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Abstract

The impacts of climate change and anthropogenic pressures on marine ecosystems are be-

coming of increasing concern, resulting in a growing demand for predictions of future ecosys-

tem conditions to aid the development of robust management solutions. However, the outputs

of marine ecosystem models tend to be highly uncertain. Quantifying the impacts of these un-

certainties on the model outputs and successfully communicating this information to decision

makers and the general public is vital to increasing the credibility of the model outputs and en-

suring the projections can make a useful contribution to the decision-making process.

In this thesis, I aim to improve our understanding of the uncertainties associated with the future

of marine ecosystems by: (1) identifying the key sources of uncertainty in marine ecosystem

models; (2) evaluating the impacts of these uncertainties on projections of key parameters

for marine environmental policy; and (3) identifying methods to effectively communicate the

outputs of complex marine ecosystem models to a non-specialist audience.

In order to achieve this goal, I have used various methods of sensitivity analysis and machine

learning to better understand the behaviour of a widely-used marine ecosystem model known

as mizer in response to parameter uncertainties (see Chapters 3 and 4). I have also assessed

the relative contributions of internal variability, model, and scenario uncertainties to the total

variance of the projections of sea surface temperature and salinity from over ten different

global climate models (see Chapter 5). Finally, I have conducted an in-depth online survey

aimed at identifying the most effective methods for visually communicating the outputs of

complex models alongside their associated uncertainties (see Chapter 6). Overall, it is hoped

that the information gleaned from this research may be used to help improve model behaviour

and increase the confidence that decision-makers have in marine ecosystem models.
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Chapter 1

Introduction

The impacts of climate change and anthropogenic pressures on marine ecosystems are

becoming of increasing concern, resulting in a growing demand for predictions of future

ecosystem conditions to aid the development of management solutions (Brander et al., 2013).

Ecosystem models may be used to predict the likely impacts of both natural and anthropogenic

pressures on species biomass and the trophic dynamics between species in an ecosystem

over time (Pauly et al., 2000). Forecasting such changes within an ecosystem also enables

us to predict the impacts of external pressures on the goods and services provided by ma-

rine ecosystems, including fish production, nutrient cycling, and climate regulation (Beaumont

et al., 2007).

Ecosystem models vary in structure and complexity from single-species biomass models to

multispecies food web models. Single-species models, which typically do not take into ac-

count the often complex interactions between species and processes in an ecosystem (al-

though some now include predation mortality rates), are currently widely used in fisheries

management, particularly in annual stock assessments (Möllmann et al., 2013). However,

recent legislation, such as the EU Marine Strategy Framework Directive (MSFD) (European

Commission, 2008b) and Common Fisheries Policy (European Commission, 2013), calls for

a more holistic ecosystem-based approach to management that incorporates not only the in-

teractions between species, but also the interactions between different ecosystem processes,

services, and pressures (Möllmann et al., 2013). To do this, we need to increase the contri-

bution of more complex marine ecosystem models to the management process. One of the

largest barriers to achieving this goal lies in the fact that although complex ecosystem mod-

els are designed to depict the interactions between species within an ecosystem in a more

realistic manner than simpler single-species models, their performance in producing accurate

projections may not always be superior (Morissette, 2005). In some instances, the increase in

model complexity results in less informative projections due to an increase in the number of

uncertain components included within the model (Morissette, 2005). This uncertainty stems

from our fundamental lack of understanding of the important processes and species interac-
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tions within an ecosystem, as well as our inability to capture the inherent variability of both

human and natural phenomena, thus preventing the accurate parameterisation of all of the

components within the model (Morissette, 2005).

Failing to acknowledge the presence of uncertainties in ecosystem models may result in se-

vere ecological and economic consequences due to misguided management decisions (Uusi-

talo et al., 2015), including species extinctions and unintended fishery collapse (Roughgarden

and Smith, 1996). The MSFD attempts to avoid such consequences by requiring all Mem-

ber States to protect, preserve, and restore the quality of the marine environment wherever

possible, whilst also allowing the sustainable use of natural resources based on the ’precau-

tionary principle’ (European Commission, 2008b). As the precautionary principle necessitates

the prevention of any potential adverse risks to the marine environment, Member States are

obliged to explicitly incorporate uncertainty into the decision-making process (Refsgaard et al.,

2007). Identifying and understanding the implications of uncertainties in ecosystem models,

as well as successfully communicating these uncertainties to decision makers, is therefore

vital to ensuring the successful development of robust management solutions for the future

(Walker et al., 2003).

More specifically, it is important to ascertain the source, level, and nature of the uncertainties

to describe why, how, and to what extent the model projections are uncertain (Walker et al.,

2003; Refsgaard et al., 2013). Although the sources of uncertainty within ecosystem models

may be well established in the scientific literature, the ’correct’ terminology to describe these

uncertainties is still an area of discussion. Similarly there is much debate within the literature

as to which methods should be used to quantify or qualitatively describe these uncertainties,

as well as how to effectively communicate this information to non-specialist audiences, includ-

ing decision makers and the general public (Wesselink et al., 2015). As a result, few studies in

ecosystem modelling have attempted to describe all sources of uncertainty and their impacts

on the modelled projections, most likely due to the vast number of uncertainties in ecosystem

models and the difficulties associated with disentangling the impacts of multiple sources of

uncertainty (Morissette, 2005; Gårdmark et al., 2013).

By synthesising previous research regarding uncertainties in both ecosystem modelling and

in other subject areas, such as climate science, we can begin to evaluate and communicate

uncertainties more effectively. In Section 1.1, we adopt the terminology of Walker et al. (2003)

to describe the numerous sources of uncertainty in ecosystem models. In Section 1.2 we in-

troduce some of the most promising methods for evaluating the impacts of these uncertainties

on projections of future conditions in the marine environment, including sensitivity analysis,

machine learning, and Multi-Model Ensembles (MMEs). Finally, we discuss methods to vi-

3



sually communicate the uncertainties associated with MMEs to non-specialist audiences in

Section 1.3.

1.1 Sources of uncertainty

In the context of ecosystem management, uncertainty may be loosely defined as an incom-

plete understanding of the system to be managed (Brugnach et al., 2008). Although potential

sources of uncertainty within environmental models have been discussed extensively within

the literature (see Schneider and Moss (1999); Regan et al. (2002); Van Asselt and Rotmans

(2002); Walker et al. (2003) for example), there is little agreement regarding the terminology

that should be used to describe these uncertainties (Daish, 2011). Here, we adopt the typol-

ogy of Walker et al. (2003) to describe three partially overlapping ’dimensions’ of uncertainty

that are present in a model-based decision support context: the location, level, and nature of

uncertainty (Figure 1.1). It is important to note it is not our intention to cover every aspect

of the uncertainties associated with the modelling process in detail but simply to provide a

brief overview (for a more detailed review see Regan et al. (2002) or Van Asselt and Rotmans

(2002) for example).

Figure 1.1: The three ’dimensions’ of uncertainty: location, level, and nature as described by Walker
et al. (2003).

1.1.1 Location of uncertainty

The first dimension of uncertainty identifies the location in which the uncertainty occurs within

the model complex, including the model context and framing, structure, inputs, parameters,

and outcomes (Figure 1.1 and 1.2). The model context and framing refers to the chosen

boundaries of the ecosystem described within the model, as well as the framing of the is-
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sues to be addressed within these boundaries (Walker et al., 2003). Context uncertainty may

include external variations in environmental, social, economic, technological, and political as-

pects that may have some impact on the modelled ecosystem (Vasantrao, 2011). For exam-

ple, socio-economic development and technological advances will affect future greenhouse

gas emissions in ways we cannot predict (Lorenz et al., 2015). Consequently, the context

uncertainty surrounding predictions relating to the impacts of climate change on a modelled

ecosystem will be high. Uncertainty in the framing of a model may arise through the differ-

ing perspectives of those involved in the decision-making process, resulting in confusion or

disagreements over the issue(s) to be addressed (Van Asselt and Rotmans, 2002).

Figure 1.2: A schematic of the five locations of uncertainty in ecosystem models, including context and
framing, input, parameter, model, and outcome (or output) uncertainties.

Model uncertainty includes both structural and technical uncertainty. The former arises through

the choice of variables or processes deemed necessary to include or exclude in the model,

how these components are represented mathematically, and the relationships between these

variables and the model inputs and outputs (Walker et al., 2003; Ascough II et al., 2008).

Beven (1993, 2006) describes model structure uncertainty as an issue of ’equifinality’, whereby

a number of equally plausible model structures may generate very different predictions for the

future. Consequently, differentiating between acceptable model structures to identify the best

possible structure to be used for predictive purposes may be extremely difficult (Beven, 2012).

Model technical uncertainty, the latter form of model uncertainty, refers to flaws in the soft-

ware and hardware used in the modelling process, including errors or bugs (van der Sluijs,

1997).

Model input uncertainty refers to the data used to describe the ecosystem of interest and the

external driving forces that act upon this ecosystem (Walker et al., 2003). Much of this un-
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certainty stems from an inability to accurately capture the inherent complexity and variability

of both natural and anthropogenic phenomena within a model (see Section 1.1.3) (Salling

and Leleur, 2012). Nonetheless, these uncertainties may also arise as a result of non-

representative data collection caused by time constraints, equipment failures, inappropriate

methodologies, or financial limitations (Ascough II et al., 2008). In a management context, it is

likely that the most important model input uncertainties would be external Forces Driving Sys-

tem Change (FDSCs), particularly those that might result in negative ecosystem responses

(Walker et al., 2003). FDSCs are often not well understood both in terms of the magnitude of

their impacts (Walker et al., 2003) and the response of the ecosystem to multiple interacting

drivers (Nelson et al., 2006), some of which may have cumulative additive, synergistic, or an-

tagonistic effects (Crain et al., 2008). Perhaps the most obvious example of an FDSC in the

context of ecosystem management would be climate change, the uncertainties of which are

widely discussed (see Pachauri et al. (2014) for example).

Model parameter uncertainty occurs largely as a result of uncertainties in model input data, as

parameter estimates are calculated either directly from or via calibration of input data (Briggs

et al., 2012). If the quantity and/or quality of the data available for parameter calibration is

lacking, the resultant parameter estimates will become uncertain (Zhu and Zhuang, 2013).

Parameter uncertainty is therefore of particular concern in the more complex ecosystem mod-

els, which contain large numbers of parameters (McElhany et al., 2010).

Finally, model outcome (or output) uncertainty refers to the accumulated uncertainty that is

propagated through the model from each of the locations previously discussed. This type of

uncertainty represents the difference between the modelled value of an outcome and its true

value, with the true value being unknown in all examples in which models are used to predict

future impacts on an ecosystem via extrapolation (Walker et al., 2003). Because of this,

model outcome uncertainty is extremely difficult, if not impossible, to quantify in its entirety.

Uncertainties relating to the interpretation or communication of model outcomes, such as

subjective and linguistic uncertainty (arising from ambiguous, vague, or context-dependent

scientific vocabulary), may further exacerbate outcome uncertainty (Regan et al., 2002; Daish,

2011).

1.1.2 Level of uncertainty

The second dimension of uncertainty describes the levels of uncertainty in the form of a con-

tinuum ranging from statistical uncertainty to total ignorance, i.e. from determinism to inde-

terminism (Figure 1.1). The closest level of uncertainty to determinism, or precise knowledge

of each model component, is statistical uncertainty. This level of uncertainty applies to any
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of the aforementioned uncertainties where the extent to which a modelled value deviates

from its true value may be expressed statistically (Walker et al., 2003). Statistical uncertainty

thus allows for the probability distribution of a particular outcome to be calculated (Tyre and

Michaels, 2011). Perhaps the most frequently described statistical uncertainty is measure-

ment uncertainty (Walker et al., 2003), which results from incomplete, inaccurate, or biased

data collection (Maier et al., 2008).

The second level, known as scenario uncertainty, refers to those uncertainties in which there

are multiple possible values for a given model component, resulting in a range of conceivable

outcomes (Uusitalo et al., 2015). This level of uncertainty is most often associated with the

unknown nature of future conditions, including the degree of socio-economic development,

technological advances, and the impacts of climate change. Unlike statistical uncertainty, it is

not possible to assign a probability to a given outcome under scenario uncertainty, as each

scenario is based on assumptions that we are unlikely to be able to verify in reality (Walker

et al., 2003).

Recognised and total ignorance constitute the third and fourth levels of uncertainty and en-

compass situations in which we do not know enough about some or all of the model compo-

nents to formulate plausible scenarios (Spangenberg, 2006). Recognised ignorance refers to

a situation in which we acknowledge what we do not know, whilst total ignorance (or ’deep

uncertainty’) refers to a state of indeterminism in which we do not know what we do not know

(Spiegelhalter and Riesch, 2011). Walker et al. (2003) subdivide recognised ignorance into

two groups based on whether it is possible to improve the level of uncertainty via further sci-

entific research or not, the former being referred to as reducible and the latter as irreducible

ignorance. An example of reducible ignorance in climate science might include geophysi-

cal feedbacks, whilst irreducible ignorance may include the role of sunspots (Van Asselt and

Rotmans, 2002).

1.1.3 Nature of uncertainty

The third dimension of uncertainty divides the nature of a given source of uncertainty into

either knowledge- or variability-related categories (Figure 1.1). Knowledge, or epistemic, un-

certainty refers to a lack of accurate scientific evidence or understanding of the phenomena

described by the model (Ascough II et al., 2008). For instance, the aforementioned incomplete,

inaccurate, or biased data may constitute knowledge uncertainty, as might subjective and lin-

guistic uncertainty (Maier et al., 2008). Variability uncertainty, also referred to as ontologic or

aleatory uncertainty, arises due to the inherent variability (or randomness) and subsequent

unpredictability of both the natural and anthropogenic systems described within the model
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complex (Ascough II et al., 2008). Variability-related uncertainty encompasses examples

such as ’non-rational’ human behaviour and the unknown nature of future technological de-

velopments (Walker et al., 2003). Though variability-related uncertainty is largely irreducible,

knowledge-related uncertainty may often be reduced following further scientific research or

model development (Figure 1.1) (Stainforth et al., 2005; Ascough II et al., 2008). Nonethe-

less, any novel information gleaned from such research could highlight further gaps in our

understanding, thereby seemingly increasing uncertainty rather than reducing it (Van Asselt

and Rotmans, 2002).

1.2 Methods to quantify uncertainty

Although there is a general consensus within the literature regarding the sources of uncer-

tainty within ecosystem models, there is much debate regarding the methods that should be

used to quantify or qualitatively describe these uncertainties. In many circumstances there

are multiple methods that may be used to describe uncertainties under each of the aforemen-

tioned locations (Table 1.1). However, it is outwith the scope of this research to discuss these

methods in detail (see previous reviews e.g. van der Sluijs et al. (2004), Refsgaard et al.

(2007), or Uusitalo et al. (2015)) and instead we focus on two of the most promising methods

to help quantify uncertainties: sensitivity analysis and Multi-Model Ensembles (MMEs). We

also discuss the potential for machine learning algorithms, which seem to have been largely

overlooked in this field of research in the past, to play a larger role in uncertainty analyses in

the future (Shrestha et al., 2009).

1.2.1 Sensitivity analysis

Sensitivity analysis (SA) are used to quantitatively or qualitatively determine how uncertainties

in various aspects of the modelling process affect the outputs of a model (van der Sluijs

et al., 2004). The model outputs are deemed to be insensitive to a given model component

if variations in the component cause a negligible change in the model outputs. Conversely,

the model outputs are deemed to be sensitive to a given model component if variations in

the component result in a large change in the model outputs. Identifying the sensitivity of

the model outputs to different components within the model may be useful for a wide range

of purposes, including model simplification (Rose and Harmsen, 1978; Cariboni et al., 2007;

Saltelli et al., 2008), testing the robustness of the model outputs (Cariboni et al., 2007; Saltelli

et al., 2008), investigating the behaviour of the model (Rose and Harmsen, 1978; Saltelli et al.,

2008), and identifying areas in which to focus future research efforts to reduce the uncertainty
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in the model outputs (Saltelli et al., 2008). The model components that are most often included

in SA are the inputs and parameters, but SA may also be used to better understand the

sensitivity of a model to different model structures or to various scenarios of the future (Table

1.1) (van der Sluijs et al., 2004). For example, in marine ecosystem modelling SA may be

used to determine the sensitivity of fish populations to a wide range of management options

for the future, such as harvest control rules or area closures, as well as to different climate

change scenarios (Serpetti et al., 2017; Fu et al., 2018; Bentley et al., 2019b; Stäbler et al.,

2019). Understanding the sensitivity of the model to these scenarios may subsequently aid

the development of robust management decisions if the models are used to support policy

(Saltelli et al., 2008; Uusitalo et al., 2015).

Various different methods are available for conducting SA, which tend to fall into two broad cat-

egories: local and global methods (Saltelli et al., 2008). Local methods of SA typically quantify

the sensitivity of the model outputs to small variations in a single uncertain model component,

whilst all other components remain fixed (Pianosi et al., 2016). Conversely, global methods

of SA typically quantify the sensitivity of the model outputs to much larger variations in the

uncertain model components and allow each component to vary at the same time (Pianosi

et al., 2016). Global methods of SA may be particularly useful in environmental modelling

as they take into account the often complex interactions between model components, whilst

local methods do not (Saltelli et al., 2008). However, both local and global methods of SA

are often deemed to be too time-consuming and computationally expensive to be included in

modelling frameworks, most often due to the large number of model evaluations required to

estimate the sensitivity of the model outputs to each of the components (Arhonditsis et al.,

2006; Roeder and Hill, 2009). Nevertheless, ignoring the sensitivity of the model outputs risks

suboptimal, ineffective, or potentially damaging management decisions if small (but realistic)

variations in individual model components result in highly variable model outputs (Uusitalo

et al., 2015).

The Sobol’ variance-based method, which is often seen as the ’gold standard’ of SA, allows

us to estimate total-effect indices by decomposing of the model output variance into contri-

butions associated with individual parameters, as well as their interactions with every other

parameter in the model (Chen et al., 2004). However, this method is perhaps one of the most

computationally expensive forms of sensitivity analysis (Iooss et al., 2012) and may therefore

not be a viable option when exploring the sensitivity of a complex marine ecosystem model.

Fortunately, a less computationally expensive method, known as derivative-based global sen-

sitivity analysis, has recently been developed to estimate the upper bounds of the Sobol’

variance-based sensitivity indices by integrating the squared partial derivatives of the model

outputs (Kucherenko et al., 2009; Sobol’ and Kucherenko, 2009, 2010; Iooss et al., 2012).
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This method of sensitivity analysis has increased in popularity in recent years and has been

used in a number of research areas, including biochemical pathway modelling (Rodriguez-

Fernandez et al., 2012), reservoir modelling (Touzani and Busby, 2014), and the modelling

of predator-prey interactions between grazers and periphyton in aquatic mesocosms (Iooss

et al., 2012), among others (Kucherenko and Song, 2016). However, to the best of our knowl-

edge the derivative-based method has not yet been applied to a complex model that includes

many hundreds of interacting parameters. Furthermore, few examples exist of a direct com-

parison between the performance of Sobol’ variance-based SA and derivative-based SA when

applied to complex models (see Iooss et al. (2012) for example), and none that we are aware

of in marine ecosystem modelling. The potential benefits of applying the derivative-based

method of sensitivity analysis to marine ecosystem models are therefore largely unexplored

but may be vital in helping to better understand and improve these models in the future. Such

improvements are of particular importance if marine ecosystem models are to play a larger

role in fisheries management in the future.

1.2.2 Machine learning algorithms

Machine Learning (ML) is a branch of artificial intelligence that is used to construct algo-

rithms that learn from and detect patterns in ’big data’ (Alpaydin, 2014). Similar to sensitivity

analysis, ML algorithms may be used to investigate the behaviour of a model under differ-

ent parameter combinations and thus help to identify areas in which to focus future research

efforts to reduce the uncertainty in the model outputs (Saltelli et al., 2008). Perhaps more

importantly, ML algorithms may also be trained to predict (or emulate) the outputs of a model.

Being able to accurately predict the outputs of a given model would reduce the need to run

the full model and enable us to explore the parameter space more efficiently, thereby helping

to lessen the costs associated with marine ecosystem modelling both in terms of human and

computational resources; this may be especially important for scientists and decision makers

that have limited funding and/or short deadlines.

A wide variety of ML algorithms are currently available, all of which may be grouped into two

main categories: supervised and unsupervised learning techniques. Supervised ML tech-

niques, which include decision trees, random forests, support vector machines, and neural

networks (Tan and Gilbert, 2003; Mohri et al., 2012), may be particularly useful when at-

tempting to predict the behaviour of an environmental model as they learn classification rules

from pre-labelled training data to make predictions about unlabelled testing data (Maglogian-

nis et al., 2007). A model may therefore be run under multiple parameter combinations and

the outputs can be used to train the algorithm to predict the behaviour of the model under a
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new set of parameter combinations. As supervised methods of ML are often capable of per-

forming classification and regression tasks, they may be used to predict both continuous and

discrete model outputs, such as species biomass and species extinctions respectively (Tan

and Gilbert, 2003; Mohri et al., 2012). Conversely, unsupervised ML techniques may be used

when pre-labelled data is not available. Instead, unsupervised ML algorithms attempt to clas-

sify unlabelled data by identifying hidden patterns in the dataset (Maglogiannis et al., 2007).

Unsupervised methods include k-means clustering, hierarchical clustering, Principal Compo-

nents Analysis (PCA), belief networks, and Hidden Markov models (Maglogiannis et al., 2007;

Ghahramani, 2004).

Both supervised and supervised ML algorithms have been used in various contexts in ecosys-

tem management in the past. For example, supervised ML algorithms have been used in the

prediction of: (1) ocellated turkey (Meleagris ocellata) abundance on the Yucatán peninsula

(Kampichler et al., 2010); (2) species richness and diversity on two coral reefs located between

Tanzania and Zanzibar (Knudby et al., 2010); and (3) bio-indicators of aquatic ecosystems in

the Taizi River in northeast China (Fan et al., 2017). However, there are few examples of ML

algorithms being used to predict the behaviour of a complex environmental model (see Lucas

et al. (2013) for example), and none that we are aware of in marine ecosystem modelling. Per-

haps one of the greatest barriers to the widespread use of ML algorithms in marine ecosystem

modelling (and elsewhere) is the lack of transparency regarding the internal workings of the

algorithms, some of which are often referred to as ’black boxes’ (Quetglas et al., 2011). This

lack of transparency can make it difficult to implement and interpret ML algorithms without

specialist training (Gardner and Dorling, 1998). Nevertheless, there are methods of ML that

are more transparent and easy to use than others, with decision trees and random forests

being some of the simplest methods of ML (Westreich et al., 2010). By exploring the ability

of these simpler methods of ML to predict the outputs of a complex marine ecosystem model,

we may not only be able to improve the behaviour of the model and reduce the computational

costs associated with running the model, but also ensure that we can effectively communicate

the internal workings of the algorithm to non-specialist audiences, particularly decision mak-

ers. This research may in turn help to increase the confidence that decision makers have in

marine ecosystem models and ensure they can be used more widely in fisheries management

in the future.

1.2.3 Multi-model ensembles

Multi-Model Ensembles (MMEs) involve the use of multiple structurally different models to

predict future ecosystem responses to natural and anthropogenic pressures (Gårdmark et al.,
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2013). This method reduces the requirement to identify a single ’best’ model and allows a

wider range of possible outcomes to be considered (Wang et al., 2011; Beven, 2012). One

of the major benefits of MMEs is that we may use the differences in the structural represen-

tation of a given ecosystem in each model to disentangle the effects of multiple uncertainties

(Tebaldi and Knutti, 2007; Gårdmark et al., 2013). For instance, by comparing the outputs

of multiple models run under a single scenario of the future and by comparing the outputs

of a single model under various scenarios of the future, it is possible to disentangle the ef-

fects of model structure uncertainty and outcome (or ’scenario’) uncertainty. This is feasible

since any variations in the outputs of multiple models under a single scenario will be caused

solely by differences in the structure of the models (Wang et al., 2011; Gårdmark et al., 2013).

Conversely, variations in the outputs of a single model under multiple scenarios will repre-

sent the extent to which uncertainties in these scenarios are propagated through the model to

the model output(s) (Knutti and Sedláček, 2013). Using MMEs to identify events with a high

model probability (i.e. results common among many simulations within the ensemble) may

also give some indication of the model outputs that are robust to different model formulations

(Jones and Cheung, 2014). Robust outputs are of particular interest to decision makers as

they provide a strong indication of the likely future conditions on which to base management

plans.

Using MMEs has previously been shown to increase the skill and reliability of model predic-

tions in sectors such as public health (Thomson et al., 2006), agriculture (Cantelaube and Ter-

res, 2005), and terrestrial ecosystem modelling (Dormann et al., 2008). MMEs have also been

used extensively in climate modelling (see Giorgi and Mearns (2003); Murphy et al. (2004);

Tebaldi et al. (2005); Greene et al. (2006); Christensen and Christensen (2007); Furrer et al.

(2007); Kjellström et al. (2011); Nikulin et al. (2011); Meier et al. (2012a,b) for example). In

particular, Hawkins and Sutton (2009) developed a novel approach to both quantifying and

visualising the contributions of internal variability, model, and scenario uncertainty to the total

uncertainty of the projections of Surface Air Temperature (SAT) from a world-renowned cli-

mate MME (Figure 1.3). To achieve this, the authors used weighted averages of SAT from

15 different global climate models exposed to three climate change scenarios. Uncertainties

were estimated by smoothing the model projections and using: (1) the multi-model mean of

the variance of the model residuals from the model fits, independent of lead time, to represent

internal variability; (2) the multi-scenario mean of the variance of the model fits to represent

model uncertainty; and (3) the variance of the multi-model mean of the smooth fits to rep-

resent scenario uncertainty (see Hawkins and Sutton (2009) for further details). The relative

contributions of each of the three sources of uncertainty to the total variance of the projections

was calculated for 180 different regions across the globe and later mapped to indicate areas
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most affected by each of the uncertainties (Figure 1.4). Not only is this an efficient method to

visualise the impacts of multiple sources of uncertainty on the predictions of an MME, such

visualisations may also help to identify areas in which investments may help to reduce uncer-

tainty (Hawkins and Sutton, 2009). This type of research has proven to be extremely popular

in recent years, with similar methods being applied to a wide range of different climate vari-

ables, including precipitation (Hawkins and Sutton, 2011), tropical storm frequency (Villarini

and Vecchi, 2012), sea surface temperature (Villarini and Vecchi, 2012; Cheung et al., 2016),

sea level (Little et al., 2015), and the Atlantic Meridional Overturning Circulation (Reintges

et al., 2017).

Figure 1.3: The relative contributions of internal variability (orange), model (blue), and scenario (green)
uncertainty to the total variance of decadal mean surface air temperature projections for a) the global
mean b) the British Isles mean. The proportion of the total variance in decadal mean surface temper-
ature projections explained by each of the three sources of uncertainty for c) the global mean and d)
the British Isles mean. Source: Hawkins and Sutton (2009). c©American Meteorological Society. Used
with permission.

Although popular in climate science, there are few examples of MMEs in marine science (St-

Louis et al., 2012; Jones and Cheung, 2014). The lack of uptake of this methodology in marine

ecosystem modelling has occurred largely as a result of inconsistent model outputs and a

lack of common parametrisations and scenarios with which to run in each of the models in

the ensemble (Spence et al., 2018). However, interdisciplinary research projects such as the
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Figure 1.4: The relative contributions of internal variability (left), model (middle), and scenario (right)
uncertainty to the total variance of decadal mean surface air temperature projections across the globe
under three lead times (years from 2000): one (top), four (middle) and nine (bottom) decades. Source:
Hawkins and Sutton (2009). c©American Meteorological Society. Used with permission.

Marine Ecosystems Research Programme (MERP; marine-ecosystems.org.uk) and the

Fisheries and Marine Ecosystems Model Intercomparison Project (FISH-MIP, isimip.org/

gettingstarted/marine-ecosystems-fisheries/) have begun to overcome these issues,

with a number of recent publications successfully implementing marine ecosystem MMEs (see

Spence et al. (2018) and Paine et al. (prep) for example). We may now begin to use these

MMEs to assess the impacts of prospective policy options on a given ecosystem by applying

management techniques such as fishing quotas under various scenarios of the future (Fu

et al., 2018; Shin et al., 2018; Spence et al., 2018). Marine ecosystem MMEs may thus

play an important role at the science-policy interface by providing decision support at local,

national, multinational, and global scales.

However, the outputs of an MME are often extremely complex and different models within the

MME may give very different predictions for the future (Hansen and Hoffman, 2011). In the

past, a lack of effective communication of such complex and highly variable model outputs,

both to decision makers and the general public, has been blamed for ineffective management
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decisions (Janssen et al., 2005). This in turn has contributed to public distrust of scientific evi-

dence, particularly in regards to climate science (Frewer, 2004). Improving the communication

of the uncertainties associated with MMEs to non-specialist audiences is therefore vital to en-

suring these models can continue to make a significant contribution to the decision-making

process.

1.3 Communicating uncertainty

It is often suggested that non-specialist audiences, including decision makers and the general

public, are unable to understand uncertainty analyses (Morgan, 2009). Nevertheless, the suc-

cessful communication of uncertainties to decision makers is vital to increasing transparency

and reducing misinterpretations between scientists and decision makers, thus helping to en-

sure that management efforts are not misplaced (Janssen et al., 2005). Scientists therefore

need to focus on developing methods that may be used to communicate uncertainties to non-

specialist audiences in a simple, understandable, and effective manner.

Whilst there is an abundance of scientific literature regarding how best to overcome the lin-

guistic uncertainties associated with communicating complex model outputs (see Patt and

Schrag (2003); Patt and Dessai (2005); Morgan (2009) or Mastrandrea et al. (2010) for ex-

ample), there is little guidance concerning how best to visualise uncertainties (Spiegelhalter

et al., 2011). In the past, many of the techniques used for data visualisation ignored the

presence of uncertainties or were only able to depict one source of uncertainty at a time

(MacEachren et al., 2005; Brodlie et al., 2012). This is especially problematic when attempt-

ing to communicate the outputs of MMEs, which typically require a visual representation of

changes in both model and scenario uncertainties over time. Animated and interactive visual-

isations may be particularly useful when communicating multiple uncertainties or changes in

uncertainty over time, but these methods are limited to television, film, and digital media. By

first focusing on improving the communication of uncertainty using static visualisations, which

can also be used in print, we may be able to access a much broader cross-section of soci-

ety than would be possible using animated or interactive visualisations; we can then build on

the information gleaned from this research to develop more effective interactive and animated

visualisations.

Examples of traditional methods of static visualisation that are often used to communicate un-

certainty in environmental modelling include line plots with uncertainty bands (also referred to

as envelopes) and box plots with error bars. These visualisations include both summaries of

the data, such as averages, and the estimated uncertainty surrounding this information. Static

visualisations may also be created solely to communicate uncertainties, although they may
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require a more in-depth description of what the figure depicts to ensure they are understand-

able (Kloprogge et al., 2007). For example, radar (or spider) plots and pedigree charts, which

are based either on the direct quantification of uncertainties or through expert elicitation, may

be used to depict the estimated uncertainty of various model components. It may also be

possible to re-format these visualisation methods, particularly the radar plots, to display both

a summary of the model outputs and the uncertainty surrounding the projections. Although

there is evidence to suggest that some of these visualisation methods may be effective at

communicating uncertainties to specific groups of people (see Ibrekk and Morgan (1987) for

example), relatively little is known about the ability of decision makers and the general pub-

lic to interpret these types of visualisations, particularly when used to communicate multiple

sources of uncertainty.

Even less is known about the effectiveness of more modern methods of visualising uncer-

tainty, such as cascade plots (see Wilby and Dessai (2010) and Hawkins (2014) for example)

and infographics. Although cascade plots are not yet widely used in science communication,

infographics have become increasingly popular with non-specialist audiences in recent years

and are frequently used by the media. Infographics may represent data or knowledge and tend

to consist of a combination of symbols, pictures, figures, maps, and/or diagrams (Mol, 2011).

In ecosystem management an infographic may be used to communicate aspects such as key

ecosystem services, the impacts of human use on the environment, and possible manage-

ment scenarios (NART, 2013). Infographics are believed to be highly effective as they often

provide context to the data presented in the visualisation, unlike many other forms of visual

communication (Kosara and Mackinlay, 2013). Because of this, infographics tend to be more

memorable to non-specialist audiences, particularly the general public (Bateman et al., 2010).

However, there are few examples in which uncertainty is incorporated into an infographic and

little is known about their performance relative to more traditional methods of visualisation.

Although an infographic that is successfully able to communicate the full complexity of the

uncertainties associated with MMEs is difficult to envisage at present, we must begin to ex-

plore the potential uses of this type of visualisation, as well as some of the more traditional

methods of visualising uncertainty, if we are to improve communication between scientists and

non-specialist audiences in the future.

1.4 Thesis summary

The presence of uncertainties within the ecosystem modelling process is unavoidable, yet

despite this management decisions must still be made. By improving the identification, eval-

uation, and communication of uncertainties and their impacts on the projections of a model,
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scientists can provide decision makers and the general public with a more realistic insight into

the likely future conditions of an ecosystem under various management scenarios (Burgman,

2005; Power and McCarty, 2006; Hill et al., 2007; Tyre and Michaels, 2011). I hope to help

achieve this goal by applying methods such as global sensitivity analysis, machine learning,

and MMEs to better understand the uncertainties regarding the future of marine ecosystems.

If such improvements to our understanding of uncertainty are to be useful in a management

context, it must be reinforced with improved communication and knowledge-exchange at the

science-policy interface (Krupnick et al., 2006). I therefore also aim to help achieve this goal

by identifying how best to visually communicate the outputs of MMEs to non-specialist audi-

ences.

The rest of this thesis is thus organised as follows:

Chapter 2: The mizer marine ecosystem model

In Chapter 2, I provide an introduction to a marine ecosystem model known as mizer. This

model is used in Chapters 3 and 4 to demonstrate how global sensitivity analysis and machine

learning may be used to analyse parameter uncertainties in marine ecosystem modelling.

Although this chapter does not introduce any new model development, it is included to provide

a detailed explanation of the inner workings and assumptions of the model and to describe

all of the parameters that were included in the novel analyses described in Chapters 3 and 4.

The reasons for using mizer are also provided at the end of Chapter 2.

Chapter 3: Global sensitivity analysis of the mizer marine ecosystem model

In Chapter 3, I apply two different methods of global sensitivity analysis to the mizer marine

ecosystem model. More specifically, I estimate the Sobol’ variance-based and derivative-

based sensitivity indices of the trait-based version of the mizer model, which includes 24 pa-

rameters, to allow for a direct comparison between these two methods of sensitivity analysis. I

also apply a derivative-based sensitivity analysis to the North Sea multispecies version of the

mizer model, which includes over 300 parameters, to demonstrate the ability of this method

of sensitivity analysis to handle a highly complex model. I consider the sensitivity of multi-

ple model outputs, including community biomass, population size, spawning stock biomass,

fisheries yield, and the Large Fish Indicator (LFI), to small changes of ± 10% of the nominal

values of the parameters. The results of the sensitivity analyses are used to discuss where

further research might be focused to help reduce the uncertainty in the model outputs, thus

enabling us to produce more accurate model projections.

Chapter 4: Using machine learning to predict the behaviour of the mizer marine ecosys-

tem model

In Chapter 4, I explore the ability of a method of machine learning known as the random forest
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algorithm to predict the behaviour of the North Sea multispecies mizer model under different

parameter combinations. I also use the random forest algorithm to identify the parameters

that drive certain model behaviours, such as species extinctions, thus enabling us to better

understand and subsequently improve the behaviour of the model. At the end of this chapter,

I discuss the similarities between the parameters that are identified as being important by the

machine learning algorithm and the sensitivity analyses in Chapter 3, further supporting the

conclusions given in both chapters regarding areas in which to focus future research efforts to

reduce the uncertainties in the outputs of the mizer model.

Chapter 5: Uncertainty in projections of global and regional sea surface temperature

and salinity

In Chapter 5, I use global and regional projections of Sea Surface Temperature (SST) and

Sea Surface Salinity (SSS) from a world-renowned climate MME to quantify spatio-temporal

changes in the contributions of internal variability, model, and scenario uncertainties to the

total variance of the projections. The results are used to highlight areas in which the uncer-

tainties may be reduced via further research, as well as to identify irreducible uncertainties. I

also explore the signal-to-noise ratio of the projections to allow us to identify regions and time

periods in which the projections are most certain and are thus most useful to decision makers

in terms of adaptation planning. Please note that I chose to use a climate MME in this chapter

as the marine ecosystem MMEs developed during MERP and FISH-MIP were not complete

at the time of writing. Nevertheless, the results are extremely relevant to marine ecosystem

modelling and the methods may be easily applied to MMEs from a wide variety of research

areas in the future.

Chapter 6: Visualising uncertainty in multi-model ensembles

In Chapter 6, I conduct an in-depth online survey to identify the most effective methods for

communicating the outputs of a MME to different audiences using static visualisations. I test

the performance of 10 different visualisations, all of which depict exactly the same data but

in slightly different ways. The performance of each visualisation is measured based on the

accuracy, confidence, and ease with which the participants were able to interpret each visual-

isation, as well as their preferences for different visualisations across a number of categories.

I take into account the education level, background, and expertise of the participants to de-

termine whether different groups of people are better able to interpret certain visualisations,

thus enabling us to target visualisations at specific audiences to maximise their impact, whilst

also minimising the potential for misinterpretations. Please note that the visualisations were

produced using the climate MME described in Chapter 5 for the same reasons as stated pre-

viously.
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Chapter 7: Discussion

In the final chapter of this thesis, I synthesise the results of the research described in Chapters

3 to 6. I highlight the key findings of this work and identify areas of future research that may

be required to further advance our understanding of the uncertainties associated with marine

ecosystem models.
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Chapter 2

The mizer marine ecosystem model

The aim of Chapters 3 and 4 is to better understand the impact of parameter uncertainties

on the outputs of a marine ecosystem model using global sensitivity analysis and machine

learning techniques. In both of these chapters, the mizer model is used as an example of how

these methods may be applied in practice. The inner workings and assumptions of the mizer

model are therefore described in detail below. Please note that I have not contributed to the

development of the mizer model prior to or during the research presented in this thesis. The

model is described in full here only as supporting text for Chapters 3 and 4 and the following

sections are based solely on the information given by those involved in the development of the

model (see Scott et al. (2014), Andersen et al. (2015), and Scott et al. (2018) for example).

A full list of the parameters of the model, their nominal values, and associated references is

given in Tables 2.1 to 2.5.

2.1 Introduction to the model

mizer is a dynamic size spectrum ecological model that is used to better understand how

the growth of a set of individuals (and their subsequent changes in trophic level) affects fish

community dynamics (Scott et al., 2014). All processes included within mizer are formulated

at the level of the individual and all of the parameters are directly related to body size, thereby

allowing the model to be formulated using a relatively small number of parameters (Scott et al.,

2014). Individual body size is aggregated to describe the entire fish community using a single

size distribution, known as the size spectrum (Andersen et al., 2015).

There are currently three different versions of the mizer model, increasing in complexity from

the comparatively simple community model to the more complex trait-based and multispecies

models (Scott et al., 2014) (see Section 2.4 for more details). All three versions of mizer

are based on the same two central assumptions (Section 2.2) and a number of ’standard’

assumptions (Section 2.3) that are often used in ecology to describe food consumption, growth

gi(w), recruitment Ri, and mortality µi(w) (Scott et al., 2014).
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2.2 Central assumptions

In this section, the two central assumptions of the mizer model are described in detail. The

first central assumption of the mizer model is that individuals may be characterised solely by

their weight w and species ID i. The size spectrum Ni(w) of species i represents the density

of individuals at a given size at time t (where the default time step is equal to 0.25 years) and

is calculated by scaling the individual-level processes of somatic growth gi(w) and mortality

µi(w) using the McKendrick-von Foerster equation:

∂Ni(w)

∂t
+
∂gi(w)Ni(w)

∂w
= −µi(w)Ni(w) (2.1)

Individual growth and mortality are determined by food availability, predation, and fishing mor-

tality. Food may be sourced from other individuals or from a background resource spectrum

NR(w), which represents the planktonic community and any other food sources that are not

directly included in the model. Only the smallest individuals feed on the background resource

spectrum, which is modelled using a dynamic semi-chemostat growth equation:

∂NR(w, t)

∂t
= r0w

p−1[κw−λ −NR(w, t)
]
− µp(w)NR(w, t) (2.2)

where r0wp−1 is the population regeneration rate (Fenchel, 1974; Savage et al., 2004), κw−λ

is equal to κw−2+q+n, where κw−λ represents the carrying capacity of the population, n

represents the scaling of food intake, p represents the scaling of standard metabolism, q rep-

resents the search volume exponent, and µp is the predation mortality rate given in Equation

2.16.

The second central assumption of the mizer model is that an individual’s food preferences

are determined both by species preference and a combination of individual weight and prey

weight preference. Prey weight preferences are described using a log-normal selection model

(Ursin, 1973) in terms of the ratio between the weight of the predator w and the weight of the

prey wp:

φ(wp/w) = exp
[−(ln(w/(wpβi)))

2

2σ2i

]
(2.3)

where βi is the preferred predator-prey mass ratio and σi is the width of the prey size se-

lection function. Due to predation being size-based, cannibalism is an inherent part of the

model.
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2.3 Standard assumptions

In this section the ’standard’ assumptions of the mizer model that relate to food consumption,

growth, reproduction, recruitment, and mortality are described.

2.3.1 Predator-prey encounters

Predator-prey encounters are based on the "Andersen-Ursin" encounter model that was orig-

inally developed to represent the North Sea marine ecosystem (see Andersen and Ursin

(1977) and Andersen and Beyer (2006) for further details) and within which the general rule

that "big fish eat smaller fish" was formalised. The food available (mass per volume) for an

individual of weight w, denoted as Ea, i(w), is determined by integrating over the number

of individuals in the model and the size of the background resource, weighted by the size

selection function in Equation 2.3:

Ea, i(w) =

∫ (
NR(wp) +

∑
j

θijNj(wp)

)
φi(wp/w)wpdwp (2.4)

where θij is the preference of species i for species j. The amount of food encountered by a

predator Ee,i (biomass per time) is dependent on the individual’s search rate γi (volume per

time), which scales with weight such that larger fish are capable of searching greater volumes

of water for food than smaller fish:

Ee, i(w) = γiw
qEa,i (2.5)

2.3.2 Food consumption

Encountered food is consumed following a standard Holling type II functional response (Holling,

1959) to represent satiation. This functional response is used to determine the feeding level

fi(w) of an individual. The feeding level is a dimensionless number between 0 and 1, which

represents a total lack of food and full satiation respectively:

fi(w) =
Ee,i

Ee,i + hiwn
(2.6)

where hi is the maximum food intake and hiwn is the maximum consumption rate. The food

consumption rate is then fi(w)hiw
n. If hi is not directly specified by the model user, it is
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calculated as:

hi =
3kvb
αf0

W
1/3
i (2.7)

where kvb represents the von Bertalanffy K parameter, α is the assimilation efficiency, f0

represents the level at which the smallest individuals in the population feed on the background

resource spectrum when it is at carrying capacity, and Wi is the asymptotic weight. f0 is used

to control resource productivity and to calculate the search rate parameter γi if it is not directly

specified by the model user (see Andersen and Beyer (2006), Appendix B for more details):

γi(f0) =
f0hiβ

2−λ
i exp (−λ− 2)2σ2i /2)

(1− f0)
√

2πκσi
(2.8)

where κ represents the carrying capacity of the background resource spectrum.

2.3.3 Energy budget

Consumed food is used as energy for standard metabolism, activity, growth, and reproduction.

The consumed food is assimilated with efficiency α and the acquired energy is used firstly for

standard metabolism at a rate of ks,i (defined as 20% of hi if not directly specified by the user)

and secondly for activity at a rate of kiw. Once these costs have been accounted for, the

remaining energy Er,i(w) (if any) is used for growth and reproduction:

Er,i(w) = max(0, αfi(w)hiw
n − ks,iwp − kiw) (2.9)

If the energy acquired for standard metabolism and activity is not sufficient to meet the needs

of the individual, growth and reproduction ceases; growth cannot be negative and therefore

individuals cannot decrease in size. It is important to note that individuals are not subjected

to starvation mortality in the model at present as starvation was not found to be an important

process in the model when using a "Beverton-Holt" recruitment function (see Section 2.3.5;

Scott et al. (2014)).

The proportion of Er,iw that is used for reproduction ψi(w) is defined as:

ψi(w) =

[
1 +

( w

wm,i

)−10]−1( w
Wi

)1−n
(2.10)

where the function in the square bracket varies smoothly from 0 to 1 around the individual’s

weight at maturation. This means that juveniles use all of their remaining energy solely for

growth whereas mature individuals use their remaining energy for both growth and reproduc-
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tion. The last term in Equation 2.10 describes the relative increase in energy available for

reproduction as an individual nears its asymptotic weight.

The proportion of Er,iw that is used for somatic growth is therefore defined as:

gi(w) = Er,i(w)(1− ψi(w)) (2.11)

When the feeding level is constant, the growth curve given by Equation 2.11 approximates a

von Bertalanffy growth curve (Hartvig et al., 2011). However, the growth curve will depend on

the feeding level and growth may therefore be stunted if the feeding level drops below a critical

level fc, after which the amount of food assimilated by an individual is only sufficient to cover

the costs of standard metabolism:

fc,i(w) =
ks,iw

p + kiw

αhiwn
(2.12)

2.3.4 Reproduction

Both reproduction and recruitment are determined by considering the reproductive contribu-

tions of all of the individuals in the population. Egg production Rp,i (numbers per time step) is

defined as:

Rp,i =
ε

2w0

∫
Ni(w)Er,i(w)ψi(w)dw (2.13)

where w0 is the egg weight and ε represents a penalty on egg production due to egg mortality

and the cost of spawning.

2.3.5 Recruitment

Recruits enter the size spectrum at the smallest body size (the egg weight w0 by default).

However, it is widely assumed that juvenile marine fish experience significant density depen-

dence (Ricker, 1954) and this density dependence is incorporated into mizer in the form of a

"Beverton-Holt" stock-recruitment relationship (SRR) that acts to compensate egg production.

Using a SRR to represent density dependence helps to prevent competitive exclusion (Hartvig

and Andersen, 2013) and the subsequent extinction of a trait or species group, thus acting to

stabilise the model outputs. The "Beverton-Holt" SRR ensures that recruitment Ri (numbers

per time step) approaches maximum recruitmentRmax,i (i.e. the population carrying capacity)
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with increasing egg production Rp,i:

Ri = Rmax,i
Rp,i

Rp,i +Rmax,i
(2.14)

In actuality, Rmax,i is used as a model tuning parameter that represents any phenomena

affecting the population that are not explicitly included in the model.

2.3.6 Mortality

There are three different types of mortality that affect the overall mortality rate of an individual

µi(w) in the mizer model, including predation mortality µp,i(w), background (or natural) mor-

tality µb,i(w), and fishing mortality µf,i(w). Predation mortality is dependent on the trophic

dynamics of the model, with food consumption resulting in a corresponding decline in the

population size of prey individuals (see Hartvig et al. (2011), Appendix A for further details):

µp,i(wp) =
∑
j

θji

∫
φj(wp/w)(1− fj(w))γjw

qNj(w)dw (2.15)

The predation mortality of the background resource spectrum µp(wp) is defined as:

µp(wp) =
∑
j

∫
φj(wp/w)(1− fj(w))γjw

qNj(w)dw (2.16)

Background mortality represents death by natural causes and is assumed to be independent

of individual body size but dependent on species ID and inversely proportional to generation

time (Peters, 1983). If not directly specified by the model user, µb,i is calculated as:

µb,i = µ0W
n−1
i (2.17)

Fishing mortality Fg,i(w) is size- and species-specific and is imposed by fishing gears g:

Fg,i(w) = Sg,i(w)Qg,iEg (2.18)

where S is the selectivity, Q is the catchability, and E is the fishing effort associated with each

gear type. Gear selectivity ranges from 0 to 1, with a value of 0 indicating that the gear is not

capable of selecting (or catching) the species at size w and a value of 1 indicating the species

is fully selected by the fishing gear at size w. By default, a "knife-edge" selectivity function is

used in the trait-based model and therefore the selectivity of each gear type instantaneously

changes from 0 to 1 at a given size. Conversely, a sigmoid function is used in the multispecies
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model such that the selectivity changes from 0 to 1 more smoothly. The catchability term

Q is an additional scalar that is used to link fishing mortality and population size. Both the

selectivity and catchability of the gear remain constant in time, although the fishing effort can

be varied through time to allow for the simulation of dynamic fishing patterns.

The total fishing mortality imposed on each species at a particular weight is defined as the

sum of the fishing mortalities imposed by all gears:

µf,i(w) =
∑
g

Fg,i(w) (2.19)

2.4 Model types

As previously mentioned, there are three different versions of the mizer model, increasing in

complexity from the community model to the trait-based and multispecies models.

2.4.1 The community model

In the community version of the model, individuals are characterised solely by their size and

there are no distinctions between different species; the population forms one group that repre-

sents an average across all species. In this version of mizer, maturation and reproduction are

ignored, the recruitment flux is constant and the energy budget is simplified such that growth is

equal to the remaining energy available once the individual costs of standard metabolism and

activity have been accounted for, multiplied by an "average growth efficiency" (see Andersen

et al. (2015) Appendix B and Zhang et al. (2013) for full details).

2.4.2 The trait-based model

The trait-based version of the model can include any number of species. However, the species

are distinguishable solely by their asymptotic sizes Wi, which are evenly spaced on a contin-

uum ranging from the smallest possible size to the maximum asymptotic size. The number

of species that are included in the trait-based model is unimportant and has little impact on

the dynamics of the model when more than ten species are specified in the model. In the

trait-based mizer model, maximum recruitment R is a function of asymptotic size (see Ander-

sen et al. (2015), Appendix A for full details) and an individual’s food supply is determined

solely by body size. In the past, the trait-based version of the model has proven to be useful

in understanding the community-level impacts of changes in species-specific fishing mortality

rates (Andersen and Pedersen, 2010; Jacobsen et al., 2013) without requiring large amounts
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of species-specific information for model parameterisation.

2.4.3 The multispecies model

The multispecies version of the mizer model is the most complex of the three versions, with

individual species being resolved in much greater detail than the community and trait-based

models. The multispecies model includes up to 21 species-specific parameters, as well as

an interaction matrix that represents the spatial co-occurrence of each pair of species in the

model (Blanchard et al., 2014). This version of mizer therefore requires large amounts of data

for parameterisation, but it acts as a more realistic representation of the ecosystem than both

the community and trait-based versions of the model.

In the past, the multispecies version of mizer has been used to better understand the im-

pacts of fishing (Blanchard et al., 2014), seasonal spawning and plankton blooms (Datta

and Blanchard, 2016), and changing environmental conditions (Marshall, 2017) on the com-

munity structure of the North Sea marine ecosystem. The North Sea multispecies mizer

model is focused on 12 common and commercially important North Sea fish species in-

cluding: sprat (Sprattus sprattus), sandeel (Ammodytes marinus), Norway pout (Trisopterus

esmarkii), Atlantic herring (Clupea harengus), dab (Limanda limanda), whiting (Merlangius

merlangus), common sole (Solea solea), grey gurnard (Eutrigla gurnardus), European plaice

(Pleuronectes platessa), haddock (Melanogrammus aeglefinus), Atlantic cod (Gadus morhua),

and saithe (Pollachius virens), whose aggregated size spectra forms the community spectrum

of the model. Together, these 12 species account for almost 90% of the total biomass of fish

sampled by research trawl surveys within the area (Blanchard et al., 2014).

2.5 Nominal parameter values

The nominal parameter values in the community and trait-based versions of the model (see

Tables 2.1 and 2.2) were determined based on meta-analyses of marine fish data, includ-

ing those obtained from laboratory experiments and in the field (see Hartvig et al. (2011),

Appendix E for full details). All nominal parameter values in the North Sea multispecies

mizer model (see Tables 2.3 to 2.5) were originally estimated and/or calibrated using publicly-

available vessel survey data, stock assessment estimates, and fisheries landings data col-

lected between 1985 and 1995 (ices.dk). The maximum recruitment Rmax of each species

and the carrying capacity κ of the background resource spectrum, both of which are particu-

larly difficult to measure in the natural environment, were estimated by Spence et al. (2016)

using Bayesian statistics.
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2.6 Model outputs

The outputs of the mizer model include the population size, total biomass, Spawning Stock

Biomass (SSB), and fisheries yield of each species or trait group through time, as well as three

fish community indicators that are often used to determine the health of a marine ecosystem

(Blanchard et al., 2014). These indicators include: (1) the Large Fish Indicator (LFI; the pro-

portion of fish (by weight) of length > 40cm); (2) the mean weight of all of the individuals

in the community spectrum; and (3) the slope of the community spectrum (based on a lin-

ear regression of log-transformed numbers of individuals against log-transformed body mass)

(Blanchard et al., 2014). These indicators are usually quantified based solely on demersal fish

with a weight of between 10g and 100kg to maintain consistency with empirical fish community

indicators related to the implementation of policy such as the EU Marine Strategy Framework

Directive (MSFD; European Commission (2008b)) (Blanchard et al., 2014).

2.7 Why use the mizer model?

Size-based models, such as mizer, are powerful yet relatively simple tools that allow us to

explore the potential impacts of changes in human- and environmentally-induced pressures

on marine and freshwater ecosystems (Blanchard et al., 2017). It is this simplicity that makes

the size-based approach particularly well-suited to demonstrating the possible applications of

computationally-demanding methods, such as global sensitivity analysis (see Chapter 3) and

machine learning (see Chapter 4), to marine ecosystem models. This type of modelling is also

supported by over 50 years of research into the logarithmic relationship between biomass and

body size, as well as the correlations between various physiological and ecological processes,

including metabolism, respiration, movement, and trophic interactions, with body size (Giaco-

mini et al., 2016; Blanchard et al., 2017). As a result of this large body of work, size spec-

trum models have proliferated in recent years (Blanchard et al., 2017), with UK examples (as

highlighted by Hyder et al. (2015)) including the Coupled Community Size-Spectrum Model

(CCSSM) (Blanchard et al., 2009), the Species Size-Spectrum Model (SSSM) (Rossberg,

2012), FishSUMS (Speirs et al., 2010), the Fish Community Size-Resolved Model (FCSRM)

(Hartvig et al., 2011), the Length-based Multispecies Analysis by Numerical Simulation model

(LeMANS) (Hall et al., 2006), and mizer (Scott et al., 2014). Although largely focused on the

North Sea, these models have been used in a wide variety of contexts, including manage-

ment strategy evaluation, risk assessment, and the testing of various size-based indicators

of community or ecosystem health (Hyder et al., 2015). Size-based models have also been

applied to various marine ecosystems outside of the North Sea (see Canales et al. (2015) for
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an example off the coast of Chile and Rowan et al. (2017) for an example in the Southern

Ocean), to several freshwater ecosystems (see van Zwieten et al. (2015) and Kolding et al.

(2015) for example), as well as at a global scale (see Watson et al. (2015) for example).

Of all of the size spectrum models that are currently available, we chose to use mizer for the

following reasons: (1) the model is well-developed and has been published in several peer-

reviewed journals (see Blanchard et al. (2014), Zhang et al. (2015), Spence et al. (2016) for

example); (2) one of the model developers (Dr. Julia Blanchard) was involved in this research

project and was therefore able to provide access to the R code used to build and run the

model, making it easy to modify the code to run the sensitivity analysis and machine learning

algorithm described in Chapters 3 and 4; (3) the model was originally developed (and has

been calibrated) to represent the North Sea (Blanchard et al., 2014), an ecosystem that is

well-known to all of those involved in this work; (4) the model was the first dynamic size spec-

trum model to be incorporated into a Bayesian framework that explicitly addresses parameter

uncertainties (Spence et al., 2016), which are the focus of Chapters 3 and 4. Furthermore,

many of the aforementioned size spectrum models typically rely on a very similar set of as-

sumptions and equations. As such, we expect the conclusions reached in Chapters 3 and 4

to be applicable to many of these models, thus making the choice of size-based model less

important.

However, it is important to note that there are some drawbacks associated with size spectrum

models and/or mizer in particular (see Blanchard et al. (2017) for a review). Of perhaps

greatest importance to this research is the fact that size-based models are not end-to-end

ecosystem models and therefore they do not cover the entire food web. Most size-based

models, including the mizer model, have only a crude representation of the planktonic and

benthic organisms that typically form the base of the food web, and only a few include top

predators, such as sea birds and marine mammals (Blanchard et al., 2017). This means

that the results of Chapters 3 and 4 may be focused predominately on the fish part of the

community. Nevertheless, work is currently underway to incorporate seals into the North Sea

version of the mizer model (Spence, pers. comm.), as well as to develop a dynamic coupling

between mizer and the European Regional Seas Ecosystem Model (ERSEM) (MERP, 2017),

which includes a detailed representation of the biogeochemistry and lower trophic levels of the

North Sea (Butenschön et al., 2016). It may therefore be possible to extend Chapters 3 and 4

to gain a better understanding of the ecosystem components outside of the fish community in

the near future.

30



Ta
bl

e
2.

1:
N

om
in

al
pa

ra
m

et
er

va
lu

es
of

th
e

co
m

m
un

ity
ve

rs
io

n
of

th
e

m
iz

er
m

od
el

.
A

ll
no

m
in

al
va

lu
es

w
er

e
ta

ke
n

fro
m

th
e

m
iz

er
R

pa
ck

ag
e

(s
ee

S
co

tt
et

al
.(

20
18

))
.

P
ar

am
et

er
D

es
cr

ip
tio

n
N

om
in

al
va

lu
e

w
m
in

M
in

im
um

si
ze

of
th

e
co

m
m

un
ity

sp
ec

tr
um

0.
00

1

w
m
a
x

M
ax

im
um

si
ze

of
th

e
co

m
m

un
ity

sp
ec

tr
um

1
x

10
6

β
P

re
fe

rr
ed

pr
ed

at
or

-p
re

y
m

as
s

ra
tio

10
0

σ
W

id
th

of
th

e
pr

ey
si

ze
pr

ef
er

en
ce

2

α
A

ss
im

ila
tio

n
ef

fic
ie

nc
y

0.
2

h
M

ax
im

um
fo

od
in

ta
ke

ra
te

10

z 0
B

ac
kg

ro
un

d
m

or
ta

lit
y

of
th

e
co

m
m

un
ity

sp
ec

tr
um

0.
1

n
S

ca
lin

g
of

th
e

fo
od

in
ta

ke
2/

3

q
S

ea
rc

h
vo

lu
m

e
ex

po
ne

nt
0.

8

λ
E

xp
on

en
to

ft
he

ba
ck

gr
ou

nd
re

so
ur

ce
2+

q-
n

κ
C

ar
ry

in
g

ca
pa

ci
ty

of
th

e
ba

ck
gr

ou
nd

re
so

ur
ce

10
00

f 0
A

ve
ra

ge
fe

ed
in

g
le

ve
lo

fi
nd

iv
id

ua
ls

fe
ed

in
g

m
ai

nl
y

on
th

e
ba

ck
gr

ou
nd

re
so

ur
ce

0.
7

r p
p

G
ro

w
th

ra
te

of
pr

im
ar

y
pr

od
uc

tiv
ity

10

K
E
S

S
iz

e
at

th
e

ed
ge

of
th

e
kn

ife
-s

el
ec

tiv
ity

fu
nc

tio
n

10
00

re
c

C
on

st
an

tr
ec

ru
itm

en
ti

n
th

e
sm

al
le

st
si

ze
cl

as
s

of
th

e
co

m
m

un
ity

sp
ec

tr
um

2.
51

x
10

9

re
c m

u
lt

M
ul

tip
lie

rf
or

co
ns

ta
nt

re
cr

ui
tm

en
t

1

F
Fi

sh
in

g
ef

fo
rt

0

31



Ta
bl

e
2.

2:
N

om
in

al
pa

ra
m

et
er

va
lu

es
of

th
e

tra
it-

ba
se

d
ve

rs
io

n
of

th
e

m
iz

er
m

od
el

.
A

ll
no

m
in

al
va

lu
es

w
er

e
ta

ke
n

fro
m

th
e

m
iz

er
R

pa
ck

ag
e

(s
ee

S
co

tt
et

al
.(

20
18

))
.

P
ar

am
et

er
D

es
cr

ip
tio

n
N

om
in

al
va

lu
e

w
m
in

M
in

im
um

si
ze

of
th

e
co

m
m

un
ity

sp
ec

tr
um

0.
00

1
w
m
a
x

M
ax

im
um

si
ze

of
th

e
co

m
m

un
ity

sp
ec

tr
um

1.
1

x
10

5

w
∞

m
in

A
sy

m
pt

ot
ic

si
ze

of
th

e
sm

al
le

st
sp

ec
ie

s
in

th
e

co
m

m
un

ity
sp

ec
tr

um
10

w
∞

m
a
x

A
sy

m
pt

ot
ic

si
ze

of
th

e
la

rg
es

ts
pe

ci
es

in
th

e
co

m
m

un
ity

sp
ec

tr
um

1
x

10
5

η
Fa

ct
or

to
ca

lc
ul

at
e
w
m
a
t

fro
m
w
∞

0.
25

w
p
p
m

in
S

m
al

le
st

si
ze

of
th

e
ba

ck
gr

ou
nd

re
so

ur
ce

1
x

10
-1

0

w
p
p
c
u
t

M
ax

im
um

si
ze

of
th

e
ba

ck
gr

ou
nd

re
so

ur
ce

1
β

P
re

fe
rr

ed
pr

ed
at

or
-p

re
y

m
as

s
ra

tio
10

0
σ

W
id

th
of

th
e

pr
ey

si
ze

pr
ef

er
en

ce
1.

3
α

A
ss

im
ila

tio
n

ef
fic

ie
nc

y
0.

6
h

M
ax

im
um

fo
od

in
ta

ke
ra

te
30

γ
Vo

lu
m

et
ric

se
ar

ch
ra

te
60

0.
44

z 0
p
r
e

C
oe

ffi
ci

en
to

ft
he

ba
ck

gr
ou

nd
m

or
ta

lit
y

of
th

e
co

m
m

un
ity

sp
ec

tr
um

0.
6

n
S

ca
lin

g
of

th
e

fo
od

in
ta

ke
2/

3
p

S
ca

lin
g

of
th

e
st

an
da

rd
m

et
ab

ol
is

m
0.

75
q

S
ea

rc
h

vo
lu

m
e

ex
po

ne
nt

0.
9

λ
E

xp
on

en
to

ft
he

ba
ck

gr
ou

nd
re

so
ur

ce
2.

23
κ

C
ar

ry
in

g
ca

pa
ci

ty
of

th
e

ba
ck

gr
ou

nd
re

so
ur

ce
0.

00
5

f 0
A

ve
ra

ge
fe

ed
in

g
le

ve
lo

fi
nd

iv
id

ua
ls

fe
ed

in
g

m
ai

nl
y

on
th

e
ba

ck
gr

ou
nd

re
so

ur
ce

0.
5

r p
p

G
ro

w
th

ra
te

of
pr

im
ar

y
pr

od
uc

tiv
ity

4
k
s

C
oe

ffi
ci

en
to

fs
ta

nd
ar

d
m

et
ab

ol
is

m
4

K
E
S

S
iz

e
at

th
e

ed
ge

of
th

e
kn

ife
-s

el
ec

tiv
ity

fu
nc

tio
n

10
00

k
0

M
ul

tip
lie

rf
or

m
ax

im
um

re
cr

ui
tm

en
t

50
F

Fi
sh

in
g

ef
fo

rt
0

32



Ta
bl

e
2.

3:
N

om
in

al
va

lu
es

of
th

e
sp

ec
ie

s-
in

de
pe

nd
en

tp
ar

am
et

er
s

of
th

e
m

ul
tis

pe
ci

es
m

iz
er

m
od

el
.

A
ll

no
m

in
al

va
lu

es
w

er
e

ta
ke

n
fro

m
B

la
nc

ha
rd

et
al

.(
20

14
)

ex
cl

ud
in

g
κ

,
w

hi
ch

w
as

ta
ke

n
fro

m
S

pe
nc

e
et

al
.(

20
16

).

P
ar

am
et

er
D

es
cr

ip
tio

n
N

om
in

al
va

lu
e

w
m
a
x

M
ax

im
um

si
ze

of
th

e
co

m
m

un
ity

sp
ec

tr
um

4.
40

x
10

4

w
p
p
c
u
t

M
ax

im
um

si
ze

of
th

e
ba

ck
gr

ou
nd

re
so

ur
ce

10

z 0
p
r
e

C
oe

ffi
ci

en
to

ft
he

ba
ck

gr
ou

nd
m

or
ta

lit
y

of
th

e
co

m
m

un
ity

sp
ec

tr
um

0.
6

z 0
e
x
p

E
xp

on
en

to
ft

he
ba

ck
gr

ou
nd

m
or

ta
lit

y
of

th
e

co
m

m
un

ity
sp

ec
tr

um
-1

/3

n
S

ca
lin

g
of

th
e

fo
od

in
ta

ke
2/

3

p
S

ca
lin

g
of

th
e

st
an

da
rd

m
et

ab
ol

is
m

0.
7

q
S

ea
rc

h
vo

lu
m

e
ex

po
ne

nt
0.

8

λ
E

xp
on

en
to

ft
he

ba
ck

gr
ou

nd
re

so
ur

ce
2.

13

κ
C

ar
ry

in
g

ca
pa

ci
ty

of
th

e
ba

ck
gr

ou
nd

re
so

ur
ce

8.
45

x
10

10

sl
op
e 0

S
ta

rt
in

g
sl

op
e

of
th

e
co

m
m

un
ity

sp
ec

tr
um

-1
.1

7

f 0
A

ve
ra

ge
fe

ed
in

g
le

ve
lo

fi
nd

iv
id

ua
ls

fe
ed

in
g

on
th

e
ba

ck
gr

ou
nd

re
so

ur
ce

0.
6

r p
p

G
ro

w
th

ra
te

of
pr

im
ar

y
pr

od
uc

tiv
ity

10

33



Ta
bl

e
2.

4a
:

N
om

in
al

va
lu

es
of

th
e

sp
ec

ie
s-

sp
ec

ifi
c

pa
ra

m
et

er
s

of
th

e
m

ul
tis

pe
ci

es
m

iz
er

m
od

el
:

sp
ra

t,
sa

nd
ee

l,
N

or
w

ay
po

ut
,a

nd
he

rr
in

g.
A

ll
no

m
in

al
va

lu
es

w
er

e
ta

ke
n

fro
m

B
la

nc
ha

rd
et

al
.(

20
14

)e
xc

lu
di

ng
R

m
a
x
,w

hi
ch

w
as

ta
ke

n
fro

m
S

pe
nc

e
et

al
.(

20
16

).

P
ar

am
et

er
D

es
cr

ip
tio

n
S

pr
at

S
an

de
el

N
or

w
ay

po
ut

H
er

ri
ng

a
Le

ng
th

-w
ei

gh
tc

on
ve

rt
er

0.
00

7
0.

00
1

0.
00

9
0.

00
2

b
Le

ng
th

-w
ei

gh
tc

on
ve

rt
er

3.
01

3.
32

2.
94

3.
43

W
∞

A
sy

m
pt

ot
ic

w
ei

gh
t

32
.9

35
.6

10
0.

4
33

3.
9

W
m
a
t

W
ei

gh
ta

tm
at

ur
ity

12
.5

5
3.

56
22

.7
2

98
.5

2

W
m
in

Th
e

si
ze

cl
as

s
of

re
cr

ui
ts

0.
00

1
0.

00
1

0.
00

1
0.

00
1

β
P

re
fe

rr
ed

pr
ed

at
or

pr
ey

m
as

s-
ra

tio
51

07
6

39
88

49
21

.5
28

05
40

σ
W

id
th

of
th

e
pr

ey
si

ze
pr

ef
er

en
ce

0.
8

1.
9

1.
5

3.
2

L
2
5

Le
ng

th
at

w
hi

ch
25

%
of

th
e

st
oc

k
is

se
le

ct
ed

by
fis

hi
ng

ge
ar

7.
64

9.
83

8.
69

10
.1

3

L
5
0

Le
ng

th
at

w
hi

ch
50

%
of

th
e

st
oc

k
is

se
le

ct
ed

by
fis

hi
ng

ge
ar

8.
14

11
.8

2
12

.2
4

20
.7

9

α
A

ss
im

ila
tio

n
ef

fic
ie

nc
y

0.
6

0.
6

0.
6

0.
6

h
M

ax
im

um
fo

od
in

ta
ke

ra
te

18
.1

8
27

.4
1

32
.8

8
35

.0
3

k
s

C
oe

ffi
ci

en
to

fs
ta

nd
ar

d
m

et
ab

ol
is

m
3.

64
5.

48
6.

58
7.

01

k
A

ct
iv

ity
co

ef
fic

ie
nt

0
0

0
0

γ
Vo

lu
m

et
ric

se
ar

ch
ra

te
3.

79
x

10
-1

1
1.

83
x

10
-1

1
1.

03
x

10
-1

1
1.

46
x

10
-1

1

R
m
a
x

M
ax

im
um

re
cr

ui
tm

en
t

4.
22

x
10

11
2.

03
x

10
11

2.
63

x
10

13
3.

55
x

10
11

N
0

In
iti

al
po

pu
la

tio
n

si
ze

6.
11

x
10

8
5.

74
x

10
8

2.
50

x
10

8
9.

57
x

10
7

eR
ep
ro

R
ep

ro
du

ct
iv

e
ef

fic
ie

nc
y

1
1

1
1

34



Ta
bl

e
2.

4b
:

N
om

in
al

va
lu

es
of

th
e

sp
ec

ie
s-

sp
ec

ifi
c

pa
ra

m
et

er
s

of
th

e
m

ul
tis

pe
ci

es
m

iz
er

m
od

el
:

da
b,

w
hi

tin
g,

co
m

m
on

so
le

,a
nd

gr
ey

gu
rn

ar
d.

A
ll

no
m

in
al

va
lu

es
w

er
e

ta
ke

n
fro

m
B

la
nc

ha
rd

et
al

.(
20

14
)e

xc
lu

di
ng

R
m

a
x
,w

hi
ch

w
as

ta
ke

n
fro

m
S

pe
nc

e
et

al
.(

20
16

).

P
ar

am
et

er
D

es
cr

ip
tio

n
D

ab
W

hi
tin

g
S

ol
e

G
re

y
gu

rn
ar

d

a
Le

ng
th

-w
ei

gh
tc

on
ve

rt
er

0.
01

0.
00

6
0.

00
8

0.
00

4

b
Le

ng
th

-w
ei

gh
tc

on
ve

rt
er

2.
99

3.
08

3.
02

3.
20

W
∞

A
sy

m
pt

ot
ic

w
ei

gh
t

32
4.

4
11

92
.3

86
6.

1
66

8.
1

W
m
a
t

W
ei

gh
ta

tm
at

ur
ity

21
.2

0
75

.1
4

78
.1

2
39

.1
1

W
m
in

Th
e

si
ze

cl
as

s
of

re
cr

ui
ts

0.
00

1
0.

00
1

0.
00

1
0.

00
1

β
P

re
fe

rr
ed

pr
ed

at
or

pr
ey

m
as

s-
ra

tio
19

1
22

38
1

28
3

σ
W

id
th

of
th

e
pr

ey
si

ze
pr

ef
er

en
ce

1.
9

1.
5

1.
9

1.
8

L
2
5

Le
ng

th
at

w
hi

ch
25

%
of

th
e

st
oc

k
is

se
le

ct
ed

by
fis

hi
ng

ge
ar

11
.5

2
19

.8
1

16
.4

0
19

.8
1

L
5
0

Le
ng

th
at

w
hi

ch
50

%
of

th
e

st
oc

k
is

se
le

ct
ed

by
fis

hi
ng

ge
ar

17
.0

4
29

.0
2

25
.8

0
29

.0
2

α
A

ss
im

ila
tio

n
ef

fic
ie

nc
y

0.
6

0.
6

0.
6

0.
6

h
M

ax
im

um
fo

od
in

ta
ke

ra
te

30
.6

9
28

.5
4

22
.5

6
19

.3
8

k
s

C
oe

ffi
ci

en
to

fs
ta

nd
ar

d
m

et
ab

ol
is

m
6.

14
5.

71
4.

51
3.

88

k
A

ct
iv

ity
co

ef
fic

ie
nt

0
0

0
0

γ
Vo

lu
m

et
ric

se
ar

ch
ra

te
5.

68
x

10
-1

1
8.

92
x

10
-1

1
3.

81
x

10
-1

1
3.

59
x

10
-1

1

R
m
a
x

M
ax

im
um

re
cr

ui
tm

en
t

1.
14

x
10

10
2.

31
x

10
11

9.
63

x
10

9
1.

17
x

10
11

N
0

In
iti

al
po

pu
la

tio
n

si
ze

9.
80

x
10

7
3.

46
x

10
7

4.
47

x
10

7
5.

50
x

10
7

eR
ep
ro

R
ep

ro
du

ct
iv

e
ef

fic
ie

nc
y

1
1

1
1

35



Ta
bl

e
2.

4c
:

N
om

in
al

va
lu

es
of

th
e

sp
ec

ie
s-

sp
ec

ifi
c

pa
ra

m
et

er
s

of
th

e
m

iz
er

m
od

el
:

E
ur

op
ea

n
pl

ai
ce

,
ha

dd
oc

k,
A

tla
nt

ic
co

d,
an

d
sa

ith
e.

A
ll

no
m

in
al

va
lu

es
w

er
e

ta
ke

n
fro

m
B

la
nc

ha
rd

et
al

.(
20

14
)e

xc
lu

di
ng

R
m

a
x
,w

hi
ch

w
as

ta
ke

n
fro

m
S

pe
nc

e
et

al
.(

20
16

).

P
ar

am
et

er
D

es
cr

ip
tio

n
P

la
ic

e
H

ad
do

ck
C

od
S

ai
th

e

a
Le

ng
th

-w
ei

gh
tc

on
ve

rt
er

0.
00

7
0.

00
5

0.
00

5
0.

00
7

b
Le

ng
th

-w
ei

gh
tc

on
ve

rt
er

3.
10

3.
16

3.
17

3.
08

W
∞

A
sy

m
pt

ot
ic

w
ei

gh
t

29
75

.9
34

84
.7

40
04

4.
3

16
85

6.
4

W
m
a
t

W
ei

gh
ta

tm
at

ur
ity

10
4.

66
16

4.
91

16
06

.0
0

10
76

.4
6

W
m
in

Th
e

si
ze

cl
as

s
of

re
cr

ui
ts

0.
00

1
0.

00
1

0.
00

1
0.

00
1

β
P

re
fe

rr
ed

pr
ed

at
or

pr
ey

m
as

s-
ra

tio
11

3
55

8
66

40

σ
W

id
th

of
th

e
pr

ey
si

ze
pr

ef
er

en
ce

1.
6

2.
1

1.
3

1.
1

L
2
5

Le
ng

th
at

w
hi

ch
25

%
of

th
e

st
oc

k
is

se
le

ct
ed

by
fis

hi
ng

ge
ar

11
.5

2
19

.0
9

13
.2

0
35

.3
2

L
5
0

Le
ng

th
at

w
hi

ch
50

%
of

th
e

st
oc

k
is

se
le

ct
ed

by
fis

hi
ng

ge
ar

17
.0

4
24

.3
5

22
.8

7
43

.5
5

α
A

ss
im

ila
tio

n
ef

fic
ie

nc
y

0.
6

0.
6

0.
6

0.
6

h
M

ax
im

um
fo

od
in

ta
ke

ra
te

14
.6

2
34

.2
4

61
.5

8
37

.3
9

k
s

C
oe

ffi
ci

en
to

fs
ta

nd
ar

d
m

et
ab

ol
is

m
2.

92
6.

85
12

.3
2

7.
48

k
A

ct
iv

ity
co

ef
fic

ie
nt

0
0

0
0

γ
Vo

lu
m

et
ric

se
ar

ch
ra

te
3.

45
x

10
-1

1
4.

97
x

10
-1

1
1.

92
x

10
-1

0
1.

47
x

10
-1

0

R
m
a
x

M
ax

im
um

re
cr

ui
tm

en
t

2.
39

x
10

13
2.

38
x

10
12

8.
36

x
10

9
5.

63
x

10
11

N
0

In
iti

al
po

pu
la

tio
n

si
ze

1.
66

x
10

7
1.

47
x

10
7

2.
08

x
10

6
4.

16
x

10
6

eR
ep
ro

R
ep

ro
du

ct
iv

e
ef

fic
ie

nc
y

1
1

1
1

36



Ta
bl

e
2.

5:
N

om
in

al
va

lu
es

of
th

e
in

te
ra

ct
io

n
m

at
rix

θ
of

th
e

m
ul

tis
pe

ci
es

m
iz

er
m

od
el

(ta
ke

n
fro

m
B

la
nc

ha
rd

et
al

.
(2

01
4)

).
Th

is
re

pr
es

en
ts

th
e

sp
at

ia
lo

ve
rla

p
w

ith
in

an
d

be
tw

ee
n

sp
ec

ie
s

as
a

fra
ct

io
n. S

pr
at

S
an

de
el

N
or

w
ay

Po
ut

H
er

rin
g

D
ab

W
hi

tin
g

S
ol

e
G

re
y

G
ur

na
rd

P
la

ic
e

H
ad

do
ck

C
od

S
ai

th
e

S
pr

at
0.

72
9

0.
03

4
0.

06
4

0.
27

4
0.

36
2

0.
26

5
0.

29
8

0.
17

5
0.

37
1

0.
08

1
0.

33
8

0.
01

7

S
an

de
el

0.
03

4
0.

68
1

0.
04

9
0.

05
9

0.
09

7
0.

07
5

0.
06

0
0.

06
0

0.
07

8
0.

09
4

0.
09

9
0.

01
6

N
or

w
ay

Po
ut

0.
06

4
0.

04
9

0.
79

7
0.

29
8

0.
09

1
0.

30
0

0.
01

7
0.

30
6

0.
07

9
0.

54
9

0.
32

5
0.

29
5

H
er

rin
g

0.
27

4
0.

05
9

0.
29

8
0.

65
9

0.
29

0
0.

37
4

0.
20

0
0.

27
5

0.
27

8
0.

34
8

0.
40

5
0.

12
6

D
ab

0.
36

2
0.

09
7

0.
09

1
0.

29
0

0.
80

8
0.

33
4

0.
38

0
0.

22
0

0.
56

5
0.

13
2

0.
41

6
0.

03
1

W
hi

tin
g

0.
26

5
0.

07
5

0.
30

0
0.

37
4

0.
33

4
0.

70
9

0.
19

2
0.

37
1

0.
29

5
0.

39
2

0.
44

1
0.

10
2

S
ol

e
0.

29
8

0.
06

0
0.

01
7

0.
20

0
0.

38
0

0.
19

2
0.

71
6

0.
10

7
0.

39
1

0.
03

4
0.

25
8

0.
01

2

G
re

y
G

ur
na

rd
0.

17
5

0.
06

0
0.

30
6

0.
27

5
0.

22
0

0.
37

1
0.

10
7

0.
88

0
0.

16
5

0.
35

7
0.

35
2

0.
12

4

P
la

ic
e

0.
37

1
0.

07
8

0.
07

9
0.

27
8

0.
56

5
0.

29
5

0.
39

1
0.

16
5

0.
71

9
0.

11
2

0.
35

0
0.

03
3

H
ad

do
ck

0.
08

1
0.

09
4

0.
54

9
0.

34
8

0.
13

2
0.

39
2

0.
03

4
0.

35
7

0.
11

2
0.

85
8

0.
39

6
0.

26
2

C
od

0.
33

8
0.

09
9

0.
32

5
0.

40
5

0.
41

6
0.

44
1

0.
25

8
0.

35
2

0.
35

0
0.

39
6

0.
78

7
0.

20
9

S
ai

th
e

0.
01

7
0.

01
6

0.
29

5
0.

12
6

0.
03

1
0.

10
2

0.
01

2
0.

12
4

0.
03

3
0.

26
2

0.
20

9
0.

66
4

37



Chapter 3

Global sensitivity analysis of the mizer

marine ecosystem model

3.1 Abstract

Models often include many highly uncertain parameters, some of which may have a large im-

pact on the model projections. Ignoring the sensitivity of the model projections to uncertain

parameter values risks suboptimal, ineffective, or potentially damaging management decisions

if the model is used to support policy. Despite this, there are few examples of a sensitivity anal-

ysis being applied to a complex model, particularly in marine ecosystem modelling. We aim

to fill this research gap by conducting a global sensitivity analysis of a widely-used size spec-

trum model, known as mizer. We apply both Sobol’ variance- and derivative-based methods of

sensitivity analysis to the trait-based mizer model, which includes 24 uncertain parameters, to

allow for a direct comparison between the sensitivity indices given by each of these methods.

We also apply a derivative-based sensitivity analysis to the North Sea multispecies version of

mizer, which includes over 300 uncertain parameters. The sensitivity of multiple model out-

puts, such as community biomass and the Large Fish Indicator (LFI), are considered. We use

the results of the sensitivity analyses to discuss: (1) the relationship between the variance-

and derivative-based sensitivity indices; (2) areas in which to focus future research to reduce

the uncertainty in the parameters associated with the greatest sensitivity indices; and (3) the

convergence of the variance- and derivative-based sensitivity indices. Overall, we hope that

this research will enable us to produce more accurate model projections and ensure multi-

species size spectrum models such as mizer are well placed to support ecosystem-based

fisheries management in the future.
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3.2 Introduction

Marine ecosystem models vary in complexity from single-species models with relatively few

parameters to multispecies models and whole ecosystem models that may contain hundreds

or thousands of parameters (Plaganyi, 2007). Even marine ecosystem models that are con-

sidered to be of intermediate complexity may include many hundreds of parameters. For

example, the mizer model (described in detail in Chapter 2) is a marine ecosystem model

of intermediate complexity that is used to simulate the size dynamics of a fish community

(Spence et al., 2016). Size-based models such as mizer tend to have relatively few parame-

ters when compared with other types of marine ecosystem models as species are often not

resolved in detail (Scott et al., 2014). In particular, the community and trait-based versions of

mizer both include fewer than 25 parameters. However, species-specific information such as

life history data and diet preferences can also be incorporated into the multispecies version

of the mizer model (Blanchard et al., 2014). The number of parameters in the multispecies

model therefore largely depends on the number of species in the modelled community. Previ-

ous applications of mizer have primarily focused on 12 common and commercially important

fish species found in the North Sea (see Blanchard et al. (2014), Datta and Blanchard (2016)

and Spence et al. (2016) for example), which resulted in more than 300 parameters being

included in the model.

Although many of these parameters can be estimated using empirical data, it is often difficult

or impossible to identify the value that some of the parameters should take with a high degree

of certainty (Ward, 2009). Because of this, models such as mizer often include many highly

uncertain parameters, some of which may have a large impact on the model outputs. Ignoring

the sensitivity of the model projections to these uncertain parameter values risks suboptimal,

ineffective, or potentially damaging management decisions if the model is used to support

policy (Uusitalo et al., 2015). Fortunately, various methods of sensitivity analysis may be

used to identify which of the parameters a model is most sensitive to, thereby enabling us to

identify research areas in which to focus future data collection to reduce the uncertainty in

the model outputs and thus help to prevent misguided management decisions (Saltelli et al.,

2008).

Although the importance of conducting a sensitivity analysis is widely recognised, the process

is often deemed to be too time-consuming and is therefore frequently neglected in modelling

frameworks (Arhonditsis et al., 2006; Roeder and Hill, 2009). A sensitivity analysis tends to be

particularly computationally expensive due to the large number of required model evaluations,

as well as potentially long model run times. The number of model evaluations can vary greatly

depending on the method of sensitivity analysis used, the intended purpose of the sensitivity
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indices, and the number of uncertain model parameters. For example, ’local’ sensitivity anal-

ysis tends to require fewer model evaluations than ’global’ sensitivity analysis (Pianosi et al.,

2016). Local methods of sensitivity analysis quantify the sensitivity of the model outputs to

small variations in parameters around a nominal value, whilst global methods estimate sen-

sitivity indices by varying parameters across the entire range of possible values (Iooss and

Lemaître, 2014). Local methods typically employ a One-At-a-Time (OAT) approach in which

one parameter is varied whilst all other parameters are fixed at their nominal value (Pianosi

et al., 2016). Conversely, global methods tend to estimate the sensitivity of the model outputs

by varying all parameters at the same time (referred to as the All-At-a-Time (AAT) approach),

although they may also use the OAT approach (Pianosi et al., 2016). Implementing a global,

AAT approach therefore requires a much larger number of model evaluations than a local,

OAT approach as the former requires more extensive sampling of the parameter space (Pi-

anosi et al., 2016).

The Sobol’ variance-based method is a global AAT approach that is often seen as the ’gold

standard’ of sensitivity analysis (Donders et al., 2015). This method allows us to estimate

total-effect indices, which result from the decomposition of the model output variance into

contributions associated with individual parameters, as well as their interactions with every

other parameter in the model (Chen et al., 2004). However, the number of required model

evaluations may not be computationally feasible with large numbers (e.g. >10) of model pa-

rameters (Iooss et al., 2012). Instead, Derivative-based Global Sensitivity Analysis (DGSA)

may be used to estimate the upper bound of the total-effect sensitivity indices by integrating

the squared partial derivatives of the model outputs (Sobol’ and Kucherenko, 2009, 2010;

Iooss et al., 2012). Using DGSA instead of the Sobol’ variance-based method has been

shown to reduce the computational time required to estimate the total-effect sensitivity indices

by many orders of magnitude (Kucherenko et al., 2009).

The computational time required to undertake a sensitivity analysis also depends on the in-

tended use of the sensitivity indices. For example, a sensitivity analysis may be used solely

to differentiate between parameters with negligible and non-negligible impacts on the model

outputs, a process known as screening, or to rank the parameters according to their influ-

ence on the model outputs (Saltelli et al., 2008). The number of model evaluations required

for the parameter rankings to converge (i.e. remain stable with increasing numbers of model

evaluations) is usually much higher than for parameter screenings (Sarrazin et al., 2016).

However, it is difficult to identify the exact number of model evaluations required for either

ranking or screening the parameters prior to conducting the sensitivity analysis itself (Pianosi

et al., 2016). Instead, it is necessary to assess whether the screening, ranking, and/or the

exact value of the sensitivity indices has reached convergence once the sensitivity analysis is
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complete. Methods to assess convergence include the estimation of 95% confidence intervals

via bootstrapping of the sensitivity indices and rank correlation amongst bootstrap resamples

(Sarrazin et al., 2016).

Despite recent advances in computing power making it more feasible to run large numbers

of model evaluations, the concurrent increase in the number of parameters and/or the run

times of models such as mizer has resulted in relatively few examples of an extensive global

sensitivity analysis being applied to marine ecosystem models (Arhonditsis et al., 2006; Morris

et al., 2014; Hines et al., 2018). One such example includes the application of two different

methods of sensitivity analysis to a marine ecosystem model known as StrathE2E; The Morris

method (Morris, 1991), a popular OAT approach often used for parameter screening, was first

used to identify parameters with a non-negligible impact on the model outputs (Morris et al.,

2014). The Sobol’ variance-based method was then used to rank the remaining parameters

in order of sensitivity (Morris et al., 2014). However, the analysis required 540,000 model

evaluations to reach convergence (Morris et al., 2014), a potentially computationally infeasible

number for larger models. Other examples apply only OAT approaches (e.g. Niiranen et al.

(2012) and Livingston (2013)), do not run each model evaluation to equilibrium (e.g. Morris

et al. (2014) and Zhang et al. (2015)), and/or quantify the sensitivity of the model outputs to

groups of parameters (e.g. Zhang et al. (2015)), thereby making it difficult to attribute model

output sensitivity to specific parameters. Additionally, there are few examples in the literature

of a direct comparison between the performance of Sobol’ variance- and derivative-based

methods of sensitivity analysis when applied to complex models (see Iooss et al. (2012) for

example), and none that we are aware of in marine ecosystem modelling. Please note that

although numerous sensitivity or uncertainty analyses have been applied to models of marine

ecosystem flow networks (see Borrett et al. (2016); Hines et al. (2018); Bentley et al. (2019a)

for example), the outputs of these models and the methods used to quantify sensitivity are

typically not directly comparable with those that are of interest here and they are therefore not

discussed in detail in this chapter.

In this study we aim to fill these research gaps by conducting a global sensitivity analysis

of the trait-based and North Sea multispecies versions of the mizer model, considering the

sensitivity of multiple model outputs to individual parameters based on equilibrated model

evaluations. Both variance- and derivative-based methods will be applied to the trait-based

version of the model to allow for a direct comparison between these two methods of sensi-

tivity analysis. A derivative-based sensitivity analysis will also be applied to the North Sea

multispecies version of the model. Not only will this research help us to better understand

how parameter uncertainties impact the outputs of a size-based marine ecosystem model,

it will also highlight where further research should be focused to reduce these uncertainties.
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Narrowing down the range of possible values a parameter may realistically take will enable us

to produce more accurate model projections, thus helping to ensure the model is well placed

to support ecosystem-based fisheries management in the UK.

3.3 Methods

We applied both variance- and derivative-based methods to evaluate the sensitivity of the

mizer model to small variations in the values of the model parameters. The two different

methods of sensitivity analysis are formally introduced in Section 3.3.1, whilst their application

to the mizer model is described in Section 3.3.2. Finally, the methods used to analyse the

convergence of the sensitivity indices are described in Section 3.3.3.

3.3.1 Variance- and derivative-based sensitivity analysis

In this section, the Sobol’ variance- and derivative-based methods of sensitivity analysis are

formally introduced using the definitions and notation of Touzani and Busby (2014).

Let Y = f(X) represent the mizer model, where Y represents the model outputs (see

Chapter 2, Section 2.6 for further details of the model outputs), X = (X1, . . . , Xd) is a d-

dimensional input vector that represents the uncertain parameters in the model (which are

assumed to be independent and uniformly distributed over a unit hypercube i.e. X ∈ [0, 1]d),

and f : [0, 1]d → R is a function that maps the model inputs to the model outputs. Please note

that although a uniform distribution is potentially unrealistic, we chose to use this distribution

due to the lack of available data with which to accurately determine the distributions of all of the

parameters in the mizer model. A uniform distribution is also thought to provide an unbiased,

conservative estimate of the plausible range of model outputs (Hines et al., 2018).

Sobol’ variance-based sensitivity analysis

The Sobol’ method of sensitivity analysis, also referred to as the variance-based method,

involves decomposing the variance of the model outputs Y into contributions (or summands)

associated with each uncertain parameter, as well as their interactions with all of the other

parameters in the model (Chen et al., 2004):

f(X) = f0 +

d∑
i=1

fi(Xi) +
∑
i<j

fij(Xi, Xj) + . . .+ f1,...,d(X1, . . . , Xd) (3.1)
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where f0 is a constant, fi represents the ’main effect’ of a given uncertain parameter, and fij

represents the ’interaction effect’ of two uncertain parameters.

Assuming each term in Equation 3.1 is square-integrable with zero average, all of the sum-

mands are mutually orthogonal and the decomposition of variance of f(X) is unique (Sobol,

1993; Nossent et al., 2011). All terms in Equation 3.1 may therefore be defined as:

f0 = E(Y ) (3.2)

fi(Xi) = E(Y |Xi)− f0 (3.3)

fij(Xi, Xj) = E(Y |Xi, Xj)− fi − fj − f0 (3.4)

where E(Y ) represents the expectation of the output Y and E(Y |Xi) represents the condi-

tional expectation of the output Y given the uncertain parameter Xi. Similar formulae can

also be derived for higher-order interactions.

If we also assume that f(X) is square integrable, the total variance V of the model outputs

Y can be defined as:

V = E(Y 2)− f20 =
d∑
i=1

Vi +
∑

1≤i<j≤d
Vij + . . .+ V1,2,...,d (3.5)

where Vi = V [E(Y |Xi)] is the variance of the conditional expectation that measures the main

effect of the uncertain parameter Xi on the model output Y and Vij = V [E(Y |Xi, Xj)]−Vi−

Vj is the variance of the conditional expectation that measures the joint effect of parametersXi

and Xj on the model output Y minus their first order effects. Decomposing the variance of the

model outputs in this way enables the quantification of the Sobol’ variance-based sensitivity

indices Si1,...,is and total-effect indices STi :

Si1,...,is =
Vi1,...,is
V

(3.6)

STi = Si +
∑
j 6=i

Sij + . . . (3.7)

where 1 ≤ i1 < . . . < is ≤ d and s = 1, . . . , d. Si = Vi/V is referred to as the first-order

sensitivity index, Sij = Vij/V for i 6= j is referred to as the second-order sensitivity index and

so on for higher-order effects. The total-effect index STi measures the overall contribution of
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a given uncertain parameter to the total model output variance. Whilst the sensitivity indices

defined in Equation 3.6 sum to one, the sum of all of the total-effect indices will be greater than

one due to the double counting of interactions. Importantly, the total-effect indices may be

estimated without quantifying all higher-order effects and this measure can therefore be used

to identify parameters with a non-negligible impact on the model outputs. Often, a threshold

of 0.01 is used to determine which parameters have a non-negligible impact on the model

outputs (Touzani and Busby, 2014).

Derivative-based sensitivity analysis

A relatively new method of global sensitivity analysis, known as Derivative-based Global Sen-

sitivity Analysis (DGSA), may be used to estimate the upper bound of the Sobol’ total-effect

indices STi using far fewer model evaluations than is required by the Sobol’ variance-based

method. The derivative-based method involves integrating the squared partial derivatives of

the model output Y (Sobol’ and Kucherenko, 2009, 2010; Iooss et al., 2012).

If we assume that ∂f(X)/∂xi for i = 1, . . . d are square-integrable, the derivative-based

sensitivity indices are defined as:

vi = E

[(
∂f(X)

∂xi

)2
]

=

∫ (
∂f(X)

∂xi

)
dx (3.8)

Monte Carlo techniques or Latin Hypercube Sampling can be used to evaluate the integrals

in Equation 3.8 and provide an empirical estimation of the derivative-based sensitivity indices:

v̂i =
1

n

n∑
j=1

(
∂f(Xj)

∂xi

)2

(3.9)

Link between variance- and derivative-based sensitivity indices

Assuming that the uncertain parameter Xi follows a uniform distribution between 0 and 1 for

i = 1, . . . , d, the link between the variance-based total-effect indices STi (referred to simply

as the variance-based sensitivity indices from here on) and the derivative-based sensitivity

indices vi is shown by Sobol’ and Kucherenko (2009) to be:

STi ≤
v∗i
V

= Υi (3.10)
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where v∗i = vi/π
2 is a version of vi that is scaled to be directly comparable with the variances

used to calculate the variance-based sensitivity indices.

However, it is important to note that if f(X) is highly non-linear, there may be differences

in the rankings of the most important parameters when using Υi instead of STi . A non-

linear function may also result in Υi exceeding one despite STi being bounded by zero and

one (Lamboni et al., 2013). In this situation, the upper bound Υi is deemed to be ’useless’

(Lamboni et al., 2013). In cases where Υi does not exceed one, Υi may still be much greater

than STi when applying the derivative-based method to a complex model, making it difficult

to determine which uncertain parameters have a non-negligible impact on the model outputs

(Lamboni et al., 2013). A possible solution to this issue is to use a normalised version of

Υi, although doing so breaks the link between the variance- and derivative-based sensitivity

indices (Touzani and Busby, 2014):

Υ∗i =
v∗i∑d
j=1 v

∗
j

(3.11)

3.3.2 Sensitivity analysis of the mizer model

To evaluate the sensitivity of the mizer model to small variations in the model parameters,

we applied both variance- and derivative-based methods of sensitivity analysis to the trait-

based mizer model. We also applied a derivative-based sensitivity analysis to the North Sea

multispecies mizer model. The variance-based method was not applied to the multispecies

model due to the large number of model evaluations required to estimate the sensitivity in-

dices.

In order to sample the parameter space of both versions of the mizer model, we assigned a

uniform distribution to each parameter with an upper and lower limit of ± 10% of their nominal

value (see Chapter 2, Tables 2.2 to 2.5 for a list of the parameters included in the sensitivity

analysis and their nominal values). If the nominal value of a parameter was set to one and it

could not be increased further, the upper and lower limits were set to 1 and 0.9 respectively.

Conversely, if the nominal value of a parameter was zero and it could not take a negative

value, the upper and lower limits were set to 0.1 and 0 respectively. Although the fishing effort

parameter F can be varied at each time step within the model, we chose to maintain effort

at a constant level for the duration of each model evaluation. In the trait-based model, the

upper and lower limits of F were set to 0.1 and 0 respectively. In the multispecies model, the

upper and lower limits of F were set to 1.5 and 0 respectively. A maximum fishing effort of

1.5 was chosen to reflect the mean maximum catch of each of the 12 modelled species (see
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Chapter 2, Section 2.4.3) in the North Sea between 1957 and 2011 (ices.dk; Blanchard et al.

2014).

It is important to note that the values of some of the parameters included in the sensitivity

analyses are typically calculated using other parameters in the mizer model. For example,

the volumetric search rate γ is estimated using the maximum food intake rate h, the preferred

predator-prey mass ratio β, the width of the prey size preference σ, and the carrying capacity

of the background resource κ etc. (see Chapter 2, Equation 2.8). However, each parameter

is treated as independent throughout the sensitivity analyses and therefore any relationships

between the parameters are ignored (as in Borrett et al. (2016) for example). We chose to

ignore these relationships so that the sensitivity indices reflect only the effects of the parameter

in question, not the cumulative effects of multiple parameters.

Sampling of the parameter space

A stratified sampling technique, known as Latin Hypercube Sampling (LHS) (McKay et al.,

1979), was used to generate the parameter sets required for both the variance- and derivative-

based methods of sensitivity analysis. LHS was used as it tends to provide a better repre-

sentation of the parameter space than random sampling, as random sampling may result in

a cluster of points within the parameter space (Agarwal et al., 2012; O’Sullivan and Perry,

2013). Such clustering means that certain regions of the parameter space may be under-

sampled. LHS prevents this clustering by dividing the parameter space into equiprobable

subregions and selecting samples such that each subregion is sampled once and only once

(Koziel and Leifsson, 2013) (see Figure 3.1 for a simple example of the differences between

random sampling and LHS).

For the variance-based sensitivity analysis, we used LHS to generate two matrices (matrix A

and matrix B) with dimensions N × d (where N is equal to the sample size and d represents

the number of uncertain parameters included in the sensitivity analysis). Matrices A and B

were then used to build d further matrices AB,i for i = 1, ..., d such that the ith column of AB,i

was equal to the ith column in matrix B, whilst all other columns originated from matrix A

(Merle, 2016). For the trait-based model, we set N equal to 1000 and d equal to 24, resulting

in a total of 26,000 parameter combinations (Table 3.1). The trait-based mizer model was

then evaluated for all parameter sets given in AB,i and the variance-based sensitivity indices

were quantified using the soboljansen() function from the sensitivity R package (Iooss

et al., 2018), which is based on the estimator given in Jansen et al. (1994), Jansen (1999) and
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Figure 3.1: An example of random sampling (left) and Latin Hypercube Sampling (LHS; right) of a two-
dimensional parameter space. The random sample exhibits clustering in one corner of the parameter
space, whilst the sample points selected using LHS are more evenly distributed. LHS avoids clustering
by dividing the parameter space into equiprobable subregions (represented as rows and columns) and
randomly selecting points within each subregion such that each subregion is sampled once and only
once (i.e. none of the sample points share a row or column with any other sample point). Please note
that in this example, the parameters are assumed to be uniformly distributed.

Saltelli (2002):

Si = 1−
1
2N

∑N
j=1(YBj − YABi,j

)2

V
(3.12)

STi =

1
2N

∑N
j=1(YAj − YABi,j

)2

V
(3.13)

For the derivative-based sensitivity analysis, we used LHS to generate a single matrix (matrix

C) with dimensionsN×d. The derivative-based sensitivity indices were estimated by compar-

ing the model outputs obtained by evaluating the model for all parameter sets given in matrix

C with those obtained by running the same parameter sets with a small increase (+0.0001 on

the scale of the Latin Hypercube) in one parameter value per model evaluation (see Equation

3.9). These methods were applied to both the trait-based and North Sea multispecies mizer

models with an N of 1000 and d equal to 24 and 306 respectively.

The total number of model evaluations required for both the variance- and derivative-based

methods of sensitivity analysis is shown in Table 3.1. Although we used a similar number of

model evaluations to conduct the variance- and derivative-based sensitivity analyses of the

trait-based mizer model, we expect the derivative-based sensitivity indices to converge much

more quickly than the variance-based sensitivity indices.
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Table 3.1: The number of model evaluations conducted for both the variance- and derivative-based
sensitivity analyses of the trait-based and multispecies mizer models.

Method Model version Number of model evaluations

Variance-based Trait-based 26,000

Variance-based Multispecies -

Derivative-based Trait-based 25,000

Derivative-based Multispecies 307,000

Model equilibrium

All model evaluations were run in mizer until the biomass of each species reached equilib-

rium. In many cases, the chosen parameter sets resulted in a slow decline in the biomass

of a given species to infinitesimal values. We therefore assumed a species had reached

equilibrium if the total biomass of the species dropped below the egg weight (w0; 0.001g).

The biomass of a species was also deemed to have reached equilibrium if it remained within

±10-6g of the mean throughout the final 400 time steps (100 model years). However, a large

number of model evaluations displayed both regular and irregular periodicity (often referred to

as quasiperiodicity; Huggett (2003)) in the biomass of a given species. In cases where there

was regular periodicity, we used the ADCF() function in the dCovTS R package (Pitsillou and

Fokianos, 2016) to identify the time lag L (or period length) (Zhou, 2012). The time series

was then assumed to have reached equilibrium if the ratio between the final L time steps and

the penultimate L time steps was within 1±10-6. Where there was irregular periodicity, we

assumed equilibrium had been reached when a linear regression of the biomass of a given

species indicated there was no significant change (p > 0.05) in biomass over time. The linear

regression was applied over the second half of the time series to avoid the initial ’spin-up’

period of the model and was used only when all other checks for equilibrium had failed.

Model outputs

The sensitivity of seven model outputs, including the community biomass, population size,

Spawning Stock Biomass (SSB), fisheries yield, the Large Fish Indicator (LFI), mean weight,

and the slope of the community spectrum (see Chapter 2, Section 2.6 for further details of

these model outputs), were considered in the sensitivity analyses of both the trait-based and

multispecies mizer models. These model outputs were selected as they have been widely

used in the literature as proposed indicators of ecosystem health in the North Sea (see Nichol-

son and Jennings (2004), Blanchard et al. (2014), Thorpe et al. (2015), and Marshall et al.
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(2016) for example). The sensitivity indices were estimated using the mean of each model

output in the final 400 time steps (100 model years) of each model evaluation.

3.3.3 Convergence of the sensitivity indices

It is important to ensure that the sensitivity indices have reached convergence as they may

change considerably depending on the number of model evaluations included in the analysis.

However, there are three different definitions of convergence depending on the intended pur-

poses of the sensitivity analysis, including convergence of the sensitivity indices themselves,

the parameter rankings, and the parameter screening (Sarrazin et al., 2016). The sensitiv-

ity indices are assumed to have reached convergence when their value remains stable with

increasing numbers of model evaluations (Sarrazin et al., 2016). This type of convergence

requires the greatest number of model evaluations and is difficult to achieve when applying a

sensitivity analysis to a complex model with large numbers of uncertain parameters (Sarrazin

et al., 2016). Conversely, parameter rankings and screenings tend to converge with far fewer

model evaluations, with screening usually requiring the least number of model evaluations

(Sarrazin et al., 2016). The parameter rankings are deemed to have reached convergence

when the order of the parameters from high to low sensitivity does not change with added

model evaluations (Sarrazin et al., 2016). Finally, the parameter screenings reach conver-

gence when the groups of parameters defined as having a negligible or non-negligible impact

on the model outputs do not change with increasing numbers of model evaluations (Sarrazin

et al., 2016).

Following the methods of Sarrazin et al. (2016), we assessed the convergence of both the

variance- and derivative-based sensitivity indices by estimating the maximum width of the

95% confidence intervals via bootstrapping:

Statindices = max
i=1,...,M

(Subi − Slbi ) (3.14)

where Subi and Slbi are the upper and lower bounds of the 95% confidence interval of the

sensitivity indices associated with the i-th parameter. If Statindices is close to zero, the sen-

sitivity indices are assumed to have reached convergence. An arbitrary threshold of 0.05 is

often used to indicate convergence, but this applies only when using normalised sensitivity in-

dices that vary between 0 and 1 (Sarrazin et al., 2016). The variance-based sensitivity indices

STi are bounded by 0 and 1, whilst the derivative-based sensitivity indices Υi are not. Be-

cause of this, we estimated the normalised derivative-based sensitivity indices Υ∗i as defined

in Equation 3.11. The normalised sensitivity indices were used throughout the assessment of

49



convergence to maintain consistency.

To identify whether the rankings of the parameters included in the sensitivity analyses had

reached convergence, we used an adjusted and weighted rank correlation coefficient using

pairs of bootstrap resamples (Sarrazin et al., 2016):

ρs,j,k =

M∑
i=1

|Rji −R
k
i |

max
j,k

(Sji , S
k
i )2∑M

i=1 max
j,k

(Sji , S
k
i )2

(3.15)

where Sji and Ski are the sensitivity indices and Rji and Rki are the ranks of the i-th parameter

as estimated using the j-th and k-th bootstrap resamples. The rank correlation coefficient is

weighted by the sensitivity indices in an attempt to ensure that changes in the rankings of the

parameters associated with very low sensitivities have less of an effect on ρs,j,k than changes

in the rankings of the parameters associated with the greatest sensitivities (Sarrazin et al.,

2016). The parameter rankings are assumed to have reached convergence when the value

of the 95% quantile of the rank correlation coefficients from all possible pairs of bootstrap

resamples falls below one (Sarrazin et al., 2016). This threshold indicates that the average

distance between the rankings of the parameters with the greatest sensitivities is less than

one rank position across all bootstrap resamples (Sarrazin et al., 2016).

Finally, the convergence of the parameter screenings depends on the chosen threshold be-

tween those parameters that are considered to have a negligible and non-negligible impact

on the model outputs. Although a threshold of 0.01 is often used to distinguish between pa-

rameters with a negligible or non-negligible impact, we used a threshold of 0.05 to identify

parameters associated with ’lower sensitivity’ as described in Sarrazin et al. (2016). The max-

imum width of the 95% confidence interval across all parameters deemed to have a negligible

impact on the model outputs was then used to assess the convergence of the parameter

screenings (Sarrazin et al., 2016):

Statscreening = max
xi∈X0

(Subi − Slbi ) (3.16)

where xi is the i-th parameter andX0 represents the set of parameters with a sensitivity index

of less than 0.05. The parameter screenings are assumed to have reached convergence when

Statscreening falls below 0.05 (Sarrazin et al., 2016). Please note that in all cases, we used

1000 bootstrap resamples to estimate Statindices, ρs,j,k, and Statscreening.
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3.4 Results

Both the variance- and derivative-based methods of sensitivity analysis were applied to the

trait-based mizer model (see Section 3.4.1). The derivative-based method was also applied

to the North Sea multispecies mizer model (see Section 3.4.2). The sensitivity of seven model

outputs, including community biomass, population size, Spawning Stock Biomass (SSB), fish-

eries yield, the Large Fish Indicator (LFI), mean weight, and the community slope, was deter-

mined for both versions of the model. These model outputs may be considered to be sensitive

to a given parameter if either the variance-based sensitivity index STi and/or the derivative-

based sensitivity index Υi is greater than 0.01. As previously mentioned, if Υi exceeds one it

is deemed to be ’useless’ as an upper bound of STi . However, Υi may still be used to better

understand the sensitivity of the model outputs to the parameters included in the analyses

(see below for further details).

3.4.1 Variance- and derivative-based sensitivity analysis of the trait-based mizer

model

In this section, we present the results of the variance- and derivative-based sensitivity analy-

ses of the trait-based mizer model. We first provide a direct comparison of the variance- and

derivative-based sensitivity indices (STi and Υi respectively), before describing the conver-

gence of STi and the normalised derivative-based sensitivity indices Υ∗i and comparing the

rankings of the parameters based on STi and Υ∗i .

Comparison of the variance- and derivative-based sensitivity indices

Both the variance- and derivative-based methods resulted in similar patterns of sensitivity

across all of the parameters and model outputs considered in the sensitivity analyses of the

trait-based mizer model. For example, both methods of sensitivity analysis showed that all

of the model outputs were sensitive (STi and Υi > 0.01) to the exponent of the background

resource λ, the scaling of food intake n, the scaling of standard metabolism p, and the search

volume exponent q (Figure 3.2 and 3.3). However, Υi was often much greater than STi for

many of these ’high sensitivity’ parameters (Figure 3.3), especially for the mean weight and

community slope indicators (Figure 3.2). The sensitivity of the community slope to λ differed

by the largest amount between the two methods of sensitivity analysis, with an STi of 0.52

and an equivalent Υi of 23468.6 (Figure 3.2).
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Figure 3.2: The variance- (STi ; left) and derivative-based (Υi; right) sensitivity indices of the model
outputs to the parameters of the trait-based mizer model. Green and yellow indicate that the sensitivity
index exceeds one and is therefore not useful as an upper bound of STi

, whilst purple indicates the
sensitivity index is less than 0.01 and the parameter is thus deemed to have a negligible impact on the
model output.

The derivative-based sensitivity indices suggest that the model outputs were insensitive (STi

and Υi < 0.01) to the conversion factor used to calculate weight at maturity from asymptotic

weight η, the average feeding level of individuals feeding mainly on the background resource

f0, body size at the edge of the knife-edge selectivity function KES, the asymptotic weight

of the largest species in the model w∞max , the maximum weight of the background resource

wppcut , and the coefficient of background mortality for the community spectrum z0pre (Figure

3.2 and 3.3). However, the variance-based sensitivity indices suggest the mean weight and

community slope indicators may in fact be sensitive to many of these parameters, particularly

wppcut (Figure 3.2). Nevertheless, we must be cautious when interpreting the variance-based

sensitivity indices for mean weight as STi exceeds one for six of the model parameters, despite

the index being bounded by 0 and 1 (Figure 3.2). These results suggest the sample size

may not have been large enough for the variance-based sensitivity indices associated with
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Figure 3.3: The log-transformed mean sensitivity (± standard error) of the trait-based mizer model
to the parameters included in the sensitivity analysis. The black points represent the variance-based
sensitivity indices STi , whilst the teal points represent the derivative-based sensitivity indices Υi. The
black line represents the threshold between those parameters with a negligible and non-negligible
impact on the model outputs.

the mean weight indicator to converge (see the next section for further details). The STi

representing the influence of λ on SSB also exceeded one, whilst all other parameters and

model outputs were unaffected by this issue (Figure 3.2).

The derivative-based sensitivity indices Υi associated with the mean weight and community

slope model outputs exceeded one for many of the parameters (Figure 3.2), indicating the

indices would not be useful as an upper bound of STi . However, a linear regression of the

log-transformed sensitivities showed that there was a significant positive relationship between

the variance- and derivative-based sensitivity indices (λi = -0.24 + 0.95 ·STi , r2 = 0.37, p <

0.01; Figure 3.4). The coefficient of determination (r2) was relatively low at 0.37, but this was

largely caused by the derivative-based indices being much greater than the variance-based

indices at high sensitivities (Figure 3.3 and 3.4). Such differences between the derivative-

and variance-based indices occurred as very few of the variance-based indices exceeded

the threshold of one, whilst a number of the derivative-based sensitivity indices exceeded

this threshold. As previously suggested, the derivative-based method also underestimated

the sensitivity of some of the parameters with low to mid-levels of variance-based sensitivity,

although this issue affected fewer than 10% of the sensitivity indices (Figure 3.3 and 3.4).
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The largest underestimations occurred when the variance-based sensitivity indices exceeded

the threshold of one, whilst the derivative-based sensitivity indices did not (Figure 3.3 and

3.4).
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r
2
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Figure 3.4: A comparison of the log-transformed variance- (STi ) and derivative-based (Υi) sensitivity of
the model outputs to the parameters of the trait-based mizer model (n = 168). The teal line represents
a linear regression of the log-transformed sensitivity indices.

Convergence of the variance- and derivative-based sensitivity indices

The sensitivity indices, parameter rankings, and parameter screenings are assumed to have

reached convergence when Statindices < 0.05 (Equation 3.14), ρs,j,k < 1 (Equation 3.15),

and Statscreening < 0.05 (Equation 3.16). When using the variance-based sensitivity indices

STi , Statscreening was below the threshold of 0.05 for the community biomass, population

size, and SSB (Figure 3.5). A value of less than 0.05 indicates that we are successfully

able to differentiate between those parameters with a negligible and non-negligible impact on

these model outputs. The screening process identified two parameters that were associated

with higher sensitivities (STi > 0.05) for the community biomass and SSB: the exponent of

the background resource λ and the search volume exponent q. A total of 12 parameters

were associated with higher sensitivities for the population size, including λ, q, the scaling

of the standard metabolism p, and the coefficient of standard metabolism ks, among others.

Statscreening exceeded 0.05 for the fisheries yield, LFI, mean weight, and community slope

model outputs (Figure 3.5) as the width of the confidence intervals of at least five parameters
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that had a non-negligible impact on the model outputs, including p, q, λ, σ, and the fishing

effort F , exceeded 0.05 (not shown).

When using the normalised derivative-based sensitivity indices Υ∗i , Statscreening was below

the threshold of 0.05 for all seven model outputs excluding the LFI (Figure 3.5). Statscreening

exceeded 0.05 for the LFI as the widths of the confidence intervals of p, the volumetric search

rate γ, the carrying capacity of the background resource κ, and the width of the prey size

preference σ were all greater than 0.07 (not shown). For all other model outputs, the screening

process identified two parameters that were consistently associated with higher sensitivities:

λ and q. n, p, and F were also associated with higher sensitivities for some of the model

outputs, particularly fisheries yield.
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Figure 3.5: The convergence of the variance- (top) and derivative-based (bottom) sensitivity indices
and the subsequent ranking and screening of the parameters for the seven outputs of the trait-based
mizer model. The convergence value refers to the value of Statindices (left), ρs,j,k (middle), and
Statscreening (right) respectively. The teal line represents the value below which the results are as-
sumed to have reached convergence. Please note that the variance-based Statindices and derivative-
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purposes.

When using STi , ρs,j,k was below the threshold of one for all of the model outputs (Figure 3.5).
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A value of less than one indicates that the average rank of the parameters associated with the

greatest sensitivities changed by fewer than one position across all bootstrap resamples and

therefore we can be confident in the ranking of parameters for these model outputs. When

using Υ∗i , ρs,j,k was below the threshold of one for all of the model outputs excluding SSB

and mean weight (Figure 3.5). ρs,j,k was equal to 1.46 for mean weight and 8.46 for SSB

(Figure 3.5). The ρs,j,k of the mean weight indicator exceeded one purely due to a change in

the ranking of q from 1st to 3rd position and vice versa in two of the 1000 bootstrap resamples

(not shown). On the other hand, the ρs,j,k associated with SSB exceeded one due to relatively

large changes in the rankings of λ, n, p, and F within the top 15 positions (not shown).

When using STi , Statindices was above the threshold of 0.05 for all of the model outputs

(Figure 3.5). When using Υi, Statindices was below the threshold of 0.05 for the community

biomass, fisheries yield, and LFI, indicating the sensitivity indices reached convergence using

the chosen threshold (Figure 3.5).

Overall ranking of the model parameters

When ranking the parameters from high to low sensitivity using the variance-based sensitivity

indices STi , the exponent of the background resource λ, the scaling of standard metabolism p,

the search volume exponent q, and the scaling of the food intake n each appeared in the top

five for six of the seven model outputs (Table 3.2). λ was ranked in first position for all model

outputs excluding the mean weight and community slope indicators (Table 3.2). Instead, n and

p were ranked in first position for the mean weight and community slope respectively (Table

3.2). λ did not appear in the top five parameters for mean weight but was ranked in second

position for the community slope (Table 3.2). The assimilation efficiency α also appeared in

the top five for population size, the LFI, mean weight, and the community slope, whilst n ap-

peared in the top five for three of the model outputs (Table 3.2).
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Table 3.2: The rankings of the five parameters with the greatest derivative- Υi and variance-based STi

sensitivity indices for each of the outputs of the trait-based mizer model. ** indicates the rankings did
not reach convergence for a given model output.

Comm. Biomass Pop. Size SSB Comm. Yield

Rank Υi STi Υi STi **Υi STi Υi STi

1 λ λ λ λ p λ λ λ

2 q q α q q q q F

3 n n σ p λ n p q

4 p α κ ks F α α p

5 α p γ n σ p ks n

LFI Mean Weight Comm. Slope

Rank Υi STi **Υi STi Υi STi

1 q λ λ n λ p

2 λ p q ks F λ

3 p q n wppcut q q

4 ks ks p wmin n n

5 α σ α κ p ks

Overall, the rankings of the parameters using the normalised derivative-based sensitivity in-

dices Υ∗i were similar to those described above. For example, λ was the only parameter to

appear in the top five for all seven model outputs, whilst p and q appeared in the top five for

all of the model outputs excluding population size (Table 3.2). Again, λ was ranked in first

position for all of the model outputs excluding SSB and the LFI (Table 3.2). Instead, p and

q were ranked in first position for SSB and the LFI respectively, whilst λ was ranked in third

and second for these model outputs respectively (Table 3.2). α also appeared in the top five

parameters for all model outputs except SSB and community slope (Table 3.2).

A total of 11 different parameters appeared in the top five across all model outputs when using

STi , whilst only ten appeared in the top five when using Υ∗i (Table 3.2). The volumetric search

rate γ was the only parameter to appear in the top five when using Υ∗i but not when using

STi (Table 3.2). Conversely, both the minimum size of the community spectrum wmin and the

maximum size of the background resource wppcut appeared in the top five when using STi but

not when using Υ∗i (Table 3.2).
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3.4.2 Derivative-based sensitivity analysis of the multispecies mizer model

In this section, we present the results of the derivative-based sensitivity analysis of the North

Sea multispecies mizer model. We first describe the sensitivity of each model output to the

species-specific parameters, species-independent parameters, and interaction matrix θ, be-

fore describing the convergence of the normalised derivative-based sensitivity indices Υ∗i and

the final rankings of the parameters based on Υ∗i . It is important to note that the derivative-

based sensitivity indices Υi are used to describe the results of the sensitivity analysis to

maintain the link with the variance-based sensitivity indices STi , whilst the normalised sensi-

tivity indices Υ∗i are used to assess the convergence of the sensitivity indices. Furthermore,

Υi exceeded one in some cases and may therefore not be useful as an upper bound of the

variance-based indices STi . However, Υi may still be used to better understand the influence

of each parameter on the model outputs.

Sensitivity to the species-specific parameters

The community biomass, fisheries yield, and SSB were largely insensitive to the species-

specific parameters in the model, with the exception of the fishing effort F associated with

Atlantic herring and sandeel (Figure 3.6). The population size was sensitive to all of the

parameters associated with European plaice and saithe (Υi > 0.1), excluding the size class

of their recruits Wmin (Υi < 0.01) (Figure 3.6). The population size was also sensitive to a

number of the parameters associated with Norway pout, particularly the assimilation efficiency

α (Υi = 3596) (Figure 3.6).

The LFI, mean weight, and community slope displayed similar patterns of sensitivity across

all of the species-specific parameters, with α, F , the coefficient of standard metabolism ks,

the volumetric search rate γ, and the width of the prey size preference σ resulting in many of

the greatest sensitivities (Figure 3.6). However, the sensitivity indices associated with these

parameters varied greatly across different species, with many of the highest sensitivities being

associated with the larger fish species, such as European plaice, saithe, and Atlantic cod (Fig-

ure 3.6). The community slope indicator was particularly sensitive to many of the parameters

associated with saithe, including the reproductive efficiency eRepro, the length at which 25%

of the stock is selected by the fishing gear L25, and the length-weight converters a and b, all

of which resulted in Υi exceeding 1500 (Figure 3.6)

Aside from the notable exceptions described above, the model outputs were largely insensi-

tive (Υi < 0.01) to the length-weight converters a, predator-prey mass ratios β, reproductive

efficiencies eRepro, selectivity lengths L25 and L50, initial population sizes N0, maximum
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recruitment Rmax, asymptotic weights W∞, and maturation weights Wmat (Figure 3.6).

Sensitivity to the species-independent parameters

In terms of the species-independent parameters in the model, all seven model outputs were

most sensitive to the exponent of the background resource λ, the scaling of food intake n,

and the scaling of standard metabolism p, with the sensitivity indices associated with these

parameters ranging from 1.1 to 571373.4 (Figure 3.7). The population size, LFI, mean weight,

and community slope were also sensitive to the carrying capacity of the community spectrum

κ, the search volume exponent q, and the maximum size of the community spectrum wmax,

all of which resulted in Υi exceeding 23.4 (Figure 3.7). All of the model outputs were insensi-

tive (Υi < 0.01) to the average feeding level of individuals feeding mainly on the background

resource f0, the maximum size of the background resource wppcut , and the exponent of the

background mortality of the community spectrum z0exp (Figure 3.7).
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Sensitivity to the interaction matrix

All of the model outputs were largely insensitive to the species interaction matrix θ (Figure

3.8). However, the community slope was highly sensitive to the interaction between European

plaice and itself (Υi = 1593.8) (Figure 3.8). The population size was also highly sensitive

to the interactions of European plaice and saithe with themselves and each other (Υi > 2.2)

(Figure 3.8). These results echo those described previously in which the population size was

sensitive to almost all of the species-specific parameters associated with European plaice and

saithe.

Convergence of the sensitivity indices

As previously stated, the sensitivity indices, parameter rankings, and parameter screenings

are assumed to have reached convergence when Statindices < 0.05 (Equation 3.14), ρs,j,k < 1

(Equation 3.15), and Statscreening < 0.05 (Equation 3.16). Based on the normalised derivative-

based sensitivity indices Υ∗i , Statscreening was below the threshold of 0.05 for all seven model

outputs except SSB (Figure 3.9). Again, these results indicate that we are successfully able

to differentiate between those parameters with a negligible and non-negligible impact on all

of the model outputs excluding SSB. The parameter screening did not reach convergence for

SSB purely as a result of the width of the confidence interval for the initial population size N0

of sandeel being greater than 0.05 (not shown). A total of four parameters were consistently

associated with higher sensitivities (Υ∗i > 0.05) across all model outputs: the exponent of the

background resource λ, the scaling of standard metabolism p, the search volume exponent q,

and the fishing effort F associated with Atlantic herring.

ρs,j,k was below the threshold of one for SSB, fisheries yield, and the community slope indi-

cator (Figure 3.9). A value of less than one indicates that the average rank of the parameters

associated with the greatest sensitivities changed by fewer than one position across all boot-

strap resamples and therefore we can be confident in the rankings of the parameters for these

model outputs. Conversely, ρs,j,k was between two and four for the community biomass, pop-

ulation size, LFI, and the mean weight indicator (Figure 3.9). However, the parameter rankings

did not reach convergence for the community biomass and mean weight indicator due to rel-

atively minor changes in the rankings of some of the parameters in a small number of the

bootstrap resamples. For example, the community biomass had a ρs,j,k exceeding one purely

due to switches in the rankings of λ and the F associated with Atlantic herring between 1st

and 4th position in 54 of the 1000 bootstrap resamples (not shown). The mean weight indica-

tor also had a ρs,j,k exceeding one due to changes in the ranking of the scaling of standard
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Figure 3.9: The convergence of the derivative-based sensitivity indices Υi and the subsequent ranking
and screening of the parameters for all seven outputs of the North Sea multispecies mizer model.
The convergence value refers to the value of Statindices (left), ρs,j,k (middle), and Statscreening (right)
respectively. The teal line represents the value below which the results are assumed to have reached
convergence.

metabolism p from 1st to 5th position and vice versa in 28 of the bootstrap resamples (not

shown).

Conversely, the parameter rankings did not reach convergence for population size or the LFI

due to much larger changes in the rankings of some of the parameters in a number of boot-

strap resamples. For example, changes in the rankings of the assimilation efficiency α of

Norway pout and q from 2nd or 3rd position to 19th position or lower in 157 of the bootstrap

resamples resulted in the ρs,j,k of the population size exceeding one (not shown). A change in

the ranking of the size class of Norway pout recruits Wmin from 111th and 163rd to 1st posi-

tion in two of the bootstrap resamples, as well as a change in the ranking of the maximum size

of the community spectrum wmax from 53rd and 32nd to 2nd position in two of the bootstrap

resamples, was largely to blame for the LFI ρs,j,k exceeding one (not shown). However, small

changes in the rankings of λ, p, and q within the top 13 positions also prevented ρs,j,k from

dropping below one (not shown).

Finally, Statindices exceeded 0.05 for all seven model outputs (Figure 3.9), suggesting the

sensitivity indices did not reach convergence when using the chosen threshold.
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Overall ranking of the model parameters

When ranking the parameters from high to low sensitivity using the normalised derivative-

based sensitivity indices Υ∗i , the exponent of the background resource λ was ranked in first

position for all model outputs excluding the community biomass and mean weight indicator

(Table 3.4). Instead, the fishing effort F associated with Atlantic herring and the scaling of

standard metabolism p were ranked in first position for the community biomass and mean

weight indicator respectively, whilst λ was ranked in second for both of these model outputs

(Table 3.4). λ and p were the only two parameters to appear in the top five positions across

all seven model outputs (Table 3.4). The search volume exponent q also appeared in the

top five positions for all model outputs except SSB and fisheries yield, whilst the scaling of

food intake n appeared in the top five for all model outputs except the LFI and community

slope indicator (Table 3.4). The F associated with various different species, including Atlantic

herring, sandeel, and European plaice, appeared in the top five for the community biomass,

SSB, and fisheries yield model outputs (Table 3.4). The only other species-specific parameters

to appear in the top five for any of the model outputs included the assimilation efficiency

α of Norway pout, the size class of Norway pout recruits Wmin, the coefficient of standard

metabolism ks for Atlantic cod, the width of the prey size preference σ for European plaice,

and the reproductive efficiency eRepro of saithe (Table 3.4).

Table 3.4: The rankings of the five parameters with the greatest derivative-based sensitivity indices for
each of the outputs of the North Sea multispecies mizer model. ** indicates the rankings did not reach
convergence for a given model output.

Rank **Comm. Biomass **Pop. Size SSB Comm. Yield

1 Herring F λ λ λ

2 λ q Herring F Herring F

3 p Norway Pout α Sandeel F p

4 n p p n

5 Sandeel F n n Plaice F

Rank **LFI **Mean Weight Comm. Slope

1 λ p λ

2 p λ p

3 q q q

4 Norway Pout Wmin Cod ks Plaice σ

5 wmax n Saithe eRepro
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3.5 Discussion

Both variance- and derivative-based methods of sensitivity analysis were used to better under-

stand the sensitivity of the trait-based and multispecies versions of the North Sea mizer model.

A total of seven model outputs were considered across both versions of the model, including

the community biomass, population size, Spawning Stock Biomass (SSB), fisheries yield, the

Large Fish Indicator (LFI), mean weight, and the community slope. Of all of these model

outputs, it was the LFI, mean weight, and community slope that most often displayed high

sensitivity to the parameters of the trait-based and multispecies mizer models. Size-based

metrics such as these have been or are currently used as indicators of ecosystem health in

various management contexts. For example, the LFI is listed as a food web indicator under the

EU Marine Strategy Framework Directive (European Commission, 2008b) and has been used

by OSPAR to define an Ecological Quality Objective (EcoQO) for fish communities (Heslenfeld

and Enserink, 2008; Greenstreet et al., 2010). Both the LFI and community slope have also

been used to assess various management strategies in the North Sea (Nicholson and Jen-

nings, 2004; Blanchard et al., 2014; Thorpe et al., 2015; Marshall et al., 2016). The purpose of

using indicators such as these is to enable us to track how changes in fishing mortality affect

the health of an ecosystem (Shin and Shannon, 2009; Shin et al., 2018). For an indicator to be

successfully able to do this, it must be sensitive to changes in fishing pressure, but insensitive

to any other environmental or anthropogenic-induced drivers (ICES, 2004; Greenstreet et al.,

2010; Shin et al., 2018). Assuming mizer is considered to be an accurate representation of

the North Sea, the high sensitivity of the LFI, mean weight, and community slope to changes

in fishing effort would support the use of these metrics as indicators of ecosystem health in the

North Sea. However, the LFI, mean weight, and community slope were also highly sensitive to

parameters that may be heavily impacted by environmental conditions, such as the size of the

background resource (e.g. λ) and standard metabolic rates (e.g. p and ks). The results of the

sensitivity analyses therefore suggest that we must be cautious when using these metrics as

indicators of fishing mortality in the North Sea. This conclusion is supported by Greenstreet

et al. (2010), who found that the LFI and mean weight of the North Sea fish community were

affected both by changes in fishing pressure and environmentally-driven recruitment variation.

Similarly, Blanchard et al. (2005) and Guiet et al. (2016) found that the community slope was

affected by changes in natural stressors, despite being previously believed to be a consistent

indicator of fishing pressure (Bianchi et al., 2000; Fulton et al., 2004; Shin et al., 2005).

In contrast to the LFI, mean weight, and community slope model outputs, the community

biomass, population size, SSB, and fisheries yield were largely insensitive to changes in fish-

ing effort in both the trait-based and multispecies versions of the North Sea mizer model,
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suggesting that these metrics may also not be useful as indicators of the effects of changes

in fishing pressure on the ecosystem. Again, this result is supported by Greenstreet et al.

(2010), who found that the community-averaged SSB of the North Sea remained almost un-

changed between 2001 and 2008 despite the fishing mortality of the seven main demersal fish

stocks dropping below precautionary reference points. Although community biomass, popu-

lation size, SSB, and fisheries yield may not be useful as indicators of fishing pressure, the

results of the sensitivity analyses suggest that they may be useful as indicators of environmen-

tal drivers. For example, the community biomass, population size, SSB, and fisheries yield of

the North Sea multispecies mizer model were largely insensitive to all of the parameters in the

model excluding λ, n, p, and q; these parameters are used to determine the size of the back-

ground resource (e.g. phyto- and zooplankton), as well as search, food intake, and metabolic

rates, all of which may be heavily impacted by changes in environmental conditions (Roessig

et al., 2004). However, we must again be cautious when analysing the relative sensitivities

of the outputs of the mizer model as the sensitivity indices did not reach convergence and

the analysis was based on potentially unrealistic parameter distributions (i.e. the ’true’ values

of the parameters may lie outside ± 10% of the nominal parameter values (see Borrett et al.

(2016); Hines et al. (2018); Bentley et al. (2019a,b) for example). Further research is there-

fore required to identify how the sensitivities of the model outputs change when more realistic

parameter distributions are used and when the base sample size of the sensitivity analysis is

increased. By increasing the base sample size, we would also be able to more extensively

sample the parameter space, thus making the conclusions drawn from this research more

robust.

Overall, the outputs of both versions of the mizer model were most sensitive to the parameters

relating to resource availability and feeding, such as the exponent and carrying capacity of the

background resource (λ and κ respectively), the scaling of food intake n, the search volume

exponent q, and the assimilation efficiency α. A high sensitivity to such parameters is to be

expected given that one of the central assumptions of size-based models such as mizer is

that the structure of the community is largely determined by trophic interactions (Andersen

et al., 2015). However, it is also assumed that these trophic interactions are primarily driven

by predator-prey mass ratios (Andersen et al., 2015). It is therefore perhaps surprising that all

of the outputs of the trait-based and multispecies versions of the mizer model were generally

insensitive to the preferred predator-prey mass ratio β. The multispecies model was also

relatively insensitive to the species interaction matrix θ, which represents the spatial overlap

between each pair of species and is used to determine the extent to which the predator-prey

interactions are determined by prey size preferences (Scott et al., 2018). Instead, almost all

of the model outputs were sensitive to the width of the prey size preference σ, suggesting that
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it is changes to the range of preferred prey sizes that drives the sensitivity of the model to

changes in the trophic interactions between species, not the mean preferred prey size or the

spatial overlap between species.

Generally speaking, both the trait-based and multispecies models tended to exhibit greater

sensitivity to the species-independent parameters associated with resource availability and

feeding (λ, κ, n, and q) than the species-specific parameters (β, σ, θ, the maximum food in-

take rate h, and the volumetric search rate γ). Again, this is perhaps unsurprising given that

the species-independent parameters have a direct impact on the interactions between every

species in the model. Although changes to the species-specific parameters may also affect

the interactions between every species in the model via knock-on effects, it would seem that

such changes often do not result in the same level of community restructuring that occurs as

a result of changes to the species-independent parameters. However, it is possible that the

effects of changes in the species-specific parameters may be masked by estimating the sen-

sitivity of the mizer model using community-level rather than species-specific model outputs.

For example, the community biomass may remain stable despite massive fluctuations in the

biomass of individual species. Further research is therefore required to determine the sensitiv-

ity of the species-specific outputs of the multispecies model to both the species-independent

and species-specific parameters associated with feeding and resource availability.

In addition to the parameters relating to resource availability and feeding, the model outputs

were also highly sensitive to the two parameters associated with standard metabolism: p and

ks. The high sensitivity of the model outputs to the parameters relating to metabolic rates,

resource availability, and feeding are supported by an analysis of the process and observation

errors associated with the Haizhou Bay version of the mizer model (Zhang et al., 2015). In

this example, the ’metabolic scale’ parameters, which included ks, q, and n, were found to

dominate the uncertainties in the model outputs (Zhang et al., 2015). Additionally, a sensitivity

analysis of the Andersen-Ursin multispecies Beverton-Holt model, the model on which mizer is

conceptually based, showed the outputs were sensitive to the fraction of consumed food that

is assimilated (equivalent to α) and the prey size preferences (equivalent to σ) (Livingston,

2013). Both Zhang et al. (2015) and Livingston (2013) therefore emphasised the importance

of future research into the parameters that describe diet and food intake, a conclusion that is

further supported by our research.

Some effort has already been made to reduce the uncertainties of the parameters relating

to food availability and encounter rates. For example, work is already underway to improve

estimates of q through a thorough investigation of the scaling relationship between movement

and body mass using in situ observations (Griffiths, 2019). However, some of the parameters
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in the model are not directly measurable in the environment. For instance, we cannot directly

measure λ in the real world, but we may be able to reduce the uncertainties associated with

the size of the background resource, thereby helping to constrain possible values for both λ,

κ, and the growth rate of the background resource rpp. Such goals may be achieved through

further monitoring of the North Sea plankton community via large-scale surveys such as the

Continuous Plankton Recorder (sahfos.ac.uk).

A number of the outputs of the multispecies mizer model were also highly sensitive to the

fishing effort associated with various different species, including Atlantic herring, sandeel,

Norway pout, and European plaice. Perhaps unsurprisingly, fishing rates were also associated

with high sensitivity for pelagic and demersal fish populations in a Sobol’ variance-based

sensitivity analysis of the StrathE2E North Sea marine ecosystem model (Morris et al., 2014).

Although there is arguably much less uncertainty associated with fishing activity than the

size of the background resource, we may still be able to reduce these uncertainties through

improved reporting of fishing activity in the North Sea. Some improvements have been made

since the EU Regulation aimed at eliminating illegal, unreported, and unregulated fishing and

the reformed Common Fisheries Policy, although there is still more work to be done (European

Commission, 2008a, 2013). For example, the European Court of Auditors recently identified

a need for increased reporting of catch for vessels below 12m in length (ECA, 2017).

Overall, the high sensitivity of the model outputs to both the size of the background re-

source and fishing effort highlights the importance of bottom-up (resource-driven) and top-

down (consumer-driven) controls on fish populations within the model. Changes in the bal-

ance between bottom-up and top-down processes have been shown to result in unstable

model dynamics and species extinctions in multiple applications of the Ecopath with Ecosim

(EwE) marine ecosystem model (Shannon et al., 2000; Araújo et al., 2006), an occurrence

that was also observed in the outputs of mizer under some parameter combinations. For ex-

ample, the high sensitivity of the population size to the parameters associated with European

plaice and saithe was driven by large increases in the biomass of these two species, alongside

concurrent declines in the biomass of all other species to the point of extinction, in just one of

the 1000 base parameter combinations. These results highlight the ability of some parameter

combinations to cause unexpected model behaviour. Further research is required to identify

the parameter combinations that result in such behaviours to understand why these occur and

to help constrain the model in the future.

Such extreme model behaviour caused by a small number of parameter combinations may

also be the reason for a number of the sensitivity indices exceeding one. However, it is also

possible that the sensitivity indices exceeded one purely due to the presence of non-linearities
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between the model parameters and the outputs (Lamboni et al., 2013). Although these results

indicate that some of the derivative-based indices Υi cannot be used as an upper bound for

STi , we have shown that there is a strong positive relationship between the two different

indices, with high values of Υi almost always being associated with high values of STi . In-

creasing the number of model evaluations included in both methods of sensitivity analysis

may help to reduce the number of indices exceeding one and improve the relationship be-

tween Υi and STi , but doing so would require much larger computational resources than were

available for this research. Furthermore, it is unlikely that increasing the number of model eval-

uations would dramatically change the overall conclusions of this research as the parameters

that were consistently associated with the greatest sensitivities would likely remain the same,

despite the exact value of the indices changing. This view is further supported by the fact

that the parameter rankings reached convergence for many of the model outputs, particularly

those associated with the trait-based model (see Section 3.5.1 below).

Applying both methods of sensitivity analysis to the trait-based mizer model also highlighted

the occasional underestimation of the sensitivity of the model outputs to the parameters with

low to mid-levels of influence when using the derivative-based method. Although the largest

underestimations occurred as a result of the variance-based sensitivity indices exceeding the

threshold of one, underestimations may also have been caused by the choice of 0.0001 as the

increment used in the derivative-based sensitivity analysis (see Section 3.3.2). For example,

the mean weight of the trait-based mizer model was highly sensitive to the maximum size of

the background spectrum wppcut when using the variance-based sensitivity indices, but not

when using the derivative-based indices. Because wppcut is used solely to determine which

size bins are part of the background resource and which are part of the community spectra,

the derivative-based method would only identify the mean weight as being sensitive to this

parameter when the increment of 0.0001 moved wppcut from one size bin to another. There

were no parameter combinations in which this occurred in our sample for the derivative-based

sensitivity analysis, but it is possible that a larger increment would have enabled us to better

detect the influence of wppcut on the model outputs, as well as some of the other parameters

that were associated with lower sensitivity indices. It is important to note that this issue is

therefore an artefact and is not mathematically or biologically relevant.

It is also important to note that we treated all of the parameters as independent and therefore

ignored the relationships between them. Because of this, some of the parameters that were

deemed to have little impact on the model outputs, such as the species-specific length-weight

converters (particularly a), weight at maturity Wmat, and asymptotic weights W∞, may indi-

rectly affect the model outputs substantially as they are used to calculate other parameters
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in the model that have a much larger influence on the model outputs. For example, W∞ is

used to calculate the species-specific maximum food intake rates h and volumetric search

rates γ if not specified. Future research is therefore required to determine the impacts of such

relationships between parameters on the sensitivities of the model outputs.

Other parameters with low sensitivities, such as the initial population sizes N0, maximum

recruitment Rmax, reproductive efficiencies eRepro, and the average feeding level of individ-

uals feeding mainly on the background resource f0, may be fixed at their nominal values as

changes in the value of these parameters will have a negligible impact on the model outputs.

However, this conclusion is upheld only if the true value of the parameter is assumed to lie

within ± 10% of the nominal value, as it is possible that the model outputs may be highly

sensitive to changes in the value of these parameters outside of this range.

3.5.1 Convergence of the sensitivity indices

We assessed the convergence of the sensitivity indices and the subsequent parameter rank-

ings and screenings via bootstrapping. The parameter screenings reached convergence for

the community biomass, SSB, and population size when using the variance-based sensitivity

indices of the trait-based mizer model. The parameter screenings also reached convergence

for all model outputs excluding the LFI and SSB when using the derivative-based sensitiv-

ity indices of the trait-based and North Sea multispecies models respectively. Although the

parameter screenings did not reach convergence for all of the model outputs, either the param-

eter screening or the parameter rankings did reach convergence for all of the model outputs.

We are therefore successfully able to accurately identify the parameters with the greatest

sensitivities across all of the model outputs, either through screening or ranking.

The parameter rankings reached convergence for all of the trait-based model outputs when

using the variance-based method. When using the derivative-based method, the parameter

rankings reached convergence for all of the trait-based model outputs excluding SSB and

mean weight. For the North Sea multispecies model, the parameter rankings reached con-

vergence for the SSB, fisheries yield, and community slope model outputs. The parameter

rankings did not reach convergence for the trait-based mean weight or the multispecies com-

munity biomass and mean weight due to relatively small changes in the rankings of the param-

eters within the top five positions. These small changes in rankings caused ρs,j,k to exceed

the threshold of 0.05 as Equation 3.15 is weighted to reduce the impact of changes in the

rankings of the parameters with very low sensitivities; this means that the impact of changes

in the rankings of the parameters with the greatest sensitivities is increased. However, such

small changes in ranking are relatively unimportant given that the main aim of this research
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is to identify a small subset of parameters that we may realistically focus on in terms of future

research to reduce the uncertainty in the model outputs.

Conversely, the parameter rankings for SSB in the trait-based model and for the population

size and LFI in the multispecies model did not reach convergence due to larger changes

in the rankings of some of the parameters. These larger changes in rankings were likely

caused by the aforementioned parameter combinations that triggered a dramatic change in

the abundance and/or biomass of one or more of the species within the model. Furthermore,

Sobol’ and Kucherenko (2009) proved that the rankings of the parameters associated with the

greatest sensitivities in a highly non-linear function may be misleading when based on the

derivative-based sensitivity indices. However, the overall conclusions of the present research

are likely to be largely unaffected by these issues, as it is clear that the parameters associated

with the greatest sensitivities were generally consistent across the two methods of sensitivity

analysis and across both the trait-based and multispecies mizer models. As previously stated,

the exact ordering of the parameters associated with the greatest sensitivities is also not

important given the main aim of this research.

The derivative-based sensitivity indices reached convergence for the community biomass,

fisheries yield, and LFI of the trait-based model. However, all other sensitivity indices did not

reach convergence. In many cases, this lack of convergence was likely caused by variability

in the indices of the parameters with very low sensitivity, as the parameter rankings did reach

convergence for many of the model outputs. Overall, the lack of convergence of the sensitivity

indices is not unsurprising given the large number of uncertain parameters included in the sen-

sitivity analyses. It is particularly unsurprising that the sensitivity indices of the multispecies

model did not converge as Morris et al. (2014) were required to run 540,000 model evaluations

for the sensitivity indices associated with the StrathE2E model to converge, despite including

fewer parameters compared to the present study. It is difficult to know how many model evalu-

ations would be required to reach convergence, but it may become computationally infeasible

as some of the model evaluations in this study took hours to reach equilibrium. Furthermore,

the convergence of the sensitivity indices is relatively unimportant compared with the conver-

gence of the parameter rankings and screenings, as we do not need to know the exact value

of the indices to be able to identify the parameters causing high sensitivity.

3.6 Implications and conclusions

To the best of our knowledge, this study is the first to apply both variance- and derivative-

based methods of global sensitivity analysis to a complex marine ecosystem model. We have
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shown that there is a strong relationship between the variance- and derivative-based sensi-

tivity indices of the trait-based mizer model using a base sample size of 1000. These results

highlight the ability of the derivative-based method to accurately estimate the variance-based

sensitivity indices using a relatively small number of model evaluations. Nevertheless, further

research is required to determine the number of model evaluations required for the sensitivity

indices, the parameter rankings, and the parameter screenings to converge under both the

derivative- and variance-based methods of sensitivity analysis. Although different models will

likely require a different number of model evaluations to reach convergence, such research

may help to guide those who wish to apply the derivative- or variance-based methods to mod-

els of similar complexity. If the difference in the number of model evaluations required for con-

vergence under the two methods of sensitivity analysis is small, we would recommend using

the variance-based method to estimate the sensitivity indices. This is because the relatively

small increase in the efficiency of the derivative-based method when applied to a model with

a comparatively low number of parameters comes at the cost of a reduction in the accuracy

of the rankings of the parameters from high to low sensitivity (Sobol’ and Kucherenko, 2009).

However, the difference in the number of model evaluations required for the derivative- and

variance-based sensitivity indices to reach convergence is likely to grow as model complexity

increases (De Lozzo and Marrel, 2016). The benefits of using the derivative-based method

may therefore only become apparent when applying different methods of sensitivity analysis

to highly complex models that include a large number of parameters.

As previous applications of the derivative-based method tend to focus on simple models with

a relatively small number of parameters (e.g. Kucherenko and Iooss (2017), Sobol’ and

Kucherenko (2009), Iooss et al. (2012) and Sudret and Mai (2015)), little is known about

the performance of the derivative-based method when applied to more complex models. By

applying the derivative-based method to the multispecies mizer model, we have shown that

this method of sensitivity analysis may be used to successfully estimate the sensitivity indices

of a model with many hundreds of parameters. The potential applicability of the derivative-

based method may therefore be wide-ranging, particularly in research areas in which complex

models are routinely used (as is often the case in environmental modelling) (Cartwright et al.,

2016). However, if the derivative-based method is to be applied to a model of similar com-

plexity to the multispecies mizer model, we would recommend using a larger base sample

size and sampling with Sobol’ sequences to allow for the base sample size to be increased

without having to run the entire sensitivity analysis again if the indices do not reach conver-

gence (Becker et al., 2018). If the number of model evaluations associated with conducting a

derivative-based sensitivity analysis is deemed to be infeasible for a particular model, a similar

method to Morris et al. (2014) could be employed; a local method of sensitivity analysis could

72



be used to first screen the parameters and then the derivative-based method could be used to

estimate the variance-based sensitivity indices of the parameters that have a non-negligible

impact on the model outputs. The derivative-based method could also be used in conjunc-

tion with an emulator (or meta-model) to reduce the computational expense of conducting a

sensitivity analysis of a complex model (Ratto et al., 2012).

Generally speaking, both the trait-based and multispecies North Sea mizer models were most

sensitive to the parameters associated with resource availability, feeding, standard metabolic

rates, and/or fishing effort. These results are particularly important given the likely impacts of

climate change on many of these parameters. For example, climate change is expected to

exacerbate the decline in the abundance of phyto- and zooplankton that has occurred in the

North Sea over the past 25 years (Capuzzo et al., 2018). Warmer water temperatures may

also cause the metabolic rate of each species to increase as a result of elevated biochemi-

cal reaction rates (Roessig et al., 2004), although it is possible that species may either move

poleward or into deeper waters to offset this effect (Simpson et al., 2013). Furthermore, the

oxygen concentration of the North Sea may decline as water temperatures increase (Simpson

et al., 2013). Such declines in oxygen concentrations may result in stunted fish growth, thus

causing the average and maximum body size of each species to decrease (Roessig et al.,

2004; Cheung et al., 2013; Simpson et al., 2013). As body size is strongly correlated with vital

rates such as search, intake, and metabolic rates (Andersen et al., 2015), reduced oxygen

concentrations may therefore also lead to dramatic changes in the values of the parameters

associated with feeding and metabolic rates (Neubauer and Andersen, 2018). Assuming mizer

is deemed to be an accurate representation of the North Sea, the high sensitivity of the model

outputs to the parameters associated with feeding and metabolic rates therefore suggest that

climate change is likely to have wide-ranging impacts on the community biomass, population

size, SSB, fisheries yield, LFI, mean weight, and community slope of the North Sea fish com-

munity in the future. However, the sensitivity indices described here were estimated based on

the assumption that each parameter follows a uniform distribution of ± 10% of their nominal

value. More informative distributions must be assigned to each of the parameters if we are to

advance our understanding of the sensitivity of each of the model outputs. Although it may

be possible to constrain some of the parameters using previously published data and through

improved reporting of fishing activity, further research is also required to improve estimates

of the size of the background resource and to develop our understanding of the acquisition

and assimilation of food by fish in the North Sea. Together, this research will help to ensure

multispecies models such as mizer are well placed to support ecosystem-based fisheries

management in the future.

73



Chapter 4

Using machine learning to predict the

behaviour of the mizer marine ecosystem

model

4.1 Abstract

Environmental models may include many hundreds or thousands of parameters and take days

or even weeks to run a single model evaluation. Predicting how changes in the parameters

might affect the model outputs or identifying parameter combinations that do not result in

’extreme’ model behaviour, such as species extinctions, may therefore be extremely difficult.

The aim of this research is to demonstrate the potential for recently developed methods of

machine learning to accurately predict the behaviour of a complex marine ecosystem model.

More specifically, we assess the ability of the random forest machine learning algorithm to

predict a wide range of outputs from the North Sea multispecies mizer size spectrum model,

including community coexistence and species biomass, using information on different subsets

of the parameters. The results are used to: (1) identify the parameters that are required

to maximise the accuracy of the algorithm; (2) highlight interactions between species in the

model; (3) identify areas of the parameter space in which community coexistence occurs; and

(4) draw comparisons with the global sensitivity analyses described in Chapter 3. Overall, we

hope that the results of this research can be used to help better understand and subsequently

improve the behaviour of the mizer model. This research is vital to increasing the confidence

that decision makers have in marine ecosystem models such as mizer and ensuring these

models continue to develop into tools that can be used to support fisheries management in

the future.
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4.2 Introduction

Environmental models, such as climate models and marine ecosystem models, have become

increasingly complex in recent years due to advances in our scientific understanding of the

processes represented by the models, as well as vast improvements in computing power

(Plaganyi, 2007; Orth et al., 2015). Some environmental models include many hundreds

or thousands of parameters and may take hours or weeks to run a single model evaluation

(Plaganyi, 2007; Kaplan and Marshall, 2016). Even models considered to be of low to in-

termediate complexity may include hundreds of parameters. For example, the North Sea

multispecies mizer model (described in detail in Chapter 2), a marine ecosystem model of

intermediate complexity that is used to simulate the size dynamics of the North Sea fish com-

munity (Spence et al., 2016), includes over 300 parameters that describe a community of 12

common and commercially important fish species. A change to any one of these parame-

ters may have unexpected consequences for some or all of the species in the model through

the knock-on effects of processes such as predation and competition. Such knock-on effects

make it difficult to predict how changes in the parameters may affect the model outputs us-

ing traditional methods of data analysis (Curry, 2017; Sedkaoui, 2018). Identifying plausible

parameter combinations that do not result in ’extreme’ model behaviour, such as species ex-

tinctions, may be even more difficult. To overcome these issues, a model may be run using

different parameter combinations to identify areas of the parameter space that result in the

behaviour of interest. However, the outputs from such an analysis may be large and noisy

when using complex models, making it difficult to attribute the causes of different behaviours

to specific parameters. Fortunately, recently developed machine learning algorithms may be

used to achieve this goal with increased efficiency and reliability compared with traditional

data analysis techniques (Sedkaoui, 2018).

Machine Learning (ML) is a branch of artificial intelligence that is used to construct algo-

rithms that learn from and detect patterns in ’big data’ (Alpaydin, 2014). The ability of ML

methods to learn and adapt makes them applicable to a wide range of tasks, including facial

and speech recognition, medical diagnosis, the development of self-driving cars, image com-

pression, bioinformatics, and playing chess (Alpaydin, 2014). ML methods may be grouped

into two main categories: supervised and unsupervised learning techniques. Supervised ML

techniques, which include decision trees, random forests, support vector machines, and neu-

ral networks (Tan and Gilbert, 2003; Mohri et al., 2012), may be particularly useful when at-

tempting to predict the behaviour of an environmental model as they learn classification rules

from pre-labelled training data to make predictions about unlabelled testing data (Maglogian-

nis et al., 2007). A model may therefore be run under multiple parameter combinations and
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the outputs can be used to train the algorithm to predict the behaviour of the model under a

new set of parameter combinations. As supervised methods of ML are often capable of per-

forming classification and regression tasks, they may be used to predict both continuous and

discrete model outputs, such as species biomass and species extinctions respectively (Tan

and Gilbert, 2003; Mohri et al., 2012).

Tree-based methods are some of the most transparent and easy to use forms of supervised

ML techniques (Westreich et al., 2010). The simplest tree-based method, known as a decision

tree, works by splitting the training data into increasingly small subsets based on the values of

the predictor variables (Tan et al., 2006). The splitting process continues until each subset can

be attributed to a particular class label (Tan et al., 2006). The decision tree can then be used to

make predictions about the class of unlabelled data points (Tan et al., 2006). Although a single

decision tree may suffer from overfitting, ensemble tree-based methods that fit many decision

trees, such as random forests, may be used to overcome this issue (Ali et al., 2015). A further

benefit of using the random forest algorithm is that various measures of ’importance’ can be

used to highlight the predictor variables that drive changes in the response variable of interest

(Louppe et al., 2013), thus enabling us to identify areas in which to focus future research

efforts to reduce the uncertainties in the model outputs. This may be particularly important in

marine ecosystem modelling as it tends to be more difficult and expensive to collect data in

the marine environment than in terrestrial ecosystems (Murray et al., 2018).

To the best of our knowledge, there are no examples in the literature of random forests (or

any other ML algorithm) being used to predict the behaviour of a complex marine ecosystem

model. We therefore aim to fill this research gap by exploring the ability of the random forest

algorithm to accurately predict the outputs of the North Sea multispecies mizer model. Being

able to accurately predict the outputs of the mizer model using the random forest algorithm

would reduce the need to run the full model and enable us to explore the parameter space

more efficiently. This in turn would allow us to more easily identify areas of the parameter

space that result in specific model behaviours, such as species extinctions, and to determine

the parameters that drive such behaviours. To achieve this goal, we train the random forest

algorithm to predict the outputs of the mizer model using a set of 3000 model evaluations.

We use the trained random forests to determine the ’importance’ score of each parameter

and then compare the performance of the algorithm when trained using different subsets of

the most ’important’ parameters, thus enabling us to identify which parameters are required

to maximise the accuracy of the algorithm. The performance of the algorithm is measured

by applying the trained random forests to a test dataset made up of a further 2000 model

evaluations, none of which appear in the training dataset. Overall, the results of the analysis

will allow us to better understand and subsequently improve the behaviour of the North Sea
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multispecies mizer model. This research is vital to increasing the confidence that decision

makers have in marine ecosystem models such as mizer and ensuring these models con-

tinue to develop into tools that can be used for strategic fisheries management advice in the

future.

4.3 Methods

We applied the random forest Machine Learning (ML) algorithm to the North Sea multispecies

mizer model to assess the ability of the algorithm to predict the behaviour of the model. The

mizer model is described in detail in Chapter 2, whilst the formulation of the training and

testing datasets required as inputs to the random forest algorithm is described in Section

4.3.1 below. Finally, the application of the random forest algorithm to the outputs of the mizer

model is described in Section 4.3.2.

4.3.1 Training and testing data

The random forest algorithm is a supervised ML technique that requires separate training

and testing datasets. To formulate these datasets, we first ran the mizer model with 5000

different sets of parameter combinations, which were selected through stratified sampling of

the parameter space.

Sampling the parameter space

In order to sample the parameter space of the mizer model, we assigned a uniform distri-

bution to each parameter with an upper and lower limit of ±10% of their nominal value (see

Chapter 2, Tables 2.3 to 2.5 for a list of the parameters included in the analysis and their

nominal values). If the nominal value of a parameter was set to one and it could not be in-

creased further, the upper and lower limits were set to 1 and 0.9 respectively. Conversely, if

the nominal value of a parameter was zero and it could not take a negative value, the upper

and lower limits were set to 0.1 and 0 respectively. Although the fishing mortality parameter

F can be varied at each time step within the model, we chose to maintain effort at a constant

level for the duration of each model evaluation. The upper and lower limits of F were set

to 1.5 and 0 respectively. A maximum fishing effort of 1.5 was chosen to reflect the mean

maximum catch of the 12 modelled species (see Chapter 2, Section 2.4.3) in the North Sea

between 1957 and 2011 (ices.dk; Blanchard et al. 2014). A stratified sampling technique,

known as Latin Hypercube Sampling (LHS), was used to generate 5000 parameter sets using

the aforementioned parameter distributions (see Chapter 3, Section 3.3.2 for further details of
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this method). It is important to note that although some of the parameters are typically calcu-

lated using other parameters in the mizer model, we treated each parameter as independent

and therefore any relationships between the parameters were ignored during sampling (as in

Borrett et al. (2016) for example). We chose to ignore these relationships so that we could

assess the predictive ability of the random forest using information on individual parameters,

rather than information on the combination of multiple parameters.

Model equilibrium

The 5000 parameter sets were evaluated in the mizer model until the biomass of each species

reached equilibrium. In many cases, the chosen parameter sets resulted in a slow decline in

the biomass of a given species to infinitesimal values. We therefore assumed a species had

reached equilibrium if the total biomass of the species dropped below the weight of an egg (w0;

0.001g). The biomass of a species was also deemed to have reached equilibrium if it remained

within ±10-6g of the mean throughout the final 400 time steps (100 model years). However,

a large number of model evaluations displayed both regular and irregular periodicity (often

referred to as quasiperiodicity; Huggett (2003)) in the biomass of a given species. In cases

where there was regular periodicity, we used the ADCF() function in the dCovTS R package

to identify the time lag L (or period length) (Zhou, 2012). The time series was then assumed

to have reached equilibrium if the ratio between the final L time steps and the penultimate L

time steps was within 1±10-6. Where there was irregular periodicity, we assumed equilibrium

had been reached when a linear regression of the biomass of a given species indicated there

was no significant change (p > 0.05) in biomass over time. The linear regression was applied

over the second half of the time series to avoid the initial ’spin-up’ period of the model and was

used only when all other checks for equilibrium had failed.

Sampling from the model outputs

The following model outputs were extracted from each of the 5000 model evaluations: species-

specific biomass, population size, Spawning Stock Biomass (SSB), and fisheries yields, as

well as three community-level indicators: the Large Fish Indicator (LFI), mean weight, and

community slope (Figure 4.1). The species-specific model outputs were also aggregated to

form four community-level descriptors of the ecosystem (Figure 4.1). These model outputs

were selected as they have been widely used in the literature as indicators of ecosystem health

in the North Sea (see Nicholson and Jennings (2004), Blanchard et al. (2014), Thorpe et al.

(2015), and Marshall et al. (2016) for example). All model outputs were summarised using

the mean in the final 400 time steps (100 model years). Species biomass was additionally
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used to determine a further 12 species-specific model outputs (’species survival’) that took

the value of zero if the species became extinct in a given model evaluation and one if the

species survived (Figure 4.1). The community-level version of this model output (’community

coexistence’) took the value of zero if one or more species became extinct in a given model

evaluation or one if all 12 species survived (Figure 4.1). A species was deemed to have

reached extinction when the biomass of the species dropped below the weight of an egg

(w0; 0.001g). All model outputs were divided into training and testing datasets by sampling

from the 5000 model evaluations 100 times with replacement (Figure 4.1). By sampling from

the model evaluations multiple times, we hoped to prevent the undue influence of parameter

combinations that result in ’extreme’ model behaviour, such as widespread species extinctions

and the subsequent dominance of one or two fish species (see Chapter 3). The training

dataset consisted of 60% of the sampled data, whilst the testing dataset consisted of 40% of

the sampled data (Figure 4.1).

4.3.2 Application of the random forest algorithm

Random forests work by fitting an ensemble of decision trees to a training dataset (Kocev

et al., 2007). Each decision tree is made up of a set of nodes and branches (Figure 4.2). At

each node, a random subset of predictor variables is selected and each predictor variable is

used to split the training data into two or more groups (Jiang et al., 2007; Kocev et al., 2007).

Each split therefore creates two or more branches that lead to separate decision nodes, with

each decision node containing a subset of the observations based on the split (Figure 4.2)

(Ye, 2013). The predictor variable resulting in the lowest node impurity is chosen as the ’best

split’ for a given node (Shaikhina et al., 2017). A node is deemed to be pure if the split results

in all observations being in one decision node or the other, whilst a node is deemed to be

impure if the observations are divided between the decision nodes (Shaikhina et al., 2017).

The splitting process is repeated at each decision node until one or more of the following

conditions are met: (1) all terminal nodes (also referred to as leaf nodes) are deemed to be

pure; (2) the purity of the terminal nodes cannot be increased by a pre-specified minimum

amount; or (3) the terminal nodes include a pre-specified minimum number of observations

(Zhang, 2016). The final random forest is formed of many of these individual decision trees,

each of which is grown using a different subset of predictor variables. When using the random

forest algorithm for classification purposes, the majority vote across all trees is used to give

an overall prediction for each observation (Liaw and Wiener, 2002). When using the random

forest for regression purposes, the mean prediction of each tree is used to give the final

prediction for each observation (Liaw and Wiener, 2002).
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Figure 4.2: A simplified example of one of the many decision trees that forms a random forest. The
yellow, teal, and dark blue circles represent root nodes, decision nodes, and leaf nodes respectively,
whilst the black lines represent the branches of the decision tree. The number in bold at the top of
each circle represents the number of observations at each node. The two numbers at the bottom of
each circle represent the number of observations that are classified in each group (e.g. species survival
versus species extinction). In this example, the first split divides the training data into two groups based
on the value of the predictor variable y1 and the second split divides the training data based on the
value of y2.

In this research, the random forest algorithm was applied to the outputs of the mizer model

using the randomForest R package (Liaw and Wiener, 2002) with 1501 trees. A value of 1501

was chosen as preliminary results indicated that this number of trees was sufficient to stabilise

the error rate of the Out-Of-Bag (OOB) predictions (Liaw and Wiener, 2002). Furthermore, an

odd number of trees was selected to ensure ties would not be broken at random (Blouin et al.,

2016). The minimum number of observations in the terminal node of a fully-grown tree was

set to one for classification tasks and five for regression tasks.

The random forest algorithm was first applied to the training data to identify the ’importance’

of each predictor variable (Figure 4.1). In this example, the predictor variables refer to the 306

parameters of the mizer model that were included in the analysis. In cases where the random

forest algorithm was applied to a classification task, such as predicting species survival, the

importance of each parameter was determined using the mean decrease in node impurity as

measured by the Gini index (Gini, 1912; Liaw and Wiener, 2002). In cases where the random

forest algorithm was applied to a regression task, such as predicting biomass, population size,
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or fisheries yields, variable importance was determined using the Residual Sum of Squares

(RSS). The random forest algorithm was then re-applied to the training datasets using different

subsets of the most important parameters (Figure 4.1). The subsets ranged in size from

including only one parameter (the one with the greatest importance score) to including up to

300 of the most ’important’ parameters. Finally, the trained random forests were applied to the

testing datasets to assess the predictive ability of the algorithm (Figure 4.1). These methods

were repeated for each of the 100 testing and training datasets.

The accuracy with which the trained random forests were able to predict community coexis-

tence and species survival was measured using Cohen’s kappa statistic (referred to simply as

the kappa statistic from here on), which takes into account chance agreement between the

observations and the predictions (Klimenko, 2017). A kappa statistic of zero indicates that the

extent of agreement between the observations and the predictions is no greater than chance;

greater values of the kappa statistic indicate increased agreement between the observations

and the predictions, with a kappa statistic of one indicating perfect agreement (Cohen, 1960).

Landis and Koch (1977) developed a nomenclature to further help to describe the extent of

agreement associated with different values of the kappa statistic. Based on this nomenclature,

a kappa statistic of between 0.61 and 0.8 indicates substantial agreement between a set of

observations and predictions and a value exceeding 0.81 indicates almost perfect agreement

(Landis and Koch, 1977).

The accuracy with which the trained random forests were able to predict the continuous out-

puts of the mizer model, such as biomass, population size, and fisheries yields, was measured

using the Root Mean Square Error (RMSE). It is important to note that RMSE is an absolute

measure of accuracy, whilst the kappa statistic is a relative measure of accuracy. Because

of this, it is more difficult to assess the performance of the random forest algorithm using

RMSE than it is with the kappa statistic. Nevertheless, the RMSE is measured in the same

units as the model outputs and can therefore be interpreted as the standard deviation of the

unexplained variance in the observations (Salkind, 2010; Oppenlander and Schaffer, 2017).

A RMSE of zero would thus indicate that the random forest algorithm was able to predict a

given model output perfectly, whilst a RMSE that is similar to or greater than the standard de-

viation of the model output would indicate that the algorithm was not able to accurately predict

the model output (Salkind, 2010; Oppenlander and Schaffer, 2017). However, a drawback of

using RMSE as a measure of accuracy is that comparisons cannot be drawn across the dif-

ferent model outputs due to differences in scale (Hyndman and Koehler, 2006). Despite this,

comparisons can still be made across different species within a single model output.

To better understand the subsets of parameters that were required to predict each of the model
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outputs with the greatest accuracy, we compared the number of parameters that were included

in the ’best performing’ random forests (i.e. those with the greatest kappa statistic or the

lowest Root Mean Square Error (RMSE) for classification and regression tasks respectively)

across all 100 testing datasets. We also determined the frequency with which each parameter

appeared in the ’best performing’ random forests.

4.4 Results

The random forest algorithm was applied to the North Sea multispecies mizer model to ex-

plore the ability of a supervised Machine Learning (ML) technique to predict the behaviour

of the model using different subsets of the most ’important’ predictor variables (or model pa-

rameters). A total of five species-specific and eight community-level model outputs, as well

as 306 parameters, were considered in the analysis. The accuracy with which the random

forest algorithm was able to predict each of the model outputs is described in Section 4.4.1

and the frequency with which each parameter appeared in the best performing random forests

is described in Section 4.4.2.

4.4.1 Accuracy

In this section, we report the accuracy with which the random forest algorithm was able to

predict the outputs of the mizer model using different subsets of the most important param-

eters. We first describe the ability of the random forest algorithm to predict species survival

and community coexistence, before describing the ability of the random forest algorithm to

predict the continuous community-level and species-specific model outputs, such as biomass,

population size, or mean weight.

Classification

The community represented by the North Sea mizer model reached coexistence in 1312 (or

26.2%) of the 5000 model evaluations. Norway pout, whiting, and dab were the only species

to survive in over 75% of the model evaluations, whilst European plaice was the only species

to survive in fewer than 50% of the model evaluations (Figure 4.3). The accuracy with which

the random forest algorithm was able to predict species survival and community coexistence

was measured using the kappa statistic.

Community coexistence

For community coexistence, the kappa statistic displayed consistent patterns across all 100
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Figure 4.3: The percentage of model evaluations (n = 5000) in which a given species survived or
became extinct in the North Sea multispecies mizer model. Teal indicates the number of times the
species survived, whilst black indicates the number of times the species became extinct.

testing datasets (Figure 4.4). The kappa statistic was lowest when applying the random forest

algorithm using only the most important parameter, with a mean (± Standard Deviation (SD))

of 0.34 ± 0.04 (Figure 4.4). However, the kappa statistic increased rapidly with increasing

numbers of the most important parameters, reaching peaks of between 0.63 to 0.73 (Figure

4.4). Such high values indicate substantial agreement between the observations and the pre-

dictions made by the random forest algorithm (Landis and Koch, 1977). After peaking, the

kappa statistic slowly declined with increasing numbers of parameters (Figure 4.4), reach-

ing minima of between 0.03 and 0.19 when including the maximum of 300 parameters in the

random forest (not shown). This drop-off in performance is to be expected given that the al-

gorithm selects a random subset of predictor variables with which to split the training data at

each node; increasing the number of parameters in the random forest therefore increases the

likelihood that the predictor variables that are not useful in predicting community coexistence

are included in these random subsets. The median (5th and 95th quantile) number of param-

eters required to maximise the kappa statistic across all 100 testing datasets was 11 (7, 20)

(Figure 4.4).

Species survival

The kappa statistics of the random forests that were used to predict species survival displayed

similar patterns to those described above (Figure 4.5). For all species, the kappa statistic was

relatively low when very few parameters were included in the random forest (Figure 4.5). The

kappa statistic then increased dramatically with increasing numbers of parameters, before

slowly declining again (Figure 4.5). The kappa statistic was consistently greatest for sprat,

sandeel, and Atlantic herring, with peaks of between 0.90 and 0.96, and consistently lowest
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Figure 4.4: The kappa statistics of the random forests that were used to predict community coexistence
in the North Sea multispecies mizer model with varying numbers of the most important parameters
(black lines). The teal line represents the median number of parameters included in the random forests
that had the lowest classification error across all 100 testing datasets. Please note the x-axis is limited
to 50 parameters for plotting purposes.

for Norway pout, with peaks of between 0.66 and 0.75 (Figure 4.5). Again, such high values

indicate substantial to near perfect agreement between the observations and the predictions

of the algorithm for all 12 fish species (Landis and Koch, 1977). The median (5th and 95th

quantile) number of parameters required to maximise the kappa statistic was between 4 (3,

10) and 10 (8, 14) for all species excluding European plaice and Atlantic herring; for these two

species, the median number of parameters required to maximise the kappa statistic was much

larger and more variable than all of the other species, with medians (5th and 95th quantiles)

of 17.5 (11, 44) and 19 (7, 200) parameters respectively (Figure 4.6). Nevertheless, both

European plaice and Atlantic herring were associated with some of the most consistent kappa

statistics (Figure 4.5), suggesting the high variability in the number of parameters required to

maximise the kappa statistic occurred as a result of very small improvements in the kappa

statistic when including much larger subsets of the most important parameters in the random

forests. It is therefore likely that far fewer numbers of parameters could be used to predict the

survival of Atlantic herring and European plaice with very little loss in agreement between the

predictions and the observations.

To test this theory, we compared the kappa statistics of the random forests that included the

’optimum’ number of parameters (i.e. the number of parameters required to maximise the

kappa statistic) with the random forests that included just six parameters. For almost all of the

species in the mizer model, the median kappa statistic of the random forests that included six

parameters remained within 0.03 of the median kappa statistic of the random forests that in-

cluded the optimum number of parameters (Figure 4.7). European plaice was the only species

to display a more noticeable decline in the median kappa statistic of the random forests that

included the optimum number of parameters versus the random forests that included six pa-
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Figure 4.6: The median (5th and 95th quantile) number of parameters required to maximise the kappa
statistic of the random forests that were used to predict species survival in the North Sea multispecies
mizer model.

rameters, with medians (25th and 75th quantile) of 0.75 (0.75, 0.76) and 0.66 (0.65, 0.67)

respectively (Figure 4.7). However, the median (25th and 75th quantile) kappa statistic asso-

ciated with the survival of European plaice increased to 0.73 (0.73, 0.75) when the random

forests included ten parameters instead of six (not shown). Overall, these results indicate that

the random forest algorithm was able to predict the survival of each species with relatively

high accuracy using information on between six and ten of the most important parameters in

the model.

Regression

The ability of the random forest algorithm to accurately predict the continuous outputs of the

mizer model, such as biomass, population size, or mean weight, was measured using Root

Mean Square Error (RMSE).

Community-level model outputs

For all of the continuous community-level model outputs, the RMSEs displayed consistent

patterns across all 100 testing datasets (Figure 4.8). The RMSEs were greatest when ap-

plying the random forest algorithm to each of the community-level model outputs using only

the single most important parameter (Figure 4.8). The RMSEs then declined rapidly with

increasing numbers of parameters, before beginning to stabilise (Figure 4.8). For all of the
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continuous community-level model outputs excluding population size, the mean RMSE of the

best performing random forests was smaller than the standard deviation of the model outputs,

suggesting the random forest algorithm was able to predict these model outputs with some

degree of success (Table 4.1). For example, the standard deviation of the community biomass

was 5.27×1012, whilst the mean RMSE (± SD) of the best performing random forests was

2.00×1012 (± 2.25×1011) (Table 4.1). Although an RMSE of 2.00×1012 may seem high, it

is less than 0.5 × the standard deviation of the community biomass. Similar levels of per-

formance were also apparent when the random forest algorithm was used to predict SSB,

fisheries yield, and the community slope (Table 4.1). For the LFI and mean weight, the mean

RMSE of the best performing random forests was ~0.8 × the standard deviation of the model

outputs (Table 4.1). Conversely, the mean RMSE (± SD) of the best performing random

forests for population size was larger than the standard deviation, with values of 6.93×1015

(± 1.19×1015) and 6.90×1015 respectively, thus suggesting the random forest algorithm was

not able to accurately predict community population size (Table 4.1).

Table 4.1: The Standard Deviation (SD) of the seven continuous community-level outputs of the mizer
model compared with the mean RMSE (± SD) of the best performing random forests for each model
output. The model outputs include the community biomass, population size, Spawning Stock Biomass
(SSB), fisheries yield, Large Fish Indicator (LFI), mean weight, and community slope.

Model output SD Mean RMSE (± SD)

Biomass 5.27×1012 2.00×1012 (± 2.25×1011)

Population Size 6.90×1015 6.93×1015 (± 1.19×1015)

SSB 5.78×1012 2.65×1012 (± 2.94×1011 )

Yield 1.63×1012 5.33×1011 (± 4.99×1011)

LFI 0.22 0.18 (± 0.01)

Mean Weight 514.75 414.00 (± 35.3)

Slope 34.40 20.20 (± 2.20)

As previously mentioned, although it is not possible to directly compare the RMSEs associated

with each of the model outputs due to differences in scale, comparisons can still be made

regarding the number of parameters required to maximise the performance of the algorithm

across all of the model outputs. For example, the community biomass, SSB, and community

slope model outputs required the fewest parameters to minimise the RMSEs, with a median

of six parameters (Figure 4.8). The community slope was the most consistent of these three

model outputs, with six parameters required across all 100 testing datasets (Figure 4.8). All

other continuous community-level model outputs, excluding population size, required a median

(5th and 95th quantile) of between 7 (6, 12) and 12 (9, 12) parameters to minimise the RMSEs
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of the random forests (Figure 4.8). The community population size required the largest number

of parameters to minimise the RMSEs of the random forests, with a median (5th and 95th

quantile) of 18.5 (5, 70.5) (Figure 4.8). However, far fewer numbers of parameters could

be used to predict community population size with very little loss in agreement between the

predictions and the observations. This is true since the median (25th and 75th quantiles)

RMSE of the random forests that included the optimum number of parameters was 6.84×1015

(5.72×1015, 7.59×1015), but this increased only slightly to 7.02×1015 (6.10×1015, 7.84×1015)

when the random forests included only the six most important parameters (Figure 4.9). The

random forest algorithm could therefore be used to predict community population size using

information on just six parameters, although the overall accuracy of the predictions would still

be low.

Figure 4.9: The Root Mean Square Error (RMSE) of the random forests that were used to predict
community population size in the North Sea multispecies mizer model with the ’optimum’ number of
parameters (i.e. the number of parameters required to minimise the RMSEs of the random forests;
teal) compared with the random forests that included just six parameters (black). The boxes represent
the median, 25th, and 75th quantiles. The lower whisker represents the smallest observation that is
greater than or equal to the 25th quantile − 1.5 ∗ the InterQuartile Range (IQR). The upper whisker
represents the largest observation that is less than or equal to the 75th quantile + 1.5 ∗ the IQR.

Species-specific model outputs

The RMSEs of the random forests that were used to predict the continuous species-specific

outputs of the mizer model also displayed consistent patterns across all 100 testing datasets,

with a characteristic decline in RMSE with increasing numbers of parameters, followed by a

stabilisation (Figure 4.10). The ranking of each species based on the RMSEs of the random

forests was broadly consistent across three of the four model outputs, with dab, grey gurnard,

and common sole being associated with the lowest RMSEs and Atlantic herring being asso-

ciated with the greatest RMSEs for biomass, Spawning Stock Biomass (SSB), and fisheries
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yields (Figure 4.10). Conversely, the RMSEs of the random forests that were used to predict

the population size of each species displayed very different patterns, with Atlantic cod being

associated with the lowest RMSEs and Norway pout and European plaice being associated

with the greatest RMSEs (Figure 4.10).

For all of the continuous species-specific model outputs, the mean RMSE of the best per-

forming random forests was lower than the standard deviation of the model outputs. For

example, the standard deviation of the biomass of dab (the species with the lowest RMSEs)

was 4.02×1010, whilst the mean RMSE (± SD) of the best performing random forests was

2.75×1010 (± 2.73×109) (Table 4.2). The mean RMSE of the best performing random forests

was therefore ~0.68 × the standard deviation. Similar levels of performance were appar-

ent across all species and model outputs excluding population size. For population size, the

mean RMSE of the best performing random forests was almost identical to the standard de-

viation (Table 4.2). Although these results represent an improvement in accuracy compared

with community population size, it is clear that the random forest algorithm was not able to

accurately predict species-specific population sizes.

For biomass, SSB, and fisheries yields, there was relatively little variation in the number of

parameters required to minimise the RMSEs of the random forests. For all of these model

outputs, the median (5th and 95th quantile) number of parameters required to minimise the

RMSEs ranged from 6 (6, 12) when predicting the SSB of sprat and sandeel to 15.5 (10, 24)

when predicting the biomass of grey gurnard (Figure 4.11). Generally speaking, the random

forests that were used to predict species-specific population sizes required information on

a much larger number of parameters to minimise the RMSEs, with medians (5th and 95th

quantile) ranging from 5 (3, 41.3) for whiting to 47.5 (5, 252) parameters for Norway pout

(Figure 4.11). However, far fewer numbers of parameters could again be used to predict

species-specific population sizes with very little loss in agreement between the predictions and

the observations. Using the population size of Norway pout as an example, the median (25th

and 75th quantiles) RMSE of the random forests was 6.39×1015 (5.12×1015, 7.06×1015)

when including the optimum number of parameters, but this increased by a relatively small

amount to 6.58×1015 (5.42×1015, 7.16×1015) when including only the six most important

parameters (Figure 4.12).
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Figure 4.11: The median (5th and 95th quantile) number of parameters required to minimise the Root
Mean Square Error (RMSE) of the random forests that were used to predict species-specific biomass,
population size, Spawning Stock Biomass (SSB), and fisheries yields in the North Sea multispecies
mizer model. Please note the different y-axis limits for each model output.

4.4.2 Frequency

In this section, we report the frequency with which each of the parameters appeared in the 100

’best performing’ random forests for each model output. We first describe the frequency with

which each parameter was present in the best performing random forests for species survival

and community coexistence, before describing the frequency with which each parameter was

present in the best performing random forests for the continuous community-level and species-

specific model outputs, such as biomass, population size, or mean weight.

Classification

Community coexistence

For community coexistence, the species-independent volumetric search rate λ, search vol-

ume exponent q, scaling of the food intake n, and the scaling of standard metabolism p (Fig-

ure 4.14), as well as the fishing mortality F and assimilation efficiency α of European plaice
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Figure 4.12: The Root Mean Square Error (RMSE) of the random forests that were used to predict the
population size of Norway pout (NOP) in the North Sea multispecies mizer model with the ’optimum’
number of parameters (i.e. the number of parameters required to minimise the RMSEs of the random
forests) (teal) compared with the random forests that included just six parameters (black). The boxes
represent the median, 25th, and 75th quantiles. The lower whisker represents the smallest observation
that is greater than or equal to the 25th quantile − 1.5 ∗ the InterQuartile Range (IQR). The upper
whisker represents the largest observation that is less than or equal to the 75th quantile + 1.5 ∗ the
IQR.

(Figure 4.13), were present in all 100 of the best performing random forests. The α of grey

gurnard and the width of the prey size preference σ for European plaice were also present in

over 90 of the 100 best performing random forests (Figure 4.13). The average feeding level of

individuals feeding mainly on the background resource f0, the starting slope of the community

spectrum slope0, the maximum size of the community spectrum wmax, the maximum size of

the background spectrum wppcut , and the exponent of the background mortality of the commu-

nity spectrum z0exp were not present in any of the 100 best performing random forests (Figure

4.14). None of the parameters in the species interaction matrix θ were present in more than

18 of the best performing random forests (Figure 4.15).

Of the six parameters that were present in all 100 of the best performing random forests, λ dis-

played the strongest relationship with community coexistence (Figures 4.16 and 4.17). Com-

munity coexistence occurred only when the value of λ exceeded 2.06 (or 0.33 when rescaled

between 0 and 1; Figures 4.16 and 4.17). A Wilcoxon rank sum test (W ) (Wilcoxon, 1945),

which is a non-parametric statistical test that is used to determine whether two independent

samples are drawn from populations with the same distribution (Triola, 2006), indicated that

the mean value of λ was significantly greater for model evaluations in which community co-

existence occurred (µ = 2.25) compared with model evaluations in which at least one species

became extinct (µ = 2.06; W = 669820, p < 0.001). Despite seemingly showing a weaker
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Figure 4.14: The frequency with which each of the species-independent parameters in the North Sea
multispecies mizer model appeared in the random forests with the lowest error when predicting commu-
nity biomass, population size, Spawning Stock Biomass (SSB), fisheries yield, the Large Fish Indicator
(LFI), mean weight, community slope, and community coexistence. A maximum frequency of 100 was
possible as the random forest algorithm was applied to 100 different testing datasets for each model
output.

relationship with community coexistence than λ, the value of p, q, n, and the F and α of

European plaice also differed significantly (p < 0.001) between model evaluations in which

community coexistence either did or did not occur. Community coexistence was additionally

affected by interactions between different parameters. For example, community coexistence

frequently occurred given any value of n (Figure 4.16) but did not occur when low values of

n were combined with high values of p (Figure 4.17). Similar interactions were less evident

when low values of n were combined with high or low values of q or the F and α associated

with European plaice (Figure 4.17).

Species survival

When predicting species survival, the parameters were divided into three groups: (1) those

associated with the species being predicted by the random forest; (2) those associated with

a different species than the one being predicted by the random forest; and (3) the species-

independent parameters. Overall, the frequency with which each parameter appeared in the

best performing random forests was relatively similar across all 12 fish species included in the

model (Figure 4.18). Six species-specific (α, F , the maximum food intake rate h, the coeffi-
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Figure 4.16: The distribution of the six most ’important’ parameters for model evaluations in which
community coexistence did (teal) or did not (black) occur. The six parameters shown here were the
only parameters to appear in all 100 of the best performing random forests as measured by Cohen’s
kappa statistic. The parameters include the exponent of the background resource λ, the scaling of food
intake n, the scaling of standard metabolism p, the search volume exponent q, and the fishing effort
F and assimilation efficiency α of European plaice. Please note that the parameters were rescaled
between zero and one for plotting purposes.

cient of standard metabolism ks, the width of the prey size preference σ, and the volumetric

search rate γ) and four species-independent (λ, n, p, and q) parameters appeared in all 100

of the best performing random forests for at least one species (Figure 4.18). All of the species-

specific parameters that consistently appeared in the 100 best performing random forests for

species survival were associated with the same species that the random forest was used to

predict (Figure 4.18). The species-specific parameters that were associated with a different

species to the one the random forest was used to predict were always present in fewer than

71 of the best performing random forests (Figure 4.18). The species-independent parameters

λ, n, p, and q were generally present in high frequencies when predicting the survival of the

larger species in the model, such as European plaice, saithe, common sole, and haddock,

and in the lowest frequencies when predicting the survival of the smaller species in the model,

particularly sprat and Atlantic herring (Figure 4.18).
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Figure 4.17: A matrix of plots depicting areas of the parameter space in which community coexistence
occurred in the North Sea multispecies mizer model. Each plot represents the parameter space of one
pair of the six most ’important’ parameters, which included the exponent of the background resource
λ, the scaling of food intake n, the scaling of standard metabolism p, the search volume exponent q,
and the fishing effort F and assimilation efficiency α of European plaice. These parameters were the
only parameters to appear in all 100 of the best performing random forests as measured by Cohen’s
kappa statistic. The parameter space is divided up into 100 bins of equal size and colour is used to
represent the proportion of parameter combinations that resulted in community coexistence in each
bin. Purple represents areas of the parameter space in which none (or very few) of the parameter
combinations resulted in community coexistence and yellow represents areas of the parameter space
in which all (or most) of the parameter combinations resulted in community coexistence. Please note
that the parameters were rescaled between zero and one for plotting purposes.

Regression

Community-level model outputs

Fewer than seven species-specific parameters were present with frequencies of more than 20

when predicting the continuous community-level outputs of the mizer model, such as commu-

nity biomass, fisheries yield, and mean weight (Figure 4.13). However, the F of a number of

different species was consistently found in the best performing random forests (Figure 4.13).
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For example, when predicting fisheries yield, the Large Fish Indicator (LFI), mean weight, and

community slope, the F of the larger species in the model, such as European plaice, haddock,

Atlantic cod, and saithe, were present in at least 81 of the 100 best performing random forests

(Figure 4.13). The F associated with Atlantic herring was also present with high frequency

(>65 out of 100) when using the random forest algorithm to predict community biomass, pop-

ulation size, SSB, and fisheries yield (Figure 4.13). Furthermore, both the α and h of Atlantic

herring were present in all 100 of the best performing random forests when predicting commu-

nity biomass, SSB, and fisheries yield (Figure 4.13). None of the species-specific parameters

were present in more than 75 of the best performing random forests when predicting the com-

munity population size (Figure 4.13). Instead, almost all of the species-specific parameters

appeared in the best performing random forests for community population size with very low

frequencies (Figure 4.13), despite often not being present in any of the best performing ran-

dom forests for any other continuous community-level model output.

In terms of the species-independent parameters in the mizer model, λ was present in all

100 of the best performing random forests for every continuous community-level model output

excluding population size (Figure 4.14). For community population size, λ was present in 95

of the 100 best performing random forests (Figure 4.14). n was also present in all 100 of the

best performing random forests for every continuous community-level model output excluding

mean weight, whilst p and q were present in all 100 of the best performing random forests

when predicting the LFI, mean weight, and community slope (Figure 4.14). All other species-

independent parameters were present in fewer than 39 of the 100 best performing random

forests (Figure 4.14). None of the parameters in the species interaction matrix θ were present

in more than 48 of the best performing random forests for any of the continuous community-

level model outputs (Figure 4.15).

Species-specific model outputs

When predicting the continuous species-specific outputs of the mizer model, the parameters

were again divided into three groups: (1) those associated with the species being predicted

by the random forest; (2) those associated with a different species to the one being predicted

by the random forest; and (3) the species-independent parameters. The parameters in the

first group that were most often present in the best performing random forests were relatively

consistent across the different species and model outputs (Figure 4.18). For example, α, F ,

and h were present in at least 98 of the 100 best performing random forests when predicting

the biomass, SSB, and fisheries yields of every species in the model (Figure 4.18). The

coefficient of standard metabolism ks and the width of the prey size preference σ were also

present with high frequency for many of the species in the model, with the exception of sprat,
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sandeel, and Atlantic cod (Figure 4.18). When predicting the population size of each species,

the best performing random forests tended to include a wider range of parameters with lower

frequencies than the other model outputs (Figure 4.18). This pattern was evident across

both the species-specific and species-independent parameters for all species excluding sprat,

European plaice and saithe (Figure 4.18). The species-specific parameters that were present

with the lowest frequencies when predicting population sizes included the activity coefficient

k, the length at which 25% of the stock is selected by the fishing gear L25, and the size class

of recruits Wmin (Figure 4.18). For all other continuous species-specific model outputs, the

species-specific parameters that were present in the best performing random forests with the

lowest frequencies included the length-weight converter a, initial population size N0, and the

reproductive efficiency eRepro of each species (Figure 4.18).

Few of the species-specific parameters that were associated with a different species to the

one being predicted were present in the best performing random forests with high frequency

(Figure 4.18). However, the F of Atlantic cod and/or European plaice was often present in

the best performing random forests when predicting the biomass, SSB, or fisheries yields of

almost all of the species in the mizer model (Figure 4.18). Other parameters associated with

European plaice, such as α and h, were also often present in the best performing random

forests when predicting the biomass, SSB, and fisheries yield of sprat, as well as the biomass

and fisheries yields of dab and common sole (Figure 4.18). Furthermore, the α and h of

haddock were frequently present in the best performing random forests for all of the model

outputs associated with Norway pout (Figure 4.18). Similarly, the α of Norway pout was always

present in the best performing random forests when predicting the biomass of haddock (Figure

4.18).

Again, λ, n, p, and q were the species-independent parameters that were most often present

in the best performing random forests when predicting the continuous species-specific out-

puts of the mizer model (Figure 4.18). More specifically, λ was present in all 100 of the best

performing random forests for all species and model outputs excluding the population size of

Norway pout and common sole (Figure 4.18). n and p were present in the best performing ran-

dom forests with particularly high frequency for all of the model outputs that were associated

with the larger species in the model, such as saithe, Atlantic cod, European plaice, and had-

dock (Figure 4.18). The average feeding level of individuals feeding mainly on the background

resource f0, the coefficient of the background mortality of the community spectrum z0pre , the

exponent of the background mortality of the community spectrum z0exp , and the maximum

size of the community spectrum wmax were all present in fewer than eight of the 100 best

performing random forests across all species and model outputs excluding population size
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(Figure 4.18).

Summaries of the parameters that appeared in all 100 of the best performing random forests

when predicting the community and species-specific model outputs are given in Tables 4.3

and 4.4 respectively.

Table 4.3: The species-independent and species-specific parameters of the North Sea multispecies
mizer model that appeared in all 100 of the best performing random forests when predicting community
biomass, population size, Spawning Stock Biomass (SSB), fisheries yield, the Large Fish Indicator
(LFI), mean weight, community slope, and community coexistence. The following abbreviations are
used to represent each species: SPR - sprat, SAN - sandeel, NOP - Norway pout, HER - Atlantic
herring, DAB - dab, WHI - whiting, SOL - common sole, GUR - grey gurnard, PLE - European plaice,
HAD - haddock, COD - Atlantic cod, SAI - saithe.

Model output Species-independent Species-specific

Biomass λ, n
HER α, HER F , HER h

SAN F

Pop. Size n

SSB λ, n
HER α, HER F , HER h

SAN F

Yield λ, n
COD F , HAD F , HER α

HER F , HER h, PLE F

LFI λ, n, p, q
COD F , HAD F , PLE F

SAI F

Mean Weight λ, p, q COD F , HAD F , PLE F

Slope λ, n, p, q COD F , SAI F

Coexistence λ, n, p, q PLE α, PLE F
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4.5 Discussion

We applied the random forest algorithm to the North Sea multispecies mizer model to assess

the ability of the algorithm to predict the behaviour of the model using different subsets of the

’most important’ predictor variables (or model parameters). The random forest algorithm was

particularly successful at predicting both community coexistence and species survival. For

species survival, the random forest algorithm was most accurate when used to predict the

survival of sprat, sandeel, and Atlantic herring, and least accurate when used to predict the

survival of Norway pout. Although we might expect the species with the greatest survival rates

to be associated with increased levels of accuracy due to the larger amount of information

available to the algorithm regarding the parameter combinations that resulted in the survival of

the species, Norway pout survived in over 80% of the model evaluations, whilst sprat, sandeel,

and Atlantic herring survived in 60-66% of the model evaluations. It would therefore seem that

the algorithm performed best when provided with a more balanced set of model evaluations.

This theory is further supported by the fact that European plaice survived in the fewest number

of model evaluations (43%) and was also associated with comparatively low accuracy, which

suggests that the algorithm was provided with too few examples of parameter combinations

that resulted in the survival of the species to make highly accurate predictions.

The random forest algorithm also performed relatively well when used to predict community

and species-specific biomass, SSB, and fisheries yield, as well as the LFI, mean weight, and

community slope, but it was not able to accurately predict community and species-specific

population sizes, most likely due to the much greater variability associated with these model

outputs. For biomass, SSB, and fisheries yield, there was a consistent pattern in the ranking

of each species based on the RMSEs of the random forest algorithm. For example, species of

intermediate size, such as dab, grey gurnard, and common sole, were consistently associated

with the lowest RMSEs (or greatest accuracy), whilst the smaller species in the model, such

as sandeel and Atlantic herring, were consistently associated with the greatest RMSEs (or

lowest accuracy). Similarities in the predictive ability of the random forest algorithm across

these model outputs is to be expected given the interdependencies of the biomass, SSB,

and fisheries yield model outputs, all of which are weight-based. The reduced accuracy with

which the random forest algorithm was able to predict the biomass, SSB, and fisheries yields

of the smaller fish species in the model may be caused by the increased impact of predation

pressure on these species compared with the larger species in the model. Increased predation

pressure may make the smaller fish species in the model more difficult to predict because

of the greater complexity in their species interaction networks; such complexity occurs as a

result of the interrelationships between predation, competition, and fishing pressure (Wong
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and Candolin, 2015).

The RMSEs of the random forests that were used to predict the population size of each

species displayed a remarkably different pattern to biomass, SSB, and fisheries yields, with

Atlantic cod being associated with the lowest RMSEs and Norway pout being associated with

the greatest RMSEs. This difference is to be expected given that the highly interdependent

weight-based outputs of the mizer model are likely to respond to changes in the parameters

in similar ways, whilst the population size, which is measured in terms of numbers of individ-

uals, may respond very differently. To illustrate this point, the biomass (and hence the SSB

and fisheries yield) of a species may fluctuate greatly without there being any change in the

population size (and vice versa). The random forest algorithm may therefore be expected to

show similar patterns in accuracy across all of the weight-based model outputs, but a different

pattern when used to predict the population size. Furthermore, the RMSEs of the random

forests that were used to predict population size may be lowest for Atlantic cod and greatest

for Norway pout due to differences in the strength of association between the population size

of each species and the parameters of the mizer model, a factor that is discussed further

below.

Overall, we found that the algorithm was successfully able to predict the majority of the model

outputs with relatively high accuracy using information on fewer than ten of the 306 param-

eters. These results highlight the driving nature of a small subset of model parameters; a

fact that is perhaps best exemplified by the community slope, which required just six param-

eters to minimise the RMSEs of the random forests for all 100 testing datasets. This level of

consistency was unparalleled across all other model outputs, indicating a weaker association

between these outputs and any given set of parameters in the mizer model. Both community

and species-specific population sizes required the largest number of parameters to maximise

the accuracy of the predictions. However, we have shown that far fewer parameters could be

used to predict population sizes with very little loss in agreement between the observations

and the predictions made by the random forest algorithm; the same is also true for all other

model outputs that required increased numbers of parameters to maximise accuracy. If the

subsets of parameters included in the best performing random forests are consistent across

all of the model outputs, as might be expected given the interrelationships between them, it

may therefore be possible to predict all of the outputs of the mizer model with relatively high

accuracy using information on fewer than 5% of the parameters. Such consistencies in the

parameters that appeared in the best performing random forests with the greatest frequencies

across all of the model outputs are explored further in Section 4.5.1 below.
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4.5.1 Frequency

The six parameters that were required to predict the community slope with the greatest ac-

curacy across all 100 testing datasets included the exponent of the background resource

spectrum λ, the scaling of food intake n, the scaling of standard metabolism p, the search

volume exponent q, and the fishing mortality F associated with Atlantic cod and saithe (Table

4.3). The parameters that were present in the best performing random forests with the great-

est frequencies across all other model outputs were similar to those listed above but with a few

additions. For example, the assimilation efficiency α, maximum food intake rate h, volumetric

search rate γ, width of the prey size preference σ, and the coefficient of standard metabolism

ks were also present in the best performing random forests with high frequency for one or

more of the model outputs (Tables 4.3 and 4.4). It is clear from these results that there is a

strong association between the outputs of the mizer model and the parameters associated

with the acquisition and assimilation of food and the standard metabolism of each species.

The importance of these parameters is unsurprising given that any changes to feeding and

metabolic rates would impact the ability of all 12 fish species to grow and reproduce (Steele

et al., 2001; Lall and Tibbetts, 2009). A change in any one of these parameters could therefore

have huge knock-on effects across the entire community through changes in predator-prey in-

teractions and competition for resources (commonly referred to as a ’trophic cascade’) (Steele

et al., 2001; Baum and Worm, 2009). Understanding these knock-on effects is of great im-

portance given that climate change is expected to affect feeding and metabolic rates in the

future (Roessig et al., 2004). However, single-species models are typically used to help de-

velop management strategies for the North Sea marine ecosystem, despite being unable to

simulate a trophic cascade in full. Increasing the contribution of ecosystem models, such as

mizer, to the decision-making process is therefore vital to ensuring that these knock-on effects

can be assessed and accounted for when developing management strategies for the future

(Hyder et al., 2015).

In addition to the parameters associated with the acquisition and assimilation of food and the

standard metabolism, the fishing mortality F of a number of different species, particularly the

larger fish species, were present in the best performing random forests with high frequency for

most of the model outputs. The importance of F is to be expected given that the removal of

the largest fish species would not only affect the population size of the fished species through

declines in the number of reproductively-active individuals, but would also impact the pro-

ductivity of the smaller fish species through a reduction in predation pressure (Steele et al.,

2001; Baum and Worm, 2009). Assuming the mizer model can be deemed an accurate rep-

resentation of the real world, the importance of the parameters related to both food intake and
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fishing mortality thus highlights the importance of bottom-up (resource-driven) and top-down

(consumer-driven) processes on fish populations in the North Sea (Cury et al., 2008; Lynam

et al., 2017). Again, using models such as mizer to discern the relative influence of bottom-up

and top-down processes on different species, as well as to understand the community-wide

impacts of changes in either one of these processes, is thus necessary to ensure that man-

agement efforts are not misplaced.

The importance of the parameters associated with the larger fish species in the model was

perhaps most apparent for the species-specific outputs. For these outputs, the parameters

were divided into three groups: (1) those associated with the species being predicted by the

random forest; (2) those associated with a different species to the one being predicted by the

random forest; and (3) the species-independent parameters. Unsurprisingly, the parameters

in the first group were generally present in the best performing random forests with much

greater frequency than the parameters in the second group due to their direct control on the

outputs being predicted by the random forest. However, a number of parameters associated

with European plaice and/or Atlantic cod, including F , α, h, and σ, appeared in the best per-

forming random forests when predicting the biomass, SSB, or fisheries yields of almost all of

the species in the model. European plaice and Atlantic cod may be particularly important due

to the aforementioned knock-on effects of changes in the feeding rates of large predators on

lower trophic levels (Steele et al., 2001), either by direct changes to the parameters related

to feeding or through the removal of these predators via fishing. Parameters associated with

haddock, such as α and h, also appeared in the best performing random forests when pre-

dicting the biomass, SSB, or fisheries yield of Norway pout and vice versa. It is possible that

this relationship is driven largely by the strength of the interaction θ between these species in

the mizer model, which is rivalled only by the interaction between dab and European plaice

(Blanchard et al., 2014).

For both community and species-specific population size, the species-specific parameters

related to feeding, metabolism, and fishing mortality were generally present in the best per-

forming random forests with much lower frequencies when compared with the random forests

that were used to predict the other model outputs. Instead, almost all of the species-specific

parameters appeared in the best performing random forests with low frequency, despite most

of these parameters not being present in any of the best performing random forests for any

other model output. Community coexistence, as well as the survival of sprat and Atlantic her-

ring, also displayed similar patterns in parameter frequency to population size but to a lesser

extent. These results suggest that there is a much looser association between these model

outputs and any given set of parameters, which may help to explain the increased number

of parameters required to predict the survival of Atlantic herring, as well as community and
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species-specific population size. A looser association between the model parameters and

population size may be expected given that the mizer model is a size-based model and thus

all of the parameters in the model are related to size (or weight) rather than numbers of indi-

viduals (Scott et al., 2014). The model is also fitted to fisheries landings data (Spence et al.,

2016), which is measured in terms of biomass, thus strengthening the association between

the model parameters and the weight-based model outputs. Although community coexistence

is related to weight, it may have a weaker association with the model parameters as it is not a

direct model output - it is calculated based on the value of another model output. Furthermore,

successfully predicting coexistence requires the random forest algorithm to be capable of ac-

curately predicting extremely low species biomass, which may not be the case (see Appendix

A).

Although community coexistence may have a looser association with the parameters of the

mizer model when compared with some of the other model outputs, λ, n, p, q, and the α and F

associated with European plaice were present in all 100 of the best performing random forests

for community coexistence (Table 4.3). Of these six parameters, it was λ that displayed the

strongest relationship with this model output, with coexistence occurring only when the value

of λ was above 2.06. A brief exploration of the baseline North Sea mizer model indicates

that a change in λ from the nominal value of 2.33 to 2.06 causes a dramatic decline (of up

to approximately 3.4 × 1030 at the start of the model evaluation) in plankton abundance in

the smallest size classes and a comparably small increase (of up to approximately 1.3 × 109

at the start of the model evaluation) in plankton abundance in the largest size classes. It

is therefore likely that when λ is equal to 2.06, plankton numbers drop below some critical

threshold beneath which it is not possible to sustain all 12 fish populations in the model. Not

only does the knowledge of this threshold help us to better understand the inner workings of

the model, it may also be useful for decision makers if the model is used to support policy

in the future. Knowledge of this threshold may be particularly important to decision makers

given that the abundance of plankton has declined significantly in the North Sea over the past

25 years (Capuzzo et al., 2018). If the declining trend in plankton abundance continues into

the future, as may be expected under climate change (Capuzzo et al., 2018), the relevance of

this threshold will only increase.

Such a defined threshold was not apparent for any other parameter, although community

coexistence did not occur when low values of n were combined with high values of p. These

results indicate that there were parameter combinations in which food intake rates could not

sustain standard metabolic rates, resulting in the extinction of one or more species in the

model. However, further research is required to better understand the parameter combinations
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that result in the extinction of one or more species using more realistic parameter distributions

than were used in this research (see Section 4.5.3 for further details).

The parameters that were present in the best performing random forests with the lowest fre-

quencies were again similar across all of the community-level and species-specific model

outputs and were largely associated with the species interaction matrix θ, the initial population

size of each species N0, the starting slope of the community spectrum slope0, the maximum

size of the background and community spectra (wppcut and wmax respectively), and the nat-

ural and predation mortality rates of the background and community spectra (f0, z0pre , and

z0exp). It is perhaps unsurprising that parameters such as N0 and slope0 were less important

in helping to successfully predict the outputs of mizer as they only play a role at the very start

of each model evaluation. Furthermore, although the size of the background resource was

found to be extremely important in ensuring the random forest algorithm was able to accu-

rately predict all of the model outputs, it is clear that this is driven almost entirely by λ rather

than the parameters associated with the maximum size wppcut or mortality rates f0 of this

resource. Similarly, parameters relating to the acquisition and assimilation of food outside of

the background resource were also shown to be important in improving the accuracy of the

random forest algorithm across all model outputs. As the interaction matrix is used to help

quantify food encounter rates in the model (Andersen et al., 2015), we might expect θ to be

present in a much larger number of the best performing random forests. However, it is clear

that the importance of the parameters related to food intake are largely driven by n, q, and γ

instead of the interaction matrix.

4.5.2 Comparison with global sensitivity analysis

The parameters that most often appeared in the best-performing random forests (namely λ, n,

p, q, F , and α) were very similar to those associated with the greatest sensitivity indices in a

derivative-based sensitivity analysis of the North Sea multispecies mizer model (see Chapter

3). Such similarities highlight the potential ability of the random forest algorithm to identify

the parameters that drive changes in different model outputs with far fewer model evaluations

than a global sensitivity analysis. The methods described in this research may therefore be

particularly beneficial for models that have previously been deemed to be too computationally

expensive to conduct a sensitivity analysis, either due to the number of parameters included

in the model or as a result of long model run times.

In order to confirm this theory, further comparisons must be made between the two meth-

ods when applied to different models. Such comparisons may be relatively inexpensive to
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complete for marine ecosystem models that have already been run under many different pa-

rameter combinations, either for a sensitivity analysis (e.g. StrathE2E; Morris et al. (2014)) or

to determine parameter combinations that result in historically plausible model outputs (e.g.

LeMANS; Thorpe et al. (2015, 2016, 2017)). Not only would this research help us to better

understand the potential benefits of using machine learning in marine ecosystem modelling,

it would also enable us to assess the generality of our conclusions, particularly in terms of

the areas in which to focus future research efforts to reduce the uncertainties in the model

outputs.

However, it is important to note that although the methods described in this research may

require far fewer model evaluations to complete than a global sensitivity analysis, it may still

not be computationally feasible to apply these methods to some of the most complex ma-

rine ecosystem models. For example, models such as ERSEM (https://www.pml.ac.uk/

Modelling_at_PML/Models/ERSEM) and Atlantis (https://research.csiro.au/atlantis/)

may take much longer than mizer to complete a single model evaluation. It is therefore unlikely

that a large number of model evaluations could be run in a reasonable amount of time to ex-

plore the parameter space in enough detail to successfully train the random forest algorithm.

Nevertheless, it may be possible to use the random forest algorithm to explore the behaviour

of these models in small subsections of the parameter space or in specific components of the

models.

4.5.3 Limitations

The main limiting factor during this research was the high computational costs associated with

running both the mizer model and the random forest algorithm. The large number of parame-

ters included in the mizer model, as well as the often long model run times, prevented us from

being able to explore the entire parameter space of the model. In an attempt to overcome this

issue, we used Latin Hypercube Sampling (LHS) to generate a stratified sample of the pa-

rameter space. LHS generally provides a better representation of the parameter space than

random sampling by preventing clustering and helping to ensure the edges of the parameter

space are included in the sample (Agarwal et al., 2012; O’Sullivan and Perry, 2013). However,

some regions of the parameter space may still be undersampled when using LHS (Agarwal

et al., 2012; O’Sullivan and Perry, 2013). Despite this, we believe the 5000 parameter com-

binations used in this research offer a good starting point with which to explore the ability of

the random forest algorithm to predict the outputs of the mizer model. Further research is re-

quired to determine whether the conclusions of this research remain the same when a larger

set of parameter combinations is used to train the random forest algorithm.

115

https://www.pml.ac.uk/Modelling_at_PML/Models/ERSEM
https://www.pml.ac.uk/Modelling_at_PML/Models/ERSEM
https://research.csiro.au/atlantis/


Using realistic parameter distributions (instead of uniform distributions with upper and lower

limits of ±10% of the nominal parameter values) would additionally enable us to better under-

stand the ability of the random forest algorithm to accurately predict the outputs that are of

most interest to scientists, decision makers, and the general public. Using realistic parameter

distributions may be especially important to decision makers as the algorithm cannot be used

to explore the consequences of parameter values that exceed the range of values given in the

training data (Müller et al., 2016). Therefore, if the realistic distribution of a parameter exceeds

±10% it would not be possible to use the trained random forests to predict the outputs of the

model and to explore the impacts of different management strategies on the North Sea fish

community.

As was previously noted in a global sensitivity analysis of the mizer model (see Chapter 3),

a small number of the parameter combinations also result in ’extreme’ model behaviour, such

as widespread species extinctions and the subsequent dominance of one or two fish species.

This extreme model behaviour has the potential to inflate the number of parameters required

to maximise the accuracy of the random forest algorithm and to increase the frequencies with

which each parameter is present in the best performing random forests. In an attempt to

prevent extreme model evaluations from having an undue influence on the results of the anal-

ysis, we applied the random forest algorithm to 100 different testing datasets, each of which

consisted of a random sample of 40% of the model evaluations. In doing so, we reduced the

likelihood of an extreme model evaluation appearing in each of the testing datasets, thereby

helping to ensure the results were less skewed by extreme model behaviour. However, this

issue may be prevented entirely by identifying a set of parameter combinations that produce

historically plausible model outputs, as has already been achieved for the North Sea LeMANS

marine ecosystem model (see Thorpe et al. (2015, 2016, 2017) for example). The random

forests described in this research may help to achieve this goal by screening large numbers of

parameter combinations to give an initial indication as to whether the combinations may result

in plausible model behaviour.

Finally, we chose to use random forests for their relative simplicity and ease of application.

However, it is possible that other forms of ML may be capable of predicting the outputs of the

mizer model with greater accuracy than the random forest algorithm. A preliminary explo-

ration of the ability of Support Vector Machines (SVMs) to successfully predict the outputs of

the mizer model indicated that SVMs were not able to outperform the random forest algorithm

using the default settings (not shown). Although several parameters may be tuned to optimise

the performance of the SVM algorithm, we chose not to explore this avenue of research as it

would have required much greater computational resources to conduct the analysis than the

random forest algorithm (Li and Kong, 2014). Further research is therefore required to deter-
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mine if tuned SVMs, or any other supervised ML algorithms, are successfully able to predict

the outputs of the mizer model with greater accuracy than the random forest algorithm. The

accuracy and efficiency of traditional methods of data analysis, such as logistic regression,

should also be explored to ensure the most appropriate method is used to predict the outputs

of the mizer model in the future.

4.6 Implications and conclusions

To the best of our knowledge, this study is the first to apply the random forest algorithm to

predict the behaviour of a complex marine ecosystem model with more than 300 parameters.

The algorithm was successfully able to predict most of the outputs of the mizer model using

information on fewer than ten parameters. Nevertheless, improvements in accuracy would

need to be made if the trained random forests were to be used for predictive purposes in the

future. Such improvements could be made by training the random forest algorithm with a larger

set of model evaluations or by fine tuning the parameters of the algorithm. Further research is

therefore required to explore the potential benefits of using increased computational resources

to improve the accuracy of the random forest algorithm, as well as to identify whether any

other method of ML may be better able to predict some or all of the outputs of the mizer

model.

The parameters that were most often found in the best performing random forests were largely

consistent across all of the model outputs. The parameters with the greatest frequencies

tended to include six of the species-specific (F , α, h, γ, σ, and ks) and four of the species-

independent (λ, n, p, and q) parameters, all of which were related to feeding, metabolic, and

fishing mortality rates. The importance of these parameters is supported by a global sensitivity

analysis of the mizer model (see Chapter 3), which identified the need to focus future research

efforts on reducing the uncertainties associated with the size of the background resource (i.e.

the planktonic community), the acquisition and assimilation of food, and fishing mortality rates.

Large-scale monitoring of the planktonic community through surveys such as the Continuous

Plankton Recorder (sahfos.co.uk), increased availability of data related to food intake, such

as the collated stomach content analysis data that was recently made available by the Centre

for Environment, Fisheries and Aquaculture Science (cefas.co.uk; Pinnegar et al. (2015)),

and improved reporting of fishing activity would help to achieve this goal.

Overall, the importance of exploring the ability of the random forest algorithm to predict the

outputs of the mizer model cannot be overstated. It can take days or even weeks for some of

the model evaluations to reach equilibrium. Being able to accurately predict the outputs of the

model using information on a small number of the parameters may reduce the need to run the
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full model and help to screen potential parameter combinations for historically plausible model

outputs, thereby helping to lessen the costs associated with marine ecosystem modelling

both in terms of human and computational resources; this may be especially important for

scientists and decision makers that have limited funding and/or short deadlines. The methods

described here may also be used to highlight important interactions between species in the

model. For example, European plaice and Atlantic cod were identified as influential drivers of

the biomass, SSB, and/or fisheries yields of almost all of the lower trophic level species in the

mizer model. If deemed to be biologically important, these interactions must be accounted for

when making management decisions. To do this, we need to continue to move from single-

species to ecosystem-based management of the North Sea. Doing so will help to prevent

unintended consequences of management decisions on non-target species and thus help

to ensure that fishing activity remains sustainable (Uusitalo et al., 2015). However, further

research is required to place more informative distributions on the most important parameters,

such as those associated with feeding, metabolic, and fishing mortality rates. Not only would

this research help us to further understand and improve the behaviour of the mizer model,

it may also help to increase the confidence that decision makers have in marine ecosystem

models, both of which are vital to ensuring the mizer model can be used to support fisheries

management in the future.
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Chapter 5

Uncertainty in projections of global and

regional sea surface temperature and salinity

5.1 Abstract

Environmental models are increasingly being used to identify possible changes in environmen-

tal conditions in response to climate change over the next century. However, these models

often suffer from large uncertainties; understanding the implications of these uncertainties is

vital to ensuring the successful development of robust management solutions for the future,

but disentangling the effects of multiple sources of uncertainty can be extremely difficult. For-

tunately, multi-model ensembles, which combine the outputs of multiple structurally different

models run under a common set of scenarios, may be used to disentangle the effects of three

types of uncertainty: internal variability, model, and scenario uncertainty. In this research, we

use the methods of Hawkins and Sutton (2009) to quantify the relative contributions of inter-

nal variability, model, and scenario uncertainty to the total variance of the projections of global

and regional Sea Surface Temperature (SST) and Sea Surface Salinity (SSS) from over 10 of

the latest state-of-the-art climate models developed during phase five of the Coupled Model

Intercomparison Project (cmip.llnl.gov/cmip5/). The results of this research are used to:

(1) discuss spatio-temporal changes in the dominance of each type of uncertainty; (2) discuss

the potential to reduce the uncertainty in the model projections; and (3) identify regions and

time periods in which the projections are most certain and are thus most useful to decision

makers in terms of adaptation planning. Overall, we hope that this research can be used to

improve the representation of SST and SSS in climate models in the future, thus helping to en-

sure ocean heat and CO2 uptake, sea level rise, and coupled ocean-atmosphere phenomena

such as ENSO are correctly specified in the models.
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5.2 Introduction

Identifying possible changes in environmental conditions in response to climate change over

the next century is of great societal and economic importance due to the potentially wide-

ranging impacts on resources, particularly in terms of food and water security (Villarini and

Vecchi, 2012). To identify these possible changes, we must make use of projections from

environmental models. These models often suffer from large uncertainties, yet management

decisions must still be made in spite of this. Recognising and understanding the implications

of these uncertainties is therefore vital to ensuring the successful development of robust man-

agement solutions for the future (Walker et al., 2003). A thorough evaluation of uncertainties

may also enable the prioritisation of model components in which uncertainties may be reduced

via further research, as well as help to identify irreducible uncertainties (Walker et al., 2003;

Villarini and Vecchi, 2012).

The uncertainties in projections of future environmental conditions can usefully be divided into

three broad categories: internal variability, model, and scenario uncertainty. In climate mod-

els, internal variability represents the inherent variability in the system that is not caused by

external anthropogenic forcing (Hawkins and Sutton, 2009). For example, internal variability

may arise through the chaotic nature of natural phenomena such as the El Niño Southern

Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Pacific Decadal Oscillation

(PDO), all of which can have a dramatic impact on atmospheric and oceanic conditions in

their respective regions (Cheung et al., 2016). Internal variability may be of particular interest

to decision makers as is it can mask the signal of anthropogenic-induced change over rela-

tively short time frames (Hawkins and Sutton, 2009, 2011). Model uncertainty is described

by Beven (1993, 1996, 2001, 2006) as an issue of ’equifinality’, whereby a number of equally

plausible model structures may generate very different predictions for the future. This type of

uncertainty arises through the choice of variables or processes deemed necessary to include

or exclude in a model, how these components are represented mathematically, and the re-

lationships between these variables and the model inputs and outputs (Walker et al., 2003;

Ascough II et al., 2008). Scenario uncertainty is most often associated with the unknown na-

ture of future conditions, including the degree of socio-economic development, technological

advances, and the impacts of - and societal responses to - climate change. For example, un-

certainties regarding future greenhouse gas emissions will impact climate model projections

via uncertainties in radiative forcing (Hawkins and Sutton, 2009).

Internal variability, model, and scenario uncertainties may be disentangled from one another

by combining the outputs of multiple structurally different models, run under a common set of

future scenarios, into a multi-model ensemble (Gårdmark et al., 2013). This disentangling is
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feasible since any variations in the outputs of different models within a single scenario will be

caused solely by differences in the structure of the models (Wang et al., 2011; Gårdmark et al.,

2013). Conversely, variations in the output of a single model under multiple scenarios will

be caused solely by the propagation of uncertainties regarding possible changes in external

forcing in the future (Knutti and Sedláček, 2013). Internal variability may then be estimated

by running each model in the ensemble using multiple sets of initial conditions (see Deser

et al. (2014) and Cheung et al. (2016) for example), although other options are available if

an initial condition ensemble such as this is not available (see Hawkins and Sutton (2009)

for example). However, few research areas have well-developed ensembles with which to

explore these uncertainties. Fortunately, such ensembles are becoming increasingly popular

in climate science as a result of accruing evidence suggesting seasonal climate predictions

from multi-model ensembles are almost always more accurate than predictions from a single

model (Schmittner et al., 2005). In particular, the Coupled Model Intercomparison Project

(CMIP) of the World Climate Research Programme (WCRP) has been working for over two

decades to develop a climate ensemble that currently includes over 30 different models, all of

which have been run under a set of common scenarios for the future. The CMIP ensemble

thus enables an exploration of the uncertainties associated with a wide range of environmental

variables.

Hawkins and Sutton (2009) developed a novel approach to both quantifying and visualising

the relative contributions of internal variability, model, and scenario uncertainties to the to-

tal variance of the multi-model ensemble developed during phase three of CMIP (CMIP3;

wcrp-climate.org/wgcm-cmip/wgcm-cmip3). This method involves smoothing the model

projections and estimating the contribution of each of the three types of uncertainty using: (1)

the multi-model mean of the variance of the model residuals from the model fits, independent

of lead time; (2) the multi-scenario mean of the variance of the model fits; and (3) the variance

of the multi-model mean of the smooth fits (Hawkins and Sutton, 2009). Although simple,

this method has proven to be effective in communicating the uncertainties associated with a

wide range of different variables from global climate models, including surface air temperature

(Hawkins and Sutton, 2009), precipitation (Hawkins and Sutton, 2011), sea surface temper-

ature (Villarini and Vecchi, 2012; Cheung et al., 2016), sea level (Little et al., 2015), tropical

storm frequency (Villarini and Vecchi, 2012), and the strength of the Atlantic Meridional Over-

turning Circulation (Reintges et al., 2017).

The aim of this research is to expand upon this growing body of literature by quantifying

the contribution of internal variability, model, and scenario uncertainty to the total variance of

projections of Sea Surface Temperature (SST) and Sea Surface Salinity (SSS) using the latest

state-of-the-art global climate models developed during phase five of CMIP (CMIP5; cmip.
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llnl.gov/cmip5/). SST and SSS are of particular interest as the accurate representation of

these variables is vital to ensuring ocean heat and CO2 uptake, sea level rise, and coupled

ocean-atmosphere phenomena such as ENSO are correctly specified in the models (IPCC,

2014a). Although Villarini and Vecchi (2012) and Cheung et al. (2016) have previously applied

similar methods to those described in Hawkins and Sutton (2009, 2011) to projections of SST,

the former focused solely on the tropics, while the latter focused on global means alongside

two basin-scale examples from the Northeast Atlantic and Northeast Pacific. Here, we focus

instead on both global and regional projections of SST and SSS. Including regional projections

from around the world will enable us to better understand the spatio-temporal changes in the

contribution of each type of uncertainty to the total variance of the projections. Quantifying

the uncertainties at a regional level may also be of far greater relevance to decision makers

(Hawkins and Sutton, 2009), as they tend to act at a regional rather than global scale. We

further add to the work of Villarini and Vecchi (2012) and Cheung et al. (2016) by quantifying

the signal-to-noise ratio of the projections in different regions, allowing us to identify regions

and time periods in which the projections are most certain and are thus most useful to decision

makers in terms of adaptation planning (Hawkins and Sutton, 2009).

5.3 Methods

To evaluate the spatio-temporal changes in the contribution of internal variability, model, and

scenario uncertainty to the total variance of the projections of absolute Sea Surface Temper-

ature (SST) and Sea Surface Salinity (SSS), we used the multi-model ensemble produced in

phase five of the Coupled Model Intercomparison Project (CMIP5). This ensemble also forms

part of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change

(IPCC) (IPCC, 2014a). Each model in the ensemble was used to simulate historical clima-

tological and oceanographic conditions between 1850 and 2005 and then run under three

scenarios for the future, known as Representative Concentration Pathways (RCPs), between

2006 and 2100. The three RCPs, referred to as RCP 2.6, RCP 4.5, and RCP 8.5, span the

range of currently available estimates for the predicted level of radiative forcing that is expected

to occur by the end of the century (van Vuuren et al., 2011). RCP 2.6 represents a scenario in

which radiative forcing increases from <2W.m2 at the start of the century to 3W.m2 (~490ppm

CO2 eq) in the coming decades, followed by a decline to 2.6W.m2 by the end of the century

(van Vuuren et al., 2011). RCP 4.5 represents an intermediate pathway, with an increase in

radiative forcing to 4.5W.m2 (~650 ppm CO2 eq) by 2100 (van Vuuren et al., 2011). Finally,

RCP 8.5 represents a scenario in which radiative forcing substantially increases to 8.5W.m2

(~1370 ppm CO2 eq) by 2100 (van Vuuren et al., 2011).
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For the purposes of this research, we selected models from the CMIP5 multi-model ensemble

based on the availability of the appropriate data with consistent global coverage spanning the

years between 1950 and 2099. This meant that we were able to use the projections from 14

different models for SST and 11 different models for SSS (see Appendix B for further details of

the selected models). Please note that the following analysis was also applied using only the

nine models that were available for both SST and SSS (see Appendix B), but the results were

very similar to those presented in Section 5.4 and are therefore not discussed further.

Following the methods of Hawkins and Sutton (2009), we extracted the global annual mean

SST and SSS from the historical simulations and from each of the three RCP model runs using

the IPCC AR5 online database (dkrz.de). It is important to note that some of the models

were run under each scenario multiple times, with each run producing slightly different model

outputs. However, to ensure that all models were treated equally we chose to use only one

set of outputs per model, selecting the first set of outputs in which all of the required scenarios

were available (Hawkins and Sutton, 2009, 2011).

To determine the contribution of internal variability, model, and scenario uncertainty to the

total variance of the global projections of SST and SSS, we fit a fourth-order polynomial to

the output of each model to give a smooth fit (Hawkins and Sutton, 2009). A fourth-order

polynomial was selected to ensure the non-linear response of SST and SSS to changes in

radiative forcing could be captured whilst also smoothing the data to enable internal variability

to be quantified (Reintges et al., 2017). The raw outputsX of a given modelm under scenario

s in the year t may be expressed as:

Xm,s,t = xm,s,t + im,s + εm,s,t (5.1)

where x represents the smooth fit of the fourth-order polynomial, i represents the mean SST or

SSS in the reference period, and ε represents the residuals of the projections from the smooth

fit. For the purposes of this research, i was defined as the mean of x between 1971 and 2000

in accordance with Hawkins and Sutton (2009, 2011). The models were not weighted by their

ability to simulate historical trends in SST or SSS and instead we chose to treat all models as

equally plausible representations of reality (Hawkins and Sutton, 2009). All models were also

assumed to be independent as in Hawkins and Sutton (2011).

The uncertainty associated with internal variability IV was assumed to be equal to the multi-

model mean of the variance of the residuals ε:

IV =
∑
m

vars,t(εm,s,t) (5.2)
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where εm,s,t is smoothed before the variance is calculated and IV is constant in time. Al-

though studies such as Boer (2009) have highlighted the potential for internal variability to

increase slightly over decadal timescales, the effect is often negligible and we therefore chose

to keep IV constant for simplicity (Hawkins and Sutton, 2011).

The model uncertainty M was assumed to be equal to the variance of the smooth fits, aver-

aged across all three RCP scenarios:

M(t) =
1

N s

∑
s

varm(xm,s,t) (5.3)

where Ns represents the number of scenarios included in the analysis.

The scenario uncertainty S was assumed to be equal to the variance of the multi-model mean

of the smooth fits:

S(t) = vars

(
1

Nm

∑
m

xm,s,t

)
(5.4)

As each type of uncertainty was assumed to be independent, the total variance T was equal

to:

T (t) = IV +M(t) + S(t) (5.5)

The mean change of all of the model outputs from the reference period, denoted as G, was

equal to:

G(t) =
1

Ns

∑
m,s

xm,s,t (5.6)

The fractional uncertainty F (90% confidence level) was thus:

F (t) =
1.65

√
T (t)

G(t)
(5.7)

and the Signal-to-Noise Ratio (SNR), which represents the robustness of the projections, was

defined as the reciprocal of the fractional uncertainty.

To better understand the spatial changes in the contribution of each type of uncertainty through

time, we applied the same method as described above to different regions across the globe.

To do this, we extracted the annual mean SST or SSS from the multi-model ensemble for

54 distinct regions, which were selected based on Longhurst’s widely accepted partitioning
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of the global ocean into biogeographical provinces (Longhurst (2007); see Appendix C for

further details). Each province represents an area with different environmental and biologi-

cal conditions, thus making this classification system particularly appropriate for use in this

research.

5.4 Results and discussion

Projections of global Sea Surface Temperature (SST) indicate that warming is expected to

occur in surface waters across the globe, with increases in absolute temperature ranging from

0.14% under RCP 2.6 to 1.33% under RCP 8.5 compared with the mean temperature in the

reference period of between 1971 and 2000 (Figure 5.1). The opposite trend is apparent in

the projections of global Sea Surface Salinity (SSS), in which declines of between 0.16% and

1.39% psu are expected to occur by 2099 (Figure 5.1). The projections for both SST and SSS

remain similar under all three scenarios in the first half of the 21st century, before starting to

diverge due to the delayed effect of emissions on the global climate (Figure 5.1; Hawkins and

Sutton (2009)). The divergence between scenarios is most apparent in the projections of SST,

where there is little overlap between the three scenarios by the end of the century (Figure 5.1).

Conversely, there is much greater overlap between the projections of SSS under each of the

three different scenarios, largely due to the increased spread between models (Figure 5.1).

For example, the projected change in SSS under RCP 8.5 ranges from -0.35% to -1.39%

by 2099, whilst the projected change in SST under the same scenario ranges from 0.63%

to 1.33% by 2099 (Figure 5.1). By quantifying the spread between the different models and

scenarios, along with the internal variability of the models, we can identify how the contribution

of each type of uncertainty changes with lead time for both SST and SSS.

5.4.1 Uncertainty at a global scale

For projections of global SST, internal variability contributes a maximum of 17% to the total

variance of the projections at short lead times, but this drops off to less than 1% by the end

of the century (Figure 5.2c). These results differ from Cheung et al. (2016), who found the

contribution of internal variability to be approximately 50% of the total variance at the start of

the century. This difference is caused by contrasting methodologies, with Cheung et al. (2016)

estimating the contribution of internal variability using the standard deviation of the outputs of

a single CMIP5 model that was run under multiple sets of initial conditions. Although the

methods used by Cheung et al. (2016) may provide a more accurate representation of the

internal variability of a single model than the methods used here, they may not accurately

reflect the internal variability of all of the models in the ensemble. However, our methods may
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Figure 5.1: Projections of historical and future global annual Sea Surface Temperature (SST; a) and
Sea Surface Salinity (SSS; b) from the selected CMIP5 climate models between 1950 and 2099. The
projections are shown as the percentage change in SST or SSS from the reference period (1971-
2000) to allow for direct comparisons to be made between the two variables. Historical projections
(grey) cover the time period between 1950 and 2006, whilst the future projections cover the time period
between 2006 and 2099. All models were forced with three Representative Concentration Pathways
(RCPs), known as RCP 2.6 (blue), RCP 4.5 (green), and RCP 8.5 (orange). RCP 2.6 represents
a low greenhouse gas emissions scenario, whilst RCP 4.5 and RCP 8.5 represent intermediate and
high emissions scenarios respectively. The projections from individual models are shown as thin lines,
whilst the multi-model mean is shown as a bold line.

also underestimate the contribution of internal variability, an issue that is discussed further

in Section 5.4.3. Excluding the difference in contribution from internal variability at the start

of the century, the findings of Cheung et al. (2016) are largely similar to those presented in

Figure 5.2c, with the contribution of internal variability dropping to less than 5% for projections

of SST by the 2090s.

Internal variability plays a larger role for projections of global SSS than SST at short lead

times, contributing 28% to the total variance at the start of the century before again dropping

to less than 1% by the 2090s (Figure 5.2d). This decrease in the percentage contribution

of internal variability to the total variance is to be expected given that our methods assume

internal variability does not change over time, whilst both model and scenario uncertainties

increase with time (Figure 5.2b). It is also perhaps unsurprising that the contribution of in-

ternal variability to the total variance of the projections is greater for SSS than for SST, as it

has previously been shown that internal variability plays a more important role in global and

regional projections of precipitation than it does for surface air temperature (Räisänen, 2001;

Murphy et al., 2004; Hawkins and Sutton, 2009, 2011). As precipitation is an important driver

of SSS (along with evaporation, river run-off, and ice melt) and surface air temperatures are

highly interrelated with SST, such similarities are to be expected (IPCC, 2007).
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Figure 5.2: The contribution of internal variability (IV; orange), model (blue), and scenario (green) un-
certainty to the total variance of the projections of future global, decadal sea surface temperature (left)
and sea surface salinity (right) from the selected CMIP5 climate models run under three scenarios
of future greenhouse gas emissions between 2006 and 2099. The contribution of each type of un-
certainty to the total variance is depicted in a and b) in absolute terms (Kelvin (K)2 and psu2 for sea
surface temperature and sea surface salinity respectively); in c and d) as a percentage; and in e and
f) as the fractional uncertainty, defined as the 90% confidence level of the contribution of each type of
uncertainty to the total variance of the projections divided by the mean change of the projections from
the reference period of 1971 to 2000.
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For both SST and SSS, the total variance of the projections increases exponentially towards

the end of the century as model and scenario uncertainties grow (Figure 5.2a and b). Model

uncertainty dominates the total variance of the projections at short lead times, with contribu-

tions of up to 92% prior to the 2040s (Figure 5.2c and d). For SST, the dominant contributor to

the fractional uncertainty of the projections switches from model to scenario uncertainty in the

2050s as the spread between the three scenarios becomes larger than the spread between

models (Figure 5.2e). By the end of the century, scenario uncertainty dominates the total

variance of the projections of SST, with a contribution of over 80% (Figure 5.2c). For SSS, the

contribution of scenario uncertainty to the total variance of the projections also increases with

lead time, with contributions of less than 1% in the 2010s compared with 43% in the 2090s

(Figure 5.2f). In contrast to SST, the uncertainty associated with projections of SSS continues

to be dominated by model uncertainty at the end of the century, with a contribution of 56%,

indicating the spread between models remains higher than the spread between scenarios

(Figure 5.2f). The total fractional uncertainty of the projections is minimised in the 2020s for

SST and in the 2040s for SSS, occurring immediately prior to the large increases in scenario

uncertainty (Figure 5.2e and f). Although perhaps less important at a global scale than at a

regional scale, the identification of this minimum may be particularly useful for planning pur-

poses as it highlights the point in time in which the projections are most robust (Hawkins and

Sutton, 2009).

Again, the contributions of both model and scenario uncertainty to the total variance of the

projections of SST and SSS are similar to that of surface air temperature and precipitation

(as described in Hawkins and Sutton (2009, 2011)) respectively. For example, the switch in

dominance between model and scenario uncertainty occurs at the same lead time for both

surface air temperature and SST. However, the variance attributed to scenario uncertainty is

much larger for projections of SST than surface air temperature by the end of the century,

with a value of more than 0.6K2 for SST (Figure 5.2a) and between 0.3 and 0.4 Kelvin (K)2

for surface air temperature (Hawkins and Sutton, 2009). Although such a direct comparison

between the variance attributed to scenario uncertainty for SSS and precipitation is not pos-

sible given the information provided in Hawkins and Sutton (2011), the fractional uncertainty

associated with the different scenarios is also much greater for SSS than for precipitation by

the end of the century, with values of 0.69 (Figure 5.2b) and between 0.3 and 0.4 respectively

(Hawkins and Sutton, 2011).

The increased scenario uncertainty in projections of SST and SSS compared with surface

air temperature and precipitation is most likely caused by a difference in the scenarios used

in the present research compared with those used in Hawkins and Sutton (2009, 2011). In

this research, we used an ensemble of models that had been run under three Representa-
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tive Concentration Pathways (RCPs), which represent a wider range of scenarios than those

discussed in Hawkins and Sutton (2009, 2011). Hawkins and Sutton (2009, 2011) used an

older version of the multi-model ensemble, which was produced in phase three of the Cou-

pled Model Intercomparison Project (CMIP3) and made use of the scenarios discussed in the

Special Report on Emissions Scenarios (SRES) (IPCC, 2000). The SRES scenarios B1 and

A2 are comparable to RCP 4.5 and RCP 8.5 respectively, whilst the SRES scenario A1B rep-

resents a scenario somewhere between SRES B1 and SRES A2 (van Vuuren et al., 2011).

This means there are no SRES scenarios that are comparable to RCP 2.6, which was recently

introduced to represent a scenario in which emissions are reduced by the end of the century

as a result of climate policy (van Vuuren et al., 2011; Knutti and Sedláček, 2013). Although

the switch from the SRES scenarios to the RCP scenarios might increase the uncertainty

associated with the outputs of the climate models, it does not mean that we have become

more uncertain about how the climate will change in the future (Knutti and Sedláček, 2013).

Instead, the increased scenario uncertainty reflects a choice between different economic sce-

narios (Knutti and Sedláček, 2013).

Because of the increased scenario uncertainty in the projections of SST and SSS compared

with surface air temperature and precipitation, we might expect the percentage contribution

of scenario uncertainty to the total variance of the projections to also be greater for SST and

SSS by the end of the century. Although this seems to be the case for projections of SSS, it

does not apply to SST as the variance attributed to model uncertainty is also larger for SST

than surface air temperature, with values of 0.19K2 (Figure 5.2a) and 0.1K2 (Hawkins and

Sutton, 2009) in the 2090s respectively. Potential reasons for the larger model uncertainty

in projections of SST compared with surface air temperatures may include: 1) large regional

biases in the projections of SST in some of the models, which result in a large spread between

models at the global level (Wang et al., 2014; Cheung et al., 2016); 2) the inclusion of models

with increased spread in the present research compared with the models used in Hawkins and

Sutton (2009); and 3) model development between CMIP3 and CMIP5 that has resulted in an

increase in the spread between models shared by this research and the research of Hawkins

and Sutton (2009) (Yan et al., 2013). Large regional biases in the projections of SSS may also

explain the increased contribution of model uncertainty to the total variance of the projections

of SSS compared with SST, as discussed in Section 5.4.2 below.

5.4.2 Uncertainty at a regional scale

By dividing the projections into 54 biogeographical provinces based on Longhurst’s scheme

(Longhurst, 2007), we can identify regions that are particularly affected by each type of uncer-
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tainty at different lead times. It is this regional information that may be of the greatest interest

to decision makers as they rarely act at a global level. For both SST and SSS, internal vari-

ability and model uncertainties dominate in all regions in the early part of the century, whilst

model and/or scenario uncertainties dominate in the mid- to late part of the century (Figure 5.3

and 5.4). The contribution of internal variability to the total variance of the projections is much

greater at the start of the century at a regional scale compared with at a global scale. For

example, internal variability contributes up to 62% of the total variance in regional projections

of SST (Figure 5.3), but just 8% at a global level (Figure 5.2c). Similarly, internal variability

contributes up to 79% of the total variance in regional projections of SSS (Figure 5.4), but 16%

at a global level (Figure 5.2d). This result is to be expected given the increased variability of

environmental conditions at smaller spatial scales.
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Figure 5.3: The percentage contribution of internal variability (left), model (middle), and scenario (right)
uncertainty to the total variance of the projections of future regional, decadal sea surface temperature
from 14 of the CMIP5 climate models under three scenarios of future greenhouse gas emissions. The
2010s (top), 2050s (middle), and 2090s (bottom) are plotted to allow for comparisons to be made
between the start, middle, and end of the century. The black lines delineate the 54 biogeographic
provinces described by Longhurst (2007)

For projections of SST, a strong latitudinal gradient becomes apparent in the 2050s, with

model uncertainty dominating in the polar regions and scenario uncertainty dominating in

tropical and temperate regions (Figure 5.3). This pattern continues to the end of the century,

although the importance of model uncertainty declines in all regions despite remaining an
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Figure 5.4: The percentage contribution of internal variability (left), model (middle), and scenario (right)
uncertainty to the total variance of the projections of future regional, decadal sea surface salinity from
11 of the CMIP5 climate models under three scenarios of future greenhouse gas emissions. The 2010s
(top), 2050s (middle), and 2090s (bottom) are plotted to allow for comparisons to be made between
the start, middle, and end of the century. The black lines delineate the 54 biogeographic provinces
described by Longhurst (2007)

important contributor to the total variance of the projections in the polar regions (Figure 5.3).

Outside the polar regions, model uncertainty is greatest in the North Atlantic Drift province,

with a contribution of 45% in the 2090s compared with a maximum of 27% in the surrounding

temperate regions (Figure 5.3).

A latitudinal gradient is also evident in the Signal-to-Noise Ratio (SNR) of the projections of

SST. The SNR represents the robustness of the projections and can be used to highlight

regions in which the climate projections provide the most ’added value’ (Hawkins and Sutton,

2009). A SNR significantly exceeding one indicates a region in which the projections may be

particularly useful for planning purposes, as the signal can be easily detected above the noise

(Hawkins and Sutton, 2009). In the 2010s, all regions excluding the Antarctic, Austral Polar,

Atlantic Arctic, and North Atlantic Drift provinces have a SNR exceeding one (Figure 5.5). The

regions with the greatest SNRs for projections of SST are predominately found in the tropics,

particularly in the Indian Ocean (Figure 5.5). In the 2050s, a total of 49 provinces continue

to have a SNR exceeding one (Figure 5.5). For all regions, the SNR is maximised (and

hence the fractional uncertainty is minimised) between the 2020s and 2050s (see Appendix
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Figure 5.5: The absolute Signal-to-Noise Ratio (SNR) for projections of future regional, decadal Sea
Surface Temperature (SST; left) and Sea Surface Salinity (SSS; right) (90% confidence levels). The
2010s (top), 2050s (middle), and 2090s (bottom) are plotted to allow for comparisons to be made
between the start, middle, and end of the century. The black lines delineate the 54 biogeographic
provinces described by Longhurst (2007). A high SNR indicates high confidence in the projections for
a given region, whilst a low SNR indicates low confidence in the projections for a given region.

D), indicating a high level of confidence in the projections of SST in the first half of the century.

By the 2090s, none of the 54 Longhurst regions have a SNR exceeding one (Figure 5.5).

Such a decline in SNR in the later part of the century is to be expected given the exponential

increase in scenario uncertainty (and the resulting increase in the fractional uncertainty as

depicted in Figure 5.2e) in the projections of SST over time.

Based on the findings of Hawkins and Sutton (2009), the latitudinal gradient in the uncertainty

of the projections of SST is also shared by surface air temperature, with model uncertainty

dominating in the polar regions and in the North Atlantic and scenario uncertainty dominating

in tropical and temperate regions by the end of the century. The SNRs associated with surface

air temperatures are also lowest in the polar regions and in the North Atlantic, becoming

increasingly greater towards the tropics (Hawkins and Sutton, 2009). Hawkins and Sutton

(2009) suggested the polar regions may have increased model uncertainties and a lower SNR

due to the large uncertainties associated with climate feedbacks at high latitudes. The authors

also suggested that the SNR of the North Atlantic may be particularly low compared with
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other temperate regions as a result of the large uncertainties associated with the potential

impacts of climate change on water circulation in the Atlantic Ocean, namely the Atlantic

Meridional Overturning Circulation (AMOC) (see Cheng et al. (2013), Wang et al. (2014) and

Reintges et al. (2017) for example; Hawkins and Sutton (2009)). Such uncertainties may

be exacerbated by the unknown impacts of climate change on the North Atlantic Oscillation

(NAO), which can have a large impact on both surface and deep water ocean conditions and

is known to be a large contributor to internal variability in the CMIP climate models (Sarafanov,

2009; Deser et al., 2017).

For projections of SSS, there is no apparent latitudinal gradient in the contribution of each type

of uncertainty to the total variance (Figure 5.4). Scenario uncertainty contributes very little to

the total variance in both the 2010s and 2050s, especially when compared with projections of

SST (Figure 5.3 and 5.4). For example, scenario uncertainty contributes a maximum of 30%

to the total variance of the projections of SSS in the 2050s (Figure 5.4), but contributes up to

70% of the total variance of the projections of SST (Figure 5.3). Instead, model uncertainty

dominates in all regions in the 2050s, with contributions of at least 48.5% (Figure 5.4). Al-

though becoming more important over time, scenario uncertainty dominates in just eight of

the 54 Longhurst provinces by the end of the century, whilst model uncertainty dominates in

all other regions (Figure 5.4).

Model uncertainty may be particularly important in projections of SSS due to large regional

biases in some of the models. For example, an analysis of the CMIP3 models highlighted

regional biases of up to ±2.5 psu (Terray et al., 2012; IPCC, 2014a). Such regional biases

may in part be caused by the relative lack of observations of SSS compared with SST, as

well as the loose association between variations in SSS and the driving forces of precipitation,

evaporation, sea ice, and river run-off (IPCC, 2014a). This loose association makes it more

difficult to accurately represent the relationships between these variables in the climate models

(IPCC, 2014a). Excessive simulated precipitation in some regions, particularly in the Southern

Hemisphere tropics (Hwang and Frierson, 2013) and over southern Africa and the Indian

Ocean (Lazenby et al., 2016), may explain the high model uncertainties in these regions in the

2050s and 2090s respectively (Figure 5.4). The eight regions in which scenario uncertainty

dominates at the end of the century are largely found in the North Pacific (namely the Gulf of

Alaska and Bering Sea), the Gulf of Mexico and Caribbean Sea, and the Subantarctic province

(Figure 5.4). All of these regions are associated with the surface currents of the thermohaline

circulation, which is partially driven by salinity. These results may therefore highlight the large

uncertainties regarding how climate change may impact global water circulation in the future

(Schmittner et al., 2005).
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In general, the SNRs of the projections of SSS are lower and are maximised at a later time

point than the SNRs of the projections of SST (Figure 5.5), indicating the climate change

signal in the model is much weaker for SSS than it is for SST. For most regions, the SNRs of

the projections of SSS are maximised in the 2060s and 2070s (see Appendix D and in nine

regions the SNR is still increasing at the end of the century (Figure 5.5). Again, these results

are similar to those of Hawkins and Sutton (2011), who found that the SNRs of the projections

of future changes in precipitation were lower and were maximised at a later time point than

those of surface air temperature. For projections of SSS, just seven of the 54 Longhurst

provinces have a SNR exceeding one in any of the three decades shown in Figure 5.5, most of

which occur in the polar and subpolar regions. The Caribbean Sea and Gulf of Mexico, as well

as the South Atlantic Gyral province and Archipelagic Deep Basins province, also exhibit high

SNRs (Figure 5.5). The New Zealand coastal province, Guinea coastal current province, and

the South Pacific subtropical gyre province are associated with particularly low SNRs (Figure

5.5). However, the coastal provinces may have a low SNR due to the increased contribution

of internal variability to the total variance of the projections at smaller spatial scales (Hawkins

and Sutton, 2009; Cheung et al., 2016), whilst the low SNR of the subtropical gyres may be

driven by uncertainties associated with the extent to which these gyres are likely to intensify

and/or shift in the future (Pontes et al., 2016).

5.4.3 Limitations

The methods used in this research assume internal variability does not change over time and

can be calculated from the residuals of the projections from a smooth fit (Hawkins and Sut-

ton, 2009, 2011). As previously mentioned, although there is some evidence to suggest that

internal variability may increase over time (see Boer (2009) for example), it is unlikely to af-

fect the overall conclusions of this research as the effect of this increase is often negligible

(Hawkins and Sutton, 2011). However, by smoothing the data with a fourth-order polynomial,

we effectively remove any internal fluctuations in climate that act over longer time periods (i.e.

longer than 15 to 30 years) (Deser et al., 2014). As such, we may be underestimating the

contribution of internal variability to the total variance of the projections. We also assume that

the models selected for inclusion in the analysis are independent and represent the full spread

of all possible models (Hawkins and Sutton, 2011). Independence is unlikely given that some

or all of the models will have been parameterised with the same datasets, potentially resulting

in common biases (Cheung et al., 2016). The models also represent an ’ensemble of oppor-

tunity’ rather than an ensemble that has been strategically selected to explore the full range of

possible model structures (IPCC, 2007; Cheung et al., 2016). Our estimate of the contribution

of model uncertainty may therefore also be interpreted as a lower bound of the true value
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(Hawkins and Sutton, 2011). Finally, we included only three possible scenarios for future

changes in radiative forcing. Although the scenarios span the range of available estimates

given in recent scientific literature (van Vuuren et al., 2011), the upper and lower bounds of

these estimates will change in the future in response to technological and/or political develop-

ments that impact our progress towards emissions targets. If such changes are reflected in

the scenarios used in upcoming model intercomparisons, the relative contribution of scenario

uncertainty to the total variance of the projections may either increase or decrease. Despite

these limitations, the methods used in this research are expected to give a qualitatively robust

approximation of the uncertainties in the available projections, particularly over the next few

decades (Hawkins and Sutton, 2009, 2011).

5.4.4 Reducing uncertainty

Reducing the uncertainty in climate projections is of great importance to decision makers,

particularly at short lead times of less than a decade or so (Hawkins and Sutton, 2009). Al-

though very little can be done to reduce scenario uncertainties, model uncertainties may be

reduced via investments in observational data (e.g. through the Global Ocean Observing Sys-

tem Roemmich et al. (2009)), as well as through model development (Hawkins and Sutton,

2009). In particular, improvements in the representation of global water circulation, as well

as reductions in cloud and thermocline depth errors, should help to reduce the model un-

certainties associated with projections of SST and SSS (Schmittner et al., 2005; Villarini and

Vecchi, 2012; Hwang and Frierson, 2013; IPCC, 2014a). Growing interest in regionally tuning

the climate models may also lead to reductions in model biases in the projections of SST and

SSS in some regions (Mulholland et al., 2017). Such reductions in uncertainty could have

a large impact on the total variance of short-term projections of both SST and SSS, but it is

SSS that would likely benefit most from a reduction in model uncertainty across all lead times.

The regions with the greatest potential for improvement in model uncertainty include the polar

regions for projections of SST and the Southern Hemisphere tropics for projections of SSS.

However, it is important to note that changes to the structure of the models in response to

new information may result in an increase in the uncertainty of the projections (Knutti and

Sedláček, 2013); this should not be regarded as a step backwards and should instead be

considered as an increase in confidence in the models due to improved realism (Knutti and

Sedláček, 2013).

Investments in observational data may also help to reduce the internal variability uncertainty in

short-term projections through initialisation of the climate models (Smith et al., 2007; Hawkins

and Sutton, 2009). Again, projections of SSS would likely benefit most from a reduction in
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internal variability uncertainty compared with SST. Both the internal variability and model

uncertainties associated with projections of SSS may therefore be reduced by increasing

the availability of long-term global salinity data, such as those from the Array for Real-time

Geostrophic Oceanography (ARGO) network (IPCC, 2014a). For projections of both SST and

SSS, the Southern Ocean may benefit greatly from a reduction in internal variability uncer-

tainty. For projections of SST, the North Pacific and Tasman Sea would also likely benefit

most from reductions in internal variability, whilst the Indian Ocean would benefit from a re-

duction in internal variability in the projections of SSS. However, a large part of the uncertainty

associated with internal variability will likely be irreducible due to the chaotic nature of natu-

ral phenomena (Hawkins and Sutton, 2009; Knutti and Sedláček, 2013; Villarini and Vecchi,

2012).

5.5 Summary and conclusions

The aim of this research was to quantify the contribution of internal variability, model, and

scenario uncertainty to the total variance of the projections of SST and SSS from over 10

different global climate models. The results showed that for both SST and SSS, internal

variability and model uncertainties dominate in the early part of the century, with scenario

uncertainties becoming increasingly more important in the mid- to late part of the century.

Internal variability uncertainty is of particular importance in projections of SSS and at smaller

spatial scales. Uncertainties in the projections of SST exhibit a strong latitudinal gradient in the

mid- to late part of the century, with scenario uncertainty dominating in tropical and temperate

regions and model uncertainty dominating in the polar regions. No such latitudinal gradient

exists for projections of SSS, with model uncertainty dominating in almost all regions in the

mid- to late part of the century. As indicated by the SNR, projections of SST are most robust

in the early- to mid-part of the century, particularly in the tropics. Projections of SSS are far

less robust, with the lowest SNRs found in the New Zealand and Guinea coastal provinces

and the South Pacific subtropical gyre.

Importantly, uncertainties in projections of SST and SSS over the next few decades are per-

haps of greatest relevance to decision makers. During this time period, it is the potentially

reducible internal variability and model uncertainties that limit our ability to project changes in

SST and SSS with a high degree confidence. Investments in observational data and model

development could help to greatly reduce these uncertainties and subsequently increase con-

fidence in the projections, thus ensuring the models are well-placed to support management

in the future (Hawkins and Sutton, 2009; Cheung et al., 2016). Such investments would ar-

guably be most beneficial to projections of SSS, which suffer most from internal variability
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and model uncertainties. Improving the availability of long-term global salinity data would not

only help to reduce internal variability uncertainty, but would also help to reduce model un-

certainty by allowing more detailed comparisons to be made between the model outputs and

the observations; in doing so, model biases or errors may be more easily identified and dealt

with (Hawkins and Sutton, 2009). However, the costs and benefits of investing in improving

the climate models that are involved in CMIP needs to be carefully weighed against the costs

of adaptation in the face of large uncertainties (Hawkins and Sutton, 2009). Considering the

potentially wide-ranging impacts of changes in SST and SSS over the next century, as well as

the high costs that will undoubtedly be associated with adapting to these changes, it is likely

that the benefits of investing in reducing the uncertainty in the projections of SST and SSS will

far outweigh the costs. Conducting a cost-benefit analysis should therefore be of high priority

for future research to ensure investments in model improvements can be targeted where the

potential gains are greatest (Hawkins and Sutton, 2009).
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Chapter 6

Visualising uncertainty in multi-model

ensembles

6.1 Abstract

Multi-Model Ensembles (MMEs) are increasingly being used to better understand how our

environment is likely to change in the future. However, predicting the future is complicated

and various types of models can make very different predictions. In the past, a lack of effec-

tive communication of such variable model outputs, both to decision makers and the general

public, has been blamed for ineffective management decisions. To help combat this issue, we

conducted an in-depth online survey aimed at identifying the most effective methods for visu-

ally communicating the outputs of 15 state-of-the-art climate models developed during phase

five of the Coupled Intercomparison Model Project. We measure the accuracy, confidence,

and ease with which the survey participants were able to interpret 10 visualisations, all of

which depict the same data in slightly different ways, as well as their subjective preferences

for each visualisation. We use the results of the survey to: (1) rank each of the visualisations

based on their performance; (2) discuss possible reasons for the poor performance of cer-

tain visualisation types; and (3) discuss the effects of the demographics of the participants on

the performance of each visualisation. Overall, we hope that the results can be used to help

generate guidelines for visually communicating the outputs of MMEs across a wide range of

research areas. These guidelines can then be used to target visualisations at specific au-

diences to maximise their impact, whilst also minimising the potential for misinterpretations.

This in turn will help to increase the societal impact of the models and ensure they are well-

placed to support management in the future.
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6.2 Introduction

Understanding the likelihood of alternative future states is a key challenge for managing nat-

ural systems in the face of global change. A wide range of environmental models have been

used to help develop management solutions, but the differing structures and assumptions of

individual models can lead to wildly different predictions (Hansen and Hoffman, 2011; Huang

et al., 2018). An increasingly popular way to deal with the shortcomings of individual models

is to combine the outputs of multiple structurally different models that have been run under a

common set of scenarios for the future into a Multi-Model Ensemble (MME). MMEs have been

successfully used to increase the skill and reliability of model predictions in a wide range of

research areas (Tebaldi and Knutti, 2007), including climate science (see Giorgi and Mearns

(2003) and Palmer et al. (2005) for example) and ecosystem modelling (see Dormann et al.

(2008) and Spence et al. (2018) for example). However, these increases in skill and relia-

bility may come at the cost of greater uncertainties in the outputs as, for example, different

models within the ensemble may give contrasting predictions for the future (Hansen and Hoff-

man, 2011). In the past, a lack of effective communication of such variable model outputs,

both to decision makers and the general public, has been blamed for ineffective management

decisions (Janssen et al., 2005). This in turn has contributed to public distrust of scientific

evidence, particularly in regards to climate science (Frewer, 2004). Improving the communi-

cation of uncertainties to non-specialist audiences is therefore vital to ensuring environmental

models continue to make a significant contribution to the decision-making process.

Previous research into the successful communication of the uncertainties associated with

environmental models has largely been focused on written and verbal forms of communica-

tion (see Patt and Schrag (2003), Patt and Dessai (2005), Morgan (2009) and Mastrandrea

et al. (2010) for example), whilst comparatively little research has been conducted to identify

the most effective methods for visually communicating these uncertainties (Spiegelhalter and

Riesch, 2011). As a result, many of the techniques used for visualising the outputs of envi-

ronmental models ignore the presence of uncertainties or are used to depict only one source

of uncertainty at a time (MacEachren et al., 2005; Brodlie et al., 2012). This is particularly

problematic when attempting to communicate the outputs of MMEs, which typically require a

visual representation of changes in both model and scenario uncertainties over time. Whilst

animated and interactive visualisations could be used to communicate multiple uncertainties

at the same time, these methods are not appropriate for media requiring static images, and

interactive visualisations may require a greater level of skill or expertise to use than static or

animated visualisations (Spiegelhalter and Riesch, 2011). By focusing on how best to commu-

nicate the outputs of MMEs using static visualisations, we may be able to improve engagement
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and trust across a broader cross-section of society than would be possible using animated or

interactive visualisations.

Examples of static visualisations that are often used to communicate uncertainty in environ-

mental modelling include line, dot, and box plots. These visualisation methods typically depict

a summary of the data, such as an average, and an estimate of the uncertainty through the

use of uncertainty bands (or envelopes) or error bars. Although dot and box plots have pre-

viously been shown to be effective at communicating uncertain snowfall forecasts (Ibrekk and

Morgan, 1987), relatively little is known about the ability of the general public to interpret these

visualisations. It is also possible that more modern visualisation methods, such as infograph-

ics and cascade plots (see Wilby and Dessai (2010) and Hawkins (2014) for example), may

outperform dot and box plots when used to communicate the outputs of MMEs to decision

makers and/or the general public. Traditional methods of visualisation that are less frequently

used in environmental modelling, such as radar (or spider) and heat plots, may also per-

form well when adapted to depict the outputs of MMEs. However, there is a lack of empirical

research comparing the performance of these visualisation methods when used to communi-

cate the outputs of MMEs to different groups of people, making it difficult for researchers to

maximise the impact of these model ensembles.

Various methods may be used to assess the performance of different methods of visualising

uncertainty (see Kinkeldey et al. (2014) for a review). Typically, the effectiveness of a particular

visualisation is determined by measuring the accuracy and/or self-assessed confidence with

which a set of individuals are able to interpret the visualisation (Kinkeldey et al., 2014). User

preferences and subjective measures of ease of use are also often used to compare the

performance of different visualisation methods (Kinkeldey et al., 2014). However, we are not

aware of any research that has combined all of these measures of performance to determine

the most effective methods for visually communicating the outputs of MMEs. In this study,

we aim to fill this research gap by conducting an in-depth online survey that measures the

accuracy, confidence, and ease with which the participants are able to interpret 10 different

visualisations (see Figure 6.1), all of which depict the same set of data from a state-of-the-art

climate MME (see cmip.llnl.gov/cmip5/), as well as their subjective preferences for each

of the visualisations. As the effectiveness of each visualisation method may depend on factors

such as the numeracy and scientific literacy of the audience (Spiegelhalter and Riesch, 2011),

we also take into account the education level, background, and expertise of the participants

when determining the performance of each visualisation. Overall, we hope that the results of

this research can be used to help generate guidelines for visually communicating the outputs

of MMEs across a wide range of different research areas. These guidelines can then be used

to target visualisations at specific audiences to maximise their impact, whilst also minimising
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the potential for misinterpretations. This in turn will help to increase the societal impact of the

models and ensure they are well-placed to support management in the future.

6.3 Methods

To better understand the effectiveness of different methods of visualising Multi-Model Ensem-

bles (MMEs), we developed a survey using the Qualtrics online survey software (qualtrics.

com).

6.3.1 The data

The survey was focused on projections of surface air temperature from the MME produced in

phase five of the Coupled Model Intercomparison Project (CMIP5) (cmip.llnl.gov/cmip5/).

This model ensemble was also used by the Intergovernmental Panel on Climate Change

(IPCC) for the Fifth Assessment Report (AR5) (IPCC, 2014a). Each model in the ensem-

ble was used to simulate historical surface air temperatures between 1850 and 2005 and

then run under three different greenhouse gas emissions scenarios for the future, known as

Representative Concentration Pathways (RCPs), between 2006 and 2100. The three RCPs,

referred to as RCP 2.6, RCP 4.5, and RCP 8.5, span the range of currently available estimates

for the predicted level of radiative forcing that is expected to occur by the end of the century

(van Vuuren et al., 2011). RCP 2.6 represents a scenario in which radiative forcing increases

from <2W.m2 at the start of the century to ~3W.m2 (~490ppm CO2 eq) in the coming decades,

followed by a decline to 2.6W.m2 by the end of the century (van Vuuren et al., 2011). RCP 4.5

represents an intermediate pathway, with an increase in radiative forcing to 4.5W.m2 (~650

ppm CO2 eq) by 2100 (van Vuuren et al., 2011). Finally, RCP 8.5 represents a scenario in

which radiative forcing substantially increases to 8.5W.m2 (~1370 ppm CO2 eq) by 2100 (van

Vuuren et al., 2011).

For the purposes of this research, we selected models from the CMIP5 MME based on the

availability of the appropriate data with consistent global coverage spanning the years be-

tween 1850 and 2099. This meant that we were able to use the projections from 15 different

models (see Appendix E for further details of the selected models). We extracted the annual

global mean surface air temperature projections (~1.25 - 2m above ground) between 2000

and 2099 from the IPCC AR5 online database (dkrz.de) for each model and RCP scenario. It

is important to note that some of the models were run under each scenario multiple times, with

each run producing slightly different model outputs. However, we chose to use only one set

of outputs per model to ensure all models were treated equally, selecting the first set of out-
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puts in which all of the required scenarios were available (Hawkins and Sutton, 2009, 2011).

We also extracted the annual global mean surface air temperature projections for each model

between 1850 and 1900 and took the mean as a pre-industrialisation reference temperature.

The projected change in global mean surface air temperature (referred to simply as ’tempera-

ture’ from here on) expected to occur in each year was then quantified by comparing the 2000

to 2099 model outputs with the pre-industrialisation reference temperature.

6.3.2 The visualisations

The projected temperature change data was used to create ten visualisations that depict the

same data in different ways. The visualisations included two different versions of a line plot

(line1 and line2), two different versions of a dot plot (dot1 and dot2), two different versions of a

box plot (box1 and box2), a radar plot, a cascade plot, a heat plot, and an infographic (Figure

6.1; see Appendix F for larger versions of each visualisation and their accompanying legends).

These visualisation methods were chosen to represent plots that are frequently used in the

scientific literature and in the media, as well as some that are more unusual and may be less

familiar to a wider audience. Please note that some of the visualisations were based on the

work of Prof. Ed Hawkins and Dr. Rowan Sutton from the National Centre for Atmospheric

Sciences (NCAS) (see climate-lab-book.ac.uk for more information).

Some of the selected visualisation methods allowed for the depiction of projected tempera-

ture changes in every decade between 2000 and 2099, whilst other methods were limited to

depicting the data in a smaller number of decades. To guarantee that comparisons could be

made across all visualisation types, we ensured that each visualisation depicted the data in at

least three decades: the 2010s, 2050s, and 2090s. The culturally-ingrained traffic light colour

system (i.e. red, yellow, and green) was used in all ten visualisations to maintain consistency.

However, the selected colour scheme may make it more difficult for those who experience

deuteranopia or protanopia (red-green colour blindness) to distinguish between the different

colours. Because of this, we added the option for the participants to request visualisations

with a more suitable colour palette if required, although none of the participants selected this

option.

6.3.3 The survey

In the first section of the survey, the participants were asked to provide some basic information

about themselves, including their age, gender, location, level of education, and expertise in

working with environmental models and/or their outputs. The participants were also asked
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Figure continued overleaf.
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Figure 6.1: The ten visualisations that were included in the survey. From left to right and top to bottom: the line1,
line2, dot1, dot2, box1, box2, cascade, radar, heat, and infographic plots. See Appendix F for larger versions of
each visualisation and their accompanying legends.

about their background in terms of whether they considered themselves to be a member of

the general public, a scientist, or a decision maker and/or environmental manager.

In the second section of the survey, the participants were shown a randomly selected visual-

isation (referred to as visualisation A) and asked if they had encountered a similar visualisa-

tion prior to completing the survey. The participants were then asked to estimate the average

global temperature change projected to occur by the end of a randomly selected decade

(2010s, 2050s, or 2090s) under a randomly selected scenario (RCP 2.6, RCP 4.5, or RCP

8.5). We used the term ’average’ instead of ’mean’ to ensure the survey remained accessible

to a wider audience, although we accept that some of the participants may have provided the

median when shown visualisations such as the box plots. However, this issue is relatively

unimportant given that the largest difference between the mean and median in every combi-

nation of decade and scenario was 0.1◦C. Each participant was then required to comment on

their confidence in the answer they provided, as well as the ease with which they were able

to identify the answer, on a Likert scale (Likert, 1932) (disagree, somewhat disagree, neutral,

somewhat agree, agree). The participants were also asked to give a qualitative description of

the level of uncertainty in a second randomly selected decade and scenario on a Likert scale

(very low, low, moderate, high, very high), before being asked to estimate the minimum and

maximum global temperature change projected to occur by the end of the same decade and

scenario (if possible using the visualisation provided). In the last part of section two, the sur-

vey participants were again asked to comment on their confidence in the answer they provided

and the ease with which they were able to identify the answer.

In the third section of the survey, the participants were shown a second randomly selected

visualisation (referred to as visualisation B) alongside visualisation A and asked to choose
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which of the two visualisations they preferred across five different categories: the ability to

view changes in temperature over time, the ability to view changes in uncertainty over time,

the ability to retrieve specific values (such as the mean, minimum, and maximum), visual

appeal, and overall ease of understanding. The participants were given the option of preferring

visualisation A, preferring visualisation B, or having no preference for either A or B. In cases

where the participant showed no preference for visualisation A or B, they were given the option

of selecting ’both the same’ or ’neither’.

Together, the second and third sections of the survey formed a single ’block’. The survey

was designed so that the participants could decide how many of these blocks they wished to

complete. Each individual was given the option to exit the survey at the end of a block or to

continue the survey by starting a new block containing a different set of randomly selected

visualisations. The participants could complete a maximum of five blocks and the visualisa-

tions, scenarios, and decades were randomised for each participant using JavaScript random

number generation.

The survey received full ethical approval from the University of Sheffield’s Department of An-

imal and Plant Sciences, in accordance with the University of Sheffield’s Research Ethics

Approval Procedure. The survey was distributed internally at the University of Sheffield and

publicly through numerous channels including Twitter, various mailing lists, and personal con-

tacts. A total of 380 individuals participated in the survey.

6.3.4 Demographics

The majority of the participants were aged between 18 and 34 (n = 258), with relatively few

over the age of 55 (n = 26) (Figure 6.2). There were slightly more female participants than

males (n = 202 and n = 174 respectively) (Figure 6.2) and the majority of the participants were

based in the United Kingdom (n = 306), although individuals from a total of 21 countries par-

ticipated in the survey (not shown). 318 participants held a university-level qualification, whilst

60 participants held GCSE, A-Level, or vocational qualifications (Figure 6.2). 18 participants

considered themselves to be a decision maker or environmental manager and 190 considered

themselves to be a scientist (Figure 6.2). 131 participants had previously worked with envi-

ronmental models and/or their outputs and 49 of these participants had five or more years of

experience (Figure 6.2). 285 participants considered themselves to have little to no expertise

in working with environmental models and/or their outputs, whilst 44 participants considered

themselves to be an expert (Figure 6.2).
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Figure 6.2: The demographics of the survey participants (n = 380), including a) age, b) gender, c) background, d)
level of education, e) level of expertise in working with environmental models and/or their outputs, and f) length of
expertise in working with environmental models and/or their outputs.

6.3.5 Statistical analysis

Various methods of statistical analysis were used to better understand the accuracy, confi-

dence, and ease with which the survey participants were able to interpret the visualisations,

as well as their preferences for each visualisation across a number of different categories.

The participants’ background, level of education, and expertise in working with environmental

models and/or their outputs were included in the statistical analyses to determine whether

specific groups of people were better able to interpret the visualisations or whether they pre-

ferred different types of visualisations.

To perform the statistical analyses, we removed participants from the data that selected ’prefer

not to say’ for level of education (n = 2) due to small sample sizes and because these partic-

ipants could not be used to better understand the preferences of different groups of people.
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We also removed the participants that selected ’other’ for background (n = 29) as the majority

of those who selected this option could have been placed either in the general public, scien-

tist, or decision maker and/or environmental manager groups based on the corresponding text

part of their answer. However, we chose not to assign a background to these individuals to

prevent introducing personal subjectivity into the analyses. Furthermore, although the partici-

pants were given the option of selecting more than one category for background, we extracted

only the ’highest’ category for each participant assuming an ordering of general public < scien-

tist < decision maker and/or environmental manager. This ordering was selected as decision

makers and environmental managers can also be both scientists and members of the general

public at the same time, whilst scientists that do not consider themselves to be a decision

maker or environmental manager can also be considered as a member of the general public.

Finally, we combined secondary (n = 2), post-secondary (n = 51), and vocational (n = 2) levels

of education into a ’pre-university’ group due to small sample sizes. All statistical analyses

were performed using the R statistical computing software (R Core Team, 2018).

Accuracy

The accuracy with which the participants were able to determine the mean, minimum, and

maximum temperature change projected to occur in a given scenario and decade was anal-

ysed using Generalised Linear Mixed Models (GLMMs) (Breslow and Clayton, 1993). GLMMs

can be used to better understand the relationship between a response variable (e.g. accu-

racy) and a set of predictor variables (e.g. level of education, visualisation type etc.) when

the error structure is not gaussian (Bolker et al., 2009). GLMMs also allow both fixed and

random effects to be included in the model, thus enabling the quantification of the variation in

the accuracy with which individual participants were able to identify the mean, minimum, and

maximum projected temperature change across multiple blocks of questions (Bolker et al.,

2009). Using the notation of IDRE (2016), the general form of a GLMM can be written in

matrix notation as:

log(E(y)) = Xβ + Zu (6.1)

where y represents the response variable, X represents the model matrix (including p predic-

tor variables), β represents the regression coefficients of the fixed effects, Z represents the

design matrix for q random effects, and u represents the regression coefficients associated

with the random effects (IDRE, 2016). In our case, the response variables were the absolute

difference (x10) between the participants’ estimates of the mean, minimum, and maximum

projected temperature change and the ’true’ values given by the climate models. The fixed ef-

fects included visualisation type, decade, scenario, background, level of education, and length
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of expertise in working with environmental models and/or their outputs. Participant ID was

included as a random effect to take into account the fact that the participants were able to

answer the same set of questions in up to five blocks.

To fit GLMMs to the survey data, we first checked whether the participants’ estimates of the

maximum temperature change projected to occur in a given scenario and decade were greater

than their estimates of the minimum temperature change projected to occur in the same sce-

nario and decade. Where this was not the case, we swapped the estimates of the minimum

and maximum projected temperature change. We then quantified the absolute difference be-

tween the participants’ estimates of the mean, minimum, and maximum projected temperature

change with the true values given by the climate models. As previously mentioned, we asked

the participants to estimate the ’average’ projected temperature change in a given decade

and scenario to ensure the survey was accessible to a wide audience, but it should be noted

that the estimates provided by the participants were compared with the mean of the MME (not

the median or mode). The absolute difference was then multiplied by 10 to convert the data

into positive integers, thus allowing us to fit quasipoisson GLMMs to account for the overdis-

persion in the data (Ver Hoef and Boveng, 2007). The GLMMs were fit with the glmmPQL()

function in the MASS R package (Venables and Ripley, 2002). Please note that as the partic-

ipants were given the option of selecting ’not applicable’ when they were unable to estimate

the minimum and maximum projected temperature change using the visualisation provided,

there were slightly fewer estimates with which to analyse the accuracy of the participants

when asked to estimate the minimum and maximum (343 unique participants with a total of

965 individual responses) compared with the mean (345 unique participants with a total of

1036 individual responses) (see Appendix G).

One of the main disadvantages of using the glmmPQL() function is that this method computes

penalised quasi-likelihoods instead of true likelihoods (Bolker et al., 2009). Because of this,

likelihood ratio tests could not be used to test the significance of including participant ID as

a random effect. Furthermore, Akaike’s Information Criterion (AIC) (Akaike, 1973), which is

widely used as a measure of model fit, could not be used for model selection purposes. Quasi-

AIC (QAIC) can be used as measure of model fit instead, but this is often frowned upon by

statisticians who believe that quasi-methods should not report likelihoods at all (Bolker et al.,

2009). However, a brief comparison of the QAICs of the full models (including all possible

predictor variables) and the best-fitting models without the random effect indicated that there

was little difference in the goodness-of-fit. For example, when analysing the accuracy with

which the participants were able to estimate the mean projected temperature change in a

given scenario and decade, the QAIC of the best-fitting model was 1484.8, whilst the QAIC of

the full model was 1488.4. We also tested models that included the interactions between all
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predictor variables and visualisation type, but the complexity of the model was too great and

there was little evidence to suggest the model fit improved. Because of this, we decided to

continue with the full models (minus the interactions) without relying on QAIC to search for the

best-fitting models. The final model fits were checked by plotting the fitted values against the

standardised residuals.

To aid the interpretation of the outputs of the GLMMs, the reference levels used for each pre-

dictor variable were chosen to represent a ’typical’ (or average) participant. In this case, the

typical participant was a postgraduate scientist with no experience in working with environ-

mental models and/or their outputs. The typical participant was asked to estimate the mean,

minimum, and maximum temperature change projected to occur in the 2050s in scenario 4.5

using the box1 plot. As there were no typical visualisations in the survey, the box1 plot was

selected as it tended to fall in the middle of the visualisations when ranked based on the

mean absolute difference (x10) between the participants’ estimates of the mean, minimum,

and maximum projected temperature change and the true value given by the climate models.

It is important to note that because the results of the analysis are presented relative to the

’typical’ response, they apply only when all other predictor variables are fixed at the reference

levels.

The predictions of the GLMMs are presented as ratios between the inaccuracies associated

with the typical response and the inaccuracies associated with all other levels of the predictor

variables (referred to as Absolute Difference (AD) ratios from here on), thereby allowing an

assessment of the variability in the differences in accuracy across all levels of the predictor

variables, although the raw model predictions are also given in Appendix H. An AD ratio of

greater than one suggests the participants in the group in question tended to be more ac-

curate than those in the reference group, whilst an AD ratio of less than one suggests the

participants in the group in question tended to be less accurate than those in the reference

group. As there are currently no widely accepted methods for incorporating the uncertainty

in the random effects at present (Bates et al., 2014), the standard errors (and hence 95%

confidence intervals) of the predictions of the GLMMs should be treated as lower bounds of

the uncertainty. Fortunately, this issue is relatively unimportant in this research given that we

are largely interested in the mean accuracy of different groups of participants, rather than the

variability in the accuracy of individual participants.

Confidence and ease

Ordinal Logistic Regression (OLR) was used to better understand the confidence with which

the participants were able to identify the mean or the minimum and maximum temperature
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change projected to occur in a given decade and scenario, as well as the ease with which they

were able to identify the answers. To do this, we applied Mixed Proportional Odds Models

(MPOM; also known as ordered logit models) to the Likert scale data using the clmm2()

function in the ordinal R package (Christensen, 2018). MPOMs are specifically designed to

handle ordinal response variables (Fullerton and Xu, 2012) and allow both fixed and random

effects to be included in the model. MPOMs typically estimate the cumulative probability of

being in level j of the Likert scale or less (Schmidt, 2012). Using the notation of Schmidt

(2012), the general form of a MPOM can be written as:

logit[P (Yi ≤ j)] = γj − (Zt[i]ut +Xiβ) (6.2)

for j = 1, . . . , J − 1, where γj represents the threshold for level j in the Likert scale, J rep-

resents the total number of levels in the Likert scale, ut represents the regression coefficients

associated with the random effects (which are assumed to be normally distributed and cen-

tred on zero), Zt[i] represents the design matrix of the random effects for the observations

i nested in participant t, X represents the model matrix (including p predictor variables and

the intercept), and β represents the regression coefficients of the fixed effects (Hedeker and

Gibbons, 2006; Schmidt, 2012). In our case, the response variables were the confidence and

ease with which the participants were able to identify the mean or the minimum and maximum

temperature change projected to occur in a given decade and scenario. The fixed and ran-

dom effects were the same as those given in the previous section with the addition of previous

encounters as a fixed effect.

Proportional odds models assume that the relationships between all pairs of levels in the Likert

scale are the same, i.e. the coefficients that describe the relationship between ’disagree’

and all higher levels in the Likert scale are the same as those that describe the relationship

between ’somewhat disagree’ and all higher levels in the Likert scale (Aiello and McFarland,

2014; Momeni et al., 2018). If the assumption of proportional odds is met, only one set of

coefficients must be estimated for each of the predictor variables (Liu, 2015). However, if the

assumption of proportional odds is not met then multiple sets of coefficients must be estimated

to describe the relationship between each pair of levels (Liu, 2015). As the assumption of

proportional odds is rarely met using real-world data (Aiello and McFarland, 2014), we used

the nominal_test() function in the ordinal R package (Christensen, 2018) to perform a

Likelihood Ratio Test (LRT) of the proportional odds assumption for both the confidence and

ease Likert scale data individually. As the nominal_test() function can only be used on a

model that does not include random effects, we fit (non-mixed) proportional odds models to the

confidence and ease data using the clm() function in the ordinal R package (Christensen,

2018) before applying the nominal_test() function.
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The LRTs indicated that background, level of education, and/or time of expertise did not meet

the assumption of proportional odds (p < 0.05) for at least one of the measures of confidence

and ease (Table 6.1). We therefore fit Mixed Partial Proportional Odds Models (MPPOMs) to

the confidence and ease Likert scale data, treating the predictor variables that did not meet

the assumption of proportional odds as nominal effects. The general form of a MPPOM may

be written as:

logit[P (Yi ≤ j)] = γj − (Zt[i]ut +Xiβ + viαj) (6.3)

where vi represents the observations i nested in participant t for the h predictor variables

that do not meet the assumption of proportional odds, and αj represents the regression co-

efficients of the h predictor variables that do not meet the assumption of proportional odds

(Hedeker and Gibbons, 2006).

As previously mentioned, the participants were given the option of selecting ’not applicable’

when they were unable to estimate the minimum and maximum projected temperature change

using the visualisation provided (see Appendix G). When this option was selected, confidence

and ease were also set to ’not applicable’ and therefore there were fewer observations of con-

fidence and ease when the participants were asked to estimate the minimum and maximum

projected temperature change compared with the mean.

As there are no automated methods of model selection available for MPPOMs, we fit the full

models (minus the interactions) to both the confidence and ease data (with the corresponding

nominal effects) instead of searching for the best-fitting models. The condition number of Hes-

sian can be used to identify whether the model is ill defined (Christensen, 2018), with values

of over 104 or 106 indicating potential problems with optimisation, unidentifiable parameters,

and a need to simplify the models (Christensen, 2015). The condition number of Hessian

was below 7602 for all of the MPPOMs used in this research, suggesting the models were

appropriately defined.

Again, the reference levels used for each of the predictor variables were chosen to represent

a ’typical’ (or average) participant as in the previous section. The regression coefficients are

given for the ordinal and nominal effects separately as the ordinal effects are presented as

regression coefficients (β), whilst the nominal predictor variables are presented as threshold

coefficients (γj) (Christensen, 2015). Regression coefficients above one indicate that the

participants in the group in question were more likely to select one of the higher categories in

the Likert scale (e.g. ’somewhat agree’ or ’agree’) than the reference group, whilst a regression

coefficient of less than one indicates the participants in the group in question were less likely

to select one of the higher Likert scale categories than the reference group (Christensen,
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2015). The 95% confidence intervals of the regression coefficients should again be treated as

underestimations as the random effects cannot incorporated in this measure of uncertainty at

present. Furthermore, it was not possible for us to estimate the standard errors (and hence

95% confidence intervals) of the predictions of the MPPOMs and therefore the predictions are

given without a measure of uncertainty.

Preference

Bradley-Terry models (Bradley and Terry, 1952) were used to rank the visualisations based

on the pairwise preference comparisons in the survey. Bradley-Terry models are probability

models that assume that the odds that visualisation i is preferred over visualisation j (i, j ∈

{1, . . . ,K}) is αi/αj , where αi and αj represent the score (or ’ability’) of the visualisations

(Turner and Firth, 2012). Bradley-Terry models may also be written in the form:

logit[P (i beats j)] = λi − λj (6.4)

where λi = logαi for all i (Turner and Firth, 2012). Assuming all pairwise comparisons are

independent, the parameters {λi} may be estimated using maximum likelihood (Turner and

Firth, 2012).

We applied Bradley-Terry models to the survey preference data using the BTm() function in the

BradleyTerry2 R package (Turner and Firth, 2012). A single Bradley-Terry model was fit to

each of the preference categories (i.e. ability to view changes in temperature and uncertainty

over time, visual appeal etc.) using bias-reduced maximum likelihood (Turner and Firth, 2012).

Importantly, we treated cases where participants showed no preference for either of the two

visualisations given to them (i.e. the participant selected ’both the same’ or ’neither’) as a

half win and half loss for both of the visualisations as described in Turner and Firth (2012).

Again, visualisation type, decade, scenario, background, level of education, and length of

expertise were included in the BT models as predictor variables. However, the participants that

considered themselves to be decision makers and/or environmental managers were removed

from the main part of the analysis as the small sample size of this group resulted in issues

with the model fit. Despite this, we were successfully able to fit individual BT models to the

survey data provided by members of the general public, scientists, and decision makers and/or

environmental managers separately in order to better understand the visualisation preferences

of those with different backgrounds (see Appendix I).

The best-fitting model for each preference category was determined by comparing the AIC

of the null model with models that included each one of the predictor variables separately. If
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the AIC of any one of the models that included one of the predictor variables was lower than

the AIC of the null model, the model with the lowest AIC was re-fit to the survey data with a

second predictor variable to identify whether the AIC could be further improved. This process

continued until the AIC did not improve when increased numbers of predictor variables were

included in the model. In the main part of the analysis, background or level of education were

the only predictor variables that were included in the models with the lowest AIC scores for all

of the preference categories. When the survey data was divided into three different datasets

based on the background of the participants, the best-fitting models were the null models for

all preference categories (see Appendix I). We chose to use the best-fitting models for each

preference category instead of the full models as the AICs of the best-fitting models were

much lower than the full models. For example, the AIC of the best-fitting model for visual

appeal was 1248.8, whilst the AIC of the full model was 1296.3. A comparison of the best-

fitting and full models for each preference category also indicated that the parameter estimates

were broadly similar but that the standard errors of the best-fitting models were much smaller

than the full models. Again, the final model fit was checked by plotting the fitted values against

the residuals.

The predicted ’ability’ of each visualisation (referred to as ’preference’ from this point forth) was

extracted from the best-fitting models using the BTabilities() function in the BradleyTerry2

R package (Turner and Firth, 2012). A greater preference score indicates the visualisation was

preferred more often than a visualisation with a lower preference score. The qvcalc() func-

tion from the qvcalc R package (Firth, 2017) was used to estimate the ’quasi standard errors’

of the predicted preference scores for each visualisation. The quasi standard errors were

then used to determine 95% ’comparison’ intervals, which can be interpreted as if the esti-

mates of visualisation preference were independent, thus allowing comparisons to be made

across all visualisations rather than comparisons with only the reference (Turner and Firth,

2012). However, the qvcalc() function cannot be used to estimate the quasi standard errors

of the preference scores of the visualisations at different levels of the predictor variables (e.g.

between scientists and the general public) and therefore 95% confidence intervals, which are

based on (non-quasi) standard errors, were used instead. Fortunately, the distinction between

95% comparison intervals and 95% confidence intervals is relatively unimportant given that

the main aim of this research is to compare the general trends in visualisation preferences be-

tween scientists and the general public and between those with different levels of education,

rather than to quantify the exact value of the comparison intervals. The predictions of the BT

models are presented relative to the box1 plot, which was selected as the reference level in

accordance with the previous sections. By convention, the reference level is given a prefer-

ence score of zero in the BT models, but not in the predictions of the model. Nevertheless,
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it is the difference in the preference scores between visualisations that is important here, not

the exact value of the preference score of each visualisation.

6.3.6 Rankings

The parameter estimates of the above statistical models were used to rank each of the visu-

alisations based on the accuracy, confidence/ease, and preferences displayed by the survey

participants. For accuracy, we produced three sets of rankings (i.e. one for the mean, mini-

mum, and maximum projected temperature change) and combined them into a ’final’ ranking

for accuracy using the RankAggreg() function in the RankAggreg R package (Pihur et al.,

2018). The Cross-Entropy Monte Carlo algorithm (Rubinstein, 1999) was used to aggregate

the three rankings by searching for the final ranking that minimised the ’distance’ between

itself and the three original rankings. We used Kendall’s tau (Kendall, 1938) as a measure of

distance, where distance represents the extent of disagreement between rankings (see Pihur

et al. (2009) for further details). To check that the rankings were robust to the choice of algo-

rithm and distance measure, we compared the rankings of the visualisations using the Genetic

algorithm (Goldberg, 1989) to aggregate the rankings and Spearman’s footrule (Spearman,

1904) as a measure of distance. The final rankings were identical when using the two differ-

ent algorithms and were almost identical when using the two measures of distance; the only

differences between Kendall’s tau and Spearman’s footrule occurred between two visualisa-

tions in the middle of the rankings and therefore the choice of method would not affect the

visualisations deemed to be the best or worst performers.

The above methodology was repeated to determine the final rankings of the visualisations

for confidence/ease and for preferences. To do this, we produced four sets of rankings for

confidence/ease (i.e. one for the confidence and ease associated with the mean and the

minimum and maximum) and five sets of rankings for preference (i.e. one for each preference

category) using the parameter estimates of the MPPOMs and BT models described in Section

6.4.3 and 6.4.4). The ’overall’ ranking of the visualisations was determined by combining

the final rankings of the visualisations for accuracy, confidence/ease, and preferences. We

aggregated the final rankings of the visualisations instead of the 12 individual rankings to

ensure that accuracy, confidence/ease, and preferences were treated equally, rather than the

overall ranking being weighted towards preferences and confidence/ease.
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6.4 Results

We used an online survey to better understand the effectiveness of different methods of visual-

ising the outputs of Multi-Model Ensembles (MMEs). The number of times each visualisation

had previously been encountered by the survey participants is described in Section 6.4.1.

The accuracy, confidence, and ease with which different groups of participants were able to

interpret each visualisation is discussed in Sections 6.4.2 and 6.4.3 and the participants’ pref-

erences for each visualisation across a number of different categories is discussed in Section

6.4.4. The final rankings of the visualisations based on the accuracy, confidence, ease, and

preferences displayed by the participants are described in Section 6.4.5 .

6.4.1 Previous encounters

Of all of the visualisations in the survey, the participants were most familiar with the box1

plot, with over 70% of the participants having previously encountered a similar visualisation

(Figure 6.3). Over 50% of the survey participants had also encountered visualisations similar

to the dot2, line1, and line2 plots prior to completing the survey (Figure 6.3). The cascade

plot was by far the least familiar of all of the visualisations in the survey, with over 90% of the

participants having not seen a similar visualisation in the past (Figure 6.3). Over 50% of the

survey participants had also not previously encountered visualisations that were similar to the

heat plot or the infographic (Figure 6.3).

6.4.2 Accuracy

Visualisation type

The fitted values of the Generalised Linear Mixed Models (GLMMs), which are based on

changing a single covariate from its ‘typical’ value, are shown in Figure 6.4. Based on the

coefficients of the GLMMs, visualisation type had a significant effect (p < 0.05) on all three

measures of accuracy (i.e. the absolute difference (x10) between the participants’ estimates

of the mean, minimum, and maximum projected temperature change and the true values given

by the climate models) (Figure 6.4). More specifically, the participants were significantly more

accurate (p < 0.05) when they were asked to estimate the mean, minimum, and maximum

projected temperature change using the dot1 plot compared with the reference box1 plot (Fig-

ure 6.4). Conversely, the participants were significantly less accurate (p < 0.001) when they

were asked to estimate the mean and/or the minimum and maximum projected temperature

change using the heat plot and the infographic compared with the reference box1 plot (Figure
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Figure 6.3: The proportion of participants (%) that had previously encountered each visualisation type prior to
completing the survey. Teal indicates the proportion of participants that were not sure whether they had previously
encountered the visualisation, whilst purple and blue indicate the proportion of participants that had or had not
previously encountered the visualisation respectively.

6.4).

The predictions of the GLMM that was used to analyse the absolute difference between the

participants’ estimates of the mean projected temperature change and the true value given by

the climate models (represented as ratios relative to the ’typical’ response) suggest that the

heat plot was outperformed by all other visualisation types, as the Absolute Difference (AD)

ratio (95% Confidence Interval (CI)) of the heat plot was 2.27 (1.73, 2.99), whilst the AD ratios

for all other visualisation types fell between 0.63 (0.44, 0.88) and 1.25 (0.93, 1.69) (Figure 6.5).

The dot1 plot was associated with the greatest accuracy, with an AD ratio of 0.63 (0.44, 0.89)

(Figure 6.5). In addition to outperforming the heat plot, the dot1 plot also outperformed the

box2, line2, and radar plots, all of which had AD ratios (95% CI) ranging from 1.23 (0.91, 1.67)

to 1.25 (0.93, 1.69) (Figure 6.5). There were no discernible differences in the AD ratios of the

box plots, line plots, the dot2 plot, the cascade plot, or the infographic (Figure 6.5).

The predictions of the GLMMs that were used to analyse the accuracy with which the par-

ticipants were able to estimate the minimum and maximum temperature change projected to

occur in a given scenario and decade were very much alike and were broadly similar to those

associated with the mean projected temperature change, although there were some notable

differences (see below). For example, the dot1 plot was again associated with the lowest in-

accuracies for both the minimum and maximum projected temperature change, with AD ratios

(95% CI) of 0.75 (0.58, 0.98) and 0.68 (0.50, 0.91) respectively (Figure 6.5).
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When the participants were asked to estimate the minimum projected temperature change,

the dot1 plot outperformed both the infographic and heat plots, which had AD ratios (95% CI)

of 1.59 (1.24, 2.04) and the 1.80 (1.44, 2.26) respectively (Figure 6.5). The box, cascade,

radar, dot2, and line1 plots also outperformed the infographic and/or heat plot, with AD ratios

(95% CI) ranging from 0.85 (0.65, 1.10) to 1.09 (0.86, 1.38) (Figure 6.5). When the survey

participants were asked to estimate the maximum projected temperature change, the dot1 plot

outperformed the radar, dot2, heat, and infographic plots, all of which had AD ratios (95% CI)

ranging from 1.19 (0.91, 1.56) to 2.07 (1.58, 2.71) (Figure 6.5). Similar to the above, the box,

line, cascade, radar, and dot2 plots also outperformed the heat plot and/or the infographic,

with AD ratios (95% CI) ranging from 0.74 (0.55, 1.01) to 1.20 (0.92, 1.56) (Figure 6.5). There

were no discernible differences between the AD ratios of the box plots, line plots, dot1 plot,

and the cascade plot when the participants were asked to estimate either the minimum or

maximum projected temperature change (Figure 6.5).

Decade and scenario

The decade that was given to each participant had no effect (p > 0.05) on the accuracy with

which they were able to estimate the mean projected temperature change, but it had a sig-

nificant effect (p < 0.01) on the accuracy with which they were able to estimate the minimum

and maximum projected temperature change (Figure 6.4). For example, the participants were

less accurate when they were asked to estimate the minimum projected temperature change

in the 2090s compared with the reference 2050s, as the AD ratio (95% CI) associated with the

2090s was 1.48 (1.29, 1.69) (Figure 6.5). However, the opposite trend was apparent when the

participants were asked to estimate the maximum projected temperature change; the AD ratio

(95% CI) associated with the 2090s was 0.81 (0.69, 0.94), suggesting that the participants

tended to be more accurate when they were asked to estimate the maximum projected tem-

perature change in the 2090s compared with the 2050s (Figure 6.5). There were no apparent

differences in the accuracy with which the participants were able to estimate the mean or the

maximum temperature change projected to occur in the 2010s compared with the 2050s or the

2090s (Figure 6.5). Conversely, the participants tended to be more accurate when asked to

estimate the minimum projected temperature change in the 2010s compared with the 2090s,

as the AD ratios (95% CI) associated with the 2010s and 2090s were 1.03 (0.89, 1.18) and

1.48 (1.29, 1.69) respectively (Figure 6.5).

The scenario that was given to each participant had no effect (p > 0.05) on the accuracy with

which the participants were able to estimate the maximum projected temperature change, but

it had a significant effect (p < 0.001) on the accuracy with which they were able to estimate the
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mean and the minimum projected temperature change (Figure 6.4). The participants tended

to be less accurate when they were asked to estimate the mean or the minimum projected

temperature change in scenario 8.5 compared with scenario 4.5, as the AD ratios (95% CI)

associated with scenario 8.5 were 1.40 (1.19, 1.64) for the mean and 1.31 (1.15, 1.51) for

the minimum projected temperature change (Figure 6.5). There were no notable differences

between the accuracy with which the participants were able to estimate the mean, minimum,

and maximum temperature change projected to occur in scenario 2.6 compared with scenario

8.5.

Background

The background of the participant (i.e. general public, scientist, or decision maker/environ-

mental manager) had a significant effect (p < 0.05) on the accuracy with which they were able

to estimate the mean, minimum, and maximum temperature change projected to occur in a

given scenario and decade (Figure 6.4). When asked to estimate the mean projected temper-

ature change, both the decision makers/environmental managers and the general public were

associated with greater inaccuracies than the reference scientist group, with AD ratios (95%

CI) of 2.09 (1.35, 3.24) and 1.56 (1.22, 2.00) respectively (Figure 6.5). The general public

also tended to be less accurate than the reference scientist group when they were asked to

estimate the minimum projected temperature change, whilst the decision makers/environmen-

tal managers were less accurate than the reference scientist group when they were asked to

estimate the maximum projected temperature change, with AD ratios (95% CI) of 1.26 (1.03,

1.55) and 1.59 (1.06, 2.40) respectively (Figure 6.5). There were no apparent differences

between the accuracy of the decision makers/environmental managers and the general pub-

lic when they were asked to estimate the mean, minimum, or maximum temperature change

projected to occur in a given scenario or decade.

Education

The education level of the participants had no effect (p > 0.05) on the accuracy with which they

were able to estimate the minimum and maximum temperature change projected to occur in

a given scenario and decade, although it did have a significant effect (p < 0.01) on their ability

to estimate the mean projected temperature change (Figure 6.4). For example, participants

with a doctorate degree had an AD ratio (95% CI) of 1.55 (1.15, 2.08), suggesting they were

less accurate than the reference postgraduate group (Figure 6.5). The participants that had

not attended university (i.e. those with GCSE, A-Level, or vocational training) had an AD

ratio of (95% CI) of 0.81 (0.58, 1.13), suggesting that this group of individuals was also more
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accurate than those with a doctorate degree (Figure 6.5). There were no notable differences

in the accuracy with which the participants with pre-university, undergraduate, or postgraduate

levels of education were able to estimate the mean projected temperature change.

Expertise

The participants’ expertise in working with environmental models and/or their outputs had

no effect (p > 0.05) on the accuracy with which they were able to estimate the minimum or

maximum temperature change projected to occur in a given scenario and decade (Figure

6.4). However, when the participants were asked to estimate the mean projected temperature

change, those with more than five years of experience were significantly more (p < 0.05)

accurate than those with no experience, as they had an AD ratio (95% CI) of 0.63 (0.44, 0.92)

(Figure 6.4 and 6.5).

Random effects

It was not possible to test the significance of including participant ID as a random effect in the

GLMMs using a Likelihood Ratio Test as the method used here computes quasi-likelihoods

instead of true likelihoods (Bolker et al., 2009). Despite this, it is clear that some of the partic-

ipants were inherently more accurate than others when estimating the mean, minimum, and

maximum temperature change projected to occur in a given scenario and decade. For exam-

ple, the standard deviation of the random intercepts (95% CI), which represents the amount of

within-treatment variability that is explained by participant ID, was between 0.56 (0.50, 0.64)

and 0.67 (0.59, 0.76) for all three GLMMs, whilst the residual within-treatment standard de-

viation, which represents the amount of within-treatment variability that is not explained by

participant ID, was between 1.78 (1.69, 1.88) and 2.10 (2.00, 2.21) (Table 6.2).

Table 6.2: The Standard Deviation (SD) of the random intercepts and the residual within-treatment SD
(95% Confidence Interval (CI)) of the three Generalised Linear Mixed Models that were used to analyse
the absolute difference (x10) between the participants’ estimates of the mean, minimum, and maximum
temperature change projected to occur in a given scenario and decade and the true value given by the
climate models. The SD of the random intercepts represents the amount of within-treatment variability
that is explained by participant ID, whilst the residual SD represents the unexplained within-treatment
variability. A SD of zero for the random intercepts would indicate that the participants did not vary
consistently across treatments.

Response variable Intercept SD (95% CI) Residual SD (95% CI)

Mean 0.67 (0.59, 0.77) 2.10 (2.00, 2.21)

Minimum 0.56 (0.50, 0.64) 1.78 (1.69, 1.88)

Maximum 0.61 (0.54, 0.70) 2.09 (1.98, 2.20)
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6.4.3 Confidence and ease

Visualisation type

The type of visualisation that was shown to the participants had a significant effect (p < 0.05)

on the confidence and ease with which they were able to estimate the mean or the minimum

and maximum temperature change projected to occur in a given scenario and decade (Figure

6.6). For example, the participants were between 2.30 (95% CI: 1.27, 4.15) and 2.82 (95%

CI: 1.54, 5.16) times more likely (p < 0.01) to select a higher rating for confidence and ease

when they were asked to estimate the mean projected temperature change using the dot1 or

dot2 plots compared with the reference box1 plot (Figure 6.6). The participants were also 2.11

(95% CI: 1.19, 3.74) times more likely to give a higher rating for confidence when they were

asked to estimate the mean temperature change using the line1 plot compared with the box1

plot (Figure 6.6).

On the other hand, the survey participants were significantly less likely (p < 0.01) to select a

higher rating for confidence and ease when they were asked to estimate either the mean or the

minimum and maximum projected temperature change using the radar and heat plots, both

of which had odds ratios (95% CI) of between 0.05 (0.03, 0.10) and 0.39 (0.21, 0.70) (Figure

6.6). The participants were also significantly less likely (p < 0.001) to select a higher rating for

confidence and ease when they were asked to estimate the minimum and maximum projected

temperature change using the line2 and infographic plots; the same was also true when the

participants were asked to comment on the ease with which they were able to estimate the

minimum and maximum using the line1 plot (Figure 6.6). In all of these cases, the odds ratios

(95% CI) of the line and infographic plots remained within 0.14 (0.07, 0.28) and 0.30 (0.17,

0.55) (Figure 6.6).

The predictions of the MPPOMs further support the conclusions described above. For exam-

ple, the survey participants were most likely to give a positive response (i.e. somewhat agree

or agree) when they were asked to estimate the mean projected temperature change in a

given scenario and decade using the dot and line plots. To illustrate this point, the predicted

probability of a positive confidence rating was between 0.85 and 0.92 when the participants

were asked to estimate the mean projected temperature change using the dot and line plots

(Figure 6.7). However, the probability of a positive response remained above 0.79 for all vi-

sualisation types excluding the radar and heat plots, which were associated with probabilities

of 0.61 and 0.23 respectively (Figure 6.7). The heat plot was the only visualisation type to be

associated with a greater probability of a negative rating than a positive rating for confidence

(Figure 6.7). Similar results were also apparent when the participants were asked to comment
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on the ease with which they were able to estimate the mean projected temperature change

(see Figure 6.8).

Conversely, the participants were most likely to give a positive response for confidence and

ease when they were asked to estimate the minimum and maximum projected temperature

change using the dot1, cascade, box2, dot2 and box1 plots. Using confidence as an exam-

ple, the predicted probability of a positive rating was between 0.86 and 0.92 for all of these

visualisation types (Figure 6.7). The participants were more likely to give a neutral or negative

rating than a positive rating for confidence when they were asked to estimate the minimum and

maximum using the infographic and heat plots, with probabilities of 0.56 and 0.80 respectively

(Figure 6.7). The radar and line2 plots were also associated with a relatively high probabil-

ity of a neutral or negative confidence rating, with probabilities of 0.45 and 0.37 respectively

(Figure 6.7). Again, similar results were apparent when the participants were asked to com-

ment on the ease with which they were able to estimate the minimum and maximum projected

temperature change (see Figure 6.8).

Decade and scenario

The scenario that was given to each of the participants had no effect (p > 0.05) on the confi-

dence or ease with which they were able to estimate the mean or the minimum and maximum

projected temperature change (Figure 6.6). The decade that was given to each participant

also had no effect (p > 0.05) on the confidence with which the participants were able to esti-

mate the mean projected temperature change, but it had a significant effect (p < 0.05) on all

other measures of confidence and ease (Figure 6.6). For example, the participants were 1.66

(95% CI: 1.18, 2.34) times more likely to select one of the higher Likert scale categories for

confidence and 1.92 (95% CI: 1.39, 2.67) times more likely to do the same for ease when they

were asked to estimate the minimum and maximum temperature change projected to occur in

the 2090s compared with the reference level of the 2050s (Figure 6.6). Conversely, the par-

ticipants were less likely to select a higher rating for ease when they were asked to estimate

the mean in the 2010s compared with the 2050s, with an odds ratio (95% CI) of 0.70 (0.51,

0.96) (Figure 6.6). When the participants were asked to estimate the minimum and maximum

projected temperature change in the 2090s, the predicted probability of a positive rating for

confidence was 0.91, but this dropped to 0.85 and 0.84 when they were asked to estimate

the same value in the 2050s and 2010s respectively (Figure 6.7). Similar patterns were also

apparent when the participants were asked to comment on the ease with which they were able

to estimate the mean or the minimum and maximum projected temperature change (Figure

6.7).
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Figure 6.7: The predictions of the Mixed Partial Proportional Odds Models that were used to analyse the confi-
dence with which the participants were able to estimate the mean (left) or minimum/maximum (right) temperature
change projected to occur in a given scenario and decade. The predictions are given as probabilities for each level
of the Likert scale, ranging from ’disagree’ in purple to ’agree’ in yellow. The predictions are made relative to the
’typical’ response (as described in Section 6.3.5) and the reference levels associated with the ’typical’ response
are marked with a tilde. Predictions are given for visualisation type, decade, scenario, previous encounters, back-
ground, level of education, and expertise in working with environmental models and/or their outputs.
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Figure 6.8: The predictions of the Mixed Partial Proportional Odds Models that were used to analyse the ease
with which the participants were able to estimate the mean (left) or minimum/maximum (right) temperature change
projected to occur in a given scenario and decade. The predictions are given as probabilities for each level of the
Likert scale, ranging from ’disagree’ in purple to ’agree’ in yellow. The predictions are made relative to the ’typical’
response (as described in Section 6.3.5) and the reference levels associated with the ’typical’ response are marked
with a tilde. Predictions are given for visualisation type, decade, scenario, previous encounters, background, level
of education, and expertise in working with environmental models and/or their outputs.
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Previous encounters

The familiarity of the visualisation that was given to each participant had a significant effect

(p < 0.01) on the confidence and ease with which they were able to estimate the mean and

the minimum and maximum temperature change projected to occur in a given scenario and

decade (Figure 6.6). More specifically, the participants were between 1.76 (95% CI: 1.25,

2.48) and 1.92 (95% CI: 1.38, 2.67) times more likely to select one of the higher ratings for

confidence and ease when they were asked to interpret a visualisation type that they were

already familiar with compared with a visualisation type they had never previously encoun-

tered prior to completing the survey (Figure 6.6). There were no apparent differences (p >

0.05) in the confidence and ease with which the participants were able to estimate the mean

or the minimum and maximum projected temperature change between those who were not

sure if they had previously encountered a similar visualisation prior to completing the survey

and those who either had or had not previously encountered a similar visualisation (Figure

6.6).

The most dramatic difference between the predicted probability of a participant giving a pos-

itive rating when asked to interpret a familiar visualisation compared with an unfamiliar visu-

alisation occurred when the participants were asked to comment on the ease with which they

were able to estimate the mean projected temperature change, with respective probabilities

of 0.84 and 0.73 (Figure 6.8). However, the differences in the probability of a positive rating

between familiar and unfamiliar visualisations were relatively similar across all measures of

confidence and ease (Figures 6.7 and 6.8).

Background

Background (i.e. general public, scientist, or decision maker/environmental manager) met

the assumption of proportional odds for all measures of confidence and ease excluding the

confidence with which the participants were able to estimate the mean temperature change

projected to occur in a given scenario and decade. In all cases where background met the

assumption of proportional odds, members of the general public were significantly less likely

(p < 0.001) to select one of the higher Likert scale categories for confidence and ease than the

reference scientist group (Figure 6.6). In all of these examples, the odds ratio (95% CI) of a

member of the general public selecting one of the higher Likert scale categories was between

0.30 (0.18, 0.49) and 0.40 (0.26, 0.63) (Figure 6.6). The most dramatic difference between the

reference scientist group and the general public occurred when the participants were asked to

comment on the confidence with which they were able to estimate the minimum and maximum

projected temperature change; the predicted probability of the reference scientists giving a
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positive rating was 0.86, whilst the probability of a member of the general public giving a

positive rating was just 0.64 (Figure 6.7). In this example, decision makers and environmental

managers were associated with a probability of 0.73 (Figure 6.7). Similar patterns were also

present across both measures of ease.

When background was incorporated in the MPPOM that was used to analyse the confidence

with which the participants were able to estimate the mean projected temperature change as

a nominal effect, the threshold coefficients between all levels of the Likert scale were signifi-

cantly greater (p < 0.05) for members of the general public than the reference scientist group

(Figure 6.9). The threshold between neutral and somewhat agree displayed the greatest dif-

ference, occurring at -0.36 (95% CI: -0.92, 0.20) for the general public and at -1.38 (95% CI:

-2.11, -0.65) for the reference scientist group (Figure 6.9). The threshold between somewhat

disagree and neutral displayed the smallest difference, occurring at -1.36 (95% CI: -1.99, 0.74)

for the general public and at -2.17 (95% CI: -2.94, -1.39) for scientists (Figure 6.9). Overall, the

predicted probability of a positive rating was 0.80 for scientists, 0.59 for members of the gen-

eral public, and 0.81 for decision makers and environmental managers (Figure 6.7). Despite

the relatively large difference between the probability of a positive response from members

of the general public and decision makers/environmental managers, there were no significant

differences in the odds ratios or threshold coefficients of these two groups across all measures

of confidence and ease (Figure 6.6). However, the confidence intervals associated with the

odds ratios of the decision makers/environmental managers were relatively large, likely as a

result of the small number of individuals in this group (n = 18).

Level of education

Education only met the assumption of proportional odds when the participants were asked to

comment on the ease with which they were able to estimate the mean projected temperature

change. In this particular case, there were no significant differences (p > 0.05) between the

Likert scale categories of those with pre-university, undergraduate, or doctoral training when

compared with the reference postgraduate group (Figure 6.6). When education was included

in the MPPOM that was used to analyse the confidence with which the participants were able

to estimate the minimum and maximum projected temperature change as a nominal effect,

there were significant differences (p < 0.05) in the thresholds between somewhat disagree

and neutral and between neutral and somewhat agree for those with doctoral training com-

pared with the postgraduate reference group (Figure 6.9). For example, the threshold (95% CI)

between somewhat disagree and neutral occurred at -2.17 (2.94, -1.39) for the postgraduate

group, but at -1.67 (-2.40, -0.94) for those with doctoral training (Figure 6.9). A similar pattern
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was present when the participants were asked to comment on the ease with which they were

able to estimate the minimum and maximum projected temperature change, although to a

lesser extent. For this particular measure of ease, the threshold between disagree and some-

what disagree was also significantly lower (p < 0.05) for those with pre-university education

compared with the reference postgraduate group, with the threshold (95% CI) occurring at

-4.54 (-5.46, -3.62) for the former and at -3.62 (-4.45, -2.78) for the latter (Figure 6.9). There

were no significant differences (p > 0.05) between the threshold coefficients associated with

each level of the Likert scale when the participants were asked to comment on the confi-

dence with which they were able to estimate the mean projected temperature change (Figure

6.9).

Focusing on the predictions of the MPPOMs, the probability of a positive rating for confidence

and ease was relatively consistent across all levels of education. For example, when the par-

ticipants were asked to comment on the ease with which they were able to estimate the mean

projected temperature change, the predicted probability of a positive response was between

0.73 and 0.77 across all levels of education (Figure 6.7). The probability of a positive response

was slightly more variable when the participants were asked to comment on the confidence

and ease with which they were able to estimate the minimum and maximum projected temper-

ature change, although it remained within 0.71 and 0.90 across all levels of education (Figures

6.7 and 6.8). In the majority of cases, those without a university education were most likely to

give a positive response, whilst those with doctoral training were least likely to give a positive

response.

Expertise

Expertise did not meet the assumption of proportional odds for any of the measures of confi-

dence and ease and therefore it was included in all of the MPPOMs as a nominal effect. When

the participants were asked to comment on the confidence with which they were able to esti-

mate the minimum and maximum, the threshold coefficient between somewhat disagree and

neutral was significantly lower (p < 0.05) for those with two to four years of experience com-

pared with the reference group that had no previous experience, with the threshold (95% CI)

occurring at -4.02 (-5.07, -2.96) for the former and at -2.88 (-3.71, -2.06) for the latter (Figure

6.9). When the participants were asked to comment on the confidence and ease with which

they were able to estimate the mean projected temperature change, the threshold coefficients

between disagree and somewhat disagree, somewhat disagree and neutral, and/or between

neutral and somewhat agree occurred between 0.69 and 1.38 units lower (p < 0.05) for those

with up to two years of experience compared with the reference group that had no previous ex-

171



perience (Figure 6.9). When the participants were asked to comment on the ease with which

they were able to estimate the minimum and maximum projected temperature change, there

were no notable differences in the thresholds between each of the Likert scale categories

based on level of expertise.

Overall, the probability of a positive rating for confidence and ease was relatively consistent

across all levels of expertise. For example, when the participants were asked to comment

on the ease with which they were able to estimate the minimum and maximum projected

temperature change, the predicted probability of a positive rating was between 0.78 and 0.83

across all levels of expertise (Figures 6.7 and 6.8). However, the participants with more than

zero but less than two years of experience tended to be more likely to give a positive rating

for confidence and ease when they were asked to estimate the mean compared with the

participants that had more or less experience. Using ease as an example, the predicted

probability of a participant with more than zero but less than two years of experience giving a

positive rating was 0.84, whilst the probability of a positive rating was between 0.71 and 0.73

for all other levels of expertise (Figure 6.8).

The mean versus the minimum and maximum

Interestingly, the probability of a participant selecting ’agree’ was often greater when they

were asked to comment on the confidence and ease with which they were able to estimate

the minimum and maximum temperature change projected to occur in a given scenario and

decade compared with the mean. For example, the predicted probability of a participant

selecting ’agree’ when asked to comment on the confidence with which they were able to

estimate the minimum and maximum projected temperature change using a visualisation that

was familiar to them was 0.58, but this dropped to 0.34 when they were asked to estimate

the mean (Figure 6.7). Similarly, the predicted probability of a participant selecting ’agree’ to

describe the ease with which they were able to estimate the minimum and maximum projected

temperature change in the 2090s was 0.56, but this fell to 0.29 when they were asked to

estimate the mean (Figure 6.8). These are just a couple of examples of cases in which the

probability of selecting ’agree’ was greater when the participants were asked to comment on

the confidence and ease with which they were able to estimate the minimum and maximum

projected temperature change compared with the mean, but similar examples can also be

found across almost all of the predictor variables.
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Random effects

We used Likelihood Ratio Tests (LRTs) and IntraClass Correlation (ICC) scores to determine

the importance of including participant ID as a random effect in the MPPOMs that were used

to analyse both the confidence and ease with which the participants were able to estimate the

mean or the minimum and maximum temperature change projected to occur in a given sce-

nario and decade. A LRT p-value of less than 0.05 indicates the fit of the MPPOM significantly

improved when participant ID was included as a random effect. An intraclass correlation score

close to one indicates high within-cluster similarity, whilst a value close to zero indicates low

within-cluster similarity (Schmidt, 2012).

The LRTs indicated that the goodness-of-fit of the MPPOMs significantly improved (p < 0.001)

when participant ID was included as a random effect (Table 6.3). The ICC scores (95% CI)

of the MPPOMs were all between 0.55 and 0.62 (Table 6.3), suggesting that the participants

tended to give relatively similar answers across all blocks of questions.

Table 6.3: The Likelihood Ratio Test (LRT) statistics and the IntraClass Correlation (ICC) scores asso-
ciated with including participant ID as a random effect in the mixed partial proportional odds models
that were used to analyse the confidence and ease with which the survey participants were able to
estimate the mean or the minimum and maximum temperature change projected to occur in a given
scenario and decade. A LRT p-value of less than 0.05 indicates that the fit of the model significantly
improved when participant ID was included in the models as a random effect. An ICC score of close to
one indicates a high within-cluster similarity, whilst a score close to zero indicates a low within-cluster
similarity. *p < 0.05, **p < 0.01, ***p < 0.001.

Response

variable
LRT statistic p-value ICC score

Confidence (mean) 92.75 <0.001*** 0.62

Confidence (min and max) 81.74 <0.001*** 0.62

Ease (mean) 73.53 <0.001*** 0.57

Ease (min and max) 59.45 <0.001*** 0.55

6.4.4 Preference

Visualisation type

When using the visualisations to view changes in mean temperature over time, the survey

participants displayed the greatest preference for the two line plots and the dot2 plot, all of

which had preference scores that were significantly greater (p < 0.01) than the reference

box1 plot (and hence the radar, infographic, heat, and cascade plots) (Figure 6.10). More

specifically, the preference scores of the line1, line2, and dot2 plots (95% comparison interval)

were between 0.72 (0.32, 1.11) and 1.24 (0.82, 1.66), whilst the preference score of the box1
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plot was 0.00 (-0.41, 0.41) (Figure 6.10). The radar, heat, infographic, and cascade plots were

the least preferred visualisation types, with preference scores that were significantly lower (p

< 0.01) than the box1 plot (and hence all other visualisation types) (Figure 6.10). For example,

the preference scores (95% comparison interval) of the radar and cascade plots were -0.60

(-1.01, -0.20) and -0.84 (-1.26, -0.43) respectively (Figure 6.10). There were no significant

differences (p > 0.05) in the preference scores of the dot and box plots (Figure 6.10).

The rankings of each visualisation based on the ability to view changes in uncertainty over

time were slightly different to those described above for temperature. For example, the dot

and box plots had the greatest preference scores (95% comparison interval), with values

ranging from -0.02 (-0.39, 0.35) to 0.10 (-0.29, 0.48) (Figure 6.10). However, there were no

significant differences (p > 0.05) between the preference scores of the line plots, dot plots,

box2 plot, or the cascade plot when compared with the reference box1 plot (Figure 6.10). The

radar, infographic, and heat plots were the least preferred visualisations and had preference

scores that were significantly lower (p > 0.001) than the reference box1 plot (and hence the

dot1 and box2 plots), with preference scores (95% comparison interval) ranging from -1.09 (

-1.48, -0.69) to -1.59 (-2.04, -1.15) (Figure 6.10).

When used to retrieve specific values (such as the mean, minimum, and maximum), the sur-

vey participants displayed the greatest preference for the box2 and box1 plots, with scores

(95% comparison interval) of 0.38 (-0.04, 0.81) and 0.00 (-0.44, 0.44) respectively (Figure

6.10). The preference scores of the box plots were significantly greater (p < 0.01) than the

preference scores of all other visualisation types excluding the two dot plots, which had scores

(95% comparison interval) of -0.20 (-0.60, -0.21) and -0.24 (-0.64, 0.15) respectively (Figure

6.10). The cascade, line, and radar plots displayed intermediate but overlapping preference

scores, with values (95% comparison interval) of between -0.92 (-1.28, -0.57) and -1.36 (-

1.75, -0.97) (Figure 6.10). The heat plot was once again associated with the lowest preference

score, with a value (95% comparison interval) of -2.41 (-2.91, -1.90), and was outperformed by

all other visualisation types excluding the infographic, which had a preference score of -1.84

(-2.27, -1.41) (Figure 6.10).

For visual appeal, the reference box1 plot had the lowest preference score, with a value (95%

comparison interval) of 0.00 (-0.67, 0.67) (Figure 6.10). However, there was a great deal of

overlap between the preference scores of all of the visualisation types; the dot1 and dot2 plots

were the only visualisations with a significantly greater (p < 0.05) preference score than the

reference box1 plot, with scores of 2.02 (1.14, 2.90) and 1.06 (0.27, 1.85) respectively (Figure

6.10). There were no other notable differences in the preference scores of each visualisation

based on visual appeal.
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Figure 6.10: The preference scores (95% ’comparison’ intervals) of each visualisation across five different prefer-
ence categories: the ability to view changes in temperature over time, the ability to view changes in uncertainty
over time, the ability to retrieve specific values (such as the mean, minimum, or maximum), visual appeal, and
overall ease of understanding. The 95% comparison intervals are estimated using quasi standard errors to allow
for comparisons to be made across all of the visualisations. The preference scores of each visualisation are pre-
sented relative to the box1 plot (highlighted in teal and marked with a tilde), which was defined as the reference
visualisation in the BT models and is therefore given a preference score of zero. *p < 0.05, **p < 0.01, ***p < 0.001.

The visualisations with the greatest preference scores for overall ease of understanding were

the dot2 and dot1 plots, with scores of 1.27 (0.37, 2.17) and 1.15 (0.31, 2.00) respectively

(Figure 6.10). The dot plots were the only visualisation types with significantly greater (p <

0.05) preference scores than the reference box1 plot (and hence the line, infographic, radar,

cascade, and heat plots), although there was some overlap in the preference scores of all of

the visualisation types excluding the cascade and heat plots (Figure 6.10). The cascade and

heat plots had the lowest preference scores, with values of -0.57 (1.26, 0.11) and -0.90 (-1.74,

0.06) respectively (Figure 6.10).
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Background and education

Background or education were included in the best-fitting BT models across all five preference

categories. However, there were no notable differences in the preference scores of each visu-

alisation based on background (see Appendix I) and there were only two notable differences

between the preference scores of each visualisation based on the level of education of the

participants: (1) for overall ease of understanding, those with a doctorate degree tended to

prefer the line1 plot more than those with an undergraduate degree, with preference scores

of 0.79 (0.65, 0.94) and 0.38 (0.20, 0.56) respectively (Figure 6.11); and (2) for visual ap-

peal, those without a university education tended to prefer the dot1 plot more than those with

an undergraduate degree, with preference scores of 0.88 (0.77, 1.00) and 0.55 (0.35, 0.75)

respectively (Figure 6.11).

6.4.5 Rankings

The ten visualisations included in the survey were ranked based on participant accuracy,

confidence/ease, and preferences. The dot1 and heat plots were consistently ranked in first

and last position across all categories respectively (Figure 6.12). The dot2 plot performed

relatively poorly for accuracy, but was second best for confidence/ease and preferences, thus

resulting in an overall ranking of second place (Figure 6.12). Both of the box plots were

in the top four for accuracy and preferences, but dropped down to 6th and 7th position for

confidence/ease (Figure 6.12). However, this drop in performance had little effect on the

overall rankings of the box plots, which placed in 3rd and 4th (Figure 6.12). The cascade plot

was ranked in 3rd and 4th position for accuracy and confidence/ease respectively, but in 9th

for preferences, resulting in an overall ranking of 6th (Figure 6.12). The line plots displayed

an intermediate level of performance across all categories, remaining between 3rd and 7th

throughout (Figure 6.12). Finally, the radar plot and infographic were ranked in the bottom

four across all categories (Figure 6.12).

6.5 Discussion

An online survey was conducted to identify the most effective methods for visually commu-

nicating the outputs of Multi-Model Ensembles (MMEs). We measured the accuracy, confi-

dence, and ease with which the participants were able to interpret different types of visualisa-

tion, as well as their preferences for each visualisation across a number of categories. The

performance of each visualisation is discussed in Section 6.5.1, whilst the effects of decade,

scenario, previous encounters, and the demographics of the participants are discussed in
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Figure 6.12: The rankings of the visualisations based on participant accuracy, confidence/ease, and preferences.
An ’overall’ ranking is given based on the aggregation of the rankings for each of these categories (see Section
6.3.6 for further details).

Section 6.5.2.

6.5.1 Visualisation type

The type of visualisation that was shown to the participant had a significant effect on all mea-

sures of accuracy, confidence, ease, and preferences. Of all of the visualisations that were

included in the survey, it was the dot plots that tended to perform the best, ranking highly

across almost all measures of performance. The only category in which the dot plots were

not in 1st and 2nd position was accuracy, as the dot2 plot dropped down to 5th. However, this

drop in performance was driven by the low accuracy with which the participants were able to

estimate the minimum and maximum projected temperature change, not the mean. It is likely

that this drop in accuracy occurred as a result of the uncertainty in the model outputs being

represented using error bars (Figure 6.1 and F.4). As the error bars were determined using

the standard deviation of the projections, it would not have been possible for the participants
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to correctly identify the minimum and maximum, although they may have been able to provide

a rough approximation of these values. Nevertheless, the dot2 plot ranked highly when used

to view changes in uncertainty over time and to retrieve specific values, whilst fewer than 10%

of the participants that were shown the dot2 plot indicated that they were unable to estimate

the minimum and maximum. Those participants that did try to give an estimate may have

misinterpreted what the error bars represented. For example, it is possible that some of the

participants assumed that the caps of the error bars depicted the minimum and maximum pro-

jected temperature change, which would have resulted in an overestimation of the minimum

and an underestimation of the maximum. Such misinterpretations have been widely recog-

nised in the scientific literature (see Belia et al. (2005); Cumming et al. (2007); Hullman et al.

(2015) for example), with some researchers suggesting that error bars may in fact be harm-

ful (Correll and Gleicher, 2014). This sentiment is supported by the results of this research,

which showed that the participants’ ratings of confidence and ease remained relatively high

despite the aforementioned drop in accuracy. The dot2 plot may therefore be unintentionally

misleading, a potentially dangerous trait given that it is likely to result in an underestimation of

the uncertainty in the model outputs.

A similar issue might also be expected to affect the accuracy with which the participants

were able to interpret the box1 plot, which included error bars that represented the minimum

and maximum projected temperature change that was within 1.5 × the inter-quartile range

(Figure 6.1 and F.5). However, this was not the case, perhaps due to the relatively small

difference between the upper and lower limits of the error bars and the ’true’ minimum and

maximum given by the climate models. Had the difference been larger, we may still be less

concerned about the box1 plot than the dot2 plot as it was ranked lower for confidence and

ease than for accuracy, but unfortunately this drop in ranking was driven by an increase in

the number of negative ratings (i.e. ’disagree’ or ’somewhat disagree’) when the participants

were asked to estimate the mean, not the minimum and maximum. Such low ratings for

confidence and ease likely occurred as a result of confusion about whether the question,

which included the term ’average’, required the mean or the median. Based on the extended

feedback given by the participants, it is clear that some tried to estimate the mean using

the mid-point of the 25th and 75th percentiles, whilst others gave the median. Again, this

issue would have had a relatively minor impact on the overall ranking of the box plots as the

difference between the mean and the median of the model projections was small, but may

have been more problematic if the difference had been much larger. To avoid this issue in

the future, the type of average used in the visualisation should be made as clear as possible.

We also recommend providing definitions of the mean, median, and mode to ensure that

misinterpretations are avoided.
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Overall, it is clear that caution must be exercised when using error bars to communicate un-

certainty in the outputs of MMEs. It should not be assumed that the end users will be able to

estimate the full extent of the uncertainty in the model outputs unless the minimum and max-

imum are made explicit. Despite these issues, the dot and box plots were ranked in the top

four overall. The success of these visualisations is supported by a survey aimed at identifying

the most effective visualisations for communicating uncertain snowfall forecasts (Ibrekk and

Morgan, 1987). In this study, Ibrekk and Morgan (1987) found that the participants were most

accurately able to estimate the forecaster’s single ’best’ estimate when using a dot or box plot

(Ibrekk and Morgan, 1987). However, the performance of these visualisations was compared

with a bar chart, a pie chart, a box plot, a conventional probability density function, a conven-

tional cumulative distribution function, and three less widely used representations of a prob-

ability density function (Ibrekk and Morgan, 1987). None of the visualisations depicted more

than one type of uncertainty and more modern visualisations methods, such as infographics,

were not considered (Ibrekk and Morgan, 1987). The survey participants also consisted of 45

individuals from a single environmental education facility near Pittsburgh and may thus not be

considered a representative sample of the population (Ibrekk and Morgan, 1987). Our results

therefore further the work of Ibrekk and Morgan (1987) by highlighting the effectiveness of the

dot and box plots across a much wider audience, across a greater number of measures of

performance, and when communicating more than one type of uncertainty.

The two line plots that were included in the survey consistently displayed an intermediate

level of performance, with rankings of between 3rd and 7th for accuracy, confidence, ease,

and preferences. It is perhaps surprising that the line plots were not ranked higher given that

they are generally believed to be easy to interpret and have previously been proven to be suc-

cessful at conveying trends in environmental variables over time (Lipkus and Hollands, 1999;

Spiegelhalter et al., 2011). However, it would seem that the relatively low rankings of the line

plots occurred as a result of the participants struggling to quantify the uncertainty in the model

outputs. In particular, the participants tended to find it more difficult and were less confident

when they were asked to use the line plots to estimate the minimum and maximum projected

temperature change instead of the mean. This finding is especially interesting given that the

opposite was true for almost all of the other visualisations. Such a drop in the performance of

the line plots when the participants were asked to estimate the minimum and maximum likely

occurred as a result of over-plotting, a factor that can make it more difficult or even impossible

to identify specific values (Few, 2008). This would also explain why the line plots performed

relatively poorly in many of the preference categories, particularly the ability to view changes in

uncertainty over time, the ability to retrieve specific values, and overall ease of understanding,

but performed well when used simply to view changes in temperature over time. This theory is
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supported by a similar visualisation survey conducted by Daron et al. (2015), which suggested

that over-plotting may have impacted the participants’ ability to assess future changes in rain-

fall. The line plots may therefore perform better in situations where there are fewer model

runs to display or when the scenarios diverge more dramatically. A different colour scheme

and/or bolder lines may also help to improve the performance of the line plots by making the

differences between each of the model runs more obvious.

Despite the participants being highly confident when using the line plots to estimate the mean

projected temperature change, the mean absolute difference (x10) between the participants’

estimates and the ’true’ values given by the climate models was relatively high for these two

visualisations. Nevertheless, the 95% confidence intervals of the parameter estimates asso-

ciated with the line plots overlapped with all of the other visualisation types excluding the heat

plot, suggesting that most of the visualisations performed equally well when the participants

were asked to estimate the mean. However, we ranked the visualisations based solely on

the mean parameter estimates of the Generalised Linear Mixed Models (GLMMs) and did not

take into account the error surrounding these estimates. Negligible differences in the perfor-

mance of each visualisation may thus have a substantial impact on the final rankings. The final

rankings should therefore not be considered alone, they must be used in conjunction with the

outputs of the underlying statistical models that were used to analyse the survey data.

The cascade plot showed perhaps the greatest variation in rankings across the different mea-

sures of performance, placing in 3rd and 4th for accuracy and confidence/ease respectively,

but in 9th for preference. Despite ranking highly for confidence and ease it is clear that the

participants found it relatively difficult to estimate the mean using this visualisation. This is per-

haps unsurprising given that the visualisation was specifically designed to represent changes

in uncertainty, rather than to represent changes in the mean (Hawkins, 2014), a fact that is

supported by the comparatively good performance of the cascade plot when used to view

changes in uncertainty over time. The cascade plot may have performed poorly across many

of the other preference categories (particularly the ability to view changes in temperature over

time, visual appeal, and overall ease of understanding) as preferences have often been shown

to be strongly related to familiarity (see Elting et al. (1999); Lorenz et al. (2015); Quispel et al.

(2016) for example). As the cascade plot was the least familiar of all of the visualisations, it

is therefore more likely to be one of the least preferred visualisations. Increased exposure to

this type of visualisation may therefore help to improve the performance of the cascade plot

across many of the different preference categories, particularly overall ease of understanding

and visual appeal.

The radar plot performed poorly across all measures of performance, with rankings con-
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sistently at or below 7th position. Again, such poor performance may be relatively unex-

pected given that radar plots are typically used to display multivariate data (see Saary (2008);

Vaughan and Gough (2016) for example), rather than to communicate changes in a single

environmental variable through time. Similar to the cascade plot, the radar plot was also one

of the most unfamiliar visualisations in the survey and would therefore be more likely to be one

of the least preferred visualisations. Furthermore, the cognitive load (or mental effort) required

to interpret the radar plot may be far greater than for many of the other visualisation types due

to the axes pointing in different directions (Peltier, 2013). As increased cognitive loads have

previously been shown to have a negative impact on the accuracy with which individuals may

interpret a visualisation (Lohse, 1997), this issue may help to explain the negative response

of the participants to the radar plot.

The infographic was consistently found in the bottom three when the visualisations were

ranked according to their performance in each category. However, it is likely that the info-

graphic performed poorly as we purposefully chose not to provide enough information in this

visualisation to estimate the uncertainty in the projections in the 2010s or 2050s. The par-

ticipants would also not have been able to estimate the minimum and maximum projected

temperature change in the 2090s to the required level of accuracy (one decimal place); this is

because the uncertainty was presented as a frequency table depicting the number of models

projecting increases of more than 2, 3, 4, and 5◦C by 2099 (Figure 6.1 and F.10). We did

this to test whether the participants were correctly able to identify this fact or whether they

attempted to extract the minimum and maximum using the information provided. 40% of the

participants that were shown the infographic indicated that they were unable to estimate the

minimum and/or maximum (see Appendix G); those that did try to extract specific values of-

ten provided integers (i.e. 2, 3, 4, and 5◦C) as a ’best guess’ approximation of the minimum

and/or maximum and set their ratings of confidence and ease to disagree or somewhat dis-

agree. Nevertheless, approximately 50% of those who provided estimates of the minimum

and maximum gave non-integer estimates, suggesting that there may have been some am-

biguity in the phrasing of the question that resulted in a different interpretation than what

was intended. However, studies have shown that seemingly straightforward questions can

be interpreted by different respondents in very different ways (see Suessbrick et al. (2000)

for example), suggesting that this issue is not unique to this survey. It is also possible that

the participants misinterpreted the visualisation itself. For example, some may have used the

information given on the mean projected temperature change instead of the minimum and

maximum.

Overall, the lack of detailed information regarding the uncertainties in the projections would

have negatively impacted the accuracy, confidence, and ease with which the participants were
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able to interpret the infographic, as well as their preferences for this visualisation. Despite this,

the performance of the infographic improved when the participants were asked to estimate the

mean projected temperature change. Feedback from the survey participants suggested that

the performance of the infographic could have been further improved by providing grid lines

that could be used to more accurately determine the mean. The infographic also ranked

relatively highly for visual appeal, highlighting the power of this type of visualisation to grab

the attention of an audience despite not necessarily communicating the message clearly. A

similar issue occurred when the National Hurricane Center (NHC) developed the ’cone of un-

certainty’ infographic to depict the probable tracks of hurricanes in the North Atlantic in 2004

(Broad et al., 2007). This infographic became widely used in the media in Florida and many

people claimed that their decision to evacuate was heavily influenced by this visualisation

(Broad et al., 2007). However, a post-hurricane survey by the NHC indicated that many indi-

viduals misinterpreted the visualisation and either underestimated or ignored the uncertainty

in the infographic (Broad et al., 2007). Such potential for misinterpretations has important

implications for the use of infographics in the communication of MMEs in the future; each in-

fographic must be carefully designed to ensure that the visualisation is engaging but that the

intended message is delivered with clarity and integrity. Achieving a balance between visual

appeal, clarity, and integrity may be best achieved through interdisciplinary collaborations be-

tween natural scientists, social scientists, and graphic designers or communication experts

(Grainger et al., 2016). The end users should also be included in such collaborations to en-

sure that the impact of the visualisation can be maximised, whilst misinterpretations can be

minimised (Grainger et al., 2016).

Finally, the heat plot was deemed to be the worst visualisation across all measures of ac-

curacy, confidence, ease, and preferences. Such poor performance may be driven by the

difficulties associated with extracting specific values from a continuous scale bar (Few, 2017).

This issue may also be exacerbated by the use of a sequential colour scale that had rela-

tively little variation in colour between the minimum and maximum values. A diverging colour

scheme may have improved the performance of the heat plot by dividing the scale bar into

three easily identifiable regions (low, medium, and high), thus providing more visual cues with

which to interpret the visualisation (Moreland, 2009).

6.5.2 Demographics, previous encounters, decade, and scenario

The demographics of the participants, including their background, level of education, and

level of expertise in working with environmental models and/or their outputs, were taken into

account to identify whether different groups of people were better able to interpret certain
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visualisations or whether their preferences differed. The familiarity of the visualisation, as well

as the scenario and decade given to each participant, were also taken into consideration.

The decade that was given to each participant often had a significant effect on the accuracy,

confidence, and ease with which they were able to estimate the mean and/or the minimum and

maximum projected temperature change. In most cases, the participants were more accurate,

more confident, and found it easier to interpret the visualisations in the 2090s compared with

the 2010s and 2050s. This is perhaps surprising given that the 2090s were often furthest

away from the axes labels, potentially making it more difficult to follow the grid lines (where

applicable) to the correct value. Nevertheless, it is likely that the increased spread in the

model outputs during the 2090s made it easier for the participants to differentiate between the

mean, the minimum, and the maximum. This increase in spread would have been particularly

useful when the participants were asked to interpret the line and cascade plots, which suffered

more from over-plotting in the 2010s and 2050s than in the 2090s. As previously mentioned,

over-plotting may make it more difficult to extract specific values from a visualisation and

may therefore explain the decrease in the accuracy, confidence, and ease with which the

participants were able to interpret the data in the decades where the over-plotting was greatest

(Few, 2008).

Although the participants tended to be more confident and find it easier to estimate the mean,

minimum, and maximum projected temperature change in the 2090s compared with the 2010s

and 2050s, the accuracy with which they were able to estimate the minimum projected tem-

perature change was lowest in the 2090s. It is possible that this drop in accuracy occurred

as the minimum projected temperature change in scenario 8.5 was represented by an outlier.

This outlier may not have been obvious due to over-plotting (e.g. the line1 plot) or the use of

error bars without a representation of the outliers in the data (e.g. the dot2 plot). The pres-

ence of an outlier may also help to explain why the participants tended to be less accurate

when they were asked to estimate the minimum projected temperature change in scenario 8.5

compared with scenarios 2.6 and 4.5. Interestingly, the participants were also less accurate

when they were asked to estimate the mean projected temperature change in scenario 8.5. It

is possible that the drop in accuracy associated with scenario 8.5 was additionally caused by:

(1) the use of the colour red to represent scenario 8.5, as red can be difficult to distinguish

on a dark background (Byrne and Braha, 2012) and; (2) the increased difference between the

projected temperature change at the start and end of each decade in scenario 8.5 compared

with scenarios 2.6 and 4.5. The latter may be particularly important as the extended feedback

given by the participants highlighted that there was some confusion about which part of the

decade to extract the values from when using the line plots.

The familiarity of the visualisations had a significant effect on the confidence and ease with
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which the participants were able to identify the mean, minimum, and maximum projected

temperature change. This is unsurprising given that the participants would likely be better

equipped to interpret a visualisation that they had previously encountered compared with one

they had never seen before. Although not measured during this research, numerous studies

have also linked familiarity with visualisation preferences, particularly in terms of visual appeal

(see Daron et al. (2015), Alrehiely et al. (2018) and Saket et al. (2018) for example). Despite

this, the final rankings of the visualisations did not always follow the ordering of the visualisa-

tions that were most familiar to the survey participants. For example, the dot1 plot performed

well across all measures of confidence, ease, and preferences, but was less familiar to the

participants than the dot2, box, and line plots. However, the similarities between the dot1 and

dot2 plots may have made it easier for the participants to interpret the dot1 plot compared

with a visualisation that showed no similarities to any of the other more familiar visualisations.

The cascade plot was also the least familiar visualisation, but it performed well for accuracy,

confidence, and ease; this result is important as it proves that an unfamiliar visualisation can

outperform traditional visualisation types if used correctly. Nevertheless, the cascade plot

performed comparatively poorly for preferences, particularly for ease of understanding and

visual appeal, thus supporting the conclusion that familiarity is at least somewhat related to

preferences.

The education level of the participants had relatively little impact on the accuracy, confidence,

and ease with which they were able to interpret the visualisations, as well as their preferences

for different visualisations across each of the five categories. Interestingly, those with doctoral

training tended to be less accurate than those with pre-university, undergraduate, or postgrad-

uate levels of education when they were asked to estimate the mean projected temperature

change. These results suggest that education levels are not necessarily linked to graphic (or

visual) literacy. However, it is possible that those with doctoral training simply spent less time

answering the questions, resulting in rushed responses that were slightly less accurate. Un-

fortunately, this theory is difficult to prove as the only information we collected regarding the

time taken for each participant to complete the survey was relatively unreliable (see Appendix

J for further details). It is also possible that those with doctoral training may have completed

a PhD in a subject that did not require the use of visualisations similar to those given in the

survey. A greater amount of time may therefore have passed since they were required to inter-

pret visualisations in this way, thus making it more difficult to accurately estimate the required

values; this may further help to explain why those with doctoral training often found it more

difficult to identify the minimum and maximum projected temperature change than those with

a different level of education, although this may also be caused by this group of participants

being more aware of their inability to correctly identify the minimum and maximum using the
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dot2, box1, and infographic plots.

Decision makers, environmental managers, and the general public tended to be less accurate,

less confident, and find it more difficult to estimate the mean, minimum, and maximum pro-

jected temperature change than scientists. This is to be expected given that scientists likely

spend far more time creating and interpreting visualisations similar to those used in the survey

than the other two groups. However, it is important to note that the uncertainty surrounding

the estimates of the decision makers and environmental managers was relatively large due

to the small sample size associated with this group. A much larger sample size would be

required to make robust conclusions about the accuracy, confidence, and ease with which de-

cision makers and environmental managers are able to interpret these visualisations, as well

as their preferences for different visualisations.

The participants’ expertise in working with environmental models and/or their outputs had

very little effect on the accuracy with which they were able to interpret the mean, minimum, or

maximum projected temperature change. However, those with over five years of experience

tended to be slightly more accurate when estimating the mean than those with less experi-

ence. Again, this is to be expected given that the participants that had more experience would

likely have spent a much greater amount of time developing and interpreting visualisations

similar to those included in the survey. Nevertheless, the participants that had zero to two

years of experience tended to be more confident and find it easier to estimate the mean pro-

jected temperature change than those with more experience. It is therefore possible that the

participants that had less experience in working with environmental models were overconfi-

dent in their ability, or that those with a greater level of experience were warier about attaching

high levels of confidence and ease to their answers. These results may therefore be a prime

example of the well-established ’overconfidence effect’, which states that a person’s subjec-

tive confidence in the correctness of their response to a given question tends to be greater

than an objective measure of their accuracy (Pallier et al., 2002). Interestingly, the overconfi-

dence effect is thought to occur only when the participants are asked to complete a task that

is difficult or unfamiliar to them (Larrick et al., 2007), which may explain why those with the

least experience were the most confident but not the most accurate. However, the difference

in the probability of a positive rating for confidence and ease between participants with dif-

fering levels of experience was relatively small, and the same effect was not apparent when

the participants were asked to estimate the minimum and maximum projected temperature

change. We also did not make a direct comparison between the objective measures of accu-

racy and the subjective measures of confidence in the survey. Further research is therefore

required to better understand the impact of the ’overconfidence effect’ on the results of this

research.
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Generally speaking, the demographics of the participants had relatively little impact on their

accuracy, confidence, ease, and preferences, especially when compared with the effect of vi-

sualisation type. However, the importance of including participant ID in the statistical models

that were used to analyse the results of the survey suggests that some of the participants

were inherently more accurate, more confident, or found the questions easier to answer than

others. Nevertheless, there was also a substantial amount of within-treatment variation that

was not explained by participant ID and was not accounted for by the predictor variables that

were included in the statistical analyses. It is therefore likely that there were other underly-

ing factors that affected the accuracy, confidence, and ease with which the participants were

able to interpret the visualisations that were not taken into consideration in the survey. Such

factors may include the colour perception, numeracy, visual literacy, or cognitive ability of the

participants (Friel et al., 2001; Sterba and Bláha, 2015), the time available to the participant

to answer the questions (Peebles and Ali, 2015), or the type and size of the screen used to

complete the survey. Although background or level of education were included in the best-

fitting models for each of the preference categories, it would seem that the familiarity of the

visualisation may also have played an important role in determining participant preferences.

Furthermore, personal values and cultural differences are likely to affect visualisation prefer-

ences, a fact that has previously been noted in other research areas, such as website and

product design (Kastanakis and Voyer, 2014; Reinecke and Gajos, 2014), but were again not

accounted for in the survey.

6.5.3 Limitations

One of the main limitations of this research is that the results may under-represent certain

demographic groups, particularly those over the age of 55, those with GCSE and vocational

qualifications, those from outside the UK, and those who consider themselves to be decision

makers and/or environmental managers. The results may also only be representative of indi-

viduals that are willing to engage in research associated with climate science, as well as those

who are willing to complete a relatively lengthy survey. Although a paid research panel could

have been used to ensure that a certain number of individuals in each demographic group

completed the survey, this would have required far greater resources than were available for

this project and would not necessarily have resulted in a truly representative sample. Never-

theless, we believe that the results of this research offer a good starting point to identifying how

best to present the outputs of MMEs, particularly given that the number of participants in this

research was much larger than in similar visualisation surveys in other research areas (see

Ibrekk and Morgan (1987), Aerts et al. (2003), and Lorenz et al. (2015) for example).
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The survey presented here may also suffer from a similar issue as the survey conducted by

Daron et al. (2015), as all of the visualisations were based on the same set of data. It is

therefore possible that the accuracy, confidence, and ease with which the participants were

able to interpret each visualisation could have improved over time, particularly if they were

asked to interpret multiple visualisations in the same decade(s) and scenario(s). However,

~25% of the participants completed only one block of questions and would therefore not have

been affected by this issue. Of the remaining ~75% that did complete more than one block

of questions, ~63% were asked to interpret multiple visualisations in the same decade(s) and

scenario(s), but few gave the same answer again. Furthermore, none of the participants

highlighted the fact that the data was the same in the extended feedback portion of the survey

and it is therefore unlikely that this issue would have had a noticeable effect on the results.

Nevertheless, we would recommend using multiple different sets of model outputs or simulated

data to avoid this issue in the future.

A further limitation of this study relates to the use of the culturally-ingrained traffic light colour

scheme in all ten visualisations. As previously mentioned, the use of this colour palette may

have made it more difficult for those who experience deuteranopia or protanopia (red-green

colour blindness) to distinguish between the different colours and hence to differentiate be-

tween the three scenarios. Although this issue may have had a negative effect on the per-

formance of all of the visualisations, it would likely have had the greatest effect on the line1

and cascade plots due to the overlap between the different colours in these visualisations.

To overcome this issue, we provided the option for participants to request the visualisations

with a more suitable colour palette if required, although none of the participants selected this

option. Nevertheless, it was clear from the extended feedback of the participants that this was

still an important issue for those who do not experience any form of colour blindness. We

would therefore recommend avoiding this colour scheme in the future.

Additionally, we tried to include as many different types of visualisation as possible in the

survey, but the list was not exhaustive and we did not consider interactive or animated visual-

isations. It is therefore possible that other visualisation types may have been more successful

than the dot and box plots. There may also be other measures of performance that may be

important but that were not considered in this research. For example, we could have mea-

sured the accuracy of the participants by asking them to identify the number of models that

projected an increase in temperature of a certain amount in a given decade and scenario, or

we could have asked the participants to indicate their preference for a particular visualisation

based on the amount of time required to interpret the visualisation. Including these measures

of performance could have changed the rankings of each visualisation substantially, but we

believe the measures we chose to include in the survey were sufficient given the context of
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this research. Finally, it is clear from the extended feedback given by the participants that

some interpreted the survey questions in a different way than what was intended, which may

have biased some of the results. However, this issue is difficult to avoid and is not unique to

this survey (Suessbrick et al., 2000), but it highlights the importance of thoroughly testing the

questions on various different groups of people before releasing the survey more widely.

6.6 Summary and conclusions

Based on the findings of this research, it would seem that the dot and box plots may be the

most effective methods for visualising the outputs of an ensemble of models that have been

run under multiple different scenarios. Nevertheless, caution should be exercised when using

error bars to represent uncertainty; if the end users are expected to be able to extract the mini-

mum and maximum of the projections, then these values must be made explicit and should be

clearly labelled (see the box2 plot for example). Care must also be taken when using the term

’average’ as it can result in confusion about whether it represents the mean, the median, or

the mode. Although line plots are frequently used to represent changes in environmental vari-

ables through time, we found that the survey participants struggled to estimate the minimum

and maximum of the model outputs using this type of visualisation, but this was likely due to

over-plotting. The cascade plot performed poorly for preferences and was the least familiar of

all of the visualisations, thus supporting the theory that preferences are at least partially driven

by familiarity. However, the cascade plot outperformed many of the more traditional methods

of visualisation for accuracy, confidence, and ease, proving that unfamiliar visualisations can

be more effective when used correctly. The infographic used in this research performed poorly

across all measures of performance, but this was largely due to the purposeful inclusion of

a design flaw that prevented the participants from being able to accurately estimate the mini-

mum and maximum of the projections. Despite this, the infographic performed well for visual

appeal, highlighting the importance of carefully designing these types of visualisations to en-

sure the intended message is delivered with clarity and integrity. The heat and radar plots also

performed poorly across all measures of performance, suggesting that they may not be effec-

tive when depicting the outputs of multiple models run under different scenarios. However,

this finding is only applicable in the context of this research and it does not mean that these

visualisation methods may not be useful for other purposes in environmental modelling.

Generally speaking, the demographics of the participants had relatively little impact on their

accuracy, confidence, ease, or preferences, although a much larger number of participants

would be required to make robust conclusions about the differences between demographic

groups. Nevertheless, it is clear that the background of the participants was important. In
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particular, the extended feedback given by some of the participants suggested that none of the

visualisations in the survey would be appropriate for communicating with the general public.

However, we would like to make it clear that the point of this survey was to determine the

effectiveness of a wide range of basic visualisation types; we do not necessarily condone the

use of these particular visualisations for any given purpose. Importantly, the results will enable

us to develop more suitable visualisations by helping us to identify the attributes that make a

visualisation effective. We can then build on these basic visualisation types to produce more

suitable methods of communicating to different groups of people.

Overall, we hope to use the results of the survey to generate guidelines that can be used to

improve the visualisation of MMEs across multiple areas of research, including both climate

modelling and marine ecosystem modelling. Doing so will enable us to target audiences with

visualisations that will both capture their interest and prevent misinterpretations of the data,

as well as help to increase the societal impact of the models and ensure they are well-placed

to support management decisions in the future.
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Chapter 7

Discussion

The main aim of this thesis is to help improve our understanding and communication of the

uncertainties associated with projections of future conditions in marine ecosystems. In doing

so, we may be able to provide decision makers and the general public with a more realistic

insight into the potential impacts of natural and anthropogenic change in the marine environ-

ment, thus aiding the development of robust management solutions for the future. As the

outputs of environmental models tend to suffer from many different types of uncertainty, var-

ious techniques must be used to provide a detailed exploration of the impacts of all possible

sources of uncertainty on the projections of a given model or set of models. Although it is not

feasible to provide a comprehensive exploration of all sources of uncertainty in one thesis (see

Section 7.4), I have attempted to quantify or qualitatively describe as many different types of

uncertainty as possible given the available resources. To do this, I have employed sensitivity

analysis, machine learning, Multi-Model Ensembles (MMEs), and an in-depth online survey

to explore parameter, internal variability, model, scenario, and communication uncertainties.

In this chapter, I summarise the key findings (see Section 7.1), management implications

(see Section 7.2), unique contributions (see Section 7.3), and limitations of this research (see

Section 7.4), before highlighting areas of future research that may be required to further ad-

vance our understanding of the uncertainties associated with projections of future conditions

in marine ecosystems (see Section 7.5).

7.1 Key findings

The key findings of the research described in this thesis are as follows:

I. The outputs of two versions of a widely-used marine ecosystem model, known as the trait-

based and multispecies mizer models, are most sensitive to the parameters associated

with resource availability (e.g. σ, λ, κ, and q), feeding (e.g. α and n), standard metabolic

rates (e.g. ks and p), and/or fishing effort (F ) (see Chapter 3). The importance of these

parameters is further supported by the results of Chapter 4, which found that the best-
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performing random forests tended to require information on a similar set of parameters

to predict the outputs of the multispecies mizer model with the greatest accuracy. This

finding is important as it highlights areas in which to focus future field or experimental

research to reduce the uncertainties associated with these parameters and thus reduce

the overall uncertainty of the model outputs. For example, further research into the size of

the North Sea plankton community may help to reduce the uncertainties associated with

parameters such as λ and κ, as well as the links between plankton and higher trophic

level species.

II. The random forest algorithm is able to predict most of the outputs of the multispecies

mizer model with relatively high accuracy using information on less than ten of the 306

parameters (see Chapter 4). The random forest algorithm is particularly successful at

predicting species survival and community coexistence, but less successful when pre-

dicting community and species-specific population size. Being able to accurately predict

the outputs of the mizer model reduces the need to run the full model (which may take

hours to reach equilibrium) and enables us to screen potential parameter combinations for

historically plausible model outputs more efficiently, thereby helping to lessen the costs

associated with marine ecosystem modelling in terms of human and computational re-

sources.

III. Internal variability and model uncertainties dominate the total variance of the projections

of Sea Surface Temperature (SST) and Sea Surface Salinity (SSS) from a state-of-the-art

climate MME over the next few decades, with scenario uncertainty becoming increasingly

more important in the mid- to late part of the century (see Chapter 5). Uncertainties

in the projections of SST exhibit a strong latitudinal gradient in the mid- to late part of

the century, with scenario uncertainty dominating in tropical and temperate regions and

model uncertainty dominating in the polar regions. No such latitudinal gradient exists for

projections of SSS, with model uncertainty dominating in almost all regions in the mid- to

late part of the century. Projections of SST are most robust in the early- to mid-part of

the century, particularly in the tropics. Projections of SSS are far less robust, especially

in the New Zealand and Guinea coastal provinces and the South Pacific subtropical gyre.

Again, these findings are important as they enable us to identify areas in which to focus

future research to reduce the uncertainties in the projections. For example, the results

of Chapter 5 highlight the importance of improving the representation of global water

circulation in order to help reduce the model uncertainty associated with projections of

SST and SSS.

IV. The demographics of an individual has relatively little effect on the accuracy, confidence,
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and ease with which they are able to interpret different methods of visualising the outputs

of MMEs and their uncertainties, as well as their preferences for different visualisation

types (see Chapter 6). Dot and box plots may be the most effective methods for vi-

sually communicating the outputs of MMEs to a wide audience, but caution should be

exercised when using error bars to represent the uncertainty in the model outputs. Line

plots may also be effective when overplotting is not an issue. Less familiar visualisations,

such as cascade plots, may be effective in some instances, but are likely to be less pre-

ferred by the end users than some of the more traditional methods of data visualisation.

Conversely, end users may display increased preference for an infographic due to their

visual appeal despite not necessarily communicating the intended message clearly. It is

therefore extremely important to ensure infographics are carefully designed to maximise

the impact of the visualisation, whilst minimising the potential for misinterpretations. Fi-

nally, heat and radar plots may not be effective at communicating the outputs of MMEs.

Together, these findings are vital to improving the communication of MMEs and their un-

certainties to decision makers and the general public in the future.

7.2 Management implications

The research described in this thesis has implications for fisheries management in the fu-

ture. At present, single-species models are one of the main tools used by ICES to provide

short-term tactical fisheries management advice to the EU. However, single-species models

usually do not take into account the fundamentally-important dynamics of lower trophic level

species (i.e. phytoplankton, zooplankton, and non-predatory fish species) and their interac-

tions with higher trophic level predators (Lynam et al., 2016; Stäbler et al., 2019) as required

for ecosystem-based fisheries management. Such interactions typically influence the pro-

ductivity of an ecosystem over longer timescales than are currently accurately captured by

single-species models (Lynam et al., 2016; Stäbler et al., 2019). Ecosystem models that

are capable of taking into account these interactions may therefore be more informative than

single-species models at longer timescales and may thus be useful for strategic management

advice in the future (Lynam et al., 2016). However, the uptake and use of marine ecosystem

models and their products has been limited in UK and EU policy development in the past due

to a lack of trust and understanding of the behaviour of these models, as well as a lack of vis-

ibility, availability, and user-friendliness of the models and their products (Hyder et al., 2015;

Lynam et al., 2016).

To improve uptake, we need to increase the reliability, credibility, and visibility of marine

ecosystem models both through model development and through improved communication

193



between modellers and decision makers (Hyder et al., 2015). We also need to be transparent

about the limitations and uncertainties of the models. Uncertainty is of particular importance

given that there are a wide variety of different types of uncertainty in marine ecosystem mod-

elling, many of which are large and can have wide-ranging impacts on the projections. If we do

not deal with these uncertainties explicitly, we risk making uninformed management decisions

that put the ecosystem at risk of stock collapse. The results of the sensitivity analysis and

machine learning conducted in Chapters 3 and 4 thus act as an important starting point to

providing more transparent information to scientists, decision makers, and the general public

regarding the behaviour of marine ecosystem models such as mizer under various parameter

combinations, as well as the potential impacts of parameter uncertainty on the projections of

the model. Chapters 3 and 4 also highlight important interactions between species, which can

be useful information when prioritising components of the ecosystem for management pur-

poses (Bentley et al., 2019b). Although these chapters focus solely on one marine ecosystem

model, the methods can be applied to any marine ecosystem model. It is therefore hoped that

the research presented in this thesis will encourage those working with other marine ecosys-

tem models to be more transparent about the uncertainty in their model outputs.

Additionally, Chapters 3 and 4 involved an exploration of the impacts of parameter uncertain-

ties on various proposed indicators of ecosystem health, including the Large Fish Indicator

(LFI) and Mean Maximum Length (MML). These indicators are extremely important in the

decision-making process as they enable us to monitor the environment, detect the impacts

of a given policy or management measure on an ecosystem (Reed et al., 2016; Shin et al.,

2018), and effectively communicate this information to the general public (Halouani et al.,

2019). The use of such indicators is mandated by national and international legislation, many

of which call for an ecosystem-based approach to fisheries management, including the EU

Common Fisheries Policy Directive (CFP; European Commission (2013)) and the EU Marine

Strategy Framework Directive (MSFD; European Commission (2008b)) (Hyder et al., 2015;

Meier et al., 2019). However, very little is known about the robustness of different indicators

of ecosystem health, particularly in terms of their specificity to various drivers of change (Shin

et al., 2018).

For an indicator to be effectively able to detect human-induced changes in the environment,

it should be (predictably) responsive to changes in drivers such as fishing but relatively un-

responsive to other drivers such as changing environmental conditions (Shin et al., 2018).

Although not initially designed to determine the specificity of different indicators of ecosystem

health, the sensitivity analysis and machine learning conducted in Chapters 3 and 4 suggest

that size-based indicators, such as the LFI, mean weight, and community slope, are sensitive

to fishing effort, the size of the background resource (phyto- and zooplankton) and standard
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metabolic rates in the North Sea. These results are important in a management context as

it suggests that some of the indicators that have been selected to detect changes in fishing

also respond to parameters that are heavily impacted by changes in environmental conditions.

This kind of research can only be conducted using marine ecosystem models such as mizer

as we are unable to conduct ecosystem-wide experiments to determine the effects of varying

fishing and environmental conditions in the field (Hyder et al., 2015; Halouani et al., 2019).

The research described in Chapters 3 and 4 thus enables a better understanding of the indi-

cators that may be best suited to supporting fisheries management in the future (Shin et al.,

2018). However, further research is required to: (1) determine how long it takes for an indica-

tor to respond different drivers to ensure management decisions can be made on appropriate

timescales (Shin et al., 2018); and (2) identify indicator thresholds that can be used to trigger

specific management actions (Halouani et al., 2019).

Chapter 5 involved an assessment of the differing contributions of internal variability, model,

and scenario uncertainty to the total variance of two key parameters for environmental policy.

By partitioning the uncertainty in the model outputs and by quantifying the signal-to-noise ratio

of the projections, we can provide managers with a better understanding of the confidence in

the projections (Payne et al., 2015; Lynam et al., 2016). This type of analysis, along with the

analyses described in Chapters 3 and 4, also supports management practices by highlighting

areas in which we can reduce uncertainty through increased data collection and/or model de-

velopment. For example, increased availability of long-term global salinity may help to reduce

both internal variability and model uncertainty in projections of future SST and SSS across the

globe. By knowing where to focus future research we may be able to reduce the costs asso-

ciated with managing the marine environment. This information may be particularly useful at

present given that the funding available for observing and managing the marine environment

has decreased in relative terms in recent years (Hyder et al., 2015), whilst the costs associ-

ated with both collecting data at sea and implementing and enforcing various management

measures remains high (Mangin et al., 2018; Murray et al., 2018). By also identifying loca-

tions and time periods in which the projections are most certain, the results of Chapter 5 can

be used to highlight areas that may be good candidates for immediate adaptation planning

(Hawkins and Sutton, 2009). Areas with larger signal-to-noise ratios may require more expen-

sive adaptation plans that include some level of tolerance for more extreme events (Hawkins

and Sutton, 2009). However, the analysis described in Chapter 5 can be used to determine

how much of the uncertainty in these locations is potentially reducible. This information can

then be used by managers to determine whether it may be more cost-effective to invest in

data collection and/or model development or to implement more expensive but highly-tolerant

adaptation plans.
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Finally, Chapter 6 involved an exploration of the effectiveness of various methods of visually

communicating uncertainty to different audiences, including decision makers and the general

public. Communication remains an important barrier between specialist and non-specialist au-

diences and it can have a huge impact on the way in which decisions are made (Hyder et al.,

2015; Lynam et al., 2016). Marine ecosystem models can be extremely complex, making

it difficult to visualise the outputs, particularly when attempting to incorporate various differ-

ent types of uncertainty in the visualisation. In the past, a lack of effective communication

of uncertainty has been blamed for ineffective management decisions (Janssen et al., 2005)

and has contributed to public distrust of scientific evidence, particularly in regards to climate

science (Frewer, 2004). The results of Chapter 6 are therefore vital to improving the commu-

nication of uncertainties to non-specialist audiences and ensuring these models can make a

significant contribution to the decision-making process in the future.

Based on the results of the survey in Chapter 6, specific recommendations for visualising the

outputs of complex environmental models and their associated uncertainties might include the

following:

I. Choose colour schemes wisely. Avoid using colour schemes that might be difficult to

interpret for those who experience colour blindness. Avoid using a black background if

using other colours that will be difficult to distinguish against a dark background.

II. Consider using both familiar (e.g. dot, line, and box) and unfamiliar (e.g. cascade) visu-

alisation types. Familiar visualisations may maximise uptake, but new methods of visual-

isation may outperform more familiar techniques in some circumstances. However, new

methods of visualisation should be widely tested before implementation.

III. Use dot or box plots when developing visualisations that require the users to extract

specific values from the visualisation.

IV. Use infographics to grab the attention of an audience but ensure it is designed in a way

that avoids potential misinterpretations.

V. Use line plots only when overplotting is unlikely to be an issue.

VI. Do not use radar plots when attempting to communicate changes in an environmental

variable through time.

VII. Do not use heat plots that have a sequential colour scale with relatively little variation in

colour between the minimum and maximum values if you want users to be able to extract

specific values from the visualisation.
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VIII. If using error bars, label them carefully on the visualisation and provide a detailed de-

scription of what the error bars represent.

IX. If communicating to non-specialist audiences, the term "average" can be used for acces-

sibility, but this should be followed by a statement that indicates whether this represents

the mean or median to avoid confusion or misinterpretations.

Overall, it is hoped that the research described in this thesis can be used to help build confi-

dence and trust in marine ecosystem models such as mizer through increased transparency,

improved model behaviour (as a result of data collection and/or model development), and bet-

ter communication between specialist and non-specialist audiences. However, there is still

much to be done before marine ecosystem models can be fully incorporated into the man-

agement process alongside single-species models. The modelling community must make

a concerted effort to quantify and communicate uncertainties, whilst decision makers must

clearly communicate their requirements and the role that uncertainties play in policy formu-

lation to ensure both sides of the science-policy interface are working synergistically towards

the same goal.

7.3 Advances on the state of the art

The research described in this thesis provides a unique contribution to science in various

different ways. For example, as far as we are aware Chapter 3 is the first to apply a derivative-

based global sensitivity analysis to a complex marine ecosystem model. It is also the first

to provide a direct comparison of the derivative-based and Sobol’ variance-based sensitivity

indices of an environmental model with more than 20 parameters, thus helping to confirm that

the derivative-based method can be successfully used to estimate the upper bounds of the

Sobol’ variance-based sensitivity indices of a complex model using a relatively small number

of model evaluations. Although various other methods of sensitivity analyses have been ap-

plied to marine ecosystem models in the past, they either do not apply a global approach (see

Niiranen et al. (2012) and Livingston (2013) for example), do not run each model evaluation

to equilibrium (see Morris et al. (2014) and Zhang et al. (2015) for example), and/or quan-

tify the sensitivity of the model outputs to groups of parameters (see Zhang et al. (2015) for

example), thereby making it difficult to attribute model output sensitivity to specific parame-

ters. By considering the sensitivity of multiple model outputs to individual parameters based

on equilibrated model evaluations, Chapter 3 provides one of the most extensive sensitivity

analysis of a marine ecosystem model to date. Chapter 3 is also one of very few examples of

a sensitivity analysis that includes a detailed discussion of the convergence of the sensitivity
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indices.

The main inspiration for Chapter 4 came from Lucas et al. (2013), who used a machine learn-

ing algorithm known as a Support Vector Machine to successfully quantify and predict the

probability of simulation crashes in climate modelling. Although applied in different contexts,

the concept is the same in Chapter 4 as it is in Lucas et al. (2013) - we both use information

on the parameter values that result in certain model behaviours (i.e. simulation crash versus

no simulation crash and coexistence versus extinction for example) to train a machine learn-

ing algorithm to predict the behaviour of the model under unseen parameter combinations.

Perhaps surprisingly, the work of Lucas et al. (2013) is the only published example that we

are aware of that uses machine learning in this way. Other examples of machine learning in

marine science focus on analysing images, videos, and acoustic recordings (see Mahmood

et al. (2016) and Abadi (2018) for example), determining the ecological status of a given area

(see Cordier et al. (2017) for example), spatial planning (including habitat mapping and the

analysis of conflicting uses; see Galparsoro et al. (2015) and Coccoli et al. (2018) for exam-

ple), and filling in gaps in fisheries data (see Fernandes et al. (2015) for example) (ICES,

2018). Chapter 4 may therefore be the first of its kind in marine science, but the methods may

be applicable to models from across a wide range of research areas.

Chapter 5 was based on the work of Hawkins and Sutton (2009, 2011), who developed the

method used to quantify the relative contributions of internal variability, model, and scenario

uncertainties to the total variance of the projections of a MME and applied it to projections of

surface air temperature and precipitation. This method has become increasingly popular in

recent years due to its relative simplicity and effective visualisation of the results, with recent

applications including projections of SST (Villarini and Vecchi, 2012; Cheung et al., 2016),

sea level (Little et al., 2015), tropical storm frequency (Villarini and Vecchi, 2012), and the

strength of the Atlantic Meridional Overturning Circulation (Reintges et al., 2017). Chapter

5 builds on this growing body of literature by applying the methods of Hawkins and Sutton

(2009, 2011) to global and regional projections of SST and SSS. Although Villarini and Vecchi

(2012) and Cheung et al. (2016) have previously applied a similar method to projections of

SST, the former focused solely on the tropics, while the latter focused on global means along-

side two basin-scale examples from the Northeast Atlantic and Northeast Pacific. Chapter 5

thus expands on this work by focusing on projections from across the globe and at a much

finer spatial resolution than in past literature. Chapter 5 is also the first example that we are

aware of to apply the methods of Hawkins and Sutton (2009, 2011) using Longhurst’s widely

accepted partitioning of the global ocean into biogeographical provinces (Longhurst, 2007),

which is perhaps a more relevant way to delineate the ocean than simply dividing the globe

into rectangles of equal size (as was the case in Hawkins and Sutton (2009, 2011) for exam-
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ple). Finally, Chapter 5 further adds to the work of Villarini and Vecchi (2012) and Cheung

et al. (2016) by quantifying the signal-to-noise ratio of the projections in different regions, thus

allowing us to identify regions and time periods in which the projections are most certain and

are thus most useful to decision makers in terms of adaptation planning (Hawkins and Sut-

ton, 2009). Chapter 5 therefore provides a unique perspective on spatio-temporal changes in

the contributions of internal variability, model, and scenario uncertainties to the total variance

of the projections of two key parameters for marine environmental policy and the results are

extremely relevant to both decision makers and the scientific community.

Finally, the visualisation survey in Chapter 6 took inspiration from a number of sources, most

notably the research of Ibrekk and Morgan (1987) and Daron et al. (2015), as well as the liter-

ature review produced by Kinkeldey et al. (2014). Although it is clear from these sources that

somewhat similar visualisation surveys have been conducted before, these surveys typically

either focus on the ability of individuals from similar backgrounds (usually highly educated in-

dividuals) to interpret visualisations that depict uncertainty (see Ibrekk and Morgan (1987) for

example), they do not take into account more than one type of uncertainty (see Ibrekk and

Morgan (1987) and Daron et al. (2015) for example), they focus on geospatial information and

maps (see Kardos et al. (2007) for example), and/or they take into account only a limited set

of performance measures (see Kardos et al. (2007) for example). The visualisation survey in

Chapter 6 thus fills an important gap in the literature by measuring the accuracy, confidence,

and ease with which participants from different backgrounds are able to interpret 10 different

visualisations, all of which depict multiple types of uncertainty in the outputs of MMEs, as well

as the participants’ preferences for each visualisation across a number of different categories.

Chapter 6 therefore likely represents one of the most in-depth analyses of the effectiveness of

different methods of visualising the outputs of MMEs that is currently available.

Overall, Chapters 3 to 6 each provide a unique contribution to marine and climate science.

With the results being specific either to the mizer model or the CMIP5 climate MME, it may

seem that each chapter has a relatively narrow scope. However, the implications of the re-

search described in Chapters 3 to 6 may be far more wide-ranging than might first appear,

with potential applicability to a huge range of different models. For example, the sensitiv-

ity analyses and machine learning in Chapters 3 and 4 prove that computationally-intensive

analyses that were once considered to be too time-consuming are now possible with the use

of High Performance Computing (HPC) - this conclusion is not only relevant in marine ecosys-

tem modelling, but also in any research area that involves the use of complex models. The

methods described in Chapters 5 and 6 may also be applied to MMEs from various fields of

research. The results of the survey may have a particularly wide-ranging impact as it is un-

likely that the conclusions of this research would change substantially when using a different

199



MME; the results may thus be used to improve communication between scientists, decision

makers, and the general public across a number of different research areas. The scientific

contributions of each chapter are therefore not limited solely to their direct application, they

have much broader implications for modelling in general.

7.4 Limitations

As the limitations of the research described in each chapter have already been discussed in

detail previously, we provide only a brief summary of the most important limitations of each

chapter below. An overview of the limitations of the thesis as a whole are then described at

the end of this section.

The main limitation of the sensitivity analyses and machine learning described in Chapters

3 and 4 was driven by the high computational cost associated with running the trait-based

and/or multispecies mizer model(s) under many different parameter combinations. Because

of this issue, we were limited in the number of model evaluations that we could realistically

complete in the time frame available. Ideally, we would need a much greater number of model

evaluations to fully explore the parameter space of the model(s), to ensure the sensitivity

indices reached convergence, and to better train the random forest algorithm to predict the

outputs of the multispecies mizer model. However, the parameter rankings and/or screenings

did reach convergence for most of the model outputs considered in Chapter 3 and the random

forest algorithm was successfully able to predict many of the outputs considered in Chapter

4, suggesting that the number of model evaluations in each chapter was sufficient to provide

at least a good starting point with which to explore the impacts of parameter uncertainties on

the model outputs.

In Chapter 5, we likely underestimate the relative contribution of internal variability to the total

variance of the projections of SST and SSS. This is because by smoothing the projections

with a fourth-order polynomial we effectively remove any internal fluctuations in climate that

act over longer time periods (i.e. more than 15 to 30 years) (Deser et al., 2014). We also do not

take into account the fact that internal variability may increase over time (Boer, 2009). Addi-

tionally, we likely underestimate the contribution of model uncertainty as we assume that each

model in the ensemble is independent and the selected models represent the full spread of all

possible models (Hawkins and Sutton, 2011). Nevertheless, the methods used are expected

to give a qualitatively robust approximation of the uncertainties in the available projections,

particularly over the next few decades (Hawkins and Sutton, 2009, 2011).

The main limitation of the survey in Chapter 6 is that the results may under-represent certain
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demographic groups, particularly those over the age of 55, those with GCSE and vocational

training, and those from outside the UK. However, it is difficult to obtain a representative

sample in any survey, particularly one that is relatively lengthy. Furthermore, it is possible

that there are other types of visualisation that we did not consider in the survey but that might

have performed better than the dot and box plots. There may also be additional measures of

performance that are important but that we did not take into account in the survey, such as the

time taken to interpret certain aspects of the visualisation. Despite this, we believe the results

again offer a good starting point with which to identify how best to communicate the outputs

of MMEs to decision makers and the general public, particularly given that the visualisations

deemed to be the most and least effective methods were consistent across all measures of

performance.

As previously suggested, the thesis as a whole is limited by our inability to describe all of

the possible sources of uncertainty in marine ecosystem modelling. However, doing so would

be an enormous (if not impossible) task for any research group and would require a huge

amount of resources, likely on a similar scale to those used by the Intergovernmental Panel

on Climate Change (IPCC), which makes use of the expertise of over a thousand contributors

(IPCC, 2014b). A full exploration of uncertainty would also not be possible given the presence

of ’deep uncertainties’, which (by definition) we are ignorant of at present (Spiegelhalter and

Riesch, 2011). A further limitation of this research is that we were forced to make use of a

climate MME in Chapters 5 and 6 instead of a marine ecosystem MME. The results of the

research presented in these chapters may therefore differ when applied to marine ecosystem

models. However, we purposefully chose to focus on SST and SSS in Chapter 5 to ensure

the results were still directly relevant to marine science. It is also unlikely that the results of

the visualisation survey would substantially differ when using a marine ecosystem MME, but

further research is required to confirm this theory (see Section 7.5 below).

7.5 Future research

As previously mentioned, one of the main limiting factors of this research was a lack of com-

puting power. Assuming infinite computing power, we could improve the research in Chapter

3 by increasing the number of model evaluations that were used to estimate the sensitivity

indices to ensure convergence is reached. Although other methods of sensitivity analysis

have been applied to various marine ecosystem models in the past (see Morris et al. (2014)

for example), the same method of sensitivity analysis should be applied to as many models

as possible (e.g. Ecopath with Ecosim (EwE), StrathE2E, and FishSUMS) to allow for a di-

rect comparison between each model and to ensure that we focus future data collection in
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areas in which it is possible to make the greatest reductions in uncertainty across all of the

available models. Although infinite computing power would reduce the need to use machine

learning to predict the outputs of the mizer model (or any other marine ecosystem model),

similar explorations of the modelled interactions between species, as well as the areas of the

parameter space that drive certain model behaviours, would still be required to ensure the

models accurately represent the ecosystem in question.

By conducting further field and experimental research to better understand the modelled

ecosystem, we may also be able to place more informative distributions on the parameters

of the model(s), rather than using a uniform distribution with upper and lower limits of ± 10%

of the nominal value. Assuming the model(s) are considered to be appropriate representa-

tions of the real world, we can then begin to quantify the probability of certain events occurring

under different scenarios of the future. However, doing so also requires a concerted effort to-

wards developing realistic scenarios that can be run in all of the available models. By running

a number of different models under each scenario, we may then be able to apply the methods

described in Chapters 5 and 6 to a marine ecosystem MME rather than a climate MME.

In regards to the visualisation survey in Chapter 6, there is a huge potential for further research

into the possible benefits of using interactive and animated visualisations to communicate the

outputs of MMEs to non-specialist audiences. Such research may include another online

survey or one-on-one interviews and group sessions with individuals representing different

audiences with diverse backgrounds. Although a number of marine ecosystem models in

the UK are not spatially-explicit at present, including mizer, there is an increasing interest in

using models with a spatial component to inform fisheries management (Grüss et al., 2019).

Further effort should therefore also be placed into identifying how best to communicate the

outputs of spatially-explicit models and their associated uncertainties using static, interactive,

and animated maps.

By incorporating the information gleaned from this thesis and from any future research into

the uncertainties associated with marine ecosystem modelling, we may be able to develop a

comprehensive uncertainty matrix (see Walker et al. (2003) for example) that states the im-

portance (or level; e.g. high, medium, or low) of each type of uncertainty and the methods

that have been used or are required to describe and/or reduce the impacts of these uncer-

tainties on the model outputs (Hamel and Bryant, 2017). The uncertainty matrix could then be

used to not only track the progress of efforts to reduce the uncertainties in marine ecosystem

modelling, but also to ensure that appropriate and consistent methodologies are applied to

different models (Hamel and Bryant, 2017). A simplified version of the uncertainty matrix may

also be used to further improve the communication of uncertainties to decision makers and
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the general public (Hamel and Bryant, 2017), a key factor to increasing the contribution of

marine ecosystem models in the management process in the future.

7.6 Concluding remarks

The uncertainties in projections of marine ecosystem models have largely been ignored in

the past, likely due to the high computational costs associated with both running the models

and conducting the analyses required to quantitatively or qualitatively describe each source of

uncertainty. By ignoring these uncertainties, we make it difficult for decision makers and the

general public to place any trust in the projections given by these models, creating a barrier to

incorporating marine ecosystem models into the management landscape. Such barriers have

resulted in managers continuing to use single-species models, which typically do not take

into account the complex relationships between different species and processes within an

ecosystem (Möllmann et al., 2013). If we continue to manage the marine environment in this

way, we risk suffering from severe ecological and economic consequences, including species

extinctions and unintended fishery collapse, as a result of misguided management decisions

(Uusitalo et al., 2015). It is therefore vital that we begin to make a concerted effort to better

understand the uncertainties associated with marine ecosystem models, thus enabling us to

produce more accurate projections and to slowly increase trust in these models.

In this thesis, we have made great strides towards better understanding the uncertainties in

projections of future conditions in the marine environment, particularly those given by the

mizer model. Although much of this research is focused on just one of many marine ecosys-

tem models, it proves that computationally-intensive analyses that were once considered to be

too time-consuming to apply to complex environmental models are now possible with the use

of High Performance Computing (HPC). We have also shown that relatively simple methods

that do not require HPC, such as those described in Chapter 5, can be used to gain a huge

amount of information regarding spatio-temporal changes in the contributions of different types

of uncertainty to the total variance of the projections from multiple different models. Finally,

the results of the visualisation survey in Chapter 6 can now be used to improve communica-

tion between scientists, decision makers, and the general public. However, there is still much

to be done before marine ecosystem models can be fully incorporated into the management

process. Importantly, the onus should not be placed solely on the modellers themselves to

improve the models; decision makers must also clearly communicate their requirements and

preferences to scientists, as well as the role uncertainties play in policy formulation, to ensure

both sides of the science-policy interface are working synergistically towards the same goal.

We can then begin to use marine ecosystem models alongside single-species models to help

203



ensure that the exploitation of marine resources remains sustainable and that the health of

our marine environment is not jeopardised by ineffective management practices.
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Appendix A

Chapter 4: Predicting species biomass using

the random forest algorithm

The random forest algorithm in Chapter 4 tended to overestimate the biomass of each species

when their simulated biomass was very low and underestimate the biomass of each species

when their simulated biomass was high (see Figure A.1 for example). As the successful pre-

diction of species survival and community coexistence requires the algorithm to accurately

predict biomasses of less than 0.001g, the consistent overestimation of the algorithm at ex-

tremely low simulated biomasses may be the limiting factor that prevents the random forests

from predicting coexistence with 100% accuracy.

Figure A.1: The simulated biomass (g) of sprat (SPR; left) and Atlantic cod (COD; right) compared with the biomass
of these species as predicted by the best performing random forests. The best performing random forests were
defined as those with the lowest Root Mean Square Error (RMSE). The solid red line indicates where the data
points should be if the observed and predicted biomass are equal (i.e. y = x). The dashed blue line represents a
line of best fit through the predicted biomass of each species. Sprat and Atlantic cod were selected for plotting to
provide examples from the smallest and largest fish species, but the patterns were consistent across all species.
Please note that the results are presented for just one of the 100 testing datasets and the axes are limited to
8×1011 for plotting purposes.
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Appendix B

Chapter 5: Climate models - sea surface

temperature and sea surface salinity

The Coupled Model Intercomparison Project phase five (CMIP5) multi-model ensemble used

in Chapter 5 consisted of projections from 14 different climate models for Sea Surface Tem-

perature (SST) and 11 different models for Sea Surface Salinity (SSS). The models selected

for both SST and SSS are listed in Table B.1.

Table B.1: The CMIP5 models that were selected for the analysis of spatio-temporal changes in the
contributions of internal variability, model, and scenario uncertainty to the total variance of the projec-
tions of Sea Surface Temperature (SST) and Sea Surface Salinity (SSS). *Please note that projections
of both SST and SSS were unavailable for the Red Sea and Persian Gulf province in the CanESM2
and MIROC5 models, whilst projections of SST were also unavailable for the Mediterranean and Black
Sea province and the North East Atlantic Shelves province in the BNU-ESM model.

SST SSS
bcc-csm1-1 X
BNU-ESM* X
CanESM2* X X

CCSM4 X
CESM1-CAM5 X

CNRM-CM5 X X
CSIRO-Mk3-6-0 X

EC-EARTH X
GFDL-CM3 X X
GISS-E2-R X X

HadGEM2-ES X X
IPSL-CM5A-LR X X

MIROC5* X X
MPI-ESM-LR X X
MRI-CGCM3 X
NorESM1-M X X

235



Appendix C

Chapter 5: Longhurst biogeographical

regions

To better understand the spatial variability in the relative contributions of internal variability,

model, and scenario uncertainty to the total variance of the Coupled Model Intercomparison

Project phase five (CMIP5) multi-model ensemble in Chapter 5, we divided the projections into

distinct regions based on Longhurst’s widely accepted partitioning of the global ocean into 54

biogeographical provinces (see Figure C.1; Longhurst (2007).
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Appendix D

Chapter 5: Signal-to-Noise Ratio of the

projections

In Chapter 5, the Signal-to-Noise Ratio (SNR) of the projections of Sea Surface Temperature

(SST) and Sea Surface Salinity (SSS) was shown for the following decades: the 2010s, the

2050s, and the 2090s. In Figure D.1, the SNR of the projections is given for all available

decades to further highlight the time periods in which we are most confident in the projec-

tions.

Figure continued overleaf.
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Figure D.1: The absolute Signal-to-Noise Ratio (SNR) for projections of future regional, decadal Sea Surface
Temperature (SST; left) and Sea Surface Salinity (SSS; right) (90% confidence levels). All decades between the
2010s (top) and 2090s (bottom) are plotted to allow for comparisons to be made across the 21st century. The
black lines delineate the 54 biogeographic provinces described by Longhurst (2007). A high SNR indicates high
confidence in the projections for a given region, whilst a low SNR indicates low confidence in the projections for a
given region.
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Appendix E

Chapter 6: Climate models - surface air

temperature

The Coupled Model Intercomparison Project phase five (CMIP5) multi-model ensemble used

in Chapter 6 consisted of Surface Air Temperature (SAT) projections from 15 different climate

models (see Table E.1 for a list of the selected models).

Table E.1: The 15 CMIP5 models that formed the multi-model ensemble used in the visualisation
survey. The models were selected based solely on the availability of the appropriate Surface Air Tem-
perature (SAT) data between 1850 and 2099.

SAT

bcc-csm1-1 X

BNU-ESM X

CanESM2 X

CCSM4 X

CESM1-CAM5 X

CNRM-CM5 X

CSIRO-Mk3-6-0 X

EC-EARTH X

FIO-ESM X

GISS-E2-R X

IPSL-CM5A-LR X

MIROC-ESM X

MPI-ESM-LR X

MRI-CGCM3 X

NorESM1-M X
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Appendix F

Chapter 6: Survey visualisations

We developed ten different visualisations for the survey in Chapter 6, all of which depicted

the same data from the Coupled Model Intercomparison Project phase five (CMIP5) multi-

model ensemble. The visualisations included two versions of a line plot, two versions of a box

plot, two versions of a dot plot, a radar plot, a cascade plot, a heat plot, and an infographic

(see Figures F.1 to F.10). Please note that some of the visualisations were based on the

work of Prof. Ed Hawkins and Dr. Rowan Sutton from the National Centre for Atmospheric

Sciences (NCAS). The participants were provided with definitions of the median, standard

deviation, percentiles, and the interquartile range alongside the appropriate visualisations to

aid interpretation.

Figure F.1: Survey visualisation: line1. The thin lines represent the annual temperature change projected to occur
by each of the 15 different climate models and the bold lines represent the multi-model average for each of the
three scenarios.
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Figure F.2: Survey visualisation: line2. The bands represent the annual minimum and maximum temperature
change projected to occur under each of the three scenarios and the bold lines represent the multi-model average
for each scenario.

Figure F.3: Survey visualisation: dot1. The faint dots represent the average temperature change projected to occur
by each of the 15 different climate models. The bold dots represent the multi-model average for each of the three
scenarios. Please note that this visualisation depicts decadal averages and the data points have been slightly
offset from one another to prevent overlap.
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Figure F.4: Survey visualisation: dot2. The dots represent the multi-model average temperature change projected
to occur under each of the three scenarios. The error bars depict the standard deviation of these projections.
Please note that this visualisation depicts decadal averages and the data points have been slightly offset from one
another to prevent overlap.

Figure F.5: Survey visualisation: box1. The boxes represent the 25th percentile, the median, and the 75th per-
centile of the temperature change projected to occur under each of the three scenarios. The error bars depict
the minimum and maximum projected temperature change that is within 1.5 times the inter-quartile range. Any
data point that falls outside the error bars is deemed an outlier and is shown as a dot (see bottom left). Please
note that this visualisation depicts decadal averages, only three of which are shown in this visualisation to avoid
over-crowding.
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Figure F.6: Survey visualisation: box2. The boxes represent the minimum, 25th percentile, median, 75th percentile,
and maximum temperature change projected to occur under each of the three scenarios. Please note that this
visualisation depicts decadal averages, only three of which are shown in this visualisation to avoid over-crowding.

Figure F.7: Survey visualisation: cascade. For a given decade, the overall average of all of the projections is
shown at the top as a single point. The three lines moving downwards from this point represent the multi-model
average temperature change projected to occur under each of the three scenarios. Finally, the 15 lines moving
downwards from each of three scenario averages represent the average temperature change projected to occur
by each of the 15 different models. Please note that this visualisation depicts decadal averages, only three of
which are shown in this visualisation to avoid over-crowding.
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Figure F.8: Survey visualisation: radar. The bold lines (top) represent the multi-model average temperature change
projected to occur under each of the three scenarios. The thin lines (bottom) represent the projections from each
of the 15 different climate models under each scenario.

Figure F.9: Survey visualisation: heat. The decadal average temperature change projected to occur under each of
the three scenarios (top, middle and bottom). Darker colours (red) represent a larger projected change in global
temperature, whilst lighter (yellow) colours represent smaller projected changes in global temperature.
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Appendix G

Chapter 6: Estimating the minimum and

maximum projected temperature change

In the visualisation survey in Chapter 6, the participants were asked to estimate the mean,

minimum, and maximum temperature change projected to occur in a given scenario and

decade using a randomly selected visualisation. However, it was not possible to correctly

identify the minimum and maximum projected temperature change using the box1, dot2 and

infographic plots (see Appendix F for all of the visualisations used in the survey). Because of

this, we gave the participants the option of selecting ’not applicable’ when they believed they

were unable to estimate the minimum and/or maximum. Over 40% of the participants selected

’not applicable’ when asked to estimate the minimum and/or maximum projected temperature

change using the infographic, whilst just 4.1% and 6.4% of the participants selected ’not ap-

plicable’ when asked to estimate the minimum and/or maximum using the box1 and dot2 plots

respectively (Figure G.1). 7.9% of the participants also felt that they were unable to estimate

the minimum and/or maximum projected temperature change using the heat plot (Figure G.1).

None of the participants were unable to estimate the minimum and/or maximum temperature

change projected to occur in a given scenario and decade using the dot1 or line1 plots (Figure

G.1).
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Figure G.1: The frequency (%) with which the survey participants selected the ’not applicable’ option when asked
to estimate the minimum and maximum temperature change projected to occur in a given scenario and decade
using the visualisation provided.
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Appendix H

Chapter 6: Participant accuracy

In the visualisation survey in Chapter 6, the participants were asked to estimate the mean,

minimum, and maximum temperature change projected to occur in a given scenario and

decade using a randomly selected visualisation. The accuracy with which the participants

were able to complete this task was analysed using three Generalised Linear Mixed Models

(GLMMs). The predicted absolute difference (x10) (95% confidence interval) between the par-

ticipants’ estimates of the mean, minimum, and maximum projected temperature change and

the true values given by the climate models are provided for all possible predictor variables in

Figure H.1 to supplement the predictions given in Chapter 6, Section 6.4.2. The predictions

shown here are very similar to the coefficients of the GLMMs described in Chapter 6, Section

6.4.2 but with slightly wider confidence intervals.
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Appendix I

Chapter 6: Visualisation preferences

In the visualisation survey in Chapter 6, Bradley-Terry (BT) models were used to analyse the

participants’ preferences for different visualisation types across five categories: the ability to

view changes in temperature over time, the ability to view changes in uncertainty over time,

the ability to retrieve specific values (such as the mean, minimum, and maximum), visual

appeal, and ease of understanding. Preferences were measured in terms of predicted ’ability’

(referred to as ’preference’ from this point forth), where a greater preference score indicates

the visualisation was preferred more often than a visualisation with a lower preference score.

The preference scores are presented relative to the box1 plot, which was defined as the

reference visualisation in the BT models (see Chapter 6, Section 6.3.5 for further details).

The preference scores of the visualisations are also presented either with 95% ’comparison’

intervals, which are based on quasi standard errors and allow for comparisons to be made

across all of the visualisations, or with 95% confidence intervals that are based on (non-quasi)

standard errors (see Chapter 6, Section 6.3.5 for further details).

In the main part of the analysis, decision-makers and environmental managers were removed

from the data due to small sample sizes. For all five preference categories, the best-fitting

models included either background or level of education, although there were no notable dif-

ferences in the predicted preference scores of each visualisation between scientists and the

general public (see Figure I.1 for example). There were only two apparent differences be-

tween individuals with different levels of education, both of which are discussed in Chapter 6,

Section 6.4.

In an attempt to better understand the visualisation preferences of decision makers and en-

vironmental managers, we applied individual BT models to the survey data from the general

public, scientists, and decision makers/environmental managers separately. The best-fitting

models did not include any of the demographic information provided by the participants and as

such the results are presented in terms of the overall preference scores of each visualisation

only.

As expected, the 95% comparison intervals of the preference scores of each visualisation

were much wider for decision makers and environmental managers than for the general public
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Figure I.1: A comparison of the predicted preference scores (95% confidence intervals) of each visualisation based
on the preferences displayed by the general public (left) and scientists (right) in the following three categories: the
ability to view changes in temperature over time, the ability to view changes in uncertainty over time, and the ability
to retrieve specific values (such as the mean, minimum, and maximum) (see Chapter 6, Section 6.4.4 for the effect
of participant background on visual appeal and overall ease of understanding). Comparison intervals are not used
in this plot as we were unable to estimate the quasi standard errors of the visualisations across different levels of
the predictor variables. Decision makers and environmental managers are not included the analysis due to small
sample sizes. The preference scores of each visualisation are presented relative to the box1 plot (highlighted in
teal and marked with a tilde), which was defined as the reference visualisation in the BT models.
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and scientists (see Figure I.2). Such wide comparison intervals prevented any real differenti-

ation between the visualisations based on the preferences displayed by the decision makers

and environmental managers. However, the overall patterns in the preferences displayed by

this group of individuals seem to broadly follow those of the scientists and the general public

(Figure I.2), although a larger sample size would be required to confirm this theory.
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Figure I.2: A comparison of the predicted preference scores (95% ’comparison’ intervals) of each visualisation
when a Bradley-Terry model was fit to the survey data from the general public (left), scientists (middle), and
decision makers and environmental managers (right) separately. The preference scores of each visualisation
are shown for all five preference categories: the ability to view changes in temperature over time, the ability to
view changes in uncertainty over time, the ability to retrieve specific values (such as the mean, minimum and
maximum), visual appeal, and overall ease of understanding. The 95% comparison intervals are estimated using
quasi standard errors to allow for comparisons to be made across all of the visualisations. The preference scores
of each visualisation are presented relative to the box1 plot (highlighted in teal and marked with a tilde), which was
defined as the reference visualisation in the BT models. *p < 0.05, **p < 0.01, ***p < 0.001.
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Appendix J

Chapter 6: Completion time

In the visualisation survey in Chapter 6, we found that the participants with doctoral training

tended to be less accurate than those with pre-university, undergraduate, or postgraduate

levels of education when they were asked to estimate the mean projected temperature change

in a given decade and scenario using a randomly selected visualisation. One possible reason

for this pattern is that those with doctoral training spent less time answering the questions,

resulting in rushed responses that were slightly less accurate. However, this theory is difficult

to prove as the only information we have on the time taken for each participant to complete the

survey is relatively unreliable. This is because we only collected data on the time it took for the

participants to submit each webpage. As each webpage included one section of the survey,

there were multiple questions per page. Because of this, it is difficult to know how long each

participant spent solely trying to identify the mean projected temperature change. It is also

possible that some of the participants left the browser open whilst not actively taking part in

the survey, thus skewing the results. For example, there were some instances where the time

taken for a participant to complete section two, which included the interpretation of the mean

(see Chapter 6, Section 6.3.3 for full details of section two), exceeded one week. Assuming

that none of the participants spent more than one hour actively attempting to complete section

two, it is not possible to differentiate between the completion time of the participants based

on their level of education (Figure J.1). Further research is therefore required to determine

whether the time taken for an individual to interpret a visualisation is affected by their level of

education.
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Figure J.1: The time (mins) taken for the participants to complete section two of the survey, which included
the interpretation of the mean projected temperature change in a given scenario and decade using a randomly
selected visualisation. All observations exceeding one hour were removed from the data prior to plotting.
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