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Abstract

This thesis focuses on proposing a novel heat management solution which
could be applied in the next generation aircraft. The need for novel solu-
tions in this sector arises primarily from the severe installation constrains
and the increased use of electronics which in turn creates the need for
more efficient cooling. The research is accomplished by focusing on numer-
ical modelling of heat exchanger performance using computational fluid

dynamics.

In Chapters 1-3 an overview of the topics relating to the project is provided.
It was particularly focused on current heat exchangers used in industry and
the recent advancements within the aircraft thermal management systems
driving this project. Various additive layer manufacturing techniques are
compared and the most suitable one for heat exchangers is identified. In ad-
dition, current analytical/empirical design methodology of heat exchangers

is compared to existing numerical modelling work.

In Chapter 4 a two dimensional sinusoidal heat exchanger channel geome-
try was taken from a published numerical study. It was used to assess the
impact of various numerical modelling assumptions at the highest compu-
tational resolution feasible. It was found that for the flows occurring in the
transitional Reynolds number regime a particular care needs to be taken in
numerical solution setup to predict flow and heat transfer accurately which

is often not demonstrated in the literature.

In Chapter 5 a plate-fin heat exchanger with serrated corrugation was ex-
perimentally and numerically evaluated allowing to build a robust numer-
ical modelling framework for heat exchangers. During the process a novel
approach to model heat exchanger corrugation was proposed. It uses a slice
of a heat exchanger core and models both hot and cold fluid streams sep-
arated by a solid. It enables simulating the cross-flow heat transfer effects
directly and eliminates the need for analytical/empirical models still pop-
ular within industry. The data from this novel corrugation model was then
used in the heat exchanger unit model and produced a better agreement

with the experimental data than normally obtained in industry.

In Chapter 6 the research focused on applying additive layer manufacturing
to heat exchangers. A series of novel heat transfer ideas were designed

and manufactured of titanium using selective layer melting. The most



promising inter-layer heat exchanger corrugation was incorporated in a
novel proof of concept heat exchanger design with manifold headers. It was
then evaluated numerically and compared to a more conventional pin-fin
heat exchanger. Overall, the novel heat exchanger design led to increased
heat transfer with no penalty in flow resistance compared to the pin-fin heat
exchanger. This novel design, whilst is a proof of concept heat exchanger,
is a significant step in industry and opens the way for the next generation

more efficient heat transfer solutions.



Nomenclature

Ac Cross sectional area, [m?]

Ag, A, Total heat transfer area, [m?]

B Surface area density, [m?/m3] or global pressure gradient, [Pa/m)]

Cp Specific heat at constant pressure, [J/(kgK)]

Co Courant Number

dp Hydraulic diameter, [m)]

) Fin thickness, [m]

€ Heat Exchanger Effectiveness or Turbulence dissipation, [s] or fin spacing ratio
fe core friction factor

ffanning Fanning friction factor

f Frequency, [H z] or Forschheimer friction factor

G Mass flow velocity, m/A., [kg/(m?s)]

ol Corrugation spacing ratio

h Convective film coefficient [W/(m?K)]

hy Head pressure loss, [m)]

M0, Nf Effectiveness of secondary heat transfer surfaces

] Colburn Factor

K. Entrance loss coefficient

K. Exit loss coefficient

k Turbulent kinetic energy, [J/kg| or thermal conductivity of a material, [W/(mK)]

L, Length or fin length, [m]
LMTD Log Mean Temperature Difference, [K]

M Mach Number

m Mass flow, [kg/s]

L Dynamic viscosity, [Pa - s]

Ny Stanton number

Nu Nusselt number

v Kinematic viscosity, [m?/s]

P Perimeter, [m] or fluid pressure, [Pa]
Pr Prandtl number

Re Reynolds number

P Density, [kg/m?]
Q or Q Heat transferred, [W]
Qpalance Heat balance between the heat exchanger streams

Qhot Heat emitted by the hot side of the heat exchanger, [IW]
Qcold Heat absorbed by the cold side of the heat exchanger, [IV]
10) Flow area to face area ratio or standard deviation

T Temperature, K]

U Overall heat transfer coefficient [W/(m?K)]

Um Mean fluid velocity, [m/s]

Vs Flow volume, [m?]

v Specific volume V/m, [m?/kg]

U Mean specific volume (1/2(ve — v;))

w Specific turbulence dissipation 1/¢e



Abbreviations

ALM Additive Layer Manufacturing
ASHRAE American Society of Heating, Refrigeration, and Air

ASME American Society of Mechanical Engineers
BC bleed cabin

BE Bleed electronics

C compressor

CAD Computer Aided Design

CAU cold air unit

CYC cyclone device

CFD Computational Fluid Dynamics
CTAI Cowl Thermal Anti-Ice

DNS Direct Numerical Simulation
EA Exergy Analysis

EC exhaust cabin

ECS Environmental Control System
EE exhaust electronics

EGM Entropy Generation Optimisation
ERS secondary exhaust ram

FDM Fused Deposition Modelling
FVM Finite Volume Method

HE Heat Exchanger(s)

HX Heat Exchanger

HXP primary heat exchanger

HXS secondary heat exchanger

1R Infra Red

LOM Laminated Object Manufacturing
LPWE low pressure water extractor

M Motor

MC mixer cabin

ME mixer electronics

MEA More Electric Aircraft

NTU Number of Transfer Units

P Hydraulic Pump

PIV Particle Image Velocimetry
RANS Reynolds Averaged Navier Stokes
RAT Ram Air Turbine

SB supply bleed

SG Started Generator

SLM Selective Laser Melting

SLS Selective Laser Sintering

SRS secondary ram supply

T turbine

TE Thermoeconomics

TMS Thermal Management System

XFR TRANS /Rectifier
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