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Abstract

The aim of this project was to investigate the behavioural validity of virtual

methods, namely driving simulators and computational models, as prototype

HMI evaluation tools. A driving study was designed where participants had

to perform secondary tasks while driving in a real world and a driving simulator

setting. Statistical analysis of the data, along with an in-depth review of related

findings was used to identify the levels of behavioural validity that could be

achieved by different simulator settings across different metrics. A further analysis

was performed to identify behavioural strategies that drivers employ regarding

their visual attention sharing while executing HMI tasks concurrently to driving.

Finally, two existing computational models were validated and a novel model was

proposed that can account for drivers’ behavioural phenomena, not previously

accounted for.
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Chapter 1

Introduction

In-vehicle interfaces have been gaining popularity since they were first introduced

in the beginning of the 21st century and are nowadays present in the majority

of production vehicles (Harvey, 2011). They are meant to provide the driver

with various types of support or, quite often, entertainment while driving. Con-

sequently, drivers are nowadays used to having certain functionalities available

while operating their vehicle, from in-vehicle sound systems to hands-free phone

access and internet connectivity (Meixner et al., 2017).

Such interfaces can be classified into three categories, as proposed by Galer

(1995):

1. Interfaces that are fundamentally related to the primary driving task, such

as Advanced Driving Assistance Systems (ADAS) (e.g. Automated Driving,

Adaptive Cruise Control, Lane Keeping Assistance, etc).

2. Interfaces that provide relevant, but not functionally necessary, information

and services to the primary driving task, such as satellite navigation systems

or general route-related information.

3. Interfaces that are not directly related to the primary driving task and

provide information or entertainment to the driver, such as radio or email

accessibility.

The work presented in this thesis revolves around the third type of interfaces, as

defined in the categorisation above. Such interfaces will henceforth be referred to

1



2 CHAPTER 1. INTRODUCTION

by the general term “Human Machine Interface (HMI)” and the tasks associated

with them as “Human Machine Interface tasks (HMI tasks)”.

It has been well established that performing HMI tasks while driving can neg-

atively affect driving performance and increase risk (e.g. Lee et al., 2008; Fitch

et al., 2013; Kountouriotis and Merat, 2016). Fitch et al. (2013), for instance,

found that performing cell phone related visual-manual tasks while driving in-

creases the probability of a safety-critical event almost threefold. Dingus et al.

(2016) showed that activities requiring the driver’s eyes to be away from the for-

ward roadway, such as interacting with a cell phone or interacting with touch

screen menus, all increased crash risk by up to 12 times. Regardless, drivers still

choose to perform such tasks, more than half of the time. Namely, in the same

study, Fitch et al. (2013) also showed that drivers were “just driving”, without

engaging with any secondary task, for only 46% of their time.

Although the tasks that could divert the driver’s attention from the road could

stem from sources either inside the vehicle or outside of it, it has been previously

argued that drivers are more susceptible to the former (Lam, 2002). Given that

a big portion of those incidents could be potentially caused by in-vehicle HMIs

when the tasks associated with them are highly demanding, there is a need to

ensure that such tasks would have the minimum impact on driver’s safety and

performance. In order to achieve that, thorough and reliable evaluation methods

of new HMI designs should be in place throughout all the production stages.

This chapter will move on to elaborate on the motivation behind the research

conducted during this project, as well as its main aims and areas of focus.

1.1 Background and Motivation

According to the Department for Transport, the number of recorded crashes that

were caused by in-vehicle induced distraction in Great Britain through 2015 and

2016 amounted to 4% of the total number of crashes each year and increased

in number from one year to the next (Department for Transport, 2015). Al-

though this might already look alarming, there are bodies, like the World Health
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Organisation, that suggest this could be only an underestimate, given the diffi-

culties entailed in identifying driver distraction as the main (or sole) cause of a

crash (Organization et al., 2011). Indeed, data from naturalistic studies indicates

that these numbers are actually substantially higher. For example, according

to Klauer et al. (2006), 78 percent of all crash and 65 percent of all near-crash

events observed involved some form of driver inattention and distraction, with

the majority relating to secondary HMI tasks.

In order to address the matter of safety when it comes to designing and pro-

ducing new HMIs, a variety of evaluation methods have been proposed over the

years to quantitatively assess the distraction potential of a new design, for exam-

ple: naturalistic studies (e.g. Klauer et al., 2006), Distract-R rapid prototyping

(Salvucci et al., 2005a), the occlusion method (Senders et al., 1966) and the

NHTSA evaluation guidelines (NHTSA, 2012), to name a few. Evaluation in the

real world (conducting naturalistic studies and real world testing) can be very

costly and time consuming. Using virtual methods, on the other hand, (driving

simulator studies, lab based experiments and computational model simulations)

can speed up the evaluation process and make it more efficient. From the avail-

able virtual methods for HMI evaluation, the work conducted here explores the

use of driving simulators and computational models. Moving forward, for the

scope of this thesis, the term virtual methods will refer to these two alone.

Driving simulators of all shapes and forms, from simple desktop simulators to

full scale immersive machines, have been widely used in Human Factors research

to investigate driver behaviour under various settings (e.g. Engström et al., 2005;

Klüver et al., 2016; Kountouriotis and Merat, 2016). Computational models have

also been explored in different contexts of driving, from simple vehicle control to

concurrent secondary task execution, and have been shown to provide a represen-

tative account of human behaviour in such settings (e.g. Salvucci, 2001; Salvucci

et al., 2005a; Liu et al., 2006; Markkula, 2014; Large et al., 2018).

The many advantages of using driving simulators to conduct research, can

be summarised into providing a safer driving environment, a richer body of data

and large economic savings (e.g. Blana, 1996; Classen et al., 2011; De Winter



4 CHAPTER 1. INTRODUCTION

et al., 2012). Given that there is no need for human participants or expensive

equipment, it is only intuitive to infer that the same benefits would apply to

computational models, too. Delving into more detail as to which reasons could

encourage the use of virtual methods in prototype HMI evaluation, the following

could be argued:

• Repeatability : Both in a driving simulator and in a model simulation, trials

can be repeated numerous times under identical conditions. For example,

unlike experiments in a test-track or a highway or urban road, traffic con-

ditions can be simulated in detail, avoiding unexpected events that could

interfere with the results. Repeatability in a driving simulator environment,

though, comes with potential issues as learning effects can become evident

when a participant is repeatedly exposed to the same conditions. This

problem, however, is non-existent with the use of computational models.

• Cost effectiveness : Virtual methods significantly reduce the cost of proto-

type testing in the long term, due to their repeatability and the lack of need

for physical prototype production. That being said, such methods might

incur initial higher cost for research and development, especially when it

comes to driving simulators. Nevertheless, such methods can still be more

cost-effective in the long term.

• Execution speed : Driving simulator studies may be conducted faster than

real world trials due to the ease of resetting the experimental conditions and

the redundancy of vehicle related checks that are necessary in a real world

setting (tire pressure, engine temperature, etc.). Moreover, the purpose-

developed scenarios in simulator studies, allow for the execution of a large

number of dedicated maneuveres per time unit (De Winter et al., 2012).

Similarly, model simulations can run a lot faster than real time, thus giving

the same number of trials in a fraction of the time. Salvucci et al. (2005a)

presented such an example through the Distract-R modelling framework,

which could simulate 10 minutes of real-world driving in a mere 3 seconds.

Although none similar have been reported recently, it is safe to assume that
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in the age of cloud and distributed computing such figures can have only

improved.

• Increased safety : Driving simulators provide a safe environment where dan-

gerous events such as crashes and near-misses can be studied with no po-

tential danger to the participant.

• Scalability : With computational modelling in particular, there is also no

restriction (other than those imposed by hardware systems) as to how many

simulations can be run. Hence, an adequate number of repetitions can be

obtained, unrestricted by issues such as participant recruiting etc.

It is evident that virtual evaluation methods are overall very efficient, time-, cost-

and implementation-wise, features that could greatly benefit both the automo-

tive industry and the end-user drivers. However, virtual methods are not without

their drawbacks, with the most significant one being their limited validity, i.e. the

degree to which the results obtained from studies employing such methods match

the results obtained under real-world conditions. Results obtained using such

methods should match real-world driving and, ideally, have minimal deviation

from it. In regards to driving simulators, a common issue that can hinder the

validity of the results is simulator sickness, where participants can experience

symptoms of nausea or disorientation and need to drop out of the study. Con-

sidering computational models, on the other hand, since the behavioural and

cognitive mechanisms involved in driving and general task performance are not

completely understood, they can only approximate human behaviour based on

assumptions about what drives that behaviour. Consequently, time and research

are still needed to further our knowledge on human behaviour and improve the

validity of virtual HMI evaluation methods.

Going back to how these methods could be incorporated in the evaluation cy-

cle, one would first need to define that cycle. One of the views of the development

cycle in the automotive HMI context is provided by Pettitt and Burnett (2010)

and consists of four discrete stages:

• Stage 1: The early stages of the HMI design. This refers to the time during
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which the HMI design is being conceptualised and its core components are

being decided. At that stage, designers should adhere to established design

guidelines and regulations, in order to ensure that their design follows the

minimum requirements for a prototype interface design.

• Stage 2: The first (low-fidelity) prototype of the HMI. This is when the de-

signers have a more detailed specification of the interface (e.g. dimensions,

positioning within the vehicle, interaction modalities, etc.).

• Stage 3: The revised (medium-fidelity) prototype of the HMI. This would

involve creating a first “draft” physical prototype of the interface; this pro-

totype would facilitate the same functions (i.e. menus and tasks) as the

intended device but might not be otherwise similar to the intended final

product (e.g. appearance, casing or mounting).

• Stage 4: The final (high-fidelity) prototype of the HMI. Here, researchers

would have a final (or close to final) prototype of the interface fitted in

a simulator cabin or a real vehicle console, at the same position as the

intended final product.

Increasing the validity of virtual methods would ensure that they could be em-

ployed across all four stages of the evaluation process and help detect design

errors further back in the earlier stages, before moving on to costly prototype

production and extensive testing.

1.2 Project Aims and Research Questions

The work presented in this thesis aims at providing new insights into the be-

havioural validity of virtual prototype HMI evaluation methods. Behavioural

validity relates to the degree to which the driving behaviour observed through

the use of virtual evaluation methods resembles the driving behaviour that would

be observed by drivers in the corresponding real world conditions (Blaauw, 1982).

As mentioned earlier, the virtual evaluation methods this investigation focuses

on are driving simulators and computational models of the HMI interaction.
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Moreover, focus is placed on the behavioural strategies that are (consciously or

unconsciously) employed by drivers when engaging in visual-manual HMI tasks.

It is crucial to properly capture any emerging patterns and understand what

drives them, in order to work towards improving the validity of virtual evalu-

ation methods. Having that knowledge can lead to the conceptualisation and

implementation of more accurate models, as well as contribute to the enhance-

ment of driving simulator realism.

The work presented in the rest of this thesis addresses the following research

questions:

1. What type of driving simulator should be used in prototype HMI

evaluation related user trials?

• What levels of realism can different simulator settings achieve?

• Is this consistent? If not, how does it vary across different settings and

evaluated metrics?

• Is a single simulator setting “good enough” for evaluating different

behavioural metrics?

2. How do drivers engage with HMI tasks while driving?

• Are there any distinct behavioural strategies/patterns that drivers em-

ploy regarding their visual attention sharing during HMI task execu-

tion?

• Are there any safety or other conceptual thresholds that dictate en-

gagement and disengagement points?

• Which elements of the overall situation (i.e. driving environment, pri-

mary driving task, secondary HMI task and individual driver charac-

teristics) affect the driver’s HMI engagement patterns (e.g. onset and

duration of engagement) and in which way?

3. What types of computational models could predict the above ob-

served behaviour?
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• Can any of the existing models capture the behaviour observed when

drivers engage to HMI tasks, accurately?

• If not what might be the root cause of that performance?

• Can models be reliably used as a virtual participant for future HMI

designs?

1.3 Thesis Structure

The present thesis has been structured in seven chapters, as outlined in Figure

1.1. A brief overview of each one of the following chapters can be found below:

• Chapter 2 provides a review of the existing literature regarding driving

and concurrent HMI task interaction, as well as prototype HMI evaluation

methods. In particular, it discusses the nature and demands of both the

primary driving task and secondary HMI tasks, their interaction and any

effects said interaction has been shown to have on driving performance. It

then moves on to discuss the various methods that can be used for eval-

uation of HMI prototypes as well as for gaining insights into how drivers

interact with HMIs in the car, ranging from academic research outcomes to

established guidelines and review processes.

• Chapter 3 describes the two driving studies that were designed and carried

out in the scope of this project. The studies involved a combined total of

23 participants, driving in three different environments and two different

scenarios, where participants had to interact with a prototype HMI while

driving, performing three visual-manual tasks of varying difficulty levels.

• Chapter 4 presents an investigation on driving simulator behavioural va-

lidity. Using data from the aforementioned driving study, as well as results

from existing literature, a comparison between driving behaviour in differ-

ent types of driving simulators and in reality was carried out. The driving

behaviour compared here was the one observed during concurrent driving

and HMI task execution. The results are presented in the form of a “validity
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matrix” that aggregates the level of behavioural fidelity different simulator

settings have been found to achieve across different behavioural metrics.

• Chapter 5 presents the results obtained from a more in-depth analysis of

the drivers’ visual attention sharing behaviour. Namely, this analysis fo-

cuses on the durations, as well as the timing of initiation of glances towards

the interface during HMI task engagement. Moreover, an investigation on

which factors affect glance onset and duration is presented with a focus on

identifying whether such factors could be used to predict the observed be-

haviour. Insights from these analyses could potentially be used to improve

existing or formulate new computational models that can better account

for driver behaviour under dual-tasking conditions.

• Chapter 6 reviews some of the available computational models that can be

used as prototype HMI evaluation tools by predicting driver visual attention

allocation during HMI task engagement. The two most promising of those

models, along with some variations of them (exploring parameters that

would be meaningful to be included) were tested and compared against the

observed behavioural data. Finally, a novel model is proposed, based on

existing HMI task modelling approaches but incorporating new behavioural

aspects that have not been directly modelled thus far.

• Finally, Chapter 7 summarises and discusses all the outcomes resulting

from the aforementioned work, proposing improvements and future work.

Although an overall review of the existing relevant research is provided in Chapter

2, more detailed reviews on specific subjects are also presented in individual

Chapters. Due to the nature of the work conducted for this project, a detailed

review of relevant literature was part of the methodology used in some of the data

analyses, hence such reviews are presented as part of the corresponding Chapter,

while a higher level review is provided in the following Chapter.
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Figure 1.1: Thesis Structure.



Chapter 2

Literature Review

This chapter provides an overview of existing research related to prototype HMI

evaluation and driver behaviour during HMI task performance. Initially, driv-

ing is deconstructed as an activity formed by different sub-tasks, discussing their

demands and characteristics, before moving on to the effects of concurrent execu-

tion of HMI tasks on driving performance. Then, the issue of driving simulator

behavioural validity is discussed, followed by modelling approaches used in the

context of HMI evaluation.

2.1 The Multi-layered Activity of Driving

Driving is a complex, multi-tasking activity which requires successful acquisition

and coordination of various physical, cognitive, sensory and psychomotor skills

(Hedlund et al., 2006; Young et al., 2007; Regan et al., 2008; Groeger, 2013). The

driver receives visual input of the driving scene, while maintaining the control of

the vehicle within a safe margin (Wierwille, 1993; Lansdown, 2000).

One of the most popular descriptive models that conceptualises driving, is the

one proposed by Michon (1985) (see Figure 2.1). In this model, three hierarchical

levels are identified, each one of which is relevant to different aspects of the driving

activity:

1. The strategic level, involving any high-level decision regarding the driving

journey itself (e.g. determining the route of the trip and the overall goal).

11
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Figure 2.1: Michon’s conceptual model of the driving task. Figure recreated with
permission from Michon (1985)

2. The manoeuvring or tactical level, involving tactical decisions (e.g. where to

turn and overtake) which should be in line with the goals from the strategic

level.

3. The control level, involving any actual lateral and longitudinal control of

the vehicle by providing inputs such as steering, braking and accelerating,

which should be in line with the goals from the tactical level.

Another descriptive account, treating the driving task from a different perspec-

tive, is provided by Hedlund et al. (2006), where driving is described as a set

of two types of tasks. Steering, accelerating, braking, speed choice, lane choice,

manoeuvring in traffic, navigation to destination, and scanning for hazards are

considered the primary driving tasks. In other words, as primary driving tasks

are classified all the activities that are directly relevant to a non-erroneous con-

trol of the vehicle. The list of secondary tasks includes all other activities into

which drivers engage, that are not directly related to controlling the vehicle. As

an example, such activities could be conversing with a passenger, viewing the

scenery, smoking, using a cell phone or conversing on the phone, to name a few

(Hedlund et al., 2006).

As mentioned earlier, in Chapter 1, the work conducted in this thesis focuses

on secondary tasks that are related to in-vehicle HMIs. Moving forward, the

terms “HMI task” and “secondary task” are being used interchangeably. Such
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tasks would include tuning the radio, adjusting the climate controls or entering

a destination to the in-car satellite navigation system. Drivers have traditionally

performed HMI tasks via tactile interfaces, such as buttons and switches, usu-

ally located on the central console of the vehicle. Recently, however, the number

and variety of secondary functions available within vehicles have increased sig-

nificantly, from simple radio and climate controls to navigation, visual media,

entertainment, communication and network connectivity (Gu Ji and Jin, 2009;

Eren et al., 2015; Meixner et al., 2017). Moreover, nowadays, such functions are

often integrated in a single, menu-based system and accessed through a touch-

screen interface (Harvey, 2011). Kern and Schmidt (2009) investigated 117 car

models from 35 different manufacturers, taken at the international automobile

exhibition (IAA 2007) in Frankfurt, and found that almost half of them included

a touch-screen based interface.

However, the majority of the research related to HMI task performance, since

it was conducted more than a decade ago, focused mostly on mobile phone interac-

tion (see Young et al., 2007, for a relevant review). In the cases where alternative

visual-manual HMI tasks were investigated, researchers chose to use surrogate

HMI tasks (Victor et al., 2005; Engström et al., 2005; Jamson and Merat, 2005;

Kountouriotis and Merat, 2016, e.g.). As a result, very limited research has been

conducted so far on HMI tasks and production grade prototypes of touch screen

based interfaces (for example Large et al., 2015, 2018). Given the fact that such

interfaces are becoming more common in production vehicles, it is essential that

processes are in place to appropriately assess their distraction potential and en-

sure that the tasks associated with them are of acceptable complexity.

2.2 Performing HMI Tasks while Driving

One of the primary points of interest when studying HMI task performance, is the

type of the task performed by the driver. In particular, it is important to identify

the modality of the task and, consequently, what cognitive resources it demands.

This information can then help us better understand how drivers interact with
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the task, as well as what type and magnitude of an effect this task will have on

driving performance.

In the following subsections, more detail is provided as to how different types

of tasks affect driving performance and why. Moreover, the drivers’ ability to

self-regulate and maintain a safe driving behaviour when performing HMI tasks is

discussed and, finally, an overview of the factors that dictate drivers’ engagement

to HMI tasks is presented.

2.2.1 Attentional Resources and Driver Distraction

In order to understand what happens when drivers divide their attention between

the primary driving task and an HMI task, it would be useful to refer to theories

of attention and multitasking. Attention is a broad term that has been used to

describe how selection mechanisms operate in the brain and how humans perform

complex tasks. Various theories and models of attention have been proposed that

aim to explain how information is processed and prioritised.

The Filter Theory, for example, assumes a “bottleneck” stage in between the

stages of perceiving an input and analysing it (Broadbent, 2013). In particular,

according to this theory, if more than one stimuli are provided as input simulta-

neously, only one of them is perceptually analysed at that time. The rest remain

stored temporarily (similarly to the cache memory of computers) until they can

be analysed.

A different descriptive model for divided attention, which does not treat in-

formation processing as linear and addresses the execution of multiple concurrent

tasks was developed by Kahneman (1973). In that model, Kahneman argues that

humans have a limited amount of attentional resources, that can be allocated to

any task one might be undertaking. Thus, one is able to perform multiple tasks

at once, as long as there are enough attentional resources to be allocated to each

one.

One of the most popular attentional resource models, which was partially

inspired by Kahnmean’s model, is the multiple resource theory introduced by

Wickens (2002) (see Figure 2.2). That theory is structured in four distinct di-
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Figure 2.2: Multiple resource theory model, reproduced with permission from
Wickens (2002).

mensions, each one of which is related to varied performance in concurrent tasks

and each one of which is further divided into two discrete lower “levels”. The

main notion/rule behind the functionality of this model is the following; “All other

things being equal (i.e. equal resource demand or single task difficulty), two tasks

that both demand one level of a given dimension (e.g. two tasks demanding vi-

sual perception) will interfere with each other more than two tasks that demand

separate levels of the dimension (e.g. one visual, one auditory task)” (Wickens,

2002).

However, such models, although explaining secondary task interference, do

not account for key phenomena in real-world driving, such as the self-regulation

of attention (i.e. how drivers choose to share their attention between the primary

driving task and an HMI task) (Engström et al., 2013). Moreover, there is a need

for a better way to facilitate how resources are shared between concurrent tasks,

regardless of what their conflict might be (Wickens, 2002).

A more recent attentional theory, proposed by Engström et al. (2013), treats
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attention selection as a form of adaptive behaviour. The driver’s adaptive be-

haviour reflects actions taken to achieve task related goals while remaining inside

a subjectively defined comfort zone (Engström et al., 2013). When drivers expe-

rience discomfort due to an actual or potential violation of their subjective safety

margins, they take actions to return to their comfort zone. In other words drivers

are able to dynamically share their attention between the primary driving task

and a secondary task, based on the demand of the the former and the effects

of the latter. Thus, a key idea behind this model is that attention selection in

everyday driving functions towards enabling an appropriate balance between goal

achievement and acceptable safety margins maintenance (Engström et al., 2013).

2.2.2 Driver Distraction and Workload

There is a long standing lack of consensus among the academic community on a

common definition of distraction, despite the numerous attempts on it (for reviews

see Regan et al., 2011; Kircher and Ahlstrom, 2017). Kircher and Ahlstrom

(2017) identified the following two statement as being the core of almost all driver

distraction definitions:

1. Distraction is assumed to be present when attention is shifted away from

targets relevant to driving, and the resulting driver behaviour is, or risks to

be, detrimental to safe driving.

2. A shift of attention to anything not relevant to driving results in distraction,

regardless of the outcome of the situation.

Although driver distraction is not directly studied here, the second statement will

be adopted as a suitable definition in the scope of this thesis. Consequently, it is

considered that every time the driver performs an HMI task while driving, they

get distracted.

Another common term that is often referenced in driver distraction related

research is workload. Workload, in the context of driver distraction, has been de-

fined as the competition in driver’s perceptual, cognitive, and physical resources

between the primary driving task and a concurrent secondary task (Angell et al.,



2.2. 17

2006). An increased workload can be manifested through poor driving perfor-

mance (e.g. lane-keeping, longitudinal control, object-and-event detection, or

eye- glance behaviour) and an increase in the induced distraction, but can also

be associated to an improvement in driving performance (e.g. Cooper et al., 2013).

At this point, it would be interesting to discuss the nature of driver distraction

and how it relates to the HMI tasks that lead to it. Most commonly, driver

distraction is considered interchangeable with the modality of the associated task

and can, hence, be classified as one of the following (Ranney et al., 2001; Young

et al., 2007; NHTSA, 2012):

• Visual distraction, which occurs when the driver shift their gaze on a dif-

ferent area than the road ahead (e.g. an HMI).

• Auditory distraction, which occurs when when responding to auditory cues,

such as responding to a ringing cell phone.

• Biomechanical, physical or manual distraction, which occurs when the driver

removes their hand(s) from the steering wheel to manipulate an object.

• Cognitive distraction, which occurs when the driver is “thinking” away from

the primary driving task (e.g. daydreaming or conversing to a passenger

without looking away from the road ahead).

Although discretised by definition, there is usually an overlap in the types of

distraction a driver is exposed to and most naturalistic tasks performed while

driving involve all of the above components (Mehler et al., 2012). Kountouriotis

and Merat (2016) have argued that the term “cognitive” is misused as it implies

that visual tasks are void of a cognitive component and, instead, proposed the

term “non-visual” (for secondary tasks or distraction) to better convey the ab-

sence of a visual component and to make the distinction more clear. Given the

nature of modern HMIs, as discussed in the opening section of this chapter, it

could also be argued that the occurrence of purely visual tasks in the driving con-

text is rather scarce and that usually such tasks also involve a manual element,

requiring the driver to use hand gestures to interact with the interface.
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2.2.3 Effects of HMI Engagement on Driving Performance

Different types of secondary tasks, based on modality and difficulty, can have

different effects on driving performance, as explained earlier. Since the focus of

this work is on visual-manual tasks, emphasis is given on their effect on driving

performance. However, both for the sake of completeness, as well as due to the

overlapping relationship of cognitive and visual distraction, a brief overview of

the effect of cognitive tasks on driving performance is also provided.

One very commonly reported effect of visually demanding HMI tasks on driv-

ing performance, is poor lane-keeping performance (e.g. Engström et al., 2005;

Santos et al., 2005; Liang and Lee, 2010; Kountouriotis and Merat, 2016). This

can be manifested through an increase in the vehicle lateral position deviation

from the centre of the lane or, in extreme cases, through lane exits. In such

cases, lane-keeping is affected by increased control input, which is indicative of

an increase in workload (Kountouriotis and Merat, 2016). This degradation is a

direct implication of the fact that during periods where additional tasks need to

be performed, the driver is unable to respond to errors in lateral control, result-

ing in periods of fixed steering angle (Wickens and Gopher, 1977; Macdonald and

Hoffmann, 1980; Godthelp et al., 1984). Consequently, heading errors build up,

resulting in the observed lane weaving (Engström et al., 2005).

Such errors need to be corrected by the driver in order to maintain a safe

trajectory for their vehicle. Such corrections are achieved through steering ma-

noeuvres which generally are larger and more disruptive than the ones observed

during normal driving (Engström et al., 2005). Indeed, engaging in visually de-

manding HMI tasks has been found to increase steering activity both when eval-

uating steering wheel reversal rates (SWRRs - Macdonald and Hoffmann, 1980)

and Steering Entropy (SE - Boer, 2000).

As one would expect, sharing visual attention between two distinct areas

in space would be evident in gaze location measures and performance metrics

that relate to one being fully attentive to a specific visual field. Unsurprisingly,

visual HMI task execution has been linked to increased deviation of gaze (Victor

et al., 2005; Kountouriotis and Merat, 2016). Moreover, the drivers’ ability to
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detect events happening in the road scene can be impaired and their reaction

times can increase. Greenberg et al. (2003), for instance, found that visually

demanding tasks such as dialling on a phone, resulted in reduced detection of

critical traffic events, while Hibberd et al. (2013) found a delay in brake reaction

times. Additionally, data from naturalistic driving studies confirm that looking

away from the road for prolonged periods of time is a key contributing factor to

crashes and near-misses (Dingus et al., 2006; Klauer et al., 2006; Liang et al.,

2012; Victor et al., 2015).

Cognitive tasks, on the other hand, do not have so well defined and consistent

effects on driving performance. In fact, effects of cognitive load on driving perfor-

mance are believed to be strongly selective and task-dependent (Engström et al.,

2017). Engström et al.’s (2017) Cognitive Control Hypothesis states that cogni-

tive load impairs performance of non-practiced or inherently variable tasks, which

rely on cognitive control, while the performance of well-practiced and consistently

mapped (automatised) tasks is unaffected and sometimes even improved.

Based on the description of lane keeping as an automatic task by Michon

(1985), Medeiros-Ward et al. (2014) argue that it does not necessarily require a

focus of attention, and can actually benefit from diverted attention to a secondary

task. Indeed, a reduction in the deviation of the vehicle’s lateral position has often

been observed (e.g. Engström et al., 2005; Jamson and Merat, 2005; Cooper et al.,

2013).

In terms of visual behaviour, cognitive tasks have been associated with an

increased gaze focus towards the center of the road ahead (Jamson and Merat,

2005; Victor et al., 2005; Kountouriotis and Merat, 2016; Kountouriotis et al.,

2016), while there also seems to be agreement that when drivers perform cognitive

tasks while driving (a range of tasks from surrogate measures to conversing on a

mobile phone) their event detection capabilities deteriorate leading to increased

reaction times (e.g. Greenberg et al., 2003; Horrey and Wickens, 2004; Engström

et al., 2017). In terms of crash risk, however, naturalistic driving studies have

not found supporting evidence of an increase associated with primarily cognitive

tasks (e.g. conversing on mobile phone), with some of them finding a significant
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reduction in crash risk when engaging to such tasks (Klauer et al., 2006; Fitch

et al., 2013; Klauer et al., 2014; Victor et al., 2015). Brookhuis et al. (1991) found

that using a mobile phone while driving, negatively affected drivers’ sampling of

the surrounding traffic when driving on a quiet motorway.

2.2.4 Driver Compensatory Behaviours

Apart from the negative effects described above, there have been changes observed

in driving performance during dual-tasking that do not have an adverse effect in

the ability of the driver to control their vehicle. While engaging in HMI tasks,

drivers have been found to self-regulate their actions, through various conscious

or unconscious behaviour, thus, compensating for the effects of divided attention

on their driving performance and maintaining an adequate level of safe driving

(Young et al., 2007; Haigney et al., 2000).

Such compensatory behaviours can occur at the strategic level of the driving

task, for example in terms of the driver’s choice to engage or not in a secondary

HMI task, as drivers have been shown to adapt the amount of attention they

allocate to the secondary task based on the demands of the primary driving

task (Chiang et al., 2001). For example, Lamble et al. (2002) showed that older

drivers chose not to use a mobile phone while they were driving, as their driving

performance was more likely to be negatively affected than that of a younger

driver. Later, Funkhouser and Sayer (2012) and Tivesten and Dozza (2015)

showed that drivers are more likely to initiate a cell-phone conversations or engage

in a visual-manual phone tasks when the vehicle is not moving, compared to

driving at high speeds.

Compensatory driving behaviours have also been observed at the operational

level, i.e. in adapting the level of engagement to the primary driving task in any

way. There is a rich body of literature showing that drivers demonstrate a lower

mean speed while engaging to a variety of secondary tasks, including the use

of hand-held and hands-free mobile phones, the use of in-vehicle entertainment

systems and surrogate visual-manual secondary HMI tasks (e.g. Haigney et al.,

2000; Chiang et al., 2001; Rakauskas et al., 2004; Engström et al., 2005; Hor-
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berry et al., 2006; Kountouriotis and Merat, 2016). Looking at another aspect of

longitudinal vehicle control, an increase in headway distance has been associated

with engagement to secondary HMI tasks such as hands-free mobile phone use

and email processing (e.g. Strayer et al., 2003; Strayer and Drews, 2003; Jamson

et al., 2004).

In terms of adapting HMI engagement in complex road traffic scenarios, some

recent research suggests that drivers prioritise safety while distracted by a sec-

ondary task. For instance, Charlton (2009) showed that drivers are less likely

to overtake slower vehicles ahead of them when they are engaged in a cell-phone

conversation, while Cooper et al. (2009) showed that, in a similar scenario, drivers

were less likely to change lanes while conversing on the phone. Finally, Oviedo-

Trespalacios et al. (2017) recently showed that when distracted by a cellphone

conversation, drivers selected a lower speed while driving along a curved road

or during car-following situations. At the same study, they found that speed

adaptation was negligible in complex environments, concluding that the primary

driving task was prioritised over the secondary task.

Although the above could lead to an assumption that drivers are in control of

their attention allocation, it could also be argued that such behaviours are only

artefacts of cognitive saturation in a dual-tasking setting. More specifically, it is

possible that concurrent activities cannot be performed at the same level as when

performed individually and the compensatory behaviours observed could be a

manifestation of this limitation, i.e. an actual degradation in driving performance.

Hence, it is important to note that new HMI designs still need to be properly

evaluated to ensure they do not require complex interactions that might distract

the driver.

Despite the solid understanding of what risk reducing behaviours the drivers

engage in, very little research seems to have focused on what drives and dictates

those behaviours (i.e. what factors the drivers take into account to decide how

and in which way they will engage to a secondary task). There seems to be a

general consensus that the primary driving task complexity along with individual

characteristics are primarily driving those decisions, without, however, expanding
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into specific metrics or perceptual cues that the drivers might use to take those

decisions.

2.2.5 Driver Strategies for Engaging in HMI Tasks

Despite the effects of various secondary tasks being well documented and under-

stood, very little research has been conducted with regards to the (conscious or

unconscious) strategies drivers employ when engaging to HMI tasks. In particu-

lar, there is a need to investigate and identify which environmental or task-related

factors the drivers consider to decide how they share their attention between the

primary driving task and an HMI task (i.e. when they decide to engage with each

task and for how long).

Tijerina et al. (2004) investigated this in the context of car-following and

found a strong consistency in the strategy with which drivers looked away from

the road ahead during car-following. Drivers generally looked away when the

rate of change of distance from the leading vehicle was effectively zero. This

could be considered as a clear indication that drivers tend to ensure that they

are safe before taking their eyes off the road. However, more research is needed

to identify how drivers decide to look away from the road especially in relation

to the primary task demand, hence providing further insights to potential risks

and how willing drivers might be to take them (Tijerina et al., 2004).

2.3 HMI Evaluation Methods

From what has been discussed so far, it is clear that the effects of secondary

HMI tasks on driving behaviour have been extensively studied in a multitude

of environments. Results and insights from such studies have been used to for-

mulate computational models and frameworks that can be used to replicate the

observed behaviour (e.g. Hankey, Dingus, Hanowski, Wierwille and Andrews,

2000; Salvucci et al., 2005b; Liu et al., 2006; Large et al., 2018).

In the context of HMI evaluation, certain guidelines have been published to

ensure that the above methods are used in an efficient and structured way to
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inform decisions about the distracting potential of a prototype HMI design. Such

guidelines intend to provide information either on how an HMI should be de-

signed, so that its effects on driving are acceptable (design guidelines), or on how

to rigorously, reproducibly and comparably test that those effects are acceptable

(evaluation guidelines).

In the two following subsections, some of the established procedures and guide-

lines for human-centred HMI evaluation are presented, as well as some of the

computational models and frameworks that can be used in that context.

2.3.1 Established Guidelines for Procedures and Metrics

Various guidelines have been proposed over the years in attempts to provide

robust frameworks of design and usability specifications, that can accommodate

HMI evaluation throughout the various design cycles (see Zhang and Smith, 2004;

Schindhelm et al., 2004, for extensive reviews on guidelines and standards, still

relevant to this day).

The JAMA (2004) guidelines, for example, promote the use of simplified and

easily understood displayed images, focusing mainly on navigation interfaces. The

“Human Factors Design Guidelines for Advanced Traveller Information Systems

(ATIS) and Commercial Vehicle Operation (OVC)”, published by the Federal

Highway Administration, provide specific guidelines for symbol contrast, colour,

font, width-to-height ratio, spacing and number of information units to be put in

an interface (Campbell et al., 1997). Both aim at minimising the visual attention

demand of an HMI and, hence, its distracting potential.

The Safety and Human Factors Committee of the Society of Automotive En-

gineers (SAE), approved the 15-second rule (SAE J2364) as a Recommended

Practice in 1999 (Green, 1999). The 15-second rule applies mainly to navigation

and route-guidance interfaces that require a visual-manual interaction with the

driver and is meant to be used as a performance evaluation tool, defining that

any navigation task, where the driver interacts with a visual display and manual

controls, should take no longer than 15 seconds to be completed.

The Statement of Principles by the Alliance of Automobile Manufacturers
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covers new information and entertainment technology and devices with visual or

manual-visual interfaces, features and functions that are used by drivers when the

vehicle is in motion. The statement details a total of 24 principles that need to

be followed both during the design stages and measured as performance metrics

to ensure the interface is safe enough to go into production (see Group et al.,

2006).

Finally, one of the most commonly referenced guidance is the NHTSA guide-

lines, which prescribe a certain methodology to be followed for a simulator study,

as well as which metrics to use to define whether a prototype HMI can be con-

sidered safe and fit for production (NHTSA, 2012). Namely, single eye glance,

mean eye glance and total eye glance duration away from the road scene need to

be measured below predefined thresholds so that the HMI task can be deemed

acceptable. Although relatively well established within the Human Factors soci-

ety, the guidelines have received some scrutiny over the years both in terms of the

prescribed experimental procedures as well as the behavioural metrics to be stud-

ied (see Aust et al., 2013; Large et al., 2015, for a review). Large et al. (2015), for

example, showed that by varying the accompanying prescribed primary driving

task complexity, task acceptance can vary, too. In particular, they showed that

when drivers are executing a high demand primary driving task, they devote less

time on the secondary task (less time looking away from the road) and, as such,

tasks that might not be accepted through the conventional testing paradigm were

accepted under the increased load scenario.

2.3.2 Computational Models and Modelling Frameworks

As mentioned in the introductory chapter, computational models can be even

more cost-effective than the human-in-the-loop methods reviewed above (namely,

naturalistic studies and driving simulator studies) and could, thus, prove to be a

very valuable tool in the context of prototype HMI evaluation. Different compu-

tational models of the interaction during HMI engagement have been proposed

over the years, using a variety of methods to predict related performance metrics

(e.g. Hankey, Dingus, Hanowski, Wierwille and Andrews, 2000; Salvucci et al.,
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2005b; Liu et al., 2006; Large et al., 2018).

For the rest of this section, such models are presented, grouped by the under-

lying behavioural approach considered during their development. The following

review aims at providing a high-level overview of the available modelling methods

and tools. A more in-depth review of these and other relevant models, in terms

of their functionality and predictive capacity, is also presented later, in Chapter

6.

Human Computer Interaction Approaches

From the field of Human Computer Interaction, numerous modelling techniques of

the interaction of a human with a certain task emerge. Some of the most popular

of those techniques are based on the timing of the task itself and are namely Card

et al.’s 1983 Goals, Operators, Methods and Selection Rules (GOMS), along with

its variations such as the Keystroke Level Model (KLM) (John and Kieras, 1996)

and Critical Path Analysis (CPA) model (Lockyer and Gordon, 1991; Baber and

Mellor, 2001; Stanton and Baber, 2008).

GOMS and KLM are of particular interest in HMI task modelling as they

both represent the interactions between drivers’ perceptual, motor, and cognitive

systems in terms of individual memories and processes (Card et al., 1983). Both

of these modelling techniques are based on the same principle; they model in-

teraction behaviour using a sequential ordering of basis operations (Card et al.,

1983). Each basis operation in the sequence that builds the bigger model, is as-

signed a certain time duration. As a result, the total completion time for a given

task can be predicted by the model, given that it is accurately broken down in

representative sub-tasks. However, due to this sequential ordering of basis opera-

tions in those two modelling techniques, there is no way to represent the overlap

between different processing modes (John and Kieras, 1996).

A different approach to modelling interactions using HCI related methods in-

volves the use of Fitts’ and Hick’s laws. Fitts’ Law (Fitts, 1954) is based on

Shannon’s theorem (Shannon and Weaver, 1949) and can be used to predict the

time needed to move to a target using a pointing device. The basic assumption
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behind Fitts’ law is that larger, closer targets require less time to reach than

smaller targets, farther away. The Hick-Hyman Law or Hick’s Law (Hick, 1952)

can be used to predict the time needed to make a decision when presented with

multiple options. The two laws have been previously combined to describe tasks

as constituting from a search and a point element (a very accurate representa-

tion of visual/manual HMI tasks), with success in predicting static task times

(Cockburn et al., 2007) and visual behaviour metrics during HMI task execution

(Large et al., 2018).

Control-Theoretic Framework Approaches

Sheridan (2004) suggested a, slightly more complex, framework for modelling

driver distraction and, consequently, driver engagement to HMI tasks concur-

rently to driving, which follows the classic control theory paradigm of a control

loop. Considering the primary driving task in a control theory framework (i.e.

the driver is the controller and the vehicle is the system), driver distraction can

be defined as anything that would affect the control signal between the controller

and the system and would, thus, result in less accurate (or noisy) control. Given

a transient disturbance in the vehicle feedback (e.g. engagement to a visually

demanding HMI task), there is a switch in tasks and control input to the vehicle

does not get updated for as long as this disturbance lasts. As a result, since this

produces a “blind” open loop, if the disturbance lasts long enough, this could lead

to dangerous behaviour (e.g. drifting out of lane or managing speed improperly).

However, despite being qualitatively defined, this approach has not yet been

widely utilised towards implementing a computational driver model that can ac-

count for dual-tasking while driving (Boer and Spyridakos, 2016, for a sample

implementation).

Cognitive Architecture Approaches

Moving towards more realistic representations of the human information process-

ing and task execution mechanisms, different cognitive architectures were created,

replicating a range of the human cognitive functions. The Adaptive Control of
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Thought-Rational (ACT-R) is a cognitive architecture first introduced in the early

1990s by Anderson (1993). ACT-R in its essence is a framework for understanding

and investigating how human cognition works. ACT-R divides human knowledge

into two categories; declarative knowledge and procedural knowledge. Declar-

ative knowledge refers to “things that an individual knows and they are aware

of knowing” (this is usually manifested by their ability to describe those things

to others) (Anderson and Lebiere, 2014). Procedural knowledge on the other

hand, refers to “things that an individual possesses and demonstrates knowledge

of in their behaviour without being conscious of it” (this is usually demonstrated

through tasks we perform in our every day life) (Anderson and Lebiere, 2014).

ACT-R has been used in the driving and dual-tasking context, with models of dif-

ferent secondary tasks and under various driving conditions (e.g. Salvucci et al.,

2005a; Salvucci and Taatgen, 2008). Simpler derivations and implementations of

ACT-R have also been created through the years to make the architecture more

available and easier to use (e.g. Salvucci and Lee, 2003; Salvucci, 2009).

The Queuing Network - Model Human Operator (QN-MHP) is another cog-

nitive architecture framework, that integrates queuing networks and the proce-

dure / production systems approach, and has been previously integrated with

ACT-R (Cao and Liu, 2013). QN-MHP relies on the Natural GOMS Language

(NGOMSL) (Feyen, 2002) to describe tasks, which are represented as a set of

rules within the architecture (see next section for more details). QN-MHP has

been previously used to model driver menu selection and visual search (Lim and

Liu, 2004), as well as driver workload (Wu, 2007; Wu and Liu, 2007; Wu et al.,

2008).

2.4 Driving Simulator Validity

Since simulators are still widely used for prototype HMI evaluation and all existing

models have been based on the behaviour observed under simulated driving, it is

important to ensure that driving simulators are reliable and can elicit a realistic

behaviour that resembles the one that would be observed in the corresponding
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real-world conditions.

Driving simulators have predominantly been assessed in terms of their physical

and behavioural validity throughout the relevant literature (Blaauw, 1982; Blana,

1996; Mullen et al., 2011). Physical validity relates to the degree to which a

simulator replicates the corresponding real physical system, focusing mainly on

simulator characteristics (e.g. what the simulated vehicle looks like, what the

simulated outside world looks like, how the simulated vehicle movement matches

that of a real vehicle, etc.). Behavioural validity, on the other hand, relates to

the degree to which a driver behaves in a similar manner in a driving simulator

as they would under real world conditions. Physical validity has been assumed to

increase in advanced simulators, e.g. driving simulators employing motion yield

higher physical validity than fixed-base ones (Mullen et al., 2011). However,

higher physical validity does not always improve behavioural validity, hence high

physical validity is not always necessary in order to acquire useful information

on how drivers behave under different conditions (Wang et al., 2010). Reed and

Green (1999) showed, for example, that increasing the fidelity of visual displays

used in a dual-tasking driving experiment, where drivers had to interact with a

cell phone, did not have a significant effect on driving performance.

When it comes to evaluating performance in different tasks, it has been noted

that behavioural validity is more important than physical as it is the one that

describes the correspondence between what is observed in the simulator and what

is observed in the real world setting (Blaauw, 1982; Gemou, 2013). Since the work

presented later in this thesis (namely in Chapter 4) focuses on the behavioural

validity of different driving simulator settings for HMI evaluation, the review

hereafter will also focus on behavioural validity alone. Mullen et al. (2011) and

Blana (1996) can provide the reader with further details on any of the other types

of simulator validity.

2.4.1 Behavioural Validity

Behavioural validity can be further classified into two types; absolute and relative

validity (Blaauw, 1982). Absolute behavioural validity implies that dependent
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variables (e.g. driving performance metrics) take on the same numerical values

in a driving simulator as in the real world. Relative behavioural validity was

initially introduced as a more qualitative criterion, only requiring differences in

the dependent variable between conditions to be of the same order and direction

(Blaauw, 1982). However, it is most commonly assessed on the basis that the

magnitude of the differences has to be the same, too (Godley et al., 2002; Yan

et al., 2008; Mullen et al., 2011). As Wang et al. (2010) clarifies, when relative

validity is defined as differences in the dependent variable between conditions

being of the same order and direction, one refers to an identical rank ordering

across conditions. For example, if two HMI tasks are compared in terms of the

time needed to complete them between real world and simulator conditions, Task

1 should consistently rank lower than Task 2 (or vice versa). When relative valid-

ity also requires the magnitude of differences to be the same, then the differences

observed across conditions must have the same numerical value. Revisiting the

previous example, the difference in completion time between Task 1 and Task 2

should, in this case, be the same for simulator and real world.

2.4.2 Factors Affecting Behavioural Validity

The level of behavioural validity of a certain simulator, in contrast to its physical

validity as mentioned earlier, is not always proportional to its complexity and

characteristics. It is the behaviour observed by the drivers in it that dictates what

type, if any, of behavioural validity is achieved. For example, in a study where a

medium fidelity, fixed-base driving simulator was used to assess driver interaction

with three manual address entry methods (keypad, touch screen and rotational

controller), Wang et al. (2010) concluded absolute behavioural validity for the

simulator with regards to task completion time. In a different study, assessing

five different driving simulators of varying fidelity through four visual/manual

tasks, Klüver et al. (2016) concluded relative validity for a high-fidelity, moving

base simulator, when considering standard deviation of headway distance. One

can infer that both the metric in question as well as the simulator type play

an important part in what level of behavioural validity can be concluded. Also,
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behavioural validity for the same metric may vary between different simulator

types as may the behavioural validity of different metrics for a given type of a

driving simulator (see for example Klüver et al., 2016).

A multitude of other factors related to the experimental design and meth-

ods can also affect the achieved level of behavioural validity. So far, research has

focused on two categories of such factors: simulator characteristics and user char-

acteristics (Klüver et al., 2016). The effect of different simulator characteristics

on behavioural validity has been previously explored, with regards to horizontal

field of view, motion system and the use of a mock-up vehicle cabin.

In general, larger field of view has been found to improve speed choice and

lateral control behaviour, hence enhancing behavioural validity for the examined

simulator (Kappé et al., 1999; Jamson, 2000, 2001; Rosey and Auberlet, 2014;

Klüver et al., 2016). An impaired speed behaviour has been attributed to the use

of a mock-up (Rosey and Auberlet, 2014) as well as a motion system (Reymond

et al., 2001). Furthermore, employing a motion system has been found to elicit

more realistic braking (Siegler et al., 2001) and turning behaviour (Hogema et al.,

2012), while using a mock-up alone has a detrimental effect on lateral control,

that deviates largely from what is observed under real world driving conditions

(Burnett et al., 2007; Rosey and Auberlet, 2014; Klüver et al., 2016). With

regards to user characteristics, gender and age had been previously considered

by Reed and Green (1999) where they found that older drivers (and particularly

older females) demonstrated behaviour in a fixed base simulator that deviated

more from reality than that of younger drivers. Klüver et al. (2016) corroborated

their findings and also investigated the effect of motion sickness which was found

to generally impair driver behaviour and, consequently, behavioural validity.

Surprisingly, there is currently no research addressing the significance of the

primary driving task complexity or the relevant complexity of the secondary tasks

examined, when evaluating the behavioural validity of a simulator. For exam-

ple, as discussed earlier, drivers react to the primary driving task complexity by

adjusting their behaviour to mitigate the distracting effects of their interaction

with a secondary task. Recently, Large et al. (2015) showed that a more complex
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driving scenario yielded better task acceptance rates by the NHTSA guidelines,

offering higher ecological validity. Hence, varying the complexity of the primary

driving task could potentially also vary the correspondence of the driving be-

haviour observed in the simulator to the one observed in the real world.

2.4.3 Desired Level of Behavioural Validity for HMI Eval-

uation

It is clear that many different factors affect the behavioural validity of a driving

simulator. However, there is no set of rules that defines what level of behavioural

validity is needed for different tests, as this is highly situation dependent and

relates to the aim and research questions of the study that investigates it (Allen

et al., 1979). Relative validity has been advocated as sufficient to address many

research questions, as most driving studies examine the effect of different condi-

tions on specific driving parameters (Törnros, 1998; Reed and Green, 1999; Wang

et al., 2010). If, however, the study aims at directly comparing absolute numer-

ical values of the examined parameter across different conditions, then absolute

validity would be the desired level (Gemou, 2013).

For example, a manufacturer interested in conducting comparative testing

between different prototype interface designs, in order to identify which one of

the interfaces could be associated with longer off-road glances, could make that

decision with the simulator used possessing relative validity only. However, if the

aim was to determine the exact glance times associated with executing a task

on the interface (e.g. to verify compliance with a set of design guidelines), then

absolute validity would be needed to ensure that the behaviour observed in the

simulator closely matches what would be observed in the real world.

Some additional review of related literature on behavioural validity will follow

in Chapter 4, where the focus is on specific findings from dual-tasking simulator

validation studies (i.e. concluded behavioural validity for different metrics across

different simulator settings).
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2.5 Key Research Gaps

Considering the review presented above, a number of key research topics can be

identified that have not been previously explored and would be important to be

pursued. When it comes to driving simulators, there has been no structured in-

vestigation on how the level of behavioural validity varies with simulator type and

metrics in question. Regarding driver behaviour under dual-tasking conditions,

although the effects on driving performance are well understood, the research on

identifying how drivers decide to share their visual attention between the pri-

mary driving task and the secondary task in question is very limited. Finally,

despite the fact that multiple computational models have been published, their

validation has been limited to data sets associated with their parameter fitting.

Consequently, it is difficult to determine whether these models are performing

well due to actually capturing the underlying mechanisms of dual-tasking in the

driving context, or just overfitting the validation dataset. The work presented

in Chapters 4, 5 and 6 aspires to investigate and provide new insights to these

issues.



Chapter 3

Empirical Studies and Methods

The present chapter describes the HMI evaluation driving study that was carried

out in the scope of this thesis. This study consisted of two data collection exper-

iments, one of which took place in a driving simulator, while the other took place

in a real world setting (test track). All testing adhered to the ethical guidelines

laid out by the University of Leeds Research Ethics Committee. The first ex-

periment was conducted in the University of Leeds Driving Simulator (UoLDS)

and will be henceforth referred to as the UoLDS experiment. The second exper-

iment was conducted in the Jaguar Land Rover (JLR)’s Emissions Circuit test

track in Gaydon, Warwickshire and will be henceforth referred to as the Gaydon

experiment.

The structure of the rest of this chapter follows the conventional way in which

scholars have been outlining their experimental methods in the field of automotive

Human Factors (e.g. Engström et al., 2005; Kountouriotis and Merat, 2016).

3.1 Participants

A total of 12 participants completed the UoLDS experiment, six of which were

females (mean age 37.17 ± 10.42 years). One of the initial participants expe-

rienced simulator sickness symptoms and was replaced by a new participant of

similar demographics. Potential participants for the simulator study were con-

tacted through the simulator participant database or through the University of

33
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Leeds mailing lists. The biggest response came from people in the database, hence

all but two participants had prior experience with the simulator. Previously, they

had participated in driving studies related to autonomous vehicles and, in partic-

ular, to manual control handover. The participants were compensated with £15

for their time.

A total of 11 participants completed the Gaydon experiment, two of which

were females (mean age 36.55 ± 11.93 years). Potential participants for the Gay-

don experiment were all JLR employees and were contacted through the inter-

nal JLR communication network. About half of the participants had previously

driven in the test track. None of the participants was in any way involved in the

development or evaluation of prototype HMI designs as part of their job spec-

ification in JLR. The participants were not compensated monetarily for their

time.

The sample size was initially set at 12 participants for each of the two exper-

iments, with the option to run follow-up experiments later, if needed. This was

decided after taking into account specific constraints, such as simulator and test

track availability, as well as the difficulty in sourcing large numbers of partici-

pants. At this point, it is worth noting that one of the participants in Gaydon

did not attend the experiment at their defined timeslot and, due to time con-

straints, could not be replaced, hence the discrepancy in sample sizes for the two

experiments. After the initial analysis of the collected data, the primary results

appeared to be generally aligned with the existing literature (see Chapters 4 and

5) and, hence, no additional experiments were conducted.

Tables 3.1 through 3.3 provide details on participant demographics and driving

experience.

Table 3.1: Participant Demographics

Female Male Mean Age STD Age Range Age
UoLDS 6 6 37.17 10.42 24 - 57
Gaydon 2 9 36.55 11.93 23 - 57
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Table 3.2: Participant Driving Experience - Annual Mileage

Mean Mileage STD Mileage Range Mileage
UoLDS 7166.67 4217.57 1000 - 15000
Gaydon 11454.55 3251.57 6000 - 15500

Table 3.3: Participant Driving Experience - Years Driving

Mean Years STD Years Range Years
UoLDS 19.27 11.21 6 - 40
Gaydon 18.55 11.93 5 - 39

3.2 Design and Procedure

3.2.1 Materials

The University of Leeds Driving Simulator (UoLDS) consists of a 4 m. diameter

spherical projection dome, mounted on an eight-degree-of-freedom moving base

(see Figure 3.1). The projection dome provides a 300◦ field-of-view using a high

definition projection system and houses the simulator vehicle cab, a 2005 Jaguar

S-type cab with all driver controls operational. The vehicle dynamics model em-

ployed for the study was a real-time SimPack model of a Jaguar XF (programme

denomination X250). Two different motion configurations were tested in the

(a) UoLDS dome. (b) UoLDS interior.

Figure 3.1: The University of Leeds Driving Simulator (UoLDS). The pictures
are generic and were not taken during the experiment.

simulator during the present study; a setting with no motion (Simulator Fixed

Base (Sim. Fix.)), where the vehicle handling feedback was provided to the driver

through the simulator visual scenery and the steering torque of the vehicle model,

and a setting with limited motion, where the simulator dome was moving using
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the 6 degrees of freedom hexapod. The hexapod supplied roll, pitch and yaw

movements, providing the drivers with motion cues for perceiving acceleration.

The decision for using those two motion conditions was based on an extensive

literature review, presented in Section 4.2, where it was found that no motion has

been the most commonly used configuration in HMI evaluation driving studies,

while a hexapod only motions has not been previously used in this context (see

Table 4.1 for a summarised reference). This way, a common point of reference

was established with the existing literature, while also investigating an existing

research gap.

Vehicle handling and sensor data were recorded through the built-in simulator

CAN Bus at a frequency of 60 Hz. Eye-tracking data were recorded using a v5

Seeing Machines faceLAB eye-tracker, mounted on the dashboard of the simulator

vehicle cab. Data was recorded at a similar frequency of 60 Hz and with a gaze

direction measurement accuracy between 0.5◦ and 1◦. Finally, video streams were

recorded through 4 cameras with the following configuration:

• One camera inside the vehicle cabin facing the driver.

• One camera inside the vehicle cabin facing over the driver’s shoulder.

• One camera inside the Simulator dome, on the roof of the vehicle cabin

facing the scenery ahead.

• One external camera.

The recorded video streams had timestamps synchronised with the logging times-

tamps of the simulator, thus making it easier to extract data segments of interest

based on video evidence or refer to the corresponding video segment from simu-

lator data.

The subject car used during the Gaydon experiments was a Range Rover

Evoque, fully functional and as in circulation (see Figure 3.2). Vehicle data were

recorded from the vehicle CAN using VBOX by Racelogic at a frequency of 60 Hz.

Eye-tracking data were recorded using eye-tracking glasses by SMI, at a frequency

of 30 Hz and with a gaze tracking accuracy of 0.5◦. Finally, video streams were
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(a) Subject car model. (b) Subject car interior.

Figure 3.2: Subject car used in the Gaydon experiment. The pictures are generic
and were not taken during the experiment.

recorded through the eye-tracking glasses camera (located at the binocular focal

point) and through 3 VBOX cameras in the following configurations:

• One camera inside the vehicle cabin facing the driver.

• One camera inside the vehicle cabin facing over the driver’s shoulder.

• One camera inside the vehicle cabin facing the road ahead.

Video streams from the different VBOX cameras were synchronised and time-

stamped.

3.2.2 Driving Environment

The driving environment that was used for the study was the Emissions Circuit

in JLR’s Proving Ground test track in Gaydon, Warwickshire, UK. The circuit

consists of two straight segments, connected with two elongated curved segments,

and has four lanes in a single carriageway configuration. Figure 3.3 provides an

illustration of the test track layout. A digital replica of the Emissions Circuit test

track was created for the UoLDS, preserving all design characteristics of the test

track, barring the scenery which was simplified. Figure 3.4 illustrates an example

of the digital digital environment replicating Emissions Circuit in UoLDS.
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Figure 3.3: Proving Ground facilities layout in Gaydon.

3.2.3 Driving Scenarios

Two different scenarios were tested in both experiments, where a lead vehicle

was used. The different scenarios corresponded to different speed profiles for the

lead vehicle. In the first scenario (Lead Vehicle constant speed condition (LVc)),

the lead vehicle was travelling at a constant speed of 50 mph, as per the scenario

prescribed by NHTSA (2012). In the second scenario (Lead Vehicle varying speed

condition (LVv)), the lead vehicle was travelling at a varying speed between 60

and 70 mph, following a semi-randomised speed profile.

The profiles were obtained from the processing of recorded, real world speed

data. This speed data recording took place prior to both experiments and the

driver was a JLR employee that did not participate in any experiment. The driver

was instructed to drive within the defined speed range in the test track, accel-

erating and decelerating, as they normally would. Acceleration and deceleration

patterns were extracted from the recorded speed data, and were used to define

the time needed to accelerate or decelerate from one target speed to the next.

This way, a speed profile could be generated for a set of random target speeds.

These speed profiles were directly coded in the lead vehicle in the simulator and,

for the Gaydon experiment, were provided to the lead vehicle driver to replicate

while driving.

The two scenarios were chosen to represent different levels of primary driv-
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Figure 3.4: Two instances of the Emissions Circuit in Gaydon (left) with their
corresponding instances from the simulated version of the test track in UoLDS.

ing task difficulty, that can elicit a different HMI interaction behaviour form the

drivers. For instance, Large et al. (2015) have previously shown that there is a

significant effect of primary task demand on secondary task performance. In par-

ticular, they showed that increased primary driving task demand led the drivers

to dedicate shorter glances towards the HMI and complete HMI tasks faster.

Unlike the usual approach in car-following scenarios, the lead vehicle in this

case was not bound to the subject vehicle, i.e. the lead vehicle was moving in-

dependently. Consequently, some instances occurred where the distance between

the two vehicles grew beyond the desired one. However, there were no instances

where the participants completely “lost” the lead vehicle and they were able to

recover the distance by accelerating between task executions.

3.2.4 HMI Tasks

Three visual-manual HMI tasks were used in both experiments of this study,

with all of comprising touch-screen controller elements. The HMI tasks were

implemented so that each one had a different level of difficulty (easy, medium and

hard), based on the number and types of interaction they needed to be completed,

similar to the approach used in Large et al. (2015). This decision was made in
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order to facilitate more thorough comparison of driving behaviour between the

different conditions (driving environments and scenarios). The particular tasks

were chosen as representative of real world HMI tasks, after discussions with JLR

and based on an in-house prototype interface.

The HMI tasks, although resembling functionalities one might find in a pro-

duction vehicle, were independent of any vehicle system and, thus, had no effect

in any of its functionalities. All tasks were implemented so that once finished they

automatically returned to their home screen, to facilitate easy repetition while

driving (i.e. have no need for resetting). The tasks were implemented as an inter-

active mobile application that resembled the design of a prototype HMI designed

by JLR. An iPad model 2 was used as the HMI and was temporarily mounted on

the top part of the central console, to the left of the driver (see Figure 3.5). The

tablet was positioned to virtually the same position in both vehicles (real world

and simulator) and was tilted back at a vertical angle of approximately 35.5◦.

Finally, participants were trained on how to perform each HMI task both

while stationary and while driving.

The upcoming subsections describe in detail the aspects of each task.
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(a) Setup in the Gaydon experiment.

(b) Setup in the UoLDS experiment.

Figure 3.5: In-vehicle HMI setup.
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Easy Secondary Task

Simulated function: Activate massage for the driver seat.

Interactions: Press, Press, Press.

The driver had to press three buttons (see Figure 3.6) to activate the massage on

their seat. Initially, they needed to press the driver seat icon on the task home

(first) screen (Figure 3.6(a)), then press on the “Massage” button on the second

screen (Figure 3.6(b)) and, finally, press on the “Activate” button on the third

screen (Figure 3.6(c)).

(a) First screen - Press. (b) Second screen - Press.

(c) Third Screen - Press.

Figure 3.6: Easy HMI task. The home screen is illustrated on top and the
succession is from left to right, top to bottom, as denoted by the captions. Red
circles denote the areas on the screen (virtual buttons) that the user needed to
press in order to move to the next screen and complete the task.
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Medium Secondary Task

Simulated function: Call a contact on their Home number (the contact was always

the same, namely “Mom”).

Interactions: Press, Press, Press, Press.

The driver had to press four buttons, representing items in a list, to make a

call to a specific contact (namely “Mom”) in their contacts list (see Figure 3.7).

Initially, they needed to press the “Contacts” button on the task home (first)

screen (Figure 3.7(a)), then press on the “Favourites” button on the second screen

(Figure 3.7(b)), then press the “Mom” button on the third screen (Figure 3.7(c))

and, finally, press on the “Home” button on the final (fourth) screen (Figure

3.7(d)).

(a) First screen - Press. (b) Second screen - Press.

(c) Third screen - Press. (d) Fourth screen - Press.

Figure 3.7: Medium HMI task. The home screen is illustrated on top and the
succession is from left to right, top to bottom, as denoted by the captions. Red
circles denote the areas on the screen (virtual buttons) that the user needed to
press in order to move to the next screen and complete the task.
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Hard Secondary Task

Simulated function: Play a song of a specific artist (the artist was the same every

time, namely “Deep Purple”).

Interactions: Press, Press, Scroll, Press, Press.

The driver had to select a song from their playlist and make it play (see Figure

3.8). Initially, they needed to press the “Songs” button on the task home (first)

screen (Figure 3.8(a)), then press the “Artists” button on the second screen (Fig-

ure 3.8(b)), then scroll down until they found “Deep Purple” and press it (Figure

3.8(c)) and, finally, press the play button on the final (fourth) screen (Figure

3.8(d)). At this point, it is worth noting the shared disappointment of the par-

ticipants’ majority that “Highway Star” did not play on the sound system.

(a) First screen - Press. (b) Second screen - Press.

(c) Third screen - Scroll and Press. (d) Fourth screen - Press.

Figure 3.8: Hard secondary task. The home screen is illustrated on top and the
succession is from left to right, top to bottom, as denoted by the captions. Red
circles denote the areas on the screen (virtual buttons) that the user needed to
press in order to move to the next screen and complete the task. The red arrow
denotes that the user needed to scroll down to locate the desired target.
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3.2.5 Experimental Design

A three-factorial design was used with Environment being a partly between-

subjects and partly within-subjects factor, while Scenario and HMI task were

within-subjects factors. Environment had three levels: Real, Fixed Base and

Hexapod. The same set of participants were exposed to both the Fixed Base and

Hexapod levels, while a different set of participants was only exposed to to the

Real level. Scenario had two levels: Constant speed and Varying speed. HMI

task had three levels: Easy, Medium and Hard.

An additional factor, Road, was originally considered, consisting of two levels;

Straight and Curve. However, due to safety regulations, participants were pro-

hibited from performing HMI tasks while driving on a curve during the Gaydon

experiment. Given that the UoLDS experiment took place before the Gaydon

one and that there was no previous knowledge of the aforementioned restriction,

only the UoLDS participants were exposed to the Curve level.

As a result, the UoLDS participants were exposed to a total of 24 unique

conditions (2 Environment × 2 Scenario × 3 Task × 2 Road), while the Gaydon

participants were exposed to a total of 6 unique conditions (1 Environment × 2

Scenario × 3 Task × 1 Road).

3.2.6 Procedure

The procedure followed throughout data collection was the same for the Gay-

don and the UoLDS experiment, except for minor differences dictated by the

environment itself (e.g. location of participant briefing).

For the UoLDS experiment, the participants were welcomed and briefed in the

simulator briefing area (see Appendix A), before being asked to provide signed

consent for their participation in the study (see Appendix B). Participants were

then introduced to the HMI tasks and trained on how to perform them while static

(still in the briefing area). At this point, they would repeat each task as many

times as necessary, until they could confidently declare that they knew how to

complete it. The participants were then given a short questionnaire regarding the
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perceived difficulty of each HMI task (see Appendix C). Next, participants took a

familiarisation drive with the simulator in the motion setting used throughout the

experiment, with the lead car travelling at a constant speed and the experimenter

in the vehicle. This drive aimed at participants acquainting themselves both with

the simulator and the concurrent driving and secondary tasks. The familiarisation

drive was concluded when the participants declared ready to move on to data

collection, which seemed to happen after the completion of one lap of the test

track..

During the data collection phase, similarly to the familiarisations drive, the

experimenter was sitting in the back seat of the vehicle, behind the driver. At this

stage, drivers were required to complete four full laps of the test track. Initially, a

full lap of the simulated test track was performed with the participant only driving

and not performing any HMI tasks (baseline drive). Then, three full laps of the

simulated test track were driven, during which the participants performed each of

the HMI tasks on various instances, when instructed by the experimenter. Each

one of those three laps was dedicated to the execution of one of the HMI tasks.

The experimenter would denote those executions instances by saying “Engage

now” and, after the participants completed the HMI task, they should indicate

so by saying “Done”. The experimenter only instructed participants to initiate

a task execution when they were in full control of the vehicle and at least 3

seconds after a previous HMI task execution. These four laps of the test track

consisted a drive, each one lasting approximately 6 minutes. Each participant

had to complete 4 drives in total, one for each combination of simulator motion

and scenario, namely fixed base and constant speed, fixed base and varying speed,

hexapod and constant speed, hexapod and varying speed.

After the completion of each drive, the participants were given a subjective

questionnaire regarding the perceived difficulty, acceptability and frequency of

the HMI tasks, as well as the subjective levels of realism and discomfort (see

Appendix C). The results from the subjective questionnaires were not used in

the subsequent analyses and, thus, are not reported here.

For the Gaydon experiment, the procedure was identical, with the exceptions
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that the participant briefing took place in the subject vehicle, while stationary in a

parking lot and that each participant had to complete only two drives (one for the

scenario of constant speed and one for the scenario of varying speed). Participants

in the Gaydon experiment performed an additional drive after a break, where they

had to complete a mental arithmetic task while driving (documented in Appendix

C). This drive always took place after the familiarisation drive and the two main

drives of the HMI experiment and after the participants had a short break. Since

driving behaviour during the execution of non-visual tasks was not in the scope

of this thesis, the collected data were not analysed and are not presented here.

As the participants were already “experts” in performing all HMI tasks when

moving into data collection, there was no expectations of learning effects becom-

ing evident through repetition. Moreover, since the main focus of the experiments

was to investigate differences between simulator settings, only the motion settings

in the simulator and the scenarios were counterbalanced. Appendix D provides

information on what the actual condition counterbalancing was for the two ex-

periments. It is worth noting here that, in order to test all possible motion and

scenario combinations in the simulator, a total of 24 participants would be needed.

Consequently, only half of possible combinations were tested in the UoLDS ex-

periment. Finally, since the task executions were not performed at fixed intervals,

different participants performed a different number of task executions, depending

on their speed of execution. Overall, a total (across all conditions and tasks) of

1, 527 task executions were recorded in the UoLDS experiment, while 662 task

executions were recorded in the Gaydon experiment.

3.3 Initial Data Reduction

3.3.1 Identifying and Extracting Individual HMI Task Ex-

ecutions

The main challenge in the data reduction step was to locate and extract each

HMI task execution separately, to allow analysis of individual task executions,
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and to exclude all non-task data from analysis.

For the UoLDS, the experimenter denoted the initiation of an HMI task exe-

cution by raising his hand within the field view of one of the internal simulator

cameras when they administered the “Engage now” command and lower it back

down after the participant had finished their task. Normally, participants had to

declare so by saying “Done”. However, more often than not, participants forgot

to do so or used different wording (such as “OK” or “Finished”). After data col-

lection, manual annotation of the recorded videos gave the desired task segments.

The raising of the experimenter’s hand was used as the moment of initiation of

an HMI task and, in order to maintain consistency between participants, the mo-

ment when a participant returned their eyes on the road after completing a task

was used as the moment of task completion.

An analogous approach was taken with the Gaydon experiment data. In

that case, however, audio signal was present in the SMI recordings and was used

instead of the raising hand approach. In particular, as moment of initiation was

considered when the utterance “Engage now” was said by the experimenter and,

similarly to above, the return of the participant’s gaze to the road ahead defined

the moment of task completion. One of the biggest challenges regarding data

segmentation was the synchronisation of BeGaze and VBOX data. This was

achieved by generating an identical visual scene in both video streams (namely,

the lead car braking three times) so that a synchronisation time frame between the

two recordings could be found. This way, each eye-tracking data segment could

be matched with its corresponding vehicle data segment (unlike the simulator

data where they are logged in this manner by default). Unfortunately, due to a

time offset between the SMI and VBOX logs, as well as the difference in frame

rate, the mapping is not as precise as the one in the simulator data, but sufficient

for the type of analysis conducted later.

3.3.2 Defining Where the Drivers Look

Eye-tracking data for the Gaydon experiment were manually annotated, frame

by frame, using the BeGaze analysis software. A 2-D model of the driving envi-
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ronment was created and Areas Of Interest (AOIs) were defined within it. Next,

for each fixation point, its location was mapped within one of the AOIs. Fig-

ure 3.9(a) shows the schematic used for this mapping of the Gaydon experiment

fixation data.

Regarding the simulator eye-tracking data, the FaceLab eye-tracker logs eye

yaw and pitch based on an initial calibration. Consequently, there is no pre-

defined model of the world and fixations points cannot directly be assigned to

AOIs. To identify AOIs in the visual scene, fixation points for each driver were

visualised and compared between baseline driving and HMI execution intervals

(see Figure 3.9(b)). Based on this comparison, AOIs were defined for each driver

to help identify where they were looking at each instance (see Figure 3.9(c)).

Later, a random sample of task segments was visually compared against video

data to ensure the AOIs were properly defined.

For both the real world and simulator experiments, three major AOIs were

considered; “Road Ahead” (all points of the visual scene that intersected the wind

shield when the driver was looking through it, focused ahead and without moving

their head), “HMI” and “Other”. Only glances falling within the Road Ahead

AOI (on-road glances) and HMI (off-road glances) were considered for analysis.

Due to the format the Gaydon eye-tracking data were recorded in (fixation points

do not have a global reference point), the ISO glance coding process could not be

used here (15007-1:2014, E)). Instead, and in order to be consistent across both

datasets, glance durations were calculated by aggregating consecutive fixation

points within the same AOI.

3.3.3 Data Cleaning

Initially, all instances where the task executions were incorrect, incomplete or

any external factors interfered were removed from the dataset. Such instances

were either due to slips, errors (participants pressing slightly off-target) or, in

the Gaydon experiments, where participants had to change lanes amidst a task

execution. Overall, the number of such instances was very small and the data

removed as a result of it amounted to less than 1% of the total recorded data.
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(a)

HMI

Baseline

(b)

Other

HMI

Road

(c)

Figure 3.9: AOIs used for glance coding. (a) Schematic used for glance coding
of the Gaydon eye-tracking data. The area defined by the green arrows denotes
the “Road Ahead” AOI, the red rectangle denotes the “HMI” AOI, while the
remaining of the image denotes the “Other” AOI. (b) Fixation points during
baseline driving and concurrent HMI task execution driving. The overlap on the
top left part indicates where the “Road Ahead” AOI would be defined, while the
bottom right cluster denotes the “HMI” AOI. (c) Glance coding AOIs as they
were defined for one of the UoLDS participants.

Regarding minimum glance duration, there is currently no agreement in the

academic community as to what threshold should be adopted. Salvucci and

Goldberg (2000), for instance, defined the minimum required glance duration at

100 ms. Fixation times during reading (which approximates HMI interactions well

since drivers need time to register information from the screen), on the other hand,

have been found to average around 225 ms (Rayner, 1998). Based on that and in

accordance with previous studies from the author’s research group, a minimum

duration of 200 ms was required for an aggregation of visual data points to be

considered as a glance and be included in the analysis (Broström et al., 2013;

Louw et al., 2017). Moreover, since both eye-tracking systems automatically

classify fixation points based on their quality, glances consisting of more than

50% of poor quality fixation points (as those were annotated by the eye-trackers)

were also not used.



3.3. 51

Finally, after the manual annotation of the simulator data, one of the partic-

ipants appeared to have been experiencing symptoms of motion sickness, which

they had not disclosed to the experimenter at the time of the trial. That partici-

pant’s data was removed, an action that was later found to have no effect in the

reported results.

3.3.4 Data Loss

Due to equipment malfunction, parts of eye-tracking and vehicle data were not

recorded during the Gaydon experiment. In particular, eye-tracking data were

not recorded for two drives, by two different participants, evenly divided between

the two scenarios (i.e. one of the drives was of the constant speed scenario while

the other one was of the varying speed scenario). Regarding vehicle data, small

segments (affecting single task executions at worst) were not recorded at different

stages for different participants. Overall, the portion of data lost in this way

amounted to less than 10% of the total amount of collected data for the Gaydon

experiment.
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Chapter 4

Behavioural Validity of Driving

Simulators for Prototype HMI

Evaluation

The present chapter focuses on the behavioural validity of different driving simu-

lator types in the context of HMI evaluation1. As discussed earlier (in Chapter 2),

the degree of behavioural validity can vary both across different driving simulator

types, as well as across different evaluated metrics.

The behavioural validity analysis presented in the following sections focuses on

the comparison of various performance metrics, related to concurrent driving and

HMI task execution, between simulator and reality. The final results are presented

in the form of a collective behavioural validity matrix that draws insights from the

analysis of the present experiments (see Chapter 3), as well as already reported

results in the existing literature. This way, the entire range of simulator types used

in HMI evaluation related studies is evaluated with regards to the behavioural

validity levels that they can achieve. Such a matrix could potentially be used

as a tool by the automotive industry to identify what type of driving simulator

would be more appropriate for a given HMI evaluation test or a desired level of

behavioural validity.

1A version of this chapter was presented at the 6th International Conference on Driver
Distraction and Inattention and has been submitted for review to the IET Research Journal.

53
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4.1 Methods

4.1.1 Review of Related Literature

An extensive literature review was performed to obtain previously published re-

sults, related to driving simulator behavioural validity in the context of HMI

evaluation. The focus was on studies that used an HMI task while driving in

their experimental design and that conducted tests both in real world and simu-

lated conditions (see the Literature Review Results section below for more details

on literature sourcing methodology and inclusion criteria). Based on the reported

results, a level of behavioural validity was concluded for each simulator setting,

broken down by metric of interest.

4.1.2 Data Analysis

Statistical analysis was conducted on the collected data, to identify main effects of

the three factors (Environment, HMI Task and Scenario), as well as the effects of

their two-level and three-level interactions (refer back to Chapter 3 for details on

the experimental design and procedures). Linear mixed effects modelling (Fisher,

1919) was used as a technique to identify the existence of effects, while Cohen’s

d was also calculated to provide an estimate of the effect sizes (Cohen, 1988).

Although linear mixed effects models have not been as widely used in the psy-

chology and human factors space as other statistical methods (e.g. ANOVA), they

do offer some additional advantages over other, well established methods, which

is why they were chosen as the analysis method in this case. First, linear mixed

effects models are very well-suited for repeated measures data analysis, since they

take into account the hierarchical structure of the data. This is particularly im-

portant, as distinct observations are not totally independent. Observations across

a single participant are usually more similar with one another than they are with

observations across different participants. Second, linear mixed effects models are

robust in handling missing data, something that, apart from unrecorded data, can

also occur with experiments where there is an unbalanced number of repetitions
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per participant. Traditional statistical methods such as ANOVA, on the other

hand, require complete cases to generate results with the most statistical power.

This means that the missing cases should ideally be removed by list-wise deletion

or replaced with corresponding group mean value. Both of these approaches can

impair the model’s statistical power and affect the quality of the results. For the

present analysis, if such a method were to be used, nearly half of the data would

be eliminated.

4.1.3 Establishing Level of Behavioural Validity

To conclude the level of behavioural validity for each simulator setting and metric,

the approach described by Wang et al. (2010) was adopted, similarly to Klüver

et al. (2016). Relative validity was established when the ranking of the HMI

tasks and their main effect was consistent across conditions (i.e. no interaction

effect of Environment × Task observed). Absolute validity was established by

the presence of relative validity and the absence of a main effect of environment.

4.2 Literature Review Results

A comprehensive search for related publications was conducted initially over a

three month period, from November to January 2016 and was, subsequently, pe-

riodically revisited over the next two years, until November 2018. The main

techniques used to ensure all relevant references were obtained and reviewed,

were search on internet search engines (Scopus and Google Scholar), review of

reference lists of other relevant publications and review of publications that ref-

erenced those (as relevant publication were defined the ones reporting results

of HMI performance studies). Moreover, this work was presented on the the 6th

International Conference on Driver Distraction and Inattention, where fellow aca-

demics were requested to provide feedback regarding related research that might

have not already been included.

An initial search against publication titles, abstracts and keywords was made

on Scopus using the following term: (“behavioural validity” OR “behavioural
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fidelity” ) OR ( validity OR fidelity ) AND “driving simulator”. The search

results were restricted by excluding articles related to medicine or computer sci-

ence, which yielded 252 results. An initial cleaning was performed based on the

relevance of the title and, for the articles that remained, their abstracts were

reviewed to validate they were suitable.

The inclusion criteria used to define whether a publication was relevant to the

review or not had to be all met and were the following: the reported studies had

experiments performed both in a driving simulator and in a real world setting,

and the experiments were focused on HMI task execution concurrently to driv-

ing. Consequently, meta-analysis studies (e.g. Caird et al., 2008), studies where

simulator validity was only evaluated by using a simulator setting as the baseline

criterion (e.g. Jamson and Jamson, 2010) and studies where driving simulator va-

lidity was not investigated in the context of HMI interaction (e.g. Blaauw, 1982;

Jamson, 2001) were not included in the review.

The above selection process resulted in the following two publications: Wang

et al. (2010) and Klüver et al. (2016). Together with Santos et al. (2005), Victor

et al. (2005) and Engström et al. (2005), which were relevant and previously

known to the author form different literature searches, an initial body of five

publications was formed. Reviewing the references therein and searching for

other publications citing them, the following and final body of ten papers was

formed, that was used for the review presented below: Reed and Green (1999);

Baumann et al. (2004); Santos et al. (2005); Victor et al. (2005); Engström et al.

(2005); Pettitt et al. (2006); Bach et al. (2008); Wang et al. (2010); Knapper et al.

(2015); Klüver et al. (2016).

For the papers where behavioural validity was directly investigated by the au-

thors, their conclusions were used directly here. That was the case for the results

described in Reed and Green (1999), Wang et al. (2010), Knapper et al. (2015)

and Klüver et al. (2016). Reed and Green (1999), used a fixed base simulator,

featuring a cabin with narrow field projection, and testing a phone dialling task.

The simulator was found to achieve absolute validity for speed but relative va-

lidity for lane position, throttle position and steering wheel angle. Wang et al.
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(2010) used a similar simulator setting and a surrogate visual/manual HMI to

Reed and Green (1999) and found it to achieve absolute validity for initial re-

sponse time, mean task duration, total glance time, percentage of time looking

on the road, as well as standard deviation of speed. The results were inconclu-

sive for average speed and standard deviation of lane position (SDLP), with the

authors concluding that the simulator could potentially achieve absolute validity.

Finally, the simulator was found to achieve relative validity for glance frequency,

i.e. the number of glances employed towards the HMI. Knapper et al. (2015)

used the occlusion method in a way-finding task, and found it to achieve relative

validity both for mean and standard deviation of speed. Finally, Klüver et al.

(2016) used 5 different simulator settings (a desktop simulator, two fixed base

simulators featuring a cabin, one with narrow and one with wide field projection,

a hexapod and lateral motion simulator and a hexapod and longitudinal mo-

tion simulator), measuring three performance metrics of an address entry task.

All simulators were found to achieve relative behavioural validity for standard

deviation of headway distance. The two simulators employing motion managed

to achieve absolute validity for SDLP, while the same simulators along with the

higher fidelity fixed base one also achieved absolute validity for task completion

times. Finally, the lower fidelity simulators achieved relative validity for task

completion times and SDLP.

For the remaining papers, where only analysis results were reported, the level

of behavioural validity was inferred by examining statistical significance scores

and value plots. Following the methodology proposed by Wang et al. (2010) and

described in the previous section, the task order ranking, along with the main

effect of task was evaluated to infer relative validity and, then the main effect of

environment was considered to conclude absolute validity. Given that in many

cases important information were missing (e.g. statistics on environment effects),

some of the results were inconclusive.

The results obtained from the aforementioned exercise, are summarised in

Table 4.1. Results are grouped by publication and indicate the level of behavioural

validity (relative or absolute) concluded for each simulator setting and evaluation
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metric. When no level of validity could be concluded, the respective cell was

classified as “N/A”. For cases were the level of behavioural validity could only

be assumed after some assumptions the classifications “possibly absolute” and

“possibly relative” were used instead.
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Table 4.1: Levels of behavioural validity achieved by different simulator config-
urations for different metrics, in the context of HMI evaluation, based on the
existing literature. A refers to absolute behavioural validity, R refers to rela-
tive behavioural validity, PA refers to possibly absolute behavioural validity, PR
refers to possibly relative behavioural validity, while N/A was used for the cases
where no level of behavioural validity could be concluded, even with additional
assumptions.
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4.3 Data Analysis Results

Linear mixed effects models were fitted for each metric using MATLAB and the

built-in fitlme function and statistical significance for main and interaction effects

was reported in the form of p-values, at the a = 0.05 confidence level. Initially,

different models of varying complexity, in terms of their random effects compo-

nent, were fit to all dependent variables. The fit of each model was evaluated

based on their AIC score (Akaike, 1974) to identify the one that best represented

the observed data. The majority of the dependent variables were best represented

by the model that included a fully varying slope and intercept per participant,

i.e. the maximal random effects structure justified by the data, as suggested by

Barr et al. (2013) and also adopted by Klüver et al. (2016).

With y representing the dependent variable (any behavioural metric of inter-

est), task the HMI task (easy, medium and hard), env the driving environment

(simulator and real world) and scen the driving scenario (constant and varying

speed), the model that was used can be described by the following equation:

y ∼ task ∗ env ∗ scen+ (1 + task ∗ env ∗ scen|part) (4.1)

For the remaining models, a comparison of reported effects was performed

and no difference in significance levels was found. Hence, the results of the most

complex model described above were used. After an initial fitting, the residuals

of the models were visually inspected to identify whether their distribution ap-

proached normality. Where the normality assumption was violated, data were

log-transformed and models were refitted. No treatment was taken for outliers

since the data was already cleaned (see Chapter 3) and all observations were valid.

However, in the interest of ensuring that the models do not provide inflated re-

sults, the same models were also fitted to outlier-free data, with no significant

differences in their results.

As Wang et al. (2010) argued, in cases where the values of a dependent variable

measured in the field do not differ significantly across conditions, it can be difficult

to use the rank ordering criterion. This raises an issue about using statistical
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significance, alone, as a measure of behavioural validity. Hence, in order to get

an estimate of the actual effect for cases like these, Cohen’s d was also calculated

(as the difference in means divided by the pooled standard deviation) to provide

such an estimate (Cohen, 1988). Since the focus of this analyses was to identify

differences between simulator and real world, the effect sizes were calculated

pairwise for all environments on the average metric value across all three tasks.

This averaging over the tasks was conducted so that Cohen’s d would provide a

more complete insight into the drivers’ behaviour, as that was displayed under

different conditions. In terms of assessing the actual effect size, an effect of 0.2

was considered small, 0.5 was considered medium, 0.8 was considered large and

thereafter was considered very large (Cohen, 1988).

The interaction plots are presented in pairs; one plot for each scenario (con-

stant speed, varying speed). The x-axis shows the three different environments

while the y-axis shows the metric in question. The raw metric means for each task

are plotted as points connected with dotted lines, along with errorbars represent-

ing their 95% confidence interval for the mean. Moreover, effect sizes are overlaid

to denote the magnitude of the differences in the metric between environments.

For no effect of environment, each task should be represented as a straight line

parallel to the x-axis. For no effect of task, task lines should overlap. Finally, for

no effect of scenario, the two plots should be identical.

4.3.1 HMI Task Performance

Task Completion Time

Task completion time was defined as the time elapsed from the moment the

experimenter instructed an HMI task execution initiation, until the moment when

the participant returned their gaze to the the road ahead, after completing the

task. Figure 4.1 illustrates the total time needed to complete each HMI task,

across all driving conditions for all participants.

A significant main effect of task was found (F (2, 2048) = 47.39, p < .001),

with the tasks consistently ordering as easy, medium, hard from the least to
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the most time required for completion.. However, a significant interaction effect

between task and scenario was also observed (F (2, 2048) = 3.95, p = 0.02). In

this case, although the interaction effect hinders the value of the main effect

of task observed, since the effect of task is consistent across environments (i.e.

there is no interaction effect of environment and task) the main effect of task

still holds value for the behavioural validity assessment purposes. In particular,

the interaction effect was driven by the medium task requiring more time to be

completed in the varying speed scenario (p = 0.014). Although absolute values

of completion times were slightly higher in the real world, that difference was not

statistically significant, hence, there was no effect of environment (F (2, 2048) =

0.46, p = 0.63). Finally, differences between the two scenarios also appeared to

be negligible (F (1, 2048) = 0.46, p = 0.34).

Given the identical ordering of tasks across all three environments (from small-

est completion time to largest: easy, medium, hard with no interaction effect of

environment and task F (4, 2048) = 1.19, p = 0.314), the absence of an effect of

environment (F (2, 2048) = 0.46, p = 0.63), and the small effect sizes observed,

absolute validity can be concluded for both the fixed base and the hexapod sim-

ulator for task completion times, for both scenarios.
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Figure 4.1: HMI task completion times.
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4.3.2 Gaze Behaviour

Total Off-road Glance Duration

This metric was calculated as the sum of the durations of all glances towards

the HMI during a task execution. Figure 4.2 shows the glance durations towards

the HMI for each task across conditions for all participants. After initial model

fitting, the model residuals were found to be non-normally distributed. A log

transformation was applied to both datasets and models were re-fitted, this time

showing no deviation from homoscedasticity or normality for the residuals.

A significant main effect of task was observed (F (2, 1834) = 49.39, p < .001),

which was consistent across environments, with no interaction effect observed

(F (4, 1834) = 0.46, p = 0.765). Additionally, no effect of environment or scenario

was found (F (2, 1834) = 1.64, p = 0.195 and F (1, 1834) = 0.12, p = 0.734

respectively). Drivers appear to devote less visual attention to the HMI in the

real world, something that can be justified by the increased driving demand due

to higher potential risk. This is an indication, as discussed earlier, in Chapter

2, that drivers tend to self regulate and adjust their attention sharing strategies

according to the demands of the primary driving task. Also, this points to an

interesting potential explanation, that drivers perhaps develop a strategy where

they learn to perform the tasks with as little visual attention sharing as possible,

to ensure they remain within safety vehicle control margins.

Glance times for the medium and hard tasks are almost identical in the fixed

base simulator for both scenarios. The two tasks differ more noticeably in the

hexapod and real world, with those differences slightly more amplified in the

varying speed scenario. Since the two tasks are practically indistinguishable, their

relative ordering cannot be considered. Nevertheless, since the ordering of the

easy task with either the medium or the hard is consistent across environments,

given the absence of an effect of environment, possibly relative validity can be

concluded for both the fixed base and hexapod simulators, for both scenarios.

Given inconsistent ordering of all three task across all conditions the effect sizes

between real world and either simulator setting are in the medium range, absolute
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Figure 4.2: Total off-road glance duration.

validity could not be established in this case. This is in agreement with the

findings from Victor et al. (2005) where the possibility of relative validity could

be concluded.

Frequency of Off-road Glances

Frequency of off-road glances refers to the total number of glances towards the

HMI during a task execution. A significant main effect of task was observed

(F (2, 1969) = 38.22, p < .001), which was consistent across environments (F (4, 1969) =

0.71, p = 0.579). There was no effect of environment or scenario (F (2, 1969) =

0.09, p = 0.918 and F (1, 1969) = 0.21, p = 0.65 respectively). Drivers appear to

be employing slightly more glances to the HMI when driving in real world set-

tings. The task ordering is the same in all environments (from the one requiring

the fewest glances to the one requiring the most - easy, medium, hard). The

absence of an effect of environment, the consistent ranking of tasks and the small

effect sizes, indicate that absolute behavioural validity can be concluded for both

the fixed base and the hexapod simulators, for both scenarios.
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Figure 4.3: Glance frequency.

Mean Off-road Glance Duration

Mean off-road glance duration was defined as the average duration of all glances

towards the HMI within a single task execution, or, in other words as the ratio of

total off-road glance duration time over the number of off-road glances. After ini-

tial model fitting, the model residuals were found to be non-normally distributed.

A log transformation was applied to both datasets and models were re-fitted, this

time showing no deviation from homoscedasticity or normality for the residuals. A

significant main effect of task was observed (F (2, 1834) = 15.13, p < .001), consis-

tent across environments (F (4, 1834) = 0.71, p = 0.585), along with a marginally

significant effect of environment (F (2, 1834) = 3.42, p = 0.033), while scenario

had no significant effect on mean off-road glance durations (F (1, 1834) = 0.44,

p = 0.507). Given the consistent ranking of the tasks across all conditions, relative

validity could be established for both simulator settings, for the constant speed

scenario. Due to the inconsistencies in ranking for the varying speed scenario, no

level of validity can be concluded. Moreover, due to the effect of environment (al-

though marginal) and the large effect sizes, absolute validity cannot be concluded

for either simulator setting and driving scenario.



66 CHAPTER 4. BEHAVIOURAL VALIDITY

Sim. Fix. Sim. Hex. Real

Environment

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
e
a
n
 o

ff
-r

o
a
d
 g

la
n
c
e
 d

u
ra

ti
o
n
 (

s
.)

Constant Speed

 d = 0  d = -0.59

 d = -0.51

Easy Task

Medium Task

Hard Task

Sim. Fix. Sim. Hex. Real

Environment

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
e
a
n
 o

ff
-r

o
a
d
 g

la
n
c
e
 d

u
ra

ti
o
n
 (

s
.)

Varying Speed

 d = 0.22  d = -0.75

 d = -0.52

Easy Task

Medium Task

Hard Task

Figure 4.4: Mean off-road glance durations.

4.3.3 Lateral Control

Standard Deviation of Lateral Position (SDLP)

For the sake of consistency, since actual lane position measurements were not

available from the real world test track, displacement was calculated using the

same method for both real and simulated data (displacement was derived from the

recorded lateral acceleration signal). First a simple median filter was applied to

the signal for noise reduction and, then, it was integrated twice (using the method

of cumulative trapezoidal numerical integration) to yield lateral displacement.

Figure 4.5 illustrates lateral displacement variability across conditions. An

immediate observation is that SDLP was higher in the real world, with more

variability during the varying speed scenario, something that is not in agreement

with previous findings in the literature (e.g. Wang et al., 2010). This observation

could, in this case, be attributed to the method used for calculating the metric. In

particular, sudden bursts in lateral acceleration could cause increased SDLP val-

ues that might not necessarily reflect the actual lateral displacement. Moreover,

numerical integration is an approximation method, hence the inferred lateral dis-

placement is also an approximation here. Finally, the way lateral acceleration was

calculated by the simulator vehicle dynamics model in this case is not necessarily

representative of what was recorded in the real world vehicle, hence results from

the integration might not be directly comparable. No significant main effect of
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task, environment or scenario was found (F (2, 2007) = 0.74, p = 0.478 for task,

F (2, 2007) = 0.84, p = 0.43, for environment and F (1, 2007) = 1.95, p = 0.162

for scenario). Moreover, no significant interaction effect between environment

and task was found (F (4, 2007) = 0.16, p = 0.956). Due to the lack of difference

between tasks, ranking order cannot be used and, hence, relative validity cannot

be concluded. However, exactly due to the negligible differences and small effect

sizes observed, a possibility of absolute behavioural validity could be argued in

this case.
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Figure 4.5: Standard deviation of lateral position.

4.3.4 Longitudinal Control

Speed Variability

Speed variability was calculated as the standard deviation of longitudinal velocity

during a task execution being significantly higher in the simulator conditions.

No significant main effect of task was observed (F (2, 2007) = 0.2, p = 0.821),

consistently across environments (F (4, 2007) = 0.15, p = 0.961). Environment

and scenario, on the other hand were found to significantly affect speed variability

(F (2, 2007) = 18.61, p < .001 and F (1, 2007) = 12.06, p < .001, respectively).

Since there is no effect of task, ordering could not be considered and, consequently,

neither absolute nor relative behavioural validity can be concluded for either of

the simulator types and driving scenarios.
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Figure 4.6: Speed variability.

Average Speed

Average speed was calculated as the average value of longitudinal velocity during

a task execution (see Figure 4.7). A significant effect of scenario was observed

(F (1, 2007) = 440.39, p < .001), as was expected due to the differences in speed,

while task and environment and their interaction appeared to have no effect on

drivers’ speeding behaviour (F (2, 2007) = 0.48, p = 0.62 and F (2, 2007) = 0.58,

p = 0.559 and F (4, 2007) = 0.31, p = 0.87, respectively). Since there is no

effect of task, ordering could not be considered, hence relative validity cannot be

concluded here. However, due to the absence of an effect of environment and the

low effect sizes observed, a possibility for absolute validity could be argued in this

case.
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Figure 4.7: Average speed.
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4.3.5 Steering Control

Following, the Steering Wheel Reversal Rate (SWRR) for the HMI tasks are

illustrated. The reversal rates were calculated using the method described in

Markkula and Engström (2006). The rates were calculated for gap sizes of 1, 5

and 10 degrees. The results and conclusions for all three gap sizes were similar,

hence detailed statistical analysis results are only reported for the 1 degree gap

size, while visualisation of all gap sizes is provided (see Figures 4.8, 4.9 and 4.10).

None of the main factors in question appeared to significantly affect steering

behaviour (F (2, 2007) = 1.12, p = 0.326 for task, F (2, 2007) = 0.94, p = 0.392,

for environment and F (1, 2007) = 0.05, p = 0.831 for scenario). Moreover, the

effect of task did not appear to vary in different environments (F (4, 2007) = 0.26,

p = 0.906). Task ranking appears to be somewhat consistent throughout all

conditions for gap sizes of 1 and 5 degrees. Due to the lack of an effect of

task, however, ordering cannot be considered and relative validity cannot be

established. Again, though, a case of possible absolute validity could be argued,

given that the effect sizes observed are relatively small.
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Figure 4.8: Effects and interactions of SWRRs for gap size of 1o.
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Figure 4.9: Effects and interactions of SWRRs for gap size of 5o.
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Figure 4.10: Effects and interactions of SWRRs for gap size of 10o.
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4.4 The Behavioural Validity Matrix

A Behavioural Validity Matrix was constructed based on the results obtained

from the present analysis as well as on existing results in the literature, as pre-

viously noted. The matrix was filled using a simple colour-coding scheme that

is illustrated in the top part of Figure 4.2 and is associated with the level of be-

havioural validity each setting seems to be able to achieve. “Possibly” Absolute

or Relative validity refers to either an inconclusive result in literature or to an

interpolation of existing results towards the higher level of validity observed. For

example, in a case where for the same simulator setting, investigating the same

metric, there were two different verdicts for behavioural validity, relative and

absolute, the final verdict here would be possibly absolute validity. Moreover,

every simulator setting that had a lower fidelity simulator ranked with a higher

level of validity for the same metric, was also considered to possibly achieve that

level. For example, if for a certain metric, the desktop simulator was ranked with

absolute validity, and the hexapod and lateral motion simulator was ranked with

relative validity or had no ranking, the latter would be finally ranked as possi-

bly absolute. The red rectangle in the matrix indicates the contributions of the

work conducted in the scope of this thesis. In particular, the behavioural validity

rankings for the Cabin with wide field projection are presented in combination

with existing results from the literature. The behavioural validity rankings for

the Hexapod, on the other hand, are a novel contribution of this thesis.

The behavioural validity matrix in its current state could prove to be a use-

ful tool towards answering the question of what type of simulator one needs to

conduct reliable HMI evaluation tests. It is important to note at this point, how-

ever, that the behavioural matrix presented here was formed using results from a

variety of studies where different experimental choices were made. Since different

HMI tasks and different driving scenarios could potentially yield different levels

of behavioural validity for the same metric, tools like this behavioural matrix are

in need of updates and revisiting.

When it comes to choosing a driving simulator setting for prototype HMI
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Table 4.2: The Behavioural Validity Matrix, based on analysis of the obtained
data and existing results from literature.

evaluation, as is evident from the matrix, there is no “one-size-fits-all” solution

to that problem; instead, it is highly dependent on the types of tests that require

consideration (i.e. evaluated metrics), as well as on the level of behavioural valid-

ity that needs to be achieved. Different metrics require different simulator types

to be evaluated with higher behavioural validity. Only simulators with motion

cues can achieve near absolute or absolute validity for lateral and longitudinal

control measures (namely SDLP and mean speed). This is easily explained by the

fact that humans cannot comprehend movement as well without vestibular cues.

Task completion times, on the other hand, can be examined in very low fidelity

simulator settings, with informative results, approximating the corresponding

real-world behaviour very well.

Finally, researchers and human factors specialists could also find the be-

havioural validity matrix useful in interpreting the results of a driving simulator

study. When no real-world data collection can be conducted, for example, the

matrix can be used to help researchers infer how well the observed results in the

examined simulator setting would generalise to the real-world context.



Chapter 5

Visual Attention Sharing

Patterns During HMI Task

Execution

The present chapter investigates which factors affect drivers’ visual attention

allocation, when engaging in visual-manual HMI tasks, and in which way. Such

factors could point towards behavioural patterns that can be utilised for the

specification and implementation of computational models, capable of replicating

the observed behaviour. Drawing from existing techniques in the literature, as

well as through some novel pieces of analysis, the glance behaviour of the drivers

was analysed on the individual glance level, and is presented in the following

sections.

Initially, a general exploratory analysis of the glance duration data was con-

ducted, aiming at comprehending their distribution and understanding which fac-

tors might affect glance durations across different conditions. Next, the structure

of drivers’ visual attention sharing was investigated, focusing on the relationship

between off-road glance frequency and glance duration. Finally, the effect of the

primary driving task demand on glance duration and glance onset timing was

investigated, with regards to lateral and longitudinal vehicle control.

73
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5.1 Exploratory Analysis

A crucial part of exploratory data analysis is to visually inspect the data for pre-

liminary pattern identification (Tukey, 1977). With glance durations, the typical

assumption is that a log-normal distribution fits the data well (e.g. Morando et al.,

2019). In this case, since the aim was to visualise and inspect the raw data, a

non-parametric representation of their probability density function (PDF) was

used. A smoothing function was applied to the data to obtain a kernel density

estimation of the probability distribution (Parzen, 1962; Peter D, 1985). Similar

to a histogram, the kernel density estimation method creates a function to repre-

sent the probability distribution of the data in question. But unlike a histogram,

which places the values into discrete bins, a kernel distribution sums the compo-

nent smoothing functions for each data value to produce a smooth, continuous

probability curve.

After an initial inspection, glance durations did not differ significantly be-

tween simulator types (fixed base and hexapod) and driving scenarios (constant

and varying speed). Hence, the data for both the simulator and the real word

was collapsed across the two scenarios. Moreover, the simulator data was also

collapsed accordingly along the two simulator types. Consequently, the data is

presented here categorised by HMI task (easy, medium, hard) and road type

(straight, curve) for the simulator and by HMI task only for the real world.

For each task, a kernel density estimate was computed for each driver and

for the aggregated data of all the drivers for that condition, based on a normal

kernel function, evaluated at 1000 equally spaced points. Figure 5.1 illustrates

on- and off-road glance duration distributions for each HMI task in the different

conditions defined above, along with their respective medians.

In agreement with existing research (e.g. Horrey and Wickens, 2007; Birrell

and Fowkes, 2014), glance durations appear to be right skewed (i.e. having more

data points concentrated in the low values). Apart from the shape of the dis-

tributions, another preliminary observation can be directly made from a simple

visual inspection of the plots: different drivers appear to employ “personalised”
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Figure 5.1: Glance duration distributions during HMI task execution for real
world and simulated driving. In each panel, the coloured lines correspond to in-
dividual driver distributions, while the thick black line corresponds to the overall
aggregate data distribution. The thin, light grey, vertical lines correspond to
individual drivers’ median glance durations, while the thick, light grey, vertical
line corresponds to the aggregate data median glance duration.
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strategies as to how they share their visual attention between the road and the

HMI. In particular, different drivers appear to employ glances of different du-

rations when looking towards the HMI. The overall distributions (thick black

curves) in the various conditions do not seem to always capture individual driver

distributions (coloured curves), something that becomes visually evident by the

misalignment of the curves, as well as by the distance between the glance du-

ration medians (light grey vertical lines). Initially, a singe Kruskal-Wallis test

(Kruskal and Wallis, 1952) was performed on the data and verified that indi-

vidual driver glance durations do not come from the same distribution (results

for all tasks and conditions rejected the null hypothesis in the a = 0.05 confi-

dence interval, with p < .001). To eliminate the increased risk for type I error

associated with multiple comparisons, additional pair-wise Kruskal-Wallis tests

were performed for each driver and the corresponding overall glance distribution

in each condition, yielding the same results. Moreover, visual differences in the

individual observed distributions between different conditions, also indicate some

within-driver variability for different HMI tasks and road type.

In order to get a more detailed view on drivers’ visual attention sharing be-

haviour, some further quantitative analysis was also performed. Consistent with

the analysis presented in Chapter 4, linear mixed effects models were used to anal-

yse individual glance durations here, too. Statistical analysis was performed on

the two datasets independently, to investigate the effects of glance target (road,

HMI - for both datasets) and road (straight, curve - only for the simulator data)

on glance duration.

The rationale for not performing the statistical analysis on the aggregate

dataset, was to avoid real world data affecting any significance of the curved road

condition in glance durations (since curves could not be tested in real world).

Moreover, the detailed analysis that follows in the next sections of the present

chapter, focuses on simulator data only, hence it would be more meaningful to

make that distinction here, too.

Following the recommendation by Barr et al. (2013), both models included a

random effects component that corresponds to the maximal random structure as
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that can be justified by the design. For the simulator data, main effects and all

their two-way interactions were investigated for glance target (road ahead, HMI),

HMI task (easy, medium, hard) and road type (straight, curve). The model in-

cluded a random intercept and random slopes for the three factors varying per

participant. For the real world data, main effects and all their two-way interac-

tions were investigated for glance target (road ahead, HMI) and HMI task (easy,

medium, hard). The model included a random intercept and random slopes for

the two factors, varying per participant. After initial model fitting, the residu-

als for both models were visually investigated using QQ (quantile-quantile) plots

(Wilk and Gnanadesikan, 1968). Both generated non-normally distributed resid-

uals. A log transformation was applied to both datasets and models were re-

fitted, this time showing no deviation from homoscedasticity or normality for the

residuals.

In the simulator, a significant interaction effect between road and glance tar-

get on glance duration was found (F (2, 8841) = 4.07, p = 0.017). In partic-

ular, glances towards the road were significantly longer when driving in curves

(F (1, 8841) = 53.42, p < 0.001), with drivers spending 0.82 seconds on average

looking at the road ahead and 0.65 seconds looking at the HMI. This could be

explained by the increased workload and primary driving task demand associated

with driving in a curve. It is worth noting at this point that participants were,

in general, a lot more conservative in their HMI engagement tactics when driving

in curves in the simulator, often postponing performing the task until they felt

safe to do so. This observation seems to be falling in line with the findings by

Oviedo-Trespalacios et al. (2017), where they concluded that in complex driving

environments, the primary driving task gets prioritised over the secondary task.

One participant, in particular, did not perform any HMI task executions while

driving on a curve, since, as they pointed out after the experiment, they did not

feel it was safe.

In the real world setting, drivers’ individual glances towards the road ahead

were shorter in duration than the ones towards the HMI, showing a main effect

of glance target on glance duration (F (1, 2696) = 5.25, p = 0.021 - see top two
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rows of Figure 5.1). In particular, drivers spent 0.41 seconds on average looking

on the road ahead and 0.52 seconds looking at the HMI. This difference could

be attributed to the fact that drivers had a better control of the vehicle in the

real world, due to more acute vestibular and tactile feedback, hence being able

to “afford” to spend more time looking away from the road.

Considering the above, it can be argued that both the HMI task and the

primary driving task demand appear to affect the way in which drivers share

their attention between the road and a secondary task while driving. Moreover,

different drivers tend to employ individual strategies of visual time sharing, that

result in glances of different durations towards the road and towards the HMI.

5.2 Visual Attention Sharing Structure

After identifying that different drivers employ off-road glances of different du-

rations, it is logical to investigate how, in detail, drivers structure their visual

attention sharing between the road and the HMI and if similar differences are ob-

served there, too. The present section investigates this very question, along with

if and how such differences in structure might be associated with the differences

observed in glance durations.

Since all three HMI tasks that were used in this experiment consist of discrete

sub-tasks (the individual interactions that drivers needed to complete), a simple

first step towards understanding drivers’ visual attention sharing structure would

be to verify if that matched the structure of the HMI tasks they are performing.

The simplest form of such structural match would be to allocate one single glance

for every single interaction required. For example, in the present experiment, a

driver employing such a strategy would need three glances to execute the easy

task (three Press interactions), four glances to execute the medium task (four

Press interactions) and at least five glances to execute the hard task (four Press

and one Scroll interaction).

Figure 5.2 illustrates the number of off-road glances employed per HMI task

execution, in each condition, for all drivers. The “percentage of executions”
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Figure 5.2: Distribution of number of glances per task execution in real world
and simulated driving.

breakdown corresponds to the normalised number of executions of each partic-

ular task for each particular condition (the number of executions for each task

in each condition was normalised over the total number of task executions in

that condition). It is immediately evident that the above assumption regarding

visual attention structure is not in agreement with what drivers actually did.

In particular, more than 70% of task executions (for all HMI tasks, across all

conditions), were performed with the drivers employing fewer glances than the

individual required interactions. This chunking of the HMI task is driven by

drivers performing multiple interactions in a single glance, or performing some

of the interactions without looking, by mapping the relative position of the next

target on the screen. Salvucci et al. (2005a), for instance, also noticed that drivers

grouped button presses together when typing a phone number while driving, by

either looking longer towards the keypad or typing by tactile detection of the

appropriate buttons. Another interesting observation is that some task execu-

tions were performed without the drivers looking towards the HMI at all. After

inspection of the video footage this could be attributed to some drivers being able

to perceive the position of the initial target on the HMI using their peripheral

vision and mapping the relative positions of subsequent targets.
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To better understand the implications of this phenomenon, it is necessary to

investigate chunking in the context of glance durations. The relationship between

number of off-road glances and glance duration has been previously discussed in

connection to drivers’ risk taking behaviour. Donmez et al. (2009) found that

riskier drivers tended to use few and longer glances, while more conservative, safe

drivers tended to opt for more in number and shorter in durations glances away

from the road. Here, a detailed quantitative analysis of this relationship was

conducted, through statistical analysis of the observed data. Using linear mixed

effects models, the effect of number of off-road glances on mean off-road glance

duration and total off-road glance duration was investigated. Similarly to the

analysis in the previous section, two models were fitted, one for the real world

data and one for the simulator data. After initial model fitting, both models

generated non-normally distributed residuals. A log transformation was applied

to both datasets and models were re-fitted, this time showing no deviation from

homoscedasticity or normality for the residuals. It is worth noting at this point

that although there were changes in the absolute values of the statistical metrics,

no shift in statistical significance levels was observed.

Figure 5.3 illustrates the investigated relationship for the medium HMI task

across all conditions. The respective plots for the easy and hard HMI tasks were

similar and, thus, not presented here. For the medium task, more than 90% of

task executions across all conditions employed 1 to 5 glances, hence those are

presented in Figure 5.3.

For both the real world and the simulator, an inversely proportional relation-

ship between number of off-road glances and mean off-road glance duration was

observed, i.e. fewer number of glances were associated with larger mean glance

duration and vice versa (see Figure 5.3(a)). For the real world, this relationship

was not consistent, as number of glances did not have a significant effect on mean

glance duration (F (1, 518) = 0.78, p = 0.377). For the driving simulator, on

the other hand, the number of glances towards the HMI significantly affected

the mean glance duration during an HMI task execution (F (1, 1973) = 14.09,

p < 0.001).
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Figure 5.3: Number of off-road glances

Considering that each HMI interaction requires some time, performing mul-

tiple interactions in a single glance could result in an increase in total glance

duration. Indeed, a consistently proportional relationship between number of

off-road glances and total off-road glance duration was observed for both the

real world and the simulator, with more glances resulting in larger durations

(F (1, 518) = 26.5, p < .001 and F (1, 1973) = 36.09, p < .001 respectively - see

Figure 5.3(b)).

Table 5.1 collectively presents all the above reported results. For each task, in

each condition, the Table provides a grouping of the number of off-road glances

used per HMI task execution, with their associated mean off-road glance and

total off-road glance durations.

Two distinct strategies can be observed on how drivers engage with HMI tasks:

they either use fewer and longer glances or more and shorter glances. Moreover,

the number of glances employed in an HMI task execution, also proportionally

affects the total time drivers look towards the interface. Studying Figure 5.2 and

Table 5.1 reveals that the number of glances scales with the number of interactions

needed to complete a task, but, typically, the number of glances is lower than the

number of interactions. As a result, it could be argued that drivers’ tendency to

use fewer glances could be associated with them, eventually, trying to spend less

time looking away from the road.
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Table 5.1: Visual attention sharing structure during HMI task execution details.
For each HMI task, in each condition, the number of glances towards the HMI is
provided as a proportion of the total number of task executions in that condition,
along with the corresponding mean and total off-road glance duration.

5.3 Effects of Primary Driving Task Demand on

Visual Attention Sharing

Returning to the exploratory analysis presented earlier in this chapter, it was

shown that the demand of the primary driving task affects glance durations, as

manifested by differences between simulator and reality and between straight

and curved road within the simulator. The analysis presented in this section

aims to define whether drivers condition their off-road glances (both duration-

and onset-wise) on safety perception and primary driving task demand, related

to lateral and longitudinal control. The analysis hereafter was only performed

on the simulator (UoLDS experiment) data, since the relevant metrics explored
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were not recorded or could not be computed for the real world.

5.3.1 Glance Durations and Time-to-Line Crossing

Time-to-line crossing (TLC) is defined as the time needed for any part of the

vehicle to reach one of the lane boundaries (Godthelp et al., 1984). TLC has

been previously used to identify and model steering behaviour (Godthelp et al.,

1984) as well as to identify cognitive distraction (Li et al., 2018), among others.

The relationship between TLC and off-road glance duration, as well as the onset of

off-road glances in an HMI evaluation context, has not been previously explored.

A hypothesis is proposed here that suggests drivers might take into account

TLC values (or their perception of it) before engaging in an off-road glance and

deciding for how long to do so. The hypothesis is qualitatively illustrated in

Figure 5.4. Let TLCoff be the TLC at the moment a driver looks away from

the road (and in this case towards the HMI) and Offmax the maximum time a

driver can look away before exiting the lane. Assuming constant steering when

looking away (as suggested for example by Godthelp et al., 1984), it should hold

that Offmax = TLCoff (represented by the diagonal line in Figure 5.4). As

discussed previously in Chapter 2, drivers have been found to self-regulate when

being distracted by a secondary task (e.g. by adapting their speed), to remain

within safe driving margins. Consequently, a minimum “safety” threshold is

also assumed in this case for TLC, i.e. a value of TLC, below which drivers do

not take their eyes off the road (represented by the vertical line in Figure 5.4).

Finally, off-road glance durations are expected to be bound by an upper limit

threshold, regardless of the TLCoff value. This can be justified intuitively, by

the fact that drivers cannot indefinitely look away from the road as they would

eventually need to return their gaze to adjust for errors and control the vehicle.

It has, however, also been previously argued that drivers limit the duration of

their off-road glances to maintain safety. Wierwille (1993), for example, argued

that drivers generally employ glances to an HMI that are one second or less in

duration and not longer than 1.5 seconds. Following, this hypothesis, all observed

data should fall within the light cyan area, as indicated in Figure 5.4. It is worth
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Figure 5.4: A hypothesis of how TLC data would compare against off-road glance
durations. A maximum threshold of off-road glance duration is assumed that
equates to the TLC at the time of looking away. Glance durations are bound
above, and a minimum TLC threshold is assumed to initiate an off-road glance.

noting at this point, that the diagonal line representing the maximum look away

time does not need to cross the (0, 0) point, as such an instance would not be

observed in the recorded data. It is illustrated as such in the following plots only

for demonstration purposes, mainly to provide an indication that it is the x = y

diagonal line.

In order to test the above hypothesis, for each off-road glance, TLCoff was

calculated using the following formulas (Godthelp and Konings, 1981; Mammar

et al., 2006; of Automotive Engineers, 2015):

1

2
· LA · TLC2

left + LV · TLCleft = LPleft (5.1)

1

2
· LA · TLC2

right + LV · TLCright = LPright (5.2)

where:

TLCleft/right stands for TLC to the left or right lane boundary, respectively,

LA stands for lateral acceleration,

LV stands for lateral velocity and

LPleft/right stands for the lateral distance from the left or right lane boundary,

respectively.
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(a) (b)

Figure 5.5: TLCoff against subsequent off-road glance duration, for straight and
curved road. Data are binned by TLCoff value, with the edges of each bin shown
by a horizontal black line through the bin’s median glance duration value and
the bin’s mean glance duration value shown in red. A robust regression fit of the
data is shown in green.

The minimum positive root of the two equations is used as TLCoff . The above

is an approximate method, assuming constant lateral acceleration. It was found

to reliably replicate results of more complex analytical methods and be sensitive

to cognitive distraction (Li et al., 2018).

Scatter plots of TLCoff against subsequent off-road glance duration are illus-

trated in Figure 5.5. They display aggregated data for the UoLDS experiment,

separated by road type only (i.e. for each road type, all simulator type, task and

scenario data are collapsed). TLCoff was also plotted as a function of individual

drivers, task, driving scenario and simulator type, and, although demonstrating

some variability, all plots looked effectively the same as those in Figure 5.5.

Regarding the previously formulated hypothesis (Figure 5.4), an initial look

at Figure 5.5 seems to validate it. The horizontal line representing the maxi-

mum glance duration value observed, was drawn for the 99th percentile and fell

at a value of 3.18 s for the straight road and 2 s for curved road. Regarding

the minimum TLCoff line (vertical), it was drawn at the 1st percentile value and

fell on 1.75 s for straight road and 0.79 s for curved road. For the straight road

condition, 0.18% of the glances exceeded the hypothesised upper limit (diagonal

limit), while for the curved road that proportion was at 3.8%. Since the focus

of this analysis was to investigate the relationship between TLCoff and off-road
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glance durations, and given the small portion of data violating this hypothesis,

no further analysis was conducted on those glances. An interesting first obser-

vation is that the minimum TLCoff was shorter when driving on curve than on

straight road (see Figure 5.5(b)). This is an artefact of the road geometry, since

TLC values are in general shorter in curves, as verified by the plot. Moreover, it

is interesting to notice that the upper bound for glance duration is a lot shorter

in the curved road, something that should be expected based on the exploratory

analysis results presented at the beginning of this chapter, as well on the over-

all known tendency of the drivers to adapt their visual attention based on the

demands of the primary driving task.

Investigating the relationship between TLCoff and subsequent off-road glance

duration, was the next step taken in this analysis. As can be inferred by visu-

ally inspecting the scatter plots, no linear or semi-linear relationship appears to

exist between the two measures. Nonetheless, the relationship between off-road

glance duration and TLCoff was evaluated using robust regression (Rousseeuw

and Leroy, 2005) to verify it. The regression model failed to capture a relation-

ship between TLC and glance duration for either the straight or the curved road

(R2 < .001 and R2 = 0.02 respectively).

As no direct relationship was found through regression analysis, a different

assumption to be tested here would be that instead of using specific values of

TLCoff to predict off-road glance durations, a range of TLCoff values could be

used to predict a range of glance durations. In order to test this hypothesis, the

data was binned as shown in Figure 5.5. Initially, a log-normal distribution was

fit to the collective glance durations for each road type. Next, for each TLCoff

bin, a different log-normal distribution was fit to the glance durations that fell

within that bin.

Two simple probabilistic models were considered to quantitatively verify the

assumption. Both models used a TLCoff value as an input and generated an off-

road glance duration, drawn from a corresponding distribution. The first model

(simple model) drew glance durations from the overall distribution fitted to the

aggregate data. The second model (complex model) drew glance durations from
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the fitted distribution that corresponded to the TLCoff value provided as input.

For good measure, a variety of bin approaches were used (varying bin number

and bin size). The likelihood of each model was then calculated, to obtain the

Akaike Information Criterion (AIC) (Akaike, 1974), which was then used as a

performance comparison metric between the models.

Generally, models that have a lower AIC score, provide a better representation

of the observed data. The simple model achieved an AIC score of 493 for the

curved road and 3272 for straight road. From all the complex models tested (by

varying the binning approach), the best scoring variants achieved 500 and 3285,

respectively. This means that the best performing complex models performed

marginally worse than the simple ones and, thus, offer no additional value to

modelling visual attention allocation based on TLCoff . From all the above, it

is conclusively proven that TLC values at the moment of looking away from the

road cannot be used to predict subsequent off-road glance durations.

Revisiting the initial hypothesis and the observed results in Figures 5.5(a),(b),

the next logical question to pose is whether there is a connection between TLC

value and off-road glance onset, i.e. whether TLC plays any role in when drivers

choose to look towards the HMI, rather than for how long. Drivers are known to

adapt their behaviour to the demands of the primary driving task. The absence

of glance duration data below certain TLC values (0.42 and 0.18 seconds for

straight and curved road, respectively) denotes either a margin that drivers use

to decide when it is safe to look away, or that drivers never actually attain such

low TLC values when driving. To verify which assumption is true, TLC was

investigated on the moment of look-away and during baseline driving (when no

HMI task was performed). As discussed in Chapter 2, control errors build up

during periods of no visual input from the road scene ahead until drivers feel

they need to focus their attention back on the road and correct those errors.

It could be hypothesised that this error build-up continues during intermittent

periods of looking back on the road. Particularly, the assumption here is that

drivers look back on the road using short, check glances inbetween interactions

with the HMI and only when those errors have surpassed a certain threshold do
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they devote more time to looking ahead. Hence, the TLC values at the moment of

looking away were further divided into the values associated with the first glance

of the task execution (TLCOffF ) and all the consecutive ones (TLCOffC ).

Empirical cumulative distributions were calculated for the data (see Figure

5.6) and a Kolmogorov-Smirnov (KS) test was performed to identify if they belong

to the same distribution (see Table 5.2). The data seem to stem from different

underlying distributions as the KS test rejected the null hypothesis (of data com-

ing from the same distribution) at the 0.05 confidence level. Table 5.2 provides

the D statistic that describes the maximum pairwise difference between all the

curves.

Investigating the CDF curves closer in Figure 5.6(a), the vast majority of TLC

values when driving on straight road segments is below 10 seconds. Given that no

glances were observed to be longer in duration than that value, too, investigating

beyond that point would not provide any additional information. Hence, the

focus was shifted to low TLC values (see Figure 5.6(c)). It is immediately evident

that TLCOffF is consistently higher than TLCOffC (mean value of 3.52 and 3.2

seconds, respectively), indicating that drivers compensate for control error build

ups in the beginning of the task. Another interesting observation is that up to

the value of 4.3 seconds, TLCOffF is also higher than TLC values during baseline

driving (mean value of 3.52 and 3.11 seconds, respectively). This indicates that

drivers ensure they are within a safe margin before looking away, even more so

than when their focus is constantly on the road, as, in the latter case, they have

more attentional resources available to account for and correct control errors. The

crossover at that point, where TLCOffF starts to become shorter than baseline,

indicates a point beyond which drivers feel confident to look away regardless of

the TLC value.

For curved road driving (see Figures 5.6(b) and 5.6(d)), it appears that, up

to the value of 2 seconds, TLCOffF is consistently higher than TLCOffC (mean

value of 1.55 and 1.49 seconds, respectively), verifying the previous argument, and

both of them consistently higher than TLC values during baseline driving (mean

values of 1.55, 1.49 and 1.37 seconds, respectively). This reinforces the previous
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Figure 5.6: TLCoff under different driving conditions for straight and curved
road. Plots (c) and (d) are enlarged versions of (a) and (b), respectively.

findings, as it shows that drivers took added precaution when the demand of the

primary task increased. During baseline driving, drivers tended to drive closer to

the lane boundaries (i.e. “cutting” the curves), while during HMI task execution

they moved their vehicle closer towards the center of the lane, to allow for a

bigger safety margin.

At this point it is worth noting that since baseline was always the first part

of each drive, the observed behaviour might contain some artefacts of ordering

effects. Based on the consistent results across conditions, however, at this point

it can be concluded that, although TLC cannot be used as a metric to predict

off-road glance durations, it is indeed a measure that drivers take into account to

decide when it is safe to divert their gaze away from the road.
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TLCoffC Baseline

Straight Road

TLCoffF ∗D = 0.19 ∗D = 0.14

TLCoffC ∗D = 0.28

Curved Road

TLCoffF ∗D = 0.08 ∗D = 0.32

TLCoffC ∗D = 0.25

∗p < .001

Table 5.2: Kolmogorov Smirnov test results for TLC CDFs.

5.3.2 Glance Durations and Headway Distance Adjust-

ment

Having discussed how lateral control affects visual attention sharing, it is crucial

to also investigate the relationship between longitudinal control and visual driver

glance behaviour. Hence, the other main factor to investigate in terms of how

drivers adjust their visual time sharing, would be headway (HW) distance from

the lead vehicle. In particular, similarly to what was done for TLC, the analysis

in this section focuses on whether there is a relationship between HW distance

adjustment and onset.

Given that the drivers were instructed to maintain a certain HW distance, an

initial approach would be to classify HW changes compared to target distance.

However, given that each driver eventually used a different reference than the

one directed, the above approach would not be very robust. Thus, an analysis re-

garding lead vehicle visual angle rate of change was conducted, instead. Tijerina

et al. (2004) previously investigated closing gaps with a lead car, in a naturalistic

driving setting. In their study, however, the glances away from the road were not

necessarily related to HMI task execution. As a similar analysis in the context

of HMI task execution has not been published since, it would be meaningful to

validate their findings in the present study. Here, the investigation was performed

both for opening and closing gaps with the lead car during HMI execution. Fol-

lowing the logic in Tijerina et al. (2004) and Maddox and Kiefer (2012), visual

angle rate of change θ̇ was computed for each look-away moment and compared
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Figure 5.7: Visual angle rate of change of lead vehicle at the moment of looking
away. The left column illustrates data corresponding to straight road driving,
while the left column illustrates data corresponding to curved road driving. The
top row (Figures (a) and (b)) illustrates the correlation between the optical ex-
pansion rate of the visual angle rate of change of the lead vehicle at the moment
of look-away, against the subsequent off-road glance duration. The bottom row
(Figures (c) and (d)) illustrate the distribution of said visual angle rate of change
values, i.e. the number of off-road glances performed at each value.

against glance duration, using the following formula:

θ̇ =
−W · Ṙ(t)

R(t)2 +W 2
(5.3)

where W denotes the width of the lead vehicle, Ṙ(t) denotes the rate of change

of the distance of the two vehicles at time t and R(t) denotes the distance of the

two vehicles at time t. Similarly to TLC scatter plots, data was collapsed across

all conditions for the two road types as that is where the biggest differences lied.

According to Maddox and Kiefer (2012), θ̇ is perceivable when below the
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0.003 threshold for closing gaps and, thus, above −0.003 for opening gaps. In

line with findings from Tijerina et al. (2004), the vast majority of glances away

from the road were initiated at times where the visual angle rate of change was

not perceivable by the driver (see Figure 5.7). In particular, at the moment of

look-away, only 5.1% of the time was θ̇ perceivable by the participants. For curved

road, this percentage was higher (13%) as drivers in general tended to drive closer

to the lead vehicle when in curves. Consequently, as Tijerina et al. (2004) noted,

it can be argued that drivers look away when θ̇ is essentially zero. Similarly,

Tijerina et al. (2004) reported a total of 19% of the glances occurring when θ̇ was

at a perceivable value. The lower percentage of perceivable θ̇ instances in the

present study could be justified by the longer HW distances involved compared

to the study by Tijerina et al. (2004). To begin with, drivers were instructed

to maintain a distance of 70 meters from the lead vehicle. Due to the fact that

the lead vehicle was not bound to the subject vehicle, however, there were a few

instances where the participants almost “lost” the lead vehicle to a larger gap.

As is evident in from Equation 5.3, the distance between the two vehicles has

an inversely proportional relationship with θ̇, i.e. the larger the distance, the

smaller the θ̇. Consequently, in cases where the distance between the subject and

the lead vehicle grew substantially large, changes in HW would be more likely to

not have been perceivable by the driver.

At this point, however, an interesting question arises; is there a difference in

how perceivable θ̇ is between different driving conditions (namely driving while

executing HMI tasks and driving with no concurrent tasks)? Looking into the

respective baseline data, for the straight road, only 6.8% of the time was θ̇ per-

ceivable during baseline driving, while for curved road this number was higher,

at 20.3%. This indicates that, for the vast majority of the time, drivers would

have been unable to perceive changes in HW at all, even during periods of driving

without executing any concurrent task.

Consequently, although the findings here, that drivers tend to initiate off-road

glances when θ̇ approaches zero are in support of the findings by Tijerina et al.

(2004), this could be a by-product of the fact that this is simply where θ̇ values
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lie the majority of the time. In the present study, however, the above observed

behaviour could also be an artefact of baseline always being the first part of each

drive and, hence, participants showing different behaviour due to order effects.
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Chapter 6

Modelling Drivers’ Visual

Attention Allocation for

Prototype HMI Evaluation

The present chapter investigates the potential of using computational simula-

tions as prototype HMI evaluation tools. Consistent with analyses presented

earlier, throughout Chapter 5, the focus here will remain on the ability of mod-

els to replicate the drivers’ visual attention sharing behaviour. For almost three

decades now, a consistent effort has been made from the academic community

to develop models that can capture driver behaviour under dual-tasking condi-

tions and aid in better understanding, analysing and predicting it (e.g. Hankey,

Dingus, Hanowski, Wierwille and Andrews, 2000; Horrey et al., 2006; Lee et al.,

2016; Large et al., 2018, to mention a few). As discussed in Chapter 1, such mod-

els and simulation tools could be employed in the early stages of the production

cycle to grant human factors specialists and researchers with insights regarding

the usability and distraction potential of a prototype HMI design under concur-

rent driving conditions. Such insights could then facilitate informed decisions

regarding design modifications and improvements prior to physical prototyping.

Briefly revisiting the HMI prototyping cycle, it can be described as a four-

stage process, where the first two stages include non-physical conceptualisations

of the new interface design (general), while Stages 3 and 4 involve the develop-

95
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ment of physical prototypes of varying detail. Computational models could be

incorporated across all stages of the evaluation cycle as a means of exploring the

viability of a new HMI design before moving into production testing. Such mod-

els, if they were to be used for prototype evaluation, they should be HMI task-

and driving task-agnostic or, in other words, lend themselves well to a variety of

devices, tasks and interaction scenarios.

Removing human participants from the loop, however, raises questions about

the behavioural validity of the generated results. As discussed in Chapters 2 and

4, driving simulators can be evaluated in terms of their behavioural validity, i.e.

the extent to which they can elicit the same behaviour from the drivers as the one

that would be observed in corresponding real world conditions. Computational

models of driver/HMI interaction have been quantitatively evaluated throughout

the literature, predominantly in terms of how closely they can match the observed

behaviour (see Lim and Liu, 2004; Salvucci et al., 2005a, for instance). It has

been argued, however, that utility of such models might exist in their ability

to predict relative differences in measures for different prototype HMI designs

(Salvucci, 2009; Large et al., 2018). Hence, the concepts of relative and absolute

validity can be also extended to such computational methods of evaluation, too.

In particular, models of absolute behavioural validity could be used to check

compliance with design and performance guidelines even before prototypes are

built and human participants are employed, while models of relative behavioural

validity could facilitate the comparison between alternative HMI designs in terms

of their distracting potential.

The rest of this chapter is divided into three sections. The first one provides

an overview of existing HMI interaction models that have been or can be used

in the context of prototype HMI evaluation. In the second section two of those

models are evaluated against data collected in this project. A novel model is

also proposed, that accounts for some of the behavioural phenomena described

in Chapter 5 that are not directly addressed by the existing models. Finally, the

third section provides a comparison of the best performing model variants along

with some discussion of the results.
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6.1 Available Computational Models of Drivers’

Visual Behaviour

A multitude of different dual-tasking models in the driving context have been

developed over the years, either in an attempt to study human behaviour under

such conditions, or to be used as prototype HMI evaluation tools. The computa-

tional model review in Chapter 2 provided a general overview from the perspec-

tive of the underlying behavioural assumptions and modelling approaches used in

this context. The vast majority of such models and frameworks, however, (with

the exception of ACT-R, which has seen wider use over the years, by various

authors) have seen limited use in the academic community and have rarely un-

dergone additional validation. Consequently, it would be meaningful to evaluate

their performance on previously unseen data and, thus, their ability to generalise

and their potential to be used as prototype HMI evaluation tools.

In the scope of this thesis, a set of such existing models was reviewed and a

small subset of those was then validated on the collected data. In order to narrow

down candidate models and decide on which ones would be further validated here,

the following set of criteria was used:

• The model should be able to produce visual behaviour metrics (glance du-

ration related metrics).

• The model should be already implemented and freely available for use, or

be straight-forward to implement, without requiring intimate knowledge of

specific behavioural theories or modelling frameworks.

• The model should allow the user to define a variety of visual-manual HMI

tasks, without being restricted from the interface design, i.e. be interface-

agnostic and provide a modular design environment in which the user can

define different element combinations to define displays and tasks.

• The model should be easy to use.

• The model should be fast in simulations.
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Following, all the models that could be candidates for use in virtual testing and

prototype evaluation are revisited, to discuss aspects of the models’ functionali-

ties, that would be of interest to a human factors specialist when utilising them,

before finalising the ones to be used in the upcoming evaluation. Namely, the

following information is provided for each model:

• A slightly more in-depth presentation, than the one presented in Chapter

2, of how the model works.

• What type of performance metrics it can produce.

• How easily accessible it is to researchers and Human Factors specialists;

e.g. Does one need a specialised license or is it open source? Is there a

functional / ready-to-use implementation available? If not, is it easy to

implement and test the model?

6.1.1 IVIS DEMAnD Model

The IVIS DEMAnD system was introduced by the Federal Highway Administra-

tion division of the United States Department of Transportation (Hankey, Dingus,

Hanowski, Wierwille and Andrews, 2000). It is a software tool where the user

can virtually replicate and evaluate prototype HMI designs. The software inter-

face provides the user with a library of 198 pre-defined sub-tasks (e.g. adjust

temperature and radio tuning), grouped by the resources needed to perform each

one (namely, visual, auditory, manual, supplemental information processing (SIP)

and speech). The user can use the existing sub-tasks, modify them or create new

ones through the interface menu to represent a candidate HMI task. Additionally,

the user is given the ability to define various other related parameters such as

driver age, the position of the driver in the vehicle, position and size of interface

to be evaluated and more. The model modifies default values, predefined for each

task, based on user inputs about driver characteristics and primary driving task

demands, to generate predictions on metrics such as mean single glance duration,

mean number of glances, mean total visual task time, mean total task time and
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mean hand at task time. A summary of the results is then presented in the inter-

face, highlighting where the driving performance is likely to be affected relative

to driving without a secondary task.

Unfortunately, due to its age the task library is geared towards traditional

panels where the presence of physical buttons and knobs is prevalent. Con-

sequently, the representation of more modern interface tasks (e.g. hierarchical

menus through touch screens) is not thorough. The model has not seen wider use

since its creation and nowadays is not freely available for researchers to use.

6.1.2 The Queuing Network Model Human Processor (QN-

MHP)

QN-MHP relies on the Natural GOMS Language (refer back to Chapter 2) to

describe tasks by modelling the individual actions (or subtasks) that form them

(Feyen, 2002). A set of rules needs to be generated to represent the task within

the architecture. The inputs into QN-MHP, for example, in order to model a

steering task, would be road and position related information, whereas the out-

put of the model would be the driver’s hand movement on the steering wheel.

During driving, it needs to be determined whether the vehicle is within the lane

boundaries, by using lane position as a measure. If the vehicle is not within

the lane, a subtask of steering back into lane will be activated. QN-MHP has

been previously used to model driver menu selection and visual search (Lim and

Liu, 2004), providing a range of metrics regarding driving and visual performance

during simulated HMI execution. However, substantial effort is required to de-

velop models in QN-MHP, which restricts the potential users to researchers with

extensive experience with the framework.

6.1.3 The Salience Effort Expectancy and Value (SEEV)

Model

The Salience, Effort, Expectancy, and Value (SEEV) computational model is a

model of selective visual attention and was introduced as a means of predicting
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visual scanning behaviour in different dynamic environments (Horrey et al., 2006;

Wickens and Horrey, 2008). SEEV was initially developed and applied in the

context of aviation and later on in driving related tasks, simulating how visual

attention is allocated to different Areas of Interest (AOIs) during concurrent task

execution. As the model name indicates, the attention switching is driven by four

factors:

1. Salience, which refers to physical properties of events; the more salient an

event, the easier it captures attention, e.g. a sudden brake light from the

vehicle ahead.

2. Effort, which is an inhibitory factor discouraging one from switching atten-

tion between areas that are far apart.

3. Expectancy, which reflects one’s tendency to look at sources that provide a

large amount of information in short time (high event rate) more frequently

and, finally,

4. Value, which represents the fact that one tends to allocate attention to

sources providing information that are highly task relevant (hence having

a higher value).

These factors are the components of an additive model that calculates the prob-

ability of attending a specific AOI (see Equation 6.1).

P (AOI) = s · S − ef · EF + ex · EX + v · V (6.1)

The terms in capital represent the factors as listed earlier, while the coefficients

s, ef , ex, and v, represent the weights (or relative influence) of each one of those

four factors on visual scanning behaviour. The SEEV, as a stochastic model,

can easily be evaluated in a Monte Carlo Simulation, to generate visual scanning

trajectories between the different AOIs that represent a dual tasking scenario.

Distributions of visual attention allocated in the different AOIs can be extracted

and, hence, on- and off-road glance durations for different HMI tasks can be
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calculated. However, regarding model evaluation, all weighting factors need to

be fit empirically and there is no objective method of defining them to generalise

to previously unknown conditions.

6.1.4 Adaptive Control of Thought - Rational (ACT-R)

Salvucci and colleagues have created a computational implementation of ACT-R

with versions in Lisp and Java programming languages, as well as a stand-alone

software application with a Graphical User Interface (GUI) 1. These provide a

framework where the user, similarly to utilising a programming language, can

develop models that represent certain tasks. Due to its customisable nature,

ACT-R can be used to generate a wide range of metrics, such as task completion

times, visual attention-related metrics and many more. The main components

of ACT-R are modules, separated in perceptual-motor and memory modules,

buffers, which are used to access the modules and the pattern matcher, which

searches for a piece of knowledge about the execution of a task (production) that

matches the state of a buffer at a given time.

ACT-R has been previously used to model driver steering control, lateral

and longitudinal control as well as dual-tasking while driving (Salvucci, 2005,

2006; Brumby et al., 2007). The associated software and all related resources

to the architecture are open source, freely available and thoroughly documented.

However, it has been previously noted that building an ACT-R model for a new

HMI is time-consuming, and requires extensive experience with the architecture

(Salvucci, 2005).

6.1.5 Fitts’ and Hick-Hymann Law

These two laws provide models of the human behaviour with regards to visual

search and localisation, as well as target pointing, both of which are highly rel-

evant and applicable in modelling HMI task interactions. Although not definite

models of this interaction themselves, these two laws have been used in that

1Accessible at http://act-r.psy.cmu.edu/software/
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context and are, hence, presented here for the sake of completeness but also to

provide an introduction to the models described later, that make use of them.

Fitts’ Law (Fitts, 1954) is based on Shannon’s theorem (Shannon and Weaver,

1949) and can be used to predict the difficulty of a target selection task (known

as Fitts’s Index of Difficulty (ID)) and, consequently, the time needed to move to

a target using a pointing device. It assumes a logarithmic relationship between

movement time and target-distance and width, generally expressed as:

T = log2(
D

W
),

where D is the distance from the target and W is the width of the target. This

essentially translates to larger, closer targets requiring less information processing

and, thus, less time to reach than smaller targets that are farther away.

The Hick-Hyman Law or Hick’s Law (Hick, 1952) can be used to predict the

time needed to make a decision when presented with multiple options. Hick’s law

assumes a linear relationship between reaction time and the number of available

options, which for a set of equally probable options can be expressed as:

T = b · log2(n+ 1),

where b is a constant usually set empirically and n the number of available options.

Both laws have been used independently used in Human Computer Interac-

tion studies, however it has been argued that Hick’s law complements Fitts’ law

and their combined use can yield enhanced predictions of human behaviour (e.g.

Cockburn et al., 2007; Large et al., 2018). Cockburn et al. (2007), for example,

reported near perfect levels of accuracy when using a model combining Fitts’

and Hick’s laws to predict static task times. Given the high ecological valid-

ity of such models, as well as the low complexity involved in implementing such

equation-based models, this approach could be a great candidate for prototype

HMI evaluation methods.
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6.1.6 Distract-R

Salvucci and colleagues (Salvucci et al., 2005b; Salvucci, 2009) developed a soft-

ware package called “Distract-R”, based on the ACT-R framework, aimed at

providing researchers with an easy to use tool for rapid prototype HMI evalu-

ation. Distract-R is a user friendly interface that allows the experimenter to

replicate HMI designs, using a range of virtual components such as buttons, ro-

tary controls and voice commands. Moreover, the user can define a secondary

task associated with the interface by defining the sequence in which actions need

to be performed (button presses, text entries, etc.) to complete a task. After the

interface and tasks are defined, the experimenter can also modify other aspects

of the experiment, such as driver age (choosing between young and old), driving

style (by defining steering aggressiveness and stability levels) and driving scenario

(such as straight or curved road and presence or absence of a leading vehicle).

Distract-R uses the ACT-R driver model and cognitive functions (Salvucci and

Gray, 2004) along with Fitts’ law for hand movement to target (Fitts, 1954)

to simulate secondary HMI task interaction while driving. After the simulation

is run, a variety of driver performance measures, such as mean secondary task

completion time, total off-road glance duration, lateral deviation and velocity,

heading error and reaction time in case of leading vehicle braking are provided

to the user through the interface. The experimenter can then view some basic

visualisations (bar charts) of said measures through which they can compare and

evaluate different interfaces/tasks. Although there is no direct way to export the

generated data to a file, the user can copy the data from the interface in text

form to conduct further analyses.

Similarly to the IVIS DEMAnD software, Distract-R was created with static

interfaces in mind (i.e. older panels with hardware buttons and knobs). Conse-

quently, newer types of interfaces such as touch screen based ones with different

screens between and within tasks, cannot be replicated as easily. However, given

the ease with which the user can create and evaluate interfaces, as well as the

speed of simulation, Distract-R provides a great tool for quick prototyping and

evaluation of different HMI designs, without compromising the quality of gener-
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ated data.

6.1.7 Large et. al Predictive Equations

Recently, Large et al. (2018) used data collected from simulator experiments to

develop a set of equations that can predict visual demand of a new HMI task

(Large et al., 2018). The equations were formed through linear regression fit

of the data and combine Fitts’ law for hand movement to target (Fitts, 1954)

and Hick’s law for visual localisation of target (Hick, 1952), following the “de-

cision/search and pointing” approach proposed by Cockburn et al. (2007). Two

sets of similar equations were created, representing structured and unstructured

interfaces or task displays. In a unstructured display, one needs to search visu-

ally one item at a time, whereas in a structured display one can take shortcuts

based on pre-existing knowledge about the structure. However, as the authors

note, every interface and task is learnable by the user, hence rendering it even-

tually structured under their equation definition. The equations can predict the

total off-road glance duration (TGT), the number of off-road glances (NG) and

the mean off-road glance duration (MGD) associated with completing the task.

Employing the equations for both structured and unstructured interfaces, the re-

searcher can predict the range of performance that may be achieved from novice

to expert users. Moreover, since repeated exposure would constitute an interface

structured, the predictions can be used to infer design quality. As the authors

explain, if the structured equations predict the observed behaviour better, that

would be an indication that the interface or interactions associated with that task

afford anticipation (Large et al., 2018). If, on the other hand, the observed be-

haviour is more similar to the one predicted by the unstructured equations, that

could be indicative of the interface or task lacking learnability and, hence, being

in need of design improvements (Large et al., 2018). All equations are rather

straightforward and can be implemented in any programming environment (or

even by hand, using a calculator - see Equations 6.2 through 6.7).

TGTst =

(
log2N

log2(N + ti)

)
(0.029N + 0.44) + 0.11log2N + 0.11log2

D

W
+ 0.35 (6.2)
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TGTun =

(
log2N

log2(N + ti)

)
(0.1N−0.028)+0.045log2N+0.11log2

D

W
+0.17 (6.3)

NGst =

(
log2N

log2(N + ti)

)
(0.021N + 1.04) + 1 (6.4)

NGun =

(
log2N

log2(N + ti)

)
(0.044N + 0.81) + 0.0071N + 1.96 (6.5)

MGDst =
TGTst
NGst

(6.6)

MGDun =
TGTun
NGun

(6.7)

where:

st stands for structured,

un stands for unstructured,

N is the total number of selectable items on the screen,

ti is the number of exposures to the interface,

D is the distance to target from hand position on steering wheel and

W is the target width.

6.1.8 Other models

Lee et al. (2016) recently proposed a model that predicts the visual demand of

a new HMI design based on the visual saliency of the elements present in every

screen. The model was published as a web tool where the experimenter can upload

screen shots of the interface design evaluate its visual demand. One limitation of

this approach is that it considers the saliency dimension of attention allocation

only, and as shown by several authors there are many other factors involved in

drivers’ attention allocation (e.g. Horrey et al., 2006; Wickens and Horrey, 2008;

Large et al., 2018). Moreover, the web interface does not provide the user with

data output (only visualisation) making it hard to further analyse the generated

results.

The extended KLM model (Pettitt and Burnett, 2010) could be another candi-

date in this context to calculate task completion times and total off-road time. It
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is based on a combination of the principle of the occlusion method where periods

of vision and non-vision occur in sequential order and the Keystroke Level Model

(KLM) for task execution (Card et al., 1980). HMI tasks are represented by a

set of subtasks, each one requiring a specified amount of time to be completed,

based on the performance of expert users. Moreover, there is still some subjective

element to how it is constructed and which modules are used to represent parts

of the task (Burnett et al., 2011).

Finally, the ACT-simple architecture (Salvucci and Lee, 2003) and CogTool

interface (John et al., 2004) can both be used to define HMI tasks that are au-

tomatically translated and simulated in ACT-R. Due to modelling limitations,

however, they require multiple hours to run and simulate the necessary interac-

tions (Salvucci, 2005)

6.2 Predicting Visual Attention Sharing During

HMI Engagement

Based on the review above and revisiting the inclusion criteria defined at the

beginning of the previous Section, only two of the described models appear to

meet them. Namely, Distract-R and the predictive equations by Large and col-

leagues were chosen to be evaluated here, since they generate metrics relevant to

HMI evaluation, they do not require expert knowledge of the model to be used

(a novice user can easily create and simulate a model) and can generate results

fast.

Being based on the ACT-R cognitive architecture, Distract-R could be con-

sidered as having been thoroughly validated, given the rich body of distraction

related modelling work using ACT-R (e.g. Salvucci, 2005, 2006; Brumby et al.,

2007). Moreover, Distract-R has recently been used in assessing driver distrac-

tion induced by in-vehicle displays (see e.g. Lee, 2014). The predictive model by

Large et al. (2018), on the other hand, given its recent publication, has not yet

been further validated beyond the data used by the authors.

Given the results from previous validations, the underlying frameworks used
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to identify them, as well as the type of interface and task used in this study,

the models were expected to only partially capture the observed HMI interaction

behaviour, since they were created and validated against different HMI tasks and

do not explicitly address specific behavioural aspects that were observed during

the experiments, such as the visual chunking behaviour discussed in Chapter 5. To

investigate that assumption, both of the models were validated here using the data

from the UoLDS experiment. In particular, model data were compared against

the fixed base, constant speed simulator data, mirroring the validation done by the

original authors and, thus, providing a “fair” evaluation. After the results from

the two existing models are discussed, a novel model is proposed that accounts

for the visual chunking discussed in Chapter 5 which has not been previously

considered as a behavioural phenomenon in such HMI interaction models.

Model performance was evaluated through the Root Mean Square Error (RMSE)

for different visual behaviour metrics. In particular, model performance for each

behavioural metric was evaluated by a comparison of the mean values of the met-

ric across the three HMI tasks, between the observed and model generated data.

This comparison yielded RMSEabs, which refers to how well the models predict

the exact values of the observed means (i.e. their absolute fidelity). With yi

representing the observed mean value of the metric for task i (where i = 1 refers

to the easy HMI task, i = 2 refers to the medium HMI task and i = 3 refers to

the hard HMI task), RMSEabs can be calculated by the following equation:

RMSEabs =

√√√√√ 3∑
i=1

(yi − fi)2

3
, (6.8)

Additionally, RMSErel was also calculated for the ratios of the metrics between

medium and easy, hard and easy and hard and medium tasks, using the same

formula. These scores can be used to evaluate how well the models predict the

relative differences between HMI tasks for each metric (i.e. their relative fidelity).

In this case, however, instead of using the values of the means, the ratios of those

values are used, pairwise, to describe the relative difference between the tasks.

With yrj representing the ratio of the observed mean values of the metric for
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combination j (where j = 1 refers to the ratio of medium over easy HMI task,

j = 2 refers to the ratio of hard over easy HMI task and j = 3 refers to the ratio

of hard over medium HMI task), RMSErel can be calculated by the following

equation:

RMSErel =

√√√√√√
3∑

j=1
(yrj − f r

j )2

3
, (6.9)

6.2.1 Distract-R

The three HMI tasks described in Chapter 3 were manually recreated in the

graphical interface of Distract-R, using the “button” module to represent icons.

The scrolling action of the hard task was represented by a rotary control action

in Distract-R, using different angles of rotation to simulate a range of different

approaches to the scrolling action (e.g. one swift or a slow and gradual scroll).

Figures 6.1 through 6.3 illustrates how the three HMI tasks were replicated within

the Distract-R environment. Since the interface does not allow for multiple screen

design, all buttons were placed in their respective positions in a single Distract-

R screen, as they would appear if all HMI screens were drawn onto the same

Distract-R screen all at once. If two buttons from different screens overlapped,

they were placed next to each other. This approach had no effect on results,

as Distract-R uses the same assumptions as ACT-R to define visual search and

encoding times, which are defined as fixed values (Salvucci, 2009). Consequently,

the additional clutter on the screen does not increase any visual related metrics.

In terms of action mapping, the vast majority of the individual interactions, as

described in Chapter 3, are target touch actions (equivalent to button presses),

hence the press operator was used. As mentioned above, the rotate operator

was used to simulate scrolling in the hard task. The Distract-R model was ini-

tially tested with all parameters set to default values (henceforth referred to as

“Distract-R”). In particular, driver age was by default set to “Younger”, repre-

senting the age range 20 − 30 and the “Steering Aggressiveness” and “Stability

Factor” were set to represent the following values in the underlying ACT-R driver

model; knear = 3.4, kfar = 13.6, kI = 2.55, θstable = .025 and θ̇stable = .0125. Next,
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to investigate the range of behaviour the model can exhibit, a grid exploration of

parameters was used to vary driver age between “Younger” and “Older”, as the

interface allows, and steering behaviour between 0.75 and 1.25 for the “Steering

Aggressiveness” and “Stability Factor”, as well as visual chunking, i.e. how many

consecutive actions the driver performs in a single glance towards the interface,

using the the +press operator (henceforth referred to as “Distract-R + Drivers”

and “Distract-R + Chunking”, respectively). All possible chunking strategies

and value combinations were evaluated. Regarding the steering behaviour fac-

tors, values outside of the aforementioned range were found to generate erratic

behaviour and unrealistic results (most probably due to the increased controlled

errors that led to uncontrollable lane weaving). Finally, a model variant contain-

ing both of the variations explained above was also tested to investigate their

combined effect (henceforth referred to as “Distract-R + All”).
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(a) Screen 1 - Press (b) Screen 2 - Press

(c) Screen 3 - Press (d) Distract-R representation

Figure 6.1: Easy HMI task and corresponding Distract-R representation. Red
circles denote the areas on the screen / buttons that the user needed to press in
order to move to the next screen and complete the task.
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(a) Screen 1 - Press (b) Screen 2 - Press

(c) Screen 3 - Press (d) Screen 4 - Press

(e) Distract-R representation

Figure 6.2: Medium HMI task and its corresponding Distract-R representation.
Red circles denote the areas on the screen / buttons that the user needed to press
in order to move to the next screen and complete the task.
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(a) Screen 1 - Press (b) Screen 2 - Press

(c) Screen 3 - Scroll and Press (d) Screen 4 - Press

(e) Distract-R representation

Figure 6.3: Hard HMI task and its corresponding Distract-R representation. Red
circles denote the areas on the screen / buttons that the user needed to press in
order to move to the next screen and complete the task. The red arrow denotes
that the user needs to scroll down the list to locate the desired target.
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After simulation, total off-road glance duration and mean off-road glance du-

ration for each simulated task execution were extracted from Distract-R. Their

mean values were compared against the respective observed mean values from the

experimental data. Figure 6.4 shows model calculated metrics, while Table 6.1

summarises model performance against the observed data, based on the RMSE

metrics discussed above.

Inspecting the RMSE values for total off-road glance duration, it appears

that none of the model variants can predict the observed values with accuracy

(especially considering that all RMSE values here are larger than the observed

means) for either absolute or relative validity. Visually inspecting Figure 6.4, it

appears that all variants of the model overestimate total off-road glance dura-

tion for the hard task. As described in Chapters 4 and 5, drivers had different

approaches to how they conducted the “scroll” operation in the hard task (only

sporadically checking for the desired target or devoting no glances to it at all).

As a result, the mean values of total off-road glance duration and mean off-road

glance duration for the medium task were slightly higher than those of the hard

task. This type of behaviour cannot be accounted for with Distract-R, as it as-

sumes that the drivers would look away as per the sub-task demand. The three

tasks, as coded in Distract-R provide a clear difference in difficulty level and effort

required to be completed (due to the increasing number of interactions required

and how the model calculates metrics based on those), hence Distract-R appears

to overestimate the visual demand of the hard task.

For mean off-road glance durations, on the other hand, the Distract-R +

Chunking outperforms the other model variants both in terms of absolute and rel-

ative validity, while adding the different drivers feature does not seem to improve

performance. For absolute validity, in particular, the model manages to predict

the observed values quite closely, achieving a small error of 0.28, considering the

observed means and range of values. As discussed in Chapter 5, devoting fewer

glances to the HMI task leads to longer mean off-road glance durations. This jus-

tifies why Distract-R + Chunking provides improved predictions, as it simulates

the execution of multiple interactions within one single glance. The fact that the
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first two variants seem to predict the observed behaviour for the hard task better

(see Figure 6.4), while the latter two overestimate it, is because, as mentioned

earlier, there is a mismatch between how the task is performed by the model and

how real drivers performed it. Hence, lower mean off-road glance durations are

observed than what the task structure would dictate.

Overall, in terms of relative validity capabilities, all variants seem to rank the

medium and hard task correctly against the easy task but not against each other.

This is due to the overestimation of total off-road glance durations for the hard

task.
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Figure 6.4: Distract-R model performance. Observed mean values for the be-
havioural metrics are plotted against model generated values. The errorbars
illustrate the range of the metric (i.e. the minimum and maximum values in the
independent task executions). Distract-R is the model variant with the default
Distract-R values, Distract-R + Drivers is the variant where different values for
driver age and steering behaviour were tested, Distract-R + Chunking is the vari-
ant where visual chunking was tested and Distract-R + All is the variant with
both variations.

6.2.2 Large et al. Predictive Equations

The predictive equations as described by Large et al. (2018) were simulated using

MATLAB. In consistence with their approach, for each one of the HMI tasks,
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Distract-R

Default + Drivers + Chunking + All
Absolute

Total Off-road Glance
Duration

2.10 2.33 2.13 2.40

Mean Off-road Glance
Duration

1.60 1.72 0.56 0.67

Relative
Total Off-road Glance
Duration

2.75 2.97 1.99 2.25

Mean Orr-road Glance
Duration

0.32 0.34 0.39 0.46

Table 6.1: RMSE values for the Distract-R model and variants.

every screen of the task was implemented and simulated independently, i.e. a

different equation was used to represent each sub-task. In the lack of a more direct

way to implement it, the scrolling sub-task was modelled as a single button press,

i.e. in the same way that all other individual interactions were modelled, assuming

that drivers would separate it from the subsequent press. Unlike Distract-R,

these equations do not lend themselves well to investigating the effect of visual

chunking. Since they were not developed to account for single glance durations,

no manipulation could be performed to adjust results for multiple interactions

compressed in a single glance. The equations were used to calculate total off-road

glance duration, mean off-road glance duration and number of off-road glances,

for both the structured and unstructured versions of the equations. Figure 6.5

shows model calculated metrics, while Table 6.2 summarises model performance

against the observed data, based on the same RMSE metrics as previously.

For total off-road glance durations and number of glances, on the other hand,

both models appear to fail to replicate the observed behaviour. Visually inspect-

ing Figures Figure 6.5(a) and 6.5(b) reveals that both models overestimate total

off-road glance durations, as well as the number of glances. The overestimation

of the number of off-road glances can be attributed to the fact that no visual

chunking is supported and the model assumes that a task execution requires at

least as many glances as the individual interactions required. The overestimation
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Large et. al Predictive Equations

Unstructured Structured
Absolute

Total Off-road Glance Duration 2.67 2.98
Mean Off-road Glance Duration 0.50 0.21
Number of Off-road Glances 8.14 4.30

Relative
Total Off-road Glance Duration 0.58 0.15
Mean Off-road Glance Duration 0.28 0.29
Number of Off-road Glances 0.03 0.25

Table 6.2: RMSE values for the Large et. al predictive equations.

of the total off-road glance durations, on the other hand, can be attributed to the

fact that the model assumes that a visual search is performed with each task ex-

ecution. However, that is not always the case as drivers usually anticipate where

the next task target will appear, especially after they get more familiar with the

task (Cockburn et al., 2007).

For mean off-road glance durations, the Structured model seems to be able

to predict the observed data with good accuracy, achieving a low RMSE of 0.21

and indicating high absolute validity. However, this accuracy could be argued as

somewhat artificial, since it is essentially driven by the overestimation of both

total off-road glance time and number of glances.

When it comes to relative validity, both model variants manage to rank the

tasks correctly against each other, something that is can be verified both visually

from the plots in Figure 6.5, as well as the low RMSE values achieved when

comparing observed and predicted means ratios. Hence, it can be argued that

overall, both model variants offer a very good prediction of relative differences

in the observed values, but do not manage to approximate the absolute observed

values.

6.2.3 Proposed model

Here, a novel model is proposed, that draws inspiration from approaches used

both in Distract-R and in Large and colleagues’ predictive equations (Large et al.,
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Figure 6.5: Large et al. (2018) predictive equations performance. Observed mean
values for the behavioural metrics are plotted against model generated values.
The errorbars illustrate the range of the metric (i.e. the minimum and maximum
values in the independent task executions).

2018) and is based on Fitts’ law (Fitts, 1954) and Hick-Hyman law (Hick, 1952)

to calculate visual attention metrics for each interaction. Two variants of the

model are discussed; a naive version (henceforth referred to as Naive model) that

assumes drivers devote one glance per interaction and a slightly more complex

one that accounts for the visual chunking behaviour discussed in Chapter 5 and

also implemented in the Distract-R variants (henceforth referred to as Chunk-

ing model). The two variants of the proposed model, as well as the features
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used in each one of them, were decided after reviewing existing models and mod-

elling frameworks but also after examining the behaviour drivers exhibited when

performing HMI tasks (through the review of recorded video data, as well as

eye-tracking and vehicle control data).

The proposed model was not fitted to data to extract parameter values but

was, instead, designed to model the mechanics of the interaction itself, only based

on HMI task characteristics. Hence, a few assumptions needed to be made, which

were kept to minimal complexity. Similarly to the approach by Large et al. (2018)

and in agreement with Cockburn et al. (2007) it was assumed that each glance

towards the interface for the execution of a single interaction consisted of a visual

search element (referred to as Thick and calculated using Hick’s law component -

see Equation 6.10) and a manual execution component (referred to as Tfitts and

calculated using Fitts’ law - see Equation 6.11).

Thick = 0.1 · log2(n+ 1) (6.10)

where n is the number of possible targets on the screen. The 0.1 factor was used

so that equation yields a minimum Thick of 0.1 s when only one possible target is

available (that can also be used for when the driver knows exactly where to press

without the need of an additional visual search).

Tfitts = 0.1 · log2(
D

W
+ 0.5) (6.11)

where D is the distance of the driver’s hand from the target and W is the width

of the target. This Fitts’ law equation used here is the same used by ACT-R and

Distract-R to calculate hand to target pointing time.

Hence, for the Naive model, the duration of a single off-road glance could be

calculated as the sum of the two components:

SGD = Thick + Tfitts (6.12)

Given that the naive model assumes one glance per sub-task interaction, the total
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off-road glance duration for a task execution would be:

TORT =
N∑
i=1

SGDi (6.13)

where i denotes the individual subtask/interaction and N is the total number of

interactions. In the case of the Naive model, it holds that N = NGD, i.e. the

total number of interactions (N) is the same as the number of glances employed

during a task execution (NGD), given that the model allocates one glance per

interaction.

Finally, the average off-road glance duration for a task execution would be:

MGD =
TORT

N
(6.14)

The Naive model, as defined above, although based on a previously validated

method of combining Fitts’ and Hick’s law, has ample room for improvement,

especially if one would be looking to create a more realistic and accurate model of

the driver/HMI interaction. The findings in Chapter 5 regarding visual chunking

(i.e. the act of performing more than one subtasks in a single glance) suggested

that this feature should be included in the proposed model. This was enhanced

by the fact that it has not been previously coded in a model (the chunking option

in Distract-R allows the user to manually select the number of subsequent actions

to be collapsed within a glance and does not model the process per se).

In order to model visual chunking, since the aim was to try and replicate

the behaviour itself, again some assumptions had to be made. Initially, it was

assumed that for a driver to continue looking on the interface after completing a

single subtask/interaction, they should know where the subsequent target would

appear. Consequently, no visual search would be needed in that case. Not know-

ing where the subsequent target would be and needing to initiate a novel visual

search would prolong the time the driver would need to spend looking away from

the road and, thus, they would have chosen to turn their gaze towards the road,

to ensure safe driving, before carrying on the remainder of the HMI task. To re-

flect this, for each subsequent interaction within a single glance, the Hicks search
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component was set to its minimum value of Thicks = 0.1 seconds, as described

earlier.

Moreover, and primarily based on observations from the study conducted here,

if a driver chose to consecutively execute an additional interaction, they would not

remove their hand from the proximity of the interface. This “hovering” distance

was arbitrarily set to 2 cm for the model (different distances were tested, too,

with no effect in the resulting Tfitts time), hence modifying the calculation of the

Fitts’ pointing component to:

Tfitts = max{0.1 · log2(
2

W
+ 0.5), 0.1} (6.15)

From the above, it can be concluded that each additional action combined in a

single glance would require 0.2 seconds of additional visual time, 0.1 from the

Hick’s locating component and 0.1 from the Fitts’ pointing component.

Considering the argument by Wierwille (1993) that drivers would try to get

the necessary information from an HMI within a second or less and in no longer

than 1.5 s, an“optimal” average single off-road glance duration of 0.5 s can be

defined. Hence, it was assumed that the driver would not combine more than five

additional interactions (a total of six) in a single glance, since 0.5 + 5 ∗ 0.2 = 1.5.

In order to define whether a driver would employ visual chunking, a stochastic

approach was taken, using a random chunking probability pch. The probability

to perform additional interactions in a single glance was assumed to decay based

on the number of additional interactions to be performed, i.e. a driver was less

likely to combine 3 interactions in a single glance than they were to combine 2.

Moreover, to investigate different driving styles and risk taking behaviours, a risk

probability pr was also used to scale pch, where pr ∈ [0, 1]. A linear decay was

used to model this decrease, since it was the simplest method.

pnch = pr · (1.2− 0.2 · n) (6.16)

where n is the number of additional interactions combined in a single glance, i.e

n = 1 denotes that a total of two interactions (one additional) were performed in
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a single glance. From the above, it stems that a risk adverse driver (i.e. pr = 0

and, consequently pch = 0), would employ one glance per subtask/interaction and

the model would default to its naive version. A high risk driver on the other hand

(pr = 1) always combines at least one additional interaction in a single glance

(since p1ch = 1).

The two variants of the proposed model were used to calculate single off-road

glance duration, mean off-road glance duration, total off-road glance duration and

number of off-road glances. Figure 6.6 shows model calculated metrics against

the corresponding observed values and Table 6.3 summarises model performance

against the observed data, based on the same RMSE metrics as previously.
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Figure 6.6: Proposed model performance. Observed mean values for the be-
havioural metrics are plotted against model generated values. The errorbars
illustrate the range of the metric (i.e. the minimum and maximum values in the
independent task executions).
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Proposed model

Naive + Chunking
Absolute

Total Off-road Glance Duration 0.31 0.18
Mean Off-road Glance Duration 0.48 0.21
Number of Off-road Glances 2.01 0.77
Single Off-road Glance Duration 0.32 0.23

Relative
Total Off-road Glance Duration 0.30 0.38
Mean Off-road Glance Duration 0.36 0.19
Number of Off-road Glances 0.33 0.31
Single Off-road Glance Duration 0.05 0.02

Table 6.3: RMSE values for the proposed model variants.

Visual inspection of the plots in Figure 6.6 shows that apart from overestimat-

ing the number of off-road glances, both variants approximate the data very well,

something that is also evident by the overall low RMSE values for the different

metrics. The Chunking model seems to always perform better and achieve more

accurate predictions of the observed data. Considering the observed means and

ranges of observed data, it can be argued that the Chunking model shows high

absolute validity across all metrics, with the exception of number of glances. It

is worth noting at this point, that the proposed model also provides a predic-

tion of single glance durations, an important metric in HMI evaluation (NHTSA,

2012) that is not available form the other models here. For number of glances,

the Naive model shows poor performance, as expected based on its assumptions,

while the Chunking model, although having a medium RMSE value, seems to

generate good predictions, especially considering the observed means and range

of observed data.

Finally, both models appear to be doing very well in capturing the relative

differences in metrics between the different tasks, showing a high level of relative

validity. Particularly interesting is the fact that the models could match the

relative differences in the observed behaviour between all tasks, across all metrics.

This is verified both from the plots in Figure 6.6 and the low RMSE values for

both models when comparing observed means ratios.
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6.3 Discussion

Despite being evaluated here in previously unseen data, all models managed to

generate good predictions for at least some of the metrics investigated, showing

their potential for high levels of absolute validity. In particular, Distract-R +

Chunking managed to predict mean off-road glance durations with low error and

so did the structured version of the Large et al. predictive equations. Neither

of those models, however, managed to predict the other metrics accurately. The

proposed Chunking model, although simple in its assumptions, managed to out-

perform all other models, by achieving the lowest error in predicting the observed

values across all metrics, consistently. Moreover, the proposed model could ac-

count for single glance durations, an important metric in HMI evaluation, that

cannot be extracted from the other tested models.

In terms of relative validity, both variants of the Large and colleagues pre-

dictive equations model and both variants of the proposed model appeared to be

able to rank the tasks against each other correctly with low error. No variant of

Distract-R, however, managed to provide high relative validity in this case.

Figure 6.7 provides an overview of the performance of the best model variants,

for each metric.

Given the overall good performance of the proposed Chunking model, as well

as the Distract-R + Chunking model in predicting mean off-road glance dura-

tions, it is evident that including the visual chunking behaviour generates a more

realistic model and improves model performance. Consequently, it can be argued

that it is a behavioural phenomenon which should be further investigated and

more rigorously applied in modelling efforts in the future.

At this point, and in order to validate the proposed model a bit further, both

of its variants were evaluated against additional data, namely against the fixed

base, constant speed, curved road simulator data, as well as the constant speed

(straight road) real world data. The results are presented in Tables 6.4 and 6.5,

respectively.

From the RMSE values obtained, it is evident that that the high accuracy
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Proposed model

Naive + Chunking
Absolute

Total Off-road Glance Duration 0.36 0.28
Mean Off-road Glance Duration 0.22 0.09
Number of Off-road Glances 1.57 0.51
Single Off-road Glance Duration 0.15 0.06

Relative
Total Off-road Glance Duration 0.86 0.93
Mean Off-road Glance Duration 0.37 0.25
Number of Off-road Glances 0.68 0.65
Single Off-road Glance Duration 0.07 0.06

Table 6.4: RMSE values for the proposed model variants, evaluated in fixed
base, constant speed, curved road simulator data.

Proposed model

Naive + Chunking
Absolute

Total Off-road Glance Duration 0.67 0.32
Mean Off-road Glance Duration 0.19 0.10
Number of Off-road Glances 1.78 0.55
Single Off-road Glance Duration 0.07 0.07

Relative
Total Off-road Glance Duration 0.60 0.65
Mean Off-road Glance Duration 0.29 0.12
Number of Off-road Glances 0.45 0.40
Single Off-road Glance Duration 0.16 0.23

Table 6.5: RMSE values for the proposed model variants, evaluated against
constant speed, straight road, real word data.
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Figure 6.7: Best model variants performance. Observed mean values for the
behavioural metrics are plotted against model generated values. The errorbars
illustrate the range of the metric (i.e. the minimum and maximum values in the
independent task executions).

performance of the proposed Chunking model remains at predicting the observed

values. In fact, with the exception of total off-road glance durations, for which

the error slightly increased, the model seems to be performing better than in the

previous dataset. Moreover, the model seems to maintain a good level of relative

validity, too, achieving low RMSE when comparing the observed means ratios

for the two new datasets.

This consistency in performance indicates that the Chunking model can pro-

vide an accurate account of the driver’s interaction with HMI tasks. Finally, the

fact that the Chunking model performs better for the majority of the metrics

for the real world straight road and simulator curved road data, is an indication

that it might be more representative of “conservative” or safe driving, since those
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are conditions where the primary driving task has an increased difficulty and, as

discussed in Chapters 2 and 5, drivers tend to ensure they are driving safely.



Chapter 7

Conclusion

The research presented in this thesis was conducted as part of Theme 3 of the

Programme for Simulation Innovation (PSi) project, co-funded by the Engineer-

ing and Physical Sciences Research Council (EPSRC) and Jaguar Land Rover

(JLR). The overarching aim of the PSi Project was to improve methods and

tools towards using computer simulations as part of the automotive development

process.

The specific objective of the present work was to apply the above in the con-

text of prototype HMI evaluation, by conducting relevant experiments that would

allow for comparing the driver behaviour in real and simulated driving. A fur-

ther objective was to analyse the collected data and derive insights as to how

drivers share their visual attention between the primary and secondary tasks.

The design of the driving experiments was primarily driven by the aim to fur-

ther investigate simulation capabilities in the HMI evaluation context, but also

the aforementioned aim to answer questions regarding what dictates the drivers’

engagement to HMI tasks. The subsequent data analyses focused on which fac-

tors affect attention sharing and in which ways, hence identifying whether any

distinguishable patterns arise that could potentially help in better understanding

and modelling this behaviour. Finally, two existing computational models were

tested to evaluate their accuracy on predicting the observed HMI interaction data.

Some additional behavioural factors were considered for the existing models and

a novel model was proposed, that accounts for behavioural phenomena that have

127
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not been previously considered.

The rest of this chapter will summarise the key findings of this research, as

outlined in previous parts of this thesis. It will also reflect upon methodologies

and experimental design, discussing issues and limitations that arose. Finally,

potential future work will be suggested before drawing a final conclusion.

7.1 Key Findings and Contribution to Knowl-

edge

Three primary Research Questions were introduced in Section 1.2 of the introduc-

tory Chapter and, subsequently, investigated in Chapters 4, 5 and 6, respectively.

The key findings answering those questions are presented in the same order as

they were introduced and analysed.

7.1.1 What type of driving simulator should be used in

prototype HMI evaluation related user trials?

In order to evaluate the potential of driving simulators as a tool for HMI evalua-

tion, one needs to identify the degree of behavioural validity that can be achieved,

i.e. to what extent they are eliciting the same driving behaviour as what would

be observed in real world conditions. Behavioural validity can be classified as

absolute (when performance metrics have the same values for each task in real-

ity and simulator) or relative (when performance metrics have the same relative

differences between each task for reality and simulator).

Analysing collected data from a driving study conducted both in the real

world and in a driving simulator, and combining them with previously published

relevant results, a behavioural validity matrix was created that can provide in-

sights on the level of behavioural validity a certain driving simulator type can

achieve for different behavioural metrics. The matrix can be used by researchers

and human factors specialists to either determine what type of simulator one

should use for their testing or to help them interpret the reliability of the results
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of a driving simulator study.

In general, the level of behavioural validity that a driving simulator can achieve

was found to be situation dependent, i.e. for a given behavioural metric, different

simulator settings provide a different level of behavioural validity. Moreover,

within a given simulator setting, the level of behavioural validity for different

behavioural metrics can vary. Hence, it was concluded that there is no single,

“one size fits all” solution when it comes to choosing what simulator should be

used for prototype HMI evaluation experiments. Instead, the exact purpose of

the study should dictate the level of behavioural validity needed and, therefore,

drive the decision of which simulator setting should be used in each case.

The results presented here, addressed the issue of behavioural validity for

a hexapod only driving simulator for the first time. Moreover, this has also

been the first attempt to collectively present behavioural validity results for all

relevant driving simulator types, across the most relevant metrics in the context

of prototype HMI evaluation.

7.1.2 How do drivers engage with HMI tasks while driv-

ing?

Being able to predict how drivers will interact with a novel secondary HMI de-

mands a deep understanding of the mechanisms involved in dual tasking while

driving. Although there has been ample research on the effects of secondary

tasks on driving performance, little focus has been placed on what drives the in-

teractions with such tasks. The work conducted here aimed at identifying which

factors affect the drivers’ decision to engage with an HMI task while driving and

in which way, by investigating drivers’ visual time-sharing behaviour during HMI

task executions.

It was found that there is a big effect of individual differences on both when

and for how long drivers choose to look away from the road to perform a secondary

HMI task. In particular, drivers were found to employ two distinct strategies to

structure their visual time sharing towards the HMI: they would either employ
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more and shorter glances or fewer and longer ones. Moreover, it was found that

the use of fewer glances was also associated to a reduced total time that drivers

spent looking away from the road.

A novel hypothesis was proposed as to how drivers might use Time-to-Line-

Crossing (TLC) to decide when and for how long to look away. An in-depth

analysis revealed that glance durations away from the road are not affected by

TLC per se, but revealed a strong relationship between TLC and off-road glance

onset. In particular, it was found that drivers ensured they were safe enough

before looking away, by doing so only when TLC was above a safe threshold.

Finally, the effect of longitudinal vehicle control on the drivers’ visual attention

sharing was investigated, through headway distance (HW) from the lead vehicle.

In agreement with research by Tijerina et al. (2004), drivers were found to only

look away when the visual angle rate of change of the lead vehicle was effectively

zero. However, an additional interesting observation was made here; although

the drivers tended to initiate off-road glances when visual angle rate of change

approached zero, examination of the baseline data also revealed that this is where

those values lied the majority of the time.

7.1.3 What types of computational models could predict

the observed behaviour?

Although there is a multitude of models and frameworks that could be employed

in the early stages of the HMI evaluation cycle, such tools often cannot be used

due to their complexity or lack of rigorous validation. Two existing models,

that are readily available and easy to use, were evaluated against data collected

through the driving study presented here (previously unseen). Namely, Distract-

R (Salvucci et al., 2005a) and the predictive equations by Large et al. (2018)

were used to predict the observed behaviour. A novel model was also proposed,

based on some simple equations and assumptions about how drivers engage to

HMI tasks, that featured visual chunking (execution of multiple consecutive in-

teractions in a single glance) as a behavioural phenomenon.
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Overall, all models were able to predict mean off-road glance durations with

low errors, while the proposed Chunking model managed to generate high accu-

racy predictions for all metrics (with the additional one of single off-road glance

durations). Additionally, all variants of the Large et al. predictive equations and

the proposed model achieved low error predictions for relative validity, i.e. when

comparing the ranking of tasks against each other, for all the investigated metrics.

Hence, computational models could prove valuable tools for early and quick pro-

totype HMI evaluation, both in terms of predicting absolute values of behavioural

metrics but also as tools to accurately evaluate the relative differences between

alternative HMI designs.

In order to provide additional validation for the proposed model, it was also

evaluated against data from the fixed base, constant speed, curved road, simula-

tor scenario, as well as from the constant speed real world scenario. The proposed

Chunking model performed better, achieving lower error, across all metrics, ex-

cept for total off-road glance durations, where its performance degraded by a

small margin. Interestingly, it generated the best predictions against the curved

road data, indicating that it might be more tuned towards safe driving. Based

on the consistently good performance of the proposed Chunking model, it was

concluded that visual chunking is a behavioural pattern that should be further

investigated and included in future computational models of HMI interaction.

7.2 Methodology and Design Issues and Limi-

tations

As every piece of academic work, the present one also comes with its limitations.

Since the majority of the work presented here focuses on drivers’ visual behaviour,

it is important to evaluate the reliability of both the raw data and the calculated

metrics involved. Although significant due diligence was done to properly treat

the data (please refer to Chapter 3 for more details) some inherent limitations of

the equipment used, as expected from all hardware devices to a certain extent,

should be reported. The SMI eye-tracker used in the real world setting automat-
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ically classifies gaze points into saccades and visual intakes, hence not logging

data in a completely raw format for analysis. The Facelab eye-tracker used in the

UoLDS setting does not have AOI annotation capabilities, hence mandating the

definition of AOIs post-processing. Both eye-trackers also classify gaze points as

“good” and “bad” in terms of quality. As is intuitively evident, this can lead to

data loss due to the inability of the eye-tracker to record certain data points.

Moving forward, limitations related to the experimental choices made arise,

with the first ones being issues regarding the participants; comparing driver be-

haviour in simulator against reality would ideally require a within-subjects design,

i.e. the same participants used in both settings. For a between-subjects design

as the one used here, it could be argued that a larger sample size would be more

appropriate to eliminate as much as possible the effect of individual differences,

as was used, for example by Wang et al. (2010) and Klüver et al. (2016). In the

experiments presented here, the sample size was relatively limited (eleven partic-

ipants in the real world and twelve participants in the simulator). This decision,

however, was justified by the fact that emphasis was put on obtaining a large

number of repetitions per participant, hence having a strong body of data to use

in model identification and development.

An additional issue that arises from the limited number of participants in

the UoLDS experiment is relevant to the condition counterbalancing. Given that

there were a total of 4 different combinations of simulator motion setting and

driving scenario in the simulator (fixed base with constant speed, fixed base with

varying speed, hexapod with constant speed and hexapod with varying speed),

a total of 24 (i.e. 4!) participants would be needed for full counterbalancing. In

this case however, only half of those were available, thus not allowing for a full

counterbalancing of all the possible combinations.

Secondly, issues that could affect driving and HMI engagement performance,

based on the experimental design need to be considered. As mentioned in Chap-

ter 3, the majority of participants in the UoLDS experiment and about half of the

participants in the Gaydon experiment had previous experience with the driving

simulator and the physical test track, respectively. This could potentially affect
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their behaviour during the experiment either positively (participants being al-

ready familiar with the environment and equipment would show more consistent

behaviour throughout the experiment as there would be minimal adaptation) or

negatively (participants anticipating features they were previously familiar with

or behaving as they would based on their past experience but instead having to

perform under new conditions). However, in this case, given that their previous

experience both in the simulator and the test track was limited and distant in

time, it is assumed that the effect on their performance should be minimal.

The fact that not all driving conditions were tested in both the simulator and

the real world setting could also potentially have an effect in the generated data.

In particular, driving on curves was only tested in the simulator and not in the

real world setting, something that could potentially provide a confound for the

task engagement behaviour during straight sections, for the UoLDS participants.

As a result of being exposed to different driving task complexities, the perception

of the HMI task itself, as well as their abilities may have been different for the

two sets of participants.

Looking into participants not being exposed to the same driving conditions in

the two settings, it is also important to consider the lead vehicle speed profiles.

Although the lead vehicle driver in the test track was provided with a detailed

schematic of the speed profile they needed to follow in each drive, the actual speed

of the lead vehicle was not recorded due to equipment malfunction. Consequently,

the lead vehicle speed profiles could not be validated against the target ones and

verify whether the two sets of participants were exposed to identical conditions.

An additional potential issue, relating to the speed profile of the lead vehicle,

is the fact that, in these studies the lead vehicle was not bound to the subject

vehicle, i.e. it was moving independently of their distance. As a result, there

was the possibility of the participants “losing” the lead vehicle from their field

of view. Fortunately, this only partially happened in a few instances in the

simulator, where the participants were able to recover the distance. In hindsight,

not binding the lead vehicle to the subject vehicle seems to have been the right

decision for this type of experiment (as it is more ecologically plausible) but
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maybe the speed profiles should have been treated differently to ensure that such

an issue would not be prominent (e.g. by having a more sinusoidal profile than a

random one).

Finally, in terms of experimental design related issues, the absence of counter-

balancing for the tasks could create some ordering effects in the collected data.

The fact that the baseline drive was always the first, for example, might have

caused drivers to exhibit a different driving behaviour than they would have,

had it been counterbalanced or just followed a drive of HMI task execution. In

that case, this could potentially cause issues with the derived analyses (e.g. the

driving behavioural patterns discussed in Chapter 5). However, given that all

drivers, in both experiments were exposed to the exact same task ordering, any

effects would be consistent throughout the collected data and, at least, alleviate

any relative differences that could have arisen due to them.

Apart from the experimental design related issues described above, some lim-

itations in data and analysis quality were also present that should be mentioned

here. For the analysis presented in Chapter 4, for example, it has already been

discussed how the method of calculating SDLP lacked validity. Using an approx-

imation method such as numerical integration always affects the quality of the

resulting data, as it seems to have been the case here (particularly based on the

misalignment between the results obtained here and those reported in existing

literature). Perhaps, given the issues in calculating it, SDLP should not have used

from the experiments here but rather only from reported results in the literature,

so as to not affect the quality of the behavioural validity matrix.

An additional point of consideration regarding the behavioural validity matrix,

is, as already discussed in Chapter 4, the different levels of behavioural validity

that can be elicited by different tasks and driving scenarios. In other words, if

the same studies were conducted, with the same equipment but using a different

HMI task or primary driving task, it is probable that the resulting levels of

behavioural validity for the different simulator setting would be different. Hence,

it is important to remember that the behavioural validity matrix comes with its

limitations and is only a product of the data used to construct it, in need of
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timely revisions and updates.

Finally, when considering the model comparison presented in Chapter 7, al-

though every action was taken to ensure that tasks were modelled in the same

way, the different techniques used by each model did not always allow for identical

replication (e.g. how the scrolling action was modelled). Although this is more

of an issue related to the model capabilities rather than a limitation per se, it is

still important to keep in mind when comparing model performance.

All in all, although it is important to critically reflect on such issues, in the

present case it is also important to note that the experiments, analyses and sim-

ulations presented in this thesis still managed to produce a variety of meaningful

novel results, as well as to align with existing work in this area of research.

7.3 Future Work Suggestions

The work presented in this thesis, apart from answering the research questions

that were initially set out, has also raised some new ones that could be explored

in the future. Firstly, regarding driver simulator behavioural validity, a more

thorough meta-analysis of already published work would be in order (e.g. also

comparing experimental scenarios and types of HMI tasks) as it could help ex-

pand the behavioural validity matrix and provide more detailed guidelines as to

which simulator should be employed under which conditions. As it stands, the

body of related published research is rather heterogenous, since different authors

have used different experimental and analysis methodologies. Consequently, there

is a need for rigorous assessment of the published results, to determine how accu-

rately they can be used to make inferences about the behavioural validity of the

driving simulator in question. A more detailed breakdown of said research, look-

ing into different scenarios and types of secondary tasks, can shed light both on

the differences arising from different modalities of each study, as well as on what

might be missing from the existing research and needs to be explored further.

More importantly, the above can help develop an expanded and improved version

of the behavioural validity matrix, that can be used reliably by researchers and
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specialists trying to design a study or interpret their results. Moreover, addi-

tional metrics that have been widely used in distraction studies could potentially

be considered in the context of driving simulator behavioural validity evaluation,

such as reaction times under dual-tasking conditions. However, tasks like that

are not easy to replicate and test in real world scenarios without safety implica-

tions. For reaction times, in particular, using a surrogate task like the peripheral

detection task might not always be plausible in a real world setting due to envi-

ronmental interference (e.g. glare). Creating a scenario where the driver would

have to react to a near-critical event, on the other hand, such as a lead vehi-

cle breaking, could compromise the safety of the driver. Hence, there is a need

for further investigation into how such metrics could be tested and validated in

different conditions.

Secondly, as in-vehicle infotainment technology advances, new types of inter-

faces need to be tested to ensure there is enough driver performance data for

virtual methods validation. A series of further studies should be conducted to

investigate how drivers interact with modern interfaces, as only a limited amount

of work has been published where drivers are using contemporary, real HMIs.

Moreover, there is ample room for additional analysis towards understanding

which factors dictate drivers’ engagement with HMI tasks, as well as in which

way. The effects of TLC on off-road glance onset and duration, for example, have

not been previously published. Additional follow-up analyses could be performed

in that realm to validate the findings presented here and also further investigate

the relationship of TLC with other metrics related to drivers’ visual attention

sharing behaviour.

Finally, regarding the modelling of HMI interactions, it would be important

to evaluate the performance of existing models against a variety of data sets to

quantify their potency in replicating observed behaviour and verify that previ-

ously noted good performance is not just the result of over fitting to training

data. Results form the behavioural analyses discussed above could be used to

drive the conceptualisation, implementation and improvement of such models.

Moving forward, such models should also be able to predict the variability ob-
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served in human driver data, so that they can account for different driving styles,

risk taking behaviours and be able to provide researchers with a more complete

picture of the predicted human behaviour.



138 CHAPTER 7. CONCLUSION



Bibliography

15007-1:2014(E), I. (2014), ‘Road vehicles-measurement of driver visual behaviour

with respect to transport information and control systems-part 1: Definitions

and parameters’.

Akaike, H. (1974), ‘A new look at the statistical model identification’, IEEE Trans

Auto Control 19(6), 716–723.

Allen, R. W., Klein, R. H. and Ziedman, K. (1979), ‘Automobile research sim-

ulators: a review and new approaches’, Transportation Research Record 706,

9–15.

Anderson, J. R. (1993), Rules of The Mind, Lawrence Erlbaum Associates, Hills-

dale, New Jersey.

Anderson, J. R. and Lebiere, C. J. (2014), The Atomic Components of Thought,

Psychology Press, Mahwah, New Jersey.

Angell, L. S., Auflick, J., Austria, P., Kochhar, D. S., Tijerina, L., Biever, W.,

Diptiman, T., Hogsett, J. and Kiger, S. (2006), Driver Workload Metrics Task

2 Final Report, Technical report.

Aust, M. L., Dombrovskis, S., Kovaceva, J., Svanberg, B. et al. (2013), ‘An

empirically based suggestion for reformulating the glance duration criteria in

NHTSA’s visual-manual interaction guidelines’, SAE International Journal of

Passenger Cars-Electronic and Electrical Systems 6, 444–453.

Baber, C. and Mellor, B. (2001), ‘Using critical path analysis to model

139



140 BIBLIOGRAPHY

multimodal human–computer interaction’, International Journal of Human-

Computer Studies 54(4), 613–636.

Bach, K. M., Jæger, M. G., Skov, M. B. and Thomassen, N. G. (2008), ‘Eval-

uating driver attention and driving behaviour: comparing controlled driving

and simulated driving’, in Proceedings of the 22nd British HCI Group Annual

Conference on People and Computers: Culture, Creativity, Interaction-Volume

1, British Computer Society, 193–201.

Barr, D. J., Levy, R., Scheepers, C. and Tily, H. J. (2013), ‘Random effects

structure for confirmatory hypothesis testing: Keep it maximal’, Journal of

Memory and Language 68(3), 255–278.

Baumann, M., Keinath, A., Krems, J. F. and Bengler, K. (2004), ‘Evaluation of

in-vehicle hmi using occlusion techniques: experimental results and practical

implications’, Applied Ergonomics 35(3), 197–205.

Birrell, S. A. and Fowkes, M. (2014), ‘Glance behaviours when using an in-vehicle

smart driving aid: A real-world, on-road driving study’, Transportation Re-

search Part F: Traffic Psychology and Behaviour 22, 113–125.

Blaauw, G. J. (1982), ‘Driving experience and task demands in simulator and

instrumented car: a validation study’, Human Factors 24(4), 473–486.

Blana, E. (1996), Driving Simulator Validation Studies: A Literature Review.

Boer, E. R. (2000), ‘Behavioral entropy as an index of workload’, in Proceedings

of the Human Factors and Ergonomics Society Annual Meeting, Vol. 44, SAGE

Publications, 125–128.

Boer, E. R. and Spyridakos, P. D. (2016), ‘Control-theoretic attention-switching

driver model’. Presented at the 6th International Conference on Traffic and

Transport Psychology (ICTTP), Brisbane.

Broadbent, D. E. (2013), Perception and communication, Elsevier.



BIBLIOGRAPHY 141

Brookhuis, K. A., de Vries, G. and De Waard, D. (1991), ‘The effects of mobile

telephoning on driving performance’, Accident Analysis & Prevention 23(4),

309–316.

Broström, R., Ljung Aust, M., Wahlberg, L. and Källgren, L. (2013), ‘What

drives off-road glance durations during multitasking: capacity, practice or strat-

egy?’, in 3rd International conference on driver distraction and inattention.

Brumby, D. P., Howes, A. and Salvucci, D. D. (2007), ‘A cognitive constraint

model of dual-task trade-offs in a highly dynamic driving task’, in Proceedings

of the SIGCHI conference on Human factors in computing systems, ACM, 233–

242.

Burnett, G. E., Sharma, N., Pettitt, M. A. and Stevens, A. (2011), ‘Modelling

and predicting the visual demand of in-vehicleinformation systems’, in 2nd

International conference on driver distraction and inattention.

Burnett, G., Irune, A. and Mowforth, A. (2007), ‘Driving simulator sickness and

validity: how important is it to use real car cabins?’, Advances in Transporta-

tion Studies Spec Iss, 33–42.

Caird, J. K., Willness, C. R., Steel, P. and Scialfa, C. (2008), ‘A meta-analysis

of the effects of cell phones on driver performance’, Accident Analysis & Pre-

vention 40(4), 1282–1293.

Campbell, J. L., Carney, C. and Kantowitz, B. H. (1997), ‘Design guidelines for

advanced traveler information systems (atis): The user requirements analysis’,

in Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

Vol. 41, SAGE Publications Sage CA: Los Angeles, CA, 954–958.

Cao, S. and Liu, Y., (2013), ‘Queueing network-adaptive control of thought ratio-

nal (QN-ACTR): An integrated cognitive architecture for modelling complex

cognitive and multi-task performance’. International Journal of Human Factors

Modelling and Simulation 55, 4(1), 63-86.



142 BIBLIOGRAPHY

Card, S. K., Moran, T. P. and Newell, A. (1980), ‘The keystroke-level model for

user performance time with interactive systems’, Communications of the ACM

23(7), 396–410.

Card, S. K., Newell, A. and Moran, T. P. (1983), The Psychology of Human-

Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Charlton, S. G. (2009), ‘Driving while conversing: Cell phones that distract and

passengers who react’, Accident Analysis & Prevention 41(1), 160–173.

Chiang, D. P., Brooks, A. M. and Weir, D. H. (2001), An Experimental Study of

Destination Entry With an Example Automobile Navigation System, Technical

report, SAE Technical Paper.

Classen, S., Bewernitz, M. and Shechtman, O. (2011), ‘Driving simulator sickness:

an evidence-based review of the literature’, American Journal of Occupational

Therapy 65(2), 179–188.

Cockburn, A., Gutwin, C. and Greenberg, S. (2007), ‘A predictive model of menu

performance’, in Proceedings of the SIGCHI conference on Human factors in

computing systems, ACM, 627–636.

Cohen, J. (1988), Statistical Power Analysis for the Behavioral Sciences, 2 edn,

Lawrence Erlbaum Associates, New York.

Cooper, J. M., Medeiros-Ward, N. and Strayer, D. L. (2013), ‘The impact of eye

movements and cognitive workload on lateral position variability in driving’,

Human Factors 55(5), 1001–1014.

Cooper, J. M., Vladisavljevic, I., Medeiros-Ward, N., Martin, P. T. and Strayer,

D. L. (2009), ‘An investigation of driver distraction near the tipping point of

traffic flow stability’, Human Factors 51(2), 261–268.

De Winter, J., Van Leeuwen, P. and Happee, R. (2012), ‘Advantages and dis-

advantages of driving simulators: A discussion’, in Proceedings of measuring

behavior, Vol. 2012, Citeseer, 8.



BIBLIOGRAPHY 143

Department for Transport (2015), Reported Road Casualties Great Britain, An-

nual Report: 2015.

Dingus, T. A., Guo, F., Lee, S., Antin, J. F., Perez, M., Buchanan-King, M. and

Hankey, J. (2016), ‘Driver crash risk factors and prevalence evaluation using

naturalistic driving data’, in Proceedings of the National Academy of Sciences

113(10), 2636–2641.

Dingus, T. A., Klauer, S. G., Neale, V. L., Petersen, A., Lee, S. E., Sudweeks,

J., Perez, M. A., Hankey, J., Ramsey, D., Gupta, S. et al. (2006), The 100-car

Naturalistic Driving Study, Phase II-Results of The 100-car Field Experiment,

Technical report.

Donmez, B., Boyle, L. N. and Lee, J. D. (2009), ‘Differences in off-road glances:

effects on young drivers performance’, Journal of Transportation Engineering

136(5), 403–409.
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A - Participant Briefing Sheets

 

 

Participant Briefing  

Thank you for your response to the advertised driving simulator study. Before you take part, please read the 

following information and sign a consent form. Please ask the experimenter any questions that you have.  

This experiment forms part of a Jaguar Land Rover and EPSRC co-funded project called PROGRAMME 

FOR SIMULATION INNOVATION (PSi). The ultimate aim of this project is to develop the capability of 

driving simulators as tools for fast prototyping early systems evaluation. This study will consider a particular 

type of visual/manual distraction. This study will involve four simulator runs administered in one 2-hour 

session. Upon completion you will be paid £15 to express our gratitude for your time. 

The Simulator 

The University of Leeds Driving Simulator is a controlled and safe 

environment that facilitates numerous studies on driver behaviour. From 

outside, the motion system and the large, white projection dome are the two 

major components that are visible. Inside the dome, is a Jaguar S-type 

vehicle cab. Entry to the simulator dome is via a boarding platform and you 

will be accompanied into the simulator by the researcher. 

 

Description of the experiment 

In this experiment we are examining the effects of performing 

visual/manual tasks, using an in-vehicle interface, on driving performance. 

You will be presented with 3 different tasks that will require you to interact with a touch screen. You will be 

thoroughly trained in performing the tasks statically and in the simulator while driving, before moving on to 

data collection.  

The experiment will begin with a practice drive to familiarise you with the driving simulator, the road 

environment (a closed off, test track circuit) and the tasks that we will be asking you to complete during the 

study.  

You will drive in four separate sessions, accompanied by the experimenter. You will complete two sessions 

and then you will be given a short break, and then asked to complete the second two sessions. 

During each session you will periodically be asked to complete each task on several occasions. The 

experimenter will direct you on which task to perform and when; the experimenter will direct you to initiate 
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the task by saying “Engage now” and you will have to indicate successful completion of the task by saying 

“Done”. 

Throughout the experiment we would like you to ensure that you are driving safely at all times. You will be 

following another vehicle. Please maintain a safe following distance behind this vehicle throughout the drive 

and please do not attempt to overtake this vehicle. Each driving session will end at the same place where it 

started from, with the lead vehicle displaying break lights. At this point, the experimenter will inform you 

that the session is completed.  

 

Ethics, Safety and Confidentiality 

It is important that you understand that we are not looking at your individual driving style or judging your 

ability as a driver. We are solely interested in the behaviour of a group of drivers to draw conclusions about 

drivers in general. 

As with all our research, this study is subject to the strict ethical guidelines of the British Psychological 

Society and the requirements of the Data Protection Act. Please note that: 

§ At no time now, nor in the future, will any information you provide be published that allows you as 

an individual to be identified.  

§ You are free to withdraw from the study at any time without having to give any reason for your 

decision. Withdrawing, however will make you non-eligible for the aforementioned £15 

compensation. 

Finally, we would like to thank you very much for expressing an interest in this work and we hope 

that you will enjoy the time spent at the simulator. Your contribution towards the science of road 

safety is much appreciated. 

 



	

Participant	Briefing	

Thank you for your response to the advertised driving study. Before you take part, 

please read the following information and sign a consent form. Note that you do not 

need to memorise any details; the researcher leading the experiment will repeat the 

instructions to you before data collection. Please ask the experimenter any questions 

that you may have, at any point.  

This experiment forms part of a Jaguar Land Rover and EPSRC co-funded project 

called PROGRAMME FOR SIMULATION INNOVATION (PSi). The ultimate aim of 

this project is to develop the capability of driving simulators as tools for fast prototyping 

and early systems evaluation. The collected data will be compared to data collected 

in an identical simulator study in order to quantify the reliability of the simulator in 

certain experimental conditions. This study will consider three different visual/manual 

distraction tasks as well as a non-visual/cognitive distraction task. The study will 

involve three driving sessions, with short breaks in-between, taking place in the 

Emissions Circuit test track in Gaydon. 

Description of the experiment 

In this experiment we are examining the effects of non-driving tasks, using an in-
vehicle interface and a mental arithmetic task, on driving performance. You will have 
to drive with and without engaging in a secondary task, while following another vehicle 
at all times. 

First, you will be presented with 3 different visual/manual tasks that will require you to 
interact with a touch screen. You will be thoroughly trained in performing the tasks 
statically and while driving, before moving on to data collection.  

You will begin with a practice drive to familiarise yourself with the test track 
environment and the tasks that you will be asked to complete during the sessions. 

You will drive in two separate sessions, accompanied by the experimenter. You will 
complete one session and then you will be given a short break. You will then be asked 
to complete the second session. After each session, you will be asked to fill in a short 
questionnaire. 



At all times, the experimenter will direct you on which task to perform and when; the 
experimenter will direct you to initiate the task by saying “Engage now” and you will 
have to indicate successful completion of the task by saying “Done”. 

For the final session, you will be presented with a non-visual, cognitive task. During 
this task you will hear a series of numbers through the vehicle speakers. After each 
number you will have to repeat the one that you heard before that (1-back). For 
example: 

Number heard 0 5 2 
Number to repeat N/A 0 5 

You will, again, begin with a practice drive before moving on to data collection. 

Throughout the experiment we would like you to ensure that you are driving safely at 
all times. Please maintain a safe following distance from the lead vehicle, stay within 
your designated lane and do not attempt to overtake the lead vehicle vehicle at any 
point. Your final driving session will end by exiting the Emissions Circuit, when the 
experimenter indicates so.  

 

Ethics, Safety and Confidentiality 

It is important that you understand that we are not looking at your individual driving 
style or judging your ability as a driver. We are solely interested in the behaviour of a 
group of drivers to draw conclusions about drivers in general. 

As with all our research, this study is subject to the strict ethical guidelines of the British 
Psychological Society and the requirements of the Data Protection Act. Please note 
that: 

• At no time now, nor in the future, will any information you provide be published 
that allows you as an individual to be identified.  

• You are free to withdraw from the study at any time without having to give any 
reason for your decision. 

Finally, we would like to thank you very much for expressing an interest in this 
work and we hope that you will enjoy the time spent at the simulator. Your 
contribution towards the science of road safety is much appreciated. 

 



B - Participant Consent Forms

 

   

 

 PSi HMI 

Participant Consent Form  
 

Thank you very much for agreeing to take part in this research. The purpose of this form is to 

make sure that you are happy to take part and that you know what is involved. Signing this 

form does not commit you to anything you do not wish to do. 

 

If you suffer from any of the following medical conditions, unfortunately we will not be able to 

use you as a participant. Therefore, please let the experimenter know now if you suffer from:  

 
o Fear of heights  

o Epilepsy  

o Serious mobility problems affecting the back, knees or hips  

o Claustrophobia  

o Feelings of disorientation  

 

Please sign here if you suffer from none of the above  ______________________ 

  

Have you read the participant briefing sheet?    YES  NO 

 

Have you had the opportunity to ask questions and discuss the study? YES  NO 

       

If you have asked questions, have you had satisfactory answers?  YES  NO N/A 

      

Do you understand that you are free to withdraw from the study at any 

time and without having to give a reason for withdrawing?  

          YES  NO 

 

Do you agree to take part in the study?     YES  NO 

 

 
Name in block letters ________________________________________________________ 

 

 
Signature______________________________________   Date ______________________ 

 

 

163



 

 

 

Participant Consent Form  
 

Thank you very much for agreeing to take part in this research. The purpose of this form is to 

make sure that you are happy to take part and that you know what is involved. Signing this 

form does not commit you to anything you do not wish to do. 

 

If you suffer from any of the following medical conditions, unfortunately we will not be able to 

use you as a participant. Therefore, please let the experimenter know now if you suffer from:  

 
o Epilepsy or other similar nervous system disorders 

o Serious mobility problems affecting the back, knees or hips  

o Claustrophobia  

o Feelings of disorientation  

 

Please sign here if you suffer from none of the above  ______________________ 

  

Have you read the participant briefing sheet?    YES  NO 

 

Have you had the opportunity to ask questions and discuss the study? YES  NO 

       

If you have asked questions, have you had satisfactory answers?  YES  NO N/A 

      

Do you understand that you are free to withdraw from the study at any 

time and without having to give a reason for withdrawing?  

          YES  NO 

 

Do you agree to take part in the study?     YES  NO 

 

 
Name in block letters ________________________________________________________ 

 

 
Signature______________________________________   Date ______________________ 

 



C - Subjective Questionnaires

NAME:	
	
DATE:	
	
	
How	easy	was	the	task	to	complete?	
	
	
	
	
Task	1	
	
	

Very	Easy	 	 	 	 	 	 	 	 	 					Very	Difficult	
	
	
	
	
Task	2	
	
	

Very	Easy	 	 	 	 	 	 	 	 	 					Very	Difficult	
	
	
	
	
Task	3	
	
	

Very	Easy	 	 	 	 	 	 	 	 	 					Very	Difficult	
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How	easy	was	the	task	to	perform	while	driving?	
	
	
No	Task	
	
	

Very	Easy	 	 	 	 	 	 	 	 	 										Very	Difficult	
	
	
	
Task	1	
	
	

Very	Easy	 	 	 	 	 	 	 	 	 										Very	Difficult	
	
	
	
Task	2	
	
	

Very	Easy	 	 	 	 	 	 	 	 	 										Very	Difficult	
	
	
	
Task	3	
	
	

Very	Easy	 	 	 	 	 	 	 	 	 										Very	Difficult	
	
	
	
	



How	acceptable	was	it	to	perform	the	task	while	driving?	
	
	
	
Task	1	
	
	
	
	
	
Not	acceptable	 	 	 	 	 	 	 	 					Very	acceptable	
	
	
	
	
	
Task	2	
	
	
	
	
	
Not	acceptable	 	 	 	 	 	 	 	 					Very	acceptable	
	
	
	
	
	
Task	3	
	
	
	
	
	
Not	acceptable	 	 	 	 	 	 	 	 					Very	acceptable	
	
	
	
	
	
	
	
	



How	did	you	find	the	frequency	of	task	execution?	
	
	
	
Task	1	
	
	
	
	
	
Not	frequent	 	 	 	 	 	 	 	 																						Very	frequent	
	
	
	
	
	
	
Task	2	
	
	
	
	
	
Not	frequent	 	 	 	 	 	 	 	 																						Very	frequent	
	
	
	
	
	
	
Task	3	
	
	
	
	
	
Not	frequent	 	 	 	 	 	 	 	 																						Very	frequent	
	
	
	
	
	
	



How	realistic	was	the	overall	driving	experience	(e.g.	simulator	graphics,	
simulator	motion,	etc.)?	
	
	
	
	
	
	
Not	realistic	 	 	 	 	 	 	 	 																							Very	realistic	
	
	
	
	
	
How	realistic	were	the	vehicle	controls	(steering	wheel,	pedals,	etc.)?	
	
	
	
	
	
Not	realistic	 	 	 	 	 	 	 	 																							Very	realistic	
	
	
	
	
	
Did	you	feel	uneasy	at	all	during	the	drive	(e.g.	dizzy,	disoriented,	nauseated,	
etc.)?	
	
	
	
	
	
Not	uneasy	 	 	 	 	 	 	 	 																									Very	uneasy	
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D - Counterbalancing

UoLDS Experiment

Table 7.1 illustrates the condition counterbalancing in the UoLDS experiment.

The conditions, labelled with numbers 1−4, represent a combination of simulator

motion setting and driving scenario, as noted below:

• 1 → Fixed base and constant speed.

• 2 → Fixed base and varying speed.

• 3 → Hexapod and constant speed.

• 4 → Hexapod and varying speed.

Table 7.1: Counterbalancing in the UoLDS experiment.

Participant Drive 1 Drive 2 Drive 3 Drive 4
1 4 2 3 1
2 4 3 2 1
3 4 1 3 2
4 2 4 3 1
5 2 3 4 1
6 2 1 3 4
7 3 2 4 1
8 3 4 2 1
9 3 1 4 2
10 1 2 3 4
11 1 3 2 4
12 1 4 3 2
13 4 1 3 2

In the above, Participant 3 was the one to drop out due to simulator sickness,

being replaced by Participant 13.
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Gaydon Experiment

Table 7.2 illustrates the condition counterbalancing in the Gaydon experiment.

The conditions, labelled with numbers 1 − 2, represent the driving scenario, as

noted below:

• 1 → Constant speed.

• 2 → Varying speed.

Table 7.2: Counterbalancing

Participant Drive 1 Drive 2
1 1 2
2 1 2
3 2 1
4 2 1
5 1 2
6 1 2
7 2 1
8 2 1
9 1 2
10 2 1
11 1 2


