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Abstract

This thesis addresses the behaviour of artificial magnetic square spin

ice patterns in response to applied magnetic fields and thermal activa-

tion. Two main points of focus are the access of well-defined statistical

states and the properties of fractionalised “monopole” charge defects.

Experimental investigations are conducted using magnetic force mi-

croscopy of athermal remanent states.

Magnetic reversal of a square ice subject to magnetic fields applied

slightly off a diagonal symmetry axis is found to mediate via incremen-

tal sublattice-independent processes. Dipolar correlations manifest as

charge defect propagation and ordering, along and between adjacent

flipped moment chains respectively. Quenched disorder, while allow-

ing for bulk defect nucleation, is responsible for strongly suppressing

correlations.

A constant magnitude rotating field protocol is investigated. The ac-

quisition of strong ground state ordering via highly correlated edge-

nucleated reversal processes, as recently predicted, is not found, at-

tributable to the enhancement of bulk processes by quenched disorder.

An optimally tuned field allows for efficient demagnetisation towards

the ground state.

A study of as-fabricated states is presented, magnetically self-ordered

following formation of magnetic elements via evaporative vacuum de-

position. Compelling evidence is presented, in a case study of a sample

closely approaching the ground state, for superparamagnetism during

early deposition stages which is subsequently arrested. Large ground

state domains are observed sustaining Boltzmann factor weighted

monopole excitations. Evidence is present for monopole interactions



playing a role in thermal ordering, as excitations explore a dipolar

energy band structure. Further, order is found to increase with inter-

action strength, and preliminary results suggest that quenched disor-

der acts to suppress it. Statistical mechanical calculations show that

states achieved correspond closely to arrested thermal equilibrium.

Consideration of an effective thermodynamic model presented for ac

field demagnetised states is given. Comparison allows for discussion

of the general role of quenched disorder and the effective temperature

of a “frozen” state.



Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Nanoscale Magnetic Behaviour . . . . . . . . . . . . . . . . . . . . 4

1.3 Statistical Mechanics of Distinguishable Particles . . . . . . . . . 8

1.4 Geometrical Frustration . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 12

2.1 Spin Ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Magnetic Monopoles in Spin Ice . . . . . . . . . . . . . . . 15

2.2 Artificial Spin Ice . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Square and Kagome Ice . . . . . . . . . . . . . . . . . . . 20

2.3 Accessing the Ground State . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 ac Demagnetisation . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Effective Thermodynamics . . . . . . . . . . . . . . . . . . 29

2.3.3 “Demagnetisation” of Superconducting Square Ice and the

Role of Disorder . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.4 Constant H Protocol . . . . . . . . . . . . . . . . . . . . . 39

2.4 dc Field Treatment and Magnetic Reversal . . . . . . . . . . . . . 43

2.5 Square Ice Monopole Defects . . . . . . . . . . . . . . . . . . . . . 46

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Methods 49

3.1 Electron Beam Lithography . . . . . . . . . . . . . . . . . . . . . 49

3.2 Electron Beam Vacuum Evaporation . . . . . . . . . . . . . . . . 52

3.3 Scanning Electron Microscopy . . . . . . . . . . . . . . . . . . . . 54

v



CONTENTS

3.4 Atomic Force Micrscopy . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Magnetic Force Microscopy . . . . . . . . . . . . . . . . . 59

3.5 Interpretation of Microscopy Data . . . . . . . . . . . . . . . . . . 62

3.5.1 Dipolar Statistics . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 Vertex Statistics . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.3 Dipolar Energy Calculations . . . . . . . . . . . . . . . . . 68

4 Magnetic Reversal of an Artificial Square Ice 70

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 MFM of reversal . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Dipolar correlations . . . . . . . . . . . . . . . . . . . . . . 81

4.3.3 Charge density functions . . . . . . . . . . . . . . . . . . . 83

4.4 Defect Energetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Constant Magnitude Rotating Field Protocol 91

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Thermal Ordering in as-fabricated Systems 100

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1 Evidence for as-fabricated Order . . . . . . . . . . . . . . . 101

6.2 Ground State Ordering . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 MFM Identification of Ground State Ordering . . . . . . . 109

6.2.2 Thermal Ordering Model . . . . . . . . . . . . . . . . . . . 111

6.2.3 Magnetic Defects and Excitations . . . . . . . . . . . . . . 114

6.2.4 Square Ice Statistics . . . . . . . . . . . . . . . . . . . . . 126

6.3 Control of Ground State Ordering . . . . . . . . . . . . . . . . . . 128

6.3.1 Microscopy and Vertex Populations . . . . . . . . . . . . . 130

vi



CONTENTS

6.4 Effective Temperatures . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4.1 Real vs Effective Thermodynamics . . . . . . . . . . . . . 138

6.4.2 Energetic Models . . . . . . . . . . . . . . . . . . . . . . . 142

6.4.3 The Role of Disorder in ac Demagnetisation . . . . . . . . 146

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Summary 149

7.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 149

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A Ground State Order in as-fabricated Patterns 154

A.1 MFM Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.2 Excitation Energies . . . . . . . . . . . . . . . . . . . . . . . . . . 154

References 179

vii



Abbreviations

AFM Atomic force microscopy

DPS Diagonally polarised state

E Energy

EBL Electron beam lithography

GS Ground state

kB Boltzmann’s constant

kBT Thermal energy

L-TEM Lorenz Transmission Electron Microscopy

MFM Magnetic force microscopy

µ0 Free space magnetic permeability

µB Bohr magneton

Py Permalloy

R Molar constant

RS Random state

SEM Scanning electron microscopy

SPM Scanning probe microscopy

Ti Vertex type i

Vi Vertex configuration i

YPS y-axis polarised state



List of Figures

1.1 A single domain and multidomain state of a magnetic element. . . 5

1.2 Magnetic domain behaviour as a function of the size of a magnetic

particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Geometrical frustration of Ising spins on a triangular plaquette. . 10

2.1 Spin ice and water ice. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Experimental and theoretical neutron scattering maps from a spin

ice material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Emergent magnetic monopoles in spin ice. . . . . . . . . . . . . . 16

2.4 Microscopy of an artificial square spin ice. . . . . . . . . . . . . . 18

2.5 Microscopy of an artificial kagome spin ice. . . . . . . . . . . . . . 19

2.6 Configurations of Ising moments on the vertices of a square ice. . 21

2.7 Configurations of Ising moments on the vertices of a kagome ice. . 22

2.8 ac demagnetisation illustrations and results. . . . . . . . . . . . . 24

2.9 Magnetic hysteresis loops of artificial square ice patterns. . . . . . 25

2.10 Experimental outcome of ac demagnetisation of an artificial square

ice array, as determined by MFM. . . . . . . . . . . . . . . . . . . 27

2.11 Residual net normalised digital magnetic moment of four selected

square ice patterns of varying lattice consant as a function of ac

demagentisation field step ∆H. . . . . . . . . . . . . . . . . . . . 28

2.12 Control of magnetic order of ac demagnetised states via field step

and lattice constant. . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.13 The net energy of square ice patterns following ac demagnetisation,

determined by correlation values and micromagnetics. . . . . . . . 29

ix



LIST OF FIGURES

2.14 Square ice vertex populations following experimental ac demag-

netisation compared with those given by statistical mechanical cal-

culations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.15 Comparison of experimental data from ac demagnetisation experi-

ments with the calculations of the extended statistical mechanical

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.16 The square ice vertex energy ratio E2/E3, as calculated from data

of ac demagnetised states. . . . . . . . . . . . . . . . . . . . . . . 35

2.17 An illustration of an artificial spin ice formed by superconducting

vortices pinned by an array of bi-stable traps. . . . . . . . . . . . 36

2.18 Final superconducting square ice states following a dynamic anneal

process mediated by applied current, analogous to ac demagneti-

sation of a nanomagnet array. . . . . . . . . . . . . . . . . . . . . 37

2.19 Variation of ground state ice-rule obeying population density PGS

for simulated “demagnetisation”. . . . . . . . . . . . . . . . . . . 38

2.20 Finite area square ice patterns. . . . . . . . . . . . . . . . . . . . 40

2.21 Results of simulated constant magnitude rotating field treatments

of open edge square ice patterns. . . . . . . . . . . . . . . . . . . 42

2.22 Results of simulated constant magnitude rotating field treatments

of closed edge square ice patterns. . . . . . . . . . . . . . . . . . . 43

2.23 Ordering on a kagome lattice. . . . . . . . . . . . . . . . . . . . . 45

2.24 Square ice monopole defects on the ground state. . . . . . . . . . 46

2.25 The energetics of chain defects on the square ice ground state. . . 47

3.1 Schematic of the employed electron beam lithography fabrication

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Diagram of the Lesker PVD electron beam evaporation chamber. . 53

3.3 SEM secondary electron imaging and image constrast. . . . . . . . 56

3.4 Diagramatic representation of the tapping-mode operation of an

atomic force microscope. . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Interpretation of magnetic force microscopy data. . . . . . . . . . 60

3.6 Ideal square ice states. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Dipolar neighbours on the square ice system. . . . . . . . . . . . . 65

x



LIST OF FIGURES

3.8 Correlation statistics of ideal states. . . . . . . . . . . . . . . . . . 66

3.9 Ideal square ice state energies. . . . . . . . . . . . . . . . . . . . . 69

4.1 SEM of a 500 nm lattice constant magnetic square ice pattern. . . 71

4.2 Well-defined square ice states. . . . . . . . . . . . . . . . . . . . . 72

4.3 MFM image of the remanent state of a square ice pattern follow-

ing an off-diagonal applied hold-field of +1.5 kOe, and subsequent

hold-fields of − 313 and − 375 Oe, returning to remanence between

each step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Example MFM images from the off-diagonal magnetic field square

ice reversal sequence. . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Magnetisation and vertex population statistics during a magnetic

square ice reversal sequence. . . . . . . . . . . . . . . . . . . . . . 78

4.6 Dipolar correlations during a magnetic square ice reversal sequence. 82

4.7 Charge density functions at a MX = 0 state during magnetic re-

versal of square ice sublattice X. . . . . . . . . . . . . . . . . . . . 85

4.8 Energetics of flipped moment chain defects on the diagonally po-

larised state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 MFM series for open edge patterns following the rotating field

protocol at hold field Hh. . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 MFM series for closed edge patterns following the rotating field

protocol at hold field Hh. . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Statistics of open and closed edge square ice states following con-

stant magnitude rotating field treatment. . . . . . . . . . . . . . . 96

5.4 Simulated variation of final vertex populations for open and closed

edge square ice patterns with the inclusion of quenched disorder. . 99

6.1 SEM of an a = 700 nm spaced artificial square ice patterned using

the Helios system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 SEM of a = 500 nm spaced artificial square ice, patterned using

the JEOL system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Microscopy of the as-fabricated state of an a = 700 nm lattice

constant square ice array. . . . . . . . . . . . . . . . . . . . . . . . 105

xi



LIST OF FIGURES

6.4 Microscopy of the as-fabricated state of an a = 500 nm lattice

constant square ice array. . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 MFM images of the as-fabricated states of two nominally identical

square ice patterns of a = 400 nm. . . . . . . . . . . . . . . . . . 107

6.6 SEM images of the a = 400 nm lattice constant square ice pattern,

as shown by MFM in figure 6.5. . . . . . . . . . . . . . . . . . . . 108

6.7 Long range square ice ground state ordering, as observed by MFM. 110

6.8 MFM of the square ice ground state. . . . . . . . . . . . . . . . . 111

6.9 Comparison of AFM and MFM images at the locations of magnetic

defects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.10 Magnetic defects observed on the square ice ground state. . . . . . 115

6.11 The simplest configuration that could form a T4 vertex on the

square ice ground state. . . . . . . . . . . . . . . . . . . . . . . . 116

6.12 MFM of composite excitations. . . . . . . . . . . . . . . . . . . . 117

6.13 Excitation energy proximity test calculations. . . . . . . . . . . . 119

6.14 Statistics and dipolar energy band structure of square ice ground

state excitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.15 MFM of domain walls configurations. . . . . . . . . . . . . . . . . 124

6.16 Domain wall energetics. . . . . . . . . . . . . . . . . . . . . . . . 125

6.17 Microscopy of edge regions of the surveyed as-fabricated square ice

pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.18 An example of statistical analysis of a large area MFM image from

the as-fabricated sample survey. . . . . . . . . . . . . . . . . . . . 127

6.19 SEM images of square ice patterns from the batch-fabricated series. 129

6.20 Example 13 µm × 13 µm area MFM images of square ice arrays

of each value of a (rows) and each underlayer (columns) from the

batch-fabricated samples series. . . . . . . . . . . . . . . . . . . . 131

6.21 Continued from figure 6.20. . . . . . . . . . . . . . . . . . . . . . 132

6.22 The variation in vertex populations for as-fabricated sample states

as a function of lattice constant a, for three different underlayers:

Si substrate with no buffer, a 3 nm thick Ti buffer and a 3 nm

thick Cr buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xii



LIST OF FIGURES

6.23 Variation of vertex populations ni as a function of effective temper-

ature βeff for (symbols) an as-fabricated experimental sample set,

(solid lines) the standard meanfield distribution model calculation

using point dipole vertex energies, and (dashed lines) the extended

model with four-charge model vertex energies. . . . . . . . . . . . 136

6.24 Determination of the energetic ratio E2/E3 from the as-fabricated

series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.25 Calculated variations of (a) νi(β) and (b) ρ(β) as defined by the

extended model appropriate for describing ac demagnetised data. 139

6.26 Further calculations of the extended model. . . . . . . . . . . . . 140

6.27 Statistics of an ac demagnetised state of an a = 700 nm lattice

constant square ice pattern. . . . . . . . . . . . . . . . . . . . . . 143

6.28 Statistics of an ac demagnetised state of an a = 700 nm lattice

constant square ice pattern. . . . . . . . . . . . . . . . . . . . . . 145

A.1 MFM survey of thermally ordered as-fabricated square ice pattern. 155

A.2 MFM survey, continued from figure A.1. . . . . . . . . . . . . . . 156

A.3 MFM survey, continued from figure A.2. . . . . . . . . . . . . . . 157

A.4 MFM survey, continued from figure A.3. . . . . . . . . . . . . . . 158

A.5 MFM survey, continued from figure A.4. . . . . . . . . . . . . . . 159

A.6 MFM survey, continued from figure A.5. . . . . . . . . . . . . . . 160

A.7 MFM survey, continued from figure A.6. . . . . . . . . . . . . . . 161

A.8 MFM survey, continued from figure A.7. . . . . . . . . . . . . . . 162

A.9 MFM survey, continued from figure A.8. . . . . . . . . . . . . . . 163

xiii



List of Tables

3.1 MESP - Magnetic Etched Silicon Probe - Specifications . . . . . . 58

6.1 Dipolar excitation energy of composite excitations shown in figure

6.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.1 A summary of l, s, p and dE values of ground state excitations. . 164

xiv



Chapter 1

Introduction

1.1 Overview

Recent years have seen a prominent research movement in which the physics of

geometrical frustration and resultant emergent phenomena have been extensively

explored via model systems. Frustration arises when no configuration of a system

can simultaneously minimise all pairwise interactions between its components, an

effect which is found throughout the field condensed matter and beyond [1; 2].

A great deal of this work appears to have been instigated and inspired by the

realisation of an “artificial spin ice”, as reported by Wang et al. in 2006 [3],

an experimental 2D vertex array of Ising-like nanomagnets designed to exhibit

analagous frustrated interactions to those found in 3D bulk crystalline spin ice

materials at low temperatures [4], a modern paradigm of geometrical frustration

and a magnetic analogue of the classic frustrated material, water ice [5]. These

3D ice systems posses macroscopic ground state degeneracy and extensive zero-

temperature entropy.

A much earlier example of such work is the study of 2D artificial Ising an-

tiferromagnets using arrays of superconducting current rings, some 15 years ago

[6; 7], in which an important interplay between inter-elemental interactions and

quenched disorder in the patterns was identified. With the advent of artificial

spin ice, this field has matured beyond the study of systems which only previously

existed as theoretical models, the artificial kagome spin ice for example [8; 9] be-

ing a very close analogue of the dipolar kagome ice phase found in crystalline

1



1.1 Overview

spin ice under a (111)-direction magnetic field [10; 11; 12]. Analogous physics

is hence directly accessible and observable via magnetic microscopies, and the

great convenience and ease of constructing such artificial systems via modern

nanofabrication tools [13] is currently being rigorously exploited.

To date, essentially all artificial spin ices studied experimentally posses a cru-

cial dissimilarity to their crystalline counterpart - when studied, they are athermal

at all accessible temperatures. A large proportion of work has hence focussed on

field ordering and the direct resolution of local configurations using microscopy

under remanent conditions. Following an ac demagnetisation “field-anneal” pro-

cess, short range magnetic correlations and “icy” local configurations are found

in the artificial lattices [3; 9; 12; 14; 15; 16; 17; 18], similar to the properties of

crystalline spin ice.

The excitment surrounding these system was only further reinforced by the

more recent realisation of quasi-particle excitations within the crystalline spin ice

systems which resemble and interact like Coulombic magnetic monopoles, arising

due to fractionalisation [19]. This naturally triggered the invocation of analo-

gous treaments of similar topological charge defects which exist on the artificial

lattices [18; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29], generated and manipulated

experimentally using magnetic fields on field-prepared “icy” background states.

The aim of this thesis is to present significant contributions to the ever-growing

volume of work on artificial spin ices, focussing exclusively on the square ice sys-

tem. Both the generation of icy states and the propagation and control of charged

monopole defects will be addressed. Further, recent progress in understanding

the effects of true thermalisation of these 2D ice lattices will be presented. More

generally, the work addresses means by which to prepare well-defined background

states on the square ice lattice and to understand the behaviour and properties

of charge defects which occur on top.

The remainder of this chapter will overview some key information regarding

nanomagnetism and statistical mechanics that underlie the subject matter of the

thesis.

Chapter 2 will present a brief review of spin ice materials, and a more detailed

discussion of artificial spin ices, as well as publications key to understanding the

2



1.1 Overview

results later presented, and signifying the place of these results within the context

of the current state-of-the-art.

Chapter 3 will summarise the techniques and methods used to fabricate, char-

acterise and experimentally study the patterned ice arrays.

Chapter 4 will discuss results of an incremental magnetic reversal experiment,

as reported in reference [29]. By preparation of a well known long range ordered

polarised state [30], charge propagation is mediated on this ice-like background

via correlated dipolar cascade chains, similar to those previously observed on the

kagome ice system [24]. Only short range chain correlation are found as quenched

pattern disorder acts to randomise behaviour. Further, the first observation of

the effects of charge interactions are made, which are manifested through the

dipolar ordering.

Chapter 5 presents an experimental realisation of an alternative “field-anneal”

routine recently predicted to yield strong square ice ground state ordering in finite

area arrays [21]. The effects of edges are found to have been strongly suppressed,

which can be understood by the enhancement of bulk processes by quenched

disorder in the patterned systems.

In chapter 6, work addressing the first ever experimental studies of thermal-

isation of an artificial spin ice, via states and configurations “frozen-in” dur-

ing sample fabrication, will be presented, as recently reported in reference [25].

Long range ground state ordering is observed experimentally for the first time.

Strong qualitative and quantitative evidence for thermalsiation is presented, and

a monopole-string excitation dipolar energy band structure is shown to exist, in

which defects observed above the groundstate can explore as well-defined elemen-

tary excitations. Order is found to be controllable via inter-elemental interaction

strength as well as interfacial roughness in the elemental thin film structures.

Further a simple mean field description based on the canonical ensemble shows

that close-to-equilibrium states are achieved, as well as providing insight in to

the opposing influence on the “effective temperature” of the system by coupling

and quenched disorder in both thermal and field anneal processes.

To close, in chapter 7 an overview of the key results of the work will be given

as well as a discussion of potential directions for future work.
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1.2 Nanoscale Magnetic Behaviour

In this section, an overview of the various competing energetic contributions

influencing the behaviour of ferromagnetic materials will be given, and their con-

sequences on the behaviour of nanoscale magnetic elements [13; 31]. These con-

tributions are exchange energy Eex which acts to align spins with each other,

magnetocrystalline anisotropy energy EK which acts to align spins along pre-

ferred crystallographic axes, demagnetising energy Edemag associated with the

presence of demagnetising fields, Zeeman energy EZ which acts to align spins

with an externally applied field, and thermal energy ET which acts to randomise

the direction of spins. As the size of a magnetic element is reduced, the rel-

ative magnitudes of these energies changes, significantly altering the material’s

behaviour.

At the surface of a magnetic material, any component of magnetisation, M,

normal to the surface will come to an abrupt end, meaning that ∇ · M 6= 0.

As the divergence of magnetic flux ∇ · B = µ0∇ · (H + M) = 0 [32], where µ0

is the free space magnetic permeability, diverging magnetisation is accompanied

by and equal and opposite divergence of magnetic field −∇ · H. This is as if

the surface of the material holds a distribution of magnetic charges, sources and

sinks of what is referred to as the demagnetising field, Hdemag = −DM, where

D is a shape dependent demagnetising tensor, generally a complicated function

of position within the material. Only an ellipsoidally shaped material has an

uniform Hdemag and hence a simple scalar demagnetising factor D. External to

the material, the surface charge distribution creates a stray magnetic field.

Hdemag carries with it an energy density given by Edemag = −µ0

2

∫
(Hdemag ·

M)dV = µ0

2

∫
(DM2)dV , where the integral is taken over the material volume V .

In order to reduce demagnetising fields, stray fields, and the associated energy,

magnetic material will often form magnetic domain structures - small regions of

uniform M (reaching saturation magnetisation, |M| = Ms(T ), which is generally

a function of temperature T ) randomly arranged to minimise out of plane mag-

netisation, figure 1.1, separated by regions of rotating M called domain walls,

which cost less energy than the cost of sustaining a demagnetising field. De-

magnetising effects are balanced at short range by exchange interactions between
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spins, described by Eex = −2JS1 ·S2 under the Heisenberg Hamiltonian approxi-

mation, where J is the exchange constant, positive for ferromagnetic interactions,

between spins with vectors S1 and S2. Magnetisation is typically uniform over at

least the exchange length, (∼ nanometers), the length scale over which exchange

dominates. Usually, domains are very many exchange lengths in size.

Figure 1.1: A single domain and multidomain state of a magnetic element. With

magnetisation represented by arrows, the magnetic state on the left would cost

a large amount of energy in demagnetisation fields. The state on the right has

minimal demagnetising field by the formation closure domains.

For a Bloch wall (a domain wall with a planar magnetisation rotation) in a

simple cubic crystal of lattice constant a the areal energy density can be shown

to be equal to JS2π2/Nsa
2, where Ns is the number of spins (of magnitude S) in

a chain forming/crossing a wall, with a total rotation π between domains. The

unwinding of a wall, increasing Ns, hence appears energetically favourable, how-

ever this unravelling is balanced by the effect of magnetocrystalline anisotropy.

Within a magnetic material there are preferred axes for the magnetisation to

align with, dependent on crystal structure. Domains will tend to align locally

with the crystalline “easy” axes, however, a domain wall cannot avoid having

magnetisation components along the crystalline “hard” axes. For a Bloch wall

this produces an areal energy density contribution equal to NsKa/2, where K is

an anisotropy constant describing the strength of this effect, acting to tighten the

domain wall. The resultant equilibrium surface energy density of a Bloch wall

can be shown to be equal to π
√
AK, where A = 2JS2/a.

5
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Ultimately, in large bulk magnetic materials, states of reduced energy can be

achieved by the formation of magnetic domains, the exact characteristics being

dependent largely on material [33]. Magnetically hard materials tend to have

large crystalline anisotropies - they are hard to magnetise, hard to demagnetise

and therefore make good permanent magnets, e.g. NdFeB. The contrary is true

for magnetically soft materials, such as polycrystalline permalloy (Py), an alloy

of Ni(80%) and Fe(20%). Polycrystalline materials possesses a microstructure

crystalline grains with randomly orientated crystallographic axes, and therefore

possess negligible net magnetocrystalline anisotropy.

If the size of a magnetic material is reduced in one or more dimensions it

can eventually become comparable in scale to characteristic lengths of the mate-

rial, for example the domain wall thickness δ = π
√
A/K, and the critical single

domain radius (both dependant on the exchange/anisotropy balance). Such cir-

cumstances can easily be created via thin film deposition methods such as electron

beam vacuum evaporation (section 3.2), and sub-micron resolution lithographic

techniques such as electron beam lithography (EBL) (section 3.1). For a contin-

uous Py thin film of ∼ 10 nm thickness it is favourable for magnetisation to lie in

the plane of the film and for lateral domain patterns to form (with little variation

of M with depth). Crystalline grain sizes of ∼ 10 nm are typically found, while

latteral domain size can be much larger, ∼ 10 µm. With decreasing lateral size,

the Py film will be able to sustain a decreasing number of domains [34]. If made

small enough the magnetic element will no longer find it energetically favourable

to form domain structures and will become single domain, typically at lateral

sizes of 100’s - 10’s nm, figure 1.2. Here the cost of sustaining a demagnetis-

ing field is sufficiently less than the cost of a domain wall, and the single domain

nanoparticle will form effectively a magnetic dipole, with a north (N) and a south

(S) pole like a small permanent bar magnet.

To minimise the demagnetising energy, it is favourable for the magnetisation

of a single domain nanoelement to lie parallel to its long axis, given an elongated

shape. This effect is termed shape anisotropy, and in the case of a single domain

element it enforces a bistable magnetisation potential. To a reasonable approxi-

mation, this behaviour can be describe as ‘Ising-like”, an element possessing two

opposite relaxed remanent orientations. Generally, a single domain nanoparticle

6



1.2 Nanoscale Magnetic Behaviour

will have an energy, EK = KV , associated with an anisotropy, e.g. a magne-

tocrystalline or shape anisotropy as discussed, quantified by energy density K. If

a particle is made small enough this energy can become comparable to its thermal

energy, ET = kBT at a given temperature T where kB is the Boltzmann constant.

If the condition ET & EK is met, the particle will be superparamagnetic, as ther-

mal fluctuations overcome the anisotropy and the particle will behave as if it were

a large paramagnetic moment.

A single domain magnetic element will be accompanied by a dipolar field

Hd, dependant on shape, size and material. Neglecting non-uniformities in M

and finite size effects (increasingly valid with increasing distance r from such a

nanomagnet), the dipolar field can be approximated by that of a point dipole

of size µ = VMsêµ located at the nanomagnet’s centre of mass, where V is the

volume of the single domain nanoparticle and êµ is a unit vector, with a dipolar

field given by

Hd =
1

4π

(
3r(µ · r)

r5
− µ

r3

)
. (1.1)

The interaction between a point dipole moment and a magnetic field H is

described by the Zeeman energy EZ = −µ0µ ·H, acting to align the moment with

the field. If the field is non-uniform, a field gradient force is also experienced by

the moment, FG = µ0(µ · ∇)H [35].

The hysteretic properties of a nanoelement can be significantly different to

that of bulk material, due to, for example, the different magnetic reversal mecha-

nisms that occur. Bulk material will largely reverse via domain wall propagation,

as domains which are favourably aligned with an applied field grow at the ex-

pense of those that are unfavourable. A strictly single domain element, however,

will reverse via a coherent rotation of magnetisation, and this can be heavily

influenced by shape anisotropy. Real elements may posses varying amounts of

non-uniformity in M, however, the smaller an element is made, the more this

behaviour becomes enforced.

Interesting behaviour also occurs when nanomagnets are made to interact

with each other and much research involves the fabrication of periodic arrays of

magnetic nanostructures [13; 36]. The single element behaviour will be altered

7
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w ~ 10 nm

w 1 m≳ μ

w decreasing

w ~ 100 nm

Figure 1.2: Magnetic domain behaviour as a function of the size of a magnetic

particle. As the size of a particle, represented by scale w, is reduced it will sustain

fewer and fewer magnetic domains. Given the particle is made small enough it will

become single domain as it is no longer energetically favourable to form domains.

relative to an isolated element due to the net dipolar field from its neighbours,

and an expression for the coupling can be derived from equation 1.1 and the

expression for EZ, where moment µ1 experiences the field Hd of µ2. A given pair

of elements consequently favour a North-to-South alignment. The cumulative

behaviour of a large scale array of nanomagnets will be different to that of bulk

or sheet material of the same expanse, due to these same effects. Such arrays

can be routinely engineered and the influence of these interactions explored by

varying elemetal size and shape as well as the number, orientation and spacing

of neighbouring elements.

1.3 Statistical Mechanics of Distinguishable Par-

ticles

In this section some key results of statistical mechanics will be revised [37; 38].

For a system of N distinguishable non-interacting particles, each being able to

take one of i distinct qi-fold degenerate energy levels Ei, the number of possible

8
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ways to arrange the system is given by

Ω = N!
∏

i

qNi

i

Ni!
(1.2)

where Ni are the number of particles taking the states i. Ω is the number of

microstates, the exact configurations, that belong to a given macrostate defined

by Ni.

This is a powerful expression, when combined with the equation, postulated

by Boltzmann, describing the entropy of a system as

S = kB ln Ω = kB(N lnN − ΣiNi ln(Ni/qi)) (1.3)

where kB is the Boltzmann constant. Maximising S with respect to Ni allows

for the determination of the most likely configuration of the system, i.e. the

macrostate possessing the most microstates.

Often, the maximisation of S needs to be made under a suitable energy con-

straint, e.g. when the total energy of the system E = ΣiNiEi is constant. This

corresponds to satisfying the requirements of the second law of thermodynamics:

the system will possess a state of maximum accessible entropy when in thermal

equilibrium. The constraints of constant energy E and particle number N cor-

repsonds to writing dE = ΣiEidNi = 0 and dN = ΣidNi = 0 respectively. Max-

imising S under these constraints gives d(lnΩ) = −Σi(ln(Ni/qi) + α + βEi)dNi

= 0, where are α and β are arbitrary constants, as per Lagrange’s method of

undetermined multipliers. This equation can only generally be satisfied if the

term within the sum is taken as equal to 0 for all i, hence,

Ni =
qi exp (−βEi)

Z
. (1.4)

This equation is known as Boltzmann’s law, deszcribing the canonical dis-

tributions of populations within energy levels Ei. The term Z emerges natu-

rally as a normalisation factor and is called the single particle partition function,

Z = Σqi exp(−βEi), the sum over all states. As this is a calculation for N par-

ticles in equilibrium, β can be shown to correspond to the reciprocal thermal

energy β = 1/kBT , a factor constant for equilibriated bodies. Equation 1.4 can
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be interpreted as the number of particles in the system of N particles that will

take energy level Ei at a given temperature T . Alternatively, it represents the

probability that a single particle will be found in energy level Ei. The equation

is appropriate for such a system in equilibrium with a “heat bath” of constant

temperature T .

1.4 Geometrical Frustration

A few words should be said explicitly addressing geometrical frustration. This

effect is most commonly illustrated by means of a simple model [31]: a system

of antiferromagnetically coupled Ising spins on a triangular lattice with parallel

anisotropy axes, as shown figure 1.3.

Figure 1.3: Geometrical frustration of Ising spins on a triangular plaquette. Anti-

ferromagnetically coupled parallel Ising spins located on the corners of the triangle

are unable to simultaneously satisfy all pairwise interactions.

A single spin placed on to the triangle at e.g. the lower left site, can take

one of two Ising states, up or down. A second spin placed at the lower right

site will favour antialignment with the first, as shown. A problem arises when a

third spin ice placed on the plaquette, as it is unable to satisfy simultaneously

its antiferromagnetic coupling with both existing spins. Any other way of at-

tempting to populate the triangle suffers the same issue of incompatibility, and

the system is therefore frustrated. Propagating this problem up to a system of

many interlinked triangles only further complicates the allocation of a minimum

energy state. Further, this is a geometric effect, due to the incompatibility of
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the anisotropic triangular lattice with the antiferromagnetic coupling of spins.

No long range ordered state would be expected to form spontaneously in this

system, and if interactions are taken strictly as nearest neighbour, the system

possesses a degeneracy of ground state configuration which scales with the size

of the system.

As will be discussed, it is via a similar incompatibility of anisotropic spins on

an ordered lattice that bulk crystalline spin ice materials are strongly geometri-

cally frustrated.
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Chapter 2

Literature Review

2.1 Spin Ice

“Spin ice” is a low temperature spin state found in the rare earth oxide materials

Ho2Ti2O7 [4; 39], Dy2Ti2O7 [40], and Ho2Sn2O7 [41; 42]. This class of materials

is found to exhibit exotic low temperature behaviour, strong geometrical mag-

netic frustration and long range magnetic disorder down to lowest temperatures,

despite/as a result of long range structural order.

Spin ice materials belong to family of oxides, A2B2O7, where B is a non-

magnetic transition metal, in which the positions of the magnetic rare earth

A ions are described by a pyrochlore sublattice, figure 2.1 (a) - a face centred

cubic structure, with a tetragonal basis, figure 2.1 (b) [43]. This forms a sys-

tem of corner linked tetrahedra (triangular pyramids). Despite being chemically

ordered, strong geometrical frustration emerges in the spin ices at low temper-

atures as crystal field interactions [44] strongly confine spins to local 〈111〉-type
axes joining the body-centres of two linked tetrahedra. Spins are effectively Ising

in nature, the centre of a tetrahedron therefore forming a 3D vertex at which four

Ising axes meet with 24 = 16 possible spin configurations. Spin ice can therefore

be considered as a vertex system on the diamond lattice. Spin ice is crucially de-

fined by ferromagnetic interactions, favouring “head-tail” configurations between

two spins of a vertex. Close inspection reveals that no arrangement of spins can

simultaneously satisfy all six pairwise interactions present. Antiferromagnetic
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2.1 Spin Ice

interactions result in a dynamic “spin liquid” state, however, ferromagnetic in-

teractions result in a static spin ice system, which “freezes” in to the system at

a temperature of ∼ 1 K [4; 41]. The first models for spin ice involved nearest

neighbour ferromagnetic exchange interaction between Heisenberg spins.

(a) (b) (c)

Figure 2.1: Spin ice and water ice. (a) The pyrochlore lattice. (b) tetragonal

basis of spins confined along 〈111〉-type directions. (c) Hydrogen arrangement in

water ice as determined by the ice rule. The large circles represent oxide ions,

the small filled circles represent H ions. (a) and (b) after Fennell et al. [43]. (c)

After Bramwell et al. [39].

For a spin ice, the ground state of a single tetrahedron is a two-in/two-out

arrangement, a lowest energy compromise, shown in figure 2.1 (b). As this con-

figuration is 6-fold degenerate, the propagation of this condition from a single

tetrahedron up to a full scale crystal structure results in a system with macro-

scopic degeneracy of the ground state which possesses no long range order. It is

from this behaviour that spin ice gets its name [4], in direct analogy with water

ice in which oxide ions reside on the sites of a diamond lattice, and the midpoint

between nearest neighbours forms the pyrochlore structure. Each H+ ion sits on

a connecting line between two oxide ions, displaced from this regular structure,

forming a short covalent bond with one oxide, and a longer Hydrogen bond with

the other [45], figure 2.1 (c). The spins of spin ice therefore map directly on to

the displacement vectors of H+ ions in water ice from the pyrochlore structure

[39]. The ground state of both materials is then completely defined by the two-

in/two-out condition, dubbed the “ice rules”. In water ice, this corresponds to a

H2O molecule for every diamond site.

13
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Literature often directs the reader to the work of Pauling [45] who calculated

the degeneracy of the water ice ground state to be (3
2
)N/2 where N is the number of

molecules H2O in the system [36]. This gives a ground state entropy of (R
2
) ln 3/2

= 1.68 J mol−1 K−1 per H molecule, the system apparently remaining disordered

down to 0 K, without undergoing a phase transition to an ordered state (R =

molar constant). Ramirez et al. [40] showed experimentally that the spin ice

material Dy2Ti2O7 displays very closely this same finite entropy down to 0.2 K.

Spin ice presented the possibility of exploring the physics of the ice system in new

ways. For example, heating the system and leaving the ice regime is not possible

in water ice as it implies melting the crystalline structure. In spin ice, the spin

system can be “melted” and “frozen” with temperature, without destroying the

chemical order of the pyrochlore structure.

Figure 2.2: Experimental and theoretical neutron scattering maps from a spin

ice material. (a) Experimentally observed scan of reciprocal structure of spin

ice Ho2Ti2O7. Also shown are results of Monte-Carlo simulations of the nearest-

neighbour Heisenberg spin ice reciprocal structure (b), and the dipolar spin ice

model (c). The features observed in experiment are better described by the

dipolar model. After Bramwell et al. [46]

While a 1st nearest neighbour ferromagnetic Ising model was found to capture

the essential behaviour of spin ice to a good degree of accuracy, the large rare

earth moments are inherently dipolar in nature, hence significant interactions be-

tween spins over long ranges would also be expected [47]. This was confirmed by

comparison of experimental neutron diffraction data with Monte Carlo simula-

tions [43; 46], figure 2.2, showing that spin ices are better described by a “dipolar
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spin-ice” model incorporating long range dipole interactions, as well as weaker an-

tiferromagnetic nearest neighbour exchange interactions. Remarkably, this long

range interaction does not strongly break the degenerate properties of the sys-

tem [48], and the ground state configurations for both models are approximately

equivalent as T → 0. While spin ice does have a predicted ordered GS [49], for

such reasons, as well as the slow relaxation times of the system due to the large

energetic barriers between Ising states as well as excited non-Ising states (∼ 100

K), this state has been far from accessed experimentally.

2.1.1 Magnetic Monopoles in Spin Ice

No story about spin ice would be complete without a discussion of magnetic

monopole excitations. Recently, Castelnovo et al. [19] showed by direct calcula-

tion that ice rule-violating defects in spin ice, i.e. vertices possessing 3-in(out)/1-

out(in) configurations, figure 2.3 (b), can take the form of magnetic monopole

quasi-particles, emergent from the dipole lattice by virtue of fractionalisation.

Magnetic monopoles are traditionally identified as exotic objects possessing a

single sign of magnetic charge which have never been observed experimentally

and are not generally considered to exist. Magnetic charges are always confined

to dipoles as equal and opposite north and south poles, even as the limit of their

separation → 0. To date, deconfined free-space magnetic monopoles exist only

in the theoretical constructs of Dirac, in which their inclusion justifies the ex-

perimentally observed quantisation of electric charge, via the quantised “Dirac

string”, an infinitesimally thin flux tube which connects two opposite magnetic

charges [50]. However, until the discovery of free space monopoles, Maxwell’s

equations [32] will continue to state that ∇ ·B = 0: there are no sources or sinks

of magnetic flux i.e. magnetic monopoles.

Magnetic monopoles in spin ice do not violate the accepted form of Maxwell’s

equations. Rather, they can be regarded as a result of them. It is the above rule,

implying ∇ ·M = −∇ ·H, which gives rise to monopoles of the magnetic field H

on the spin ice vertex lattice. For an ice-rule obeying background configuration

supporting a chain of flipped dipoles, the ice rules are only broken at the ends

of this chain. The chain vertices themselves obey the ice rules and present an
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(a) (e)(b)

(c) (d)

Figure 2.3: Emergent magnetic monopoles in spin ice. (a) A ground state con-

figuration of two linked spin ice vertices, both obeying the 2-in/2-out ice rules.

(b) Flipping the interlinking spin violates the ice rules at the two vertex sites,

creating a 3-out/1-in and a 1-out/3-in defect configuration. (c) and (d) show the

charge-dumbbell reinterpretation of the spin configurations shown in (a) and (b)

respectively. The defected configurations possess an excess of North and South

charge, presenting a “monopole-antimonopole” pair. (e) Flipping a subsequent

chain of spins on the spin ice lattice (inset) restores the ice rules at the “chain”

vertices, propagating the charges throughout the system. To a high degree of

accuracy, the energy of a flipped chain configuration for increasing length r is

identical for the dipolar spin ice model (circles) to that of the vertex magnetic

charge model (solid line) which emerges from the dumbbell interpretation, and

takes the form of a 1/r interaction i.e. a Coulombic attraction dependent on the

charge separation. After Castelnovo et al. [19].
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analogue of the flux-channeling Dirac string, running between two fractionally

charged sites of excess north and south respectively. The dipolar spin ice model

can be well approximated energetically by the interaction of charge dumbbells

extending the length of a diamond lattice bond a, figure 2.3 (c,d), manifesting

as an attractive Coulombic interaction (1/r) between the two oppositely charged

ice-rule defects at either end of this chain. The equivalence of the two models

is illustrated in figure (e), as the monopole-antimonopole pair are incrementally

separated via moment flip chain extension between discrete vertex sites. This 1/r

relationship implies that the monopole objects are deconfined: as r → ∞, the

energy associated with their separation converges to zero, as for free charges in free

space. A wide array of experimental evidence has since been presented validating

this description [19; 51; 52; 53; 54; 55]. Again drawing on the robust nature

of the mapping of spin ice onto water ice proton disorder, recently, an elegant

interpretation has been shown to be viable representing monopole defects under

the same framework as ionic defects on the diamond lattice [55], as appropriate

for water ice. In this sense, spin ice is a “magnetolyte” possessing magnetic charge

capacitance [56].

The large proportion of research into spin ice materials in currently focussed

on the behaviour of magnetic monopoles. This work has had further influence

inspiring the search for analogous physics in artificial spin ice systems [20; 22; 23;

24; 25; 26; 29].

2.2 Artificial Spin Ice

Artificial spin ices are lithographically patterned arrays of single domain nano-

magnets [3]. The elongated shape of elements on a number of interpenetrating

sublattices forms a 2D system of interlinked vertices at which coupled Ising-like

dipole moments meet with incompatible interactions. Figure 2.4 and figure 2.5

show respectively the square [3] and kagome [9] lattices, the patterns currently

most extensively studied. They are designed as analogues to 3D bulk spin ice

materials [39; 40], in which rare-earth magnetic moments map robustly on to the

proton ordering of water ice [5]. Artificial spin ices have recently become a source

of intensive interest, as they allow for inter-elemental interactions to be uniquely
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controlled and for direct imaging of states via magnetic microscopy. Systems

formed from both isolated magnetic islands [3] and continuous interconnected

wire networks [9] have been studied, over a wide proportion of possible areal

scale: quasi-infinite systems [3; 9; 24], finite patterns of a few ∼ 100s of vertices

[21], down to isolated building blocks [57; 58]. Such systems can be routinely

fabricated via modern nanolithographic methods, sections 3.1 and 3.2.

Figure 2.4: Artificial square ice. (a) Atomic force microscopy (AFM) and (b)

magnetic force microscopy (MFM) of an artificial square spin ice, formed from

isolated single domain ferromagnetic nanobar magnets. AFM shows the topo-

graphic arrangement of elongated elements, while MFM identifies the long axis

alignment of Ising-like elemental magnetisation by dark/light contrast represen-

tative of the North/South elemental magnetic poles. Aiding interpretation of

such images in terms of a vertex model, in (b), specific groups of islands are high-

lighted, indicating type 1 (red), type 2 (blue) and type 3 (green) magnetic vertex

configurations, where four dipolar elements converge in a cross. After Wang et

al. [3].

During the early/mid 2000s, Tanaka and co-workers (Keio University, Yoko-

hama, Japan) studied magnetisation processes, domain wall configurations and

magnetic ice ordering in such kagome nano-networks, recognising their close anal-

ogy with bulk water ice and spin ice [8; 59; 60; 61; 62; 63]. It was not until

independent work by Wang et. al in 2006 [3] on artificial magnetic square ice
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Figure 2.5: Artificial kagome spin ice. (a) Transmission electron microscopy

(TEM) and (b) Lorenz-TEM (L-TEM) images of an artificial kagome spin ice

nanowire network. TEM reveals the pattern’s structure of three-fold rotation-

ally symmetric vertices at which three wires converge, while L-TEM allows for

identification of elemental Ising-like magnetisation alignment via the key shown

in (c). MFM would not be able to identify the unique arrangement of such an

interconnected network, imaging only stray flux from the centre of a vertex. After

Qi et al. [9].

that the term “artificial spin ice” was coined and the growing excitement about

such systems was instigated.

In nearly all experimental incarnations reported in literature, artificial spin

ices are athermal when studied. For the ∼ 100 nm size elements typically fab-

ricated from a standard ferromagnetic material such as NiFe, the thermal en-

ergy scales required for elemental magnetisation reversal is of the order of 105

K. Applied magnetic fields are therefore required to induce dynamics. Room-

temperature stability allows exact microstates to be conveniently imaged us-

ing techniques such as magnetic force microscopy (MFM), figure 2.4, in which

the North/South dumbbell nature of the elongated element is interpreted via

light/dark contrast, section 3.4.1. Interest has largely focused on the access of

well-defined statistical states [3; 8; 9; 16; 18; 30], energy minimisation [12; 16; 57;

64] and adherence to local ‘ice rules’ [3; 8; 9; 16; 60; 61]. As for the naturally

occurring systems [19; 51; 52; 53; 54; 55; 56], an emergent “monopole excita-

tion” description has also been invoked [18; 20; 22; 23; 24; 25; 26; 27; 65]. Being

nanomagnetic systems, their implementation in magnetic device applications and
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2.2 Artificial Spin Ice

information processing is also being considered and explored [26; 28; 66]. The

main experimental manipulation methods so far employed can be grouped into

rotating field and dc field protocols, both of which will be addressed in this thesis.

Further illustrating the “designer-material” appeal of such patterned nano-

magnet systems, many other similar lattices have been realised, such as kagome

basket- [67], triangular- [68; 69] and brickwork-patterns [17]. Artificial ices can

in principle be formed from arrays of any interacting Ising-like components and

form part of a wider class of artificial frustrated Ising materials: 2D Ising lattices

have been fabricated from superconducting flux vortex arrays [6; 7; 70; 71], close-

packed colloidal spheres [72; 73], and out-of-plane anisotropic magnetic elements

[74], while theoretical attention has been given to the construction of artificial

ices from lattices of bistable spatial potentials containing single charged colloids

[75; 76; 77] or superconducting vortices [78]. All experimental realisations of

artificial ices have been nanomagnetic.

The study of these systems and methods of their manipulation have lent well to

their theoretical study via Monte Carlo simulations [16; 20; 22; 27; 79; 80; 81; 82],

numerical models [21; 75; 76; 77; 78], mean field calculations [21], statistical

mechanics [64; 83], and finite element micromagnetics [26; 84; 85; 86].

Only recently have the effects of true thermodynamics been studied, identi-

fied via microscopy “frozen-in” to athermal square ice patterns [25], as will be

discussed in chapter 6, and infered indirectly in “live” square ice patterns of low

Curie temperature material using bulk-averaged magnetometry [87].

2.2.1 Square and Kagome Ice

Two complementary descriptions of artifical spin ice are often used: that of a

dipole lattice and that of a vertex model [88; 89]. Figure 2.6 (a) and figure 2.7

show the 24 = 16 and 23 = 8 vertex configurations of the square and kagome

systems respectively. As for real spin ice, no configuration of the moments con-

verging at a vertex can simultaneously satisfy all pairwise interactions. The best

that can be achieved is a lowest energy compromise. These configurations are

defined by “ice rules”, in analogy with bulk spin ice (and water ice), in which
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2-in/2-out configurations satisfy 4 out of the 6 interactions on a tetrahedron,

leading to a macroscopic ground state degeneracy.

(a) (b)

(c) (d)

Figure 2.6: Configurations of Ising moments on the vertices of a square ice. (a)

The sixteen square ice vertex configurations, grouped by vertex energy in to four

types T1−4, where arrows represent elemental magnetisations. The multiplicity

of each type is also shown in brackets. T1,2 obey the 2-in/2-out ice rules, but are

energetically split, as square ice vertices possess a mixture of 1st and 2nd nearest

neighbour pairs of elements. (b) At a vertex, a pair of Ising-like moments can

form either a favourable or unfavourable configuration, due to their pair-wise

interaction. In the case of isolated elements, this interaction is dipolar. (c) The

square ice ground state (GS) comprising a pure tiling of alternating T1 vertices,

forming a chess-board pattern. Here, the ice rules are obeyed, and all 1st nearest

neighbour interactions are satisfied. (d) The diagonally polarised state (DPS),

possessing a 100% tiling of a single T2 vertex. The DPS also obeys the ice rules.

(a,c,d) after Nisoli et al. [83]. (b) after Wang et al. [3].

The 16 square ice vertices can be grouped into four types, T1−4, figure 2.6

(a), in terms of increasing vertex energy E1−4, the sum of the six pairwise energy

contributions on an isolated vertex. It has been shown that in various situations

that a (perhaps naive) vertex energy model provides a good (mean field) approx-

imation of the system energetics [16; 25]. T1,2 both obey the 2-in/2-out rule, but
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2.2 Artificial Spin Ice

T1 T2

Figure 2.7: Configurations of Ising moments on the vertices of a kagome ice.

Eight vertex configurations exist, which can be grouped in to two types. Lower

energy T1 vertices obey the 2-in(out)/1-out(in) kagome ice rules, with a minimised

normalised vertex charge of± 1, represented by yellow and red circles respectively.

Higher energy T2 vertices posses 3-in(out) configuration, with a normalised chage

of ± 3, represented by large yellow and red circles respectively.

are however energetically split due square ice vertices comprising both 1st and 2nd

nearest neighbour pairs. On a T1 vertex, all 1st nearest neighbours are satisfied,

whereas both 2nd nearest neighbour pairs are frustrated, figure 2.6 (b). On a

T2 vertex, the 2nd nearest neighbour pairs are satisfied at the expense of two 1st

nearest neighbour pairs. This inequivalence is a crucial feature of square ice, in

that it defines a 2-fold degenerate ground state (GS), figure 2.6 (c), a chess-board

tiling of purely T1 vertices. This is in stark contrast with the highly degenerate

bulk spin ice where long-range interactions have to be invoked in order to de-

fine a GS [49] of low degeneracy. T3,4 vertices present increasingly energetic and

unfavourable configurations with an increasing number of unsatisfied pairwise

interactions, having 3-in(out)/1-out(in) and 4-in(out) arrangements respectively.

Kagome vertices posses 23 = 8 configurations, split in to two groups T1,2 of low

and high energy respectively where all interactions across a vertex are equivalent

in strength. As a result, the system shares many properties with bulk spin ice -

while theoretically having a well defined ordered GS [49; 90] (charge-ordered in

the case of kagome ice), experimental access has been far from aquired. To first-

order, both their ground states can be considered macroscopically degenerate.

Further, long range interactions do not act to strongly lift the degeneracy of a

general pure ice rule state, particularly for a zero net moment state in which

long range interactions will largely cancel out. Distinctly different behaviour is

therefore expected and observed between square and kagome ice patterns [17].
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2.3 Accessing the Ground State

Within a model of “vertex-objects”, each vertex type may be assigned proper-

ties in terms of magnetic charge and dipolar moment. Each converging element,

dumbbell-like in finite sized elements, contribute a north or south pole to the ver-

tex centre, and vertex charge may be considered as the sum of these. In square

ice, T1,2 vertices are magnetically neutral, obeying the ice-rules. T3,4 posses an

excess of north or south, having normalised monopole moment (i.e. charge) of ± 2

and ± 4 respectively. They present qualitative analogs of the fractionalised mag-

netic monopoles of Castelnovo [19], section 2.1.1. T1,4 are unpolarised, whereas

T2,3 posses a dipole moment. On the kagome system, both T1,2 vertex types

posses excess charge, ± 1 and ± 3 respectively, and T1 possesses a polarisation.

Terminology regarding what constitutes a “monopole defect” has not yet been

standardised, however, regardless of naming convention adopted, such configura-

tions present a possibilty of studying fractionalisation in an artificial 2D system.

Reliable manipulation of “monopole” configurations is therefore crucial.

While square ice patterns are studied exclusively in the work presented in

this thesis, general results common to both square and kagome patterns, as well

as any such general nanoarray system, are instructive in the process of under-

standing the manipulation of both single vertex configurations and global states.

What has become increasingly evident is the role quenched disorder plays in the

behaviour of these systems [6; 7; 16; 24; 26; 28; 77; 78], i.e. imperfection in the

structure which is “frozen-in” and intrinsic to the system, imparting a distri-

bution of properties to the elements about an average ideal. While this is not

a new phenomenon, its effects can be drastic. Further, finite size effects have

recently been directly addressed in the form of non-point dipole behaviour [12],

and non-Ising-like behaviour [27].

2.3 Accessing the Ground State

2.3.1 ac Demagnetisation

In such artificial “designer” systems, a prevalent and important point of focus is

the testing of fidelity to the prescribed ideal Hamiltonian via a controlled “an-

neal” process, [6; 7; 70; 71; 72; 73]. As previously employed to e.g. form GS
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configurations in dipolar coupled nanomagnet chains [91; 92], ac demagnetisation

has been extensively employed in the generation of low-moment, low-energy arti-

ficial spin ice states [3; 12; 14; 16; 17; 18; 57]. The majority of studies specifically

addressing the protocol itself have been conducted by researchers at Pennsylva-

nia State University (PSU) on mainly square ice patterns [3; 14; 16; 64; 83], an

overview of which is warranted.

(a) (b) (c)

Figure 2.8: ac demagnetisation illustrations and results. (a) A cartoon depicting

ac demagnetisation. The sample is in-plane rotated about an out-of-plane axis

while a magnetic field is applied in-plane along a fixed axis in the laboratory

frame. The field magnitude has a square function profile, with a decrease in

magnitude of ∆H every half an oscillation period, ∼ 1 s. After Ke et al. [16].

(b) Various field protocols tested by Wang et al. [14]. Protocol 1 is as descibed

in (a). Protocol 2 reduces the field in a linear fasion. Protocol 3 has a step

function profile, with no change in sign of the field with time. Protocol 1 is

reported to produce the most effective demagnetisation of square ice patterns.

(c) The residual magnetisation of a series of square ice patterns of varying lattice

constant, following protocol 1, with ∆H ∼ 10 Oe. (b) and (c) after Wang et al.

[14].

For a general ac demagnetisation process, a sample is exposed to an oscillatory

magnetic field of decreasing amplitude. Variations on this general theme can

produce similar results, however, the most effective routine is reported by Wang

et al. to involve an in-plane field with stepwise decreasing alternating square

profile, with simultaneous in-plane sample rotation of ∼ 10 Hz, ∼ 100 ms period

[14], figure 2.8 (a,b). The applied field, Ha, begins well above the coercive field

of the arrays of ∼ 700 Oe, figure 2.9, with 25 nm thick NiFe islands of 80 nm by

220 nm lateral size, and lattice constants varying from a = 320 nm up to 880 nm.
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2.3 Accessing the Ground State

The field is held for a number of seconds at each step. The polarity is reversed

via a ramp at a rate of ∼ 10 kOe/s, and the magnitude is decreased by a field

step of ∆H ∼ 10 Oe every half a period, hence fully reversing between ± ∼ 500

Oe in ∼ 100 ms. Linear-decreasing and non-oscillating step function field profiles,

also illustrated in figure 2.8 (b), were reported to be less effective, however, the

reasons for this were not discussed and are undetermined.

Figure 2.9: Magnetic hysteresis loops of artificial square ice patterns. Loops of

principal square axis magnetisation were measured via MOKE magnetometry for

patterns of lattice constant ranging from 320 nm to 880 nm, with 25 nm thick

NiFe islands of 80 nm by 220 nm lateral dimenions. After Wang et al. [14].

While the exact details of the processes involved remained unclear, a number

of important results emerged from the initial work [3; 14]. As the name implies,

the protocol can repeatably access demagnetised states of net moment Mtot ∼ 0,

as shown in figure 2.8 (c) for a sequence of square ice patterns with varying

lattice constant a, where Mtot is defined as the net digital moment magnitude,

normalised to a diagonally polarised state (DPS) of Ising moments (Mtot = 1),

figure 2.6 (d). Further, tuning the sample interaction strength via the lattice

constant allows for repeatable control of the average ordering achieved, shorter a

enhancing ice-rule vertex populations and pairwise energy-minimising short range

magnetic correlations, figure 2.10 (a) and (b) respectively. As shown for a lattice

of a = 400 nm in figure 2.4, the states achieved look distinctly disordered to the
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eye, in contrast to the periodic GS, figure 2.6 (c). At a = 880 nm, the state

achieved is statistically random, having vertex type populations as given by their

multiplicity and negligible dipolar correlation. These results illustrate the large

degeneracy of zero net moment states possible. This work demonstrated such

patterns as an artificial spin ice, possessing bias towards ice-like configurations as

a result of inter-elemental coupling and only short range magnetic correlations.

Further, the fact that states can be repeatably achieved and controlled provides

a powerful basis for further experiments.

Ke et al. [16] showed that the process exploits a finite field window [Hmin, Hmax]

distributed about the array square axis direction coercive field, Hc ∼ 700 Oe for

all a, figure 2.9. For an Ha > Hmax elemental moments will track the applied field,

whereas anHa < Hmin cannot induce any reordering. Only forHmin < Ha < Hmax

do non-trivial reordering processes occur, allowing the system to explore part of

its magnetic phase space under the influence of configuration dependent dipolar

coupling and intrinsic island properties. Presumably, the ramping rate, fast rel-

ative to the sample rotation frequency, avoids demagnetising effects during the

transient reversal parts of the field profile, such as those that would occur for a

slowly linearly ramped protocol, as shown in figure 2.8 (b), passing through a ∼
100 Oe window in 10 ms.

Further, the size of ∆H is crucial. Too large a ∆H results in Ha stepping

from above to below the window in a single step, not allowing for reordering,

leaving a non-zero net normalised magnetisation Mtot, figure 2.11. As ∆H is re-

duced, demagnetisation is enhanced, as Ha can spend more time within the range

[Hmin, Hmax], reaching a value below which Mtot = 0 states are reliably accessed.

Interestingly, further reduction of ∆H produces states with increasingly strong

short range GS correlations, figure 2.12, (and presumably higher populations of

low energy vertices), and further reduction of net energy, figure 2.13. GS con-

vergence was however found to be unobtainable via this method [16], figure 2.13,

with energy monotonically approaching a finite value above that of the GS as

∆H → 0.

Reduction of step size makes differences between each step smaller. As the

system can only make downward transitions in energy, larger steps will act to

arrest and jam higher energy configurations in to the system which cannot be
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2.3 Accessing the Ground State

Figure 2.10: Experimental outcome of ac demagnetisation of an artificial square

ice array, as determined by MFM. By tuning dipolar interaction strength between

magnetic elements of the array by lattice constant a across a series of samples with

nominally identical islands, the magnetic state accessed can be reliably controlled.

Increasing interactions takes the state from random-like state at a = 900 nm

to a short-range correlated icy state as a approaches 300 nm, as reflected by

(a) the increasing ice-rule obeying vertex populations, and (b) pairwise energy

minimising dipolar correlation, between neighbours of type as illustrated inset.

After Wang et al. [3].
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Figure 2.11: Residual net normalised digital magnetic moment of four selected

square ice patterns of varying lattice consant as a function of ac demagentisation

field step ∆H. All trends appear very similar and states of effectively zero mag-

netisation can be accessed for all patterns for ∆H below ∼ 15 Oe. The low ∆H

range has been magnified inset. After Ke et al. [16].
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Figure 2.12: Control of magnetic order of ac demagnetised states via field step

and lattice constant. (a) Ground state correlation for three directional neighbour

types L, T and D, as defined in (b), for a 400 nm square ice lattice following ac

demagnetisation with ∆H = 12.8 Oe and ∆H = 1.6 Oe. Correlations are found

to be stronger as ∆H decreases. Also shown is the dependence of L(1), T(1) and

D(1) on ∆H for the 400 nm and 880 nm lattices. After Ke et al. [16].
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2.3 Accessing the Ground State

removed. Due to the square ice geometry, it is not possible to make a direct

transition from a T2 to a T1 vertex configuration, requiring two moment reversals

via a T3 configuration. While kagome ice can make direct transitions between high

and low energy vertex configurations, a similar result is found [17; 57], reflecting

an underlying property of either the system or the protocol acting to suppress

GS order. Further, the process is not found to create exactly identical order each

time, only order that is on average reproducible.
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Figure 2.13: The net energy of square ice patterns following ac demagnetisation,

determined by correlation values and micromagnetics. After Ke et al. [16].

These experiments focussed on bulk areas of quasi-infinite patterns. A recent

report has shown evidence of finite area effects during demagnetisation [27], how-

ever, its interpretation was not discussed. Recent theoretical work has explicitly

addressed such effects [21], and will be discussed in section 2.3.4.

2.3.2 Effective Thermodynamics

Growing evidence exists that the ac demagnetisation process discussed in section

2.3.1 behaves in some ways analogously with a thermal anneal process. Clearly,
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it forms states distinctly disordered under the influence of internal interactions.

Following the intial results of Wang et al. [3], an equilibrium statistical mechanical

formalism was introduced by Nisoli et al. [64; 83] well describing data from ac

demagnetisation experiments in terms of “effective thermodynamics”. While such

treatment of athermal systems is not a new thing, for example the application

of statistical mechanics to powder mixtures [93] and vibration fluidisation of

granular matter [94], ac demagnetisation appears qualitatively to be more like

stirring a box of sand than shaking it. It is not immediately evident that it is a

thermal-like process when compared with “artificial Brownian motion”.

Initially, results were reported to show that ac demagnetised states for short

lattice constants possesed a net average vertex energy, or specific vertex energy,

Ẽ =
∑

i niEi = E2, where ni are the fractional population of vertices for i = 1 to

4, and Ei are the (isolated) vertex energies respectively, perhaps appealing to the

idea of a thermodynamical equilibrium ensemble, maximising its entropy under

the above energy constraint - clearly, ac demagnetised states are highly disor-

dered, however, “feel” the influence of dipolar coupling. Further, this motivated

a qualitative desciption of the process as first preparing a background diagonally

polarized state (DPS) of a single T2 vertex tiling, figure 2.6 (d), by virtue of

the large initial applied field, which subsequently carves out defect vertices onto

this background as the field decreases in magnitude by switching elemental Ising

states which eventually become arrested.

The first port-of-call for tackling this problem would no doubt be a mean field

approximation, treating the system as a non-interacting vertex lattice, in which

vertex sites can take one of the four energy states Ei, with degeneracy qi = 2, 4,

8 and 2 respectively. As per section 1.3, the number of ways, Ω, to arrange N

vertices with Ni configurations of vertices i = 1 to 4 is then given by equation

1.2. Here, dipolar correlations beyond a vertex are neglected.

The equilibrium fractional vertex populations, ni, can then be calculated

by maximising the entropy S with respect to Ni, or alternatively, maximising

S/NkB = (1/N) lnΩ = −∑
ini lnni/qi with respect to ni. Nisoli et al. [83]

found that this model failed to correctly describe the observed vertex population

in MFM. This is not too surprising as the field treatment is distinctly non-thermal.
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It was found, however, that a much better agreement could be aquired by

adopting a model in which the DPS background vertex population and defected

vertex population were taken explcitly into account.
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Figure 2.14: Square ice vertex populations following experimental ac demagneti-

sation compared with those given by statistical mechanical calculations. Variation

in vertex populations as function of lattice constant for (left) T1, (centre) T2 and

(right) T3 vertices, for (black circles) experimental ac demagnetised data, (grey

triangles) a standard canonical distributed calculation, and (red diamonds) the

extended model. After Nisoli et al. [83].

Now, the number of ways to place D defects onto the lattice is given by

Ω =
N!

(N −D)!

∏

i

qNi

i

Ni!
. (2.1)

where Ni are explicitly the defected vertex populations. Further, entropy can

be normalised and written as S/NkB = −[ρ ln ρ + (1 − ρ) ln 1− ρ] + ρσ, where

σ = −∑
iνi ln (νi/qi), ρ is the fractional defect density, and νi are the fractional

populations of vertex types within the defect population. ρνi gives the absolute

populations of “defect” vertices in the whole system, such that ni and νi are

related by the expressions

ni = ρνi for i = 1, 3, 4

n2 = (1− ρ) + ρν2
(2.2)

where (1−ρ) is the fractional population of background T2 vertices. Expressions

for the “equilibrium” values of νi and ρ can be calculated by maximising σ with

respect to νi under the energy constaint
∑

iνiEi = E2, and maximising S/NkB
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with respect to ρ unconstrained (as background vertices contribute E2 to the

system per site). This yields an equilibrium distribution of vertices within the

defect population

ν∗

i =
qi exp (−βEi)

Z
(2.3)

and an equilibrium defect density

ρ∗ =
1

exp (−σ∗) + 1
(2.4)

where σ∗ = −Σiν
∗

i ln (ν
∗

i /qi) and Z is the partition function over ν∗

i .

The “equilibrium” values of ni can then be calculated from equations 2.2. At

lower lattice constant, when interactions are of greater significance during demag-

netisation, this formalism was found to yield good agreement with the experimen-

tal data trends, as shown by red diamonds in figure 2.14. Note: the Lagrange

multiplier, an effective reciprocal temperature, must be taken as 1.3(E2 − E1) ≡
1.32× 105K, which is the only identifiable fitting parameter used. The equivalent

corresponding standard calculations are also shown as grey triangles. This is an

interesting and curious result, suggesting that ac demagnetisation behaves as if

to maximise the entropy of a population of defect vertices in internal equilibrium,

in turn itself in equilibrium with the background.

The subsequent results of Ke et al. [16], however, appear to be at odds

with this picture of scrambling the system under a constant net vertex energy

constraint, showing that the energy and GS correlation (and presumably the

relative populations of vertex types) of the demagnetisated states aquired were

dependent on field step ∆H, figure 2.13, hence Ẽ 6= E2 in general.

Further work on this model [64] showed how taking a ratio of canonical defect

vertex populations, equation 2.3, gives

β(Ej − Ei) = ln

(
qjνi
qiνj

)
. (2.5)

As νi/νj = ni/nj , given i, j 6= 2, equation 2.2, this allows for the effective

temperature Teff = 1/kBβ of a state to be inferred directly from a magnetic

microscopy image by simply counting the vertex populations, rather than by
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fitting. Further, the variation in ni with β can be calculated, as qi and Ei are

known. For convenience, an energy scale setting E1 = 0 and E3 = 1 was used. It

was found that using a vertex-charge energy model, in which Ei are calculated

as the net Coulombic interaction between the four North/South magnetic poles

at a vertex, excellent agreement between theory and the experimentally observed

populations was found, figure 2.15 (a). This provides the correct ratio of energies

Ei = 0, 0.452, 1 and 3.094, for i = 1, 2, 3 and 4 respectively, which are not

dissimilar to that obtained via micromagnetics for short lattice spacing [15]. In

normalised energy units, all experimental data sets, incorporating a range of

lattice constants and values of ∆H, collapse on to the same set of four curves,

reflecting an underlying property of the ac demagnetisation process. Further, β

can be increased by decreasing the lattice constant, making the effects of dipolar

coupling stronger, and by decreasing ∆H. In fact, as shown in figure 2.15 (b), a

linear relationship between β and ∆H is found. This is an intuitive result which

captures the trend in state found by Ke et al. with ∆H [16].

The continuation of this model is however strange. As mentioned, generally it

is not clear whether Ẽ = E2. If not true, ρ is required to be explicitly energetically

constained for the maximisation of entropy, meaning that equation 2.4 no longer

stands. (It should also be noted that Ẽ does not include dipole-dipole interaction

which extend beyond a vertex.) Further, to justify both the introduction of

a background vertex population and the energy model, Nisoli et al. present the

graph shown in figure 2.16, plotting ln (5n1/2n2) against ln (8n1/2n3), and finding

an apparently proportional relationship with a gradient close to E2. It is stated

that in the low β limit, that ni are in fact approximated by a set of canonical

distributions with q2 = 5, an “anomalous degeneracy” apparaently accounting for

the four T2 defects possible and the one T2 of the background. These calculations

are however not shown. This raises the question of why the extended model is

taken as correct whereas the description given by the conventional calculation is

not. These points will be returned to later in section 6.4.1.

It is not necessarily apparent why such a desciption should work in a clearly

non-equilibrium situation. ac demagnetisation, as noted by Nisoli et al., is not

thermal equilibration. The dynamics are not stochastically driven, and are in fact

periodically biased. It has become apparent that ac demagnetisation has become
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Figure 2.15: Comparison of experimental data from ac demagnetisation exper-

iments with the calculations of the extended statistical mechanical model. (a)

Experimental vertex populations as a function of β, the reciprocal of the effec-

tive temperature of demagnetisation, for a series of square ice patterns of varying

lattice constant, ac demagnetised with protocols of a range of field step ∆H. (b)

The linear variation of β with ∆H. After Nisoli et al. [64].
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2.3 Accessing the Ground State

increasingly assumed to be an equilibrating process equivalent to true thermody-

namics, to the extent that experimental ac demagnetised states have been directly

compared with thermally annealed states of Monte Carlo simulations [12].

Figure 2.16: The square ice vertex energy ratio E2/E3, as calculated from data of

ac demagnetised states. As appropriate for canonically distributed vertices with

an anomalous degeneracy of q2 = 5, a proportioanl relationship exists between

two logarithms of vertex population ratios, as shown. After Nisoli et al. [64].

In chapter 6 of this thesis, these concepts will be returned to, and similar

ideas will be extended to truly thermally equilibriated systems - the concept of

Teff still being meaningful in a system equilibriated at a finite “real” temperature.

2.3.3 “Demagnetisation” of Superconducting Square Ice

and the Role of Disorder

Libál et al. [78] presented a theoretical model of an artificial square ice system

formed from superconducting vortices in a thin film superconductor. Such objects

are vortices of persistent supercurrent, along the centre of which a magnetic flux

tube passes [95]. Arrays of vortices can form spontaneously under the correct low

temperature conditions. A detailed understanding of superconductivity is not

required to understand the model of Libál et al., and a qualitative discussion will

be given to illustrate the important outcomes.
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2.3 Accessing the Ground State

Figure 2.17: An illustration of an artificial spin ice formed by superconducting

vortices pinned by an array of bi-stable traps. Vortices experience a mutual

repulsive interaction, and find potential minima where the superconducting thin

film thickness is lower, hence, double-hump non-superconducting islands buried

in the film define a lattice on which ice-like physics may be studied. Shown on

the left is a square ice, and the right a kagome ice. After Libál et al. [78].

The important aspects of the model are that (1) vortices experience a repulsive

interaction between each other, decreasing with increasing separation, (2) vortex

pinning potential minima are located at lateral positions where the superconduct-

ing film is thinner, and (3) vortices can be driven laterally by an applied current.

Hence, pinning traps could be artificially created experimetally by depositing the

superconducting thin film on top of a pattern of non-superconducting nanostruc-

tures. An elongated element with a “double hump” profile can further allow for

a bistable potential well to be formed, creating an interacting Ising-like entity

defined by the displacement of the vortex into one of the two minima. Minima

are spaced by l = 5/3λ, where λ is the London penetration depth which defines

an interaction length scale. In the model, a square ice array of such elements

is defined, illustrated in figure 2.17, with one vortex per element. Again, a 16

vertex model can be considered, however with an altered isolated single vertex

degeneracy compared with that of magnetic square ice, for example, 4-out is now

the lowest energy configuration on a vertex, and 4-in is the highest energy.

A dynamical anneal process, analogous to ac demagnetisation of a nanomagnet

array, is realised by the application of a rotating-direction in-plane current, with

step-wise decreasing alternating amplitude. The outcome of such a protocol is

investigated for varying strengths of quenched “frozen-in” disorder, the pinning

potential barrier heights being allocated from a normal distribution of width σ
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Figure 2.18: Final superconducting square ice states following a dynamic anneal

process mediated by applied current, analogous to ac demagnetisation of a nano-

magnet array. Dots represent a lowest energy GS ice-rule vertices, which map

directly onto the magnetic square ice T1 vertices. Filled circles represent non-GS

ice rule vertices, which map on the T2 magnetic square ice vertices. Open circles

represent non ice-rule defects. (a-d) show results for increasing potential barrier

height disorder, with values taken from a normal distribution of width σ = 0, 0.1,

0.5 and 1 respectively. Increasing barrier height disorder suppresses GS vortex

ordering (which maps on the the nanomagetic square ice GS) and leaves an in-

creasing density of defect structures in the form of grain boundaries and isolated

defects for the results presented of highest disorder. After Libál et al. [78].
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about a constant average, and for varying lattice parameters a. Periodic boundary

conditions were used for a 80 × 80 vertex system.
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Figure 2.19: Variation of ground state ice-rule obeying population density PGS

for simulated “demagnetisation”. (a) PGS as a function of simulation time, for

barrier height disorder varying from 0 (steepest curve) to 1 (least steep curve) for

a = 2.7λ. (b) Final PGS as a function of disorder strength σ and lattice spacing

a. After Libál et al. [78].

Figure 2.18 shows final state configurations following “demagnetisation” for

increasing σ at constant a = 2.5λ. Dots represent GS vertices (which map on

to T1 vertices as defined in figure 2.6), closed circles represent non-GS ice-rule

vertices (which map on to T2 vertices), and open circles represent non ice-rule

defects. For σ = 0, a pure GS configuration is formed. The familiar square ice GS

is realised, mapping onto that of magnetic square ice, despite not being formed

from the lowest energy isolated vertices. This state is in stark contrast to the

long-range disordered ac demagnetised state in experimental nanomagnet arrays.

As disorder increases, 0.1 < σ < 0.7, increasing numbers of non-GS vertices are

found, forming grain-boundary structures of increasing length. For the highest

disorder shown, σ = 1, some isolated defects are also observed. This can be

understood by elements of larger-than-average barrier height acting as pinning

sites of order at higher current, acting as nucleation sites for GS order or possibly

as pinning sites for grain boundaries as the current magnitude is reduced. The

suppression of the GS is illustrated temporally in figure 2.19 (a), showing the

fractional GS vertex population PGS as a function of the simulation time. The

curve for σ = 0 corresponds to that with the sharpest jump, from PGS = 0 to
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PGS = 1 at a time of 1.75×105. The sharp transition indicates a small “critical

field window” [Imin, Imax] in which dynamics are allowed. σ = 1 corresponds

to the least steep curve, illustrating that the onset of GS-ordered vertices begins

much sooner but is however strongly suppressed, attributable to the wider critical

window.

Figure 2.19 (b) shows a 3D plot of PGS as a function both σ and a, agreeing

with the initial results of Wang et al. [3]: increased interaction strength (re-

duced a) acts to enhance square ice GS ordering, against the effects of quenched

disorder. Disorder in the anisotropic barrier heights between the Ising states of

nanomagnets in an artificial ice array is most certainly present. These simula-

tions suggest that the structural disorder present in nano patterned magnetic

arrays is appreciably large, states of such strong GS order having never been

achieved by field. Further, the suppression of GS order as found by Wang et al.

is not a result of the frustrated lattice geometry, but largely an effect of quenched

disorder. The critical field window, while influenced by configuration dependent

dipolar coupling, is most strongly influenced by the intrinsic distribution of island

properties.

It is perhaps due to such a barrier height distribution that ac demagnetisation

can be described by using the statistical mechanical formalisms of Nisoli et al. [64]

- true thermalisation acts to disorder a system via random “kicks” or moment

flips of randomly “chosen” elements against the influence of dipolar coupling.

While the field protocol is periodically directionally biased, disorder imparts a

randomising effect on the correlated field-flipping of moments. For example, the

moments that first arrest during the routine are those of higher barrier height,

which are allocated effectively at random. This process will continue with ev-

ery field magnitude step, arresting further elements under the same competition

between correlation and randomisation.

2.3.4 Constant H Protocol

Limited information is currently available as to the exact dynamical processes

which occur during such rotating field protocols as described in the previous

sections. Recently, work by Budrikis et al. [21] has provided valuable insight into
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this area. Numerical simulations of finite scale arrays of point Ising dipoles were

used to address field mediated dynamics of square ice under a rotating magnetic

field of constant magnitude. Two finite pattern types were used, open- and closed-

edged, as defined in figure 2.20 (a) and (b) respectively, with 400 and 420 elements

respectively, ∼ 20 × 20 vertices. Within the model framework, normalised units

were used, with the nearest neighbour dipolar interactions = ±3/2. Spins reverse

their magnetisation under the condition that −(h+ hd
i ) · si > hc, where h is the

applied field, hd
i is the total dipolar field acting on spin i with unit vertor si, and

hc is the critical switching field magnitude given to all spins. hc is set = 10, which

is larger than the net dipolar field acting on any spin in the system i.e. a spin

can only reverse under the application of an applied field when the projection of

the total field along the spin Ising axis excedes a critical value. While this is an

ideal approximation of island behaviour, strong deviations from Ising behaviour

is only expected to occur for very large total fields.

(a)

(b)

(c)

(d)

Figure 2.20: Finite area square ice patterns. (a) Open and (b) closed edge square

ice patterns. Open arrays are fully defined by the 16 vertex model, however,

closed arrays required definition of three edge vertices, as shown in (c). (d) The

initial applied field direction (dashed line) and subsequent field rotation direction.

Modified from the work of Budrikis et al. [21].

Both field and net array moment begin parallel to a square lattice diagonal, an

initial DPS with 100% T2, figure 2.6 (d). h then rotates anticlockwise, figure 2.20
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(d), in angular increments of dθ = 0.01. At each increment, spins are selected at

random and flipped if the switching criterion is met until no more flips can occur.

This is continued until a steady-state solution is found. Here, θ is equivalent to

a unit of time.

The behaviour of the systems and the final state achieved were found to be

crucially dependent on the array edge type and the value of h = |h|. In both

open and closed arrays, all non-trivial behaviour begins by edge-nucleation events,

due to the local coordination and net hd
i favouring this, with bulk nucleation

disallowed. For open edges and a correctly tuned h final states of greater than

90% T1 vertex populations are achieved i.e. strong GS ordering.

Figure 2.21 (a) and (b) show respectively the T1 and T3 populations for the

open edge systems as a function of θ for three select values of h, while inset in

(a) is the final T1 populations against h, illustrating the presence of four field

regimes. Two trivial regimes exist: for h < 9, no switching can occur, and for

h > 11 spins indefinately track h. In the two non-trivial regimes, spin reversal

nucleates at the edges, forming T3 “monopole” configurations of opposite charge

at opposite edges, which incrementally propagate into the bulk via sequential spin

flip chains. In the low field regime, energetic constraints only allow propagation

via chains of T1 vertices incremented every field cycle. As h increases a gradual

transition is made into the high field regime where propagation is increasingly

allowed via T2 chains, dependent on local hd
i , ultimately suppressing the final T1

populations obtained.

Closed arrays have distinctly different behaviour, figure 2.22, due to the be-

haviour edge vertices 1e, 2e, and 3e, figure 2.20 (c). T3 nucleation is only possible

from a 2e edge vertex, whereas configuration 1e suppresses nucleation. Further,

the critical field for nucleating a T3 vertex is larger than the field required to

propagate a T3 vertex via T2 chains, hence, no low field regime exists, and large

T1 populations are not possible.

This is a distinctly non thermal process, relying on the system’s bias towards

low energy configurations on local scales and exploiting only downward transitions

in energy. It is also the first work to explicitly address an intrinsic source of a

critical switching window, section 2.3.1, not related to quenched disorder which

is in fact absent from the model, ideal elements closer to the edge of a DPS tiled
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Figure 2.21: Results of simulated constant magnitude rotating field treatments

of open edge square ice patterns. (a) Variation of the fractional population of

T1 vertices 〈n1〉, averaged over 100 simulation runs, as a function of time for a

constant field protocol for three values of field magnitude h = 10.75 (solid black

line), 10 (blue dashed line) and 9.25 (red dotted line), representing the high field

regime, a cross-over region and the low field regime respectively. Populations

converge to a final steady state value after ∼ 10π rotations. Shown inset is the

final steady state value of 〈n1〉 as a function of h. (b) The corresponding 〈n3〉
populations as a function of time. After Budrikis et al. [21].
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Figure 2.22: Results of simulated constant magnitude rotating field treatments

of closed edge square ice patterns. Temporal variation of T1 (dashed lines) and

T3 vertices (solid line) at an optimal field, as indicated inset where the converged

steady state T1 population is shown as a function of field magnitude. After

Budrikis et al. [21].

array having a lower effective switching condition that those in the bulk. Further

to this, it suggests that large T1 populations and GS order can be achieved

by a field protocol much simpler than ac demagnetisation, making clear direct

observations and predictions regarding field mediated dynamics. This model does

however neglect the effects of quenched disorder, a point which will be returned

to in chapter 5.

2.4 dc Field Treatment and Magnetic Reversal

A significant volume of work exists on the response of artificial spin ice systems

to simple protocols involving applied dc fields. Attention has focussed on local-

scale magnetic microscopy measurements [18; 23; 24; 26; 28] as well as bulk global

properties using magnetometry [67; 86] and magnetoresistance measurements [8].

Micromagnetics has played a useful role in complementing both, as well as bridg-

ing the gap between them.

dc fields can be used to easily and reproducibly prepare well defined states,

such as the square ice DPS [30], figure 2.6 (d), and the low energy charge ordered

kagome ice state [18; 23; 24], figure 2.23 (a,d). Such states, while not being
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GS configurations, obey their respective system’s ice rules, which allows them to

behave as background states for the creation and manipulation of “monopole”

charge defects.

A number of reports have recently addressed experimental dc-field magnetic

reversal processes, subsequent to forming such background states [8; 18; 23; 24;

26; 28]. An important aspect of interest is how the moments of the system

are correlated during reversal due to interactions and frustration. A variety of

different phenomena have been observed, owing to key differences between the

patterns studied and the overlap between the finite critical windows of switch-

ing field [Hmin(θ), Hmax(θ)] of each sublattice for a given applied field direction

θ, again due to configuration dependent inter-elemental interactions and an in-

trinsic switching properties. When this overlap is small, a high energy charged

ordered state can form during the midstages of kagome reversal [18], figure 2.23

(b,e). When this overlap is significant, kagome ice reversal mediates via moment

flip cascades which nucleate and propagate apart monopole-like configurations

throughout the pattern on the charge-ordered ice-rule (but not GS [65; 90]) back-

ground, incrementally pinning at sites of higher local switching fieldHs(θ) [23; 24],

figure 2.23 (c,f). The connecting chain of reversed moments can be considered as

a Dirac string analog. Similar behaviour is found in simulations of the reversal of

an optically trapped colloidal kagome ice system [76] (a very similar model to the

trapped superconducting vortex ice discussed previously), showing that quenched

disorder is indeed crucial in such processes. Weakly disordered systems typically

reverse via system-scale correlated avalanching, while strong disorder suppresses

interactions, reversal mediating via single uncorrleated spin flips. Intermediate

disorder allows for incremental pinning of avalanches of varying length.

A domain wall Coulomb charge interaction model has been proposed to de-

scribe transient states involved in cascading and propagation in nanowire net-

works [96] and it has been given credence via experimental observations [26;

28], however, no evidence has been identified for the fractionalised monopole-

monopole vertex object interactions as envisaged by Castelnovo et al. [19].

The work of Phatak et al. [27] also addressed Monte Carlo simulations of a

magnetic reversal process of square ice, with field applied along a diagonal sym-

metry axis, begining from the DPS and mediating strong GS order via similar
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Figure 2.23: Ordering on a kagome lattice. (a,d) Schematic of the low energy

charge ordered Kagome ice state and MFM of its realisation in a Kagome net-

work respectively. Alternating vertical columns of vertices have charges ±1, rep-

resented by yellow and red circles respectively. After Ladak et al. [23]. (b,e)

Schematic of the high energy charge ordered Kagome ice state and MFM of its

realisation in a nanoelement array respectively. All horizontal moments are re-

versed from the low energy state (grey), alternating vertical columns of vertices

possessing charges ±3, represented by large yellow and red circles repectively. Af-

ter Schumann et al. [18]. (c,f) A correlated flipped moment cascade (grey) on the

low energy background and the observation of such objects in x-ray photoemis-

sion microscopy data respectively. The coloured diagram indicates interpretation

of the observeed configuration as monopoles with assosiated Dirac strings. After

Mengotti et al. [24].
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T1 chain propagation, as previously discussed in the context of constant magni-

tude rotating field protocols, section 2.3.4. An experimental reversal of artificial

square ice will be addressed in chapter 4 of this thesis, for fields applied along an

off-symmetry direction.

2.5 Square Ice Monopole Defects

To date, little work exists addressing the understanding of interactions between

vertices and charge defects as composite objects. The work of Mól et al. [20; 22]

has shed light on this area via direct calculation of the energetics of dipolar chain

defects on the square ice GS, and how this can be interpreted in terms of magnetic

charge and string interactions.

Figure 2.24: Square ice monopole defects on the ground state. (a) Horizontal and

(b) diagonal square ice ground state chain excitations, formed from repeated flip

chain sections, as shown by the reversed arrows shown in grey and blue. After

Mól et al. [20].

Initially, Monte Carlo simulations were used to thermally anneal square ice

arrays of point dipoles, confirming the chessboard square ice GS, figure 2.6 (c).

With this established, Mól et al. went in search of the energetic behaviour of

defect configurations, where a “monopole-antimonopole” pair of T3 vertices are
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formed and separated on the lattice by extending a flipped moment string, form-

ing a chain of T2 vertices. For simplicity, only straight-line chain extensions were

considered, formed by repeated sequences of set moment flips, as shown in figure

2.24 (a) and (b), separating charged sites horizontally or diagonally respectively.

It should be noted that both open and periodic boundary conditions were used,

for lattices of varying size, however, quantitatively close results were found for all

realisations. As in the work of Castelnovo et al. [19], it is desirable to calculate

the net dipolar energy of a configuration, and to construct a re-interpretation of

it in terms of fractionalised object interactions.
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Figure 2.25: The energetics of chain defects on the square ice ground state. As

discussed in the main text. After Mól et al. [20].

Figure 2.25 shows inset the net dipolar energy V (r) of a defect chain con-

figuration of the type shown in figure 2.24 (a), as a function of r, the charge

separation distance. V (r) is in units of µ0µ
2/4πa3, and r is normalised to the

lattice constant. The trend appears to be quite linear. In the main panel of figure

2.25, the difference between V (r) and a linear best fit of V (r) is plotted (black

dots), illustrating a clearly non-linear behaviour. The linear fit baseline is shown

in red, emphasising this point. It was found, however, that a fit to the trend

V (r) = q/r + bX(r) + c, provided excellent fitting, shown as a blue dashed line.
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The three terms of this equation can be interpreted as follows. The first term

is a Coulombic term, for magnetic charges q separated by distance r. The second

term is the product of a “string tension” b and a string configuration term X(r).

The third term is a charge-pair creation constant. For string paths as shown in

figure 2.24 (b), very similar values are found.

While this is an elegant interpretation of the charge/string defects on the

square ice lattice, it shows explicitly that square ice monopoles are not deconfined

as in the crystalline pyrochlore spin ice lattice. In chapter 6 of this thesis, the first

experimental observation of such square ice defects as excitations out of the GS

will be discussed, as recently reported in reference [25], as well as the energetics

of more general configurations.

2.6 Summary

Artificial spin ices are realisations of 2D geometrically frustrated systems and 2D

Ising models [3; 9]. Experimental methods for their manipulation have, until very

recently, been exclusively field-based due to their typically athermal nature. In all

studies, their behaviour is strongly influenced by the inter-elemental interactions

as desired, however, quenched disorder in the patterning acts against this in a

randomising fashion [24; 78]. Access to ice-rule obeying states is currently being

extensively investigated [16; 21; 30], providing backgrounds for the propagation

of charge defects [23; 24; 25] - objects of interest both fundamentally and for

potential device applications [26; 66]. While athermal systems are convenient

for the purposes of microscopy, a great wealth of underlying physics is no doubt

inaccessible, and the exploration of thermal ordering effects has only just begun

[25; 87].
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Chapter 3

Methods

In this chapter, the main techniques and methods used for the preparation and

experimental study of artificial square ice patterns will be overviewed.

3.1 Electron Beam Lithography

Electron beam lithography (EBL) is a technique initially developed in the late

1970’s [97; 98; 99], and is a natural choice for the patterning of sub-micron struc-

tures [13; 100; 101]. EBL utilises a focused electron beam incident onto a substrate

coated in a thin film of electron sensitive polymer resist to form a lateral nanoscale

template through which material can be deposited to grow a desired structure

from the substrate up. Original systems used the beam of an SEM (scanning elec-

tron microscope - section 3.3) to perform patterning. More recently, dedicated

EBL tools have been developed.

A typical EBL process is shown in figure 3.1. Initially the resist, dissolved in

solvent, is spin-coated at several thousand RPM onto the surface of a substrate.

The solvent is then allowed to evaporate, or the substrate is heated to promote

solvent evaporation, leaving behind a resist layer of ∼ 100 nm thickness. Under

vacuum conditions, the resist is then exposed to the focused electron beam, which

penetrates into the resist. The position of the beam spot is controlled via a

computer with patterning software and a specified design is mapped out at a

given resolution or line spacing. It is a matter of choosing the correct current and

exposure time to achieve the appropriate level of electron dosage.
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Substrate

Polymer resist

e
-

Electron beam

Exposed resist

Development

Deposition Lift off

Completed sample

Figure 3.1: Schematic of the employed electron beam lithography fabrication

process. A substrate is spin-coated with an electron sensitive resist and dried.

It is subsequently exposed to a focussed electron beam controlled by a computer

with patterning software. The sample is then developed in a solvent leaving a

patterned resist structure. Material is then deposited through the gaps in the

resist and finally the remaining resist is removed in a solvent lift-off process,

leaving behind the desired patterned structure.
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Two processes can occur upon electron beam exposure of the resist; (i) the ran-

dom breaking of polymer chains resulting in a reduced average polymer molecular

weight, and (ii) cross-linkage of polymer chains resulting in an increased average

molecular weight. A positive/negative resist is one in which the former/latter

dominates. A positive degrading resist is developed using a mixture of chemicals,

one of which is a solvent of the resist polymer, one of which is not. This results

in a solvent that will more readily dissolve resist polymer below a certain molec-

ular weight, and this is effective given that the molecular weight distribution of

the degraded polymer fractions lies sufficiently below that of the original unex-

posed resist polymers. Using the correct combination of initial polymer content,

electron beam exposure parameters, and development time, the desired template

can be patterned. Material can then be deposited through this pattern using

common thin film growth techniques, such as electrochemical deposition, sputter

deposition or vacuum evaporation [102] (section 3.2). Following deposition the

remaining resist and the unwanted material deposited on top of the resist can be

removed by a final solvent bath, a process called “lift-off”, leaving behind the de-

sired patterned structure. Optimal parameters are typically obtained via a trial

and error process.

An alternative fabrication route is to use a subtractive etching method, in

which a thin film is first deposited on an unpatterned substrate, on top of which

a patterned template is formed, either by a resist layer itself or a hard mask

of subsequently deposited material. A method such as Ar ion milling is then

used to remove material, in which a beam of ions is accelerated and incident on

to the patterned sample surface, the thin film lying beneath the template being

protected. Such a process was not used for the samples studied in this thesis.

All samples discussed in this thesis were fabricated at the Center for Func-

tional Nanomaterial (CFN), Brookhaven National Laboratory (BNL). The fabri-

cation procedure employed, as illustrated in figure 3.1, used commercially bought

Si substrate with a single layer of ZEP520A:acetol (1:1) resist solution (Nippon

Zeon Company), spun at 5000 RPM about an out-of-plane axis for 30 seconds,

and hot-plate baked at 180◦C for 3 minutes. Substrates were often cleaned us-

ing an oxygen plasma prior to processing, as well as being solvent-cleaned with
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acetone (typically three 30s sonicated baths in acetone to remove surface contam-

inants, followed by three 30s sonicated baths in isopropanol to remove residual

acetone, and dried using a compressed nitrogen gun.) The patterned resist was

developed in xylenes for 90 seconds, and a bath of Posistripr EKCTM solvent was

used for liftoff, assisted by a rinse in DI water. ZEP resist has a resolution less

than ∼ 10nm. Material deposition will be discussed in section 3.2. Two EBL

systems were used. Initially a Helios NanolabTM (FEI Company) was employed,

with a 30keV beam. More recently, a JEOL JBX-6300FS system was available,

with a 25 - 100 keV electron beam, providing significantly larger write field areas

∼ 1 mm, sub 20 µm stitching, faster write time and the automated ability to

calibrate beam configuration and monitor it during the patterning process. This

allowed for ∼ 10 arrays of several 1 mm 2 area each to be patterned on a single

6” Si wafer over the time frame of ∼ 1 to 10 hours.

A variety of different sized patterns were made; small area square ice arrays

of ∼ 400 elements with different edge types (JEOL), up to patterns of several

mm2, either made from many closely spaced small area patterns (Helios) to those

continuous over 0.5 mm by 0.5 mm areas (JEOL).

3.2 Electron Beam Vacuum Evaporation

The thin film structures of all samples discussed in this thesis were fabricated via

the vacuum evaporation of material [102; 103], heated using an electron beam, in

a Lesker PVD chamber at the CFN.

The chamber is shown schematically in figure 3.2. A crucible of target mate-

rial (initially in pellet form) is positioned in the base of the chamber, at a vacuum

pressure of ∼ 10−6 Torr. A ∼ 5 kV potential is applied between the crucible and

a filament positioned under the base of the system. Electrons are produced by

thermionic emission from the filament. Under the field of a permanent magnet,

the electrons are deflected through a ∼ 10 cm radius arc of ∼ 270◦, and are in-

cident onto the target material, with currents of ∼ 10A. The incident electron

beam heats the target material, causing it to melt and evaporate, (or sublime).

Evaporated material particles leave the surface from a point source with a co-

sine distribution relative to the surface normal, and, under vacuum conditions,
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3.2 Electron Beam Vacuum Evaporation

have a long mean free path. This process, therefore, produces a highly unidirec-

tional deposition source, making it ideal for deposited growth into pattern resist

structures of high aspect ratio.

Crucible and
target material

Sample plate

Sample

Shutter

Monitor

Electron
beam

Filament

Evaporated
material

Figure 3.2: Diagram of the Lesker PVD electron beam evaporation chamber.

Electrons emitted from a filament are accelerated by a potential of ∼ 5-10 kV in

a 270 ◦ arc into a crucible of target material in the base of the chamber. Through

heating, target material is made to evaporate. The emitted material flux is then

incident onto a sample surface held above on the sample plate. The thickness

of deposited material is monitored by a quartz oscillator monitor. A shutter is

positioned in front of the sample plate to allow for control of deposition time.

Three crucibles of target material are held on a rotating stage in the chamber

base, one of which is permitted to be exposed to the electron beam at time.

A sample surface is held on a plate above the material source, the incident

evaporated material becoming deposited on the surface. The amount of material

deposited is monitored by an oscillating quartz detector. A shutter is positioned

between the source and sample allowing for the incident material beam to be
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3.3 Scanning Electron Microscopy

blocked - this allows for the source to reach a steady evaporation/deposition

state rate before deposition is begun. Rates of typically ∼ 0.05 nm/s are aquired.

Three target crucibles could be loaded simultaneously, being held on a rotating

stage in the chamber base, only one of which could be exposed to the incident

electron beam at a time. The beam is circulated over the target material to

promote uniform heating, and beam configuration was not exactly reproducible

between deposition runs.

The artificial spin ice samples were fabricated on commercially bought Si

substrate with a layer of electron beam patterned ZEP resist (section 3.1) and

an evaporated ∼ 25 nm thick layer of polycrystalline Ni80Fe20 (Permalloy - Py).

Typically, a ∼ 3 nm thick buffer layer of e.g. Cr or Ta was first deposited, as well

a ∼ 3 nm capping layer of Al to reduce oxidation. The source-sample distance and

sample plate diameter were large enough to deposit a film of uniform thickness

over a large area, allowing for multiple samples to be deposited on simultaneously.

3.3 Scanning Electron Microscopy

A scanning electron microscope (SEM) is a tool commonly used for imaging

surfaces and structures of material down to the nanometer scale [101; 104]. Under

vacuum, a focused electron beam is raster scanned across the surface of a sample,

resulting in the emission of both electrons and electromagnetic radiation from the

exposed volume, which can then be collected as a function of beam position to

build a 2D image.

Primary electrons are produced and accelerated to∼ 0.1-30 keV by an electron

gun, directed down a column towards the sample chamber, where the sample of

interest is held on a translatable stage. Along the column a number of electron

lenses and apertures are located, to produce a focussed spot of ∼ 1− 100 nm size

at the sample surface, as well as a set of scanning coils for beam deflection. The

incident electrons enter the sample surface and typically disperse throughout a

pear-shaped region named the excitation volume, figure 3.3 (a), where a number

of interactions, both elastic and inelastic, take place at different depths, producing

a number of useful signals for different modes of microscope operation.
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3.4 Atomic Force Micrscopy

The most commonly employed operation mode exploits the emission of sec-

ondary electrons, (SE), which are produced as a result of the ionisation of sample

atoms and excitation of loosely bound electrons, defined as having energy < 50

eV. As a result of their low energy, only those within an escape depth of ∼ a few

nm of the surface interface are able to leave the surface without being recaptured

by ionised atoms. Subsequently, they are then easily deflected by a potential to an

Everhart-Thornley detector [105] positioned on the side of the sample chamber.

Due to their generation at close proximity to the sample surface, SEs generate

a surface sensitive signal. Variations in surface topography result in variations

in the escape volume (the region of excitation volume within the escape depth),

resulting in variations in emitted and detected signal, figure 3.3 (b), hence the

edges of topographic features often appear brighter. Topography can also affect

the amount of signal reaching the detector by shadowing. All SEM data pre-

sented in this thesis were generated in SE mode, using field emission gun sources,

typically providing a resolution of ∼ 10 nm. To enhance surface sensitivity, lower

incident electron energies are required, resulting in reduced surface penetration

and a more strongly surface-confined excitation volume, particularly with samples

of lighter elements.

Other commonly used signals are backscattered electrons (BSEs) and char-

acteristic x-rays. BSEs are incident electrons which are elastically scattered by

sample atomic nuclei and outer shell electrons through an angle > 90◦, reemerg-

ing from the sample surface, typically defined as having energies > 50 eV. Due to

their large energy, such electrons are not readily absorbed by the sample material,

penetrating deeper into the surface resulting in a larger excitation volume and,

therefore, lower resolution relative to that of SEs. BSEs provide atomic number

contrast.

3.4 Atomic Force Micrscopy

Atomic force microscopy (AFM) is a scanning probe microscopy (SPM) technique

invented in the mid 1980s [106], which has since become a standard tool for study-

ing material surfaces. A small ∼ 10 nm radius tip protruding from the underside

of a cantilever arm is brought close to a sample surface where it experiences a
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Figure 3.3: SEM secondary electron imaging and image constrast. (a) An electron

beam (grey) incident on a surface disperses into the material through a pear-

shaped excitation volume. Secondary electrons produced within the electron

escape depth, de, will be able to escape the surface an be collected by a biased

detector. (b) The emitted electron intensity is sensitive to topography, region

(ii) having a greater volume lying within the escape depth than region (i) will

produce a larger signal - consequently, edges and steps often appear brighter in

an SEM image. Region (iii) will produce the same emitted intensity as region (i),

however, the total electron count reaching the detector is reduced by topographic

shadowing, resulting in a lower detected electron count, appearing darker in an

SEM image.
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3.4 Atomic Force Micrscopy

combination of possible forces. Via one of various operating modes, properties

of the cantilever are then monitored and recorded as the tip is raster scanned

over a given area of sample surface, allowing a 3D image to be built. Tip-sample

interactions are formed from many components e.g. [107; 108], attractive van der

Waals-type forces, repulsive Pauli forces, as well as longer range forces such as

electromagnetic forces.

Feedback

Laser

Cantilever
and tip

Sample surface

z-control

x-y control

Fast scan direction
Slow scan
direction

Photodetector

Figure 3.4: Diagramatic representation of the tapping-mode operation of an

atomic force microscope. Described in the main text.

The AFM images contained in this thesis were exclusively generated using

Veeco Multimode and Veeco Nanoman systems (available at Leeds, ISIS and the

CFN) operating under “tapping mode”, using Veeco MESP catilevers, table 3.1.

A basic diagramatic representation of operation is shown in figure 3.4. A laser

beam is reflected from the top-side of a cantilever onto the centre of a four-

quadrant photodetector, allowing cantilever deflection to be monitored. The can-

tilever is driven to oscillate by a driving force of set amplitude F0 and frequency ωd

close the cantilever natural resonant frequency ωR =
√
k/meff , where k and meff
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3.4 Atomic Force Micrscopy

are the cantilever natural spring constant and effective mass respectively. A given

cantilever can be well described by the equation of motion of a damped, forced

harmonic oscillator [108; 109], with sinusoidal steady-state solution of amplitude

D0 = (F0/meff)/
√
(ω2

R − ω2
d)

2 + (Aω2
Rω

2
d), where A is a constant.

Table 3.1: MESP - Magnetic Etched Silicon Probe - Specifications

Parameter Quoted Value (for LM-MESP low moment tips)∗

Thickness 2.5 - 3.5 µm

Length 200 - 250 µm

Width 23 - 33 µm

Resonant frequency f0 60 - 100 kHz

k 1 - 5 N/m

Co/Cr layer thickness 10 - 250 nm

Coercivity Hc 400 Oe (< 400 Oe)∗

µ 1× 10−13 emu (0.3× 10−13 emu)∗

For small amplitude oscillation [110], typically 10-100 nm [111], under the

influence of a force gradient F ′, such as that due to the sample surface, the

spring constant becomes effectively keff = k − F ′, resulting in a shift in ωR and,

therefore, D0 [106; 112].

To initiate operation, the oscillating tip is moved towards the sample surface,

modifying ωR, until an amplitude set point in D0 is achieved. During operation,

as the oscillating tip is then raster scanned across the sample surface, variation

in topography resulting in variation in ωR and D0. A closed feedback loop acts to

maintain a constant D0 by adjusting the tip-sample rest separation distance (the

separation given no oscillation or interactions), which is recorded line-by-line

to generate 3D topographic information. Adjustable proportional and integral

gain parameters, as well as a variable scan rate, allow for surface tracking to

be optimised. The intricacies of the behaviour of a cantilever during tapping-

mode operation, under the influence of both its driving potential and a typical

Lennard-Jones type potential, is still an ongoing research area [113; 114]. Fol-

lowing data collection, various image processing steps can be employed to e.g.
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3.4 Atomic Force Micrscopy

subtract plane linear and parabolic backgrounds, made using either the Veeco

Nanoscope software or the WSxM package [115].

Tapping-mode offers benefits over constant contact operating modes, reducing

the force applied to the surface and therefore damage as well as reducing the

effects of adhesive surface forces. Active feedback reduces the risk of tip crashing

as experienced in constant height modes, allowing relatively tall structures to be

imaged.

An example portion of an AFM image of an a = 500 nm lattice spacing spin

ice array is shown in figure 3.4 (a). While atomic resolution can effectively be

achieved, resolution on the order of ∼ 10 nm is typically found under reasonably

tuned ambient conditions. The image can be considered a convolution of the

surface with the shape of the given tip used, which can limit resolution. Tips can

also become blunted under use which acts to exaggerate features such as edge

crowning [107].

The Multimode V system has a maximum field of view of 13 µm × 13 µm,

whereas the Nanoman system has a maximum field of view many times greater

in size. For larger area images, resolution becomes limited by a finite pixel sam-

ple density, and the largest scan size used was 40 µm × 40 µm. Compared to

other microscopy methods, image aquisition time can be relatively slow (∼ 1− 10

minutes), however, minimal sample preparation time is required.

3.4.1 Magnetic Force Microscopy

Not long after the invention of AFM, the potential of studying magnetic tip-

sample interactions was realised [116; 117], the techniques used quickly develop-

ing into what is now termed “magnetic force microscopy” (MFM). Such measure-

ments can be performed under an operating mode of the Veeco AFM systems

discussed in section 3.4. For the measurements presented in this thesis, MESP

cantilevers with a thin coating of Cr/Co were used (table 3.1), which were first

magnetised normal to the sample plane using a small permanent magnet (ex-

ternal to the microscope and sample environment). A tip forms, therefore, a

magnetic dipole-like object (section 1.2), sensitive to the normal component of

the gradient of stray fields originating from the sample surface. The microscope
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(a) (c)(b)

V1 V2 V3 V4

V5 V6V15 V16

T1

T2

T4

V7 V8 V9 V10

V11
V12 V13 V14

T3

(d)

Figure 3.5: Interpretation of magnetic force microscopy data. Example (a) AFM,

and (b) MFM images of an artifical square ice pattern. These images are overlayed

with schematics of the location of the magnetic islands and the location of the

north and south poles. Also boxed are the vertex sites, which can be interpreted

by the four poles converging at their centres. (c) shows a mapping of the magnetic

configuration shown in (b) into a system of Ising moments (arrows). (d) shows

the sixteen vertex configurations V1−16 as North-South dumbbells, also with the

four charges at their centres boxed, grouped by type T1,2,3,4. Examples of T1,2,3,4

vertices have been emphasised in (b-d) by cyan, green, grey and pink boxes

respectively. This scheme presents a convenient way to understand an MFM

image by eye.
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is then operated in “lift mode”. An initial line scan of standard tapping mode

AFM operation is conducted and the topographic profile recorded. A second

scan across the same lateral line is then made at a constant user-defined height

offset above this topological profile, typically ∼ 10− 100nm, acting to eliminate

non-magnetic variations in the tip-sample interaction. The normal component of

the force gradient due to stray fields from variations in surface magnetisation can

thus be mapped from the phase or amplitude of the cantilever oscillation, creating

an image representative of the surface magnetic charge distribution, with excess

magnetic north and south pole yielding light and dark contrast. Figure 3.4 (b)

shows a MFM image corresponding to the AFM image in (a). The exact nature

of these interactions, the modelling of which can be extremely lengthy [111], are

highly dependent on the specific properties of a given tip and cantilever, with

significant variations from tip to tip, (table 3.1). We therefore use MFM as a

qualitative probe, allowing for the magnetic microstate of a sample to be inferred

and interpreted within an Ising dipole picture, as set out by previous authors [3].

Various statistical parameters can be used to define a given microstate, as will

be discussed in section 3.5.

As this is an intrusive technique, it is therefore possible to locally reconfigure

sample surface magnetisation distributions, particularly for soft magnetic mate-

rials [118; 119]. For the studies presented in this thesis, islands, which are also

aided by shape anisotropy, are found to be adequately stable under imaging.

Initial characterisation studies were always performed on samples prior to under-

taking experimental procedures to test for stability, moments that are unstable

due to tip interactions being identifiable in a given image by features such as

sharp discontinuities in magnetic contrast.

As well as intrusive tip-sample interactions, a brief consideration should be

given to the methods which samples were held under the microscope, specifically

for the Multimode systems, with which samples are adhered to a ∼ 1 cm diameter

magnetic disk, which is then held to the top of the variable-height microscope

column under the cantilever. This immediately raises concern as unwanted stray

fields are therefore incident on the sample. Measurements using a standard Gauss

probe gives maximum fields ≈ 100 Oe immediately above a mounted magnetic

disk, both in-plane and out-of-plane. These fields are sufficiently small as not to
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disturb the magnetic configuration of islands of the dimensions used of a given

mounted sample, at least in terms of an Ising dipole interpretation. While it is

possible that the internal magnetisation of elements is adjusted, this is beyond

the scope of the work contained in this thesis. Negligible fields are found above

an unmounted magnetic disk, as well as the Nanoman sample plate.

3.5 Interpretation of Microscopy Data

Figure 3.5 (a,b) show a portion of AFM and corresponding MFM data taken from

an a = 500 nm lattice constant square ice array, both images overlayed with a

schematic showing the locations of a selection of elements. In the MFM image, the

north and south poles of each element are visible as circular regions of light and

dark contrast. Such arrangements confirm that elements are single domain and

magnetised along their long axes by their shape anisotropy. Figure 3.5 (c) shows a

full diagramatic representation of the magnetic charge arrangement in (b), yellow

and red circles representing the elemental north and south poles. Also shown

are arrows representing the inferred underlying dipolar configuration. From an

MFM image it is thus possible to completely infer the microstate of the imaged

array. A number of useful statistical parameters can then be extracted, within

an Ising dipole approximation. In understanding the configurations observed, it

is instructive to make comparisons with well-defined statistical reference states -

shown in figure 3.6 are (a) the ground state (GS), (b) the diagonally polarised

state (DPS), and (c) a random state (RS).

3.5.1 Dipolar Statistics

For later discussion, it is instructive to consider the square ice system as two

identical, orthogonal, interpenetrating sublattices of dipole moments, which will

be referred to as the X and Y sublattice in reference their islands’ easy axis

orientation with respect to cartesian x- and y-directions, as shown in 3.6 (a) as

black and grey arrows respectively. A number of useful statistical parameters can

be extracted from the dipolar configuration.
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(b) (c)

(d)

(a)

T1 T4 T3

T2

Figure 3.6: Ideal square ice states. (a) The ground state (GS). (b) The diagonally

polarized state (DPS). (c) A random state (RS). (d) The sixteen square ice ver-

tex configurations labelled by vertex properties. Grey circles represent the zero

normalised vertex charge of T1,2 vertices, and yellow and red circles represent the

positively and negatively charged vertices, their size representing the size of the

charge, ±1 and ±2 for T3 and T4 vertices respectively. Green arrows represent

the polarisation of T2,3 vertices.
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3.5 Interpretation of Microscopy Data

Normalised Magnetisation

The net normalised magnetisation of a state can be calculated as M = MXx̂ +

MYŷ, where MX,Y = 〈mX,Y〉/
√
2, and mX,Y = ±1 for Ising moments on X and Y

aligned/antialigned with the x, y-directions respectively. This is a useful parame-

ter for examining e.g. the effectiveness of a demagnetisation procedure. Both the

GS and RS, as well as many other states (e.g. the “in-between” ac demagnetised

states discussed in section 2.3.1), have |M| = MX = MY = 0, illustrating the

system’s degeneracy in M, whereas the DPS has |M| = 〈mX〉 = 〈mY〉 = 1. The

factor of
√
2 above normalises the magnetisation to the DPS, the state of largest

possible |M|.

Correlation

In order to gain insight into the possible effects that arise due to inter-island

dipolar coupling, a number of nearest neighbour correlation values can be calcu-

lated, defined in reference to two well defined states. For studies of demagnetised

M = 0 states (either field or thermally induced) the square ice GS will be used,

figure 3.6 (a), using similar definitions to those used by Ke et al. [16]. For studies

of magnetic reversal the DPS provides a more instructive comparison, figure 3.6

(b), and ferromagnetic-like correlations are considered. While these two defini-

tions are similar, for clarity, they will be described separately. In general, three

kinds of neighbour can be defined, L, P and D, relative to elements on both

sublattices X and Y, as shown in figure 3.7. L(P)-type are those with easy axes

parallel aligned along a line parallel (perpendicular) to their easy axes. D-type lie

along square diagonal lines, with odd-order neighbours aligned perpendicularly

to a given reference island.

Ground State Correlation

If a pair of nth
d neighbour elements along L, P or D, on the X or Y sublattice as

shown in figure 3.7 (a) and (b) respectively, are relatively aligned/antialigned to

that observed in a GS configuration, they are assigned a value c = ±1 respectively.

A GS correlator is then given by CGS
X,Y(nd) = 〈c〉X,Y, where C = L, P,D and the

average is taken over a given imaged configuration.
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Figure 3.7: Dipolar neighbours on the square ice system. L-, P- and D-type neigh-

bours (red, green and blue respectively) relative to the grey reference element, as

defined when using (a,b) GS-type correlation functions CGS
X,Y, or (c,d) DPS-type

correlation functions CDPS
X,Y . Correlations can be defined relative to elements on

the (a,c) X and (b,d) Y sublattices independently. For CDPS
X,Y , it is not necessary

to consider correlation between sublattices X and Y (chaper 4).
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3.5 Interpretation of Microscopy Data

The GS correlators defined previously by Ke et al. [16], CGS(nd), can then

be obtained by taking the average of CGS
X (nd) and CGS

Y (nd) for a given L, P,D

and nd, however, this results in the loss of information arising from possible

asymmetries between the behaviour of the X and Y sublattices.

Figure 3.8 (a) shows the behaviour of CGS for the ideal states defined in figure

3.6. The GS yields all values of CGS(nd) = 1, for L, P and D for all nd. The

DPS results in an oscillatory behaviour, with all odd/even order values of L and

P = ∓1 respectively, and all odd/even order values of D = 0 and 1 respectively.

The RS results in all CGS(nd) = 0.
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Figure 3.8: Correlation statistics of ideal states. The behaviour of the (a) CGS

and (b) CDPS correlation values as a function of neighbour nd, for the GS, DPS

and RS.

DPS Correlation

For MFM studies of magnetic reversal processes, chapter 4, it is appropriate

to define an alternative set of correlators, CDPS(nd) = 〈mi ·mi+nd
〉i with C =

(L, P,D)X,Y for nth
d nearest neighbour pairs defined on X and Y independently

with moments m = mX,Y = ±1 respectively, as indicated in figure 3.7 (c,d). Per-

fect alignment/antialignment of all nth
d pairs yields CDPS(nd) = ±1 respectively.
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3.5 Interpretation of Microscopy Data

Random alignment yields CDPS(nd) = 0. Note, CDPS does not distinguish between

flipped and unflipped moments, and in the studies presented it was not necessary

to consider D-type correlation between the X and Y sublattices (as for GS corre-

lation) by considerations of symmetry. As for CGS, CDPS = (CDPS
X + CDPS

Y )/2.

For the ideal states shown in figure 3.6, the behaviour of the ferromagnetic

correlators are also shown in figure 3.8 (b). CDPS(nd)∓CGS(nd) for all C = L, P

with even/odd nd respectively. Further, DDPS(nd) = DGS(2nd).

3.5.2 Vertex Statistics

As discussed previously, the square ice can also be interpreted as a system of

interlinked cross-shaped vertices [3], with 24 = 16 possible vertex configurations,

V1−16, commonly grouped into four types, T1−4, in order of increasing energy.

These are displayed in figure 3.5 (d), as cartoons of that observed in the MFM

imagery, each consisting of four converging charge dumbbells. The four central

poles/charges of a vertex provide an effective way of visualizing the system and

interpreting the MFM data. In figure 3.5 (b,c,d), as well as the magnetic poles

and moments being indicated, regions surrounding the four central poles of each

vertex are also boxed, identifying vertices as one of 16 possible tiles, 3.5 (d).

T1 vertices appear as “bow-tie”-like tiles (blue), T2 vertices roughly resemble a

yin-yang symbol (green), T3 vertices resemble the 1980s arcade game character

Pac-Man (grey), and T4 vertices appear as uniformly coloured tiles (pink), all of

which can be observed in figure 3.5 (b,c).

Properties

Each vertex can be further classified according to their net vertex charge and

vertex dipole moment, figure 3.6. T1,2 obey the 2-in/2-out ice rules and are

charge neutral. T3,4 posses excess north or south pole, and therefore posses a

normalised magnetic charge of +1 and +2 respectively. T2,3 both posses intrinsic

dipoles.

Of course, due to the underlying dipole structure, certain arrangements of

tiles are not allowed by topology, e.g. a V2 vertex cannot be placed at the right-

hand neighbouring site of a V15 vertex, their linking moment on the square ice
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Ising dipole lattice being unable to simultaneously take both values of mX = ±1.

As well as vertex correlations arising from topology, there is also current interest

in determining whether long range interactions in the system give rise to vertex-

vertex coupling [20; 22], which would validate discussion of the system to in terms

of fractionalised vertex objects, analogous to the monopole objects envisaged

by Castelnovo et al. [19], rather than a vertex picture providing a convenient

identification and naming convention.

Populations

For a given image, the absolute populations of each of the 16 individual vertex

configurations T1−4 can be counted, from which a percentage population can be

determined. It is often convenient to compare these values with those expected

from a random state [3], given by the vertex multiplicities, qi/16, for qi = 2, 4, 8,

2 for i = 1, 2, 3, 4 respectively.

Vertex Density Functions

To explore understanding of these systems in terms of a vertex object within the

vertex model, looking beyond interpretation in terms of its underlying dipoles,

vertex density functions provide a useful point of interpretation. Here, the frac-

tional density of vertex or configuration of type B at a given separation in 2D

from reference vertices of configuration or type A, averaged over a state, is cal-

culated. This may be calculated for vertex types T1−4 or for individual vertex

configurations V1−16, allowing for vertex-vertex correlations to be addressed.

3.5.3 Dipolar Energy Calculations

It is useful to calculate the net dipolar energy of configurations observed in MFM

images, and the various ideal cases discussed. This can be done straightforwardly

within the point dipole Ising interpretation of a state or configuration, section

1.2. For such calculations, finite regions of square ice are considered of N × N

vertices, summing over all pairwise dipolar interaction energies. Further to this,

a normalised dipolar energy unit u = µ0µ
2/4πa3 will be used, where µ is the

68



3.5 Interpretation of Microscopy Data

dipole moment of a single nanomagnet, a is the array lattice constant, and µ0 is

the magnetic permeability constant.
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Figure 3.9: Ideal square ice state energies. (a) The net energy, (b) the net energy

per moment, and (c) the net energy per vertex of an N × N square ice array

of vertices of point dipoles configured as per the GS, DPS and a realisation of a

RS. Shown also in (b) and (c) are the energies per island and per vertex of single

vertex configurations (dashed lines).

Figure 3.9 (a) shows the total energy of an N × N sized array, tiled in the

GS, DPS and RS respectively as a function of N , with finite array size defined

inset. The RS configurations were generate using a pseudo-random coin-toss to

assign each elemental Ising magnetisation as mX,Y = ±1. (b) and (c) show the

net energy per island and per vertex respectively as a function of N , where the

number of islands = 2N2 + 2N and number of vertices = N2. Also shown in (b)

and (c) are the net dipolar energies per island and per vertex of single vertices of

each type T1−4.
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Chapter 4

Magnetic Reversal of an

Artificial Square Ice

4.1 Introduction

In this chapter, magnetic reversal of an artificial square ice pattern subject to

a sequence of magnetic fields applied slightly off the diagonal symmetry axis

will be presented, as investigated via magnetic force microscopy of the remanent

states that result. As reported in reference [29], sublattice independent reversal is

observed via correlated incrementally pinned cascades of flipped elemental dipole

moments along parallel chains, as evident from analysis of vertex populations

and dipolar correlation functions in comparison with that expected of a randomly

mediated uncoupled reversal process. Further, weak dipolar interactions between

adjacent chains favour antialignment and give rise to weak charge ordering of

“monopole” vertices during the reversal process.

Consideration of the energetics of chain defects via dipolar calculations indi-

cates that such objects are not energetically well-defined on the DPS background.

Diagonal chain defects are also addressed, of the type occurring in references

[21; 27], which are found to fit the same energetic approximations as chain de-

fects on the GS background [25]. These calculations show that long range in-

teractions are not negligible between a strongly polarized background state and

defects comprising vertices of non-zero dipole moment.
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D (1)Y
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L (2)Y
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P (1)Y P (2)Y P (3)Y

y

x
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Figure 4.1: SEM of a 500 nm lattice constant magnetic square ice pattern. Rel-

ative to a reference element (black box), nearest neighbour types (L,P,D)Y on

the sublattice Y (defined in section 3.5 figure 4.2) are highlighted in green, red

and blue boxes respectively. (L,P,D)X are the rotationally symmetric nearest

neighbours on the orthogonal sublattice X.

4.2 Experimental Protocol

A square ice sample was prepared by electron beam lithography, using a Helios

Nanolab SEM system, of ZEP520A:acetol (1:1) resist spin-coated on a Si sub-

strate, vacuum evaporation, and liftoff, as described in chapter 3. Elements of

100 nm × 250 nm were formed on a lattice of 500 nm lattice constant over multi-

ple 20× 20 µm2 subarrays tiled at a spacing of ∼ 1 µm on a square grid. A total

area of ∼ 1 mm2 was formed. A thin film structure of Ta(2 nm)/Ni80Fe20(25

nm)/Al(2 nm) was deposited. This formed islands with magnetic moments of

∼ 5× 107 µB, giving rise to dipolar fields of ∼ 10 Oe imparted on one island by

each of its closest neighbours. An SEM image of the region of sample of interest

is shown in figure 4.1 (a).

The system was then subjected to a field protocol similar to that utilised in the

artificial kagome ice pattern magnetic reversal experiments discussed in section

2.4 [18; 23; 24; 26], under which qualitatively similar results would be expected.

In-plane hold-fields of ∼ 1 s duration were applied along a direction θ ≈ 10◦

offset from the diagonal to the x and y axes, as shown in figure 4.2 (b), such
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(c)(a) (b)

θ
X

Y

Figure 4.2: Well-defined square ice states. (a) The square ice ground state (GS)

for single domain Ising-like dipole elements. The sublattices X and Y are shown

as grey and black arrows respectively, defined by their easy axis orientation.

Moments on each sublattice form a chessboard pattern of alternating alignment,

while energy is minimised by the relative arrangement between sublattices. All

(L,P)X,Y-type lines of moments posses an antiferromagnet-like arrangement, and

all DX,Y-type moments are aligned with a ferromagnet-like arrangement. (b) The

diagonally polarised state (DPS) defined by hard polarisation of both X and Y.

The experimentally applied field direction is shown as a red arrow. (c) The Y-

polarised state (YPS) on which Y is hard polarised and X minimises energy under

this constraint.
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4.3 Results

that Hy ≈ 1.4Hx. The average remanent magnetic configuration was followed by

magnetic force microscopy (MFM) using a Veeco Multimode V system, imaging

∼ 13× 13 µm2 areas at the centres of ∼ 5 closely positioned subarrays after each

applied field. The single domain Ising nature of the nanobars was confirmed via

the appearance of each element as a dumbbell of light and dark contrast, figures

4.3 and 4.4. It should be noted that fields were applied to sample external to

the microscope, requiring transferal of the sample between an electromagnet and

the microscope for each field step. As a result, exactly the same areas were not

reimaged at each field step due to the limitations of positioning the microscope

field-of-view, however, varying amounts of overlap do occur between images at

successive field steps. While edge effects are potentially important in finite arrays,

acting as nucleation sites for reversal [21; 27], strong evidence exists that signifi-

cant quenched disorder can result in dominant bulk processes [23; 24; 26; 28].

Initially, a magnetic field of H = +1.5 kOe was applied, sufficiently large

to form the DPS at remanence, figure 4.2 (b), with 100 % population of T2 V3

vertices (see figures 3.5 (d) and 4.4 for a vertex key). Increasingly negative hold-

fields were then applied from −313 Oe up to −688 Oe, taking the system through

a full reversal to the oppositely magnetized DPS, a full tiling of T2 V5 vertices.

While applied fields will disturb the Ising-nature of the nanobars, we find, as

previous authors report, that we can interpret the remanent states in terms of an

ideal Ising dipole picture. No evidence has been presented in literature suggesting

that such a “pulse-probe” experimental treatment yields behaviour modified with

respect to that which might occur under the application of a monotonically in-

creasing applied field, apparently due to the Ising-like hysteresis of the elemental

moments.

4.3 Results

4.3.1 MFM of reversal

Example MFM images from the reversal sequence are shown in figures 4.3 and

4.4, with key configurations boxed and mapped schematically (insets) in terms of

elemental Ising dipoles (arrows) and magnetically charged T3 vertices (red and
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yellow circles). Note: the sequence does not strictly show the same region of

square ice elements in each image. Also shown in figure 4.4 for reference is a

key indicating the four elemental magnetic poles which converge at the centre

of each of the sixteen vertex configurations, similar to that shown previsouly in

figure 3.5. In figure 4.5 (a) the normalised net digital magnetisation (section

3.5.1) M = MXx̂+MYŷ is tracked. The average populations of the 16 individual

vertices are followed for each step and those of specific interest are shown as solid

lines in figure 4.5 (b-d). A small number of counting errors occur due to structural

defects and tip-sample interactions, figure 4.3, however these occur on ∼ 0.3%

of islands imaged and do not have a significant effect on the system or statistics.

In the vast majority of cases, there are no obvious structural features or defects

correlated with the magnetic configurations that form during the reversal.

For −375 . H < 0 Oe, the initial DPS is observed with 〈mX〉 = 〈mY〉 = 1,

giving a 100 % V3 T2 tiling. Full reversal then takes place via two largely inde-

pendent, but qualitatively similar, stages: initially, reversal of Y occurs between

−438 Oe and −563 Oe, followed by reversal of X between −563 Oe and −688

Oe, figure 4.5 (a). For a given applied field angle, θ, a given element on X or

Y will have an intrinsic switching field (i.e. the total field required to reverse

its Ising state observed at remanence) HX,Y
s (θ). At θ = 0, it would be expected

that 〈HX
s (0)〉 = 〈HY

s (0)〉, were X and Y identical under a 90◦ rotation of the sys-

tem. While an intrinsic anisotropy may be possible from patterning, SEM reveals

no obvious structural stigmation, however, very small asymmetric artifacts are

present on one corner of each element, figure 4.1. Slight quantitative differences

were observed in behaviour at different locations across the sample, e.g. variation

in 〈HX
s (θ)〉), which appears to vary in the subarray-patterning slow scan direc-

tion, presumably the result of a gradual drift in eletron beam exposure conditions

with time during patterning. Such variation is small in comparison with the sep-

aration in field of the two independent sublattice reversal events. This effect is

therefore attributed predominantly to the applied field angular offset, θ = 10◦,

meaning that Hy > Hx and 〈HY
s (θ)〉 < 〈HX

s (θ)〉. As previously described, atten-

tion will focus here on one self-contained local region, other regions behaving in

a qualitatively identical way. (As an aside, the study of anisotropic systems is a
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+1.5 kOe; -375 Oe

Figure 4.3: MFM image of the remanent state of a square ice pattern following an

off-diagonal applied hold-field of +1.5 kOe, and subsequent hold-fields of − 313

and − 375 Oe, returning to remanence between each step. The scale bar is 3 µm.

The initial field irreversibly aligns the moments of the system producing the DPS

at remanence as seen in the periodic magnetic image, illustrated schematically

inset, while the second and third applied hold fields of opposite direction is not

large enough to produce further reordering. The state is a pure tiling of T2 V3

vertices, one of which is explcitly highlighed. Also, boxed in blue is an imaging

error.
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T
1

V15 V16

T
4

V3 V5V4 V6

T
2

V7 V8 V9 V10 V13 V12V11V14

T
3

V2V1

-688 Oe
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-625 Oe -656 Oe

-563 Oe

-438 Oe -469 Oe

-531 Oe

-500 Oe

Figure 4.4: Example MFM images from the off-diagonal magnetic field square

ice reversal sequence. Scale bars are 3 µm. The reversal process is described in

the text. Key structures are mapped schematically (insets) in terms of unflipped

and flipped Ising moments (black and orange arrows respectively), charged T3

vertices and their propagation paths (dashed boxes). A vertex key is shown with

oppositely charged T3 pairs colour coded.
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potentially interesting avenue of research yet to be extensively explored. Pattern-

ing induced anisotropy has been identified as imparting a weak breaking of the

threefold symmetry of ac demagnetised kagome ice states [12] and simulations

have shown modification of square ice behaviour during thermal annealing by

consideration of more general rectangular lattices [81; 82].)

At −438 Oe a low density of isolated flipped-moment events is observed on Y,

attributed to elements with lowest HY
s (θ). These correspond to nucleation events

of oppositely charged T3 pairs, V10,12, at the expense of two V3 T2 vertices, leading

to a reduction in MY. At −469 Oe a higher density of single flipped moments

and associated T3 pairs is observed, as well as longer sequentially flipped chains

further separating oppositely charged T3 pairs in the y-direction connected by

V4 T2 vertex chains with polarisation rotated 90◦ to the initial V3 DPS. While

the DPS is not the GS, we can draw analogy here with charge separation in real

and artificial kagome spin ice [19; 24], where background and chain are of the

same ice-rule-obeying vertex type, with oppositely charged poles propagating in

opposite directions.

At −500 Oe, over 50% of Y moments have reversed. MY = 0 is estimated

to be at ∼ −490 Oe, indicated in figure 4.5 (b-d) by dashed orange lines at the

intersection points of the V3,4 populations. Qualitatively, the state is very similar

to that at −469 Oe, with a substantial population of T3 vertices and ∼ 50% V4

T2. The state appears more like a background of V4 on which chains of unflipped

moments now stand out, figure 4.4 (inset). Due to the coarseness of the field

step, the exact reordering processes of specific groups of moments reimaged at

successive steps could not tracked, therefore, it is not possible to say whether a

chain of ≥ 3 moment flips is formed by sequential flipping, or by the oppositely

charged ends of two separate chains on the same line of elements meeting and

annihilating. At −531 Oe the flip-chains on Y have almost completely propagated

out, reversing Y to 〈mY〉 ≈ −1. A small number of unflipped moments remain

and the state appears qualitatively like that at −438 Oe, reflected about the

x-axis. A symmetry should be emphasised, resultant of the degeneracy of the

DPS. T3 pair nucleation and annihilation processes appear qualitatively as the

inverse of each other. The same is true comparing the extension of a flipped

moment chain with the shrinking of an unflipped moment chain. Hence, given no
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Figure 4.5: Magnetisation and vertex population statistics during a magnetic

square ice reversal sequence. (a) Normalised net digital magnetisation vector

during the reversal, labelled with corresponding field pulse maximum values (in

Oe). Reversals of sublattices Y and X occur independently due to the applied

field offset angle. (b-d) Experimental and random reversal vertex populations vs

field step (solid and dashed lines respectively). The specific vertices are shown

and referenced by colour. Both reversals occur via a peak in complementary posi-

tive/negative T3 pairs, V10,12 and V7,13, which must nucleate to mediate reversal.

Note, for clarity, the lower panel of (b) shows the difference between the exper-

imental and random reversal T2 populations. Further, only the populations of

V10 and V7 are plotted in (c), within error possessing equivalent populations to

their oppositely charged partners, V12 and V13 respectively. Sequential moment

chain reversal acts to transfer vertices within the T2 group V3 to V4, and V4

to V5. Experimental T2,3 vertex populations fall significantly far/short of ran-

dom during reversal, indicating correlated cascade propagation. Initial and final

stages of both reversals appears random-like. Weak enhancement(suppression)

is observed of T1(4). Strong suppression of all other vertices is also found. The

values of field where MX,Y = 0 are marked by vertical orange lines, estimated as

where the growing/falling T2 populations cross.
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knowledge of field history, the initial DPS background and propagation direction

are not revealed from an MFM image. Overall conservation of charge is always

maintained, for example, V10,12 are always observed in equal numbers within

error, small discrepancies only occurring over a MFM image due to single poles

of such pairs having propagated across the image edge boundary.

Subsequently, for increasing fields, the sublattice X then reverses via the sym-

metrically equivalent processes — nucleation of V7,13 T3 pairs, propagation and

annihilation, with V5 increasing at the expense of V4. Full reversal is achieved

by −688 Oe. At −625 Oe, a state of MX = 0 has been achieved, which by

symmetry should posses a maximum in V7,13 T3. This is also indicated in figure

4.5 (b-d) with dashed orange lines. Only a small amount of overlap between the

reversal of Y and X occurs, inhibiting the creation of T1,4 vertices at all fields,

as indicated by their small fractional populations. As an example, T1 vertices

can only form if a chain of sequentially reversed moments crosses sublattices, in a

manner shown inset in figure 4.4 at −531 Oe, where the propagation of charged

sites from their straight line paths along the y-direction has been diverted in to

the x-direction, allowed to occur by the conversion of a V10,12 pair into a V7,13

pair. Such infrequent events are negligible in the reversal regime accessed. While

the two sublattices do interact via dipolar coupling, by symmetry there is no net

effect of the frozen polarised X(Y) sublattice on Y(X) (except for weak long range

interactions), therefore, the same one-dimensional lines of charge carrying prop-

agating N-N and S-S configurations would be expected if X(Y) were removed. It

is likely, however, that the frozen sublattice imparts additional disorder on the

reversing sublattice via local variations in dipolar fields.

It is conceivable that the reversal-mediating processes identified could occur

in a non-interacting system, the reversal occurring by random flipping events de-

termined by the local values of HX,Y
s (θ), presumably randomly allocated across

the pattern and distributed about 〈HX,Y
s (θ)〉. To test this, ideal maps of mo-

ments were generated with set fractions reversed at random from the initial DPS

(the coordinates chosen by a pseudo-random number generator), corresponding

to the experimental M states. (Here, the results presented are averaged over

ten 40 × 40 element vertex maps for each field step, although the results are
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not sensitive to the absolute size). The resultant random reversal vertex popu-

lations are plotted with dashed lines in figure 4.5 (b-d). It is clear that during

both reversals, the T2 populations exceed what would be expected for random

arrangements of moments, as emphasised by the excess of percentage popula-

tions plotted in the lower panel of (b), whilst the T3 populations similarly fall

short of what would be expected. This indicates that sequential chain flipping

is significantly correlated - dipolar interactions bias the system towards rever-

sal via incrementally pinned correlated dipolar cascades, consequently enhancing

above random the population of T2 vertices which must occur on these chains.

It also appears that the initial and final stages of both experimental reversals

follow a random-like trend, implying that the nucleation and annihilation events

are random-like processes. This is consistent with the expected distribution of

elemental properties imparted by quenched disorder, e.g. chain defects appear-

ing on X(Y) at sites of lower-than-average H
X,(Y)
s (θ), giving rise to random-like

statistics when an averaged-state picture is adopted. Y and X reversal appear

to be quantitatively different, the latter appearing to have greater suppression of

T3 vertices. Interestingly, the small populations of T1,4 that occur are slightly

enhanced/suppressed with respect to random respectively, reflecting their favor-

able/unfavorable moment configurations.

Making a visual comparison with a recent report of chain propagation on a

kagome ice array [24], while our stronger isolation of sublattice switching strongly

suppresses instances of potential “monopole-trapping” configurations (e.g. figure

4.4, −531 Oe inset) where charged T3 vertex sites become trapped on the chains

of an adjacent defects, much weaker cascade correlation is apparent. This can

be seen, for example, by comparing our MX = 0 state in which a maximum

flipped chain length of ∼ 8 dipoles is found, figure 4.4 −625 Oe, with the state

following application of 99 % the coercive field of the kagome pattern, figure 2.23

(f) section 2.4, in which notably longer coherent chain lengths are found of ∼
20 dipoles can be identified. This is attributable to a higher ratio of disorder

strength to inter-elemental interaction strength giving rise to a higher density

of random-like nucleation and pinning events in the square ice pattern discussed

here.
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4.3.2 Dipolar correlations

To further explore these spatial correlations, six correlation functions CDPS(nd) =

〈mi ·mi±nd
〉i can be calculated, with C = (L, P,D)X,Y for nth

d nearest neighbour

dipole pairs, for L, P, or D type neighbours on sublattice X or Y, as defined in

figure 4.1 and in section 3.5. Perfect alignment/antialignment of all nth
d pairs

of a given neighbour type yields C(nd) = ±1 respectively. Random alignment

yields C(nd) = 0. Note, C does not distinguish between flipped and unflipped

moments, and no correlations between X and Y are considered as their reversals

are almost totally unmixed.

The observed correlations CDPS(nd) are plotted for Y and X in figure 4.6 (a,b)

(solid lines with symbols), as well as those calculated for the random moment

reversal sequence (dashed lines). To aid discussion, it should first be noted that

all random CDPS
X(Y) behave identically with state and have no dependence on nd, and

hence the average random reversal correlation RX(Y) = 〈LDPS
X(Y)(nd)〉nd

is plotted

for clarity. For this double reversal process, the collective trend is for RY to

initially decrease from a value of +1 in the initial DPS towards 0 at MY = 0,

then to rise again towards +1 as Y reversal is complete. Subsequently, RX follows

the same pattern.

Experimentally, all CDPS
X,Y (nd) are indistinguishable from random, with the

exception of certain short range correlations during the mid-stages of both re-

versals. During reversal of sublattice Y, at −469 Oe and −500 Oe, enhanced

LDPS
Y (1) correlation is observed above random, a greater enhancement for the

smaller |MY| state, indicating the propagation of correlated sequential sublattice

Y moment flips along the y-direction. Interestingly, weak suppression of PDPS
Y (1)

is observed at −500 Oe. This can be interpreted as PDPS(1) neighbours favour-

ing antialignment, a consequence of solely their direct dipolar interaction (unlike

GS correlated configurations). This implies that flip chains on adjacent rows on

sublattice Y weakly resist nucleating or propagating along side each other, and

bias towards a state as shown in figure 4.2 (c) is present, where sublattice Y

minimises its energy under the constraint of the hard polarised uninfluential X

sublattice. (As an aside, this state may be expected in a square ice lattice of

coupled superparamagnetic moments under an x-(y-)directed applied field.)
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Figure 4.6: Dipolar correlations during a magnetic square ice reversal sequence.

Experimental LDPS
j (nd) (open squares), PDPS

j (nd) (open circles) and DDPS
j (nd)

(open triangles) dipolar correlations for the (a) j = Y and (b) j = X sublattices,

as a function of the nth
d nearest neighbouring element (solid lines). Dashed lines

show the expected random correlations Rj, equivalent for all (L,P,D)DPS
j at all

nd. Random-like correlation is observed experimentally for all (L, P,D)DPS(nd)

at all fields, with the exception of short-range LDPS
j and PDPS

j correlations which

are enhanced and suppressed respectively during the mid-stages of both Y and

X sublattice reversal. This confirms that correlated cascades propagate in the

reversal direction, and shows that two cascades propagating on adjacent rows

weakly resist passing each other. These effects are most pronounced at H = −625

Oe where a MX = 0 state has formed.
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Again, reversal of the X sublattice is observed to behave qualitatively like

reversal of the Y sublattice, however, with an apparently stronger enhancement

of short range LDPS
X compared to LDPS

Y during reversal mid-stages, either due to

the applied field θ-offset or an intrinsic patterning bias. This is observed distinctly

at −625 Oe with enhanced correlation up to nd = 3. As this is a demagnetised

MX = 0 state, it is expected by symmetry that the effects of dipolar coupling on

correlation will be strongest here. Again, suppression of PDPS(1) is observed, now

with a true anticorrelation, the random correlations RX lying at 0. No significant

correlation can be seen in DDPS
X at any nd indicating that chain-chain interactions

are weak and local. Agreement of experimental and random correlation during

early and late stage of each reversal confirm that nucleation and annihilation of

oppositely charged T3 pairs are random-like processes.

4.3.3 Charge density functions

Qualitative evidence for the effects of the PDPS(1) neighbour interactions can

be seen in the formation of configurations such as that shown inset in figure

4.4 for −625 Oe. A number of oppositely/like charged pairs of T3 V7,13 ver-

tices, propagating via flip chains on adjacent lines on sublattice X, appear to be

pinned/antipinned at adjacent sites, attributable to the weak resistance of the

chains to propagate along side each other. This is an exciting idea as it works to-

wards validating understanding of the system in terms of coupled vertex objects,

rather than its underlying dipoles. To this end, we focus on the MX = 0 state

achieved at −625 Oe, and calculate the average fractional vertex type density

ρ−±(nV) of positively or negatively charged T3 vertices relative to all other nega-

tive T3 vertices at a separation of nV vertex sites in the y-direction (perpendicular

to propagation), and compare these to ideal random values ρR
−±

(nV) (inferred by

symmetry), shown in figure 4.7. As a hard-polarised Y sublattice is demanded

in this state, only 4/16 of the vertices are compatible with this condition and,

therefore, allowed to occur, V4,5,7,13. For a random allocation, producing a state

with MX = 0, it would be expected that at any given distance relative to a neg-

atively charged T3 vertex (or indeed any other reference vertex) both positively

and negatively charged T3 vertices will have an average density of ρR
−±

(nV) =
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0.25, except at nV = 0, where ρ(nV) must always be 0 or 1 respectively. The

randomly reversed maps agree closely with these ideal values. Experimentally,

the general suppression of both positive and negative T3 vertices relative to the

random reversal state by virtue of correlated chain propagation is reflected in

the average density of ρ−± ∼ 0.17, at all |nV| > 1, agreeing closely with that

observed in figure 4.5 (c). For nV = ± 1, however, it is observed that the sup-

pression of ρ−+ is notably weaker, maintaining a value close to ∼ 0.23, while

ρ−− is much more strongly suppressed with a value ∼ 0.09. (Calculations for

ρ+± yield a similar result for like/opposite charges.) From this we can directly

infer that during the reversal process, oppositely/like charged monopole-like T3

vertices do indeed couple, at least over short ranges. While such vertices also

posses a N-S dipole moment, figures 3.5 (d) and 4.4, this component is identical

for both the oppositely charged T3 V7,13 vertices allowed during the reversal of

sublattice X and is part of the uninfluential sublattice Y. Therefore, this weak T3

vertex coupling, which produces weak charge ordering, can be attributed purely

to the ±2 magnetic charge carried by their N-N/S-S components.

4.4 Defect Energetics

It is interesting to consider the excitation energy of these field-mediated chain

defects, in a similar manner to how excitations above the GS have been treated

[20; 22; 25], sections 2.5 and 6.2.3. It is clear that in the midstage reversal states

discussed in the previous sections high densities of chain objects are present,

hence it might be expected that they cannot be treated as isolated individual

entities, however, these calculations present a similar study to that of Mól et al. in

reference [20]. As in charge separation in a bulk crystalline spin ice [19], and unlike

square ice chain defects on the GS, the dipolar chains connecting an oppositely

charged pairs of vertices on the square lattice DPS as discussed form the same

2-in/2-out type of vertices as composing the ice-rule obeying background. While

the DPS is not a GS background, it raises the question of whether a “monopole-

antimonopole” pair are deconfined when their connecting chain is confined to a

1D line, as a simple isolated vertex energy model approximation is often found

to well-describe these system.
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Figure 4.7: Charge density functions at a MX = 0 state during magnetic reversal

of square ice sublattice X. Fractional density ρ−±(nV) of positive or negative T3

vertices relative to negatively charged T3 vertices in the MX = 0 state compared

to ideal random values for nearest vertex neighbour distance nV. The schematic

shows the propagation direction of a negatively charged T3 vertex, and its nth
V Y-

direction neighbours. The general suppression of average T3 density from 0.25 to

∼ 0.17 for nV > 1 is understood by the enhanced cascade propagation processes.

At nV = 1, however, a higher/lower density of unlike/like poles is observed,

indicating weak charge ordering by attractive/repulsive pinning/antipinning.
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Figure 4.8: Energetics of flipped moment chain defects on the diagonally polarised

state. (a) The dipolar energy of excitation, dEDPS above the DPS of a centrally

positioned flip chain defect (of length l shown inset) as a function of the array

size N . (b) The dipolar energy of excitation, dEDPS above the DPS of a centrally

positioned diagonal flip chain defect (of length l shown inset) as a function of the

array size N .

Calculations are performed by summing the dipolar interactions over anN×N

array of vertices of ideal point dipoles. Note, effects of quenched disorder are not

included in the calculations, a possible effect being a distribution of moment size.

A background DPS is taken, and a flip chain object of the type discussed in this

chaper of increasing length is placed with its midpoint at the array centre. The

energy difference between the defected configuration and the pure DPS, denoted

dEDPS, is plotted in figure 4.8 (a) as a function of N .

It is apparent that dE do not converge quickly with N × N size to a bulk

limit, for any value of chain length l. This implies that net long range interac-

tions, (that are strongly screened and approximately cancel out as for the GS, as

will be discussed in chapter 6), do not die off to a negligible amount and even

the shortest chains are sensitive to the system edges for N = 10. Adopting a

vertex model interpretation, here, both background and excitation are formed
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4.4 Defect Energetics

from vertices possessing intrinsic dipoles, T2,3, in contrast to defects on the in-

trinsically unpolarized antiferromagnet-like GS. Further, an approach of simply

counting the number of vertices composing the chain defect does not appear to

yield an energy approximation as for GS excitations [25] (chapter 6).

For the range of N considered, oppositely charged sites at the ends of a chain

appear to be repelled from each other, reducing energy by extension of the chain.

This is locally attributable to the P(1) interactions favoring antialignment i.e. it

is most favorable, as one sublattice is held fixed and polarised, for a chain to fully

propagate from edge to edge, possessing an energetic bias to a state as shown

in figure 4.2 (c). This requires a small initial energy to flip a single moment,

forming two unfavorable antialigned L(1) moment pairs, forming the N-N/S-S

charge configurations of an oppositely charged T3 vertex pair. Once formed, the

number of unfavorable L(1) pairs remains constant as a chain extends until the

charges reach the system edges and are expelled. There will also be an interaction

between the array “surface charge” of the DPS configuration and the bulk charged

vertex sites.

Above N = 10 it appears that extension of a chain from l = 1 to l = 2 no

longer reduces the energy, revealing a weak attraction. By N = 15 a chain of l = 1

is of similar energy to a chain of l = 3, and it is anticipated that with increased N

such interactions will also become attractive. Improved less-intensive calculations

are required to go beyond N = 15. Further, for chains of l ∼ N the “repulsion”

between poles becomes stronger, decreasing the energy by larger steps, and is

perhaps more adequately described therefore as an attraction of the poles to the

charged edges. It should be noted that such a growth process, nucleating at

the array centre and extending isotropically in both directions is rather ideal,

and distinctly different quantitative behaviour might be expected depending on

where the nucleation site is placed.

This result of the influence of longer range interactions will be generally true

for any polarized nanomagnet array - being an “artificial magnetic material”, the

system naturally favours energetically a demagnetised state. The chain defects

observed on low energy charge ordered kagome backgrounds [23; 24] will also

be subject to similar energetics, with defects comprising polarised vertices on a
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polarised background. A given selected defect vertex or chain configuration is not

energetically well-defined, despite having a well defined topological configuration.

Further, similar flip chains of a diagonal type have been observed on the DPS

in experiments and in simulations [21; 27], separating T3 pairs via chains of T1

vertices. In figure 4.8 (b), the same calculations are shown for such chain defects,

again with the defect midpoint positioned at the array centre. No longer is one

sublattice fixed in a hard polarised configuration. While convergence to a bulk

limit again appears slow, energetically, chains obey the same rules as excitations

on the GS (reference [25] and section 6). Nucleating a chain defect, increasing

from l = 0 to l = 1, creates two T3 vertices from two T2 vertices. The l = 1 defect

in both (a) and (b) are the same, and their energy appears to tend to dE ∼ 8u.

Each subsequent flip removes a T2 vertex from the system and adds a T1, reducing

the energy by ≈ 10u per flip. This holds reasonably well even for lower N

(the far-from-converged limit). The over all nicer behaviour of these diagonal

chains and reduced interaction with the system edge can be attributed to the

fact that the “defected” vertices are mainly unpolarised T1 vertices, which have

negligible net interactions with the background at long ranges or with the “surface

charge”. Again, the oppositely charged ends of the string experience a “repulsive

interaction”, propagates them respectively towards edges of opposite charge -

while interaction between T3 vertices may possibly be treated as Coulombic [20],

the net effect of their connecting chain is to propagate them until the charges are

expelled from the system edges.

It should be remembered that these calculations reflect ideal systems of finite

size, and are intended to reflect a general underlying property of the system. In

a real system, effects of quenched disorder may alter the influence of longer range

interactions.

4.5 Summary

In the propagation regime accessed by our protocol, X and Y square ice sub-

lattices reverse independently via L-type neighbour flips chains. The ends of

these chains are the N-N/S-S soliton-type objects [120] possessed by T3 vertices,

which carry the vertex charge component along adjacent 1D channels. While
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we do not address their interactions quantitatively, we show that the underly-

ing coupling of the dipole lattice manifests as vertex charge ordering, adjacent

like/unlike charges being weakly repelled/attracted. While the observed charge

coupling is only evident at nV = ±1, long range interactions also can play an

important role in such systems [12; 21], which may manifest as long range ver-

tex interactions, and accessing a strong coupling/low disorder regime is desirable

to aid their observation. Pairs of moments posses an interaction which weakens

with their separation, however, the distribution widths of properties imparted by

quenched disorder (e.g. the HX,Y
s (θ) distributions) are constants of the system.

Interactions between dipolar neighbours of increasing separation therefore be-

come quickly swamped by quenched disorder. Longer range dipolar correlations,

and therefore vertex correlations, resultant of direct interactions consequently do

not sum coherently. A full quantitative understanding could require a model

incorporating charge and dipolar vertex components.

It should be noted that modification of ideal Ising dipole behaviour, e.g. due

to internal or external fields, is not explicitly revealed in this study, however, non-

uniform island magnetisation is possible in elements of similar dimensions [27] and

symmetry-breaking field history dependent remanent vertex configurations have

been reported in kagome networks of significantly longer NiFe nanowires [26],

formed by pinned transverse domain wall charge distributions with width com-

parable to the wire-width. Such quasiparticles have also been shown to couple on

continuous adjacent wires [121] when sufficiently close together. It is possible that

the elements studied in this chapter, by virtue of their size, reverse via a more co-

herent rotation of magnetization, as opposed to domain wall propagation, which

could impart different transient magnetic dynamics. This would certainly be the

case for elements of lesser volume, of dimensions comparable with a domain wall

width, which is well within the capabilities of modern nanofabrication. Due to

the non-ideal nature of the elemental moments, the relaxation of the system un-

der remanent conditions between each applied hold-field could act to modify the

observed chain propagation relative to that induced by a monotonically increas-

ing field. For example, modification of the internal magnetisation distributions

of the magnetic elements could in turn affect elemental reversal. Likewise, the

imaging of elements with a magnetic probe tip at each step could also redistribute

89



4.5 Summary

elemental internal magnetisation and perturb the incrementation of chain defects.

Such “pulse-probe” effects however are not expected to have critically altered the

observed phenomena.

It is worth noting that the low [18; 23; 24] and high energy [18] charge or-

dered states previously reported in kagome ice patterns are both results of field-

condensation, section 2.4. While the latter is resultant of independent sublattice

reversal, neither occur by virtue of charge or dipolar interactions and would be

observed in an uncoupled system.

Furthermore, alternative reversal regimes may be accessed by altering θ.

Specifically, decreasing θ to more closely align the field with the lattice diago-

nal would allow for increased overlap between the distributions of HX
s (θ) and

HY
s (θ), potentially enhancing T1 GS tile formation [27]. Understanding the myr-

iad of methods by which to mediate order could allow for realisation of frustrated

patterns as magnetic information processing devices [66; 122].
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Chapter 5

Constant Magnitude Rotating

Field Protocol

5.1 Introduction

As previously discussed, experimental access of artificial spin ice ground states

(GSs), e.g. figure 2.6 (c), has proven to be a non-trivial task. While ther-

mal annealing can allow access to long range GS ordering in artificial square ice

[25], producing large “chess-board” tiled T1 vertex domains of two possible sense

(chapter 6), following fabrication the magnetic elements are typically athermal

and field-driven annealing must be employed via ac demagnetization to drive

systems towards low energy states [3; 9; 12; 16; 17; 18; 57].

In large area patterns, the most effective routine is reported to involve a step-

wise decreasing in-plane square function field profile, with simultaneous in-plane

sample rotation [14], section 2.3.1. A critical field window exists, [Hmin, Hmax],

defined by the intrinsic distribution of elemental properties due to quenched dis-

order and configuration dependent net dipolar interactions, in which the applied

field can mediate non-trivial reconfiguration of the elemental Ising states allowing

the system to explore its magnetic phase space.

Recent theoretical work of Budrikis et al. has suggested that an alternative

simplified protocol might enable extensive GS ordering [21], section 2.3.4. In

simulation, finite sized square ice systems of point Ising dipoles, beginning in a

diagonally polarized state (DPS) of pure T2 vertex tiling, figure 2.6 (d), were
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subject to a rotating in-plane hold-field Hh of constant magnitude Hh. The

final steady-states were found to have significant dependence on the open or

closed array edge-types studied, figure 2.20, and the value of Hh. All non-trivial

behaviour is found to occur within a critical field window (a result not dissimilar

to that reported for ac demagnetisation [16; 78], sections 2.3.1 and 2.3.3), with the

modified edge coordination providing chain-nucleation sites by virtue of modified

net dipolar interaction. For open arrays, two non-trivial field regimes were found,

and strong GS vertex populations and GS ordering can be achieved.

In the low field regime, T3 sites are incrementally propagated into the bulk

with each field rotation where the only allowed reversals are via chains of T1

vertices. Opposite charges meeting in the middle annihilate leaving behind near

perfect GS tiling. In the high field regime, propagation is also allowed via chains

of T2 vertices, which consequently results in charge trapping and jamming, with

reduced ability to access GS configurations. In closed-edge patterns, no low field

regime exists as T3 vertices are not allowed to nucleate until Hh is above the

threshold for T2 chain propagation.

In this chapter, an experimental realization of such a constant magnitude ro-

tating field protocol will be presented. Square ice patterns of equivalent shape

and size to those of reference [21] were studied with MFM, figures 5.1 and 5.2

respectively, in search of the strong GS ordering and edge effects predicted. Nei-

ther of these predicted effects are found. For both open and closed patterns an

identical variation of vertex populations with hold field, Hh, is observed, with

optimal GS order and demagnetization occurring at ∼ 520 Oe, however, this is

significantly suppressed relative to predictions. This is attributed to the absence

of the effects of quenched disorder in the theoretical studies discussed.

5.2 Experimental Protocol

Five nominally identical arrays of both open and closed edge were patterned on

a single Si chip with electron beam lithography, using a JEOL 6300 system, and

vacuum evaporation, as per sections 3.1 and 3.2. Islands were ∼ 85 nm × 280

nm in lateral size on a lattice of a = 400 nm constant, with a thin film structure

of Cr(2nm)/NiFe(30nm)/Al(2nm), forming moments of ∼ 106µB, with nearest
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411 Oe 433 Oe 455 Oe

476 Oe 498 Oe 520 Oe

541 Oe

606 Oe

584 Oe563 Oe

Figure 5.1: MFM series for open edge patterns following the rotating field protocol

at hold field Hh. The moment configurations boxed in green and pink at 433 Oe

are mapped schematically with dipolar dumbbells in the lower left and right

panels respectively. Both schematics show moment chains reversed against the

DPS (green outlined dumbbells), one connected to the open edge (lower left panel)

and one isolated in the bulk (lower right panel). Both dipolar chains propagate

T3 vertices via chains of T1 vertices. Scale bars are 2µm.
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411 Oe 433 Oe 455 Oe

476 Oe 498 Oe 520 Oe

541 Oe

606 Oe

584 Oe563 Oe

Figure 5.2: MFM series for closed edge patterns following the rotating field pro-

tocol at hold field Hh. The moment configuration boxed in green at 433 Oe is

mapped schematically in the lower right panel as dipolar dumbbells, showing the

propagation of charge from the closed edge into the bulk via a chain of moments

reversed against the DPS (outlined in green), forming a T3 vertex at the end of

a chain of both T1 and T2 vertices. Scale bars are 2µm.
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neighbour coupling of ∼ 10 Oe. A large in-plane field H = 1.8 kOe was applied

along a diagonal symmetry axis to first prepare a 100% T2 DPS, [30]. The field

was then reduced to a hold value Hh. In-plane rotation of the sample with a

period of 29.4 ms was then begun. After ∼ 20s, ∼ 680 full rotations, sufficiently

more than required to reach a predicted steady-state [21], the field was ramped to

zero at a rate of ∼ 10,000 Oe/s. It should be noted that the finite ramp-down time

is not expected to drastically effect the outcome of the experiment - estimating

Hmax − Hmin ≈ 100 Oe (as will be subsequently confirmed), the ramping field

will cross this range within a single sample rotation. As a function of Hh, the

remanent state of each array was then imaged by MFM (also confirming the single

domain dumbbell behaviour of each moment), at 22 Oe increments between 411

Oe and 606 Oe. Uncertainties in all values quoted are calculated as the standard

error over the five arrays imaged.

5.3 Experimental Results

Figures 5.1 and 5.2 show example MFM images from the Hh sequence for open

and closed edge arrays respectively. Note, the same array is not strictly imaged

in each micrograph. Note, as per chapter 4, an averaged-state interpretation will

be adopted. Key configurations of interest are boxed are mapped schematically

(insets) in terms of dipole moments, and vertex type. The normalised digital

magnetization vector, M, as previously defined (section 3.5.1), and percentage

vertex type populations are tracked in figures 5.3 respectively. A number of

important points should first be noted. Firstly, no significant difference is found

between the statistics for open and closed arrays for allHh. Secondly, an optimum

T1 populations is found at Hh = 520 Oe coincident with M ∼ 0, however, this

maximum is significantly suppressed to that predicted from the ideal point Ising

dipole model simulations [21]. Both these observations can be understood by the

fact that real systems are inherently imperfect due to quenched disorder.

Below Hh ∼ 433 Oe, Hh < Hmin for all islands. The initial DPS state is

therefore retained at remanence. For Hh = 433 Oe to 455 Oe the lower region of

the critical window is accessed, with an increasing number of correlated moment

reversal events occurring, figures 5.1 and 5.2, forming sequential chains of T1,2
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Figure 5.3: Statistics of open and closed edge square ice states following constant

magnitude rotating field treatment. (a) Normalised digital magnetisation for open

and closed edge square ice patterns, following a constant magnitude rotating field

protocol, with magnitude Hh as labelled. (b) Vertex populations as a function of

Hh.
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vertices with T3 at their ends, accompanied by a linear decrease in M with MX

= MY. Such chain objects are similar to those reported previously in uniaxial dc

field experiments which occur by virtue of random-like nucleation, dipolar cou-

pling, correlated cascading and random-like pinning [23; 24; 27; 29], as discussed

in section 2.4 and chapter 4. A significantly DPS-like background is still main-

tained. While some chains are edge-connected, it is clear from the MFM that

bulk chain nucleation must be predominant.

AsHh is increased to 476 Oe, figures 5.2 and 5.1, small patches of GS-like tiling

begin to form, and mixed DPS/GS phases are found, as Hh can reverse increasing

numbers of moments from the initial DPS but is not large enough to subsequently

destroy GS the order formed. As 520 Oe is approached, M approaches 0 and T1

populations approach a maximum of ∼ 50 % where significant GS ordering is

established. Populations of all four T2 (V3−6) vertices reach a similar value here

(not shown). The state adopting such an averaged four-fold rotational symmetry

implies that memory of the initial DPS has been lost. Narrow domain wall

structures similar to that following thermal ordering [25], chapter 6, are also

observed.

IncreasingHh beyond 520 Oe results in the rapid suppression of GS order. The

upper limit of the critical window is accessed, and only those moments which are

most strongly pinned are not periodically dragged by the field. This is evident

in the increasingly polarized states observed, figure 5.3, the magnitude of M

increasing but with an apparently random direction, which becomes increasingly

dependent on the field direction at the time ramp-down occurred. From 5.3 (b),

Hmax − Hmin ≈ 100 Oe, which will be crossed by the applied field in ∼ 10 ms,

within a single rotation of the sample, avoiding demagnetization effects which

would occur for a slowly ramped protocol, such as the linear decreasing ramp

discussed in section 2.3.1 (figure 2.8 (b), protocol 2 [14]).

5.4 Discussion

It is clear that the edge effects predicted by Budrikis et al. [21] are not found. This

is not however a failiure of the model used, rather it is due to strong enhancement

of chain nucleation across the whole array span giving rise to bulk effects which
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are blocked by energetic constraints in an ideal system. Whether the non-Ising

or non-point dipole nature of the elements are contributing factors is unclear.

Non-Ising dipoles are likely to be a strong contributor to quenched disorder,

whereas non-point dipoles would most likely not qualitatively alter the observed

behaviour.

Further insight can be gained into the role of both disorder and finite ramp-

ing rates by incorporating these effects into simulation, which is currently being

explored with collaborators [123], the authors of reference [21]. By incorporation

of a finite Gaussian distribution of switching fields hc into the same simulations

discussed in section 2.3.4, the experimental results presented in this chapter can

be qualitatively and semi-quantitatively reproduced, figure 5.4, capturing the

same suppression of edge-effects and GS ordering by the enhancement of bulk

nucleation and pinning, as well as similar vertex populations, for correctly tuned

disorder strength [123].

The growth and evolution of chain structures and order have not been tracked

temporaly in the study presented in this chapter. A more elaborate experimen-

tal set-up would be required to perform such an investigation. Further, it could

prove interesting to correlate the orientation of dipoles and the positions of ver-

tices for the same pattern following repeat field treatment or following treatment

at different Hh, as the averaged interpretation given here does not reveal such

information. Such experiments could reveal the effects of parameters such as

quenched disorder strength on the repeatable access of states [77], pinning and

nucleation.

5.5 Summary

In this experiment, the theoretical predictions for the behaviour of initially po-

larised finite sized square ice patterns under a constant magnitude rotating ap-

plied field [21] have been tested. The distinct suppression of edge effects which

are predicted to lead to strong GS order can be understood by the influence of

quenched disorder on the switching properties of the systems’ elemental compo-

nents. These effects are currently under further theoretical investigation.
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Figure 5.4: Simulated variation of final vertex populations for open and closed

edge square ice patterns with the inclusion of quenched disorder. Populations of

vertex types T1−4 are shown in blue, purple, yellow and green respectively, with

open and closed symbols representing open and closed edge patterns respectively.

By incorporating the correct amount of disorder via a Gaussian distribution of

randomly allocated switching fields, hc, as well as a finite field ramp-down time,

very good agreement can be achieved between simulations and the experimental

results of figure 5.3. Figure courtesy of Z. Budrikis and R. Stamps [123].
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Chapter 6

Thermal Ordering in

as-fabricated Systems

6.1 Introduction

In this chapter, the as-fabricated states of artificial square ice patterns will be

addressed, imaged using MFM, section 3.4. It has been found that fabrication

via a standard process of electron beam patterning of polymer resist (section 3.1)

and vacuum evaporation of material (3.2), allows for a magnetic self-ordering

process to occur during early stages of metallisation, when the elemental magnetic

moments, coupled via dipolar interactions, are in a thermalised phase [25]. A

specific case-study will be largely focussed on, as recently reported [25], where

evidence for thermal ordering is found qualitatively in the microscopy, in which

large GS domains spanning ∼ 10 µm are observed, separated by domain walls of

higher energy vertices. Further, quantitative evidence is found in the Boltzmann

factor-weighted monopole/string magnetic defects [20; 22] observed on the GS

background. This work presents the first experimental acquisition of any true

spin ice ground state over any significant long range length scale, and contains

the experimental first observation of isolated square ice “magnetic” monopole

defects above this GS. More generally, it is the first example of long range thermal

ordering of any such patterned nanomagnet system, resolved by microscopy.

Further, it will be shown that long range ordering can be controlled by tuning

both the interaction strength between elements, and the sample underlayer/buffer
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roughness. While the exact quantitative reproducibility of this anneal process has

not yet been realised, due to currently unisolated fabrication-stage parameters, a

high level of GS ordering can be achieved over a wide parameter range. Using a

straight-forward statistical mechanical formalism, it will also be shown that the

states observed are truly equilibrated. This allows for a direct comparison to be

made with the effective thermodynamical description of ac demagnetisation put

forward by Nisoli et al. [64], section 2.3.2, providing insight and inference into

mechanisms common to both processes, as well as crucial differences.

6.1.1 Evidence for as-fabricated Order

As part of routine sample characterisation, prior to conducting any extensive

experimental procedures, samples were imaged using MFM to test for single do-

main Ising moment behaviour and magnetic stability of elements when subjected

to the magnetic probe tip. Figures 6.1 and 6.2 show example SEM images for

an a = 700 nm and 500 nm lattice constant sample, respectively. The 700 nm

sample was patterned using the Helios system as an array of 25 µm by 25 µm

writefields, as seen in figure 6.1 (a), spaced by ∼ 1 µm, over a total area of ∼
2 mm by 1.6 mm, with a thin film structure of Ta(3 nm)/NiFe(25 nm)/Al( 3

nm) and lateral island dimensions of 280 nm by 85 nm, figure 6.1 (b,c). The 500

nm sample was patterned using the JEOL 6300 system using 0.5 mm × 0.5 mm

writefields, stitched together with an accuracy of 20 nm, over a total area of 1

cm × 1 cm, with a thin film structure of Ti(3 nm)/NiFe(30 nm)/Al(2.5 nm) and

island dimensions of 90 nm × 250 nm.

Samples were imaged in their as-fabricated states via AFM and MFM at sev-

eral different locations over ∼ 12 µm × 12 µm areas distributed across the extent

of the patterns. Figures 6.3 and 6.4 show representative (a) AFM and (b) MFM

images of these respective samples. It should be noted that no global magnetic

fields were intentionally applied to the samples discussed in this chapter prior

to imaging their “as-fabricated” states. By visual inspection, the states appear

demagnetised and disordered. Analysis of the MFM images as per section 3.5

gives the as-fabricated net normalised magnetisation of the a = 700 nm spaced

pattern (figure 6.3) and the a = 500 nm spaced pattern (figure 6.4) to be (MX
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(a)

(b) (c)

Figure 6.1: SEM of an a = 700 nm spaced artificial square ice patterned using

the Helios system. Sample details are discussed in the main text. Images are

taken at relative magnifications of (a) ×1,500, (b) ×20,000, and (c) ×100,000.

(a) shows the ∼ 20 µm sized square ice patterns, each spaced edge-to-edge by

∼ 1 µm. (b) and (c) show the elements in higher detail, revealing presence of a

recurring patterning artefact, with “boot-shaped” elements.
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6.1 Introduction

(a) (b)

Figure 6.2: SEM of a = 500 nm spaced artificial square ice, patterned using the

JEOL system. Sample details are discussed in the main text. Images are taken

at relative magnifications of (a) ×25,000, and (b) ×100,000 are shown. Elements

appear more symmetric that for the pattern shown in figure 6.1, resolving the

“roughness” of the elemental edge structure.

= -0.06 ± 0.03, MY = 0.07 ± 0.02) and (MX = 0.04 ± 0.03, MY = 0.01 ± 0.06)

respectively, confirming the former point. This is not too surprising as negligible

magnetic fields are expected at the sample plate during material deposition (sec-

tion 3.2) and no fields are purposely applied post-deposition. While it would not

be unreasonable to assume the random allocation of the Ising orientation of each

element, evidence contrary to this is found in the vertex populations (in excess

of the RS) and GS dipolar correlation statistics, shown in (c) and (d) respec-

tively for both figures 6.3 and 6.4. Firstly, a surplus/deficiency of lower/higher

energy T1,2/T3,4 vertices is seen, compared to that expected of a random state,

which would lie at 0% excess in (c) for all T1−4. Secondly, the as-fabricated

sample states possess weak short range magnetic correlation (d), not dissimilar

from that obtained by ac demagnetisation, see section 2.3.1. Over long range (≥
2 nearest neighbours) random correlation is observed with all CGS(nd) = 0 over

all nth
d neighbours of type C = L, P,D. For both arrays, weak GS correlation is

observed for P (1) and D(1). Interestingly, weak anticorrelation for L(1) is found,

implying short range alignment of moments along L-type chains of neighbours,

perhaps indicative of a polarizing field effect. However, as the states are found
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to have negligible net moment, this suggests that such polarised chains lie with

an equal distribution of orientations along the ± x, y-directions.

While this apparent self-ordering is weak, it is clear that the states imaged

are well-defined across the span of the patterns. It was initially hypothesised

that the observed ordering was a result of thermal ordering, under the influence

of elemental dipolar coupling. Evidence is present that the ordering is sensitive

to the lattice constant a, i.e. the island-island interaction strength, the 500

nm lattice constant sample possessing a stronger surplus/deficiency of low/high

energy vertices and short range correlation. It will be shown that this is indeed

the case. The two samples have, however, a number of distinct differences. They

were separately patterned on different substrate with a different coating of resist

using two different EBL tools with different beam parameters, and were separately

metallised at different times, as well as having islands of slightly different size.

It is possible that a number of these factors contribute to the intrinsic structural

disorder of the patterns, affecting the elemental edge and thin film interfacial

roughnesses, in turn affecting the distribution of magnetic island properties.

As a further example, figure 6.5 (a,b) show two ∼ 10 µm × 10 µm MFM

images of two different nominally identical samples of 400 nm lattice spacing,

fabricated within a few days of each other using the JEOL 6300 EBL system

(section 3.1) and vacuum deposition systems. It is clear that two distinctly dif-

ferent states have formed. This drastic lack of quantitative reproducibility has

been observed across a large number of samples, and is suggestive that there are

subtle but significant difference between the patterning and/or growth processes

between samples. Evidence is also present that patterning using the JEOL sys-

tem produces stronger effects than the Helios (features such as the “boot-shape”

of the elements of the a = 700 nm sample, figure 6.1, can play an influential role

in the behaviour of a nanoelement [92]). Exploration of these hypotheses would

require involved controlled experiments addressing the fabrication parameters.

For such reasons, close attention has been maintained on as-fabricated states.

Conclusive evidence for thermal ordering has been found, as recently reported

[25]. The observation of a face-like configuration in figure 6.5 (b) is believed to

be coincidental, however, what is striking about this image is the high uniformity

of the magnetic state achieved.
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Figure 6.3: Microscopy of the as-fabricated state of an a = 700 nm lattice constant

square ice array. (a) Atomic and (b) magnetic force miscrographs of a ∼ 12 µm ×
12 µm region of the as-fabricated state, as discussed in the main text. Evidence

for self-ordering is found in (c) the surplus/deficit of lower/higher energy vertex

populations, and (d) short range magnetic correlation for nd = 1.
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Figure 6.4: Microscopy of the as-fabricated state of an a = 500 nm lattice constant

square ice array. (a) Atomic and (b) magnetic force miscrographs of a ∼ 12 µm

× 12 µm region of the as-fabricated state, as discussed in the main text. It

appears that the effect of self-ordering is stronger in this pattern, in comparison

with that in figure 6.3, with (c) stronger surplus/deficit of lower/higher energy

vertex populations, and (d) stronger short range magnetic correlation, extending

to D(2).
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2 mμ2 mμ

(a) (b)

Figure 6.5: MFM images of the as-fabricated states of two nominally identical

square ice patterns of a = 400 nm. Distinctly different as-fabricated magnetic

states have been accessed, that in (a) appearing distinctly more disordered that

shown in (b).
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6.2 Ground State Ordering

6.2 Ground State Ordering

In this section attention will focus on a case study of a single sample, specifically

that imaged in figure 6.5 (b). While the lack of exact control of ordering is non-

ideal, it will be assumed that the conditions and parameters during fabrication

are homogeneous across single samples, the observed states being well-defined

across the patterns. The statistics presented in figures 6.3 and 6.4 support this

assumption. A fabrication run is in this sense “self-contained”.

The pattern consisted of islands of lateral area A = 280 nm × 85 nm, on

a lattice of pitch a = 400 nm, with a thin film structure of Ti(3 nm)/NiFe(26

nm)/Al(2.5 nm), shown under SEM in figure 6.6. A minimum edge-to-edge spac-

ing of ≈ 50 nm is found. A total patterned area of 2.5 mm2 was formed from

multiple 0.5 mm2 writefields, with a stitching error of approximately 20 nm. Nine

∼ 40 × 40 µm2 areas were imaged with MFM, at locations distributed ∼ 1 mm

appart and far from the edges, surveying approximately 13, 700 µm2 and approx-

imately 165,000 magnetic elements in total. The complete data series is given in

appendix A.

(a) (b)

Figure 6.6: SEM images of the a = 400 nm lattice constant square ice pattern, as

shown by MFM in figure 6.5. Images are taken at magnifications of (a) ×22,000,

and (b) ×130,000. The elemental shape and edge structure is very well resolved

in (b).
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6.2.1 MFM Identification of Ground State Ordering

An example image from the MFM survey is shown in figure 6.7 (a), of 40 µm ×
40 µm. It is clear, as for figure 6.5 (b), that a state of uniform background order

has formed with distinct chain-like defects distributed across (as also shown later

in figures 6.17 and 6.18). A 10 µm × 10 µm area is shown magnified inset, along

with a vertex key, with key features of interest boxed and labelled, each further

magnified in (b) with configurations mapped out in terms of magnetic moments

and vertex types.

The first area of interest is that labelled GS - when mapped out, it is revealed

that the state’s uniform background is perfectly GS-tiled over length scales of ∼
20a, the chess-board of bowtie-like T1 tiles being clearly identifiable. This is

emphasised in figure 6.8, where a schematic representation of the GS in terms of

dipoles and their corresponding north and south poles is partially overlayed on

a similar section of MFM image, highlighting the arrangement. All 1st nearest

neighbours, as indicated in figure 6.8, are arranged north-to-south, all 2nd and 3rd

nearest neighbours consequently being antialigned. The second areas of interest

are DW1 and DW2. Here, two regions of GS order are separated by chains of

T2,3 vertices, as indicated in figure 6.7 (b) by green arrows and blue/red circles

respectively. Close inspection reveals that the two regions are of opposite sense

of the two-fold degenerate GS, indicated by black and grey arrows - these two

senses are inherently incompatible, hence the meeting of two regions of opposite

sense must form such higher energy vertex chains. Hence, we are observing a

state consisting of large incompatible T1 GS domains of ∼ 10 µm size, separated

by domain walls (DWs) of higher energy T2,3 vertices, analogous to those in an

antiferromagnet, which can be seen by considering a single X or Y sublattice

of the system. The image in figure 6.7 is representative of all images collected

(appendix A). Interestingly, no T4 vertices are observed across the entire survey,

a point which will be returned to subsequently.

As well as DWs, the system possesses a number of smaller isolated defect

objects distributed across, as contained in region 1. When mapped out, region 1

is shown to be of GS order with a single moment flipped against it, forming two

oppositely charged T3 vertices at the expense of two T1 vertices, analogous to
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Figure 6.7: Long range square ice ground state ordering, as observed by MFM. (a)

A 40 µm × 40 µm area MFM image, taken from the as-fabricated survey of the

a = 400 nm lattice constant square ice. A state of distinctly uniform background

order is observed, with distinct chain-like objects distributed ∼ 10 µm apart, as

well as smaller localised object. A 10 µm × 10 µm area is magnetified inset,

as well as a vertex key. Mapping out the dipolar moment configuration of the

selected boxed regions, (b), reveal that a state of strong GS ordering of T1 vertices

has formed, with chain structures formed from higher energy T2,3 vertices.
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GS: S μN

First

Third

Second

Figure 6.8: MFM of the square ice ground state. A schematic representation

of the GS overlayed on a section of an MFM image, highlighting the magnetic

ordering of elemental magnetic dipoles. 1st, 2nd and 3rd nearest neighbour element

pairs are indicated in green.

the magnetic monopole defects in real spin ice [19]. Regions 2L and 3Z contain

similar objects, where sequential chains of moments are flipped against the GS

background, and the sequence 1, 2L, 3Z represents a monopole/antimonopole

pair separation process along a connecting chain of T2 vertices. Such defect

objects will be further discussed in section 6.2.3.

6.2.2 Thermal Ordering Model

This is the first reported experimental observation of long range GS ordering in

a spin ice system, of both artificial square and kagome geometry, as well as in

real spin ice where a true GS of periodic nature has been predicted [49]. It is

also the first experimental observation of isolated square ice monopole objects on

the GS background, as discussed theoretically [20; 22]. The immediate question

that is however raised is - how did this highly ordered state form? It is extremely

unlikely that an applied field induced this state: dc fields greater than the islands’

switching fields result in long range ferromagnetic polarisation [30] (see chapter
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4), while ac demagnetisation has been shown to access short range correlated

states. As previously stated, thermal ordering is a promising candidate, however,

the systems are athermal at ambient temperature with exceedingly large barriers

to activation and are stable under imaging.

The possibility still remains for such ordering to occur via thermalisation,

taking place during the early stages of material deposition. An island will form

a continuous magnetic layer within 0 < d . 1 nm of NiFe growth (for a de-

tailed discussion of thin film nucleation and growth, see the textbook of Ohring

[103]). At temperature T , its moment µ(d, T ) = AdM(T ), where magnetisation

M(T ) ∝ 1 − cT 3/2 for constant c [31]. Nanoelement dynamics will occur ac-

cording to a Néel-Arrhenius rate ∝ exp(−βEb) [31], where the reversal barrier

energy Eb = KAd for shape anisotropy K(d, T ) = µ0DM2(T )/2 (the demag-

netising factor D will depend on d as it affects the element aspect ratio [124]),

and β = 1/kBT , with kB the Boltzmann constant. Dipolar interactions are then

∝ µ(d)2/r3 where r is the centre-centre separation of two islands. This slightly

lowers/raises Eb for moments in energetically unfavourable/favourable configu-

rations, biasing transitions towards lower energy states, allowing interactions to

locally resolve before the moments block (freeze) at d ∼ a few nm. Correct tuning

of interactions/barriers allows for strong GS ordering in ideal optically-trapped

colloidal square ice [75], and likewise, we are aided here by short inter-island

distances. As seen in simulations of superconducting vortex ice [78], section

2.3.3, finite levels of weak disorder lead to multiple GS-order nucleation centres.

Compatible regions coalesce, while incompatible regions must form DWs, which

become frozen-in as dynamics slow down. Slowly raising d, therefore, has an

equivalent effect to a decreasing-T anneal. A finite d-dependent probability also

exists for localised defects to occur within the GS domains, which have also been

preserved. Combined AFM and MFM show no obvious underlying structural

defects on those particular elements that support these magnetic defects, so they

are presumably subtle, as illustrated in figure 6.9. (Note, it is often not possible

to clearly resolve the finite gap between the 1st nearest neighbour elements of a

closely packed pattern, hence a number elements in these images appearing con-

nected. SEM shows that this is not the case, figure 6.6.) Compelling evidence
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that such a thermal ordering process is the correct explanation for the observed

order will shortly be presented.

(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Comparison of AFM and MFM images at the locations of magnetic

defects. Close-up AFM (left) and MFM (right) images of regions containg mag-

netic defect configurations. The MFM shows defect (a) 3U, (b) 4O, (c) 3T, (d)

4+, and (f) 5Z (in reference to figure 6.10). Islands supporting magnetic defects

possess no obvious underlying structural defects. Note the apparent height dif-

ference between the two sublattices in some images is not real and is an artefact

of image processing.

Thermally ordered ground states have previously been sought in other arti-

ficial model systems. Artificial 2D Ising antiferromagnets have been previously

studied, using superconducting flux vortex arrays [6; 7; 70; 71] and close-packed

colloidal spheres [72; 73]. In the former, thermal annealing could not access long-

range ordered states, even where an unique GS was defined, partly attributed to
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patterning disorder. In the latter, “annealing” produced a compressible “glassy”

phase, rather than the triangular GS. As-fabricated square ices have been studied

in previous works following milling of sputter deposited films [30], not allowing

thermalisation.

It would perhaps be misleading to omit a reminder of one specific feature

of the fabrication process, not mentioned above. While the magnetic elements

are being deposited from the base up on the substrate during evaporation, so

is a magnetic thin film being deposited on the surface of the ∼ 100 nm thick

patterned resist template, which is subsequently removed via the liftoff stage of

fabrication. The behaviour of the film during growth, taking the form of an “anti

artificial square ice”, is currently unknown, as are its interactions with the square

ice system. In the following analysis, no evidence is found that this unwanted

film has any influence on the system, suggesting that it is either too far away

to have an effect, or that it forms a magnetisation distribution which minimises

stray field. NiFe is a soft magnetic material, naturally forming large magnetic

domains, hence minimising the presence of domain walls and associated stray

fields which often emerge from thin film material surfaces. Under a point dipole

approximation, at a point 100 nm away along a direction perpendicular to its

vector moment, a Permalloy element of ∼ 1 nm thickness and magnetisation

M = 860× 103 Am−1 [125] will generate a dipolar field of magnitude Hd ≈ 1600

Am−1 ∼= 20 Oe, in a direction antiparallel to the vector moment (equation 1.1).

6.2.3 Magnetic Defects and Excitations

Imaging an athermal system of islands with large d provides no information about

the dynamics of ordering or defect formation, allowing only for the end results

to be observed. Despite this, examination of the frozen configurations provides

strong evidence for the occurrence of thermally mediated ordering at low d, sup-

porting the thermal ordering hypothesis outlined previously, as well as insight

into likely growth and propagation pathways of defects.

Qualitative classification of localised defects provides a useful starting point.

As introduced in figure 6.7 (b), localised defects may be represented by reversed

moment maps (insets) indicating the sequence of moments that must be flipped
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Figure 6.10: Magnetic defects observed on the square ice ground state. (a) Ex-

amples of magnetic defect structures, shown as regions of MFM and moment

flip maps. l defines the number of moments flipped against the background in a

defect, which is used to label an excitation, along with a letter representative of

shape. (b) The excitation energy, dE(N), of an array of N × N vertices, with

various defect confiurations positioned at the centre. dE(N) converge close to

a “bulk” limit by N ∼ 4, given defects well-defined excitations energies. Note:

energy is calculated in normalised energy units u, as defined in the text.
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against the GS to form a given defect configuration; translation, rotation, re-

flection or inversion of a map produces an energetically equivalent defect on the

GS by symmetry. Localised defects may be assigned a number, l, equal to their

number of moments reversed against the GS, and a mnemonic character in ref-

erence to their shape. A representative selection of defects with corresponding

flip maps is shown in figure 6.10. Many of these configurations are observed mul-

tiple times in the MFM survey, particularly those with low l. Visual inspection

suggests that all defects may be considered as formed from sequentially flipped

chains of 1st nearest neighbour moments. No defects possess sequential 2nd near-

est neighbour flips, unless they share a common flipped 1st nearest neighbour.

This is equivalent to the observation that no T4 vertices occur, as illustrated in

figure 6.11 - sequential reversal of a 2nd nearest neighbour pair transforms three

T1 vertices into two T3 vertices and a single T4 vertex. Typically, these isolated

defects are spaced by at least several vertices. A small fraction of configurations

are observed where sequential ∼ 3rd nearest neighbour reversals occur, uncon-

nected by 1st nearest neighbour reversals, figure 6.12. Qualitatively, they appear

as two separate chains of sequential 1st nearest neighbour flips, as shown in their

respective flip-maps.

(a) (b)

Figure 6.11: The simplest configuration that could form a T4 vertex on the square

ice ground state. Two sequentially flipped 2nd nearest neighbour moments re-

moves three T1 vertices from the ground state (a), and forms (b) two like-charged

T3 vertices and one central oppositely charged T4 vertex. T4 configurations are

strictly not observed in the MFM survey.
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3Z + 5P 1 + 2L

3Z + 2L 4O + 1

(a) (b)

(c) (d)

Figure 6.12: MFM of composite excitations. Magnetic configurations found in

the MFM survey which can be interpreted as two closely positioned, weakly

interacting, excitations, e.g. (c) defecct (3Z + 2L) being comprised of a 3Z

and a 2L, which are two chain defects, represented with black and red flip maps

respectively, unjoined by a 1st nearest neighbour link.

Defect Energetics

It is desirable to treat moment configurations and magnetic defects energetically,

in order to gain better understanding of their nature, and from the point of view

of their reliable manipulation. As presented, isolated defects can, at least qual-

itatively, be treated as topologically well-defined entities, formed from only 1st

nearest neighbour flip chains. Any flipped moments separated by more than a

1st nearest neighbour can be considered as part of two separate defect objects.

Simple dipolar energy calculations, section 3.5.3, provide powerful further in-

struction. Summing the interaction energies over an N × N array of vertices of

point dipoles [20; 22; 57; 74], the excitation energy dE above a GS background

for a given configuration may be calculated in units of u = µ0µ
2/4πa3, as outlined

in section 3.5.3. Positioning individual defect configurations at the centre of a

GS-ordered array, dE(N) converges acceptably closely to the large array limit by

N & 4, figure 6.10 (b). This indicates that defects need to be at least ∼ 2 vertices

away from an edge to no longer “see” it. All shapes therefore have well-defined

bulk dE (given for all excitations in figure 6.10 (a) in appendix A), i.e. they are
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elementary excitations of the square ice system. Further, dE tends to increase

with l, however, the necessity to consider defects as chains of at minimum 1st

nearest neighbours is illustrated, dE not being simply proportional to l. Calcu-

lations show that excitations must be only 2-3 vertices away from other defects

(excitations, DWs, edges) to be non-interacting. Table 6.1 shows the values of dE

for the configurations shown in figure 6.12, as well as those for the two individual

subshapes they comprise and the linear sum of these two values. Two excitations

separated by a third nearest neighbours distance, figure 6.12 (a) (3Z + 5P) and

(d) (4O + 1), couple to lower their combined energy by ∼ 1%. Such config-

urations could be considered as a composite excitation, however, the frequency

of such occurrences and excitation density are sufficiently low to neglect this in

further analysis. Most excitations observed are therefore largely unaffected by

lying within a finite domain, coupling producing only a small perturbation to

this approximation.

Table 6.1: Dipolar excitation energy of composite excitations shown in figure

6.12. Shown are the composite excitation names (A + B), the bulk values for

the two component excitations’ energies, dE(A) and dE(B) respectively, their

linear sum dE(A) + dE(B), the composite excitation energy dE(A + B), and

the % energy shift caused by their interaction.

A + B dE(A) dE(B) dE(A) + dE(B) dE(A + B) % shift

(a) 3Z + 5P 51.88 71.74 123.63 119.20 -3.71

(b) 1 + 2L 28.84 40.72 69.56 69.47 -0.13

(c) 3Z + 2L 40.71 51.88 92.60 94.42 1.93

(d) 4O + 1 39.49 28.84 68.34 66.66 -2.52

Figure 6.13 (a) shows calculated values of dE for a 15 × 15 vertex array of

point dipoles on which a type-1 excitation is centred at position x = 8 as shown

in (b,c). A second type-1 is then incrementally propagated across the centre

of the array. The dotted line shows the energy 2dE(1). Two orientations of

the excitations are considered, as shown. In both cases, the combined energy

of the two excitations is only modified from the linear combination when the

moving defect is positions at the edge-most site, x = 1, or within 2 vertices of
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6.2 Ground State Ordering

x = 8 where the stationary excitation is held (the value of dE = 0 at x = 8 is

a result of positioning two identical excitations at the same location i.e. flipping

an island which is already flipped against the GS). This further illustrates that

these excited configurations interact only weakly and at short range with other

defects, excitations and edge structures.
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Figure 6.13: Excitation energy proximity test calculations. (a) The dipolar exci-

tation energy of a N = 15 square ice on which a defect 1 is held at the centre,

while a second 1-defect is incrementally moved across the same central row of

moments, at position x, calculated for two orientations of defects, as illustrated

in (b) and (c). The red series in (a) corresponds to the process illustrated in (b),

whereas the black series corresponds to that shown in (c). Also shown in (a) is

the bulk-limit value of dE(1) and 2dE(1) (blue dashed lines). Deviation from a

simple linear sum only occurs when the propagating defect is positioned close to

the stationary defect, or close to the system edges.

Over the MFM survey, the relative abundances of the different excitations have

been counted, ∼ 500 in total. As shown in figure 6.14(a), the observed frequencies

decrease exponentially with dE, as would be expected for thermal excitations.

This distribution may hence be described as being given by Boltzmann factors

∼ exp(−βdE). The line of best fit (red dashed line) returns a value of kBT =
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6.2 Ground State Ordering

1/β = 10.0±0.5 in units of u. It can therefore be written that kBT = 10µ0

4π
(MAd)2

a3
.

Estimating sample temperature to be T ≈ 350 K during growth, and M ≈
860 × 103 Am−1 for Permalloy, this gives a value of d ≈ 0.9 nm, an estimate

for the island thickness at which the thermal ordering occured, comparable with

the thickness at which the magnetic layer will become continuous. (Note, the

inverse argument could have been made by initially estimating d ∼ 1 nm to be

the thickness at which ordering occured which returns a realistic value of T .)

This is compelling evidence that these excitations are thermally activated, and

that thermal ordering can take place during the early-growth stages of sample

fabrication.

Internal Structure and Growth of Excitations

Whilst the overall trend is for dE to increase with l, exceptions may be found, e.g.

2L and 4O both have dE ≈ 40u, figure 6.10 (b) and 6.14 (a). It is instructive,

therefore, to further classify a given excitation in terms of s and p, the number

of T2 vertices and number of oppositely charged T3 vertex pairs respectively.

Grouping excitations by p, dE is found to be quite linear in s, figure 6.14 (b),

with each group having F = d(dE)/ds ≈ 10u per element, and separated by

∆E ≈ 30u. Hence it can be written that dE ≈ sF+p∆E for any given excitation.

F is a “force” acting to unflip a chain of moments, and ∆E is a pole-pair creation

cost. Close agreement is found with the calculations of Mól et al. for straight-line

monopole separation processes [22], for which a value of dE ≈ 29u is found for an

excitation configuration equivalent to excitation 1 which possesses two oppositely

charged T3 vertices only (see figure 6.10 and table A.1). Small deviations from this

approximation are attributable to topological differences between excitations with

the same s and p values e.g. 3U and 3Z. As interactions are negligible beyond ∼
3a, these perturbations can be attributed to an excitation self-interaction, which

may include in part a magnetic Coulomb interaction. As ∆E ≈ 3F , excitations

form a well-defined band structure, figure 6.14, due to numerous combinations of

s and p producing approximately the same dE, at spacings of ∼ 10u. Possible

excitations that were not observed in the nine MFM survey images have not been

included in figure 6.14, e.g. 4+ and 4t, despite also fitting into this band picture.
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Figure 6.14: Statistics and dipolar energy band structure of square ice ground

state excitations. (a) The number of observation of excitations of energy dE <

80u as a function dE. Excitations fall into distinct energy bands, as indicated by

the yellow stripes, and those of the lowest four bands are labelled in increasing

energetic order. The trend with dE takes the form of an exponential decay

∼ exp(−βdE), as expected for thermal excitations. (b) dE against the number of

T2 vertices s for all observed excitations of dE < 200u. Grouping the excitations

by their number of T3 poles pairs, p, as indicated by colour, shows that dE cluster

closely to ∼ equally-spaced linear trends in s, all of similar gradient, as indicated

by the dashed best fit lines.
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6.2 Ground State Ordering

Note, 4+ has once been observed in this sample during subsequent independent

microscopy studies, figure 6.9.

As a function of l, excitations can explore the band structure by various

processes, assuming 1st nearest neighbour flips only. Starting from a GS back-

ground (s, p = 0), an initial flip nucleates a pair of oppositely charged T3 ver-

tices (∆p = +1), excitation 1, costing ∆E. T2-string extension (∆l,∆s = +1,

∆p = 0), e.g. GS → 1 → 2L → 3Z (figure 6.7(b)), adds links to the end of a

flip-chain at a T3 site, costing dE ≈ 10u per link. T2-branching adds a flip to the

middle of a chain at a T2 site, e.g. 2L → 3T. Here, ∆p = +1 and ∆s = −1, al-

lowing an excitation to jump up a group, with net cost ≈ 20u. For T3-branching,

for instance 3T → 4+, ∆s,∆p = 0. Generally, monopoles form wherever the ice

rules are broken. Annihilation occurs where two existing, oppositely charged T3

poles meet, (e.g. 3U → 4O). Here ∆l = +1, ∆s = +2 and ∆p = −1, saving

≈ 10u. The number of possible shapes rapidly becomes very large for increasing

l.

Interestingly, despite individual excitation statistics becoming poor beyond

l = 4, a preference to form closed configurations, rather than long open strings, is

observed. This is clear evidence of attractive monopole-antimonopole interactions

acting to minimise excess charge during thermally driven island-flip dynamics.

4O is an isolated string loop with no T3 sites (reminiscent of a “loop move” in

pyrochlore systems [49]), and is observed as a sub-shape of larger excitations, e.g.

5b, 6g, 7g. Excitation 8O (p = 0, s = 6) is formed from two corner-linked 4O

shapes, sharing a single central T1 vertex, the smallest possible antiferromagnetic

domain. Much larger excitations are also observed, with multiple central T1

vertices equivalent to the background, e.g. that boxed in green in figure 6.7 (a),

fitting the criteria of being isolated defect objects on the GS background. Their

energies also follow the above approximation, and dE is localised at their walls.

Excitations spanning & 3a are no longer self-interacting across their whole span,

hence only local energetics govern propagation, locally indistinguishable from

large-scale DWs. DWs will be given further attention subsequently.

Curiously, specific excitations (e.g. 4+ (p = 2, s = 1), and p = 3 shapes with

s < 4) are absent, despite a significant probability of occurrence, based purely

on dE, e.g. the T4 configuration shown in figure 6.11 has dE = 65.7 (3 sig. fig.).
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6.2 Ground State Ordering

Note this corresponds to the configuration formed at x = 7 or 9 in figure 6.13. As

these unobserved excitations are typically small in extent, this may be explained

by the short-range attractive “monopole-antimonopole” interactions, acting to

annihilated opposite charges and “close-off” excitations. Two like poles occupying

the same site (a T4 vertex) is either strictly avoided, or else such vertices exist only

very briefly, quickly propagating to more favourable configurations. It is possible

for such a configuration to not form a local potential minimum, depending on the

potential barrier height of the elements in the dipolar field of their neighbours.

The combination of attractive annihilation and repulsive separation appears to

act to maintain an average monopole density along excitation and domain walls

of p/(s+ p) ≈ 0.3.

Domain Walls

While the observed profiles of domain walls are generally “rough”, possessing

a rich variety of structures, specific types of domain wall configurations can be

seen, examples of which are shown in figure 6.15 via MFM, accompanied by

dipole/vertex maps.

Three domain wall types have been shown, W1,2,3. W1 separates two opposite-

sense GS domains via a chain of a single T2 vertices, in this case V3, diagonally

orientated with respect to the principal square axes of the system. W2 is also

comprised of T2 vertices, however, follows a horizontal or vertical path, compris-

ing alternating V3,6 tiles. The large scale domain structures that are observed in

e.g. figure 6.7 are made up of distinct sections of W1,2 type configurations, which

can link together continuously, or link via T3 vertices, allowing for the T2 ori-

entations of the W1,2 sections to change. A simple domain wall comprising only

T3 vertices, W3, is also considered, comprising alternating V10,12 vertices along

a principal square lattice direction. Performing similar calculations to those pre-

sented for isolated excitations, positioning each W1,2,3 across the centres of finite

N×N square ice patterns creating two opposite-sense GS domains, the net dipo-

lar energy can be studied as a function of N , as shown in figure 6.16. Here, the

number of vertices in the domain wall defect is N . (a) presents dE, the energy of

the state above the pure GS. All dE appear to grow linearly with N for N & 2
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(b)(a)

(e)(d) (f)

(c)

W1 W2 W3

Figure 6.15: MFM of domain walls configurations. (a-c) show respectively MFM

image of three GS domain wall types, W1,2,3. (d-f) show corresponding schemat-

ics, with elemental dipoles represented by black and grey arrows, indicating those

compatible with the two GS senses respectively. T1,2,3 vertices are represented

by grey circles, grey circles with green arrows and red/yellow circles with green

arrows respectively. Orange circular arrows indicate the chirality of the dipolar

closure loops of the GS, with broken loops indicated by broken arrows.
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6.2 Ground State Ordering

indicating that a bulk-like state is quickly achieved. W1,2 also posses very similar

trends to each other. This motivates the calculation of dE/N , the energy per

domain wall vertex, shown in (b). For both W1,2, there is a bulk energy cost of

∼ 10u per T2 vertex, whereas for W3 there is a cost of ∼ 14u per T3. Here we

see that the domain wall energies follow the same rules as isolated excitations,

where their total energy may be estimated by simply counting the number of

T2,3 vertices. dE is again shown to be locally confined to the DWs. The slightly

lower energy of W2 when compared to W1 can be understood as it breaks less

GS flux closure loops, or, alternatively, it has a lower net moment and lower net

self-interaction.
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Figure 6.16: Domain wall energetics. (a) The dipolar excitation energy dE(N)

and (b) dE(N)/N of a N ×N vertex square ice pattern, with domain wall types

W1,2,3 positioned across the centre.

Edges

As a final consideration of defects, figure 6.17 shows AFM (left) and MFM (right)

images of two edge regions of the square ice pattern discussed, (a) and (b). No

obvious evidence is observed for any distinct edge effects. The lowest energy

configurations at the edge type shown are completely compatible and identical
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6.2 Ground State Ordering

to the bulk GS. As per the calculations presented, the edges will have little

effect on the bulk of the sytem, only local interactions being important in such a

demagnetised and GS-ordered state.

(a)

(b)

Figure 6.17: Microscopy of edge regions of the surveyed as-fabricated square ice

pattern. (a) and (b) both show AFM (left) and MFM (right) images. Magnetic

ordering is not obviously modified relative to the bulk.

6.2.4 Square Ice Statistics

Some analysis of the MFM survey data series has been made in terms of vertex

population and dipolar correlation statistics, section 3.5. Due to the large scans

required to capture a sufficient area of sample, and the subsequent low resolution

of data, this was an extremely time consuming processes and it was not deemed

a priority to explore this extensively for the time being. For completeness, a

representative example will be briefly discussed.

Figure 6.18 shows a 30 µm × 30 µm MFM image from the survey, again

showing large GS domains, domain walls and a variety isolated defects. (b) shows

the corresponding absolute percentage populations of vertices, with that expected

in the RS shown as dotted lines. An extremely large T1 population of ∼ 85% is
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Figure 6.18: An example of statistical analysis of a large area MFM image from

the as-fabricated sample survey. (a) A 30 µm × 30 µm area MFM image of

a region of the strongly GS-ordered square ice pattern, with corresponding (b)

vertex populations and (c) CGS
X,Y correlation statistics, as discussed in the main

text.
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6.3 Control of Ground State Ordering

found, accompanied by a low T2,3 populations of 10% and 5% respectively, and 0

populations of T4 vertices. In (c) the CGS
X,Y GS correlation values are shown as a

function of nth
d dipolar neighbour. The strong long range GS correlation is clear,

with all CGS
X,Y(1) ∼ 0.8, and decreasing towards 0 over a length scale of nd ∼ 10.

The domain structures are reflected in the subsequent oscillatory behaviour of

CGS
X,Y about 0 for increasing nd, which appear to slowly die off. As the images

collected are roughly four domains across, and the states are highly correlated,

long range values become increasingly sensitive to artefacts of the finite image

size. Further, the “limited” area sampled is possibly responsible for the X and Y

sublattice statistics not matching, as opposed to an anisotropy in the system. L

and P are nearly identical with nd, which is imposed by GS ordering.

This gives a rough estimate of ≈ 25 vertices as the average distance required to

travel from a given position in one domain to reach a domain of opposite GS sense

i.e. the average domain size. Very approximately, the correlation values behave

as damped sinusoidal functions, and therefore will possibly give an estimate of

domain size and a domain “roughness” from the oscillation period and damping

coefficient respectively. To minimise the effects of finite-size artefacts, average

statistics over a number of images would need to be calculated, before reliable

fitting of such parameters could be conducted.

6.3 Control of Ground State Ordering

The current inability to quantitatively reproduce the ordering of the aquired

as-fabricated states poses a limitation on systematically exploring this process.

For example, studying the states as a function of lattice constant a and in-

teraction strength, as previously explored in ac demagnetisation experiments

[3; 14; 15; 16; 17], is problematic if each fabrication run possesses different uniso-

lated parameters. Extensive characterisation of the patterning and deposition

processes would be needed to ascertain the exact source of the problem. Varia-

tion in the strength of pattern quenched disorder is a possible contributor to this

problem.

With this in mind, to explore the physical thermalisation process of interest,

a means to bypass this constraint was devised, based on the assumption that
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(a) (b) (c)

(d) (e) (f)

Figure 6.19: SEM images of square ice patterns from the batch-fabricated series.

(a-c) and (d-f) show SEM images of the 433 nm and 550 nm lattice constant

square ice patterns for underlayers of blank Si substrate, Ti (3 nm) and Cr (3

nm) respectively.

the patterning and deposition processes were consistent and homogeneous across

elements patterned and grown within single fabrication runs (as already observed

across single samples of appreciable total area). Three series of 0.5 mm × 0.5

mm area patterns were fabricated, sequentially patterned in a single EBL run

(JEOL 6300) on a single 3” diameter Si substrate, spaced by ∼ 1 cm in the

same resist coating, and simultaneously developed. Each series contained six

patterns, with lattice constants of a = 400 nm, 433 nm, 466 nm, 500 nm, 550

nm and 600 nm. Sequential patterning should make islands across the series

as identical as possible. As the JEOL system possesses the ability to check

and correct patterning parameters at user-defined intervals, the risk of drift in

conditions over such an exposure is minimised. Further to this, to explore the

idea that pattern disorder influences magnetic order, each series was prepared

with a different underlayer on to which the magnetic NiFe layer was deposited.

One series was given a buffer of Ti (3 nm), one given a buffer of Cr (3 nm),

and the remaining series left unbuffered providing a blank Si underlayer. A layer
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of NiFe (25 nm) was then deposited on all patterns simultaneously (no capping

layer was deposited due to a subsequent timely evaporator malfunction) and all

patterns were placed in lift-off together. Figure 6.19 shows SEM images taken at

the centres of the (a-c) 433 nm and (d-f) 550 nm spaced arrays for each underlayer

layer, Si, Ti and Cr, respectively. By eye, there is no detectable difference between

each pattern of a given a, with islands of lateral dimensions of 270 nm × 115 nm.

While the same nominal island size was defined for all patters in the e-beam

patterning process, those patterns with a = 550 nm appear to possess slightly

smaller islands, due to proximity effects which occur due to the close-packing

of islands. While one element is being exposed in the electron sensitive resist,

electrons can“spill-over” to the surrounding area by scattering, over-exposing

the resist in which nearby features are written. As a result this over-exposed

resist dissolves and develops at an increased rate relative to unexposed resist.

Such effects are common in the fabrication of such patterned systems. While in

some of the SEM images shown in figure 6.19, e.g. (a), islands on sublattice Y

appear more elongated relative to those on sublattice X, perhaps indicating a

beam stigmation issue during patterning, such features can often be an artefact

of the SEM imaging process, resultant of slow-scan direction drift. If this is

a real feature, it does not appear to be large, however, further investigation is

required to make any definitive conclusions. Such properties will present a form

of intrinsic anisotropy in a pattern, which has been shown to be a significant

detectable effect [9; 12], however, no extensive studies of pattern anisotropy have

yet been presented. Differences between islands on patterns of different a appear

to be small and are therefore not expected to have a drastic influence on results.

6.3.1 Microscopy and Vertex Populations

Commercial Si has a surface roughness of ∼ 0.1 nm [126]. The buffer layers

deposited on top are expected to therefore have a roughness greater than this.

This should reduce the uniformity of the magnetic islands’ thin film structure,

particularly during the early deposition stages when thickness d is small (∼ 1 nm),

therefore imparting a wider distribution of magnetic properties to the islands

within a pattern. As the NiFe layer of all samples is simultaneously deposited,
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Figure 6.20: Example 13 µm × 13 µm area MFM images of square ice arrays of

each value of a (rows) and each underlayer (columns) from the batch-fabricated

samples series. (Continued in figure 6.21.
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Figure 6.21: Continued from figure 6.20.
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the average island of a given pattern should posses the same moment size and

properties as that of all other patterns of equal a and different buffer.

Each pattern was imaged via MFM using a Veeco Multimode V with low

moment probe tips over five evenly spaced 13 µm × 13 µm areas positioned

across its span, an example image for each value of a and each underlayer shown

in figure 6.20. All error bars presented on subsequent data for these samples are

calculated as the standard error over the five images for each a and underlayer. At

600 nm, all magnetic states appear (by eye) to be quite disordered. It is apparent

that as a function of decreasing lattice constant a, domains of T1 GS order begin

to “condense”. What is quite notable, is that long range GS ordering has been

obtained over a wide range of parameters and at values of a much larger than

previously obtained (again illustrating the variability of the ordering process). For

all series, the domain size quickly becomes larger than the (maximum possible)

field-of-view of the microscope. It is also apparent by eye that for the Ti buffer

series, the onset of strong GS order is suppressed, both the a= 500 nm and 466 nm

states appearing significantly more magnetically disordered than the equivalent

Si and Cr buffer series. This is encouraging, fitting the hypothesis of the influence

of a buffer layer. No difference however can be seen by eye between the states of

the blank Si and Cr buffer underlayered series.

Figure 6.22 (a) shows the fractional vertex type populations for each series.

The general enhancement of GS T1 vertex configurations with increased interac-

tion strength is clear for each series. The suppression of GS order for a given a

with buffer is also apparent. Compared to the blank Si series, the Ti series pos-

sesses lower counts of T1 vertices over all a > 400 nm, while a subtle suppression

is observed for the Cr series for a < 466 nm. The T1 supression is made up for by

enhanced numbers of T2,3 vertices, while negligible difference is observed in T4

populations between each series. As mentioned, many low-a images posses 100%

populations of T1 vertices, however, this does not necessarily mean that the entire

patterns are perfectly GS-ordered, the study being limited here by the finite mi-

croscope field-of-view, therefore subtle differences at low-a may have been missed.

The data presented are however consistent with the assumption that fabrication

parameters are constant and homogeneous across all patterns fabricated within
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a single run, as well as the hypothesis that interfacial roughness between the un-

derlayer and NiFe layer imparts quenched disorder, in turn suppressing magentic

order. Further investigation is required to correlate interfacial roughness with the

magnetic order achieved, to fully confirm/disconfirm these ideas. The formation

of strong GS order over a wide range of parameter space presents the possibilty

of preparing samples for systematic studies of the square ice GS e.g. the evolu-

tion of the GS under an applied field, as well as the response of existing isolated

excitations and DWs.
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Figure 6.22: The variation in vertex populations for as-fabricated sample states

as a function of lattice constant a, for three different underlayers: Si substrate

with no buffer, a 3 nm thick Ti buffer and a 3 nm thick Cr buffer.

6.4 Effective Temperatures

Having established that GS order can be controlled by variation in lattice spac-

ing a, as well as finding encouraging evidence that increased structural disorder
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supresses magnetic order, a clear analogy is presented to the work of Wang et

al. on ac demagnetised square ice state, allowing for demagnetised states to be

accessed with similar influence of a over order [3; 14; 16]. Further to this, the

work of Nisoli et al. [64; 83] suggests an interesting avenue of exploration. As

compelling evidence is found that the states accessed and discussed in the pre-

ceding sections are a result of true thermal activation and thermal equilibration,

a similar statistical mechanical treatment of the states observed in MFM should

be possible, as such states allow the concept of temperature to be defined.

Employing a mean field approximation, each non-interacting vertex in the

system taking possible energy states Ei for vertex types Ti for i = 1 to 4, the

canonical distributions of fractional vertex populations are given by

ni =
qi exp(−βeffEi)

Z
, (6.1)

as per sections 1.3 and 2.3.2. Again, the Lagrange multiplier βeff is a reciprocal

effective temperature, which can be calculated by taking ratios of ni, directly

measurable from an MFM image, yielding

β(Ej − Ei) = ln

(
qjni

qinj

)
. (6.2)

Calculating Ei from a point dipole model, each vertex comprising four point

dipoles, normalising energy units such that E1 = 0, E2 = 0.69, E3 = 1 and E4 =

2.1 gives βeff = ln(8n1/2n3). Excellent agreement is found between calculations

and the experimentally determined populations, shown in figure 6.23 as solid

lines and symbols respectively. In normalised units, all data sets collapse onto

the same set of curves for ni, states of weaker GS order possessing a lower value of

β. All ni approach their random multiplicities as β → 0 (infinite temperature),

and n1 tending to 1 as β increases. Significantly higher values of β ≈ 7 (i.e.

lower temperatures) have been accessed than those previously reported following

ac demagnetisation, for which 0 < β < 3. Those data points posessing n1 = 1

and n3 = 0 posses a value of βeff = ∞ and therefore do not appear in figure 6.23.

Within an underlayer series, shorter a produces stronger interactions and acts

to increase β, allowing closer approach to the GS, the same intuitive results

as obtained by Nisoli et al. [64]. Further, for a given value of a, increased
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Figure 6.23: Variation of vertex populations ni as a function of effective tem-

perature βeff for (symbols) an as-fabricated experimental sample set, (solid lines)

the standard meanfield distribution model calculation using point dipole vertex

energies, and (dashed lines) the extended model with four-charge model vertex

energies.

underlayer roughness decreases β, showing a clear illustration of the interplay

between interaction strength and quenched disorder.

The mean field approximation appears to describe the system very well, in-

dicating that moments have negligible interaction beyond a vertex and that the

vertices are therefore approximately non-interacting. This can be understood as

in a generally demagnetised state (e.g. the RS, the GS, or and ac demagnetised

state) long range interactions on average sum to zero. It should be noted that at

low β there are slight experimental deviations from the calculated curves, small

deficiencies of n1,3,4 at β ≈ 1 creating a surplus of n2. This is currently under

investigation, and is possibly a result of an anisotropy which breaks the degener-

acy of the T2 vertices, as would be found if the states were formed under a weak

external magnetic field, an effect which would be most prominent for longer a

where inter-elemental interactions play a weaker role in ordering. Further, as β

increases, the experimental observation of a given vertex in a given state becomes

increasingly correlated with the state of its neighbouring vertices, true for both

T1 vertices of a GS ordered domain, and the T2,3 vertices of a domain wall struc-
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ture or isolated excitation. Such correlations are not accounted for in the mean

field approximation used.
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Figure 6.24: Determination of the energetic ratio E2/E3 from the as-fabricated

series. Symbols show E2 = ln(4n1/2n2) vs E3 = ln(8n1/2n3) for the experimental

data, with a proportional line of best fit shown as a red dashed line.

To further test the model, a plot of ln(q2n1/q1n2) = E2β against ln(q3n1/q1n3) =

β is shown as blue circles in figure 6.24. A proportional fit yields a value of E2/E3

= 0.64 ± 0.02, (red dashed line) close to the value of E2 = 0.69, implying that the

point dipole model is a good approximation. It is curious that the approximation

holds well across all a, as it might be expected that the appropriate model should

change as a function of a, closely spaced dipolar islands being much less “point-

like” with interactions better described by a micromagnetic calculation [84] or a

multipolar model [127]. (It should be noted that modifying the value of E2 used

in the above calculations of ni to 0.64 does not correct for the slight disagreement

at low β discussed.) Interestingly, such a statistical formalism has been previ-

ously applied to as-fabricated states of small area arrays of 190 nm diameter NiFe

pillars [128], each pillar taking one of several possible well-defined internal mag-

netic domain configurations. Little insight was however given as to the meaning

of calculated energetic ratios, although the complication of interpretation due to
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pattern imperfections was noted.

It is worthwhile to consider the physical meaning of an “effective temperature”

in a system that has been thermally annealed at a finite “real temperature”.

Rather than arresting over a narrow window resulting from local variation in

magnetostatic coupling as might be expected in a near-perfect system, moments

begin to “freeze” by virtue of locally higher thermal reversal barriers imparted

by structural disorder. The randomising thermalisation within the system is

combined with the randomisation of quenched disorder. If both distributions are

assumed to be Gaussian-distributed, their widths will simply add in quadrature.

Quenched disorder, hence, effectively raises the temperature of the final state

observed state, when the effects are averaged over the system. Within the model,

the system is a perfect point Ising dipole lattice, disorder representing an intrinsic

“effective thermal energy” within the system, which should persist in the system

down to a real temperature of absolute zero.

6.4.1 Real vs Effective Thermodynamics

It is interesting to consider a comparison of the standard statistical mechanical

formalism implemented above for thermalised states with the extended model of

Nisoli et al. [64] appropriate for describing the model of effective thermodynam-

ics of ac demagnetisation, section 2.3.2. Further, this provides an appropriate

opportunity to discuss some peculiarities of the extended model, as previously

mentioned.

The extended model divides the system into background vertices of one possi-

ble T2 configuration and sixteen defect vertices, T1−4, figure 2.6 (a). ρ is the frac-

tional defect density, νi are the fractional population of defected vertices within

the defect population, and ni are the absolute fractional populations of vertices.

Equations 2.2, 2.3 and 2.4 describe the “equilibrium” distribution of of these pa-

rameters for a given value of effective temperature β, equation 2.5. A four-charge

vertex energy model is used to correctly fit the data, which may seem unusual at

first, however the consequent relative vertex energies are similar to that given by

micromagnetics for short a, so this is not of immediate concern. The four-charge

model is however justified using a plot and proportional fit of ln(5n1/2n2) against
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Figure 6.25: Calculated variations of (a) νi(β) and (b) ρ(β) as defined by the

extended model appropriate for describing ac demagnetised data.

ln(8n1/2n3), figure 2.16. This would only be valid if ni were themselves canonical

distributions, which they are explicitly not in the extended model. However, as

stated in reference [64], at low β, the extended model and standard canonical

distributions (equation 1.2) with an anomalous q2 = 5 are approximately the

same. Further, the extended model was initially introduced in a case where ρ

did not require energetic constraining during the maximisation of entropy [83],

the resultant states all possessing a specific vertex energy (energy per vertex)

Ẽ = E2. It is not clear whether the results of Ke et al. [16] are at odds with this

equality or whether the continuation of the model is valid [64].

Figure 6.25 shows (a) νi(β) and (b) ρ(β) as calculated using the equations

2.3 and 2.4 respectively. Shown in inset in (b) is the same calculated trend on

a logarithmic temperature scale. At β = 0 all νi tend to the random values as

given by their multiplicities qi = 2, 4, 8 and 2 for i = 1, 2, 3 and 4 respectively.

As β increases, the most energetically favorable vertex, T1, tends to a fractional

population of ν1 = 1. It should be emphasised that νi are the fractional popula-

tions within the defect population. The fractional defect population ρ(0) = 16/17

exactly, the random result (as there are 16 defect vertices and one background).
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Figure 6.26: Further calculations of the extended model. (a) Calculated variation

of fractional vertex population n(β) for the extended model introduced to describe

ac demagnetised data (dashed lines) and a standard canonical distribution calcu-

lation using an “anomalous” degeneracy q2 = 5 (solid lines). The models are very

close for the range 0 < β < 3 considered in reference [64], however, the extended

model does not predict ground state convergence as β increases. (b) The calcu-

lated variation of the ac demagnetised systems’ energetic components, Eini, with

β, calculated using the curves of (a) which very closely match experimental data

in the discussed low β range. The calculated specific energy Ẽ = ΣiEini 6= E2,

contradicting the requirements of the extended model.
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As β increases ρ tends to exactly 2/3, hence, as temperature decreases, the back-

ground population increases and tends to 1/3. The subsequently calculated values

of ni are plotted as dashed lines in figure 6.23. As shown, all ni(0) = qi/17, the

random infinite temperature result, however, due to the behaviour of ρ, the ex-

tended model predicts that the system does not approach the GS at any value

of β, with n1 and n2 converging to 2/3 and 1/3 as β increases. This, however,

does not correspond to experimental findings that GS convergence has not been

obtained via ac demagnetisation [16], as these experimental results are contained

within a low β < 3 region [64], far below the converged limit. Further, the predic-

tions of the extended model do not agree with the simulations of Libál et al. [78],

in which values of n1 close to 1 are obtainable in a low quenched disorder (high

β) limit. While the superconducting vortex trap system considered by Libál et

al. is clearly different to a dipole lattice, other reports suggest strong GS order

and GS vertex populations should be achievable by field [21].

In figure 6.26 (a), the extended model is again plotted, along with ni given

by the standard canonical distribution calculation 1.2. What is striking is that

in the range considered in reference [64], both of these calculations yield almost

identical results, as mentioned in reference [64]. Further, looking at the range of

β > 3, the simple standard model predicts GS convergence.

It should be restated that the form of ρ derived initially in reference [83] was

introduced on the basis of the specific energy Ẽ of ac demagnetised state at lower

a being equal to E2 (for an appropriate model), allowing it to be unconstrained in

the maximisation of entropy as background vertices all inherently possess a vertex

energy of E2. The continuation of the model [64] is therefore dependent on this

equality holding, otherwise, ρ would require explicit constraining. In figure 6.26

(b) Ẽ(β) is plotted as predicted by the extended model, using the four-charge

vertex energy model, which fits well the reported experimental ac demagnetised

data at low β [64] (hence, over this range, it can be considered an appropriate

substitute for the real data). Over this range, Ẽ is not found to generally equal

E2, only approximately equal, hence the unconstraint of ρ is not valid for these

data. Hence, equation 2.4 and the extended model do not stand.

As the data presented in reference [64] only cover a low range 0 < β < 3,

where both extended and simple models are equally “valid” (fitting the data),
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why opt for the more complicated extended model? While the extended model

was introduced as an attempt to account for an anomalous value of q2 = 5 via

an explicit background vertex population, which is perhaps justifiable given the

initial polarised state of the system, inital states have no meaning at thermal

equilibrium. Further, the lack of an energetic constraint on ρ is not correct, and

the model has peculiar behaviour for large β. A more interesting question is

why, in the standard model, a degeneracy of q2 = 5 is needed to reproduce the

experimental trends. Further, the extended model is not required to treat the

system in terms of effective thermodynamics or to appeal to the concept of an

“effective temperature”, which would emerge in any model where an appropriate

Lagrange multiplier was used.

6.4.2 Energetic Models

Figures 6.27 and 6.28 present results from ac demagnetisation tests of square ice

patterns, showing (a) AFM, (b) MFM, (c) vertex populations in excess of the

RS, and (d) GS correlation values CGS (error bars are estimated as the standard

error over multiple MFM images collected across the samples). Figure 6.27 is of

the same a = 700 nm spaced pattern disussed at the beginning of this chapter

(for its as-fabricated state). Figure 6.28 (e-h) presents the results of a repeat

ac demagnetisation performed on the a = 500 nm spaced pattern, with similar

structure to the 700 nm sample. Samples were rotated at ∼ 10 Hz, an initial

in-plane field of ∼ 1 kOe was applied, and the oscillating square function field

profile stepped down in magnitude by ∼ 10 Oe every half a field period. All final

states posses similar statistics, with net normalised magnetisations of (MX =

0.06±0.02,MY = 0.11±0.03), (MX = 0.01±0.01,MY = 0.01±0.01) and (MX =

0.02±0.02,MY = −0.01±0.01) respectively, as well as a similar surplus/deficit of

lower/higher energy vertex configurations. It should be noted that these results

form part of an early ac demagnetisation trial, conducted before the importance

of various parameters were realised, hence the approximate quoted values. This

may explain the little difference between the results for the 700 nm and 500

nm lattice constant patterns. In general these results suggest that the results

of Wang et al. [3] are qualitatively reproducible. Further, the statistical states
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Figure 6.27: Statistics of an ac demagnetised state of an a = 700 nm lattice

constant square ice pattern. (a) and (b) show example AFM and MFM images

respectively. (c) shows the excess vertex populations above the RS and (d) shows

the GS correlation functions CGS. The sample was previously imaged in an as-

fabricated state, figure 6.3.
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appear well-defined across the imaged areas, and the similar statistics following

repeat demagnetisation of the 500 nm spaced sample indicates that the results

are repeatable, although this was not explored extensively.

Next, attention will be turned to the effective temperatures of these states.

Do these results fit the constructs outlined in reference [64] and section 2.3.2 for

ac demagnetised states? Nisoli et al. suggest that the ratio of ln(5n1/2n2) to

ln (8n1/2n3) should yield a value close to E2 in units normalised to E3, working

with the 4-charge vertex dumbbell energy model. The above states yield values of

0.55 ± 0.03, 0.62 ± 0.02 and 0.59 ± 0.04 respectively, all lying roughly half way

between that given by the four-charge model and the point dipole model. It is

not clear whether this is a result of differences in the ac demagnetisation protocol

employed, or due to the samples themselves. The four-charge model agrees closely

with values given by micromagnetics for short lattice constants [15], and the point

dipole model is expected to be more appropriate for systems with large values

of a. It is not unreasonable to consider that the elements and interactions of

one patterned array are more point dipole-like than another, and a value lying

between the two is therefore not unreasonable. It is however surprising that a

four-charge energy model should work for arrays of large lattice constant a, Nisoli

et al. studying up to a = 880 nm for islands for 80 nm × 280 nm, and likewise,

that the point dipole model should work so well down to short lattice spacing in

the studies presented here.

As previously discussed, the sample of 700 nm lattice constant was also studied

in an as-grown state, figure 6.3. Taking the ratio of ln(4n1/2n2) to ln (8n1/2n3) as

appropiate for the standard canonical ensemble desciption, shown previously to

be appropriate for as-grown patterns, a value of 0.6 ± 0.3 is returned. While this

value agrees closely with that determined for the corresponding ac demagnetised

state, there is a very large uncertainty, resultant of the propagation of errors

involving logarithms. These results are suggestive that the appropriate energy

model for either the field or thermal demagnetisation process is sample dependent.
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Figure 6.28: Statistics of an ac demagnetised state of an a = 700 nm lattice

constant square ice pattern. (a) and (b) show example AFM and MFM images

respectively. (c) shows the excess vertex populations above the RS and (d) shows

the GS correlation functions CGS. (e-h) show the same data types from a repeat

demagnetisation run.
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6.4.3 The Role of Disorder in ac Demagnetisation

Energetic model aside, a more pressing question is evident: why does an equi-

librium statistical mechanical model describe the ac demagnetised data at all?

While the agreement with experimental data is beautiful, there is no clear reason

why this unusual model should work so well, or even at all.

Consideration should be given to the difference between the processes involved

in ac demagnetisation, and true thermalisation. While both explore the magnetic

phase space under the influence of inter-island dipolar coupling, the former is pe-

riodically directionally biased with all moments experiencing the same applied

field, whereas the latter is (ideally) resultant of local normally distributed ran-

dom thermal “kicks”. A description in which the defect populations form what

look like standard canonical distributions suggests that there must be a ran-

domising influence in the system playing the role of thermalisation, even though

field-mediated dynamics are directionally biased and not obviously stochastic.

Considering the ideal point Ising dipole model of Budrikis et al. [21], a per-

fect system presents highly correlated field-mediated dynamics and domino-effect

chain cascade behaviour. The similar chain objects found in dc-field reversal

experiments are clearly bulk nucleated and pinnned by the effects of quenched

disorder [23; 24], chapter 4. It is not unreasonable therefore to attribute the ran-

domisation of magnetic state which occurs duing ac demagnetisation to the same

structural quenched disorder, randomising the average magnetic states achieved

when interpreted as topological configurations of Ising moments. The tuning of β

with ∆H is likely a result of the interplay of the field with the switching property

distribution. In a situation where quenched disorder is extemely low, such as the

simulations of superconducting vortex ice of Libál et al. [78], near perfect GS

order can be obtained via ac demagnetisation, which will most likely be mediated

via perfectly correlated dynamics, as observed by Budrikis for similar protocols

et al. [21]. (It should be rememebered though that the system of Libál et al. will

not be described by a simple meanfield canonical ensemble approximation model,

which would most likely predict a ground state of 100 % 4-out configurations,

which is not the true square ice GS and, more importantly, unphysical.)
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As well as the reordering processes being different, there are also distinct

differences between the samples during the processes. The samples studied via

ac demagnetisation are fully formed elements of ∼ 25 nm thickness, whereas the

thermalisation occur when elements are approximately 1 nm thick. This clearly

imparts different nearest neighbour interaction strength, as well as the shape

of the anisotropic barriers to magnetisation reversal of Ising state [31]. Island

reversal under an applied field is highly dependent on the instantaneously angle

of the applied field, and will occur via the nucleation of a domain wall at the end

of an island.

6.5 Summary

It has been shown that true thermal ordering has occured during the early-growth

stages of fabrication of the artificial square ice patterns studied in this thesis.

Initial evidence was presented by weak GS-like statistics of as-fabricated state,

as inferred from MFM. Strong conclusive evidence was presented in a case study

of a pattern possessing a strongly GS-ordered as-fabricated states, with isolated

defects which present themselves as well-defined dipolar excitations of the square

ice system. The relative abundances of these excitations are Boltzmann factor-

weighted and fit realistic values of temperature and elemental dimensions. Similar

to the description of Mól et al. [20], excitations can be described energetically

approximately by the number of non-GS vertex configurations possessed, yielding

a dipolar energy band structure. Inference has been allowed in to the likely growth

and propagation mechanisms of such excitations through the band structure,

and indirect evidence is present for charged vertex interactions playing a role in

thermal ordering.

Subsequent results show that the GS ordering strength can be controlled,

(although not exactly reproducibly between sample batches), via interaction

strength, with compelling evidence that reduction in elemental uniformity, con-

trolled by the use of different underlayers, decreases the ordering strength by

increasing quenched disorder. The square ice GS is potentially accessible over

a large range of parameter space, presenting interesting future experimental di-

rections. This technique is of course universal, therefore, it would be exciting to
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investigate the as-grown states of alternative patterns, an obvious choice being

the kagome ice lattice, particularly as it possesses a ground state of distinctly

higher degeneracy than the square ice.

Further, a simple meanfield canonical ensemble model is shown to describe the

variations of vertex populations very well as a function of an effective temperature,

suggesting that the states achieved are truly equilibrated (as opposed to thermally

quenched). Much lower effective temperatures (stronger GS ordering) have been

achieved than those reported in ac demagnetisation experiments [64].

By comparison, the extended model for ac demagnetisation is shown to be

distinctly “non-thermal”, despite being described at higher effective temperatures

by a similar formalism, failing to predict a convergence to the GS at low effective

tempertures. While the experimental work of Ke et al. [16] revealed a distinct lack

of GS convergence in ac demagnetised systems, this is attributable to quenched

disorder keeping states in the low β range reported by Nisoli et al. [64].

This work provides instructive insights into thermalised magnetic patterns.

Future studies of artificial spin ices are aimed towards systems in which thermal

activation is controllably accessible at convenient temperature scales, by the use

of low Curie temperature materials [87] or superparamagnetic elements [36]. This

will allow the systems to better approximate the behaviour of real bulk crystalline

spin ice material.
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Chapter 7

Summary

7.1 Summary and Conclusions

This thesis has experimentally addressed the behaviour of athermal artificial

square spin ices [3], and the preparation of various “icy” states on which charge

defects can be created. Magnetic force microscopy (MFM) allows for the local

configurations of microstates to be inferred, from which various statistical param-

eters can be extracted. The work has allowed for the consideration of varying

facets of correlated behaviour due to dipolar interactions as well as the uncor-

related behaviour imparted by intrinsic quenched disorder inherent to any such

patterned system [6; 28; 129].

This thesis has addressed field reversal on the diagonally polarised state (DPS)

[30] under an off-diagonal axis applied field, recently reported in reference [29].

Similarly to reversal observed on artificial kagome ices [23; 24], reversal is found

to mediate via correlated flipping of dipolar chains, which act to propagate the

charged vertex sites which exist at their ends along the field direction. Due to

the field offset, this propagation occurs independently on the square ice system’s

two orthogonal sublattices. Chains are nucleated in the bulk at random-like loca-

tions and are incrementally pinned by the effects of quenched disorder, imparting

a distribution of switching characteristics to the islands. Further to this, the

qualitative effects of charge-charge interactions have been identified during the

midstages of reversal, the system forming a state of weak-charge order due to pin-

ning/antipinning of charges propagating along adjacent parallel channels as they
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pass each other. Further, the correlated dipolar and charged vertex behaviour

is found to be considerably weak, displaying the drastic decorrelating effects of

quenched disorder.

Access of the square ice GS has been addressed via two methods: constant

magnitude rotating field annealing, and fabrication-stage thermal annealing.

Field annealing was conducted on small area patterns of ∼ 400 elements,

in search of edge effects and strong GS ordering predicted by recent theoretical

modelling [21]. The systems, beginning from the DPS, are predicted to nucleate

charged vertex sites at their edges which incrementally propagate into the bulk,

meeting and annihilating at the middle. While an optimium GS vertex population

is found as a function of field magnitude, it is considerably suppressed relative

to predictions. Further, no edge dependence is found and the predominance of

bulk nucleation effects are found in the magnetic force microscopy images at

lower fields. Again, quenched disorder in elemental properties acts to randomise

the behaviour of the system, allowing for bulk processes to occur which would

otherwise be blocked in an ideal system. Such ideas are currently being explored

using this data and an extended theoretical model with the authors of reference

[21]. The order obtained appears comparable to that achieved via the more

elaborate ac demagnetisation process often employed [3; 14; 16].

From early on in the project, interesting results were found in data from as-

fabricated samples states, indicating varying amounts of GS-like correlation and

vertex populations. Strong conclusive evidence was found that this self-ordering

was infact a thermally mediated phenomenon, which is allowed to occur during

the very early stages of magnetic material deposition of the thin film structure

of the NiFe elements, as reported in reference [25]. When thin, elements are

superparamagnetic and explore configurations thermally. This behaviour will

become suppressed as the island thickness increases, eventually blocking and ar-

resting the system. A specific sample of short lattice spacing was found to possess

large continuous GS-tiled domains separated by domain walls between domains

of opposite GS sense. Quenched disorder allows for the finite domain size to

be accounted for, as islands with slightly large barriers to thermal reversal will

arrest first on average, which will occur according to the random uncorrelated

allocation of barrier heights. Further, the topological defects existing within the
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GS domains are found to be relatively weighted by Boltzmann factors, giving

a trend of abundance with energy suggesting realistic values of island thickness

and sample temperature during the process. Such defects interact only over short

range, and present a dipolar energy excitation band structure. Evidence exists

for charged vertex interaction playing a role in thermal ordering.

While the ordering process is not currently exactly quantitatively reproducible

due to the influence of variable fabrication parameters, a study of a self-contained

samples batch showed that GS order can be achieved over a wide pattern param-

eter range, reducing lattice constant enhancing GS order. Evidence is also found

that the order is also influenced by the inclusion of a buffer material layer under

the NiFe thin film, relative to that achieved when deposited on blank Si substrate.

This can be understood by the buffer layer acting to roughen the surface on to

which the NiFe layer is deposited, which will decrease the island uniformity and

increase the level of quenched disorder in the system, particularly when elements

are very thin. Further study is need to correlate underlayer roughness with the

degree of magnetic order.

As recently reported for ac demagnetised states [64; 83], a mean field canonical

ensemble model was found to well-describe the distribution of vertex populations

in these thermally annealed systems, and significantly lower effective tempera-

tures are accessed. It is observed that decreased lattice spacing/stronger interac-

tion strength acts to lower the effective temperature and enhance the formation of

GS order, while increased quenched disorder via the buffer layer acts to increase

the effective temperature and randomise the system.

Finally, discussion and comparison of the real and effective thermodynamics

is given. Discussion suggests that quenched disorder manifests as an apparent

increased temperature, acting against correlation due to randomisation of config-

urations.

All aspects of this work illustrate the importance of the competition be-

tween correlated interactions and randomising quenched disorder. The effective

termperature formalisms for both ac demagnetisation and thermalisation illus-

trate how quenched disorder acts to make the system behave as if “hotter”, when

the common averaged-state interpretation of ideal Ising moments is used.
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7.2 Future Work

The work presented in this thesis provides a basis for various interesting avenues

of further research. Firstly, a number of points of address are left outstanding

regarding this work. While evidence for charge vertex-vertex interactions have

been found in both field and thermally mediated processes, further information

may be present in the data regarding their relative correlation, in all studies

presented. The study of vertex interaction on a given state are perhaps limited

in the arrested athermal systems studied.

During magnetic reversal, the onset and destruction of charge ordering has

not been considered, although, statistics for states other than the MX = 0 state

considered in section 4.3.3 are expected to be very weak. The constant magnitude

rotating field protocol is currently under further investigation under collaboration

with the authors of reference [21], which will potentially yield important results

addressing the effect of disorder on accessing (or not) the ground state. Further,

similar simulations could be used to investigate the behaviour of systems under

ac demagnetisation - a number of unanswered question exist regarding effective

thermodynamics which could be efficiently explored.

An obvious and simple outstanding experiment is to apply magnetic fields

to the highly GS-ordered systems achieved, and to study the transition from

the demagnetised state to one of strong polarisation. Further, the response of

isolated defects and domain walls to applied fields may be interesting [77]. Direct

correlation of buffer roughness to the degree of magnetic order achieved in as-

fabricated patterns is needed to help support the apparent observed influence.

Isolating and addressing the fabrication parameters which currently prevent

exact quantitative reproducibility of magnetic as-fabricated order (and possible

effect the behaviour of the final athermal systems achieved) may prove useful, as

fabricating self-contained samples batches is not ideal.

Two general avenues of future research are anticipated: the study of ther-

malised systems and the study of the effects of quenched disorder. As these

studies show, thermalisation is an experimentally accessible phenomenon and

that ordering is viable via the use of superparamagnetic elements [25]. A clear
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goal is to access such behaviour at experimentally realistic temperatures in a re-

peatable manner. Thermal activation is also possible via patterns of low Curie

temperature material, as recently reported [87]. The reduction of quenched pat-

tern disorder is extremely desirable. Upon its reduction, the effects of intrinsic

anisotropy in the patterned systems (due to patterning stigmation or material

properties) may become increasingly apparent. Both will push the systems to be

closer analogues of crystalline spin ice materials.
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Appendix A

Ground State Order in

as-fabricated Patterns

In this appendix, data will be presented complementing the work discussed in

chapter 6.

A.1 MFM Survey

The complete MFM survey of nine images used for the statistical study of ther-

mally ordered as-fabricated square ice systems are given in figures A.1 to A.9.

A.2 Excitation Energies

In table A.1 a summary of the values of l, s, p and dE of the GS excitations

shown in figure 6.10 is given.
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Figure A.1: MFM survey of thermally ordered as-fabricated square ice pattern.

All scale bars correspond to 10 µm. All images were taken using a Veeco Nanoman

system with standard MESP tips. The image series in continued in figures A.2

to A.9.

155

ChapterA1/ChapterA1Figs/EPS/159.eps
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Figure A.2: MFM survey, continued from figure A.1.
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Figure A.3: MFM survey, continued from figure A.2.
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Figure A.4: MFM survey, continued from figure A.3.
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Figure A.5: MFM survey, continued from figure A.4.
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Figure A.6: MFM survey, continued from figure A.5.
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Figure A.7: MFM survey, continued from figure A.6.
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Figure A.8: MFM survey, continued from figure A.7.
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(ix)

Figure A.9: MFM survey, continued from figure A.8.
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A.2 Excitation Energies

Table A.1: A summary of l, s, p and dE values of ground state excitations. l

represents the number of flipped moments in a given excitation, as indicated by

the excitations name. s is the number of T2 vertices, p is the number of oppositely

charged T3 pairs, and dE is the bulk-limit dipolar excitation energy of a given

excitation.

Excitation s p dE

GS 0 0 0

1 0 1 28.84

2L 1 1 40.72

3Z 2 1 51.88

3U 2 1 48.59

3T 0 2 60.59

4O 4 0 39.49

4Z 3 1 62.42

4P 3 1 60.67

4h 1 2 67.76

4F 1 2 72.67

4t 1 2 69.37

4+ 0 2 63.49

5b 3 1 59.57

5t 1 2 71.57

5Z 4 1 72.87

6b 4 1 70.87

6g 3 1 62.67

6f 4 1 69.76

6I 5 1 80.89

6BK 3 2 92.69

7g 4 1 69.98

7s 5 1 82.04

7b 4 1 72.16

8O 6 0 60.31

8B 5 1 80.38

8D 3 2 90.14

8C 4 1 72.18

8A 5 2 110.51
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