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Abstract

This thesis investigates the use of robust design and optimisation methods to improve nat-
ural laminar flow (NLF) aerofoil and wing robustness to variations both in operating condi-
tions and uncertainty in surface and flow quality.

NLF is a promising method for aircraft drag reduction but has high sensitivity to operating
conditions, flow quality and surface finish. Existing research on this topic has looked to
improve NLF designs at a range of operating conditions, but uncertainty in surface and
flow quality has not been considered. In this work, surface and flow quality are represented
by the critical transition amplification factor, or N-factor, from the e™ transition model.

A probabilistic distribution and quantification method for uncertainty in critical N-factor
is first selected. This is then used to assess NLF aerofoil performance with uncertainty in
critical N-factor. Transition location sensitivity to critical N-factor is found to be linked to
transition location sensitivity to lift coefficient; and drag robustness is found to be closely
related to transition location robustness.

Robust optimisation is then used to design NLF aerofoils that are insensitive to uncertainty
in critical N-factor. This is found to be effective; however, the robustness at off-design flight
conditions deteriorates as a result. Many designs with no laminar flow are also generated.
These are inherently robust to critical N-factor uncertainty but of no practical use.

A method is then developed that enables the coupling of multi-point and robust optimisa-
tion without an increase in computational costs. This uses the N-factor envelope from eV
stability analysis to predict transition locations over the critical N-factor range. Multi-point
robust optimisation of NLF aerofoils with critical N-factor uncertainty is then carried out.
This is able to produce NLF aerofoils with good robustness to critical N-factor uncertainty
over a range of lift coefficients and Mach numbers. This envelope sampling method is then
extended to account for three-dimensional flows and is used to optimise swept and tapered
wing sections for NLF with uncertainty in critical N-factor.

Overall, this work demonstrates that robust design and optimisation method are well suited
to the design of NLF aerofoils and wings. Furthermore, it shows that the N-factor envelope
from eV stability analysis can be used to reduce the dimensionality of robust NLF design,
making it no more computationally expensive than current multi-point optimisation prob-
lems. It therefore makes an original contribution to the field of NLF design and optimisation.
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Chapter 1

Introduction

Within the commercial aviation industry, there is a constant demand for reduced fuel con-
sumption. This is required to meet the stringent environmental targets set by aviation au-
thorities, as well as to reduce running costs for airline operators. Such environmental targets
are outlined by the European Commission who specify a 75 percent reduction in CO, and
90 percent reduction in NOy per passenger kilometre by the year 2050 [1].

Throughout aviation history, advancements in aircraft design, engine technology and fuel
composition have all resulted in improved aircraft performance. Modern commercial air-
craft are highly efficient as a result. However, as the basic configuration of aircraft has re-
mained largely unchanged, each additional design effort produces a diminishing return on
improved aircraft efficiency. For this reason, development of new aerodynamic configura-
tions and the exploitation of more complex flow phenomena is required for a step change in
aircraft performance to be found.

Drag on a transonic commercial transport aircraft can be broken down into individual com-
ponents as shown in figure 1.1. Parasite and lift-induced drag make up approximately 94
percent of the total aircraft drag [2, 3]. Lift-induced drag occurs when the lift generated by
the wing has a component opposite to the direction of flight. This occurs when a difference
in pressure causes flow at the wing-tip to move from the pressure to suction surface, leading
to a vortex downstream of the wing-tip and down-wash over the wing itself. This down-
wash induces a change in the local angle of flow over the wing, and so the angle at which
lift is generated.

Parasite drag is experienced when an objective moves through a viscous fluid and can be
split into skin friction and form drag components. Skin friction accounts for 96 percent of
parasite drag, and is the loss of energy due to shear stresses within the boundary layer that
forms as a result of flow viscosity. As all wetted areas contribute to this, the fuselage and
wing are the largest sources and collectively account for 74 percent of skin friction on an
aircraft. Form drag is also due to the formation of the boundary layer, which changes how
oncoming flow interacts with the aircraft. Thickening of the boundary layer increases the
effective thickness of an aerodynamic body, causing a change in pressure distribution and an
increase in drag. This is referred to as form drag. As modern aircraft are highly streamlined,
form drag is a small component of parasite drag, contributing only 4 percent.
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Figure 1.1: Drag breakdown for a typical commercial transport aircraft (data taken from [3])

The other drag sources accounting for approximately 8 percent of total aircraft drag are
wave drag and interference drag. Interference drag occurs when flow from different aero-
dynamic surfaces mix such that the combined drag is larger than the sum of the individual
components. This can occur at junctions between components, where two components are
close or if one is behind another [4]. For commercial aircraft, key sources of interference
drag are at the intersections between fuselage, wing, pylon and engine. Drag from these
sources can, however, be avoided by the inclusion of fairing between components and with
careful design, a reduction in drag can instead be obtained [2].

Wave drag is the result of entropy loss through shock waves that can form when there is
supersonic flow over an aircraft. This can become a significant component of total drag if
strong shock-waves are allowed to form on aerodynamic surfaces such as the wing. Wave
drag can, however, be avoided through the use of increased wing sweep, supercritical aero-
foil design [5] and shock control methods [6].

There has been extensive research on the reduction of skin friction as it is a significant source
of drag. Two approaches to this are possible: turbulent drag reduction and the extension of
laminar flow [2, 7]. Turbulent drag reduction attempts to reduce skin friction by modifying
turbulent flow features. This has wide applicability as the majority of flow over modern
commercial aircraft is turbulent. Such methods include synthetic jets, riblets and large eddy
breakup devices [8]. The alternative approach is extension of laminar flow by delaying its
transition from laminar to turbulent. As laminar flow can have as much as 90 percent less
skin friction drag than turbulent flow [9], and as most flow over modern aircraft is turbulent,
there is potential for substantial drag reductions.

Transition from laminar to turbulent flow is due to the growth of small disturbances within
the boundary layer flow. If unstable, these instabilities will increase in magnitude until
they result in the breakdown of laminarity [10]. Methods available for reducing instability
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growth are Laminar Flow Control (LFC), Natural Laminar Flow (NLF) or Hybrid Laminar
Flow Control (HLFC).

LFC is the active and continuous modification of the boundary layer through surface cooling
or suction [11]; as altering the temperature or velocity profile through the boundary layer
is found to have a strong effect on flow stability. LFC is typically associated with boundary
layer suction as this has seen more extensive research [9]. NLF makes use of the strong effect
pressure gradient has on flow stability. An aerodynamic surface can be designed in such a
way as to create the required pressure gradient to dampen boundary layer instabilities. This
is considered a passive approach as the pressure gradient is induced naturally during flight.

The choice of LFC or NLF depends on the application and flow conditions being experi-
enced. LFC is able to provide instability damping where NLF is not effective. Such areas in-
clude aircraft fuselage, highly swept wings [11], wings with large chord length and when at
high transonic speeds. Where effective, NLF is preferable to LFC as it requires no additional
suction or cooling components which increase aircraft weight, manufacturing complexity
and cost [2]. Running of a LFC system also requires power which, when siphoned from
the propulsion system, reduces aircraft performance. Due to the drawbacks seen with both
approaches, a combined Hybrid Laminar Flow Control (HLFC) approach has seen much
research. This entails the use of NLF with LFC only where it is not possible to suppress the
growth of boundary layer instabilities passively, such as towards the leading edge of highly
swept wings. Combining LFC and NLF reduces the suction requirements and complexity of
the LFC suction system but also allows for effective instability suppression where not possi-
ble with NLF alone. Further developments in LFC and HLFC make use of passive suction,
routing the suction chambers to a location on the aircraft with low pressure.

Several major research efforts involving wind tunnel and flight testing of NLF and HLFC
have been carried out in Europe. Flight testing of a NLF glove and wind tunnel testing of
a half-scale model was carried out by DLR in the late 1980s as part of the national German
laminar flow technology programme [12]. This led to the flight test of a second NLF wing
glove as part of the European Laminar Flow Investigation (ELFIN) program which began
in the early 1990s [13]. Airbus, in partnership with DLR and ONERA, carried out design,
wind tunnel and flight testing of HLFC applied to the fin of an A320 test aircraft. This was
undertaken in the 1990s and done as part of the Laminar Fin Program [14]. The most recent
flight tests were carried out by Airbus in 2017 as part of the Breakthrough Laminar Aircraft
Demonstrator in Europe (BLADE) programme, under the European Clean-sky 1 project [15].
This involved the testing of an A340 with NLF outboard wing sections, shown in figure 1.2.

Although LFC and HLFC are effective in obtaining extended laminar flow where not possi-
ble with NLF, it is still desirable to avoid suction-based systems entirely if possible. There-
fore, aircraft designs exploiting NLF while having low sweep and reduced Mach number
have been proposed. Novel aircraft configurations such as those with strut-braced wings
also have excellent potential for NLF [17].

While NLF has seen extensive research, laminar flow is often not considered during the
design of, and not obtained on, most commercial transport aircraft. One of the main reasons
for this is that transition occurs through a number of complex instability mechanisms and
is often sensitive to small changes in aerodynamic shape, surface and flow quality and the

3
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Figure 1.2: Airbus BLADE NLF wing section (Photo: P. Pigeyre / Master Films. Copyright: Airbus) [16].

chosen flight conditions [18]. As a result, obtaining extended laminar flow during flight is
challenging. Maintaining extended laminar flow over a wide range of operating conditions
and at varying surface and flow quality is even harder. For NLF to become viable on modern
commercial aircraft, it must be made robust to the factors effecting transition. This requires
design at both on and off-design conditions, with consideration for uncertainty in many
other input variables.

Research in recent years has, however, indicated that optimisation and robust design meth-
ods may be effective at tackling these issues [19-21]. Thanks to increasing computational
power, more complex optimisation problems can now be considers. Increasing the dimen-
sionality of the design problem, considering multiple design objectives and possible input
uncertainties should each help to produce NLF aerofoils and wings with a more consistent
performance over a wider range of conditions.

1.1 Thesis Aim

The aim of this work is to investigate the use of robust design and optimisation methods
applied to NLF aerofoil and wing design. The goal of this research is to identify means
of improving aircraft performance by reducing drag via the extension of NLF while also re-
ducing performance sensitivity to changes in operating conditions, flow and surface quality.
This is pursued as a lack of robustness to these factors is one of the issues currently limiting
the wide-spread use of NLF as a drag reduction method.

4
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Chapter 2 introduces the fields of flow transition, transition modelling and NLF design.
Chapter 3 following this provides some background knowledge on optimisation and robust
design, and the current state-of-the-art in applying these methods to the development of
NLF aerofoils and wings. The current limitations to the practical use of NLF on modern
commercial aircraft are then assessed and the specific objective of this study outlined.






Chapter 2

Natural Laminar Flow

2.1 Flow Transition

At its fundamental level, flow transition is a result of environmental disturbances entering
the boundary layer. These can originate from turbulence within the freestream flow or in-
teraction of the flow with surface roughness and irregularities through a process known as
receptivity [22]. Flow stability is determined by the growth or decay of these disturbances
over time, through space or a combination of both [7]. A flow is stable if disturbances de-
cay while an unstable flow results in disturbance growth. Disturbance growth results in the
formation of regular oscillations within the boundary layer, referred to as instability waves.
The shape and behaviour of each instability wave depends on the amplitude, frequency and
phase of the initial flow disturbance [23]. A wide range of disturbance characteristics are
possible and result in several different paths to transition. These are shown in figure 2.1.

Environmental Disturbances

Amplitude

Receptivity

l

Transient Growth

|
A B C D
| | | |
Primary Modes B

l

Secondary Mechanisms

Breakdown

=T

Figure 2.1: Possible paths to transition [24].
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For small disturbance amplitudes, path A is taken. The growth of boundary layer insta-
bilities is linear and occurs slowly over a large distance. These are referred to as primary
instabilities. The continued amplification of primary instabilities results in the creation of
secondary instabilities which lead to a rapid breakdown of the flow and the onset of tran-
sition [25]. This path to transition is sometimes referred to as "Natural Transition” [26]. An
alternative path to transition occurs when environmental disturbances are large. The devel-
opment of primary and secondary instabilities is skipped as turbulent flow features form
directly within the laminar boundary layer and result in breakdown of the flow. This is path
E, known as bypass transition.

Natural transition and bypass transition both occur when disturbances with an unstable
wavelength enter the boundary layer flow. It is also possible for transition to occur when
all disturbance frequencies are stable. This is through a process known as transient growth,
where stable disturbances interact and see large amplification before decaying. This growth
can result in primary instabilities (path B), secondary instabilities (path C) or may be large
enough to trigger bypass transition (path D).

Regardless of the path to transition, eventual destabilization and breakdown of the flow is
due to the development of what are referred to as "Emmon spots” or "turbulent spots’. Each
spot begins with a point-like instability of the laminar flow that grows linearly downstream.
Following this is an arrow head shaped region of turbulent flow of smaller scale than the
boundary layer height [27]. Breakdown of the flow refers to the initialization and growth of
these spots which eventually engulf the entire boundary layer flow.

Natural transition (path A) is of most interest for the development of NLF as disturbance
amplitudes are typically small during flight due to low freestream turbulence intensity lev-
els [28, 29]. Primary instabilities are also the easiest to model due to their linear behaviour.
As transition occurs quickly after non-linear effects occur, the end of this linear region pro-
vides a good approximation of the final transition location. The following sections cover
different stages of the natural transition process and some of the properties that flow stabil-
ity and transition are sensitive to.

2.1.1 Flow Stability

A disturbance wave of a given frequency (w) at a given Reynolds (Re) number will be in
one of three possible states: amplifying, neutral or decaying [30]. Calculating the stability
of disturbances with a range of frequencies over a range of Reynolds numbers allows for a
neutral stability curve plot to be generated, such as shown in figure 2.2. In both plots, the
x axis shows Reynolds number based on boundary layer thickness (Res), the y axis shows
frequency based on boundary layer thickness (ws) and the contour lines represent neutral
stability, separating the stable and unstable regions.

Disturbances have a fixed frequency moving downstream, as indicated in figure 2.2b by the
horizontal dashed line. Disturbances are initially stable but can encounter an unstable re-
gion downstream. Disturbances will normally decay in the stable region and amplify in the
unstable region. However, if amplification through the unstable region is large, secondary
instabilities can develop and amplification will continue even on re-entering the stable re-
gion. This will result in a rapid breakdown of the flow to turbulence [30].
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Two different forms of the neutral stability curve are typically observed. Figure 2.2a shows
a neutral stability curve with an unstable region starting at a low Reynolds number and
extending to Re; — oo. Given that the flow is unstable at both low and high Reynolds num-
bers, the instability is not dependent on viscosity and so is considered inviscid. Inviscid
instability is directly related to the mean boundary layer velocity profile shape. An inflec-
tion point within the velocity profile is found to be a sufficient condition for the flow to be
unstable [22]. Free-shear flows, such as jets, wakes and separated flows, and wall bounded
flows under an adverse pressure gradient are prone to inviscid instability [28, 30].

Figure 2.2b shows the neutral stability curve for a boundary layer flow with viscous in-
stability. In this case, disturbances at all frequencies are damped when Reynolds number
is sufficiently large and inertial forces dominate. Thus, viscous forces have a destabilising
effect on the flow for a finite Reynolds number range [30]. A flow with viscous instabil-
ity can be unstable without an inflection point within the boundary layer velocity profile
[30]. Wall-bounded flows have viscous instability when incompressible and under neutral
or favourable pressure gradient [28, 30].

Stable

) Unstable

Reer Reg Reg
(a) Inviscid instability (b) Viscous instability

Figure 2.2: Example of neutral stability curves for a two-dimensional flow [30].

All disturbances are stable and decay below what is referred to as the Critical Reynolds
number (Re;|cr). It would be desirable to keep Reynolds number below this critical value as
disturbances at all frequencies are stable. However, critical Reynolds number is typically of
the order of Res|; = O[10%] for wall-bound viscous dominated flows and so this is not pos-
sible [28]. A low Reynolds number also causes a boundary layer flow to be less resistant to
separation. If this occurs, the resulting free-shear layer is also highly susceptible to inviscid
instabilities and can quickly transition [28]. This is an important design consideration for
low Reynolds number NLF.

2.1.2 Primary Instabilities

There are several types of primary instability. For transonic flows over swept wings such as
those seen on commercial aircraft, the most important primary instability types are Tollmien-
Schlichting, crossflow, attachment line and centrifugal [10].
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Tollmien-Schlichting (TS) waves are stream-wise viscous instabilities seen as travelling sine
waves of vorticity within the boundary layer flow. These are the primary transition mech-
anism for un-swept wings due to their two-dimensional nature and typically see slow am-
plification resulting in transition mid-chord [31].

Crossflow (CF) waves are three-dimensional inviscid instabilities found to dominate swept
flow transition. The combination of sweep and pressure gradient on a swept wing results in
highly curved inviscid streamlines at the boundary layer edge, as shown in figure 2.3. The
same effects occur within the boundary layer, but the curvature is greater as the fluid has
lower momentum. This difference in curvature is strongest towards the leading and trailing
edges [32]. Splitting of the boundary layer velocity profile into components normal and
tangential to the inviscid streamline is shown in figure 2.4. The flow normal to the inviscid
streamline is referred to as the crossflow component. As this is zero at the boundary layer
edge, and zero at the wall due to the no-slip condition, there exists an inflection point within
the velocity profile which leads to inviscid instability growth.

Crossflow waves can be stationary or travelling although typically only one type will be
dominant within the flow. While travelling waves see larger amplification, stationary modes
are found to dominate the transition process at low free-stream turbulent intensity levels
seen during flight. This is due to their interaction with surface roughness elements at these
conditions [33].

Inviscid Streamline
Arp)

Inflection Point

Surface Streamline
em===
Crossflow

External Streamline Tangential Flow

Wall Shear

Figure 2.4: Boundary layer velocity profile with
stream-wise and crossflow velocity com-
ponents [34].

Figure 2.3: External and surface streamlines over a
swept wing.

Attachment line instability and contamination must be avoided should any laminar flow be
obtained on a swept wing. Attachment line instability is due to the interaction of acoustic
waves with surface roughness, defects and contamination at the leading edge [35]. Attach-
ment line contamination is the propagation of turbulence generated at the wing-root inter-
section along the wing leading edge. This can occur for wings with leading edge sweep
larger than 20° and results in span-wise flow perturbations that trigger early transition [35].
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To avoid attachment line transition and contamination, the momentum thickness Reynolds
number at the attachment line must be kept below a specific threshold in each case. This can
be calculated using equation 2.1 if the leading edge represents a general elliptical shape [32,
35]. Ay, is the leading edge wing sweep, r is the leading edge normal aerofoil radius and
e is the ellipticity. To avoid attachment line transition, Rey must be kept below 230 — 240,
while to avoid attachment line contamination from propagating along the leading edge, Rey
should be kept below 90 — 100 [35].

1
Ueorsin?(Ag,) ]2

Rey = 0.404
¢ = 0.40 (14¢€) veos(Ay)

2.1)

Centrifugal instabilities, otherwise known as Gortler instabilities, occur in flows travelling
over concave surfaces [28]. This causes the creation of stationary counter-rotating vortices
parallel to the stream-wise flow that change the stream-wise velocity profile and leads to
the development of secondary instabilities. As concave surfaces are not typically used in
locations where laminar flow can be obtained, centrifugal instabilities are usually not an
issue [31].

2.1.3 Secondary Instabilities

Large amplification of primary instabilities results in the development of secondary insta-
bilities. These are highly non-linear, of very high frequency [36] and play an important role
in transition. Once secondary instabilities appear, rapid development of turbulent spots and
breakdown of the laminar flow occurs. This process typically leads to fully turbulent flow 5
percent of the chord length downstream of the initial secondary instability [33]. Visualiza-
tion of the transition front provides insight into the dominant instability type and secondary
instabilities present. Figure 2.5 shows visualisation of the transition front for swept wings
under different flow conditions. This is achieved using naphthalene sublimation.

(a) Tollmien-Schlichting dominated [37] B (b) Crossflow dominated [34]

Figure 2.5: Naphthalene sublimation visualization of flow transition fronts resulting from different primary
instability dominance. Flow in each case is moving from left to right.
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For flows dominated by TS instabilities, secondary instabilities are seen as a series of span-
wise peaks and valleys distorting the uniform TS waves. These become more pronounced
as the flow develops [25] however the transition front itself is uniform in the span-wise
direction, as seen in figure 2.5a. When transition originates from CF instability growth,
modulation in the span-wise mean flow results in a velocity profile inflection point and
local development of secondary instability [29]. This leads to a local breakdown of the flow
and a saw-tooth transition front pattern [33], as shown in figure 2.5b.

2.1.4 Compressible Flow Stability

Increasing Mach number introduces compressibility effects into the boundary layer flow.
At subsonic speeds, this does not change the fundamental physics of boundary layer flow
stability and incompressible stability theory can be used [7]. The effect of compressibility
does, however, become important at higher speeds.

For transonic flows, compressibility has a small stabilizing effect on two-dimensional in-
stability waves, but a large destabilising effect for flows over surface defects [7]. As such,
increasing Mach number lowers the amount of instability amplification required for TS in-
duced transition [38]. Compressibility also increases the angle at which instability waves
move in relation to the streamline flow, causing instability waves to become increasingly
three-dimensional [39]. Crossflow instabilities remain relatively invariant to increasing Mach
number up to M = 1, and incompressible stability theory still gives acceptable results for
the prediction of crossflow amplification [39]. However, due to the difference in amplifi-
cation predicted for stream-wise instabilities, compressible linear stability theory should be
used for transition prediction of transonic flows [40].

2.1.5 Receptivity

Receptivity is the process by which external disturbances enter the boundary layer flow.
These can originate from two sources: free-stream turbulence and acoustic noise [41]. Al-
though not a source of disturbance, surface roughness plays a pivotal roll in the receptivity
process as the interaction between disturbance sources and roughness elements introduces
short scale variations into the boundary layer flow [42]. Flow stability is unaffected by sur-
face roughness below a specific diameter [43] but has a strong effect on stability above this
with very large surface roughness levels triggering bypass transition.

Both disturbance sources contribute to the development of Tollmien-Schlichting instability
waves. For receptivity to take place, however, the environmental disturbances need to re-
duce in wavelength. This is achieved at locations where the boundary layer rapidly changes
in thickness such as at the leading edge and at surface discontinuities [44]. As such, the
initial amplitude of TS instability waves are larger as surface roughness increases or in the
presence of two-dimensional surface irregularities such as steps, bumps and gaps [42]. Al-
though both disturbance sources contribute to receptivity, the interaction of acoustic waves
with the surface roughness elements is found to have a much stronger effect [44].

Crossflow instabilities can also originate from both disturbance sources, although free-stream
turbulence interacting with surface roughness has the stronger effect [26]. Turbulent inten-
sity controls the type of crossflow instability waves that develop within the flow. For low
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turbulence levels seen in flight, stationary waves dominate the transition process. These are
a direct result of the boundary layer flow interacting with surface roughness elements [26].
Figure 2.6 shows experimental results for stationary crossflow amplification at low turbu-
lence levels (0.1% < Tu < 0.3%) such as those seen during flight. The amount of stationary
crossflow instability amplification required to trigger transition under these conditions re-
duces with increasing surface roughness height. Increasing turbulent intensity results in
stronger travelling wave amplification within the flow while increasing both turbulent in-
tensity and surface roughness causes interdependent stationary and travelling waves to
dominate [26]. The amplification required to trigger transition then becomes invariant to
further increases in either property [26].
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Figure 2.6: Experimental results from Radeztsky et al. [43] and Crouch et al. [26] showing stationary cross-
flow critical amplification factor against normalized surface roughness at low freestream turbulent
intensity (Tu = 0.1 — 0.3%).

2.2 Transition Modelling

While there are many models available for simulating turbulent flow in computational fluid
dynamics (CFD), there are few for flow transition. This is in part due to the complexity of
the transition process [45]. The different paths to transition each require different modelling
considerations, and many of the non-linear effects can prove too challenging to solve. There
can also be difficulties in combining transition modelling methods with modern flow solvers
and optimization algorithms. As transition location is sensitive to changes in geometry
shape and flow conditions, accurate modelling of the flow and transition location is crucial.
It is therefore desirable to couple transition modelling methods to high fidelity flow solvers,
such as those based on Reynolds Averaged Navier-Stokes (RANS) equations. Both flow
solver and transition models should also couple well with modern optimization algorithms.

The different approaches available for transition modelling can be categorized as either em-
pirical criteria or physical modelling. Empirical criteria derive some variable from boundary
layer properties that can be calibrated against experimental results so that when its value ex-
ceeds some limit, transition occurs. Many examples of empirical criteria are given by Arnal
[46] with a popular approach linking transition location to momentum thickness Reynolds
number Rey [47]. These criteria provide a simple and very computationally cheap method
for predicting transition with acceptable accuracy, but do not model the actual flow physics
behind the transition process.
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Physical modelling of the transition process is the most mature and popular approach for
transition location prediction [41]. Models of this type are based on stability theory and try
to determine transition location based on boundary layer instability growth. This approach
is desirable as the fundamental physics behind flow transition are modelled, although the
models represents a simplified versions of the real process which is complex.

2.2.1 Linear Stability Theory

Mack [30] provides an excellent derivation of linear stability theory, which will be sum-
marised here. Beginning with the Navier-Stokes equations, flow properties are split into
mean and fluctuating components. The mean flow components satisfy the governing equa-
tion and are removed, leaving only the fluctuating terms. Quadratic fluctuating terms are
also removed as they are considered small, linearising the equations. The parallel flow as-
sumption flow is then made, where span-wise and wall normal base flow velocities are set
to zero. These terms are removed from the linearised Navier-Stokes equations. A mathe-
matical representation for the flow disturbance is then selected. This is a sinusoidal wave
described by equation 2.2 where r is any flow property and 7(y) is its amplitude function
which, due to the parallel flow assumption, is dependent on y only. The terms a and j3 are x
and z components of the wave-number k, w is frequency and t is time.

r = 7(y) exp [i(ax + Bz — wt)] (2.2)

Equation 2.2 is substituted into the linearised Navier-Stokes equations, producing a set of or-
dinary differential linear stability equations. For three-dimensional flows, there are 8 equa-
tions if compressible or 6 equations if incompressible. For two-dimensional flows, there are
6 equations if compressible while the single fourth order Orr-Sommerfeld differential equa-
tion is obtained if incompressible. Boundary conditions for boundary layer flows dictate
that the disturbance disappears both at the wall and far from the wall as y — oo.

A disturbance wave has neutral temporal and spatial stability if &, f and w are all real. If «
or B are complex, the disturbance amplitude will change as it propagates in space while if
w is complex, as it propagates in time. For spatial amplification, the flow disturbance takes
the form shown in equation 2.3, where &; determines disturbance stability in the stream-wise
direction and f; determines disturbance stability in the span-wise direction. The disturbance
wave angle is calculated as ¢ = tan~!(B,/a,). This angle is in relation to the x direction and
is used to identify the type of instability found. Angles between 0 — 40° indicate a TS wave,
while angles between 85 — 90° indicate a CF wave [41].

r = ?(y) exp [—(aix + Biz)] exp [i(a,x + Brz — wyt)] (2.3)
—a; < 0 Stable —Bi <0 Stable
—a; =0 Neutral —Bi =0 Neutral
—ua; > 0 Unstable —pBi >0 Unstable

The linear stability equations can be grouped by terms and written in matrix form such
that equation 2.4 is obtained. The matrix F contains the basic flow properties such as mean
flow velocities, pressure and additional terms if compressible, along with the disturbance
wave properties &, B and w. The matrix K contains all disturbance amplitude functions and
derivatives.
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F(Flow Properties, , B, w)

FK=0 where K(Amplitude Functions)

(2.4)
The linear stability equations now represent an eigenvalue problem where non-zero solu-
tions, referred to as normal modes, exist only if det(F) = 0. Therefore, at a specific stream-
wise station and specified w, only certain « and p values will produce non-zero disturbance
amplitudes. Boundary layer flows will have a finite number of discrete solutions at each
stream-wise position and w value. For incompressible subsonic flows where p = 0, only
one of these solutions is found to become unstable and so is referred to as the first mode.
For compressible and supersonic flows, additional unstable modes may exist.

2.2.2 eN Transition Model

Predicting transition locations using linear stability theory is done using the eN transition
model developed by Smith and Gamberoni [48] and Van Ingen [49]. The eN model uses
the fact that transition occurs very soon after a disturbance wave first exhibits non-linear
growth with the observation that non-linear growth occurs when a disturbance’s amplitude
increases by some critical factor from its initial amplitude.

The mathematical relationship used by the eV transition model is found by manipulating
equation 2.5 showing the spatial disturbance wave equation with no span-wise disturbance
amplification (B; = 0). The wave amplitude function # does not depend on x or t and so
represents the initial  value (r¢) at the selected y. Dividing the equation by ro and taking
the natural log of both sides results in equation 2.6. The amplitude of a wave function is
represented by its real component, and so the natural log of the initial and final amplitude
ratio is shown in equation 2.7.

r = (y) exp [ (@) exp [i(a,x + Brz — )] 25)
In(r/ro) = [—aix][i(arx + Brz — wyt)] (2.6)
In(A/Ay) = —ajx (2.7)

Disturbances within the boundary layer have a fixed frequency but varying a; as they move
downstream. The upper plot in figure 2.7 shows an example neutral stability curve where
the horizontal line represents a disturbance wave. As a; varies along the stream, the natural
log of the amplitude ratio is calculated by taking the integral of &; from xo — x using equa-
tion 2.8. Evaluating In(A/ Ap) along the stream produces an amplification envelope, shown
on the lower plot in figure 2.7. This is done for a wide range of disturbance frequencies, pro-
ducing a number of amplification envelopes. As transition occurs when a disturbance wave
first exceeds some threshold amplification factor, the maximum amplification ratio at each
stream-wise position is obtained using equation 2.9. This is referred to as the amplification
factor, or N-factor, envelope. The threshold amplification factor is referred to as the critical
N-factor.

X

In(A/Ag) = —/ a; dx 2.8)

X0

N = max (In(A/ Ap)) (2.9)

15



CHAPTER 2. NATURAL LAMINAR FLOW

Non-Linear Region

Stable

Frequency

Unstable <§’ Nors Linear Theory
~ ’ ]
C pinliad il il j:/ '
E Primary !
Instability )
1
Secondary !
Instability ,
To fL'/C Tir
Non-Linear Region
/E 1
S \
3 Linear Theory
Ncr,cf

Primary
Instability

In(A/A)

Secondary

Instability «
1
z/c o x/c i
Figure 2.7: Use of neutral stability plot to gener-  Figure 2.8: Instability growth and linear modelling
ate N-factor envelope for eN transition for Tollmien-Schlichting and Crossflow
model [41]. instability envelopes [50].

Importantly, the eV transition model only makes use of the ratio between the initial and fi-
nal amplitudes and does not require the actual value of either. This is beneficial as it avoids
modelling of the receptivity process which is very complex and still regarded as a "missing
piece” in developing a more thorough amplitude-based transition model [42]. Although the
need to model the receptivity process is avoided, the initial amplitude of boundary layer
disturbances do play a role in determining transition location. As such, the critical N-factor
cannot be calculated and must instead be calibrated against wind tunnel and flight test data
obtained at the desired surface roughness, free-stream turbulent intensity levels and, if us-
ing compressible theory, Mach number. This ensures that the threshold used for transition
modelling is similar to the value found at real flight conditions.

Figure 2.8 shows the section of instability growth that linear stability theory and e method
attempt to model. Both plots show instability amplitude against chord length for primary
and secondary instabilities. The upper plot shows growth of a TS instability wave while the
lower plot shows growth of a CF instability wave down-stream. Towards the leading edge,
receptivity continuously introduces disturbances into the boundary layer that decay in the
stable flow region, resulting in a constant but noisy maximum disturbance amplitude [50].
As the flow moves into the unstable region, maximum disturbance amplitude begins to rise
for both instability types. Linear stability theory is able to model this period of growth well
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but eventually non-linear effects will occur. Accuracy of the linear theory method breaks
down here and the eventual development of secondary instability then leads to transition.
As can be seen, linear theory is better able to model the growth of TS instability waves
compared to CF instabilities due to the smaller non-linear amplification region.

2.2.3 eN Analysis of Three-Dimensional Flows

Although the eV model is limited to analysis of two-dimensional boundary layer slices, it
can predict transition for three-dimensional flows. However, this does increase model com-
plexity. For two-dimensional incompressible flows, disturbance will have a wave angle of
zero (¢ = 0 so B, = 0) and see no span-wise amplification (8; = 0). For three-dimensional
flows, disturbances will have a non-zero wave angle and may see amplification in the span-
wise direction. This is also true for compressible flows where wave angle may not be zero
even if the flow is two-dimensional [41]. For infinitely-swept and swept-tapered wings, it
is often assumed that there is still no amplification in the span-wise direction (8; = 0) [41].
However, wave angle needs to be considered in the solution process. Methods for this are
the envelope, envelope of envelopes or dual envelope (or Nis — N.,) strategies [41].

The envelope approach requires calculation of the amplification rate as a function of wave
angle at each chord-wise location, so that the maximum amplification rate and wave-angle
can be obtained. The envelope of envelopes approach extends the normal N model by
analysing many disturbances with different frequencies and also with different wave an-
gles or span-wise wave numbers. Thus amplification envelopes for various angle or wave-
numbers can be created, and the maximum amplification envelope from these then found.

The dual envelope method is favoured by the European aerospace industry [41, 51]. The
approach separates TS and CF instabilities by wave angle and finds a maximum amplifi-
cation envelopes for each. Both then have their own critical N-factor threshold. As some
interaction between the two instability types occur at high amplifications, a limiting curve
is defined [41, 50]. This can take three shapes depending on the strength of the interaction,
as shown in figure 2.9. Based on flight test data, a weak interaction type is observed at the
speeds and altitudes common for civil transport aircraft [41].

Nts

= == No interaction

=— Weak interaction

= Moderate interaction
Strong interaction

Ney

Figure 2.9: Critical N-factor mixing curves with different instability interaction strengths for the dual enve-
lope eN transition model (recreated from [41]).
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2.2.4 N Model Calibration

The critical N-factor limits used in the eM transition model require calibration against ex-
perimental or ideally flight test data. For three-dimensional flows using the dual envelope
method, this requires calibration of both Ny and N, f critical N-factor limits. An example of
data available for this purpose comes from two independent NLF glove flight tests carried
out using a Fokker 100 aircraft as part of the European Laminar Flow Investigation (ELFIN)
program and using the ATTAS aircraft, done as part of the national German laminar flow
technology programme [12]. Both flight tests took place over a range of Reynolds num-
bers, Mach numbers and with NLF gloves at variable sweep angles. A summary of these
conditions as presented in table 2.1.

Application of the dual envelope approach to linear stability theory on the recorded pressure
distributions at these various conditions allows for the calculation of the Nis and N, values
at transition. These are shown in figure 2.10, calculated using incompressible and compress-
ible linear stability theory. When analysed using incompressible linear stability theory, the
results between the two flight tests agree well for both Ny and N, £ When analysed using
compressible linear stability theory, results from each flight case differ substantially. While
N, Y values have decreased slightly at each point for both test cases, Nis values for the Fokker
100 case have reduced much more than for the ATTAS case. This difference is attributed to
the higher Mach numbers reached during the Fokker flight tests [51] and highlights the de-
pendence of Nis on Mach number when compressible linear stability theory is used.

Table 2.1: Aircraft flow condition ranges for the ATTAS and Fokker 100 NLF flight tests [51].

Aircraft Reynolds Number Mach Number Sweep Angle

ATTAS 12 — 23 x 10° 0.33 — 0.67 19.5° —22.4°
Fokker 100 12 — 23 x 10° 0.50 — 0.80 17.0° — 24.0°
14 - 12 -
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Figure 2.10: (N, s, Nis) data points calculated using the eN dual envelope approach with incompressible and
compressible linear stability theory from pressure distributions obtained from the Fokker 100 and
ATTAS NLF flight tests [51].
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Analysis of the flight test data [38, 51-53] finds that critical N,y is relatively independent to
changes in Mach number, Reynolds number and sweep angle for both compressible and
incompressible approaches. This can be seen by comparing N, values between figures
2.10a and 2.10b. N appears insensitive to Mach number using incompressible theory but
is highly sensitive when analysed with compressible theory. This is again seen in figures
2.10a and 2.10b. Thus, incompressible stability theory is considered to give a more universal
critical N-factor value for Nis and N, regardless of the operating conditions [38, 50].

However, compressible linear stability theory should be used for transonic test cases, and
so compressible critical N-factor limits are required. To obtain these, analysis at the cho-
sen flight conditions should first be carried out using incompressible linear stability theory.
The values of Nis and N ¢ can then be altered while carrying out stability analysis using
compressible stability theory so as to match the transition locations found from the incom-
pressible method. Critical N-factor values that best accomplish this are then used.

2.2.5 eN Model Coupling to Flow Solvers

The main drawback to linear stability theory based transition modelling is the difficulty
in coupling it with RANS-based flow solvers and optimisation frameworks. Menter et al.
[564] proposed several conditions that transition modelling method should satisty for easy
integration with any RANS-based solver. These included the use of only local mathematical
operations and the ability to predict transition locations for three-dimensional simulations.

Both of these conditions are not met by the eV transition model. The e model requires
boundary layer velocity profiles at each chord-wise position, which are difficult for a RANS-
based solver to obtain. This is because the edge of the boundary layer is difficult to deter-
mine, many elements will make up a chord-wise boundary layer slice and grids may be split
into different blocks for parallel computing [54]. The eN model is also only able to model
transition on an entire three-dimensional aircraft or wings by performing transition analysis
on stacked two-dimensional slices.

Coupling of the eV transition model with CFD codes is therefore somewhat complex and is
outlined in figure 2.11. First, a flow solution with fully turbulent or laminar flow is obtained.
A two dimensional streamline slice is then passed to a boundary layer solver which is used
to generate velocity and pressure profiles along the chord-length. This is then passed to the
stability analysis code which generates critical N-factor envelopes and locates a transition
position. Transition is then prescribed at this location in the CFD flow solver and a new
flow solution is obtained. The solution from this is again analysed and a transition location
found. This process is repeated until the transition location converges to its final value.

Given the complexity of effectively coupling stability based transition models with modern
flow solvers, there has been a push for truly local transition modelling methods. This has
lead to the development of transport equation models. These can be thought of as an ex-
tension to empirical criteria. The general idea is to model transition using a flow property
referred to as intermittency < that dictates the laminarity of the flow, where v = 0 is fully
laminar and 7y = 1 is fully turbulent. When applied to CFD, this term is used to scale eddy
viscosity within the flow [54]. Intermittency is then related only to local flow properties,
rather than local boundary layer properties such as used in empirical criteria.
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Figure 2.11: Workflow for CFD solver and linear stability theory transition model coupling.

The most popular transport equation based approach is the v — Reg model, developed by
Menter et al. [47, 55]. This is a two equation transition model for intermittency and transi-
tional momentum thickness Reynolds number. Another transport equation based model has
been developed by Coder and Maughmer [56]. This is based on the work of Drela and Giles
[567] where amplification factor is related to local flow variables. Transport equation based
approaches have seen a large amount of research over the past decade and are implemented
in many commercial RANS-based CFD solvers. While the approach is maturing, physical
modelling of flow stability has remained the preferred method used within the aerospace
industry [15, 41].

2.3 Delaying Transition

The key to the design of NLF aerofoils and wings is the passive prevention of transition.
Firstly, efforts must be made to ensure that transition follows the natural path, rather than
via bypass or attachment line contamination. Once this is done, passive extension of laminar
length is obtained via the tailoring of aerodynamic pressure gradient so as to dampen the
growth of primary instabilities within the boundary layer.

The type of pressure gradient required depends on the instability types that dominate the
flow transition process. TS instability waves are suppressed via the use of a favourable pres-
sure gradient. This can be used to reduce instability amplification, remove inflection points
from within the boundary layer, re-laminarise a turbulent boundary layer and reduce the
size of turbulent spots [7, 45, 58, 59]. Favourable pressure gradient is, however, unsuitable
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for flows dominated by crossflow instabilities, as this causes instability amplification espe-
cially towards the leading edge. Instead, a strong leading edge pressure rise followed by a
slight adverse pressure gradient is best [60].

These conflicting pressure gradient profiles are shown in figure 2.12. The type of insta-
bility dominating the flow transition process is determined by the sweep angle A. Three
sweep regimes can be defined: TS dominated when A < 25°, TS and CF dominated when
25° < A < 30° and CF dominated when 35° > A [9]. Flows with transition dominated by
TS instability waves are found on subsonic aircraft where no sweep angle is needed. For
transonic aircraft such as modern commercial transport aircraft, sweep angles within the TS
and CF dominated regime are used as this reduces the leading edge normal flow velocities
and so wave drag. Sweep angles above 35° are found on supersonic aircraft.

= Tolmein-Schlichting Instability
= = = Crossflow Instability

Figure 2.12: Ideal pressure distributions for Tollmien-Schlichting and Crossflow instability suppression [60].

2.3.1 Design Considerations for NLF

While NLF is a promising drag reduction method, its practical implementation is difficult
to achieve due to the numerous and often conflicting design requirements. For subsonic
NLF design, a favourable pressure gradient can be used to suppress TS instability growth
which is the only instability type present. This is done by changing aerofoil shape upstream
and shifting the point of maximum thickness aft. However, this can produce large pitching
moments and thus incur additional trim drag penalties. If too large, this can negate any
benefits found from NLF [61]. A balance between NLF and overall performance is also
needed as designs with highly delayed transition resemble the Stratford profile [62]. This
has a long favourable pressure gradient rooftop and short pressure recovery region with
very little skin friction, but experiences rapid separation and aggressive stall characteristics
[63].

Transonic NLF design is complex as NLF and supercritical wing design considerations dif-
fer. At transonic speeds, wing sweep is required to avoid the formation of strong shocks
and so high wave drag. Sweep also helps to delay shock position, which can trigger up-
stream transition. However, sweep also leads to strong CF instability amplification that can
dominate the transition process and is harder to suppress with passive control methods. On
highly swept wings, NLF is not possible for this reason.
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Increased wing sweep can also lead to attachment line instability and propagation of at-
tachment line contamination, depending on the flight Reynolds number and leading edge
radius. A small leading edge radius helps to avoid attachment line instability and contami-
nation and also reduces the region where leading edge CF growth can occur [9]. However, a
large radius is preferred for supercritical aerofoil design so as to create flow pre-compression
which reduces shock strength and so wave drag. This is obtained by an initial spike in pres-
sure at the leading edge that reflects between the sonic line and aerofoil surface [5]. This ini-
tial pressure spike also helps to reduce leading edge CF instability amplification but makes
it difficult to obtain a favourable pressure gradient downstream so as to suppress TS insta-
bility growth. Additionally, while a favourable pressure gradient is needed, it can lead to
very large pressure recovery which at transonic speeds, results in the formation of a strong
shock, reducing the effectiveness of the laminar flow extension [2].

2.3.2 Transition Location Robustness

A further limitation to the use of NLF is the high sensitivity of transition location to geo-
metric shape, surface roughness and operating conditions. It is common for NLF aerofoils
to be very susceptible to large reductions in laminar length due to leading edge contami-
nation, icing and surface damage [64, 65] as well as steps between panels, rivet bumps and
general irregularities in the roughness and machining quality of the aerodynamic surface
[9, 18]. Significant contamination can divert the transition process from natural transition
and cause secondary instabilities or bypass. Slight changes to surface roughness can cause
larger initial disturbance amplitudes via increased receptivity. As such, flight tests of lami-
nar flow designs require highly smoothed single-piece aerodynamic surfaces, avoiding pan-
els and rivets typically used for aircraft manufacturing. As transition is strongly affected by
free-stream turbulence and environmental noise, lab-based research is difficult to carry out.
Usable transition location estimations are only obtainable using low noise wind tunnels.

Additionally, without consideration for a wide range of operating conditions, NLF designs
are often highly point-optimum with poor off-design performance. As transition is influ-
enced by pressure gradient, changes in Mach number, Reynolds number or angle of attack
can all result in significant movement of the transition location. This can result in a strong
"drag bucket’ shape on an aerofoil’s lift/drag polar such as those found with the NACA
6-series aerofoils, designed for extended NLF [66]. Alternatively it may lead to a low drag
divergence Mach number such as found with the NLF0215F and NLF0414F [67].

It is also found that aerofoils designed for extended laminar flow often perform worse at
fully turbulent conditions than those designed for fully turbulent flow [68]. As such, de-
sign of early NLF aerofoils typically involved comparison of laminar and fully turbulent
characteristics to ensure performance is maintained if laminarity is lost [65, 69, 70].

2.4 Summary
The complex requirements for effective implementation of NLF, and the high sensitivity

of NLF designs to changes in shape and operating conditions, has limited its use on com-
mercial transport aircraft. A key challenge of NLF design is balancing the design practices
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needed for the extension of laminar flow, and the tradition design methods used for re-
ducing form and wave drag [71]. To further complicate the NLF design process, it is also
important that the benefits found with NLF are maintained away from the optimum oper-
ating environment by considering both on and off-design conditions. These benefits also
need to be made more robust to uncontrollable factors such as surface quality, design shape
or environmental conditions.

As the design of NLF aerofoils and wings has complex constraints, requirements and trade-
offs, it is seen as a suitable problem for aerodynamic optimisation. Uncertainty analysis and
robust design are also useful tools in the development of robust NLF as NLF aerofoils and
wings are often highly sensitive to properties affecting transition location. These topics and
their application to NLF design are explored in the next chapter.
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Chapter 3

Approaches to Aerodynamic Design

3.1 Aerodynamic Shape Optimisation

In broad terms, optimisation can be described as the selection of some design variables that,
coupled with state variables, maximizes or minimizes an objective function subject to con-
straints [72]. When applied to aerodynamic shape optimisation, state variables are typically
flight conditions specified in the flow solver. These include Mach number, Reynolds num-
ber, freestream turbulent intensity or lift coefficient. Design variables come from the chosen
parametrisation method and describe the aerodynamic shape being optimised [73, 74]. The
objective function is then an aerodynamic property output from the flow solver. This can
be drag coefficient (Cd), lift coefficient (CI), endurance (ML/D) or some other performance
parameter. Constraints are typically equalities or inequalities applied to geometric sizing or
other aerodynamic properties not directly being considered during the optimisation process.

There are two fundamental approaches to performing optimisation. These are one-shot,
or direct solution of the optimisation problem, and iterative convergence towards an op-
timized solution [72]. One-shot approaches involve analytically solving the optimisation
problem to directly obtain design variable inputs for the optimum objective function value.
This approach is preferable as an exact solution is found quickly with low computational
requirements. In practice, however, it is often not possible to solve the optimisation prob-
lem due to its complex nature, CFD-based problems being an example of this [72]. Iterative
approaches must instead be used for these type of optimisation problems as an optimum
design is found instead via a guided trail and error process. This involves taking an initial
guess at optimum design variable values that are then used to evaluate the objective func-
tion. New values are then selected using the chosen iterative approach and the objective
function evaluate again with the hope improved its value. This process is repeated until no
further improvements are possible and an optimal design is found.

The most important step in this process is the selection of new design variable values. Meth-
ods proposed for this can be categorized into Gradient-based and Gradient-free approaches.
Gradient-based approaches determine the direction of search by evaluating the objective
function first derivative with respect to the design variables whereas gradient-free methods
select new design variables through methods that avoid knowledge of the design space.
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Each approach has its benefits and drawbacks. The choice of an optimisation algorithm
can be affected by the complexity of the objectives, constraints and limits placed on the de-
sign problems. As such, optimisation problems are often described as either single-objective
or multi-objective. Furthermore, choosing between a gradient-based and gradient-free ap-
proach is influenced by the scope of the optimisation problem being addressed. Design
problems are categorised as single-point or multi-point depending on the number of dis-
crete operating conditions considered.

3.1.1 Gradient-Based Optimisation

By using objective function derivatives, gradient-based optimisation algorithms are able
to quickly traverse the design space while continuously improving the objective function
value. As such, gradient-based methods are fast, efficient and widely used for aerospace
optimisation problems [75]. For a gradient-based approach to be suitable for the design
problem being addressed, it must be possible to obtain the first and second order derivatives
of the objective function, and the design space must have low modality [76].

The first order derivative is required to guide the optimisation while the second order
derivative is used to evaluate convergence. Derivatives can be found using either analyt-
ical methods, automatic or algorithmic differentiation, complex-step approximation or via
finite difference [75]. The modality of the design space dictates the ability of the optimisation
algorithm to move towards a global optimum. Due to the gradient dictating search direc-
tion, gradient-based approaches are excellent at finding the global optimum for uni-modal
problems. They do, however, struggle when multiple modes are present. It may be possible
to avoid this issue by restarting the optimisation several times with different design vari-
able values, but escaping the local optima already found remains challenging [76]. As such,
gradient-based optimisation is unlikely to find the global optimum case for a high number
of modes [75].

This illustrates the potential dependence of gradient-based methods on initial design vari-
able values and prior knowledge of the design space. Modality in CFD-based shaped op-
timisation at fully turbulent conditions has been studied by a number of authors and is
considered to be low. Analysis by Yu et al. [77] found that optimisation of a full wing has
a close to uni-modal design space. When transition modelling is included, there is no clear
consensus. Robitaille et al. [78] performed gradient-based aerofoil optimisation with free
transition and found that a global optimum was not reached, suggesting a multi-modal de-
sign space. Youngren [79] performed multi-point aerofoil optimisation with free transition
and reported that the design space resembled a minefield with large spikes in gradient that
cause huge changes in design and transition location.

3.1.2 Gradient-Free Optimisation

Gradient-free methods do not require objective function derivatives and so are typically
easier to implement and avoid both requirements set out for gradient-based optimisation
[80]. They are better suited to highly modal design problems as new design variables are
selected discretely rather than by moving in a favourable direction through the design space.
How new design variables are chosen depends on the specific gradient-free method in use.
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A popular gradient-free approach for aerospace applications [77] is the Evolutionary or Ge-
netic Algorithm [81]. By replicating the selection, mating and mutation processes found in
natural evolution, this approach allows for a global search of the design space with succes-
sive generations combining favourable characteristics until a highly evolved aerofoil design
is found. Another approach receiving strong interest is the Particle Swarm algorithm [82]
that mimics the behaviour of swarming creatures. An initial population of designs is ran-
domly generated throughout the design space. With each iteration, designs move towards
the global optimum value and the best value found by that particular design. The speed of
movement is also randomly scaled to allow for better design space exploration.

As well as avoiding any need for prior knowledge of the design space, gradient-free meth-
ods do not make use of a starting geometry directly [75]. Instead, many candidate de-
signs are selected by randomly generating design variable values between specified bounds.
While an informed selection of these bounds can help to speed up convergence and re-
duce computational costs substantially, it is not a necessity for undertaking optimisation.
This makes gradient-free approaches appealing for optimisation problems where new flow
physics or design requirements are put in place [80].

Although gradient-free methods are better at design space exploration, they typically have a
much larger computational cost compared to gradient-based approaches. This is due to their
slow convergence speed and difficulty in defining appropriate termination conditions [80].
Zingg et al. [80] compared the genetic algorithm against an adjoint gradient-based algorithm
and found the gradient-free approach 6 — 187 and 24 — 200 times more computationally
expensive for single point and multi-point optimisation respectively.

Many applications of gradient-free optimisation make use of viscous-inviscid interaction
(VII) based flow solvers [83-85] which are computationally cheaper but lower fidelity than
RANS-based solvers now widely used. Surrogate models are also used to approximate the
design space and reduce the number of computational flow solutions required [84, 86, 87].
Due to these drawbacks, gradient-free optimisation is best for optimisation problems where
gradient calculation is difficult or if the gradient is inaccurate due to noise or a highly modal
design space [88].

3.1.3 Multi-Objective Optimisation

The simultaneous improvement of multiple objectives is required for many design prob-
lems. Examples of this include the reduction of aircraft drag while increasing cruise Mach
number, or extending laminar flow over the wing while reducing pitching moment. When
objectives are complementary, they are often combined into a single function for optimisa-
tion. When objectives are conflicting, multi-objective optimisation is needed. As it is likely
no single design will be best, the goal of multi-point optimisation is to obtain a range of de-
signs so that a designer is able to select the desired combination of performance properties
[89]. To explore these trade-offs, the selected optimisation method must maintain a diverse
set of non-dominated designs as it progresses [89].

Non-dominated designs are defined as having objective function values that no other design
can simultaneously improve [85, 89]. These are of interest to a designer as they represent an
optimum combination of objectives, whereas for any dominated design, there exists another
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design with an improved value for all objectives [85]. A group of non-dominated designs is
referred to as a Pareto front. While a design may be non-dominated, it may not be on the
global Pareto front and so a Pareto front should be suitably explored to ensure no further
improvements are possible. Figure 3.1 shows an example of multi-objective optimisation
where two objectives f; and f, have been minimised. Dominated designs, non-dominated
designs and the resulting Pareto front are shown.

A diverse range of designs is needed so that the final Pareto front is well defined with many
different designs available for selection by the designer. While obtaining a diverse set of
designs, consideration must also be given to how much of a trade-off between objectives
is acceptable. Pursuit of the optimum for one objective may produce designs that are of
no use to a designer given the poor value of the trade-off objective. Designs of this type
are non-dominated and on the Pareto front, but represent wasted computational resources
given their lack of value as viable designs. The non-dominated designs at the upper left
and lower right of the Pareto front in figure 3.1 may represent such designs given the strong
trade-off seen with the other objective in each case.

Gradient-based methods can struggle with multi-objective design problems, as objectives
must be combined into a single weighted sum. This results in only a small section of the
Pareto front being explored for a chosen set of weights, and prevents any exploration of
non-convex regions [90]. Better exploration can be achieved by scaling the weights but non-
convex areas remain hidden [80]. Figure 3.2 shows this for a two-objective minimisation
problem, where weights w; and w, are selected to obtain the weighted sum k. Designs are
obtained above the non-convex region when w;/w, is small, and below the non-convex
region when wy /wj is large, but never within the non-convex region itself.

Gradient-free methods are well suited to multi-objective optimisation problems as many de-
signs are considered simultaneously, based on both dominance and diversity. This allows
for effective exploration of both convex and non-convex Pareto front regions [80]. Although
well suited to multi-objective problems, the high cost of gradient-free optimisation is a sig-
nificant drawback. Therefore, gradient-based methods may be preferable when the Pareto
front is known to be convex [80].

U Dominated
~o Design Space

fi fi Tl

= Pareto Front
® Dominated Designs

B Non-dominated Designs = Pareto Front s
f2 f2
Figure 3.1: Example of a two-objective minimisation =~ Figure 3.2: Weighted-sum minimisation of a two
with dominated designs, non-dominated objective design problem with a non-
designs and Pareto front highlighted. convex Pareto front.
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3.14 Multi-Point Optimisation

For aerodynamic components operated under constant flow conditions, optimisation at a
single design point is sufficient. In reality, however, this is rarely the case. For the shape
optimisation of aerodynamic surfaces on aircraft, operating and environmental conditions
vary between take-off, landing and during cruise.

Single-point optimisation typically produces extensive performance improvements at the
selected design conditions but almost always comes at the cost of reduced off-design per-
formance [91]. Results of subsonic single-point optimisation approximate a Stratford profile
[62] with very low drag but rapid separation above some critical angle of attack value. Tran-
sonic single-point optimisation of an aerofoil under fully turbulent conditions produces a
shock-free pressure distribution but a strong shock forms at higher Mach numbers [92].

Multi-point optimisation attempts to address this issue by considering performance at sev-
eral operating conditions. This is typically done optimizing a weighted sum of each ob-
jective function over the multi-point samples. The effectiveness of using multiple points is
found to depend on the fidelity of the optimisation problem. As found by Drela [91], if each
design variable used during an optimisation has a small area of influence on the design,
an optimizer will favour obtaining local improvements to each multi-point sample, rather
than a global design improvement. This is referred to as highly modal design and is seen
physically as a wavy aerodynamic surface for shape optimisation problems. The conclusion
drawn by Drela is that the number of multi-point samples required is equal to the number
of design variables used. Further work by Li et al. [93] found that the number of multi-point
samples needed was equal to the design variable number plus one.

3.2 Robust Design

When variations in operating conditions are unknown, hard or impossible to control, an
alternative approach is to reduce the sensitivity of a design to variations in these conditions
[94]. This approach was pioneered by Genichi Taguchi [95] and is the field of robust design.
Although the mathematical definition of robust design differs depending on the approach
used, robust design can be defined as the selection of design variables (x) which result in a
design (f) having low variance (¢?) to variations in some input parameter (z). This is shown
in equation (3.1).

Uzz/b(x_‘u)zf(x,z) dz where W= bia/bf(x'z) dz (3.1)

Multi-point optimisation can be considered as the first step taken towards the design of ro-
bust engineering systems [96]. As performance improvements at one design point can cause
a loss of performance at another, multi-point optimisation is the attempt to improve net or
mean performance so as to ensure off-design performance is maintained. This approach has
seen application to Mach number, lift coefficient and Reynolds number ranges under both
fully turbulent conditions [97-99] and with free transition [20, 78].

The multi-point approach does not, however, take into account deviations in performance
between points. This can be extremely undesirable when input conditions are probabilis-
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tic and highly predictable performance is required. This is the case for aircraft utilising
extended NLF. The fuel savings obtained by NLF come primarily from the reduced fuel car-
ried during flight. This can only be done if the amount of laminar flow obtained on the
aircraft is consistent on all aircraft of this type, and for the same aircraft at different operat-
ing conditions. As such, it is often preferable to sacrifice mean performance if performance
robustness can be improved.

Only considering robustness is also unwise as designs can often be found that are highly
robust due to consistently poor performance. Robust design is therefore a multi-objective
problem where mean performance and performance robustness are conflicting goals [96].
Obtaining a Pareto front between the two objectives is in many cases needed as the level
of robustness required for a particular design problem is typically not initially known [100].
The trade-off between mean performance and performance robustness is illustrated in figure
3.3. This shows the response of three designs to variations in the parameter x where small
output values are desired. Design A has the lowest output at xo but performs worse than
the other two designs with only a small change in x. Design C sees almost no variation in
output with even a large change in x but has a much higher output at xo. Design B represents
a trade-off between low output at x and insensitivity to changes in x.

For many aircraft design problems, addressing robustness by considering performance at
several discrete design points is appropriate. This may be at different stages of a flight en-
velope or with different pre-determined payloads. This is considered deterministic robust
design where specific design conditions are known and the duration at which they are ex-
perienced is used to weight their influence on performance. There are, however, design
problems where conditions are not known in advance and instead take a range of values
described by a probabilistic distribution. Examples of this include passenger weight, fluc-
tuations around the cruise Mach number and altitude, or changes to aerodynamic shape
due to loading. This is considered non-deterministic robust design and is strongly linked
to the field of uncertainty analysis and quantification [96]. Here, the probability of a value
occurring is used to weight its influence on performance.

Figure 3.3: Example designs illustrating the trade-off between mean performance and performance robustness.
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Both approaches are applicable to the design of NLF aerofoils and wings as transition is sen-
sitive to changes in properties that could be considered deterministic such as Mach number
and cruise altitude, but also stochastic conditions such as machining quality, surface rough-
ness and contamination.

3.2.1 Uncertainty Analysis

Uncertainty analysis is the assessment of a systems performance to probabilistic variations
in one or more of its input parameters. Applying a probabilistic input to an engineering
system results in a probabilistic distribution of the output variables. By quantifying this
output distribution, a better assessment of system performance can be made, which in turn
helps with decision making and risk assessment [101].

Uncertainties can be categorized as either aleatory or epistemic [101]. Aleatory uncertainties
are related to physical variables whose probabilistic uncertainty cannot be reduced. Exam-
ples of this type include uncontrollable environmental conditions or the limits of manufac-
turing tolerances. Epistemic uncertainties relate to controllable variables where the uncer-
tainty comes from a lack of knowledge of the design problem. These can arise from the use
of assumptions or simplifications to a model. While more detailed calibration or experimen-
tation may reduce this error, this can be expensive or impossible to perform.

There are many different sources of uncertainty in aerodynamic design. These comes from
three areas: operational conditions, geometry and the modelling method [102]. Operational
conditions vary for different sections of an aircraft’s flight envelope and during each flight
envelope stage. Uncertainty in aircraft weight, flight speed and atmospheric conditions
leads to uncertainty in Mach number, Reynolds number and lift coefficient. Uncertainty in
aerodynamic geometry shape can occur due to differences between design and manufac-
tured shape, manufacturing tolerances, undetected defects, deflection due to loading, shape
change from icing or general shape degradation. Modelling method uncertainty arises from
simplification of geometric shape, choice of modelling constants or predetermined decisions
on flow properties such as transition prescription.

3.2.2 Uncertainty Representation

The first step to performing uncertainty analysis is to determine how the input uncertainty
will be represented [101]. This is an important decision as the choice affects the output
distribution shape [103] as well as the approach and computational cost of carrying out the
analysis. The type of uncertainty representation needed is also strongly influenced by the
type of uncertainty being modelled.

Aleatory uncertainties are usually represented using a probability distribution [101], how-
ever, selection of the probability distribution type is often difficult due to limited experi-
mental data [101]. If this is the case, Aleatory uncertainties may be considered as epistemic
until further information is obtained [96]. If a probability distribution representation is used,
a distribution type needs to be selected. A common choice for aerospace applications is a
Gaussian distribution [19, 104-106] although half-normal and skewed distributions may be
more appropriate depending on the uncertainty variable considered.
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Epistemic uncertainties are difficult to represent using a probability distribution as the in-
herent lack of knowledge prevents an accurate definition of the uncertainty [101]. Highly
inaccurate uncertainty estimations can be made as it may not be known if the uncertainty
is even probabilistic in nature [107]. As such, alternative representations such as an interval
uncertainty can be used. For this, a lower and upper limit are placed on the input variable
and the minimum and maximum output values are found within that limit. This informa-
tion is then used to quantify robustness.

Additional difficulties occur when considering multiple uncertain variables. Treating all
variables as Aleatory may result in artificially low performance variance [107]. This has led
to the development of mixed uncertainty methods [107].

3.2.3 Uncertainty Propagation

The next step to uncertainty analysis is the propagation of uncertainty through the system
of interest to produce an output distribution. This is the complex and computationally ex-
pensive part of uncertainty analysis [101]. When uncertainty is represented by a probability
distribution, uncertainty analysis is concerned with computing mean performance (y) and
performance variance (c2) or standard deviation. Equations (3.2) and (3.3) give the con-
tinuous formulation and discrete approximation of u and 0 where P(x) is the probability
density function (PDF).

1 N

p= [ P(x) dx w L P 62)
1 N

o = [ P(x)(x — p)? d ~ 7 L P) (i = o) @3)

Il
—_

N
where W =) P(x;)
i=1

Possible propagation methods can be placed into three categories: sampling techniques,
quadrature methods and spectral methods [101]. Sampling-based methods are simple to
implement while being highly effective and as such are widely used [101, 103]. Methods
of this type obtain an output distribution by evaluating the modelled system at sampled
input values selected using the chosen sampling strategy. The Monte Carlo method is the
most popular sample-based approach [101] and often used for aerospace applications [96,
106]. With this method, sample points are randomly selected based on the input variable
probability distribution. The appealing characteristic of this approach is that accuracy is
guaranteed when the number of samples is large. For a small number of sample points,

however, the Monte Carlo method has poor convergence due to low sample equidistribution
[108].

Applied to aerodynamics, each sample point represents a flow solution, thus accuracy of the
Monte Carlo method has a high computational cost. Quasi-Monte Carlo methods attempt to
solve this by generating samples using low-discrepancy sequences such as of Sobol or Hal-
ton. An alternative approach is Latin Hypercube, which enforces better equidistribution by
selecting samples within a sequence of sub-ranges [103]. Figure 3.4 provides a comparison
of Monte-Carlo, Quasi-Monte Carlo and Latin Hypercube sampling of two variables.
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Figure 3.4: Example of 100 two-dimensional samples from various sampling strategies.

Quadrature-based approaches use quadrature integration methods to solve the integral forms
of the first and second statistical moment equations. Quadrature integration replaces a com-
plex function which requires integration with a set of basis polynomials whose integral is
easier to calculate. Mathematically, the integral of the output function f(x) within the range
a — b is found using equation 3.4, where w; are weights corresponding to the sample point
x; locations.

I= /b w(x)f(x)dx ~ iwif(xi)dx (3:4)
a i=1

When quadrature integration is applied to uncertainty analysis, it is referred to as stochastic
collocation [101]. This is typically Gaussian quadrature. For this, both the weights and sam-
ple points in equation 3.4 are allowed to move. Furthermore, if the function being integrated
is a polynomial of order 2v — 1, then it is possible to find the exact integral with the correct
selection of both. The sample points are found to be the roots of orthogonal polynomials
pn(x). This orthogonality is shown in equation 3.5 where W(x) is a weighting term. The
weights are found by evaluating the integral of the polynomial passing through the root. As
these polynomials are chosen, this is easy to calculate.

b
i), pi) = [ P WE) =5, 3
where 51']‘:{0 ?f l#]
1 if i=j

Stochastic collocation is excellent at providing the first and second integral of a function
that is or closely resembles a polynomial. The method is however, unsuited for functions
which are not polynomial or contain discontinuities. Furthermore, at times it may be desir-
able to obtain a full description of the output distribution, rather than purely the statistical
moments. This is something that stochastic collocation is unable to provide.

If the output function can be adequately represented as a polynomial and a full probability
density function is required for the output distribution, then a surrogate modelling method
is most appropriate. A popular choice in the field of uncertainty analysis is Polynomial
Chaos (PC) [109]. The core concept of PC is that the output distribution of a quantity of
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interest q(x) with random variations in the input variable x can be defined as an infinite
series of orthogonal basis polynomials ¢; with respect to an alternative random variable
{, scaled with deterministic coefficients x;, as shown in equation 3.6. In practice, a finite
number of polynomials Q are chosen based on the number of uncertain inputs 7 and the
desired order of basis polynomial p.

o0 Q
q(x) =) xii(Q) = ) xipi({) (3.6)
i=0 i=0
where Q = (p j— T:)' -1 (3.7)
p! n!

Hermite polynomials of order n are used for Gaussian input variables, which take the form
shown in equation 3.8. This is because the input distribution is typically Gaussian which
matches the weighting function of the Hermite polynomial inner product, as shown in equa-
tion 3.9.

H,(0) = (—1)" dgne (3.8)
(Hy H) = [ H(©H(©)W() g 39)
where W(Q) = ! e‘g (3.10)

V2n

To calculate the deterministic coefficients x;, the Galerkin projection is used, where the inner
product of each order polynomial is calculated, as shown in equation 3.11. This can be car-
ried out using an intrusive and non-intrusive approach. As CFD solvers are complex and
treated as a black box, the non-intrusive approach (NIPC) is preferred [109]. For this, the
integral of the original function g(x) is found using Gaussian quadrature described previ-
ously.

GO0 H(Q)e T dg (3.11)

YTURQ) () e
As NIPC requires a low number of samples to construct the surrogate response surface due
to the use of Gaussian quadrature, it is highly efficient for functions of polynomial form.
Using Polynomial Chaos methods to represent non-polynomials is difficult and an active
research area [109]. Un-smooth or discontinuous functions are not modelled well and sam-
pling based approaches may be better suited [110].

_ (xHi(0)) 1 /°°

3.3 Application to Natural Laminar Flow

There are many examples of NLF aerofoil and wing optimization under deterministic flow
conditions, using both gradient-based and gradient-free approaches. Gradient-based al-
gorithms require derivatives of the solver and transition model with respect to the design
variables. The simplest method of obtain these is via finite difference. An early use of
this was by Dodbele [111] who optimized a NLF aerofoil to extend laminar length. In this
study, a VII-based flow solver was used with an eV transition model to calculate objective
function values. For derivative calculations, the eN model was replaced with Granville’s
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empirical transition criteria to further reduce computational costs. Studies by Rashad and
Zingg [112] and Robitaille et al. [78] are more recent examples of NLF design using gradient-
based optimisation with derivatives calculated using finite difference. Both performed drag
minimization of a NLF aerofoil using a RANS-based flow solver. Rashad and Zingg uses
a simplified eN method for transition prediction while Robitaille et al. used the y — Reg;
transport equation model.

The more popular method for calculating the objective function gradients is via adjoint sen-
sitivity analysis. Amoignon et al. [113] used this to find derivatives for a VII-based flow
solver with PSE transition model and applied the method to NLF aerofoil optimization.
Driver and Zingg [114] used a VII-based flow solver and eN transition model to calculate
transition locations which were then used to fix transition in a RANS-based flow solver.
Both solvers were used to calculate terms within the adjoint equation. Lee and Jameson
[115] carried out NLF aerofoil and wing optimisation with derivatives from a RANS-based
flow solver and €™ transition model, found using the adjoint approach. Transition analysis
of the wing was performed on two-dimensional boundary layer sections taken from a full
three-dimensional flow solution. Rashad and Zingg [20] obtained derivatives for a RANS-
based solver and simplified eN model using the adjoint approach while Khayatzadeh and
Nadarajah [116] formulated the adjoint for a RANS-based solver and v — Rep transition
model. Both studies applied this to NLF aerofoil design.

Many of these gradient-based studies focus on coupling of the transition model with the
flow solver, and so few consider off-design performance or robustness. The study by Ro-
bitaille et al. [78] looked at designing a morphing NLF aerofoil for operation at a range of
conditions. This involved performing multi-point drag minimizing over a range of Mach
and lift coefficients to find a baseline static design with good off-design performance. The
morphing section of the aerofoil was then optimized at each single-point independently to
find different morphed shapes for minimum drag at those conditions. Part of the work car-
ried out by Driver and Zingg [114] focused on the effect of premature transition on a NLF
aerofoil. For this, several optimization cases where run with identical starting profiles and
operating conditions and but with different objective functions. These were derived from
a weighted sum of lift over drag found with free transition and with fully turbulent flow.
Further work by Rashad and Zingg [20] also generated a Pareto front using this approach
after having performed multi-point optimisation of a NLF aerofoil. To ensure that the fi-
nal design found during the optimisation is insensitive to variations in cruise conditions, a
range of aircraft weights, Mach numbers, Reynolds numbers and lift coefficients were con-
sidered. Optimization of a NLF aerofoil over a multi-point range of critical N-factors was
also carried out.

Both genetic algorithm and particle swarm gradient-free approaches have seen application
to NLF design. Gardner and Selig [83] used a genetic algorithm to carried out both inverse
and direct design optimisation of aerofoils with free transition using a VII-based flow solver
with simplified eN transition model. Zhang et al. [117] performed drag minimization of
NLF aerofoils using a genetic algorithm with RANS-based flow solver and y — Rep; tran-
sition model. A particle swarm algorithm was used by Khurana and Winarto [118] and
Wickramasinghe et al. [119] who both looked to minimise drag on a UAV aerofoil with free
transition using a VII-based flow solver and simplified ¢V transition model.
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Several studies use surrogate models to avoid the high computational cost of gradient-free
optimisation. Cameron et al. [84] used kriging to perform cheap genetic algorithm optimisa-
tion of a high-altitude long endurance UAV using a VII-based flow solver and eV transition
model. Studies by Fan et al. [87] and Han et al. [120] both employ surrogate models to re-
duce the cost of optimisation using a RANS-based flow solver with coupled eV transition
model. In both cases, initial samples are taken and a response surface constructed. An opti-
mization algorithm then locates promising areas of the surface for additional sampling until
convergence is obtained. This approach is used for a combined inverse and direct design of
NLF aerofoils by Fan et al. and for direct design of NLF aerofoils and wings by Han et al.

Some consideration for off-design conditions is made within the gradient-free and surrogate
model assisted NLF optimisation studies mentioned. Gradient-free optimization carried out
by Cameron et al. [84] explored the trade-off between drag at two primary operating condi-
tions, cruise and loiter, of a high-altitude long endurance UAV. Khurana and Winarto [118]
also optimised a high-altitude long endurance UAV but considered two lift coefficient val-
ues to obtain good performance over a desired operating envelope. Zhang et al. [117], after
having optimized a number of NLF aerofoils with various constraints on favourable pres-
sure gradient, analysed each design over a range of attack angles to compare performance
robustness. Han et al. [120] also performed off-design analysis of an optimized NLF wing
over a range of lift coefficients, Mach numbers and critical N-factors. Multi-point optimisa-
tion was then carried out at two Mach number and attack angle combinations.

For non-deterministic optimisation, a large amount of research has been applied to fully
turbulent aerofoil design, mainly focusing on uncertainty in Mach and Reynolds number
[93, 96, 121-128]. Much less research has been carried out applying robust analysis and op-
timisation to NLF designs with free transition. Zhao et al. [104] looked at improving C; max
robustness to uncertainty in transition location which was treated as a stochastic property.
Mean and standard deviation of C; .« are found at each iteration via polynomial chaos un-
certainty analysis and optimisation is carried out to improve both. Jing et al. [19] performed
optimisation to independently improve drag robustness to Mach and C; uncertainty with
free transition. Due to the large number of flow simulations required, a surrogate model
was used with a particle swarm optimisation algorithm. Zhao et al. [105] also improved ro-
bustness of drag to Mach number uncertainty for a NLF aerofoil via genetic algorithm based
optimisation using surrogate models.

3.3.1 Gap Within the Existing Research

The vast majority of research on the robust design of NLF aerofoils and wings only consid-
ers net performance over a set of discrete design points. Typically this is done for variables
such as Mach number, Reynolds number or lift coefficient [20, 78, 84, 117, 118, 120]. These
variables are also often considered in studies using probabilist uncertainty to represent de-
sign conditions [19, 105]. As a result, research on NLF robustness to uncertainty in surface
and flow quality has been very limited. Uncertainty in flow quality can be represented by
varying free-stream turbulent intensity when using a RANS-based flow solver and v — Reg
transition model. This was done by Salahudeen and Baeder [106], who performed uncer-
tainty analysis of a NLF aerofoil with a probability distribution applied to free-stream tur-
bulent intensity.
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Uncertainty in both flow and surface quality can be represented by varying the critical N-
factor used in the eV transition model. This is due to the dependence of boundary layer
disturbance amplitude on turbulent intensity and surface roughness, wear and contamina-
tion. As was discussed in section 2.1.5, increasing turbulent intensity or surface roughness
results in boundary layer disturbances with larger initial amplitudes. As initial amplitude
is larger, less amplification is required before secondary instability develops and transition
occurs. Therefore, increasing turbulent intensity or surface roughness results in a lower crit-
ical N-factor. It then follows that critical N-factor can be altered to simulate variations in
turbulent intensity and surface roughness.

Only a few applications of this approach can be found within the literature. Deng and
Qiao [129] used an inverse design approach to match an N(x) envelope designed to limit
the effects of varying critical N-factor. The target N-factor envelope featured little growth
over most of the chord length before growing quickly at the desired point of transition.
This ensures that as critical N-factor is reduced, transition remains at approximately the
same position. Rashad and Zingg [20] optimized a NLF aerofoil at several critical N-factors
and compared the performance of each at off-design N-factor values. A key finding of this
study was that optimizing for a reduced N, was no guarantee of performance at higher N,
given that extended laminar flow can increase the risk of flow separation. The authors then
carried out multi-point optimisation over three N, values to ensure aerofoil performance
is maintained at off-design N-factor values. Han et al. [120] performed optimisation of a
NLF wing using N, values lower than expected to account for uncertainty in real flight
conditions. The original and optimized wings were then analysed at different critical N-
factor multi-points to assess the robustness of each design. Both designs saw no reduction
in performance when critical N-factor was increased from that used at design.

Given the wide use of linear stability and the eV transition model within the aerospace in-
dustry, the limited amount of flight test date available and high sensitivity of transition
location to variations in surface and flow quality, the design of NLF aerofoils should include
analysis with uncertainty in critical N-factor. The work carried out in this field so far has
been limited and only considers deterministic analysis at discrete design points. A clear gap
within the field is thus the application of uncertainty analysis and robust optimisation to the
design of NLF aerofoils and wings with uncertainty in critical N-factor.

3.4 Obijectives of this Work

The importance of NLF robustness to surface and flow quality, the probabilistic nature of
these two variables and the current gap within the literature on this topic, have been high-
lighted. The overall goal of this work is therefore to study the effect of uncertainty in surface
and flow quality on the performance of NLF aerofoils and wings by varying the critical N-
factor used in the e transition model. To achieve this, the objectives of this work are to:

¢ Quantify the robustness of aerofoil performance to uncertainty in critical N-factor,
used to model uncertainty in surface and flow quality. This is done to investigate
aerofoil performance sensitivity to uncertainty in critical N-factor, to highlight factors
effecting robustness and determined any links between deterministic and stochastic
performance.
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e Carry out optimisation of NLF aerofoils at subsonic and transonic flow conditions

with uncertainty in critical N-factor. This is done to determine the effectiveness of ro-
bust optimisation of NLF aerofoils, highlighting any trade-offs between deterministic
and stochastic performance and the design methods used by the optimiser to improve
robustness.

Expand the design problem to consider NLF aerofoil performance and robustness with
uncertainty in critical N-factor over a range of additional flight conditions. This is
done to examine how performance and robustness with uncertainty in critical N-factor
is effected when considered at other off-design flight conditions, and to assess any
differences in aerofoil design as a result.

Quantify the robustness of wing performance to uncertainty in critical N-factor, so
that optimisation of NLF wing sections can be carried out to improve performance
and robustness with critical N-factor uncertainty. This is done to examine how the
inclusion of three-dimensional instability affects performance, robustness, trade-offs
between the two and the aerofoil designs generated by the optimiser.



Chapter 4

Tools and Methods

4.1 Optimisation Framework

A python-based optimisation framework has been developed for this work. This is able to
perform multi-objective, multi-point and robust aerodynamic shape optimisation with geo-
metric and flow variable constraints and supports parallel processing. An overview of the
framework is shown in figure 4.1. A genetic algorithm is used to drive the optimisation
process. By replicating the selection, mating and mutation process found in natural evo-
lution, a genetic algorithm allows for a global search of the design space with successive
generations combining favourable characteristics until a highly evolved aerofoil design is
found. The use of a gradient-free optimisation algorithm avoids the need to obtain flow
solver and transition model derivatives, and works well for highly modal design problems

or multi-objective problems with non-convex Pareto fronts.

Start

Initialise Population

Unique Design
Contraints Satisfied

o

—>

Evaluate Fitness

'

Selection

Converged

Mating/Mutation

Unique Design

Contraints Satisfied

Figure 4.1: Optimisation workflow.
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At the time of development, the author found there to be no widely used or well docu-
mented implementations of a genetic algorithm optimiser available in python, which was
the programming language selected for the project. The Distributed Evolutionary Algo-
rithms in Python (DEAP) package [130], however, provided components for the construc-
tion of evolutionary algorithms and was found to be well documented and used by other
researchers publishing in peer reviewed journals.

An initial population of N, designs are first initialized by random generation of design
variables within the specified bounds. During population generation, each design is checked
against any geometric constraints in place and is also checked for uniqueness within the
population. This ensures that designs can only exist once within the optimisation history.
The fitness of each design is then evaluated via calls to the flow solver. The evaluation of
every design at each design point can be carried out in parallel. Convergence of a design
requires that the flow solver is able to converge at all design points. If this is not the initial
generation, these new designs are then grouped with the current generation’s population,
resulting in 2 x Npop designs.

Designs from this combined pool are then selected using the non-dominated sorting method,
presented as part of the NSGA-2 optimisation method [131]. This involves sorting the pop-
ulation into Pareto fronts, depending on their dominance, and then selecting N, designs
based on their Pareto front rank and diversity within their rank. Tournament selection based
on dominance is then used to choose designs to be mated or mutated. This involves ran-
domly selecting two designs and comparing dominance. If neither design dominates the
other, their diversity within the Pareto front is used.

Mating is done using bound simulated binary crossover [132] with a 50 percent chance of
occuring. The mating process is applied variable-by-variable to two parent designs. For
each design variable index selected, a random number u is generated between 0 — 1. This is
used to obtain two spread factors 1 and B, using equation (4.1), where P(p) is a probability
distribution.

1 (A 1 B2
u=3 [ PBap  u= [T P(p)dp (@.1)
C[os(+1)p p<1
where P(B) = {0.5(17 N 1)ﬁ £>1 (4.2)

The values P; and P, are obtained using equations (4.3) where the spread factors 5, and f;
are based on the upper and lower design variable bounds x, and x; specified. Once 1 and
B2 have been obtained, child design variable values are obtained using equations (4.4).

p _
P = / Ip(ﬁ)dlg where g; = pitp2—2%
0

lp2 — p1l (4.3)
,Bu — ’
p, = / P(B)dp  where B, = 2 = p1tpa
0 P2 — pl

1 =05((p1+p2) —Bilp2—p1)) 2 =05((p1+p2) + Ba(p2— p1)) (4.4)

Bound polynomial mutation is used [133, 134] to modify a single parent design based on a
polynomial probability distribution. This is again done per design variable where each has
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a 50 percent chance of being selected. For a selected parent variable, a child variable value
is obtained from equation (4.5) using a random value u selected between 0 — 1.

— <0. 2urTt —1 <0.
fe p+o(p—x) x<05 where & — 24" 1 u<05
p+o(xu—p) x>05 1-(2(1-1))"" u>05

1
1

(4.5)

As with population initialisation, mating and mutation is rerun if the resulting offspring
do not satisfy the geometric constraints or are not unique within the optimisation history.
A limited number of mating attempts is allowed before mutation is carried out instead as
it may not be possible to produce a constrained or unique offspring through the mating
process. This limit is 4x the design variable number.

For both mating and mutation, the crowding number # controls how similar offspring are
to their parents and can be scaled during optimisation to aid in design space exploration.
During this study, 7 is linked to the current generation 7n; and overall generation number
n; by the relationship given in equation (4.6). As the optimisation progresses, the crowding
number increases from 0 — 7max. Smaller values mean less similarity between parent and
child, allowing the optimiser to initially spread out over the design space before converging
on the final Pareto front designs.

n;
11 = Hmax 771‘ (46)

Constructing an optimisation framework from individual components, rather than using
an off-the-shelf tool did represent a large time investment early in this study. However, it
was felt to be beneficial. Having access to the inner workings of the optimiser allowed for
easy parallelisation of the code, as well as tailoring of the workflow to the problem being
addressed. One such example of this was moving the assessment of geometric constraints
and design uniqueness prior to the analysis of design fitness. This represented a change
within the population generation, mating and mutation methods that avoided carrying out
unnecessary flow solver runs, saving substantial computational time. The author also feels
that the knowledge gained by developing a tool rather than using off-the-shelf or black box
alternatives cannot be understated.

4.2 Aerofoil Parametrisation

The optimisation process selects new design variable values that, when used with the se-
lected parametrisation method, define the shape of the optimised aerofoil. There are vari-
ous approaches to aerofoil parametrisation that can be grouped into two distinct categories:
constructive and deformative [135].

Constructive approaches directly fit parametrisation variables to a starting aerofoil shape.
This aerofoil and deformed variants can then be derived from these variables alone. Defor-
mative methods take a starting aerofoil and apply deformation using a perturbation profile.
The parametrisation variables therefore control the perturbation shape rather than the final
aerofoil directly. Given the use of a genetic algorithm, it is desirable to use a low design
variable number as this directly affects the number of individuals required per generation.
The ratio of population size to design variable number (N,) depends on the problem being
addressed and vary from 0 < Npop < 2 X Ny, [136] to Npop = 10 X Ny, [137].
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A deformation approach is used in this study as it allows for optimisation of a complex
starting aerofoil using a low number of design variables. New aerofoil shapes are found via
summation of the original aerofoil and a perturbation profile, represented mathematically
in Eq. (4.7) where z, is the original z coordinate, z, is the perturbation z coordinate and u is
the chord length position x/c.

z(u) = zo(u) +zp(u) 4.7)

The Class Shape Transformation (CST) method developed by Kulfan [138] is used here to
parametrise the perturbation profile and generates the z, term. This is shown in Eq. (4.8)
where A, is the trailing edge thickness, C(u) is the class function and S(u) is the shape
function from the CST method.

zp(u) = C(u) S(u) + (u Az,) (4.8)

The class function is defined in Eq. (4.9) where n; and n; are exponents that determine
the basic shape of the CST fitting. The values n; = 0.5 and n, = 1.0 are used to define
a round-nosed aerofoil with finite trailing edge gradient as the CST is commonly used for
constructive aerofoil parametrisation. For this deformative application, the values used are
np=np, =1.

Clu)=u™ (1 —u)™ (4.9)

The shape function given in Eq. (4.10) contains the CST coefficients, A,, used as design
variables during the optimisation. These control the magnitude of the polynomial curves at
their peak which each scale the class function and gives the resulting perturbation profile.
The number of design variables available depends on the number of polynomial curves
used.

S(u)=)y_ A, mw (1—u)"" (4.10)

4.3 Computational Solvers

Undertaking uncertainty analysis can be computationally expensive, due to the potentially
high number of sample points required to accurately propagate certainty through a model.
At its essence, uncertainly analysis is an increase in the dimensions of the problem and so
suffers from the well known curse of dimensionality. This is compounded when the problem
is extended so that uncertainty analysis of one variable is assessed at multiple conditions of
another, such as critical N-factor uncertainty at a range of Mach numbers, lift coefficients or
Reynolds number combinations

Uncertainty analysis is also multi-objective and so optimisation is best performed using
gradient-free methods. These too are computationally expensive compared to gradient-
based approaches more popularly used for aerodynamic optimisation. Consequently, low
cost flow solvers are required for the aims and objectives outlined. This excludes the use
of RANS-based flow solvers as these are highly accurate but computationally expensive.
Instead, VII-based flow solvers have been selected for this study.
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4.3.1 Viscous-Inviscid Interaction

The key observation enabling use of the viscous-inviscid interaction approach to modelling
flow is that when Reynolds number is sufficiently large, viscous effects are only found
within a thin shear layer close to aerodynamic surfaces within a flow. As such, a flow field
can be split into an inviscid flow region and the viscous shear layer [139]. The benefit of this
is that with the assumption of inviscid flow, fluid dynamics equations can be greatly simpli-
fied so as to allow for faster calculation. As such, each flow regime is solved using a different
model and the two flows combined to produce a solution over the entire domain. While it
is desirable for the two flow regions to be independent, typically some interaction between
them occurs due to the presence of wall curvature leading to a stream-wise pressure gradi-
ent and boundary layer thickness changes [139]. An iterative solution process between the
two regions is therefore required.

An important decision is the location where the two flow regions are split. While the outer
edge of the viscous sheer layer is logical, this is rarely selected as it changes during the
solution process. The preferred approach is instead to model the inviscid flow down to
the aerofoil surface, with a modification of either the surface shape by some displacement
thickness or the surface boundary condition via the introduction of a transpiration mass
flow rate. One of these alterations is needed to account for the change in mass flow rate
caused by the presence of the viscous shear flow. The latter approach is most often used as
changes to the boundary conditions avoid the need to re-mesh the inviscid flow-field [139].

Once an approach is selected, the general workflow of a VII-based flow models is as follows:

1. First the external inviscid flow region is solved using zero transpiration mass flow rate
or the original aerofoil geometry shape.

2. This is then used as the boundary condition for the viscous shear layer solver

3. Once a viscous solution is found, the boundary layer displacement thickness or tran-
spiration mass flow rate is calculated

4. This is then used to re-run the inviscid solver

This process is repeated until both inviscid and viscous flows converged. When transi-
tion modelling is included, laminar and turbulent boundary layer methods are used, with
the laminar boundary layer solution passed to the stability analysis code and the predicted
transition location returned.

4.3.2 Subsonic Flow Solver

For analysis of subsonic flows, the flow solver XFOIL was used. This is a two-dimensional
VII-based solver developed by Drela [140]. Although considered a low fidelity solver, given
its use of VII over the Reynolds Averaged Navier-Stokes approach, it is a highly reliable tool
when operated within its limitations and has been used extensively in industry.

Inviscid flow is modelled within XFOIL using the panel method, where a stream function
for the flow-field is constructed by superposition of the free-stream flow with vortex and
source sheets over the aerofoil surface and a source sheet along the aerofoil wake. The
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surface and wake are discretised into Ns and Ny, panels respectively, with vortex strength <
varying linearly between panel nodes and source strength ¢ remaining constant over each
panel. This is shown in figure 4.2. If a blunt trailing edge is used, an additional panel is used
with uniform source and vortex strengths org and yrg. This is defined by equation (4.11)
where § and f are unit vectors normal and tangential to the trailing edge surface. This is also
shown in figure 4.2.

a2 1 .
§ x f| YTE = E(% — YN, |8 - B (4.11)

1
OTE = 5(71 - VNS)

Following discretisation, the stream function can be evaluated at any (x, y) flow field posi-
tion using equation (4.12). The terms uo and v are the free-stream velocity components
in the x and y directions. The terms ", ¢~ and 7 are unit stream functions given by
equations (4.13), (4.14) and (4.15) in terms of local x and y coordinates, %, /2, 1,2, r1/2 and
61/2. The relation between these and the (x, y) point selected can be seen in figure 4.2.

1 Ns""Nw_l
P2 y) = ooy — VeoX + Z% ¥ (x,y)20;
]:
1N o o pa) 4ol R (4.12)
+ o LW (1) 9] () (i — )
j=1
1 g a 7 Y+ A 7
+ 5= (¥R ls < H+ 43T (e w)ls- 1) (11 — 7o)
1p]7+(x,y) =X lnr—XInrn+ 35— 3+ 70 —62) (4.13)
_ 1 1
1/)17 (x,y) = [(fl + f2)¢]7+(x,y) +7r3lnry —rilnr + = (% — fg)] — (4.14)
2 X1 — X
97 (x,y) = %262 — %101 +7In 2 (4.15)
2

If a stream function value ¢ is specified at each surface node, then a system of n linear
equations can be obtained. This is shown in equation (4.16), where a;; and b;; are coefficient
matrices determined by the unit stream functions ¢]7+, gb].% and ¢7.

N; Ns+Nyp—1
Z aijYj — Yo = Ui + VeoXi — Z bZJO'] forj=1— N; (4.16)
= =

Combining these with the Kutta condition defined in equation (4.17) results in a system of
n + 1 linear equations.
T1+7N, =0 (4.17)

For aerofoils with a sharp trailing edge, equation (4.16) for i = Nj is replaced with a value
extrapolated from the upper and lower panels, as given in equation (4.18).

(13 —=272+71) — (/N2 —27N-1+IN,) =0 (4.18)

The viscous flow is modelled using the compressible integral momentum and energy shape
parameter equations (4.19) and (4.20). The later is obtained by combining the former with
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Figure 4.2: Schematic of the panel discretisation method used by XFOIL [140].

the kinetic energy thickness equation. In these equations, ¢ is the stream-wise coordinate
and u, and M, are the boundary layer edge velocity and Mach number. H, H*, H, and 0 are
the boundary layer shape factor, kinetic energy shape factor, density shape factor and mo-
mentum thickness. Cyy is the skin friction coefficient while Cp is the outer layer dissipation,
or entrainment, coefficient.

iad 0 du _ Cas

R 2 —_— pu—
i +(2+H - M?) T 5 (4.19)
dH* . 0 du. . Cay
97§+(sz+1&1 (1+H))u—e% =2Ce — H" -~ (4.20)

A modified version of the compressible shear stress lag equation (4.21) from Green et al.
[141] is also used. The modification is intended to improve predictions of lift and drag close
to stall. In this equation, § and Hj are boundary layer thickness and kinematic shape factor
and C; is the sheer stress coefficient. The subscript EQ indicates equilibrium flow, defined
as a flow where the kinematic shape factor does not vary in the stream-wise direction [141].

4 [C H,—1\*| 1d
A Zk e (4.21)
36% | 2 6.7 Hy u, dc
For regions of the boundary layer with laminar flow, equation (4.21) is replaced with equa-
tion (4.22). Here, N is natural log of the maximum amplification ratio obtained from the

two-dimensional incompressible Orr-Sommerfeld equation. dg? is found for the Falkner-

6 dC;
C. d¢

=56(Cl3 - %) +2s

TE Q

Skan family of aerofoils while the empirical relation ‘ﬂ{—N@ is found by analysing the same

aerofoils at a range of shape parameters and disturbance frequencies [57]. Once ddRI\!e has
been calculated along the aerofoil, transition is specified at the stream wise position where
N equals some user defined limit. N is calculated using equation (4.23). This represents a

simplified eV transition model.
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dN dN H dRey

Fra m( k) iz (Hi, 0) (4.22)
¢ dN
N= [ iR 9 (4.23)

The key variables used to define the boundary layer are 6, §* and C, with M and R, specified
and u, obtained from the inviscid solution. To reduce the problem to three equations with
three unknowns, all additional variables are defined as functions of the known and defined
variables. A summary of the dependencies for each additional term are shown in equation
(4.24). The exact formulas behind each of these expressions when applied to laminar and
turbulent boundary layers are presented by Drela and Giles [57].

Hk = Hk(H, M) CTEQ = CTEQ(H*,H, Hy, Us) (4.24)
H*(Hy, M, Rep) Cas = Cas(Hi, M, Reg) (4.25)
(H ) Cg = (Cdf/Z)us + CT(l — US) (4.26)
u - LI( ,H, Hy) (4.27)

Equations (4.19), (4.20), (4.21) or (4.22) are discretised along the panels, resulting in three
non-linear coupled equations for each. The wake is treated as a single viscous sheet with
constant 0 and 0* at each section. Interaction between the inviscid and viscous flow is done
using transition mass flow. The exact method used for coupling of the inviscid and viscous
models and solving of each can be found in Drela [140]. Additional corrections are included
to account for weak compressibility effects and mild separation.

4.3.3 Transonic Flow Solver

For analysis and optimisation at transonic conditions, the VII-based flow solver CVGK [142]
was used. This is derived from BVGK which was developed by the former Royal Aircraft
Establishment. CVGK is made up of a number of models combined to produce a full VII-
based solver with transition modelling capability. Figure 4.3 shows these models and the
workflow used to obtain a converged solution from them.

Inviscid flow is modelled within CVGK using VGK, an implementation of the Garabedian
and Korn [92] (G&K) full potential flow method with additional improvements (as outlined
by Lock [143]). The full potential flow equation for steady compressible two-dimensional
irrotational and isentropic compressible flow is shown in equation (4.28), where u and v are
velocity components in the x and y directions, ¢ is a velocity potential and a is the speed of
sound, calculated using Bernoulli’s equation.

o*¢p o*¢p *¢p

2_ 2 2_ .2

(a®—u )8x2 uvaxaer(a v )ayz 0 (4.28)
This is solved over a modified grid obtained by mapping the exterior of the aerofoil onto
the inside of a circle using Sells transformation [144]. This results in the farfield boundary
being located at the circles origin (r = 0) and the aerofoil surface at the circles circumference
(r = 1). The transformation results in good clustering of cells in region of high curvature on
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Figure 4.3: Flow chart of the individual components used within the flow solver CVGK.

the aerofoil, such as near the leading and trailing edges. The G&K method is post-processed
within Callisto so that the inviscid flow solution can be applied to swept and tapered wings
[142]. This is done using the equivalence laws derived by Lock [145]. The inviscid flow is
then assumed to not vary significantly in the spanwise direction.

Viscous flow is modelled in CVGK using Callisto, an implementation of the Lag-Entrainment
integral method for compressible flow as given by Green et al. [141]. Thwaites” integral
boundary layer method with a compressibility correction is used for the laminar portions of
the flow. Callisto solves these equations in the line of flight direction using non-orthogonal
¢ and 7 coordinates. These are shown in figure 4.4 where the line-of-flight section is defined
by points AB on an idealised swept-tapered wing with an assumed locally constant cross
section and twist. The leading and trailing edges of the wing converge at an origin point O
outboard. As can be seen, { is tangential in the line of flight direction while 7 is aligned in a
direction towards the origin point at an angle A.

Within this coordinate reference frame, the compressible stream-wise momentum integral
equation is given by equation (4.29), where the coefficients are defined in equations (4.30)
to (4.35). As with the equations used for viscous flow within XFOIL, 0 is boundary layer
momentum thickness, 1, and M, are the boundary layer edge velocity and Mach number, H
is shape factor, H, the density, or compressible shape factor and Cyy is again the skin friction
coefficient. In addition, kT represents curvature in the line-of-flight x axis related to tapering
of the wing, B represents the angle between the external and limiting streamline (very close
to the wall) and the different f variables represent three-dimensional shape factors. Finally,
¢ is the angle between the life-of-flight and inviscid streamline.
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Figure 4.4: Non-orthogonal coordinate frame used by Callisto as part of CVGK (Modified from [146]).
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The compressible normal or crossflow momentum integral equation is given in (4.36), where

the coefficients are defined in equations (4.37) to (4.41).
d
g

Ny = tan(p) (cos(ip) f1 — sin(y) tan(p) fa)
0Ny

(Ng Nu, Ng Nu)

oH,
ONp ,
ap °

dH

Ny, = 50 = tan(B)6 [cos(lp)dﬁp —sin(¢) tan(B) —=—

Ng = —

N, = [2 sec(y) tan(B) f1 — sin(y) (1 + H+ tanz(,B)f4) —

Np = sin(A) tan(B) [Czdf + x76 (sin(y) f1 + cos(y) tan(p )f4)} — k76 cos(A) Ny
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The entrainment equation is given in (4.42), with coefficients defined in equations (4.43) to
(4.47). In these, Cf is the entrainment coefficient and Hj is the entrainment shape factor.

(o En, Es Eu)- ddg 0 H, B u)=E (4.42)

Eg = cos()H; + sin(y) tan(B) f5 (4.43)

Ey, = gﬁﬂpe _ [cos(zp)flg 1 sin(y) tan(ﬁ);ﬁ ] (4.44)
Es = aaije — [sin(y) sec?(8)f3] 0 (4.45)

Ey = [sec(p)Hy — M2Ey) g (4.46)
Eo = sin(A) [CE + 7 (sin (e )Hy — cos(y) tan(B) f3)] — k76 cos(A)Eg (4.47)

The lag equation is transformed into the ¢, # non-orthogonal coordinate system, as shown
in (4.48). The coefficients are defined in equations (4.49) to (4.52). In these, Cr is the entrain-
ment coefficient, C; is the shear stress coefficient and H; is the entrainment shape factor.

dCE due
Letgs =Ll LG (4.48)
Lg = cos(¢)6 (4.49)
Ly = cos(¢)F [1 + 0.075M§118i‘2} uﬂ (4.50)
Lo = Fsin(A) | =25 (,/c oo — AV/C ) 4 (8o (4.51)
H+ H; TEQ ° U, 9s EQ
F= Ce (4.52)

1.2(0.01 + Cg) (1 + 0.1u2)

An equation for the transpiration velocity V, is also included. This is shown in (4.53) with
coefficient defined in equations (4.54) to (4.56).

(W@ WHP W[; WU) ddé (9 Hp :B ue) — sin(A)% =Wy (453)
Wy = cos(¢)H — sin(¢) tan(B) f3 (4.54)

Wp, = 311/_1\/00 = —sin(¢p) sec?(B) 30 (4.55)

Wu = <COS(lIJ)MegZ> (4.56)

Laminar boundary layer is modelled in Callisto using Thwaites integral method with a com-
pressibility correction. When using this, the transpiration velocity is obtained by approxi-
mating using the equation for an infinity swept wing and the shape factor found using
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lookup tables. These equations, and a detailed overview of the solution method for the
viscous flow equations, can be found in Atkin [146].

For transition prediction, VGK is coupled with the compressible laminar boundary layer
equation solver BL2D and CoDS which is an implementation of the eN method for two-
dimensional and quasi-two-dimensional flows [147]. For quasi-two-dimensional flows, the
dual envelope eV method is used where both Tollmien-schlichting and Crossflow instability
critical N-factor values can be specified as well as an instability interaction region. CVGK
has been extensively used for transonic wing design in the UK aerospace industry and vali-
dated at swept and un-swept transonic flow conditions [35, 142].
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Chapter 5

Critical N-factor Uncertainty Analysis

To enable the robust design of NLF aerofoils, the effect of critical N-factor uncertainty on
aerofoil performance first needs to be investigated. To undertake this, selection of a suitable
uncertainty analysis methodology is made and its accuracy assessed. Uncertainty analysis
is then carried out on two aerofoil test cases. The first aerofoil is analysed at subsonic con-
ditions over a range of lift coefficients while the second is analysed at transonic conditions
over a range of Mach numbers. The objectives of this work are to:

e Explore how critical N-factor uncertainty affects aerofoil performance uncertainty
e Determine the conditions for robust and unrobust aerofoil performance

e Determine any links betweens deterministic and non-deterministic performance

e Assess how sensitive the stochastic analysis is to the input uncertainty distribution.

5.1 Methodology

5.1.1 Uncertainty Representation

There are several uncertainty representation methods available. A probability distribution
is the best choice for a precise description of uncertainty, while an interval representation
is preferable if little information about the uncertainty is known. Due to the small amount
of published flight test data, limited information is available for an accurate probabilist de-
scription of critical N-factor uncertainty. Under such conditions an interval representation
may be more appropriate. It is, however, an unsuitable choice if the response of the system
being modelled to the input uncertainty is non-linear. If an interval representation is used,
only the range and midpoint of the output can be captured. Range can be very sensitive to
interval size and the midpoint far from the mean value for non-linear systems.

This is illustrated in figure 5.1 showing the variation of drag coefficient with changing crit-
ical N-factor for three example designs with the same critical N-factor uncertainty interval.
Within the interval, all three envelopes have identical midpoint values. However, both the
red and yellow envelopes are non-linear and so their midpoint and mean values differ sub-
stantially. Changing the uncertainty interval size would also have a strong effect on both.
The black envelope is linear in nature and so its midpoint and mean values are comparable.
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Figure 5.1: Example critical N-factor drag envelopes ~ Figure 5.2: Example negative half-normal probabil-
with interval uncertainty analysis. ity distributions over critical N-factor.

Aerofoil performance can have a highly non-linear relationship with critical N-factor, as
all three of the example envelopes shown in figure 5.1 are possible. Discontinuities may
also be present due to laminar separation at subsonic speeds or shock induced transition at
transonic speeds. As such, a probability distribution representation of uncertainty is used
in this work. Given the lack of available information on critical N-factor uncertainty, the
uncertainty distribution used for this study is based on intuitive analysis of the individ-
ual uncertainty sources effecting critical N-factor. These include uncertainty in free-stream
turbulence levels, machining quality, surface damage, wear and contamination.

As free-stream turbulence is an atmospheric condition, both positive and negative fluctu-
ations are possible with equal probability. Machining accuracy on the other hand is more
likely to produce surface imperfections, and thus a reduced critical N-factor, compared to a
better-than-expected finish. Surface damage and wear can only cause increased instability
amplification and thus reduce critical N-factor. The same is true of surface contamination
from insect impacts, debris and dirt. As such, with the exception of free-stream turbulence,
all sources of uncertainty have a much larger probability of increasing initial disturbance
size and so reducing critical N-factor. Given that free-stream turbulent intensity is low dur-
ing flight, and that surface quality, damage, wear and contamination each have a strong
effect on disturbance amplitude, a negative half-normal critical N-factor uncertainty distri-
bution has been used for this study.

Figure 5.2 shows three half-normal distributions with a mean critical N-factor value of 9
and varying critical N-factor standard deviations. Mathematically, the negative half-normal
distribution is represented by the probability density function P(N) shown in Eq. (5.1). In
this, N; is the ideal design critical N-factor which is the largest N, value expected and has
the highest probability weighting. N, is the critical N-factor standard deviation and controls
the shape of the distribution.

) S N<N, 5.1)
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5.1.2 Uncertainty Propagation

There are various methods available for propagation of uncertainty through a model into
the output variable, the simplest of which being sampling based. In this work, the output
variable of interest is assessed at multiple critical N-factor sample points taken at regular in-
tervals over the uncertainty range. Each output value is then weighted using the probability
density function given in Eq. 5.1 with the critical N-factor value used to run that particular
flow solution. These weighted output values are finally used to calculate mean output and
output standard deviation.

This process is shown in figure 5.3, where samples are taken over the critical N-factor range,
used to evaluate drag, and these values and weightings used to construct a probability dis-
tribution from which robustness of the output variable can be quantified. The weighted
arithmetic mean F,(N) of the output variable F(N;) is calculated using Eq. (5.2). k; is the
number of uniformly spaced samples taken over the desired critical N-factor range, P(N;) is
the probability weighting found using Eq. (5.1) and W is the sum of the probability weights
found using Eq. (5.4). The standard deviation F,(N) of the output variable is then calculated
using Eq. (5.3).

1
F, = — Y P(N))E(N; 52
W (N;)F(N;j) (5.2)
F, = 1y [F(N;) — F.]° (5.3)
=
k,
W =Y P(N;) (5.4)

This approach was selected over other sampling strategies as it requires fewer sample points
while also having perfect equidistribution of points over the uncertainty variable. This is
achieved by weighting each sample point with its probability, taken directly from the prob-
ability density function. This avoids repeated sampling using the probability weighting to
randomly select points. Accuracy naturally increases with the number of samples used.
While the exact solution is obtained as the number of samples tends to infinity, a suitable
finite number of samples must be selected to give acceptable accuracy.

It is important to note that as this sampling strategy is periodic in nature, its accuracy will
be low for problems where the variable of interest is also periodic over the uncertain input
with frequency close to that of the sample spacing. Transition location should only move
downstream as critical N-factor is increased, providing separation does not occur. In such a
case, the response to critical N-factor uncertainty is not periodic and so this approach to un-
certainty propagation is suitable. If a flow is seperated at the ideal critical N-factor or buffet
is occuring, reducing critical N-factor could result in transition moving either forwards or
backwards. In such a case, the response to critical N-factor would feature a small oscillation
that may be missed by the selected sampling method if the resolution of sample points is
not sufficiently high.
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Figure 5.3: Diagram of uniform sampling approach to uncertainty propagation.

5.2 Uncertainty Analysis

5.2.1 Aerofoil selection

To investigate performance robustness to critical N-factor uncertainty at subsonic condi-
tions, the NLF0215 [69] aerofoil is analysed using the proposed methodology. This is a
flapped aerofoil designed for a cruise lift coefficient of C; = 0.2 at Re = 9 x 10° with 10° up-
wards flap deflection. The target maximum lift coefficient was C; nax = 1.8 at Re = 3 x 10°
with 10° downwards flap deflection. During this study, a flap deflection of 0° was used with
analysis carried out at the cruise Reynolds number of Re = 9 x 10°, M = 0.1 and over the
lift coefficients range 0 < C; < 1.6. The aerofoil profile is shown in figure 5.4.

To examine performance robustness to critical N-factor uncertainty at transonic conditions,
the RAE2822 [148] aerofoil has been selected for analysis. This is a supercritical aerofoil
designed for C; = 0.56 at M = 0.66. Initial analysis of the aerofoil at Re = 6.5 x 10° found
that (ML/D)max occurs at approximately M = 0.715 and C; = 0.76. This was used to fix
M?C; while varying Mach number between 0.68 < M < 0.73. The aerofoil profile is shown
in figure 5.5.

Practical implementation of NLF requires some protection of the leading edge from contam-
ination [149]. For subsonic applications, it is assumed that a method such as liquid discharge
[150] is chosen. This enables laminar flow to be obtained on both surfaces and so transition
is left free on both for the subsonic case. For transonic applications such as large commercial
aircraft, a popular method for protecting the leading edge is via the use of a Krueger flap
[151-153]. This is a high lift device capable of shielding the leading edge from contamina-
tion when deployed while leaving the upper surface free of contamination, steps or gaps
when retracted into the lower surface. This however comes at a cost of early transition on
the lower surface and so, for the transonic case, transition on the lower surface is fixed at
0.03x/c.
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For both aerofoils, uncertainty in critical N-factor is represented by a negative half-normal
distribution. Maximum probability in both cases is at an ideal critical N-factor of N, = 9.
This value is often used in academic NLF studies at subsonic conditions using the simplified
eN method found within XFOIL [20, 114, 154, 155]. This value was also used for the transonic
case as it lies between the N, obtained with compressible eN stability analysis of the ATTAS
and FOKKER 100 NLF flight test data when little crossflow instability growth is seen [14,
51]. Critical N-factor standard deviation is set to N, = 2 in both cases.
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Figure 5.4: NLF0215 aerofoil profile. Figure 5.5: RAE2822 aerofoil profile.

5.2.2 Stochastic Convergence

The mean and standard deviation of the output properties are calculated using 91 critical N-
factor samples taken at intervals of 0.1 from N; = 9 to N, = 0. To ensure these are accurate,
the mean and standard deviation of various aerodynamic properties are calculated with
smaller sample numbers and compared against the values found when using 91 samples.
This was done over the lift coefficient range 0 < C; < 1.6 at intervals of 0.05 for the NLF0215
and over the Mach number range 0.68 < M < 0.73 at intervals of 0.05. In each case, the
maximum mean and standard deviation error found over this range for each of the smaller
number of samples is then selected.

Figure 5.6 shows the maximum C;, Tr, and Tr; mean and standard deviation error against
the number of samples used for the NLF0215. The maximum error for each variable de-
creases as the sample number rises, indicating that the mean and standard deviation for
each variable is converging. The error in standard deviation is smaller than the error in
mean, and reduces to a smaller value overall, in each case. This is expected as standard
deviation is found to be much smaller than the mean for each variable.

Figure 5.7 shows the maximum ML/D, C; and Tr, mean and standard deviation error
against the number of samples used for the RAE2822. Again, the general trend seen is
that the maximum error of each variable decrease as the number of samples used rises.
However, the maximum error in ML/D, C; and Tr, standard deviation sees significant os-
cillation. These fluctuations are due to the presence of discontinuities in the distributions of
ML/D, C; and Tr, over critical N-factor. This makes the calculation of standard deviation
sensitive to the positioning of the sample points, especially when standard deviation is very
low. As increasing the number of samples causes sample positions to change, fluctuations
in each variable are seen.
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Overall, these results indicate that as the number of samples is increased up to the 91 se-
lected, the maximum error of each variable reduces. For the NLF0215, this is down to a
fraction of a drag count and to less than 0.003x/c for upper and lower surface transition
locations. For the RAE2822, this is down to 0.05 ML/D, 0.1 drag count and 0.001x/c for
transition location. This supports the use of 91 samples to provide accurate values for mean
and standard deviation of aerodynamic properties.
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Figure 5.6: Maximum Cy, Tr, and Tr; mean and standard deviation error over 0.0 < C; < 1.6 when calcu-
lated with various sample numbers for the NLF0215.
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Figure 5.7: Maximum ML/D, Cy and Tr,, mean and standard deviation error over 0.68 < M < 0.73 when
calculated with various sample numbers for the RAE2822.

5.3 Subsonic Results

5.3.1 Deterministic Performance

Deterministic performance of the NLF0215 aerofoil is first assessed. Figure 5.8 shows drag
and transition polars for the NLF0215 run at N, = 9, with the drag polar providing a
breakdown of total drag (C;) into skin friction (Cyf) and pressure drag (C4,) components.
As seen in figure 5.8a, total drag is dominated by the skin friction component below C; = 1.1
and exhibits a bucket shape between 0.5 < C; < 1.0. This is common for NLF aerofoils.
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The skin friction polar shape is caused by the movement of transition location on each sur-
face. This is shown in figure 5.8b. Lower surface transition location changes over a small
lift coefficient range leading to the sharp lower drag bucket corner. Similar transition move-
ment on the upper surface forms the upper drag bucket corner although shorter maximum
laminar length and a more gradual movement results in a less strongly defined shape. To
compare, decreasing lift coefficient from C; = 0.7 to C; = 0.5 results in a 0.54x /¢ reduction in
laminar flow on the lower surface while increasing lift coefficient from C; = 1.0 to C; = 1.2
leads to a 0.20x/c reduction in upper surface laminar flow. Low drag within the bucket
is due to highly extended laminar flow on both surfaces. Although drag is low within the
bucket region, it quickly rises outside, leading to higher drag at off-design lift coefficients.
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Figure 5.8: Drag and transition location polars run at No» = 9 for the NLF0215.

Figure 5.9 shows the pressure distribution and N-factor envelopes for the NLF0215 at lift
coefficients of C; = 0.4, C; = 0.7 and C; = 1.0. Markers on the pressure distribution indicate
transition location for each surface at each lift coefficient. At C; = 0.4, transition on the
upper surface is delayed as there is a strong favourable pressure gradient over the front of
the aerofoil. This suppresses upper surface instability growth, as can be seen by no growth
in the N-factor envelope until 0.38x/c. Transition occurs very close to the leading edge on
the lower surface, however, as a large pressure rise followed by a strong adverse pressure
gradient causes rapid TS instability amplification.

At C; = 0.7, transition has remained at a similar position on the upper surface but has ex-
tended on the lower surface. Angle of attack increases with lift coefficient, which reduces
the lower surface leading edge pressure peak and weakens the adverse pressure gradient.
This is now favourable but weak on the lower surface at C; = 0.7. As such, transition moves
rapidly to the leading edge with only a small reduction in lift coefficient, as seen in figure
5.8b. At C; = 1.0, upper surface transition begins to move upstream as the larger leading
edge pressure rise causes an adverse pressure gradient over the front of the aerofoil. This
increases instability growth, as seen on the N-factor envelope. While lower surface transi-
tion location has changed little from C; = 0.7 to C; = 1.0, a stronger favourable pressure
gradient suppresses TS instability growth so that no growth occurs upstream of 0.6x/c.
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Figure 5.9: Pressure and N-factor envelopes run at No» = 9 for the NLF0215 at C; = 0.4, 0.7 and 1.0

5.3.2 Stochastic Performance

Figure 5.10 shows the mean drag and transition location polars. In figure 5.10a, mean Cy,
Cir and C;p are shown, along with the range of each between the value found at the ideal
critical N-factor and at a critical N-factor of zero. As can be seen in figure 5.10a, the C; range
is largest within the drag bucket lift coefficient region. This is understandable as transition
is delayed on both surfaces. A total loss of laminar flow at C; = 0.7 causes skin friction to
rise by 32 drag counts and pressure drag to rise by 15 drag counts. Mean C;, C45 and Cy,
are each close to the value found at the ideal critical N-factor. Mean C; has increased most
at the drag bucket corners. At the lower drag bucket corner from 0.5 < C; < 0.7, mean Cy
is larger as mean Cyf has increased. At the upper drag bucket corner from 0.9 < C; < 1.2,
mean C; is larger as both mean C4r and C;;, have increased. As mean drag increases less
through the drag bucket centre between 0.7 < C; < 0.9, the mean drag bucket has a reduced
width in comparison to the drag bucket shape at ideal critical N-factor.

Figure 5.10b shows the mean Tr, and Tr; polars along with the Tr,, and Tr; polars at the ideal
critical N-factor for comparison. Both mean Tr, and mean Tr; are close to Tr,, and Tr; at lift
coefficient values below C; = 0.4. As seen in figure 5.9b, instability amplification occurs
far downstream on the upper surface at C; = 0.4. As such, reducing critical N-factor has
little effect on transition location. The same is observed on the lower surface, but instability
amplification up to the critical N-factor limit happens instead at the leading edge. Mean Tr;
is also close to Tr; above C; = 1.0 as, again, instability amplification only begins downstream
near the transition location.

The location of mean Tr,, and mean Tr; differs most from Tr, and Tr; over the lift coefficient
ranges where Tr,, and Tr; see the most movement with changing lift coefficient. On the upper
surface, mean Tr, is close to Tr, at high and low lift coefficients, but is reduced through
0.5 < C; < 1.2. As aresult, the lift coefficient range where Tr, is highly sensitive to changing
lift coefficient has reduced for Tru‘ ue On the lower surface, the inverse is true and the lift
coefficient range where Tt is sensitive to changing lift coefficient is larger than for Tr;.
This has led to the smaller bucket width.

58



CHAPTER 5. CRITICAL N-FACTOR UNCERTAINTY ANALYSIS

%1074
140
] — Calp C, range
120 _: —_ Cil Caf range
] Canln Cap range
100 Pl
. 80
SR
60 -
40
20
0 —
0.0 0.5 1.0 1.5
G
(@) Drag (b) Transition Location

Figure 5.10: Mean drag and transition polars for the NLF0215 with the drag range between Ng = 9 and
N = 0, and transition locations at N.y = 9.

Figure 5.11 shows drag and transition standard deviation polars. As with the deterministic
performance, drag standard deviation is directly related to transition location standard de-
viation. Cy,; is largest through the drag bucket lift coefficient range, with peaks in standard
deviation occurring at each drag bucket corner. Naturally, these features can be related to
the transition location standard deviation polar for each surface, seen in figure 5.11b. The
peak in Cyj, at C; = 1.0 comes from a large rise is Tr, |, while the peak in Cy, at C; = 0.7
is caused by a large rise in Trj, around this lift coefficient. The large Cy, peak at C; = 1.0
coincides with peaks in both Cyy|; and Cy,|, while the smaller Cy, peak at C; = 0.7 comes
primarily from a second peak in Cf|,. This indicates that the lower surface transition loca-
tion standard deviation has little effect on Cy,|, and a weaker effect on Cys), compared to
upper surface location standard deviation. Thus, upper surface transition location has the
stronger effect on total drag standard deviation.
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Figure 5.11: Drag and transition location standard deviation polars for the NLF0215.
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These results show that transition location standard deviation is largest when transition is
sensitive to changes in lift coefficient at the ideal critical N-factor. The cause of this can be
best explained by again considering the pressure distributions and N-factor envelopes in
tfigure 5.9. A strong adverse pressure gradient causes rapid instability growth, such as on
the lower surface at C; = 0.4. A strong favourable pressure gradient suppresses instability
growth up to rapid amplification, as seen on the upper surface at C; = 0.4. Angle of attack
has little effect on instability growth and so transition location in both cases. However, if
the pressure gradient strength is weak, such as on the lower surface at C; = 0.7 or the
upper surface at C; = 1.0, instability growth is neither strongly amplified or suppressed.
Angle of attack then has a stronger effect on instability growth and transition location as it
may change the pressure gradient strength and direction. As the instability growth is more
gradual, changes in critical N-factor also have a stronger effect on transition location. Thus,
when transition location is sensitive to lift coefficient, its standard deviation is also higher.

Above C; = 1.4, pressure drag standard deviation grows while upper surface transition
location standard deviation reduces, showing that C;, becomes more sensitive to changes
in transition location as angles of attack increases. This can be seen in figures 5.12 which
plots pressure drag against critical N-factor at fixed lift coefficient values C; = 1.4, C; = 1.5
and C; = 1.6. As lift coefficient increases, the lift generated by the aerofoil becomes more
sensitive to transition location. Thus, reducing critical N-factor at high lift coefficients causes
a larger increase in angle of attack to compensate. This, in turn, causes a wider variation in
pressure drag over the N-factor range.

This will also affect the maximum lift coefficient of the aerofoil, which is C;max = 1.96,
found at an angle of attack of approximately a = 20. At this lift coefficient, transition on
the upper surface is at the leading edge while the lower surface has extended laminar flow
at Tr; = 0.713x/c. Figure 5.13 shows how maximum lift coefficient varies with critical N-
factor. The loss in maximum lift coefficient from N, = 9 — 0is AC; = 0.095. As over 60
percent of this loss happens below N, = 2, maximum lift coefficient standard deviation is
very small at C; oy » = 0.0064 with a critical N-factor standard deviation of N, = 2.
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5.3.3 Effect of Uncertainty Standard Deviation

The analysis carried out is, of course, dependent on the choice of critical N-factor uncertainty
distribution. The mean and standard deviation polars for Cy4, Tr, and Tr; when calculated
with various critical N-factor uncertainty standard deviation values (N,) are shown in fig-
ures 5.14 and 5.15. Mean C; increases as N, is raised. This effect is strongest through the
centre of the drag bucket where there is the largest drag range due to extended laminar
flow on both surfaces. Mean C; is least sensitive to N, at both high and low lift coefficients.
Here, transition location on each surface sees little movement as either at the leading edge
or highly extended with instability growth only occurring downstream. As N, is raised, the
mean Tr, polar effectively shift to a higher lift coefficient while the inverse is true of mean
Tr;. This effectively shrinks the drag bucket.
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Figure 5.14: C; mean and standard deviation polars for the NLF0215 when calculated with various critical
N-factor uncertainty standard deviation values.
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uncertainty standard deviation values.
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Both drag and transition location standard deviation grow over the entire polar range as
N, is increased. This effect is small below C; = 0.4 as transition on the lower surface is
close to the leading edge at Ny = 9. The same is true for Tr, |, above C; = 1.4. As such,
the largest changes to C |, when N; is raised occurs through the drag bucket lift coefficient
range. Increasing N, also causes the two transition location peaks, and so peaks in drag, to
move together and increase in magnitude.

Thus, the selection of N, has the strongest effect on the mean and standard deviation where
transition location is most sensitive to lift coefficient. Drag standard deviation remains de-
pendent on transition location standard deviation at each of the N, values selected for lift
coefficients below C; = 1.3. Above this, increasing N, causes small changes in Tr,, and Try|,
but a large increase in Cy|,. As seen in figure 5.12, pressure drag has the same sensitivity to
critical N-factor at high critical N-factors, regardless of the lift coefficient value. However,
at low critical N-factors, Cjp increases substantially with lift coefficient. Thus, Cd| - becomes
more sensitive to the value of N, as lift coefficient increases.

5.4 Transonic Results

5.4.1 Deterministic Performance

The deterministic performance of the RAE2822 is first assessed. Figure 5.16 shows the deter-
ministic ML /D, drag and transition location polars for the RAE2822. These have been run
at the ideal critical N-factor of N, = 9, and the drag polar has also been split into viscous
drag and wave drag components. Figure 5.17 shows the pressure distributions and N-factor
envelopes for the RAE2822 at Mach numbers of M = 0.680, M = 0.715 and M = 0.730.

As M?C; has been is fixed, increasing Mach number causes the target lift coefficient to re-
duce. This lowers the angle of attack which, in turn, reduces the leading edge pressure peak,
as can be seen in figure 5.17a. This leads to a more favourable pressure gradient over the
front of the aerofoil, which helps to suppress TS instability growth. From figure 5.17b, how-
ever, it can be seen that no N-factor envelope reaches the critical N-factor. This indicates that
transition is shock induced, rather than occurring from instability growth.

Upper surface transition location extends as Mach number is increased, as can be seen in
tigure 5.16¢. This is due to a delay in shock position. Increasing Mach number from 0.68 to
0.705 also causes shock strength to reduce, as indicated in figure 5.16b by the reduction in
wave drag to a minimum. As seen in figure 5.16a, minimum drag and therefore maximum
ML/ D is found at M = 0.715. This is at a slightly higher Mach number than for the location
of minimum wave drag. The small increase in Mach number results in a laminar flow ex-
tension that reduces viscous drag more than wave drag increase. Increasing Mach number
beyond M = 0.715 causes wave drag to increase at a faster rate than viscous drag decreases
with additional laminar flow. Although wave drag grows in magnitude at the lower and
upper limits of the Mach range investigated, total drag remains dominated by the viscous
drag component over the Mach range considered. Further increases in Mach number would
cause wave drag to dominate total drag as shock strength increases. This would eventually
lead to shock induced separation, and buffet onset would occur.
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Figure 5.16: ML/ D, drag and upper surface transition location polars at Ney = 9 for the RAE2822.
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5.4.2 Stochastic Performance

Figure 5.18 shows the mean ML/D, C; and Tr, polars for the RAE2822 over the Mach range
investigated. In figure 5.18a, mean ML/ D is shown with the ML/ D range between values
found at the ideal critical N-factor and an N-factor of zero. Mean ML/ D is close to the ideal
ML/D over the Mach range investigated as transition is shock induced. As such, critical
N-factor must be reduced some way before it has an effect on transition location. Mean
ML/ D is closest to the ideal ML/ D at high Mach numbers where the target lift coefficient is
low. This reduced instability growth, as the pressure gradient over the front of the aerofoil
is more favourable. As Mach number is reduced from M = 0.72, the favourable pressure
gradient becomes weaker. This suppresses instability amplification less, although transition
remains shock induced. Mean ML/ D is furthest from the ideal ML/D at M = 0.705, with
a reduction in ML/D of 1.8. As Mach number is further reduced, the shrinking amount of
laminar flow possible at the ideal critical N-factor means that little laminar flow is lost as
critical N-factor is reduced. Ideal and mean ML/D are therefore close.
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Figure 5.18: Mean ML/ D, drag and upper surface transition location polars for the RAE2822 with MLL/D
and drag range between N, = 9 and N = 0 and upper surface transition location at N = 9.
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The range of ML/ D between N, = 9 and N, = 0 is naturally largest at high Mach numbers
where transition is most delayed. Figure 5.18b shows mean C;, broken down into mean
viscous and mean wave drag components with the range of each also shown. As can be
seen, the increase in drag from a total loss of laminar flow comes primarily from an increase
in Cy,. This shows that viscous drag is more sensitive to changes in transition location than
wave drag at the Mach numbers considered.

Figure 5.19 shows the standard deviation polars for ML/D, C; and Tr,, with C; broken
down into Cy,, and Cy,, standard deviation components. As seen in figure 5.19a, (ML/D),
peaks at M = 0.71 which is slightly below the Mach number for maximum ML/D at the
ideal critical N-factor. This coincides with a peak in C |, as seen in figure 5.19b. The Cy,
polar closely resembles that of Cy,|; as Cyy| is low over the entire Mach range investigated,
and the Cy, |, polar closely matches the Tr,, polar. Thus, ML/D standard deviation with
uncertainty in critical N-factor can be directly related to Tr, standard deviation via the de-
pendence of (ML/D), on Cy|, and the dependence of Cy), on Tty
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Figure 5.19: ML /D, drag and upper surface transition location standard deviation polars for the RAE2822
aerofoil.
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5.4.3 Effect of Uncertainty Standard Deviation

The sensitivity of ML/D, C; and Tr, mean and standard deviation to the selected uncer-
tainty standard deviation value is assessed. Figures 5.20, 5.21 and 5.22 show the mean and
standard deviation polars for ML/D, C; and Tr, when calculated with various critical N-
factor standard deviation values.

As is expected, mean Tr, decreases over the Mach range as N, is raised. This naturally
causes mean C; to rise and mean ML/D to fall. ML/D is less sensitive to changes in N,
at high Mach numbers, so increasing N, causes the Mach number for maximum ML/D to
increase. The low sensitivity of mean ML/D to N, at high Mach numbers comes from the
very low instability growth. ML/D does have the largest range between values calculated
at the ideal critical N-factor and a critical N-factor of zero at high Mach numbers. However,
all of the ML/ D reduction occurs when critical N-factor is less than 2.

The standard deviation polars for ML/D, C; and Tr, all increase as N, is raised. This hap-
pens at the same rate for each, indicating that regardless of the selected N, the relationship
between Tr,, C; and ML/D standard deviation is maintained. The Mach number at which
maximum standard deviation is found also increases as N, is raised. Standard deviation
increases more at higher lift coefficient as there is more laminar flow so a wider spread of
transition locations over the critical N-factor range. As these are at lower critical N-factors,
a larger increase in (ML/ D), at high Mach numbers is observed when Nj is increased from
2 —3.

5.5 Summary

Analysis of performance to critical N-factor uncertainty has been carried out. This was done
over a range of lift coefficients for the NLF0215 aerofoil at subsonic flow conditions and
over a range of Mach numbers at transonic flow conditions for the RAE2822. Stochastic
properties are obtained for each via calculation of weighted mean and standard deviation
using uniformly spaced samples of N, taken every Ngep = 0.1. Analysis of this approach
shows that the chosen sampling rate is able to obtain accurate stochastic values.

Analysis of the NLF0215 shows that robustness of drag to uncertainty in critical N-factor
is directly proportional to the robustness of transition location to uncertainty in critical N-
factor. Lower surface transition location standard deviation is found to only contribute to
skin friction drag standard deviation, while upper surface transition location standard devi-
ation affects both skin friction and pressure drag standard deviations. Robustness of perfor-
mance to critical N-factor uncertainty is found to be worst at locations where deterministic
transition location changes rapidly with small changes in lift coefficient. Conversely, robust-
ness is best where deterministic transition location is insensitive to changes in lift coefficient.

As transition location standard deviation is related to the rate of change of deterministic
transition location with changing lift coefficient, it is possible to infer information about the
robustness of an aerofoil based on its deterministic performance. A larger rate of change
of transition location results in a larger peak in transition location standard deviation, but
reduces the lift coefficient width over which it spans. When deterministic transition location
is insensitive to changing lift coefficient, transition location standard deviation is low. The

66



CHAPTER 5. CRITICAL N-FACTOR UNCERTAINTY ANALYSIS

68

66
64
62
60

(ML/D),

58
56
54
52

0.

68 0.69 0.70 0.71 0.72
M

(a) Mean

0.73

6 ]
1= Ne=1
] =—nN,=2
57 Ny =3
4_'
5 ]
Q ]
337
2 ]
2 7
o +———7——"T—""1—rr

0.69 0.70 0.71

M
(b) Standard Deviation

0.72 0.73

Figure 5.20: ML/ D mean and standard deviation polars calculated at various critical N-factor standard de-

110

105

100

95

90

85

80

0.68

viation values for the RAE2822.

x1074

— Ny =1
— Ny =2
Ny =

T T T T

—— ——
0.70 0.71 0.72

M
(a) Mean

——
0.69

0.73

x10~4
10

: — N, =1
| — N, =2
8 Ny =3

—— —
0.70 0.71

M
(b) Standard Deviation

——
0.69

—— .
0.72 0.73

Figure 5.21: C; mean and standard deviation polars calculated at various critical N-factor standard deviation

0.55
0.50
0.45
0.40
0.35

Tr11|;( (x/¢)

0.30
0.25
0.20
0.15

values for the RAE2822.

UL BN I LI B
0.68 0.69 0.70 0.71 0.72
M

(a) Mean

0.73

0.10
{ = N,=1
] =—nN-=2
0.08 A Ny =3
S 0.06
= ]
[ ]
g 0.04 1
0.02
0.00 /,__—X, —
0.68 0.69 0.70 0.71 0.72
M

(b) Standard Deviation

0.73

Figure 5.22: Tr,, mean and standard deviation polars calculated at various critical N-factor standard deviation

values for the RAE2822.

67



CHAPTER 5. CRITICAL N-FACTOR UNCERTAINTY ANALYSIS

sensitivity of maximum lift coefficient to changing critical N-factor is significant over the
full critical N-factor range, but the majority of C; nax loss occurs only when critical N-factor
is substantially reduced.

Analysis of the RAE2822 shows that ML /D standard deviation is directly related to upper
surface transition location standard deviation. This is due to the dependence of ML/D on
drag, and drag being dominated by its viscous component. Viscous drag standard devia-
tion is found to take the same form as upper surface transition location standard deviation.
Robustness to critical N-factor uncertainty is worst at Mach numbers slightly below that
required for maximum deterministic ML/ D, and best at the lower and upper ends of the
Mach range investigated. At lower Mach numbers, a strong adverse pressure gradient forces
early transition while at higher Mach numbers, a long favourable pressure gradient causes
transition to remain fixed at the shock location.

For both the NLF0215 and RAE2822 aerofoils, increasing critical N-factor standard deviation
causes an increase in output performance standard deviation over the entire lift coefficient
or Mach range investigated. In both cases, output standard deviation increases most where
transition is highly extended, and least when transition is close to the leading edge. For the
NLF0215, a larger increase in maximum lower surface transition location standard deviation
is seen compared to the upper surface. Increasing critical N-factor standard deviation also
results in the peaks in upper and lower surface transition location moving closer together.
The net effect of these changes is that the drag standard deviation polar shifts from two
discrete peaks into a near single peak of increased magnitude. For the RAE2822, increasing
critical N-factor standard deviation causes the peak standard deviation value for ML/D,
drag and upper surface transition location to move to higher Mach numbers as output stan-
dard deviation is most increased here. Conversely, due to transition being shock induced at
high Mach numbers down to low critical N-factor values, reduced critical N-factor standard
deviation results in close to zero output standard deviation here.
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Chapter 6

Single-Point Robust Optimisation

Following uncertainty analysis at subsonic and transonic conditions, robust shape optimi-
sation is undertaken. This initial study is carried out at a single design point in terms of lift
coefficient, Mach number and Reynolds number. The objectives of this study are to:

Explore the effectiveness of robust optimisation with critical N-factor uncertainty
Investigate any trade-offs between mean performance and performance robustness
Highlight best practices for the robust design of NLF aerofoils

Assess the effectiveness of robust optimisation at off-design flight conditions

The same methodology as used during uncertainty analysis is employed during optimisa-
tion, with a slight change in sampling fidelity so as to balance the accuracy of calculated
mean and standard deviation values with the computational costs of optimisation.

6.1 Optimisation

6.1.1 Problem Formulation

Multi-objective robust shape optimisation is carried out with the goal of improving aerofoil
performance with uncertainty in critical N-factor. Again, two test cases are considered, the
first at subsonic and the second at transonic flow conditions. The NLF0215 is used as a
starting aerofoil for the subsonic optimisation case, run at Re = 9 x 10° and M = 0.1. A
lift coefficient of C; = 0.7 was used for the optimisation which coincides with C; i, for the
starting geometry when analysed with XFOIL. The objectives for the optimisation are the
minimisation of mean drag (C;),) and drag standard deviation (Cy|,). Transition is left free
on both surfaces, as was done during the uncertainty analysis carried out previously.

The RAE2822 is used as the starting aerofoil for the transonic optimisation case. This was
run at C; = 0.76, Re = 6.5 x 10° and M = 0.715 which coincided with the maximum ML/D
found when analysed with CVGK. The objectives for this optimisation case are the max-
imisation of mean ML/D ((ML/D),) and the minimisation of ML/D standard deviation
((ML/D),). Transition is left free on the upper surface but is fixed on the lower surface at
0.03x/c, as done during the uncertainty analysis carried out in the previous chapter.
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For both cases, mean and standard deviation of performance quantities are calculated from a
range of flow solutions run at critical N-factor sample points spaced uniformly from N; — 0.
These are weighted using a negative half-normal probability distribution with peak likely-
hood at the deterministic critical N-factor value of N; = 9 and with a standard deviation
of N, = 2. A constraint is placed on maximum thickness ensuring all optimised designs
have a value the same as, or larger than, that of the starting aerofoil in each case. This is a
thickness of 0.15z /¢ for the NLF0215 and a thickness of 0.12z /¢ for the RAE2822.

Deformation of each surface is controlled using 6 CST coefficients per surface, totalling 12
design variables controlled by the optimiser. Each design variable is bound, producing a
finite search space for the optimiser. Bounds were selected based on the assumed solution
shape in each case but are then expanded to ensure less predictable shapes are not missed.
For the NLF0215, transition is free to move on the upper and lower surfaces and so wide
bounds have been put in place on both. As transition is fixed for the lower surface of the
RAE2822, it is assumed that camber will be increased to reduce the required angle of attack
and so delay upper surface shock location and extend laminar flow. Appropriate bounds
have thus been selected for this.

For both optimisation cases, the genetic algorithm based optimiser is run for 100 genera-
tions. There are 48 individuals per generation which is 4 times the number of design vari-
ables used. The ratio of mate to mutation change is set to 0.8 and, to aid in convergence, the
crowding number is scaled linearly from 77 = 0 — 20 during the optimisation.

6.1.2 Stochastic Convergence

It is desirable to minimise the number of samples used to quantify robustness while still ob-
taining accurate stochastic properties. This is because the number of flow solutions required
directly scales with the number of robust samples used. Using 91 critical N-factor samples
as was done during uncertainty analysis would, for the chosen population size of 48 and
generation number of 100, require 436, 800 flow solutions. This is very computationally ex-
pensive and may be unnecessarily precise if an acceptable trade-off in computational cost
and accuracy is possible. To assess this, mean and standard deviation of the chosen objective
function variables are calculated with a varying number of critical N-factor samples taken
at uniform intervals over the range N, =0 — 9.

Figure 6.1a shows mean and standard deviation of drag with varying sample numbers for
the NLF0215 at the conditions to be used for optimisation. Figure 6.1b shows mean and
standard deviation of ML/D when calculated with a varying number of samples for the
RAE2822 at the optimisation flow conditions. For both cases, the values of mean and stan-
dard deviation converge as the number of samples used is increased. For the NLF0215,
mean drag is within 1 drag count with as little as 6 sample points, however drag standard
deviation requires 10 sample points to be within the same distance. To have less than a 5
percent error from the mean and standard deviation value calculated with 91 samples, 11
sample points or more are needed. For the RAE2822, the convergence of mean ML/D and
ML/D standard deviation see some fluctuations. These fluctuations occur at sample num-
bers below 16, which is also the number of samples required to have an error of less than 5
percent from the ML /D mean and standard deviation calculated with 91 samples.
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Based on these findings, calculation of stochastic properties for this study uses 19 critical N-
factor samples spaced with step sizes of Ngep = 0.5 between N, = 0 — 9. This should result
in mean and standard deviation values accurate to within 5 percent of the values obtained
with 91 samples. By lowering the number of samples used, the computational cost of the
optimisation is reduced by approximately 80 percent. This reduction in computational cost
most benefits transonic analysis using the flow solver CVGK, which would be prohibitively
expensive with the higher sample number.
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Figure 6.1: Drag mean and standard deviation for the NLF0215 and ML/ D mean and standard deviation for
the RAE2822 when calculated with a varying number of critical N-factor samples.

6.2 Subsonic Results

Over the 100 generations run, the optimisation produced 3051 unique individuals that could
be converged by XFOIL at all critical N-factor sample values. Figure 6.2 shows convergence
history for the two objective functions by plotting the minimum value for each found over
the course of the optimisation. After approximately 50 generations, the optimizer is highly
converged, allowing further iterations to explore objectives trade-offs and produce a Pareto
front of designs, as shown in figure 6.3.

The optimised aerofoils with minimum Cy|, and C, are selected for comparison against the
NLF0215. These are indicated on the Pareto front in figure 6.3. Deterministic drag values
when N, = 9 and N, = 0, representing laminar and turbulent flow, are shown with the
stochastic drag properties in table 6.1 for each aerofoil. These are calculated using critical
N-factor samples taken every Nstep = 0.5 between N, = 9 — 0 as used during the optimi-
sation. The optimizer has improved both objectives as all designs found on the Pareto front
are at least 2 mean drag counts lower than the NLF0215 and have a 3 drag count or more
standard deviation decrease. The difference in mean drag is small between the minimum
Cg) and minimum Cy), designs, with a trade-off of 1 percent. The difference in drag stan-
dard deviation is more substantial at 9 percent, but both have been significantly reduced.
Deterministic laminar performance of both selected optimised aerofoils is better than the
NLFO0215, but fully turbulent performance is worse.
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Table 6.1: Deterministic and stochastic drag values for the NLF0215 and optimized aerofoils with minimum
Cd‘ " and Cd|g. Calculated with N-factor samples taken every Nstep = 0.5 from Nep = 9 — 0.

: CiNg=9  CanN,=0 Caju Cijo
Design (x107%) (x107%) (x107%) (x107%)
NLF0215 40.0 88.2 42.71 3.67

Min Cg,, (M) 369 (-8%) 925 (+5%) 37.40 (-12%) 0.62 (-83%)
Min Cy,  (S) 37.9 (-6%) 89.3 (+1%) 37.97 (-11%) 0.29 (-92%)

6.2.1 Design Point Changes

The design with minimum Cy|,, and the design with minimum C|, are compared against
the NLF0215. These are denoted design M (mean) and design S (standard deviation) respec-
tively. Figure 6.4 shows the design variable values for the NLF0215, design M and design
S with the corresponding design variable bounds. The design variables are split into upper
and lower surfaces where variables 1 and 7 are towards the front, and 6 and 12 are towards
the rear of the aerofoil. Positive values indicate that material is added to the NLF0215 while
negative values indicate that material is removed. Figure 6.5 shows the aerofoil profile for
each of the three designs. The grey shaded area indicates the viable design region, as dic-
tated by the design variable bounds.

Both optimised designs have similar upper surface profiles between 0 < x/c < 0.3. Curva-
ture at the leading edge is increased but then reduced over the front of the aerofoil. Max-
imum thickness is also larger and located further aft for both designs. These are common
NLF design characteristics as the combined effect creates a more favourable pressure gradi-
ent which reduces instability amplification. The lower surface of both designs is also similar
with both designs having increased thickness mid chord. Significant differences are seen at
the rear of the upper surface. Design M has a much larger aft thickness than design S, so
obtains a higher camber towards the tail.
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Figure 6.5: Aerofoil profiles for the NLF0215 and selected optimised design.

Pressure distributions and N-factor envelopes for the NLF0215 and optimised designs at
N = 9 are plotted in figure 6.6. The markers in figure 6.6a indicate the transition location on
each surface for each design. Changes to the upper surface leading edge and the increased
thickness aft on both designs has created a long favourable pressure gradient over the aero-
foil. This suppresses instability growth, resulting in delayed upper surface transition for
both. Additional camber towards the trailing edge of design M increases lift, allowing for a
slightly reduced angle of attack compared to the NLF0215 and design S. This coupled with
an increased maximum thickness located further aft extends upper surface laminar flow fur-
ther. Changes to the lower surface have also led to a more favourable pressure gradient up
to 0.6x/c for both optimised designs. This has little effect on the lower surface transition
location but has reduced instability growth upstream of the transition location substantially.

Drag and transition locations are plotted against critical N-factor for the NLF0215 and op-
timised designs in figure 6.7. Drag is lower for both optimised aerofoils compared to the
NLFO0215 at critical N-factor values above N, = 0.5. This reduction is small at N, = 9 but
becomes larger as N, is reduced. Below N, = 0.5, both optimised designs see a sudden
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drag rise. Drag changes little as N, is reduced from 9 — 3 for both optimised aerofoils.
Design S is less sensitive to changes in N, above N = 5, but has higher drag compared
to design M. As critical N-factor probability is high at larger N, values, mean and standard
deviation are significant affected by these small differences. Design S has a lower drag value
than design M between 0.5 < N, < 5; however, the low probability weighting here makes
the effect on mean and standard designs small.

By comparing figure 6.7a with 6.7b, it can be seen that, naturally, drag is dependent on the
combined extent of upper and lower laminar flow. Both optimised aerofoils have increased
upper and lower surface laminar flow compared to the NLF0215. Transition is most delayed
at lower N values, leading to the large drag reductions seen on the C; envelope when
N < 4. The minimum Cy),, aerofoil has more, although less stable, upper surface laminar
flow compared to the minimum C;|, aerofoil. Lower surface laminar flow is largest for the
the minimum Cg, aerofoil, and remains extended over a wider N, range.

~1.5 -

m— NLF0215 Upper Surface

1 === Design M
—1.0 Design S

=== Ner

m—— NLF0215

== Design M
Design S

~05

¥ EEERD

Lower Surface

== N

0.5 = NLF0215
] == Design M
:‘ ] Design S
1.0 T T 1 T T 0 L L AL A BN A B L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x/c x/c
(a) Pressure distribution (b) N-factor envelope

Figure 6.6: Pressure distribution and N-factor envelope for the NLF0215 and selected optimised designs at
C;=07and N, = 9.
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Figure 6.7: Drag and transition locations again critical N-factor for the NLF0215 and selected optimised
designs at C; = 0.7.
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6.2.2 Off-Design Analysis

Mean drag and drag standard deviation at off-design lift coefficients are shown in figure
6.8. The polars are calculated using critical N-factor samples taken at intervals of 0.1 from
Ny = 9 to N = 0 as used during the uncertainty analysis carried out previously. Both
optimised designs have a strong drag bucket shape with mean drag reductions over a lift
coefficient range close to the design value of C; = 0.7. Mean drag is comparable between
the NLF0215 and optimised design below this region but has increased substantially for the
optimised designs above, with design M performing worst.

Standard deviation is reduced over a small lift coefficient range centred at the design point.
Below C; = 0.6, standard deviation is comparable between the NLF0215 and optimised
designs. Just above C; = 0.8, both optimised designs perform significantly worse. Reducing
standard deviation at the design lift coefficient results in a large standard deviation peak,
but reduced standard deviation above and below this. As discussed in the previous chapter,
pressure drag standard deviation is sensitive to small transition location changes at high
attack angles. As both optimised aerofoils operates at a higher angles of attack than the
NLFO0215 at C; = 1.6, both have a larger drag standard deviation at high lift coefficients.
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Figure 6.8: Performance polars for the NLF0215 and selected optimised aerofoils.

6.2.3 Uncertainty Standard Deviation

To explore the effect of critical N-factor standard deviation, a comparison of drag stan-
dard deviation for the NLF0215 and selected optimised aerofoils with differing N, values
is shown in figure 6.9. As previously seen with uncertainty analysis of the NLF0215, drag
standard deviation grows and the lift coefficient range between its two peaks reduces as
N, increases. At high lift coefficients, both optimised designs see drag standard deviation
increase substantial, with the minimum Cd”, aerofoil affected most.

Figure 6.10 shows drag against critical N-factor at C; = 1.6 for the NLF0215 and optimised
aerofoils. Compared to the NLF(0215, both optimised aerofoils have a larger drag increase as
critical N-factor is reduced from N, = 9 — 0. However, the majority of this increase occurs
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at low critical N-factor values. This is more strongly weighted when using a high critical
N-factor standard deviation, and so results in a larger drag standard deviation value.
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Figure 6.9: Drag standard deviation for the NLF0215 and selected optimised designs with increased and de-
creased critical N-factor standard deviation.
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Figure 6.10: Drag against critical N-factor at C; = 1.6 for the NLF0215 and selected optimised designs.

6.3 Transonic Results

CVGK was able to converge 1504 of the 4800 individuals produced during the optimisation
at all of the critical N-factor sample points. Many designs at the beginning of the optimi-
sation did not converge at all design points, resulting in the low overall percentage of con-
verged solutions. The exact cause of this is difficult to identify, however the issue is likely
due to the choice of design variable bounds. This can be inferred as early in the optimisa-
tion, mated and mutated off-spring are able to differ most from their parents. Designs at the
edge of the design space may feature strong shocks or long and shallow regions of adverse
pressure. CVGK can fail to converge either as both can cause separation. If this occurs at
any of the 19 design points spaced over the N, range, the design is discarded.

76



CHAPTER 6. SINGLE-POINT ROBUST OPTIMISATION

90 2.0 7

] All designs
§ 80 | e Pareto designs . =
~ 15 1 * Max (ML/D)y design
g 70 - - Trade-off design
~ N ] Min (ML/D)g design L4
60 T T T T Q 10 ]
2 ]
0.10 = .
] 05 p
3 0.05 A ] P
= 1 od
- 00 1 - es am wameo®® somm—————
0.00 T ——r— ’ ——
0 20 40 60 80 100 40 50 60 70 80 90
Generation (ML/D)y

Figure 6.11: Maximum mean ML/D and mini-  Figure 6.12: ML/D mean and standard deviation
mum ML/ D standard deviation found for optimised designs with Pareto front
during the optimisation. and select designs highlighted.

Figure 6.11 shows the convergence history for the two objectives. Although the number
of converged designs was low at the start of the optimisation, large improvements are still
found in both objectives. No further improvements could be found in either after approx-
imately 65 iterations, suggesting at least a local optimum is found for each. Figure 6.12
shows (ML/D), and (ML/D), for all designs generated, with Pareto front and selected
designs highlighted. These are the optimised designs with maximum (ML/D),, maximum
(ML/D), and a trade-off aerofoil between the two on the Pareto front. Table 6.2 shows
ML/D mean and standard deviation, and deterministic ML/D at N;, = 9 and N, = 0
for the RAE2822 and selected optimised designs. Again, these are calculated using critical
N-factor samples taken every Nsiep = 0.5 between N, = 9 — 0 as used during optimisation.

All Pareto front designs have lower (ML/ D), than the RAE2822, but the values of (ML/D),
vary. The design with maximum (ML/D), has an improved (ML/D), and (ML/D), com-
pared to the RAE2822. With a small decrease in (ML/D),, however, a substantial reduction
in (ML/D), can be obtained. The minimum (ML/D), aerofoil has approximately zero
(ML/D), but has exceptionally poor (ML/D), compared to the RAE2822. The design at
the lower corner of the Pareto front is therefore the logical aerofoils to select as a trade-off
design with good performance for both objective variables.

Table 6.2: Deterministic and stochastic values of MIL/ D for the RAE2822 and optimized aerofoil with maxi-
mum (ML/ D)y, minimum (ML/ D), and an aerofoil with a trade-off between the two.

Design ML/Dy,—s ML/Dy,—o (ML/D),  (ML/D),
RAE2822 67.46 44.75 66.84 2.61

Max (ML/D)M (M) 82.30 (+220()) 50.18 (+1200) 82.16 (+23O()) 1.69 ('3500)
Trade-off (T)  78.05 (+16%) 49.86 (+11%) 78.05 (+17%) 0.15 (-94%)

Min (ML/D), (S) 44.88(-33%) 44.46 (~0%) 44.88(-33%) ~ 0 (-100%)
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6.3.1 Design Point Changes

To compared the selected optimised designs against the NLF0215, the design with maximum
(ML/D), is denoted design M (mean), the design with minimum (ML/D), is denoted
design S (standard deviation) and the trade-off design is denoted design T (trade). Figure
6.13 shows the design variable values for each of the selected optimised designs and the
design variable bounds used during the optimisation. These are split into upper and lower
surfaces, where positive values on each surface indicate material is added to that surface
and negative values indicate material is removed. Aerofoil profiles for the RAE2822 and
selected optimised designs are shown in figure 6.14, with the grey shaded area indicating
the viable design region as dictated by the design variable bounds.

All three optimised aerofoils have a similar maximum thickness and increased camber com-
pared to the RAE2822. Camber is increased most towards the trailing edge, resulting in in-
creased rear loading. Design S differs substantially from designs M and T towards the front
of the upper surface, where thickness has been reduced rather than increased from that of
the RAE2822. There are notable differences between design M and T towards the rear of
the upper surface. Design M has a slightly less curvature mid-chord from 0.2x/c — 0.6x/c
on the upper surface compared to the RAE2822 and trade-off designs. This is followed by
increased loading and a stronger pressure recovery at the trailing edge.

The effect of these changes on the pressure distributions and N-factor envelopes of each
design is shown in figure 6.15. Design S stands out for its initial pressure peak and strong
shock at the front of the aerofoil that triggers flow transition at 0.03x/c. This designs then
sees a second shock at a similar chord-wise position to the other optimised designs. While
this naturally results in a lower (ML/D), than even the RAE2822, transition location is near
insensitive to the value of critical N-factor as indicated by its N-factor envelope. This also
explains the identical performance at N, = 9 and N, = 0 shown in table 6.2.

The other two optimised designs have transition located far downstream at the shock loca-
tion on the upper surface. It is worth noting that fully turbulent optimisation to increase
ML/ D at a single design point typically produces a shock-less aerofoil as this has minimum
wave drag. As can be seen, this is not the case when upper surface transition is left free. A
shock-less design has a long adverse pressure gradient to reduce shock strength. This would
result in very early transition and so a large viscous drag.

The increased rear loading and reduced angle of attack has lowered the leading edge pres-
sure rise for designs M and T. They both obtain a weaker and delayed shock in compar-
ison to the RAE2822. Although transition does not occur from flow instability, the long
favourable pressure gradient on the upper surface has suppressed instability growth more
than that found for the RAE2822. Shock strength is weakest, and furthest aft, for design M
as it has a relativity flat pressure rooftop upstream of the shock due to the reduced curvature
here. The lift this looses compared to design T is made up by the delayed shock location and
increased rear loading. Design T has a slightly earlier shock and stronger shock than design
M, as the pressure gradient up to the shock is more favourable.

Stochastic performance of the RAE2822 and optimised designs is assessed by comparing
ML/D and upper surface transition locations with varying critical N-factor. This is shown
in figure 6.16. As indicated by the pressure distributions, all designs are shock limited at
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Figure 6.13: Upper and lower surface design variable values and bounds for the RAE2822 and selected opti-
mised designs. Values indicate addition or subtraction of material from the starting design.
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Figure 6.14: Aerofoil profiles for the RAE2822 and selected optimised designs.
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Figure 6.15: Pressure distributions and N-factor envelopes for the RAE2822 and selected optimised aerofoils.
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the deterministic laminar condition of N, = 9 and remain so as critical N-factor is reduced,
although by varying amounts. This is shown by the invariance of upper surface transition
location, and so ML/D, to changing critical N-factor. This also indicates that all designs
have low instability amplification at the selected flow conditions.

Both design M and design T have a larger ML/D over the entire N, range compared to the
RAE2822. This is due to extended laminar flow obtained by delaying shock position. This
large ML/ D is also maintained to a lower N, value for both designs due to instability sup-
pression from a favourable pressure gradient. The critical N-factor value where premature
transition occurs is lower for design T compared to design M. This is a result of the stronger
favourable pressure gradient up to the shock location, however; design T has a reduced
maximum ML/D compared to design M as a result. Of course, design S sees almost no
change in ML/ D as N, is reduced from N, = 9 — 0 due to shock induced transition close
to the leading edge. While this aerofoil has the lowest (ML/D),, it is of no practical use to
a designer given the extremely low (ML/D),,.

It can be seen by comparing figures 6.17a and 6.16b that the ML /D and upper surface tran-
sition envelopes have a similar form. This was also seen during uncertainty analysis of the
RAE2822. The envelopes differ most as critical N-factor reduces. This is expected given that
shape changes will also affect fully turbulent performance. The ML/D and Tr, envelopes
are naturally identical for design S as its performance is essentially fully turbulent at all
critical N-factors.
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Figure 6.16: ML /D and upper surface transition location against critical N-factor for the RAE2822 and
selected optimised designs.

6.3.2 Off-Design Analysis

Off-design analysis of designs M and design T have been performed for comparison against
the RAE2822. Figure 6.17 shows ML/D mean and standard deviation polars over a range
of Mach numbers for each of the designs. Over the Mach range where all three polars are
present, both optimised designs have increased (ML/D), and decreased (ML/D),. These
improvements extend above the design M = 0.715. As Mach number is reduced, the op-
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timised aerofoils could no longer converge at high critical N-factor values and so have not
been included. At these conditions, CVGK struggles to converge transition location in a
region of strong adverse pressure gradient. This suggests laminar separation is occurring.

Design T could be converged at all N, values down to a lower Mach number than design
M. This is due to the more favourable pressure gradient used to reduce ML /D variation to
N, degradation at the design point. Design M uses a weaker favourable pressure gradient
to reduce shock strength and delay shock position at design conditions but as a result has
a stronger adverse pressure gradient as Mach number reduces. Converged solutions are
obtained at lower Mach numbers when N, is reduced sufficiently to cause transition as a
result of instability growth.
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Figure 6.17: Mean ML/D and ML/D standard deviation polars for the RAE2822 and selected optimised
designs.

6.3.3 Uncertainty Standard Deviation

The sensitivity of ML/D standard deviation to the chosen critical N-factor standard devia-
tion has been assessed for design M and design T and compared with the RAE2822. Figure
6.18a shows ML/D standard deviation with a uncertainty standard deviation of N, = 1.
As both optimised designs have transition fixed at the shock location down to a low critical
N-factor, standard deviation is essentially zero. Transition for the RAE2822 also occurs at
the shock location at high critical N-factor values so its standard deviation is also very low.

Figure 6.18b shows ML/D standard deviation with an uncertainty standard deviation of
N, = 3. ML/ D standard deviation has increased for all three designs. While the maximum
(ML/D), design had a lower standard deviation than the RAE2822 at the design Mach
number and N, it has a comparable standard deviation when N, is increased. This is due
to the maximum (ML/D), design having ML/D invariant to critical N-factor changes at
high N, values, but having a larger change in ML/D when critical N-factor is reduced to
zero. The same is true for the optimised trade-off aerofoil; however, the critical N-factor
value where this change in ML/D occurs is much lower. As low critical N-factors have a
lower weighting, this has a smaller effect on standard deviation.
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Figure 6.18: ML/ D standard deviation polars for the RAE2822 and selected optimised designs with increased
and decreased critical N-factor standard deviation.

6.4 Summary

Single-point multi-objective robust optimisation of two aerofoils has been carried out. Mean
drag and drag standard deviation is reduced for the NLF0215 at subsonic flow conditions
while mean ML/D and ML/D standard deviation are maximized and minimised respec-
tively for the RAE2822 at transonic flow conditions. For both optimisation cases, a trade-
off exists and a Pareto front found between mean and standard deviation of the selected
objective function variable. Improving mean performance for both cases results in larger
performance standard deviation.

Mean performance for both cases is improved in part by the extension of NLE. Transition is
delayed on both surfaces of the subsonic aerofoil by creating a more favourable pressure gra-
dient to suppress instability growth. As transition is shock limited on the transonic aerofoil,
laminar flow is extended here by delaying shock location. For the subsonic case, minimum
C; standard deviation is found while maintaining extended laminar flow; whereas for the
transonic case, minimum ML /D standard deviation is produced by shock induced transi-
tion at the leading edge. Leading edge transition is inherently robust as no laminar flow is
lost when critical N-factor is reduced, but is of little practical use.

Off-design analysis of the optimised aerofoils from each optimisation case was also carried
out. While mean and standard deviation are improved at the design point, off-design per-
formance varies. For the optimised subsonic aerofoils, mean drag is comparable below the
lift coefficient used but worse as lift coefficient is increased. Drag standard deviation is sub-
stantially worse just above the design point. For the optimised transonic aerofoils, mean
ML/D and ML/D standard deviation are improved at Mach numbers larger than the one
used but fail to converge as Mach number is reduced due to laminar separation.

The sensitivity of standard deviation to the chosen uncertainty standard deviation was also
assessed for each design in both optimisation cases. For the NLF0215, increasing critical
N-factor standard deviation caused the lift coefficient distance between the two spikes in
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drag standard deviation to reduce. Standard deviation at high lift coefficient also increased
substantially. For the RAE2822, reducing critical N-factor standard deviation below a cer-
tain threshold reduced ML/ D standard deviation to approximately zero when transition is
shock limited. For all designs from both optimisation cases, increasing critical N-factor stan-
dard deviation causes output standard deviation to increase. Specifically, output standard
deviation rises most for designs with a larger extent of laminar flow, as, inherently, these see
a larger reduction as critical N-factor is reduced.

Based on these findings, it is clear that reducing performance standard deviation to critical
N-factor uncertainty can help to improve the ability of NLF aerofoils to maintain laminar-
ity. It is found that, as with deterministic single-point optimisation, off-design performance
suffers if not considered during the optimisation process. Clearly there is a need to extend
this methodology to allow for robust optimisation with critical N-factor uncertainty over a
multi-point range of operating conditions.
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Chapter 7

Multi-point Robust Optimisation

The single point optimisation carried out previously showed aerofoil robustness to critical
N-factor uncertainty varied with both Mach number and lift coefficient. Robust optimisation
of the selected aerofoils found improvements in both mean performance and performance
standard deviation at the design lift coefficient and Mach number, respectively. It was seen,
however, that these benefits are only obtained at or close to the design conditions used.
Furthermore, improving critical N-factor robustness via optimisation at the design point
resulted in worse robustness off-design.

As such, development of a method for multi-point optimisation of aerofoil performance and
robustness to N, uncertainty is needed. A major challenge that appears when implementing
such a method, however, is the well documented curse of dimensionality [156]. Varying both
critical N-factor and another flight variable such as Mach number or lift coefficient increases
the complexity of the design problem and drastically raises the number of flow solutions
required to calculate the objective functions used during optimisation. Thus, objectives for
this chapter are to:

e Develop a multi-point optimisation method with uncertainty in critical N-factor
¢ Avoid high computational costs due to increased problem dimensionality

e Assess the effectiveness of multi-point robust optimisation

e Highlight best practices for the robust design of NLF aerofoils

7.1 Methodology

Quantification of performance robustness to critical N-factor uncertainty at a single operat-
ing condition is done using Egs. (5.2), (5.3) and (5.4) presented in chapter 5. To extend this
to a number of operating conditions over the variable M, the robust quantification method
is combined with multi-point optimisation. For a set of k;,, multi-point samples, multi-point
optimisation seeks to find an optimum of the weighted mean of the single-point functions,
F,(M;) and F,(M;). The optimisation problem is defined as:

Minimize F,(x), Fs(x) (7.1)
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where the weighted mean of single-point mean values F,(x) is found using;:
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where the weighted mean of single-point standard deviation values F;(x) is found using:
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As can be seen from Eq. (7.3) and (7.5), there are k,, x k, output variable G(x) samples
required. Even with as little as two multi-point sample points, this doubles the already high
number of flow solver evaluations needed. Using 3 multi-points and as few as 5 robust sam-
ples as part of a genetic optimisation run for 100 generations with 48 individuals per gen-
eration would require 72,000 flow solutions. This can be carried out using viscous inviscid
coupling methods such as XFOIL and CVGK, but is prohibitally expensive for RANS-based
solvers. While alternative optimisation methods and robust sampling strategies exist, it is
preferable to avoid the increase in problem dimensionality entirely, if possible.

7.1.1 Envelope Sampling Approach

By exploiting a unique feature of the e transition model, an increase in problem dimension-
ality, when combining robust and multi-point optimisation methods, can in fact be avoided.
As outlined previously, the e model is based on linear stability theory where flow distur-
bances enter the boundary layer and are either dampened, remain neutral or amplify as they
propagate downstream. Excessive amplification of instabilities leads to flow transition.

Computationally, the output of a flow solver is passed to a boundary layer solver to produce
velocity profiles and pressure distributions which are required by the eN model for calcu-
lating the stability equations. As the transition location affects the shape of the boundary
layer, the solution process is iterative. The flow solver is initialized with laminar flow, and
then successively fed new calculated transition locations and re-computed until a converged
transition location and flow solution is found. At each iteration, the e method calculates
the amplification factor of instabilities with various frequencies along the aerofoil profile,
and predicts transition at the point where an amplification factor first exceeds a specified
critical N-factor threshold.
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Thus from a converged solution, the maximum amplification factor at any chord-wise posi-
tion along the aerofoil up to the location of transition is obtained. This is commonly referred
to as an 'N-factor envelope’. While this envelope is usually only used to find the transition
location at the critical N-factor specified, it can also be used to estimate transition locations
for any N-factor at or below the one used when the flow solution was solved.

It is therefore possible to compute transition location mean and standard deviation with
varying critical N-factor from a single flow solution using the N-factor envelope. As a result,
the number of k, samples used in Eq. (7.3) and (7.5) become independent of computational
cost. To get an idea of this cost saving, the transonic optimisation case from the previous
chapter run at 3 Mach numbers with 19 robust samples for x48 designs over 100 genera-
tions would require 273, 600 flow solutions. Using the proposed envelope sampling method
would require almost 95 percent less at 14,400 flow solutions.

A limitation of this approach is that only mean and standard deviation of transition loca-
tion to critical N-factor uncertainty can be calculated. Typically in most optimisation cases,
drag is selected over transition location as the variable of interest. This is because extend-
ing laminar flow does not always result in reduced drag and can produce poor off-design
performance as laminar flow is more prone to separation. As such, mean and standard
deviation of drag should be the main objective of a robust optimisation.

Results of uncertainty analysis and from single-point optimisation of the NLF0215 and
RAE2822 showed that drag robustness is directly related to transition location robustness
with uncertainty in critical N-factor. Thus, transition robustness can be used to indirectly
improve drag robustness. Optimisation of mean transition location may, however, not be
suitable for the reasons mentioned. As drag is obtained at the deterministic flow solution
critical N-factor, this could be used instead of, or as an additional objective to, mean transi-
tion location. This would allows drag to be considered directly during optimisation.

7.1.2 Envelope Processing

Some processing of the N-factor envelope is required before it can be used to estimate tran-
sition location. Figure 7.1 shows the process of obtaining a critical N-factor envelope from
the N-factor envelope, followed by sampling for use with the quantification equations (5.2),
(56.3) and (5.4). The general steps required are as follows:

1. Remove all N-factor envelope data points beyond the transition location calculated
with the critical N-factor used to generate the flow solution

2. If transition occurs due to shock induced or laminar separation, extend the N-factor
envelope up to the critical N-factor limit used during the flow solution

3. Remove any dips in the N-factor envelope as transition will always occur at the earliest
chord-wise location where the amplification factor exceeds a given threshold.

The resulting critical N-factor envelope can essentially be used as a surrogate model for any
sampling-based uncertainty quantification method. For the sampling strategy used in this
study, critical N-factor samples are uniformly spaced from N, = 9 — 0 as indicated by the
lower right plot in figure 7.1.

87



CHAPTER 7. MULTI-POINT ROBUST OPTIMISATION

= N-factor Envelope Original Envelope

— Removed Data — Processed Envelope

N Added Data
:
1
1
1
1
1
1
1
:L*/C Tr
Step 3
A ECRLLEEEEEE --- R ECRLLEEEEEE ---
Original Envelope Original Envelope
— Processed Envelope — Critical N-Factor Envelope
— Removed Data O Envelope Samples
N ' N '
1 1
1 1
\/ : '
1 1
1 1
1 1
1 1
1 & 1
z/c Ir z/c Ir

Figure 7.1: Envelope sampling workflow.

7.1.3 Key Assumption of Methodology

A key assumption made when using the envelope sampling method is that transition lo-
cations estimated using the N-factor envelope accurately represent the transition locations
found, had a flow solution been obtained with the sampled critical N-factor value. This as-
sumption implies that movement of transition location has negligible effect on the boundary
layer and so instability growth upstream of the transition point.

In reality, varying transition location will alter the boundary layer thickness and the amount
of lift generated at the current angle of attack. A different angle of attack will be required to
meet any lift constraints which will in turn further alter the pressure gradients and instabil-
ity growth upstream of the transition location. Due to these effects, the estimated transition
locations for the envelope sampling method and the true transition locations obtained from
a flow solution at the reduced critical N-factor value will differ. The magnitude of these
differences will dictate the accuracy of the stochastic terms calculated using the envelope
sampling method. Thus, assessment of the error between stochastic properties calculated
with individual critical N-factor samples and calculated using the envelope sampling ap-
proach needs to be made.
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7.2 Optimisation

7.2.1 Problem Formulation

Multi-point, multi-objective robust optimisation has been carried out to investigate the ef-
fectiveness of the proposed methodology for NLF aerofoil design with robustness to N,
uncertainty over a range of operating conditions. As with the single-point optimisation,
two cases are considered. Each is optimised under different flow conditions and each has
differing objective functions and multi-point variables.

Optimisation at subsonic conditions is carried out using the NLF0215 as the starting aerofoil.
This is run at a Reynolds number of Re = 9 x 10° and Mach number of M = 0.1 with
transition is left free on both surfaces. Optimisation is carried out over a multi-point range
of lift coefficients. These are shown in table 7.1 with corresponding weights. Minimum drag
for the NLF0215 is found at C; = 0.7. To ensure good performance around the cruise lift
coefficient, a highly weighted multi-point has been placed just below this at C; = 0.65. A
second highly weighed point is placed at C; = 1.0 to create a low drag range that will widen
when Reynolds number is reduced for climb. Two additional points are placed at C; = 0.00
and C; = 1.90 with very low weighting. This limits their influence on the optimiser but
designs are required to converge here, thus avoiding any designs with large separation. The
point at C; = 0.00 is used to avoid laminar separation occurring at low lift coefficients while
the point at C; = 1.90 ensures Cj n,y is no less than 1.90.

Optimisation at transonic flow conditions is carried out using the RAE2822 aerofoil as the
starting geometry. An increased Reynolds number of Re = 15 x 10° was selected so that
the methodology proposed could be tested on a design problem with stronger instability
growth. At this Reynolds number, (ML/D)max is found at C; = 0.74 and M = 0.72. These
are used to represent cruise conditions. Two additional points at +/ — 0.02 Mach number
from the cruise condition are used, with a lower multi-point weighting. As Mach number
varies, M?C; remains fixed. The complete list of multi-points used are shown in table 7.2.
Transition is free on the upper surface and fixed at 0.03x/c on the lower surface for reasons
outlined during the uncertainty analysis carried out in chapter 5.

Table 7.1: Multi-points properties and weights for ~ Table 7.2: Multi-points properties and weights for

optimization of the NLF0215. optimization of the RAE2822.
Point Weight C Point Weight Ma G
1 0.01  0.00 1 0.5 0.70 0.7829
2 1.00  0.65 2 1.0 0.72  0.7400
3 0.80  1.00 3 0.5 0.74 0.7005
4 1.00 1.90

Both optimisation cases have differing objective functions. For the NLF0215 case, the ob-
jectives are minimisation of the mean value of deterministic C; at N, = 9, upper surface
transition location standard deviation and lower surface transition location standard devi-
ation with varying critical N-factor, over the multi-points used. Similarly, for the RAE2822
case, the objectives are the maximisation of mean deterministic ML/ D at N = 9 and min-
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imisation of mean transition location standard deviation with varying critical N-factor, over
the multi-points. The minimization of transition location standard deviation for both cases
ensures robustness to critical N-factor is improved. As deterministic drag and ML/D are
the overall performance variables, they were selected over mean transition location as the
second optimisation objective. Improving these at deterministic conditions should result in
the ideal amount of laminar flow being obtained. Reducing transition standard deviation
ensures this is robust to changes in critical N-factor.

For both optimisation cases, the deterministic critical N-factor was set at N; = 9 with a
critical N-factor standard deviation of N, = 2. The critical N-factor envelope from each
flow solution is sampled 1001 times to calculate the transition location mean and standard
deviation. A geometric constraint is used for both optimisation cases enforcing maximum
thickness of all designs generated to not decrease below that of the starting aerofoil in each
case. Results of the single-point optimisation carried out previously found that in the pur-
suit of minimizing performance standard deviation to variations in critical N-factor, a trivial
solution has transition fixed at the leading edge. This is of no practical use as a solution,
as it has excessively large drag that negates any benefits in improved robustness. To avoid
the generation of such designs, a limit is placed on the maximum deterministic C; for the
NLFO0215 case and on the minimum deterministic ML/ D value for the RAE2822. In both
cases this limit ensures each property is no worse than that of the starting aerofoil.

The same parametrisation method and optimisation settings were used for this study as
used during single-point optimisation. Due to the convergence issues seen in the single-
point transonic optimisation, design variable bounds for the transonic multi-point optimi-
sation have been altered. A total of 12 design variables, resulting from 6 design variables
per surface, are controlled by the optimiser. Flow conditions are fixed with angle of attack
left free to satisfy the specified lift coefficient. The genetic optimisation has a population
size of 48 individuals and runs until it reaches a 100 generations limit. The chance of mating
is set to 80%, resulting in a mutation chance of 20%. Crowding number was again scaled
from 0 — 20 during the 100 generations to aid in design space exploration early in the
optimisation and convergence towards the end.

7.2.2 Validation of the Methodology

The envelope sampling method’s accuracy in calculating transition location mean and stochas-
tic deviation needs to be assessed. To carry this out, mean and standard deviation are calcu-
lated using the envelope sampling approach and compared against values calculated with
transition locations found from individual flow solutions at each critical N-factor sample
used. In both cases, 1001 transition location samples are taken from the critical N-factor en-
velope for the envelope sampling method. For the actual transition location method, flow
solutions are run with critical N-factor values taken every Ngtep = 0.1 from No, = 9 — 0
resulting in 91 sample points.

Figure 7.2 shows upper and lower surface transition location mean and standard deviation
for the NLF(0215 over the lift coefficients range when calculated with each approach. Figure
7.3 shows upper surface transition location mean and standard deviation for the RAE2822
over a range of Mach, calculated using the two approaches.
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Figure 7.2: Upper and lower surface transition mean and standard deviation calculated over the span using
the envelope sampling method and from individual flow solutions for the NLF0215.
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As seen in figures 7.2a and 7.2c, the envelope sampling method is accurate in calculating
mean transition locations over the entire lift coefficients range. As expected, accuracy is only
slightly worse at lift coefficients with highly extended laminar flow. Mean upper surface
transition location calculated with each approach for the RAE2822 also agrees well over the
Mach number range considered, as shown in figure 7.3a. The envelope sampling method
is now least accurate where transition location moves quickly over a small Mach number
range, rather than where transition is highly extended. The envelope sampling method is
also accurate in calculating transition location standard deviation for the NLF0215, as shown
in figures 7.2b and 7.2d. Again, accuracy is worst where transition is most delayed, but also
where standard deviation is largest. For the RAE2822, the method also differs most at the
Mach number with largest standard deviation value.

In both cases, standard deviation calculated using envelope sampled transition locations fol-
lows the same form obtained when calculating standard deviation with transition locations
from individual flow solutions. As such, peaks and minima in standard deviation are found
at the correct lift coefficient or Mach number. Thus, the envelope sampling approach is able
to accurately highlighting where robustness is best and worst, and so should function well
when used to calculated stochastic terms for use with an optimiser.

7.3 Subsonic Results

The optimisation produced 4800 unique individuals, 4352 of which XFOIL was able to con-
verge at each of the multi-point lift coefficient values. Objective function convergence can
be seen in figure 7.4. This shows the minimum value found for mean Cy4, Tr, and Tr; over
the course of the optimisation. As can be seen, improvements in objective function become
smaller as the optimisation progresses. This indicates that the optimiser is converging to-
wards an optimum value for each. As trade-offs exist between objectives, a Pareto front
is generated containing 330 designs. Figure 7.5 shows a contour plot of the Pareto front
with Pareto designs highlighted. The colour map has a range of 2 drag counts up from
the minimum mean C; value found. The grey shaded region indicates designs beyond this
threshold. The design with minimum mean C; and a trade-off design balancing mean C,
Try); and Tr, are also indicated.
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Figure 7.4: The optimum objective function values found during the NLF0215 optimisation history.
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Figure 7.5: Contour plot of the Pareto front found between objective functions during optimisation of the
NLF0215.

From the minimum mean drag design, reducing mean transition location surface standard
deviation on either surface causes mean drag to grow. Above Trj, = 0.02, the Pareto front
appears dependent only on mean upper surface transition standard deviation. Two areas
within this region can be highlighted. Mean drag has a very weak trade-off with upper sur-
face transition location standard deviation above Tr, |, = 0.015, while below sees rapid drag
growth with only a small mean upper surface transition standard deviation reduction. Be-
low Tr, = 0.02 and above Tr,|, = 0.015, the Pareto front is only a function of lower surface
transition location standard deviation. Reducing Tr;|, further rapidly increases mean drag.
Below Trj, = 0.02 and Tr,, = 0.015, mean drag shows dependence on mean transition
location standard deviations from both surfaces.

Based on the placement of the design with minimum mean Cy, it is possible to obtain a sim-
ilar mean C; but substantially reduced upper surface transition location standard deviation.
The trade-off design highlighted on the Pareto front makes this trade-off. Objective function
values for the NLF0215, optimised aerofoil with minimum mean C; and optimised trade-off
aerofoil are shown in table 7.3. Additionally, the aerofoils with minimum mean upper and
lower surface transition location standard deviations are also included.

Each of the selected designs has a lower mean C; than the NLF0215 as this was constrained
to prevent designs with leading edge transition. As transition location is unable to move,
designs of this type are inherently robust. This has been effective as the design with mini-
mum mean Tr, |, has 0.524x/c mean Tr,,, while the design with minimum mean Tr;, has
0.646x/c mean Try,. While the Pareto front shows that both mean Tr, |, and Tr, can be
reduced together, to obtain the minimum values for each requires the other to rise.
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Table 7.3: Objective function values for the NLF0215 and optimised aerofoils with minimum mean Cy, mean
Tr |y, mean Tryq, and a trade-off design.

Design Mean C; (x10*) Mean Tr,,  Mean Try,
NLF0215 47.57 0.034 0.052
Minmean C; (D) 41.87 (-12%) 0.055 (+62%)  0.022 (-58%)
Trade-off (T) 42.48 (-10%) 0.019 (-44%)  0.017 (-67%)
Min mean Tr,|, 43.92 (-8%) 0.007 (-79%)  0.083 (+60%)
Min mean Ty, 46.12 (-3%) 0.046 (+35%)  0.006 (-88%)

7.3.1 Design Point Changes

The maximum mean C; and trade-off designs are compared against the NLF0215 at the
optimisation design points. The design with minimum mean C; is denoted design D (deter-
ministic) while the trade-off design is denoted design T (trade). Figure 7.6 shows the design
variable bounds and values for each design. These are split into upper and lower surfaces
where variables 1 and 7 are at the front and 6 and 12 at the rear of the aerofoil. Positive
values indicate material is added to the NLF0215 while negative values indicate material
has been removed. Wide bounds were given to the design variables near the front and rear
of the aerofoil to allow good control over the leading edge pressure gradient and at the rear
of the aerofoil to allow for different amounts of loading and camber.

Figure 7.7 shows the aerofoil profiles for each design. The grey shaded area indicates the
viable design space as dictated by the bounds. Both optimised aerofoils have increased max-
imum thickness compared to the NLF0215. The chord-wise position of maximum thickness
is similar for the NLF0215 and design T but further down-stream for design D. As such,
design D has less curvature from 0.1 < x/c < 0.4 compared to design T. Both optimised
designs have a similar lower surface. Thickness is increased between 0.1 < x/c < 0.55 and
reduced towards the trailing edge. This lowers camber and increases curvature through the
middle of the lower surface. Reduction of material from both surface has reduced thickness
at the trailing edge and decreased camber slightly. Design variables 5, 6, 11 and 12 are close
to the lower bounds so additional reductions may improve performance.

Figures 7.8 and 7.9 show the pressure distributions and N-factor envelopes for the NLF0215
and selected optimised aerofoils at the two highly weighted design points 2 and 3, run at
Ny = 9 with markers indicating transition location on each surface for each design. The
lower surface of both optimised designs at both lift coefficients now features a stronger
favourable pressure gradient from 0.0 < x/c < 0.4 followed by an adverse pressure gradi-
ent from 0.4 < x/c < 0.6. The favourable pressure gradient region has delayed instability
amplification until further downstream for both optimised designs at C; = 0.65. The ad-
verse pressure gradient region then causes rapid growth up to the critical N-factor. This
results in little movement of transition location at high critical N-factors, so reduces Try,.
These improvements have resulting in a slight reduction in laminar flow and earlier insta-
bility growth on the lower surface at C; = 1.00. This design points has a lower weighting
and so large improvements at C; = 0.65 are favoured by the optimiser.
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Figure 7.6: Upper and lower surface design variable values and bounds for the NLF0215 and selected opti-
mised designs.
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Figure 7.7: Aerofoil profiles for the NLF0215 and selected optimised aerofoils, with the grey shaded region
indicating the viable design space as dictated by the design variable bounds.

Design changes on the upper surface have resulted in different pressure distributions over
the front of each optimised aerofoil. At C; = 0.65, design D has a slightly larger initial
pressure rise, followed by a longer favourable pressure gradient as maximum thickness is
further aft. As such, instability amplification does not occur until further downstream. Thus,
design D obtains increased upper surface laminar flow. However, at C; = 1.00, the initial
pressure rise leads to a region of adverse pressure gradient, which increased instability am-
plification earlier upstream. Although designs D and T have a similar amount of upper
surface laminar flow, this is maintained down to a much lower critical N-factor for design T.
If critical N-factor is reduced below N, = 6, transition location at C; = 1.0 is in fact worse
for design D then the NLF0215.

Thus, both designs represent an improvement on the starting design, however a small re-
duction in performance at the ideal critical N-factor can allow for a more robust performance
to critical N-factor uncertainty.
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Figure 7.8: Pressure distributions and transition envelopes for the NLF0215 and selected optimised aerofoil at
design point 2 with C; = 0.65
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Figure 7.9: Pressure distributions and transition envelopes for the NLF0215 and selected optimised aerofoil at
design point 3 with C; = 1.0.

7.3.2 Performance Polars

Figure 7.10 shows the deterministic drag and transition location polars for the NLF0215
and selected optimised aerofoils when run at the ideal critical N-factor of N, = 9. As
seen in figure 7.10a, C; is reduced for both optimised designs through the lift coefficient
range 0.65 < C; < 1.0. This has strengthened the drag bucket shape already found for the
NLFO0215. Design D has a lower C; through the bucket lift coefficient range but this range
is smaller than for design T. Drag reduction within the bucket comes in part from extended
upper surface laminar flow, as seen in figure 7.10b. The strong drag bucket shape comes
from a larger shift in upper surface transition location over a smaller lift coefficient range.
Design T has this shift in transition location occur at a higher lift coefficient than design D,
enabling it to obtain a wider drag bucket but less laminar flow through the bucket itself.
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Figure 7.10: Drag and transition location polars run at the ideal critical N-factor of Ny = 9 for the NLF0215
and optimised aerofoils.

Strengthening of the drag bucket upper corner has also caused an increase in C; above the
drag bucket for both optimised designs. This is also caused by transition movement being
confined to a small lift coefficient range. This helps keep extended upper surface laminar
flow up to a higher lift coefficient, but then reduces laminar flow at lift coefficients above
the position where transition moves.

To assess stochastic performance of the NLF0215 and selected optimised aerofoils, mean and
standard deviation of drag and transition location have been calculated over a range of lift
coefficients. This was done using flow solutions obtained at critical N-factor samples taken
every Nstep = 0.1 from N, = 9 — 0. Mean drag and transition location polars are shown in
figure 7.11. The ideal drag polars are also shown for comparison.

The most noticeable differences between the mean and deterministic performance of the
NLF0215 and optimised designs occurs through the drag bucket lift coefficient range. Mean
drag is naturally higher than deterministic drag, and has increased most between 0.5 <
C < 1.2. Cyy, is furthest from C; for the NLF0215 at the cruise lift coefficient of C; = 0.7.
The analysis at subsonic conditions carried out previously found that the difference between
mean and deterministic performance was largest where deterministic transition location is
sensitive to changing lift coefficient. This is again seen as Tr,, is less sensitive to lift coefficient
through the drag bucket and so both have similar C;),, and C; values.

As mean drag and deterministic drag are comparable through the drag bucket range for
designs D and T, the effect of including critical N-factor uncertainty is instead a reduction of
the drag bucket width. In both cases this comes primarily from the upper edge of the drag
bucket moving to a lower lift coefficient value. This is far more pronounced for design D.
Importantly, the drag bucket no longer extends over the climb range chosen. Mean drag for
design D is 9 drag counts higher than deterministic drag at C; = 1.0. As the drag bucket for
design T was over-extended at the ideal critical N-factor, the mean drag polar bucket width
still exceeds the upper highly weighted design point.
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Figure 7.12: Drag and transition location standard deviation polars for the NLF0215 and optimised aerofoils.

Figure 7.12 shows the drag and transition location standard deviation polars for the NLF0215
and selected optimised aerofoils. Below C; = 0.6, Cy), is comparable between all three
designs while at the cruise lift coefficient, it has substantially reduced after optimisation.
Design D has a large spike in Cy, at C; = 1.0, thus leading to large differences between
deterministic and mean drag. Design T has a C ), peak of similar magnitude but reduced
width and centred at a slightly higher lift coefficient. Both these spikes in Cy|, match a corre-
sponding spikes in T, |, and Try,. Tr,), is much larger for the optimised designs due to the
increased rate of change of deterministic transition location with changing lift coefficient.
Although the peaks in Tr, |, have increased, their width has been reduced as transition loca-
tion is less sensitive to changing lift coefficient above and before the large transition location
shift. Transition location standard deviation is then reduced by moving the two peaks away
from the selected lift coefficient design range. This leaves the centre of the drag bucket with
exceptionally low drag and transition location standard deviation.
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7.3.3 Sensitivity to Uncertainty Standard Deviation

Figures 7.13 and 7.14 show the C; mean and standard deviation polars when calculated with
different critical N-factor standard deviation (N,) values. This is done to assess their sen-
sitivity to the chosen value of N,.. The results of this mirror those seen during single-point
optimisation. Increasing N, causes Cy), and Cy, to rise for both optimised aerofoils. In both
cases, Cq);, increases most at the upper end of the drag bucket, reducing its effective width.
For both designs, increasing N causes the peaks seen in Cy, to grow in magnitude and
move towards the same lift coefficient. The effect of increasing N, is stronger for the spike
in drag corresponding to the upper surface transition location movement. As such, increas-
ing the value of N, quickly reduces the robustness of drag to critical N-factor uncertainty at
the upper end of the chose design range.
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Figure 7.13: Mean drag polars for design D and T when calculated with critical N-factor standard deviation
values of Ny = 1,2 and 3.
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Figure 7.14: Drag standard deviation polars for design D and T when calculated with critical N-factor stan-
dard deviation values of N, = 1,2 and 3.
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7.4 Transonic Results

A total of 4800 designs were produced during the optimisation, of which 3925 could be con-
verged by CVGK at all three design points. Figure 7.15 shows convergence history of the
two objective functions by plotting the optimum value of each over the course of the optimi-
sation. Although a small improvement of 0.25 mean ML/ D is found late in the optimisation
at generation 89, good convergence is seen for both objectives. A trade-off between maxi-
mum mean ML/D and minimum mean Tr,, is found. Figure 7.16 shows mean ML/D and
mean Tr,, for the entire population generated, with Pareto front designs highlighted.
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Figure 7.15: The optimum objective function values  Figure 7.16: Mean ML/D and mean Tr,, for all
found during the RAE2822 optimisa- optimised designs with Pareto front
tion history. and selected aerofoils highlighted.

The Pareto front is similar in shape to that found during transonic single-point robust opti-
misation. Mean Tr, |, has been reduced to near zero; however, these designs have the lowest
mean ML/D. Mean ML/D can be increased by approximately 15 with only a 0.003x/c
rise in Tr, |, but increasing mean ML/ D further causes Tr,|, grow rapidly. A design at the
corner of the Pareto front therefore represents a good trade-off between objectives. This de-
sign is highlighted on the Pareto front, along with the design with maximum mean ML/ D.
As was seen during the single-point robust optimisation, there are some gaps in the Pareto
front. There are few designs found at high mean ML/ D values, suggesting improvements
around the maximum mean ML/D design may be possible as this design region is not well
explored. This also suggests that Tr, |, can be more easily improved than ML/D.

The objective function values for the RAE2822 and optimised design with maximum mean
ML/D, minimum mean Tr,, and the trade-off design are shown in table 7.4. The constraint
on mean ML/D has been effective as each optimised design has a higher ML/D value,
while Tr,|, has not been prevented from reducing. The minimum mean Tr,, design is at
the constrained limit for mean ML/D; however, the minimum mean Tr,, found is so low
that any additional improvements found by removing the constraint on mean ML /D would
only produce aerofoils of little use to a designer. Tr,, has been reduced for the design with
maximum mean ML/ D, thus any Pareto front design is an improvement on the RAE2822 at
the conditions selected.
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Table 7.4: Objective function values for the RAE2822 and optimised aerofoils with maximum mean ML/ D,
minimum mean Tr, |, and a trade-off design.

Design Mean ML/D Mean Tr,,
RAE2822 69.24 0.0531

Max mean ML/D (D) 87.11(+26%) 0.0206 (-61%)
Trade-off (T) 85.32(+23%) 0.0037 (-93%)
Min mean T, 69.89 (+1%) 0.0002 (-99%)

7.4.1 Design Point Changes

The maximum mean ML/D and trade-off designs are selected for comparison against the
RAE2822. There are denoted as designs D (deterministic) and T (trade) respectively. Figure
7.17 shows the design variable values and bounds on each surface for both optimised aero-
foils. Variables 1 and 7 are towards the front of the aerofoil while variables 6 and 12 are at the
rear. The design variable sign indicates if material is added or removed from the RAE2822.
Based on the single-point transonic optimisation results, large upper limits were set for the
upper surface design variables, and reduced lower bounds were given to the lower surface
design variables. Designs D and T see similar deformation on the upper and lower surfaces.
As expected, material is added on the upper surface and removed from the lower. As such,
most design variables for both designs are away from the bounds. The exception to this is
at the rear of the lower surface where both designs may benefit from wider lower bounds.

Figure 7.18 shows the aerofoil profiles for the RAE2822 and selected optimised designs with
the grey shaded region indicating the viable design space as dictated by the design variable
bounds. Both optimised designs are very similar in shape. The deformation seen on each
surface has resulted in a camber increase. This is most pronounced towards the rear of
the aerofoil. As the maximum thickness was constrained, it is the same for the RAE2822
and both optimised designs. Its chord-wise position has also not changed. The differences
between optimised designs are found over the upper surface. Design D has larger thickness
and increased upper surface curvature from 0 — 0.2x/c.

Figures 7.19, 7.20 and 7.21 show the pressure and N-factor envelopes for the RAE2822 and
selected optimised aerofoils at each of the design points used during the optimisation. The
increase in camber has reduced the angle of attack required to meet the target lift coefficient
for both optimised designs. This is a reduction of approximately 1.7° at each of the design
points. This reduces the initial pressure rise and allows for a long favourable pressure gra-
dient over the front of the aerofoil, as seen in each of the previous optimisations cases. This
has suppressed instability growth at each design point, extending laminar flow up to the
shock position. The smaller pressure rise also reduces shock strength and delays the shock
position. This reduces wave drag and viscous drag. As transition is shock induced, it is
completely insensitive to critical N-factor near the ideal critical N-factor. This is seen on the
transition envelopes as a vertical line extending up to the critical N-factor limit. It is impor-
tant to note that these changes also cause a large increase in rear loading. As such, the mean
moment coefficient has increased from C,, = —0.097 to C,, = —0.178 for design D and to
Cpn = —0.177 for design T.
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Figure 7.17: Upper and lower surface design variable values and bounds for the RAE2822 and selected opti-
mised designs.
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Figure 7.18: Aerofoil profiles for the RAE2822 and selected optimised aerofoils, with the grey shaded region
indicating the viable design space as dictated by the design variable bounds.

The pressure distributions between designs differ most at the front of the upper surface. At
design point 2, design D has a small region of adverse pressure before the shock. This helps
to reduce shock strength and further delay the shock, therefore extending laminar flow.
The region of adverse pressure, however, causes increased instability growth. While this is
not enough to trigger early transition, transition location moves upstream with a smaller
reduction in critical N-factor. Design T has a stronger pressure gradient up to the shock.
This causes a stronger shock further upstream so the combined increase in wave drag and
reduction in laminar length causes drag to increase by 3 counts. The benefit of this is the
increased instability suppression obtained. Design T remains insensitive to critical N-factor
changes down to N, = 4, and so has better transition location robustness.

At both the upper and lower design points, transition location is very robust to critical N-
factor changes for designs D and T. Shock strength has been significantly reduced at the
ideal critical N-factor for both designs at both points with drag for design D and design T
being more than 10 counts lower than the RAE2822 at both design points.
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Figure 7.19: Pressure distributions and transition envelopes for the RAE2822 and selected optimised designs

at design point 1 with M = 0.70 and C; = 0.7829.
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Figure 7.20: Pressure distributions and transition envelopes for the RAE2822 and selected optimised designs
at design point 2 with M = 0.72 and C; = 0.7400.
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Figure 7.21: Pressure distributions and transition envelopes for the RAE2822 and selected optimised designs
at design point 3 with M = 0.74 and C; = 0.7005.
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7.4.2 Performance Polars

Figures 7.22 and 7.23 show the ideal, mean and standard deviation ML/D and Tr, polars
over the Mach range investigated for the RAE2822 and selected optimised designs. In each
case, the mean and standard deviation of ML/D and Tr, are found by running individual
flow solutions at critical N-factor sample points taken every Ngtep = 0.1 from Ne, = 9 — 0.
This results in 91 samples per Mach number sample point over the Mach number range.

ML/D at the ideal critical N-factor is improved over the entire Mach range for both opti-
mised designs. Design D has a higher ideal ML/D at and above M = 0.72, but design T
has a higher ideal ML/D below. This is in part due to increased laminar flow on the upper
surface of both optimised designs over the full Mach number range considered. The largest
increase in laminar flow from the RAE2822 is found at M = 0.70. Transition on the RAE2822
occurs early here due to instability growth, as shown in figure 7.19a.
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Figure 7.22: ML/ D polars for the RAE2822 and selected optimised designs.
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Figure 7.23: Upper surface transition location polars for the RAE2822 and selected optimised designs.
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The RAE2822 has a large difference between ML/ D at the ideal critical N-factor and mean
ML/D. At M = 0.72 where (ML/D)max is found, mean ML/D is lower than the ideal
ML/D by 5. This is due to low transition location robustness to critical N-factor. At M =
0.72, mean Tr,, is 0.08x /¢ further upstream than the value at the ideal critical N-factor. Mean
ML/ D is much closer to the ideal value for design D over the Mach range, with the excep-
tion of design point 2 at M = 0.72. Design D has extended Tr, at the ideal critical N-factor
here, but mean Tr, is now worse than design T. As Design T has a near identical ideal and
mean ML/D and Tr,, both design T and design D have a similar maximum mean ML/D.

The ML/D and Tr, standard deviation polars for each design clearly show this difference in
design robustness to critical N-factor uncertainty. For each design, the ML/D and Tr, stan-
dard deviation polars have a similar form. Standard deviation is lower for both optimised
design; however, design D still has a spike in standard deviation at M = 0.72. Design T in
comparison sees little to no standard deviation at all.

It is clear from these results that the trade-off design T is the better optimised design. While
its performance at the ideal critical N-factor is marginally worse than Design D, its mean
performance is comparable and its performance robustness is excellent over the entire Mach
range.

7.4.3 Sensitivity to Uncertainty Standard Deviation

The sensitivity of stochastic performance to critical N-factor uncertainty standard deviation
has again been assessed. ML/D mean and standard deviation polars for designs D and T
are calculated at various values of N, and are shown in figures 7.24 and 7.25.

As N, is increased, mean ML/D changes little for design T but reduces substantially be-
tween 0.715 < M < 0.73 for design D. At M = 7.2, increasing N, from 1 to 3 reduces
mean ML/D by 6. This is understandable as design D has highly extended laminar flow
at M = 0.72, but with instability amplification beginning 0.4x/c upstream. Thus, mean
ML/D is reduced when N; is raised as the probability weighting at low critical N-factors
is increased. This also causes ML/D standard deviation to grow as transition locations far
upstream from the mean transition location have a higher probability weighting. Design
D sees standard deviation rise the most at M = 0.72 and above as N, is increased. Again,
upper surface transition location is highly extended at higher Mach numbers, but initial
amplification occurs far upstream. In comparison, design T has delayed transition but early
initial instability growth at low Mach numbers. As such, ML/ D standard deviation rises the
most at M = 0.72 and below when Nj is increased. As the initial instability amplification
is to a low N-factor at M = 0.70, the largest increase in ML/D standard deviation occurs
when N, is increased from 2 — 3.

These results again show that the selection of N,; does have a strong effect on the calculated
stochastic values. However, the design selected for its robustness to critical N-factor un-
certainty when calculated with N, = 2 was still found to be more robust than alternative
designs at N, = 3.

105



CHAPTER 7. MULTI-POINT ROBUST OPTIMISATION

105 105
] — Ny =1 1 — Ny =1
100 100 = Ne=2
] 1 Ny =3
95 95
2 907 3 90
~ 7 ~ b
~ ] ~ ]
S 857 S 85 A
80 80
75 75
70-'-"|""|""|"'- 70----'|""|""|""
0.70 0.71 0.72 0.73 0.74 0.70 0.71 0.72 0.73 0.74
M M
(a) Design D (b) Design T

Figure 7.24: ML/ D standard deviation polars for the RAE2822 and selected optimised designs at critical
N-factor standard deviation values of Ny = 1,2 and 3.
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Figure 7.25: ML/ D standard deviation polars for the RAE2822 and selected optimised designs at critical
N-factor standard deviation values of Ny = 1, 2 and 3.

7.5 Summary

In this chapter, a computationally cheap method has been developed for the robust aero-
dynamic shape optimisation of NLF aerofoils with uncertainty in critical N-factor over a
range of multi-point conditions. This has been accomplished by utilising the N-factor enve-
lope, obtained from stability analysis of a single flow solution. Following this approach, the
increased dimensionality of robust optimisation is avoided.

The accuracy of the envelope sampling method in providing transition location estimations
from the N-factor envelope was assessed. The envelope sampling method is found to be
accurate for subsonic speeds at a range of lift coefficients and for transonic speeds at a range
of Mach numbers. Accuracy is found to be worst for designs that see transition location
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move rapidly over a small critical N-factor range located at a high critical N-factor. The
envelope sampling method is, however, still able to obtain the correct trend in transition
location mean and standard deviation and locate the Mach number value for maximum
mean and standard deviation.

As such, this method was used to perform robust aerodynamic shape optimisation with
critical N-factor uncertainty. This was done at subsonic conditions over a range of lift coef-
ficients and at transonic conditions over a range of Mach numbers. In both cases, use of the
envelope sampling method allowed for a range of designs to be obtained, trading determin-
istic performance for performance robustness. Using this Pareto front of designs, a trade-off
aerofoil could be selected in each case that had a slightly reduced deterministic performance
but comparable mean performance, and much improved performance robustness to critical
N-factor uncertainty. Importantly, performance and performance robustness of the selected
designs were maintained over the multi-point range selected for each optimisation case.

The sensitivity of performance mean and standard deviation to the chosen critical N-factor
uncertainty standard deviation was also evaluated. The results of this showed that designs
selected for better robustness at a certain uncertainty standard deviation also have better
robustness when assessed with a different uncertainty standard deviation.
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Chapter 8

Extension to Swept Flows

The assumption of two-dimensional flow over a wing can be made at locations away from
three-dimensional flow sources such as the fuselage, propulsion system and wing-tip, on
un-swept wings only. At high transonic speeds, however, wing sweep is required as it re-
duces the flow velocity normal to the wings leading edge, thus reducing shock strength
and so wave drag. Many commercial transport aircraft have over 25° of leading edge wing
sweep [157] as a result. Three-dimensional flows can have both crossflow (CF) and Tollmien-
Schlichting (TS) instabilities. Transition is dominated by the former at sweep angles above
25° and becomes difficult to control passively via pressure gradient design. Further compli-
cations arise due to mixing of both instability types, effectively lowering the critical N-factor
limit of each. This results in a complex design problem that is well suited to optimisation.
Thus, the objectives of this chapter are to:

e Extend the multipoint robust optimisation method for swept wing aerofoil design.
e Apply this to optimisation of a typical narrow-body transonic swept wing.
o Investigate changes to the optimisation output by reducing wing sweep angle.

8.1 Methodology

The dual envelope strategy [12] is one of the preferred approaches used by the European
aerospace industry for eV stability analysis of three-dimensional flows [41, 51], and is the
method implemented within CVGK. This involves the separation of TS and CF waves based
on wave angle and a critical N-factor limit specified for each. An example of this is given
in figure 8.1a, which shows individual TS and CF N-factor envelopes plotted against chord-
wise position with separate limits defined. These are commonly combined to produce an N,
vs N, envelope plot, as shown in figure 8.1b. To account for interactions between the two
instability types, a mixing region is defined. In practice this takes the form of a continuous
curve on the Nis vs N plot, however to simplify implementation, it is described in CVGK
using a linear relationship defined by points (N,f yix, Nts) and (N¢f, Nis mix), as indicated in
figure 8.1b.
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Figure 8.1: Example of swept wing N-factor envelope plots.

8.1.1 Calculation of Transition Envelope

Estimating transition locations at reduced critical N-factors using the information obtained
from stability analysis requires some processing of the N-factor envelopes. The goal is to
produce a single transition (Tr) envelope that gives the transition location at all N-factors
below the critical N-factors used to obtain the original flow solution. Due to the additional
CF instability N-factor envelope and instability mixing region, this requires more steps than
for the two-dimensional method used in the previous chapter. Starting with the dual TS
and CF N-factor envelopes, the steps required to calculate the transition envelope are shown
schematically in figure 8.2 and described as follows:

1. Increase the N-factor values of the instability envelope with the smaller critical N-
factor limit by the difference between the two critical N-factor limits. This results in
both the TS and CF envelopes having the same N, limit.

2. Generate a mixing (Mx) envelope, defined as the distance Nj,x of each (N,f, Nis) point
from the line defined by the points (Ncf — N¢f,mix,0) and (0, Nis — Nis ix ). This is done
using equation 8.1 and then normalised by the, now mutual, critical N-factor limit N,.

me _ }chf + Nts + AI\]t‘s|

where: k= ANis
vV kZ +1 AZ\[cf

ANts = Nis — Nis mix AI\]cf = ch - ch,mix

(8.1)

3. This results in three critical N-factor envelopes, one for TS instability waves, one for
CF instability waves and a mixing envelope. These are of the same scale and have the
same critical N-factor limit. The transition envelop is found from these by taking the
furthest upstream chord-wise location of all envelopes for each critical N-factor value.

The transition location mean and standard deviation can then be calculated using equations
5.2 and 5.3 as outlined in chapter 7, with transition location estimations taken from the
transition envelope.
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Figure 8.2: Steps required to calculate the transition envelope from dual TS and CF instability N-factor en-
velopes obtained from stability analysis of a three-dimensional flow.
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8.1.2 Key Methodology Assumption

A key assumption of the envelope sampling method is again that transition locations esti-
mated from the critical N-factor envelope are accurate. For the estimated transition loca-
tions to be accurate, the N-factor envelopes should not change as critical N-factor is reduced
and transition location moves upstream. In reality, varying transition location will alter the
aerofoil pressure distribution and lift coefficient to some degree. To obtain the same lift
coefficient, a change in the angle of attack will be required, further affecting the pressure
distribution and amplification of instabilities over the aerofoil. The greater this change in
instability amplification, the less accurate the envelope sampling method will be for pre-
dicting transition locations at reduced critical N-factors.

To use the envelope sampling method, its accuracy in predicting mean and standard de-
viation of transition location must be assessed. Given that accuracy of the method may
depend on critical N-factor envelope shape, the conditions under which the envelope sam-
pling method is most and least accurate should also be highlighted. Although this has been
done for two-dimensional flows, the inclusion of CF instability and interaction of instability
types will affect the envelope sampling methods accuracy and so this must be checked.

8.2 NLF Wing Optimisation

This methodology has been used to perform robust shape optimisation of two swept wing
test cases. The goal in each case is to reduce drag over a wing section via the extension
of NLF while reducing variations in drag due to uncertainty in critical N-factor. The first
optimisation case is of a high-sweep wing typical of a narrow-body commercial aircraft. As
a high sweep angle is used, it is expected that the optimisation of this wing will struggle
to obtain extended NLF due to strong CF amplification, especially inboard where Reynolds
number will be highest due to the larger chord length. As such, the second optimisation
case is of a low-sweep wing of comparable span, aspect ratio, area and two-dimensional
Mach number. Due to the reduced sweep angle, it is expected that optimisation of this wing
should obtain a larger extent of NLF over a wider span range.

8.2.1 Swept Wing Design

Both test cases are based on cruise flight conditions shown in table 8.1, which are similar to
those of the Airbus A320-200 aircraft [157]. An aircraft weight of 64500kg and cruise altitude
of 33,000ft (10058m) are used, with atmospheric conditions taken from the International
Standard Atmosphere. A cruise Mach number of M = 0.78 is selected. With a quarter chord
wing sweep of 25°, the two-dimensional Mach number over the wing is Mop = 0.707.

The high-sweep wing is also based on that of the Airbus A320-200 [157]. A wingspan of
34m is selected with an aspect ratio of 9.4, resulting in a wing area of 122.98m?. Leading
and trailing edge sweep angles of 28° and 16° are chosen, resulting in a quarter-chord wing
sweep of 25°. From this, root and tip chord lengths are calculated as 5.699m and 1.535m
respectively, resulting in a taper ratio of 0.27 and mean aerodynamic chord length of 4.017m.
These values are summarised in table 8.2 and the wing planform is shown in figure 8.3a. The
aircraft line-of-flight Mach number with this wing sweep is M = 0.78, and so aircraft lift
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Table 8.1: Typical narrow-body aircraft cruise properties and atmospheric conditions [157].

Property Value

Weight 64500 kg

Altitude 10058 m (37500 ft)
Mach Number (2D) 0.707
Temperature 222.77 °k

Density 0.40972 kg.m 3

Dynamic Viscosity =~ 1.466 x 107> Pa.s
Speed of Sound 299.21 m.s~!

Table 8.2: High-sweep wing properties. Table 8.3: Low-sweep wing properties.
Property Value Property Value
Wing Span 34.0m Wing Span 340m
Aspect Ratio 9.4 Aspect Ratio 9.4
Wing Area 122.98 m? Wing Area 122.98 m?
Lead Edge Sweep 28° Lead Edge Sweep 20°
Trailing Edge Sweep  16° Trailing Edge Sweep  10°
Quarter-chord Sweep  25° Quarter-chord Sweep 17.5°
Taper Ratio 0.27 Taper Ratio 0.39
Mean Chord 401 m Mean Chord 3.851 m

coefficient at this speed, weight and wing area is calculated as C;,, = 0.5254. An elliptical
loading distribution is used, as shown in figure 8.3b, resulting in lift coefficient and Reynolds
number distributions over the wing as shown in figures 8.3c and 8.3d.

The low-sweep wing has reduced leading and trailing edge sweep angles of 20° and 10°, re-
sulting in a quarter chord sweep of 17.5°. Root and tip chord lengths of 5.212m and 2.022m
are selected to match the high-sweep wing area of S,y = 122.98m*. This results in a re-
duced mean aerodynamic chord length of 3.851m and increased taper ratio of 0.39. All wing
properties are given in table 8.3. and the wing planform is shown in figure 8.3a. To obtain
the same two-dimensional Mach number over the low-sweep wing, a reduced line-of-flight
Mach number of M = 0.741 is used. At this speed, aircraft lift coefficient is calculated as
Ciac = 0.5818. With an elliptical loading distribution, shown in figure 8.3b, lift coefficient
and Reynolds number distributions are as shown in figures 8.3c and 8.3d.

Obtaining NLF over the entire wing span is not possible as turbulence from the fuselage,
engine and pylon and strong span-wise flow at the wing-tip will all trigger early transition.
The Airbus A320-200 has engine and pylon positioned approximately 5.75m outboard and
a maximum nacelle width of approximately 2.4m [157]. Therefore, the span-wise range on
each wing considered for optimisation is from 8 — 15m, as shown in figure 8.3a. This is
2.25m outboard of the pylon (1m outboard of the nacelle) and 2m inboard of the wing-tip.
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Figure 8.3: Planform and span-wise distribution of aerodynamic properties for the high and low-sweep wings.

8.2.2 Problem Formulation

For each test case, multi-objective shape optimisation is carried out over three span-wise
stations along the wing. Reynolds number and lift coefficient are fixed at each, with angle
of attack left free. As such, the goal is to design a wing section of constant aerofoil shape but
with variable twist along the span. The objective functions used in each case are maximisa-
tion of mean ML/D, maximisation of mean Tr, |, and minimisation of mean Tr, ;.

The three span-wise stations chosen for optimisation are, in each case, the inner and outer
edges of the range where NLF can be obtained, and between this at the point of maximum
target lift coefficient over the span. For the high-sweep case, the stations used during the
optimisation are at outboard distances of 8m, 12.5m and 15m. For the low-sweep case, the
three stations chosen are at 8m, 10.5m and 15m along the wing. The lift coefficient, Reynolds
number and design point weighting at each span-wise station are shown for the high and
low-sweep test cases in tables 8.4 and 8.5. In both cases, transition is left free on the upper
surface but fixed at 0.03x/c on the lower surface for the reasons outlined in chapter 5.
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Table 8.4: Multi-point conditions and weights used for optimisation of the high-sweep wing.

Point Span Weight C Re

1 8.0m 1.0 0.5710 24.38x10°
2 12.5m 1.0 0.6219 17.19x10°
3 15.m 1.0 0.5624 13.20x10°

Table 8.5: Multi-point conditions and weights used for optimisation of the low-sweep wing.

Point Span Weight C Re

1 8.0m 1.0 0.6371 22.99x10°
2 10.5m 1.0 0.6501 20.08x10°
3 15.m 1.0 0.5260 14.85x10°

Mean Tru”, was included as an objective function as, with the extension to three-dimensional
flow, designs may be found with large CF amplification towards the leading edge but with
a highly extended Tr,, and therefore large ML/D, at the ideal critical N-factor. Designs of
this type will have both a large ML/D and small Tr,,, but are naturally very undesirable
as Tr,|, is extremely low. This issue was not seen during two-dimensional optimisation
as TS instabilities have less leading edge amplification, although depending on the design
conditions could also produce such designs. Including Tr, |, as an objective will push the
optimiser to obtain designs with extended Tr, at the ideal critical N-factor, but also over a

wider N-factor range so as to increase Tr, |, and lower Tr,,.

In each test case, the RAE2822 is used to derive an equivalent swept and tapered line of flight
aerofoil which is used as the starting design. This is done using lock’s equivalence laws [145]
as implemented in ESDU 78009 [158] . Optimised designs are generated via deformation
of the starting aerofoil using a perturbation profile. This is parametrised using the CST
method, resulting in 6 design variables per surface, totalling 12 that are controlled by the
optimiser.

Bounds are placed on each design variable so that a finite search space is defined. In both
cases, a geometric constraint is used to ensure maximum aerofoil thickness of all optimised
designs cannot reduce below 0.11z/c. A constraint is also placed on mean ML/ D, requiring
that optimised designs have a value larger than that of the starting design in each optimisa-
tion case. The genetic algorithm optimisation method produces 48 designs per generation,
and was set to run for a total of 150 generations. A mutation chance of 20 percent was used
and crowding number was linearly increased from 77 = 0 — 20 during the optimisation to
initially aid in design space exploration and later in design convergence.

8.2.3 Critical N-factor Calibration

As the optimisation cases being considered represent a more realistic transonic design prob-
lem that includes both TS and CF instability types, accurate ideal TS and CF critical N-factor
limits are needed. As the compressible eN method is used, and both optimisation cases use
a different line-of-flight Mach number, each must be calibrated separately.
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Figure 8.4: (N.¢, Nis) data points calculated using incompressible and compressible linear stability theory
with pressure distributions obtained from the Fokker 100 and ATTAS NLF glove flight tests [51].

To obtain calibrated TS and CF critical N-factor limits, flow solutions for the starting aerofoil
in each optimisation case first need to be obtained at each of the three span-wise stations
using the incompressible ¢V method. The incompressible critical N-factor limits used for
this are obtained from the ATTAS and Fokker 100 flight test data [12], originally shown in
figure 2.10a and repeated here in figure 8.4a. The limits chosen are Ni; = 11.5 and N,y = 8.5,
each with a mixing region spanning AN;; = AN, =4, as indicated in figure 8.4a.

Flow solutions should then be obtained using the compressible eN method with TS and CF
critical N-factor limits varied so as to match the transition locations found with the incom-
pressible eV analysis. These critical N-factor limits can then be used during the optimisation.
During calibration, the size of the mixing region was left fixed as this does not vary signifi-
cantly between the compressible and incompressible experimental results shown in figures
8.4a and 8.4b. Table 8.6 shows the calibrated critical N-factor limits for both the high-sweep
and low-sweep optimisation test cases. Tables 8.7 and 8.8 show results of the calibration
process for each test case. Shown on these two tables are the dominant instability type, in-
compressible and compressible upper surface transition locations and the minimum error
between them at each span-wise position.

The calibrated critical N-factors that gave the smallest error for the high-sweep test case
were found to be Nis = 5.9 and N, = 7.9. The calibration process for the high-sweep wing
case was helped as each span-wise station is dominated by a different instability type. As
such, the CF instability limit was calibrated at 8m span, the TS instability limit calibrated
at 15m span and the point between used as confirmation of a good match. The calibrated
critical N-factors that gave the smallest error for the low-sweep test case are Ni; = 6.0 and
N¢s = 7.9. In this case, TS instability amplification causes transition at all three span-wise
points, which makes it difficult to estimate the CF critical N-factor limit. As CF instability
amplification is far less sensitive to changes in Mach number than TS amplification when
using the compressible eN method, this was left at Ny = 7.9.
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Table 8.6: Calibrated compressible eN critical N-factor limits.

Test Case Nis N ANis ANy

High-sweep 59 79 4.0 4.0
Low-sweep 6.0 79 4.0 4.0

Table 8.7: Limiting instability type and transition locations found with incompressible and calibrated com-
pressible eN method at each spanwise station for the high-sweep optimisation case.

Limiting  Incompressible Compressible

Span Instability — Try (x/c) Try (x/¢) Error

8.0m CF 0.0296 0.0300 0.0004 (1.4%)
125m  Mixed 0.1245 0.1285 0.0040 (3.2%)
15.0m TS 0.2414 0.2439 0.0025 (1.0%)

Table 8.8: Limiting instability type and transition locations found with incompressible and calibrated com-
pressible eN method at each spanwise station for the low-sweep optimisation case.

Limiting Incompressible Compressible

Span Instability Tr, (x/c) Tr, (x/c) Error

8.0m TS 0.0953 0.0939 0.0014 (1.5%)
10.5m TS 0.1062 0.1027 0.0035 (3.3%)
15.0m TS 0.2149 0.2150 0.0001 (=~ 0%)

8.2.4 Validation of the Methodology

The envelope sampling methods accuracy in estimating transition locations for quantifica-
tion of robustness to critical N-factor uncertainty has been assessed. This is done by com-
paring the upper surface transition location mean and standard deviation when calculated
using transition locations from the envelope sampling method and from individual flow so-
lutions run at a range of critical N-factor sample points. This has been carried out over the
span being considered for optimisation for both high-sweep and low-sweep test cases using
their respective starting aerofoil designs.

In both test cases, N is the higher critical N-factor limit. The TS instability envelope is
therefore shifted upwards so that Nis and N, match, resulting in a common critical N-factor
limit of N, = 7.9 for both test cases. Individual flow solutions are run every Ngtep = 0.1
from Ny, = 7.9 (N = 5.9/ch = 7.9) down to N, = 3.0 (N;s = 1.0/ch = 3.0) where
instability mixing causes transition at its earliest possible position. The flow solution at
N¢, = 3.0 with early transition is then replicated for sample points down to N, = 0. This is
needed to match the critical N-factor range of the envelope sampling method.

The upper surface transition location mean and standard deviation values calculated with
each approach are shown in figure 8.5 for the starting aerofoil used in the high-sweep test
case. Figure 8.6 shows the same for the starting aerofoil used in the low-sweep test case.
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As can be seen from the results of both test cases, the envelope sampling method is gen-
erally able to match the mean and standard deviation values found using individual flow
solutions.

The agreement between methods is worst for mean transition location compared to tran-
sition location standard deviation, and is worse for both further outboard along the wing.
As mean transition location is most extended here, this suggests that accuracy of the enve-
lope sampling method is influenced by the amount of laminar flow present. The envelope
method’s accuracy in predicting transition location standard deviation appears insensitive
to standard deviation value found. As mean upper surface transition location is not greatly
extended over the span for both test cases, further validation is needed to determine if the
envelope sampling method remains accurate when transition is highly extended over a wide
critical N-factor range.
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Figure 8.5: Upper surface transition mean and standard deviation calculated over the span using the envelope
sampling method and from individual flow solutions for the high-sweep wing starting aerofoil
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Figure 8.6: Upper surface transition mean and standard deviation calculated over the span using the envelope
sampling method and from individual flow solutions for the low-sweep wing starting aerofoil.
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8.3 High-Sweep Optimisation Results

The high-sweep wing optimisation produced 7200 individuals, 5562 of which CVGK was
able to converge at all three design points. Figure 8.7 shows the optimum mean value of
ML/D, Try), and Tr,|, found over the optimisation history, compared against that of the
starting design. Large improvements are found for each objective function within the first
25 generations. There is no increase in the maximum mean Tr,, after generation 100, sug-
gesting an optimum value is obtained. Small increases in mean ML/D and reductions in
mean Tr, |, continue to occur towards the end of the optimisation, suggesting further im-
provements in both may be possible. A trade-off is again found between objective func-
tions. Figure 8.8 shows the resulting Pareto front, plotting mean Tr, |, against mean Tr,,
with contours representing mean ML/ D. Pareto front individuals are also highlighted.
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Figure 8.7: The optimum objective function values found during high-sweep wing optimisation history.

There is a clear interdependence between mean Tr,|, and Tr,, seen on the Pareto front,
where increasing one causes the other to rise. An increase in both would occur if the rise in
Tru| j comes from an increase in Tr, over the critical N-factor range that moves Tr, values
away from the mean. This is expected as the high wing sweep should result in large CF
amplification that would make it difficult to extended Tr, anywhere but at critical N-factors
close to the ideal value. Thus the increase in Tr, |, would come about from a large extension
of Tr, over a small critical N-factor range, increasing Tr,, in the process.

The lower edge of the contour region therefore represents the best possible trade-off between
mean Tr,, and Tr,,. This ideal trade-off is worse at higher Tr, |, values, suggesting high
Tr,j, values can only be obtained by a large increase in Tr, over a small N-factor range.
Mean ML/D is found to be higher for designs away from the lower edge. Therefore, at a
fixed Tr,|, value, ML/D can be increased at the cost of Tr,,. This represents a trade-off
between deterministic and probabilistic performance and is often seen. The design with
maximum mean ML/ D is both away from the lower edge and does not have the maximum
mean Tr,, for this reason. Obtaining the largest Tr, |, does not result in the largest Tr,,
although its value is still high.
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Figure 8.8: Contour plot of the Pareto front found between objective functions during optimisation of the
high-sweep wing.

To get a better understanding of the contributions to the Pareto front from each span-wise
design point, figure 8.9 shows the value of Tr,|,, and Tr,, for each of the Pareto front designs
at each of the three span-wise positions. No design on the Pareto front has extend laminar
flow at 8m span as the high Reynolds number here produce strong instability amplification.

Extended laminar flow can be found at 12.5m and 15m span as Reynolds number reduces
outboard. The largest extent of laminar flow is possible at 15m span and the trade-off be-
tween Tr,|, and Tr,, is also best here. The relationship between Tr,, and Tr,, is close to
linear, where an increase in Tr, |, causes a 0.77 x increase in Tr,|,. At 12.5m span, an increase

in Tr,), when below 0.14x/c leads to an 0.81x increase in Tr,,. Above Tr,, = 0.14x/c,
Tr,|, increases more rapidly. This causes the worsening trade-off between mean Tr,, and
mean Tr,, seen on the Pareto front above Tr,, = 0.13x/c.

Figure 8.10 provides a breakdown of the Tr,, contribution from each span-wise station to
the mean Truw over the three positions. As little laminar flow is found at 8m span, the
value of mean Tr,, comes almost exclusively from Tr,, at 12.5m and 15m span. Designs
with mean Tr,|, > 0.13 have extended Tr,, at both span-wise positions, although Tr,, is
extended most at 15m span. Designs with a mean Tr,|, below this can be placed into two
groups. One group of designs extends Tr,|, at 15m span as much as possible, which results
in little Tr,, at 12.5m. This is beneficial as a better trade-off between Tr, |, and Tr,, is found
at 15m span. The other set of designs have a more balanced amount of Tr,, at 12.5m and
15m span. The majority of designs in this group have a high mean Tr,|,, as this approach is
required to obtain the maximum mean Tr,,,.

ulp
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Table 8.9 shows objective function values for the starting design, the designs with maxi-
mum mean ML/D, maximum mean Tr,, o minimum mean Tr, |, and a trade-off between
objectives. The trade-off design is selected from the lower edge of the contour region on the
Pareto front. This represents the best trade between Tr,,, and Tr, |, having a similar Tr,, as
obtained by the design with maximum mean ML/ D but with a reduced mean Tr,,,.

As minimum mean ML/D was constrained during the optimisation, it has increased for
each of the selected optimised designs. Each of the optimised designs shown on table 8.9
also has an increased mean Tr,,, compared to the starting aerofoil, except for the design with
minimum mean Tr,|,. Mean Tr,|, was unconstrained and so many designs on the Pareto
front have a value far below that of the starting aerofoil. Although these all obtain a larger
ML/ D than the starting design, their mean performance is likely too poor to be of use.

While a constraint on mean ML/ D was effective during two-dimensional optimisation with
low instability amplification, it appears a further constraint on mean Tr,, is needed to avoid
poor designs and wasted computational resources for three-dimensional problems. For two-
dimensional flows, TS instability amplification is more gradual and so the optimiser is able
to reduce Tr,|, by either suppressing TS growth, and so having highly extended laminar
flow, or by inducing transition at the leading edge due to formation of a shock. The latter
case was prevented by the constraint on ML/ D. For three-dimensional flows, the optimiser
is able to produce very early transition over most of the critical N-factor range with strong
CF instability growth, but can then obtain extended laminar flow at the ideal critical N-

factor. This results in a low mean Tr,, and Tr,,, but high mean ML/D.

Each of the optimised designs on table 8.9 except the design with minimum mean Tr,, has
alarger Tr,|, than the starting aerofoil. As Tr,, and Tr,, are linked, these designs must see
a Tr,), rise for any increase in Tr,|,. The starting design has a small mean Tr,|, and so the
Tr,| is also low. This indicates that its performance was poor but its robustness to critical
N-factor good. Thus, an improvement in deterministic and mean performance requires that
Tr,|, increase. This again highlights the issue with only reducing standard deviation.
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Table 8.9: Objective function values for the starting design, optimised aerofoil with maximum mean ML/D,
trade-off design and optimised designs with maximum mean Tr), and minimum mean Tr,,.

ulu
Design Mean ML/D Mean Tr,, Mean Tr,,
Starting 46.66 0.0636 0.0421
Max mean ML/D (D) 62.97 (+34%) 0.1354 (+113%) 0.1139 (+171%)
Trade-off (T) 55.14 (+18%)  0.1324 (+108%) 0.0940 (+123%)
Max mean Tr,, 59.98 (+29%)  0.1537 (+142%) 0.1313 (+212%)
Min mean Tt , 46.96 (+1%) 0.0263 (-59%) 0.0120 (-71%)

8.3.1 Design Point Changes

The optimised trade-off design and the optimised design with maximum mean ML/D are
selected for a more detailed comparison against the unoptimised starting design. The design
with maximum mean ML/D is denoted as design D (deterministic), while the trade-off
design is labelled design T (trade).

Figure 8.11 shows the design variable bounds and values for the starting and selected opti-
mised designs. These are split into upper and lower surface, where design variables 1 and
7 are towards the front of the aerofoil, and 6 and 12 are towards the tail. Positive values
indicate material is added to the starting design while negative values indicate material is
removed. Bounds were chosen that allowed for an increase in camber and rear loading as
both were features observed in the transonic robust multi-point optimisation results of the
previous chapter. Additionally, large bounds were given to design variables 1 and 7. This
was done to give the optimiser good control over the leading edge shape which strongly
effects CF amplification. On the upper surface, design variables for both optimised designs
are far from the bound with the exception of variables 3 and 4 which were kept tight. De-
sign variables on the lower surface, however are much closer. In particularly, towards the
trailing edge where both optimised designs are close to or at the lower limits.
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Figure 8.11: Upper and lower surface design variable values and bounds for the starting and selected optimised
designs.
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Figure 8.12: Aerofoil profiles for the starting and selected optimised designs with grey shaded region indicating
the viable design space as dictated by the design variable bounds.

Figure 8.12 shows the aerofoils and viable design region as dictated by the design variable
bounds for the starting and selected optimised designs. Maximum thickness for the starting
design was 0.1137z/c. This has been reduced to the constrained limit of 0.1100z/c for both
optimised designs. This reduction in thickness occurs on the lower surface, increasing cam-
ber, lift generation and lowering the angle of attack both optimised designs use at all three
design points. This reduces the leading edge pressure rise and so allows for a favourable
pressure gradient over the front of the aerofoil. This, in turn, reduces shock strength, wave
drag and helps to suppress TS instability amplification, as seen in figures figures 8.13, 8.14
and 8.15 showing pressure distributions and Njs versus N, envelopes for the starting and
selected optimised designs at each of the design points.

Material is removed from the leading edge of both optimised designs, leading to a small
reduction in leading edge radius and causing a slightly faster leading edge pressure rise. CF
amplification is reduced at each design point as a result. This has little effect on transition
location at 8m span where leading edge transition occurs due to CF amplification, but does
have an effect at the other two design points. At 8m span, the optimiser is either unable
to reduce CF amplification, or doing so would cause a larger reduction of laminar flow
elsewhere. Regardless, extended laminar flow is not viable inboard at the current sweep
angle and flight conditions.

Design D has a smaller increase in trailing edge camber so operates at a slightly larger angle
of attack. This allows for a more gradual and further extended favourable pressure gradient,
resulting in the most delayed transition of all three designs at the ideal critical N-factor.
However, instabilities have been suppressed only enough to extend laminar flow at this
critical N-factor, and so transition moves upstream rapidly as critical N-factor is reduced.
This is most apparent at 12.5m span where the N-factor envelope of design D skirts close to
the critical N-factor limit but fails to trigger transition until further downstream.

Envelopes of this type see transition jump far upstream with only a small reduction in crit-
ical N-factor. This can be seen in figure 8.16 showing, at each design point, transition en-
velopes for the starting and optimised designs. Only values down to N, = 3 are shown as
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Figure 8.13: Ideal critical N-factor performance of the starting and selected optimised designs span = 8m.
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Figure 8.14: Ideal critical N-factor performance of the starting and selected optimised designs span = 12.5m.
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Figure 8.15: Ideal critical N-factor performance of the starting and selected optimised designs span = 15m.
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below this, transition occurs at the leading edge due to instability mixing. This is clearly un-
desirable behaviour; however, designs of this type obtain a high ML/D and low Tr,,. This
is because, with the exception of Tr, at the ideal critical N-factor, Tr, is close to the leading
edge with mean Tr, . As Tr,, is very low, these designs are undesirable and so a constraint
on Tr|, would help avoid their creation. As the N-factor envelope of design D is close to

the limit, the small CF amplification reduction does help to increase both Tr,, and T,

Design T has increased trailing edge camber almost as far as allowed by the design variable
bounds, and so operates at the lowest angle of attack. It thus has the smallest leading edge
pressure rise and most favourable pressure gradient. TS amplification at transition is lowest
for this design. Transition now occurs due to TS and CF instability mixing as both amplify
at a similar rate. The N-factor envelope now moves towards the mixing limit in a direction
normal to the mixing limit. As such, transition moves upstream more gradually as critical
N-factor is reduced at both 12.5 and 15m span, as seen in figures 8.16b and 8.16¢. This is a
desirable feature and is indicative of a robust design. The same is seen for design D at 15m
span but to a lesser extent.

Overall, the optimiser has attempted to reduce CF amplification as much as possible on
both designs to help increase both ML/D and Tr,,, but struggles due to the high sweep
angle. The same two-dimensional NLF design methods are then used by the optimiser to
reduce TS amplification. To improve robustness to critical N-factor uncertainty, camber is
increased further to lower angle of attack and strengthen the favourable pressure gradient.
As expected, improving stochastic performance requires some deterministic performance
loss. Robust designs also see neither instability type dominating transition as transition
instead occurs due to instability mixing. This prevents transition from jumping upstream
as critical N-factor reduces. Thus, a trade-off between CF and TS instability suppression is
needed.
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Figure 8.16: Transition envelopes for the starting and selected optimised designs at each span-wise station.
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8.3.2 Additional Validation of the Methodology

Accuracy of the Tr,|, and Tr,|, values calculated using transition locations obtained from
the envelope sampling method is assessed using design D and design T. Tr,|,, and Tr,, for
both optimised designs are compared when calculated using the envelope sampling method
and from individual flow solutions run at multiple critical N-factor sample points. As with
previous validation of the envelope sampling methodology, individual flow solutions are
run every Nsep = 0.1 from N, = 7.9 down to N, = 3.0 where transition occurs at the
leading edge. The flow solution at N, = 3.0 with leading edge transition is then replicated
for sample points down to N, = 0. This has been carried out at 1m intervals over the span,
and at the 12.5m span design point. Figures 8.17 and 8.18 shows Tr,, and Tr,, for design
D and design T when calculated using each approach.
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Figure 8.17: Upper surface transition mean and standard deviation calculated over the span using the enve-
lope sampling method and from individual flow solutions for optimised design D.
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Figure 8.18: Upper surface transition mean and standard deviation calculated over the span using the enve-
lope sampling method and from individual flow solutions for optimised design T.

At8m span, Tr,, and Tr,, calculated with the envelope sampling method exactly match the
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values found from individual flow solutions for both optimised designs. This is expected
given that both designs have less than 0.05x/c laminar flow at the ideal critical N-factor,
and therefore see little change as critical N-factor is reduced. For this reason, the envelope
sampling method remains accurate for design D from 8 — 12 span.

At 12.5m span, design D has Tr,, = 0.56x/c at the ideal critical N-factor but sees transition
move 0.46x/c upstream when critical N-factor is reduced by only 0.6. This large transi-
tion location movement causes pressure and so instability amplification over the aerofoil
to change, reducing the accuracy of the envelope sampling method. As this happens close
to the ideal critical N-factor used to obtain the critical N-factor envelopes, accuracy of the
envelope sampling method is reduced over most of the N-factor range. High critical N-
factors also have the largest probability weighting, making their effect on Tr,, and Tr
most significant.

ulp ulo

At 15m span, transition location for design D is less sensitive to N-factor changes at high crit-
ical N-factors. As such, the accuracy of the envelope sampling method is slightly improved.
Whereas Tr, |, was over-predicted by the envelope sampling method from 12 — 14m span, it
is now under-predicted here. This indicates that over-prediction of Tr, brings values closer
to the mean at 15m span, and away from the mean between 12 — 14m span.

The envelope sampling method is accurate over the entire span for design T, even when
Tr,, is highly extended and Tr,, is large. As transition location is less sensitive to critical
N-factor at high critical N-factor values for this design, agreement between the methods is
much better. Where the error between methods is largest, Tr, |, is over-predicted and Tr,,
is under-predicted. Thus, the envelope method in general appears to over predict Tr,|, but
depending on the envelope shape, can either over or under-predict Tr,,.

ulp

8.3.3 Span-wise Performance Distribution

Using the results calculated from individual flow solutions run at multiple critical N-factor
sample points, performance of the selected optimised aerofoils is investigated along the
span. Table 8.10 shows the mean value over the span of ML/D at the ideal critical N-factor,
ML/D at a critical N-factor of zero, (ML/D), and (ML/D),.

Design D has the highest mean ML/D at the ideal critical N-factor over the span. This is
expected given it has the largest value when is is calculated over the three span-wise design
points used during the optimisation. Now calculated over more span-wise positions, the
value of mean ML/D at the ideal critical N-factor has reduced for design D by 4.85 but
increased for design T by 1.90. While design D has a higher mean Tr, |, when calculated
over the three span-wise span-wise design points, it is now found to have less (ML/D),
than design T. This is not linked to the envelope sampling method’s accuracy as Tr, |, was
well predicted for design T while being both over and under-predicted for design D. This
is instead due to the distribution of Tr,, over the span and placement of the initial three
design points. Figure 8.19 shows, for both optimised designs, the span-wise distribution of
ML/D and Tr, mean and range between values found at the ideal critical N-factor and a
critical N-factor of N, = 0. Figure 8.20 shows the span-wise distribution of ML/D and Tr,
standard deviation for both.
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Table 8.10: The mean value over the span of ML/ D at the ideal critical N-factor, ML/ D at a critical N-factor
of 0, (ML/ D), and (ML/ D) for the starting and optimised designs.

Mean ML/D Mean ML/D
(Ncr = 7-9) (Ncr = 0)

Starting  45.86 41.82 43.44 1.23
Design D 58.12 (+27%)  46.98 (+12%)  50.03 (+15%) 3.67 (+298%)
Design T  57.04 (+24%)  45.96 (+10%)  49.94 (+15%) 3.84 (+312%)

Design Mean (ML/D), Mean (ML/D),

Design D has a highly non-uniform ML/D range over the span. As no laminar flow could
be obtained at 8m span, the optimiser focused on improving performance further outboard.
At 12.5m span, TS and CF instability amplification has been reduced enough for highly
extended upper surface transition at the ideal critical N-factor, but Tr,,, remains low. Span-
wise positions outboard of 12.5m have a lower Reynolds number and so are still able to
obtain extended laminar flow. Inboard of 12.5m, however, Reynolds number increases so
TS and CF instabilities amplify. As only a slight rise in TS amplification is enough trigger
transition far upstream at the ideal critical N-factor, transition is found close to the leading
edge from 8 — 12.5m. This results in the mean Tr,, and therefore mean ML/D at the ideal
critical N-factor, being much lower than the values calculated using only the three span-wise
design points. This also causes mean Tr,,, and therefore mean (ML/ D), to be much lower
as early transition is inherently robust to critical N-factor changes.

Design T has a more uniform range over the span. Stronger upstream TS instability sup-
pression leads to a more conservative ideal Tr, at 12.5m span but increases Tr, over a wider
critical N-factor range. As transition is less sensitive to critical N-factor changes, Tr, at the
ideal critical N-factor remains extended and moves forward more gradually as Reynolds
number increases the further inboard. Calculations of mean (ML/D), and mean Tr, at the
ideal critical N-factor over the three design points are therefore more representative of the
true mean value over the span.

Thus, pursuing a deterministic design can hurt both mean performance at a specific span-
wise position, and also deterministic performance off-design. As span-wise position is
linked to Reynolds number and lift coefficient that both affect instability amplification, im-
proving robustness at one span-wise position improves performance inboard. This is ex-
pected as a robust design is less sensitive to factors effecting instability growth, such as
Reynolds number which is linked to span-wise position.

The design with the best mean ML/D varies depending on the span-wise position. Far out-
board, design D is best, however, its ML/D standard deviation is larger than for design T
when (ML/D), is not low on design D due to early transition. In general, design T has a
more conservative performance but is a more robust design that would likely be preferable
due to its more consistent performance over the span with critical N-factor uncertainty. Per-
formance of this design is still very much limited by CF instability growth, with only half
the chosen span width obtaining a meaningful Tr,|,. A reduction in wing sweep should
enable a larger maximum length of laminar flow and a more robust transition location to
critical N-factor reduction over a wider span.
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Figure 8.19: Span-wise distribution of ML/ D and Tr, mean and range between values at No, = 7.9 and
N¢r = 0 for design D and design T.
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Figure 8.20: Span-wise distribution of ML/ D and Tr, standard deviation for design D and design T.

8.3.4 Sensitivity to Uncertainty Standard Deviation

The effect of varying critical N-factor standard deviation on the span-wise distribution of
performance has been assessed for each design. Figure 8.21 shows the span-wise distribu-
tion of (ML/ D), while figure 8.22 shows the span-wise distribution of (ML/D), for designs
D and T when calculated with a critical N-factor standard deviation value of 1,2 and 3. The
ML/ D range is also shown in figure 8.21.

Increasing N, causes (ML/D), to reduce over the span, as is expected given this lowers
the probability weighting at high N-factor values where both design D and design T obtain
the most laminar flow. This can be seen in figure 8.23 showing probability distributions
with different uncertainty standard deviation values, and the distribution of ML/D over
the critical N-factor range for designs D and T at 13m and 15m span. For both designs,
(ML/D), is reduced most when N, is increased from 1 — 2, as the probability weightings
above N, = 6.5 decrease substantially. The reduction in (ML/ D)H is larger outboard where
more laminar flow is obtained. The loss in (ML/D), outboard on the wing is smaller for
design T than design D as ML/ D is large over a wider critical N-factor range.
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Figure 8.21: Span-wise distribution of ML/ D range between values at Ny = 7.9 and N, = 0 and mean
ML/ D when calculated with various Ny values for design D and design T.
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Figure 8.22: Span-wise distribution of ML/ D standard deviation when calculated with various N, values

for design D and design T.
8 8
7 7
6 6
5 CE
Z 4 24
3 3
2 == = Ideal Ny 2 _E
— Ny =1 == = deal N E == = Ideal N
1 = Ny =2 1 = Design D 14 = Design D
Ny =3 ] m== Design T ] mm= Design T
O0F———T——T—— 0 7 T 0 +Hr—r—T
0.0 0.5 1.0 40 60 80 40 50 60 70
Weighting ML/D ML/D
(a) Critical N-factor weighting (b) Span= 13m (c) Span= 15m
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Changes to (ML/D), are also dependent on the N-factor envelope shape. (ML/D), in-
creases as N, is raised from 1 to 2, outboard of 14m span for design D and outboard of 12m
span for design T. This happens when probability weighting is increased at N-factor values
where ML/D is far from (ML/D),. This is the case for both designs at 15m span as ML/D
is large over most of the critical N-factor range above N, = 6. When N, = 1, the proba-
bility of N, being below this value is only 2.7 percent. The probability of N, being below
6 increases to 13.3 percent when N, = 2, giving lower ML/D values a higher weighting.
This reduces (ML/D), and increases (ML/D),. At 13m span, (ML/D), is low except at a
small N-factor range near the ideal critical N-factor. As Tr,, is low, reducing the probability
weighting at the ideal critical N-factor causes Tr,, to drop.

8.4 Low-Sweep Optimisation Results

The low-sweep wing optimisation produced 7200 optimised designs of which 3750 could be
converged at all three span-wise design points by CVGK. Designs that cannot be converged
will feature separated flow at one or more of the design points, due to either shock induced
or laminar separation. As the percentage of converged solutions is lower than seen for the
high-sweep optimisation, and similar starting aerofoils and design variable bounds were
used, new flow conditions are the likely cause.

Figure 8.24 shows the optimum value found for each objective function over the course of
the optimisation. The value of the starting design is also shown for comparison. Designs
with much improved mean ML/D, Tr,, and Tr, are found within the first few gener-
ations, but this is followed by a period of stagnation where CVGK is unable to converge
many of the designs at all three design points. As convergence is slowed, improved mean
ML/D and Tr,, values are found up to the last generation. This suggests that both mean
ML/D and Tr,, could be improved with additional generations. In comparison, no im-
provement in Tr, |, was found after generation 125, indicating an optimum value has been
obtained.
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Figure 8.24: The optimum objective function values found during the low-sweep optimisation history.

131



CHAPTER 8. EXTENSION TO SWEPT FLOWS

Figure 8.25 shows the Pareto front found between objectives. Mean Tr,,, is plotted against
mean Tr, |, with contours of mean ML/D. The 856 designs on the Pareto front are also
highlighted. The Pareto front is similar to that found during the high-sweep case. There
is again an interdependence between mean Tr, |, and Tr,,, where the lower edge of the
contour region represents the minimum mean Tr, |, possible for a given mean Tr,,. Designs
here have a lower mean ML/ D than those with a larger Tr,|,. This again indicates that Tr, at
the ideal critical N-factor is reduced to extend Tr, over a wider N-factor range to reduce Tr,,,
for a given Tr,,. As such, the maximum mean Tr, |, design does not have the maximum
mean ML/ D. For the high-sweep wing optimisation, the optimum trade-off between mean
Tr,), and Tr,|, became worse as Tr,, increased. The optimum trade-off on the low-sweep
wing Pareto front can be split into two distinct regions. Below Tr, |, = 0.21x/c, the trade-oft
is weaker where a change in Tr, |, causes a 0.46x change in Tr,,. Above Tr,, = 0.21x/c,

the trade-off becomes stronger where changing Tr, |, causes a 1.15x change in Tr,,.
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Figure 8.25: Contour plot of the Pareto front found between objective functions during optimisation of the
low-sweep wing.

To get a better understand of this, Tr,,|, and Tr,, for each Pareto front design at each of the
three designs points are plotted in figure 8.26. The best trade-off between Tr, |, and Tr,,
differs depending on the span-wise position. Designs obtain a larger Tr, |, outboard where
Reynolds number is lowest, and also obtain a better trade-off between Tr,, and Tr,,. Less
instability amplification outboard allows Tr, to be extended over a wide critical N-factor
range by a small amount, rather than extended over a small critical N-factor range by a
large amount. The trade-off between Tr, |, and Tr, |, at 15m span remain relatively constant
as Tr,,, is increased. In comparison the trade-off between Tr, |, and Tr, |, at 8m span is much
worse when Tr, |, > 0.18. The trade-oftf is also worse at 10.5m span when Tr, |, > 0.22.
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Figure 8.26: Tr, |, and Tr,, at each span-wise de-  Figure 8.27: The value of Tr,, at each span-wise de-
sign point for all Pareto front designs. sign point for the corresponding mean
Tr,,, for each Pareto front design.

Figure 8.27 shows, for each Pareto front design, the value of Tr,, at each of the span-wise
design points and the resulting mean Tr,|,. Most Pareto front designs with mean Tr,,, <
0.2x/c have a similar Tr, |, at all span-wise positions. Some designs do have more Tr,, at
15m span but these don’t obtain a larger mean Tr,, as Tr,|, has reduced at 8 and 10.5m
span. Designs with mean Tr,), > 0.2x/c have a larger proportion of Tr,, at 15m span
compared to 8m span. Given the trends seen in figure 8.26, this is understandable as the
trade-off between Tr,, and Tr,, is poor at 8m span and therefore the optimiser favours

increasing Tr,|, at 10.5 and 15m span to keep mean Tr,, low.

As was done with the high-sweep wing optimisation case, the design with maximum mean
ML/D and a trade-off design are selected for comparison against the starting design. The
trade-off design was selected to have a similar mean Tr,, to the design with maximum
mean ML/D, but with a substantially reduced Tr,,. As indicated in figure 8.25, it sits at
the lower edge of the contour region to obtain the best trade-off possible between mean
Tr,, and mean Tr,,, at a cost of mean ML/D. The objective function values obtained by
the starting design, design with maximum mean ML/D, maximum mean Tr,,, minimum
mean Tr,, and trade-off design are shown in in table 8.11.

Each design in table 8.11 has a larger mean ML/D value than the starting design as this
was constrained during the optimisation to avoid designs with very early transition at the
ideal critical N-factor. These designs are highly robust but have extremely low ML/D and
Tryu- Indeed, the design with minimum Tr,, is at this limit as it has no improvement
in ML/D compared to the starting design. Mean ML/D and Tr,, have been increased for
each optimised design shown in table 8.11 except the design with minimum mean Tr|,. The
improvements in mean Tr,, are substantial as this is low for the starting design. As a result,
however, the starting design has a very low Tr, |, and so each designs except the design with
minimum mean Tr,, see this increase substantially. The trade-off design obtains 20 percent
less mean Tr, |, than the design with maximum Tr,,, but 40 percent less mean Tr,|, as a
result. The increase in mean ML/ D compared to the starting design is smaller than obtained
by the design with maximum mean ML/ D, but is still substantial.

133



CHAPTER 8. EXTENSION TO SWEPT FLOWS

Table 8.11: Objective function values for the starting design, optimised aerofoil with maximum mean ML/ D,
trade-off design and optimised designs with maximum mean Tr,,,, and minimum mean Tr

ulp ulo:
Design Mean ML/D Mean Tr,, Mean Tr,,
Starting 54.07 0.0940 0.0386
Max mean ML/D (D) 82.17 (+52%) 0.2642 (+181%) 0.1717 (+345%)
Trade-off (T) 73.73 (+36%) 0.2451 (+161%) 0.1293 (+235%)
Max mean Tr,, 80.14 (+48%)  0.3051 (+225%) 0.2003 (+419%)
Min mean Tt , 5424 (=~ 0%) 0.0381 (-59%) 0.0091 (-76%)

8.4.1 Design Point Changes

The design with maximum mean ML/D, denoted design D (deterministic), and the trade
off design, denoted design T (trade), are selected for more detailed analysis and comparison
against the starting design. Figure 8.28 shows the upper and lower surface design variable
values and bounds for the starting and selected optimised designs. Positive values indicate
material is added to the surface while negative values indicate material is removed. Design
variables 1 and 7 are towards the leading edge while design variables 6 and 12 are close to
the trailing edge.

The design variable bounds selected for the low-sweep wing case are similar to those used in
the high-sweep wing case. Wide bounds are placed on design variables 1 and 7 at the front
of the aerofoil to give good control over leading edge curvature. Large positive bounds were
used aft on the upper surface and large negative bounds were used on the lower surface to
allow for designs with increased camber. A notable difference from the high-sweep design
variable bounds is the reduced lower limit for design variable 2. This was done to allow
designs with reduced curvature over the front of the aerofoil. As material was added to-
wards the front of the aerofoil and removed from the rear for design T, design variables 2,
3, 4 and 5 are found close to the design variable bounds. Design D has also had material
added to the upper surface except at the trailing edge, and so has variables 2 and 6 close to
the bounds. Both designs have had material removed from the lower surface. Design D has
larger deformation towards the rear of the aerofoil and so design variables 10, 11 and 12 are
close to the lower bounds while only variable 12 sits near the lower bounds for design T.

Figure 8.29 shows aerofoil profiles for the starting and optimised designs, with the grey
shaded region indicating the viable design space as dictated by the design variable bounds.
The maximum thickness of both optimised aerofoils has reduced from 0.118x/c to the con-
strained limit of 0.110z/c. The reduction of thickness in both cases comes from lower surface
deformation, increasing camber and lift generation. As a result, both optimised designs op-
erate at a reduced angle of attack at all three span-wise stations.

The effect of these changes can be seen in figures 8.30, 8.31 and 8.32 showing pressure dis-
tributions at the ideal critical N-factor and N-factor envelopes for each design at each of the
span-wise design points. both optimised aerofoils have a smaller leading edge pressure rise
and favourable pressure gradient over the front of the aerofoil. The pressure gradient is
stronger for design T but over a shorter length compared to design D. Both see an extension
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Figure 8.28: Upper and lower surface design variable values and bounds for the starting and selected optimised
designs.
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Figure 8.29: Aerofoil profiles for the starting and selected optimised designs with grey shaded region indicating
the viable design space as dictated by the design variable bounds.

in laminar flow at all three design points compared to the starting design. The maximum
amount of laminar flow found on the starting design is 0.215x/c at 15m span. In compari-
son, design D has over 0.5x/c of laminar flow, and design T has over 0.4x/c of laminar flow,
at all three span-wise positions.

Neither of the optimised designs feature a leading edge peak in pressure, as was seen on the
selected high-sweep optimised designs. This is due to the reduced wing sweep lowering CF
instability amplification at all three design points, as seen in figures 8.30b, 8.31b and 8.32b.
Transition on each design now occurs as a result of TS instability amplification or instability
mixing due to high TS growth. The leading edge pressure peak was used to reduce CF
amplification, but the small region of adverse pressure gradient following this causes TS
instability amplification and so is not present on the low-sweep optimised designs.

As was seen in figure 8.27, laminar flow can be found inboard at 8m span now that wing-
sweep is lower. As a result, performance over the span varies less for both optimised de-
signs in comparison to the high-sweep results. Design D has the most delayed Tr, at all
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Figure 8.30: Ideal critical N-factor performance of the starting and selected optimised designs span = 8m.
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Figure 8.31: Ideal critical N-factor performance of the starting and selected optimised designs span = 10.5m.
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Figure 8.32: Ideal critical N-factor performance of the starting and selected optimised designs span = 15m.
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three span-wise positions, as is expected given that this design has the maximum mean
ML/D. However, delaying Tr, at the ideal critical N-factor as far as possible results in poor
transition location robustness to critical N-factor uncertainty. The N-factor envelopes for
design D at 8m and 10.5m span are shown in figures 8.30b and 8.31b. At both span-wise
positions, the N-factor envelope approaches but remains below the TS instability limit un-
til shock induced transition occurs further downstream. This causes transition location to
move upstream rapidly as critical N-factor is reduced. This is seen in figure 8.33, show-
ing the transition envelope above N, = 3 for the starting and optimised designs at each
span-wise design point. The starting design has the least laminar flow, but sees little loss
of laminar flow as critical N-factor is reduced. At 8 and 10.5m span, design D has a highly
extended Tr, at the ideal critical N-factor but this reduces by 0.357x /¢ and 0.328x/c when
critical N-factor is reduced by 1.

Upper surface transition at the ideal critical N-factor occurs earlier for design T. However,
this makes transition location less sensitive to critical N-factor changes as, at 8m and 10.5m
span, only 0.171x/c and 0.163x/c laminar length is lost when critical N-factor is reduced by
1. This can be seen on the critical N-factor envelop plots as the smoother and more direct
path that design T takes to the limit at each of the span-wise stations. This prevents rapid
movement of transition location upstream as critical N-factor is reduced.
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Figure 8.33: Transition envelopes for the starting and selected optimised designs at each span-wise station.

8.4.2 Additional Validation of the Methodology

Additional validation of the envelope sampling method has been carried out using opti-
mised designs D and T. For this, Tr,, and Tr,, are calculated using the envelope sam-
pling method and compared against values found using transition locations from individ-
ual flow solutions run at multiple critical N-factor sample points. These were again taken at
Nstep = 0.1 intervals from the ideal critical N-factor of N., = 7.9 down to N, = 3.0 and the
flow solution at N, = 3.0 with leading edge transition replicated for sample points down
to Ny = 0. This was carried out at Im intervals over 8 — 15m span, and at the 10.5m span-
wise station. The results of this are shown in figure 8.34 for design D and in figure 8.35 for
design T.
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Figure 8.34: Upper surface transition mean and standard deviation calculated over the span using the enve-
lope sampling method and from individual flow solutions for optimised design D.
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Figure 8.35: Upper surface transition mean and standard deviation calculated over the span using the enve-
lope sampling method and from individual flow solutions for optimised design T.

The accuracy of the envelope sampling method is low for design D, with Tr,, consistently
over-predicted and Tr,|, consistently under-predicted along the span. The is worst for Tr,,
inboard, where design D has highly extended laminar flow at the ideal critical N-factor but
sees a large reduction in Tr, when this is reduced by a small amount. This large shift in
transition location alters the pressure distribution and so instability amplification upstream.
As this occurs at a high critical N-factor, accuracy of the N-factor envelope is low over most
of the critical N-factor range. Poor accuracy for this type of critical N-factor envelope was
also observe during validation of the high-sweep wing optimised designs. The envelope
sampling method has better accuracy in calculating Tr,, and Tr, |, over the span for design
T. This design is less sensitive to critical N-factor changes at high N-factor values. Thus, the
N-factor envelope provides good Tr, predictions at high N-factor values, which have the
highest probability weighting.
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The accuracy of Tr, |, calculated using the envelope sampling method is best inboard for
both designs. The value of Tr,, is consistently under-predicted on both optimised designs.
As Try u is over-predicted, it is closer to the values of Tr, at high N-factors, which have a
high probability weighting. The amount of under-prediction is dictated by the movement
of transition location and the critical N-factor range where this movement occurs. At high
critical N-factors, Tr, is downstream of Tr,|, so an over-prediction of Tr, causes Tr,, to
increase. As a large change in Tr,, occurs very close to the ideal critical N-factor for design D
at 8 and 10.5m span, Tr,|, is least under-predicted here. The inverse is true at low critical N-
factors values where Try is upstream of Tr,, so over-prediction of Tr, reduces Tr,,. While
this is the case further outboard, movement of transition at lower critical N-factors increases
the accuracy of the envelope sampling method so the under-prediction again reduces.

8.4.3 Span-wise Performance Distribution

The span-wise distribution of deterministic and stochastic performance has been investi-
gated for the starting and selected optimised designs. Performance over the span was cal-
culated using multiple flow solutions run over the critical N-factor range, as done during
assessment of the envelope sampling method’s accuracy. This is used to construct table 8.12,
showing the mean value of ML /D at the ideal critical N-factor, ML/D at a critical N-factor
of 0, (ML/D), and (ML/D), over the span for the starting and optimised designs.

Table 8.12: The mean value over the span of ML/ D at the ideal critical N-factor, ML/ D at a critical N-factor
of 0, (ML/ D), and (ML/ D) for the starting and optimised designs.

Mean ML/D Mean ML/D
(Ncr = 79) (Ncr = 0)

Starting 54.83 49.60 52.85 1.39
Design D 84.33 (+54%)  53.66 (+8%) 65.52 (+24%) 11.67 (+840%)
Design T 77.11 (+40%)  52.81 (+6%) 64.66 (+22%) 8.28 (+596%)

Design Mean (ML/D), Mean (ML/D),

Mean ML/D at the ideal critical N-factor has increased from the value calculated using
only three design points for both optimised designs. This is an increase of 2.16 for design D
and 3.38 for design T. Design D had a slightly higher mean Tr, |, and slightly lower mean
Tr,|, than design T when calculated over the three design points. The same is seen for mean
(ML/D), and mean (ML/D), now calculated using more span-wise positions and multiple
flow solutions over the N-factor range. Mean performance over the span when calculated
at the three design points is therefore representative of the true performance over the span
for each aerofoil. Design T obtains a very similar mean (ML/D), to design D, but has a
reduced mean (ML/D), which comes in part from a reduction of mean ML/D at the ideal
critical N-factor. A by-product of this is a small reduction in fully turbulent mean ML/D
compared to design D although this is still larger than for the starting design.

Figure 8.36 shows, for both designs, the span-wise distributions of ML/ D and Tr,, mean and
range when calculated at the ideal critical N-factor and a critical N-factor of zero. Design
D has a wider ML/D range than design T over the entire span as it has on average 0.1x/c
more laminar flow at the ideal critical N-factor. Outboard, this has helped design D obtain
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a higher Tr,,, but Tr,), is low inboard where Tr, is most extended at the ideal critical N-
factor. In contrast, (ML/D), for design T is closer to ML/D at the ideal critical N-factor
over the entire span. This is helped inboard as Tr, at the ideal critical N-factor reduces by
0.07x/c between 10m and 8m span. While design T has a reduced ML/ D at the ideal critical
N-factor, (ML/D), exceeds the value obtained by design D and (ML/D), is lower.

Figure 8.37 shows the span-wise distribution of (ML/D), and Tr,, for designs D and T.
(ML/D)¢ and Tr,, distributions are similar to each other for each designs as drag and
transition location inversely scale so long as extended laminar flow does not cause separa-
tion. Some differences are seen as ML/ D is dependent on lift coefficient which varies over
the span. (ML/D), and Tr,, are lower for design T over the entire span as this design
sees less transition movement at high critical N-factors. Tr,|, is smallest at 8m span for both
designs as the least amount of laminar flow is possible here. As Reynolds number decrease
outboard, instability amplification reduces and Tr, is extended at high critical N-factors.
This causes (ML/D), and Tr,|, to increase as transition locations are more spread out over
the critical N-factor range. Further outboard, (ML/ D), and Tr,|, begin to decrease as Try is
extended over a wider critical N-factor range, bringing Tr, |, downstream.
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Figure 8.36: Span-wise distribution of ML/D and Tr, mean and range between values at No, = 7.9 and
N¢r = 0 for design D and design T.
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Figure 8.37: Span-wise distribution of ML/ D and Tr,, standard deviation for design D and design T.
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8.4.4 Sensitivity to Uncertainty Standard Deviation

The sensitivity of performance to critical N-factor standard deviation has been assessed for
designs D and T. Figure 8.38 shows the span-wise distribution of (ML/ D), when calculated
with different values of N, as well as the range between ML/D values when calculated at
the ideal critical N-factor and at a critical N-factor of zero. The span-wise distribution of
(ML/D), when calculated with different values of N, is shown in figure 8.39.

(ML/D), again reduces most mid-chord as N, increases for both designs. (ML/D), is
close to the fully turbulent ML /D value inboard so increasing N, causes a small reduction
in (ML/D),. ML/D is more uniformly distributed over a wider N, range outboard so
raising N, has a weaker effect. (ML/D), changes most when Nj is raised from 1 — 2. This
causes (ML/D), to increase over the entire span for design T. Design D has a large ML/D
range inboard, with (ML/D), sitting close to the fully turbulent value. ML/D at high N,
values contribute most to (ML/D), so increasing N, from 1 — 2 lowers (ML/D), there.
(ML/D) u is close to ML/D at the ideal N, further outboard. ML/D at lower N, values
contribute more to (ML/D), so increasing N, from 1 — 2 causes (ML/D), to rise here.
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Figure 8.38: Span-wise distribution of ML/ D range between values at No, = 7.9 and Ney = 0 and mean
ML/ D when calculated with various Ny values for design D and design T.
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Figure 8.39: Span-wise distribution of ML/ D standard deviation when calculated with various N, values
for design D and design T.
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8.5 Summary

In this chapter, the envelope sampling method has been extended to allow for the robust
quantification of transition location mean and standard deviation for three-dimensional
flows. The motivation behind extending the method was the need for wing-sweep on tran-
sonic aircraft, which results in both two and three-dimensional instabilities. Using the three-
dimensional envelope sampling method, robust shape optimisation of two swept-wing sec-
tions was carried out. The design problem in each case was based on flight conditions for
a typical narrow-body commercial aircraft. The first optimisation case was a high-sweep
wing typical of a current commercial aircraft while the second was a low-sweep alternative.

In both test cases, a range of designs were produced with varying mean ML/D, Tr,, and
Tr,|s- The Pareto front between these objectives showed that the mean value of Tr,|, and
Tr,|, are strongly linked, where one scales with the other. The rate at which Tr,, increases
with Tr,|, becomes worse as Tr,|, is extended. The trade-off between Tr, |, and Tr,, differs
over the span, where Tr,, can be extended with a smaller increase in Tr,|, further outboard
on the wing. Thus, robust designs favour increased Tr,|,, outboard over Tr, |, inboard as this
maximises Tr, |, while minimising mean Tr,|,. To obtain large mean Tr, |, values, however,
a more even extension of Tr, |, over the span is required.

ulp

No high-sweep Pareto front designs were found with laminar flow at even the ideal crit-
ical N-factor inboard along the wing-span selected as strong CF instability amplification
occurs. In comparison, many of the low-sweep Pareto front designs have over 0.5x/c lam-
inar flow at the ideal critical N-factor or 0.2x/c¢ mean laminar flow with critical N-factor
uncertainty. Clearly a reduction in sweep angle is required for laminar flow to be obtained
over the full span range where three-dimensional flow effects are not present. This does,
however, require a reduction in cruise speed to avoid the increased wave from a higher
two-dimensional Mach number.

For the same mean laminar flow, transition location standard deviation is lower for designs
with reduced laminar flow at the ideal critical N-factor. Thus, designs which pursue the
best deterministic performance typically loss some performance robustness to critical N-
factor uncertainty as a result. Designs with highly extended laminar flow at the ideal critical
N-factor also commonly feature early instability amplification to the critical N-factor limit
but remain below it until further downstream. This results in poor mean performance and
means the distribution of performance of a swept wing optimised at a single critical N-factor
can reduce substantially with a small critical N-factor reduction.

Envelopes of this type do, however, have a low performance standard deviation. This is a
trivial case as obtaining no laminar flow inherently makes an aerofoil insensitive to critical
N-factor changes. As standard deviation is low, designs of this type sit on the Pareto front
but are of little use to a designer. As such, an additional constraint could be placed on mean
performance or a different definition of standard deviation used to avoid their retention.

The overall accuracy of the envelope sampling method for three three-dimensional flows
is good and the approach is able to match the trends seen. The accuracy of the method is
however, worst for N-factor envelopes that see a large movement of transition location at
high critical N-factors. This is both due to the change in instability amplification affecting
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a wider critical N-factor range but also due to the high probability weighting near the ideal
critical N-factor. As such, avoiding the creation of these types of designs will increase the
overall accuracy of the optimisation.

The design changes made to increasing NLF and improve its robustness over the span are
similar in both cases. For the high sweep case, CF instability growth was difficult to reduce
but could be enough to bring it under the N, instability limit. As instability mixing then
triggered transition, methods for the suppression of TS instability growth were used. For the
low-sweep case, CF growth was small and therefore only methods for TS suppression were
seen. This involved reducing thickness on the lower surface to increase camber. This lowers
the leading edge pressure rise and allows a favourable pressure gradient over the front of the
aerofoil. To reduce performance standard deviation, a stronger favourable pressure gradient
is required.

Anincrease in camber is the primary mechanism by which laminar flow is extended over the
critical N-factor range. Pitching moment will increase as a result of this, requiring additional
trim to compensate. This leads to a trim drag penalty that can outweigh the benefits of
NLF. Pitching moment is a well known trade-off variable with NLF. Although this was not
considered during this study, it should be investigated in future work on this topic.

Finally, it is worth mentioning that selection of suitable design bounds proved difficult dur-
ing the optimisation cases carried out. Large bounds reduce the optimisation convergence
rate as many designs are generated with shock induced or laminar separation. However,
tight design variable bounds can over-constrained the design space. The results presented
in this work can be used to better inform any future design problems. Dynamic bounds may
also be an appropriate choice.
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Chapter 9

Conclusion

The key aim of this study was to investigate how optimisation and robust design methods
could be used to develop NLF aerofoils and wings that are robust off-design and to uncer-
tainty in operating conditions.

A survey of the current state-of-the-art on this topic found that many studies have consid-
ered performance of NLF aerofoils and wings at different deterministic operating condi-
tions. However, much less research has been carried out on NLF design with uncertainty
in operating conditions. A current gap within the research is on the design of NLF aero-
foils and wings with uncertainty in surface and flow quality. Variation in surface and flow
quality can be introduced into a flow solution by varying transition amplification factor, or
critical N-factor, from the eV transition model.

The main objectives of this work were to first quantify robustness of NLF aerofoil perfor-
mance to uncertainty in critical N-factor, so that the sensitivity of performance to this un-
certainty could be assessed. The next objective was to perform robust optimisation of NLF
aerofoils to improve performance and performance robustness to uncertainty in critical N-
factor. To further improve NLF aerofoil robustness, the next objective was to perform opti-
misation with uncertainty in critical N-factor at a range of operating conditions. The final
objective was to extend this to the design of NLF swept and tapered wing sections.

9.1 Summary

In chapter 5: Critical N-factor Uncertainty Analysis, an uncertainty representation method for
critical N-factor was chosen, and an approach to propagating critical N-factor uncertainty
into the output variables of interest was selected. This was then used to assess the variation
in performance of aerofoils with free transition, at subsonic and transonic conditions. For
the subsonic case, this was done over a range of lift coefficients while for the transonic case,
over a range of Mach numbers.

In chapter 6: Single-Point Robust Optimisation, the uncertainty quantification method out-
lined in chapter 5 is used to perform robust shape optimisation of NLF aerofoils at subsonic
and transonic flow conditions with uncertainty in critical N-factor. This was done at a single
lift coefficient and Mach number.
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In chapter 7: Multi-Point Robust Optimisation, a novel method for quantifying transition lo-
cations mean and standard deviation with critical N-factor uncertainty was proposed. This
uses an N-factor envelope obtained from eV stability analysis of a single flow solution to es-
timate transition locations at all lower critical N-factor values. This envelope sampling ap-
proach removes the dimensionality of robust design, so allows for computationally cheap
multi-point robust optimisation. Using this approach, robust shape optimisation of NLF
aerofoils with uncertainty in critical N-factor was carried out at a range of Mach numbers
and lift coefficients. This was done at subsonic and transonic conditions. The accuracy of
envelope sampling method was also assessed.

In chapter 8: Extension to Swept Flow, the envelope sampling method proposed in chapter
7 was extended for three-dimensional flows where two and three-dimensional instabilities
occur. This enables the robust optimisation of swept and tapered wings. Robust optimisa-
tion of an NLF wing section for a typical narrow-body commercial aircraft is carried out.
Two wing sections are considered with different sweep angles and, again, accuracy of the
three-dimensional envelope sampling method is assessed.

9.2 Key Findings

From the critical N-factor uncertainty analysis carried out, it was found that robustness of
drag is directly related to robustness of transition location to critical N-factor uncertainty.
Thus it is naturally found that robustness of ML/ D is also linked to robustness of transition
location via the dependence of ML/D on Cg.

For subsonic flows, variation in transition location due to critical N-factor uncertainty has a
stronger effect on skin friction than pressure drag at low lift coefficients. As such, the drag
standard deviation polar is similar in form to the combined upper and lower surface tran-
sition location standard deviation polars. However, as lift coefficient is increased, pressure
drag becomes more sensitive to changes in transition location and so the drag and combined
transition location polars no longer match. Transition location standard deviation is found
to be strongly linked to the rate of change of transition location with changing lift coefficient.
A faster rate of change leads to increased transition location standard deviation with uncer-
tainty in critical N-factor. Robustness of transition location to critical N-factor uncertainty
can be improved by reducing the sensitivity of transition location to lift coefficient changes.

For transonic flows, robustness to critical N-factor uncertainty is best at high and low Mach
numbers when M?C; is fixed, as Mach number is linked to lift coefficient. At high Mach
numbers, lift coefficient is low, which allows for better instability suppression and therefore
less sensitivity of transition location to changing critical N-factor. At low Mach numbers,
lift coefficient is high, so rapid instability growth occurs, which causes very early transi-
tion. Early transition is inherently robust as little laminar flow is lost as critical N-factor is
reduced.

Single-point robust optimisation was able to improve both mean performance and perfor-
mance standard deviation with a trade-off between the two found. At subsonic condi-
tions, performance standard deviation is reduced by making extended NLF more robust
to changes in critical N-factor. However, at transonic conditions, performance standard de-
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viation was reduced by trigger transition close to the leading edge via the formation of a
small shock. While this design is robust to changes in critical N-factor, it is of no practi-
cal use to a designer. As such, robust design with critical N-factor uncertainty requires the
careful selection of suitable bounds, constraints or tailoring of the design problem to avoid
designs of this type.

As the optimisation produces a Pareto front, designs with robust and extended laminar flow
can still be obtained. While performance and robustness at the design lift coefficient and
Mach number are improved, off-design performance and robustness varies. For subsonic
flows, performance and robustness have become worse at higher lift coefficients as a result
of single-point optimisation. For transonic flows, as Mach number is reduced, and thus lift
coefficient raised, extended laminar flow leads to laminar separation. From this, it is clear
that robust optimisation with critical N-factor uncertainty needs to be performed over a
range of operating conditions for robustness to be ensured.

The envelope sampling method, developed to avoid the high computational requirements of
multi-point robust optimisation, is found to calculate transition location mean and standard
deviation with good accuracy. This is checked over a range of lift coefficients and Mach
numbers. The method is found to be least accurate for designs with a large movement of
transition with changing critical N-factor close to the critical N-factor used to obtain the
N-factor envelope. However, the overall trends in transition location mean and standard
deviation are still observed.

Multi-point robust shape optimisation using the envelope sampling method is found to be
effective at subsonic and transonic flow conditions. Optimised designs are found with bet-
ter performance and performance robustness to critical N-factor over the multi-point range
selected. A constraint placed on performance at the ideal critical N-factor is able to pre-
vent designs with leading edge transition as seen during the single-point robust optimisa-
tion. Optimised designs pursuing the maximum performance at the ideal critical N-factor
are found to have worse performance robustness to critical N-factor uncertainty. From the
Pareto front of designs, it is possible to select a design with a similar although reduced ideal
performance but with comparable mean performance and improved performance robust-
ness.

It is found that the envelope sampling method can be extended to three-dimensional flows
with both two and three-dimensional instabilities. The accuracy of the extended envelope
sampling method is again found to be good at a range of lift coefficients, Reynolds numbers
and at different wing sweep angles. Accuracy is again lowest for designs with a large move-
ment of transition location with only a small reduction in critical N-factor from the ideal
value.

For swept wings, this becomes more of an issue as designs can have strong crossflow in-
stability growth near the leading edge but highly delayed transition at the ideal critical N-
factor. These designs are sought after by the optimiser as they obtain low transition location
standard deviations and high deterministic performance. As such, they are not prevented
by the constraint on deterministic transition location used previously.

Optimisation of a high-sweep tapered wing section found that strong crossflow instability
growth prevents laminar flow inboard along the wing-span. Reduced sweep angle is re-
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quired to obtain laminar flow over the full span. This does, however, come with a trade-off
in reduced cruise Mach number. For both high and low sweep angles, mean laminar flow
can be extended furthest outboard due to the reduced Reynolds number. Extending mean
laminar flow outboard is also found to have the best trade-off with transition location stan-
dard deviation.

The effect of varying the critical N-factor uncertainty standard deviation was also assessed
at each stage of this work. The overall trend seen is that the difference in performance
robustness of two designs at a specific critical N-factor uncertainty standard deviation is
found to be similar when critical N-factor uncertainty standard deviation is changed. As
such, the choice of critical N-factor uncertainty standard deviation does not significantly
change the quality of one design over the other, but does change mean performance and
performance standard deviation and their distribution over lift coefficient, Mach number or
wing-span.

9.3 In Conclusion

The aim set out at the beginning of this research project to develop NLF aerofoils and wings
with increased robustness to off-design and uncertain conditions has been addressed. This
was achieved by first applying the current state-of-the-art in robust design and optimisa-
tion to NLF aerofoil and wing design with a previously un-addressed source of uncertainty.
This approach was then improved and extended to account for variation in additional pa-
rameters. This study therefore make an original contribution to the field of NLF design and
optimisation.

Further work that could be undertaken on this topic includes consideration of pitching mo-
ment, extended laminar flow on both upper and lower surface at transonic speeds, alter-
native approaches to quantifying robustness and a focus on leading edge optimisation for
crossflow instability reduction.
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