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Abstract
If G is a transitive permutation group on a set X , then G is a Jordan group if there is

a partition of X into non-empty subsets Y and Z with ∣Z ∣ > 1, such that the pointwise

stabilizer in G of Y acts transitively on Z (plus other non-degeneracy conditions).

There is a classification theorem by Adeleke and Macpherson for the infinite primitive

Jordan permutation groups: such group preserves linear-like structures, or tree-like

structures, or Steiner systems or a ‘limit’ of Steiner systems, or a ‘limit’ of betweenness

relations or D-relations. In this thesis we build a structure M whose automorphism

group is an infinite oligomorphic primitive Jordan permutation group preserving a limit

of D-relations.

In Chapter 2 we build a class of finite structures, each of which is essentially a finite lower

semilinear order with vertices labelled by finite D-sets, with coherence conditions. These

are viewed as structures in a relational language with relations L,L′, S, S′,Q,R. We

describe possible one point extensions, and prove an amalgamation theorem. We obtain

by Fraı̈ssé’s Theorem a Fraı̈ssé limit M .

In Chapter 3, we describe in detail the structureM and its automorphism group. We show

that there is an associated dense lower semilinear order, again with vertices labelled by

(dense) D-sets, again with coherence conditions.

By a method of building an iterated wreath product described by Cameron which is based

on Hall’s wreath power, we build in Chapter 4 a group K < Aut(M) which is a Jordan

group with a pre-direction as its Jordan set. Then we find, by properties of Jordan sets,

that a pre-D-set is a Jordan set for Aut(M). Finally we prove that the Jordan group

G = Aut(M) preserves a limit of D-relations as a main result of this thesis.

ix



x



xi

Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1

1.1 Permutation Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Wreath Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Linear relational structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Linear order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Linear betweenness relation . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Circular order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.4 Separation relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Steiner Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Examples of Tree-like structures . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Semilinear order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.2 C-relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



CONTENTS

1.4.3 B-relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.4 D-relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Jordan groups and previous results . . . . . . . . . . . . . . . . . . . . . . . 28

1.6 Some model theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.7 Summary of The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 Trees of D-sets 43

2.1 Construction of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 One point extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 Amalgamation Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4 Oligomorphicity of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Analysing the Fraı̈ssé Limit 77
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Chapter 1

Introduction

This chapter consists of an overview of the background from permutation group theory,

model theory, and combinatorics for the thesis. It does not contain original results.

The studies of infinite permutation groups gained momentum from around 1980, as is

mentioned in [14], since before that the bulk of permutation groups literature was on finite

permutation groups. There is an extensive work of classifying the infinite Jordan groups.

In 1985, Neumann classified the primitive Jordan permutation groups with cofinite Jordan

sets in [35].

Before that, Cameron classified all the infinite permutation groups which are highly

homogeneous but not highly transitive in [9]. His work does not explicitly mention

Jordan groups, but his classification helps in classifying Jordan groups since the linear-like

structures and tree-like structures provide rich sources of Jordan groups.

The interest of classifying the infinite primitive Jordan permutation groups emerged

in 1996. On the one hand, Adeleke and Neumann classified the infinite primitive

permutation groups which have proper primitive Jordan sets in their paper [4]. On the

other hand, Adeleke and Macpherson classified the infinite primitive Jordan permutation

groups but without the assumption that the Jordan sets are primitive in [5]. In their

classification a group G acting on a set X is highly transitive or preserves on X one of the
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linear-like structures (as classified by Cameron), the tree-like structures (as described by

Adeleke and Neumann), Steiner systems, or a limit of betweenness relations, D-relations

or Steiner systems.

The examples on the first three families that are just mentioned above can be found in

[6]. The hardest families to find examples of are the last three families. However, there

is an example of an infinite Jordan group preserving a limit of Steiner systems given by

Adeleke in [1]. This is developed further by Keith Johnson in [28]. An example of an

infinite Jordan group preserving a limit of betweenness relations is given by Bhattacharjee

and Macpherson in their paper [7]. This example is an ω-categorical structure with more

properties. Another example of an infinite Jordan permutation group preserving a limit of

betweenness relations is given by Adeleke in his work [2] (work which was done much

earlier than [7], and inspired [7]). On the limits of D-relations, Adeleke gives an example

of an infinite primitive Jordan permutation group preserving a limit of D-relations, but

it has not been verified whether that example is oligomorphic, that is, arises from an

ω-categorical structure.

Adeleke and Macpherson, in the end of their paper [5], referred to an interest of

classifying oligomorphic primitive Jordan permutation groups, and asked whether it is

possible for an infinite primitive oligomorphic Jordan permutation group to preserve a

limit of betweenness relations or D-relations. A positive answer has now been found.

Bhattacharjee and Macpherson give an example of an infinite primitive oligomorphic

Jordan permutation group preserving a limit of betweenness relations. In this work,

we give a constructed example of an infinite primitive Jordan permutation group

preserving a limit of D-relations by Fraı̈ssé’s construction, following the procedure

used by Bhattacharjee and Macpherson in [7]. This example again has oligomorphic

automorphism group. In adddition, here, as in [7] and unlike [2], we describe

combinatorial structures on which the groups act.

In this chapter, we introduce the background definitions leading to basic understanding

for Jordan groups. At the end of this chapter, we mention Fraı̈ssé ’s Theorem which is

2
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used to construct our example. The bulk of these definitions are taken from [6], and [8].

For the basics of permutation groups, we refer to [27] and [36].

1.1 Permutation Groups

Infinite permutation groups are connected to many other areas of mathematics, for

example model theory and combinatorics. For the former, this connection appears by the

theorem of Ryll-Nardzewski 1959, Engeler 1959, Svenonius 1959. Part of the importance

of infinite permutation groups comes from the strong relation with model theory and

combinatorics.

Throughout this thesis, we mean by (G,X) a permutation group G acting on a set X

where X is meant to be a countably infinite set.

1.1.1 Generalities

Definition 1.1.1. A permutation of a set X is a bijective map g ∶ X → X . We write xg

for the image of x under g.

The set of all permutations on a set X is a group under the operation of composition of

mappings. This group is called the symmetric group on X and denoted by Sym(X). If X

is finite with ∣X ∣ = n we write Sn for Sym(X).

Definition 1.1.2. Let G be a group and X be a set. An action of G on X is a map

X ×G→X written as (x, g) ↦ xg such that

(i) for every g, h ∈ G and x ∈X , we have (xg)h = xgh;

(ii) for every x ∈ X , we have x1 = x, where 1 denotes the identity element of the group

G.

3
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We say that X is a G-space if a group G has an action on X .

Example 1.1.3. 1. Let G = Sn and X = {1,2, . . . , n}. Condition (i) holds by the

rule of multiplication in Sn. For condition (ii) the identity permutation maps each

element of X to itself.

2. The action of a group G on itself by conjugation. That is gh = h−1gh, g, h ∈ G
satisfies the group action axioms.

These examples are mentioned in many references, for example [27], Chapter 10, and

more examples can be found there.

Definition 1.1.4. Let X be a G-space and Y ⊂ X . We define the setwise stabiliser of

Y in G to be G{Y } ∶= {g ∈ G ∶ Y g = Y }, and the pointwise stabiliser of Y in G to be

G(Y ) ∶= {g ∈ G ∶ ∀y ∈ Y (yg = y)}.

Lemma 1.1.5. ([17], Section 1.5) If X is a G-space and Y ⊆ X , then the pointwise

stabiliser of Y is a normal subgroup of the setwise stabiliser of Y .

Definition 1.1.6. Suppose that X is a G-space. The orbit of an element x in X is the set

xG ∶= {xg ∶ g ∈ G}.

When xG =X then we say thatG acts transitively onX , or thatX is a transitiveG-space.

Hence, if all elements of the set X lie in one orbit then we say that a group G is transitive.

Said in another way, the group G is said to be transitive if and only if for any distinct

x, y ∈X , there exists g ∈ G satisfying xg = y.

Definition 1.1.7. (i) For a field F , the group of all invertible n×nmatrices with entries

from F is called the n-dimensional general linear group, denoted by GL(n,F ), or

sometimes by GLn(F ).

(ii) Given a vector space V over a field F , the general linear group over V , denoted by

GL(V ) is the group of all automorphisms of V .

4
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(iii) Let Z(GL(n,F )) be the centre of the group GL(n,F ) (the group of scalar

multiples of the identity matrix). The quotient GL(n,F )/Z(GL(n,F )) is called

the n-dimensional projective general linear group, denoted by PGL(n,F ).

(iv) The affine general linear group on a vector space V is the group of all invertible

affine transformations such that

AGL(V ) ∶= {TM,b ∶M ∈ GL(V ), b ∈ V }

where TM,b(x) = xM + b.

If V has dimension n then V is isomorphic to F n, and then GL(V ) is isomorphic to

GL(n,F ).

Example 1.1.8. (i) Any set X as a Sym(X)-space is transitive.

(ii) The action of GL(2,R) on R2 is not transitive, since the zero element (0,0) is in a

single orbit. However, it is transitive on R2 ∖ {(0,0)}.

(iii) The group GL(V ) is transitive on the set of ordered bases of V .

(iv) The group AGL(V ) acts transitively on V via the affine transformations.

The definition of transitivity can be extended as follows.

Definition 1.1.9. For a natural number k, a G-space X is said to be k-transitive if for any

two sets of k distinct points in X , say x1, ..., xk and y1, ..., yk there exists g ∈ G such that

xgi = yi, for all i = 1, ..., k. The maximal such k is called the degree of transitivity. If G is

k-transitive on an infinite set X for any k ∈ N, then G is said to be highly transitive.

Example 1.1.10. (i) For n ≥ 1 the usual action of Sn on the set {1, ..., n} is k-transitive

for all k ≤ n.

(ii) The group GL(2,R) is not 2-transitive on R2 ∖ {(0,0)}; since a linearly dependent

pair cannot be mapped to a linearly independent pair.

5
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The following theorem is used inductively in the other chapters. Its importance comes as

it reduces the degree of transitivity.

Theorem 1.1.11 ([8], 3.13). Let G act transitively on X , and x ∈X . Then for k ≥ 1, X is

a (k + 1)-transitive G-space if and only if Gx acts k-transitively on X ∖ {x}.

Definition 1.1.12. A G-space X is said to be k-homogeneous if for every Y,Z ⊆ X with

∣X ∣=∣ Z ∣= k there is some g ∈ G such that Y g = Z.

Here, Y g ∶= {x ∈ X ∶ x = yg for some y ∈ Y }. We keep the same notation used in [8],

Chapter 3.

Definition 1.1.13. An infinite G-space is said to be highly homogeneous if it is

k-homogeneous for every k ∈ N.

Example 1.1.14. Aut(Q,<) is highly homogeneous but not highly transitive (it is not

2-transitive), see [8], Example 3(j).

Theorem 1.1.15. ([8], 3.19) If m ≤ k and 2k ≤ ∣X ∣, then every k-homogeneous group on

X is also m-homogeneous.

Remark 1.1.16. (i) Homogeneity is weaker than transitivity.

(ii) k-transitivity is about ordered k-sets, while k-homogeneity is about unordered

k-sets, and so k-transitive groups are k-homogeneous.

Let G act transitively on a set X , with ∣X ∣ > 1. A congruence, or G-congruence, on X

is an equivalence relation on X which is preserved by G (that is, if x ≡ y , then xg ≡ yg

for all g ∈ G). An equivalence class of a congruence is called a block. Note that, if B is a

block, then so is Bg for any g ∈ G. There are always two congruences:

equality : x ≡ y if and only if x = y - the classes are singletons;

the universal relation : x ≡ y for all x, y ∈ X where the equivalence class is the whole set

X .

6
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A G-congruence is said to be non-trivial if there is a class with more than one element,

and it is said to be proper if there is more than one class.

Equivalently, a subset Y ⊆ X is called a block if for every g ∈ G either Y ∩ Y g = ∅ or

Y = Y g. A block is said to be non-trivial if ∣Y ∣ > 1, and proper if Y ≠X .

Definition 1.1.17. LetX be a transitiveG-space. ThenX is said to be a primitiveG-space

if it has no G-congruence ( i.e. G-invariant equivalence relation) other than the trivial and

the universal ones. Equivalently, the action is said to be primitive if there are no proper

non-trivial blocks, or if there is no partition of X preserved by G except for the trivial and

improper partitions. Otherwise we say the action is imprimitive.

Following [8] in Section 4.1, if ρ is aG-congruence on a setX , and x, y ∈X , then they are

said to be ρ-equivalent if they lie in the same ρ-class. The ρ-class containing an element

z of X is referred to by ρ(z). That is ρ(z) ∶= {x∣ x ≡ z (mod ρ)}.

The following lemma is essential in building examples of primitive permutation groups.

Lemma 1.1.18. ([36], Proposition 3.52) Any 2-transitive permutation group is primitive.

By Theorem 5.3 in [10], all the finite groups that have a 2-transitive action are classified.

The notion of primitivity can be extended to k-primitivity for some k ∈ N as in the

following definition:

Definition 1.1.19. Let k ∈ N. A group G acting on a set X is said to be k-primitive if it is

k-transitive on X , and for all distinct points x1, x2, ..., xk−1 ∈ X their pointwise stabiliser

Gx1,x2,...,xk−1 is primitive on the set X ∖ {x1, x2, ..., xk−1}.

Using the fact that any 2-transitive group is primitive, we also get

Corollary 1.1.20. ([8], Lemma 4.10) Let G be a k-transitive group, then G is at least

(k − 1)-primitive.

Theorem 1.1.21. ([8], Theorem 4.7) For a transitive G-space X with ∣X ∣ > 1, the

following are equivalent:

7
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(i) X is primitive.

(ii) X has no non-trivial proper blocks.

(iii) For every x ∈X , the subgroup Gx is a maximal subgroup of G.

The following lemma is used in the proof of Proposition 3.2.22(iv).

Lemma 1.1.22. Suppose σ and ρ are both congruences for a transitive group H acting

on a set X , and for some x ∈ X , we have x/σ ⊂ x/ρ, that is the σ-class containing x is a

proper subset of the ρ-class containing x. Then σ ⊂ ρ, and if σ is a maximal congruence,

then ρ is universal.

Proof. We want to show y/σ ⊂ y/ρ. Let z ∈ y/σ. By transitivity we pick some h ∈ H
with yh = x. Then yhσzh holds as h preserves σ, so xσzh. But x/σ ⊂ x/ρ so xρzh. By

applying the inverse, xh−1ρ (zh)h−1 so y ρ z. ∎

1.1.2 Wreath Product

The concept of the wreath product is needed in Chapter 4. For detailed information we

refer to [27] and [36].

There is a generalization of the idea of the direct product such that given any two groups

H,N and a homomorphism ψ ∶ H → Aut(N), the constructed new group N ⋊ψ H is

called the semidirect product of N by H with respect to ψ defined as follows:

• The underlying set is the Cartesian product N ×H;

• The multiplication operation is defined as follows:

(n1, h1)(n2, h2) = (n1ψ(h1)(n2), h1h2) for n1, n2 ∈ N ,h1, h2 ∈H.

Example 1.1.23. The symmetric group S3 acting on the set {1,2,3} is the semidirect

product of N = ⟨(123)⟩ by H = ⟨(12)⟩.

8
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As a non example, (see [36], Section 2.9), consider a cyclic group of order 4,

H = {1,−1, i,−i}. Then N = {1,−1} is a normal subgroup of H , but a subgroup K

such that H = N ⋊ K does not exist. Indeed, N , H and the trivial group are the only

subgroups of H and they do not satisfy the hypothesis of semidirect product.

Example 1.1.24. ([27],19.3) The dihedral group D4 is a semidirect product of the cyclic

group ⟨x⟩ of order 4 by the cyclic group ⟨y⟩ of order 2. This group is not a direct product

of these two subgroups, that is because ⟨y⟩ is not a normal subgroup of G.

Proposition 1.1.25. ([27], 19.4) Let G be a semidirect product of N by H . For each

element h of H , the map θh ∶ N → N defined by θh(n) = hnh−1 is an automorphism of N .

The map θ ∶H → Aut(N) defined by θ(h) = θh is a homomorphism.

The reader can see this in details in [27], Proposition 19.5.

Definition 1.1.26. ([27], 19.12) Let G and H be finite groups with H a subgroup of the

symmetric group Sn. The permutation wreath product, GwrH , is the semi direct product

of a normal subgroup N by H , where N is the direct product of n copies of G. Thus the

elements of N are n-tuples (g1, . . . , gn) with each gi ∈ G. The automorphism Θh of Gn

associated with a permutation h in H is then defined by

Θh(g1, . . . , gn) = (gh(1), . . . , gh(n)).

Example 1.1.27. The wreath product of Z2 by Sn is the semidirect product of n copies

of Z2 by Sn. That is:

Z2wrSn = (Z2 × ⋅ ⋅ ⋅ ×Z2) ⋊ Sn = {(a1, . . . , an, σ) ∶ ai ∈ Z2, σ ∈ Sn}

We multiply two elements as follows:

(a1, . . . , an, σ)(b1, . . . , bn, π) = (a1bσ(1), a2bσ(2), . . . , σπ)

where the action of Sn on Zn2 is a place permutation by σ.

σ(a1, . . . , an) = (aσ(1), aσ(2), . . . , aσ(n))

9
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If, for example, n = 3 then take a vector (a1, a2, a3) = (1,0,1) and σ ∈ S3 such that

σ = (123) then σ(a1, a2, a3) = (aσ(1), aσ(2), aσ(3)) = (a2, a3, a1) = (0,1,1).

Example 1.1.28. Let Γ be the disjoint union of 4 copies of the complete graph K3 (this is

the undirected graph such that each pair of the 3 vertices is connected by a unique edge).

We want to see the wreath product of S3 by the permutation group S4 as a group acting on

Γ. Then Aut(Γ) is the semi-direct product of four copies of S3 by S4 where S4 acts on S4
3

by permuting coordinates. For instance, if π ∈ S4, say (1234), and g = (g1, g2, g3, g4) ∈ S4
3

then gπ = (gπ(1), gπ(2), gπ(3), gπ(4)) = (g2, g3, g4, g1).

Suppose that C is any abstract group, and D is a group acting on a set ∆. Put

K ∶= {f ∣ f ∶ ∆ → C} and put W ∶= CWrD = K ⋊ D with multiplication defined by

(f1, d1)(f2, d2) = (f1fd
−1
1

2 , d1d2). The wreath product W has base group K and top group

D.

To see the wreath product as a permutation group, assume that C and D are permutation

groups acting on the sets Γ and ∆ respectively. The wreath product of C by D acts on the

cartesian product of Γ by ∆. The action of the wreath product on Γ ×∆ is given by

(γ, δ)(f,d) = (γf(δ), δd)

where f ∈K and f(δ) ∈ C.

More details can be found in [8], Chapter 8.

The construction of an iterated wreath product indexed by a totally ordered set has been

covered by Hall in his paper [24]. A more general case of that has been studied, which

is the general wreath product indexed by a partially ordered set, by Holland in his paper

[26].

10
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1.2 Linear relational structures

1.2.1 Linear order

The key notion of this thesis is that of Jordan groups, which will be introduced in Section

1.5. In Sections 1.2-1.4 we describe key combinatorial and model-theoretic structures

where automorphism groups provide examples of Jordan groups. For more background

for this section consult [8], Section 11.3.

Definition 1.2.1. (i) a partially ordered set is a set X with a relation ≤ satisfying the

following conditions:

(1) Reflexivity: (∀x ∈X)(x ≤ x).

(2) Anti-symmetry: (∀x, y ∈X)(x ≤ y ∧ y ≤ x⇒ x = y).

(3) Transitivity: (∀x, y, z ∈X)(x ≤ y ∧ y ≤ z ⇒ x ≤ z).

(ii) A linearly ordered set is a partially ordered set with the following condition:

(∀x, y ∈X)(x ≤ y ∨ y ≤ x).

If x ≤ y or y ≤ x then we say that x, y are comparable elements of X , while otherwise we

say they are incomparable, and we will write ∥ for the incomparablity relation.

Linearly ordered sets are also called totally ordered sets or chains. The rationals (Q,≤) is

an example of a totally ordered set.

1.2.2 Linear betweenness relation

We can derive a ternary relation from the linear order on the set Q as the following

relation:

B(x; y, z) ⇔ (y ≤ x ≤ z) ∨ (z ≤ x ≤ y)

11
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Geometrically, that means x lies in the path between y and z. This relation is called a

linear betweenness relation, and denoted by B.

Definition 1.2.2. ([8], Definition 11.6) A ternary relation B defined on a set X is said to

be a linear betweennesss relation if the following hold:

1. (∀x∀y∀z)B(x; y, z) ⇒ B(x; z, y);

2. (∀x∀y∀z)B(x; y, z) ∧B(y;x, z) ⇔ x = y;

3. (∀x∀y∀z∀w)B(x; y, z) ⇒ B(x; y,w) ∨B(x; z,w);

4. (∀x∀y∀z)B(x; y, z) ∨ (B(y; z, x) ∨B(z;x, y)).

The automorphism group of this relation Aut(Q,B) is the group preserving or reversing

the linear order. It is 2-transitive, but not 2-primitive as the pointwise stabiliser for 0

has two blocks, the positive rationals and the negative rationals. More details are in [8],

Section 11.3.2.

1.2.3 Circular order

Another way of arranging elements is to order them on a circle. However, in this order we

cannot talk about a binary relation as in the linear order. The order on a circle is a ternary

relation K(a, b, c) which intuitively says that after a, the element b is reached to before c;

going anticlockwise.

Definition 1.2.3. A circular order (or cyclic) is a ternary relation K defined on a set X

satisfying the following conditions:

1. (∀a, b, c ∈X)K(a, b, c) ⇒ K(b, c, a);

2. (∀a, b, c ∈X)K(a, b, c) ∧ K(b, a, c) ⇔ a = b ∨ c = b ∨ c = a;

3. (∀a, b, c, d ∈X) (K(a, b, c) ⇒ (K(a, b, d) ∨ K(d, b, c));

12
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4. (∀a, b, c ∈X)K(a, b, c) ∨ K(b, a, c).

a

b

c

Figure 1.1: K(a, b, c)

Moreover, the circular order is called dense if for all distinct a, b ∈ X there is c ∈ X such

that K(a, b, c).

There is a strong connection between the linear order and the circular order. For example,

if we start with a linearly ordered set, say Q, we can twist the line around the two ends to

get a circular order. Hence the circular order on Q can be defined in terms of the linear

order as follows:

K(a, b, c) ⇔ (a ≤ b ≤ c) ∨ (b ≤ c ≤ a) ∨ (c ≤ a ≤ b)

From this, we see that K(a, b, c) ⇔ K(b, c, a) ⇔ K(c, a, b), and for distinct a, b, c,

K(a, b, c) ⇒ ¬K(b, a, c).

On the other hand, the linear order can be recovered from the circular order if we cut a

single point of the circular order. That is, if (X,K) is a circular ordering and a ∈ X , then

the relation ≤a, defined on X ∖ {a} by x ≤a y if and only if K(a, x, y), is linear. See

Theorem 11.9 of [8].

1.2.4 Separation relation

Another way to arrange elements is to put them on an unoriented circle. A quaternary

relation Sep(a, b; c, d) such that a and b separate c from d is called a separation relation.

13
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a

d

c

b

Figure 1.2: Sep(a, b; c, d)

Definition 1.2.4 ([8], 11.10). A quaternary relation ‘Sep’ defined on a set X is a

separation relation if it satisfies the following for all a, b, c, d,w ∈X :

(i) Sep(a, b; c, d) ⇒ Sep(b, a; c, d) ∧ Sep(c, d;a, b);

(ii) Sep(a, b; c, d) ∧ Sep(a, c; b, d) ⇔ b = c ∧ a = d;

(iii) Sep(a, b; c, d) ⇒ Sep(a, b; c,w) ∨ Sep(a, b;d,w);

(iv) Sep(a, b; c, d) ∨ Sep(a, c;d, b) ∨ Sep(a, d; b, c).

On one hand, there is a relationship between the circular order and the separation relation

such that if a circular order is given then the quaternary relation defined by

(∀a, b, c, d ∈X)Sep(a, b; c, d) ∶⇔ (K(a, b, c) ∧ K(a, d, b)) ∨ (K(a, c, b) ∧ K(a, b, d))

is a separation relation. Conversely, given a separation relation on a set X , there are

exactly two corresponding circular orderings and each one is the reverse of the other.

On the other hand, if B is a linear betweenness relation on a set X , then the quaternary

relation defined for all a, b, c, d ∈X such as

Sep(a, b; c, d) ∶⇔ (B(a; b, c)∧B(d;a, b))∨(B(b; c, a)∧B(d;a, b))∨(B(c;a, b)∧¬B(d;a, b))

is a separation relation. On the reverse, given a separation relation on X and fix a ∈ X .

Then the B-relation defined such as

(∀b, c, d ∈X ∖ {a})B(b; c, d) ∶⇔ Sep(a, b; c, d)

14
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on X ∖ {a} is a linear betweenness relation.

The above two paragraphs are what is mentioned in Theorem 11.11 of [8].

We end this section with Cameron’s classification theorem mentioned, for example in [8],

Theorem 11.12.

Theorem 1.2.5. Let G be a permutation group acting on an infinite set X , and suppose

that G is highly homogeneous but not highly transitive. Then G preserves either a linear

order or a circular order or a linear betweenness relation or a separation relation.

1.3 Steiner Systems

Definition 1.3.1. Let k ∈ N with k ≥ 2. A Steiner k-system consists of a set X of points

and a set of blocks B (or Steiner lines), where the blocks are subsets ofX of the same size

(possibly infinite) greater than k satisfying that the number of blocks should be greater

than 1, and for k distinct points of X there is a unique block containing them.

If X is finite then the Steiner system is finite. Otherwise, the Steiner system is infinite.

The number of elements of X is called the order of the Steiner system. An intensively

studied finite case of Steiner systems is Steiner 2-systems which is known as Steiner triple

systems. (Note that every Steiner triple system is a Steiner 2-system, but the converse is

false.) We also will use such systems to explain the notion of Steiner systems.

The following theorem gives the restrictions on n, l and k for a finite Steiner triple system

to exist.

Theorem 1.3.2. ([13], 8.1.2) A Steiner triple system of order n exists if and only if

n ≡ 0, n ≡ 1 or n ≡ 3 (mod 6).

The condition in the theorem is necessary and sufficient for this system to exist. The

proof of the theorem gives us a recipe for these numbers. Namely, with X the set of

points of a Steiner triple system of order n,

15
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(1) Let w be any point in X . Then it lies in n−1
2 blocks, which are triples in the Steiner

triple system.

(2) The set B has n(n−1)
6 triples.

There are two main methods to construct such Steiner systems. The first method is the

direct construction. This method is based on having the condition that n ≡ 3 (mod 6) (see

Proposition 8.2.1, [13]). Then the set of the points will be X = {ai, bi, ci ∶ i ∈ Z/(m)}
where m is an odd integer such that n = 3m, and the blocks take the following forms as

stated in section 8.2, [13].

1. The blocks are of the form aiajbk, bibjbk or cicjak, where i, j, k ∈ Z/(m), i ≠ j and

i + j = 2k (in Z/(m).

2. The blocks are of the form aibici, i ∈ Z/(m)).

The following example is taken from [21], and is also mentioned in [13].

Example 1.3.3. Consider a base set X of nine elements, name them 1,2,3,4,5,

6,7,8,9. Consider the following subsets {1,2,3},{4,5,6},{7,8,9},{1,4,7},{2,5,8},

{3,6,9},{1,5,9},{2,6,7},{3,4,8},{1,6,8},{2,4,9},{3,5,7}. This is the set of

3-elements subsets of X , call it B. Take any two elements of X . They will lie in one

element of B. The elements 1, . . . ,9 are what we call points, and the 3-elements subsets

are the blocks. This is an example of a Steiner 2-system. Sometimes it is referred to by

S(2,3,9) where k in the above definition is 2 here, and the 3 refers to the cardinality of

each block, and 9 refers to the cardinality of the set X .

The second method is the recursive construction. In this method take a set of points X ,

and start with two blocks and build the rest of the blocks using them. See Section 8.3 of

[13] for more details.

From an algebraic point of view we take the projective triple systems as an example.

Consider the field Z/(2), and take a vector space V with dimension d over the field

16
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Z/(2). Then V is the set of tuples with arity d and ∣V ∣ = 2d. Take the set of points of

Steiner system to be the set of all vectors distinct than the zero-vector, and the set of

blocks B to be the set of triples satisfying that their sum in the field is zero. Then we get

a Steiner triple system of order 2d − 1. A familiar example of this is the Fano plane. The

blocks are the lines l1, . . . l7.

Figure 1.3: Fano Plane

Example 1.3.4. Take the field Z/(3) and a vector space V of dimension d. Take the set

of points to be V itself and the block to be the set of triples which are subsets of X such

that their sum is zero in Z/(3). Then this is a Steiner triple system of order 3d. It is called

an affine triple system of dimension d over Z/(3).

Recall that the set of all 1-dimensional subspaces of a vector space V over a field F is

denoted by PG(V ), and called the projective space of V .

Example 1.3.5. Let PG(V ) be the set of points and the 2-dimensional sub-spaces of V

be the set of blocks. This is a Steiner 2-system.

The examples of infinite Steiner systems are more complicated (apart from analogues of

the above algebraic examples) and not obvious. For more about infinite Steiner triple

systems consult [22], and for a general case, i.e. the blocks are t-elements subset and the

base set is countable consult [23].
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There is also a notion of ‘limit of Steiner systems’. It occurs in the main theorem of

Adeleke and Macpherson (see Theorem 1.5.22(j) below), with constructions given by

Adeleke in [1] and by Johnson in [28]. I omit details.

1.4 Examples of Tree-like structures

The goal of this section is to describe briefly the notions of treelike relational structures.

For more information about these relations, we refer to [6] since we use this as a main

reference to this section. Here we rehearse as much as is needed for our work.

1.4.1 Semilinear order

Definition 1.4.1. Let (X,≤) be a partially ordered set. Then X is said to be a (lower)

semilinearly ordered set if it satisfies:

(i) For any a in X , the set of points less than a is a totally ordered set, i.e.

(b ≤ a ∧ c ≤ a) ⇒ (b ≤ c ∨ c ≤ b).

(ii) (∀a, b)(∃c)(c ≤ a ∧ c ≤ b);

(iii) the set X itself is not totally ordered .

The lower semilinearly ordered sets are sometimes referred to as trees as in [18].

The set (X,≤) is said to be without endpoints if it has neither minimal nor maximal

element, and it is said to be dense if it satisfies that

(∀a, b)a < b⇒ (∃c)(a < c < b).

If we fix an element p ∈ X , then the semilinearly ordered set X will partition into four

sets:

18
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(i) {x ∈X ∶ x > p} and we will call this set Y .

(ii) {x ∈X ∶ x < p}.

(iii) {x ∈X ∶ x /< p ∧ x /> p ∧ x ≠ p} (the set of all incomparable elements).

(iv) {p}.

These four sets are each fixed setwise by (Aut(X,≤))p, the stabiliser of p in Aut(X,≤).

On the set Y , define an equivalence relation Ep such that

xEpy⇔∃z(p < z ≤ x ∧ p < z ≤ y).

Then Ep is preserved by (Aut(X,≤))p.
From now on, when we say a semilinear order we mean a lower semilinear order.

Definition 1.4.2. In the notation above, the cones at p are the equivalence classes of the

equivalence relation Ep at the node p.

There are two constructed examples of semilinear order in [8], Section 12.1. Also

described in [18].

Definition 1.4.3. A 2-homogeneous semilinear order in which all pairs of incomparable

elements have no greatest lower bound is said to be of negative type. If the greatest lower

bound exists for every pair of elements we say it is of a positive type.

In our study we work on the positive type.

Let X be a lower semilinearly ordered set. A lower section is a subset Y of X such that

Y is bounded above, i.e. there is x ∈X such that for all y ∈ Y we have y ≤ x.

Remark 1.4.4. The (upper) semilinearly ordered sets are defined in similar way by

reversing the ordering.
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1.4.2 C-relations

Let (X,<) be a semilinearly ordered set. A maximal chain in (X,<) is a subset I of X

such that:

(i) (I,<) is totally ordered.

(ii) for any J with I ⊊ J ⊆X , (J,<) is not totally ordered.

Let Y be a set of maximal totally ordered subsets of (X,<) (possibly the set of all maximal

totally ordered subsets), and define C on Y by the rule:

C(x; y, z) ∶⇔ x ∩ y = x ∩ z ⊂ y ∩ z

The behaviour of maximal chains in a semilinearly ordered set is described by a

C-relation, so the name of C-relation comes from “ chain”.

Definition 1.4.5. Let X be a non-empty set and C a ternary relation on X . Then C is said

to be a C-relation on X if:

(C1) (∀x, y, z)C(x; y, z) ⇒ C(x; z, y);

(C2) (∀x, y, z)C(x; y, z) ⇒ ¬C(y;x, z);

(C3) (∀x, y, z,w)C(x; y, z) ⇒ (C(x;w, z) ∨C(w; y, z));

(C4) (∀x, y)(x ≠ y) ⇒ C(x; y, y);

(C5) (∀y, z)(∃x)C(x; y, z);

(C6) (∀x, y)(x ≠ y) ⇒ (∃z)(y ≠ z ∧C(x; y, z).

The relation C is said to be dense if

(C7) (∀x, y, z)C(x; y, z) ⇒ ∃w(C(w; y, z) ∧C(x; y,w)).
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The ternary relation C defined above (before Definition 1.4.5) on the collection of

maximal totally ordered subsets of a semilinear order is a C-relation. This is given by

[8], Theorem 12.5.

Example 1.4.6. For any three maximal chains x, y, z in a semilinearly ordered set, two of

the sets x ∩ y, x ∩ z, y ∩ z are equal and contained in the third. (See [6], Lemma 11.1).

On the other hand, a semilinear order can be recovered from a C-relation such that the

universe of the C-relation is a dense set of maximal chains in the semilinear order, with

the natural C-relation. See [6], Theorem 12.4.

1.4.3 B-relations

Definition 1.4.7. A ternary relation B defined on a set X is said to be a general

betweenness relation if the following hold:

(B1) (∀x∀y∀z)B(x; y, z) ⇒ B(x; z, y);

(B2) (∀x∀y∀z)B(x; y, z) ∧B(y;x, z) ⇔ x = y;

(B3) (∀x∀y∀z∀w)B(x; y, z) ⇒ B(x; y,w) ∨B(x; z,w);

(B4) (∀x∀y∀z)¬B(x; y, z) ⇒ (∃w ≠ x)(B(w;x, y) ∧B(w;x, z)).

The betweenness relation is called unending in all its directions (where direction here is

the literal English word) if for any two points x, y in a set X one can find an element w

such that x is between y and w. That is

(∀x, y)(∃w ≠ x)B(x; y,w)

And it is called dense if for any x, y there is an element which lies between them, i.e.

(∀x, y)(x ≠ y)(∃z ≠ x, y)B(z;x, y).

It is said of positive type if

(∀x, y, z)(∃w)(B(w;x, y) ∧B(w; y, z) ∧B(w;x, z))
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The closed interval [x, y] can be defined in terms of the betweenness relation such that

[x, y] ∶= {z ∈X ∶ B(z;x, y)}

If (∀x, y, z ∈X)B(x; y, z) ∨B(y;x, z) ∨B(z;x, y), we write B{x, y, z}, and then x, y, z

are called collinear. A linear set of (X,B) is a subset Y of X with the property that any

x, y, z ∈ Y are collinear.

Definition 1.4.8. The subset Y of a B-set X is said to be a convex if

(∀y, z ∈ Y )(∀x ∈X)(B(x; y, z) → x ∈ Y ).

Definition 1.4.9. Let (X,B) be a B-set. Let x ∈ X and define the following equivalence

relation on X ∖ {x}:

Rx(y, z) ∶⇔ [x, y] ∩ [x, z] ∩ (X − {x}) /= ∅

We call the equivalence classes of the relation Rx branches, and we denote the branch

containing a by ā.

Those equivalence classes are called components of X determined by x in [6].

If, at x, there are three or more Rx-classes then x is called a ramification point. If a, b, c

are in three distinct Rx-classes at x then x is denoted by ram(a, b, c).

Definition 1.4.10. Let X be a B-set. A line is a maximal linear subset. By a half-line is

meant a set which is nonempty proper lower section in one of the two linear orderings of

some line in X .

Let Y be a subset of the B-set (X,B), x be a point of X . Then Y is said to lie in one

direction from x if

(∀w1,w2 ∈ Y )(B(w1;w2, x) ∨B(w2;w1, x))

Lemma 1.4.11 ([6], Lemma 16.5). Let X be a B-set unending in all its directions. A

subset Y of X is a half-line if and only if it is convex and unbounded and lies in one

direction from some point of X .
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Define a binary relation E on the set of half lines of X by the rule that Y1 , Y2 are to be

E-related if Y1∩Y2 is unbounded. This is an equivalence relation (see [6], Theorem 16.7).

We define a direction of X to be an E-class of half-lines. In the finite case directions are

called leaves or end points.

Theorem 1.4.12 ([6],Theorem 16.8). Let (X,B) be aB-set, x ∈X and d be any direction

of X . Then x is contained in a unique half-line which lies in one direction from x and is

contained in the direction d.

Theorem 1.4.13 ([6] ,Theorem 19.4). For a B-set X , let r1, r2 be distinct ramification

points. There are unique branches Y of r1 and Y ′ of r2 such that X = Y ∪ Y ′.

A B-relation can be defined on a semilinear order (P,≤) such that for any x, y, z ∈ P ,

B(x; y, z) holds if one of the following holds:

(i) y ≥ x ∧ ¬(z ≥ x).

(ii) ¬(y ≥ x) ∧ z ≥ x.

(iii) x = glb{y, z}, where glb means the greatest lower bound. This means that if the glb

of y and z exists then it lies between them.

On the other side, a semilinear order can be recovered from a B-relation. For example,

fix a B-set (X,B). Fix a point a ∈ X , and define a relation ≤a such that y≤ax if and only

if B(y;x, a). This relation is a partial order and a lower semilinear order on each branch

determined by a.

As a permutation group, Aut(X,B) can be 2-transitive, but not 2-primitive and not

3-transitive. See the end of Section 12.3 of [8], or Section 20 of [6].

1.4.4 D-relations

Following Adeleke and Neumann in [6], the D-relations capture the behaviour of

directions in B-sets. A D-relation is a quaternary relation which can be derived either
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from a B-relation or from a C-relation.

Definition 1.4.14. Let (T,<) be a graph-theoretic tree (connected graph without cycles),

and without leaves. A line is an infinite two-way path of (T,<). A half line is an infinite

one-way path of (T,<).

Note that the above definition does not contradict Definition 1.4.10, but we explain it here

graph theoretically.

Now let X be the set of all half-lines of T , and define an equivalence relation ∼ on X by

x ∼ y⇔ x ∩ y contains infinitely many vertices of T .

Also note that this is analogous to the definition of the binary relation E in the previous

section but again here is in a graph theory context.

Define Y ∶=X/ ∼ to be the set of equivalence classes (or set of directions or end points of

T ), then there is a related ‘D-relation’ on Y , as defined below.

Note. The set Y is usually referred to as the set of ends of (T,<).

Let x, y, z,w ∈ Y be distinct directions. D(x, y; z,w) holds if and only if there are half

lines x̂ ∈ x, ŷ ∈ y, ẑ ∈ z, ŵ ∈ w such that x̂∪ ŷ is a line, ẑ∪ ŵ is a line, (x̂∪ ŷ)∩(ẑ∪ ŵ) = ∅
and there is a path between the meeting points of x̂, ŷ and ẑ, ŵ . See Figure 1.4

x z

y w

x̂

ŷ

ẑ

ŵ

Figure 1.4: D(x, y; z,w)

The internal nodes that are the meeting point for at least 3 half-lines (in the infinite case)

or at least 3 leaves (in the finite case) are called ramification points.
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Hence, a finite set with D-relation is a set of leaves connected by edges with no internal

vertices of degree 2, and no cycles satisfying the quaternary relation D. This finite

graph theoretic tree captures the behaviour of the D-relation, and that is what Cameron

described in his paper [11], Sections 3 and 4.

Lemma 1.4.15. Let T be a graph theoretic tree with n leaves, where n ≥ 3, and no

internal vertices of degree 2. Then there are at most n − 2 ramification points.

Proof. By induction on the number leaves. If T has 3 leaves, then the tree T is obtained

by allowing the leaves to meet at only one ramification point.

For the induction hypothesis, assume the statement in the lemma holds for n. Let T have

n + 1 leaves with v is a leaf. Let T ′ = T ∖ {v}. Then, by the induction hypothesis, T ′ has

≤ n − 2 ramification points. If v is added on an edge of T ′ to create a ramification point,

then T has ≤ n − 1 ramification points. If v is added to an existing ramification point of

T ′ then T has ≤ n − 2 ramification points. Hence the result follows. ∎

Definition 1.4.16. A quaternary relation D(x, y; z,w) on X is a D-relation if for all

x, y, z,w, ∈X:

(D1) D(x, y; z,w) ⇒D(y, x; z,w) ∧D(x, y;w, z) ∧D(z,w;x, y);

(D2) D(x, y; z,w) ⇒ ¬D(x, z; y,w);

(D3) D(x, y; z,w) ⇒ (∀a ∈X)D(a, y; z,w) ∨D(x, y; z, a);

(D4) (x ≠ z ∧ y ≠ z) ⇒D(x, y; z, z);

(D5) (x, y, z distinct) ⇒ (∃t)(z ≠ t ∧ D(x, y; z, t)). If the D-relation on X satisfies

D1-D5, we say that X is a proper D-set.

The D-set is said to be dense if

(D6) D(x, y; z,w) ⇒ (∃a ∈X)D(a, y; z,w)∧D(x, a; z,w)∧D(x, y;a,w)∧D(x, y; z, a).
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The example derived above from a tree, namely (Y,D), is an example of a D-relation

which is not dense.

Remark 1.4.17. (i) The notation D comes from the meaning of D-set which is a set of

abstract directions.

(ii) Directions suggest ends or points at infinity.

(iii) The elements of any D-relation are directions of an underlying B-relation. See [6],

Section 23.

We can see from D2 that ¬D(x, y; y,w) holds, hence by D1, if one of x, y coincides with

one of z,w then ¬D(x, y; z,w).

Lemma 1.4.18. Let (X,D) be a D-relation. Let x, y, z,w ∈X . Then

(∀a ∈X)(D(x, y; z,w) ∧D(x, y;w,a) →D(x, y; z, a)).

This lemma is (D9) in [6], Section 22.

Lemma 1.4.19. ([6], 23.1) If B is a general betweenness relation on X , x, y, z,w are

directions in X and ←→xz, ←→xw, ←→yz, ←→yw are lines, (the notation ←→xz refers to the unique line

whose two directions are x, y, similarly for the other lines), then ∣←→xz∩←→xw∩←→yz∩←→yw∣ > 1 if

and only if either there is a branch Y such that x, y ∈ Y and z,w ∉ Y or there is a branch

Y such that x, y ∉ Y and z,w ∈ Y .

Given a B-set, there is a natural D-relation on the set of directions, defined as follows:

Theorem 1.4.20 ([6], Theorem 23.2). Fix a B-set X and a set of directions Y of

X . Then there is a D-relation defined on Y as follows: for every x, y, z,w ∈ Y ,

D(x, y; z,w) ∶⇔ { there is a branch Y such that x, y ∈ Y and z,w ∉ Y or there is a

branch Y such that x, y ∉ Y and z,w ∈ Y }. Then (X,D) is a D-set.
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On the other hand, a B-relation can be recovered from a D-relation. We do not include

this here as it depends on a number of notions that we do not explain. To see this consult

[6], Section 26.

Note that given a finite D-set, a unique (up to isomorphism) finite rooted tree (in the

graph theoretic sense) without vertices of degree 2 can be recovered. Indeed, by Section

9 of [11], the leaves are the points that cannot be in between any two points, in the sense

of betweenness relation, and the given D-relation determines the tree with no divalent

vertices by Proposition 3.1 in [11]. We bring the reader’s attention that the author in [11]

uses the notation ab∣cd and we use D(a, b; c, d) to refer to a D-relation, and he does not

mention the axioms of D-relations that defined in [6], Section 22.

Adeleke and Neumann also commented that a finite combinatorial tree can be recovered

from a D-set in [6], Remark 26.5.

Also, a D-set can be obtained from a C-set in two methods; stated in [6], Theorem 23.4,

and Theorem 23.5. The latter says for a C-set X

(∀x, y, z,w ∈X)D(x, y; z,w) ⇔∶ (C(x; z,w) ∧C(y; z,w)) ∨ (C(z;x, y) ∧C(w;x, y))

Conversely, given a D-relation on a set X . A C-relation can be recovered by fixing a

point x0 of the D-set X , and on X0 = X ∖ {x0} let C0 be a ternary relation such that

C0(x; y, z) if and only if D(x0, x; y, z). Then (X0,C0) is a C-set. See Theorem 22.1 of

[6]. This process can be reversed: given a C-set on X ∖ {x0}, one constructs a D-set on

X .

There are concepts of structural partition, components, convex halves and irreducible

components. We explain here the notion of structural partition. For the other notions we

advise the reader to consult [6], Section 28. These concepts are needed to describe the

Jordan sets of the automorphism group of a D-set.

Definition 1.4.21. Let (X,D) be aD-set. A partition ofX as a disjoint union⋃{Y ∣Y ∈ S}
of nonempty subsets is associated with an equivalence relation E. The partition, or the

equivalence relation, will be called a structural partition with sectors Y if
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(1) ∣S∣ ≥ 3;

(2) (∀Y ∈ S)(w1,w2 ∈ Y ∧w3,w4 ∉ Y →D(w1,w2;w3,w4));

(3) w1,w2,w3,w4 distinct mod E then ¬D{w1,w2,w3,w4}, i.e. there is no D-relation on

the elements w1,w2,w3,w4.

Consider (X,D) as a graph-theoretic tree. Define an equivalence relation Fa on the set of

leaves of X such that the shortest paths from a to s1 and from a to s2 both pass through,

at least, another point.

Definition 1.4.22. The branches at a in a D-set are the equivalence classes for the

equivalence relation Fa .

Note that this is analogous to Definition 1.4.9.

Definition 1.4.23. Define an equivalence relation on the set of branches of a B-set at

the ramification point r, by aRb ⇔ a, b lie in the same branch at r. We denote the

equivalence class of a by ā.

This is heavily used in Chapter 2.

1.5 Jordan groups and previous results

The French mathematician, Camille Jordan, introduced the underlying concept of this

thesis in the 1870s, see for example, [33], Theorem 1.1. It later became known as a

Jordan group. These groups have been studied extensively in the last three decades of the

20th century. The finite primitive Jordan groups were classified in 1980s (see [16], [29]

and [35]) based on the classification of finite simple groups, while the infinite primitive

Jordan groups were classified in 1990s after a much earlier classification by Cameron

in 1976 (see [8], Theorem 11.12) for the highly homogeneous but not highly transitive

groups.
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There is a body of work in classifying all the infinite primitive Jordan groups by Adeleke

and Neumann in [6], [3] and [4], and Adeleke and Macpherson in [5] and Adeleke in

[1]. Behind the study of Jordan groups lies important applications to model theory and to

group theory. To see examples on that consult [33].

Now we introduce the notion of Jordan sets. We refer to [8], and for extensive study about

the finite Jordan groups we refer to [35].

Definition 1.5.1. Let Y ∪ Z form a partition of a G-space X with ∣ Z ∣> 1. If there is

a subgroup H of G that fixes every point of Y and is transitive on Z, then Z is called a

Jordan set for G in X and Y is called a Jordan complement.

Example 1.5.2. Let Z be any set in X such that ∣ Z ∣≥ 2 and G = Sym(X) then Z is a

Jordan set with H = G(X∖Z).

Example 1.5.3. Let X be the set of rationals and G = Aut(Q,≤) and define

Z ∶= {x ∈ Q ∶ x > 0}. Then Z is a Jordan set. More generally, any open convex subset of

Q of size greater than 1 is a Jordan set for G.

In the previous definition, Z is a primitive Jordan set if H can be chosen to be primitive

on Z. Also, it is said to be an imprimitive Jordan set if any such H is imprimitive.

Definition 1.5.4. If the group G is (k + 1)-transitive and Z is any cofinite subset with

∣ X ∖ Z ∣= k then Z is automatically a Jordan set. Such Jordan sets will be said to be

improper, all others are proper.

Definition 1.5.5. If X is a transitive G-space and there is a proper Jordan set for G in X

then G is said to be a Jordan group.

There are some familiar examples of finite primitive Jordan groups such as the projective

and affine linear groups over finite fields and the Mathieu groups M22,M23,M24,

Aut(M22) which we do not explain here, but can be seen in [17], Chapter 6.

Further information about the classification of finite Jordan groups can be found in [35].

However, we include some examples.
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Example 1.5.6. ([8], 11.2) Take a vector space V of dimension d > 2 over a field

F . Consider the group GL(V ) of non-singular linear transformations from V to itself.

The group GL(V ) is not transitive on V . Let W be a proper subspace of V . The

complement of the subspace W is a Jordan set for GL(V ). We want to see that the

complement V ∖ W of a subspace is a Jordan set. Take a basis e1, . . . , ek of W and

let v1, v2 ∈ V ∖W . Complete e1, . . . , ek, v1 to a basis B = {e1, . . . , ek, v1, u1, . . . , ur} of

V and B′ = {e1, . . . , ek, v2, u′1, . . . , u′r} of V . As GL(V ) is transitive on ordered bases of

V (see exercise 7(i) of [8]), there is an element g ∈ GL(V ) fixing e1, . . . , ek, mapping v1

to v2 and ui to u′i. This g fixes W pointwise. Similarly, the group AGL(V ) is a Jordan

group with the complement of an affine subspace as a Jordan set. A proof, when the field

is Q, can be seen in [30] after Definition 1.10.

In the proof of the following example we follow Macpherson in [32].

Example 1.5.7. Let G = Aut(Q,≤). Then G is primitive since it is 2-homogeneous.

Let x, y ∈ Q with x < y and I ∶= (x, y). Choose i, j ∈ I . Since the theory of dense

linear order without endpoints is ω-categorical (see Definition 1.6.7 below), there are

isomorphisms φ ∶ (x, i) ∩Q → (x, j) ∩Q and ψ ∶ (i, y) ∩Q → (j, y) ∩Q. Let σ be the

permutation of Q extending φ and ψ, taking i to j, and fixing the rest of Q pointwise.

Then σ ∈ Aut(Q,≤)(Q∖I) and iσ = j. It is easily checked that the group induced on I by

G(Q∖I) is 2-homogeneous, so I is a primitive Jordan set.

Example 1.5.8. Let ∣Y ∣ > 1, ∣Z ∣ > 1. Assuming (H,Y ) and (K,Z) are transitive

permutation groups. Then the wreath product HWrK acts transitively but imprimitively

on the set Y × Z. For any z ∈ Z the set {(y, z) ∶ y ∈ Y } is a Jordan set. Actually, the

wreath product is an example of an imprimitive Jordan group.

Example 1.5.9. Let R be the random graph, that is, the unique countable graph with the

property that for any two finite disjoint sets U , W of vertices, there is a vertex adjacent

to every vertex of U and to no vertex of W . Then Aut(R) is not a Jordan group. Indeed,

suppose for a contradiction that it is a Jordan group. Then we can partition the vertex set

of R into non-empty sets V1, V2 such that V2 is a Jordan set. Let x ∈ V1. Then as V2 is a
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Jordan set, either R(x) ⊇ V2, or R(x)∩V2 = ∅, and without loss of generality, we assume

the former. Let w1,w2 ∈ V2 be distinct and put

Z ∶= {y ∶ y adjacent to w1 and y nonadjacent to w2}.

Then if y ∈ Z then there is no g ∈ Gy with wg1 = w2, so as V2 is a Jordan set we must have

y ∈ V2. Thus Z ⊆ V2. Let u be a vertex adjacent to w1 but not to x or w2. Then u ∈ Z, so

u ∈ V2. However, u ∉ R(x) and R(x) ⊇ V2, so u ∈ V1. This is a contradiction.

The following lemma is heavily used, since many arguments apply properties of the

family of all Jordan sets.

Lemma 1.5.10. ([5], Lemma 2.2.1) If Y1, Y2 are Jordan sets, and Y1∩Y2 ≠ ∅, then Y1∪Y2
is a Jordan set.

The following definition is taken from [4].

Definition 1.5.11. .

(a) A typical pair is a pair of subsets Y1, Y2 of X such that Y1 /⊆ Y2, Y2 /⊆ Y1, Y1∩Y2 ≠ ∅.

(b) A family of sets {Yi ∶ i ∈ I} will be said to be connected if for any i, i′ ∈ I there exists

j0, . . . , jl ∈ I such that j0 = i, jl = i′ and Yjr−1 ∩ Yjr ≠ ∅ for all 1 ≤ r ≤ l.

A special case from Lemma 3.2 in [4] was considered in [7], which is the following

Lemma 1.5.12. Consider a connected system of Jordan sets {Zi ∶ i ∈ I} for a permutation

group G on a set X . Then their union over I is a Jordan set.

In particular, the union of a typical pair of Jordan sets is a Jordan set, as noticed in Lemma

1.5.10.

One of the results about Jordan groups preserving Steiner systems is the following lemma

that we need in Chapter 4, Lemma 4.1.25.
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Lemma 1.5.13. [[5], Theorem 2.2.5] Let G be a Jordan group acting on a set X , and let

2 ≤ n ∈ N. Then for any distinct n + 1 elements of X , if there is a Jordan set in X which

contains the n + 1-th element, and excludes the first n elements, then for any 2 ≤ k ≤ n
there is no G-invariant Steiner k-system on X .

Definition 1.5.14. Given two equivalence relations E1 and E2 on a set X , we say that E1

refines E2 if each E2-class can be written as a union of E1-classes.

Example 1.5.15 ([6], Theorem 6.9). Let G be the automorphism group of a semilinear

order; that is G = Aut(P,≤). The possible Jordan sets are of the following forms:

• the cones of the semilinear order at a point. (See Definition 1.4.2).

• any union of cones at a ramification point ( i.e. branching point).

• any union of sequence of cones (ci ∶ i ∈ I) where I is a totally ordered set and

i < j⇔ ci ⊂ cj .

Example 1.5.16 ([6], Theorem 14.9). Assume that (X,C) is a C-set. Consider

Aut(X,C) such that it is 2-transitive. Then there are several forms of the Jordan sets

of the group Aut(X,C). We mention, for example, the following:

Let x ∈X , and define a binary relation Sx onX∖{x} by putting ySxz⇔ C(x; y, z). Then

Sx is an equivalence relation, and each Sx-class is a Jordan set. A union of Sx-classes can

also be a Jordan set. For more details see [6], page 53.

Example 1.5.17 ([6], Theorem 20.3). Let (X,B) be a B-set, and assume that Aut(X,B)
is 2-transitive. Then every branch (as defined in 1.4.9) is a Jordan set. Unions of

branches at a ramification point as well as unions of chains of branches are Jordan sets of

Aut(X,B).

Example 1.5.18. ([6], Theorem 28.6.) D-sets (X,D) exist such that the group

Aut(X,D) is a Jordan group with a Jordan set Y ⊂ X , for example, Y is a union of

two or more branches of a structural partition λ.
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The achievement of this work is to test that the built Jordan group in Chapter 4 preserves

a limit of D-relations as is defined in the following sense:

Definition 1.5.19. If (G,X) is an infinite Jordan group we say that G preserves a limit of

betweenness relations if there are: a linearly ordered set (J,≤) with no upper bound in J ,

a strictly increasing chain (Yi ∶ i ∈ J) of subsets of X and an increasing chain (Hi ∶ i ∈ J)
of subgroups of G such that the following hold:

(i) for each i,Hi = G(X/Yi), and Hi is transitive on Yi and has a unique non-trivial

maximal congruence σi on Yi;

(ii) for each i, (Hi, Yi/σi) is a 2-transitive but not 3-transitive Jordan group preserving

a betweenness relation;

(iii) ⋃(Yi ∶ i ∈ J) =X;

(iv) (⋃(Hi ∶ i ∈ J),X) is a 2-primitive but not 3-transitive Jordan group;

(v) σi ⊇ σj ∣Yi if i < j;

(vi) ⋂(σi ∶ i ∈ J) is equality in Y ;

(vii) (∀g ∈ G)(∃i0 ∈ J)(∀i > i0)(∃j ∈ J)(Y g
i = Yj ∧ g−1Hig =Hj);

(viii) for any x ∈X,Gx preserves a C-relation on X ∖ {x}.

Definition 1.5.20. A limit of D-relations is defined in the same way, but replacing a

betweenness relation by a D-relation in the condition (ii).

In [4], Adeleke and Neumann classified the primitive permutation groups that have

primitive Jordan sets, and Adeleke and Macpherson in [5] classified the infinite primitive

Jordan groups without the assumption that the Jordan sets are primitive. We include these

classifications below.
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Theorem 1.5.21 (Adeleke and Neumann Classification, [4]). Suppose that G is a

primitive permutation group that has primitive proper Jordan sets. If G is not highly

transitive then there is a G-invariant relation R on X which is one of

(a) a linear order (R then is binary);

(b) a linear betweenness relation (R is ternary);

(c) a cyclic order (R is ternary);

(d) a cyclic separation relation (R is quaternary);

(e) a semilinear order (R is binary);

(f) a general betweenness relation (R is ternary);

(g) a C-relation (R is ternary);

(h) a D-relation (R is quaternary).

Theorem 1.5.22. [Classification of Infinite Jordan Groups, [5]] Let (G,X) be an infinite

primitive Jordan group. Then either G is highly transitive on X or G preserves on X one

of the following structures:

(a) a dense linear order;

(b) a dense circular order;

(c) a dense linear betweenness relation;

(d) a dense separation relation;

(e) a dense semilinear order;

(f) a dense general betweenness relation (induced from semilinear order);

(g) a C-relation;
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(h) a D-relation;

(i) a Steiner system;

(j) a limit of dense general betweenness relations, D-relations or Steiner systems.

We do not define here the notion of limit of Steiner systems, see, for example, [1],

Definition 2.2.5.

Examples of Jordan groups preserving the relations in the parts (a) to (h) can be found in

[4], [3], [6], and [5]. On the family in part (i), Adeleke in his paper [1] gives an example

of an infinite Jordan group which is 3-transitive, not 3-primitive and preserves a limit of

Steiner 2-systems, but does not preserve the relations in parts (a), (b), (d), (g), (h) in the

above theorem, or non-trivial Steiner system (i.e. the blocks have greater than k elements,

and there is more than one block). Johnson in [28] gives a k-transitive not (k+1)-transitive

example, for any k > 1. On the last class there are two non-isomorphic examples of

infinite Jordan groups. The first is an ℵ0-categorical (Definition 1.6.7) structure whose

automorphism group preserves a limit of betweenness relations, given by Bhattacharjee

and Macpherson in their paper [7], and the second is a group with infinitely many orbits

on triples preserving a limit of betweenness relations in [2]. Moreover, Adeleke gives an

example of a group preserving a limit of D-relations, but does not verify whether or not

it is oligomorphic (Definition 1.6.10).

In this thesis we construct a 2-primitive oligomorphic Jordan permutation group

preserving a limit of D-relations but not preserving a structure of types (a) − (i) .

1.6 Some model theory

For this section we use the references [25] (Chapter 1), [32] and [34] (Chapter 1).

Definition 1.6.1. By a language we mean a collection of relation symbols Ri with i

ranging through some set I , with arities ni, a collection of function symbols fj indexed
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by a set J such that each fj has mj variables, and a collection of constant symbols ck

indexed by k ∈K.

As examples of languages we mention the language of rings, LRings = {+,−, .,0,1} where

+ and . are binary function symbols, where − is a unary function symbol, and 0 and 1

are constants, and there are no relation symbols. The language of graphs consists of one

binary relation symbol, Lgraphs = {R} which is the adjacency between two vertices, i.e.

if there is an edge between the vertex u and the vertex v then they are related by the

relation R. Such a language, i.e. a language consisting of only relation symbols is called

a relational language.

Definition 1.6.2. Let L be a language. By an L -structureM, we mean a nonempty set

M , called the universe or underlying set ofM, and for each i ∈ I a set Ri(M) ⊆Mn(i),

where n(i) is the arity of the relation Ri, for each j ∈ J a function fj(M) ∶Mm(j) →M ,

where m(j) is the arity of fj , and for each k ∈K an element ck(M) ∈M .

In the previous definition, Ri(M) is called the interpretation of Ri in M , fj(M) the

interpretation of fj in M , and ck(M) the interpretation of ck in M .

For example, consider the language of groups Lgroups = {.,1,−1 }, then a group G can be

considered as an L -structureM= (G, .,1,−1 ) where c(M) is 1, f1(M) is −1 and the . is

f2(M).

Note. In the next chapters, we do not distinguish the notation of the structure from its

domain, and we will use M for both of them.

An L -embedding of a structure M into a structure N is a function φ ∶ M → N

which is injective and preserves the interpretation of all the symbols of the language.

An isomorphism is a surjective embedding. Isomorphisms f ∶ M → M are called

automorphisms of M .

Definition 1.6.3. LetM and N be L -structures. We say thatM is a substructure of N
if M ⊆ N , for each relation R ∈ L , R(M) = R(N) ∩Mn, where n is the arity of R, for
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each function symbol f of L , f(M) is the restriction of f(N) to Mm, where m is the

arity of f , and for each constant symbol c ∈ L , c(M) = c(N). We writeM<N to mean

M is a substructure of N andM≠N . We also say N is an extension ofM.

For example (Z,+,0) is a substructure of (R,+,0). Also, consider Lgraphs = {R},

M= (M,R(M)) andN = (N,R(N)) are L -structures, thenM≤N if it is an “induced

subgraph”.

Definition 1.6.4. (i) Any variable or constant symbol in a language L is called an

L -term. If t1, . . . , tn are terms of L and f is an n-ary function symbol of L , then

f(t1, . . . , tn) is a term of L .

(ii) If t1, . . . , tn be L -terms and R is an n-ary relation symbol of L then R(t1, . . . , tn)
is called an atomic L -formula. Likewise, t1 = t2 is an atomic formula. If φ,ψ

are L -formulas and x is a variable, then the conjunction (φ ∧ ψ), the disjunction

(φ ∨ ψ), the negation (¬φ), the implication (φ → ψ), the existential (∃xφ), and the

universal (∀xφ) are L -formulas.

The terms and the formulas of a language L are defined inductively.

Definition 1.6.5. (i) A variable x of a language is called a free variable if it does not

appear in the scope of ∀ or ∃. Otherwise x is called a bound variable.

(ii) A formula with no free variables is called a sentence.

In an L -structureM, a sentence is either true or false, according to an inductive definition

of truth which we omit. The set of all L -sentences φ such that φ is true inM, written as

M ⊧ φ, is called the theory ofM, denoted by T (M). If T is a set of sentences, we say

M is a model of T , and writeM⊧ T , ifM⊧ φ for all φ ∈ T .

Example 1.6.6. (i) y = x + 1 is an atomic formula in which y, x,1 and x + 1 are terms.

(ii) ∀x(x > 0→ ∃y(x = y2)) is a sentence, as all instances of x, y are quantified.
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Definition 1.6.7. A structureM is ℵ0-categorical or (ω-categorical) if

(i) M is countably infinite; and

(ii) if ∣ M ∣=∣ N ∣= ℵ0 and T (M) = T (N), i.e. they satisfy the same set of sentences,

then they are isomorphic.

Example 1.6.8. The structure (Q,<) is ℵ0-categorical, essentially by Cantor’s theorem

that any two countable dense linear order without endpoints are isomorphic.

Example 1.6.9. LetM be a structure with ∣M ∣ = ℵ0 andE be an equivalence relation with

finitely many equivalence classes and no finite classes. Then (M,E) is ω-categorical.

Following Cameron in [15], if G acts on X , an element of G acts component-wise on the

set Xn of all n-tuples of points of X .

Definition 1.6.10. A group G acting on a set X is said to be oligomorphic in its action

on X if G has finitely many orbits on Xk, the set of all k-tuples of X , for every natural

number k.

For more about oligomorphic groups and permutation groups, the reader can see [12] and

[17].

Lemma 1.6.11 ([8], 9.7). Let X{k} denote the set of all k-element subsets of X . Then G

is oligomorphic in its action on X if and only if it has finitely many orbits on X{k} for

every natural number k.

Example 1.6.12. Aut(Q,<) is oligomorphic on Q.

Examples 1.6.8 and 1.6.12 are analogous. This is what the following theorem will tell us

about. It provides the connection between model theory and permutation groups.

Theorem 1.6.13. [Ryll- Nardzewski 1959, Engeler 1959, Svenonius 1959] Let M be a

countably infinite structure. Then the following are equivalent
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1. M is ℵ0-categorical;

2. Aut(M) is oligomorphic onM.

In addition to the natural examples of ω-categorical structures such as the pure set X

with automorphism group Sym(X), and (Q,≤), there are two methods to construct

oligomorphic groups; by building a new structure from an old one, and by the Fraı̈ssé

construction. Consult [19] for details.

Definition 1.6.14. A relational structure M is homogeneous if

1. M is countable, and

2. whenever U and V are finite substructures of M and f ∶ U → V is an isomorphism,

there is f̂ ∈ Aut(M) extending f . Equivalently, f̂ ∣U = f .

Example 1.6.15. Consider a finite undirected graph R of five vertices, say the Pentagon,

such that the vertices are numbered {1,2,3,4,5} and the edges {1,2},{2,3},{3,4},{4,5}
and {5,1}. Take two induced subgraphs R1 of vertices {1,4,5} and the edges

{1,5},{4,5}, and R2 with the vertices {2,3,4} and the edges {2,3},{3,4}. Consider

the isomorphism φ ∶ R1 → R2 such that φ(1) = 4, φ(4) = 2, and φ(5) = 3. This can be

extended if we add the rest of the domain {2,3} and define an isomorphism from R to

itself, say ψ such that it keeps the images of {1,4,5} as in φ but we add {2,3} to get the

isomorphism ψ ∶ R → R such that ψ(1) = 4, ψ(4) = 2, ψ(5) = 3, ψ(2) = 5, ψ(3) = 1. It is

clear that ψ∣R1 = φ.

Remark 1.6.16. It can be noticed that there are two definitions through the thesis of the

notion of homogeneous; one in the sense of permutation groups and the second is in the

sense of model theory. The context will help to decide which one of them is meant.

Example 1.6.17. The structure (Q,<) is homogeneous in the sense of last definition of

homogeneity and Aut(Q,<) is highly homogeneous in the sense of permutation groups.

Example 1.6.18. ([14], Theorem 2.3) Let R be the random graph. Then R is

homogeneous.
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Due to Fraı̈ssé, see [20], there is a flexible technique to build homogeneous structures as

follows:

Definition 1.6.19. The age Age(M ) of a relational structure M is the class of all finite

relational structures embeddable (as induced substructures) in M .

Let C be a non empty class of finite L -structures, where L is a relational language,

satisfying the following properties:

(1) C is closed under isomorphism, i.e. if A ∈ C and B is isomorphic to A then B ∈ C .

(2) C is closed under substructures, i.e. if B ∈ C and A < B then A ∈ C . (Hereditary

property)

(3) whenever A,B ∈ C there is D ∈ C such that A ≤ D and B ≤ D. (Joint Embedding

Property).

(4) whenever A,B1,B2 ∈ C and fi ∶ A → Bi, i = 1,2 are embeddings, there exist D ∈ C

and embeddings gi ∶ Bi →D, i = 1,2 such that for all a ∈ Awe have g1○f1(a) = g2○f2(a).

(Amalgamation Property).

Then we say that C is a (Fraı̈ssé) amalgamation class.

Theorem 1.6.20 (Fraı̈ssé ’s Theorem). (i) Let C be a class of finite structures satisfying

the above four conditions. Then

(a) there is a homogeneous L -structure (called the Fraı̈ssé limit) whose finite

substructures are ( up to isomorphism) exactly the members of C ;

(b) any two homogeneuous L -structures as in (a) are isomorphic.

(ii) Conversely, if M is a homogeneous L -structure, then the class of finite L -structures

which are isomorphic to substructures of M satisfies (1)-(4).

Here is an application of Fraı̈ssé’s theorem.

Lemma 1.6.21 ([8], Lemma 14.6). For every k ∈ N, there is a k-transitive but not

(k + 1)-transitive permutation group on a countably infinite set.
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Note that this is not the case for finite permutation groups; any 6-transitive permutation

group on a finite set is Sn or An in its natural action.

Example 1.6.22. If M is the Fraı̈ssé limit of the class of all finite 3-hypergraphs, then

Aut(M) is 2-transitive, but not 3-transitive.

1.7 Summary of The Results

The first interesting primary result that we have got from this work is that there is a nice

amalgamation class of trees of D-sets, denoted by D . We obtained that by amalgamating

one-point extensions in D over a substructure A ∈ D , and by a version of Fraı̈ssé’s

Theorem we built a structure M , which is the work of Chapter 2. Second, we analyse

the Fraı̈ssé limit M of the class D as the result of Chapter 3. In Chapter 4 we then show

that G = Aut(M) is a Jordan group for which the ‘pre-D-sets’ are Jordan sets. As a main

result of the thesis, we prove that G preserves a limit of D-relations.
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Chapter 2

Trees of D-sets

In this chapter, we construct a relational structure M , and prove that it is ω-categorical

by showing that Aut(M) is oligomorphic. In subsequent chapters we will prove that

Aut(M), in its action on M , preserves a limit of D-relations. We build M in a language

L with six relation symbols.

The structure M is built by a variant of Fraı̈ssé amalgamation, described for example

in [19], based on a class C of finite L -structures (which does not have the hereditary

property) and a class E of embeddings between members of C, with the amalgamation

property.

A key step (see Section 2.2) is to describe “one-point extensions” of members of C, and

then (Section 2.3) to prove that they can be amalgamated.

Very roughly, each member of C can be viewed as a finite lower semilinear order (T,≤),

with each vertex ν ∈ T labelled by a finite D-set D(ν) equipped with a D-relation Dν .

There are two important families of maps (fν) and (gµν) which describe how the D-sets

are interconnected. The universe of a member of D can be viewed as the D-set labelling

the root vertex ρ of (T,≤), equipped with extra structure determined by all the (fν) and

(gµν) with µ > ρ.



Chapter 2. Trees of D-sets

2.1 Construction of M

Notations. Let (T,≤) be a finite lower semilinear order with a root ρ. Label each vertex

ν of T by a finite D-set D(ν) and a defined D-relation Dν on D(ν). We view D(ν)
as the set of leaves of a finite unrooted tree D(ν) (in the graph-theoretic sense) without

dyadic vertices (vertices of degree 2), and with Dν defined in the natural way (this fact

can be seen in [6], Remark 26.5). So Dν(a, b; c, d) holds if the path from a to b and the

path from c to d are disjoint. Vertices of degree at least 3 of D(ν) are called ramification

points. We shall refer to elements of D(ν) as nodes. The ramification point with the three

nodes x, y, z will be denoted by ram(x, y, z). By a successor of a vertex ν ∈ T we mean a

vertex that comes immediately above ν, and we shall denote the set of successors of ν by

succ(ν). For each element ν ∈ T which is not maximal, define a bijection fν from the set

of immediate successors of ν to the set of ramification points D(ν) which we will denote

by Ram(D(ν)). For each ramification point r ofD(ν) there is an equivalence relation Er

on D(ν) such that two leaves w1,w2 of D(ν) are Er-equivalent if the unique paths from

r to w1 and from r to w2 have at least two common nodes. The Er-classes will be called

branches at r (this is an analogous to Definition 1.4.9, and also we will denote the branch

at r containing a by ā). For each r ∈ D(ν), one of these branches will be distinguished,

and called the special branch at r. For ω ∈ T with ω ∈ succ(ν), define the bijection gων

(Definition 2.1.1) such that it maps the leaves in the D-set D(ω) to the collection of the

non-special branches at the corresponding ramification point fν(ω) of the immediately

lower D-set D(ν). The induced tree with the above structure is called a tree of D-sets.

We shall use the Roman letters x, y, z,w, u, v, . . . for elements of directions and branches

of a D-set, while the letter r, r′, r′′, . . . , r1, r2, . . . for the ramification points. The Greek

letters α, ν, µ, . . . refers to the vertices of the tree while we retain the letter ρ for the root.

It is worth noting that the notations in the following paragraph are the notations that are

used in [7]. Our construction is based on a lower semilinear order which is called a tree

in Droste’s book [18].
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We start with a lower semilinear order T with root ρ. The labelling unrooted tree D(ρ)
of the root ρ contains ramification points of a number equal to the number of successors

in T of the root ρ. Each ramification point has a special branch identified by the relation

L that we define later. For example, consider the D-set D(ρ). Focus on a ramification

point, r say. So ρ has a successor f−1ρ (r) in the tree and it is labelled by aD-set consisting

of a number of leaves equal to the number of branches around r minus the special one.

In pictures we always refer to the special branch by an arrow entering to the ramification

point, where the branches are as defined above.

The tree D(f−1ρ (r)) has ramification points whose number depends on the number of

the successors for the vertex f−1ρ (r). For instance, if f−1ρ (r) has two successors then the

leaves inD(f−1ρ (r)) create two ramification points, and this is what the bijection fν in the

following paragraph does. The labelling D-set of a leaf of T has no ramification points,

so the endpoints appear in a path.

We define a bijection fν ∶ succ(ν) → Ram(D(ν)) between the set of successors of the

vertex ν in T and the nodes of ramification of the D-set D(ν). Each ramification point

in D(ν) picks out a special branch, and for r ∈ Ram(D(ν)) if ω = f−1ν (r) then there is a

bijection gων from D(ω) to the set of non-special branches at r ( in the D-set D(ν)).

Note that we will use τ to refer to a tree of D-sets, where T is used to refer to a semilinear

order; that is τ refers to the whole structure consisting of (T,≤), the labelling D-sets, and

the maps fν and gων .

Definition 2.1.1. (i) Let ν0, . . . , νm be vertices of the semilinear order(T,≤) of a tree

of D-sets τ such that ν0 < ⋅ ⋅ ⋅ < νm. Then (ν0, . . . , νm) is a chain of successors if

each vertex belongs to the set of successors of its predecessor, i.e. νi+1 ∈ succ(νi)
where i ∈ {0, . . . ,m − 1}.

(ii) Given the chain (ν0, . . . , νm), there is a map gνmν0 which we define by induction

such that it maps the directions of the D-set D(νm) to a union of branches at a fixed
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ramification point of D(ν0). Let a ∈D(νm), define

gνmν0(a) ∶= {x ∈D(ν0) ∶ ∃y ∈ gνmνm−1(a)(x ∈ gνm−1ν0(y))}.

The following diagram is an example of a tree of D-sets. Note that in D(ρ), as indicated

by the arrows, x lies in the special branch at r′ and u lies in the special branch at r, and in

D(ν), x̄ lies in the special branch at r1, and also in the special branch at r′1.

D(ω′)

v̄z̄

D(ν′)

w̄z̄

ρ

ω = f−1ν (r1)

ν = f−1ρ (r)

ω′ = f−1ν (r′1)

ν′ = f−1ρ (r′)

D(ω)

ȳv̄

D(ν)

r1r′1

x̄

ȳ

z̄

v̄

D(ρ)

rr′

x

y

z

w

u

v

Figure 2.1: Tree of D-sets

Definition 2.1.2. Let τ, τ ′ be two trees of D-sets. An isomorphism between trees

of D-sets is an isomorphism between the corresponding two lower semilinear orders

φ ∶ (T,≤) → (T ′,≤) and, for any vertex ν ∈ T , an isomorphism ψν fromD(ν) toD(φ(ν)),

which sends the directions and the ramification points in D(ν) to the directions and the

ramification points in D(φ(ν)) respectively. The maps ψν are required to map special

branches to special branches, and to commute with the maps fν and gων .
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Suppose τ and τ ′ are trees ofD-sets with semilinear orders (T,≤), (T ′,≤) with roots ρ and

ρ′, and bijections fν , gνµ and f ′ν′ , g
′

ν′µ′ for τ and τ ′ respectively. Suppose that φ ∶ τ → τ ′

is an isomorphism of trees of D-sets. For example, in τ the root is ρ, and say that an

immediate successor is ν1, then the labellingD-setD(ν1) has leaves with correspondence

to the branches around the ramification point fρ(ν1) in the root D-set such that if we call

the leaves in D(ν1) to be a1, . . . , am−1 then at fρ(ν1) we have gν1ρ(a1), . . . , gν1ρ(am−1) as

branches.

On the other hand, τ ′ has the root φ(ρ) and its vertices are the images of the

vertices of τ . As above, take an immediate successor of the root ρ′ which is

φ(ν1), then the labelling D-set D(φ(ν1)) has leaves with correspondence with the

branches around the ramification point f ′
φ(ρ)

(φ(ν1)) in the root D-set D(φ(ρ)) such

that if we call the leaves in D(φ(ν1)) as a′1, . . . a
′

m−1, then at f ′
φ(ρ)

(φ(ν1)) we have

g′
φ(ν1)φ(ρ)

(a′1), . . . , g′φ(ν1)φ(ρ)(a
′

m−1), where a′i = ψν(ai), i ∈ {1, . . . ,m − 1}.

Since ψ is a map defined between D-sets, then if we take ψρ ∶ D(ρ) → D(φ(ρ))
such that it takes nodes to nodes, then under these notations, we can see that

ψρ(fρ(ν1)) = f ′φ(ρ)(φ(ν1)) and ψρ(gν1ρ(a1)) = g′φ(ν1)φ(ρ)(a
′

1).

We say that a D-set D(ν) omits the element u ∈ D(µ) if there is no direction x̄ of D(ν)
such that u ∈ gνµ(x̄) where ν is a successor of µ. This means that u is in the special branch

in D(µ) at the ramification point corresponding to the vertex ν.

Remember that we mean by x̄ an equivalence class of the relation ‘being in the same

branch’ that we defined in Definition 1.4.22, i.e. x̄ is a direction higher up where x is a

representative of all the elements lying in the corresponding branch at a lower D-set.

We now present a first order language L so that any tree of D-sets can be viewed as an

L -structure. Let τ be a tree of D-sets. The domain of the structure is the set of directions

of the root Dset of τ . Our language L consists of a ternary relation L, two quaternary

relations L′ and S, a five-ary relation S′, a six-ary relation R and a seven-ary relation Q.

We define them on the domain of the root D-set of τ such that:
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(i) L(x; y, z) holds in τ if either

(a) x, y, z lie in distinct branches at some node r of the root D-set D(ρ), and the

branch containing x is special at r, see Figure 2.2, or

r

x

y

z

Figure 2.2: L(x; y, z)

(b) there is a D-set D(ν) with a ramification point r, and directions x̄, ȳ, z̄ lying

in distinct branches at r with x̄ lying in the special branch at r, such that

x ∈ gνρ(x̄), y ∈ gνρ(ȳ), z ∈ gνρ(z̄) .

We say in (ia) that D(ρ) witnesses L(x; y, z), and in (ib) that D(ν) witnesses

L(x; y, z). We use the semi-colon to distinguish the special branch in the first

place, while there is symmetry on the other two.

x̄

ȳ

z̄

Figure 2.3: L(x; y, z) in D(ν)

(ii) Let x, y, z,w ∈D(ρ) be distinct. Then S(x, y; z,w) holds, written τ ⊧ S(x, y; z,w),

if one of the following holds

(a) In the root D-set, with universe denoted D(ρ), and a D-relation denoted Dρ

we have Dρ(x, y; z,w).
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x z

y w

Figure 2.4: S(x,u; z,w)

(b) x, y, z,w lie in distinct non-special branches at node r of D(ρ),

and there is some vertex ν ≥ f−1ρ (r) such that D(ν) contains

distinct x̄, ȳ, w̄, z̄ such that Dν(x̄, ȳ; w̄, z̄) holds in D(ν), and

x ∈ gνρ(x̄), y ∈ gνρ(ȳ),w ∈ gνρ(w̄), z ∈ gνρ(z̄).

We say in (iia) that D(ρ) witnesses S(x, y; z,w), and in (iib) that D(ν) witnesses

S(x, y; z,w).

Note. The relation S captures the behaviour of D-relations except that in S we do

not allow equality among its parameters, i.e. axiom (D4) of Definition 1.4.16 does

not hold for S. We use the semi-colon to reflect the symmetry between the first two

parameters and the last two.

We now describe how an instance of S can be witnessed by a D-set other than the

root.

Suppose that x, y, z,w, v lie in four distinct branches at a ramification point ofD(ρ),

where each branch contains other elements. For example, the branch containing x,

we will say in such situation the branch of x, contains in addition to x itself, a

finite number of leaves say x1, . . . , xn, the branch of y has, in addition to y, the

leaves y1, . . . , ym, the branch of w has more l elements w1, . . . ,wl, the branch of z

(assumed to be special) has p elements z1, . . . , zp, and the branch of v has, of course

v and v1, . . . , vk, where all of m,n, l, k, p are natural numbers which can be equal

or not. See, as an example, Figure 2.5 below in which there is one more element in

each of the branches of x, y, z,w, v. By considering a suitable equivalence relation

‘lying in the same branch’ (see Definition 1.4.23), each of the branches of x, y, w
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and v will be shown higher as one endpoint by using a representative of that branch,

and we write x̄, ȳ, w̄ and v̄ respectively.

y

z

v

w

xx1

y1v1

w1 z1

Figure 2.5

Then consider a chain of successors (ν0, . . . , νm) with ν0 = ρ and distinct

x̄, ȳ, v̄, w̄ ∈ D(νm) and x ∈ gνmν0(x̄), y ∈ gνmν0(ȳ), v ∈ gνmν0(v̄), w ∈ gνmν0(w̄).

Then S(x̄, ȳ; v̄, w̄) can be witnessed in D(νm) if x̄, ȳ are distinct at their meeting

point and v̄, w̄ are distinct at their meeting point, as in Figure 2.6.

x̄ v̄

ȳ w̄

Figure 2.6

(iii) Q(x, y; z,w ∶ p; q, s) holds in τ if there is some D-set in which the relations

S(x, y; z,w) and L(p; q, s) are both witnessed. We interpret this as S and L happen

in the same D-set. This is an example picture.

z x

w y

p

r

qs

Figure 2.7: Q(x, y; z,w ∶ p; q, s)
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(iv) R(x; y, z ∶ p; q, s) holds in τ if there is some D-set in which the relations L(x; y, z)
and L(p; q, s) are both witnessed. We interpret this as two L-relations happen in the

same D-set. This is an example picture.

x

y

z p

s

q

Figure 2.8: R(x; y, z ∶ p; q, s)

(v) L′(x; y, z;u) holds in τ if in the D-set D(ν) witnessing L(x; y, z), the branch

containing u is omitted. We then say that the D-set D(ν) witnesses the relation

L′(x; y, z;u). We use the first semi-colon as in L above, and the second one

to distinguish the omitted element. For example, in Figure 2.1, L′(x; y, z;u) is

witnessed in D(ν).

(vi) S′(x, y; z,w;u) holds if in the D-set D(ν) witnessing S(x, y; z,w), the branch

containing u is omitted. We then say that the D-set D(ν) witnesses the relation

S′(x, y; z,w;u). Also, the semi-colon here is as in L′ but replacing L by S. Again,

in Figure 2.1, S′(x, y; z, v;u) is witnessed in D(ν).

Note that, by the definition, the relations L′, S′ cannot be witnessed in the root D-set,

because there are no omitted branches.

Remark 2.1.3. For any distinct x, y, z, u, v,w

(i) L(x; y, z) ⇔ L(x; z, y).

(ii) L(x; y, z) ⇒ ¬L(y;x, z) ∧ ¬L(z;x, y).

(iii) S(x, y; z,w) ⇔ S(z,w;x, y).
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Note: When we say that one of the above relations hold in the structureAwe mean it holds

in some D-set of A. We may thus view a finite tree of D-sets as an L -structure whose

universe is the set of directions of the root D-set. We use symbols like A,B,C,E, . . .

for such finite L -structures. Also we write A < B if A is a substructure of B. We use

symbols such as τ for a tree of D-sets when we view it as presented at the start of this

section, rather than as an L -structure.

Let D be the collection of all finite L -structures arising from trees of D-sets as described

before.

Lemma 2.1.4. Let A ∈ D and x, y, z ∈ A be distinct, then L(x; y, z) ∨ L(y;x, z)
∨L(z;x, y) holds in A.

Proof. Choose a vertex ν of T such that ∣D(ν)∣ is minimal subject to there being distinct

x̄, ȳ, z̄ ∈ D(ν) with x ∈ gνρ(x̄), y ∈ gνρ(ȳ), and z ∈ gνρ(z̄) (we allow the special case

when ν = ρ, and x = x̄, y = ȳ, z = z̄). We may suppose that x̄, ȳ, z̄ lie in distinct branches

at some ramification point r of D(ν). If none of these branches is special at r, then ν

has a successor ν′ = f−1ν (r) and there are distinct x∗, y∗, z∗ ∈ D(ν′) with x̄ ∈ gν′ν(x∗),

ȳ ∈ gν′ν(y∗) and z̄ ∈ gν′ν(z∗) then x ∈ gν′ρ(x∗), y ∈ gν′ρ(y∗), and z ∈ gν′ρ(z∗), and

∣D(ν′)∣ < ∣D(ν)∣, contradicting the minimality of ∣D(ν)∣. Thus, one of x̄, ȳ, z̄, say x̄, lies

in a special branch at r of D(ν), and then L(x; y, z) holds, as required. ∎

From now on, we will denote the disjunctions in Lemma 2.1.4 as L{x, y, z}.

The following lemma says that for distinct x, y, z,w the relations L(x; y, z) and

S(x, y; z,w) are witnessed in at most one D-set.

Lemma 2.1.5. If A ∈ D and x, y, z ∈ A, then if A ⊧ L(x; y, z) then it is witnessed in one

D-set of A. Also, for p, q, s, t ∈ A if A ⊧ S(p, q; s, t) then it is witnessed in one D-set.

Proof. Suppose x, y, z ∈ A are distinct, and that L(x; y, z) is witnessed in the D-set D(ν)
with ν > ρ; that is, there are distinct x̄, ȳ, z̄ ∈D(ν) meeting at ramification point r, with x̄

special at r and x ∈ gνρ(x̄), y ∈ gνρ(ȳ), z ∈ gνρ(z̄). (We ignore the degenerate case where
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ν = ρ, which is easier but similar). Now if ω > ν then L(x; y, z) is not witnessed in D(ω),

since there is no x∗ ∈D(ω) with x̄ ∈ gων(x∗) - that is, x is omitted in D(ω).

If ω < ν then there is a ramification point r′ of D(ω) such that gνω(x̄), gνω(ȳ), gνω(z̄)
lie in distinct non-special branches at r′, so D(ω) does not witness L(x; y, z). Finally,

suppose ω is incomparable to ν, and ν, ω have greatest lower bound µ in the structure

tree. Then there are distinct ramification points r′, r′′ of D(µ) such that ν lies above a

successor ν′ = f−1µ (r′) of µ, and ω lies above a successor ω′ = f−1µ (r′′). Wherever r′′

lives, at least two of gνµ(x̄), gνµ(ȳ), gνµ(z̄) lie in the same branch at r′′, so D(ω) cannot

witness L(x; y, z). Similarly for the relation S. ∎

Lemma 2.1.6. Let A ∈ D have a root ρ. Then the relation Dρ on D(ρ) satisfies the

following:

for all x, y, z,w ∈D(ρ), Dρ(x, y; z,w) ⇔ ((x = y)∨(z = w)∧{x, y}∩{z,w} = ∅)∨(x, y,
z,w are all distinct and S(x, y; z,w) ∧ (∀t)(¬S′(x, y; z,w; t))).

Proof. Suppose Dρ(x, y, z,w) with x, y, z,w distinct. Then S(x, y; z,w) holds as

it is assumed that there is a D-relation witnessed in the root D-set. As D(ρ)
contains all elements of A and is the only D-set witnessing S(x, y; z,w), we have

(∀t)¬S′(x, y; z,w; t).

Conversely, suppose S(x, y; z,w)∧(∀t)(¬S′(x, y; z,w; t)) holds. For a contradiction, we

will assume that the D-set witnessing S(x, y; z,w) is not the root. Then there is a lower

D-set in which x, y, z,w lie in distinct branches at a ramification r. As S(x, y, z,w) is

witnessed higher up, none of x, y; z,w lies in a special branch at r. Since each ramification

point has a special branch, some t lies in the special branch at r. Then S′(x, y; z,w; t)
holds, which is a contradiction. ∎

Focus on a ramification point in the root D-set of the substructure A of D , say r. Then

the labelling D-set of the successor f−1ρ (r), which is D(f−1ρ (r)), has endpoints (leaves)

of number equal to the number of distinct branches at r in the base minus the special one,
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as it is dropped. This successor f−1ρ (r) is considered as a root for a new structure called

Ar.

Note that we use the subscript r to refer to the ramification point r in the root D-set of A,

and the universe of Ar is the set of the non-special equivalence classes for the equivalence

relation in Definition 1.4.23 and ∣Ar∣ < ∣A∣ (see Lemma 2.1.10 (iv)). Note that Ar is

a quotient of a subset of A by the relation Fr (see Definition 1.4.22). We can continue

doing this by the same method until we reach a leaf and we stop there because the labelling

D-set has no ramification points and the elements just form a path.

Lemma 2.1.7. SupposeA ∈ D and ν, ν′ are incomparable vertices of the structure tree on

A. Then it can not happen that x, y, z ∈ A have x̄, ȳ, z̄ distinct in both D(ν) and D(ν′).

Proof. Let ν, ν′ be two incomparable vertices in the structure tree of a structure A ∈ D .

For convenience, suppose that ν, ν′ are distinct successors of ρ. In the root D-set D(ρ)
let r = fρ(ν) and r′ = fρ(ν′) be two ramification points. Suppose that x̄, ȳ, z̄ are distinct

in Ar, so x, y, z lie in distinct non-special branches at r. As r ≠ r′, it follows that at least

two of x, y, z lie in the same branch at r′, so at least two of x̄, ȳ, z̄ are equal in Ar′ .

∎

Definition 2.1.8. Suppose σ = f−1ρ (r). Let a ∈ gσρ(ā), b ∈ gσρ(b̄), c ∈ gσρ(c̄), d ∈ gσρ(d̄),

y ∈ gσρ(ȳ), w ∈ gσρ(w̄), z ∈ gσρ(z̄), then the relations L,L′, S, S′,R,Q are interpreted in

Ar as follows

(i) If ā, b̄, c̄ are distinct, then Ar ⊧ L(ā; b̄, c̄) ⇔ A ⊧ L(a; b, c).

(ii) If ā, b̄, c̄, d̄ are distinct, then Ar ⊧ L′(b̄; c̄, d̄; ā) ⇔ A ⊧ L′(b; c, d;a).

(iii) If ā, b̄, c̄, d̄ are distinct, then Ar ⊧ S(ā, b̄; c̄, d̄) ⇔ A ⊧ S(a, b; c, d).

(iv) If ā, b̄, c̄, d̄ are distinct, then Ar ⊧ S′(ā, b̄; c̄, d̄; w̄) ⇔ A ⊧ S′(a, b; c, d;w).

(v) If ā, b̄, c̄ are distinct and ȳ, z̄, w̄ are distinct, then

Ar ⊧ R(ā; b̄, c̄ ∶ ȳ; z̄, w̄) ⇔ A ⊧ R(a; b, c ∶ y; z,w).
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(vi) If ā, b̄, c̄, d̄ are distinct and ȳ, z̄, w̄ are distinct, then

Ar ⊧ Q(ā, b̄; c̄, d̄ ∶ ȳ; z̄, w̄) ⇔ A ⊧ Q(a, b; c, d ∶ y; z,w).

Lemma 2.1.9. The relations in Definition 2.1.8 are well defined.

Proof.

(i) It is suffices to show that if ā, b̄, c̄ ∈ Ar are distinct, and a, a′, b, b′, c, c′ ∈ A with

aFra′, bFrb′, cFrc′ (where Fr is the equivalence relation in Definition 1.4.22), then

A ⊧ L(a; b, c) ⇔ A ⊧ L(a′; b′, c′), but this is immediate.

We do the same for (ii), (iii), (iv), (v) and (vi).

∎

Lemma 2.1.10. If A ∈ D and r is a ramification point in the root D-set, then

(i) Ar is isomorphic to a substructure of A.

(ii) Ar ∈ D .

(iii) Let τ be the tree of D-sets corresponding to the L -structure A, and τr be the tree of

D-sets corresponding to the L -structure Ar. Define h(τ), the height of the tree τ ,

to be the number of the vertices in the longest path from a leaf to the root ρA. Then

h(τr) < h(τ).

(iv) ∣Ar∣ < ∣A∣.

Proof.

(i) For each element x̄ ∈ Ar, pick x ∈ x̄. Then by Definition 2.1.8 and Lemma 2.1.9,

the map x̄ z→ x gives an isomorphism from Ar to a substructure of A. (Note that

‘x ∈ x̄ ’ is a bit of an abuse of notation).
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(ii) First, the structure tree of Ar is τr. The universe of Ar is exactly D(ρr)
(ρr = f−1ρ (r)). For each ν′ > ρr, the D-set of Ar corresponding to ν′ is exactly

D(ν′). The correspondences between ramification points of D-sets and successors

(given by maps such as (fr)ν) in Ar are exactly those induced from A, and likewise

the maps (gr)µν are those induced from A.

(iii) Let ρr be the root of the tree of D-sets τr, suppose h(τr) = k, and let

ρr = σ0 < σ1 < ⋅ ⋅ ⋅ < σk be a path with k edges from ρr to a leaf of τr. Let

ρA < ρr < σ1 < ⋅ ⋅ ⋅ < σk be a path in τ with k + 1 edges from ρA to σk. Then

k > 0, so h(τ) ≥ k + 1 > k, so h(τ) > h(τr).

(iv) By induction on h(τr) it suffices to observe that if ν is a successor of ρ with

fρ(ν) = r then ∣Ar∣ < ∣A∣. This is immediate. Let ρr = f−1ρ (r). Let m be the

number of branches of D(ρ) at r. Then as each such branch contains at least one

element of A, m ≤ ∣A∣, and as Ar ‘drops’ the special branch at r, ∣Ar∣ =m − 1.

∎

Proposition 2.1.11. Suppose that τ1, τ2 are trees of D-sets with corresponding

L -structures A1,A2 with the isomorphism χ ∶ A1 → A2. Then χ induces a unique

isomorphism φ ∶ τ1 → τ2.

Proof. As the base case, suppose that h(τ1) = 1. Then τ1 has just the root ρ1 and D(ρ1)
has no ramification points, so at most two directions. Thus, as an L -structure, no triples,

quadruples of τ1 satisfy L, S respectively. Since A2 is isomorphic to A1, the same holds

for τ2, and thus h(τ2) = 1, ∣D(ρ2)∣ = ∣D(ρ1)∣ ≤ 2, and χ induces a unique isomorphism φ.

For the induction step, suppose m ∶= h(τ1) ≥ 2. From Lemma 2.1.6 we know that

Dρ1(x, y; z,w) ⇔ ((x = y)∨(z = w)∧{x, y}∩{z,w} = ∅)∨(x, y, z,w are all distinct and

S(x, y; z,w) ∧ (∀t)(¬S′(x, y; z,w; t))), and the same hold for Dρ2 . Thus, χ induces an

isomorphism D(ρ1) → D(ρ2). This extends to a unique isomorphism (which we denote

by φ) D(ρ1) →D(ρ2) taking ramification points of D(ρ1) to those of D(ρ2).

56



Chapter 2. Trees of D-sets

For each r ∈ Ram(D(ρ1)), put φ(f−1ρ1 (r)) = f−1ρ2 (r), to obtain a bijection

succ(ρ1) → succ(ρ2). By Lemma 2.1.10,Ar andAφ(r) lie in D for each r ∈ Ram(D(ρ1)).

Write ρr and ρφ(r) for the roots of the structure trees of Ar and Aφ(r) respectively. We

claim that χ induces an isomorphism χr from the L -structure on Ar to that on Aφ(r).

Indeed, φ∣
D(ρ)

gives a bijection D(ρr) → D(ρφ(r)), and the fact that it is an isomorphism

of L -structures is immediate from Definition 2.1.8.

Since h(Ar) < h(A) (by Lemma 2.1.10, (iv)) it follows by induction that χ induces

an isomorphism (denoted φ) from the tree of D-sets corresponding to Ar to that

corresponding to Aφ(r). Since this holds for all r ∈ Ram(D(ρ1)), putting all the data

together we have the required isomorphism φ ∶ τ1 → τ2, which is clearly uniquely

determined. ∎

2.2 One point extensions

We are aiming to build a structure M by amalgamating members of D ; it is enough to do

the amalgamation of just one point extensions (see 2.3.1) of L -structures in D .

Fix an L -structureA ∈ D . We want to specify the possible forms of a one point extension

E = A ∪ {e} of A such that A ∪ {e} ∈ D and A is a substructure of A ∪ {e}.

We now describe some one-point extensions:

Type I (Star-like): To obtain τE , which is the structure tree on the L -structure E, from

τA, we add a new root ρE under the root ρA of the structure tree τA, such thatD(ρE) looks

like a star with one ramification point (the centre) and non-special branches corresponding

to the end points in the root D-set D(ρA) of A, and a special branch e. See for example

Figure 2.9.

Since there is only one ramification point in D(ρE), it will have form fρE(ρA), where

ρA is the immediate successor of ρE . The D-set DE ∶= D(ρE) is a star whose

centre is fρE(ρA) where the branches are of the form gρAρE(x), x is a direction in
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D(ρA). The relations on A will also hold in E ∶= A ∪ {e}. Thus, if a, b, c ∈ A and

A ⊧ L(a; b, c) then E ⊧ L(a; b, c); however this is not witnessed in the root D-set of

E, and indeed, E ⊧ L′(a; b, c; e). Likewise if a, b, c, d, ∈ A and A ⊧ S(a, b; c, d), then

E ⊧ S′(a, b; c, d; e).

D(ν′)

wz
ρA

ρE

ν = f−1ρA(r)
ν′ = f−1ρA(r′)

x

yz

w e

D(ρE)

D(ν)

yz̄

D(ρA)

rr′

x

y

z

w

Figure 2.9: One point extension:Type I

Type II : In this type, we assume that the two roots for the two structures A and E are the

same, so we call it ρ, and we add the new branch to the existing D-set D(ρ) of the root ρ

of τA to obtain the root D-set D(ρ) of τE . We can do it by two ways:
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(a) Add a new direction to an existing ramification point in D(ρ). So the D-set higher

up corresponding to that ramification point gets a new end point. If we think of it

as a graph, then e is a leaf adjacent to the ramification point. Actually, this process

iterates through the structure tree such that if we focus on a ramification point r and

call the added direction e, then the successor f−1ρ (r) will be a root for the substructure

isomorphic to Er of E (before adding e the successor f−1ρ (r) of ρ is a root of Ar),

and the labelling D-set for f−1ρ (r) gets a new endpoint, and in this case ∣Er∣< ∣E∣ and

Ar < Er as in 2.1.10(iv). Here Er is the substructure of E that has f−1ρ (r) as a root.

D(ν′)

wz

ρA = ρE

ν
ν′

ω

D(ω)

ye

D(ν)
yz̄

e

D(ρA)

rr′

x

y

z

w

e

Figure 2.10: One point extension:Type II(a)

(b) Create a new ramification point by adding a vertex on an existing edge in D(ρ), then

add a leaf e at this vertex. Here we consider two cases:

(i) e is the special branch at this new ramification point.

(ii) e is not the special branch at this ramification point.

59



Chapter 2. Trees of D-sets

In both cases a new successor is added to the structure tree, but the D-set labelling

the new successor has two endpoints, and hence nothing happens further.

Remark 2.2.1. We have to differentiate between these three notations:

• DE(A): is the root D-relation of E restricted to A.

• DA or D(A): is the root D-set of A itself, i.e. for the structure tree on A.

• DE: is the D-set for the root of E.

D(ν′)

wz

D(νe)

x̄z̄

ρA = ρE

ν
ν′

νe

D(ν)

yz̄

D(ρA)

rr′

x

y

z

w

e

Figure 2.11: One point extension:Type II(b)

Lemma 2.2.2. If A,E ∈ D with A < E, and a, b, c, d ∈ A are all distinct elements, then

DE(a, b; c, d) →DA(a, b; c, d).

Proof. As a, b, c, d are distinct,DE(a, b; c, d) ⇒ S(a, b; c, d)∧(∀t ∈ E)¬S′(a, b; c, d; t) ⇒
S(a, b; c, d) ∧ (∀t ∈ A)¬S′(a, b; c, d; t) ⇒DA(a, b; c, d).

∎
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Lemma 2.2.3. If A ∈ D and A ∪ {e} is a Type I extension of A, then A ∪ {e} ∈ D and

A < A ∪ {e}.

Proof. First, it is almost immediate thatE ∶= A∪{e} ∈ D . The structure treeE is obtained

from that of A by putting a root ρE directly below the root ρA of A, and giving the D-set

D(ρE) the structure of a star with a single ramification point r and leaves corresponding

to elements of E, with e special at r. We have fρE(ρA) = r, and the map gρAρE is just the

identity map on A.

Second, we must show that for distinct a, b, c ∈ Awe haveA ⊧ L(a; b, c) ⇔ E ⊧ L(a; b, c)
and similarly for the other relation symbols of L . This is essentially immediate. Indeed,

no relation among elements of A is witnessed in the root D-set of E, and such relations

hold in E if and only if they are “carried down” from the structure A = E∣ρA by the map

gρAρE . ∎

Lemma 2.2.4. Suppose A,E ∈ D with A < E, and there is no e ∈ E such that A ∪ {e} is

a Type I extension of A. Then the root D-set DA of A, and the structure DE induced on

A by the root D-set DE of E, denoted DE(A), are the same.

Note. We do not here assume that ∣E ∖A∣ = 1.

Proof. Let a, b, c, d ∈ A and DE(A)(a, b; c, d). Then DE(a, b; c, d). We may suppose that

a, b, c, d are distinct. By Lemma 2.2.2 DA(a, b; c, d).

Conversely, let a, b, c, d ∈ A are distinct, and suppose that DA(a, b; c, d) but

¬DE(A)(a, b; c, d). We want to show that DE(A)(a, b; c, d) by a way of contradiction.

r r′

a c

b d

Figure 2.12: DA(a, b; c, d)
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So the relation S′ holds in E. As A ⊧ S(a, b; c, d) and this is not witnessed in the root

D-set of E, then there is e ∈ E ∖A such that E ⊧ S′(a, b; c, d; e). Furthermore, we have

the picture in ρE , with e special at the shown ramification point in Figure 2.13.

a

c

b

d

e

Figure 2.13: DE

But this picture is a star, and we assume that A ∪ {e} is not a Type I extension of A.

This means that there must be a branch x ∈ A (hence in E) stopping the star shape, so

witnessing that A ∪ {e} is not a Type I extension of A. We consider the various possible

positions of x with respect to a, b, c, d, e in DE .

Case (1): Suppose x lies in the same branch as c in Figure 2.13. We

may suppose (by replacing x by another point if necessary) that one of x, c

or d (we may replace d by a or b) is special at ram(x, c, d) in DE . Since

S(a, d; c, x) ∧ (∀w ∈ E)¬S′(a, d; c, x;w) holds in E and hence in A, x must lie in

the same branch as c at r′ in DA, with x, c, d meet at ramification point r′′ say. Now

E ⊧ Q(a, d; c, x ∶ x; c, d) ∨Q(a, d; c, x ∶ c;x, d) ∨Q(a, d; c, x ∶ d;x, c), so the same holds

in A, that is, one of x, c, d is special at r′′ in DA, say x (the argument is the same in the

other cases), see Figure 2.14. NowA ⊧ Q(a, b; c, d ∶ x; c, d) butE ⊧ ¬Q(a, b; c, d ∶ x; c, d),

a contradiction.
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r r′

a c

b d

r′′

x

Figure 2.14: Case.1:DA

Case (2). If x is in the same branch as the special branch e in E, then we will

see S′(a, b; c, d;x) holds in E and hence in A, and this is impossible, since we have

DA(a, b; c, d) ⇒ S(a, b; c, d) ∧ (∀t ∈ A)¬S′(a, b; c, d; t).

Case (3). Suppose there exists x′ ∈ A in the same branch as x in DE , see Figure 2.15.

We may suppose (by choice of x,x′) that one of x,x′, d is special at the ramification

point r′ of x,x′, d in DE . For convenience we suppose E ⊧ L(x;x′, d), but the other

two cases are similar. Thus, E ⊧ Q(x,x′;u, v ∶ x;x′,w) for any distinct u, v ∈ {a, b, c, d}
and any w ∈ {a, b, c, d} so the same holds in A. Furthermore S(x,x′;u, v) (for distinct

u, v ∈ {a, b, c, d}) is witnessed in the root D-set of A, by Lemma 2.2.2. It follows that

in Figure 2.16, x,x′ lie in the same branch at r1, or at r2 or at a ramification point added

between r1 and r2, or at ramification point within the direction a (between r1 and the

endpoint a), or within the directions b, c or d.

In particular, there is a ramification point r3 of DA which equals ram(x,x′,w) for

each w ∈ {a, b, c, d}. As x is special at r3 in A, then A ⊧ Q(a, b; c, d ∶ x;x′, a), so

E ⊧ Q(a, b; c, d ∶ x;x′, a) contradicting that S(a, b; c, d) is not witnessed in DE .
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r

a

c

b

d

e

xx′

r′

Figure 2.15: Case.3, DE

r1 r2

a c

b
d

xx′

r3

Figure 2.16: Case.3, DA

∎

Lemma 2.2.5. Suppose A,E ∈ D with A < E, and there is no e ∈ E ∖ A such that

A < A ∪ {e} is of Type I. Suppose a, b, c ∈ A with L(a; b, c). Then L(a; b, c) is witnessed

in DA if and only if it is witnessed in DE .

Proof. If L(a; b, c) is not witnessed in DA then there is d ∈ A such that A ⊧ L′(a; b, c;d),

so E ⊧ L′(a; b, c;d), so L(a; b, c) is not witnessed in DE .

Conversely, suppose that L(a; b, c) is witnessed in DA, with a, b, c lying in distinct

branches of the ramification point r of DA. By Lemma 2.2.4 we may identify r with

a ramification point of DE . We suppose for a contradiction that L(a; b, c) is not witnessed

in DE . Then there is e ∈ E in a special branch at r, distinct from those of a, b, c. Since

E ⊧ L′(a; b, c; e), we must have e ∉ A. Furthermore, as A < A ∪ {e} is not of Type I and
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there is no d ∈ A lying in the same branch as e at r, there must be distinct p, q, t, s ∈ A
with S(p, q; t, s) witnessed in DA, so in DE . Then A ⊧ Q(p, q; t, s ∶ a; b, c) so L(a; b, c)
is witnessed in DE , a contradiction. ∎

Lemma 2.2.6. In a Type II extension A < E = A ∪ {e}, if r is a ramification point of the

root D-set of A, then the structure Ar is a substructure of Er.

Proof. It suffices to check that the relations agree in both Ar and Er. Let

ā, b̄, c̄, d̄, z̄, p̄, q̄, s̄ ∈ Ar, then they are elements ofD(f−1ρ (r)). Assume ā, b̄, c̄, d̄ are distinct.

As A < E is of Type II, by Lemma 2.2.4 r is a ramification point of DE , and a, b, c lie in

distinct branches at r in E. Furthermore, none is special at r in A, as ā, b̄, c̄, d̄ ∈ Ar, and

so as it is Type II extension, none is special in E.

Then Ar ⊧ L(ā; b̄, c̄) ⇔ A ⊧ L(a; b, c) ⇔ E ⊧ L(a; b, c) ⇔ Er ⊧ L(ā; b̄, c̄), and

Ar ⊧ S(ā, b̄; c̄, d̄) ⇔ A ⊧ S(a, b; c, d) ⇔ E ⊧ S(a, b; c, d) ⇔ Er ⊧ S(ā, b̄; c̄, d̄). Also

Ar ⊧ Q(ā, b̄; c̄, d̄ ∶ p̄; q̄, s̄) ⇔ A ⊧ Q(a, b; c, d ∶ p; q, s) ⇔ E ⊧ Q(a, b; c, d ∶ p; q, s) ⇔
Er ⊧ Q(ā, b̄; c̄, d̄ ∶ p̄; q̄, s̄).

Likewise, Ar ⊧ L′(b̄; c̄, d̄; ā) ⇔ A ⊧ L′(b; c, d;a) ⇔ E ⊧ L′(b; c, d;a) ⇔ Er ⊧ L′(b̄; c̄,
d̄; ā). Let w̄ ∈ Ar. Then Ar ⊧ S′(ā, b̄; c̄, d̄; w̄) ⇔ A ⊧ S′(a, b; c, d;w) ⇔ E ⊧ S′(a, b; c,
d;w) ⇔ Er ⊧ S′(ā, b̄; c̄, d̄; w̄). ∎

Lemma 2.2.7. If A,E ∈ D and E is a one point extension of A with E = A ∪ {e}, then

(A,E) is of Type I or of Type II.

Proof. Assume that the extension is not of Type I, so there is no new root under ρA with

a star D-set. By Lemma 2.2.4, DE(A) = D(A). By Lemma 2.2.4, we know that the root

D-set DA of A is a substructure of DE , and hence can identify DA with a subset of DE .

Furthermore, for a, b, c ∈ A, L(a; b, c) is witnessed in DA if and only if it is witnessed

in DE by Lemma 2.2.5. Thus, either e is added (in DE) as a new non-special leaf to an

existing ramification point r ofDA, or e is added on a new ramification point r′ of an edge

of DA. To prove it is of Type II, we consider the following cases:
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Case(i). Suppose that e is added as a new non-special leaf to an existing ramification

point r of DA. Furthermore, using Lemma 2.2.6 we see that Ar is a substructure of Er,

and so by induction, as ∣Ar∣ < ∣A∣, Ar < Er is of Type I or Type II. As we assumed that the

extension A < E is not of Type I it follows that A < E is a Type II(a) extension.

Case(ii). Suppose that e is added on a new ramification point r′ of an edge of DA. In

this case, for E, ρA obtains a new successor ρr′ whose D-set has size 2. The structure is

otherwise unchanged, and E is an extension of A of Type II(b).

∎

Lemma 2.2.8. Let A < E with A,E ∈ D . Then there is an element e ∈ E ∖A such that

A ∪ {e} ∈ D .

Proof. We just showed, by Lemma 2.2.7, that extending a substructure A of E by one

element, so that the result lies in D , can be done by only two ways: Type I or Type II.

Firstly, adding e from E ∖A to A to get A ∪ {e} in D by a Type I extension will do the

required as we showed in Lemma 2.2.3. Thus, we may suppose there is no such e ∈ E, so

Lemma 2.2.4 and Lemma 2.2.5 are applicable.

Suppose there is an edge of A such that E has a ramification point r on the edge and there

is e ∈ E ∖ A and a, b ∈ A such that a, b, e lie in distinct branches at r. We may suppose

(by careful choice of e) that one of a, b, e lies in the special branch at r in E. In this case

A ∪ {e} ∈ D , a one-point extension of A of Type II(b).

Suppose the configuration of the last paragraph does not occur. Since DE(A) =DA, there

is a ramification point r of A and some e ∈ E ∖A lying in a new non-special branch at r

of E. Then A ∪ {e} ∈ D and is a one-point extension of A of Type II(a).

∎

We will see now that adding one element (n elements) from E to A keeps the extension

in the class D , and E can be written as a sequence of one point extensions.
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Lemma 2.2.9. Assume A < E with A,E ∈ D . Then we may enumerate E ∖ A
as {e1, e2, . . . , en} such that for each i = 1, . . . , n, if Ei is the L -structure of E on

A ∪ {e1, . . . , ei} then Ei ∈ D .

Proof. Fix n. We prove by induction on m < n that there are distinct e1, . . . , em ∈ E ∖A
such that for each i = 0, . . . ,m the L -structure Ei induced on A ∪ {e1, . . . , ei} lies in D

(where E0 = A).

The base case m = 0 is trivial. Assume the result holds for m. Then by Lemma 2.2.8

applied to Em < E, there is some e ∈ E ∖Em such that Em ∪ {e} ∈ D . Put em+1 ∶= e. ∎

2.3 Amalgamation Property

Fraı̈ssé’s method is based on taking smaller structures, extending them and then

amalgamating the extensions. The following lemma is a general lemma that holds for

any class of finite structures.

Lemma 2.3.1. Let C be a class of finite structures, and suppose that the following hold:

1. the class C has the amalgamation property for one point extensions.

2. for any A,E ∈ C with A < E, we may write E ∖A = {x1, . . . , xn} so that if Ei is the

induced substructure of E on A ∪ {x1, . . . , xi} ( for each i = 1, . . . , n), then Ei ∈ C .

Then the class C has the amalgamation property.

Proof. Suppose that A ∪ {x1, . . . , xm}, A ∪ {y1, . . . , yn} lie in C ; we will denote them by

Xi and Yi respectively. Assume E1 is obtained by adding m elements, say x1, . . . , xm, to

A, and E2 is obtained by adding n elements, say y1, . . . , yn, to A. Then assume that the

one-point extension of A by adding x1 is X1, and the one-point extension of A by adding

y1 is Y1. Then amalgamate X1 and Y1 over A. We get E11 which is a structure in C . So

the one-point extension of X1 by adding y1 is E11.
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Next step, extend X1 by a one-point extension via the element x2 then we get X2

(X2 = X1 ∪ {x2}). Amalgamate X2 and E11 over X1 to get E21. (We do not assume

that one point extensions amalgamate disjointly, so possibly E11 = X1.) Do this process

m times to end with Em1. When we look at amalgamating Em1 and E2 we note that the

m steps of the amalgamation put y1 in the common subset that we amalgamate over. Also

∣E2 ∖ Y1∣ = n − 1. Hence it finishes inductively.

∎

Note: The proof of the previous lemma is due to Bhattacharjee and Macpherson in their

paper (see the proof of Lemma 3.7 of [7]), but it works under the assumptions of this

lemma.

By Lemma 2.2.9 and Lemma 2.3.1 it suffices to prove the amalgamation property for one

point extensions.

Lemma 2.3.2. The class D has the amalgamation property.

Proof. We will prove the amalgamation property for one point extensions,

and using Lemmas 2.2.9 and 2.3.1 the amalgamation can be done

for arbitrary finite extensions. Assume A < E1 and A < E2 with

A,E1,E2 ∈ D such that E1 ∖ A = {e1} and E2 ∖ A = {e2}. Assume that e1 and e2 are

distinct. We want to define a structure on E1 ∪E2 to obtain an element E ∈ D such that

E1 and E2 are induced by E. Let τi be the structure tree corresponding to Ei with root ρi

where i = 1,2. We will consider three cases.

Case i. Suppose thatE1 andE2 are Type I extensions ofA. Then place the root ρ2 beneath

the root ρ1 such that e2 is special in D(ρ2) with e1 non-special, and in D(ρ1) the element

e1 is special.

Case ii. Suppose that one of the Ei, say E1 is of Type I, and E2 is of Type II. Then place

the root ρ1 under ρ2 such that D(ρ1) is a star in which e1 is special and e2 is not.

Case iii. Suppose that E1 and E2 are of Type II over A. Then we will consider the

following four sub-cases.
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(1) If e1, e2 are added to the same old ramification point r of D(ρA) to get E1,E2

respectively. Keep them distinct. Then neither of e1, e2 is special in the root D-sets

D(ρ1) and D(ρ2). The root ρE of E will have that e1, e2 are non-special branches.

Then higher up two new end-points are added to the same D-set D(f−1ρE(r)), and we

finish inductively, since ∣Ar∣ < ∣A∣.

(2) Suppose that e1 and e2 are added to distinct ramification points r1 and r2 of

D(ρA). Then again an endpoint will be added to the D-sets corresponding to these

ramification points. The structures Er1 and (E1)r1 will be isomorphic, and Er2 will

be isomorphic to (E2)r2 .

(3) Suppose that the branch e1 is added to an old ramification point r of D(ρA), and e2

creates a new ramification point. Then a new successor (of ρA) has trivial D-set in E,

and D(f−1ρE(r)) gets a new endpoint.

(4) If both e1 and e2 create new ramification points, then keep them distinct. Hence

D(ρE) will have two new endpoints and then two new successors each with labelling

D-sets of just two elements.

∎

The proof of the following lemma is similar to the proof of Lemma 3.6 of [7].

Lemma 2.3.3. The class D has the joint embedding property.

Proof. Take two finite structures A,B ∈ D with n,m points respectively. Consider their

structure trees of D-sets τA, τB with roots ρA, ρB respectively. Build a new tree τ with

root ρ such that D(ρ) contains two ramification points r and r′ with n + 1 branches at r,

and m+1 branches at r′, with special branches as shown in the Figure 2.17. The resulting

structure E will have Er isomorphic to A and Er′ isomorphic to B.
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rr′
n + 1m + 1

Figure 2.17

∎

Lemma 2.3.4. The class D does not satisfy the hereditary property.

Proof. Take, as an example, a finite structure C ∈ D with the elements x, y, z,w, p. Let

r =ram(x, y, p, z), r′ =ram(z,w, x) with S(x, y; z,w), L(x; y, z)∧L(x; y,w)∧L(x; y, p)
holding at r, and L(z;w,x) ∧ L(z;w, y) ∧ L(z;w,p) holding at r′, all in the root D-set

D(ρC), see Figure 2.18. Assume that ν = f−1ρC(r) and in D(ν) the relation L(p; y, z) is

witnessed at the unique ramification point r′′ say. Also let ν′ = f−1ρC(r′) and ν1 = f−1ν (r′′).

The two labelling D-sets D(ν′) and D(ν1) have just two elements.

r r′

x z

y w

p

Figure 2.18: ρC

Let A = C ∖ {x} be a substructure of C. Assume for a contradiction A ∈ D . Clearly C is

not a Type I extension of A, so by Lemma 2.2.4, DC(A) = DA (the root D-set of A). Let

r1 = ram(y, p, z) and r2 = ram(z,w, y) with L(p; y, z) and L(p; y,w) holding at r1 and

L(z; y,w) and L(z;p,w) holding at r2 as in Figure 2.19. Then D(p, y; z,w) holds in DC

so in DA. In the labelling D-sets D(f−1ρA(r1)) and D(f−1ρA(r2)) there are two elements in

each one. Then it can be seen that Q(p, y; z,w ∶ p; y, z) is witnessed in a D-set of A ( the

root) while it is not witnessed in C, which is a contradiction. Hence A ∉ D .
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r1 r2

p z

y w

Figure 2.19: ρA

∎

As the class D is not closed under the substructure we use a modified version of Fraı̈ssé’s

Theorem, and here we follow Evans [19].

Definition 2.3.5. Let D be the class of L -structures that we defined before. Define a

collection E of embeddings f ∶ A→D where A,D ∈ D such that

(i) any isomorphism is in E ;

(ii) E is closed under composition;

(iii) if f ∶ A → B is in E and B ⊂ D is a substructure in D such that f(A) ⊂ B, then the

map obtained by restricting the range of f to B is also in E .

Then we call this collection a class of D-embeddings

Note. This definition is also explained in [25], but the author uses the notion of weakly

homogeneous to explain this.

Consider the following modification for the joint embedding property and the

amalgamation property :

(JEP ′) If A,B ∈ D , there exists C ∈ D and embeddings f ∶ A → C and g ∶ B → C such

that f, g ∈ E .

(AP ′) Suppose A,D1,D2 ∈ D and fi ∶ A → Di are embeddings in E . Then there exists

D ∈ D and embeddings gi ∶Di →D in E such that g1f1 = g2f2.
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Let E be the class of D-embeddings. For an L -structure M , and a finite substructure

A ∈ D , we say that A is E-embedded in M if whenever B ∈ D is a finite substructure of

M and contains A, the inclusion map from A to B is in E .

Then we use the following version of Fraı̈ssé’s Theorem (Theorem 2.10 of [19] in the

book [31]):

Theorem 2.3.6. Suppose that C is a collection of finite L-structures in which the number

of isomorphism types of any finite size is finite. Suppose E is a class of C-embeddings

which satisfies JEP′ and AP′. Then there exists a countable L-structure M with the

following properties:

(a) the class of E-embedded substructures of M is equal to C;

(b) M is a union of a chain of finite E-embedded substructures;

(c) if A ≤ M and α ∶ A → B is in E then there exists C ≤ M containing A and an

isomorphism β ∶ B → C such that βα(a) = a for all a ∈ A.

Let M be the L -structure built by applying Theorem 2.3.6 to the collection D and the

collection E of embeddings defined in Definition 2.3.5.

Lemma 2.3.7. Any isomorphism between finite substructures ofM which lie in D extends

to an automorphism of M .

Proof. This follows immediately from Theorem 2.3.6(c). ∎

We will call the structure that has the assertion in the above lemma semi-homogeneous.

We have built a unique semi-homogeneous countable structureM whose elements embed

in D . Note that for now, we do not have a homogeneous structure. All that we have

is that any isomorphism between substructures of the class D can be extended to an

automorphism.
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Remark 2.3.8. From now on, when we use the phrase ‘by semi-homogeneity’ we mean

that f ∶ A → B is an isomorphism between substructures of M lying in D , and refer to

the existence of an element of Aut(M) extending f .

2.4 Oligomorphicity of M

It is known that Fraı̈ssé’s construction is a method to build ω-categorical structures. How

that works is Fraı̈ssé’s construction is used to build homogeneous structures; it is an easy

consequence of Ryll-Nardzewski Theorem, and it is known (see [32], Proposition 1.5)

that any homogeneous structure over a finite relational language is ω-categorical. The

proof of that theorem explains how to get an ω-categorical structure.

As we see from the previous section that the structure M that we build is not

homogeneous, we will use the Theorem by Ryll-Nardzewski (see Theorem 1.6.13) and

we will show in this section that the automorphism group ofM is oligomorphic and hence

M is ω-categorical.

We do not yet have a guarantee that Aut(M) is oligomorphic. For example,

suppose that M has finite substructures Ei (for i ∈ N) in the class D , and suppose

∣E1∣ < ∣E2∣ < ∣E3∣ < . . . and that Ei is a substructure of M of smallest size subject to

lying in D and containing ai, bi. Then the pairs (ai, bi) all lie in distinct orbits of Aut(M )

in M2.

Our next lemma eliminates this problem.

Lemma 2.4.1. There is a map f ∶ N → N such that for every finite A ⊂M there is F ∈ D

with A ≤ F ≤M and ∣F ∣ ≤ f(∣A∣).

Proof. By Theorem 2.3.6, A lies in a finite substructure E of M lying in D . We aim

to choose F inside E, of minimal size. Let ρ be the root of the structure tree of E, DE

be the corresponding D-set, let DA be the induced D-set structure on A, and DE , DA be

the corresponding tree structures. Let n ∶= ∣A∣. We shall build F as the union of a finite
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sequence A = F0 ⊆ F1 ⊆ F2 ⊆ ⋅ ⋅ ⋅ ⊆ E. We may suppose that E is chosen minimally, that

is, there is no proper substructure of E with E′ ∈ D and A ≤ E′ < E.

We have ∣Ram(DA)∣ ≤ n − 2 (by Lemma 1.4.15). We form F1 by adding, for each

ramification point r of DA such that the special branch of E at r contains no member

of A, a member of that special branch. Then ∣F1∣ ≤ ∣A∣ + n − 2, and F1 contains a special

branch at each such ramification point r. Observe that if ∣A∣ = 3 then A ∈ D so by

minimality of E, A = E.

Next, for each such ramification point r of DA, let σ be the corresponding successor in

the structure tree of E. (We note here that by minimality of E it cannot happen that the

elements of A all lie in distinct non-special branches at the same ramification point r of

DE , and thus indeed ∣Dσ(A)∣ < ∣A∣ = n). There are at most n − 2 such σ, and the D-set

Dσ of E contains at most n−1 elements with representatives in A, giving a D-set Dσ(A)
of size at most n− 1, so with at most n− 3 ramification points. We build F2 to ensure that

there is a special branch at each ramification point of Dσ(A), for each σ. This requires

adding at most (n − 2)(n − 3) points to F1, so ∣F2∣ ≤ ∣F1∣ + (n − 2)(n − 3).

We iterate this process. To build F2 from F1, we consider the at most (n − 2)(n − 3)
ramification points of F2 (of D-sets of successors of ρ), and the corresponding

(n−2)(n−3) vertices λ of height 3 in the structure tree of A. The D-set Dλ(E) contains

at most (n − 2) elements with representatives in A, so the corresponding D-set Dλ(A)
has at most (n − 4) ramification points.

Continuing this process, we find that for Fi, each D-set of height i (where ρ has height 1)

has at most n − 1 − i ramification points, and that for j < i, each D-set of Fi at height Fj

has a special branch at each ramification point. Thus, putting F ∶= Fn−3, we find that F

has a special branch at each ramification point of each D-set, so F ∈ D . Finally, we see

inductively that for each i, ∣Fi∣ = ∣Fi−1∣ + (n − 2)(n − 3) . . . (n − (n + 1)).

Thus, we may put f(n) = (n−2)+(n−2)(n−3)+ ⋅ ⋅ ⋅ + (n−2)(n−3 . . .2) = ∑n−1
i=1

(n−2)!
i! .

∎
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Since A is finite then the induced substructures of A, which are Fi, will be finite, and this

is enough to ensure the oligomorphicity of M .

Lemma 2.4.2. Let M be the Fraı̈ssé limit of a class C of finite structures in the sense of

Theorem 2.3.6. Suppose there is a function f ∶ N → N such that for every finite subset A

of M there is F <M with F ∈ C and ∣F ∣ ≤ f(∣A∣). Then M is ω-categorical.

Proof. Suppose that A is a finite subset of M with k elements. Every such A lies in a

member F of C which is a substructure of M as given in the statement. As the language

is finite, and using the bound provided by f , there are finitely many choices of such F

(this fact is Exercise 1.2.6 in [25]). Isomorphic structures F lie in the same orbit. As the

choices of F are finite then there are finitely many orbits on such sets F . Therefore, as

each such F has a finite subset isomorphic to A then the number of orbits on Mk is finite

for any k. By 1.6.13, M is ω-categorical.

∎

Corollary 2.4.3. Aut(M ) is oligomorphic

Proof. This follows from the above lemma (and was part of its proof). ∎

75



Chapter 2. Trees of D-sets

76



77

Chapter 3

Analysing the Fraı̈ssé Limit

Throughout this chapter, let M be the structure built in Chapter 2, and put G = Aut(M).

In the previous chapter, we studied finite trees of D-sets. Here, we want to show that M

can also be viewed as a “tree of D-sets”. We have to construct the structure tree of M -

in the language of model theory, we interpret it in M . The structure tree will be a dense

semilinear order without maximal or minimal elements, so in particular there will be no

notion of ‘root’ or of ‘successor’. The vertices of the tree are labelled by representatives of

some equivalence relation (it will be the relation P (Definition 3.2.1)). Also the elements

of the D-sets are equivalence classes of the equivalence relation Exyzw (see 3.2.9).

3.1 Automorphism of M

As the language L consists of six relations, to deal with the automorphism group is hard.

To make it easier we write the relations L′, S′,Q,R in terms of L,S.

Lemma 3.1.1. Let x, y, z,w ∈M . Then M ⊧ (∀x, y, z,w)L′(x; y, z;w) ↔ [L(x; y, z) ∧
L(w; y, z) ∧L(w;x, z) ∧L(w;x, y) ∧ ¬S(x,w; y, z)].

Proof. (⇒) Suppose that L′(x; y, z;w) holds in M . Pick a finite substructure A ∈ D such

that x, y, z,w ∈ A < M . Then there is a D-set containing x, y, z,w with w considered
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as a special branch at the ramification point r = ram(x, y, z) (so all of x, y, z,w meet at

the same ramification point r). We may assume that this D-set is the root D-set D(ρ)
where ρ is the root of the structure tree on A. So L(w; z, y) ∧ L(w;x, z) ∧ L(w;x, y)
are witnessed in this root D-set. Then the labelling D-set of the vertex f−1ρ (r) witnesses

L(x; y, z) and omits w, and clearly A ⊧ ¬S(x,w; y, z), so M ⊧ ¬S(x,w; y, z).

(⇐) In a finite structure A ∈ D with x, y, z,w ∈ A < M , suppose that

L(x; y, z) ∧ L(w; y, z) ∧ L(w;x, z) ∧ L(w;x, y) ∧ ¬S(x,w; y, z). We aim to show

M ⊧ L′(x; y, z;w). We may suppose (by choosing A as small as possible) that the root

D-set D(ρ) of A is the only one containing x, y, z,w as distinct elements, i.e. lying in

distinct directions.

Suppose first that S(x, y; z,w) is witnessed in this D-set. Let r1 = ram(x, y, z), and

r2 = ram(x, z,w). See Figure 3.1.

r1

x

y

r2

z

w

u

Figure 3.1

Since L(w;x, y), we see that x (and y) cannot be special at r1. And since L(x; y, z),

we see that w cannot be special at r1. Thus, some other direction u (as depicted)

must be special at r1. Then since z and w are identified in f−1ρ (r1) we cannot have

L(x; y, z) ∧L(w;x, y), a contradiction.

Thus, x, y, z,w all lie in different branches at the same ramification point r of D(ρ). We

may suppose further (by the minimality of the choice of A) that one of x, y, z,w is special

at r. Since L(w; y, z) ∧L(w;x, z) ∧L(w;x, y), this must be w, with L(x; y, z) witnessed

in a higher D-set of A. Thus A ⊧ L′(x; y, z;w), so M ⊧ L′(x; y, z;w) ∎

In the language L there are two relations which describe “happening in the same D-set”,
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namely Q and R. In the following lemma we re-write them and the relation S′ in terms

of L and S.

Lemma 3.1.2. Let x, y, z,w, p, q, s, t ∈M . Then

(i) M ⊧ R(x; y, z ∶ p; q, s) ↔ [L(x; y, z) ∧L(p; q, s) ∧ (∀t)(L′(x; y, z; t) ⇔ L′(p; q,
s; t))].

(ii) M ⊧ S′(x, y; z,w; t) ↔ ⩕
u,v∈{x,y,z,w}

u≠v

R(t;x, y ∶ t;u, v) ∧ ⩕
u,v,s∈{x,y,z,w}

L(u;v,s)

¬R(t;x, y ∶ u; v, s)

∧ S(x, y; z,w).

(iii) M ⊧ Q(x, y; z,w ∶ p; q, s) ↔ [S(x, y; z,w) ∧L(p; q, s) ∧ (∀t)(S′(x, y; z,w; t) ⇔
L′(p; q, s; t))].

Proof.

(i) ⇒) Suppose that M ⊧ R(x; y, z ∶ p; q, s), and let A ∈ D be any finite

substructure of M containing x, y, z, p, q, s. Then A ⊧ R(x; y, z ∶ p; q, s), so

from the way R was defined in Chapter 2, Section 1, L(x; y, z) and L(p; q, s)
must be witnessed in the same D-set of A. It follows immediately that

A ⊧ (∀t)(L′(x; y, z; t) ⇔ L′(p; q, s; t)). Since this hold for any A, it holds in

M .

⇐) Suppose thatM satisfiesL(x; y, z) ∧L(p; q, s) ∧ (∀t)(L′(x; y, z; t) ⇔ L′(p; q, s;
t)), and let A ∈ D be a finite substructure of M containing x, y, z, p, q, s. Then as

M ⊧ L(p; q, s) ∧ L(x; y, z), these L-relations are witnessed in distinct comparable

D-sets of A, or incomparable D-sets of A, or in the same D-set of A.

If L(x; y, z) and L(p; q, s) are witnessed in distinct comparable D-sets of A,

say L(p; q, s) below L(x; y, z), then there is some t ∈ A with (namely t = p)

A ⊧ L′(x; y, z; t) ∧ ¬L′(p; q, s; t), a contradiction.

Suppose that L(p; q, s) and L(x; y, z) are witnessed in incomparable D-sets of

A. Then we may suppose (replacing A by a substructure if necessary) that in
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the root D-set D(ρ) of A, there are distinct ramification points r1 and r2 such

that x, y, z lie in distinct branches at r1 and p, q, s lie in distinct branches at

r2. We now see that for all possible choices of special branches at r1 and r2,

A ⊧ (∃t)¬(L′(x; y, z; t) ⇔ L′(p; q, s; t)). Thus, L(p; q, s) and L(x; y, z) are

witnessed in the same D-set of A, so A ⊧ R(x; y, z ∶ p; q, s), as required.

(ii) ⇒) Suppose M ⊧ S′(x, y; z,w; t), and let A ∈ D be a substructure of M containing

x, y, z,w in distinct non-special branches of some ramification point r of the root

D-set, an t ∈ A is in the special branch at r. Then as A ⊧ S′(x, y; z,w; t), there

is a D-set of A witnessing S(x, y; z,w) and omitting t. Then in the root D-set

⩕
u,v∈{x,y,z,w}

u≠v

R(t;x, y ∶ t;u, v) holds.

It is readily seen that L(t;x, y) and L(u; v, s), where u, v, s ∈ {x, y, z,w} cannot

hold in the same D-set of A, hence ⩕
u,v,s∈{x,y,z,w}

L(u;v,s)

¬R(t;x, y ∶ u; v, s) is witnessed in

A, and hence also in M .

⇐) Assume, for a contradiction, that ¬S′(x, y; z,w; t) holds. Then in a finite

structure A ∈ D with x, y, z,w, t ∈ A < M , A ⊧ ¬S′(x, y; z,w; t). Then

there is a D-set of A witnessing S(x, y; z,w) and containing t. By considering

the possible positions for t in the D-set witnessing S(x, y; z,w), and the

various possibilities of the special branch at r1, r2, r3, r4, r5, as in Figure 3.2,

we will find, at least one relation contradicting ⩕
u,v∈{x,y,z,w}

u≠v

R(t;x, y ∶ t;u, v) or

⩕
u,v,s∈{x,y,z,w}

L(u;v,s)

¬R(t;x, y ∶ u; v, s).
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r1

x

y

r2

z

w
t

r3

t

r4

t
t

tr5

Figure 3.2

(iii) ⇒) This is clear, as in (i).

⇐) Assume M ⊧ S(x, y; z,w) ∧L(p; q, s) ∧ (∀t)(S′(x, y; z,w; t) ⇔ L′(p; q, s; t)).

Let A ∈ D be any finite substructure of M containing x, y, z,w, p, q, s. Then

S(x, y; z,w) and L(p; q, s) are witnessed in the same D-set of A (as we aim to

show) or distinct comparable D-sets of A, or incomparable D-sets of A.

Suppose S(x, y; z,w) and L(p; q, s) are witnessed in distinct comparable D-sets of

A, say S(x, y; z,w) below L(p; q, s) (the other case being similar). Let D(ν) be the

D-set witnessing S(x, y; z,w), let r be a ramification point of D(ν), and suppose

that L(p; q, s) is witnessed in or above the D-set of the vertex f−1ν (r). Let t be in

the special branch at r. Then A ⊧ ¬S′(x, y; z,w; t) ∧L′(p; q, s; t), a contradiction.

Likewise, the case when S(x, y; z,w) and L(p; q, s) are witnessed in distinct

incomparable D-sets of A is eliminated as in the proof of (i), the right

to left implication. Thus, they are witnessed in the same D-set of A, so

A ⊧ Q(x, y; z,w ∶ p; q, s), M ⊧ Q(x, y; z,w ∶ p; q, s), as required.

∎

It follows from Lemma 3.1.1 and Lemma 3.1.2 thatG consists exactly of the permutations

of M which preserve L and S.

Note. Remember that we use the notation L{x, y, z} as an abbreviation for the formula:

L(x; y, z) ∨L(y;x, z) ∨L(z;x, y).
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Lemma 3.1.3. The group G has the following properties:

(i) 3-homogeneous.

(ii) 2-transitive.

(iii) primitive.

(iv) 2-primitive.

(v) not 3-transitive.

(vi) not 4-homogeneous.

Proof.

(i) Let A = {x, y, z} and A′ = {x′, y′, z′} be 3-element subsets of M . Then by Lemma

2.1.4, A ⊧ L{x, y, z} and A′ ⊧ L{x′, y′, z′}. Observe that the induced structures on

A and A′ lie in D , since any 3-element substructure of any member of D lies in D ,

and M is a union of a chain of members of D . Then, without loss of generality,

let L(x; y, z) and L(x′; y′, z′) hold in the root D-set of A and A′ respectively. It is

easily seen that the map g ∶ A → A′ with (x, y, z)g = (x′, y′, z′) is an isomorphism.

Hence, by Lemma 2.3.7, g extends to some g′ ∈ G.

(ii) Suppose x, y, x′, y′ ∈ M with x ≠ y and x′ ≠ y′. Let A be the induced structure on

{x, y}, and A′ be that on {x′, y′}. Then A,A′ ∈ D (the structure trees have just the

root, with a 2-element D-set), and the map g ∶ A → A′ given by (x, y)g = (x′, y′) is

an isomorphism. By Lemma 2.3.7 g extends to an element of G, as required.

(iii) This follows from (ii), by Lemma 1.1.18.

(iv) Since G is 2-transitive, it remains to check that for the point a the group Ga is

primitive on M ∖ {a} (this is by Definition 1.1.19). For that we are going to show

that there is no proper non-trivial Ga-congruence on M ∖ {a}. So for the fixed a it

suffices for us to show the following are not equivalence relations:
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(a) Ea(x, y) ⇔ L(a;x, y) ∨ x = y. It is not an equivalence relation because the

transitivity (in the sense of equivalence relation) is violated. Indeed, assume

L(a;x, y) ∧ L(a; y, z). We may choose a, y, x to be distinct at a ramification

point r with a as a special, and z lies in the same branch as x as in the following

picture (in a finite substructure of M ).

r

x

a

y z

Figure 3.3

Therefore, ¬L(a;x, z) ∧ x ≠ z. So Ea is not a transitive relation.

(b) Fa(x, y) ⇔ L(x;a, y) ∨ x = y. It is not an equivalence relation because

L(x;a, y) does not imply L(y;a, x), which means that x, y cannot be exchanged

while a is fixed, so Ea is not a symmetric relation.

(c) F ′

a(x, y) ⇔ L(x;a, y) ∨ L(y;a, x) ∨ x = y. This is not an equivalence relation,

for in Figure 3.4 below we have F ′

a(x, y) ∧ F ′

a(y, z) ∧ ¬F ′

a(x, z).

r

z

x

ya

Figure 3.4

(v) This follows by Lemma 2.1.4 because there is a structure in D with the elements
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{x, y, z} such that L(x; y, z) holds, and then there is no g ∈ G such that

(x, y, z)g = (y, x, z).

(vi) Let A = {x, y, z,w} with S(x, y; z,w) and L(x; y, z) ∧ L(x; y,w) ∧ L(z;w,x)
∧ L(z;w, y), see Figure 3.5 for the root D-set. Consider another

finite structure A′ = {x′, y′, z′,w′} such that S(x′, y′; z′,w′) holds with

L(z′;x′, y′) ∧ L(z′;x′,w′) ∧ L(z′;w′, y′), as in Figure 3.6 below. If there is g ∈ G
with {x, y, z,w}g = {x′, y′, z′,w′}, then because of the relation S we must have

{x, y}g = {x′, y′} or {x, y}g = {z′,w′}, and it is easily seen that either way, g does

not preserve all the relations L,Q,R.

x

y

z

w

Figure 3.5

x′

y′

z′

w′

Figure 3.6

∎

3.2 Construction

Definition 3.2.1. Define an 8-place relation P intended to describe the fact that the

relations S(x, y; z,w) and S(p, q;u, v) happen in the same D-set as follows:
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(∀x, y, z,w, p, q, u, v)P (x, y; z,w ∶ p, q;u, v) ↔ S(x, y; z,w)∧S(p, q;u, v)∧(∀t)(S′(x, y;

z,w; t) ↔ S′(p, q;u, v; t)).

It is easily seen that ifA ∈ D thenA ⊧ S(x, y; z,w)∧S(p, q;u, v)∧(∀t)(S′(x, y; z,w; t) ↔
S′(p, q;u, v; t)) if and only if S(x, y; z,w) and S(p, q;u, v) are witnessed in the same

D-set of A.

Lemma 3.2.2. If A,C ∈ D with A < C and x, y, z,w, p, q, s, t ∈ A, then

A ⊧ P (x, y; z,w ∶ p, q; s, t) ⇔ C ⊧ P (x, y; z,w ∶ p, q; s, t)

Proof. (⇐) Since the formula defining P is universal, and it holds in the bigger structure,

it necessarily holds in the substructure A, and the result follows.

(⇒) Let C be a one point extension of A such that C = A ∪ {e}. We argue that in all

possible cases the relation P is preserved, from A to C. This suffices by Lemma 2.2.9.

Case (i) If C is a Type I extension of A, then in the D-set of the new root of C

the elements x, y, z,w, p, q, s, t meet at the unique ramification point (the centre) and a

new added special branch, say e, and all of them are in correspondence with the elements

in the root D-set of A. Since P (x, y; z,w ∶ p, q; s, t) holds in A then S(x, y; z,w) and

S(p, q; , s, t) hold in the same D-set of A. As C is a one point extension of A then by the

argument in the proof of Lemma 2.2.3 those two S-relations hold in the same D-set of

C, as C contains all of A and one added element.

Case (ii) If C is a Type II extension then, by 2.2.4, DC(A) = D(A). Since

A ⊧ P (x, y; z,w ∶ p, q; s, t), S(x, y; z,w) and S(p, q; s, t) are witnessed in the same D-set

ofA. If this is the rootD-set ofA, then clearly they are witnessed in the same (root)D-set

of C, so C ⊧ P (x, y; z,w ∶ p, q; t, s). If it is not the root D-set of A, then in D(ρA), the

elements x, y, z,w, p, q, s, t all lie in distinct branches of a ramification point r, with none

of these branches special, so there is a further element u ∈ A special at r. There are now
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various cases, according to whether e is added in a new branch at r, in the same branch

as u, in the same branch as one of x, y, z,w, p, q, s, t, or in the same branch at r as some

other element of A (and whether it is of Type II(a) or Type II(b)). In each case, we find

C ⊧ P (x, y; z,w ∶ p, q; s, t), as required. ∎

Note. It follows from Lemma 3.2.2 that if A <M with A ∈ D , and x, y, z,w, p, q, s, t ∈ A,

then A ⊧ P (x, y; z,w ∶ p, q; t, s) if and only if M ⊧ P (x, y; z,w ∶ p, q; s, t).

Lemma 3.2.3. (i) Let S∗ ∶= {(x, y, z,w) ∈ M4 ∶ M ⊧ S(x, y; z,w)}. The relation P

defines an equivalence relation on S∗.

(ii) Let K ∶= {(x, y, z) ∈ M3 ∶ M ⊧ L(x; y, z)}. The relation R defines an equivalence

relation on K.

Proof.

(i) That, P is an equivalence relation on S∗ is obtained directly from the Definition

3.2.1.

(ii) Similar to the proof of (i) using Lemma 3.1.2(i).

∎

Next we recover the tree of D-sets of M using the relation P .

Definition 3.2.4. Let x, y, z,w ∈ M . Given S(x, y; z,w) define Ixyzw to be the set of all

points of M which belong to the D-set of M in which S(x, y; z,w) is witnessed. That is

Ixyzw = {t ∶ P (x, y; z,w ∶ t, y; z,w) ∨ P (x, y; z,w ∶ x, t; z,w) ∨ P (x, y; z,w ∶ x, y; t,w) ∨
P (x, y; z,w ∶ x, y; z, t)}.

It describes the following picture where the dashed lines are the possible places of t:
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x z

y w

Figure 3.7: Ixyzw

Basically, Ixyzw consists of all points t such that there is some A ∈ D with

x, y, z,w, t ∈ A < M and S(x, y; z,w) and some relation such as S(t, y; z,w) witnessed

in the root D-set of A. We call Ixyzw a pre D-set.

Lemma 3.2.5. (i) For any pair of quadruples (x, y, z,w) and (p, q, s, t) such that

M ⊧ P (x, y; z,w ∶ p, q; s, t), Ixyzw = Ipqst.

(ii) Let (x, y, z,w), (p, q, s, t) ∈ S∗. If Ixyzw = Ipqst, then M ⊧ P (x, y; z,w ∶ p, q; s, t).

Proof.

(i) Suppose a ∈ Ixyzw. We want to show that a ∈ Ipqst. Then as

M ⊧ P (x, y; z,w ∶ p, q; s, t) there is a finite structure A ∈ D containing the points

x, y, z,w, p, q, s, t, a, and since P is universal A ⊧ P (x, y; z,w ∶ p, q; s, t). This

implies that S(x, y; z,w) and S(p, q; s, t) happen in the same D-set of A. But we

assume that a ∈ Ixyzw, so wherever S(x, y; z,w) holds, one of the disjunctions of

Ixyzw holds, without loss of generality P (x, y; z,w ∶ x, a; z,w) say. As P is an

equivalence relation, then P (p, q; s, t ∶ x, a;w, z) is witnessed. Hence a occurs in

the D-set witnessing S(p, q; s, t) so a ∈ Ipqst because wherever it lives it will satisfy

one formula of Definition 3.2.4. The result now follows by symmetry.

(ii) Suppose Ixyzw = Ipqst but M ⊧ ¬P (x, y; z,w ∶ p, q; s, t). Then

M ⊧ S(x, y; z,w) ∧ S(p, q; s, t) and without loss of generality there is u ∈ M
such that M ⊧ S′(x, y; z,w;u) ∧ ¬S′(p, q; s, t;u). Choose a finite A < M with

x, y, z,w, p, q, s, t, u ∈ A. Then the D-set of A witnessing S(x, y; z,w), say D(µ),
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omits u but the D-set D(ν) witnessing S(p, q; s, t) contains u, so ν < µ or ν,µ are

incomparable. Either way, we find u ∈ Ipqst ∖ Ixyzw, a contradiction.

∎

We refer to the equivalence classes of P on S∗ as vertices, and denote the P -class

containing (x, y, z,w) as ⟨xyzw⟩. We define a partial order ≤ on S∗/P by reverse

inclusion; that is ⟨xyzw⟩ ≤ ⟨pqrs⟩ if and only if Ixyzw ⊇ Ipqrs. It is immediate from

Lemma 3.2.5 that this is well defined. We shall show later (Lemma 3.2.17) that (S∗/P,≤)
is a dense semilinear order without maximal or minimal elements. Before that, we aim to

associate a D-set with each vertex of S∗/P . First, it is useful to show that vertices can be

identified with triples (via L and R) as well as quadruples (via S and P ).

Definition 3.2.6. Let p, q, s ∈ M . Given L(p; q, s), define Jpqs to be

{j ∶ R(p; q, s ∶ j; q, s)∨R(p; q, s ∶ p; j, s)∨R(p; q, s ∶ p; j, q)∨[R(p; q, s ∶ p; j, q)∧R(p; q,
s ∶ p; j, s)]}.

Intuitively, Jpqs is the set of all the points of M which belong to the (pre)-D-set of M in

which L(p; q, s) is witnessed.

In the following picture, we show all the possible positions that j might be in.

p

q s

Figure 3.8: Jpqs

Lemma 3.2.7. Let x, y, z,w, p, q, s ∈M . Then

(i) M ⊧ Q(x, y; z,w ∶ p; q, s) ⇔ Ixyzw = Jpqs.

(ii) M ⊧ R(x; y, z ∶ p; q, s) ⇔ Jxyz = Jpqs.
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Proof.

(i) ⇒) Let a ∈ Ixyzw, we want a ∈ Jpqs. There is a finite substructure A < M ,

A ∈ D containing x, y, z,w, p, q, s, a. Then as A ⊧ Q(x, y; z,w ∶ p; q, s),

S(x, y; z,w) and L(p; q, s) are witnessed in the same D-set of A. But a ∈ Ixyzw,

so without loss of generality, suppose P (x, y; z,w ∶ x, a; z,w) holds. Then we

have A ⊧ P (x, y; z,w ∶ x, a; z,w) ∧ L(p; q, s), so S(x, a; z,w) and L(p; q, s) are

witnessed in the same D-set of A, and wherever the position of a, one of the

disjunctions of Definition 3.2.6 holds, so a ∈ Jpqs. To show that Jpqs ⊆ Ixyzw let

b ∈ Jpqs, then without loss of generality R(p; q, s ∶ b; q, s) holds. Let A ∈ D contain

x, y, z,w, p, q, s, b, so L(p; q, s) and L(b; q, s) in the same D-set of A. But we are

given that S(x, y; z,w) ∧ L(p; q, s) in the same D-set of A. So whenever b lies we

will have at least one of the disjunctions of the definition of Ixyzw hence b ∈ Ixyzw.

⇐) Assume, for a contradiction, that Ixyzw = Jpqs but M ⊧ ¬Q(x, y; z,w ∶ p; q, s).

Pick a finite A <M with x, y, z,w, p, q, s ∈ A ∈ D . Then by 3.1.2(iii), S(x, y; z,w)
and L(p; q, s) are witnessed in distinct D-sets of A. If L(p; q, s) is witnessed

in a D-set Dµ of A below the D-set Dν where S(x, y; z,w) is witnessed, then

the D-set Dµ contains an element t such that A ⊧ S′(x, y; z,w; t). We find

t ∈ Jpqs ∖ Ixyzw. Likewise, if S(x, y; z,w) is witnessed in A below L(p; q, s), then

we find t ∈ Ixyzw ∖ Jpqs.

Now suppose that S(x, y; z,w) and L(p; q, s) hold in M in two incomparable

D-sets. Then for the finite structure A let p, q, s, t1 be distinct at a ramification point

r with t1 the special branch and x, y, z,w, t2 are distinct at a ramification point r′

with t2 the special branch. At a higher level there will be two incomparable D-sets

that witness S(x, y; z,w) and L(p; q, s) and t1 ∈ Ixyzw ∖ Jpqs and t2 ∈ Jpqs ∖ Ixyzw
respectively, a contradiction.

(ii) ⇒) To show that Jxyz ⊂ Jpqs, let b ∈ Jxyz, so we want b ∈ Jpqs. There is a finite

substructure A <M , A ∈ D containing x, y, z, p, q, s, b. Since R is in the language,
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A ⊧ R(x; y, z ∶ p; q, s), so L(x; y, z) and L(p; q, s) happen in the same D-set of

A. But b ∈ Jxyz so, without loss of generality, let R(x; y, z ∶ b; y, z) hold. Then we

have A ⊧ R(x; y, z ∶ b; y, z) ∧ R(x; y, z ∶ p; q, s), so by the transitivity in the sense

of equivalence relations, this implies R(p; q, s ∶ b; q, s), i.e. b ∈ Jpqs. Similarly we

show that Jpqs ⊂ Jxyz.

⇐) Assume, for a contradiction Jxyz = Jpqs and ¬R(x; y, z ∶ p; q, s). Then

there is a finite substructure A ∈ D such that x, y, z, p, q, s ∈ A < M . Since

A ⊧ ¬R(x; y, z ∶ p; q, s), L(x; y, z) and L(p; q, s) happen in different D-sets of

A. We suppose first they are comparable, so (without loss of generality) there is

t ∈ A such that A ⊧ L′(x; y, z; t) and t lies in the D-set of A witnessing L(p; q, s).

We see easily that t ∈ Jpqs ∖ Jxyz. On the other hand, if L(p; q, s) and L(x; y, z)
happen in two incomparable D-sets, then a lower D-set contains p, q, s in distinct

branches at a ramification point, r say, with t1 as the special branch and x, y, z are in

distinct branches at another ramification point, r′ say, with t2 as the special branch.

So higher up in the structure tree we have L′(p; q, s; t1) and L′(x; y, z; t2) hence

t2 ∈ Jpqs ∖ Jxyz.

∎

The importance of the previous lemma is to give us the ability to express any vertex in

(S∗/P,≤) by a triple, and then any D-set can be referred to by that triple. Indeed, by

3.2.7(ii), R is an equivalence relation on the set of all triples of M satisfying L, and by

3.2.7(i), each R-class can be identified with a P -class, i.e. a vertex. Thus, if Ixyzw = Jpqs
then we may refer to the vertex ⟨xyzw⟩ of S∗/P as ⟨pqs⟩. Then ⟨pqs⟩ = ⟨p′q′s′⟩ if and

only if M ⊧ R(p; q, s ∶ p′; q′, s′).

Lemma 3.2.8. Let x, y, z, u, v,w ∈M . Then Jxyz = Juvw⇔ ⟨xyz⟩ = ⟨uvw⟩.

Proof. Jxyz = Juvw if and only if R(x; y, z ∶ u; v,w) (by Lemma 3.2.7(ii)) if and only if

⟨xyz⟩ = ⟨uvw⟩ (as noted above). ∎
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Definition 3.2.9. Define a relation Exyzw on Ixyzw such that

uExyzwv⇔ [(∀l)(∀m)(∀n)P (x, y; z,w ∶ l,m;n,u) ↔ P (x, y; z,w ∶ l,m;n, v)))].

Lemma 3.2.10. (i) Suppose Ixyzw = Ix′y′z′w′ . Then Exyzw = Ex′y′z′w′ .

(ii) Exyzw is an equivalence relation on Ixyzw, and is invariant under G{Ixyzw}.

Proof.

(i) By Lemma 3.2.5, we have P (x, y; z,w ∶ x′, y′; z′,w′). Since P is an equivalence

relation on S∗, the result follows immediately.

(ii) Both assertions are immediate from the definition of Exyzw, noting part (i) and that

P is G-invariant.

∎

Definition 3.2.11. (i) Given Ixyzw and Exyzw, define Rxyzw to be the quotient

Ixyzw/Exyzw, so elements of Rxyzw are Exyzw-classes of elements of M . We use

the notation [m] to refer to the element of Rxyzw containing the element m ∈ M
(when the underlying equivalence relation Exyzw is clear). We call the elements of

Rxyzw directions.

(ii) Let [u], [v], [t], [s] ∈ Rxyzw. WriteDxyzw ([u] , [v] ; [t] , [s]) ⇔ ([u] = [v] ∧ [u] ∉
{[s], [t]}) ∨ ([t] = [s] ∧ [t] ∉ {[u], [v]}) ∨ P (x, y; z,w ∶ u, v; t, s).

(iii) We call the elements of Rxyzw directions, when viewed as elements of Rxyzw, and

pre-directions, when viewed as subsets of M .

We will see that Rxyzw is precisely the D-set associated with the vertex ⟨xyzw⟩ of the

structure tree of M .

Lemma 3.2.12. (i) The relation Dxyzw is well-defined on Rxyzw.
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(ii) The structure (Rxyzw,Dxyzw) is a dense proper D-set.

(iii) The relation Dxyzw is G{Ixyzw}-invariant.

Proof.

(i) Suppose [u], [v], [t], [s] ∈ Rxyzw are distinct, and u′ ∈ [u], v′ ∈ [v], t′ ∈ [t] and

s′ ∈ [s]. We have

(∀m∀n ∀l)(P (x, y; z,w ∶m,n; l, u) ↔ P (x, y; z,w ∶m,n; l, u′))

(∀m∀n ∀l)(P (x, y; z,w ∶m,n; l, v) ↔ P (x, y; z,w ∶m,n; l, v′))

(∀m∀n ∀l)(P (x, y; z,w ∶m,n; l, t) ↔ P (x, y; z,w ∶m,n; l, t′))

(∀m∀n ∀l)(P (x, y; z,w ∶m,n; l, s) ↔ P (x, y; z,w ∶m,n; l, s′))

Thus, (using symmetry conditions on the variables in P )

P (x, y; z,w ∶ u, v; t, s) ↔ P (x, y; z,w ∶ u′, v; t, s) ↔ P (x, y; z,w ∶ u′, v′; t, s) ↔
P (x, y; z,w ∶ u′, v′; t′, s) ↔ P (x, y; z,w ∶ u′, v′; t′, s′), as required.

(ii) We want to show that conditions (D1) − (D6) of Definition 1.4.16 hold. Axioms

(D1), (D2), (D3) and (D4) follow immediately from corresponding conditions on

S, inherited via P . For (D5), suppose that [u], [v], [t] ∈ Rxyzw are distinct. Pick

finite A ∈ D with x, y, z,w, u, v, t ∈ A < M . We may suppose that S(x, y; z,w)
is witnessed in the root D-set of A. By semi-homogeneity, A has a Type II(b)

extension A < A′ = A ∪ {s} such that S(u, v; t, s) is witnessed in the root D-set of

A′, with A′ <M . Then M ⊧ P (x, y; z,w ∶ u, v; t, s), and we have Dxyzw(u, v; t, s).

The argument is similar for (D6). Suppose [u], [v], [t], [s] ∈ Rxyzw with

Dxyzw([u], [v]; [t], [s]), and for convenience we suppose them distinct. Pick

A ∈ D with x, y, z,w, u, v, t, s ∈ A < M . Then A ⊧ P (x, y; z,w ∶ u, v; t, s),

and we may suppose S(x, y; z,w) and S(u, v; t, s) are witnessed in the root D-set

of A. Now, by semi-homogeneity (Remark 2.3.8), A has a Type II(b) extension

A < A′ = A ∪ {a} <M , as depicted in Figure 3.9.
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u t

v s

a

Figure 3.9

Then

A ⊧ S(a, v; t, s) ∧ S(u, a; t, s) ∧ S(u, v;a, s) ∧ S(u, v; t, a),

so in M we have (putting D =Dxyzw)

D([a], [u]; [t], [s])∧D([u], [a]; [t], [s])∧D([u], [v]; [a], [s])∧D([u], [v]; [t], [a])

as required.

(iii) Suppose Dxyzw([u], [v]; [t], [s]). Then P (x, y; z,w ∶ u, v; t, s). Let g ∈ G{Ixyzw},

and let x′ = xg, y′ = yg, z′ = zg,w′ = wg, u′ = ug, v′ = vg, t′ = tg, s′ = sg.

Then Ixyzw = Ix′y′z′w′ so P (x, y; z,w ∶ x′, y′; z′,w′). Also as g preserves

P , P (x′, y′; z′,w′ ∶ u′, v′; t′, s′). So as P is an equivalence relation,

P (x, y; z,w ∶ u′, v′; t′, s′), hence Dxyzw([u′], [v′]; [t′], [s′]) as required.

∎

Definition 3.2.13. Define an equivalence relation Epqs on Jpqs, putting

uEpqsv⇔ (∃x, y, z,w)(Jpqs = Ixyzw ∧ uExyzwv).

Observe that if Jpqs = Jp′q′s′ then Epqs = Ep′q′s′ .

Lemma 3.2.14. The relation Epqs is an equivalence relation on Jpqs, and equals Exyzw

where Jpqs = Ixyzw.

Proof. This is immediate. For example, to see transitivity, suppose tEpqsu and uEpqsv.

Then there are x, y, z,w, x′, y′, z′,w′ such that Jpqs = Ixyzw = Ix′y′z′w′ and tExyzwu and
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uEx′y′z′w′v. Since Ixyzw = Ix′y′z′w′ , by Lemma 3.2.10(i) we have Exyzw = Ex′y′z′w′ so

uExyzwv and hence tExyzwv, where tEpqsv. ∎

Definition 3.2.15. Given Jpqs and the equivalence relationEpqs on it, we defineRpqs to be

the quotient Jpqs/Epqs. Elements of Rpqs are the Epqs-classes of points of M . As before,

we use the notation [m] to refer the element of Rpqs containing the element m ∈M .

We will see that Rpqs is precisely the D-set associated with the vertex ⟨pqs⟩ of the

structure tree of M . We call the elements of Rpqs directions.

The above equivalence relation allows us to refer to the D-set that witnesses Ixyzw by Jpqs

where Q(x, y; z,w ∶ p; q, s) holds.

Lemma 3.2.16. (i) If L(p; q, s) holds in M then there are x, y, z,w ∈ M such that

Q(x, y; z,w ∶ p; q, s).

(ii) If S(x, y; z,w) holds in M then there are p, q, s ∈M such that Q(x, y; z,w ∶ p; q, s).

Proof.

(i) First observe that the induced L-structure on {p, q, s} lies in D . Pick

A < M with A ∈ D , containing distinct elements p′, q′, s′, x′, y′, z′,w′ such that

L(p′; q′, s′) and S(x′, y′; z′,w′) are witnessed in the root D-set of A. Then

A ⊧ Q(x′, y′; z′,w′ ∶ p′; q′, s′) so M ⊧ Q(x′, y′; z′,w′ ∶ p′; q′, s′). By

3-homogeneity (Lemma 3.1.3(i)) there is g ∈ G with (p′, q′, s′)g = (p, q, s). Put

x ∶= x′g, y ∶= y′g, z = z′g,w ∶= w′g. Then M ⊧ Q(x, y; z,w ∶ p; q, s), as required.

(ii) Similar to (i).

∎

It follows from Lemmas 3.2.7 and 3.2.16 that if L(p; q, s) then there are x, y, z,w ∈ M
such that Jpqs = Ixyzw. Furthermore, by Lemma 3.2.14 Epqs then equals Exyzw. Thus,

we may identify Rpqs with Rxyzw. As noted in Lemma 3.2.12, Rxyzw carries a D-set
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structure. If Q(x, y; z,w ∶ p; q, s), we say that L(p; q, s) is witnessed in the D-set Rxyzw

(or equivalently, in the D-set Rpqs).

Likewise, S(x, y; z,w) is then witnessed in the D-set Rxyzw, or likewise in Rpqs. If

L(p; q, s) is witnessed in Rxyzw, and the Exyzw-classes of p, q, s lie in distinct branches

at the ramification point r, we say that the branch at r containing p/Exyzw is the

special branch at r. Let Ram(Rxyz) denote the set of ramification points of Rxyz.

If a1, . . . , an ∈ Rxyz (for n ≥ 3) lie in distinct branches at r ∈ Ram(Rxyz), we write

r = ram(a1, . . . , an).

Lemma 3.2.17. The partial order (S∗/P,≤) is a lower semilinear order. Furthermore,

and if ⟨xyzw⟩, ⟨pqts⟩ are incomparable elements there is a vertex ⟨abcd⟩ such that

⟨abcd⟩ = inf{⟨xyzw⟩, ⟨pqts⟩}, so S∗/P is a meet-semilattice. In addition, it has no

maximal or minimal elements, and is dense.

Proof. We show the semilinearity via Claims 1 and 2 below:

Claim 1. Given two sets Ixyzw and Ipqts such that no one contains the other then there is

another set Iabcd containing both.

Proof. Let A < M with x, y, z,w, p, q, t, s ∈ A ∈ D . Then (by putting additional points

into A if necessary) S(x, y; z,w) and S(p, q; t, s) are witnessed in incomparable D-sets

of A, and we may suppose these lie in cones (at the root ρ of A) corresponding to distinct

ramification points r1, r2 of D(ρ). There are a, b, c, d ∈ A with S(a, b; c, d) witnessed in

D(ρ), such that x, y, z,w are in distinct branches at the ramification point r1 and p, q, t, s

are in distinct distinct branches at r2, as depicted.

r1 r2

a c

b d

x

y

z w

p

q

s

t

Figure 3.10: Dρ
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We claim Ixyzw ⊆ Iabcd. Let v ∈ Ixyzw. We may suppose v ∈ A. Then, without loss

of generality, we have P (x, y; z,w ∶ x, v; z,w). Since v appears in a higher level, that

means it is in a distinct branch at r1 = ram(x, y, z,w), and since a, b, c, d are in the root

then x, z,w, v will be in distinct branches at r1. This implies that wherever v lives in the

root and since we have S(a, b; c, d) then v ∈ Iabcd so Ixyzw ⊂ Iabcd. Similarly we have

Ipqts ⊂ Iabcd. Moreover, this shows that ⟨abcd⟩ is the infimum in S∗/P of ⟨xyzw⟩ and

⟨pqts⟩.

∎

Claim 2. Assume ⟨xyzw⟩ and ⟨pqts⟩ are incomparable. There is no Ilmno contained in

both Ipqts and Ixyzw.

Proof. Assume there are l,m,n, o ∈ M with Ilmno ⊆ Ixyzw ∩ Ipqst. By assumption, there

are a, b ∈ M with a ∈ Ixyzw ∖ Ipqst and b ∈ Ipqst ∖ Ixyzw. Let A < M be finite with

x, y, z,w, p, q, s, t, l,m,n, o, p ∈ A ∈ D . Let S(x, y; z,w) and S(p, q; s, t) be witnessed

in A by D-sets Dν1 and Dν2 respectively, and S(l,m;n, o) by Dµ. Then ν1, ν2 are

incomparable (due to the existence of a, b) but µ ≥ ν1 and µ ≥ ν2 (as Ilmno ⊆ Ixyzw ∩ Ipqst).
This is impossible, as the structure tree of A is semilinearly ordered. ∎

Claim 3. (S∗/P,≤) has no greatest or least element, and it is dense where the density here

is in the sense of semilinear orders.

Proof. Let ⟨xyzw⟩ ∈ S∗/P . We may suppose that the structure induced on {x, y, z,w}
lies in D . Choose a structure A ∈ D containing x′, y′, z′,w′, p, q, s, t as depicted, (in the

root D-set):

r

x′
y′

z′ w′

s

t

p

q

Figure 3.11: DρA
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so the map (x, y, z,w) z→ (x′, y′, z′,w′) is an (L,S)-isomorphism, S(x′, y′; z′,w′)
is witnessed in the successor D-set Dµ of the root Dρ of A corresponding to the

ramification point r, and p, q, s, t are as shown in Dρ. We may suppose also Ar is

isomorphic to the structure induced on {x, y, z,w} via an isomorphism φ inducing

(x′, y′, z′,w′) z→ (x, y, z,w).

We may suppose A ≤M . Then by semi-homogeneity, φ extends to some g ∈ G. Clearly

⟨pqst⟩ < ⟨x′y′z′w′⟩, and it follows that ⟨pgqgsgtg⟩ < ⟨xyzw⟩, as required. A similar

argument shows that S∗/P has no greatest element under ≤.

The argument for density is a similar application of semi-homogeneity. Assume

⟨xyzw⟩ < ⟨pqst⟩. We may find a finite substructure A of M containing x, y, z,w, p, q, s, t,

such that S(x, y; z,w) is witnessed in the root D-set Dρ of A, which has a ramification

point r at which p, q, s, t lie in distinct non-special branches. We may suppose that

there are l,m,n, o ∈ A such that p, q, s, t, l,m,n, o all lie in distinct non-special branches

at r, that S(l,m;n, o) is witnessed in the successor Dµ corresponding to r, and that

p, q, s, t lie in distinct non-special branches at a ramification point of Dµ. It follows that

⟨xyzw⟩ < ⟨lmno⟩ < ⟨pqst⟩, as required.

∎

At this point we know that M has an interpretable meet semi-lattice which is dense with

no maximal or minimal elements, that each vertex is coded by a quadruple ⟨xyzw⟩ and a

triple ⟨pqs⟩, and that corresponding to each vertex ⟨pqs⟩ there is a dense D-set Dpqs with

universe Jpqs/Epqs.

Our next task is to identify analogues for M of the maps fµ and gµν for members of D .

We define a bijection f⟨xyz⟩ from the set of cones at ⟨xyz⟩ to Ram(Rxyz). We first need

the following lemma.

Lemma 3.2.18. Suppose x, y, z, p, q, s ∈M . Then

(i) Let ⟨pqs⟩ < ⟨xyz⟩. Then Epqs∣Jxyz refines Exyz.
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(ii) Suppose ⟨xyz⟩ < ⟨pqs⟩. Let p, q, s lie in distinct branches at the ramification point

r of Rxyz, and let u, v ∈ Jpqs be Epqs-inequivalent. Then u, v lie in distinct branches

at r.

Proof.

(i) Let u, v ∈ Jxyz with uEpqsv. Then there are p′, q′, s′, t′ such that Jpqs = Ip′q′s′t′ . Pick

x′, y′, z′,w′ such that Jxyz = Ix′y′z′w′ . We must show uEx′y′z′w′v, that is, for every

l,m,n ∈M , P (x′, y′; z′,w′ ∶ l,m;n,u) ⇔ P (x′, y′; z′,w′ ∶ l,m;n, v). This follows

by considering finite A ∈ D with A <M and A containing all the above elements.

(ii) We prove the contrapositive, so suppose we have in Rxyz a diagram such as the

following.

r

p

q s

u

v

Figure 3.12

As in (i), pick p′, q′, s′, t′ such that Jpqs = Ip′q′s′t′ . We must again show uEp′q′s′t′v,

that is, if l,m,n ∈M , P (p′, q′; s′, t′ ∶ l,m;n,u) ⇔ P (p′, q′; s′, t′ ∶ l,m;n, v). Again,

this can be argued in finite substructures of M lying in D .

∎

Now suppose ⟨xyz⟩ < ⟨pqs⟩. Then by the last lemma p, q, s are inequivalent moduloExyz,

so there is a ramification point r of Rxyz such that the Exyz-classes of p, q, s lie in distinct

branches at r. Put f⟨xyz⟩(⟨pqs⟩) = r.

Lemma 3.2.19. (i) In the above notation, the value of f⟨xyz⟩(⟨pqs⟩) depends only on

the cone at ⟨xyz⟩ containing ⟨pqs⟩.
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(ii) f⟨xyz⟩ determines a bijection between the set of cones at ⟨xyz⟩ and the set of

ramification points of Rxyz.

Proof.

(i) Claim 1. If a, b ∈ Jpqs are inequivalent moduloEpqs, then they lie in distinct branches

at r.

Proof. This is immediate from Lemma 3.2.18(ii). ∎

Claim 2. If ⟨xyz⟩ < ⟨pqs⟩ < ⟨p′q′s′⟩ then f⟨xyz⟩(⟨pqs⟩) = f⟨xyz⟩(⟨p′q′s′⟩).

Proof. In this situation, p′, q′, s′ are inequivalent modulo Ep′q′s′ and hence modulo

Epqs (Lemma 3.2.18(i)) so lie in distinct branches at r. (by Claim 1). ∎

Claim 3. If ⟨pqs⟩ and ⟨p′q′s′⟩ are incomparable but in the same cone at ⟨xyz⟩, then

f⟨xyz⟩(⟨pqs⟩) = f⟨xyz⟩(⟨p′q′s′⟩).

Proof. Pick p′′, q′′, s′′ with ⟨xyz⟩ < ⟨p′′q′′s′′⟩ < ⟨pqs⟩,
and ⟨xyz⟩ < ⟨p′′q′′s′′⟩ < ⟨p′q′s′⟩. By Claim 2,

f⟨xyz⟩(⟨pqs⟩ = f⟨xyz⟩(⟨p′′q′′s′′⟩) = f⟨xyz⟩(⟨p′q′s′⟩). ∎

Part (i) follows.

(ii) To see that f⟨xyz⟩ is surjective, let r ∈ Ram(Rxyz) and choose p, q, s ∈ M such that

modulo Exyz they lie in distinct non-special branches at r. Then ⟨xyz⟩ < ⟨pqs⟩, by

considering finite substructures of M . It follows that f⟨xyz⟩(⟨pqs⟩) = r.

For injectivity, suppose ⟨pqs⟩, ⟨p′q′s′⟩ lie in distinct cones at ⟨xyz⟩. Suppose that

there is a finite A ∈ D with x, y, z, p, q, s, p′, q′, s′ ∈ A < M such that p, q, s and

p′, q′, s′ meet at the same ramification point in the D-set in which L(x; y, z) holds.

Then (e.g. by considering a sequence of one-point extensions between them) this

holds in any A′ with A < A′ < M . It follows by semi-homogeneity that there are

u, v,w ∈ M with ⟨xyz⟩ < ⟨uvw⟩ and ⟨uvw⟩ < ⟨pqs⟩ and ⟨uvw⟩ < ⟨p′q′s′⟩, so ⟨pqs⟩
and ⟨p′q′s′⟩ lie in the same cone of S∗/P at ⟨xyz⟩.
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∎

∎

Lemma 3.2.20. Let ⟨xyz⟩ < ⟨pqs⟩, and let [m] be a pre-direction of Rpqs. Let

r ∶= f⟨xyz⟩(⟨pqs⟩) ∈ Ram(Rxyz). Then there is a unique set t of branches of Rxyz at r

such that [m] = ∪ ∪ t.

Proof. Consider a finite structure A ∈ D containing x, y, z, p, q, s,m. Consider the vertex

⟨xyz⟩ < ⟨pqs⟩, and r ∶= f⟨xyz⟩(⟨pqs⟩). Let t be the set of branches {t1, . . . , tn} at r that

corresponds to the direction [m]. Each pre-branch of ti, i ∈ {1, . . . , n} consists of a

collection of pre-directions, say

t1 = {u(1)
1 , u

(1)
2 , . . . , u

(1)
m1},m1 ∈ N

t2 = {u(2)
1 , u

(2)
2 , . . . , u

(2)
m2},m2 ∈ N

⋮

tn = {u(n)
1 , u

(n)
2 , . . . , u

(n)
mn},mn ∈ N

then

⋃ t =
n

⋃
i=1

ti = t1 ∪ ⋅ ⋅ ⋅ ∪ tn = {u(1)
1 , u

(1)
2 , . . . , u

(1)
m1 , . . . , u

(n)
1 , u

(n)
2 , . . . , u

(n)
mn}

hence [m]∩A = (⋃⋃{t1, . . . , tn})∩A. Since this holds for any A′ ∈ D with A < A′ <M ,

the result follows. ∎

Define g⟨pqs⟩⟨xyz⟩([m]) = t where [m] = ∪ ∪ t. So g⟨pqs⟩⟨xyz⟩ is a map from the directions

of Rpqs to the power set of the set of branches at r. From the definition we see that if

[m] ≠ [m′] then g⟨pqs⟩⟨xyz⟩([m]) ∩ g⟨pqs⟩⟨xyz⟩([m′]) = ∅.

Lemma 3.2.21. The map g⟨pqs⟩⟨xyz⟩ is well defined.

Proof. The point essentially is that in the proof of Lemma 3.2.20, if ⟨pqs⟩ = ⟨p′q′s′⟩,
then in any finite structure A ∈ D with x, y, z, p, q, s, p′, q′, s′,m ∈ A < M , the set t of
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branches depends just on the direction of m in the D-set witnessing L(p; q, s), and on the

maps gµν where µ codes in A the D-set witnessing L(p; q, s), and ν the D-set witnessing

L(x; y, z). ∎

Proposition 3.2.22. (i) The groupG⟨xyz⟩ is transitive on the internal nodes ofRxyz. i.e.

on the set of ramification points in Rxyz.

(ii) (a) The stabiliser G⟨xyz⟩ is transitive on Jxyz.

(b) The group G is transitive on the semilinear order S∗/P .

(c) The group G is transitive on the set X , where X = ⋃xyzwRxyzw, the union of

all the sets of directions in the structure M .

(iii) The group G{Jxyz} induces a 2-transitive group on the set of directions of Rxyz, i.e.

is transitive on the set of pairs of distinct directions.

(iv) The equivalence relation Exyzw is the unique maximal G{Ixyzw}-congruence on

Ixyzw.

Proof.

(i) Assume r, r′ are two ramification points of Rxyz with x, y, z and p, q, s as triples

lying in distinct branches around them respectively with L(p; q, s) witnessed in

Rxyz. We want to find some g ∈ G(⟨xyz⟩) such that rg = r′. Then R(x; y, z ∶ p; q, s)
holds. By 3-homogeneity there is g ∈ G such that {x, y, z}g = {p, q, s}. As L(x; y, z)
and L(p; q, s) hold, then xg = p and {y, z}g = {q, s}. Since, by Lemma 3.2.7(ii),

Jxyz = Jpqs so ⟨xyz⟩ = ⟨pqs⟩, so g ∈ G⟨xyz⟩, and g preserves the D-relation on Rxyz,

so rg = r′.

(ii) (a) Consider a finite substructure A with the elements x, y, z, u ∈ A < M and let

L(x; y, z) be witnessed in the root D-set of A with x, y, z in distinct branches at

the ramification point r. To show the transitivity we want g ∈ G⟨xyz⟩ such that

for u ∈ Jxyz, ug = x. There are 3 cases to be considered:
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Case 1. If u is in the same branch at r as x, then L(x; y, z) and L(u; y, z) are

witnessed in Rxyz, hence ⟨xyz⟩ = ⟨uyz⟩. By semi-homogeneity of G there is

g ∈ G such that (u, y, z)g = (x, y, z). As Jxyz = Juyz then the D-set is fixed and

hence, by Lemma 3.2.8, ⟨xyz⟩ is fixed so g ∈ G⟨xyz⟩.

Case 2. If x, y, z, u are distinct at a ramification point r, then

L(x; y, z) ∧ L(x;u, y) ∧ L(x;u, z) hold and by semi-homogeneity there exists

w in the same branch as u at r such that L(u;w, z) is witnessed at r′ in the

same D-set i.e. R(x; y, z ∶ u;w, z) holds as in picture 3.13. This is because

we can find a structure in M with the elements x′, y′, z′, u′,w′ and L(u′;w′, z′)
and L(x′; y′, z′) such that the substructure on x′, y′, z′, u′ is isomorphic to the

one on x, y, z, u, so there is g ∈ G such that (x′, y′, z′, u′)g = (x, y, z, u). Put

w = w′g. Therefore, L(x; y, z) and L(u;w, z) hold, so by semi-homogeneity,

there is g′ ∈ G such that (u,w, z)g′ = (x, y, z). As Ruwz = Rxyz, g′ fixes the

D-set and hence fixes ⟨xyz⟩, so g′ ∈ G⟨xyz⟩.

r

x

y

z

w

u
r′

Figure 3.13

Case 3. Consider u in the same branch as z (the same if it is in the same

branch as y). If u is a special at ram(u, y, z) such that L(u; y, z) holds, then,

by semi-homogeneity, there is some g ∈ G that fixes y, z and takes u to x, and

as Rxyz = Ruyz then the D-set is fixed, hence ⟨xyz⟩ is fixed, so g ∈ G⟨xyz⟩.

Otherwise, by semi-homogeneity as argued in Case 2, there is some w such that

L(u;w, y) is witnessed inRxyz. Again, there is g ∈ Gwith (u,w, y)g = (x, y, z),

as required.

(b) Let ⟨xyz⟩, ⟨pqs⟩ ∈ (S∗/P,≤). Then M ⊧ L(x; y, z) ∧ L(p; q, s) so by

semi-homogeneity there is g ∈ G with (p, q, s)g = (x, y, z). Then ⟨pqs⟩ = ⟨xyz⟩.
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(c) This follows from (a) and (b).

(iii) Let [p] ≠ [q] be distinct directions of Rxyz with [p] = p/Exyz, [q] = q/Exyz and

put [x] = x/Exyz, [y] = y/Exyz. It suffices to show there is g ∈ G{Jxyz} with

([x], [y])g = ([p], [q]). Choose s ∈ M such that R(x; y, z ∶ p; q, s) holds - this

exists by semi-homogeneity. Using 3-homogeneity (Lemma 3.1.3(i)) there is g ∈ G
with {x, y, z}g = {p, q, s}, put xg = p, yg = q, zg = s with L(x; y, z) and L(p; q, s).

Since R(x; y, z ∶ p; q, s) holds, g fixes Jxyz setwise, so g preserves Exyz so fixes

Rxyz setwise, and clearly ([x], [y])g = ([p], [q]).

(iv) First, Ixyzw = Jpqs. Thus, maximality of Exyzw follows immediately from

2-transitivity of G{Jpqs} on Rpqs = Jpqs/Epqs, and this was proved in (iii).

It remains to prove that Epqs is the unique maximal G{Jpqs}-congruence. To see

this, suppose E∗ is a G{Jpqs}-congruence on Jpqs and E∗ /⊆ Epqs. We may suppose

pE∗q. Let p′ ∈ Jpqs with pEpqsp′. Then L(p; q, s) ∧ L(p′; q, s), and furthermore the

map (p, q, s) z→ (p′, q, s) preserves an L-relation witnessed in Rpqs. It follows

by semi-homogeneity that there is a g ∈ G with (p, q, s)g = (p′, q, s). Then

Jgpqs = Jpqs, and as qg = q, g fixes E∗(q) setwise, so as pE∗q we have p′E∗q. Thus

p/Epqs ⊂ E∗(q). Hence Epqs ⊂ E∗ and it follows that E∗ is universal, as required.

∎

Observe that the class D does not have the hereditary property (Lemma 2.3.4).

Corresponding to this, we believe that the structure M is not homogeneous, but have

not proved this.
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Chapter 4

Jordan Group

As our goal is to show that the automorphism group of the structure M that we built is

a Jordan group preserving a limit of D-relations, in this chapter we investigate what our

Jordan sets might be. In fact, we find more Jordan sets than we need (using the properties

of Jordan sets, see Section 1.5). Then we show that G, where G = Aut(M), is a Jordan

group. In Section 4.2 we prove that G satisfies the requirements of Definition 1.5.19 to

get the main result of this work.

4.1 Jordan Sets

Recall that if H is a permutation group on X a Jordan set for H is a set Z such that

whenever X = Y ∪Z, ∣Z ∣ > 1, Y ∩Z = ∅ and H(Y ) is transitive on Z. A transitive group

with a proper Jordan set is called a Jordan group. In this chapter we find a Jordan set to

show that G is a Jordan group.

Recall that if (X,B) is a B-set and x ∈ X , branches mean the

equivalence classes for the equivalence relation defined on X ∖ {x} such that

Rx(y, z) ∶⇔ [x, y] ∩ [x, z] ∩ (X − {x}) /= ∅. There is a similar definition of

branches for D-sets, see 1.4.22. Hence branches are subsets of B-sets and D-sets.
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Also, recall that each pair (Rxyzw,Dxyzw) is a D-set of M , and an Exyzw-class is a

direction in Rxyzw.

Definition 4.1.1. (i) A subset Û of M is said to be a pre-branch if there

are x, y, z,w ∈ M with S(x, y; z,w) and a branch U in Rxyzw such that

Û = {w ∈ M ∶ [w] ∈ U} = ⋃{[w] ∶ [w] ∈ U}, i.e. the union of all Exyzw-classes in

one branch at some ramification point.

(ii) We say that Û is a pre-branch at a ramification point if the corresponding U is a

branch at that ramification point in some D-set (Rxyzw,Dxyzw).

Remark 4.1.2. The elements of the labelling D-sets are the directions in the sense of

betweenness relations. So we take a subset Û of M and we call it a pre-branch if in a

particular D-set which witnesses S(x, y; z,w) there is a branch U in Rxyzw such that Û is

the union of the Exyzw-classes of the elements in that particular branch. Hence the branch

U is a set of Exyzw-classes, while the pre-branch is a subset of M . Given a D-set Rxyzw

we put R̂xyzw = ⋃Rxyzw, the corresponding subset of M .

The relation L is not defined on the set of directions of M . So we will define

L̃([x]; [y], [z]) as follows:

Suppose there is a D-set R = Jxyz/Exyz and u, v,w ∈M such that L(u; v,w) is witnessed

in R. Let [u], [v], [w] be the corresponding directions of R. Then put L̃([u]; [v], [w]).

This relation on R is well-defined, by the following lemma.

Lemma 4.1.3. If [u] = [u′], [v] = [v′] and [w] = [w′] in the D-set R, then L(u; v,w) is

witnessed in R if and only if L(u′; v′,w′) is witnessed in R.

Proof. Assume L(u; v,w) is witnessed in R (in M ). Suppose u′Euvwu, v′Euvwv and

w′Euvww. Then in any finite A ∈ D containing u,u′, v, v′,w,w′, the D-set witnessing

L(u; v,w) witnesses L(u′; v′,w′). Hence R(u; v,w ∶ u′; v′,w′) holds in A, and hence in

M . So L(u′; v′,w′) is witnessed in R. ∎
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Now, the goal is to show that each pre-branch Û is a Jordan set for G = Aut(M) in its

action on M . In order to do that we first show that each pre-direction is a Jordan set.

Lemma 4.1.4. (i) If [n] is a pre-direction, there is a unique vertex jn of τ (the structure

tree) such that [n] is a pre-direction of D(jn).

(ii) Let jn be the vertex for which [n] is a pre-direction. Then the stabiliser of the

pre-direction [n] is a subgroup of the stabiliser of the vertex jn, i.e. G{[n]} ≤ Gjn .

Proof.

(i) It suffices to observe that [n] is a pre-direction of only one D-set (namely Rjn).

We know that if i < jn that [n] is a union of a set of pre-branches of Ri. So [n]
cannot be a pre-direction of two comparable D-sets. And an easy argument with

finite structures shows directions of two incomparable D-sets cannot give equal

pre-directions.

(ii) This follows immediately from (i).

∎

Fix a direction [n] of M (so n ∈ M ). Let jn be the unique vertex of the structure tree

of M , whose D-set Rjn has [n] as a pre-direction. Define I ∶= {i ∈ J ∶ i < jn} where J

is a chain in the structure tree, and for each i ∈ I let Ri be the D-set indexed by i. Let

Di denote the corresponding D-relation Dxyzw, where Ri = Rxyzw. Then I carries a total

order <, where i < j⇔ R̂j ⊂ R̂i.

As usual, we may write each Ri in the form Rxyzw or Rpqs (and likewise for each R̂i).

For each i ∈ I , let ri = fi(jn), the ramification point of Ri corresponding to the cone at i

containing jn.

For each i ∈ I , there is, by Lemma 3.2.20, a set Si of branches at ri such that

gjni([n]) = ⋃⋃Si.
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We consider the induced structure on the subset [n] of M . First, for each i ∈ I , there is an

equivalence relation Fi on [n] defined by

d1Fid2⇔ d1, d2 lie in the same pre-branch of R̂i at ri.

Also for each i ∈ I , let Ei be the equivalence relation Exyzw (restricted to [n], where

Ri = Rxyzw).

Lemma 4.1.5. If i, j ∈ I with i < j, then Ei ⊂ Fi ⊂ Ej ⊂ Fj .

Proof. Take a particular pre-branch at ri in R̂i lying in [n], say Ûi. By the definition of

the relation Fi the pre-branch Ûi is an Fi-class. Since each pre-branch corresponds to a

branch and it is a union of pre-directions then all elements in the same direction lie in

the same branch so Ei ⊂ Fi. Similarly we have Ej ⊂ Fj . To show that Fi ⊂ Ej , we see

that if [m] is a pre-direction for some Rj where j ∈ I with j > i, then [m] is a union of

pre-branches of R̂i at ri. That gives us all the pre-directions higher contain Fi-classes. ∎

The following definition and lemma are rephrasing for Theorem 22.1 in [6] to suit the

context here.

Definition 4.1.6. For each i ∈ I , define a C-relation Ci on ⋃Si (so on the set of

directions of Ri lying in the branches of Si) as follows: if [x], [y], [z] ∈ ⋃Si, then

Ci([z]; [x], [y]) ↔ Di([x], [y]; [z], [w]) for any pre-direction [w] of Ri lying outside

⋃Si.

See Figure 4.1 below.

Lemma 4.1.7. The relation Ci induces a C-relation on each member of Si.

Proof. See [6], Theorem 22.1. ∎
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ri

[z]

[x]

[y]

[w]

Si

Figure 4.1: Ri

For each i ∈ I there is such Si as described before; that is because in each D-set Ri the

pre-direction [n] of Rjn corresponds to a collection of branches of Ri at ri.

Lemma 4.1.8. The group G{[n]},i preserves the equivalence relations Ei and Fi on [n].

Proof. Let g ∈ G{[n]},i. As G{[n]},i ≤ Gi, g fixes R̂i and Ri setwise and preserves Di, and

as [n] is a union of pre-branches at ri and g fixes [n] setwise, g preserves the partition of

R̂i into pre-branches at ri. The result follows. ∎

For each i ∈ I , let Ûi be a pre-branch of R̂i at ri and GUi be the group induced by G
{Ûi}

on Ûi/Ei. This group is GÛi/Ei

{Ûi}
and, again, for ease we write it as GUi .

Lemma 4.1.9. (i) The group GUi has six orbits on ordered pairs of Ei-inequivalent

elements of Ûi.

(ii) The group GUi is transitive on Ûi.

Proof.
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(i) We will argue this based on the position of the special branch at ramification points

within Ûi.

Case.1 Let [x], [y] ∈ Ui, then x, y ∈ Ûi, and assume that there is [z] ∈ Ri ∖ Ui,
(so z ∈ R̂i ∖ Ûi), such that L(z;x, y) holds at r = ram(x, y, z). Then, by

semi-homogeneity, for any distinct [x′], [y′] ∈ Ui, then x′, y′ ∈ Ûi, with L(z;x′, y′)
holding at r′ = ram(x′, y′, z), there is g ∈ G such that (x, y, z)g = (x′, y′, z). This g

can be chosen to fix Ûi. Indeed, pick w ∈ R̂i ∖ Ûi such that L(w; z, x) (so w is in

the special branch at ri = ram(z,w, x)). Then by semi-homogeneity choose g ∈ G
with (x, y, z,w)g = (x′, y′, z,w). As S(x, y; z,w) and S(x′, y′; z,w) in Ri, g fixes

Ri, and because g fixes z,w and xg ∈ Ûi then it fixes Ûi as a set. This case gives one

orbit on ordered pairs from Ûi. See Figure 4.2.

ri

yx

y′
r

r′

x′

z

w

Figure 4.2: Case.1

Case.2 Assume that one of the branches containing x, y is special at r = ram(x, y, z),

say the one containing x, see Figure 4.3. Again, by semi-homogeneity, for

any distinct [x′], [y′] ∈ Ui with, for example, L(x′; y′, z) holding at r′, (the

dashed lines for x′ mean the possible places for x′) then there is g ∈ G such

that (x, y, z)g = (x′, y′, z). As above, g can be chosen to fix Ûi, as for

[w] ∈ Ri ∖ Ui with L(w; z, x) there is g ∈ G, by semi-homogeneity, such that

(x, y, z,w)g = (x′, y′, z,w), and such g fixes Ui. Thus there is g ∈ G{Ui}
such that

(x, y, z)g = (x′, y′, z). Observe that this case gives one orbit on unordered pairs, but

two orbits on ordered pairs.
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ri

yx

r

z

r′
x′x′

x′
y′

w

Figure 4.3: Case.2

Case.3 Suppose the special branch at r = ram(x, y, z, u) within Ûi is another one, i.e.

neither the branch containing x nor y or z, say u as in Figure 4.4. Let [u′] ∈ Ui such

that for some [x′], [y′] ∈ Ui the relation L(u′;x′, y′) holds at r′ = ram(x′, y′, z, u′).

Pick [w] ∈ Ri ∖ Ui as in the picture. Assume that L(x; y, z) and L(x′; y′, z), or

L(y;x, z) and L(y′;x′, z), or L(z;x, y) and L(z;x′, y′). In each of these three

cases, by semi-homogeneity there is g ∈ G with (x, y, u, z,w)g = (x′, y′, u′, z,w).

Such g fixes Ui, so this case gives three further GUi-orbits on ordered pairs from Ui.

ri

u
x

y′
r

r′

x′

z

y

u′

w

Figure 4.4: Case.3

(ii) Let x,x′ ∈ Ûi and z ∉ Ûi in a D-set R̂i. We want to find g ∈ GUi such that

xg = x′. Choose y, z ∈ R̂i ∖ Ûi so that y ≠ z, ri = ram(x, y, z), and L(y;x, z)
holds. Then L(y;x′, z) holds too at ri, so by semi-homogeneity there is g ∈ G such

that (x, y, z)g = (x′, y, z), hence xg = x′. So g fixes the D-set hence fixes i. As the
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two triples determine ri, g fixes ri and because x,x′ ∈ Ûi then g ∈ G
{Ûi}

so GUi is

transitive on Ui.

∎

Remark 4.1.10. In the proof of part (i) above, colour the ramification points r into two

colours, red and green depending on the position of the special branch, such that if z lies

in the special branch at r we colour the ramification point by red, otherwise we colour it

by green. We see that GU is transitive on ramification points of each colour, so has two

orbits on ramification points of Û .

For the Fi-class Ui, the set Ûi/Ei carries a C-relation structure (as is mentioned in

Corollary 4.1.7) with induced relations L and S, and the binary relations in the following

definition.

Definition 4.1.11. Consider a D-set R̂i and a pre-branch Ûi at ri with x, y, z ∈ R̂i and

x, y ∈ Ûi, but z ∉ Ûi. Let r = ram(x, y, z). We define the following binary relations:

1. P1(x, y) if z is special at r.

2. P2(x, y) if x is special at r (so P2(y, x) if y is special at r).

3. P3(x, y) if none of x, y, z is special at r and L(z;x, y) holds in the D-set of the

vertex corresponding to r higher up.

4. P4(x, y) if none of x, y, z is special at r and L(x; y, z) holds in a D-set of a vertex

of the cone corresponding to r higher up.

For each such Ui, the group GUi is transitive on Ûi/Ei by Lemma 4.1.9.

Lemma 4.1.12. The binary relations P1, P2, P3, P4 are preserved byGUi , and are orbits

of GUi on pairs of Ei-inequivalent elements of Ûi.

Proof. This follows immediately from the argument in Lemma 4.1.9(i) such that Case 1

implies P1 is an orbit, Case 2 applies to P2 and Case 3 applies to P3 and P4. ∎
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Lemma 4.1.13. The G
{Ûi}

-congruence Ei on Ûi is maximal.

Proof. We want to show that G
{Ûi}

is primitive on Ui = Ûi/Ei. Suppose that x, y ∈ Ûi are

inequivalent modulo Ei, and that xE∗y for some equivalence relation E∗. Let z ∈ R̂i ∖ Ûi
and let r = ram(x, y, z). By considering various configurations for x, y, z, we show

E∗(x) = Ûi, i.e. that E∗ is universal.

Case 1. Assume z is special at r. Let x′ ∈ Ûi. We consider the various possible positions

of x′ in the following sub-cases:

(a) Suppose that x′ is in the same branch as x at r. By Lemma 4.1.9(i) there is g ∈ GUi

such that (x, y)g = (x′, y). As g fixes theE∗([y]) (since it fixes y, it fixes theE∗-class

of y) and x ∈ E∗([y]) (by the assumption ) then x′ ∈ E∗(y). Hence x′ ∈ E∗(x), thus

E∗(x) contains all the branch at r containing x′.

ri

y

x

r

z

x′
r′

Figure 4.5: Case 1.(a)

(b) If x′ is in distinct pre-branch at r there is g ∈ GUi taking y to x′ and fixing x, hence

fixing E∗([x]). As [x]E∗[y] and yg = x′ then E∗([x]) contains the branch at r

containing x′, so x′ ∈ E∗(x). And again thus E∗(x) contains all the branch at r

containing x′.
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ri

yx

r x′

z

Figure 4.6: Case 1.(b)

(c) Consider a ramification point r′ strictly between ri and r such that r′ = ram(z, x, x′)
with L(z;x,x′) ∧ L(z; y, x′). By Lemma 4.1.9(i) there is g ∈ G{Ui}

with

(x, y)g = (x,x′). Then g fixes E∗(x) as a set, so as y ∈ E∗(x), also x′ ∈ E∗(x).

Thus E∗(x) contains the branch at r′ containing x′, and likewise that containing x.

In Case (c), it follows that E∗(x) contains all branches at r′ other that the special one

containing z. Since such a ramification point r′ can be chosen coinitially in Ui, i.e.

arbitrarily close to to ri, it follows that E∗(x) = Ûi.

ri

yx

r

r′
z

x′

Figure 4.7: Case 1.(c)

Case 2. Suppose that the special branch at r is the one containing x or containing y,

say the branch containing x (the argument is similar if the branch containing y is special)

such thatL(x; y, z) holds at r and [x]E∗[y]. Let x′ ∈ Ûi. We consider various possibilities

regarding the place of x′:

(a) Suppose x′ lies in the branch containing x at r. By Lemma 4.1.9(i) there is g ∈ G
{Ûi}

with (x, y)g = (x′, y). Since g fixes y it fixes E∗(y) = E∗(x), so x′E∗y. Thus E∗(y)
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contains the whole branch at r containing x′. A similar argument applies if x′ lies in

the branch at r containing y, or in another branch at r.

ri

y

x

r

r′

z

x′

Figure 4.8: Case 2.(a)

(b) For any ramification point r∗ between ri and r, there is r′ as depicted in Figure 4.9.

At such r′, choose a branch x′. Then by Lemma 4.1.9(i) there is g ∈ G
{Ûi}

with

(x, y)g = (x,x′). This is because we have L(x; y, z) at r and L(x;x′, z) at r′. As x

is fixed, E∗(x) is fixed. Then the branch containing x at r is mapped to the branch

containing x at r′. Hence the branch containing x at r′ lies in E∗([x]). The whole

branch at ri is a union of such branches so lies in E∗([x]).

ri

yx

x′

r

r′

z

r∗

Figure 4.9: Case 2.b

Therefore, wherever the arbitrary element lies within Ui it will be in E∗([x]), so E∗

is universal.

Case 3. Suppose that the special branch at r contains none of x, y or z. Arguing as

in Cases 1 and 2, and using Lemma 4.1.9(i), we see that E∗(y) contains the branch
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containing x, and the branch at r containing y. Furthermore, we can find a ramification

point r′ in Ûi arbitrarily close to ri, and g ∈ GUi fixing x and taking x′ to y where

r′ = ram(z, x, x′). Then E∗(x) contains the branch at r′ containing x, and thus contains

the whole of Ûi. Hence E∗ is universal.

∎

Consider three vertices i, j, j′ ∈ I such that i < j < j′ and their corresponding D-sets

Ri,Rj,Rj′ respectively. Then focus on an Fi-class (it contains Ei-classes). This Fi-class

will be contained in a single Ej-class which is contained in an Fj-class, and this Fj-class

will be contained in an Ej′-class, so this Ej′-class contains the Fi-class and each Ek-class

where k > j′ will contain the Fi-class. That means the classes are going to be coarser if

we go higher in the structure tree. In particular, we have the following.

Lemma 4.1.14. Given an Fi-class Ûi, the intersection of the Ej-classes containing Ûi

(for j > i) is just Ui.

Proof. We want to show that Fi = ⋂
j>i
Ej . It is clear that Fi ⊆ ⋂

j>i
Ej and Ej (j > i)

contains Fi from the above paragraph. Conversely, suppose ¬uFiv. We want to find j > i
such that ¬uEjv. Let a ∈ M lie in the special branch at ri. Consider a finite structure

A ∈ D containing elements a′, u′, v′,w′, s′, t′ in distinct branches at a ramification point

r at the root D-set (with a′ special), such that in a higher D-set we have L(w′; s′, t′),

with u′, v′,w′, s′, t′ again in distinct branches at a ramification point. We may suppose

A ≤ M . By semi-homogeneity there is g ∈ G with (a′, u′, v′)g = (a, u, v). The relation

L(w′g; s′g, t′g) will be witnessed in a D-set Rj with j > i, and we have ¬uEjv.

∎

Recall that if i < jn then Si is the set of branches of R̂i at the ramification point ri which

corresponds to the direction [n].

Lemma 4.1.15. Let u, v1, . . . vm be distinct elements of [n]. Then there is a greatest i

such that u is Ei-inequivalent to each of v1, . . . , vm and for such i the element u will be

Fi-equivalent to at least one of vj where j ∈ {1, . . . ,m}.
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Proof. Find i0 < jn containing elements w, s, t, u, v1, . . . , vm all lying in distinct branches

at the ramification point ri0 of the D-set Ri0 , with w, s, t ∉ [n], and with L(w; s, t)
witnessed in Rjn . Consider finite A ≤ M with A ∈ D and w, s, t, u, v1, . . . , vm lying

in distinct branches at a ramification point of the root D-set.

By considering the structure of A, we see that there is i with i0 < i < jn such that at ri, u

is in the same branch as at least one of the vi, but in a distinct direction to each. (Working

in A, consider the D-sets in the structure tree between the root and the D-set witnessing

L(w; s, t), and the corresponding ramification points; there will be a least D-set such that

u lies in the same branch as some vj at the relevant ramification point).

∎

Lemma 4.1.16. Let g be a permutation of M which is the identity on M ∖ [n], and for

each i ∈ I preserves the equivalence relation Ei, the relations L and S on [n], and the

C-relation induced by Ci on each Fi-class of [n]. Then g ∈ G.

Proof. By Lemma 4.1.14 and the assumption that g preserves the relations Ei, then g

preserves each Fi∣
[n]

and hence each Fi. It is enough to show that g preserves L and

S on M , since we have seen in Lemma 3.1.1 and Lemma 3.1.2 that all the relations in

the language can be written in terms of L and S. Hence, we will divide the proof into

two parts; part A for the proof of preserving the relation L, and part B for the proof of

preserving the relation S.

Part A. To prove that g ∈ G preserves L, we argue in four cases:

Case I . If x, y, z ∈ [n], then L(x; y, z) ↔ L(xg; yg, zg) follows immediately by the

hypothesis that g preserves L on [n].

Case II . Let x ∈ [n], y, z ∈ M ∖ [n]. Let R be the D-set in which L{x, y, z} is

witnessed with x, y, z lying in distinct branches at the ramification point r of R. We want

{x, y, z} and {xg, y, z} to satisfy the same L-relation. Since the position of the D-set R

is not known we will consider the possible cases based on where the D-set R witnessing

L{x, y, z} could be.
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Sub-case 1. Assume that theD-setR isRjn , and let L{x, y, z} hold, witnessed inR. Now

x,xg lie in the same element of R, and y, z lie in two other distinct elements of R, fixed

by g. It is therefore immediate that xg, y, z satisfy the same L-relation as x, y, z.

Sub-case 2. Assume that the D-set R is lower than Rjn , and has the corresponding subset

for the pre-direction [n], denoted Si. However, L(x; y, z) cannot be witnessed in this

D-set at ri, because x ∈ [n] so cannot lie in the special branch at ri. But it is possible

to see L(y;x, z) at ri, see Figure 4.10 (the same for L(z;x, y)) and since xg ∈ Si, as

every thing is fixed outside [n] and only moved within [n], then xg ∈ [n], and the relation

L(y;xg, z) holds.

ri

x

xg

yz

Figure 4.10

If L(x; y, z) holds in Ri such that x is special at another ramification point r′i not within

Si, again because xg ∈ Si, see Figure 4.11, and since x and xg lie in the same branch at r′i

we get L(xg; y, z). However if L(y;x, z) holds at r′i (the same for L(z;x, y)), then x and

xg will be in the same branch at r′i and it is readily seen that L(y;xg, z) holds.

ri

x

xg

z

y

r′i

Figure 4.11
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Sub-case 3. Assume that the D-set R is higher than Rjn . Now the direction containing x

in R contains the whole of [n], so is fixed by g, as are y and z. It follows that x, y, z and

xg, y, z satisfy the same L-relation.

Sub-case 4. Suppose the D-set R corresponds to the vertex k of the structure tree with k

incomparable with jn. Let i = inf{jn, k}, so i ∈ I . We may suppose that the cone of k at

i (in the structure tree) corresponds to the ramification point r′ of Ri; then r′ ≠ ri. Since

L{x, y, z} is witnessed in R, x, y, z lie in distinct non-special branches at r′. Hence, as

y, z ∉ Si, it follows that r′ cannot be in a meeting point for the branches in Si, and we

have, for example, the picture below in Ri.

ri

x

xg

z

y

r′

Figure 4.12

Now, x,xg lie in the same branch at r′ so in the same pre-direction of R, so the same

L-relation holds among x, y, z and xg, y, z.

Case III . If x, y ∈ [n] and z ∈M ∖ [n] we will consider the sub-cases as before.

Sub-case 1. Suppose that the D-set R is Rjn . The relations L{x, y, z} is not witnessed

because x and y are in the same direction in Rjn .

Sub-case 2. Suppose that the D-set R is lower than Rjn , say R = Ri. If ¬xFiy at ri, then

the relation L(x; y, z) or L(y;x, z) cannot be witnessed at ri because neither x nor y can

be special at ri. If L(z;x, y) holds at ri then L(z;xg, yg) is witnessed in Ri (xg, yg are in

distinct branches at ri because Fi is preserved on [n]).

If xFiy and L(x; y, z) is witnessed at r (see Figure 4.13 below) then we want to see

L(xg; yg, z) holds (the same if L(y;x, z) holds). For, we know that g preserves L on [n],
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from the hypothesis, so there is t ∈ [n] such that tFix ∧ tFiy and L(x; y, t) holds. Since

L is preserved on elements of [n], and g preserves the C-relation on each Fi-class of

[n] we get L(xg; yg, tg), then L(x; y, z) ↔ L(x; y, t) and L(xg; yg, zg) ↔ L(xg; yg, tg)
as g preserves C. Thus, if L(x; y, z) then L(xg; yg, zg), so L(x; y, t) ↔ L(xg; yg, tg) as

x, y, t ∈ [n], so L(xg; yg, tg) (as zg = z), as required.

ri

w

z

x

y
r

xg

yg

t

Figure 4.13

Sub-case 3. Suppose that the D-set R higher than Rjn , say Rk, then L{x, y, z} cannot be

witnessed because x, y are in the same direction in Rk.

Sub-case 4. Assume that R is the D-set of the vertex k incomparable with jn, and put

i = inf{k, jn}. Then the cone of k at i corresponds to a ramification point r′ of Ri distinct

from ri, and as x, y, z lie in distinct branches of Ri at r′, we must have r′ ∈ Si, as in the

diagram,

ri r′
x

y

t

z

Si

Figure 4.14

Choose t as depicted, in the same branch as z at r′ and the same branch as x at ri. As g
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preserves L on [n] and the C-relation on Fi-classes, we have

L(x; y, z) ⇔ L(x; y, t) ⇔ L(xg; yg, tg) ⇔ L(xg; yg, z)

and likewise for other permutations of {x, y, z}.

Case IV . If x, y, z ∉ [n], then as g is the identity on M ∖ [n] we have

L(x; y, z) ↔ L(xg; yg, zg), and likewise for the other orderings of {x, y, z}.

Part B. To prove that g preserves S, we argue in four cases. Again, let R be the D-set in

which S is witnessed, with S(x, y; z,w).

Case I . If x, y, z,w ∈ [n], then by the hypothesis, g preserves S on [n] so

S(x, y; z,w) ↔ S(xg, yg; zg,wg).

Case II . Suppose that x ∈ [n] and y, z,w ∈M ∖ [n].

Sub-case 1. Suppose that the D-set R is Rjn . Then let S(x, y; z,w) holds, then as xEjnxg

it is easily seen that S(xg, y; z,w) holds.

Sub-case 2. Suppose that the D-set R is lower than Rjn , say R = Ri. If S(x, y; z,w)
holds, then as x,xg ∈ [n], because g permutes elements of [n], and as [n] is a union of

pre-branches at ri the relation S(xg, y; z,w) holds.

Sub-case 3. Suppose that the D-set R is higher than Rjn . If S(x, y; z,w) holds then

S(xg, y; z,w) holds as x,xg lie in the same direction of R.

Sub-case 4. Suppose that R is the D-set of vertex k incomparable with jn. As before, let

i = inf{jn, k}, and let r′ be the ramification point of Ri corresponding to the cone of k,

so r′ ≠ ri. As x, y, z,w are in distinct directions of R, they are in distinct branches at r′,

so r′ ∉ Si. Now as xg ∈ Si, x and xg lie in the same branch at r′, so S(xg, y; z,w) holds,

witnessed in R.

Case III . Suppose that x, y ∈ [n] and z,w ∈M ∖ [n].

Sub-case 1. Assume that the D-set R is Rjn . The relation S(x, y; z,w) is violated, since

x, y are Ejn-equivalent and so lie in the same direction of Rjn .
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Sub-case 2. Assume that the D-set R is lower than Rjn . If ¬xFiy then as S(x, y; z,w) is

witnessed in Ri, z and w must lie in the same branch at ri, and we have S(xg, yg; z,w).

If xFiy, then xgFiyg, and as z,w ∉ Si we again have S(xg, yg; z,w).

Sub-case 3. Assume that the D-set R is higher than Rjn . Then x, y will be in the same

direction of R, hence S(x, y; z,w) is not witnessed.

Sub-case 4. Suppose that R is the D-set of vertex k incomparable with jn, put

i = inf{jn, k}, and let r′ be the ramification point of Ri corresponding to the cone at i

of k. Then because r′ ≠ ri and x, y ∈ Si and z,w ∉ Si, it is not possible that x, y, z,w lie

in distinct branches at r′, so not possible that S(x, y; z,w) is witnessed in R.

Case IV . Suppose that x, z ∈ [n] and y,w ∈M ∖[n]. Sub-cases 1,3,4 are handled exactly

as in Case III above.

For sub-case 2, as Si is a union of branches at ri, and x, z ∈ Si and y,w ∉ Si, we cannot

have S(x, y; z,w) witnessed in Ri.

Case V . Suppose that x, y, z ∈ [n] and w ∈M ∖ [n].

Sub-case 1. Suppose that the D-set R is Rjn , then S(x, y; z,w) is not witnessed in R.

Sub-case 2. Suppose that theD-setR is lower thanRjn , sayR = Ri. If S(x, y; z,w) holds

such that xFiy and ¬zFi{x, y} then xgFiyg and ¬zgFi{xg, yg}. So S(xg, yg; zg,w) holds.

If S(x, y; z,w) holds such that x, y, z are Fi-equivalent with C(z;x, y) (as this Fi-class)

then since g preserves C, then C(zg; yg, xg) holds (on the corresponding Fi-class), so

S(xg, yg; zg,w) holds.

Sub-case 3. If the D-set R is higher than Rjn , then S(x, y; z,w) is not witnessed since

x, y, z are in the same direction of R.

Sub-case 4. Suppose that R is the D-set of the vertex k incomparable with jn, let

i = inf{jn, k}, and let r′ be the ramification point of Ri corresponding to the cone at i

of k, so r′ ≠ ri. Since x, y, z ∈ Si and w ∉ Si and x, y, z,w lie in distinct branches at r′, we

must have r′ ∈ Si. Choose t as depicted (so in the same Fi-class as x, y, z).
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ri r′
x

y

t

w

z

Figure 4.15

Then xg, yg, zg, tg will be in the same configuration (possibly in a different Fi-class), as g

preserves C and Fi. Also S(x, y; z, t) ⇔ S(xg, yg; zg, tg), as g preserves S on [n]. Thus

S(x, y; z,w) ⇔ S(x, y; z, t) ⇔ S(xg, yg; zg, tg) ⇔ S(xg, yg; zg,w)

as required.

Case V I . If x, y, z,w ∉ [n], then as g is the identity on M ∖ [n],
S(x, y; z,w) ⇔ S(xg, yg; zg,wg).

∎

Remark 4.1.17. In [7], there is a similar version of the previous lemma, but there is

a missing assumption. In the proof of claim 6 of Proposition 5.6 there needs to be a

statement saying that g preserves the semilinear order relation on the Ei-classes.

The proof of the following lemma is quite similar to the proof of Lemma 5.6 in [7], and

we follow the same procedure.

Lemma 4.1.18. Each pre-direction [n] is a Jordan set of G.

Proof. To show this, we want to define a group K ≤ G which is transitive on [n] and fixes

the complement M ∖[n]. We want to construct K as an iterated wreath product of groups

of automorphisms of C-relations.

Write [n] = {ui ∶ i ∈ ω}. For each u ∈ [n], i ∈ I , put [u]i = {x ∈M ∶ xFiu}. Also for each

i ∈ I , let Vi = [u0]i/Ei (the branch at ri containing u0). Let ei ∶= u0/Ei ∈ Vi. Define

Ω ∶= {f ∶ I →⋃
i∈I

Vi ∶ f(i) ∈ Vi for all i, supp(f) finite}
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where supp(f) = {i ∈ I ∶ f(i) ≠ ei}.

For each i ∈ I and u ∈ [n], define Ai(u) = [u]i/Ei (the branch at ri containing u). We aim

to find a system of maps φiV ∶ V → Vi, where i ∈ I and V ranges through branches [u]i/Ei
for u ∈ [n].

Given such maps, define χ ∶ [n] → Ω by χ(u)(i) = φi
Ai(u)

(u/Ei) for all u ∈ [n] and i ∈ I .

We need to define the maps φiV so that χ is a bijection. Define χ(u0) so that χ(u0)(i) = ei
for all i ∈ I .

Suppose that χ(u0), . . . , χ(uk−1) have been defined. We may suppose that each map

φi
Ai(ul)

has been defined, for all l < k, and all i ∈ I .

Let ik be the largest i ∈ I such that uk is Ei-inequivalent to ul for each l < k. Hence, by

Lemma 4.1.15, there is some l < k such that ulFikuk, so ulFiuk for all i ≥ ik. Now by

assumption φi
Ai(ul)

has been defined for all i ∈ I , so φi
Ai(uk)

has been defined for all i ≥ ik,

but not for i < ik. For i < ik, choose g ∈ G such that (Ai(uk))g = Vi and ([uk]i/Ei)g = ei
(this exists, since G is transitive on the set of branches and induces a transitive group on

each branch). Then put φi
Ai(uk)

(u/Ei) = (u/Ei)g, for all i < ik and uFiuk. Observe that

the maps φi
Ai(ul)

are now defined for all l ≤ k and all i ∈ I .

Claim 1. With the maps φi
Ai(u)

so defined, we have χ(uk) ∈ Ω for each k ∈ ω.

Proof. This is by induction on k. It is immediate that χ(u0) ∈ Ω, so assume it holds for all

l < k. By construction, as φi
Ai(uk)

is a bijection [uk]i/Ei → Vi, we have χ(uk)(i) ∈ Vi. We

must show supp(χ(uk)) is finite. There is l < k such that for i > ik, χ(uk)(i) = χ(ul)(i),

so supp(χ(uk))∩{j ∈ I ∶ j > ik} = supp(χ(ul))∩{j ∈ I ∶ j > ik}, so by induction is finite.

By construction, χ(uk)(i) = ei for all i < ik, and the claim follows. ∎

Claim 2. χ ∶ [n] → Ω is a bijection.

Proof. We first show that χ is injective. So suppose l < k. We must show χ(ul) ≠ χ(uk).

Pick i such that ukFiul and ¬ukEi ul. Then [uk]i = [ul]i, but [uk]i/Ei ≠ [ul]i/Ei, so as

Ai(uk) = Ai(ul), χ(uk)(i) = φiAi(uk)
(uk/Ei) ≠ φiAi(ul)

(ul/Ei) = χ(ul)(i).
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To see surjectivity, suppose for a contradiction that χ is not surjective, and let

f ∈ Ω ∖ Range(χ) have minimal support, with supp(f) = {i1, . . . , it} where i1 < ⋅ ⋅ ⋅ < it.
Define f ′ ∈ Ω where f ′(i1) = ei1 , and f ′(j) = f(j) for all j ≠ i1.

By minimality of supp(f), there is u ∈ [n] with χ(u) = f ′. Let v = f(i1) ∈ Vi1 , and let k

be least such that uk lies in the Ei-class (φi
Ai1(u)

)−1(v).

To obtain a contradiction and thereby to prove surjectivity, it suffices to prove

Sub-claim 1. χ(uk) = f .

Proof. Certainly χ(uk)(i1) = φi1
Ai1(uk)

(uk/Ei1) = v = f(i1). For j > i1,

χ(uk)(j) = φj
Aj(uk)

(uk/Ej) = φj
Aj(u)

(u/Ej) = f(j). Also, ik ≥ i1, for otherwise there

is j < i1 and l < k such that ulFjuk, and hence ulEi1uk contradicting minimality of k.

Hence χ(uk)(j) = ej = f(j) for all j < i1, so indeed χ(uk)(j) = f(j) for all j. ∎

∎

For each i ∈ I , let Hi be the group induced by G{Vi} on Vi. For each triple (i, g, h),

where i ∈ I , g ∶ (i,∞) → ⋃
j>i
Vj with g(j) ∈ Vj for all j, and h ∈ Hi, define the function

x(i, g, h) ∶ Ω→ Ω as follows:

fx(i,g,h)(j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(i)h if j = i and f ∣
(i,∞)

= g,

f(j) otherwise

Claim 3. Each map x(i, g, h) is a permutation of Ω.

Proof. See [26], Lemma 3.3. ∎

Now define K, the generalized wreath product, to be the subgroup of Sym(Ω) generated

by permutations x(i, g, h) where i, g, h are as above. By [24], Lemma 1, the group

K is transitive on Ω. Thus, K has an induced transitive action on [n], given by

ux = χ−1((χ(u))x) for all x ∈K and u ∈ U . (Note that we keep using Cameron’s notation

in [11] for the permutation groups K, which also was used in [7]). We extend this action

to the whole of M by putting vx = v for all v ∉ [n].
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Claim 4. In this action, K is a subgroup of Aut(M).

Proof. It suffices to show that elements x(i, g, h) as above are automorphisms of M , and

for this we use Lemma 4.1.16. First, observe

Sub-claim 2. For u, v ∈ [n], and i ∈ I , uEiv⇔ χ(u)(j) = χ(v)(j) for all j ≥ i.

Proof. If uEiv then Aj(u) = Aj(v) for all j ≥ i, so

χ(u)(j) = φj
Aj(u)

(u/Ej) = φj
Aj(v)

(v/Ej) = χ(v)(j) for all j ≥ i. Conversely, if

¬uEiv, then there is j ≥ i such that uFjv and ¬uEjv. Then Aj(u) = Aj(v), so

χ(u)(j) = φj
Aj(u)

(u/Ej) ≠ φjAj(v)
(v/Ej) = χ(v)(j), as required. ∎

Since x(i′, g, h) acts as a permutation in the single coordinate i′, in its action on Ω, it

is clear that for u, v ∈ [n] and i ∈ I , we have χ(u)(j) = χ(v)(j) for all j ≥ i if

and only if χ(u)x(i′,g,h)(j) = χ(v)x(i′,g,h)(j) for all j ≥ i. Thus, uEiv if and only if

ux(i
′,g,h)Eivx(i

′,g,h), so the maps x(i′, g, h) preserve all the equivalence relations Ei. Also,

the relations Fi are preserved by these maps as a result of preserving Ei, using Lemma

4.1.14.

For u, v,w ∈ [n], put

σ(u, v,w) = Max{i ∶ u/Ei, v/Ei,w/Ei are all distinct}.

µ(u, v,w) = Max{i ∶ u/Ei, v/Ei,w/Ei are not all equal}.

Then µ(u, v,w) ≥ σ(u, v,w), and µ(u, v,w) = σ(u, v,w) if and only if there is i (namely

σ(u, v,w)) such that u, v,w are Fi-equivalent but not Ei-equivalent.

Suppose µ(u, v,w) = σ(u, v,w) = i. Let Ci be as in Definition 4.1.6. Then since the map

φi
Ai(u)

is induced by an element of G, we have

Ci(u; v,w) ↔ Ci(φiAi(u)(u/Ei);φiAi(v)(v/Ei), φiAi(w)
(w/Ei)).

It follows that under the assumption µ(u, v,w) = σ(u, v,w) = i, the fact that

C(u; v,w) holds depends just on χ(u)(i), χ(v)(i), χ(w)(i). Similarly, the fact that

L(u; v,w) holds depends just on χ(u)(i), χ(v)(i), χ(w)(i). And if u, v,w, z are all
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Fi-equivalent but Ei-inequivalent, the fact that S(u, v;w, z) holds depends just on

χ(u)(i), χ(v)(i), χ(w)(i) and χ(z)(i). We call this phenomenon tail-independence.

Sub-claim 3. The group K preserves the C-relation on the branches at ri.

Proof. Suppose u, v,w lie in the same Fi-class but distinct Ei-classes, so

µ(u, v,w) = σ(u, v,w) = i, and assume Ci(u; v,w) holds in this branch. Let

x = x(i′, g, h) ∈ K. If i′ > i, then χ(u)(i) = χ(ux)(i), χ(v)(i) = χ(vx)(i)
and χ(w)(i) = χ(wx)(i), so Ci(ux; vx,wx) by tail-independence. If i = i′, then

Ci(ux; vx,wx) since the action of x in the ith coordinate is induced by an element

of GVi which preserves the C-relation on Vi. If i′ < i then Ci(ux; vx,wx) holds by

tail-independence. ∎

Sub-claim 4. The group K preserves the L-relation and S-relation on the branches

at ri. That is, if µ(u, v,w) = σ(u, v,w) = i, then for x ∈ K we have

L(u; v,w) ⇔ L(ux; vx,wx), and similarly for S.

Proof. This is similar to Sub-claim 3. ∎

Sub-claim 5. The group K preserves L on [n].

Proof. Let u, v,w ∈ [n] be distinct with L(u; v,w). By Sub-claim 4, we may suppose

i = σ(u, v,w) < µ(u, v,w). Thus, two of u, v,w are Fi-equivalent and the other

Fi-inequivalent to these. We suppose uFiv and ¬uFiw (the other case are similar). Pick

z ∈ Ai(u) with Ci(z;u, v), as shown in Figure 4.16.

w

z u v

Figure 4.16

Then for x ∈ K, L(u; v,w) ⇔ L(u; v, z) by Sub-claim 4⇐ÔÔÔÔ⇒ L(ux; vx, zx) ⇔ L(ux; vx,wx)
(since x preserves the relations Ej, Fj and Cj). ∎
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Sub-claim 6. The group K preserves S on [n].

Proof. Let u, v,w, z ∈ [n] be distinct. Let i be greatest such that u/Ei, v/Ei,w/Ei, z/Ei
are distinct. Then at least two of u, v,w, z are Fi-equivalent. If all are Fi-equivalent, then

K preserves any S-relation among these by Sub-claim 4. If just three of u, v,w, z are

Fi-equivalent, then K preserves any S-relation among them by the proof of Sub-claim

5. If say uFiv and ¬uFiw ∧ ¬uFiz, then as K preserves Fi, if x ∈ K we have

uxFivx∧¬uxFiwx∧wxFizx. We now see S(u, v;w, z)∧S(ux, vx;wx, zx) as required. ∎

By the sub-claims, the conditions of Lemma 4.1.16 are satisfied, completing the proof of

Claim 4.

∎

It follows that [n] is a Jordan set for G.

∎

Proposition 4.1.19. Each pre-branch is a Jordan set for G in its action on M .

Proof. Let R be a D-set of M , and let U be a branch of R at a ramification point r. Pick z

lying in a branch at r other than U . We may choose a sequence (ri ∶ i ∈ N) of ramification

points which is coinitial in U , that is, for each ramification point r′ in U there is i ∈ N

such that for all j ≥ i, rj lies between r and r′.

r

r2

r0

r1

z

Û

Figure 4.17
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We may suppose in addition that ri+1 lies between ri and r for each i, and that z lies in the

special branch at ri for each i. For each i, there is a union Ti of pre-branches at ri which

is a pre-direction of a higher D-set. We may suppose that for each i, ri is a ramification

point of one of the branches of Ti+1.

It follows that Ti ⊆ Ti+1 for each i and that ⋃
i∈N
Ti = Û . Since pre-directions are Jordan sets

by Lemma 4.1.18, each Ti is a Jordan set, so Û is a Jordan set by Lemma 1.5.12. ∎

Corollary 4.1.20. Gs is primitive on M ∖ {s}.

Proof. This is (iv), Lemma 3.1.3. ∎

For the following lemma we will use Lemma 2.2.2 of [5],which we quote here:

Lemma 4.1.21. Let H be a group acting on a set X. Consider a collection K of subsets

of X, such that

(i) each member R ∈ K has more than one element;

(ii) for g ∈H and R ∈ K , Rg ∈ K ;

(iii) if R1,R2 ∈ K , then R1 ⊆R2 or R2 ⊆R1 or R1 ∩R2 = ∅ ;

(iv) if u,v ∈ X are distinct, then there is R ∈ X with u,v ∈R and R ≠ X;

(v) if u,v ∈ X are distinct in X then there is R ∈ X containing u but not v.

Define a ternary relation K such that

∀u,v,w ∈ X, K(u;v,w) ⇔ (∃R ∈ X)(v,w ∈R ∧ u ∉R).

Then K is a C-relation on X.

Lemma 4.1.22. There is a Gs-invariant C-relation on M ∖ {s}.
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Proof. Consider all the pre D-sets that contain s and the pre-branches Û in these pre

D-sets that do not contain s, with the property that s lies in the special branch at the

ramification point at which U is a branch. Call this collection K . The elements of this

collection are all Jordan sets (by Proposition 4.1.19). Now we check (i)- (v) of the above

Lemma, applied to Gs acting on M ∖ {s}.

(i) For all Û ∈ K , ∣Û ∣ > 1. Indeed, as each branch carries a C-structure such that the

pre-directions are the parameters of a C-relation, then each pre-branch has more

than one element.

(ii) If Û ∈ K and g ∈ Gs, then Û g ∈ K by the description of K .

(iii) K has no typical pair (Definition 1.5.11(a)). First, suppose that Û , V̂ ∈ K are

pre-branches of the same D-set. Since Û , V̂ both omit the element s of this D-set,

it is immediate that Û , V̂ do not form a typical pair.

Next, suppose Û , V̂ ∈ K are pre-branches of distinct but comparable D-sets Ri

and Rj respectively with Rj below Ri. We may suppose that Ri corresponds to the

ramification point r of Rj , and that V is a branch at the ramification point r′ of Rj .

If r = r′, then Û is a union of pre-branches at r′ omitting s, so contains V̂ or is

disjoint from V̂ . If r lies in the same branch at r′ containing s, then again, Û either

contains V̂ or Û ∩ V̂ = ∅. If r is a ramification point lying in V̂ , then Û ⊂ V̂ . And if

r lies in a branch at r′ other than V or that containing s, then Û ∩ V̂ = ∅.

Finally, suppose that Û and V̂ are pre-branches of D-sets R1,R2 labelling

incomparable vertices ν1, ν2 of the structure tree. Let µ ∶= inf{ν1, ν2}, and R be

the D-set of µ, and suppose Ri corresponds to the ramification points ri of R, for

i = 1,2. Thus, Û and V̂ correspond to union of pre-branches at r1 and r2 respectively

of R, omitting s. If, say, r2 is a ramification point of Û , then r1 is not a ramification

point of V , (otherwise s ∈ Û ∪ V̂ ), and V ⊂ U . Alternatively, r2 is not a ramification

point of Û , and r1 is not a ramification point of V̂ , and in this case Û ∩ V̂ = ∅.

(iv) Choose a D-set R such that the pre-D-set R̂ contains u, v, s in distinct
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pre-directions. There is a ramification point r at R such that s lies in the special

pre-branch at r, and u, v lie in the same other pre-branch Û at r. Then Û ∈ K and

contains u, v.

(v) Choose a D-set R such that R̂ contains u, v, s in distinct pre-directions, meeting at

ramification point r. There is a ramification point r′ in the branch at r containing

u, such that the branch at r′ containing s is special. Let Û be the pre-branch at r′

containing u. Then Û ∈ K and contains u but not v.

Then define a ternary relation Cs such that for every x, y, z ∈ M ∖ {s}, the relation

Cs(x; y, z) holds if and only if (∃U ∈ K )(y, z ∈ U ∧ x ∉ K ). Then Cs is a C-relation by

Lemma 4.1.21.

∎

Lemma 4.1.23. Each pre-D-set R̂i is a Jordan set for G.

Proof. Consider two distinct ramification points r1, r2 of R. Let Ur1 be the branch at r1

which includes r2, and Ur2 be the branch at r2 containing r1. We know by Proposition

4.1.19 that the corresponding pre-branches are Jordan sets and they form a typical pair,

hence by Lemma 1.5.10 their union is a Jordan set and is the whole pre-D-set, so it is a

Jordan set. ∎

Lemma 4.1.24. There is no G-invariant separation relation on M

Proof. Choose a configuration in M as depicted, in some D-set.

x

y

u

v

z

Figure 4.18
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By semi-homogeneity there is g ∈ G inducing (x)(y)(z)(uv). An element with such

cycle structure cannot preserve a separation relation.

∎

Lemma 4.1.25. There is no G-invariant Steiner system on M .

Note: We use the idea of the proof of Lemma 1.5.13, which is also used in the proof of

Lemma 6.5 in [7].

Proof. On the contrary, suppose there is a Steiner n-system. Let s1, . . . , sn be distinct in

a block B and sn+1 be in B. Since we may choose a D-set in which all si lie in different

branches at a ramification point, there is a pre-branch V containing sn+1 and omitting

s1, . . . , sn. Let t ∈ V . Since V is a Jordan set, there is g ∈ G(M∖V ) with sgn+1 = t. As g

fixes s1, . . . , sn, it fixes setwise the unique block B containing s1, . . . , sn, so as sn+1 ∈B,

also t ∈B; that is, V ⊆B.

Let s∗ be an element of M ∖ B (hence not in V ) and B′ be a block containing

s1, . . . , sn−2, sn+1, s∗. As ∣B′∣ ≥ n + 1, there is s∗∗ ∈B′ distinct from s1, . . . , sn−2, sn+1, s∗

and s∗∗ ∉ B, so as V ⊆ B then s∗∗ ∉ V . But s1, . . . , sn−2, s∗, s∗∗ are all in B′ determine

B′. So as sn+1 ∈ V ∩B′, by the argument of being V a Jordan set above, we get V ⊆B′.

So V ⊆B ∩B′. But V is infinite and ∣ B ∩B′ ∣= n − 1. This is a contradiction. ∎

Lemma 4.1.26. There is no G-invariant D-relation on M .

Proof. Suppose, for a contradiction, that there is a G-invariant D-relation D defined on

M . Fix x, y, z0. Find u1 ∈M ∖ {x, y, z0} with D(u1, z0;x, y). Note that in the argument

below, we should not confuse D with the various D-sets in M coded by the structure tree.

Find a D-set R1 of M containing u1, z0, x, y in distinct branches at the same ramification

point r1, and pick v1 ∈ M lying in the pre-branch at r1 containing z0, with L(z0; v1, x)
witnessed in this D-set. See Figure 4.19.
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r1

y x

u1

z0

v1

Figure 4.19: The D-set R1

Let z1 ∈M ∖ R̂1. Choose h1, k1 ∈ Gz0,z1 with (x, v1)h1 = (v1, x) and (u1, v1)k1 = (v1, u1)-

these exist by semi-homogeneity.

In the D-relation on M , consider the regions P,Q,R,S as depicted.

z0x

R Q P

u1
S

Figure 4.20

Let supp⟨h1, k1⟩ denote the set of elements of M moved by some element of the

subgroup ⟨h1, k1⟩ of G generated by h1 and k1. If say v1 ∈ R, then we see that

R ∪ S ⊆ supp(k1) ⊆ supp⟨h1, k1⟩. If v1 ∈ S then R ∪ S ⊆ supp(h1) ⊆ supp⟨h1, k1⟩. If

v1 ∈ Q then R ⊆ supp(h1) ⊆ supp⟨h1, k1⟩, and S ⊆ supp(k1) ⊆ supp⟨h1, k1⟩. Finally, if

v1 ∈ P then R,S ⊆ supp(h1) ⊆ supp⟨h1, k1⟩. Thus, wherever v1 lies, R∪S ⊆ supp⟨h1, k1⟩,
so as h1, k1 fix z1, so z1 ∉ R ∪ S. Thus, z1 ∈ P ∪Q. Since D(u1, z0;x, y), y ∈ R, so we

have the following picture.
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z0y

z1x

Figure 4.21

Now we iterate this argument with (z0, x, z1) in place of (z0, x, y). Pick

u2 ∈ M ∖ {x, z0, z1} with D(u2, z0;x, z1). Find a D-set R2 of M containing u2, z0, x, z1

in distinct branches at the same ramification point r2, and pick v2 ∈ M lying in

the pre-branch at r2 containing z0, with L(z0; v2, x) witnessed in this D-set. Let

z2 ∈ M ∖ R̂1. By semi-homogeneity there are h2, k2 ∈ Gz0,z2 with (x, v2)h2 = (v2, x)
and (u2, v2)k2 = (v2, u2). Let x, z0, u2, P ′,Q′,R′, S′ replace x, z0, u1, P,Q,R,S above.

We see that z2 ∈ P ′ ∪Q′, and thus the D-relation on M satisfies the following picture.

z0x

z2y z1

Figure 4.22

Observe that we have L(z1;x, z0) ∧ L(z2;x, z0) ∧ L(z2;x, z1) ∧ L(z2; z0, z1). Thus, by

semi-homogeneity, there is g ∈ Gz1,z2 inducing (x, z0). Such g does not preserve the

D-relation, a contradiction. ∎

4.2 Proof of Main Theorem

In this section, we investigate the requirements to show that G = Aut(M,L,S) is an

infinite primitive Jordan group preserving a limit of D-relations (Definition 1.5.19).

We may view M as an L -structure, or as a structure in just the language with symbols L

and S, since the other L -symbols are ∅-definable in terms of L and S.
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Let R̂ be a pre-D-set with D-set R, let H ∶= G
(M∖R̂)

and let E be the equivalence relation

on R̂ corresponding to being in the same direction (the equivalence relation identified in

Definition 3.2.9). Let D be the induced D-relation on R = R̂/E.

Lemma 4.2.1. In the above notation,

(i) H preserves E and the relation D;

(ii) H is transitive on R̂;

(iii) H is 2-transitive but not 3-transitive on R; and

(iv) E is the unique maximal H-congruence on R̂.

Proof.

(i) H preserves E by Lemma 3.2.10(ii) as H < G
{M∖R̂}

. Also, H preserves D follows

from Lemma 3.2.12(iii).

(ii) This follows from Lemma 4.1.23.

(iii) Fix x0 ∈ R̂. We show that Hx0 is transitive on R̂∖{x0}. Let u, v be distinct elements

of R̂ ∖ {x0}. Choose a ramification point r such that there is a branch U at r

containing u, v and omitting x0. It is known that U is a Jordan set (pre-branches

are Jordan sets) so there is g ∈ G
(M∖Û)

< H with ug = v. However, H is not

3-transitive; for if u, v,w ∈ R and meet at a ramification point r with L(u; v,w) then

there is no element of H inducing (uv)(w).

(iv) We need to show that E is preserved by elements ofH which is done in (i). To show

the maximality, we show that H is 2-transitive on R̂/E and that is done in part (iii).

For the uniqueness, suppose E∗ is an H-congruence on R̂ and there are u, v ∈ R̂
with ¬uEv and uE∗v. Since pre-directions are Jordan sets, for v′ ∈ R̂ if v′Ev there

is g ∈ H fixing M ∖ (v/E) pointwise with vg = v′. As ug = u, g fixes E∗(u), so

vE∗v′, so v/E ⊂ v/E∗, so E∗ contains E properly, hence is universal.
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∎

Theorem 4.2.2. G preserves a limit of D-relations on M .

Proof. Let G = Aut(M). Then G is an infinite Jordan group acting on M . Indeed, M

is a Fraı̈ssé limit of the class D , so it is associated with an infinite structure tree τ . Let

J be a maximal chain from τ . Then J is a linear ordered. Let Rj be the D-set indexed

by j, for j ∈ J . Then by the paragraph above Definition 3.2.6, for i, j ∈ J we have

i < j⇔ R̂j ⊂ R̂i. So we get a strictly increasing chain of subsets of M such that they get

bigger by going down in the structure tree. Let R̂j be the pre-D-set corresponding to Rj ,

let Hj ∶= G(M∖R̂j)
, and let Ej be the unique maximal Hj congruence on R̂j as in Lemma

4.2.1(iv). Similarly, {Hj ∶ j ∈ J} is an increasing chain of subgroups of G. Then we want

to check the list (i)-(viii) in Definition 1.5.19.

(i) This is (ii) and (iv) in the Lemma 4.2.1 above.

(ii) This is (i) and (iii) in the Lemma 4.2.1 above. Note that since pre-branches are

Jordan sets of G, branches are Jordan sets of H , so (H,R) is a Jordan group.

(iii) It is clear that ⋃(Ri ∶ i ∈ J) =M .

(iv) Let H ∶= ⋃
j∈J
Hj . Then H is a Jordan group on M , since any pre-branch of Rj is a

Jordan set for Hj . The group G is not 3-transitive since it preserves the relation L

(and L(u; v,w) → ¬L(v;u,w)), hence H is not 3-transitive.

We now show that H is 2-primitive on M . We first observe a point from Lemma

4.1.18. In the proof of that lemma, if [n] is a pre-direction corresponding to vertex

jn, then for each j < jn there is a D-set Rj and ramification point rj such that [n] is

a union Sj of branches at rj . It follows from that proof that for each branch U ∈ Sj
at rj , the pointwise stabiliser of the complement of [n] induces GU on U .

Now let x0 ∈ M , and let ρ be a nontrivial Hx0-congruence on M ∖ {x0}. We must

show that ρ is universal. Pick distinct u, v ∈M ∖{x0} with u ≠ v. Choose j ∈ J such
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that x0, u, v lie in distinct pre-directions of Rj . For a contradiction, we may suppose

that if B is the ρ-class containing u, then B is a proper subset of Rj ∖ {x0}.

Let r be a ramification point of Rj such that u, v lie in the same pre-branch Û

at r, and x0 in a different pre-branch. Let C be the C-relation induced on the

corresponding branch U at r. Suppose there are distinct u′, v′,w′ ∈ Û such that

C(u′/Ej; v′/Ej,w′/Ej) and u′ρw′. Let V be the largest branch in U containing

v′,w′ and omitting u′. Then V is a Jordan set, so there is g ∈ G
(M∖V̂ )

< Hx0 with

(u′,w′)g = (u′, v′). Since g fixes u′, it follows that v′ρw′. Thus B ∩ R̂j , is a

pre-branch of Rj , the union of a nested sequence of pre-branches of Rj , or a union

of more than one pre-branches at some fixed vertex. By choosing j sufficiently low

in the structure tree, we may assume that the last one holds, i.e. B ∩ R̂j is the union

of more than one pre-branch at a ramification point rj of Rj .

Pick a ramification point r∗ of Rj such that elements of B and x0 lie in distinct

branches at r∗ with the one containing elements of B non-special. There is a

direction [n] which is a union of pre-branches at r∗ including the pre-branch V̂ at

r∗ containing B, and excluding that containing x0. Now by the observation above,

since G(M∖[n]) ≤ H , H induces the full group GV on V . In particular, there is a

ramification point r between r∗ and rj such that Hx0 contains an element h with

uh = u and rhj = r. It follows that Bh ⊃ B, contradicting that B is a block of Hx0 .

See the following picture.

rjrr∗
x0

u

v B ∩ R̂j

Figure 4.23: Rj
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(v) Ej ∣R̂i
⊆ Ei if i > j, by Lemma 4.1.5.

(vi) ⋂(Ei ∶ i ∈ J) is equality. Let u, v ∈ M be distinct. By 2-transitivity of G, there is

a D-set R such that u, v lie in distinct directions of R. Choose j ∈ J such that the

corresponding D-set Rj labels a vertex of the structure tree below that of R. Then

u, v lie in distinct directions of Rj , so ¬uEjv.

(vii) Given g ∈ G, choose a segment I of J which lies in the common part of J and Jg.

Let i0 ∈ Ig−1 ⊆ J−1. Then for any i < i0 we have ig < ig0 and so ig ∈ I . Thus ig = j for

some j ∈ J . Hence g−1Hig =Hj and Rg
i = Rj .

(viii) This is by 4.1.22.

Each pre-D-set R̂i is a Jordan set of G. There is a natural congruence Ei on Ri given by

pre-directions. Each D-set R̂i/Ei has a D-relation defined on it by Definition 3.2.11(ii).

It is a Jordan group with branches are Jordan sets. ∎

Theorem 4.2.3. There is a ternary relation L and a quaternary relation S on a countably

infinite set M , such that if G ∶= Aut(M), then G is oligomorphic, 3-homogeneous,

2-primitive but not 3-transitive or 4-homogeneous on M , and a Jordan group preserving

a limit of D-relations on M , and not preserving any of the structures of types (a) − (i) in

Theorem 1.5.22.

Proof. This is by Corollary 2.4.3, Lemma 3.1.3, Lemma 4.1.24, Lemma 4.1.25, Lemma

4.1.26 and Theorem 4.2.2. Note thatG cannot preserve a linear or circular order or a linear

betweenness relation since it does not preserve a separation relation, G cannot preserve a

C-relation since it does not preserve a D-relation, and cannot preserve a semilinear order

or general betweenness relation since it is 2-primitive. ∎
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Chapter 5

Extensions and Open Problems

We do not have a full theory of the structure M , because we do not have suitable axioms

for the relations L and S. If some one can do that then a number of questions arise.

Question 1. Can we recover the structure tree from the two relations L and S?

As an attempt to answer that we try to write axioms for the relations L and S.

Definition 5.0.1. Let X be a set. Then define a ternary relation L on X such that:

(L1) (∀x, y, z)L(x; y, z) → (x ≠ y ∧ x ≠ z ∧ y ≠ z);

(L2) (∀x, y, z)L(x; y, z) ↔ L(x; z, y);

(L3) (∀x, y, z)L(x; y, z) → ¬L(y;x, z) ∧ ¬L(z;x, y);

(L4) (∀x, y, z distinct) L(x; y, z) ∨L(y;x, z) ∨L(z;x, y);

(L5) (∀x, y, z,w)L(x; y, z) → (L{w, y, x} ∧L{w, y, z}) ∨ (L{w, z, x} ∧ {L(w, z, y}) ∨
(L{w,x, y} ∧L{w,x, z}) ∨ (L(x; y, z) ∧L(x; y,w) ∧L(x; z,w)).

Here L{a, b, c} means L(a; b, c) ∨ L(b;a, c) ∨ L(c;a, b) for distinct

a, b, c ∈ {x, y, z,w}.

Then we say (X,L) is an L-set.
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Definition 5.0.2. Let X be a set. Then define a quaternary relation S on X such that for

all x, y, z,w ∈X:

(S1) S(x, y; z,w) → (x ≠ y ∧ z ≠ w ∧ x ≠ z ∧ y ≠ w).

(S2) S(x, y; z,w) → S(x, y;w, z) ∧ S(y, x; z,w) ∧ S(z,w;x, y).

(S3) S(x, y; z,w) → ¬S(x, z; y,w) ∧ ¬S(x,w; z, y) ∧ ¬S(y, z;x,w) ∧ ¬S(y,w;x, z).

(S4) (∀x, y, z,w, t)(S(x, y; z,w) ∧¬L(t;x, y) ∧¬L(t;x, y) ∧¬L(t; y, z) ∧¬L(t;x,w) ∧
¬L(t; y,w) ∧ ¬L(t; z,w)) → S(t, y; z,w) ∨ S(x, y; z, t).

Then we say that (X,S) is an S-set.

Are there more axioms we can add to the L-axioms and the S-axioms? However,

if Question.1 has a positive answer then we aim to improve Adeleke-Macpherson

Theorem (Theorem 1.5.22) to replace “preserves a limit of D-relations” by “preserves

an (L,S)-structure.”

Question 2. In Definition 1.5.19 of limits of D-relations, can we consider (J,≤) a

semilinearly ordered set rather than linear, and require it to be G-invariant?

As an attempt to tackle this, assume that F = {Γi ∶ i ∈ I} a chain of Jordan sets with I is

a totally ordered set as in the Definition of a limit of D-relations. Let F∗ be the translate

of F , i.e. F∗ = {Γg ∶ Γ ∈ F , g ∈ G}, where G is an infinite permutation Jordan group. Our

goal is to show that F∗ is a semilinearly ordered set by inclusion.

In order to show this we try to prove whenever Γ ∈ F∗, then the set {∆ ∈ F∗ ∶ Γ ⊆ ∆} is

totally ordered by inclusion.

Question 3. (i) Show that the structure M is not homogeneous, i.e. there is

some isomorphism between finite substructures of M cannot be extended to an

automorphism.
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(ii) Can we homogenise the structure M , that is, find finitely many invariant relations

such that M becomes homogeneous when symbols are added for these relations.

Question 4. Give an algebraic construction of a limit of D-relations, e.g. via valued

fields.

Question 5. Study the model theory of our construction, e.g. investigate whether M

satisfies NIP.

Question 6. If M is the structure constructed in Chapters 2 and 3, and G = Aut(M),

let f(k) be the number of orbits of G on the set of k-subsets of M . How fast does the

sequence (f(k)) grow? Is it bounded above by some exponential function?

Question 7. Is there a relationship between limits ofB-relations and limits ofDrelations?

Question 8. Could the group G preserve a limit of B-relations, or a limit of Steiner

systems?

Question 9. By the procedure that used to build the structureM , can one construct further

examples?
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