovery from infection.

A depiction of the within-host model is provided in Figure 3.5. The rate of

rupture of an infected phagocyte is set as δ = Median [T rupture]
−1

hours and the

distribution of the number of bacteria released provides an extension to the orig-

inal model by Wood et al. (2014), as indicated by dashed arrows. The rate at

which an infected phagocyte ruptures, releasing k bacteria is given here by δRk,

and since
∑+∞

k=1 Rk = 1, δ is analogous to how it is defined by Wood et al. (2014).
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∑
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Figure 3.5: A depiction of the extended two-dimensional Markov chain with

M = 4. State (i, j) represents i extracellular bacteria and bacteria-containing

phagocytes, and j bacteria-containing phagocytes. The rates of rupture, phago-

cytosis, and death of extracellular bacteria are δ > 0, α > 0, and µ > 0 re-

spectively. Rupturing phagocytes release k bacteria with probability Rk. Solid

arrows represent reactions included in the original model by Wood et al. (2014),

where, for illustrative purposes, each phagocyte always releases G = 3 bacteria.

Dashed arrows indicate reactions that are new to the extended within-host model

described here.

For the within-host model, two summary statistics of interest are the probability

of response and the mean response time. These quantities are also computed
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analytically in Wood et al. (2014), however, the approach used is inefficient as

it requires the inversion of the entire generator matrix associated with Y. Given

that the generator matrix associated with Y is a square matrix with order 2 +

(M + 2)(M − 1)/2, the value of M does not have to be large before inverting the

matrix becomes computationally expensive. An alternative approach is outlined

here that exploits the structure of the process Y and is therefore more efficient

than the method used in Wood et al. (2014). Following this approach, the largest

matrix that must be inverted only has order (M−1). As for the within-phagocyte

model, the state space of the within-host model, SY = {0} ∪ {(i, j) : 1 ≤ i ≤
M − 1, 0 ≤ j ≤ i} ∪ {M}, can be organised into levels

L(0) = {(i, 0) : 1 ≤ i ≤M − 1} ,
L(j) = {(i, j) : j ≤ i ≤M − 1} , 1 ≤ j ≤M − 1 ,

such that SY = {0} ∪
M−1⋃
j=0

L(j) ∪ {M}. With this grouping of states, Y has the

form of a QBD process, and thus the tridiagonal block structure of the generator

matrix can be exploited to yield efficient algorithms for the probability of response

and mean response time.

Let π(i,j) be defined as the probability of response given that the initial state

is Y (0) = (i, j), that is,

π(i,j) = lim
t→+∞

Pr (Y (t) = M |Y (0) = (i, j)) , 0 ≤ j ≤ i ≤M − 1 .

If π(i,j) is stored in column vectors π0 =
(
π(1,0), π(2,0), ..., π(M−1,0)

)T
, and πj =(

π(j,j), π(j+1,j), ..., π(M−1,j)

)T
, 1 ≤ j ≤ M − 1, then first step arguments can be

applied to give the matrix equation




π0

π1

...

πM−2

πM−1




=




G00 G01

G10 G11 G12

. . .
. . .

. . .

GM−2,M−1 GM−2,M−2 GM−2,M−1

GM−1,M−2 GM−1,M−1







π0

π1

...

πM−2

πM−1




+




c0

c1
...

cM−2

cM−1




.

49



3.1 Mathematical models

The non-zero entries of matrices Gj,j−1 are given by

(G1,0)i,i+k−1 =
δRk

(µ+ α)(i− 1) + δ
, i = 1, ...,M − 1, k = 1, ...,M − i

(Gj,j−1)i−j+1,i−j+1+k =
δjRk

(µ+ α)(i− j) + δj
, i = j, ...,M − 1, j = 2, ...,M − 1,

k = 1, ...,M − i ,

whilst the non-zero entries of Gj,j satisfy

(G0,0)i,i−1 =
µ

(µ+ α)
, i = 2, ...,M − 1 ,

(Gj,j)i−j+1,i−j =
µ(i− j)

(µ+ α)(i− j) + δj
, i = j + 1, ...,M − 1, j = 1, ...,M − 2 .

If j = M − 1, the corresponding level consists of only a single state and hence

GM−1,M−1 = 0. The non-zero entries of the matrices Gj,j+1 are

(G0,1)i,i =
α

(µ+ α)
, i = 1, ...,M − 1 ,

(Gj,j+1)i−j+1,i−j =
α(i− j)

(µ+ α)(i− j) + δj
, i = j + 1, ...,M − 1, j = 1, ...,M − 2 .

Finally, the vectors cj contain the probabilities that Y transitions into the re-

sponse state, M , from states in level j. Since it is not possible to enter the

response state from level 0, c0 = 0, whilst for the remaining levels, the non-zero

entries of cj are defined as

(cj)i =
δj

(µ+ α)(i− j) + δj

( ∑

k≥M−i+1

Rk

)
, i = j, ...,M − 1, j = 1, ...,M − 1 .

A solution to the previous matrix equation is provided in Algorithm 3.3. Since

states representing initial doses of bacteria are contained in level 0, π0 is the most

informative quantity found using this algorithm.

To consider the time taken for an infected individual to respond, let this be

defined as the first time at which the number of extracellular bacteria and infected

phagocytes is equal to M , that is, T(i,j) = inf{t ≥ 0 : B(t) = M |Y (0) = (i, j)}.
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H0 = IM−1 −G0,0 , s0 = c0

for n = 1, ...,M − 1 do

Hn = IM−n −Gn,n−1H
−1
n−1Gn−1,n −Gn,n

sn = Gn,n−1H
−1
n−1sn−1 + cn

end

πM−1 = H−1
M−1sM−1

for n = M − 2, ..., 0 do

πn = H−1
n (Gn,n+1πn+1 + sn)

end

Algorithm 3.3: To compute the probability of response for

states (i, j) ∈ SY.

Since absorption into the response state is not certain, there is no guarantee that

the time to response will be finite; the time to response will be infinite if Y is

instead absorbed into state 0. Due to this, the restricted mean time may first be

considered, after which the conditioned mean time can be obtained by dividing

by the probability of response, π(i,j). The restricted and conditioned mean times

are given respectively by

r(i,j) = IE
[
T(i,j)1T(i,j)<+∞

]
, 0 ≤ j ≤ i ≤M − 1 ,

m(i,j) = IE
[
T(i,j) |T(i,j) < +∞

]
=
r(i,j)

π(i,j)

, 0 ≤ j ≤ i ≤M − 1 ,

where 1T(i,j)<+∞ is an indicator variable that is equal to one if T(i,j) < +∞ and

zero otherwise. If the restricted mean times r(i,j) are stored in column vectors

r0 =
(
r(1,0), r(2,0), ..., r(M−1,0)

)T
, and rj =

(
r(j,j), r(j+1,j), ..., r(M−1,j)

)T
, 1 ≤ j ≤

M − 1, then first step arguments can be used to obtain the matrix equation




r0

r1
...

rM−2

rM−1




=




G00 G01

G10 G11 G12

. . .
. . .

. . .

GM−2,M−1 GM−2,M−2 GM−2,M−1

GM−1,M−2 GM−1,M−1







r0

r1
...

rM−2

rM−1




+




d0

d1
...

dM−2

dM−1




,
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where the vectors dj are given by:

(d0)i =
i (απi,1 + µπi−1,0)

(i(µ+ α))2 1 ≤ i ≤M − 1 ,

(dj)i =
(i− j)

(
απ(i,j+1) + µπ(i−1,j)

)
+ δj

(∑M−i
k=1 Rkπ(i+k−1,j−1) +

∑N
k=M−i+1 Rk

)

((i− j)(α + µ) + δj)2 ,

for j = 1, ...,M−1, i = j, ...,M−1. Solving this matrix equation yields Algorithm

3.4 for computing the conditioned mean response time, m(i,j). The algorithm

makes use of mn = D(πn)−1rn, where D(πn) is an (n × n) diagonal matrix

whose diagonal entries are constructed from the vector πn.

3.1.3 Population-level model

With two models of F. tularensis infection that describe the dynamics at both the

within-phagocyte and within-host levels, it is possible to use results from these

to construct a population scale model, the final level of the multi-scale model.

Outbreaks of tularemia have previously been reported at a population level by

microbiology laboratories as a result of infection by F. tularensis (Shapiro &

Schwartz (2002)). Since F. tularensis can cause a potentially lethal disease, clini-

cians are required to notify the laboratory when tularemia is suspected in a given

patient. However, due to the nonspecific symptoms associated with tularemia,

these cases can often be undetected and result in outbreaks within the laboratory

through interactions with contaminated samples, as in the outbreak reported by

Shapiro & Schwartz (2002). If laboratory personnel are identified as having tu-

laremia, manipulation of the corresponding samples must be carried out under

strict control measures, such as Biosafety Level 2 (BSL-2) or BSL-3 conditions.

Should these control measures not be taken, further release of F. tularensis into

the air could occur, facilitating its dispersal and spread. Particular activities

within a laboratory that are believed to promote the release of bacteria when not

performed with care include centrifuging and vigorous shaking (SFDPH (2008)).

Recently, work has been carried out to study the airborne spread of pathogens
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H0 = IM−1 −G0,0 , s0 = d0

for n = 1, ...,M − 1 do

Hn = IM−n −Gn,n−1H
−1
n−1Gn−1,n −Gn,n

sn = Gn,n−1H
−1
n−1sn−1 + dn

end

rM−1 = H−1
M−1sM−1

for n = M − 2, ..., 0 do

rn = H−1
n (Gn,n+1rn+1 + sn)

mn = D(πn)−1rn

end

Algorithm 3.4: To compute the conditioned mean response

time for states (i, j) ∈ SY.

within a facility by taking into consideration the ventilation regime in place. One

particular example of this looks at the airborne spread of bacteria in health care

facilities (Liao et al. (2005)). In these situations, zonal ventilation models prove

an extremely useful approach to link the dynamics of airflow around the facility

with epidemic dynamics at the population level (Noakes & Sleigh (2009)). Here,

the scenario is considered of a laboratory consisting of two rooms linked by a

corridor. Suppose that at t = 0, a fixed amount of F. tularensis bacteria are

released at a source location in a given room. This could be the result of manip-

ulation of contaminated samples or an accident that causes airborne release of

bacteria. The aim of the population-level model is to estimate the total number

of laboratory personnel who would develop symptoms of tularemia in the near

future, under different ventilation regimes. A ventilation regime is defined here

to be a description of the dynamics of airflow between the two rooms and the

corridor, as well as the extraction of air away from the laboratory facility.

The approach used to model the release of bacteria within the laboratory fol-

lows that by Noakes & Sleigh (2009), recently extended by López-Garćıa et al.

(2019), where a system of ODEs is used to model the airborne concentration of

F. tularensis bacteria in different spatial compartments of the laboratory. A ven-
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tilation regime is first described by splitting the laboratory into ventilation zones,

where the assumption is made that the air is well mixed within each zone. Air

can then flow between different ventilation zones, resulting in different pathogen

concentrations in the air for each zone (Noakes & Sleigh (2009)). Since the air is

well mixed, individuals in the same ventilation zones are assumed to have equal

probability of inhaling F. tularensis bacteria. This approach can be refined by

partitioning the laboratory into many more ventilation zones, as considered in

Parker & Williamson (2016). A depiction of the scenario studied here, whereby

a microbiology facility is divided into six zones, is provided in Figure 3.6.

Let Ci(t) denote the concentration of bacteria in the air in zone i at time

t, and pi(t) be the cumulative amount of bacteria inhaled by each individual

in zone i up to and including time t. The concentration of bacteria in zone j

then increases due to air flowing into the zone from neighbouring zones, i, with

rate β
(v)
i,j (m3/minute), and decreases due to air flowing from zone j into neigh-

bouring zones with rate β
(v)
j,i , air being extracted from the facility with rate Q

(v)
j

(m3/minute), and individuals within the facility inhaling bacteria with rate ρ

(m3/minute). Since tularemia is currently not known to spread from person to

person, the population-level model does not allow for forward infection and in-

dividuals can only inhale bacteria released from the initial source. In each of

the rates introduced here, the index v denotes the ventilation setting under con-

sideration, which is also used in specifying the initial concentrations Ci(0). By

considering in this way the factors that affect the concentration of bacteria in each

zone, the following system of ODEs for C
(v)
j (t) and p

(v)
j (t) may be constructed

V1Ċ
(v)
1 = −

(
Q

(v)
1 + β

(v)
12 + ρn1

)
C

(v)
1 (t) + β

(v)
21 C

(v)
2 (t) ,

V2Ċ
(v)
2 = −

(
Q

(v)
2 + β

(v)
21 + β

(v)
23 + ρn2

)
C

(v)
2 (t) + β

(v)
12 C

(v)
1 (t) + β

(v)
32 C

(v)
3 (t) ,

V3Ċ
(v)
3 = −

(
Q

(v)
3 + β

(v)
32 + β

(v)
36

)
C

(v)
3 (t) + β

(v)
23 C

(v)
2 (t) + β

(v)
63 C

(v)
6 (t) ,

V4Ċ
(v)
4 = −

(
Q

(v)
4 + β

(v)
45 + ρn4

)
C

(v)
4 (t) + β

(v)
54 C

(v)
5 (t) ,

V5Ċ
(v)
5 = −

(
Q

(v)
5 + β

(v)
54 + β

(v)
56 + ρn5

)
C

(v)
5 (t) + β

(v)
54 (t) + β

(v)
65 C

(v)
6 (t) ,
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zone 1

zone 2

zone 3

zone 4

zone 5

zone 6

1

Figure 3.6: A diagram showing the setup of two rooms and an adjoining corridor

within a laboratory, split into six ventilation zones. Dotted lines represent the

partitioning of each room and corridor into zones, arrows between zones show

potential airflow, and dashed lines represent potential ventilation systems that

extract air from within each zone. Individuals are represented by circles whilst

red and blue squares indicate two possible release locations of bacteria.

V6Ċ
(v)
6 (t) = −

(
Q

(v)
6 + β

(v)
65 + β

(v)
63

)
C

(v)
6 (t) + β

(v)
36 C

(v)
3 (t) + β

(v)
56 C

(v)
5 (t) ,

ṗ
(v)
k (t) = ρC

(v)
k (t) k = 1, 2, 4, 5 ,

where Vj and nj denote the respective volume (m3), and number of individuals in

zone j. In the example described here, ni = 2 for i ∈ {1, 2, 4, 5}, representing two

individuals in each zone, aside from the corridor, during the release of bacteria.

If the initial number of F. tularensis bacteria released in source room i is B0,

then the initial conditions for each equation are C
(v)
i (0) = B0/Vi and C

(v)
j (0) = 0

for j 6= i. It is assumed that to begin with, individuals are not infected with F.

tularensis bacteria, that is, p
(v)
i (0) = 0, i ∈ {1, 2, 4, 5}.

To link the within-host and population-level models, it is assumed that the

cumulative number of bacteria inhaled by each individual reaches steady state

at a shorter timescale than the timescale of the within-host infection dynamics.
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Under this assumption, the steady state values may then be treated as the initial

doses for the within-host model. The output from the within-host model may then

provide the probability of response and mean response time for each individual

in the facility as a function of the number of bacteria they inhale.

3.2 Local sensitivity analysis

3.2.1 Within-host model

Local sensitivity analysis can be used to determine the effects that perturba-

tions in the within-host model parameters, α, µ and δ, have on the probability

of response. The method used here follows a matrix calculus approach origi-

nally described in Caswell (2011) and more recently extended by Gómez-Corral

& López-Garćıa (2018) for QBD processes. This method involves finding par-

tial derivatives of each stochastic descriptor with respect to each parameter. If

θ = (α, µ, δ) is the vector of parameters, then Algorithm 3.5 provides a method

for computing the sensitivities of the probability of response. This algorithm

is obtained by differentiating the expressions for Hn, sn and πn given in Algo-

rithm 3.3 with respect to θ, where the elementwise derivatives ofGn,n,Gn−1,n and

Gn,n−1 are also required. Here, the vec operator transforms a (m×n) matrix into

a (mn× 1) vector by stacking the columns of the matrix. Due to computational

resources available, these elasticities have been computed using M = 500 which is

significantly lower than the median value, Mmed = 2.4×1011, suggested by Wood

et al. (2014). Despite this, the elasticities are still informative since it is not nec-

essary to consider such large values of M . It is noted by Wood et al. (2014) that

once B(t), the number of extracellular bacteria and infected phagocytes, reaches

a specific value, a response is almost certain to occur. This value, referred to as

the ‘point of no return’ was previously predicted to be approximately equal to

500 bacteria.

The elasticities of the probability of response evaluated for selected initial

doses are provided in Table 3.1. From here it is possible to see that δ does not

appear to be an important parameter, with equally low elasticities reported at
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dvecH0

dθT
= −dvecG00

dθT
, ds0
dθT

= db0
dθT

for n = 1, ...,M − 1 do
dvecHn

dθT
= −

((
H−1

n−1Gn−1,n

)T ⊗ IM−n
)
dvecGn,n−1

dθT

+
((
H−1

n−1Gn−1,n

)T ⊗Gn,n−1H
−1
n−1

)
dvecHn−1

dθT

−
(
IM−n ⊗Gn,n−1H

−1
n−1

) dvecGn−1,n

dθT
− dvecGn,n

dθT

dsn
dθT

=
((
H−1

n−1sn−1

)T ⊗ IM−n
)
dvecGn,n−1

dθT

−
((
H−1

n−1sn−1

)T ⊗Gn,n−1H
−1
n−1

)
dvecHn−1

dθT

+Gn,n−1H
−1
n−1

dsn−1

dθT
+ dbn

dθT

end
dπM−1

dθT
= −

((
H−1

M−1sM−1

)T ⊗H−1
M−1

)
dvecHM−1

dθT
+H−1

M−1
dsM−1

dθT

for n = M − 2, ..., 0 do
dπn

dθT
= −

(
(H−1

n (Gn,n+1πn+1 + sn))
T ⊗H−1

n

)
dvecHn

dθT

+
(
πTn+1 ⊗H−1

n

) dvecGn,n+1

dθT

+H−1
n

(
dsn
dθ

+Gn,n+1
dπn+1

dθT

)

end

Algorithm 3.5: To compute the sensitivities of the probability

of response with respect to the parameters θ = (α, µ, δ).

each of the three doses. When computing the elasticity for δ, the relationship it

has with the within-phagocyte model has been ignored. The reciprocal of δ is the

median time until rupture, which is determined by the median of the log-normal

distribution on the time until rupture. Therefore, perturbations in δ would affect

this log-normal distribution, although it is not believed that this effect would

be noticeable once the log-normal distribution has been approximated by a PH

distribution.

More interestingly, the elasticities with respect to α and µ are the negative

of each other, suggesting that the probability of response depends on the ratio
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Initial dose α µ δ

∂π(i,j)

∂θ
π(i,j)

θ

1 1.01 −1.01 4.38× 10−6

10 8.53× 10−1 −8.53× 10−1 4.38× 10−6

100 1.06× 10−1 −1.06× 10−1 4.38× 10−6

Table 3.1: Elasticities for the probability of response, with respect to the within-

host parameters α, µ and δ, for states (1,0), (10,0) and (100,0).

α/µ instead of the individual parameters. Furthermore, the magnitude of these

elasticities decays as the initial dose increases, which can be seen more clearly

in Figure 3.7. This is linked to the idea of a ‘point of no return’, since, if the

initial dose is large enough then a response is almost certain to occur and small

perturbations in either α or µ will not effect this. A plot showing the elasticities

with respect to δ has not been included since the elasticities in Table 3.1 have

already concluded that this parameter is not important.

Although it is informative to compute the elasticities of the probability of

response for a reduced value of M , the same is not true for the mean response

time. The mean response time will naturally be lower for smaller values of M

and it is difficult to conclude whether the elasticities computed in this way would

be reflective of those for a larger, more realistic value of M .

3.3 Parameter values

In this section, I will use a Bayesian approach to estimate the parameters in

the within-phagocyte and within-host model. The parameter values for the

population-level model are also reported according to those provided by Noakes

& Sleigh (2009) for the airborne spread of bacteria within a health care facility.

3.3.1 Within-phagocyte model

In order to use the within-phagocyte model to compute the rupture distribu-

tion, the parameters λ and C must first be estimated. These parameters are
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Figure 3.7: Elasticities for the probability of response with respect to α (left)

and µ (right) as a function of the initial dose.

estimated using in vitro data for the number of intracellular bacteria contained

within a phagocyte. The corresponding experiments involved infecting human

macrophages with F. tularensis bacteria and lysing the cells at 1, 8, 16, 24 and

48 hours post infection to enumerate viable bacteria (Lindemann et al. (2011)).

The results used here in the inference are representative of the average bacterial

load of a single cell. In the experiment, the number of intracellular bacteria is

only recorded for viable phagocytes, that is, phagocytes that have not ruptured

at the time of measurement. Therefore, when fitting the within-phagocyte model

to this data, rupture events should be neglected. A stochastic logistic growth

process without catastrophe is instead fitted to the data in order to obtain λ and

C, a depiction of this process is given in Figure 3.8.

A sequential Approximate Bayesian Computation (ABC) method is used to

find estimates for these parameters. Prior distributions for each parameter are

selected to be λ ∼ U(0.01, 1)h−1 and C ∼ U(100, 1500) bacteria based on previ-

ous estimates of λ = 0.212h−1 and C = 384 bacteria obtained by Wood et al.

(2014). For each pair (λ,C) sampled from their respective prior distributions, the

number of intracellular bacteria is obtained at time points corresponding to those

at which experimental measurements were recorded. The number of intracellu-

lar bacteria is determined at each time point by simulating the stochastic logistic

growth process using the Gillespie algorithm, as introduced in Section 2.4.1. With
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Figure 3.8: A depiction of the stochastic logistic growth process without catas-

trophe used in the estimation of within-phagocyte model parameters λ and C.

this, the model is compared to the data by Lindemann et al. (2011) using the

Euclidean distance. If T denotes the set of time points at which experimental

measurements were recorded, x(M)(t) denotes the value of the stochastic logistic

growth process at time t ∈ T , and x(E)(t) represents the experimentally observed

number of intracellular bacteria at time t ∈ T , then the distance between the

model predictions and experimental data is given by

d(M,E) =

(∑

t∈T

(
x(E)(t)− x(M)(t)

)2

) 1
2

.

Following the ABC rejection sampling algorithm (see Section 2.5.1), parameter

pairs are then only accepted if d(M,E) < ε. Here, since the size of the prior pa-

rameter space is large, and parameter pairs in extreme regions of this space can

result in longer simulation times for the Gillespie algorithm, the ABC algorithm

is implemented sequentially for successively smaller tolerances, ε. Initially, the

tolerance is chosen to be large, ε = 100, in order to refine the parameter space.

Following this, the prior distributions are adjusted accordingly and the ABC al-

gorithm is repeated for a smaller tolerance, ε = 50. Continuing in this manner for

tolerances ε = 25 and ε = 15, an approximate posterior distribution is obtained.

It is important that after each implementation of the ABC algorithm, the prior

distributions are adjusted conservatively as not to inadvertently exclude points

that ultimately have high density in the theoretical posterior distribution. The

tolerances, ε, should also be chosen after a preliminary exploration of the sample

space and should be influenced by the computational resources available along

with the desired size of the posterior sample.
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Figure 3.9: Left: a bivariate histogram of λ and C accepted values as a result of

the ABC method, with median values marked with a red circle. Corresponding

estimates by Wood et al. (2014), (λ = 0.212h−1, C = 384 bacteria), are indicated

with a red triangle. Right: Mean number of bacteria within an infected phago-

cyte, predicted using the stochastic logistic growth process with posterior median

values of λ and C (blue), and compared to the theoretical predictions by Wood

et al. (2014) (red) and experimental data by Lindemann et al. (2011) (circles).

A bivariate histogram of the sample posterior distribution obtained using this

approach is provided in Figure 3.9, with the median of the posterior sample

indicated alongside the corresponding estimates obtained by Wood et al. (2014).

The posterior sample found here contains 104 parameter pairs, with a summary

of this sample provided in Table 3.2. Figure 3.9 also shows a comparison between

the experimental data and the average of 104 simulations of the stochastic logistic

growth process for posterior median values of λ and C.

3.3.2 Within-host model

To determine estimates for α and µ, Wood et al. (2014) use a nonlinear least

squares approach to fit their within-host model to in vivo experimental data for

the number of extracellular bacteria during the initial 48 hours post infection.

Since their model assumes that a fixed number of bacteria are released on rup-
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Min. 1st Qu. Median Mean 3rd Qu. Max.

λ 1.8× 10−1 2.1× 10−1 2.2× 10−1 2.2× 10−1 2.2× 10−1 2.6× 10−1

C 3.6× 102 3.9× 102 3.9× 102 4.0× 102 4.0× 102 4.7× 102

Table 3.2: Summary statistics for the approximate posterior sample of the

within-phagocyte model parameters ([λ] = h−1, [C] = bacteria).

ture of an infected phagocyte but the within-host model described here depends

on a rupture distribution obtained from the within-phagocyte model, the parame-

ters α and µ must also be estimated here. The ABC rejection sampling algorithm

is again used to estimate α and µ using the same within-host infection data used

by Wood et al. (2014). In the two studies considered, monkeys were infected

with aerosolised F. tularensis bacteria and pairs of monkeys were subsequently

sacrificed at selected times during the first 48 hours of infection. The number of

viable bacteria in the lungs was then quantified, with the data used here repre-

senting the average bacterial load (Eigelsbach et al. (1962); White et al. (1964)).

Before implementing the fitting procedure, the rupture distribution is obtained

using the approach outlined in Section 3.1.1 and Algorithm 3.2 for posterior me-

dian values of λ and C. Due to the computational time required to calculate

the rupture distribution, this same distribution is used in each iteration of the

ABC algorithm. However, in keeping with Wood et al. (2014), and to represent

heterogeneity of the susceptibility of infection between individuals, the number

of extracellular bacteria required for a response to occur is a random variable

M ∼ logN(26.2, 6.05) (Saslaw et al. (1961); Sawyer et al. (1966); Wood et al.

(2014)). Therefore, when evaluating the within-host model, a new value of M

is sampled for each iteration from a logN(26.2, 6.05) distribution. Due to the

potentially large values of M that can be sampled, a tau-leaping procedure with

adaptive step size, as described in Section 2.4.2, has been implemented in order

to simulate the model. The Python code for simulating the within-host model

using a tau-leaping procedure has been included in Section A.1 of Appendix A.

The two data sets used to estimate α and µ concern the number of extracel-

lular bacteria observed in the lungs of infected monkeys over the first 48 hours
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Figure 3.10: Left: A bivariate histogram for the parameters α and µ obtained as

a result of the ABC procedure for the within-host model. The posterior median

values are indicated with a red circle and the corresponding estimates (α =

0.939h−1, µ = 3h−1) found by Wood et al. (2014) are marked with a red triangle.

Right: A posterior histogram for the ratio µ/α.

post infection (Eigelsbach et al. (1962); White et al. (1964)). Prior distributions

assumed for each parameter are α ∼ U(0, 1)h−1 and µ ∼ U(0, 25)h−1. Because

of the smaller ranges considered for these prior distributions compared to those

initially used when inferring λ and C in the within-phagocyte model, the ABC

rejection sampling algorithm is applied once, as opposed to sequentially. A total

of 2× 105 iterations of the ABC algorithm have been performed, with an accep-

tance rate of 1% resulting in an approximate posterior sample size of 2 × 103.

Due to the large orders of magnitude for the number of extracellular bacteria ex-

perimentally observed within the host, the log-ratio of the model predictions and

experimental data is considered in the distance measure. Let T1 and T2 denote

the sets of times at which measurements were recorded by Eigelsbach et al. (1962)

and White et al. (1964) respectively. The distance between the within-host model

predictions, x(M)(t), and experimental data, x(E)(t), is then given by

d2(M,E) =
∑

t∈T1

(
log(x(M)(t))− log(x

(E)
1 (t))

)2

+
∑

t∈T2

(
log(x(M)(t))− log(x

(E)
2 (t))

)2

.

The results of the ABC lead to the posterior bivariate histogram in Figure 3.10,
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Min. 1st Qu. Median Mean 3rd Qu. Max.

α 8.9× 10−2 2.4× 10−1 3.3× 10−1 3.3× 10−1 4.1× 10−1 5.7× 10−1

µ 2.3 6.3 8.6 8.4 10.7 14.6

Table 3.3: Summary statistics for the approximate posterior sample of the

within-host model parameters ([α] = [µ] = h−1).

with the approximate posterior distributions for each parameter also summarised

in Table 3.3. The bivariate histogram shows a clear positive correlation between

parameters α and µ. This is perhaps as expected since the rates α and µ relate to

opposite events in the within-host model. The rate α corresponds to phagocytosis

and survival of bacteria, thereby facilitating the disease, whilst µ corresponds

to the prevention of disease through extracellular bacterial death. Therefore,

increasing the rate at which bacteria are taken up by susceptible phagocytes

increases the number of bacteria being released by rupturing phagocytes, but

this can be counteracted by increasing the rate at which the bacteria are killed.

This suggests that it is possible to increase, or similarly decrease α and µ but

still attain a similar total number of extracellular bacteria. Further evidence for

this correlation is seen in the elasticities computed in Section 3.2.1, with the

elasticities with respect to α equal to the negative of those with respect to µ.

Despite this, it is clear from the histogram in Figure 3.10 that the accepted

values are not distributed homogeneously around the elliptic shape, instead being

focused more towards the centre. Therefore the posterior median estimates for

α and µ have a larger posterior probability than that of the estimated values

obtained by Wood et al. (2014). Figure 3.11 shows predictions of the within-

host model using posterior median estimates of α and µ, along with the data

by Eigelsbach et al. (1962); White et al. (1964) used to obtain these estimates.

Similar to the results by Wood et al. (2014), the within-host model is better at

predicting the data by White et al. (1964). This may be because the extracellular

bacteria counts from this data set are larger, and therefore when minimising

the distance between the model and data during the ABC rejection sampling

algorithm, there is a bias towards minimising the distance between these points.
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Figure 3.11: A comparison between within-host model predictions (curves) ob-

tained as mean values throughout time from tau-leaping simulations for different

initial bacterial loads (blue and red) corresponding to the initial values measured

by Eigelsbach et al. (1962); White et al. (1964), and the data points by Eigelsbach

et al. (1962); White et al. (1964). Posterior median values of α and µ have been

used to obtain the predictions.

However, the data by Eigelsbach et al. (1962) suggests a slowing in the growth

of the bacterial population, a feature that would be difficult to capture in the

current description of the within-host model.

A full list of parameter values, along with their interpretation, is reported for

both the within-phagocyte and within-host models in Table 3.4.

3.3.3 Population-level model

Four scenarios, are considered for the release of bacteria inside a microbiology fa-

cility, A1, A2, C1 and C2. These four scenarios can be considered as two separate

ventilation regimes, regime A and C, both of which correspond to regimes consid-

ered by Noakes & Sleigh (2009) and López-Garćıa et al. (2019). Regardless of the

source zone, it is assumed that 105 bacterial counts of F. tularensis are released at

time t = 0. In all scenarios the zone sizes are equal, Vi = 36m3 for i ∈ {1, 2, 4, 5}
and Vi = 12m3 for i ∈ {3, 6}, and the pulmonary rate is set to ρ = 0.01m3/minute
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Parameter Event Parameter value

λ per intracellular bacterium growth rate 0.2164h−1

C intracellular carrying capacity 393 bacteria

µ extracellular bacterial death 8.63h−1

α phagocytosis with bacterial survival 0.3325h−1

M threshold for symptoms onset M ∼ logN(26.2, 6.05)

δ phagocyte rupture rate 0.0241h−1

Rk probability of rupture with k bacteria (see Figure 3.14)

Table 3.4: A description of the parameters for the within-phagocyte and within-

host models.

(Noakes & Sleigh (2009)). The remaining parameters differ between regimes and

are provided in Table 3.5. Regime A corresponds to equal rates of air extraction

for each zone of the facility, and hence the rate of airflow between any pair of

adjacent zones is equal. For Regime C, air is only extracted from zones 1 and 4,

and therefore the airflow is greater in the direction of these two zones. Steady

state values for the total number of bacteria an individual in each zone inhales

are also provided in Table 3.5, p(v) = limt→+∞

(
p

(v)
1 (t), p

(v)
2 (t), p

(v)
4 (t), p

(v)
5 (t)

)
,

v ∈ {A1, A2, C1, C2}. These steady states then act as the initial doses used as

inputs in the within-host model. A graphical representation of scenarios A1, A2,

C1, and C2 is given in Figure 3.12 and the time courses of the variables Ci(t),

1 ≤ i ≤ 6, and pj(t), j ∈ {1, 2, 4, 5} are plotted for scenario A1 in Figure 3.13 for

illustrative purposes. The python function scipy.integrate.odeint is used to

solve the population-level model and obtain steady state values for the amount

of bacteria inhaled by each individual.

3.4 Results

In this section, I present results for each level of the multi-scale model. For the

within-phagocyte model, the rupture distribution is computed using the analyt-
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Source
Scenario βi,j (m3/min) Qi (m3/min) Zone Steady State

A1 β12 = β23 = β36 = β63 Qi = 3, i = 1, .., 6 1 p(A1) = (145, 82, 13, 17)
= β56 = β45 = β21

= β32 = β65 = β54 = 9

A2 β12 = β23 = β36 = β63 Qi = 3, i = 1, .., 6 5 p(A2) = (17, 23, 82, 110)
= β56 = β45 = β21

= β32 = β65 = β54 = 9

C1 β12 = β23 = β36 Q1 = Q4 = 9 1 p(C1) = (102, 46, 9, 9)
= β63 = β56 = β45 = 9 Q2 = Q3

= β21 = β32 = Q5 = Q6 = 0
= β65 = β54 = 18

C2 β12 = β23 = β36 Q1 = Q4 = 9 5 p(C2) = (18, 18, 92, 92)
= β63 = β56 = β45 = 9 Q2 = Q3

= β21 = β32 = Q5 = Q6 = 0
= β65 = β54 = 18

Table 3.5: Airflow parameters for the four scenarios considered, and the steady

state bacteria intake values representing the initial dose for individuals in each

zone. Parameters have been chosen according to ventilation regimes A and C

considered by López-Garćıa et al. (2019); Noakes & Sleigh (2009).

ical methods presented in Section 3.1.1. This distribution is then applied to the

within-host model to study the relationship between the initial dose, the prob-

ability of response, and the mean time until response. Finally, the within-host

model is used to obtain the probability of response for each individual in the mi-

crobiology facility. From this, the distribution of the number of individuals who

respond can be found, thereby indicating the optimum scenario for minimising

the number of responses.

3.4.1 Within-phagocyte model

The distribution of the number of bacteria released on rupture of an infected

phagocyte is provided in Figure 3.14 for posterior median values of λ and C.

In order to compare with results by Wood et al. (2014), recall that the ap-

proach they use to compute the number of bacteria released on rupture involves
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Figure 3.12: Four scenarios A1, A2, C1 and C2 corresponding to two potential

release locations (zone 1 for scenarios A1 and C1 and zone 5 for scenarios A2

and C2). The ventilation regime in scenarios A1 and A2 represents a well-mixed

ventilation, where airflow is balanced across zones and there are equal levels of air

extraction (circled values). The regime in C1 and C2 represents airflow occurring

from the corridor areas to the opposed sides of the rooms where extraction of air

is in place.

evaluating a deterministic logistic growth process at the median rupture time,

Median[T rupture]. The method here may instead be interpreted as evaluating

an analogous stochastic logistic growth process that incorporates the actual log-
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Figure 3.13: Time course of the variables Ci(t), 1 ≤ i ≤ 6 for the concentration

of F. tularensis bacteria in each zone of the population-level model, and pj(t),

j ∈ {1, 2, 4, 5} for the cumulative number of bacteria inhaled by each individual

in each populated zone. Both plots are created using parameters values specified

in scenario A1.

normally distributed rupture time. Since the deterministic and stochastic pro-

cesses have both been parametrised using the same data set, they are comparable,

and the median number of bacteria released according to the rupture distribution

is approximately equal to the fixed value of 358 bacteria obtained by Wood et al.

(2014). This suggests that the median value had previously been calculated cor-

rectly. Despite this, the method outlined here is far more general and allows for

a more comprehensive analysis of the number of bacteria released from rupture

events. For example, from the rupture distribution it is possible to calculate that

the mean number of bacteria released is 288, significantly fewer than the median.

This observation is directly related to the bimodal shape of the distribution, sug-

gesting that phagocytes are likely to either release a few bacteria or a few hundred

bacteria on rupture. However, both of these features would go unnoticed when

applying the approach used by Wood et al. (2014). Although the rupture distri-

bution has not been experimentally measured and the distribution reported here

cannot therefore be verified, there is reason to believe that the bimodal shape
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is appropriate. Recent single-cell analysis by Brock & Parmely (2017) showed

that a significant number of infected phagocytes release very few bacteria when

rupturing, suggesting that the first peak in the rupture distribution is not an

artifact of the model but that phagocytes rupturing soon would not have enough

time for substantial bacterial proliferation. This limited proliferation then results

in small rupture sizes, as predicted by the first peak in the rupture distribution

given in Figure 3.14.

One of the assumptions made in developing the within-phagocyte model is

that bacteria are only phagocytosed by uninfected phagocytes, that is, once a

phagocyte has taken up a bacterium, it will not do so again. As bacterial counts

can increase rapidly during infection, the validity of this assumption could be

questioned. Because of this, the effect that multiple phagocytosis events has on

the rupture distribution has been investigated. A numerical approach was used

to explore this by using a Gillespie algorithm to simulate the within-phagocyte

model. The times at which additional phagocytosis events would occur were sam-

pled according to a U(0, IE [T rupture]) distribution and at each of these times, if

the phagocyte had not ruptured, the intracellular bacterial load was increased

by one. Figure 3.15 shows the rupture distribution for different numbers of ad-

ditional phagocytosis events. As the number of additional phagocytosis events

increases, the peak around zero becomes less pronounced and the rupture distri-

bution is more uni-modal. However, this does not agree with the recent findings

of Brock & Parmely (2017) that suggest that some phagocytes release only a few

bacteria on rupture. Therefore, if additional phagocytosis events are to occur, it

is thought to only be a small number, in which case there is little impact on the

rupture distribution compared to having no additional phagocytosis events. It

should also be noted that for the rupture distributions shown in Figure 3.15, the

larger peak always remains centred around the same value. Although additional

phagocytosis events will lead to faster growth of the intracellular population, the

carrying capacity on the size of the population remains the same. Since the posi-

tion of this peak is determined by the carrying capacity, the number of additional

bacteria that enter the phagocyte will have no effect.

70



3. A MULTI-SCALE MODEL FOR F. TULARENSIS INFECTION

0 100 200 300 400 500
Number of bacteria released

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Pr
ob

ab
ilit

y

Within-phagocyte model
Wood et al.

Figure 3.14: The distribution of the number of bacteria released by an infected

phagocyte on rupture, as predicted by the within-phagocyte model, compared to

the fixed value assumed by Wood et al. (2014). Posterior median values of λ and

C have been used to compute this distribution.

3.4.2 Within-host model

By using the rupture distribution in Figure 3.14, and the within-host model as

defined in Section 3.1.2, the probability of response and the mean time until re-

sponse can be computed for varying initial doses. Figure 3.16 shows a comparison

between the probability of response computed using the multi-scale model and

the within-host model by Wood et al. (2014). Both models give similar predic-

tions, with a dose of approximately 100 bacteria or greater always resulting in the

onset of symptoms. A response is also still possible at lower doses, with around

30% of individuals responding given an initial dose of 10 bacteria. This is con-

sistent with the belief that F. tularensis is capable of causing tularemia following

the inhalation of as few as 10 organisms (Oyston et al. (2004)). It is likely that

these similarities observed between the predictions of the two models are due to

both models being parametrised using the same data sets.
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Figure 3.15: The rupture distribution when n additional phagocytosis events

are allowed to occur uniformly between t = 0 and t = IE [T rupture]. The case

where n = 0 corresponds to the rupture distribution in Figure 3.14.

The left hand plot of Figure 3.17 shows the cumulative probability of response for

different initial doses, that is, the probability that an individual responds prior to

time t. The asymptotic values in this plot therefore correspond to the probability

that an individual ultimately responds for each initial dose. The advantage of

computing the cumulative probability of response is that it gives an idea of the

timescale of response. For example, it could be used to quickly estimate the time

at which a response would occur in a certain proportion of a population, all of

whom receive a similar initial dose.

The right hand plot of Figure 3.17 shows the mean response time, conditioned

on symptom onset, for different initial doses, along with equivalent predictions

made by Wood et al. (2014) and experimental data for the time until symptom

onset observed in infected individuals (Saslaw et al. (1961); Sawyer et al. (1966)).

As with the probability of response, the multi-scale model predictions for the

mean response time agree as well with the experimental data as the predictions

made by Wood et al. (2014). However, it is worth noting that the posterior
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Figure 3.16: Predictions of the probability of response using the multi-scale

model for different initial doses.

median estimates of α and µ used here are significantly larger than the values

estimated by Wood et al. (2014). Furthermore, although the parameters α and

µ are highly correlated, and thus determining their true values is difficult, the

histogram for the ratio α/µ (Figure 3.10, right) indicates that this ratio ranges

from 24.69 to 27.54, lower than the ratio of 31.95 implied by the estimates of

Wood et al. (2014). Together this suggests that this pair of parameters had

previously been underestimated.

3.4.3 Population-level model

To consider the population-level effects that a release of F. tularensis bacteria

would have on individuals working in a microbiology facility, the probability of

response for each individual can first be computed using the within-host model,

where the initial dose is given by the steady state values in Table 3.5. Suppose that

Zi is a random variable denoting the number of individuals who develop symptoms

in zone i, then Zi follows a binomial distribution, Zi ∼ Bin(ni, πi), where ni is

the number of individuals in zone i and πi is the probability of response for an

individual in zone i. If Z is the total number of individuals in the microbiology

facility who respond, then in the scenarios described in Figure 3.12, Z = Z1 +
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Figure 3.17: Left: Predicted cumulative probability of response up to time t,

from the multi-scale model for different initial doses. Right: comparison between

the conditioned mean time until response predicted by Wood et al. (2014) and by

the multi-scale model developed here. Shaded regions represent 95% quantiles.

Z2 + Z4 + Z5 is the sum of four independent binomial distributions. Although

simple in this case, for scenarios where the facility is divided into many zones,

the probability mass function for Z can be efficiently evaluated by successively

computing the convolution of two binomial random variables. (Butler & Stephens

(2017)).

For each of the four scenarios considered here, A1, A2, C1 and C2, the distri-

bution of Z is plotted in Figure 3.18. From this, it can be seen that the optimum

scenarios for reducing the number of individuals developing symptoms are sce-

narios A1 and C1, corresponding to the initial release of F. tularensis bacteria

occurring in zone 1. This is perhaps intuitive given the layout of the facility,

where zone 1 can be thought of as being at the end of the facility, whilst zone 5,

the other zone considered for bacterial release, is located in the middle. There-

fore, if the bacteria are released in zone 1, they must travel further in a single

direction in order for all individuals in the facility to become exposed. The differ-

ent ventilation regimes between scenarios A1 and C1 also have an effect on the

distribution of the number of individuals who respond. Scenario C1, correspond-

ing to a greater rate of air extraction that only occurs in zones 1 and 4, appears to
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Figure 3.18: Distribution of the number of individuals showing symptoms of

infection following bacterial release for scenarios A1, A2, C1 and C2.

be the preferred option compared to scenario A1, where extraction of air occurs

equally across all zones. This links back to the source zone of the initial release of

bacteria, with a greater volume of air being extracted from zone 1 in scenario C1,

it is more likely that the bacteria will be removed from the facility before being

carried through to the remaining zones. This idea is also observed for when the

initial release of bacteria occurs in zone 5, with scenario C2 preferred to scenario

A2.

3.5 Discussion

In this chapter, I have shown how a multi-scale model can be used to link the dy-

namics of F. tularensis infection at a single cell, within-host and population level.
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The model can be seen as an extension of that in Wood et al. (2014) through the

consideration of inter-phagocyte variability by computing the probability mass

function for the number of bacteria released on rupture of an infected phago-

cyte. In addition to this, it has been shown how the experimentally observed

log-normally distributed times until rupture can be accounted for by approxi-

mating the log-normal distribution using a PH distribution, thus maintaining the

Markovian property of the process.

At the within-phagocyte level, the rupture distribution provides insights oth-

erwise unnoticed in the previous analysis by Wood et al. (2014), such as the mean

number of bacteria released being significantly lower than the median. Further-

more, the bimodal shape of the distribution, indicating that it is possible for

phagocytes to release just a few bacteria on rupture, is in line with the exper-

imental results of Brock & Parmely (2017). The within-host model has been

parametrised using infection data to provide predictions that agree with dose

and time response data, whilst suggesting that the parameters α and µ had pre-

viously been underestimated. The population-scale model provides a practical

application of the within-phagocyte and within-host models within a laboratory

setting, predicting the number of individuals who would develop symptoms fol-

lowing the release of F. tularensis bacteria. The practicality of this multi-scale

model is also not only restricted to an indoor setting since the within-host model

only requires that an initial dose is specified. Therefore the within-phagocyte and

within-host models could be used in conjunction with outdoor dispersion models

that use a known source of release to predict the amount of bacteria in specific

locations across a much larger area than is currently being considered with a

microbiology facility.

When developing mathematical models that explicitly account for biological

mechanisms, it is sometimes desirable to include many reactions in order for a

high level of detail to be achieved. However, more reactions results in a greater

number of rate constants that will have to be estimated, and this is not always

possible. For example, in the within-host model, the rate µ accounts for multiple

mechanisms of extracellular bacterial death, such as by antimicrobial peptides or
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phagocytosis by activated phagocytes. Experimental data are not currently avail-

able for the contribution to extracellular death from each of these mechanisms

and so it would not be possible to obtain reliable estimates for parameters that

correspond to them. If more data are made available, a new within-host model

could be proposed such that µ is replaced by multiple parameters, each represent-

ing the contribution to bacterial death from a different biological mechanism. It

would then be interesting to determine how each of these individual mechanisms

affect the probability of response and mean response time.

A second limitation of the current multi-scale model is that, in the within-

phagocyte model, the rupture time is modelled as a log-normally distributed time

that is independent of intracellular bacterial proliferation. It would instead be

preferable to in some way relate the rate of rupture, δn, to the number of intracel-

lular bacteria. Although current experimental knowledge provides little insight

into how these are related, this idea is developed further in Chapter 4, whereby

the rate of rupture is assumed to depend linearly on the number of intracellular

bacteria. For the multi-scale model at least, the log-normally distributed time

estimated by Wood et al. (2014) offers a compromise between current knowledge

and model complexity.
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Chapter 4

An agent based model for

Francisella tularensis infection

In this chapter, I describe how an agent based model (ABM) can be constructed

to represent the early stages of respiratory F. tularensis infection, as well as the

spreading of infection across multiple organs. Whereas the multi-scale model,

developed in Chapter 3, ultimately describes the effects of the release of F. tu-

larensis on a population, the ABM incorporates a greater level of detail and is

thus used to study infection dynamics for a single infected individual. The ABM

is designed to represent what are believed to be the key biological mechanisms

involved during F. tularensis infection, however, greater detail comes at a cost

of increased computational intensity. As a result of this, a system of ODEs is

derived in order to offer a fast but accurate approach to obtain the total number

of bacteria present in each infected organ.

When describing infections involving intracellular pathogens, the method in

which the pathogen leaves an infected cell following replication is often classified

as either continuous release or bursting. For viruses such as Ebola virus, studied

in Chapter 5, and influenza virus, intracellular replication of the viral genome

is followed by the continual release of new virus particles until the death of the

infected host cell (Pornillos et al. (2002); Rossman & Lamb (2011)). On the other

hand, F. tularensis and S. enterica bacteria are released in a single burst or rup-
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ture event, coinciding with the death of the infected cell (Mastroeni et al. (2009)).

When creating a mathematical model to describe continuous release, it is com-

mon to assume that this occurs at a rate proportional to the number of infected

cells. Despite describing a very different mechanism, this same approach has also

been used by Day et al. (2011) and Chen et al. (2007) to model the bursting of

infected cells during anthrax and SIV infection respectively, where an adjustment

of the rate is made to account for the average bacterial load of a cell when it

bursts. Although this adjustment incorporates the size of the burst, it does not

take into account that the release of pathogen occurs at a single point in time,

instead allowing for the release to occur continuously. The number of bacteria

released from the bursting events therefore increases immediately and not after

a delay, during which replication of the pathogen is occurring within the cell. In

this sense there is no distinction between deterministic models of bursting and

models of continuous release. This assumption is perhaps valid when considering

a large number of cells, each infected at separate times, since the bursting of cells

would occur frequently enough that the release of pathogen may be thought of

as occurring continuously. However, the interest here is in modelling the initial

stages of F. tularensis infection, particularly focusing on low initial doses since F.

tularensis is able to cause a lethal infection in humans with fewer than 10 colony

forming units (CFUs), and in mice with just 1 CFU (Oyston et al. (2004)). In

such a case, a small number of cells initially become infected at approximately

the same time and so the discrete times at which rupture events occur must be

explicitly accounted for.

A stochastic approach that considers the bursting of infected cells during

human immunodeficiency virus (HIV) infection is used by Pearson et al. (2011),

although only under the assumption that the size of the burst is a Poisson random

variable. This has a similar disadvantage to the log-normally distributed rupture

times used in the within-phagocyte model in Chapter 3, whereby the distribution

is imposed instead of derived. Variable burst sizes are addressed by Brown et al.

(2006) in a stochastic model of a single S. enterica infected cell that is used to

develop a system of ODEs for describing the fraction of infected cells containing
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n bacteria. This model then allows forms of transition rates to be identified that

best characterise the burst size for virulent and attenuated strains.

In the same way in which Brown et al. (2006) utilise a model of a single cell

to describe a population, the approximations derived here for the ABM use a

stochastic intracellular model of a single macrophage to determine the average

number of bacteria released from a bursting macrophage as a function of time.

Although the result of this is a function that describes the continuous release of

bacteria, the discrete nature of the rupture event is taken into consideration by

incorporating at each time point the probability that the macrophage ruptures.

Furthermore, this is achieved without any assumptions regarding the distribu-

tion of the burst size or time until rupture, other than those that are naturally

imposed through the choice of rates at the single cell level. The average number

of bacteria released can then be used to describe the progression of infection in a

population of cells throughout multiple organs. This therefore provides a second

approach of linking intracellular and within-host dynamics, alongside the multi-

scale approach already described in Sections 3.1.1 and 3.1.2.

In order to develop the intracellular model of F. tularensis infection, this chap-

ter begins with an overview of linear birth-and-death processes with catastrophe,

building on results for birth-and-death processes given in Section 2.2.7. A descrip-

tion of the ABM follows in Section 4.2, along with the derivation of the system of

ODEs used to approximate the total bacterial load of different infected organs in

Section 4.3. Since the ABM is computationally demanding to simulate, Section

4.4 details how parameter inference can be performed using in vivo infection data

alongside the approximations in order to determine parameter values.

4.1 Birth-and-death processes with catastrophe

The idea of a birth-and-death process that accounts for catastrophe events was

introduced in Section 3.1.1 for the within-phagocyte model in order to describe

the intracellular life cycle of F. tularensis following its escape from the phago-

some. One downside of this previously used approach is that the log-normally
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distributed time until phagocyte rupture is not derived, but rather assumed. A

preferred approach would have been to instead construct the birth, death and

rupture rates using existing knowledge of intracellular mechanisms, such that the

time until rupture follows the desired log-normal distribution. In this section,

a step is taken in this direction by deriving the distribution for the time until

rupture under the assumption that the birth, death and rupture rates are each

proportional to the number of intracellular bacteria.

For the within-phagocyte model described in Section 3.1.1, the analogy of a

‘rupture clock’ is used to describe how a rupture event and the birth-and-death

process act independently of each other. When the rupture clock ‘rings’, a rup-

ture event immediately occurs, regardless of the number of intracellular bacteria.

However, when the rate of rupture depends on the number of intracellular bacte-

ria, the rupture clock is integrated into the birth-and-death process. In this case

the distribution of the time until rupture is no longer as trivial. From herein,

the focus is on deriving key results regarding linear birth-and-death processes

with catastrophe, and how these link to equivalent expressions for linear birth-

and-death processes outlined in Section 2.2.7. Two scenarios are considered here,

firstly when the intracellular death rate of bacteria is zero and the process reduces

to a birth process with catastrophe, and also when the death rate is non-zero.

Since a birth process with catastrophe is equivalent to the intracellular dynam-

ics being described by the ABM, these results will then provide a basis for the

analytic approximations that follow in Section 4.3.

4.1.1 Linear birth process with catastrophe

Let X = {X(t) : t ≥ 0} be a Markov process defined by the one step transition

probabilities

pi,j(∆t) =





βi∆t+ o(∆t) j = i+ 1 ,

δi∆t+ o(∆t) j = B ,

1− (β + δ)i∆t+ o(∆t) j = i ,

o(∆t) otherwise ,
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Figure 4.1: A depiction of a birth process with catastrophe, with the catastrophe

event represented by transitions into state B.

with state space SX = {B} ∪ N, such that a transition into state B represents

the occurrence of a catastrophe event. The process X may be referred to as a

linear birth process with catastrophe, a depiction of which is provided in Figure

4.1. Suppose that p
(k)
n (t) = Pr(X(t) = n |X(0) = k), the forward Kolmogorov

equations are given by

d

dt
p(k)
n (t) = β(n− 1)p

(k)
n−1(t)− (β + δ)np(k)

n (t) n ≥ k, k ≥ 1 .

Since the equation for n = k depends only on p
(k)
k (t), it is possible to solve this

system of equations recursively to obtain the transition probabilities

p(k)
n (t) =

(
n− 1

k − 1

)
e−k(β+δ)t

((
β

β + δ

)(
1− e−(β+δ)t

))n−k
, n ≥ k . (4.1)

For the approximations of the ABM, it will be important to determine the time at

which an infected macrophage ruptures, that is, the time at which a catastrophe

event occurs. Let S(k)(t), also referred to here as the survival function, be the

probability that a catastrophe event has not occurred before time t. In the context

of F. tularensis infection, this represents the probability that a macrophage has

not ruptured before time t. Since this can be thought of as the probability that

a macrophage contains at least one bacterium, it is equivalent to the probability
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that X resides in any transient state of SX at time t, that is,

S(k)(t) = 1− p(k)
B (t) =

+∞∑

n=k

p(k)
n (t) =

(
β + δ

β + δe(β+δ)t

)k
. (4.2)

Interestingly, this indicates that the survival probability of a macrophage that is

initially infected with k bacteria may be thought of as the product of the survival

probabilities for a separate population of k macrophages, each infected with a sin-

gle bacterium. Since the birth and rupture rates are all linear, the k macrophages

are independent prior to any rupture events occurring. However, at the very

instance that a single rupture event occurs, the k macrophages are no longer

independent, with this resulting in the rupture of all macrophages. Therefore,

since a single rupture event is sufficient to cause all k macrophages to rupture,

a single macrophage containing k bacteria only survives if all k macrophages

in the separate population survive. More formally, consider the case k = 2

where a macrophage initially infected with two bacteria may be thought of as

two macrophages each infected by one bacterium. These macrophages each have

probability S(t) ≡ S(1)(t) of surviving to time t. The probability that a rupture

event occurs between t and t+∆t may then be thought of as the probability that

one macrophage ruptures whilst the second remains alive. Since there are two

ways of choosing the macrophage that ruptures, this probability is given by

−dS
(2)(t)

dt
= −2

dS(t)

dt
S(t) ,

indicating that S(2)(t) = (S(t))2. By this reasoning, an alternative approach can

be described for finding the survival function which involves formulating an ODE

for S(k)(t).

Suppose that X(0) = k, the one step transition probabilities indicate that

either

• X(∆t) = k with probability 1− (β + δ)k∆t ,

• X(∆t) = k + 1 with probability βk∆t ,

• X(∆t) = B with probability δk∆t.
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Since the probability that a macrophage, initially infected with k bacteria, sur-

vives from t to t+ ∆t is S(k)(t),

S(k)(t+ ∆t) = S(k+1)(t)βk∆t+ S(k)(t)(1− (β + δ)k∆t) ,

and thus in the limit as ∆t→ 0

d

dt
S(k)(t) = βkS(k+1)(t)− (β + δ)kS(k)(t) . (4.3)

Given that S(k)(t) = (S(1)(t))k, it is sufficient to solve (4.3) for k = 1, which can

be shown to yield (4.2).

With an expression for the survival function, it is interesting to note that the

form of the transition probabilities provided in (4.1) closely resembles that of a

negative binomial distribution. Furthermore, in Section 2.2.7, it was described

how the transition probabilities for a linear birth process also follow a negative

binomial distribution. The similarity between a birth process and a birth process

with catastrophe is not surprising since the two are equivalent prior to a catastro-

phe event occurring. By conditioning on a catastrophe event not occurring before

time t, the transition probabilities can be written in a more attractive form that

clearly depicts this relationship. This idea is also used by Gani & Swift (2007)

to obtain the probability generating function (p.g.f.) for a simple death process

with catastrophe where the catastrophe rate is constant. In their case, because

the catastrophe is independent of the decay of the population, the p.g.f. for the

death process can be used directly in the formulation of the p.g.f. for the process

with catastrophe. This is not the case here, where the transition probabilities

may be written in the form

p
(k)
B (t) = 1− S(k)(t) ,

p(k)
n (t) = S(k)(t)

(
n− 1

k − 1

)
(1− g(t))k(g(t))n−k n ≥ k , (4.4)

where

g(t) =

(
β

β + δ

)(
1− e−(β+δ)t

)
.

When comparing p
(k)
n (t) here with the expression given in Section 2.2.7, they have

the same form but with 1− g(t) in place of e−βt, with this difference due to the
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probability of catastrophe depending on the current state of X. An advantage

of writing the transition probabilities in this form, is that it is simple to obtain

results regarding X conditioned on a catastrophe event not occurring before time

t, since standard results for birth processes can be applied. Although informa-

tive, these conditioned quantities do not describe the full behaviour of X. For

a more complete description, let G(k)(z; t) be the p.g.f. of a birth process with

catastrophe, by utilising the p.g.f. for a negative binomial distribution

G(k)(z; t) = p
(k)
B (t) +

+∞∑

n=1

znp(k)
n (t) = 1− S(k)(t) + S(k)(t)

(
z(1− g(t))

1− zg(t)

)k
. (4.5)

The expected value of X is therefore given by

IE [X(t) |X(0) = k] =
∂G(k)(z; t)

∂z

∣∣∣∣
z=1

=
kS(k)(t)

1− g(t)
=
f (k)(t)

δ
, (4.6)

where f (k)(t) is the density of the time until catastrophe provided that X(0) = k,

given for the case k = 1 by

f(t) =
δ(β + δ)2e(β+δ)t

(β + δe(β+δ)t)
2 . (4.7)

This relationship between the expected value and the density can also be found by

considering a population ofN independent macrophages, each initially infected by

the same number of bacteria. Suppose that X(i)(t) denotes the number of bacteria

inside macrophage i at time t. Given that δX(i)(t)∆t is the probability that

macrophage i ruptures in the short interval (t, t+∆t), the number of macrophages

that are lost on average during this interval is

N
(
S(k)(t+ ∆t)− S(k)(t)

)
= −

N∑

i=1

δX(i)(t)∆t , (4.8)

and in the limit as ∆t→ 0,

d

dt
S(k)(t) = −δ

(
1

N

N∑

i=1

X(i)(t)

)
= −δIE [X(t) |X(0) = k] .

When considering the progression of infection within a population of cells, it

is necessary to determine the average number of bacteria released from rupture
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events in order to study beyond the point at which the initial set of infected

cells rupture. The rupture distribution obtained in Chapter 3 provides a time

independent description of the number of bacteria released when an infected

phagocyte ruptures. The approach described in this chapter instead considers

the average number of bacteria released from an infected cell as a function of

time that also takes into account how likely it is for the cell to rupture.

For a birth process with catastrophe, the probability that a rupture event

occurs between times t and t + ∆t is δX(t). Since X(t) is also the state from

which the rupture state, B, is entered, this will then correspond to the number of

bacteria being released. Suppose that f̃(t) denotes the mean number of bacteria

released by a macrophage at time t

f̃(t) = δ
+∞∑

n=1

n2p(k)
n (t) = δIE

[
(X(t))2 |X(0) = k

]
.

The p.g.f. defined in (4.5) can be used to show that the second moment satisfies

IE
[
(X(t))2 |X(0) = k

]
=
f (k)(t)

δ

1 + g(t)

1− g(t)
+ k(k − 1)

(
f(t)

δ

)2

S(k−2)(t) , (4.9)

and thus in the case where k = 1,

f̃(t) = f(t)n̄(t) = f(t)
1 + g(t)

1− g(t)
.

Therefore, whilst f̃(t) incorporates the probability that a macrophage ruptures

at time t, n̄(t) may be thought of as the average number of bacteria that a

macrophage releases when rupturing at time t. Suppose that R is a random

variable representing the number of bacteria released from a single rupture event,

IE [R |X(0) = 1] =

∫ +∞

0

f̃(t) dt =
β + δ

δ
. (4.10)

This result has also previously been obtained by Gillard et al. (2014), who show

that the rupture size of a birth process with catastrophe is geometrically dis-

tributed.
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4.1.2 Linear birth-and-death process with catastrophe

Let Y = {Y (t) : t ≥ 0} be a linear birth-and-death process with catastrophe,

with state space SY = {0} ∪ {B} ∪ N and one-step transition probabilities

pi,j(∆t) =





βi∆t+ o(∆t) j = i+ 1 ,

µi∆t+ o(∆t) j = i− 1 ,

δi∆t+ o(∆t) j = B ,

1− (β + µ+ δ)i∆t+ o(∆t) j = i ,

o(∆t) otherwise .

Since death events are now possible, this leads to the inclusion of a second ab-

sorbing state, 0, representing in the case of F. tularensis infection, the elimination

of bacteria from the infected macrophage. This particular process has previously

been studied by Karlin & Tavaré (1982), who scale the instantaneous transition

rates in order to separately study the cases where the process is ultimately ab-

sorbed into state 0 and state B. In doing so, the p.g.f. and distribution of states

from which B is entered are reported, the latter having an equivalent interpreta-

tion to the rupture distribution defined in Section 3.1.1. An alternative approach

to study this process is described here that follows the same reasoning as previ-

ously used for the birth process with catastrophe. Let S(k)(t) again denote the

survival function, then since all rates remain linear, a macrophage containing k

bacteria can be thought of as k independent macrophages each containing a single

bacterium. From the one-step transition probabilities, the following ODE can be

constructed for S(k)(t)

d

dt
S(k)(t) = βkS(k+1)(t)+µkS(k−1)(t)−(β+µ+δ)kS(k)(t) , S(k)(0) = 1 . (4.11)

Since the survival function denotes the probability that a catastrophe event has

not occurred before time t, it therefore includes the possibility that Y has instead

been absorbed into state 0. This is consistent with F. tularensis infection, since

the infected macrophage survives if it is capable of eliminating all intracellular
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Figure 4.2: A depiction of a birth-and-death process with catastrophe. In

addition to the catastrophe state, a second absorbing state at 0 is now included.

bacteria. Because of this, S(0)(t) = 1 and the solution to (4.11) is

S(k)(t) =

[
a(1− b)− b(1− a)e−β(b−a)t

(1− b)− (1− a)e−β(b−a)t

]k
,

where a and b are the roots of the polynomial h(S) = βS2 − (β + µ + δ)S + µ.

For consistency, let a be defined as the smaller of the two roots.

In the limit as t tends to infinity, this survival function tends to a, and as

identified by Karlin & Tavaré (1982), a therefore represents the probability that

Y is ultimately absorbed into state 0, instead of state B. The density of the time

until catastrophe is then given by

f(t) =
δ(b− a)2e−β(b−a)t

(b− 1 + (1− a)e−β(b−a)t)2
,

and the expectation of Y is again related to this density through (4.6).

To determine the transition probabilities, the same approach used for the birth

process with catastrophe can be applied, that is, to condition the process on a

catastrophe event not occurring before time t. This differs from the approach

used by Karlin & Tavaré (1982), who choose to condition the process on whether

or not a catastrophe event ultimately occurs. Provided that a catastrophe event

has not occurred before time t, the process Y takes the form of a birth-and-death
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process. Assuming, for now, that Y (0) = 1, Renshaw (2011) suggests that an

appropriate form for the transition probabilities of a birth-and-death process is

pn(t) ≡ p(1)
n (t) = [1− α(t)][1− γ(t)][γ(t)]n−1 n ≥ 1 .

To obtain the transition probabilities, the unknown functions α(t) and γ(t) must

be determined. Knowing that this trial solution must satisfy the forward Kol-

mogorov equations

d

dt
pn(t) = β(n− 1)pn−1(t) + µ(n+ 1)pn+1(t)− (β + µ+ δ)npn(t) n ≥ 1 ,

the following ODE for γ(t) can be formulated,

d

dt
γ(t) = µγ(t)2 − (β + µ+ δ)γ(t) + β . (4.12)

To ensure that p1(0) = 1 and pn(0) = 0 for all n 6= 1, the initial condition γ(0) = 0

is imposed. Using this to solve (4.12) yields the solution

γ(t) =
1− e−β(b−a)t

b− ae−β(b−a)t
.

To obtain α(t), an ODE can be found in a similar way to that for γ(t), however,

a simpler approach is to consider the probability that the process Y remains in a

transient state at time t, that is

+∞∑

n=1

pn(t) = [1− α(t)] [1− γ(t)]
+∞∑

n=1

[γ(t)]n−1 = 1− α(t).

Therefore, α(t) represents the probability that Y has been absorbed into either

absorbing state at time t. The probability that Y has been absorbed into B at

time t is 1−S(t), whilst the probability that Y has been absorbed into state 0 at

time t is µγ(t)/β. An appropriate form for α(t) is therefore given by

α(t) = 1− S(t) +
µ

β
γ(t) .

The general form of the transition probabilities for a birth-and-death process

may now be used to show that the transition probabilities for a birth-and-death
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process with catastrophe are

pB(t) = 1− S(k)(t) ,

p
(k)
0 (t) = S(k)(t)[α(t)]k ,

p(k)
n (t) = S(k)(t)[α(t)]k[γ(t)]n

n∑

i=0

(
k

i

)(
k + n− i− 1

n− i

)[
1− α(t)− γ(t)

α(t)γ(t)

]i
.

Although it is possible to obtain expressions for the transition probabilities using

the p.g.f. defined by Karlin & Tavaré (1982), the same resemblance between those

of a birth-and-death process would not be so easily achieved.

The forward Kolmogorov equations can also be used to determine the p.g.f. of

Y. Through applying the approach described in Section 2.2.7, G(k)(z; t) satisfies

the partial differential equation

∂G

∂t
−
[
βz2 − (β + µ+ δ)z + µ

] ∂G
∂z

= 0 , G(z; 0) = zk .

The method of characteristics may then be used to obtain the solution

G(k)(z; t) =

[
ab
(
1− e−β(b−a)t

)
+ z

(
be−β(b−a)t − a

)

b− ae−β(b−a)t − z (1− e−β(b−a)t)

]k
.

This p.g.f. can be used to show that the second moment of a birth-and-death

process with catastrophe also satisfies (4.9) with g(t) replaced by γ(t). The

average number of bacteria released due to cell rupture at time t is therefore

given by

f̃(t) = f(t)
1 + γ(t)

1− γ(t)
.

Previously, Karlin & Tavaré (1982) show that when considering paths that ulti-

mately end with catastrophe, the rupture size for a birth-and-death process with

catastrophe follows a geometric distribution with mean b/(b−1). This mean does

not, however, take into account the scenario when X is absorbed into state 0 and

no bacteria are released. For this, the average rupture size is given by

IE [R |X(0) = 1] =

∫ +∞

0

f̃(t) dt =
δb

β(b− 1)2
= (1− a)

b

b− 1
.
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In either case, it is demonstrated how both roots of the polynomial h(S) =

βS2 − (β + µ + δ)S + µ have a meaningful interpretation, with 0 < a < 1

previously shown to represent the probability that absorption into state 0 occurs

before absorption into state B.

As a comparison of the density and survival functions for a birth process and

birth-and-death process with catastrophe, Figure 4.3 depicts f(t) and S(t) for

each process. Also included here is a previous effort by Gillard et al. (2014) to

approximate the survival function of a birth process with catastrophe, who use it

to help model the early dynamics of F. tularensis infection. This approximation

satisfies the ODE
d

dt
S(t) = −δeβtS(t) , S(0) = 1 ,

where eβt is used to approximate the mean number of intracellular bacteria, pro-

vided that a rupture event has not occurred. Given the transition probabilities

in (4.4), it is known that this conditioned mean is given exactly by 1/(1 − g(t))

and thus the survival function can be obtained exactly by instead solving

d

dt
S(t) = − δS(t)

1− g(t)
, S(0) = 1 .

This is also evident from the expression for the mean of a birth process with

catastrophe given in (4.6). Since eβt grows faster than 1/(1 − g(t)), the mean

number of intracellular bacteria is quickly overestimated, therefore resulting in

the faster decay of the approximate survival function that can be seen in Figure

4.3.

4.1.3 Populations of cells

The results so far described in this chapter regard single cells, for example, the

probability that a single infected cell survives to time t. Now, consider the sce-

nario where a population of cells are infected and let M(t) be a random variable

denoting the number of cells that survive to time t. If each cell is infected by

k bacteria, then a cell is either alive at time t with probability S(k)(t) or has

ruptured with probability 1 − S(k)(t). If all cells are independent, M(t) follows
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Figure 4.3: A comparison between the density of the time until rupture and

survival function determined by Gillard et al. (2014) and exact expressions for

a birth process and birth-and-death process with catastrophe (β = 0.15h−1,

µ = 10−2 h−1, δ = 10−3 h−1).

a binomial distribution, M(t) ∼ Bin(M,S(k)(t)), where M is the initial number

of infected cells. When each infected cell is modelled as a birth process with

catastrophe, the probability of ultimately rupturing is one and hence both the

mean and variance of M(t) tend to zero as t tends to infinity. If each cell is

modelled as a birth-and-death process with catastrophe, the average number of

cells that successfully clear their bacterial load and survive is IE [M(t)] = Ma,

with variance Var[M(t)] = Ma(1− a).

In an experimental setting, it is unlikely that each cell is infected by the

exact same number of bacteria. Instead, a multiplicity of infection (MOI) is

defined beforehand to represent the initial ratio of bacteria and cells. It is often

then assumed that the number of bacteria a cell is infected by follows a Poisson

distribution with mean equal to the MOI (Dixit & Perelson (2004); Shabram &

Aguilar-Cordova (2000)). When modelling each cell, if X(0) is the initial amount

of pathogen a cell is infected by and λ is the MOI, this suggests that

Pr(X(0) = k) =
λke−λ

k!
, k ≥ 0.

Suppose now that π(t) denotes the probability that a cell survives to time t. In

order to take into account the variable number of bacteria that a cell can be
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infected by, the law of total probability can be used to show that

π(t) =
+∞∑

k=0

S(k)(t) Pr(X(0) = k) = exp [−λ(1− S(t))] , t ≥ 0 ,

where the property S(k)(t) = (S(t))k of the survival function has been applied.

As in the previous case, provided that the cells act independently of each other,

it is still true that M(t) follows a binomial distribution, M(t) ∼ Bin(M,π(t)).

However, for both the birth process and birth-and-death process with catastrophe,

there is now a non-zero probability that the cell survives. For a birth process with

catastrophe, this is given by the probability that the cell never gets infected,

whilst for a birth-and-death process with catastrophe, it also incorporates the

probability that the cell recovers from infection by eliminating its bacterial load.

Figure 4.4 shows the mean of M(t) for both types of process following infection

at different MOI. In the comparisons that follow, it is assumed that β, δ and λ

are equal in both processes with the only difference being that µ = 0 for a

birth process with catastrophe and µ 6= 0 for a birth-and-death process with

catastrophe.

As expected, a larger MOI causes the average population size to decrease

faster, since cells are on average infected with a greater number of bacteria.

Furthermore, the average number of surviving cells is always greater for a birth-

and-death process with catastrophe compared to a birth process with catastrophe.

Despite this, when considering the average number of cells that ultimately survive,

the difference between the two processes is not as intuitive. For a birth-and-death

process with catastrophe, as the MOI increases it is less likely that the cell will

be able to clear its bacterial load since the process starts in a state further away

from 0. This suggests that for high MOI, the cells that ultimately survive are

those that are never infected, the same as for a birth process with catastrophe,

and thus the ratio of π(t) for the two processes is approximately one. From Figure

4.4, this same conclusion could also be reached, with the solid and dashed lines

appearing closer for higher MOI. However when evaluating the ratio,

lim
t→+∞

π(t |µ = 0)

π(t |µ 6= 0)
= e−λa ,
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Figure 4.4: The expected number of surviving cells at time t for different MOI,

assuming an initial population size of 104 cells. The cases where each cell is

modelled as a birth process with catastrophe (solid) and birth-and-death process

with catastrophe (dashed) are both considered (β = 0.15h−1, µ = 10−2 h−1,

δ = 10−3 h−1).

and so the relative difference between the two processes increases for larger MOI.

This feature is only not visible in Figure 4.4 due to the scale that IE [M(t)] is

plotted on.

When considering different MOI, the coefficient of variation provides a better

measure of dispersion than the standard deviation since the mean of M(t) spans

multiple orders of magnitude. The coefficient of variation of M(t) is given here

by

cv(t) =

√
1− π(t)

Mπ(t)
,

and is depicted for multiple MOI in Figure 4.5, suggesting that there is greater

relative variability when infecting at a high MOI. Furthermore, since the survival

function is greater for a birth-and-death process with catastrophe compared to a

birth process with catastrophe, it follows that cv(t) is greater for a birth process

with catastrophe. Although this is true for the coefficient of variation, it is not
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Figure 4.5: The coefficient of variation of the number of surviving cells at time

t for different MOI, assuming an initial population size of 104 cells. The cases

where each cell is modelled as a birth process with catastrophe (solid) and birth-

and-death process with catastrophe (dashed) are both considered (β = 0.15h−1,

µ = 10−2 h−1, δ = 10−3 h−1).

always true for the variance. Given the shape of π(t)(1 − π(t)), and that the

variance is initially greater for a birth process with catastrophe, it can be shown

that if

a <
1

λ
log
(
eλ − 1

)
,

then there exists a time t∗ such that for times t > t∗, the variance of the birth-

and-death process with catastrophe is larger than that of the birth process with

catastrophe.

4.1.4 Linear birth-and-death processes with general

catastrophes

This chapter has so far considered birth-and-death processes with catastrophe

where all three rates are linearly related to the state of the process. As a general-

isation, the case is now considered where the birth and death rates remain linear,
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but the rate of catastrophe is instead given by δc(X(t)). The survival function

now satisfies the ODE

d

dt
S(k)(t) = −δIE [c(X(t) |X(0) = k] , S(k)(0) = 1 ,

and the average number of bacteria released at time t is

f̃(t) = δIE [X(t) c(X(t)) |X(0) = k] .

For example, consider the case where the catastrophe rate is independent of the

state of X. A similar process has been studied by Van Doorn & Zeifman (2005),

where catastrophes occur at a constant rate but are also allowed to occur from

state 0. In this case, state B would remain the only absorbing state and the

survival function is given by e−δt. Here, however, given the different interpreta-

tions of the states 0 and B, it is important to consider the case where both states

remain absorbing. As a result, the catastrophe rate is not constant, but instead

defined as

c(X(t)) =





1 X(t) > 0 and X(t) 6= B ,

0 X(t) = 0 or X(t) = B .

If X̃ is a linear birth-and-death process without catastrophe, the survival function

for the process with catastrophe therefore satisfies

d

dt
S(k)(t) = −δe−δtS̃(k)(t) , S(k)(0) = 1 ,

and the average number of bacteria released from a cell at time t is

f̃(t) = δIE [X(t) |X(0) = k] = δke(β−µ−δ)t .

Given the previous definition in 4.10 of the average rupture size, IE [R], it can

be seen here that this is only finite provided that µ + δ > β. This restriction

on when the mean is finite suggests that it is more appropriate from a biological

perspective to consider a process where the birth, death and rupture rates are

all linear, compared to the process described above where the rate of rupture is

approximately constant.
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4.2 Agent based model

In this section I provide a detailed description of the agent based model (ABM)

used to study the early stages of F. tularensis infection. The purpose of this

model is to examine populations of bacteria and macrophages in the organs of

a mouse where infection is most prevalent, particularly focusing on the 48 hour

period following inhalational exposure to F. tularensis. The ABM is ultimately

used to help infer the value of specific parameters, such as the intracellular growth

rate, with the help of in vivo infection data.

The two main entities, or agents, included in the model are macrophages and

F. tularensis bacteria. Each bacterium is characterised by a set of attributes,

described by:

Bacterium:

- location: the name of the organ where the bacterium is currently located,

P : lung, L: liver, S: spleen, MLN : mediastinal lymph node, K: kidney.

- cohort number: a non-negative integer representing the number of

macrophages a single bacterium has infected.

- intracellular location: an indicator of whether the bacterium is lo-

cated extracellularly, 0, within a phagosome, P , or within the cytosol of a

macrophage, C.

Individual macrophages are described according to the following attributes:

Macrophage:

- location: the name of the organ where the bacterium is currently located,

location definitions remain the same as those for bacteria.

- phagosomal load: a non-negative integer representing the number of

bacteria contained within phagosomes inside of the macrophage.

- cytosolic load: a non-negative integer representing the number of bac-

teria contained within the cytosol of the macrophage.
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- cohort number: a non-negative integer equal to the cohort number of

the first bacterium to infect the macrophage. Once set, this cohort number

is fixed until the death of the macrophage where it is used to classify rupture

events.

- bacteria list: a list comprising the objects that represent the bacteria

contained within the phagosome or cytosol of the macrophage.

- activation state: the current activation state of the macrophage that

is used to dictate whether the macrophage controls or facilitates infec-

tion, −1: suppressed (anti-inflammatory), 0: resting, +1: activated (pro-

inflammatory). Only activated macrophages are capable of clearing their

intracellular bacterial load.

A further set of entities included in the model are the cytokines IFN-γ and TGF-

β. However, instead of being represented as objects, as is the case for bacteria and

macrophages, these are represented by continuous variables governed by ODEs.

Due to the different scales that cytokines and cells operate on, including molecules

of cytokines as individual agents would result in such a large number of interacting

agents that the model becomes inefficient. This hybrid approach of defining

an ABM through both rules and ODEs has previously been used by Athale &

Desiboeck (2006) and Wakeland et al. (2007).

Let IFN(t) and TGF(t) denote the concentration of IFN-γ and TGF-β at

time t. Since IFN-γ is secreted by activated macrophages and TGF-β is secreted

by suppressed macrophages, if A(t) and I(t) denote the respective number of

activated and suppressed macrophages at time t, then

d

dt
IFN(t) = αIFNA(t)− dIFNIFN(t) ,

d

dt
TGF(t) = αTGFI(t)− dTGFTGF(t) ,

where αIFN and αTGF are the rates at which the cytokines are secreted, and

the loss terms represent natural decay and consumption of cytokines through
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Figure 4.6: A depiction of the processes included in the ABM of F. tularensis in-

fection. An initial source of bacteria enters the lung and can infect macrophages,

suppressing them and resulting in the production of TGF-β. Following intracel-

lular bacterial growth, these macrophages rupture, releasing their bacterial load

and activating neighbouring macrophages. Activated macrophages contribute to

clearing infection by eliminating any bacteria they phagocytose. In addition to

infecting macrophages, death of extracellular bacteria can occur, as well as the

migration of bacteria to different organs (resting: green, suppressed: blue, acti-

vated: red).

the process of activating and suppressing neighbouring macrophages (Mosser &

Edwards (2008)).

In the ABM, the agents interact with each other according to a set of reactions,

where the reactions are the same within each of the five locations. A depiction of

the reactions included in the ABM is presented in Figure 4.6. Across the initial

48 hours of infection, the processes described below are simulated in the following

biologically meaningful order, with each population updated after each process

occurs.

100



4. AN AGENT BASED MODEL FOR F. TULARENSIS
INFECTION

• Phagocytosis (ρ (cell−1 bacterium−1 h−1)): a sample of extracellular bac-

teria is selected to enter macrophages. Both the bacteria and macrophages

are chosen at random with no preference between bacteria entering unin-

fected or already infected macrophages. If the activation state of the chosen

macrophage is resting (0), this is changed to suppressed (−1), whilst the

intracellular location of each bacterium is set to P and their cohort number

is increased by one. The objects representing the bacteria are appended to

the bacteria list of the corresponding macrophage. If the activation state

of the chosen macrophage is activated (+1), no bacteria are appended to

the bacteria list of the macrophage. This represents that only activated

macrophages are capable of clearing their bacterial load. The phagocy-

tosed bacteria are removed from the population of extracellular bacteria.

• Extracellular bacterial death (rate µ (h−1)): a random sample of extra-

cellular bacteria is killed by host-defence mechanisms such as anti-microbial

peptides (Jones et al. (2012)). The objects representing each killed bacteria

are removed from the population of extracellular bacteria.

• Phagosomal escape (rate φ (h−1)): a sample of bacteria currently resid-

ing within phagosomes escapes into the cytosol of the infected macrophage.

The number of bacteria contained within phagosomes in each macrophage

acts as a weight to determine how likely an escape event is to occur in the

given macrophage. The intracellular location of each escaping bacterium is

changed to C.

• Intracellular bacterial replication (rate β (h−1)): a sample of cytosolic

bacteria replicate within infected macrophages. The number of bacteria

in the cytosol of each macrophage acts as a weight to determine which

macrophages these replication events occur within. An exact copy of each

replicating bacterium is created such that the value of all attributes for the

offspring bacterium are inherited from the parent bacterium, including the

cohort number.
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• Macrophage rupture (rate δ (h−1)): a sample of infected macrophages

rupture and die. Macrophages are sampled such that those with a greater

cytosolic bacterial load are more likely to rupture than those with a smaller

bacterial load. The released bacteria are returned to an extracellular envi-

ronment and so their intracellular location is set to 0. For each rupturing

macrophage a second macrophage is sampled from the population, if the

activation state of this macrophage is resting (0) then this is changed to

activated (+1) to represent the effects of PAMPs/DAMPs that are released

when a cell ruptures (D’Elia et al. (2013)). The objects representing the

rupturing macrophages are removed from the macrophage population and

the contents of each bacteria list is appended to the list of extracellular

bacteria.

• Bacterial migration (rate γ (h−1)): a sample of extracellular bacteria

migrate from their current location to another location. The number of

bacteria that migrate to each location is a binomial random variable where

the probability of migration is equal to the relative weight assigned to each

organ. The choice of these weights reflects the preference of bacteria to

migrate towards specific organs, as observed experimentally, and is later

discussed in more detail. The location attribute of each migrating bacteria

is set equal to the organ it migrates towards.

• Suppression of neighbouring macrophages (rate νTGF (h−1)): a sam-

ple of macrophages whose current activation state is resting are suppressed

due to the effects of TGF-β. The activation state of each macrophage is

changed to suppressed (-1). Macrophages are only suppressed in this man-

ner after the concentration of TGF-β exceeds a specified threshold.

• Activation of neighbouring macrophages (rate νIFN (h−1)): a sample

of macrophages whose current activation state is resting are activated due

to the effects of IFN-γ. The activation state of each macrophage is changed

to activated (+1). Macrophages are only activated in this manner after the

concentration of IFN-γ exceeds a specified threshold.
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When simulating an ABM, the order in which the events occur is important as

this can impact the dynamics. Suppose here that phagocytosis of bacteria by

macrophages is always the first event to occur. It is then likely that due to the

large number of macrophages present in the lung, the entire initial dose would

be taken up immediately. These intracellular bacteria are then able to replicate

to high numbers until the macrophage ruptures. At this point, bacterial counts

are then large enough that extinction of the population due to bacterial death

is unlikely, and thus the population will almost certainly continue to grow. Now

suppose that extracellular bacterial death is the first event to occur. Depending

on the rate µ, there is a much larger probability that the population of bacteria

immediately becomes extinct, particularly at very low initial doses. If this hap-

pens, the simulations will continue as if infection never occurred. One way to

avoid having to choose the order of events is to allow it to vary during the sim-

ulation, that is, to randomise the order of events after each time step (Railsback

& Volker (2012)). Here, however, the initial dose is large enough, and the choice

of time step small enough, that the order of these first two events has little effect.

To initialise the agent based model, an initial dose of F. tularensis bacteria,

N , is specified. The starting number of bacterial agents is then sampled from a

Poisson distribution with mean N to represent possible uncertainty in this initial

dose. All bacteria are initially extracellular and are present only in the lung,

the cohort number of this initial dose is zero. The initial number of macrophages

within the lung is given by M , whilst the initial number of macrophages in the re-

maining locations is specified as a fraction of M . The interpretation of M should

not be that it represents the total number of macrophages present in the lung of

a mouse. Since the topology of the lung is highly complex, infection is likely to

only occur throughout small pockets of lung space, particularly during the first

48 hours. Therefore, M instead represents the total number of macrophages in

these areas of localised infection. In this sense, the idea that rupturing of infected

macrophages results in the activation of neighbouring macrophages is a plausible

assumption. All macrophages are initially uninfected and begin in a resting acti-

vation state. The ABM is simulated using a tau-leaping procedure similar to that
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outlined in Section 2.4.2 where the time step, τ , is now fixed. In the previously

described list of events, the size of the sample is therefore drawn from a Poisson

distribution with mean proportional to the corresponding rate of the event.

For each simulation of the ABM, model output is recorded at either the end

of the time step, as is the case for quantities relating to the size of a specific pop-

ulation, or at the instance that a particular event occurs, as is the case when the

quantity corresponds to a time. In order to quantify the progression of the infec-

tion, the number of extracellular, phagosomal and cytosolic bacteria is recorded

for each organ, with their sum giving the total bacterial load. In addition to

this, rupture events are recorded and characterised by the time and cohort num-

ber of the event, as well as the number of bacteria released. Since the cohort

number of a macrophage is determined by the cohort number of the bacterium

to first infect it, macrophages infected by the initial dose of bacteria each have

a cohort number equal to one. The rupture events involving these macrophages

are therefore referred to as first cohort rupture events. For macrophages that

are initially infected by bacteria released from first cohort rupture events, their

cohort number will be equal to two and thus the rupture events that follow are

called second cohort rupture events.

4.3 Cohort analysis

In this section, an approximation for the bacterial load of each organ is developed

by making use of the cohort numbers defined previously. The idea of modelling

individual cohorts of bacteria during F. tularensis infection has previously been

considered by Gillard et al. (2014). However, their approach only considers first

cohort rupture events and is constructed using the less accurate survival func-

tion depicted in Figure 4.3. This section therefore acts as an extension of this

approach, drawing on results of birth processes with catastrophe to improve on

the existing approximations in order to apply to higher order cohorts.

Since the lung is the first organ to be infected following inhalation of F. tu-

larensis bacteria, it is suitable to begin by considering the total number of bacteria
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within the lung of an infected mouse. Once inside the lung, the initial dose of

bacteria is believed to be phagocytosed primarily by alveolar macrophages (Hall

et al. (2008)). Given that these phagocytosis events occur quickly, it is then rea-

sonable to assume that time zero corresponds to the time at which the initial dose

of bacteria are all residing in the phagosomes of macrophages. Furthermore, if

the number of macrophages exposed to the initial dose of bacteria is significantly

larger than the size of the initial dose, it is also appropriate to assume that each

infected macrophage contains only a single bacterium. Since the initial dose con-

tains N bacteria, the initial state of the system is one where N macrophages are

each infected with one bacterium, contained within a phagosome.

Let Pj(t) and Cj(t) denote the respective mean number of cohort j bacteria

in macrophage phagosomes and cytosols at time t. A natural starting point is

to consider P1(t), representing the initial dose of phagosome residing bacteria.

Given that bacteria escape phagosomes with rate φh−1, P1(t) decays exponen-

tially according to

d

dt
P1(t) = −φP1(t) , P1(0) = N .

For the population of first cohort bacteria in cytosols, C1(t), each cell may be

thought of as a birth process with catastrophe, X = {X(t) : t ≥ 0}, where the

state of the process represents the number of intracellular bacteria. The average

size of this population is then given by the expectation of X, previously defined

in (4.6), for the case X(0) = 1. However, this currently assumes that time zero

corresponds to the time at which the bacterium enters the cytosol, but here time

zero corresponds to the time immediately after a bacterium enters the cell. This

delay can be accounted for by using the p.d.f. of an exponential distribution,

the distribution of time a bacterium spends in the phagosome. In doing so, the

number of first cohort bacteria in cytosols is given by

C1(t) = Nφ

∫ t

0

IE [X(t− s)] e−φs ds = N
φ

δ

∫
f(t− s)e−φs ds , (4.13)

where f(t) is the p.d.f. of the time until rupture of a macrophage initially infected

by a single bacterium, defined in (4.7). In order to determine the size of higher
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order cohort populations, an understanding of the rupture events is required.

Recall that just as f(t) is the probability that a macrophage ruptures at time

t, f̃(t) is the average number of bacteria released by a macrophage at time t.

A comparison between these functions and the average of 2.5 × 102 simulations

of the ABM is provided in Figure 4.7. By averaging over a large number of

realisations, the histogram matches well to the the smooth functions f(t) and

f̃(t). However, the number of macrophages that survive to time t is not a smooth

function but instead decreases in steps. In this sense, it is also interesting to

see how NS(t) compares with the survival curve for a single realisation. This is

provided in Figure 4.8 along with a comparison between n̄(t) and the number of

bacteria each macrophage releases on rupture.

It should be noted that since f(t) and f̃(t) are derived using the birth process

with catastrophe, X, they do not incorporate the time that a bacterium spends in

the phagosome. As for C1(t), this delay can be accounted for by considering the

convolution of each function with the density of the time spent in the phagosome.

However, since this delay of approximately half an hour is significantly shorter

than both the total time until macrophage rupture and the doubling time of a F.

tularensis bacterium, there is little difference when using the convolution (Jones

et al. (2012); Wood et al. (2014)). For this reason, f(t) and f̃(t) are continued

to be expressed in their current form.

The functions f(t) and f̃(t) can now be used to help determine the number

of second cohort bacteria residing in macrophage phagosomes. This population

increases as a result of bacteria released from first cohort rupture events infecting

neighbouring macrophages, and decreases due to bacteria escaping the phagosome

into the cytosol. By neglecting the time spent extracellularly, P2(t) satisfies the

ODE
d

dt
P2(t) = Nf̃1(t)− φP2(t) , P2(0) = 0 .

For C2(t), the decay in the population due to bacteria being released from second

cohort rupture events can be determined by considering the convolution of f̃(t)

with itself. Suppose that a macrophage is initially infected by a single bacterium

at time zero and releases on average f̃(s) bacteria when it ruptures at time s.
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Figure 4.7: A comparison between the mean of 2.5 × 102 realisations of the

ABM and the functions f(t) and f̃(t) (β = 0.15h−1, δ = 10−3 h−1).

If these f̃(s) bacteria each infect a different uninfected macrophage, then the

number of bacteria released at time t is f̃(s)f̃(t − s) and the average number

released can be found by integrating over the possible times of the first rupture

event. This argument can be extended to show that the mean number of bacteria

released in nth cohort rupture events is given by

f̃n(t) =

∫ t

0

f̃n−1(s)f̃(t− s) ds .

Similarly, the times at which nth cohort rupture events occur are defined according

to

fn(t) =

∫ t

0

f̃n−1(s)f(t− s) ds . (4.14)

From this, the number of nth cohort bacteria contained within phagosomes in-

creases due to previous cohort rupture events and decreases due to bacteria es-

caping the phagosome. The number of nth cohort bacteria residing in cytosols

increases due to bacteria entering from phagosomes along with bacterial replica-

tion, but decreases due to current cohort rupture events. This allows the following

system of ODEs to be constructed which describes the number of bacteria in each

cohort within the lung
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Figure 4.8: Survival curve for a single realisation of N = 20 macrophages, each

initially infected with a single bacterium. The number of bacteria released when

each macrophage ruptures is also indicated at the corresponding time of rupture

(β = 0.15h−1, δ = 10−3 h−1, φ = 2h−1).

d

dt
Pn(t) = −φPn(t) +Nf̃n−1(t) Pn(0) = 0 , n = 2, ..., Z ,

d

dt
Cn(t) = φPn(t) + βCn(t)−Nf̃n(t) Cn(0) = 0 , n = 2, ..., Z − 1 ,

d

dt
CZ(t) = φPn(t) + βCn(t) CZ(0) = 0 .

(4.15)

If there is sufficient migration of uninfected cells into the localised areas of infec-

tion within the lung, it is possible that bacteria released in each rupture event

enter a unique uninfected macrophage. In this sense, system (4.15) could con-

tinue indefinitely. However, as the infection progresses and the total number of

bacteria grows, the likelihood that this assumption holds true decreases. For this

reason, the system is truncated to include only the first Z cohorts, where the in-

terpretation of Z is that a cohort rupture event of order Z will not occur during

the time period being modelled. The choice of Z should therefore reflect the time

period over which the approximation is being applied, and this should in turn

depend on how long this assumption is likely to hold true for. This approximation

108



4. AN AGENT BASED MODEL FOR F. TULARENSIS
INFECTION

is also independent of ρ, the rate of phagocytosis, since the time that bacteria

spend extracellularly is assumed to be negligible compared to the time they spend

intracellularly. The same assumption is also made by Brown et al. (2006) in their

model of S. enterica infection. If the extracellular phase is believed to be im-

portant, (4.15) could be extended to account for this by including a variable for

the number of extracellular cohort j bacteria. This variable would then increase

due to the release of bacteria from current cohort rupture events and decrease

as a result of bacteria infecting macrophages. The solution to system (4.15) is

provided in Figure 4.9 along with the average number of bacteria in each cohort,

as determined by the ABM.

Given (4.15), the mean total number of bacteria present in the lung is obtained

by summing the individual cohorts

Tlung(t) =
Z∑

n=1

(Pn(t) + Cn(t)) ,

and it is now possible to consider the bacterial load in the remaining four organs.

One possible mechanism for the migration of bacteria to different organs is the

movement of cells containing bacteria, with Kirby et al. (2009) previously showing

that alveolar macrophages are involved in the transport of S. pneumoniae to the

lung draining lymph nodes. A second mechanism involves the direct entry of F.

tularensis bacteria into the blood. Despite this, the experimental measurements

used to infer the model parameters only concern the total number of bacteria

present in each organ, and as a result it would not be possible to distinguish be-

tween these different mechanisms of bacterial migration. Therefore, as described

by the ABM, the number of migrating bacteria is assumed to be proportional

to the number of extracellular bacteria, and thus in order to find the number of

bacteria in the remaining organs, the number of extracellular bacteria in the lung

must first be determined. This may seem unusual given the previous assump-

tion that the time bacteria spend extracellularly in the lung can be neglected.

However, this extracellular phase, along with the time spent in phagosomes, acts

only as a delay in the constant growth of the population of bacteria. Since this

delay is short in comparison to the total length of the intracellular life cycle, it
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Figure 4.9: The first three cohorts of phagosome and cytosol residing bacteria

as determined by system (4.15) (dashed) compared to averages obtained from 102

realisations of the ABM (solid). Solutions are only plotted for values exceeding

one bacterium (N = 160 bacteria, M = 104 macrophages).

is acceptable not to account for extracellular bacteria when finding intracellular

bacterial loads, yet it is essential for considering the total number of bacteria in

the remaining organs.

In the ABM, bacteria are released extracellularly through successive rupture

events. Once extracellular, these bacteria either infect a different macrophage

with rate ρ (cell−1 bacterium−1 h−1), migrate to another organ with rate γ (h−1),

or are killed with rate µ (h−1). If E(t) denotes the expected number of extracel-

lular bacteria in the lung at time t, then

d

dt
E(t) = N

Z−1∑

n=1

f̃n(t)− E(t) [Mρ+ γ + µ] , E(0) = 0 .

Suppose now that S denotes the set of organs, aside from the lung, that bacteria

can migrate towards. Let P j(t), and Cj(t) denote the respective mean number

of bacteria in phagosomes and cytosols of macrophages residing in organ j ∈ S.

Given that the average time for a macrophage in the lung to rupture is in excess

of 24 hours, and only the first 48 hours of infection are currently being considered,

the assumption is made that no rupture events will occur within the remaining
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organs during this period. This assumption has been verified using the ABM,

where fewer than 10 rupture events occurred on average in the lymph node, liver,

kidney and spleen compared to greater than 103 in the lung. As a result of this

assumption, the bacteria that migrate to another organ infect macrophages and

remain there until at least the end of the 48 hour period. Since the dynamics

of infection are the same in all organs, P j(t) and Cj(t) obey a similar system of

ODEs as their counterparts for the lung

d

dt
P j(t) = E(t)γwj − φP j(t) P j(0) = 0 ,

d

dt
Cj(t) = φP j(t) + βCj(t) Cj(0) = 0 ,

(4.16)

where wj are the weights assigned to each organ that determine how likely it is

for a migrating bacterium to move to that particular organ.

Together, (4.15) and (4.16) provide a simple way of studying the mean number

of bacteria in each organ of an infected mouse. One feature of the ABM is the

large variability that can be observed between simulations. Following first cohort

rupture events, the majority of bacteria enter macrophages in the lung, however,

should migration of bacteria occur at such an early time point, the extent of the

replication can often skew averages for the remaining organs. Although this can

be resolved by increasing the number of simulations of the ABM, this can be

time consuming and therefore means that it can be difficult to characterise the

infection from simulations alone.

4.4 Parameter values

In this section, I describe how a Bayesian approach to parameter inference can

be used to learn about the most important parameters by comparing the model

output with in vivo infection data. The approximations derived in Section 4.3

provide a faster approach for evaluating the model than simulating the ABM, a

necessary requirement for the ABC algorithm that is implemented here.
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4.4.1 Experimental data

The data presented in this section and used in the parameter inference are pro-

vided by Dr. Roman Lukaszewski from the Defence Science and Technology Lab-

oratory (Dstl). These quantitative data contain bacterial counts of F. tularensis

SCHU S4 in the lungs, MLN, liver, spleen and kidney of mice infected at two

different doses. A high dose of 160.33 CFUs and a medium dose of 13.7 CFUs

represent an estimated average number of CFUs that were delivered to each

mouse. This calculation takes into account the breathing rate of the mouse and

the length of time that the mouse was exposed to the aerosolised bacteria. For

each dose, six different mice were culled at multiple time points within the first 48

hours of infection and their bacterial burden recorded. To determine the bacteria

load, samples of each organ were disrupted through a cell sieve to give a single cell

suspension. Serial dilutions of this suspension were then plated and left to allow

colonies of bacteria to form. By counting the number of colonies and accounting

for the dilution factor, the number of bacterial CFUs in the original sample can

be estimated.

Presented in Table 4.1 are the bacterial counts for each mouse, organ and

time point, provided that at least one of the six mice had bacterial counts greater

than zero. Since these data are used to infer parameter values, they must be

reliable. The measurements at one hour post infection show great variability,

with no bacteria present in the measured organs of some mice, whilst other mice

have bacterial loads greater than the initial dose. For this reason, only the values

presented in Table 4.1 for times after one hour post infection are considered

reliable and used in the parameter inference.

4.4.2 Sensitivity analysis

Although the data in Table 4.1 corresponds to measurements for multiple mice,

doses and time points, it would be difficult to learn about all model parameters

from the data since only the total number of bacteria has been observed. For

this reason, only the values of those parameters that are least known about in
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the literature, or those parameters that have the most influence on the model

dynamics, will be inferred. For example, it is known that F. tularensis bacteria

spend approximately 0.5–1 hours in the phagosome, so if φ is not identified as an

important parameter, it would be suitable to fix the value of φ within this range.

To determine the parameters that have the greatest influence, Sobol sensitivity

indices are computed for the total number of bacteria in each organ. First-order

(S1) and total-order (ST ) indices are depicted in Figure 4.10 for the initial 48

hours of infection. Since (4.15) depends on β, φ and δ, the Sobol indices in Fig-

ure 4.10 have only been included for these parameters. The ranges over which

these parameters are varied are β ∈ [0, 0.5], φ ∈ [0.5, 5] and δ ∈ [0, 10−2]. For the

remaining organs, (4.16) has an additional dependence on the number of extra-

cellular bacteria in the lung, and therefore the total number of bacteria in these

organs also depends on both µ, γ and Mρ. In this case the Sobol indices have

been computed for all six parameters. The ranges for these additional three pa-

rameters are µ ∈ [0, 0.1], log10 γ ∈ [0, 3] and log10Mρ ∈ [−2, 5]. The decision to

include the product Mρ as a single parameter relates to the interpretation of M ,

and the difficulty in determining the number of macrophages present in localised

regions of infection within each organ. Since the dynamics in the MLN, liver,

kidney and spleen are described by the same system of equations, the sensitivity

analysis produces the same results and so only the Sobol indices for the MLN

have been included in Figure 4.10.

For the lung, the most important parameter is β, the intracellular growth

rate of bacteria, whilst φ has some importance during the early hours but this

quickly diminishes. The rupture rate of a macrophage, δ, has a first order and

total order Sobol index of zero because of the assumption that F. tularensis bacte-

ria immediately infect macrophages after being released through rupture events.

This again relates to the idea that rupture events act as delays in the continual

growth of the bacterial population. If a rupture event causes no delay in this

growth, then it can be expected that the rate at which rupture events occur will

have no effect on the total number of bacteria.

For the MLN, and similarly the remaining organs, Mρ and γ are the most
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Figure 4.10: First order (S1) and total order (ST ) Sobol sensitivity indices for

the total number of bacteria in the lung and MLN during the initial 48 hours of

infection with F. tularensis.

influential parameters during the early stages of infection. This is understand-

able since it is the ratio of these parameters that determines whether a bacterium

released in a rupture event will remain in the lung or migrate to a different organ.

As the infection progresses and it becomes increasingly likely that a bacterium

has migrated to the MLN, β takes over as the most important parameter, dic-

tating the growth of the population. Unlike for the lung, δ appears to have some

importance during the early stages of infection in the other organs. Here, a small

value of δ corresponds to rupture events occurring at later times. Whilst this

has no effect on the way dynamics are modelled in the lung, at least one rup-

ture event is necessary for bacterial counts to increase in the remaining organs.
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Later rupture times increase the delay until this can happen, thereby reducing

the number of bacteria present in these organs.

Together, the sensitivity analysis suggests that β, Mρ and γ are the most

important parameters for describing the total bacterial load across all organs.

Although an approximate doubling time of F. tularensis bacteria is known, ob-

taining an accurate value of β is desirable given that it has the most importance

(Jones et al. (2012)). As a result of this, the values of these three parameters will

be inferred from the experimental observations.

4.4.3 Organ weights

Whilst γ is the total rate at which bacteria migrate away from the lung, the

weights wj, j ∈ S are used to determine exactly which organ a migrating bac-

terium enters. As described previously, the limited data available means that it

would be difficult to use ABC to learn about all four weights, in addition to β,

Mρ and γ. Instead, to determine the values of these weights, the proportion of

bacteria that reside in the MLN, liver, spleen and kidney is computed for each of

the six mice that were culled at 48 hours. These proportions are determined using

total bacterial counts across all organs excluding the lung. By averaging over the

different mice and then over the medium and high doses, the mean proportion of

bacteria in each organ can be found. The weights are then defined using these

mean proportions,

wMLN = 0.8 , wliver = 0.11 , wspleen = 0.05 , wkidney = 0.04 .

The larger weight assigned to the MLN is understandable from a biological per-

spective, since macrophages carrying bacteria are likely drained through the lym-

phatic system to the MLN earlier than it takes for bacteria to enter the blood

(Bosio et al. (2007); Hodges et al. (1965)).

4.4.4 Bayesian inference

In order to learn about β, Mρ and γ, an ABC rejection sampling algorithm is

implemented. Prior beliefs regarding each parameter are encoded by the prior
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distributions, selected here to be β ∼ U(0, 0.5), log10(Mρ) ∼ U(−2, 5) and

log10 γ ∼ U(0, 3). The choice of prior distribution for β is due to the belief

that the doubling time of a single F. tularensis bacterium is approximately 6-7

hours (Jones et al. (2012)). Since little is known about the remaining parameters,

the ranges of these prior distributions are chosen to be large enough such that

regions of parameter space that have high posterior density are not mistakenly

omitted.

For each sampled set of parameters values, the total number of bacteria in

each organ is computed using (4.15) and (4.16), and compared to reliable exper-

imental observations as described in Section 4.4.1. When evaluating the model,

the remaining parameters are fixed according to the values provided in Table 4.3.

The model output is compared to the data using the distance

d2(M,E) =
∑

i∈D

∑

j∈S

∑

t∈Ti,j




log
(
T

(M)
i,j (t)

)
− log

(
T̄

(E)
i,j (t)

)

σi,j(t)




2

,

where D = {160.33, 13.7} is the set of initial doses and Ti,j is the set of times at

which measurements were recorded for dose i ∈ D and organ j ∈ S. The variable

T̄
(E)
i,j (t) is the average bacterial burden in organ j ∈ S for the six mice culled at

time t, whilst σi,j(t) is the geometric standard deviation. The values for these

variables are reported in Table 4.1.

In total, 106 iterations of the ABC rejection sampling algorithm were per-

formed, with an acceptance rate of 0.5% resulting in an accepted posterior sam-

ple containing 5× 103 parameter sets. Summary statistics for these approximate

posterior samples are provided in Table 4.2. Pointwise median predictions for

the mean total number of bacteria in each organ have been constructed using

the posterior sample and are provided in Figure 4.11, showing how the model

approximations compare with the experimental data. Overall, these approxima-

tions compare well, particularly with bacterial counts in the lung, however, some

data points lie outside of the 95% credible regions. This may be due to the nar-

row posterior distribution obtained for β, that in turn is a reflection of our choice

to fix the initial doses. It is likely that there is variability in the initial doses

reported here, and accounting for this variability could yield a wider posterior
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Figure 4.11: Pointwise median predictions showing the mean total number of F.

tularensis bacteria in each organ for both medium and high initial doses. Shaded

regions depict 95% credible regions.

distribution for β and thus wider credible regions that may better explain all of

the measurements.

The posterior histogram for β is provided in Figure 4.12, with its narrow

range indicating that it is possible to learn a lot about the intracellular growth

rate. This is particularly important since the sensitivity analysis suggests that

β is the most influential parameter. Furthermore, the posterior median estimate

of βmedian = 0.1532h−1 is close to the original value of β = 0.15h−1 predicted

by Gillard et al. (2014). Figure 4.13 shows the bivariate posterior distribution of

Mρ and γ. The strong correlation between these two parameters suggests that it

is difficult to learn about their individual values, however, it is possible to learn

about the ratio γ/Mρ, the histogram for which is also provided in Figure 4.13.

This correlation is understandable given that the inference has been performed

using data that only describes total bacterial counts. Increasing Mρ increases the

likelihood that bacteria released from rupture events in the lung will continue to

infect macrophages in the lung. In order to obtain the same level of infection in

the remaining organs, the value of γ must therefore also be increased such that a

greater number of bacteria also migrate away from the lung.

A closely related quantity that is of greater interest to learn about is the
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Figure 4.12: Posterior histogram for β with the corresponding prior distribution

also indicated in red.

probability that a bacterium migrates to a different organ instead of being killed

or causing further infection events in the lung. During the early stages of infec-

tion, when only a small number of rupture events have occurred and thus Mρ is

approximately constant, this probability is given by γ/(γ +Mρ+ µ). The poste-

rior distribution of this probability is provided in Figure 4.14 and suggests that

approximately 0 − 2% of bacteria released from the first cohort rupture events

will migrate to a different organ. To obtain this distribution, a fixed value of

µ = 10−2 h−1 has been assumed.

The problems with identifiability that arise when trying to learn about γ and

Mρ are due to only recording measurements of bacterial counts. This suggests

that, although different posterior values of these parameters result in similar

total bacterial counts, they may lead to distinct behaviour when considering a

separate quantity. For example, the ABM can also be used to identify the pro-

portion of cells in resting, activated and suppressed activation states. Figure

4.15 shows the proportion of cells in each of these activation states for multi-

ple values of Mρ. Since a single value of Mρ corresponds to multiple values

of γ, linear regression is used to approximate the linear relationship that exists
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Figure 4.13: Left: bivariate posterior distribution of log10 γ and log10(Mρ)

showing the strong correlation that exists between these two parameters. Right:

posterior distribution of the ratio log10(γ/(Mρ)) with the corresponding prior

distribution indicated in red.

between log10Mρ and log10 γ. That is, given Mρ, γ is calculated according to

log10 γ = −1.84+0.92 log10Mρ. Furthermore, in each of these plots a high initial

dose and the posterior median estimate of β are used. It should also be noted

that the ABM is parametrised by an initial number of macrophages, M , instead

of the product Mρ, so for this purpose ρ = 0.1 cell−1 bacterium−1 h−1 is fixed and

thus M is varied. Alternatively, M could have been fixed and ρ varied, however,

this produces very similar behaviour for different ρ when M is large.

Since the majority of suppressed macrophages are also infected, the plots in

Figure 4.15 suggest that there reaches a point where almost all macrophages in the

localised areas of infection become infected, with only activated macrophages re-

maining uninfected. This is followed by a decline in the population of macrophages

until only activated macrophages survive, since these macrophages are capable of

clearing their intracellular bacterial load. This pattern is seen across each value

of Mρ but after a delay that increases as Mρ increases. This delay is due to

the assumption that the initial dose is the same for each scenario. As a result
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Figure 4.14: Posterior histogram for the probability that a bacterium in the

lung migrates to a different organ as opposed to getting killed or infecting a

different macrophage in the lung. The histogram is constructed using posterior

distributions for Mρ and γ, and a fixed value of µ = 10−2 h−1.

Min. 1st Qu. Median Mean 3rd Qu. Max.

β 1.3× 10−1 1.5× 10−1 1.5× 10−1 1.5× 10−1 1.6× 10−1 1.8× 10−1

Mρ 4.3 6.6× 102 3.5× 103 1.4× 104 1.8× 104 1.0× 105

γ 1.0 4.9 2.5× 101 1.1× 102 1.3× 102 1.0× 103

Table 4.2: A summary of the posterior samples for each model parameter in-

cluded in the Bayesian inference.

of this, the same number of macrophages initially become infected, however, this

represents a larger proportion of the total population size when M is small. It

then follows that the same number of bacteria will, on average, be released in

first cohort rupture events. When M is small, these released bacteria then infect

a larger proportion of uninfected macrophages compared to when M is large.

This indicates that higher order cohort rupture events are required to infect all

macrophages for larger M , therefore resulting in the observed delay.

In the plot corresponding to log10Mρ = 2, it can be seen that the proportion

of infected cells is close to zero at 48 hours post infection. As F. tularensis
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Description Parameter value Reference

Mρ per bacterium infection rate 3526.62 bacterium−1 h−1 estimated

φ rate of bacterial escape from phagosome 2h−1 [1]

β rate of intracellular bacterial growth 0.1532h−1 estimated

δ rate of macrophage rupture 0.001h−1 [2]

µ rate of extracellular bacterial death 0.01h−1 [3]

γ per bacterium migration rate 24.86h−1 estimated

Table 4.3: A description and values of the parameters used in the approximation

of the ABM. Posterior median values are reported for parameters inferred from

infection data. [1]: Jones et al. (2012), [2]: Marino & Kirschner (2004), [3]:

Lowrie et al. (1979).

replicates intracellularly, growth of the bacterial population can not be sustained

in the absence of cells. There this scenario cannot agree with the data in Table

4.1, where the mean number of bacteria present in the lung exceeds 105. This

disagreement arises from the assumption in the approximation of the ABM that

there are sufficiently many macrophages for each bacteria released from rupture

events to infect. Since M = 103 cells in this case, this assumption is likely not true

once first cohort rupture events have occurred. Therefore, although log10Mρ = 2

has high posterior density, the particular parametrisation where M = 103 cells

and ρ = 0.1 cell−1 bacterium−1 h−1 could not give rise to the experimental data.

This shows that by inspecting model output that does not relate to total bacterial

counts, it is possible to rule out certain values of parameters and hence further

refine the parameter space.

During the early stages of F. tularensis infection, bacteria go undetected by the

immune system. However, this is followed by a sharp increase in pro-inflammatory

responses, such as the migration of effector cells and secretion of pro-inflammatory

cytokines. In particular, the migration of neutrophils into the lung is believed

to act as a disadvantage to the survival of the host, with F. tularensis bacteria

able to prolong the lifespan of neutrophils (Schwartz et al. (2012)). In prolonging

the lifespan, the process of neutrophil apoptosis is perturbed and neutrophils can

122



4. AN AGENT BASED MODEL FOR F. TULARENSIS
INFECTION

0 12 24 36 48
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
pr

op
or

tio
n 

of
 m

ac
ro

ph
ag

es M = 102, = 1.0

0 12 24 36 48
0.0

0.2

0.4

0.6

0.8

1.0
M = 102.5, = 2.87

0 12 24 36 48
Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
pr

op
or

tio
n 

of
 m

ac
ro

ph
ag

es M = 103, = 8.27

0 12 24 36 48
Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0
M = 103.5, = 23.82

Figure 4.15: The proportion of macrophages that are in resting (green), sup-

pressed (blue) and activated (red) activation states for different values of Mρ and

corresponding values of γ. In each plot, ρ = 0.1 cell−1 bacterium−1 h−1 whilst M

is varied.

develop a pro-inflammatory phenotype that ultimately contributes to sustaining

infection (Allen (2013)). It is therefore interesting to consider the time at which

this migration of cells into the lung occurs, as this could represent a marker of

disease progression. The ABM simulations indicate that there is a time at which

all cells in the localised areas of infection are either activated or have ruptured,

and so the migration of cells is likely to occur before this time. Therefore, the time

until only activated macrophages survive could act as this marker, corresponding

to the mouse succumbing to infection in the absence of treatment. Figure 4.16

shows the mean time until only activated macrophages survive for both high and

medium initial doses and for different values of Mρ. As in Figure 4.15, ρ = 0.1
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Figure 4.16: The mean time taken for ABM simulations to show that only

activated macrophages are present within infected areas of the lung for varying

values of Mρ.

cell−1 bacterium−1 h−1 remains fixed whilst M is varied. This results in a longer

mean time when both Mρ is larger, since there are more macrophages to infect,

and when the initial dose is lower, since higher order rupture events are required

to infect all cells.

4.5 Discussion

In this chapter, I have firstly provided a summary of results regarding birth pro-

cesses and birth-and-death processes with catastrophe, with emphasis towards

the time at which the catastrophe event occurs. As in Chapter 3, this process

then acts as a model for the infection of a single macrophage with F. tularensis

bacteria, however, now under the assumption that the rate at which an infected

macrophage ruptures is proportional to its intracellular bacterial load. Previously,

the constant catastrophe rate was chosen to reflect the experimentally observed

log-normally distributed rupture times, whereas here, the choice reflects the belief

that a macrophage containing a greater number of bacteria is more likely to rup-

ture. Attempting to determine the distribution of rupture times is a preferable

approach, with the choice of a log-normal distribution not motivated by biolog-
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ical mechanisms, only by goodness-of-fit. The density of the time until rupture,

depicted in Figure 4.7, may not exactly match that of the logN(3.72, 0.385) dis-

tribution used in Chapter 3, however, this is likely due to the assumption that

both the birth and rupture rates are linear. Future consideration could therefore

be given to investigating how the structure of these rates influences the shape of

the density of the time until rupture. Despite this, through linking the replication

and rupture rates, the approach used in this chapter has the advantage of being

able to predict the effect that changing the rate of bacterial replication has on

the time until rupture. In the within-phagocyte level of the multi-scale model,

the distribution of rupture times is approximated from in vitro results, and is

independent of the stochastic logistic growth process. For this model, it would

therefore not be possible to make these same predictions.

To consider the interactions between populations of cells and F. tularensis

bacteria, an ABM has also been developed, the behaviour of which can be ap-

proximated through applying results from the model of a single infected cell.

These ODE approximations consider the change in successive cohorts of bacteria

and are consistent with the ABM during the initial 48 hours of infection. An

alternative approximation has since been formulated that offers greater accuracy

for later time points, and is reported here to avoid confusion regarding the exact

method used in the previous sensitivity analysis and parameter inference. Con-

sider, for example, the second cohort of cytosol residing bacteria, C2(t). This

mean number of bacteria can instead be expressed as

C2(t) = N

∫ t

0

IE [X(t− s) |X(0) = 1] f̃1(s) ds ,

= N

∫ t

0

f1(t− s)
δ

f̃1(s) ds =
Nf2(t)

δ
. (4.17)

where f2(t) is equivalent to the definition provided in (4.14). Although this

new approach is more accurate at later time points, it is almost equivalent to the

previous approximations during the initial 48 hours, as seen in Figure 4.17. Little

difference could therefore be expected in the sensitivity analysis and Bayesian

inference presented in Sections 4.4.2 and 4.4.4, and so the same conclusions hold
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Figure 4.17: A comparison between the mean number of second cohort bacteria

in macrophage cytosols computed using (4.15) (red), the new approach described

in (4.17) (yellow), and 3× 101 simulations of the ABM (blue).

true. These conclusions include obtaining an accurate estimate of the intracellular

replication rate, β, of F. tularensis SCHU S4 bacteria. Given that, relative to the

time spent in the cytosol, little time is spent extracellularly or in the phagosome,

this parameter has also been shown to be the most important for determining

how quickly the disease progresses. Despite providing an improvement, there

will ultimately be a time where this new approximation fails due to multiple

bacteria being phagocytosed by the same macrophage. At such a time, obtaining

mathematical expressions for the size of each cohort becomes difficult, as the

effect that subsequent phagocytosis events have on the time until rupture must

be accounted for. This has previously been considered in Section 3.4.1 for the

within-phagocyte model, but only numerically through the use of the Gillespie

algorithm. Furthermore it may also be necessary to consider a spatial aspect,

with the proximity of neighbouring macrophages affecting which cells the released

bacteria enter. Together, these difficulties in obtaining analytical expressions

highlight the benefits of agent based models, where simple sets of rules are able

to produce complex behaviour.
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Chapter 5

A within-host model for Ebola

virus infection

Mathematical models have previously been used to great effect in understanding

the infection dynamics of viruses and in aiding the design of novel experiments,

with particular successes including models of HIV, hepatitis and influenza infec-

tion (Baccam et al. (2006); Perelson (2002); Ribeiro et al. (2002)). In many

cases, these models are variations of an original target cell-limited model that

considers the dynamics of uninfected target cells, infected cells and extracellular

virus (Nowak & May (2000)). Extensions of this original model often then in-

volve the introduction of innate and adaptive immune responses, or the effects

that antiviral drug treatments have on the infectivity and replication of the virus

(Best & Perelson (2018)). Although antiviral treatments can target specific in-

tracellular viral components, their efficacy is accounted for in these models by

adjusting the rate of virus production, a rate that is assumed to be proportional

to the number of infected cells. As a result, these models focus very much on the

extracellular dynamics of infection and less so on the intracellular dynamics.

Detailed models of the intracellular dynamics that incorporate transcription of

the viral genome and translation of viral proteins have been considered by Srivas-

tava (2002) and Sidorenko & Reichl (2004). However, the greater level of detail

that is included in these models means that they are only used to study the in-
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fection cycle of a single cell. There are therefore relatively few models that bridge

both extracellular and intracellular dynamics. One approach, used by Haseltine

et al. (2005) and Duvigneau et al. (2018) is to derive cell population balances from

the equation of continuity. This approach is able to differentiate between infected

cells within a population whilst also providing a multi-component description of

each infected cell at an intracellular level. The benefit of this modelling frame-

work has been observed when considering infection at a low MOI, such that not

all target cells initially become infected. In this case, Haseltine et al. (2005) show

how the original target cell-limited model is not able to correctly describe the

multiple peaks in the number of infected cells that is associated with more than

one round of infection events. Although this is an attractive approach, the in-

corporation of multiple interacting populations requires the estimation of many

parameters, which can be difficult when limited experimental data are available.

An alternative approach that is considered by Koelle et al. (2018) looks at the

number of virions that infect target cells rather than the exact intracellular vi-

ral load. In this target cell-limited ‘macroparasite’ model, heterogeneity between

cells is accounted for by allowing cells to become infected at different cellular

MOI. Simplifications then arise from assuming that rates of virus production and

infected cell death are proportional to the cellular MOI. Although this results in

a model whose structure is similar to that of traditional models of viral kinetics,

it only describes the increase in the intracellular viral load due to internalisation.

Since this increase is also due to replication of the viral genome, this type of

model is not practical when comparing to time course data of intracellular viral

loads.

In this chapter, the aim is to therefore develop a model for studying viral in-

fections that can account for both extracellular and intracellular dynamics whilst

minimising the number of additional parameters required to describe the intra-

cellular stages. Despite being applicable to different viruses, the model is studied

and parametrised with regards to Ebola virus (EBOV) infection. Following and

during the most recent outbreak of EBOV in West Africa, efforts have focused

on developing epidemiological models that can predict the spread of infection,

128



5. WITHIN-HOST MODELLING OF EBOLA VIRUS

with few considering the within-host dynamics (Althaus (2014); Rachah & Tor-

res (2015)). Exceptions to this include Madelain et al. (2015), who were the

first to model the effect that the polymerase inhibitor favipiravir has on reducing

viral loads in mice, and later in non-human primates (Madelain et al. (2018)).

A similar model without treatment is described by Nguyen et al. (2015) and is

parametrised using in vitro infection data. In particular, it was noted how reliable

estimates of each model parameter could not be obtained from measurements

of viral load alone due to issues that arise with identifiability. It is suggested

that measurements of infected and uninfected cells could contribute to alleviat-

ing these problems, along with experiments that can determine the clearance rate

of EBOV in the absence of target cells. For this reason, the model developed here

is not only parametrised using measurements of extracellular viral load, but also

intracellular viral load, cell death and virus decay.

This chapter begins by providing a detailed description of the mathematical

model in Section 5.1, with particular emphasis towards the novel approach used

to account for intracellular dynamics. Importantly, this model requires just a

single additional parameter compared to an equivalent traditional model of viral

dynamics and also includes a per virus budding rate that is more realistic from

a biological perspective. In Section 5.2, Bayesian analysis is performed for each

data set separately and all data sets simultaneously in order to gain a better

understanding of the parameters that can be inferred from each. Posterior sam-

ples for each parameter obtained from data concerning the initial 72 hours of

infection are then used to predict late time behaviour and can be compared to

corresponding experimental measurements. Finally, the basic reproduction num-

ber, a measure of whether the infection will spread or be cleared, is derived for

the model described in Section 5.1.

5.1 Wild-type model

In this section, I describe how a deterministic mathematical model may be de-

veloped to represent a series of in vitro experiments involving the infection of
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target cells with EBOV. The model also adopts a stochastic approach to take

into account the intracellular dynamics of an infected cell. However, since it is

important that the model variables are comparable to the measured quantities,

an understanding of the data provided is first required.

5.1.1 Experimental data

The data presented in this section and applied in the parameter inference that fol-

lows are provided by Dr. Thomas Laws and Dr. Sophie Smither from the Defence

Science and Technology Laboratory (Dstl). These quantitative results consist of

measurements of infectious and total viral load, viral decay in the absence of cells,

and cell death. Where applicable, infection dynamics are studied in Vero cells,

a cell line derived from kidney epithelial cells of African green monkeys. In each

case, 105 Vero cells are infected at a MOI of 5, where a MOI of 1 would represents

an average of one TCID50 per cell (Iwami et al. (2012)).

In order to study the infectious viral load, the 50% tissue culture infectious

dose (TCID50) is determined at regular time points during the first 24 hours and

also at 48 and 72 hours post infection. The TCID50 assay is an endpoint assay

that involves infecting cells at specific dilutions and determining, after a suitable

period of time, the number of wells in which cytopathic effects can be observed.

From this, it is possible to determine the dilution such that each cell has a 50%

chance of becoming infected (Smither et al. (2013)). Since TCID50 is the dose

required to infect 50% of cells, it is likely that this corresponds to multiple copies

of viral RNA. The recorded extracellular TCID50 are provided in Table 5.1.

Real-time polymerase chain reaction (PCR) is a fast and popular approach for

determining viral load, however, since it measures all genetic material present in

a sample, it quantifies total viral load. PCR uses fluorescent dyes to detect viral

genomes that are amplified in a cyclic manner such that the number of genomes

approximately doubles with each cycle. The Ct value is then defined as the

number of cycles necessary to achieve a predetermined threshold of fluorescence

(Knipe et al. (2007)). Therefore, a larger Ct value corresponds to more cycles

required to reach the threshold and thus a smaller number of viral genomes in
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time extracellular intracellular
(hours) TCID50 Ct value Ct value

t0 4.71× 105 16.45 22.61

2 5.62× 105 16.37 19.06

4 1.70× 106 16.36 18.68

6 3.83× 105 16.32 19.04

8 5.01× 105 16.18 19.16

10 4.22× 105 16.19 19.05

12 3.16× 105 16.32 19.13

14 3.83× 105 16.98 19.55

16 4.22× 105 16.15 19.67

18 5.01× 105 16.45 19.47

20 3.83× 105 16.48 19.43

22 4.22× 105 16.57 18.57

24 - 17.13 18.33

48 3.16× 106 15.57 13.47

72 1.91× 107 14.64 12.88

Table 5.1: Extracellular TCID50 and Ct values along with intracellular Ct values

during the initial 72 hours of infection with EBOV at an MOI of 5. The time

t0 > 0 denotes the time at which the first measurements were recorded.

the initial sample. Both extracellular and intracellular Ct values for the EBOV

experiment are reported in Table 5.1.

In order to study the degradation of EBOV, TCID50 and Ct values are also

determined daily in the absence of target cells, such that no infection occurs. This

experiment is performed in triplicate with the results presented in Table 5.2.

In order to quantify cell death, the dye trypan blue is used to identify the

number of cells that have clear cytoplasms and are viable, and the number of

non-viable cells whose cyotplasms are stained blue (Strober (2015)). The fraction

of total cells that are non-viable is determined in duplicate daily between three

and seven days post infection, with the results presented in Table 5.3.
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TCID50 Ct value

time set set set set set set
(hours) 1 2 3 1 2 3

0 4.64× 105 1.00× 106 1.58× 106 15.52 15.80 15.87

24 3.16× 105 2.15× 105 1.31× 105 16.02 15.93 16.02

48 4.11× 104 4.64× 104 3.16× 104 16.07 16.09 16.14

72 1.00× 104 1.00× 104 1.31× 104 16.36 16.17 16.33

Table 5.2: TCID50 and Ct values for the decay of virus in the absence of infec-

tion.

time set set
(hours) 1 2 mean

72 0.229 0.156 0.192

96 0.345 0.238 0.291

120 0.415 0.303 0.359

144 0.325 0.303 0.314

168 0.330 0.286 0.308

Table 5.3: The proportion of dead cells between three and seven days, following

infection with EBOV at an MOI of 5, as determined using trypan blue staining.

5.1.2 Extracellular dynamics

The description of the experimental data suggests that in order to fully utilise

these results, the mathematical model should be able to specify extracellular

and intracellular total viral loads, extracellular infectious viral loads and the

proportion of dead cells at each observed time point. In this sense, a target cell-

limited model can act as a starting point for studying the infection dynamics.

Initially, target cells are infected by free infectious virus according to mass-action

kinetics. From the extracellular TCID50 and Ct values in Table 5.1, it can be seen

that the extracellular viral load does not begin to increase until approximately 24

hours. This period of time, where viral replication is occurring within the cell but

release of virus is yet to occur, is referred to as the eclipse phase. This relates to

the period where synthesis of viral proteins and replication of the viral genome are
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ongoing within the cell, but are yet to yield sufficient numbers of each such that

viral assembly and budding can occur (see Section 1.1.2). To incorporate this into

the model, it is assumed that the population of infected cells is partitioned into

eclipse phase cells and infectious phase cells. When target cells become infected,

they enter an eclipse phase state before transitioning into infectious cells after an

average time of τE hours. Infectious phase cells then remain in this state for a

period of τI hours, during which the release of virus occurs. This released virus is

assumed to be infectious with probability ε and non-infectious with probability

1− ε, representing the presence of lethal mutations during the replication of the

viral genome. A depiction of this model is presented in Figure 5.1, for which the

model variables may be defined as

T (t) = “mean number of target cells at time t”,

Ei(t) = “mean number of stage i eclipse phase cells at time t”,

Ij(t) = “mean number of stage j infectious phase cells at time t”,

VI(t) = “mean number of extracellular infectious virus at time t”,

VNI(t) = “mean number of extracellular non-infectious virus at time t”,

and obey the system of ODEs

d

dt
T (t) = −βcVI(t)T (t) ,

d

dt
E1(t) = βcVI(t)T (t)− nE

τE
E1(t) ,

d

dt
Ei(t) =

nE
τE

(Ei−1(t)− Ei(t)) , i = 2, ..., nE ,

d

dt
I1(t) =

nE
τE
EnE

(t)− nI
τI
I1(t) ,

d

dt
Ij(t) =

nI
τI

(Ij−1(t)− Ij(t)) , j = 2, ..., nI ,

d

dt
VI(t) = −βvVI(t)T (t)−

nC∑

i=1

βvVI(t)Ei(t) + εbvI(t)− (µV + µS)VI(t) ,

d

dt
VNI(t) = (1− ε)bvI(t)− µV VNI(t) + µSVI(t) .
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Figure 5.1: A depiction of the wild type model for EBOV infection. Target

cells (T ) are infected by infectious EBOV and enter an eclipse phase (Ei). During

the co-infection window, represented by the first nC states of the eclipse phase,

infectious EBOV can further infect eclipse cells but this does not alter the state

of the cell. Following the eclipse phase, infected cells enter an infectious phase

(Ij) where production of virus occurs at rate b h−1, proportional to the amount of

intracellular virus (vI). The released virus is either infectious (VI) with probability

ε, or non-infectious (VNI) with probability 1−ε. Degradation of virus occurs with

rate µV h
−1 whilst infectious virus loses infectivity with rate µS h

−1.
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Here, the eclipse phase and infectious phases are further partitioned into a series

of states. This allows for the possibility that the time an infected cell spends

in these phases is not exponentially distributed, but instead follows an Erlang

distribution. As the number of states in the partition increases, the distribution

of the time spent in each phase becomes narrower until the duration is assumed

to be constant for all cells (Best & Perelson (2018)). This approach has also been

applied in models of HIV and influenza virus (Mittler et al. (1998); Pinilla et al.

(2012)).

When considering terms representing the infection of target cells, the loss of

virus has also been included in the ODE for infectious virus. This term is often

omitted under the assumption that the number of virions is large enough that

any loss due to infection is negligible, but is included here for completeness. Fur-

thermore, different infection rates βc (h−1(RNA)−1) and βv (h−1(cells)−1) have

been used to reflect that βcVIT is in units of cells when describing the change in

T and E1, but in units of virus when describing the change in VI (Yuan & Allen

(2011)).

This model also accounts for the possibility that a single cell becomes co-

infected with multiple virus in a manner that further reduces the infectious viral

load but does not alter the state of the cell. The time period during which

co-infection is possible is referred to as the co-infection window and has length

τC h, although in the parameter inference that follows this will instead be defined

by the ratio τC/τE. In this way, the co-infection window comprises the initial

nC = nEτC/τE states of the eclipse phase.

In addition to infection events, loss of virus also occurs due to viral degrada-

tion with rate µV h
−1 and affects both infectious and non-infectious virus, whilst

infectious virus can become non-infectious with rate µS h
−1. Production of virus

occurs at rate b h−1 and is proportional to vI(t), the average amount of intracel-

lular virus in all infectious phase cells. An equation for vI(t) is derived in Section

5.1.3 when the intracellular dynamics are taken into account. However, it can

be noted now that unlike traditional models of viral dynamics, the production of

virus is not proportional to the number of infected cells. This is an unrealistic
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5.1 Wild-type model

assumption as it suggests that production of virus occurs at an equal rate from

cells just entering the infectious phase and cells that are close to dying. Instead,

by considering that virus production is proportional to the amount of intracellular

virus, this can reflect the increased production, as viral proteins accumulate in

the cytoplasm. Non-constant production rates have previously been considered

in age-structured models, where the production rate is a function of how long the

cell has been infected for (Nelson et al. (2004)).

Currently, both VI(t) and VNI(t) are defined in units of RNA copies/ml and

therefore cannot be compared with the experimentally measured TCID50 and Ct

values. However, if α (TCID50/RNA) is a constant conversion factor from in-

fectious viral RNA copies to TCID50, then the infectious viral load in units of

TCID50/ml is v50(t) = αVI(t). Similarly, since Ct values are related to a measure

of total viral load, the transformation vT (t) = VI(t) + VNI(t) can be used, where

vT (t) now denotes the total viral load in units of RNA copies/ml (Iwami et al.

(2012)). Ct values are usually converted into RNA copies by means of a standard

curve that is determined by performing PCR on serial dilutions of the sample.

Given that the number of RNA copies approximately doubles with each cycle,

and the Ct value represents a number of cycles to reach a fluorescence threshold,

the standard curve has the general form

number of RNA copies at time t = κ2−C(t) ,

where C(t) is the Ct value at time t. From here, it can be seen that when

normalising with respect to the number of RNA copies at a fixed time point,

the result is independent of the constant κ and depends only on the difference

between Ct values. For this reason, the model variable vT (t) is normalised with

respect to vT (0), and similarly v50(t) is normalised with respect to v50(0). If

w50(t) = v50(t)/v50(0) and wT (t) = vT (t)/vT (0) are the normalised variables, the

model can now be described by the system of ODEs

d

dt
T (t) = −βcv50(0)

α
w50(t)T (t) ,

d

dt
E1(t) =

βcv50(0)

α
w50(t)T (t)− nE

τE
E1(t) ,
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d

dt
Ei(t) =

nE
τE

(Ei−1(t)− Ei(t)) , i = 2, ..., nE ,

d

dt
I1(t) =

nE
τE
EnE

(t)− nI
τI
I1(t) ,

d

dt
Ij(t) =

nI
τI

(Ij−1(t)− Ij(t)) , j = 2, ..., nI ,

d

dt
w50(t) = −βvw50(t)T (t)−

nC∑

i=1

βvw50(t)Ei(t) +
αεb

v50(0)
vI(t)− (µV + µS)w50(t) ,

d

dt
wT (t) = −βvv50(0)

αvT (0)
w50(t)T (t)−

nC∑

i=1

βvv50(0)

αvT (0)
w50(t)Ei(t) +

b

vT (0)
vI(t)− µVwT (t) .

(5.1)

Initially, w50(0) = wT (0) = 1 and the number of target cells is T (0) = 105 cells.

Since there are no infected cells to begin with, all remaining variables are zero.

This system of ODEs currently describes the dynamics of target cells, infected

cells and extracellular virus; in order to determine the production rate of virus it

is now necessary to consider the intracellular viral load of an infected cell.

5.1.3 Intracellular dynamics

To study the intracellular dynamics, the following assumptions are made regard-

ing the different phases that an infected cell transitions through.

• Co-infection window: For cells in the co-infection window, infectious

virus can enter already infected cells at the same rate, but significant viral

replication and protein synthesis is yet to occur within these infected cells.

• Eclipse phase: Following the end of the co-infection window until the end

of the eclipse phase, viral replication occurs within infected cells at rate

λh−1 per virus.

• Infectious phase: For cells in the infectious phase, viral replication is

still ongoing, however, a decrease in intracellular viral load occurs due to

the assembly and budding of virus at rate b h−1 per virus from the cell

membrane.
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5.1 Wild-type model

For the purpose of studying the intracellular dynamics, let the eclipse phase

denote the period between the end of the co-infection window and the start

of the infectious phase. In this way, the intracellular dynamics of the three

separate phases can be thought of as three distinct processes. For cells in the

co-infection phase, the constant increase in viral load associated with infection

events may be thought of as a Poisson process. Following the co-infection window,

the replication of the viral genome is naturally described by a birth process where

the rate of replication is proportional to the number of genomes. The production

of virus that occurs from infectious phase cells may be interpreted as the loss

of intracellular virus and is therefore analogous to the ‘death’ of virus. Since

viral replication continues within cells in the infectious phase, the intracellular

dynamics during this phase can be modelled as a birth-and-death process.

In order to compare to intracellular Ct values, the total intracellular viral

load is required as a function of time, however, under these assumptions this can

be considered as the sum of the viral loads across all cells in each phase. The

intracellular model variables may therefore be defined as

vC(t) = “mean number of intracellular virus in co-infection phase cells at time t”,

vE(t) = “mean number of intracellular virus in eclipse phase cells at time t”,

vI(t) = “mean number of intracellular virus in infectious phase cells at time t”,

and the total intracellular viral load is vint(t) = vC(t) + vE(t) + vI(t). The

difficulty with this approach is then in determining how each variable increases

and decreases as cells transition between phases. For example, given a cell in state

EnE
, the final state of the eclipse phase, the intracellular viral load of the cell

contributes to the total vE(t). However, when the cell transitions into state I1,

the intracellular viral load must now contribute to the total vI(t). To overcome

this, the distribution of time until a single cell exits each phase can be considered.

Let t = 0 represent the start of the experiment with all cells initially unin-

fected. Provided that there is initially v50(0) TCID50 of infectious virus, the time

until a single cell becomes infected is an exponential random variable with rate

βcv50(0)/α. Once infected, this cell transitions through the first nC states of the
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eclipse phase until the end of the co-infection window. Since the time spent in each

state is an exponential random variable with rate nE/τE, the time spent between

infection and the end of the co-infection window follows an Erlang(nE/τE, nC)

distribution. The total time from t = 0 until the end of the co-infection window

is then the sum of these exponential and Erlang random variables, the density

of which is obtained using the convolution of the individual densities. Suppose

that fC(t) denotes the time at which a single cell, initially uninfected, exits the

co-infection window,

fC(t) =

∫ t

0

β50v50(0)e−(β50v50(0))(t−s) δ
nC
E snC−1e−δEs

(nC − 1)!
ds

=

(
δE

δE − β50v50(0)

)nC

β50v50(0)e−β50v50(0)tF (t; δE − β50v50(0), nC) ,

where β50 = βc/α, δE = nE/τE and F (t; a, k) is the distribution function of an

Erlang(a, k) random variable,

F (t; a, k) = 1−
k−1∑

n=0

1

n!
e−at(at)n , a , t ≥ 0 .

As the density must be non-negative, the above expression is only true when

δE > β50v50(0). When δE ≤ β50v50(0), this suggests that the initial infection of

a cell occurs at a faster rate than the rate at which an infected cell transitions

through states in the co-infection window. As a result of this, it is assumed that

the contribution from the time until the first infection event can be neglected

from the total time to exit the co-infection window. In doing so, this total time

is now equal to the time taken for a cell to transition from state E1 to state

EnC+1. Since this time is an Erlang(δE, nC) random variable, fC(t) is equal to

the corresponding density when δE ≤ β50v50(0). The full definition of fC(t) may

then be given by

fC(t) =






 δE

δE − β50v50(0)



nC

β50v50(0)e−β50v50(0)tF (t; δE − β50v50(0), nC)

δE > β50v50(0) ,

δnC
E tnC−1e−δEt

(nC − 1)!
δE ≤ β50v50(0) .
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Figure 5.2: A depiction of the life cycle of a single cell from infection to the

end of the infectious phase, including the distribution of the time spent in each

of the phases in between.

Since the co-infection window represents a subset of states of the whole eclipse

phase, the density for the time until a cell exits the eclipse phase can be found

in a similar way. This time is again a sum of exponential random variables, each

with rate δE. The difference now is that the number of variables that are summed

is nE, the total number of states in the co-infection window and eclipse phase. If

fE(t) denotes the density of the time for a cell to exit the eclipse phase,

fE(t) =






 δE

δE − β50v50(0)



nE

β50v50(0)e−β50v50(0)tF (t; δE − β50v50(0), nE)

δE > β50v50(0) ,

δnE
E tnE−1e−δEt

(nE − 1)!
δE ≤ β50v50(0) .

Finally, let fI(t) be the density of the time for an initially uninfected cell to

exit the infectious phase and stop producing virus. This can be described as

the sum of the time to exit the eclipse phase and the time spent in the infectious

phase, the latter of which is an Erlang(δI , nI) distributed random variable, where

δI = nI/τI . As a result of this

fI(t) =

∫ t

0

fE(s)
δnI
I (t− s)nI−1e−δI(t−s)

(nI − 1)!
ds . (5.2)

With fC(t), fE(t) and fI(t) it is now possible to determine the exchange in the

contribution to the intracellular viral load that occurs as cells transition between
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phases. Consider, for example, the case where cells transition from the eclipse

phase to the infectious phase. The mean number of cells that make this transition

at time t is T (0)fE(t), and the average viral load of each cell may be thought

of as the ratio of the total viral load across all cells in the eclipse phase, vE(t),

and the number of cells in the eclipse phase,
∑nE

i=nC+1Ei(t). By applying this

reasoning to each phase, the intracellular viral loads satisfy the ODEs

d

dt
vC(t) =

βvv50(0)

α
w50(t)T (t) +

βvv50(0)

α
w50(t)

nC∑

i=1

Ei(t)−
vC(t)T (0)fC(t)∑nC

i=1Ei(t) + γ
,

d

dt
vE(t) =

vC(t)T (0)fC(t)∑nC

i=1Ei(t) + γ
+ λvE(t)− vE(t)T (0)fE(t)∑nE

i=nC+1 Ei(t) + γ
,

d

dt
vI(t) =

vE(t)T (0)fE(t)∑nE

i=nC+1Ei(t) + γ
+ (λ− b)vI(t)−

vI(t)T (0)fI(t)∑nI

j=1 Ij(t) + γ
,

(5.3)

where vC(0) = vE(0) = vI(0) = 0 and γ � 1 ensures that the denominator is

never zero when there are initially no infected cells, but does not interfere with the

dynamics. The terms λvE(t) and (λ−b)vI(t) reflect the growth of the intracellular

population of virus as described by the birth process and birth-and-death process.

Here it is assumed that the rate of viral replication is linearly proportional to

the number of viral genomes, however, this could be changed to represent the

limitation of intracellular resources or to account for antiviral treatment. In this

way, the effects of antiviral therapies that target viral replication can be explicitly

represented, instead of the commonly used approach where a reduction in the per

cell production rate corresponds to the efficacy of the treatment (Best & Perelson

(2018)).

In the parameter inference that follows it is possible for there to be no co-

infection window, that is, each cell is only ever infected by a single virus. In this

case, vC(t) is no longer required in the model and vE(t) instead satisfies

d

dt
vE(t) =

βvv50(0)

α
w50(t)T (t) + λvE(t)− vE(t)T (0)fE(t)∑nE

i=nC+1 Ei(t) + γ
.

The most attractive feature of this model is that it only requires a single addi-

tional parameter, λ, compared to equivalent traditional models for extracellular
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dynamics, yet allows for additional data, in the form of intracellular measure-

ments, to be used to help infer the value of each parameter.

5.1.4 Cell death

With the current description of the model, it is possible to compare with exper-

imental measurements of intracellular and extracellular viral load. In order to

compare with the measurements of cell death, let D(t) denote the mean fraction

of cells that have died before time t given an initial number of cells, T (0). When

a cell exits state InI
, this represents that production of virus no longer occurs,

but this may not always coincide with the death of the cell. Instead, it can be

assumed that a fraction, f , of cells that stop producing virus do so because of

cell death. In this way, D(t) satisfies the ODE

d

dt
D(t) =

f

T (0)

nI
τI
InI

(t) , D(0) = 0 . (5.4)

Together with systems (5.1) and (5.3), equation (5.4) fully defines the mathemat-

ical model of EBOV infection. However, when interested in only the cell death

dynamics, the full solution of the model is still required. An alternative approach

for obtaining D(t) can be described by utilising the densities for the time taken

for a cell to exit each phase. Since fI(t) is the probability that a cell exits the

infectious phase at time t, it is also true that

D(t) = f

∫ t

0

fI(s) ds . (5.5)

5.2 Parameter inference

In this section, Bayesian inference is used to determine how much can be learned

about each model parameter given individual data sets for extracellular and intra-

cellular viral loads and cell death. Before this, global sensitivity analysis is used to

identify the most important parameters with respect to those model variables for

which experimental measurements have been recorded. A nonlinear least squares
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approach is also used to fix the rates of viral degradation and denaturation given

measurements of virus decay (5.2).

5.2.1 Sensitivity analysis

To determine the most influential parameters, the Sobol approach to global sensi-

tivity analysis, as described in Section 2.6, has been performed. First-order (S1)

and total-order (ST ) sensitivity indices have been evaluated for each of the model

variables log10 v50(t), log10 vT (t), log10 vint(t) and D(t), recalling that vint(t) is the

total viral load of all infected cells. For log10 v50(t), log10 vT (t) and log10 vint(t),

both indices are evaluated across the initial 72 hours of infection, whilst indices

for D(t) are evaluated for the first 168 hours. This choice reflects the period of

time over which corresponding experimental measurements are recorded. Figures

5.3 and 5.4 show these sensitivity indices for each model parameter given fixed

initial conditions of v50(0) = 5 × 105 and vT (0) = 109, suitable values given an

MOI of 5 and T (0) = 105 cells. The ranges over which each parameter is varied

correspond to the ranges of the prior distributions provided in Table 5.5. For

a more clear visualisation of the most important parameters over the course of

infection, the mean and standard deviation of ST for each parameter and model

variable are also reported in Table 5.4.

For v50(t), the amount of extracellular infectious virus, βv is the most impor-

tant parameter, particularly during the early stages of infection, as this dictates

the rate at which infectious virus infects target cells. The length of the eclipse

phase is also important since a longer eclipse phase prolongs the time until virus

production can occur. Similarly, the length of the infectious phase, τI , is increas-

ingly important as the infection progresses. If the length of both the eclipse and

infectious phases are short, viral production cannot be sustained, resulting in the

decay of the population of extracellular virus. The rate at which viral genomes

are replicated, λ, also increases in importance with time. This can be expected

since the production of virus is now proportional to the intracellular viral load,

such that a slower rate of replication may result in reduced viral production.

For vT (t), the total amount of extracellular virus, the most influential pa-
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Figure 5.3: First-order (S1) and total-order (ST ) Sobol sensitivity indices

for each model parameter with respect to the variables log10 v50(t) (top) and

log10 vT (t) (bottom).

rameter during the early stages of infection is µV , the rate of viral degradation.

This is understandable since vT (t) also accounts for non-infectious virus which is

unable to infect cells and is therefore not directly involved in the infection dy-

namics. Given that the initial number of infectious virus particles is v50(0)/α, for

larger values of α the pool of infectious virus represents a small fraction of the

vT (0) = 109 total virus particles. In this case, the majority of total virus is then
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Figure 5.4: First-order (S1) and total-order (ST ) Sobol sensitivity indices for

each model parameter with respect to the variables log10 vint(t) (top) and D(t)

(bottom).

non-infectious and can only degrade, so that changes in µV have a large effect on

the total. Later on in the infection, λ, τE, βv and τI become more important as

virus production begins to affect the population size.

For vint(t), βv is important for the same reasons that it is for v50(t), in that it

determines the rate at which infectious virus infects target cells. The lengths of

the eclipse and infectious phase also have high sensitivity indices as they define
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the times at which the underlying birth and birth-and-death process start and

end. It is these processes that determine how quickly the intracellular population

grows. Furthermore, since the changes that occur in vC(t), vE(t) and vI(t) as cells

transition between phases do not effect the total intracellular viral load, vint(t)

grows exponentially following the end of the co-infection window. As a result, it

is understandable that λ becomes increasingly important.

Finally, for D(t) it should be noted that the sensitivity indices for a number

of parameters are exactly zero. The reason for this is more clearly seen in equa-

tion (5.5) and the parameters that fI(t) depends on. Since this density depends

only on the amount of virus through the initial condition, v50(0), parameters such

as µV , µS, λ and b that relate solely to viral quantities have no effect on D(t).

The parameters that have the most influence on D(t) are τE and τI as their sum

specifies the average number of hours until an infected cell stops producing virus.

Since the fraction of cells that die after virus production stops is determined by

f , this also has a high sensitivity index. The rate at which target cells initially

become infected depends on the per cell infection rate βc. When this is small, the

infection of cells does not occur as rapidly and the delay that this causes persists

through the eclipse and infectious phases, resulting in a smaller fraction of cells

dying at earlier times. For this reason, βc is also important when describing cell

death.

Collectively, by performing the sensitivity analysis for the four model variables

of interest, βv, βc, τE, τI , µV , λ and f have been identified as the most important

parameters. Although it is preferable to learn about all parameters, the hope is

that in the inference that follows, it is possible to at least learn more about these

specific parameters.

5.2.2 Viral decay

Nguyen et al. (2015) have previously suggested that measurements of viral de-

cay in the absence of infection could greatly enhance the ability to successfully

parametrise models of viral dynamics. With no target cells to infect, there is no

subsequent production of virus, and thus the size of the viral populations only
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log10 v50 log10 vT log10 vint D

ST mean ST s.d. ST mean ST s.d. ST mean ST s.d. ST mean ST s.d.

βc 0.11 0.05 0.04 0.03 0.31 0.08 0.37 0.04

βv 0.89 0.07 0.08 0.06 0.65 0.11 < 10−2 < 10−2

α 0.02 0.01 0.01 < 10−2 0.05 0.02 0.03 0.01

τE 0.42 0.07 0.20 0.14 0.42 0.12 0.52 0.09

τI 0.12 0.07 0.07 0.06 0.41 0.12 0.53 0.10

ε < 10−2 < 10−2 < 10−2 < 10−2 < 10−2 < 10−2 < 10−2 < 10−2

τC/τE 0.02 < 10−2 0.03 0.02 0.03 0.02 < 10−2 < 10−2

nE 0.13 0.03 0.02 0.02 0.04 0.01 0.01 < 10−2

nI < 10−2 < 10−2 < 10−2 < 10−2 0.01 < 10−2 < 10−2 < 10−2

µV < 10−2 < 10−2 0.50 0.37 0.02 < 10−2 < 10−2 < 10−2

µS < 10−2 < 10−2 < 10−2 < 10−2 < 10−2 < 10−2 < 10−2 < 10−2

λ 0.06 0.05 0.50 0.37 0.16 0.10 < 10−2 < 10−2

b 0.02 0.01 0.04 0.03 0.04 0.02 < 10−2 < 10−2

f < 10−2 < 10−2 < 10−2 < 10−2 < 10−2 < 10−2 0.29 0.05

Table 5.4: Mean and standard deviation of the total-order Sobol sensitivity in-

dices (ST ) for each model parameter and variable. These summaries are evaluated

over the time periods shown in Figures 5.3 and 5.4.

decrease. Therefore, if w50(t) denotes the infectious viral load at time t, nor-

malised with respect to the initial condition v50(0), and wT (t) is the normalised

total viral load, then both variables decay exponentially according to

w50(t) = e−(µV +µS)t , wT (t) = e−µV t .

If only measurements of infectious viral load were available, only the sum µV +µS

would be identifiable. Here, however, measurements of viral decay have been pro-

vided in both units of TCID50 and Ct values (Table 5.2) and it is therefore possible

to estimate µV and µS. By considering w̃50(t) = logw50(t) and w̃T (t) = logwT (t),

the estimation problem reduces to finding the gradient of a straight line. For

this reason, a Bayesian approach is not necessary and a least-squares approach is

favoured instead. By regressing w̃50(t) and w̃T (t) on t, the least-squares estimates

can be obtained using the statistical software R to be µV = 5.73× 10−3 h−1 and
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Figure 5.5: Fitted curves showing the decay of infectious virus (w̃50) and total

virus (w̃T ) using the least-squares estimates µV = 5.73 × 10−3 h−1 and µS =

5.67× 10−2 h−1.

µS = 5.67× 10−2 h−1. The respective p-values for these estimates are 9.6× 10−2

and 1.32 × 10−9, whilst the fitted lines are provided in Figure 5.5 alongside the

observed values. To estimate µV and µS, the ratio of the total viral load has been

expressed in terms of the experimentally measured Ct values using the expression

wT (t) = 2C(0)−C(t).

In the Bayesian inference that follows, the values of µV and µS are fixed as

these least-squares estimates, thereby reducing the dimension of the parameter

space. Furthermore, the sensitivity analysis identified µV as an influential param-

eter, particularly when considering vT (t), and so it is beneficial that an accurate

estimate has been obtained.

5.2.3 Bayesian inference

With least-squares estimates for µV and µS, the aim is to now use the experi-

mental data described in Section 5.1.1 in order to infer values for the remaining

parameters. An ABC rejection sampling algorithm can be applied for each data

set individually and all data sets simultaneously to determine how different mea-

surements contribute to the learning of each parameter. The prior distributions

for each parameter are reported in Table 5.5. Uniform distributions are selected
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to reflect the prior beliefs that little is known about each parameter, with the

range of each distribution chosen to be large enough such that values with high

posterior density are not omitted. For the parameters ε, τC/τE and f , the range

of the prior distribution reflects that these parameters represent fractions, whilst

the range of the prior distribution for α is based on the assumption that the num-

ber of infectious virus particles that infect a cell follows a Poisson distribution

(Iwami et al. (2012)). For t0, the prior distribution reflects the uncertainty in

the time of the first measurement, but the belief that it was conducted within

30 minutes of the start. To ensure even sampling for parameters whose ranges

span multiple orders of magnitude, the corresponding prior distributions have

also instead been specified for the logarithm of the parameter.

The model variables w50(t), wT (t) and D(t) have previously been defined so

that they are comparable to the experimentally observed quantities. For vint(t),

it is not possible to normalise with respect to the initial number of intracellu-

lar copies of viral RNA, since this is zero. Instead, vint(t) can be normalised

with respect to the number at t0, the time of the first measurement, and thus

wint(t) = vint(t)/vint(t0) is now comparable to the intracellular Ct values in a

similar way to which wT (t) is comparable to extracellular Ct values.

When deciding on a measure of distance between the model output and ex-

perimental observations, it is important to consider the weight that is assigned to

each point and how this affects the total distance. For example, from Table 5.1 it

can be noted that the extracellular Ct and TCID50 values remain approximately

constant between 2 and 24 hours post infection. This period, where infection of

cells has occurred but significant release of virus has not, is represented in the

model by the eclipse phase. Therefore, these measurements during the first day

of infection may help to infer the length of the eclipse phase, τE. However, similar

conclusions could be reached by considering only the measurements at 2 and 24

hours. Since there are multiple measurements at these early time points but only

a single measurement at 48 and 72 hours, choosing a distance function that gives

equal weight to all points may result in posterior predictions that fit the data

well at early time points and not at late times. A previous analysis with such
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Units Prior distribution

βc (RNA copies/ml h)−1 log10 βc ∼ U(−10,−4)

βv (cells/ml h)−1 log10 βv ∼ U(−10,−4)

α TCID50/RNA copies U(0, 1.44)

τE h log10 τE ∼ U(0, 3)

τI h log10 τI ∼ U(0, 3)

ε − U(0, 1)

v50(0) TCID50/ml log10 v50(0) ∼ U(4, 7)

vT (0) RNA copies/ml log10 vT (0) ∼ U(5, 12)

τC/τE − U(0, 1)

nE − U(1, 100)

nI − U(1, 100)

µV h−1 (least squares estimate)

µS h−1 (least squares estimate)

t0 h U(0, 0.5)

λ h−1 log10 λ ∼ U(−3, 0)

b h−1 log10 b ∼ U(−3, 0)

f − U(0, 1)

Table 5.5: List of parameters for the wild-type Ebola model, their units, and

the corresponding prior distributions used in the Bayesian inference.

a distance function produced posterior predictions with little variability at early

times but this variability increased sharply through to 72 hours. At 72 hours,

95% credible regions were observed to span multiple orders of magnitude. As

the aim is to ultimately use the posterior samples to make predictions about the

behaviour after 72 hours, it would be favourable to have posterior predictions

that are more confined.

One approach to avoid such problems is to give less weight to the individual

points during the initial 24 hours by asking that the model output is close to

these observations through some summary statistic. Here, this summary statistic

is chosen to be the mean, such that the averages of the variables w50(t), wT (t)
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and wint(t) over the first 24 hours are given respectively by

w̄50 =
1

|T50|
∑

t∈T50

w50(t) , w̄T =
1

|TT |
∑

t∈TT

wT (t) , w̄int =
1

|Tint|
∑

t∈Tint

wint(t) .

In these expressions, T50, TT and Tint are the respective sets of times at which

measurements of extracellular TCID50 and extracellular and intracellular Ct val-

ues are recorded during the initial 24 hours. If d(E,M) then denotes the distance

between experimental observations and model output, this may be defined as

d(E,M)2 =
(

log w̄
(E)
50 − log w̄

(M)
50

)2

+
∑

t∈{48,72}

(
logw

(E)
50 (t)− logw

(M)
50 (t)

)2

+ω1

(
log w̄

(E)
T − log w̄

(M)
T

)2

+ ω1

∑

t∈{48,72}

(
logw

(E)
T (t)− logw

(M)
T (t)

)2

+ω2

(
log w̄

(E)
int − log w̄

(M)
int

)2

+ ω2

∑

t∈{2,48,72}

(
logw

(E)
int (t)− logw

(M)
int (t)

)2

+ω3

∑

t∈TD

(
D(E)(t)−D(M)(t)

)2
,

where TD is the set of all times at which measurements of cell death are recorded.

Since the total distance can be thought of as the sum of individual Euclidean

distances for each data set, it is important that equal weight is given to each data

set. For example, suppose that the contribution to d(E,M) from the extracellu-

lar Ct values is significantly larger than the contribution from the remaining data

sets. To minimise the total distance, it may then be sufficient to minimise the dis-

tance between wT (t) and the extracellular Ct values, thus ignoring the remaining

data sets. Therefore, in selecting a distance for ABC, it is important to consider

the weighting of points within a single data set and between data sets. For this

reason, the constants ω1, ω2 and ω3 scale the individual contributions from data

concerning total viral load and cell death so they are of a similar magnitude to

the contribution from the infectious viral load data. To obtain these constants,

the ABC algorithm has initially been performed for a reduced number of 105

iterations. Summary statistics, such as the median and interquartile range, are

then used to study the average contribution to the distance from each data set,

with the three constants selected such that the magnitudes of each contribution
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are similar. Here, the values of these constants are given by ω1 = 16, ω2 = 1 and

ω3 = 20.

With an appropriate distance selected, the ABC rejection sampling algorithm

is performed for four cases, with each case using a different combination of the

available data sets. These may be described as follows:

i) measurements of total and infectious extracellular viral load for the initial

72 hours are used to infer parameter values,

ii) measurements of total intracellular viral load for the initial 72 hours are

used to infer parameter values,

iii) measurements of cell death for the initial 168 hours are used to infer pa-

rameter values,

iv) measurements of total and infectious extracellular viral load, total intracel-

lular viral load and cell death are used to infer parameter values.

For each case, 4×106 iterations of the rejection sampling algorithm are performed,

with an acceptance rate of 0.05% resulting in an approximate posterior sample

containing 2× 103 parameter sets. Pointwise median predictions are provided for

each case in Figures 5.6, 5.7, 5.8 and 5.9, and match well to the observed data.

The predictions appear worse overall when utilising all data sets simultaneously

compared to using each data set separately, particularly for predictions of cell

death. This could suggest that the model is not capable of correctly describing

the cell death dynamics, but it is more likely due to only one time course being

available for the majority of data sets. When performing ABC, it is believed that

the model is representative of the average true behaviour, and for this reason the

model variables are compared to the mean of the observed values. However, here

it is not possible to determine whether the single time course provided reflects

what would be observed on average, and if it does not, how greatly it differs from

the mean behaviour.

The posterior histograms are provided for each parameter in Figures 5.10,

5.11, 5.12 and 5.13, along with the corresponding prior distributions. These show
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Figure 5.6: Pointwise median predictions for the variables w50(t) and wT (t)

given the posterior sample obtained by performing ABC with only the extracel-

lular data. Shaded regions represent 50% and 95% credible regions.
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Figure 5.7: Pointwise median predictions for the variable wint(t) given the

posterior sample obtained by performing ABC with only the intracellular Ct

values. Shaded regions represent 50% and 95% credible regions.
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Figure 5.8: Pointwise median predictions for the variable D(t) given the poste-

rior sample obtained by performing ABC with only measurements of cell death.

Shaded regions represent 50% and 95% credible regions.
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Figure 5.9: Pointwise median predictions for w50(t), wT (t), wint(t) and D(t)

given the posterior sample obtained by performing ABC with all data sets.

Shaded regions represent 50% and 95% credible regions.

154



5. WITHIN-HOST MODELLING OF EBOLA VIRUS

that from the extracellular measurements, it is possible to learn a lot about im-

portant parameters such as βv and λ. The length of the eclipse phase can be

confined to smaller values since larger values would result in too long a delay in

the release of virus, and therefore a delayed increase in the extracellular popu-

lations of virus. Similarly, smaller values of τI can be dismissed, since a short

infectious phase results in limited viral production, after which the extracellular

viral population would begin to decay. Despite being able to confine the values of

τE and τI , the histograms suggest that within these regions, all values are equally

likely.

The intracellular measurements provide further insight into the values of τE

and βv. For βv, this additional learning compared to the extracellular values can

likely be explained by the sharp increase in the intracellular viral load between t0

hours and two hours post infection, with only specific values of βv able to recre-

ate this behaviour. Aside from these two parameters there is a little additional

learning compared to extracellular measurements, with the posterior distribution

for λ consistent with that found previously in Figure 5.10.

As expected, measurements of cell death say little about parameters that ex-

plicitly dictate viral growth, such as λ and b, since the progression of cells through

the different phases is independent of the amount of virus a cell contains. The

time until an infected cell stops producing virus is given by the sum τE + τI and

so it is not surprising that these parameters are strongly negatively correlated

(Figure 5.15), with smaller values of τE corresponding to larger values of τI . This

strong correlation suggests that it would be possible to learn about the ratio of

τE and τI , so it is interesting to see from Figure 5.11 that it is possible to learn

about each parameter individually. Some learning can also be seen for βc as this

dictates the rate at which cells become infected, however, the parameter for which

the most can be be learnt is f . It is worth noting that, along with the summary

statistics provided in Table 5.8, the posterior histogram for f indicates that its

value lies close to the observed proportion of dead cells after seven days. Since

this proportion takes into account the total number of cells, the model therefore

suggests that all cells ultimately become infected.

155



5.2 Parameter inference

10 8 6 4
0.0

0.1

0.2
log10 c

10 8 6 4
0.0

0.2

log10 v

0.0 0.5 1.0 1.5
0.0

0.5

0 1 2 3
0.00

0.25

0.50

log10 E

0 1 2 3
0.0

0.2

0.4

log10 I

0.0 0.5 1.0
0

1

0 50 100
0.00

0.01

nE

0 50 100
0.000

0.005

0.010

nI

0.0 0.5 1.0
0.0

0.5

1.0

C/ E

4 5 6 7
0.0

0.2

0.4
log10v50(0)

6 8 10 12
0.0

0.2

log10vT(0)

0.00 0.25 0.50
0

1

2

t0

3 2 1 0
0

1

2

3 2 1 0
0.0

0.2

0.4

b

0.0 0.5 1.0
0.0

0.5

1.0
f

Figure 5.10: Posterior histograms (blue) obtained by performing 4× 106 itera-

tions of an ABC rejection sampling algorithm using extracellular Ct values and

extracellular TCID50. The prior distributions are provided in red to indicate how

much can be learnt about each parameter.
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Figure 5.11: Posterior histograms obtained by performing 4 × 106 iterations

of an ABC rejection sampling algorithm using only intracellular Ct values. The

prior distributions are provided in red to indicate how much can be learnt about

each parameter.
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Min. 1st Qu. Med. Mean 3rd Qu. Max.

βc 1.0× 10−10 2.3× 10−9 8.8× 10−8 9.1× 10−8 3.2× 10−6 1.0× 10−4

βv 1.0× 10−10 4.2× 10−9 2.9× 10−7 2.3× 10−7 1.6× 10−6 9.9× 10−5

α 3.0× 10−4 3.7× 10−1 7.1× 10−1 5.3× 10−1 1.1× 100 1.4× 100

τE 1.0× 100 2.8× 100 7.5× 100 7.5× 100 1.9× 101 9.2× 102

τI 1.0× 100 2.9× 101 9.7× 101 8.2× 101 2.9× 102 1.0× 103

ε 8.5× 10−3 3.9× 10−1 6.3× 10−1 5.1× 10−1 8.2× 10−1 1.0× 100

nE 1.0× 100 2.4× 101 4.9× 101 3.5× 101 7.3× 101 1.0× 102

nI 1.0× 100 2.5× 101 5.1× 101 3.8× 101 7.5× 101 1.0× 102

τC/τE 1.0× 10−4 2.4× 10−1 4.7× 10−1 3.5× 10−1 7.1× 10−1 1.0× 100

v50(0) 1.0× 104 6.0× 104 3.1× 105 3.2× 105 1.7× 106 1.0× 107

vT (0) 1.0× 105 5.4× 106 3.2× 107 3.9× 107 2.0× 108 3.5× 1011

t0 1.0× 10−4 1.3× 10−1 2.5× 10−1 1.8× 10−1 3.8× 10−1 5.0× 10−1

λ 6.7× 10−2 1.6× 10−1 2.1× 10−1 2.2× 10−1 2.9× 10−1 9.9× 10−1

b 1.0× 10−3 2.3× 10−2 7.4× 10−2 6.6× 10−2 2.2× 10−1 9.9× 10−1

f 3.0× 10−4 2.6× 10−1 5.0× 10−1 3.7× 10−1 7.6× 10−1 1.0× 100

Table 5.6: Summary statistics for the posterior sample of each parameter fol-

lowing ABC performed using only extracellular measurements of viral load.

Min. 1st Qu. Med. Mean 3rd Qu. Max.

βc 1.0× 10−10 4.4× 10−9 1.9× 10−7 1.5× 10−7 5.4× 10−6 9.9× 10−5

βv 1.0× 10−10 1.2× 10−7 2.8× 10−6 7.4× 10−7 9.3× 10−6 9.9× 10−5

α 5.0× 10−4 3.9× 10−1 7.4× 10−1 5.6× 10−1 1.1× 100 1.4× 100

τE 1.0× 100 1.4× 101 4.3× 101 2.8× 101 6.0× 101 9.9× 102

τI 1.0× 100 1.3× 101 6.1× 101 4.9× 101 2.3× 102 1.0× 103

ε 9.0× 10−4 2.8× 10−1 5.4× 10−1 4.0× 10−1 7.7× 10−1 1.0× 100

nE 1.0× 100 2.7× 101 5.1× 101 4.0× 101 7.6× 101 1.0× 102

nI 1.0× 100 2.6× 101 4.9× 101 3.8× 101 7.5× 101 1.0× 102

τC/τE 9.0× 10−4 2.6× 10−1 4.7× 10−1 3.6× 10−1 6.8× 10−1 1.0× 100

v50(0) 1.0× 104 5.3× 104 3.2× 105 3.0× 105 1.7× 106 9.9× 106

vT (0) 1.1× 105 1.2× 107 4.6× 108 5.0× 108 2.3× 1010 1.0× 1012

t0 4.8× 10−3 1.0× 10−1 2.0× 10−1 1.7× 10−1 3.2× 10−1 5.0× 10−1

λ 6.4× 10−2 8.3× 10−2 1.0× 10−1 1.2× 10−1 1.5× 10−1 8.9× 10−1

b 1.0× 10−3 5.1× 10−3 3.1× 10−2 2.9× 10−2 1.6× 10−1 1.0× 100

f 4.0× 10−4 2.4× 10−1 5.0× 10−1 3.6× 10−1 7.5× 10−1 1.0× 100

Table 5.7: Summary statistics for the posterior sample of each parameter fol-

lowing ABC performed using only intracellular Ct values.
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Figure 5.12: Posterior histograms obtained by performing 4 × 106 iterations

of an ABC rejection sampling algorithm using only measurements of cell death.

The prior distributions are provided in red to indicate how much can be learnt

about each parameter.
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Figure 5.13: Posterior histograms obtained by performing 4× 106 iterations of

an ABC rejection sampling algorithm using all experimental measurements. The

prior distributions are provided in red to indicate how much can be learnt about

each parameter.
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Min. 1st Qu. Med. Mean 3rd Qu. Max.

βc 1.1× 10−10 8.6× 10−8 1.0× 10−6 7.5× 10−7 8.3× 10−6 1.0× 10−4

βv 1.0× 10−10 1.6× 10−9 3.3× 10−8 4.3× 10−8 8.0× 10−7 9.9× 10−5

α 1.0× 10−4 3.5× 10−1 7.0× 10−1 5.2× 10−1 1.1× 100 1.4× 100

τE 1.0× 100 5.5× 100 2.4× 101 1.6× 101 5.2× 101 7.5× 101

τI 1.0× 100 7.2× 100 3.0× 101 1.8× 101 5.4× 101 7.4× 101

ε 3.0× 10−4 2.6× 10−1 5.0× 10−1 3.7× 10−1 7.6× 10−1 1.0× 100

nE 1.0× 100 2.0× 101 4.4× 101 3.4× 101 7.2× 101 1.0× 102

nI 1.0× 100 2.0× 101 4.3× 101 3.4× 101 7.2× 101 1.0× 102

τC/τE 1.7× 10−3 2.5× 10−1 5.1× 10−1 3.6× 10−1 7.4× 10−1 1.0× 100

v50(0) 1.0× 104 8.1× 104 4.8× 105 4.2× 105 2.4× 106 1.0× 107

vT (0) 1.0× 105 9.9× 106 4.5× 108 4.1× 108 1.9× 1010 1.0× 1012

t0 1.0× 10−4 1.3× 10−1 2.5× 10−1 1.8× 10−1 3.8× 10−1 5.0× 10−1

λ 1.0× 10−3 5.5× 10−3 2.7× 10−2 2.8× 10−2 1.5× 10−1 9.2× 10−1

b 1.0× 10−3 6.1× 10−3 3.8× 10−2 3.5× 10−2 1.9× 10−1 1.0× 100

f 3.0× 10−1 3.2× 10−1 3.3× 10−1 4.1× 10−1 5.0× 10−1 1.0× 100

Table 5.8: Summary statistics for the posterior sample of each parameter fol-

lowing ABC performed using only measurements of cell death.

Min. 1st Qu. Med. Mean 3rd Qu. Max.

βc 1.0× 10−10 2.3× 10−8 4.2× 10−7 3.2× 10−7 6.8× 10−6 9.9× 10−5

βv 1.1× 10−9 4.5× 10−7 1.7× 10−6 1.6× 10−6 6.4× 10−6 9.9× 10−5

α 6.0× 10−4 3.4× 10−1 6.7× 10−1 5.0× 10−1 1.0× 100 1.4× 100

τE 1.0× 100 2.7× 100 7.4× 100 7.7× 100 2.1× 101 2.3× 102

τI 1.0× 101 2.2× 101 5.0× 101 4.3× 101 9.1× 101 1.0× 103

ε 2.1× 10−2 4.6× 10−1 6.8× 10−1 5.7× 10−1 8.6× 10−1 1.0× 100

nE 1.0× 100 2.3× 101 4.7× 101 3.4× 101 7.2× 101 1.0× 102

nI 1.0× 100 2.1× 101 4.6× 101 3.3× 101 7.2× 101 1.0× 102

τC/τE 5.0× 10−4 2.5× 10−1 4.9× 10−1 3.7× 10−1 7.5× 10−1 1.0× 100

v50(0) 1.0× 104 1.1× 105 6.4× 105 5.2× 105 2.7× 106 1.0× 107

vT (0) 1.0× 105 3.3× 106 2.5× 107 3.3× 107 2.2× 108 9.0× 1011

t0 6.3× 10−3 1.9× 10−1 3.0× 10−1 2.5× 10−1 4.0× 10−1 5.0× 10−1

λ 4.9× 10−2 1.2× 10−1 1.5× 10−1 1.6× 10−1 2.1× 10−1 9.6× 10−1

b 1.0× 10−3 2.5× 10−2 7.3× 10−2 6.6× 10−2 2.0× 10−1 1.0× 100

f 1.0× 10−3 2.5× 10−1 3.7× 10−1 3.4× 10−1 5.1× 10−1 9.9× 10−1

Table 5.9: Summary statistics for the posterior sample of each parameter fol-

lowing ABC performed using all four data sets.
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5.2 Parameter inference

The learning from the individual data sets is collectively brought together when

considering all four types of data at once. The histogram for βc shows similar

learning to when only cell death measurements are used, with extracellular and

intracellular viral loads previously unable to provide any insight into this pa-

rameter. This is also similar for τI , with some additional weight given to larger

values, as suggested by the measurements of extracellular viral load. For ε, λ,

vT (0) and b, the posterior histograms closely resemble those in Figure 5.10 since

the intracellular viral load and cell death measurements offer little additional

learning. Furthermore, due to the consistency observed between the histograms

for λ in Figures 5.10 and 5.11, a similar shape is seen when all data sets are

considered. For βv, the peak of the distribution is close to that suggested from

the intracellular Ct values, but now the smallest values of βv have zero density.

Since it is possible to learn about the ratio of strongly correlated parameters,

the Pearson correlation coefficient has been computed for the posterior samples

of pairs of parameters, with the results presented in Figures 5.14 and 5.15 for

the different combinations of data used in the inference. Noticeably, when only

comparing to extracellular data, there are strong correlations between βv and λ,

as well as vT (0) and v50(0). The negative correlation between βv and λ can be

explained by considering that a larger value of βv results in a greater number of

virus particles entering host cells, and therefore a lower replication rate is required

to counteract this. For vT (0) and v50(0), the positive correlation reflects that a

sample of EBOV containing greater levels of total virus will naturally contain

greater levels of infectious virus. As a result of this, it is possible to learn about

the initial ratio of infectious virus particles to total virus particles, given here by

v50(0)/(αvT (0)). The posterior samples of v50(0), vT (0) and α may be used to

construct a posterior sample for this ratio, giving a median estimate of 1.7×10−2.

When learning from the intracellular measurements, the strong correlation

between v50(0) and vT (0) is not present. This is likely due to only the total in-

tracellular viral load being measured, and not the infectious viral load. Instead,

many of the stronger correlations observed here involve t0, since the intracellular

viral load at this point is used in the normalisation of vint(t). As larger values
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Figure 5.14: Correlations between the posterior samples of pairs of parameters

following ABC performed using only extracellular measurements (top) and only

intracellular measurements (bottom).
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Figure 5.15: Correlations between the posterior samples of pairs of parameters

following ABC performed using only cell death measurements (top) and using all

available data sets (bottom).

164



5. WITHIN-HOST MODELLING OF EBOLA VIRUS

of τC/τE delay the point at which viral replication can begin, it is not surprising

that this parameter is strongly correlated with λ.

From the cell death data, there are generally weak correlations between the

majority of parameters, with the strong negative correlation between τE and τI

mentioned previously. The correlation between v50(0) and βc allows more to be

learnt about the ratio βcv50(0)/α. It is likely that more can be learnt about this

ratio rather than the individual parameters since this is the scaled rate at which

target cells become infected, as described in the model equations.

By combining all data sets, the strong correlation between v50(0) and vT (0) is

again present, although the median of v50(0)/(αvT (0)) is now 4.4×10−2, suggest-

ing that infectious virus represents a slightly larger fraction of total virus particles

compared to the value inferred from only the extracellular data. Other strongly

correlated parameters include λ and b, which is understandable since together

they define the net growth of intracellular virus in infectious phase cells, τI and

τE, and λ and τC/τE.

Overall, the majority of the learning arises from comparing the model to mea-

surements of extracellular viral load. Although the intracellular viral load allows

a better estimate of τE to be obtained, this can also be achieved by comparing

to measurements of cell death. The cell death data also has the added benefit

of providing greater learning for βc, τI and f , and would therefore be preferred

over the intracellular viral load. Notable parameters that are difficult to learn

about are α, the scale factor between TCID50 and RNA copies. The difficulty in

estimating this parameter is also observed by Iwami et al. (2012), who, given data

regarding infectious and total viral loads of influenza virus, are able to estimate

that one TCID50 corresponds to between 3.3× 102 and 1.2× 105 infectious virus

particles. Little can also be learnt about the number of states in the eclipse and

infectious phases, with the magnitude of the correlation coefficient between these

parameters and each remaining parameter less than 0.12. This suggests that in

future it may be plausible to fix the values of both nE and nI .
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5.3 Results

In this section, I describe how the posterior distributions obtained from the

Bayesian inference can be used to make predictions regarding different model

quantities, such as the number of cells in each phase and the basic reproduction

number.

5.3.1 Cellular and late time predictions

The wild-type model of EBOV infection has primarily been parametrised using

measurements of viral load, with the only exception being the use of cell death

data. It is therefore also interesting to consider posterior predictions of other

model variables, in particular, the number of cells in each state. Here, the number

of cells in the whole eclipse phase is given by E(t) =
∑nE

i=1Ei(t) whilst the

number of cells in the infectious phase is I(t) =
∑nI

j=1 Ij(t). Figure 5.16 shows

posterior predictions for these variables as well as the number of target cells,

T (t), using posterior samples obtained by performing ABC with only extracellular

measurements and also from ABC performed with all data sets. When comparing

to only extracellular measurements, the credible regions of E(t) show two peaks,

possibly suggesting that two rounds of infection occur. However, the pointwise

median and credible regions only provide a summary of the overall dynamics

and cannot provide insight into individual solutions. When instead considering

individual solutions, it is possible to see that solutions either contribute to the

first or second peak and not both. To determine what causes this difference in

dynamics, let P1 and P2 respectively denote the sets of posterior samples for

which the maximum of E(t) occurs within 30 hours or occurs after 30 hours post

infection. As shown in Figure 5.17, the posterior distributions of βc and v50(0) are

skewed towards larger values for parameter samples in P1, whilst for parameter

samples in P2, the same distributions are skewed towards smaller values. Figure

5.18 shows a histogram of the cellular infection rate, βcv50(0)/α, for parameter

samples in P1 and P2, from which it is evident that the two peaks observed

in Figure 5.16 are attributed to contrasting rates of infection. For parameter
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Figure 5.16: Posterior predictions for the total number of target cells, T (t),

eclipse phase cells, E(t), and infectious phase cells, I(t). Posterior samples are

obtained by performing ABC using only extracellular measurements (top) and

all data sets (bottom). Shaded regions represent 50% and 95% credible regions.

samples in P1, infection events occur quickly with almost all target cells infected

in the first 24 hours, whereas for parameter samples in P2, the infection of target

cells is much more gradual. This idea also explains why the median number

of infectious phase cells appears to increase in two stages when the inference is

conducted using only extracellular measurements, and also why it takes longer

for the median number of target cells to reach zero. Previously, the posterior

histograms in Figure 5.10 suggested that little could be learnt about βc and

v50(0), so it is interesting that the distribution of the infection rate is distinctly

bimodal. Furthermore, Figure 5.14 shows no indication of this relationship, with

the correlation between βc and v50(0) approximately zero. As in Chapter 4, where
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Figure 5.17: Posterior histograms of βc and v50(0) for the sets P1 (blue) and P2

(orange).

it was described how additional measurements regarding the activation states of

cells could help improve the inference, these qualitative results relating to the

speed of infection could also act as a method for eliminating parameter sets, thus

refining the posterior samples.

When performing ABC that utilises all data sets, the measurements of cell

death indicate that βc is more likely to attain larger values. For this reason,

the corresponding predictions of T (t) and E(t) suggest a scenario where target

cells become infected quickly and thus only a single peak is seen in the number of

eclipse phase cells. Since the learning of βc is due to the cell death measurements,

similar predictions for T (t), E(t) and I(t) are observed when using the posterior

sample from the ABC that compares only to these measurements. When com-

paring to only intracellular Ct values, similar dynamics are observed to those

obtained when comparing to extracellular measurements.

Although model parameters have in part been inferred from measurements of

extracellular TCID50 and extracellular Ct values during the first 72 hours of infec-

tion, additional observations for these variables are available for the subsequent

four days of infection. It is therefore also possible to assess the predictive abil-

ity of the model at these later time points. Figure 5.19 shows pointwise median

predictions along with 50% and 95% credible regions for each variable during the

initial seven days of infection, with the additional data for extracellular TCID50
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Figure 5.18: Posterior histograms of the infection rate βcv50(0)/α for parameter

samples in P1 (blue) and P2 (orange).

and extracellular Ct values indicated. These predictions suggest that the median

model output is not able to sufficiently account for the decay in the extracellular

viral counts that occur at later time points, instead over-predicting the amount

of virus. However, all of the measurements at late times lie within or close to

the 50% credible regions, suggesting that there are parameter regimes that can

describe these dynamics.

Given the current description of the model, there are two reasons why the

extracellular viral load decreases at late time points. The first is that the budding

rate of virus, b, is greater than the replication rate, λ. In this case, when cells

enter the infectious phase, their intracellular viral load will decrease such that

there is not sufficient release of virus to counter the degradation of extracellular

virus. However, analysis of the posterior sample shows that λ > b for over 75%

of parameter sets, indicating that the intracellular viral load would continue to

grow whilst cells remain in the infectious phase. The other, more probable rea-

son, is due to cells no longer producing virus after they exit the infectious phase.

Once all cells exit the infectious phase, degradation and denaturation of virus are

then the only events that take place. This suggests that the large variability and

over-predictions observed in w50(t) and wT (t) at late time points could be due to

less accurate estimates of the total time a cell remains infected, τE + τI .
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Figure 5.19: Pointwise median predictions for the first seven days of infection

where shaded regions represent 50% and 95% credible regions.

5.3.2 Basic reproduction number

When describing the potential spread of an infectious disease in an epidemic, a

commonly associated quantity is the basic reproduction number, R0. This also

has an interpretation in models of viral kinetics, where it is defined as the expected

number of secondary infections produced by a single infected cell in a completely

susceptible population (Nowak & May (2000)). When R0 < 1, infected cells will

on average fail to replace themselves and so the infection is contained. On the

other hand, if R0 > 1, the number of infected cells increases and the disease will

spread (Van den Driessche & Watmough (2008)). The basic reproduction number

can be expressed as the product of the expected duration of the infectious period

and the rate at which secondary infections occur. In calculating the rate at

which secondary infections occur, this takes into account the rate at which virus

is produced by infectious cells. For previous models of viral dynamics, this is

simple to determine since the production of virus occurs at a constant rate that

is proportional to the number of infected cells. Here, however, difficulties arise
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due to the assumption that viral production is proportional to the intracellular

viral load. As a result, the production of virus from a single infected cell is no

longer constant, but instead a function of time.

In order to find R0 for the mathematical model described in Section 5.1,

recall that the intracellular viral load of an infectious phase cell is modelled as

a birth-and-death process, such that a death event represents the release of a

single virus particle from the cell. The average amount of virus released by a

cell throughout the duration of the infectious phase may then be thought of as

the average number of death events that occur in the birth-and-death process.

To determine this average, it is therefore necessary to take into account both

the dynamics of the intracellular viral population as well as the time that an

infected cell spends in the infectious phase. For this reason, let X = {X(t) =

(X(t), Y (t)) : t ≥ 0} be a bivariate Markov process where X(t) denotes the

intracellular viral load of an infectious phase cell at time t, and Y (t) represents

the state of the cell within the infectious phase. The state space of X is given by

SX = {(i, j) : i ≥ 0, 1 ≤ j ≤ nI} ∪ {φ}. If the transition probabilities are defined

as

p(i,j),(m,n)(∆t) = Pr(X(t+ ∆t) = (m,n) |X(t) = (i, j)) ,

then X may be defined by its one-step transition probabilities

p(i,j),(m,n)(∆t) =





λi∆t+ o(∆t) (m,n) = (i+ 1, j) ,

bi∆t+ o(∆t) (m,n) = (i− 1, j) ,

δI∆t+ o(∆t) (m,n) = (i, j + 1) ,

1− ((λ+ b)i+ δI)∆t+ o(∆t) (i, j) = (m,n) ,

o(∆t) otherwise ,

for states (i, j) ∈ SX. A depiction of X is provided in Figure 5.20. Since the rate at

which cells transition through infectious phase states is independent of the birth-

and-death process used to represent viral replication and budding, X has a similar

interpretation to the within-phagocyte level of the multi-scale model described

in Chapter 3. The transitioning of X down columns of states in Figure 5.20
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Figure 5.20: A depiction of the Markov process X used to model a single cell

during the infectious phase. State (i, j) indicates that the cell contains i virus

and is currently in the jth state of the infectious phase.

represents that cell death becomes increasingly nearer and is therefore analogous

to the rupture clock from Section 3.1.1. The process X has a single absorbing

state, φ, representing that viral production no longer occurs from the infected

cell. State φ has an equivalent interpretation to that depicted in Figure 5.1.

Let R be a random variable representing the amount of virus released by a

cell whilst in the infectious phase. With reference to Figure 5.20, this may be

understood as the number of jumps the process X makes to the left before it

reaches the absorbing state φ. A stochastic descriptor for the average number of

virus released may then be defined as

mi,j = IE [R |X(0) = (i, j)] ,
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where m0,j = 0 for all j. By conditioning on the subsequent state of X, first step

analysis can be used to construct a system of equations relating mi,j for each

state in SX

mi,j =
λi

(λ+ b)i+ δI
mi+1,j+

bi

(λ+ b)i+ δI
(mi−1,j+1)+

δI
(λ+ b)i+ δI

mi,j+1 . (5.6)

where i = 0, 1, 2, ... and j = 1, 2, ..., nI . The system described by equation (5.6)

can be solved by first considering the final row of states in Figure 5.20, relating

to the final infectious phase state. In this case, m1,nI
satisfies

m1,nI
=

λ

λ+ b+ δI
m2,nI

+
b

λ+ b+ δI
.

In Section 4.1.2 it is noted that prior to a catastrophe event occurring, a linear

birth-and-death process with catastrophe starting in state k may be thought of

as k independent processes starting in state 1. The same reasoning can also be

applied here to obtain mi,nI
. If a transition from state (i, nI) into the absorbing

state is thought of as a catastrophe event, then a cell containing two virus particles

at the start of the infectious phase may be thought of as two cells each containing

one. Since these cells are identical and independent, the average number of virus

particles released during the infectious phase is the same for each cell, and thus

m2,nI
= 2m1,nI

. In general, it is then true that mi,nI
= im1,nI

and the system

formed by equation (5.6) can be solved recursively to yield

mi,j = im1,j =
ib

b+ δI − λ

nI−j∑

k=0

(
δI

b+ δI − λ

)k
, i ≥ 1, 1 ≤ j ≤ nI . (5.7)

Since a cell always enters the infectious phase through state I1, the case j = 1 is

of particular interest, with equation (5.7) simplifying to

mi,1 = im1,1 =
ib

λ− b

((
δI

b+ δI − λ

)nI

− 1

)
, i ≥ 1 . (5.8)

It should be noted that this mean is only defined when b+δI > λ. This condition

arises due to the difficulty in taking the mean of a birth-and-death process with

constant catastrophe rate that has previously been discussed in Section 4.1.4.

With this, it is now possible to determine the average number of virus released
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during the infectious phase, provided that the viral load of the cell at the start of

the infectious phase is known. In order to determine the distribution of cellular

viral loads at the start of the infectious phase, recall that the population of

intracellular virus is modelled as a Poisson process during the co-infection window

and a birth process during the eclipse phase.

Let W = {W (t) : t ≥ 0} be a Poisson process, where W (t) is the intracellular

viral load at time t of an infected cell during the co-infection window. Since a

target cell immediately enters the co-infection window following infection with

a single virus, it is suitable to let W (0) = 1. The viral load then increases due

to further infection events that occur at constant rate β = βcv50(0)/α and the

transition probabilities of W are shown by Allen (2003) to have the form

Pr(W (t) = n |W (0) = 1) =
βn−1e−βt

(n− 1)!
, n ≥ 1 .

The distribution of the viral load at the end of the co-infection window can then

be obtained by taking into account the Erlang(δE, nC) distributed duration of the

co-infection window. If p
(C)
n is the probability that a cell contains n virus at the

end of the co-infection window, then

p(C)
n =

∫ +∞

0

(βt)n−1e−βt

(n− 1)!

δnC
E tnC−1e−δEt

(nC − 1)!
dt ,

=

(
(nC − 1) + (n− 1)

n− 1

)(
β

β + δE

)n−1(
δE

β + δE

)nC

,

where the integral has been evaluated by recognising that, up to a constant factor,

the integrand is equivalent to the p.d.f of an Erlang(λ+δE, n+nC−1) distribution.

The probabilities p
(C)
n can now be used to form the distribution of initial viral

loads for a cell as it enters the eclipse phase. To determine the distribution

of viral loads for a cell at the end of the eclipse phase, let Z = {Z(t) : t ≥
0} be a linear birth process where Z(t) represents the viral load of an eclipse

phase cell, and consider first the general case where Z(0) = k. It is known

that, after the co-infection window, the duration of the eclipse phase follows

an Erlang(δE, nE − nC) distribution, and the transition probabilities for a linear

birth process have previously been described in Section 2.2.7. Therefore, if p
(E)
n (k)
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denotes the probability that a cell contains n virus at the end of the eclipse phase,

provided that it contained k virus after the co-infection window, then

p(E)
n (k) =

∫ +∞

0

(
n− 1

n− k

)
e−λkt

(
1− e−λt

)n−k δnE−nC
E tnE−nC−1e−δEt

(nE − nC − 1)!
dt ,

=

∫ +∞

0

(
n− 1

n− k

)
e−λkt

n−k∑

j=0

(
n− k
j

)
(−1)je−λjt

δnE−nC
E tnE−nC−1e−δEt

(nE − nC − 1)!
dt ,

=
n−k∑

j=0

(−1)j
(
n− 1

n− k

)(
n− k
j

)(
δE

λ(k + j) + δE

)nE−nC

, n ≥ k .

The expressions for p
(C)
n and p

(E)
n (k) can now be combined to find p

(E)
n , the prob-

ability that a cell contains n virus at the end of the eclipse phase

p(E)
n =

n∑

k=1

p(E)
n (k)p

(C)
k

=
n∑

k=1

[
n−k∑

j=0

(−1)j
(
n− 1

n− k

)(
n− k
j

)(
δE

λ(k + j) + δE

)nE−nC

]

×
(

(nC − 1) + (k − 1)

k − 1

)(
β

β + δE

)k−1(
δE

β + δE

)nC

, n ≥ 1 .

Since the end of the eclipse phase marks the beginning of the infectious phase,

these probabilities form the distribution of initial states for finding the average

amount of virus released from a cell during the infectious phase, which may now

be written as

IE [R] =
+∞∑

i=1

IE [R |X(0) = (i, 1)] Pr(X(0) = (i, 1)) =
+∞∑

i=1

mi,1p
(E)
i . (5.9)

With an expression for the mean number of virus released from a cell during

the period it remains infectious, it is now possible to define R0. For this, it

is also necessary to take into account that only a fraction ε of produced virus

is infectious and thus able to cause secondary infections, and that extracellular

infectious virus degrades and loses infectivity with rate µV + µS. Altogether, an
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appropriate expression for R0 is given by

R0 =
εIE [R] βcT (0)

µV + µS
. (5.10)

Figure 5.21 shows the distribution of R0, with a summary also provided in Table

5.10. This distribution has been constructed using the posterior sample obtained

by performing ABC with all four data sets, along with equations (5.9) and (5.10).

Only parameters satisfying the condition b+ δI > λ have been used to find R0.

Previously, Nguyen et al. (2015) used bootstrapping to obtain a distribution

of R0 that has a median of approximately 104−105. Such large values of R0 have

also been observed by Pinilla et al. (2012) for influenza virus and can be explained

by the use of in vitro data to parametrise the model. It is likely that in vivo,

both the rate of viral clearance and infected cell clearance are greater due to the

presence of immune responses, which would then result in smaller estimates for

R0. Although the distribution in Figure 5.21 suggests that large values of R0 are

also possible here, the median value of approximately 16 appears more sensible.

Given that experimental measurements show an increase in the infectious viral

load through time, this would suggest that the infection is spreading and thus

R0 > 1. Therefore, as a further approach to refine the posterior distributions, it

would also be appropriate to eliminate those parameter sets from the posterior

sample that yield R0 < 1.

5.4 Discussion

In this chapter, I have described how a mathematical model can be constructed

to replicate a series of in vitro experiments involving Ebola virus. The model is

based on traditional target cell-limited models but is unique in its ability to also

describe intracellular dynamics following the inclusion of just a single additional

parameter. Parameter inference has subsequently been conducted in a Bayesian

manner to compare the learning from different experimental measurements. For

the measurements of extracellular and intracellular viral load, the limited number

of observations means that it is difficult to determine how accurate the data are,
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Figure 5.21: Distribution of the basic reproductive number, R0, constructed

using the posterior sample following ABC performed using all available data sets.

Min. 1st Qu. Median Geo. Mean 3rd Qu. Max.

R0 4.7× 10−4 3.8× 10−1 1.6× 101 3.8× 102 6.8× 103 5.0× 1089

Table 5.10: Summary statistics for the basic reproductive number, R0.

and thus how trustworthy the posterior distributions can be. However, whilst

lacking in the number of observations, this is balanced by the diverse nature of

the measurements, with results for viral counts in both the presence and absence

of cells, as well as cell death also made available. Ultimately, multiple replicates

of a single experiment would provide more accurate estimates of the mean be-

haviour, to which the model is being compared when performing ABC. This may

subsequently result in more certain estimates for some individual model param-

eters, however, a wide variety of observations can provide greater learning about

the whole parameter space, albeit with less certainty. Furthermore, even when

only a little can be learnt about a certain parameter, it may still be possible to

confine the range of the parameter, as is the case for τE in Figure 5.13. With the

cost and time associated with performing these experiments, it is important that

experimentalists collaborate effectively with modellers in order to determine the
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types of experiments that provide the most useful data.

From the analysis performed here, measurements of infectious and total viral

counts in the absence of infection appear important, since a simple exponential

decay model can then be used to obtain accurate estimates for the rates of vi-

ral decay, thus reducing the dimension of the parameter space when performing

ABC. Extracellular viral counts are a commonly measured quantity and these are

shown here to provide significant learning for a number of parameters, including

the rates of infection and intracellular viral replication. However, in order to

determine the length of the eclipse and infectious phases, measurements of cell

death are required. The intracellular viral load provides information about the

length of the eclipse phase, although the little information that it provides for

the remaining parameters suggests that it is not beneficial compared to measure-

ments of cell death. Preference should therefore be given to measuring cell death

instead of the intracellular viral load. Other cellular measurements such as the

proportion of infected cells may be equally successful for providing estimates of

the time cells spend in each phase, and could also yield a better estimate for the

cellular infection rate, βc.

One advantage of using ABC to conduct the inference is that it can identify

parameters that are not important in the model. For example, when using any

of the data sets, the prior and posterior distributions are approximately equal

for both nE and nI , the number of states that comprise the eclipse and infec-

tious phases. Since an uninformative prior has been assumed, it is not possible

to determine whether this is because no learning occurs, or whether all values of

nE and nI are equally likely. In future, the ABC could be repeated for different

choices of prior distribution. If the posterior distribution remains the same as

found here, this would suggest that all values are equally likely. In such a case, it

may then be more appropriate to fix the values of nE and nI in any subsequent

analysis.
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Chapter 6

Concluding remarks

In this thesis, mathematical models for two highly infectious and lethal pathogens

have been developed. Alongside experimental results, these models are important

for helping to understand the early stages of pathogenesis and can ultimately be

applied to predict the effects of potential treatment strategies. Stochastic ap-

proaches to modelling have been used to study F. tularensis in order to account

for the inherent variability associated with low bacterial counts, which is of par-

ticular importance for this specific bacterium given its low infectious dose. The

large number of Ebola virus particles present in the in vitro experiments suggests

that a deterministic approach is more suitable, however, given that a single cell

is initially infected by only a few virus particles, a stochastic approach has again

been used to model the intracellular dynamics.

In Chapter 3, a novel multi-scale model has been developed to describe the

effects that the release of F. tularensis has on a population. Through incorporat-

ing the intracellular and within-host dynamics, the probability of symptom onset

and mean time to symptom onset can be obtained given the initial exposure dose.

This dose-and-time response model is an improvement on existing models by ex-

plicitly accounting for biological mechanisms, rather than relying on goodness of

fit, as is the case for existing statistical models. The model has been parametrised

using both in vivo and in vitro data, and is capable of explaining data obtained

following human trials well.
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One limitation of this model is the use of matrix analytic methods to analyse

the probability of response and mean time to response. Although these meth-

ods are efficient in the sense that they utilise partitions of considerably larger

matrices, the computational cost of storing and performing operations with ma-

trices restricts their use to stochastic processes with smaller state spaces. When

difficulties arise in studying the behaviour of the model using these methods,

numerical simulations offer a solution, however, this often requires many reali-

sations and can therefore also be computationally expensive. One solution that

has been identified for the within-host model is to consider a ‘point of no return’,

representing a threshold of bacteria that, if attained, indicates that a response is

almost certain to occur. For the probability of response, this allows the size of the

state space to be reduced, such that matrix analytic methods can be applied and

are no longer a limiting factor. For the mean time to response, the ‘point of no

return’ could be used to develop a hybrid approach, where stochastic dynamics

are considered when the level of extracellular bacteria is below this threshold and

deterministic ODEs are used to describe subsequent dynamics when the popula-

tion size is larger.

Currently, the multi-scale model does not account for treatment of infected

individuals, however, this could be a future development. Still focusing on in-

fection within the lung, one method to include treatment would be to construct

a pharmacokinetic model for the concentration of antibiotic. For bactericidal

antibiotics, the rate of extracellular bacterial killing in the within-host model

may then be specified as an increasing function of this concentration. Therefore,

when treatment is administered early enough, the antibiotics are able to resolve

the infection through increased bacterial killing before symptom onset can occur.

However, even if antibiotics are administered at a later time, the reduction in net

bacterial growth would result in a lengthened response period, thus extending

the window of opportunity for further treatment.

In Chapter 4, an ABM has been developed for the early stages of F. tularensis

pathogenesis. Through extending existing results regarding birth processes with

catastrophe, it has been possible to characterise the infection cycle of a single
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cell. Under the assumption that cells act independently of each other during the

first 48 hours of infection, this has then enabled approximations of the ABM to

be derived for populations of cells. As in each chapter, a Bayesian approach has

been used to infer parameter values using infection data. Whilst this yields an

accurate estimate for the intracellular growth rate of F. tularensis bacteria, it

highlights the difficulties with identifiability that are also observed in Chapters 3

and 5. These problems can sometimes be avoided by combining reactions, such

as in the extracellular killing rate in the multi-scale model. However, even in this

within-host model with only three reactions, the high correlation between the

extracellular killing rate and rate of phagocytosis mean they are difficult to esti-

mate individually. More important are the types of data with which the inference

is performed. For the ABM approximations, only bacterial counts are available

and this explains why only an estimate for the replication rate can be obtained.

Despite this, by comparing ABM simulations for other quantities, such as the

number of surviving cells or the proportion of cells in each activation state, it is

evident that measurements of this type would enable better learning.

In Chapter 5, a deterministic model for Ebola virus infection is developed

that also accounts for stochastic intracellular dynamics using a novel approach

that not only requires just a single additional parameter compared to analogous

models of extracellular dynamics, but also models the release of virus in what is

believed to be a more biologically realistic manner. Through the Bayesian anal-

ysis, it is now possible to determine which types of data offer the most learning,

and thus we can advise on the specific experiments that should be conducted.

This knowledge, and the model description, is not only useful for Ebola virus but

is also applicable for different viruses.

Understanding infection with wild-type Ebola virus is the first stage to de-

signing treatment. One treatment strategy currently being considered is the use

of defective interfering particles (DIPs), attenuated virus particles that interfere

during the replication of Ebola virus by competing for viral proteins (Calain

et al. (1999)). A mathematical model that incorporates DIPs would include all

reactions that currently exist in the wild-type model, with additional reactions
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relating to the entry and competition of the DIPs. Future work could therefore

make use of the posterior distributions obtained here. By already having suitable

parameter values inferred from in vitro experiments for the wild-type model, a

more effective analysis of the parameters influencing DIPs could be conducted.

For example, it would be interesting to consider how the rate of entry of DIPs and

the level of interference affects the concentration of infectious virus particles. Nat-

urally, however, since these experiments have been performed in vitro, care must

be taken when using these results to reach conclusions about DIP interference at

an in vivo level, and thus the effect of DIPs as therapeutic agents.
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Appendix A

Code samples

A.1 Python code for a tau-leaping algorithm

For the within-host model described in Section 3.1.2, there are two species and

N + 2 reactions. The multiple rupture events are represented in N of these

reactions, whilst phagocytosis followed by bacterial survival and extracellular

bacterial death encompass the remaining reactions. Therefore, with reference

to the tau-leaping algorithm outlined in Algorithm 2.2, I = {B(t), P (t)} and

M = N + 2. By ignoring the absorbing state at 0, the critical reactions may

be determined by considering that B(t) ≥ P (t) and B(t) > 0. From this, either

every reaction is critical, every rupture event is critical, only phagocytosis and

extracellular death events are critical, or no reactions are critical. Using this

information, the following code may be implemented to simulate one realisation

of the within-host model.

import random, numpy, math

# Evaluates the propensity function for each reaction

def Make_Rates(nT,nP):

return [mu*(nT-nP), alpha*(nT-nP), delta*nP]

# Functions to return the state change vector when the reaction occurs kj times.

def ExDeath(kj):

return -kj, 0

def Phagocytosis(kj):
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return 0, kj

def Rupture(kj):

return sum([(random.choices(num_bacteria_released,

cum_weights = Rcum)[0]-1) for i in range(kj)]), -kj

# A function to determine which reactions are critical given the current state

# of the process

def Critical_Reactions(nT,nP):

critical_reaction_list = []

if 0 < (nT-nP) < nC:

if nP < nC:

critical_reaction_list.extend([0,1,2])

else:

critical_reaction_list.extend([0,1])

elif 0 < nP < nC:

critical_reaction_list.append(2)

return critical_reaction_list

def Finding_Tau_Dash(nT,nP):

non_critical_reactions = [x for x in events

if x not in Critical_Reactions(nT,nP)]

if non_critical_reactions == []:

# all reactions are critical

tau_dash = tmax

elif all(rates[i] == 0 for i in non_critical_reactions):

# all reactions are critical

tau_dash = tmax

else:

if non_critical_reactions == [2]:

# both extracellular and phagocytosis are critical

mu_list = [delta*nP*sum_k_minus_1_Rk, -delta*nP]

sigma_squared_list = [delta*nP*sum_k_minus_1_Rk_squared, delta*nP]

elif non_critical_reactions == [0,1]:

# rupture is the only critical reaction

mu_list = [-mu*(nT-nP), alpha*(nT-nP)]

sigma_squared_list = [mu*(nT-nP), alpha*(nT-nP)]

elif non_critical_reactions == [0,1,2]:

# no reactions are critical

mu_list = [delta*nP*sum_k_minus_1_Rk - mu*(nT-nP),

-delta*nP + alpha*(nT-nP)]

sigma_squared_list = [delta*nP*sum_k_minus_1_Rk_squared+mu*(nT-nP),

delta*nP + alpha*(nT-nP)]

Ttau = min(max(epsilon*abs(nT),1)/abs(mu_list[0]),

max(epsilon*abs(nT),1)**2/sigma_squared_list[0])

Ptau = min(max(epsilon*abs(nP),1)/abs(mu_list[1]),

max(epsilon*abs(nP),1)**2/sigma_squared_list[1])

return min(Ttau,Ptau)
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def Finding_Tau_Double_Dash(nT,nP):

if Critical_Reactions(nT,nP) == []:

tau_double_dash = tmax

else:

rates = Make_Rates(nT,nP)

tau_double_dash = random.expovariate(

sum([rates[i] for i in Critical_Reactions(nT,nP)]))

return tau_double_dash

# A function that determines how many bacteria are released when a rupture

# event occurs

def Choose_Rupture_Event(num_bac,num_phag):

reaction = random.choices(num_bacteria_released, cum_weights=Rcum)[0]

num_bac += reaction - 1

num_phag -= 1

return num_bac,num_phag

# A function that peforms one step of the Gillespie algorithm for when it is

# not advantageous to perform tau-leaping.

def Gillespie_Step(nT,nP,tt):

if nT == 0:

return nT, nP, tt

else:

rates = Make_Rates(nT,nP)

sum_rates = sum(rates)

tt += -math.log(random.random())/sum_rates

u1 = random.random()

if u1 < rates[0]/sum_rates:

nT -= 1

elif u1 < (rates[0]+rates[1])/sum_rates:

nP += 1

else:

nT,nP = Choose_Rupture_Event(nT,nP)

return nT, nP, tt

# A function that performs one step of the tau-leaping algorithm

def One_Step(nT,nP,tt):

state_change = [0,0]

rates = Make_Rates(nT,nP)

tau_dash = Finding_Tau_Dash(nT,nP)

if tau_dash < 10/sum(rates):

for j in range(100):

nT, nP, tt = Gillespie_Step(nT,nP,tt)

return nT, nP, tt

else:

tau_double_dash = Finding_Tau_Double_Dash(nT,nP)

tau = min(tau_dash, tau_double_dash)
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for i in [x for x in events if x not in Critical_Reactions(nT,nP)]:

state_change = numpy.add(state_change,

events[i](numpy.random.poisson(tau*rates[i])))

if tau == tau_double_dash:

critical = Critical_Reactions(nT,nP)

critical_reaction_rates = [rates[i] for i in critical]

state_change = numpy.add(state_change,

events[random.choices(critical,

cum_weights=numpy.cumsum(critical_reaction_rates))[0]](1))

return nT + state_change[0], nP + state_change[1], tt + tau

# Defining parameters

N = 10 # maximum number of bacteria released from a rupturing phagocyte

num_bacteria_released = [i for i in range(1,N+1)]

R = [1/N for _ in range(N)]# distribution of number of bacteria released

Rcum = numpy.cumsum(R)

M = 5*1e3 # the number of bacteria required for a response to occur

alpha = 0.3325 # rate of phagocytosis resulting in bacterial survival

mu = 8.63 # rate of extracellular bacterial death

delta = 0.0241 # total rate at which an infected phagocyte ruptures

nC = 10 # the threshold used to define the critical region

epsilon = 0.03 # the error in the tau-leaping algorithm

tmax = 1e10 # the maximum time for which the tau-leaping algorithm can run for

numruns = 1 # the number of realisations of the Markov process to be simulated

T0 = 1e3 # the initial number of Francisella tularensis bacteria

P0 = 0 # the initial number of infected phagocytes

events = {0:ExDeath, 1:Phagocytosis, 2:Rupture}

sum_k_minus_1_Rk = sum((num_bacteria_released[k]-1)*R[k] for k in range(N))

sum_k_minus_1_Rk_squared = sum(((num_bacteria_released[k]-1)**2)*R[k]

for k in range(N))

# Constructing one realisation of the within-host model

for _ in range(numruns):

T = [T0]

P = [P0]

tt = [0]

while tt[-1] < tmax:

if T[-1] == 0 or T[-1] >= M:

# the process has reached an absorbing

tt.append(tmax)

else:

rates = Make_Rates(T[-1],P[-1])

single_step = One_Step(T[-1],P[-1],tt[-1])

T.append(single_step[0])

P.append(single_step[1])

tt.append(single_step[2])
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A.2 Python code for simulating the ABM

This Python code can be used to simulate the agent based model (ABM) detailed

in Section 4.2 and reproduce results such as the size of each cohort.

import copy, numpy as np

from random import choice, sample

# Defining the classes for bacteria and macrophages

class Bacterium:

def __init__(self,location):

self.l=location # initial location

self.cohort=0 # initial bacteria have cohort number = 0

self.int=0

def tophag(self):

‘‘‘ move bacterium to phagosome and increase cohort number ’’’

self.int = ‘p’

self.cohort += 1

def tocyt(self):

‘‘‘ move bacterium to cytosol ’’’

self.int = ‘c’

def toorgan(self,place):

self.l = place

self.cohort = 0

class Cell(object):

number = 0

def __init__(self):

type(self).number += 1

def __del__(self):

type(self).number -= 1

class Mphi(Cell):

def __init__(self,location):

Cell.__init__(self)

self.a = 0, self.b = 0, self.c = 0

self.cohort_num = [] # cohort number for classifying rupture events

self.bac = [] # bacteria contained inside

self.l=location # initial location

def phagb(self,nb):

‘‘‘ Macrophage ingests nb bacteria and becomes suppressed ’’’

if self.a != 1:

self.b += nb

self.a = -1

def activate(self):

‘‘‘ macrophage is activated ’’’

self.a = 1
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# Defining the reactions

def MeatBn(n,place,FreeBlist,Mlist,time):

‘‘‘ macrophages eat n bacteria ’’’

sublist=[i for i,b in enumerate(FreeBlist) if b.l==place]

movelist = list(set(mysample(sublist,n)))

killlist = []

n = len(movelist)

Msublist=[i for i,M in enumerate(Mlist) if M.l==place]

if n > len(Msublist)/10:

Mphaglist = np.bincount([choice(Msublist) for i in range(n)])

for ind,nb in enumerate(Mphaglist):

if nb > 0:

Mlist[ind].phagb(nb)

phagindlist = np.random.choice(movelist,nb,replace=False)

baclist = [FreeBlist[k] for k in phagindlist]

killlist.extend(baclist)

for i in baclist: i.tophag()

if Mlist[ind].a != 1:

Mlist[ind].bac.extend(baclist)

Mlist[ind].cohort_num.append(min([i.cohort for i in baclist]))

movelist = [i for i in movelist if i not in phagindlist]

else:

for ind in [choice(Msublist) for i in range(n)]:

Mlist[ind].phagb(1)

phagindlist = np.random.choice(movelist,1,replace=False)

baclist = [FreeBlist[k] for k in phagindlist]

killlist.extend(baclist)

for i in baclist: i.tophag()

if Mlist[ind].a != 1:

Mlist[ind].bac.extend(baclist)

Mlist[ind].cohort_num.append(min([i.cohort for i in baclist]))

movelist = [i for i in movelist if i not in phagindlist]

return [i for i in FreeBlist if i not in killlist], Mlist

def Bdien(n,place,FreeBlist,Mlist,time):

‘‘‘ n extracellular bacteria die ’’’

sublist=[i for i,b in enumerate(FreeBlist) if b.l==place]

killlist = set(mysample(sublist,n))

return [FreeBlist[i] for i in range(len(FreeBlist))

if i not in killlist], Mlist

def Bescapen(n,place,FreeBlist,Mlist,time):

‘‘‘ n bacteria escape from the phagosome into the cytosol ’’’

thislist = [M for M in Mlist if M.l==place]

Mbcum = np.cumsum([len([M.bac[i] for i in range(len(M.bac))

if M.bac[i].int==‘p’]) for M in thislist])

weights = np.insert(Mbcum/(1.0*Mbcum[-1]),0,0.0)

counts = np.histogram(np.random.random_sample(size=n), bins=weights)[0]

for i,thism in enumerate(thislist):
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thisnb = counts[i]

# if the number moving to the cytosol is less than that in the phagosome

if thisnb < len([thism.bac[k] for k in range(len(thism.bac))

if thism.bac[k].int==‘p’]):

for j in sample([thism.bac[q] for q in range(len(thism.bac))

if thism.bac[q].int==‘p’],thisnb): j.tocyt()

thism.b -= thisnb

thism.c += thisnb

else:

for j in thism.bac:

if j.int==‘p’:

j.tocyt()

thism.c += thism.b

thism.b = 0

return FreeBlist,Mlist

def Bbirthn(n,place,FreeBlist,Mlist,time):

‘‘‘ n bacteria reproduce ’’’

thislist = [M for M in Mlist if M.l==place]

Mccum = np.cumsum([len([M.bac[i] for i in range(len(M.bac))

if M.bac[i].int==‘c’]) for M in thislist])

weights = np.insert(Mccum/(1.0*Mccum[-1]),0,0.0)

counts = np.histogram(np.random.random_sample(size=n), bins=weights)[0]

for i,thism in enumerate(thislist):

thism.c += counts[i]

if counts[i] > 0:

thism.bac += [copy.deepcopy(k) for k in

np.random.choice([thism.bac[q] for q in range(len(thism.bac))

if thism.bac[q].int==‘c’],size=counts[i],replace=True)]

return FreeBlist,Mlist

def Mruptn(n,place,FreeBlist,Mlist,time):

‘‘‘ n macrophages rupture - neighbouring macrophages activated ’’’

thisindlist = [i for i in range(len(Mlist)) if Mlist[i].l==place]

biglist = []

for i in thisindlist:

biglist.extend([i]*len(Mlist[i].bac))

ruptlist = set(sample(biglist,n))

nbreleased = []

nbreleased.extend(Mlist[i].bac[j]

for i in ruptlist for j in range(len(Mlist[i].bac)))

for i in mysample(thisindlist,n): # indices of activating M

if Mlist[i].a==0: Mlist[i].activate()

Mlist = [Mlist[i] for i in range(len(Mlist)) if i not in ruptlist]

return FreeBlist + nbreleased, Mlist

def Bmigraten(n,thisplace,FreeBlist,Mlist,time):

‘‘‘ n bacteria migrate to a different compartment ’’’

sublist=[i for i,b in enumerate(FreeBlist) if b.l==thisplace]
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movelist = mysample(sublist,n)

n = len(movelist)

if n>0:

sumsizes = sum([sizes[place] for place in locations])

bs = np.random.binomial(n,sizes[‘S’]/sumsizes)

bp = np.random.binomial(n,sizes[‘P’]/sumsizes)

bk = np.random.binomial(n,sizes[‘K’]/sumsizes)

bmln = np.random.binomial(n,sizes[‘MLN’]/sumsizes)

for ib in movelist[:bs]:

FreeBlist[ib].toorgan(‘S’)

for ib in movelist[bs:bs+bp]:

FreeBlist[ib].toorgan(‘P’)

for ib in movelist[bs+bp:bs+bp+bk]:

FreeBlist[ib].toorgan(‘K’)

for ib in movelist[bs+bp+bk:bs+bp+bk+bmln]:

FreeBlist[ib].toorgan(‘MLN’)

for ib in movelist[bs+bp+bk+bmln:]:

FreeBlist[ib].toorgan(‘L’)

return FreeBlist, Mlist

def Mdownn(n,place,FreeBlist,Mlist,time):

‘‘‘ n macrophages are suppressed ’’’

sublist = [i for i in range(len(Mlist)) if Mlist[i].l==place

and Mlist[i].a==0]

alist = mysample(sublist,n)

for i in alist:

Mlist[i].a = -1

return FreeBlist, Mlist

def Mupn(n,place,FreeBlist,Mlist,time):

‘‘‘ n macrophages become activated ’’’

sublist = [i for i in range(len(Mlist)) if Mlist[i].l==place

and Mlist[i].a==0]

if len(sublist) !=0:

alist = mysample(sublist,n)

for i in alist:

Mlist[i].activate()

return FreeBlist, Mlist

def ifn(x):

‘‘‘ rate of macrophage activation as function of IFN-gamma level ’’’

return 1 if x > 100 else 0

def tgf(x):

‘‘‘ rate of macrophage suppression as a function of TFG-beta level ’’’

return 1 if x > 100 else 0

def mysample(list,n):

return sample(list,min(n,len(list)))
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def makerates(FreeBlist,Mlist,G,T):

myrates = []

for place in locations:

nb = len([b for b in FreeBlist if b.l==place])

thismlist = [M for M in Mlist if M.l==place]

nm = len(thismlist)

mb = sum([len([M.bac[i] for i in range(len(M.bac))

if M.bac[i].int==‘p’]) for M in thismlist]) # phagosomal bacteria

mc = sum([len([M.bac[i] for i in range(len(M.bac))

if M.bac[i].int==‘c’]) for M in thismlist]) # cytosolic bacteria

myrates.append(rho*nb*nm) # phagocytosis rates

myrates.append(mu*nb) # death rates

myrates.append(mb*phi) # exit rates

myrates.append(mc*beta) # division rates

myrates.append(mc*delta) # rupture rates

myrates.append(nb*gamma) # migration rates

myrates.append(tgf(T[place])*nu) # macrophage becomes suppressed

myrates.append(ifn(G[place])*nu) # macrophage becomes activated

return myrates

def writestuff(t,nevents,Mlist,FreeBlist,G,T):

for place in locations:

thismlist = [M for M in Mlist if M.l==place] # no. macrophages in place

for cohort_num in range(1,5):

cofile.write(str(sum([len([M.bac[i] for i in range(len(M.bac)) if

(M.bac[i].int==‘p’ and M.bac[i].cohort==cohort_num)])

for M in thismlist]))+‘ ’)

cofile.write(str(sum([len([M.bac[i] for i in range(len(M.bac)) if

(M.bac[i].int==‘c’ and M.bac[i].cohort==cohort_num)])

for M in thismlist]))+‘ ’)

cofile.write(‘\n’)

cofile.flush()

def onestep(dt,t,FreeBlist,Mlist,G,T):

‘‘‘ onestep of the tau-leaping algorithm ’’’

rates = makerates(FreeBlist,Mlist,G,T)

mevs = [dt*rate for rate in rates] # mean numbers of events

nevents = np.random.poisson(lam = mevs)

for i,thisn in enumerate(nevents):

place = locations[i // len(events)] # lung, liver, spleen, kidney, MLN

if thisn > 0:

FreeBlist,Mlist = events.get(i\%len(events))

(thisn,place,FreeBlist,Mlist,t)

alist = [M for M in Mlist if M.a==1]

if len(alist)!=0:

for place in locations:

G[place] += dt*(len([M for M in alist if M.l==place])

- G[place]*IFN_decay)
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slist = [M for M in Mlist if M.a==-1]

if len(slist)!=0:

for place in locations:

T[place] += dt*(len([M for M in slist if M.l==place])

- T[place]*TGF_decay)

if int((t-dt/2)*10) != int((t+dt/2)*10):

writestuff(t,nevents,Mlist,FreeBlist,G,T)

return FreeBlist,Mlist,G,T,t+dt

def onerun(dt,thisN):

FreeBlist = []

Mlist = []

for _ in range(thisN):

FreeBlist.append(Bacterium(‘P’))

for _ in range(int(M)):

Mlist.append(Mphi(‘P’))

Mlist.append(Mphi(‘L’))

for _ in range(int(M/10)):

Mlist.append(Mphi(‘S’))

Mlist.append(Mphi(‘K’))

Mlist.append(Mphi(‘MLN’))

G = {}

T = {}

for place in locations:

G[place]=0.0

T[place]=0.0

t = 0.0

while t < tmax:

FreeBlist,Mlist,G,T,t = onestep(dt,t,FreeBlist,Mlist,G,T)

# Running the algorithm

N = 10 # mean initial number of CFU

M = 1e4 # initial number of macrophages in lung compartment

rho, phi, gamma, beta, delta, mu, nu = 0.01, 2, 1, 0.15, 0.001, 0.01, 0.01

IFN_decay, TGF_decay = 0.01, 0.1

# tau-leap step, end time (hours)

dt, tmax = 0.1, 24

locations=(‘P’,‘L’,‘S’,‘K’,‘MLN’)

sizes={‘P’:0,‘S’:0.05,‘L’:0.11,‘K’:0.04,‘MLN’:0.8}

events={0:MeatBn,1:Bdien,2:Bescapen,

3:Bbirthn,4:Mruptn,5:Bmigraten,6:Mdownn,7:Mupn}

cofile = open(‘cohort.dat’,’w’)

thisCFU = np.random.poisson(lam=N)

onerun(dt,thisCFU)

cofile.close()
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Gómez-Corral, A. & López-Garćıa, M. (2018). Perturbation analysis in fi-

nite LD-QBD processes and applications to epidemic models. Numerical Linear

Algebra with Applications , e2160. 56

Gorochowski, T.E., Matyjaszkiewicz, A., Todd, T., Oak, N., Kowal-

ska, K. & Reid, S. (2012). BSim: An Agent-Based Tool for Modeling Bac-

terial Populations in Systems and Synthetic Biology. PloS One, 7, e42790. 29

196



REFERENCES

Haas, C.N., Rose, J.B. & Gerba, C.P. (1999). Quantitative microbial risk

assessment . Wiley, New York. 32

Hall, J.D., Woolard, M.D., Gunn, B.M., Craven, R.R., Taft-Benz

S., Frelinger, J.A. et al. (2008). Infected-Host-Cell Repertoire and Cellular

Response in the Lung following Inhalation of Francisella tularensis Schu S4,

LVS, or U112. Infection and Immunity , 76, 5843–5852. 3, 4, 105

Haseltine, E.L., Rawlings, J.B. & Yin, J. (2005). Dynamics of viral infec-

tions: incorporating both the intracellular and extracellular levels. Computers

& Chemical Engineering , 29, 675–686. 128

He, Q.M. (2014). Fundamentals of Matrix-Analytic Methods . Springer, New

York. 12, 16, 37

Hodges, D.R., Klein, F., Mahlandt, B.G., Jones Jr, W.I., Haines,

B.W., Rhian, M.A. & Walker, J.S. (1965). Role of the Lymphatics in the

Pathogenesis of Anthrax. The Journal of Infectious Diseases , 481–494. 116

Hoebe, K., Janssen, E. & Beutler, B. (2004). The interface between innate

and adaptive immunity. Nature Immunology , 5, 971. 2

Huang, Y. & Haas, C. (2009). Time-Dose-Response Models for Microbial Risk

Assessment. Risk Analysis , 29, 648–661. 31, 32

Iwami, S., Sato, K., De Boer, R.J., Aihara, K., Miura, T. & Koyanagi,

Y. (2012). Identifying viral parameters from in vitro cell cultures. Frontiers in

Microbiology, 3, 319. 130

Iwami, S., Holder, B.P., Beauchemin, C.A.A., Morita, S., Tada, T.,

Sato, K., Igarashi, T. & Miura, T. (2012). Quantification system for the

viral dynamics of a highly pathogenic simian/human immunodeficiency virus

based on an in vitro experiment and a mathematical model. Retrovirology , 9,

18. 136, 149, 165

197



REFERENCES

Jones, C., Napier, B., Sampson, T., Llewellyn, A., Schroeder, M.

& Weiss, D. (2012). Subversion of Host Recognition and Defense Systems

by Francisella spp. Microbiology and Molecular Biology Reviews , 76, 383–404.

xxii, 3, 46, 101, 106, 116, 117, 122
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