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Abstract

Rare-earth permanent magnets are becoming increasingly important with increasing

emphasis placed on the replacement of fossil fuels in transportation and energy gener-

ation. Due to its large (BH)max, Nd2Fe14B has been the permanent magnet material

of choice for a wide range of applications since its discovery 40 years ago, including

in electric motors and wind turbines. Its excellent magnetic properties come from a

combination of high saturation magnetisation and high coercivity. In bulk Nd2Fe14B-

sintered magnets however, the coercivity is < 20% of the theoretical Stoner-Wohlfarth

limit. In the work presented in this thesis we investigate the possibility of coupling

rare-earth permanent magnets with a magnetically soft phase to improve thermal

stability and (BH)max using a generic atomistic spin model. We then develop a fully

parameterised atomistic spin model for Nd2Fe14B and NdFe12 parameterised from

experimental and ab initio data. We use this model to explore more complex mag-

netic features and materials. The effects of grain boundary interfaces on the local

anisotropy are investigated using a Nd2Fe14B/α-Fe interface structure relaxed using

molecular dynamics, and the spin dynamics at these interfaces calculated. These

reveal Barkhausen-type jumps of domain walls propagating across the interface. Sub-

stitution of stabilising elements Ti and Zr into RFe12-type materials and their effects

on the inter-sublattice coupling are studied. In addition, the micromagnetic cell size

and temperature scaling of the saturation magnetisation and anisotropy are calcu-

lated using the atomistic model in an effort to link the models across a multiscale

approach to permanent magnet modelling.
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Chapter 1

Introduction

The scientific study of magnetic materials has a long history dating back to William

Gilbert’s De Magnete published in 1600 [1]. Since then, our understanding of the

properties of magnets has taken enormous strides. Oersted’s observation in 1819 that

a compass needle is deflected by a current-carrying wire revealed the fundamental

connection between electricity and magnetism [2]. Almost one hundred years later,

in 1907, Pierre Weiss took another giant step towards a modern theory of magnetism

with his hypothesis that magnetic dipoles interact with one another via a ‘molecular

field’ [3]. By 1927, we had arrived at a fully quantum mechanical explanation for

ferromagnetism when, almost simultaneously, Dirac and Heisenberg proposed the

so-called exchange interaction, an effect arising due to a combination of the Pauli

exclusion principle and the physical overlap of electron wave functions [4].

Since then, significant headway has been made through experimental and theo-

retical studies of magnetic materials, granting the scientific community access to a

host of new materials and technological breakthroughs. Some current active areas

of research in the field include magnon spintronics [5–7], spin caloritronics [8–10],

heat-assisted magnetic recording [11–13], the use of magnetic nanoparticles in bio-
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medicine [14–16], as well as rare-earth permanent magnet materials [17–20], to name

but a few.

1.1 Permanent magnets

A permanent magnet is named so because the origin of its magnetism comes from

the intrinsic structure of the magnet itself. This is in contrast with an electromagnet,

the magnetic properties of which come from coiling a current-carrying wire around a

solenoid, generating a magnetic field. The progress of permanent magnets over the

course of the last hundred years or so is best appraised by looking at how the value

of the largest achievable maximum energy product ((BH)max) has grown, shown in

Fig. 1.1. The (BH)max value of a material is the usual criterion by which its utility

is assessed, and indicates the maximum amount of energy which can be stored in the

magnet. It is given by the maximum product between the magnetic induction B and

applied field H, or in other words, the maximum square area that can be contained

inside the second quadrant of a B(H) hysteresis loop.
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Figure 1.1: The evolution of the maximum achievable (BH)max over the course of the
20th century, with each curve showing a different family of materials. Adapted from
Ref. [21]
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In the early part of the 20th century, cobalt steel based permanent magnets

were replaced by the alnico class of materials (alloys formed of aluminium, nickel,

and cobalt), pushing the limits of the day in terms of the (BH)max that could be

achieved. Over the years various new families of materials were discovered and syn-

thesised, resulting in a series of jumps over time in the maximum achievable values of

(BH)max. In the 1960s, Sm-Co magnets began to appear, the first of the rare-earth-

transition-metal (R-TM) based permanent magnets. In this family of materials the

rare-earth constituents provide the strong magnetocrystalline anisotropy (essential for

large (BH)max), while the TM sublattice provides the majority of the magnetisation.

This was an exciting time in the field of permanent magnets, however problems began

to arise surrounding the availability of the requisite materials. Samarium is one of

the least abundant rare-earth elements, while cobalt supplies were beset by the 1978

civil war which tore through what is now the Democratic Republic of Congo, where

the majority of the world’s cobalt supply was located [22]. The shortage of supply

accelerated the on-going search for new permanent magnet materials, and in 1983 a

new family of materials, the class of R2Fe14B compounds, was announced at the 29th

Magnetism and Magnetic Materials Conference in Pittsburgh [19,20,23–26].

With this new class of compounds, (BH)max values were achieved that were far

larger than any measured for any other material up until then. Sagawa et al. [23]

measured a (BH)max of ∼300 kJm−3. Since this time, there has been considerable

interest in the R2Fe14B compounds, industrially of course, but also from the point

of view of fundamental scientific inquiry. In the last fifteen years the maximum

achieved (BH)max in Nd2Fe14B has increased to ∼450 kJm−3 [27]. Since their dis-

covery R2Fe14B magnets have revolutionised the design of motors, generators, and

actuators [28]. Their enormous (BH)max has allowed the downsizing of devices many

times over.
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Recently, interest in rare-earth based permanent magnets has been spurred anew

as the potential consequences of human induced climate change have come to the fore.

As we have become increasingly aware of the acute dangers of non-renewable energy

sources to the environment, a greater emphasis has been placed on improving the

transmission of electricity as well as replacing fossil fuel-based combustion engines

with electric motors. There has also been a large increase in the global uptake of

wind turbines, in which rare-earth permanent magnets play a key role, with global

wind power capacity reportedly increasing 11% between 2016 and 2017 [29]. The

development of functional magnetic materials has played and will continue to play

a large part in this transition to cleaner generation and consumption of energy. In

particular, the development of rare-earth intermetallic compounds is essential as there

is a need for large energy densities at a range of operating temperatures across a range

of devices [27].

One drawback of Nd2Fe14B is that at the operating temperature of high-

performance electric motors (∼ 450 K) the coercivity drops off to an unacceptably

low level. For this reason, currently electric motor manufacturers partially substitute

the Nd with Dy, increasing the coercivity sufficiently for high temperature operation.

The downside of this approach is that Dy is a particularly rare metal and can cost

up to eight times as much as Nd. Thus there is an incentive to research and produce

Dy-free compounds that are able to operate at the required temperatures.

There are a number of approaches to solving this problem that have emerged.

One approach is that of exchange-coupled ‘nanocomposite’ magnets [30]. By combin-

ing soft, high-magnetisation phases with a hard, high-coercivity magnetic phase, the

magnetic properties and energy density of the composite material can potentially be

enhanced as a result of the exchange coupling between the phases [31]. The inclusion

of a magnetically soft phase can have the added benefit of reducing the overall cost of

the material for two reasons. The first, magnetically soft phases tend to be cheaper,
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and second, by replacing a portion of the hard magnetic phase with the soft, the rare-

earth content of the composite material can be reduced. Nanoscale particles were

successfully produced via surfactant-assisted ball milling by Wang et al. [32] which

could be aligned in a magnetic field to produce anisotropic bulk magnets. Rong et

al. [33] demonstrated the formation of hard/soft nanocomposites using a process of

severe plastic deformation and warm compaction to produce a SmCo5/Fe(Co) bulk

nanocomposite. For a SmCo5 + 25 wt% Fe65Co35 nanocomposite it was measured

that the maximum energy product increased to 152.8 kJm−3, compared with 71.6

kJm−3 for the single-phase SmCo5.

Another approach is to investigate and understand in detail the coercivity mech-

anisms at work in rare-earth transition-metal compounds. Investigations by Hrkac et

al. [34] showed that the grain boundary phases and their distribution in the mi-

crostructure of Nd2Fe14B are pivotal factors in determining the coercivity. Currently

the coercive field only reaches 20–30% of the theoretical maximum (the anisotropy

field). This is known as Brown’s paradox [35]. It is theorised that the anisotropy

at the grain boundaries is locally suppressed as a result of defects and roughness. If

the effects of these can be properly understood, engineering of rare-earth permanent

magnets at the nano-scale to fine-tune the properties may be a solution in the future.

A third approach is the discovery of new compounds that can eventually replace

Nd2Fe14B. RFe12 compounds are one family of materials that are expected to have very

high saturation magnetisation because the ratio of the transition-metal to rare-earth

content is higher than in R2Fe14B. In general the RFe12 compounds are unstable as

binary compounds, and require a third element M to stabilise the phase. The effects

of the stabilising element are an ongoing area of research, however in general they are

thought to be detrimental to the energy density as their presence comes at the cost

of losing part of either the Fe or rare-earth sublattices, which both play vital roles in

maximising the energy density as discussed already. Very recently however, Hirayama
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et al. [36,37] generated interest in this area by synthesising a NdFe12Nx crystal phase

without the need for a third stabilising element. The nitrogen is inserted into the

unit cell by nitriding in an N2 gas atmosphere, and sits at interstitial sites within the

unit cell. The magnetic properties were measured at room temperature as follows:

saturation magnetisation µ0Ms ≈ 1.66 T, the anisotropy field µ0Ha ≈ 8 T and the

Curie temperature Tc ≈ 823 K. These initial measurements compare very favourably

to Nd2Fe14B which has µ0Ms ≈ 1.6 T, µ0Ha ≈ 7.5 T and Tc = 585 K. While research

into this material is in its very early stages, the data are very promising and could

lead to exciting developments in the field of rare-earth permanent magnets.

There are of course, a number of different approaches towards modelling magnetic

systems. In the following, the main approaches will be introduced, along with their

respective strengths and weaknesses.

1.2 Methods for modelling magnetic systems

The three primary categories of methods for simulating magnetic systems are mi-

cromagnetics, ab initio methods, and atomistic methods. The essential distinction

between the three is the length and time scales that they are able to model. This is

important as often the behaviour of a magnetic system varies significantly depending

on the scale upon which the system is considered.

1.2.1 Ab initio methods

As indicated in the schematic in Fig. 1.2, ab initio methods are able to resolve systems

on the scale of electrons (on the order of a few angstroms). These are fully quantum

mechanical models. Common examples include the density functional theory (DFT)

and linear muffin-tin orbital (LMTO) methods.
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Figure 1.2: Approximate spatial and temporal scale regimes of the various methods
for modelling magnetic systems.

In general the objective of an electronic structure method in this context is to

determine the wave function and energy associated with a many-body system in

a stationary state [38]. Solution of the Schrödinger equation for a given potential

v(r) (which is a system-dependent quantity) gives the many-body wave function

Ψ(r1, r2, . . . , rn) of the system. From this, one is able to then calculate the expecta-

tion values of the observables of the system, e.g. of the eigenvalues or the particle den-

sity n(r) [39]. The problem is that solution of the many-particle Schrödinger equation

is intractable [40]. The idea behind DFT is to circumvent this problem by mapping

the many-body problem, which has the potential operator Û =
∑

i<j U(ri, rj), onto

a single-body problem, which does not require Û . Rather than beginning from the

system potential v(r), the ground-state particle density n0(r) is used as a starting

point, from which it is possible, in theory, to determine the associated ground-state

wave function Ψ0(r1, r2, . . . , rn). The idea, then, is that if Ψ0 can be calculated from

n0(r) and vice versa, then both must contain the same information. Thus all ground-
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state observables are functionals of n0 as well as Ψ0, and the problem is reduced from

depending on N variables, r1, r2, . . . , rn, to depending only on one variable, r [39].

This is known as the Hohenberg-Kohn theorem [41].

These methods are advantageous in that they provide a way of understanding

magnetic phenomena from first principles, and are formally exact [39]. In practice,

approximations must be used (e.g. for the particle density functions) if simulating

systems containing more than a few atoms, with the accuracy of the model depen-

dent on the quality of the assumption. Nevertheless, modern ab initio methods are

remarkably accurate and show a high degree of consistency across different implemen-

tations, as was demonstrated by Lejaeghere et al. [40]. The primary impediment to

the use of ab initio methods for modelling of magnetic materials is their prohibitively

large computational cost. This is large for equilibrium calculations, and larger still for

simulations involving spin dynamics. Models of spin dynamics from first principles,

which have only in recent years become viable, are able to simulate systems only on

the order of 10 atoms [42–44].

DFT is a useful method of calculating magnetic parameters for input into larger

scale spin dynamics simulations, particularly magnetocrystalline anisotropy values,

but is a difficult and specialised area [45]. Presently it is limited in its ability to

accurately model localised 4f electron states. The two most common electron density

approximations: the local density approximation (LDA) and the generalised gradient

approximation (GGA) are insufficient to describe the 4f electrons, as the energy levels

that come out of these are too shallow and the wave functions too extended, a result

of the self-interactions in LDA and GGA. Consequently the hybridisation between

the f states and other states is too strong, skewing the total energy calculations [46].

This inability to accurately describe the 4f electrons can be considered a missing link

in the multiscale pathway of modelling rare-earth permanent magnets [45].
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1.2.2 Micromagnetics

At the larger end of the scale sits the micromagnetics method, first pioneered by

Brown in 1963 [47]. It is categorised as a continuum method because the considered

length scales are sufficiently large that the atomic structure of the crystal may be

ignored, and it is assumed that due to the exchange interaction, the atomic spins

contained within some finite volume are collinear [48]. The desired output of a micro-

magnetics model is the spatial (and temporal in the case of dynamic micromagnetics)

dependence of the magnetisation, which is found via minimisation of the Gibb’s free

energy with respect to the magnetisation, where the important contributions to the

energy are the exchange, magnetostatic and anisotropy energies [49,50].

The use of the micromagnetics method is particularly suited to system sizes of

the order of the magnetic domain size of the system and above, and in particular

for coarse calculations of magnetisation reversal and hysteresis effects. For exam-

ple, micromagnetics calculations have been used to show the potential advantages

of complex designs such as the ‘Battenburg’ structure, where a number of different

magnetic phases were coupled together to achieve a maximum energy product ex-

ceeding 400 kJm−3 while simultaneously reducing rare-earth content [51]. However

the models lack access to the effects of the detailed interface structure at the atomic

level and, importantly, their effects on the macroscopic magnetic properties. Another

drawback is that temperature effects must be treated in a somewhat artificial man-

ner, via temperature scaling of the saturation polarisation, exchange constants and

magnetocrystalline anisotropy constants. Moreover, at temperatures approaching the

Curie temperature, the assumption of collinear alignment begins to breakdown due

to atomic scale spin disorder [52]. A further difficulty is the scaling of magnetic

properties with cell size, first investigated by Dobrovitski et al. [53] and Grinstein

and Koch [54]. The coarse-graining of the micromagnetic variables tend to lead to
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an overestimation of the Curie temperature, which is shown to be removed by a

re-normalisation approach [54].

1.2.3 Atomistic spin dynamics

Finally, we arrive at the method of atomistic spin dynamics, which is the method

used throughout this thesis. In terms of length scale, the atomistic method serves as

a useful bridge between the micromagnetics formalism and ab initio simulation. The

atomistic model is based on the physical assumption that the electrons in the unfilled

shell of an atom are all localised to the atomic site, and thus a magnetic moment can

be associated with that site whose magnitude is proportional to the vector sum of

the the orbital and spin angular momenta of the unpaired electrons [55].

This is certainly true in the case of an isolated atom; the assumption made in

the atomistic spin model is that the magnetic properties in condensed matter can

be treated as a perturbation of the magnetic properties of the individual atoms.

This turns out to be a very good assumption in the 4f series, as the 4f electrons

interact weakly with one another and thus can be considered highly localised [55].

Whether or not the same assumption holds for 3d metals was for much of the 20th

century a topic for debate. The question was whether the d electrons, from where the

magnetic properties stem in the transition metals, are localised to the ionic sites, or

itinerant, moving from atom to atom around the crystal [56]. It is now accepted that

d electrons in transition metals are strongly interacting itinerant electrons, however

band-structure calculations of the spin density in Fe-Co alloys by Schwarz et al. [57]

showed that despite this, the spin density is strongly localised to the atomic sites [48].

This suggests that the bonding electrons have only a small net spin, and the remaining

d electrons form an effective localised moment around the nucleus [48].

At a basic level, simple spin models are an extension of finite difference micromag-

netics to atomic scale resolution [52]. While these are useful for describing atomic
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scale magnetism and thermal effects, no particular insight is gained into the com-

plex effects of the interplay between the crystal structure, electronic properties, and

magnetism [52]. To create a more compelling model of the magnetic behaviour of

a specific material, inclusion of the exact crystal structure and a realistic picture of

the magnetic interactions is required, which has only been a possibility in the last 20

years or so [52]. Some examples of such models can be found in Refs. [58–60]. The

work presented in chapters 5, 6, and 7 are examples of the atomistic spin model being

applied together with a full treatment of the atomic crystal structure.

In section 1.1, three approaches to finding more efficient permanent magnets were

outlined. In each of the three approaches it is clear that atomic scale effects are at

work and play an important role in the determination of the macroscale magnetic

properties. Therefore in this thesis, each one will be investigated using an atomistic

spin dynamics model. In chapter 2, the theoretical background of the model will be

discussed in detail. Chapter 3 will outline the implementation of the model in the

vampire software package [48], as well discuss the cell size dependence of some impor-

tant parameters and the method used to determine this dependence. In chapter 4, the

magnetic properties of α-Fe/Nd2Fe14B core/shell nanoparticles will be investigated

using a generic spin model. In chapter 5, the procedure for parameterising the full

atomistic spin model for Nd2Fe14B and NdFe12 will be discussed. Chapter 6 contains

an investigation into the reversal mechanisms of a system containing a grain bound-

ary interface between Nd2Fe14B and α-Fe phases to determine the role played by the

interface. Finally, the effects of substituting Ti and Zr into the RFe12 phase will be

explored in chapter 7.

The aim of the work in this thesis is to develop a working and fully parame-

terised atomistic spin model of rare-earth transition-metal compounds, in particular

Nd2Fe14B and NdFe12, and then apply this model to a diverse array of magnetic

structures to investigate the approaches discussed above for finding more efficient

11



materials, and to ascertain which of the approaches, if any, show potential as ways to

make progress in the on-going pursuit of ever more powerful and efficient permanent

magnets.
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Chapter 2

Theoretical background

2.1 Atomistic spin dynamics model

In recent years, atomistic modelling of magnetic materials has emerged as an essential

tool in trying to understand the underlying physical processes that drive the com-

plicated behaviour observed in magnetic materials. All modern atomistic methods

are based on the founding principles of Ernst Ising, which date back to 1925 [61].

The so-called Ising model was the first statistics-based theoretical model of ferromag-

netism. In the model, atoms are treated as discrete variables which are represented

by a vector, where physically the vector represents a magnetic dipole moment of

atomic spin associated with the atom. Each atom assigned vector is allowed to be

in either a spin-up (+1) state or a spin-down (−1) state. Still today the Ising model

is a very useful tool which continues to be used for computationally non-intensive

simulations of simplistic materials. Whilst the method shows remarkable success in

the determination of phase transitions in very simple magnetic systems, it is limited

in its capability to describe more complex magnetic materials.

The Ising model was later improved upon in the form of the classical 3D Heisenberg

spin model, in which each atomic spin vector is treated as a classical unit vector such
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that

|~si| = 1 (2.1)

and each spin is allowed to point in any direction in space [62]. This kind of treatment,

despite neglecting quantum mechanical effects in its usual form, allows accurate calcu-

lation of phase transitions, surface effects and finite size effects in simple systems. Not

until relatively recently however, have atomistic models become sufficiently detailed

and computers sufficiently powerful to model complicated magnetisation dynamics at

finite temperatures [63,64].

As a result of this, the use of atomistic methods in the modelling of magnetic ma-

terials and devices has been slowly gaining traction, where traditionally the method

of micromagnetics had taken precedence. The majority of recent advances in compu-

tational magnetism have come in the form of improved computational and mathemat-

ical techniques, as opposed to improvements in the underlying physics [64]. Perhaps

the most important improvement made to these computational models has been the

introduction of thermal activation. The micromagnetics formalism is intrinsically

athermal, and thus magnetisation reversal processes take place at 0 K, although this

can be rectified via parameterisation using finite temperature parameters (discussed

in chapter 5). Drawing on the work of Brown [47], the technique used is to treat the

thermal perturbations upon the spin system by a random field, following the methods

put forward by Langevin [65].

The context of the atomistic spin model is depicted schematically in Fig. 2.1.

The arrows indicate the interactions between the various computational and analyt-

ical techniques, as well as the informational pathways between the models. Here,

Ms(T, L), K(T, L), and A(T, L) denote the saturation magnetisation, the magne-

tocrystalline anisotropy constant, and the exchange stiffness respectively, each of

which are functions of temperature T , and cell size L (for instances where they are

passed to a micromagnetics model).
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Figure 2.1: Schematic of the multiscale process for magnetic materials. The arrows
indicate the interactions between the various computational and analytical methods
and show the paths taken for the exchange of information between the model length-
scales.

In a fully multiscale and self-consistent approach, the atomistic model would be

purely parameterised by first principles calculations, and the micromagnetic approach

would be parameterised fully by atomistic and first principles calculations, theoret-

ically allowing modelling across many orders of magnitudes of space and time. In

this picture, the atomistic model serves a useful function as providing input into

larger scale simulations, however it is important to note that atomistic approaches

are important in their own right, essentially merging the quantum mechanical and

thermodynamic regimes, leading to important insights into thermally activated mag-

netic behaviour.

In the next section the fundamental principles and mechanics of the atomistic spin

model will be discussed in a general way. The specifics of the implementation will

be presented in chapter 3, while the specifics of the parameterisation of rare-earth

intermetallic compounds will be discussed in chapter 5.
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2.1.1 Atomistic spin magnetic moments

The atomistic spin model is principally a canonical ensemble of classical spin vectors

coupled to one another via the Heisenberg exchange interaction. Each vector repre-

sents an atomic magnetic dipole moment. Numerically solving the equation of motion

for each vector in an effective field allows the solution of finite temperature statistical

systems.

The total dipole moment associated with a classical atomic spin vector is funda-

mentally a result of two phenomena: the intrinsic spin associated with each electron,

and the orbital motion of the electrons about the nucleus. Each of these can be

thought of as ‘charges in motion’, which induce a magnetic moment. The total mag-

netic moment of the atom is then a result of these two moments. The intrinsic spin

of each electron contributes a magnetic dipole moment

mspin = gµB[s(s+ 1)]1/2 (2.2)

where µB = eh̄/2me = 9.274 × 10−24 JT−1 denotes the Bohr magneton, and s is

the spin quantum number; and the orbital motion of the electrons about the nucleus

contribute a total moment

morbital = µB[l(l + 1)]1/2 (2.3)

where g is the free electron g-value and l the orbital quantum number. The orbital

and spin moments are coupled and can thus be summed in a specific way. Summing

the individual electron spin quantum numbers to give a total spin quantum number S,

and doing the same with the individual orbital spin quantum numbers l, gives many-

electron quantum numbers L and S, which are in turn combined to give the total

angular momentum quantum number J . J is then used to determine the magnetic
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moment of the atom via the expression

matom = gJµB[J(J + 1)]1/2 (2.4)

where gJ is the Landé g factor, which is a function of J , L, and S [66]. In many

bulk magnetic materials the larger contribution to the magnetic moment comes from

the spin moment of the electrons, as strong delocalisation of the electrons (as in

metals) and strong crystal field splitting as a result of electrostatic interactions with

the surrounding lattice result in a breaking of the symmetry and quenching of the

orbital moment [67].

In the atomistic model the atomic magnetic moments are coupled to the lattice

such that each spin has a magnetic moment µi and a fixed position ri.

2.1.2 The exchange interaction

The exchange interaction is the strongest of the energetic contributions to the clas-

sical spin Hamiltonian and gives rise to spontaneous magnetic ordering in magnetic

materials, even in the absence of an externally applied magnetic field. The exchange

energy was discovered simultaneously and independently by Dirac and Heisenberg

in 1926 [68]. The description of the quantum mechanical origin of the exchange in-

teraction is standard, and here we will follow the explanations of Morrish [69] and

Blundell [70]. The description presented in this section serves purely as an illustration

of the mechanism, and is not the method of solution in the atomistic spin dynamics

model, in the case of which there are far too many interactions to solve for in this

manner. Indeed, the necessary calculation would require unfathomable computing

and memory resources. Rather, exact solution of this form is the domain of ab initio

theorists.
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We begin by considering a system of two electrons with spatial coordinates r1 and

r2. The total wave function of the two electron system Ψ(r1, r2) will be some linear

combination of the individual electron wave functions ψ(r1) and ψ(r2) and must be

a solution of the Schrödinger equation:

[
− h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 + V (r1) + V (r2)
]
Ψ = EΨ (2.5)

where the subscripts 1 and 2 correspond to the two electrons. It can be seen by

substitution that possible solutions are

ψa(r1)ψb(r2) and ψa(r2)ψb(r1) , (2.6)

where ψa(r1) denotes the wave function of electron 1 located on atom a and ψb(r2)

the wave function of electron 2 located on atom b and so on. In both examples in

(2.6), E = Ea + Eb. However, because electrons are indistinguishable, there is the

requirement that

|Ψ(r1, r2)|2dr1dr2 = |Ψ(r2, r1)|2dr1dr2 . (2.7)

That is to say, under interchanging of the electrons, the observable properties of the

system should not change. Hence, it is required of the two electron wave function

that either

Ψ(r1, r2) = Ψ(r2, r1) (2.8)

or

Ψ(r1, r2) = −Ψ(r2, r1) . (2.9)

These are the properties of symmetry (in the case of (2.8)) and antisymmetry (in the

case of (2.9)). Neither wave function in (2.6) has either of these properties and so
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both are unacceptable. However, the linear combinations

Ψsym(r1, r2) =
1√
2

[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]

Ψanti(r1, r2) =
1√
2

[ψa(r1)ψb(r2)− ψa(r2)ψb(r1)]

(2.10)

do satisfy (2.8) and (2.9) and happen to be the only wave functions that do. The

factors 1/
√

2 are normalising factors, if the single electron wave functions are assumed

already normalised. For electrons, there is a further requirement that the electrons

remain distinct, as the Pauli exclusion principle prohibits two electrons from being

found in an identical state; that is, having the same set of quantum numbers. This

requires, then, that the total wave function be antisymmetric, eliminating the sym-

metric wave function in (2.10) as a possibility.

Given the antisymmetric two electron wave function from (2.10), in the Heitler-

London approximation [71] the system energy is given by evaluating the integral

E =

∫∫
Ψ∗(r1, r2)〈H〉Ψ(r1, r2)dr1dr2 (2.11)

where the Hamiltonian 〈H〉 contains the individual electron Hamiltonians 〈H1〉 and

〈H2〉 as well as a third, interaction Hamiltonian 〈H1,2〉. Thus the total energy of the

system is given by

Etot =

∫∫
Ψ∗(r1, r2)〈H1 +H2 +H1,2〉Ψ(r1, r2)dr1dr2 . (2.12)

Evaluating the integral, one finds that the operator H1 gives rise to energy terms

dependent only on electron a on atom 1, and the operator H2 gives rise to energy

terms dependent only on electron b on atom 2. The H1,2 operator gives rise to the
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interaction energy term

E1,2 =

∫∫
Ψ∗(r1, r2)〈H1,2〉Ψ(r1, r2)dr1dr2 = Eint

∫∫
Ψ∗(r1, r2)Ψ(r1, r2)dr1dr2

(2.13)

which has two components: a Coulomb interaction term between the electrons on

their respective atoms, and an ‘exchange’ energy that arises solely as a result of

exchanging of the electrons. These are expressed as

Ecoulomb =

∫∫
{ψ∗a(r1)ψ∗b (r2)} 〈H1,2〉 {ψa(r1)ψb(r2)} dr1dr2

Eexchange =

∫∫
{ψ∗a(r1)ψ∗b (r2)} 〈H1,2〉 {ψa(r2)ψb(r1)} dr1dr2 .

(2.14)

The exchange component is a purely quantum mechanical phenomenon because in

the classical picture, interchanging of the electrons gives no difference in energy.

Now we have that

Etot = E1 + E2 + E1,2 , (2.15)

where the first two terms on the right-hand side represent the energy of the two

electrons on their respective atoms, in the absence of any interaction; and a third

term, which is the sum of the Coulomb and exchange interactions, both of which

result from the interaction between the electrons. The above treatment demonstrates

the existence of the exchange energy, but so far the spin quantum numbers of the

electrons have been ignored. Now it must be shown that the correlation of the electron

spins arises from this exchange interaction.

Let the spin part of the total wave function be denoted by χS for the antisymmetric

singlet state and χT for the symmetric triplet state. The total wave function of the

system, including both the spatial and spin parts, is then given by

Ψtot = Ψ(r1, r2)χ(s1, s2) . (2.16)
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As already discussed, the total wave function must be antisymmetric under inter-

change of the electrons in accordance with the Pauli exclusion principle. Thus, if

the spin part of the total two electron wave function is symmetric, the spatial part

must be antisymmetric, and vice versa, in order to keep the total wave function Ψtot

antisymmetric. Thus there are two possibilities for the total wave function:

ΨS =
1√
2

[φa(r1)φb(r2) + φa(r2)φb(r1)]χS

ΨT =
1√
2

[φa(r1)φb(r2)− φa(r2)φb(r1)]χT .

(2.17)

The energies of these states are given by

ES =

∫
Ψ∗S〈H〉ΨSdr1dr2

ET =

∫
Ψ∗T〈H〉ΨTdr1dr2 .

(2.18)

Taking the difference between the two gives

ES − ET = 2

∫
φ∗a(r1)φ∗b(r2)〈H〉φa(r2)φb(r1)dr1dr2 . (2.19)

For the singlet case, S1 · S2 = −3
4
, whereas for the triplet case, S1 · S2 = 1

4
. Hence,

the effective Hamiltonian can be written

〈H〉 =
1

4
(ES + 3ET)− (ES − ET)S1 · S2 , (2.20)

which is the sum between a constant term, and a term which depends on the electron

spins. Absorbing the constant term into other constants, we are left with the so-called

exchange integral, which can be expressed as:

J =
ES − ET

2
=

∫
φ∗a(r1)φ∗b(r2)〈H〉φa(r2)φb(r1)dr1dr2 . (2.21)
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Thus the term in the effective Hamiltonian which depends on the spins can be rewrit-

ten as

〈H〉spin = −2JS1 · S2 . (2.22)

The sign of the exchange constant J is significant, with J > 0 corresponding to

parallel spin alignment and J < 0 to antiparallel alignment (depicted schematically

in Figure. 2.2). In a solid, the exchange energy should be summed over all electrons,

such that

〈H〉spin = −2
∑∑

Jijsi · sj , (2.23)

though often it is sufficient to sum over only nearest-neighbour contributions to the

exchange integral.

J > 0 J = 0 J < 0

ferromagnetic paramagnetic antiferromagnetic

Figure 2.2: The effect of the exchange parameter on the magnetic ordering of the
system. In general, positive, zero, and negative J will result in ferromagnetic, para-
magnetic, and antiferromagnetic states respectively.

In general it is sufficient to assume that the exchange interaction is isotropic

between a spin Si and its neighbours, meaning that the exchange energy between two

spins depends only on their respective orientations. However the Heisenberg form of

the exchange is easily generalisable to cases where this is not so. In such materials
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the exchange interaction forms a tensor with components

Jij =


Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 (2.24)

enabling a description of anisotropic exchange interactions such as two-ion

anisotropy [58] and the Dzyaloshinskii-Moriya interaction, with off-diagonal compo-

nents of the exchange tensor. In the case of tensorial exchange, the exchange energy

is found by the tensor product between two spins:

Ĥ = −
∑
ij

SiJijSj. (2.25)

An inherent strength of the atomistic model over its micromagnetic counterpart

lies in its treatment of the exchange interaction. Using the Heisenberg form of the

exchange, discretised at the atomic length scale, it is possible to simulate directly

how the spin correlation varies atomistically, leading to more natural description of

interesting macroscopic phenomena such as magnetic phase transitions.

2.1.3 Magnetocrystalline anisotropy

The magnetocrytalline anisotropy is an effect of the coupling of the magnetic mo-

ment to the crystal lattice via the electrostatic spin-orbit coupling. If more energy is

required to magnetise a material or spin in one crystallographic direction than in an-

other it is said to be anisotropic. The direction in which the magnetic crystal energy

is lowest is commonly referred to as the easy axis, while the direction in which the

energy of the crystal is highest is called the hard axis, and because the energy of the

crystal depends on the spin orientation in this way, one can refer to the anisotropy

as the magnetocrystalline anisotropy energy [72]. For bcc Fe, the energy required
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to force the magnetisation away from the easy axis 〈001〉 onto the hard axis 〈111〉 is

0.05 MJm−3. The equivalent energy in Nd2Fe14B on the other hand, is 4.9 MJm−3.

While these energies are small in comparison to, for example, exchange energies or

cohesive energies, they are extremely important in the assessment of the utility and

performance of a magnetic material in numerous applications. Hard magnets, among

which rare-earth based permanent magnets are categorised, are characterised by large

anisotropy energies, making them ideal for applications such as generators and electric

motors.

The angular dependence of the magnetocrystalline anisotropy energy in uniaxial

materials is formally described by

EMAE = K1 sin2 θ +K2 sin4 θ + . . . . (2.26)

θ here denotes the angle between the magnetisation vector and the easy axis, and K1

and K2 are second and fourth order uniaxial anisotropy constants. In the atomistic

spin model the uniaxial contribution of the magnetocrystalline anisotropy energy to

the spin Hamiltonian is given by

Hanis = −
∑
i

ku(Si · êu)2 (2.27)

where ku is the atomistic uniaxial anisotropy constant, and êu is a unit vector pointing

in the direction of the easy axis. In the usual nomenclature, ku > 0 denotes an easy

axis orientation out of the plane, normally along the 〈001〉 direction, while ku < 0

denotes an easy-plane anisotropy where the spin prefers to lie in the xy plane. In

the case of positive anisotropy constant Ku, the magnetocrystalline anisotropy energy

can be thought of as an energy barrier between parallel alignment with the easy axis

and anti-parallel alignment, where the energy barrier has height KuV , where V is

24



the volume of the system under consideration. This is illustrated schematically in

Fig. 2.3.

0 π/2 π

E M
AE

θ

Ebarrier

Figure 2.3: Schematic showing the magnetocrystalline anisotropy energy as a function
of the angle between the spin vector and the easy axis in a uniaxial system. The
height of the energy barrier gives the energy required to switch the spin from parallel
alignment with the easy axis to anti-parallel alignment.

2.1.4 Zeeman interaction

We must also include in the spin Hamiltonian an interaction between the magnetic

system and an externally applied magnetic field, called the Zeeman interaction. The

system couples to the magnetic field such that the contribution to the Hamiltonian

is described by

HZeeman = −µs
∑
i

Si ·Happ (2.28)

where µs is the spin magnetic moment, Si is the spin vector on site i and Happ applied

field vector. This will give a minimum energy when the spin is aligned with the applied

field. The strength of the coupling is proportional to the magnitude of the magnetic

moment µs, thus at finite temperatures, the implementation of which is discussed in
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section 2.1.6, when the magnetisation is reduced, coupling to the external field will

be weakened.

2.1.5 The spin Hamiltonian

We look now at the classical spin model Hamiltonian, which approximates the en-

ergetics of a system of interacting spins including exchange, anisotropy and Zeeman

contributions. By encapsulating the essential physics of a magnetic system the spin

Hamiltonian enables us to model magnetic systems at the atomic level. The total

system Hamiltonian is a summation of these energy contributions, integrating over

all spins Si. The Hamiltonian thus takes the form

H = Hexch +Hanis +HZeeman (2.29)

where the terms on the right hand side denote the exchange, anisotropy, and Zeeman

energies respectively. Expanding each term out to first order we have

H = −
N∑
i=1

N∑
j=1

JijSi · Sj −
N∑
i=1

ku(Si · êu)2 −
N∑
i=1

µiSi ·Happ. (2.30)

The largest contribution comes from the isotropic exchange interaction Hexch. In

principle this involves a double summation over the entire system, first through all

spins Si and then all of the neighbours Sj, though in practice a truncation of the

interaction range is normally implemented in order to reduce computational load.

The next contribution comes from the uniaxial anisotropy. Note that here the ku has

been brought inside the sum in order to account for systems with multiple sublattices,

which is a common theme in this thesis. Following the same principle, the magnetic

moment µi is brought inside the sum in the Zeeman term to account for different

sublattices coupling to the external field with different strengths.
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2.1.6 The Landau-Lifshitz-Gilbert equation

In order to predict the dynamics of a magnetic system, we utilise the derivative of

the spin Hamiltonian to calculate the precession of each atomic moment over a series

of time steps. This is done by treating each moment as interacting with an effective

field, denoted by H i
eff, where i indicates the spin with which the field is interacting.

The effective field is described by

H i
eff = − 1

µs

∂H
∂Si

. (2.31)

Thus the effective field is given by the negative first derivative of the spin Hamiltonian

given in (2.30) with respect to the atomic spin vector. The local spin moment µs is

included within the effective field in order to simplify the units. In this way, given a

Hamiltonian in Joules, the field is expressed in units of Tesla [48].

Using this effective field term, one is able to model various aspects of the system

including its time evolution, ground states, and thermal fluctuations, via integration

of the Landau-Lifshitz-Gilbert (LLG) equation.

In its original form, first derived by Landau and Lifshitz in 1935 [73], the Landau-

Lifshitz equation as it is called, is given by

∂m

∂t
= −γ[m×H + αm× (m×H)] (2.32)

where m is a unit vector representing the direction of the system magnetisation,

H is the externally applied field, γ is the gyromagnetic ratio, and α is a material-

dependent phenomenological damping constant. Here the damping constant α is

representative of a coupling between the magnetisation of the sample and a heat

bath. In the form given in (2.32), the rate of relaxation of the magnetisation to the

field vector is a linear function of the damping parameter. This was shown later
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to produce unphysical behaviour in materials with high α by Gilbert [74]. Gilbert

introduced a modified damping term to rectify this, which behaves as a damping

‘force’ analogous to the classical friction force which acts on a particle in motion in

a viscous fluid and is proportional to the velocity of the particle [74]. The alteration

to the original equation resulted in what is now called the Landau-Lifshitz-Gilbert

equation. While originally the LLG equation was derived as a way of modelling the

macroscopic magnetisation of a magnetic sample, it applies well as a description of

the dynamics of the magnetisation of small magnetic volume elements, and has come

to be used as the standard master equation in numerical micromagnetics [48].

The LLG equation can be extended further to the atomistic scale, and is the

standard equation of motion also in the atomistic spin dynamics model, describing

the precession of the atomistic spin vector with time around an effective field [48]. In

the atomistic formalism, it is given by

∂m

∂t
= − γ

(1 + λ2)
[Si ×H i

eff + λSi × (Si ×H i
eff)] (2.33)

where Si a unit vector representing the magnetic spin moment at site i, H i
eff is

the effective field at each atomic site i, γ = 1.76 × 1011 rad · s−1T−1 is the electron

gyromagnetic ratio which governs the frequency of precession, and λ is the microscopic

damping parameter. The first term of (2.33) describes the precessional motion of the

atomic spin vector about the effective field vector H i
eff; from the cross product the

torque on the magnetic moment is orthogonal to Si and H i
eff. This can be derived

from first principles as the quantum mechanical interaction between the atomic spin

and the magnetic part of the effective Kohn-Sham potential [72].

The second term in (2.33) is the damping term, which allows for a transfer of

energy between the spin system and the environmental heat bath, aligning the mag-

netic moment along the effective field direction with a coupling strength given by
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the constant λ. The use of the microscopic damping parameter λ is an important

difference between the application of the LLG equation in the micromagnetics for-

malism and the application in the atomistic case. In micromagnetics, the damping

parameter encapsulates effects from both intrinsic (e.g. spin-lattice and spin-electron

interactions) and extrinsic factors (e.g. demagnetisation fields, shape effects, struc-

tural defects, doping), while in the atomistic LLG, only intrinsic contributions are

absorbed into the damping constant. The exclusion of extrinsic contributions allows

explicit descriptions of these effects in the model, for example elemental substitution

as discussed in chapter 7.

Temperature effects

The equation of motion governing the dynamics of the atomic spins as given in (2.33),

as yet includes no description of any thermodynamic effects, an important aspect of

the atomistic spin dynamics model. In order to approximate the effects of thermal

fluctuations in the system a stochastic term is augmented to the LLG equation. This

is the Langevin dynamics approach. Using this approach it is possible, for example, to

effectively model the dependence of the system magnetisation on temperature. In this

scenario, the introduction of temperature fluctuations results in fluctuations of the

atomic spin moment Si. While the magnitude of the moment remains constant, the

induced stochasticity results in a statistical disordering of the spin ensemble, reducing

the total system magnetisation. While this picture is a simple one, the model is able

to reproduce experimental temperature effects to a high degree of accuracy, as shall

be shown later.

The stochastic term is added to the effective field such that the effective field is

now given by

H i
eff = − 1

µs

∂H
∂Si

+H i
th (2.34)
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whereH i
th is the thermal field acting on the spin. The formalism of the thermal field is

based on the Brownian approach, wherein the assumption is made that the correlation

times of the random thermal forces is much shorter than the response times of the

system [47]. The thermal noise is said in this case to lie within the ‘white’ limit [47],

and hence the thermal noise term can be simplified to a pseudo-random number,

generated from a Gaussian distribution of width

σ =

√
2λkBT

γµs∆t
(2.35)

where γ and λ retain their meanings from before, kB is the Boltzmann constant, T the

simulation temperature, µs is the magnitude of the spin magnetic moment, and ∆t

is the integration time step. With the inclusion of the Langevin term in the effective

field and in turn in the LLG equation, the equation of motion is sometimes referred

to as the stochastic LLG (sLLG) or the Landau-Lifshitz-Gilbert-Langevin (LLGL)

equation.

A stochastic perturbation of this type is in general referred to as a Wiener pro-

cess [75]. A Wiener process scales with the time step as
√

∆t, however in this case it is

important that the factor
√

∆t be placed in the denominator, because the integration

step (discussed later) introduces an extra factor ∆t, which multiplies the noise term

in (2.33). Thus, in the end the ∆t and 1/
√

∆t cancel and the spin is updated with

factor
√

∆t.

2.2 Experimental techniques for probing magnetic

properties

There are a wide array of advanced experimental techniques for probing the macro-

scopic and microscopic properties of magnetic materials. Data from experiment are
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used widely throughout this thesis as an important tool for parameterising the atom-

istic spin model.

Crystal structure is most commonly probed by means of an x-ray or neutron

diffractometer [76–78]. These usually contain some source of radiation, a monochro-

mator, and slits to control the shape of the beam [79]. An advantage of using neu-

tron diffraction is that the neutrons possess an intrinsic mangetic moment which can

interact with magnetic moments within the sample, giving information about the

orientations and sizes of moments in the sample.

A very common piece of apparatus used for measuring the magnetisation of a

sample is the vibrating-sample magnetometer (VSM) [80–82]. The VSM works by

sinusoidally vibrating a magnetised sample, and measuring the induced voltage in a

pickup coil. The induced voltage is proportional to the magnetisation of the sam-

ple, but does not depend on the amplitude of the applied magnetic field [83]. It

is also commonly used to measure hysteresis properties of a sample by sweeping a

magnetic field, or the Curie temperature by exposing the sample to a range of tem-

peratures. Another commonly used piece of equipment is a superconducting quantum

interference device (SQUID), which is a particularly sensitive magnetometer useful

for measuring very subtle magnetic fields [84].
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Chapter 3

Methods

The atomistic spin dynamics calculations in this thesis were performed using the

vampire software package [48]. vampire is a general purpose atomistic spin dy-

namics code that is open-source and freely available from http://vampire.york.ac.uk.

The code was first written and is curretly maintained by Dr. Richard Evans, though

has expanded a great deal over the course of its approximately 11 year lifetime, with

input from a number of contributors. This chapter will detail the implementation of

the theoretical ideas presented in the previous chapter.

3.1 Solving the stochastic LLG equation

The stochastic LLG equation describes the precession of the atomistic spin moments

in a non-deterministic way. To extract the magnetisation, one must solve the equation

to get Si. With the inclusion of the stochastic term, the LLG becomes intractable

analytically, thus it must be solved numerically.

In general there are a wide range of methods available for the numerical solution

of stochastic differential equations, and the choice of solver usually involves a trade-

off between accuracy and efficiency. Due to the large number of interactions in an
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atomistic spin simulation and, in the case of equilibrium calculations, long simulation

times on the order of nanoseconds, a stable and very fast solver is required.

A number of semi-implicit and implicit solvers have been used to integrate the

sLLG equation [85–87]. These have the advantage of conserving the spin length,

a requirement of the LLG equation. In our model the chosen integration scheme is

known as the improved Euler method or Heun method; an explicit, predictor-corrector

method which has the advantage of being relatively straightforward to implement. It

should be noted that the Heun method does not intrinsically conserve the length of the

spin, however a simple re-normalisation of the spin length after each of the predictor

and corrector steps circumvents this problem, and ensures stability and convergence

to the Stratonovich solution [48]. While this re-normalisation step would ordinarily

have implications for the conservation of energy in the system, this is not a concern

here as the LLG equation is effectively coupled to a thermal bath by the noise term

in (2.34).

The Heun method is essentially equivalent to the second order Runge-Kutta

method [88]. It makes use of a forward Euler step as a predictor, and then corrects

the prediction using the trapezoidal method. Thus each integration step involves two

partial steps, shown schematically in Fig. 3.1. The essential idea is that given, for

example, a concave-up curve, the Euler method will underestimate the gradient at all

points between t and t + ∆t. If the gradient of the tangent at the other end of the

interval is taken, it will have the opposite problem. Heun’s method thus takes the

average of the underestimating and the overestimating gradients to give an improved

solution. The method has a local discretisation error of third order in ∆t, and a

global discretisation error of second order in ∆ = maxt∆t [89].

The new spin direction S′i as calculated using the Euler scheme for a given effective

field H i
eff is given by

S′i = Si + ∆S∆t (3.1)
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S ( t+∆ t )

t t+∆ t

Forward Euler prediction 

Trapezoidal method

Average of gradients 
gives solution

Figure 3.1: Integration using the Heun predictor-corrector algorithm. First, a predic-
tion is made using the gradient at time t (an Euler step). Second, another estimation
is made based on the gradient at the point predicted by the Euler step. This acts as
a ‘corrector’ to the initial estimation and an average is taken of the two gradients to
give the Heun step.

where

∆S = − γ

(1 + λ)2
[Si ×Hi + λSi × (Si ×Hi)]. (3.2)

At this point the spin vector is renormalised to unity. After this predictor step, the

effective fields are re-evaluated given the new spin directions, though the thermal

fluctuations do not change at this time. The second partial integration step then uses

the predicted step and the re-calculated effective field vector to correct the initial

step, giving the direction of S at time t+ ∆t. Thus we have

St+∆t
i = Si +

1

2
[∆S + ∆S′]∆t (3.3)

as the final solution, where

∆S′ = − γ

(1 + λ)2
[S′i ×H ′i + λS′i × (S′i ×H ′i)]. (3.4)
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3.2 Metropolis Monte Carlo algorithm

The stochastic LLG equation is a useful way of modelling the dynamical properties

of a magnetic system, for example reversal processes. However in cases where we

wish to look for the equilibrium properties of a system, the Monte Carlo integra-

tion method can often be more useful. One reason for this is that, while the sLLG

method is ergodic, that is, explorative of the whole phase space, the timescale of

the exploration is often impractically long. Therefore when rapid convergence to the

equilibrium configuration is desired, it can be more computationally efficient to use

the Monte Carlo algorithm, which is characterised by its ergodicity. In particular it

is the Metropolis Monte Carlo algorithm [90] which is useful for exploring the phase

space of a magnetic ensemble. The reason for this is that the Metropolis algorithm

is what is known as an importance sampling method; that is to say, the important

points in the phase space are sampled preferentially, important meaning those regions

of the phase space where the equilibrium state is likely to reside [91]. This is achieved

via a Markov chain of states Xn →Xn+1 →Xn+2 → . . ., which are generated recur-

sively one after another depending probabilistically on, and only on, the state that

came before. Therefore, implementation of the Metropolis method requires careful

selection of spin configurations, such that the phase space is explored in a way that

ensures ergodicity, but also in a way that is efficient.

The procedure of the Metropolis Monte Carlo algorithm is as follows:

1. A random spin i from the ensemble is selected

2. Its initial spin direction Si is changed to a new trial direction S′i

3. The change in energy between the new and old spins is calculated such that

∆E = E(S′i)− E(Si)
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4. S′i is then accepted or rejected based on an acceptance probability P =

exp(−∆E/kBT ) by comparison with a random number generated between 0

and 1

5. If ∆E < 0, the energy of the configuration has been lowered by the new spin,

the probability P > 1 and the spin is automatically accepted

6. Steps 1-5 are repeated N times where N is the size of the sample, with N moves

constituting a single Monte Carlo step

There are certain statistical requirements of a Monte Carlo algorithm. One is

ergodicity as mentioned above, another is reversibility. The reversibility condition

requires that the probability of reaching one state from another is equal to the prob-

ability of a change of state in the opposite direction; that is to say, P (Si → S′i) =

P (S′i → Si) [91]. Ergodicity is easily achieved by allowing the trial spin S′i to point

in any direction. This has the drawback of a very high rate of rejection due to the

fact that with the exchange energy term in the system Hamiltonian, the energy cost

of pointing a spin far away from the direction of its neighbour is very high resulting in

a large number of steps being required to reach an equilibrium state. An acceptance

rate of approximately 50% is desirable for efficient equilibration [48]. A very effi-

cient method for sampling the phase space was proposed by Hinzke and Nowak [92],

whereby a combination of different types of trial move is employed: uniform random,

spin flip, and a small angle move. These are illustrated schematically in Fig. 3.2.

Formally these three trial moves can be described by

S′i =
(u, v, w)√

(u2 + v2 + w2)
uniform random

S′i =
Si + δ

|Si + δ|
small step

S′i = −Si spin flip

(3.5)
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where u, v, and w are random numbers, and δ is some small deviation from Si.

Each type of trial move is effective in certain scenarios. The small angle trial move

has to overcome the anisotropy energy barrier in order for a switching event to take

place (see Fig. 2.3) which requires high energy, however it can efficiently simulate

coherent rotation. The uniform random type trial move is able to take larger steps,

and thus is able to simulate nucleation type switching, and no single spin is required

to overcome the energy barrier as the spin can switch through the barrier by finding

a trial move on the other side. The spin flip type moves can efficiently simulate

nucleation even in the limit of large anisotropy, but has the drawback of not sampling

the full phase space. Rather, it is akin to an Ising type model. Thus each type has

advantages and disadvantages, and used in combination such that one type of trial

move is used for each Monte Carlo step, gives the most efficient sampling [92].

Small move Spin flipRandom

Figure 3.2: Schematic showing three types of Monte Carlo trial moves used in the
atomistic model. The combination of these three types allows for more efficient move-
ment through the phase space.

3.3 Néel anisotropy model

The origins of the magnetocrystalline anisotropy energy can give important insights

into the effects of microstructural features and grain interfaces on nucleation processes

which may be a primary cause of the weakened coercivity seen in manufactured

Nd2Fe14B-based sintered magnets [34]. It is known that in rare-earth transition-
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metal based compounds, at the grain-boundary interfaces there is a breakdown in

the local symmetry with measurable strain on the crystal lattice, an idea explored in

more detail in chapter 6. It has been suggested that this loss of crystal symmetry

could result in a reduction in the local anisotropy [93]. In an ideal scenario one would

use ab initio methods to probe the local effects on the anisotropy constants in these

regions. Unfortunately, using current methods and with limitations on computational

power the complexity and size of these grain boundary features prohibits the use of

ab initio calculations. Instead we look to the famous Néel pair-interaction anisotropy

model, first conceived of by Néel in 1954 [94]. The model has been commonly applied

to nanoparticles in order to quantify the anisotropy due to loss of coordination at the

surfaces [95,96], however in this thesis we apply the Néel model to the bulk to probe

the local variations in anisotropy in low symmetry regions.

As suggested by Néel, the leading contribution to the anisotropy due to pairs of

atoms can be expressed as

HA =
1

2

∑
i,j

Lij(Si · eij)2 + . . . . (3.6)

where the vector Si represents the spin on site i and the vector eij points from site

i to each of its neighbouring spins j within some cut-off radius rcut. Both vectors

are normalised to unity. Lij represents the strength of the pairwise coupling. Here

the coupling strength is made to be dependent on the atomic separation between

neighbours, such that Lij = Lij(r). Its magnitude is determined by fitting to the

magnetocrystalline anisotropy energy found by experiment. As a first approximation

Lij is set to drop off exponentially with the atomic separation r, and is written as

Lij(r) = L0 + Lr exp(−r/r0) (3.7)
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where r is the separation between neighbours, r0 is a characteristic distance, and L0

and Lr are fitting constants. L0 is simply included as an extra phenomenological

degree of freedom to ensure optimal fitting to experimentally measured magnetocrys-

talline anisotropy values. Used in this way, the Lij factor is weighted such that nearer

neighbours have a stronger effect than those further away, therefore the atomic spin

is dependent on changes to the local crystal environment, and the anisotropy will

change accordingly. In this formalism, the neighbouring charges are treated as point

charges as a first approximation.

One shortcoming encountered in the implementation of this method is its compu-

tational cost. As written in (3.6), a loop over all atomic sites as well as all neighbours

is required, thus the computation time is proportional to N2 where N is the number

of atoms. In order to circumvent this problem we reformulate (3.6) into a tensor form.

We note that given a crystal lattice, whether it be relaxed via molecular dynamics

simulation or generated using a primitive cell, once input into the atomistic spin

model there is complete translational invariance of the atomic coordinates. There-

fore, the vector eij is a constant quantity and need not be included in the integration

over neighbours. The same reasoning can be applied to the quantity Lij, which is

invariant once the crystal structure is set up. Both the vector eij and Lij are removed

from the sum and we have the tensor

Lij(r)


exex exey exez

eyex eyey eyez

ezex ezey ezez

 (3.8)

where Lij(r) is now a pre-factor. eij of course must be vectorially summed over all

neighbours before being removed from the integral. The advantage of this reformu-

lation is that the integral need only be carried out once rather than at every time

step. Once calculated, there are N tensors, which can be stored before the simulation
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Figure 3.3: Energy surface generated by applying the Néel anisotropy model to the
Fe sublattice of the Nd2Fe14B unit cell projected onto a unit sphere. The scale is
given in Joules, and the colour indicates the energy associated with all spins of the
Fe sublattice being oriented in a given direction. The calculated surface shows that
there is a preferential alignment for the sublattice in the +z-direction, corresponding
to the c crystallographic axis in the unit cell.

begins. During the simulation, the anisotropy energy is found by integrating over the

spin directions Si. The site-resolved anisotropy energy is given by

Hi
A = 〈Si|eij|Si〉 (3.9)

where Lij(r) has been absorbed into the tensor as a weighting constant. As a straight-

forward validation of the model we apply the calculation to the Fe sublattice of the

Nd2Fe14B unit cell. It is well known that the Fe sublattice selects the c-axis as the

easy axis of magnetisation [22].

From Fig. 3.3 it can be seen that the Néel model applied to the Nd2Fe14B unit

cell successfully reproduces the result that the Fe sublattice prefers to align along the

c axis, showing a classic uniaxial energy dependence on the angle. In this simulation

a cut-off radius of 5 Å was selected and an angular discretisation of 1◦ was used. The

result comes naturally out of the Néel model and is a direct consequence of the crystal

structure of the Fe sublattice.
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3.4 Cell size scaling of micromagnetic parameters

As discussed earlier, one difficulty faced by micromagnetics modelling is the scaling

of the magnetic properties with cell size. This was first investigated by Dobrovitski

et al. [53] and Grinstein and Koch [54]. The coarse meshing of the micromagnetic

variables leads in general to an overestimation of the Curie temperature. Essentially

this means that the saturation magnetisation, magnetocrystalline anisotropy and the

exchange stiffness must be treated as dependent on cell size (L), i.e. K = K(L, T ),

Ms = Ms(L, T ), and A = A(L, T ). In chapter 5, the atomistic model will be used to

calculate the exact variations, linking the atomistic and micromagnetic models in a

multiscale approach. The method by which this is done will be outlined here.

Figure 3.4: Schematic showing the method used to determine the cell-size and temper-
ature scaling behaviour in Nd2Fe14B and a generic bcc system. The magnetisation is
averaged over a central cell in the system, approximating the micromagnetics method,
and compared with the total system properties.

The procedure for determining the cell size scaling of the magnetisation is as

follows. First the unit cell of the material is generated and parameterised using the
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methods discussed in section 2.1. A large cell is then simulated with dimensions 10

x 10 x 10 nm, with periodic boundary conditions to mitigate any finite size effects

and to ensure a good approximation to bulk properties. Within the large system

the properties are averaged over a smaller cell in order to evaluate the cell-size and

temperature dependent properties relevant for micromagnetic models. A schematic

of the averaging cell is shown in Fig. 3.4.

The determination of the cell size dependence of the magnetocrystalline

anisotropy, K, requires a slightly different approach. In general, with atomistic

models the best approach for extracting the temperature dependence of K is via

the constrained Monte-Carlo method [97], an extension of the Metropolis algorithm

discussed in section 2.1.

The Metropolis algorithm works on a basis of generating trial moves for N random

spins in the system, where N is the total number of spins. The trial move is then

accepted or rejected based on the ratio of the Boltzmann probability densities of the

initial and final states, given by exp(−βH), where β = 1/kT . In the constrained

Monte-Carlo method, the total magnetisation vector of the system M̂ is constrained

to a single direction which can be chosen arbitrarily. At each step, two trial moves

on two individual spins in the system are generated, and these must be chosen such

that the direction of M̂ is conserved. This is done by first selecting a single spin Ŝi

at random, displacing the spin by some amount to obtain a new spin Ŝ′i, and then

choosing a compensation spin Ŝj and displacing that by an amount such that M̂ is

conserved. The total energy difference ∆H = H′ −H is then calculated and the two

moves are accepted according to the acceptance function as in the case of the normal

method. Running the simulation for some number of time steps, we are then able to

calculate the restoring torque on the system as a function of the constraining angle

of the magnetisation.
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As a validation of the method, the temperature dependence of the restoring torque

for a generic bcc system is shown in Fig. 3.5a. The restoring torque is defined by

τ = M ×H (3.10)

where H is the effective field andM is the direction in which the system magnetisa-

tion is constrained.
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Figure 3.5: (a) Angular variation of the y-component of the restoring torque as a
function of temperature for a generic bcc system with Tc ≈ 1000 K. (b) Integration
of τ with respect to θ from 0 to π gives the change in the free energy.

Each curve has a sin(2θ) form, characteristic of uniaxial anisotropy. At 500 K,

approximately half of the Tc, there is a 50% reduction in the restoring torque, which

is similar to results given by Asselin et al. [97]. From here the change in the free

energy ∆F is determined via an integration over the angle, such that

F(θ) =

∫ π

0

τy · dθ (3.11)

where the proportionality constant K gives the magnitude of the effective uniaxial

magnetocrystalline anisotropy constantKeff
u . The angular dependence of ∆F is shown

in Fig. 3.5b. The energy is a maximum when the magnetisation is in-plane and has
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minimum energy when the magnetisation is aligned along the anisotropy axis, as

expected for a uniaxial system.

The results obtained using these methods for the cell size scaling of the magnetic

parameters will be presented in chapter 5.

44



Chapter 4

Core/shell Nd2Fe14B/α-Fe

nanoparticles

Recent advancements in nanoscale fabrication techniques have opened the way for

a new class of materials that combine hard and soft magnetic materials to produce

so-called exchange coupled nanocomposites, or exchange spring magnets [31, 98, 99],

with large anisotropy provided by the hard phase and high saturation magnetisation

provided by the soft phase. In addition to having better overall magnetic proper-

ties than either constituent material, exchange spring magnets have the advantage of

reducing the overall material cost by reducing the proportion of the expensive hard

phase in favour of more cost-effective and readily-available soft materials such as Fe

or Co. Since first suggested by Kneller and Hawig in 1991 [100], various theoreti-

cal predictions have suggested that their maximum energy product could be in the

region of 950 kJm−3, which is remarkable when compared to what one could hope

to achieve using only permanent magnets, however this has not so far been realised

experimentally.

The term exchange spring magnet refers in general to any structure in which

there is a magnetically hard phase exchange coupled to a magnetically soft phase.
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These might include a simple multilayer system, such as that investigated by Skomski

and Coey [101], or more complicated structure with numerous phases such as the

‘Battenburg’ magnet described by Bance et al. [51]. Initially proposed for permanent

magnet applications [102], they have since gained interest in numerous other areas

including magnetic recording media [103,104] and biomagnetism [105,106].

Core/shell magnetic nanoparticles are an advanced form of exchange spring mag-

net, which have only become possible to fabricate in the last 10–15 years due to

advances in synthetic chemistry allowing exceptional control over growth parame-

ters [107]. The idea behind core/shell nanoparticles is to have an increased area

across which the hard and soft phases are coupled, thus multiplying the benefits that

come with exchange spring magnets.

Skomski and Coey [101] predicted theoretically that in a bi-magnetic multilayer

system comprised of Sm2Fe17N3 as the hard phase and Fe65Co35 as the soft phase, a

(BH)max of 1 MJm−3 could be achieved. Despite the great potential for improving

(BH)max using bi-component ferromagnetic materials, the majority of research has

focused on FM/AFM or AFM/FM core/shell nanostructures [107]. Recently however,

Liu et al. reported values of 360-440 kJm−3 for bi-component ferromagnetic FeCo

and Fe coated Nd2Fe14B particles [30]. It has been suggested that the reason for

the disparity between experimental and predicted values might be that experiments

have been carried out on randomly-oriented particles rather than magnetically aligned

systems [107].

There are a number of methods used in the literature to treat exchange-spring

magnets computationally. Currently the most common [108–111] is based on the

micromagnetics formalism, which approximates the magnetisation of the system as a

spatially-continuous vector field (for details see section 1.2).

Here will be presented a systematic investigation of the magnetic properties and

performance of idealised core/shell nanostructures with soft/hard morphology, using
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Nd2Fe14B for the hard phase and α-Fe for the soft phase. The systems are modelled

across a range of temperatures using an atomistic spin dynamics (ASD) model. The

ASD approach is the most appropriate way to deal with interface effects and also the

effects of elevated temperatures, which form an important part of the analysis.

First, the system setup is described. Then calculations of the temperature depen-

dence of the magnetisation will be shown, which demonstrate an important enhance-

ment of the magnetisation of the hard phase with increased α-Fe content. This is

followed by a systematic investigation of the temperature dependence of the coercive

field and energy product, demonstrating enhancement of the properties of nanoscale

systems due to the magnetisation enhancement effect brought about by the α-Fe

phase.

4.1 Temperature re-scaling

Before proceeding with the parameterisation of the core/shell system, we note briefly

the method used to correctly reproduce the temperature dependent effects. In the

classical atomistic model, all directions are permitted for each spin vector. This gives

an incorrect temperature dependence for the system magnetisation at low tempera-

tures. One method of correcting this is to use the phenomenological spin temperature

rescaling (STR) method suggested by Evans et al. [112], which has the effect of re-

ducing the spin fluctuations in agreement with experiment. The approach uses an

interpolation between low-temperature Bloch behaviour and critical behaviour, such

that the magnetisation can be described by

m(τ) = (1− τα)β, (4.1)

where τ = T/Tc, α is a phenomenological constant and β is the critical exponent. β

is assumed to be the same for the classical simulation and experiment. Setting α = 1
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(giving the classical Heisenberg dependence of the magnetisation), we can determine

both β and Tc, which are constants. With these, we are able to perform a secondary

fit to experimental data to determine α. Using this method gives re-scaling constants

αFe = 2.876 and αNd = 1.756, which we apply to the α-Fe and Nd2Fe14B sublattices

respectively, allowing the temperature dependence of the saturation magnetisation

and energy product of the composite system to be compared to experiment.

4.2 Parameterisation

A schematic of the modelled core/shell system is shown in Fig. 4.1. For this system

we use a generic spin model for the Nd2Fe14B shell with bcc crystal structure. In this

way each atomistic spin in the system is representative of a single Nd2Fe14B unit cell

containing 68 atoms: 54 Fe atoms, 8 Nd atoms, and 4 B atoms. The parameters used

for each material are given in Table 4.1. A nearest-neighbour Heisenberg exchange

approximation was used.

Nd2Fe14B

α-Fe

Figure 4.1: Schematic showing the modelled core/shell nanoparticle. The structure
has a soft, high saturation magnetisation α-Fe core and a hard, large anisotropy
Nd2Fe14B shell.
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Nd2Fe14B α-Fe

µs [µB] 1.88 2.2
ku [J/atom] 1.482×10−22 4.01×10−25

Jij [J/link] 4.04×10−21 7.20×10−21

λ 1.0 1.0
α 1.756 2.876

Table 4.1: Summary table of model parameters and their units. µs is the atomic spin
moment, ku the on-site magnetocrystalline anisotropy constant, λ is the microscopic
damping parameter, α the temperature rescaling exponent, and Jij the intra-phase
exchange coupling strength. Between phases an average value of 5.0×10−21 J/link
was used.

We have carried out a systematic investigation of the properties of core/shell

Nd2Fe14B/α-Fe nanoparticles. We first establish that the parameters for the isolated

phases produce behaviour consistent with experiment. Following this we consider the

effect of varying the relative proportions of the phases in the core/shell configuration

on the temperature dependent magnetisation of the nanoparticle, followed by an

investigation of the hysteresis behaviour of nanoscale systems.

4.3 Static magnetic properties and proximity effect

The temperature dependence of the magnetisation of the two isolated phases was

calculated (Fig. 4.2). After re-scaling via the STR method, the simulated data fol-

lows the experimental data closely across the whole temperature regime for both the

Nd2Fe14B and α-Fe phases. Fitting using the Curie-Bloch equation (given by (5.9))

gives values for Tc of 584.3 K and 1040.0 K for Nd2Fe14B and α-Fe respectively.

There is some slight discrepancy in the behaviour of the simulated and experimental

Nd2Fe14B systems, however this is likely due to the fact that the experimental mea-

surement was carried out under an external magnetic field of 800 kA/m, while there
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Figure 4.2: Calculated temperature dependent magnetisation for single-phase spher-
ical nanoparticles of diameter 12 nm. The curves are fitted using (5.9) giving values
for Tc of 584.3 K and 1040.0 K for Nd2Fe14B and α-Fe respectively. The experimental
data are from Refs. [18] and [113] for the Nd2Fe14B and α-Fe respectively.

is no field applied to the simulated system. Having parameterised our model to fit the

experimental data, we move on to an investigation of the temperature dependence of

the composite nanoparticle properties.

Firstly, we investigate the magnetisation of the core/shell system, showing an

important proximity effect arising from the polarisation of the hard phase by the

α-Fe core. We have calculated the temperature dependence of the magnetisation as a

function of the vol% of α-Fe, using the Monte Carlo integration method as outlined

in section 3.2. From Fig. 4.3 it can be seen that there is a clear enhancement of

the saturation magnetisation across the whole temperature range for increasing vol%

of α-Fe. Due to its higher Tc, the gradient of the magnetisation curve for bulk α-

Fe is much smaller at low temperatures than that of Nd2Fe14B, which will, in the

exchange-coupled case, result in increased magnetisation of the composite phase.

The highlighted temperature region in Fig. 4.3 indicates the area of interest when

considering electric vehicle motor applications. The enhancement effect is significant

towards the high temperature end of this region, where the Nd2Fe14B begins to de-
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Figure 4.3: The calculated saturation magnetisation as a function of temperature
for a 12 nm diameter soft/hard core/shell nanoparticle for varying vol% of α-Fe.
Though the curves do not follow the standard Curie-Bloch behaviour, qualitatively
it can be said that there is a clear increase in Tc with increasing α-Fe content, as
well as improved magnetisation retention across all temperatures considered. The
highlighted region indicates the temperature domain generally relevant for automotive
applications.

magnetize as T approaches Tc for bulk Nd2Fe14B. The more thermally stable α-Fe

phase acts to polarize the shell via the inter-phase exchange coupling.

The extent of the polarisation effect on the hard phase was investigated by cal-

culating the magnetisation of the particle as a function of the radial distance r from

the centre of the particle. The particle was discretised into a series of annuli (see

Fig. 4.4), and the magnetisation per atom of each annulus calculated.

In the uncoupled case, one would expect a step-function change in the magneti-

sation at the distance r = rc where rc is the radius of the core. In the coupled

case considered here, a gradual transition from the soft to the hard phase, with the

gradient of M(r) directly proportional to the coupling strength, should be expected.

Fig. 4.5 shows the results of the M(r) calculation. The data show that there

is a gradual transition between the higher magnetisation of the soft core and the

reduced magnetisation of the hard shell. The polarisation effect of the soft α-Fe

core can be seen to penetrate the shell to a depth of ∼0.5 nm, or 17% the thickness
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of the shell, providing an explanation for the enhancement effect seen in Fig. 4.3.

This is an interesting effect, accessible experimentally and with direct implications

for applications in systems based on nanoscale materials design.

core

shell

dr

annulus

Figure 4.4: Discretisation of core/shell particle into series of annuli of constant width
dr, with radius ranging from zero to radius of particle.

We now proceed to investigate the coercivity and energy product of the core/shell

structure. While the composite system reduces the temperature dependence of the

saturation magnetisation, a high energy product is dependent upon retaining a high

coercivity. Since the Fe has a very low anisotropy, its addition will also lead to a

reduction in the coercivity of the composite system. We proceed by investigating

the coercivity as a function of temperature, followed by a study of the temperature

dependence of the energy product as a function of the α-Fe vol%.

Figure 4.6 shows the calculated de-magnetisation curves for the composite system

at temperatures of 0 K and 300 K. The calculations were performed using a field

sweep rate of 6.0 × 108 Ts−1 (real time), which equates to ∼ 24,000 steps per field

point sweeping between 18.5T and -18.5T, and a field increment of 3× 10−3 T. The

squareness of the loops is evidence of coherent rotation, independent of the Fe vol%,

as expected due to the small particle size. It is shown that particles with increased

Fe core size show reduced coercivity, however the increased moment (Fig. 4.3) should
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offset this reduction in terms of the maximum energy product. The addition of tem-

perature to the system reduces the coercivity by virtue of increased spin fluctuations,

which decrease the magnetocrystalline anisotropy. In both the zero temperature and

finite temperature calculations the curves are normalised to the saturation magneti-

sation, however it can be seen that the spin fluctuations at finite temperature reduce

the magnetisation to ∼ 0.8 of the saturation.

The dependence of the coercive field of the nanoparticle on the fraction of α-Fe

at zero temperature and room temperature is shown in Fig. 4.7. It can be seen that

the coercive field decreases with increasing α-Fe fraction, with the most significant

decrease seen at zero temperature.

The loss of performance of Nd2Fe14B in automotive applications is due in part

to the loss of saturation magnetisation at elevated operating temperatures. The

polarisation effect means that the advantages of adding α-Fe, in addition to the

reduction of the Nd requirement, are twofold. Firstly, the α-Fe enhances the overall

magnetisation, giving rise to a potential increase in energy product (albeit offset by

a reduction in coercivity). Secondly, the polarisation of the Nd2Fe14B by the α-Fe

stabilises the hard phase at elevated temperatures and thereby reduces the rate of

reduction of the anisotropy.

An important indicator of the effectiveness of a permanent magnet in high-

performance motor applications is the quantity (BH)max, or the maximum energy

product, where BH is a scalar product between the induced magnetic flux density B

and the internal magnetic field H. B is given by

B = µ0(M +Hint) (4.2)
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Figure 4.7: Calculated coercive field as a function of vol% of α-Fe at zero temperature,
room temperature and the operating temperature of a permanent magnet motor.

whereM is the magnetisation of the particle, and Hint the internal field which is given

by

Hint = µ0Hext −
γ

4π
M (4.3)

where µ0Hext is the externally applied magnetic field, and γ is the demagnetising

factor, taken to be 4π/3 for a sphere [114]. In the calculation of the BH product we

have assigned a composite magnetic moment to the particle, weighted according to

the relative volumes of the two phases. In general, a larger magnitude of (BH)max is

desirable.

The quantitative effects on the maximum energy product are shown in Figure 4.8.

It is seen that, at finite temperatures, there is an optimal system composition at

which the maximum energy product reaches a maximum. This is found to be ∼70%.

After this point, a sharp drop in the maximum energy product is observed - a result

of the decreasing thickness of the hard Nd2Fe14B shell, which is the source of the high

coercive field necessary to achieve a large energy product.
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Figure 4.8: Calculated maximum energy product of composite 6 nm nanoparticle
for a range of temperatures. The temperature labels here refer to the simulation
temperature. At finite temperatures a steady increase is seen as a function of Fe
core volume, which continues up to a threshold value of ∼ 70%, after which a rapid
decline is seen. This suggests that for composite nanoparticles in general there is an
ideal core size at which the maximum energy product may be optimised. At zero
temperature there does not appear to be a threshold value.

4.4 Conclusion

Using a generic atomistic spin model, the hysteretic and thermodynamic properties

of Nd2Fe14B hard shell/α-Fe soft core nanostructures were investigated, with the

aim of finding a structure with improved properties, namely improved magnetisation

retention at elevated temperatures and larger maximum energy product BHmax.

We found an improvement in the total magnetisation of the composite system with

increased α-Fe content. It was shown that this was a result of a deep-penetrating po-

larisation effect by the soft ferrite core on the hard shell. This enhancement however,

was shown to be offset by a drop in coercivity with increasing Fe content, which re-

duced much more rapidly for larger particle sizes. Subsequently it was shown that

the combination of these two effects resulted in an overall increase in the maximum

energy product of the particle with increasing α-Fe content, up to a threshold value

of ∼70%, after which it was found to decrease rapidly. Thus it has been shown that
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in the future the performance of Nd2Fe14B permanent magnets could potentially be

optimised by the addition of α-Fe, up to a certain volume fraction, in the form of

core/shell nanoparticles, provided the particle size is sufficiently small that polarisa-

tion across the interface between the core and the shell plays a significant role.
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Chapter 5

Parameterisation of the full atomistic

spin model

As our understanding of rare-earth intermetallics has progressed over the course of

the last half-century, the evidence has become increasingly clear that their remarkable

properties are largely a result of their intricate microstructure. This poses a problem

when it comes to creating computational models that accurately describe their mi-

croscopic and macroscopic magnetic properties as the primary computational method

used for probing these properties historically has been the so-called micromagnetics

formalism, which works on length scales significantly larger than is required to probe

microstructural phenomena.

The micromagnetics formalism relies on a continuum approximation, whereby the

magnetisation of a material is assumed to be a continuous function of position [49].

Finding the minimum free energy with respect to the magnetisation then yields the

equilibrium magnetic states of the structure. Using finite difference or finite element

integration methods, these models are able to probe magnetic materials at length

scales of several nanometres [49].
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Particularly with materials such as Nd2Fe14B and NdFe12, it is known that many

of their properties are a direct result of local crystal structure, i.e. structural effects

on the scale of their respective unit cells which have dimensions on the scale of a few

angstroms. Thus from this perspective, we are better served by an atomistic spin

model. In this chapter we will investigate how we can go about parameterising these

materials within the context of a classical atomistic spin model. For full details on

the methods used in the model, please refer to section 2.1.

Models such as these are most often parameterised using a combination of ab

initio methods, from which one can obtain atomistic parameters using knowledge of

the electronic structure of the elements in question, and experimental measurement.

An important point to make is that reliable first-principles calculations of rare-earth

compounds are difficult to come by. The fact that many of the physical effects in

which we are interested in rare-earth metallic compounds arise from the unpaired

electrons in the 4f shell, which are notoriously difficult to treat from first-principles,

requiring relativistic corrections. This is a difficult and specialised area. Thus the

majority of the parameterisation of our spin model comes from experimental data.

5.1 Nd2Fe14B

5.1.1 Crystal structure

Figure 5.1 shows a visualisation of the complex Nd2Fe14B crystal structure. The exact

configuration of the unit cell was first established by Herbst et al. (1984) [115] using

neutron powder-diffraction analysis, and later confirmed by a number of other groups

using a combination of neutron powder-diffraction and x-ray-diffraction [25,116]. The

atomic positions are well established, generally differing by less than 2 thousandths

of an angstrom between works.
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a

b

c

Figure 5.1: Schematic of the Nd2Fe14B unit cell. The lattice symmetry is tetragonal
and each unit cell contains 4 formula units.

The lattice constants of the unit cell at room-temperature were measured by

Herbst et al. using neutron diffraction to be a = 8.80 Å (dimensions of basal plane)

and c = 12.19 Å [115]. The unit cell lattice has tetragonal symmetry and the space

group is P42/mnm. The Nd atoms occupy two crystallographically distinct symmetry

sites, normally denoted by 4f and 4g, while the Fe atoms occupy six cystallographi-

cally distinct symmetry sites, denoted by 16k1, 16k2, 8j1, 8j2, 4e, and 4c.

Taking the Wyckoff positions [117] of each atomic site from the literature, we

apply the appropriate symmetry operations (determined using the Bilbao crystal

server [118–120]) to obtain a full set of coordinates for the unit cell (see table 5.1).

All of the Nd and B atoms in the unit cell reside in the z = 0 and z = 0.5 planes,

while all but 4 of the 56 Fe atoms sit in between these planes, forming two ‘puckered

nets’ [22] symmetric about the z = 0.5 plane and rotated ∼ 30◦ with respect to one

another.
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Atom x y z Atom x y z

Nd 4f 0.268 0.268 0.000 Fe 16k2 0.860 0.463 0.324
Nd 4f 0.732 0.732 0.000 Fe 16k2 0.140 0.537 0.324
Nd 4f 0.232 0.768 0.500 Fe 16k2 0.537 0.140 0.676
Nd 4f 0.768 0.232 0.500 Fe 16k2 0.463 0.860 0.676
Nd 4g 0.140 0.860 0.000 Fe 16k2 0.640 0.963 0.176
Nd 4g 0.860 0.140 0.000 Fe 16k2 0.360 0.037 0.176
Nd 4g 0.640 0.640 0.500 Fe 8j1 0.098 0.098 0.204
Nd 4g 0.360 0.360 0.500 Fe 8j1 0.902 0.902 0.204
Fe 16k1 0.223 0.567 0.127 Fe 8j1 0.402 0.598 0.704
Fe 16k1 0.777 0.433 0.127 Fe 8j1 0.598 0.402 0.704
Fe 16k1 0.933 0.723 0.627 Fe 8j1 0.402 0.598 0.296
Fe 16k1 0.277 0.067 0.627 Fe 8j1 0.598 0.402 0.296
Fe 16k1 0.277 0.067 0.373 Fe 8j1 0.098 0.098 0.796
Fe 16k1 0.723 0.933 0.373 Fe 8j1 0.902 0.902 0.796
Fe 16k1 0.567 0.223 0.873 Fe 8j2 0.317 0.317 0.246
Fe 16k1 0.433 0.777 0.873 Fe 8j2 0.683 0.683 0.246
Fe 16k1 0.777 0.433 0.873 Fe 8j2 0.183 0.817 0.746
Fe 16k1 0.223 0.567 0.873 Fe 8j2 0.817 0.183 0.746
Fe 16k1 0.067 0.277 0.373 Fe 8j2 0.183 0.817 0.254
Fe 16k1 0.933 0.723 0.373 Fe 8j2 0.817 0.183 0.254
Fe 16k1 0.723 0.933 0.627 Fe 8j2 0.317 0.317 0.754
Fe 16k1 0.277 0.067 0.627 Fe 8j2 0.683 0.683 0.754
Fe 16k1 0.433 0.777 0.127 Fe 4e 0.500 0.500 0.114
Fe 16k1 0.567 0.223 0.127 Fe 4e 0.000 0.000 0.614
Fe 16k2 0.037 0.360 0.176 Fe 4e 0.000 0.000 0.386
Fe 16k2 0.963 0.640 0.176 Fe 4e 0.500 0.500 0.886
Fe 16k2 0.140 0.537 0.676 Fe 4c 0.000 0.500 0.000
Fe 16k2 0.860 0.463 0.676 Fe 4c 0.000 0.500 0.500
Fe 16k2 0.463 0.860 0.324 Fe 4c 0.500 0.000 0.500
Fe 16k2 0.537 0.140 0.324 Fe 4c 0.500 0.000 0.000
Fe 16k2 0.360 0.037 0.824 B 4g 0.371 0.629 0.000
Fe 16k2 0.640 0.963 0.824 B 4g 0.629 0.371 0.000
Fe 16k2 0.963 0.640 0.824 B 4g 0.871 0.871 0.500
Fe 16k2 0.037 0.360 0.824 B 4g 0.129 0.129 0.500

Table 5.1: Fractional coordinates of atomic sites of Nd2Fe14B unit cell.
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As discussed in section 2.1, a zero-temperature magnetic moment is assigned to

each atomic spin in the system. These vary between elements as well as between sym-

metry sites [22], with B atoms assumed to have zero magnetic moment. The estimated

magnetic moment per Fe atom is estimated from the measured zero-temperature mag-

netisations of R2Fe14B compounds where R is some non-magnetic rare-earth element.

In these compounds the sole contribution to the total magnetic moment is assumed

to come from the Fe sublattice. All experiments indicate that the Fe sublattice is

ferromagnetically coupled and collinear [22], thus the moment per atom can simply

be calculated by dividing the total moment of a R2Fe14B crystal with non-magnetic

R by the number of Fe atoms. Taking, for example, Y2Fe14B which at 4 K has mag-

netisation ∼ 31.1 µB per formula unit [18, 121], we can estimate that the average

moment per Fe atom is ∼ 2.2 µB. While there will be some variation between each

of the Fe symmetry groups, we assume the variation to be small, and so assign the

same moment to all Fe atoms.

Similarly, one can determine the magnetic moment per Nd atom by simply sub-

tracting the total magnetisation per unit volume of a Y2Fe14B crystal from that of

a Nd2Fe14B crystal, leaving only the contribution of the Nd sublattice to the total

magnetisation. The magnetisation of a Nd2Fe14B single crystal has been measured at

4.2 K to be ∼ 37.2 µB, from which we deduce that the average moment per Nd atom

is 3.2 µB.

5.1.2 Exchange interactions

From the atomistic spin Hamiltonian H discussed in section 2.1, the terms that ap-

pear due to contributions from the exchange interaction are −
∑

i,δ JNdFeSi · Sδ and

−
∑

ν,j JFeNdSν · Sj, which are the inter-sublattice exchange interaction energy con-

tributions, and −
∑

ν,δ JFe(r)Sν ·Sδ, the intra-sublattice exchange interaction energy

contribution of the Fe sublattice. Here S are the unit vectors giving the direction
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of the magnetic moments at each site, the indices i, j label Nd sites, and ν, δ label

Fe . The terms that need be parameterised are the quantities JNdFe (this is equal to

JFeNd) and JFe(r). Note that exchange between rare-earth atoms is assumed to be

sufficiently small that we may neglect it.

As mentioned previously, without detailed ab-initio information about the ex-

change interactions in Nd2Fe14B it is difficult to speak definitively as to the form

these should take. It is known however that they are relatively long ranged and

depend strongly on inter-atomic separation [22]. As a starting point we can use in-

formation about the exchange interaction between Fe sites in bcc Fe. These were

calculated from first principles by Pajda et al. [122] using density functional theory

(DFT). To these data we fit a function of the form

JFe(r) = J0 + Jr exp(−r/r0) (5.1)

where r is the separation between ions, r0 is a characteristic separation, and J0

and Jr are fitting constants. For interatomic separations greater than 5.0 Å the

exchange energy is truncated to zero. The function is shown in Fig. 5.2. Implementing

the fitted function into the model as-is gives a simulated Curie temperature (Tc) of

approximately 800 K, which is higher than the experimentally found Tc for Nd2Fe14B

of 585 K. Taking into account the lower density of Nd2Fe14B in comparison with

bcc Fe, it is reasonable to expect that there will be reduced overlap of Fe orbitals,

and a corresponding reduction in the exchange interaction energies. Therefore to

account for this we scale the function via the pre-factor Jr until the Tc aligns with

the experimental value. The scaled function is shown in Fig. 5.2. While this scaling

is not as physically sound as we might like, it has the advantage of preserving the

long-range and distance dependent characteristics of the ab-initio data.
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Figure 5.2: The exchange energy as a function of inter-atomic separation for interac-
tions between Fe moments in the Nd2Fe14B spin model. The triangular points (taken
from Ref. 5.2) are the exchange interaction energies in α-Fe calculated from first prin-
ciples. Using these in the Nd2Fe14B model results in a too-high Tc, thus the points
are scaled by a pre-factor of 0.753, shown by the green curve with circular points.

The interactions between Nd and Fe ions in Nd2Fe14B are rather complex. The

vast majority of previous theoretical investigations of Nd2Fe14B are based on the so-

called mean-field approximation, wherein the effect of all of the other spins on the

rare-earth moment is approximated to a single average effect, greatly reducing the

complexity of the problem. In our model we seek to break this approximation down

into pairwise interactions.

Simplistically, from the positive sign of the Nd moment we can infer that the

coupling between Nd and Fe moments is ferromagnetic. In our model, for simplicity,

we assume a direct ferromagnetic coupling between these moments, though it has been

suggested [123–125] that the 4f electrons of the Nd ion induce a local 5d moment,

and it is the 5d moment which interacts with the neighbouring 3d moments, aligning

with the picture that the 4f moments are strongly shielded from the environment

and do not interact directly with it. From experiment, a high degree of ordering is

observed between Nd and Fe moments at room temperature - a significant fraction
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of Tc, suggesting a relatively strong exchange interaction. We treat JNdFe as a free

parameter for fitting to experiment. For Nd-Fe interactions in Nd2Fe14B the nearest

neighbour distance is, compared to the Fe-Fe interactions, reasonably well-defined,

with each Nd atom having a coordination number of 16, thus we choose a cut-off

radius of 4 Å, and assign all interactions within this radius the same interaction

strength.

5.1.3 Magnetocrystalline anisotropy

A defining quality of Nd2Fe14B is its large anisotropy field Ha - at zero-temperature

the coercivity is estimated to be ∼ 17 T [22]. Macroscopically the magnetocrystalline

anisotropy energy can be expressed by [126]

EK = K1 sin2 θ +K2 sin4 θ (5.2)

where K1 and K2 are effective anisotropy constants which can be determined by

experiment. This relation is the preferential expression for interpreting experimental

data as the straightforward link between anisotropy constants and angular dependence

makes it easy to find the constants from measurements of the torque.

Nd sublattice anisotropy

In the case of a material with a single sublattice, the on-site anisotropy could be

extracted from the anisotropy field Ha in a straightforward manner via the relation

Ha = 2ku/µs [48]. This expression does not apply to Nd2Fe14B, in which the sublattice

contributions to the magnetocrystalline anisotropy are unevenly distributed, thus a

new expression must be derived. Using a Stoner-Wohlfarth-like approach, a single

domain Nd particle is considered with second and fourth order uniaxial anisotropy
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constants k2 and k4, and energy E given by the expression

E = −k2m
2
z − k4m

4
z +mzµH (5.3)

wheremz is the z-component of the reduced magnetisation, µ is the magnetic moment,

and H is the applied field strength. Expansion of the Legendre polynomials gives the

anisotropy energy E of a Nd atom at 0 K thus:

E = −k
Nd
2

3
(3S2

z − 1)− kNd4

12
(35S4

z − 30S2
z + 3) (5.4)

where the Sz are the z-components of the unit spin vector at each Nd site (as usual

the z-direction is defined as lying parallel to the c-axis). There are two experimental

observations that can help elucidate the ratio of k2 to k4:

1. Nd2Fe14B undergoes a spin-reorientation transition (SRT) at Ts (Ts = 135 K).

For T < Ts, the rare-earth moment cants 30◦ from the c-axis, taking on an easy-

cone rather than uniaxial anisotropy, while above Ts the Nd sublattice takes on

a uniaxial c-axis anisotropy.

2. Nd2Fe14B possesses a significantly larger anisotropy than Y2Fe14B, in which the

R sublattice carries no moment.

Thus it can be asserted that the Nd sublattice has uniaxial anisotropy above Ts,

and that the anisotropy term giving rise to the low temperature moment canting

has a stronger temperature dependence than the term responsible for the perpen-

dicular component of the anisotropy. From Callen and Callen [127] we expect that

the effective anisotropies should go as keff2 (T ) ∼ mNd(T )3 and keff4 (T ) ∼ mNd(T )10,

where mNd(T ) is the Nd sublattice reduced temperature-dependent magnetisation

normalised to mNd(0). Given that the temperature dependence of the fourth order

term is so much stronger than that of the second order term, it can be educed that
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it is the fourth order term that is responsible for the low temperature spin cant-

ing, or the in-plane contribution (corresponding to a negative value for the effective

anisotropy), and the second order term responsible for the less temperature depen-

dent out-of-plane anisotropy. The second observation tells us that the Nd sublattice

contributes strongly to the anisotropy at T > Ts, and therefore should be non-zero

and positive [128].

To calculate the ratio of the k2 constant to k4 given a canting angle, we must

differentiate with respect to Sz, giving

dE

dSz
= −2kNd2 Sz −

140kNd4

12
S3
z +

60kNd4

12
Sz. (5.5)

Letting dE/dSz = 0 gives the saddle point in the energy surface which is determined

by the canting angle θ. Rearranging, the canting angle is then given by

z ≡ cos θ =

√
3

7
− 6

35

kNd2

kNd4

. (5.6)

Solving for the ratio kNd2 /kNd4 , we have

kNd2

kNd4

= −35

6

(
cos2 θ − 3

7

)
(5.7)

Substituting in the canting angle for θ we get that

kNd2

kNd4

= −15

8
(5.8)

Thus, for a given anisotropy field, the Nd anisotropy constant is higher than one

would expect and cannot be determined by a simple averaging of the anisotropy

between the Fe and Nd sublattices. The final value of kNd2 is determined graphically

by solving the angle dependent energy with effective kNd2 including the effect of the
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Fe sublattice, yielding final constants kNd2 = 4.359×10−21 J/atom and kNd4 = −2.32×

10−21 J/atom. These anisotropy constants are approximately one tenth the magnitude

of the exchange interaction energy, which allows for the possibility of non-collinear

magnetisation states induced by the anisotropy. We note that the determined values

are similar to those determined from crystal field theory [22,129].

Fe sublattice anisotropy

It is known that the Fe sublattice contributes to the magnetocrystalline anisotropy,

as R2Fe14B compounds with non-magnetic R (e.g. R=La, Ce, Lu, Y, Th), in which

the anisotropy is generated by the Fe sublattice alone, have appreciable anisotropy

energies (e.g. K1 = 1.2 MJ/m3 for Lu2Fe14B), likely due to the complex arrangement

of atoms in the Fe sublattice. Using the Stoner-Wohlfarth relation k2 = Hkµs/2 [130]

the zero temperature second order uniaxial anisotropy constant is calculated to be

k2 = 1.836× 10−23 J/atom.

5.1.4 Hysteresis behaviour

Having obtained a full set of parameters for Nd2Fe14B, a series of simulations were

run to confirm that the calculated macroscopic properties align with experimentally

found macroscopic values. We begin with the hysteresis behaviour of the material.

The simulation is set up as follows. An 8 x 8 x 8 nm system with periodic boundary

conditions was chosen, large enough to mitigate any finite size effects and to accurately

simulate a bulk system. An external field is applied along the c-axis, with the system

set to equilibrate at each field step for 10,000 time steps, and the magnetisation

averaged at that field step for a further 50,000 time steps, at a time step of 1 fs. The

field strength increment was set to 0.05 T. This equates to a field sweep rate of 1e9

Ts−1.
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Figure 5.3: (a) shows calculated hysteresis loops for temperatures between 0 and 400
K. Previous theoretical predictions for the zero temperature coercivity predict 17 T,
in good agreement with our calculation. Below 200 K there is a distinct non-square
shape, indicating non-collinear spin states which arise due to competition between
second and fourth order anisotropy terms. (b) shows the simulated hysteresis at 0 K
resolved by sublattice. It can be seen that the sublattices deviate as the higher Fe
moment interacts more strongly with the external field, and so begins to demagnetise
at lower field.

As mentioned previously, the zero temperature coercive field of Nd2Fe14B is is

estimated to be very high, approximately 17 T [22]. In Fig. 5.3a it can be seen that the

zero temperature calculated switching field matches very closely the estimated value

for the coercivity. The non-square shape of the loop at low temperatures comes about

as a result of the canting of the Nd sublattice away from the c-axis. It is interesting to

note that unlike previous theoretical approaches, the non-collinear alignment of the

sublattices comes about purely as a result of competing magnetocrystalline anisotropy

energy terms rather than any kind of alignment being imposed by the model. The

distinct behaviours of the individual sublattices can be seen clearly in Fig. 5.3b, which

shows the magnetisation of the Nd and Fe sublattices separately. It can be seen that

the higher moment of the Fe sublattice results in a stronger coupling to the external

field, and thus the Fe loses its magnetisation sooner than the Nd sublattice, resulting

in a non-collinear equilibrium state at high fields.
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The strong temperature dependence of the fourth order uniaxial anisotropy term,

responsible for the canting at low temperatures, means that as the temperature is

increased past Ts, the shape of the hysteresis curve becomes square. This is a result of

the fact that the Nd sublattice anisotropy is now dominated by the k2 term, acquiring

out-of-plane anisotropy. For T > Ts the large anisotropy of the Nd sublattice holds

the Fe sublattice in place, hence the flatness of the magnetisation up to Hc, before

the system succumbs and undergoes a coherent switch.

5.1.5 Temperature dependence of Ms

Here we investigate the finite temperature behaviour of the magnetisation in our

Nd2Fe14B spin model. To mitigate finite size effects, we again choose a system with

dimensions 8 x 8 x 8 nm. To get closer to simulating a bulk system we utilise periodic

boundary conditions, nullifying any surface effects. Because we are simulating an

equilibrium property of the system, the system is integrated using a Monte Carlo

algorithm for efficiency. At each temperature step the system is equilibrated for

10,000 steps, before being integrated for a further 50,000 steps to obtain an average

magnetisation.

The magnetisation of the entire system as well as of each sublattice are shown

in Fig. 5.4. For comparison, the total magnetisation as a function of temperature is

shown, as measured by Hirosawa et al. [18] using a vibrating sample magnetometer

(VSM). Qualitatively the calculated magnetisation matches experiment reasonably

well, though it is a little lower across the whole temperature range. It should be

noted however that the calculated curve actually matches values for Tc (∼ 585 K)

better than the experimental data seems to. This may be due to the fact that the

magnetisation measurements using the VSM were made in the presence of a small

applied magnetic field, sustaining the magnetisation to higher temperatures.
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Figure 5.4: Calculated temperature dependence of the individual sublattices as well
as the total magnetisation are shown for a Nd2Fe14B single crystal. Experimental
data taken from Ref. [18] is shown for comparison. The calculated Tc matches the
expected Tc of 585 K reasonably well. The bulk of the magnetisation originates from
the Fe sublattice due to the stoichiometric abundance of Fe in the crystal.

It can be seen that the bulk of the magnetisation originates from the Fe sublat-

tice as expected, with the contribution of the Nd sublattice only 17% of the total

magnetisation at zero temperature, a result of the stoichiometric abundance of Fe in

the crystal. Above approximately 200 K the Nd sublattice magnetisation approaches

a near linear dependence with temperature, important due to the fact that the Nd

provides the bulk of the magnetocrystalline anisotropy. This may offer an explanation

as to why there is a significant reduction in the coercivity of Nd2Fe14B at elevated

temperatures.

5.2 NdFe12

As discussed previously, the hard magnetic phase Nd2Fe14B currently holds the po-

sition of the world’s strongest permanent magnet, with a µ0Ms of 1.6 T and a µ0HA

of 7.5 T at room temperature [131, 132]. One of the primary weaknesses however is
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its relatively low Tc of 585 K and a strong temperature dependence of the coercivity.

This is where the RFe12 family of compounds comes in. Historically this group have

been thought to be stable only in ternary forms, that is, with some Fe atoms sub-

stituted by a third, phase-stabilising element M (e.g. Ti, V, Cr, Mn, Mo, W, Al or

Si) [133,134], leading to a reduction in the overall magnetisation.

Using first-principles calculations, Miyake et al. [46] showed that if the compound

could be stabilised without a third element M , with nitriding, NdFe12Nx would have

large magnetisation as well as strong magnetocrystalline anisotropy. Very recently,

Hirayama et al. [36,37] claimed to have synthesised, for the first time, an NdFe12 film

via heteroepitaxial growth on top of a tungsten under-layer which has similar lattice

parameters. Upon nitriding, the film was measured to have µ0Ms ≈ 1.66 T, µ0HA ≈ 8

T, and a Tc of ∼ 823 K, all of which are superior to Nd2Fe14B. DFT calculations by

Miyake et al. [46] suggest that the primary effect of the N, which sits interstitially

between Nd atoms in the c-direction, is to redistribute the charge around the Nd atom

such that the Nd-5d electrons are pulled to the c-axis, resulting in the crystal field

parameter A20〈r2〉 changing from negative to positive, and the anisotropy changing

from in-plane to out-of-plane.

5.2.1 Crystal structure

Fig. 5.5 shows the crystal atomic structure of NdFe12. The crystal lattice is body-

centred tetragonal (bct) and the space group is I4/mmm. The phase belongs to a

family of compounds that have a so-called ThMn12 structure, the atomic arrangement

of which is well documented. The lattice parameters of the unit cell were calculated

using molecular dynamics by our collaborators in Hrkac’s group at the University

of Exeter, to be a = 8.512, and c = 4.842, using molecular dynamics simulation

with parameterised forced fields. These compare well with values given by Miyake
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Figure 5.5: Visualisation of the NdFe12 unit cell. The unit cell contains 26 atoms
(2 formula units): 2 Nd atoms and 3 groups of 4 Fe atoms belonging to symmetry
groups 8i, 8j, and 8f .

et al. [46], which differ by 0.7% and 1.3% for a and c respectively. The fractional

coordinates of each atom in the unit cell are given in table 5.2.

The NdFe12 unit cell contains 26 atoms, or two formula units. The Fe sites are

split into three crystallographically distinct symmetry groups, denoted by: 8i, 8j, and

8f , each of which contains four atoms. The atoms of each symmetry group possess

a different moment. These were calculated by Miyake et al. [46] from first-principles

using DFT within the generalised gradient approximation. The 8f moments have

a magnetic moment of 2.14 µB, the 8i 2.67 µB and the 8j 2.51 µB. These are

ferromagnetically aligned and give a total Fe sublattice magnetisation of 29.28 µB

per formula unit. The large positive moment of the Fe sublattice compensates the

contribution of the Nd f electrons which contribute a negative moment in the absence

of nitrogen of −3 µB [46].
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Atom x y z Atom x y z

Nd 0.000 0.000 0.000 Nd 0.500 0.500 0.500
Fe 8i 0.357 0.000 0.000 Fe 8i 0.857 0.500 0.500
Fe 8i 0.000 0.357 0.000 Fe 8i 0.500 0.857 0.500
Fe 8i 0.643 0.000 0.000 Fe 8i 0.143 0.500 0.500
Fe 8i 0.000 0.643 0.000 Fe 8i 0.500 0.143 0.500
Fe 8j 0.273 0.500 0.000 Fe 8j 0.773 0.000 0.500
Fe 8j 0.500 0.273 0.000 Fe 8j 0.000 0.773 0.500
Fe 8j 0.250 0.750 0.250 Fe 8j 0.250 0.750 0.750
Fe 8j 0.727 0.500 0.000 Fe 8j 0.227 0.000 0.500
Fe 8f 0.500 0.727 0.000 Fe 8f 0.000 0.227 0.500
Fe 8f 0.250 0.250 0.250 Fe 8f 0.250 0.250 0.750
Fe 8f 0.750 0.250 0.250 Fe 8f 0.750 0.250 0.750
Fe 8f 0.750 0.750 0.250 Fe 8f 0.750 0.750 0.750

Table 5.2: Fractional coordinates of atomic sites of NdFe12 unit cell.

5.2.2 Exchange interactions

The exchange interactions, as before, can be divided into two types: the Fe-Fe ex-

change, and the Nd-Fe inter-sublattice coupling. The latter is of particular impor-

tance as it gives some insight into the reversal mechanisms of the material. A strong

inter-sublattice coupling is desirable as in this scenario the strong magnetocrystalline

anisotropy of the Nd sublattice will help to stabilise the Fe sublattice.

Given that the exchange interaction is the key parameter in determining the Curie

temperature, we use the Tc as a fixing parameter of sorts, and fit the exchange values

until the Tc matches the expected value. As NdFe12 is a relatively recent and un-

studied material, experimental measurements of the macroscopic parameters are few.

Nd(Fe,M )12 compounds however, have been extensively investigated in the literature,

thus we may extrapolate from these data to determine the Tc of NdFe12. Extrapo-

lating linearly using data for NdFe1−xMox measured by Buschow and de Mooij [135]

gives a Curie temperature of 598 K for x = 0, while a similar extrapolation for M =
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Ti [135–137] gives Tc = 595.5 for zero Ti content, thus we proceed using an average

value of Tc = 597 K for NdFe12.

Regarding the form of the exchange, the situation is similar to the case for

Nd2Fe14B. For the Fe-Fe exchange interaction we assume a separation dependent and

long-range form similar to that observed in bulk bcc Fe, following (5.1). As before we

use ab-initio data from Ref. [122] as a primary point of contact and scale as required.

For simplicity, the same form and magnitude of the exchange is assumed between the

sites of each of the Fe symmetry groups. In reality these may differ slightly due to

the variation in moments of each symmetry group, however the variation is assumed

to be negligible here.

For the inter-sublattice exchange between Nd and Fe sites, the neighbour config-

uration was calculated to analyse the relative proximities. As there is only one Nd

sublattice symmetry group, the neighbour configuration for both Nd atoms in the

unit cell will be identical. From Fig. 5.6 it can be seen that there is a cluster of

neighbours within 3.25 Å of the Nd atom, and that the first two shells are particu-

larly close together. The first shell consists of 8i sites exclusively, while the second

shell contains 8j sites, with 0.06 Å between the two shells. The shortest distance

between two neighbouring rare-earth atoms in the crystal is 6.49 Å. Given the prior

assumption that the separation between rare-earth atoms is sufficiently great that R-

R interactions may be neglected, we can infer that the influence of a rare-earth atom

can extend no more than half of 6.49 Å (at least not in a significant way). That is

not to say anything about the range of influence of the Fe atoms, which are assumed

to be long-ranged in our model (based on the calculations by Pajda et al. [122]), how-

ever considering the Fe atomic distribution about the Nd sites, it seems sensible to

truncate the inter-sublattice exchange interaction to somewhere in between the first

two clusters of neighbours, e.g. 3.5 Å.
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Figure 5.6: Frequency of transition-metal neighbours as a function of distance from
rare-earth atoms in NdFe12.

We proceed by running a parameter scan across these two degrees of freedom,

treating both the R-Fe and Fe-Fe exchange parameters as free parameters. For each

pair of parameters a Curie temperature simulation was carried out using the Monte

Carlo integration scheme discussed in section 2.1. The parameter scans were run

for three systems, one with nearest-neighbour R-Fe interactions, another with next-

nearest-neighbour R-Fe interactions and a third with three shells of Fe neighbours

around the rare-earth atom. The value of Tc for each simulation is found by fitting

the expression

m(T ) =

[
1−

(
T

Tc

)]β
(5.9)

for the temperature dependence of the reduced magnetisation of a system m. The

expression is derived from an empirical interpolation between critical behaviour and

the Bloch law, which describes low temperature behaviour [138]. Here β is known as

the critical exponent.

The results of the parameter scans are shown in Fig. 5.7. It can be seen that in the

first scan, for which only nearest-neighbour exchange is considered in the case of R-Fe
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Figure 5.7: Parameter scans for NdFe12 exchange interaction energies. The vertical
axis represents the JTT pre-factor which multiplies the ab-initio calculated function
for the exchange energy between Fe atoms, while the horizontal axis represents an
exchange interaction constant for interactions between Nd and Fe atoms. The colour
bar indicates the absolute difference between the Tc calculated using each given pair
of parameters and the expected Tc for NdFe12 of 597 K. (a) shows the results of
simulations carried out using nearest-neighbours only for rare-earth-Fe interactions,
(b) interactions between rare-earth atoms and 2 shells of neighbours, and (c) 3 shells.

77



interactions (Fig. 5.7a) there is very little dependence of the Curie temperature on the

magnitude of the R-Fe exchange, and that the band of viable exchange parameters

exists at around y = 0.55, that is to say, where the pre-factor that multiplies the bcc

Fe ab initio exchange function is ∼ 0.55. Here, two important points can be distilled:

1. for the case where only nearest-neighbours are considered for R-Fe interactions,

the coordination number of the rare-earth atoms is sufficiently low that the

ordering of the system is dominated by the Fe-Fe exchange;

2. and that even when the system order is reliant solely upon the Fe-Fe exchange,

a weaker Fe-Fe exchange interaction energy than that calculated for bcc Fe and

that used for Nd2Fe14B in section 5.1 is required to attain the experimentally

observed Tc in NdFe12, despite the fact that the Tc for NdFe12 is greater than

that for Nd2Fe14B, if only marginally.

The second fact is significant because, as there is negligible contribution from the R-Fe

exchange in this case, this band of viable exchange parameters can be considered an

upper bound on the Fe-Fe exchange strength. One explanation for why the exchange

interaction strength is lower despite there being a higher Tc in NdFe12, is the greater

density of Fe atoms in NdFe12 (0.068 Å−3) compared with Nd2Fe14B (0.059 Å−3). In

general we can assume that this behaviour is not physical as it is understood that the

rare-earth-Fe exchange does indeed play role, and in fact changes the temperature

dependence substantially

In the second case, where two neighbour shells are considered (Fig. 5.7b), it can

be seen that there is a substantial shift in the system behaviour. There is in this case

a strong dependence on the parameter JRT that emerges. With the introduction of an

extra shell, the number of R-Fe interactions increases by 200%, thus the role played by

JRT becomes much more significant. Here it becomes clear that it is the total exchange

energy in the system that is important, and that as one increases the exchange energy
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between rare-earth and Fe atoms, the amount of exchange energy between Fe atoms

required to attain the experimental Tc is reduced. For the case where the 8f shell

of neighbours is considered (Fig. 5.7c), an even stronger dependence of the Curie

temperature on JRT is seen. In this instance, for JRT ≈ 7.0, the inter-sublattice

coupling becomes sufficiently large that zero intra-sublattice coupling in the Fe is

required for the system to exhibit the correct Curie temperature.

2 shells 3 shells
JRT (e-21 J) JTT pre-factor Tc (K) β JRT (e-21 J) JTT pre-factor Tc β

1.50 0.54 599.0 0.348 1.00 0.54 605.6 0.346
3.00 0.48 595.0 0.337 2.50 0.42 595.0 0.353
4.50 0.42 604.5 0.358 4.00 0.30 605.5 0.414
5.50 0.36 591.7 0.383 4.50 0.24 591.1 0.450
7.00 0.30 599.1 0.424 6.50 0.06 597.2 0.641
8.50 0.24 601.6 0.478 7.00 0.00 598.5 0.766
10.0 0.18 597.2 0.547

Table 5.3: Parameter pairs extracted from Figs. 5.7b and 5.7c for which the calculated
Tc is within 1.5% of the expected Tc. The JTT pre-factor denotes the factor that mul-
tiplies the range dependent exchange interaction function discussed in section 5.1.2.
The Tc and β values are determined via fitting of (5.9).

Given the bands of seemingly allowed parameters shown in Fig. 5.7, the challenge

is to pinpoint where along these bands the correct pair of parameters lies. To this

end we utilise as an additional constraint the critical exponent β in (5.9), which can

tell us something about the form of the temperature dependence.

In table 5.3 are shown the points in the parameter space shown in Fig. 5.7 for the

next-nearest-neighbour and next-next-nearest-neighbour cases (the nearest-neighbour

case is assumed to negligible due to the independence of JRT) which give a value for Tc

within 1.5% of the experimental Tc. It can be seen that there is significant variation in

β, particularly in the 3 shell case. For the parameterisation of Nd2Fe14B in section 5.1

it was found that the β which gave best agreement with experiment was β = 0.301. In

the absence of experimental data forM(T ) for NdFe12 we assume the value of β to be
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similar to that for Nd2Fe14B. Thus the parameters that fit best are JRT = 3.00e-21 J

and JTT pre-factor = 0.48, which give a Tc of 595.0 and a critical exponent β = 0.337.

Simulated using these parameters, the temperature dependence of Ms is shown in

Fig. 5.8. The experimental data for NdFe12Nx is shown as well for comparison. It can

be seen that the addition of N has a significant effect in increasing the Tc. Nitriding is

also known to have the effect of increasing the total moment of RFe12 compounds. In

Fig. 5.8 both curves are normalised to the zero temperature saturation magnetisation.

It can be seen that the two curves have a very similar form at low temperature. At

higher temperatures the NdFe12 de-magnetises while the nitrided compound is more

stable, exhibiting a Tc of ∼ 823 K.
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Figure 5.8: Calculated temperature dependence of Ms for NdFe12 using parameters
JRT = 3.00× 1021 for the inter-sublattice coupling, and JTT pre-factor = 0.48, giving
a Tc of 595.0 K with critical exponent β = 0.337. For comparison, the measured
temperature dependence of NdFe12Nx is shown (Ref. [36]). It can be seen that the Tc
for the latter compound is much higher, though both curves share the same form at
lower temperatures.
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5.2.3 Magnetocrystalline anisotropy

Nd sublattice

The magnetocrystalline anisotropy in the NdFe12 crystal arises primarily from the

rare-earth sites. The anisotropy of the Nd emerges as a result of a combination

between interaction of the 4f shell with the crystal electric field (CEF) and strong

spin-orbit coupling in the following manner. The CEF breaks the local spatial sym-

metry for the 4f shell, thus orienting the orbital moment of the rare-earth. This

in turn gives the spin moment a preferential orientation via strong spin-orbit cou-

pling, aligning the spin moment anti-parallel to the orbital moment in the case of

Nd based compounds. Given this mechanism, one way of obtaining a measure of the

magnetocrystalline anisotropy is by looking at the CEF parameters.

In the case of large anisotropy energies, i.e. in hard materials, the second order

uniaxial anisotropy energy per rare-earth atom is given by the expression

kR2 = −3J(J − 1)αJA20〈r2〉 (5.10)

where J is the total angular momentum quantum number, αJ is the Stevens fac-

tor [139] and A20〈r2〉 is the CEF parameter. Each of these is element specific. In Nd,

J = 9/2 and αJ = −7/1089. A20〈r2〉 is generally calculated from first principles us-

ing either the local density approximation or the generalised gradient approximation

to obtain an effective potential around the rare-earth nucleus. It is known however

that both of these approximations are inadequate for describing strongly localised 4f

electron states [46]. To the author’s knowledge, the only work in which the CEF pa-

rameter has been calculated for NdFe12 is that of Miyake et al. [46], in which values of

-1.145e−21 J and 5.699e−21 J are calculated for NdFe12 and NdFe12Nx respectively.

The sign of the CEF parameter indicates easy-axis orientation along the c-axis (pos-

itive) or easy-plane anisotropy in the xy-plane (negative). Hence, the values given
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above suggest that the Nd atoms in NdFe12 have easy-plane anisotropy, and upon

nitriding the anisotropy changes to out-of-plane, as is seen in Nd2Fe14B.

Substituting the calculated value of A20〈r2〉 = −1.145e − 21 J for NdFe12 into

(5.10) gives kR2 = −3.976e − 22 J/atom. This rises to kR2 = 1.978e − 21 J/atom for

NdFe12Nx, which is both positive and significantly greater in magnitude, and in fact

comparable to the second order constant of Nd2Fe14B.

Fe sublattice

The anisotropy of the 3d sublattice is a result of the magnetic moment coupling to

the crystallographic axes via spin-orbit coupling [140]. In order to determine the

magnetocrystalline anisotropy of the Fe sublattice, we can once again look to the

non-magnetic rare-earth analogue compounds in which the sole contributor to the

magnetocrystalline anisotropy is the Fe sublattice. Unfortunately, there exist no

exact analogues to the binary compound NdFe12, thus we must make do with ternary

compounds. From these it is known that the Fe sublattice has its preferential axis

along the c-axis [141], and the angular dependence of the sublattice anisotropy energy

can be described by the simple uniaxial term EK = K2 sin2 θ. At 0 K, K1 for YFe11Ti

was measured to be 1.93 MJm−3 [142]. This equates to an average of ∼ 3.05e−23 J

per Fe atom.

5.2.4 Hysteresis behaviour

We now simulate hysteresis loops in order to gain an insight into how the inter-

sublattice coupling as well as the easy-plane anisotropy of the rare-earth sites manifest

on the macroscopic scale. The easy-plane anisotropy of the rare-earth sublattice

suggest that the calculated coercive field will be relatively small in comparison with

that of Nd2Fe14B, in which the strong out-of-plane preference on the Nd sites serves

to stabilise the magnetic ordering up to high fields. The hysteresis loops are simulated
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Figure 5.9: Calculated hysteresis loops for NdFe12 at zero K, 100 K, and 200 K. The
calculated coercivity is significantly lower than that for Nd2Fe14B, owing to the fact
that the Nd, which serves to stabilise the system in Nd2Fe14B, here has an easy-plane
anisotropy and thus reverses easily. The loops are relatively square, indicating a
coherent reversal mechanism.

via integration of the LLG equation using the Heun method. Each loop was run with

an applied field strength increment of 5 mT, with 30,000 equilibration time steps at

each field point, followed by a further 10,000 time steps for averaging. The time step

dt was 1 ps.

From Fig. 5.9 the calculated zero temperature coercive field is 0.73 T. This is

significantly smaller than the zero temperature coercive field calculated for Nd2Fe14B

in section 5.1, and is certainly due to the easy-plane anisotropy on the rare-earth

sites. As the field approaches the coercive field, both the Fe and Nd sublattices

reverse easily, the Fe because of high sublattice moment and consequent high coupling

to the external field, and the Nd sublattice because of its in-plane anisotropy. The

squareness of the loops suggest a coherent reversal mechanism. In other words, the

sublattices remain virtually collinear for the duration of the loop.
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5.3 Cell size scaling of magnetic properties

In this section we investigate the cell size dependence of the saturation magnetisation

and the magnetocrystalline anisotropy, using the method outlined in chapter 3.

5.3.1 Scaling of saturation magnetisation Ms

The results of the temperature dependence of the saturation magnetisation as a func-

tion of averaging cell size for Nd2Fe14B and the generic bcc system with nearest-

neighbour Heisenberg exchange are shown in Fig. 5.10. The results for the Heisenberg

exchange are consistent with the previous work of Kirschner et al. [143]. Interestingly,

cell size scaling in the case of Nd2Fe14B is slightly weaker than that of the generic

bcc system. This is perhaps surprising given the large unit cell size of the Nd2Fe14B.

In this case, one might suppose that the discretisation of the system would sup-

press the spin fluctuations to a greater extent, resulting in a more severe scaling.

The weaker scaling however is likely to be associated with the larger anisotropy of

Nd2Fe14B, which results in an overall reduction in the spin fluctuations, thus making

the averaged value in the cell a better approximation than in the generic bcc case.

5.3.2 Scaling of the magnetocrystalline anisotropy K

To extract the cell size dependence as well as the T dependence, we follow the same

method as for the saturation magnetisation (Fig. 3.4), with one critical alteration.

When the simulation is run at this stage, the comparison of the cell anisotropy with

the total system anisotropy yields incorrect results. Because the two locales are

exchange coupled to one another, the restoring torque on each affects the restoring

torque of the other. That is, when one experiences a torque in one direction, the

other experiences a torque an approximately equal and opposite torque. Thus it is

necessary in this instance to remove the exchange interactions entirely for the torque
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Figure 5.10: Scaling of the temperature dependence of the magnetisation with cell size
for Nd2Fe14B (top panel) and a generic bcc system with nearest-neighbour Heisenberg
exchange (lower panel).

calculation. In this way, the spins within each region are free to move relative to each

other but remain coupled to the anisotropy axis, allowing their relative torques to be

compared.

In Fig. 5.11 is shown the scaling of the effective anisotropy as a function of av-

eraging cell size at zero temperature. The constrained Monte Carlo was run with

50,000 equilibration steps and 50,000 averaging steps at each angle. The anisotropy

of the averaging cell is divided by the total atomistic anisotropy of the system to

give a ratio, where both values have been normalised to the volume. The effective

anisotropy constant of the cell and the total system are extracted from the torques of
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Figure 5.11: The ratio between the calculated macrocell K, Kcell, and the atomistic
K0 with averaging cell size at zero K. The error bars show the standard deviation
across a sample of 100 simulations with varied random number seeds. It is seen that
for increasing cell size there is a reduction in σ and a convergence of the mean value
towards unity.

each part of the system by way of fitting to (3.11). The simulations were run using a

series of 100 random seeds in order to find a mean ratio between Kcell and K0 for each

cell size. The error bars indicate the standard deviation from the mean value across

the series of random seeds. In terms of the mean values, it can be seen that there is

a convergence towards unity for larger cell size. The large deviations around unity at

small cell size occur as a result of a statistical effect related to the fact that there are

very few atoms being sampled. In fact, at the smallest cell size, there are only two

atoms in the considered cell. Thus over the course of the simulation, if either of these

two atoms becomes misaligned with respect to the other, this will skew the torque

calculation. In the absence of the exchange interaction the energy cost of these atoms

becoming misaligned is reduced considerably, further increasing the likelihood of a

misalignment, though of course they are both coupled to the anisotropy axis. The

deviation from the mean decreases with increasing cell size as the statistical sampling

improves.
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Figure 5.12: The standard deviation of Kcell/K0 from the mean value, calculated from
a sample of simulations with N = 100. For zero temperature it can be seen that there
is relatively little deviation from the mean. For small L at finite temperatures a large
deviation is seen due to statistical sampling of a small numbers of atoms within the
cell. The standard deviation does not depend monotonically on the temperature, as
stochastic effects dominate the system behaviour at these small system sizes.

In general, with increasing temperature fluctuations comes increased deviation

from the mean. It can be seen in Fig. 5.12 that for zero temperature Kcell/K0 lies

very close to zero across the whole range of L, while the presence of spin fluctuations

at finite temperatures causes a deviation from zero. The discrepancy from unity does

not increase monotonically with increasing temperature as one would expect, however

this can be attributed to the fact that at these small system sizes, stochastic effects

dominate, particularly in the absence of the exchange field. Thus to generate an

improved picture, we would need to go to larger system sizes.

From Fig. 5.12 it can be seen that the scaling of K for the averaging cell tends

towards the atomistic value for larger cell sizes across the whole range of simulated

temperatures. Thus we can say, at least for uniaxially anisotropic systems, that K

does not scale with cell size, nor does it scale differently with temperature from the

atomistic K. This might be surprising given that there is a scaling of Ms with L, and

considering the Callen-Callen scaling relation that states that K ∝M3 for a uniaxial
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system [127]. From these results however it would appear that the lengthening of

spin waves in the system through averaging of the magnetisation over a cell does not

affect the macroscopic anisotropy.

5.4 Conclusion

In this chapter we have systematically parameterised the full atomistic model for the

rare-earth transition-metal compounds Nd2Fe14B and NdFe12 using a combination of

parameters derived from experimental measurements and some from ab-initio calcu-

lations. In the case of Nd2Fe14B the crystal structure was derived from the Wyckoff

sites given by Herbst et al. [22]. The magnetic moments were derived via comparison

between experimental measurements of Nd2Fe14B and one of its non-magnetic-rare-

earth analogue compounds, Y2Fe14B. The exchange interactions were categorised into

two species; the Fe-Fe interactions, and the Nd-Fe interactions. In the case of Fe-Fe,

the exchange was treated as range dependent, with the functional form fit using the

experimental Curie temperature. To parameterise the Nd sublattice anisotropy, the

ratio of second and fourth order uniaxial constants was derived using a priori knowl-

edge of the canting angle, and then fixed by solving the angular dependence of the

anisotropy energy.

Having obtained a full set of parameters, we looked next at the hysteresis be-

haviour of the system. The two sublattices were seen to exhibit distinct behaviour, a

result of the sublattices coupling to the external field with different coupling strengths.

The effect of the spin-reorientation temperature was seen in the finite temperature

hysteresis loops, resulting in a change in the shape of the loop from square to rounded

as the temperature exceeded Ts.

Next we investigated the temperature dependence ofMs for both sublattices. The

calculated total magnetisation was found to match closely the experimentally mea-

88



sured dependence, with the bulk of the magnetisation coming from the Fe sublattice

due to the large moment.

Overall the procedure for parameterising of the spin model for Nd2Fe14B worked

well and successfully reproduced the expected results. The subtleties of the magnetic

behaviour, for example the changing of the shape of the hysteresis curves between

T < Ts and T > Ts came out of the model in a natural way, forming a solid basis for

further investigations of more complicated structures.

From here we moved onto the parameterisation of the spin model for NdFe12.

The procedure was largely similar to that used for Nd2Fe14B, though complicated

by the comparatively scarce availability of experimental data with which to com-

pare our calculations. The crystal structure is one aspect that is well known as the

compound crystallises in the well documented ThMn12 structure. The exchange in-

teraction strengths were fit by to the experimentally measured Tc as before, and it

was determined that the appropriate exchange interaction range for the Nd-Fe in-

teractions in this case was 2 nearest-neighbour shells. The anisotropy values were

derived from crystal field parameters calculated by Miyake et al. [46]. The Nd sites

were found to have an easy-plane anisotropy in the base compound NdFe12, and an

easy axis out-of-plane anisotropy in the nitrided compound NdFe12Nx.

With the parameterisation completed, the hysteresis and temperature dependence

of the magnetisation were calculated. The calculated hysteresis curves for NdFe12

were found to give a very low zero temperature coercivity, certainly in comparison

with Nd2Fe14B. While to the author’s knowledge there are no experimental hysteresis

loops with which to compare, the low value for Hc can be explained by the easy-plane

anisotropy of the Nd. By comparison, it is the strong, out-of-plane anisotropy of the

Nd sublattice in Nd2Fe14B that gives it such a high coercivity.

Finally, we investigated the cell size scaling of the saturation magnetisation and

the magnetocrystalline anisotropy for two systems: Nd2Fe14B, and a generic uniaxial
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bcc Fe system. The results of the calculations showed that there was a weaker

dependence on cell size for the saturation magnetisation of Nd2Fe14B than for the

generic Fe system, most likely due to the larger anisotropy in Nd2Fe14B.
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Chapter 6

Effect of grain-boundary interfaces on

Nd2Fe14B coercivity

6.1 Introduction

Despite the remarkable magnetic properties of Nd2Fe14B that have made it the per-

manent magnet of choice in high-performance motor applications since its discovery

almost 40 years ago, one of the primary problems that still persists is that the co-

ercive field measured in sintered Nd2Fe14B-based magnets is often much lower than

expected from theoretical predictions.

According to the seminal Stoner-Wohlfarth theory of magnetism [130], an ideal

magnetic material with high magnetocrystalline anisotropy should reverse its mag-

netism via coherent rotation andHc should be equivalent to the value of the anisotropy

field, Ha. In this scenario, a perfectly rectangular hysteresis loop is observed, and the

theoretical maximum energy product is given by

(BH)max ≤ µ0M
2
s /4, (6.1)

91



where Ms is the saturation magnetisation and µ0 is the magnetic moment. How-

ever, in the best commercially produced magnets, currentlyHc does not exceed∼ 40%

of Ha. This misalignment with the theoretical maximum is known as Brown’s para-

dox [35].

  0   1   2   3   4   5   6   7

coercive field, µ0Hc [T]

Misalignment and defects

Demagnetisation field

Thermal fluctuations

Anisotropy field

Coercive field

Figure 6.1: The figure shows the different contributions which cause the measured
difference between the anisotropy and coercive fields in Nd2Fe14B. Adapted from
Ref. [144]

There are a number of factors which cause this measurable difference between

Ha and Hc [145] (these are shown in Fig. 6.1). Generally the most significant is

the effect of grain misalignment and defects. The resulting reduction in coercivity

is approximately 50% of the anisotropy field [144]. Examples of defects could be

antiphase boundaries, where a dislocation in the crystal matrix shifts one region

out of phase with an adjacent region, observed in Nd2Fe14B by Li et al. in 1991

via HRTEM [146]; or inter-granular boundaries which separate adjacent grains. In

Nd2Fe14B, a number of different types of inter-granular boundary are observed. Some

of the most common are NdO phases, sometimes called Nd-rich phases; and α-Fe

phases, which generally consist of bcc-ordered Fe. Defects such as these are believed

to result in a reduction in anisotropy in the local region around the defect [145].

These in turn act as nucleation points for reversal of the magnetic domain, leading

to an overall reduction in Hc of the system.
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The second most significant factor is the dipolar field, sometimes called a demag-

netisation field, which reduces the total energy of a system by inducing a domain

structure on length-scales above the so-called critical single-domain limit (measured

at ∼ 300 nm) in Nd2Fe14B [147]. This particular factor will not play a role in the

investigations that follow in this chapter as all of the simulated systems are smaller

than this critical limit.

In this chapter are presented an analysis of the local environment around inter-

granular boundary phases, specifically α-Fe type phases, how they affect the local

anisotropy and how this affects the propagation of domain walls through the system.

6.2 Domain wall characterisation

Typically domain wall width (δw) is a material-dependent quantity, described by the

relation

δw ≈ π

√
A

Ku

(6.2)

where A is the exchange-stiffness andKu the unaxial anisotropy constant, thus narrow

domain walls are costly with respect to the exchange energy but are favoured in high

anisotropy materials, of which Nd2Fe14B is one, hence δw in Nd2Fe14B is very small.

In order to calculate the domain wall width in Nd2Fe14B it necessary to create a

system which forces the presence of a domain wall. Thus we generate a system that

is long along one dimension with respect to the other two. This system is then split

into two halves, one in which all atomic spins point along the +z-direction, and one

has spins which all point along −z. In order to prevent the domain wall from being

forced out of the system, which would ordinarily occur naturally to minimise the

overall system energy, we impose anti-ferromagnetic periodic boundary conditions in

the ‘long’ dimension of the system, i.e. along the system axis. A schematic of the

system setup is shown in Figure 6.2.

93



Figure 6.2: Schematic of initial configurations for domain wall width calculations.
Artificial anti-ferromagnetic exchange is imposed between the top two layers to sta-
bilise the movement of the domain wall. Periodic boundary conditions are used to
link the top and bottom layers, as well as in the x and y directions to avoid finite size
effects.

Because of the crystallographically anisotropic nature of the Nd2Fe14B unit cell,

δw will vary depending on the direction along which it is measured. Specifically,

the distribution of anisotropy throughout the system is non-uniform. Regions of

high anisotropy are concentrated in the planes of Nd, with areas of lower anisotropy

occupying the area between the planes. One therefore would expect that in a system

where the domain wall is forced to orient itself parallel to the Nd planes, δw should

be smaller than in systems where the domain wall is oriented parallel to the c axis.

Another way of picturing this would be to say the Nd and Fe sublattices are arranged

such that there is high coupling within the plane, and weak coupling out of plane. In

view of this we have investigated two systems; one in which the system extends along
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the x axis, and one in which the system is extended along the z axis. The results of

the zero-temperature calculation are shown in Figure 6.3.
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Figure 6.3: Calculated zero-temperature domain wall widths in Nd2Fe14B along the
[001] and [100] directions.

The value of δw is extracted by fitting the data with the function m(x) =

tanh(πx/δw), where x is the position along the axis of the system. δw in the system

with unit cells stacked along the c axis was calculated to be 2.11 nm, while in the

other system δw was found to be wider, at 2.46 nm.

Substituting this result into (6.2), for which we already know the value of Ku, we

are able then to extract a value for A, which is an important quantity in micromag-

netics calculations. Moreover, calculation of δw(T ) allows extraction of A(T ), which

is necessary as input for finite temperature micromagnetics calculations.

6.3 Site-resolved magneto-elastic anisotropy energy

Using the Néel model described in section 3.3, we have calculated the magneto-elastic

anisotropy (MAE) at each site of the Fe sublattice as a function of height in the
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unit cell (distance along c axis). The values were generated by taking the difference

between the anisotropy calculated for a hard axis [100] spin-polarised system and for

an easy axis [001] spin-polarised system. It can be seen that the energies appear at

specific ‘levels’, of which there are approximately six. This is consistent with the

picture that groups of atoms that are a part of the same symmetry group, of which

there are six for the Fe atoms in the Nd2Fe14B unit cell, should have an identical local

environment, and hence the same energy. The results are shown in Fig 6.4.
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Figure 6.4: Néel pair anisotropy energy calculated at each Fe site in the Nd2Fe14B
unit cell as a function of position along the z axis.

Positive anisotropy energy indicates a preference for the magnetic moment to lie

out-of-plane, while a negative energy corresponds to an in-plane preference. Although

the distribution in Fig. 6.4 appears to sum to something close to zero, there is in fact

a higher density of points in the positive regime, though the points overlap as points

with the same z-coordinate will often occupy identical energy levels. Integrating over

all sites results in a positive total energy.

Having shown that using Néel model for calculating the MAE gives reasonable

results, we proceed to a much more complicated system, a grain-boundary interface.
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In order to get as realistic a picture as possible of the interface, we collaborated with

Gino Hrkac’s group at the University of Exeter, who specialise in molecular dynamics

simulation, with which they were able to relax an interface system between Nd2Fe14B

and α-Fe. The full details of the method used are described in Ref. [93]. The interface

is shown in figure 6.5.

Figure 6.5: Interface between Nd2Fe14B and α-Fe phases, relaxed using MD. The
system has dimensions 12.8× 2.64× 2.64 nm and contains 6912 atoms.

As before, the anisotropy energy was calculated as a function of the position along

the z axis, which is parallel to the crystallographic c axis. To eliminate edge effects

in the x and y directions, periodic boundaries were implemented along these axes.

Fig. 6.6 shows the calculated site-resolved MAE along the axis of the system. The

magneto-elastic contribution in the bulk Fe phase fluctuates about zero energy as is

expected inside a bcc structure, as the contributions from neighbours in all directions

cancel to zero. The fluctuations because of the strain induced by the MD relaxation.

The sharp increase at the vacuum interface of the α-Fe phase is an edge effect that

results from the absence of periodic boundaries in the z-direction. Similar to the

single unit cell case, fluctuations in the energy of the Fe sublattice of the Nd2Fe14B

phase are observed due to the presence of distinct symmetry groups.

At the interface we find a highly localised transition region ∼0.5 nm wide where

the anisotropy energy becomes negative. This suggests that at the interface there

is indeed a small region where weak anisotropy due to local disruption of crystal

symmetry may behave as a kind of chink in the Nd2Fe14B grain armour where domain

walls can pass through more easily than they otherwise could. To investigate this idea
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Figure 6.6: Calculated magnetic anisotropy profile through a relaxed Nd2Fe14B/α-Fe
interface, showing atomistic scale variation of the MAE.

further, we have carried out atomistic spin dynamics calculations to simulate domain

wall dynamics across this interface.

We first begin by setting up our system in a way that mimics two Nd2Fe14B grains

separated by an α-Fe inter-granular phase. As shown in the schematic (Fig. 6.7), the

interface between the two phases provided to us by the University of Exeter was

duplicated, mirrored, and then aligned in order to simulate what one would expect

to find in the region between two grains in a real Nd2Fe14B-based magnetic material.

With our system prepared, we parameterise each atomic site in the manner dis-

cussed in section 5.1. Again as in section 6.2, anti-ferromagnetic periodic boundary

conditions are imposed between the two termini of the system to ensure that the do-

main wall is not immediately forced out of the system, allowing the entire system to

polarise itself in the same direction to minimise energy. We then initialise our system

such that each Nd2Fe14B grain is spin polarised in opposite directions; one along the

+z-direction and the other along the −z-direction (axes as defined in Fig. 6.5). The

inter-granular phase is oriented in-plane to better facilitate nucleation of a domain

wall. An external magnetic field was then applied to the system along the z axis.
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Figure 6.7: The left side shows a schematic of a typical pair of Nd2Fe14B grains
separated by an inter-granular phase of α-Fe. The purple highlighted area shows the
area we are to simulate. The relaxed interface between Nd2Fe14B and α-Fe provided
to us by the University of Exeter was mirrored and aligned in order to reproduce what
one would expect to find between two adjacent grains in a Nd2Fe14B-based material.

The externally applied field, Happ, acts to push the domain wall in the same direction

as the field. The magnitude of Happ required to push the domain wall through into

the grain should then shed some light on the effect of the weakened anisotropy at the

interface on the coercivity.

6.4 Spin dynamics

Figure 6.8 shows a depiction of the interface system where each point in the image

is an atomic spin. The colour of the point represents the direction along which the

spin points, with white corresponding to in-plane, and red and blue corresponding to

−z and +z respectively. It can be seen that under the influence of a magnetic field

pointing along the axis of the system, the domain wall traverses the length of the

system. Upon closer inspection it becomes apparent that the domain wall does not
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Figure 6.8: The three panels show the mirrored interface system at three different time
steps: t = 2, 6, and 12 ns. Each point represents an atomic spin, with red indicating
a spin pointing in the −z-direction, blue a spin pointing in the +z-direction and
white a spin oriented in the plane. It can be seen that after the domain wall has
passed through the α-Fe phase into the hard Nd2Fe14B phase it is stopped or pinned
at successive Nd layers.

propagate at a constant rate, but rather in a stuttering fashion. We find that the

domain wall is in fact being pinned at each layer of Nd in the hard phase, i.e. the

parts of the system which contribute most to the magnetocrystalline anisotropy of

the material.

This stuttering motion can be more easily seen in Figure 6.9 where the distance

of the domain wall from the interface between the soft and hard phases is shown

as a function of time. It can clearly be seen that the domain wall spends some

length of time at certain points along the length of the system before ‘hopping’ to the

next pinning site. Looking closely at the positions where the domain wall becomes
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Figure 6.9: Position of the domain wall as a function of time. Here the numbers on the
y-axis represent the distance between the domain wall and the interface between the
α-Fe and Nd2Fe14B phases. The domain wall appears to exhibit a kind of ‘hopping’
behaviour, spending some finite amount of time at certain points within the system
before travelling rapidly to the next pinning site.

pinned we can see that these corresponds to the positions of the Nd layers which lie

perpendicular to the axis of the system. These occur at regular intervals of 6.1 Å.

Figure 6.10: Schematic diagram of a hysteresis loop showing the effect of the
Barkhausen type jumps seen in the domain wall propagation in Figs. 6.8 and 6.9
on the switching behaviour in Nd2Fe14B.
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The behaviour described above is known as Barkhausen noise, or Barkhausen

jumps, and corresponds to a kind of magnetic domain reversal similar to what is

depicted schematically in Figure 6.10. This phenomenon was observed in works as

early as 1989 by Otani et al. [148], described as ‘large, discontinuous changes in the

magnetisation near the coercive field’. The jumps observed by Otani et al. were

on a larger length scale than those observed here, with each jump corresponding

to a 5% change in the total magnetisation of the system, however it is reasonable

to believe the mechanism at play behind both is the same, i.e. that layers of high

magnetocrystalline anisotropy originating from the 4f Nd atoms act as pinning sites

for domain walls acting to reverse the system in the presence of an external magnetic

field.

The applied field required to push the domain wall into the hard Nd2Fe14B phase

was calculated to be ∼ 9 T. This is much larger than the stray fields one would expect

in a real system. One suggestion is that the important factor is the crystallographic

orientation of the Nd2Fe14B phase. In our calculations, only one type of interface was

investigated; that where the orientation of the high anisotropy Nd planes are oriented

perpendicular to the direction of propagation of the domain wall. Thus we suggest

that this is not an ideal orientation for domain walls to pass through, and that if

one were to repeat the calculation for a system in which the domain wall propagation

direction was parallel to the a-axis, a much smaller field would be required to push the

domain wall into the hard phase. Thus the Nd2Fe14B grain is seemingly topologically

protected in certain crystallographic directions. This could be one of the main reasons

why the coercive field of Nd2Fe14B is measured to be much smaller than theoretically

predicted.
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6.5 Conclusion

In this chapter we have investigated the idea that in granular Nd2Fe14B, one of the

reasons that the measured coercivity is much smaller than theoretical calculations

predict is that there is weakened anisotropy at the boundaries between the Nd2Fe14B

grains and the inter-granular boundary phases, which allow domain walls to pass

easily into the grains. We investigated the anisotropy as a function of position across

one such interface using the Néel anisotropy model. The results showed no conclusive

evidence that the anisotropy is weakened at the interface. Using the anisotropy profile

as input into the atomistic spin dynamics model, we modelled the propagation of a

domain wall across the interface, using an externally applied field as a driving force

for the domain wall motion.

From the spin dynamics simulations we draw two conclusions. First the atomistic

resolution shows that the domain wall does not propagate smoothly through the

Nd2Fe14B phase as one might expect. Instead the domain wall becomes pinned at

successive Nd planes due to the high anisotropy, resulting in propagation via a series

of Barkhausen jumps.

The second conclusion is that the crystallographic orientation of the grain with

respect to the interface is important. It was found in our system that a very large field

was required to force the domain wall into the Nd2Fe14B grain. We propose that the

reason for this is that the Nd2Fe14B is oriented so that the Nd planes are parallel to

the interface, and perpendicular to the direction of propagation of the domain walls.

We conjecture that this creates a strong barrier against switching, and that rotating

the Nd2Fe14B grain by 90◦ with respect to the interface would result in switching at

much lower fields.

It is clear, then, that the next thing to investigate is the dependence of the field

strength required to force a domain wall into a Nd2Fe14B grain on the crystallographic

orientation of the grain with respect to the interface. If the results of this showed
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strong dependence, this could potentially guide future Nd2Fe14B based magnet designs

to be engineered on the nano scale in such a way that the grains make use of this

conjectured topological grain protection to increase the coercivity as much as possible.
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Chapter 7

Effects of Ti and Zr substitution in

RFe12

In this chapter we investigate the effects of substituting atoms in the RT12 phase with

either Zr or Ti. The ultimate goal of this section is to be able to understand to some

extent the effects of Zr and Ti when they are inserted into the crystal, as they are

two of the more common substitutes used in industrial manufacturing of rare-earth

permanent magnets for use in high-performance motor applications. Both are used

primarily as sources of phase stability, as RT12 in its binary form is meta-stable. So

far NdFe12 has only been synthesised once [36], as a thin film and with nitrogenation.

We first look at the effects of transition-metal site Ti substitution on inter-sublattice

coupling between the Fe and rare-earth sublattices in NdFe12; followed by the effects

of rare-earth site substitution of Zr and its effects on the magnetic properties in

SmFe12.

7.1 Ti substitution on transition metal sites in RT12

As discussed in section 5.2, ThMn12-type rare-earth intermetallics are generally con-

sidered intrinsically unstable as binary compounds, i.e. as RT12 (R = rare earth, T =
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transition metal) [133]. The most common way of stabilising the phase, first investi-

gated by De Mooij and Buschow [133], is to use a third element M , which is usually

one of Ti, V, Cr, Mn, Mo, W, Al or Si. In each of these cases, the stabilising element

substitutes one or more of the transition metal sites in the unit cell, forming the

ternary compound RT12−xMx. In general it is found that the most promising choice

for the element T is Fe, which gives high magnetic moment and anisotropy [133].

In the recent computational work of Miyake et al. [46], it was calculated that

substitution of Ti changed the crystal electric field parameter A20 on the rare-earth

site from −83 K in NdFe12 to 54 K in NdFe11Ti, indicating that the preferential

alignment had switched from in-plane to out-of-plane. Thus the Ti acts both as

a method of stabilising the phase and providing out-of-plane anisotropy, which is

essential in high-performance motor applications. It was also found however that Ti

substitution (with x = 1) has the drawback of causing a reduction in the magnetic

moment of 4.9 µB per formula unit. This is due to a small spin magnetic moment

on the Ti sites which couples anti-parallel to the Fe sublattice. This however does

not explain all of the lost moment. The secondary effect of the Ti is to reduce the

moments on all Fe sites in the unit cell via a narrowing of the 3d band [46]. From

this point of view it is necessary to understand how the Ti behaves inside the unit

cell in terms of site preference as well as how the substitution affects the macroscopic

magnetic behaviour.

7.1.1 Ti distribution in the unit cell

Work was carried out in collaboration with Hrkac’s molecular dynamics group at the

University of Exeter as part of an ongoing effort to create a fully multiscale model of

rare-earth permanent magnets.

It was found that for the first Ti atom inserted into the RT12 unit cell, there

is essentially a zero probability of it occupying any sites other than those of the 8i
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Figure 7.1: Probability distribution of Ti atom occupying different Fe sites in the
unit cell at 300 K. 8j, 8i and 8f denote the Fe symmetry groups.

symmetry group (Fig. 7.1). This is in agreement with calculations performed by

Miyake et al. [46], as well as with experiments carried out on similar compounds

by De Mooij and Buschow [133]. Crucially, it is the 8i sites which form the shell of

nearest-neighbours surrounding the rare-earth atoms. De Mooij and Buschow suggest

that the reason the stabilising element prefers to occupy the 8i site may be that there

are only four nearest 8i neighbours to each rare-earth atom, while the 8j and 8j sites

surround the R site in larger numbers, thus the 8i sites have the smallest area of

contact with the R site. Considering that there is a positive enthalpy contribution

associated with R and M contact, this may explain why the Ti prefers these sites [133].

This preference of the Ti to sit on the site nearest to the R atom leads to the

hypothesis that the Ti may play a screening role around the rare-earth site, cutting

it off from interactions with neighbour Fe moments. The question of inter-sublattice

coupling strength is extremely important in the determination of whether a material

is a viable candidate for high-performance motor applications, as it will play an

important role in maintaining a necessarily high maximum energy product.
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7.1.2 Parameterisation of R(Fe1−xTix)12

As alluded to in section 7.1, the two important effects to consider when substituting

Ti into the ThMn12 crystal structure are

1. changes to the lattice parameters a and c, which will have an effect on the degree

of overlapping of atomic orbitals and in turn the total exchange interaction

energy

2. and the replacement of one or more ferromagnetically coupled, large moment

Fe spins with an antiferromagnetically coupled, low moment Ti spin.

To take account of the first effect, in our model we have as input the dependence

of the lattice parameters on Ti substitution calculated using molecular dynamics

simulation by our collaborators at the University of Exeter (Fig. 7.2). Using molecular

dynamics with parameterised force fields, NdFe12 super-cell structures were simulated.

Ti was inserted into the system and the resulting minimum energy structures found

to determine the change in the lattice parameters for each concentration of Ti.
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Figure 7.2: Lattice parameters a, b, and c as a function of the Ti concentration in
NdFe12. Substituting 4 at.% Ti results in an expansion from the base compound of
0.21% in c, and 0.43% in a and b.
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It can be seen from Fig. 7.2 that all calculated lattice parameters increased with

increasing Ti concentration; going from 0-4 at.% a and b increased by 0.43%, and c

by 0.21%. It is interesting to note that the lattice expansion is not isotropic in the

basal plane. At 1 and 3 at.% the a parameter differs marginally from the b parameter

by 0.002 Å, suggesting some form of anisotropic bonding between the Ti atom and

its neighbours. However, the disparity is on a length scale that should be sufficiently

small as to have no significant impact on the inter-atomic exchange interaction.

7.1.3 Exchange energy as a function of Ti concentration

Taking into account the points outlined in the beginning of this section, we assert

that the strength of the exchange coupling should change as a function of Ti content.

Given that we have a priori knowledge of how the Tc changes as a function of Ti

substitution, we can fit the exchange interaction using the same parameter space

scan method discussed in section 5.2.2.

Parameter space scans were carried out for each concentration of Ti. The salient

part of each generated heat map, that is, the band of allowed values, was extracted.

These are shown in Fig. 7.3. The series of points that characterise each band were

extracted by collecting parameter sets for which the calculated Tc was within 10 K

of the expected value. As was the case for the heat maps in Fig. 5.7, for the low

inter-sublattice coupling regime the bands are flat, as the magnetisation is dominated

in this regime by the Fe-Fe exchange coupling. To simplify the picture, lines were fit

only to the parameter sets outside of this Fe-Fe dominated regime. The lines of best

fit serve only as an interpolation between the parameter pairs that yield the correct

Tc.

It can be seen that there is a noticeable reduction in the strength of the exchange

interactions required to give the correct Tc for each concentration of Ti. Whilst we

are unable to pin down exactly where along each band the correct pair of exchange
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Figure 7.3: Extracted bands of acceptable pairs of exchange parameters as a function
of Ti content. There is a marked reduction in the necessary exchange interaction
strength to achieve the experimentally measured Tc for each concentration of Ti.

parameters lies, it is clear that the exchange energy is reduced as a result of the

presence of the Ti. This rather nicely aligns with the picture that the preference

of the Ti atom to occupy the sites adjacent to the rare-earth, has a screening effect

which reduces the coupling between the rare-earth and transition metal sublattices.

A reduction in the inter-sublattice coupling will in principle have a dramatic effect

on the temperature dependence of the anisotropy. If the rare-earth sublattice is less

strongly coupled to the Fe sublattice as a result of the Ti, at finite temperatures

there will be larger magnetisation fluctuations resulting in the anisotropy dropping off

more rapidly with temperature. This will have an effect not only on the temperature

dependence of the magnetisation, which may be one reason that the Tc decreases with

increasing Ti concentration, but also on the switching field.

In order to corroborate this picture, we look now at how the presence of the Ti

substitute affects the preferential alignment of the Nd site using the Néel anisotropy

model presented in section 3.3. The Néel model gives an idea of how the local
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magneto-elastic anisotropy will vary as a result of changes in the local crystal sym-

metry, which is known to be altered as a consequence of Ti substitution.
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Figure 7.4: (a) shows the calculated Néel anisotropy energy surface of the Nd site for
the case where there is 1 at.% Ti substitution. In this case the preferred alignment for
the rare-earth spin is ∼ 39◦ from the c-axis. (b) Here is shown the same calculation
for the Nd site for the case where the crystal has 3 at.% Ti substitution. In this case
the preferential axis lies in the ab plane.

In Fig. 7.4 are shown the calculated Néel anisotropy energy surfaces for the Nd

sites in Nd(Fe1−xTix)12. The left panel shows the calculation for the case where there

is 0% Ti substitution. In this case the preferential axis for the rare-earth site lies at

∼ 39◦ from the c-axis. In the right panel is shown the calculation for the case where

there is 3 at.% Ti substitution. In this case the preferred axis for the rare-earth spin is

in the ab plane. Interestingly, this result appears to come about primarily as a result

of the asymmetric lattice expansion induced by the Ti. The changes in the energy

surfaces calculated for between 0 and 2 at.%. are insignificant, and it is only at 3

at.% that a significant change is seen. At 4 at.% the energy surface returns to the

same orientation as is seen for 0 to 2 at.%. From Fig. 7.2 we see that the asymmetric

expansion in the ab plane occurs only at 1 at.% and 3 at.% substitution.

The Néel contribution to the anisotropy energy is small relative to the on-

site anisotropy contribution. Thus a change in orientation of the rare-earth Néel

anisotropy energy surface may in reality only cause a slight tilting of the spin rather

than a full reorientation in-plane. It is difficult to say what the exact size of the
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contribution of the Néel anisotropy is, due to the difficulty in parameterising the

weighting function Lij(r), as discussed in section 3.3. Nonetheless it is useful in giving

some picture of how local changes in the crystal symmetry affect the anisotropy of

the rare-earth sites.

7.2 Zr substitution on rare-earth sites in RT12

SmFe12, like NdFe12, is considered a meta-stable phase, and is only able to be syn-

thesised in the binary form as a thin film. It does however differ from NdFe12 in

that SmFe12 has been theoretically predicted to show large uniaxial anisotropy in the

binary phase. This makes it an attractive prospect for investigation. While SmFe12

binary films have been synthesised numerous times [80, 149–151], experimental data

on the intrinsic hard magnetic properties of SmFe12 remain scarce.

One way to stabilise these phases in the bulk is substitution of a third element,

as was explored in section 7.1 with Ti substitution of the Fe sites in NdFe12. The

problem in general with partial substitution of transition metal sites in the RT12

phase is the accompanying loss of magnetic moment. This loss is proportional to the

degree of substitution, with the effect of the substitute twofold. Firstly the removal

of an Fe atom subtracts from the magnetic moment of the 3d sublattice which is

the primary source of magnetisation in the rare-earth transition-metal compounds.

Secondly there is evidence that the presence of the stabilising element narrows the 3d

band, reducing the magnetic moments on all transition-metal sites in the unit cell.

To circumvent this problem, it has been suggested that partial substitution of rare-

earth sites by Zr be used to stabilise the ThMn12 structure. This was successfully

carried out in Refs. [152–155], in which various compounds of type (R,Zr)T12 were

synthesised using the strip casting method, where R = Nd or Sm. In this way, the
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large magnetic moment is maintained. Here we investigate the effects of substituting

Zr into SmFe12.

One key observation when Zr is substituted onto the rare-earth sites in a ThMn12

crystal structure is that there is an overall reduction in the unit cell volume, which

can be attributed to the fact that the Zr atomic radius is ∼ 84% that of a Sm or Nd

atom [156] at 1.55 Å. The effect was quantified in the compound Nd1−xZrxFe10Si2 by

Sakurada et al. [157] using the rapid quench method (Fig. 7.5). Linear decrease of

both the a and c lattice parameters as a function of Zr concentration is observed in

Nd1−xZrxFe10Si2, with the reduction in a contributing more significantly to the unit

cell volume reduction.
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Figure 7.5: Adapted from Ref. [157]. The plot shows the measured change in lattice
parameters a and c as a function of Zr substitution in Nd1−xZrxFe10Si2. Both a and c
can be fit linearly, with the behaviour of a contributing most to the unit cell volume
reduction.

The Zr is assumed to have zero magnetic moment. Thus the effect of the Zr is to

decrease the total coordination number within the crystal. This would suggest that

the magnetic ordering of the remaining magnetic moments is reduced. Increased Zr

content will also be accompanied by a loss of magnetocrystalline anisotropy which

stems primarily from the rare-earth atoms. In our model the Zr atoms are distributed
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Figure 7.6: Curie temperature, Tc as a function of Zr concentration. The Curie
temperature increases with Zr concentration up to a peak value of 630.1 K at 50%
Zr, before decreasing at higher concentrations.

randomly across all rare-earth sites in the simulated system using a pseudo random

number generator algorithm.

Using the lattice parameters from Fig. 7.5 as input into the spin dynamics model

we proceed by calculating the temperature dependence of the saturation magnetisa-

tion across a range of concentrations. The simulations are run using a Monte-Carlo

algorithm, with 10,000 Monte-Carlo steps for equilibration at each temperature step,

and a further 10,000 for averaging of the magnetisation at each step. A temperature

step increment of 10 K was used, and the Tc extracted via fitting of (5.9). The results

are shown in Fig. 7.6.

It can be seen that there is an increase in the calculated Tc for low concentrations

up to a peak of 630.1 K for 50% occupation of rare-earth sites. Further increase of Zr

concentration then results in a decrease of the Tc, though still higher than the zero Zr

value. There are several factors at play here. First there is the shrinking of the crystal

lattice, which results in increased overlap of atomic orbitals throughout the crystal,

leading to increased ordering of magnetic spins. In the model the effect is produced

by stronger exchange coupling energy between Fe-Fe and Sm-Fe pairs, as shown in
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Fig. 5.2. The second effect is the replacement of magnetic Sm atoms by non-magnetic

Zr atoms resulting in a local reduction in Sm-Fe exchange interactions. The two

effects work against one another, with the first dominating at low Zr concentrations,

resulting in the increase in Tc, and the second dominating in the high Zr regime,

acting to reduce the Tc.
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Figure 7.7: (a) shows simulated hysteresis loops at zero temperature as a function
of Zr substitution. At zero percent Zr substitution, the SmFe12 has a coercive field
of 10.2 T. At 50% Zr substitution the coercive field is reduced by 30%. (b) shows
the calculated coercivities for temperatures between 0 and 160 K as a function of
Zr substitution. It can be seen that there is a consistent reduction in coercivity
with increased Zr substitution as expected, though the Zr content does not affect the
temperature dependence of the coercivity.

We continue the investigation by looking at the effects of Zr substitution on the

hysteretic properties of SmFe12. We run hysteresis loop simulations using the LLG

equation integration method in order to get an accurate picture of how the spin

dynamics affect the reversal mechanism. A system of volume 10 nm3 was selected in

order to mitigate finite size effects. The field was swept at a real time rate of 109

Ts−1 with a simulation time step of 1 fs.

We calculate the coercive field of Sm1−xZrxFe12 as functions of x and of temper-

ature. The simulated zero K hysteresis loops are shown in Fig. 7.7a. For x = 0 the

coercive field is calculated to be 10.2 T. This is significantly lower than that seen in
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Nd2Fe14B, due to the smaller contribution to the anisotropy from the rare-earth sites,

however is still large compared with experimental calculations. This disparity can be

attributed to the fact that we do not take into account dipolar effects, nor the effect of

defects (see Fig. 6.1), thus we are effectively calculating the intrinsic anisotropy field

which is expected to be higher. With increasing Zr content the calculated coercivity

decreases significantly. At 50% Zr substitution the coercive field is reduced by 30%.

This is due to a reduction in the total magnetocrystalline anisotropy in the crystal.

The dependence of the coercivity in Sm1−xZrxFe12 as a function of temperature

is shown in Fig. 7.7b. The coercivity decreases relatively consistently with Zr con-

centration at each temperature, dropping 28% at x = 0.5 at the highest simulation

temperature 160 K. Above this temperature the calculated values for the coercive

field became much less reliable, with higher concentration systems switching at higher

fields than lower concentration systems in some cases, indicating that the stochasticity

induced by the temperature fluctuations was dominating the system behaviour.
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Figure 7.8: Calculated domain wall width δ as function of temperature and Zr sub-
stitution. At each concentration δ is well fit as a linear increase with temperature.
δ also increases with Zr substitution due to a reduction in the magnetocrystalline
anisotropy.
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We look now at the effect of Zr substitution on the calculated domain wall width

δ in Sm1−xZrxFe12. δ is calculated using the procedure outlined in chapter 5, wherein

a system is initialised such that two halves are aligned anti-parallel relative to one

another, and anti-ferromagnetic periodic boundary conditions are imposed in order

that the artificially inserted domain wall is stable. From Fig. 7.8 it can be seen

that δ increases linearly with temperature. This dependence in the low temperature

regime is well known [158]. With increasing Zr substitution δ is seen to increase. This

behaviour can be understood by reference to the well-known formula δ = π
√
A/K

describing domain wall width as function of the exchange stiffness and magnetocrys-

talline anisotropy. The reduction in magnetocrystalline anisotropy arising as a result

of substitution of Sm atoms by non-anisotropic Zr atoms results in the system relaxing

to an equilibrium state in which more atoms can readily orient in-plane, widening the

domain wall width. The increased overlap of atomic orbitals which occurs as a result

of the shrinking of the unit cell inducing an effective increase in the total exchange

field works in conjunction with the reduction in anisotropy to increase δ.

7.3 Conclusions

In this chapter we have investigated the effects of Ti substitution of the transition-

metal sites in NdFe12 and the effects on the magnetic properties of Zr site substitution

of Sm atoms in Sm1−xZrxFe12.

NdFe12 is considered a meta-stable phase, and in most cases requires partial sub-

stitution on one of the sublattices of a stabilising element. A particularly effective

stabilising element is Ti. Ti is substituted onto the transition metal sites. Molecu-

lar dynamics calculations have shown that the Ti preferentially selects the 8i sites to

substitute, which are the sites that reside adjacent to the R element. A primary effect

of Ti substitution is a loss of magnetisation due to losing some number of transition-
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metal atoms, which are the primary source of magnetisation in the compound. It is

hypothesised that a second effect is that due to the site preference of the Ti, there

will be a screening effect around the rare-earth atom which will in turn have an effect

on the inter-sublattice coupling, an important factor in the viability of a compound

for use in electric motors as the inter-sublattice coupling is an important indicator of

the maximum energy product.

The results presented in this chapter show that there is certainly a reduction in

the total exchange energy in the compound as a whole, though it cannot be said

conclusively whether the reduction is coming from a reduction in the inter-sublattice

exchange or the intra-sublattice exchange of the transition-metal sublattice.

In the second part of the chapter the effects of Zr substitution of Sm atoms in

Sm1−xZrxFe12 was investigated. The two principal effects brought about by Zr substi-

tution are a reduction in the unit cell volume, and a decrease in the magnetocrystalline

anisotropy. The first occurs due to the smaller atomic radius of the Zr atom with

respect to the Sm atom, and the second due to the removal of Sm atoms, which

contribute significantly to the magnetocrystalline anisotropy. It was shown that the

Tc calculated as a function of Zr concentration follows a non-monotonic dependence,

increasing up to 50% site substitution but decreasing for higher concentrations. The

coercivity was shown to drop with increasing Zr content, while the domain wall width

increases with increased Zr due to an increase in the exchange field and the accom-

panying reduction in anisotropy.
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Chapter 8

Conclusions

In this thesis, the properties of rare-earth transition-metal permanent magnets were

investigated, specifically with regard to how atomic scale features affect the macro-

scopic properties. Nd2Fe14B based magnets were investigated, as well as the new

family of RFe12 compounds. In this chapter the main results and conclusions from

the thesis will be summarised, and then the future research will be discussed.

In brief, one of the main problems facing the use of rare-earth permanent mag-

nets, Nd2Fe14B based magnets in particular, is that they are required to function

well at high operating temperatures. Nd2Fe14B has the drawback of losing coercivity,

and therefore maximum energy product, at high temperatures. There are several ap-

proaches to solving this problem. Three approaches were looked at in this thesis. The

first of which was exchange coupled nanocomposite materials, which was considered

in chapter 4. In this approach a magnetically soft phase is exchange coupled to a hard

phase in order to improve the overall magnetic properties of the base material. The

second was by gaining more understanding of the microstructural features that occur

at grain boundary interfaces. This was discussed in chapter 6. It is believed that

defects at the grain boundary interface cause a weakening of the anisotropy, which

facilitate the propagation of domain walls into the hard phase. By better understand-
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ing the mechanisms at work here, we can perhaps guide the manner in which future

materials are designed. The third approach was the search for a novel compound. The

RFe12 family of compounds has recently been put forward as a potential replacement

for Nd2Fe14B, however the phase is known to lose magnetisation with the addition

of a required stabilising element. Thus is necessary to quantify the affects of these

stabilising elements. This we did in chapter 7. The results presented in each of these

chapters will be summarised in the following.

Core/shell Nd2Fe14B/α-Fe nanoparticles

We investigated idealised core/shell nanostructures with soft/hard morphology with

Nd2Fe14B forming a magnetically hard shell and α-Fe forming the magnetically soft

core. The system was modelled using a generic form of the atomistic spin dynamics

model and parameterised by fitting to experimental data.

It was demonstrated that there was an enhancement of the total magnetisation

of the composite system with increasing α-Fe content due to the high magnetisation

of the soft phase and the coupling of this to the hard phase. The soft phase was

able to stabilise the hard phase at elevated temperatures. The enhancement in the

magnetisation was shown to be offset by an accompanying reduction in the coercivity

of the composite. The reduction was shown to be more severe for larger particle

size due to the increase in inter-phase exchange coupling. The combination of these

two effects resulted in an overall increase in the maximum energy product of the

nanoparticle with increasing α-Fe content, up to an optimum value of ∼ 70% Fe,

after which the maximum energy product began to drop off. The results support the

idea that the exchange coupling of hard and soft magnetic materials on the nanoscale

has the potential to greatly enhance the magnetic properties of rare-earth permanent

magnets.
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Parameterisation of the full atomistic spin model

In this chapter the aim was to expand upon the previous model used in the core/shell

investigation by parameterising the Nd2Fe14B crystal structure in a fully atomistic

way. To do this, a combination of experimental parameters and parameters calculated

from first principles was used. One of the major obstacles to successfully parameter-

ising rare-earth permanent magnet spin models is that current ab initio methods do

not properly describe the effects of the unpaired 4f electrons which are the primary

source of the singular magnetic properties of these compounds.

First we looked at the parameters for Nd2Fe14B. The first step was to determine

the atomic coordinates of all the constituent atoms in the complex Nd2Fe14B unit cell.

Once these were established, the magnetic moments of each site were assigned using

values found in the literature. The exchange interactions were categorised into two

types: Fe-Fe and Nd-Fe. Nd-Nd interactions were neglected due to their large separa-

tion distances in the unit cell, as is usual in atomistic models of rare-earth transition-

metal compounds. The Fe-Fe interactions were fit using a range-dependent functional

form of the exchange based on first principles calculations of the Fe-Fe interactions

in bcc Fe by Pajda et al. [122]. The Nd-Fe interaction strengths were then used

as a fine tuning parameter to yield the correct Curie temperature. The anisotropy

values were determined from experimental values, with the ratio of the second order

anisotropy constant to the fourth order constant on the Nd sites calculated using a

priori knowledge of the spin canting angle below the spin reorientation temperature.

With the parameters in place, a systematic investigation of the fundamental

macroscopic properties was carried out. The calculated hysteresis behaviour was

shown to successfully reproduce experimentally measured coercivity values. A change

in the shape of the hysteresis curves above and below the spin-reorientation temper-

ature was seen - a result of the correct ratio between the second and fourth order

uniaxial anisotropy constants on the Nd sites. TheMs(T ) dependence was calculated,
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resolved by sublattice, giving the correct Curie temperature, and showing that the

majority of the magnetisation in the compound originates from the 3d Fe sublattice.

With this full parameterisation, we have shown a working model of Nd2Fe14B that

will serve as a solid grounding for future investigations into more complex structures

based on the Nd2Fe14B crystal structure.

In the second half of the chapter, the novel NdFe12 base compound was param-

eterised. This presented more of a challenge than the Nd2Fe14B due to the relative

scarcity of experimental data on the material. The crystal structure was straight-

forward to reproduce, given that the compound crystallises in the ThMn12 crystal

structure which is well documented. The exchange interactions Nd-Fe and Fe-Fe

were treated as free parameters and scanned until the correct Curie temperature was

found. First principles calculations by Miyake et al. [46] of the crystal field param-

eters were used to parameterise the on-site magnetocrystalline anisotropy constants.

In contrast with Nd2Fe14B, the Nd sites in NdFe12 have an in-plane anisotropy. This

had a significant effect on the hysteresis behaviour, resulting in coercivities lower than

1 T at zero temperature.

Having parameterised fully both Nd2Fe14B and NdFe12, these models were used

in chapters 6 and 7 to explore more complicated crystal structures.

The cell size scaling of the saturation magnetisation and magnetocrystalline

anisotropy were also investigated. The coarse grained micromagnetics method has

a tendency to overestimate quantities such as the Tc, which can be corrected by

taking the aforementioned parameters as dependent on L and T , i.e. K = K(L, T ),

Ms = Ms(L, T ), and A = A(L, T ).

Ms = Ms(L, T ) was calculated for two systems; Nd2Fe14B and a generic uniaxial

bcc Fe system. It was found that for the Nd2Fe14B system there was a weaker

dependence on cell size and temperature than for the bcc Fe system. This is a

surprising result given the larger unit cell size of Nd2Fe14B, but is likely an effect of
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the larger anisotropy of the rare-earth material, which suppresses the spin fluctuations

in the atomistic model.

Given the complexity of modern magnetic materials it is clear that there is a need

for a multiscale approach to permanent magnet modelling. Such an approach would

involve a link up between first principles calculations, atomistic spin models and coarse

grained micromagnetics models. The process might look something like the following:

lattice parameters and anisotropy values calculated in the ab-initio regime, effects of

structural defects on the local spin dynamics calculated using atomistic spin models,

and calculations of large-scale complex designs such as the ‘Battenburg’ structure [51]

using as input information gleaned from the smaller scale models. Thus it would in

principle be possible to solve large magnetic systems essentially from first principles.

Effects of grain boundary interfaces on Nd2Fe14B coercivity

In this investigation the aim was to probe the interfaces in Nd2Fe14B between the

Nd2Fe14B grains and the inter-granular phases at an atomic resolution. It is theorised

that defects at the interfaces induce weak local anisotropy which in turn allow for

easier switching of the grains by allowing domain walls to penetrate more easily.

The local anisotropy was profiled using the Néel anisotropy model across an inter-

face between Nd2Fe14B and α-Fe relaxed using molecular dynamics simulation. There

was no conclusive evidence of any local weakening of the anisotropy at the interface.

Using the relaxed interface and calculated anisotropy profile as input into the spin

dynamics, the propagation of a domain wall across the interface driven by an external

magnetic field was modelled.

Two main conclusions were drawn from the simulated domain wall propagation.

First that the domain wall did not propagate through the Nd2Fe14B phase with a

smooth motion. Rather the motion was stuttered as a result of the orientation of

the high anisotropy Nd planes, which were oriented in this case perpendicular to the
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direction of propagation of the domain wall. The result was a Barkhausen type noise

in the magnetisation switching. Second, it was found that a very large field (∼ 9 T)

was required to force the domain wall into the Nd2Fe14B phase. Extending this idea

of the orientation of the Nd planes being a key factor in the switching mechanism,

it was conjectured that the Nd planes being oriented parallel to the interface acts

as a topological barrier against the switching of the magnetisation of the Nd2Fe14B

grain. We predict that in cases where the Nd2Fe14B grain is oriented such that the

Nd planes lie parallel to the direction of domain wall propagation, that is, with the

interface parallel to the c axis, a much smaller external field would be required to

force the domain wall into the Nd2Fe14B grain.

Effects of Ti and Zr substitution in RT12

In chapter 7, the effects of the substitution of a stabilising element into the RT12 com-

pound were studied. The RT12 family of compounds, include NdFe12, are considered

a meta-stable phase in the binary, and in general require a ternary stabilising element

to be used in any application. A commonly used stabilising element is Ti, which sub-

stitutes a transition-metal site upon entering the unit cell. Work was carried out by

our collaborators in Hrkac’s molecular dynamics simulation group at the University

of Exeter to determine the preferential substitution sites for Ti. It was found that the

preferred site for the Ti atom is the 8i transition-metal site, which sits adjacent to

the rare-earth site. Thus it was hypothesised that this might have a screening effect

around the R atom, resulting in a reduction in the inter-sublattice exchange coupling,

a parameter important in determining the maximum energy product in electric motor

applications.

Inserting the Ti atom into our spin model, with lattice parameter variation calcu-

lated by molecular dynamics simulation used as input information, we calculated the

exchange energy as a function of Ti content. It was found that there was an overall
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decrease in the total exchange energy in the system, however there was no conclusive

evidence to say that the reduction was in the inter-sublattice coupling specifically.

In the second part, the effects of Zr substitution in Sm1−xZrxFe12 was investigated.

The two principal effects brought about by Zr substitution are a reduction in the unit

cell volume, and a decrease in the magnetocrystalline anisotropy brought about by

the removal of rare-earth atoms. The first effect comes about as a result of the

smaller atomic radius of the Zr atom with respect to the Sm atom. The Zr was

substituted into our spin model using a random site selection algorithm. The Tc was

then calculated as a function of Zr concentration. It was found that the Tc follows a

non-monotonic dependence, increasing up to 50% site substitution but decreasing at

higher concentrations. The coercivity was shown to drop with increasing Zr content,

while the domain wall width increases with increased Zr due to an increase in the

exchange field and the accompanying reduction in anisotropy.

As with the NdFe12 parameterisation in chapter 5, there is unfortunately little

experimental data with which to compare our results. The Ti substitution effect on

the inter-sublattice coupling will require deeper investigation to answer the question

as to whether or not the Ti is in fact screening the rare-earth site.

In this thesis we have taken strides towards a multiscale paradigm, for example a

number of calculations made use of ab initio parameters from the literature. Other

investigations, into Ti substitution for example, involved direct collaboration with

molecular dynamics research groups to try to establish a direct chain between the

models.

Going back to the initial aim posed in chapter 1, we have successfully parame-

terised a full working atomistic spin model of Nd2Fe14B and NdFe12, both of which,

as has been discussed, are exceptionally complex materials. Applying the model to

a Nd2Fe14B/α-Fe grain boundary interface, the finding was made that there appears

to be a kind of topological protection of the grain along certain crystallographic di-

125



rections. More work must be done to quantify this effect, however we suggest that

nano-scale design of the grain boundaries to protect the grains from domain wall nu-

cleation and domain reversal may be an avenue for future permanent magnet design.

The investigation into elemental substitution in the RFe12 phase showed that, partic-

ularly in the case of Zr substitution on the rare-earth sites, that an improvement in

some of the macroscopic properties can be made, namely in the Curie temperature.

Further work

There are a number of questions that have arisen as a result of the investigations

carried out in this thesis. As a follow up to the core/shell study, it would be a useful

experiment to apply what was learnt in the parameterisation of the full Nd2Fe14B

spin model to nanocomposite particles. To reveal the effects of exchange coupling

hard and soft magnetic phases using a fully atomistic approach would be a natural

extension to the generic model that was used as a first approximation in this instance.

Work remains following on from the investigation into the full parameterisation

of the Nd2Fe14B and NdFe12 models. The inter-sublattice coupling in the RFe12

compounds remains an open question and warrants a thorough investigation in the

future. One way this could be probed would be to atomistically calculate the magnon

dispersion relations for the RFe12 phases as materials with weak and strong inter-

sublattice coupling are known to show very distinct spin wave dispersion. However

the complexity and low symmetry of these types of materials make the calculations

non-trivial to set up as well as computationally expensive.

Following on from the grain boundary interface investigation, there is yet work

to be done in confirming or disproving the hypothesis that the granular orientation

with respect to the interfaces will play a large role in determining the coercivity of

Nd2Fe14B based magnets.
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In regards to the full implementation of a multiscale approach to the modelling of

permanent magnets, an urgently required continuation is the cell size and temperature

dependence of the exchange stiffness constant A. One way to go about calculating the

temperature dependence is to use the relation between domain wall width, exchange

stiffness and anisotropy (given by (6.2)). The calculation of the cell size dependence

will require a more subtle approach.
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