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Abstract: 
 
 
The minichromosome maintenance (MCM) proteins are essential for the 

initiation and progression of DNA replication. MCMs are believed to 

function as the replicative helicase in archaea and eukaryotes. In the present 

studies, human MCM and archaeal MCM from Methanococcus maripaludis 

were purified from E.coli and assembled as complexes. The six MCMs from 

human co-purified over multiples steps including three chromatographic 

steps when co-expressed in E.coli suggesting that they form a heterohexamer 

complex. Reconstitution of in vitro helicase activity of the human complex 

and individual subunits of M. maripaludis were described. Furthermore the 

effect of phosphorylation on human MCM complex and M. maripaludis 

MCM A were also tested and the effect of phosphorylation was shown to be 

inhibitory on helicase activities. Different reaction conditions were 

monitored on MCM helicase activity and the most interesting was the effect 

of salts on helicase assays which showed that glutamate has a significant 

positive effect while chloride ions inhibit helicase activity. Putative kinases 

were purified from M. maripaludis and Methanocaldococcus jannaschii and 

trials were conducted to assign them a role in regulating the DNA initiation 

process.  
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Chapter 1: Introduction 

 

1.1 DNA replication overview  

 

DNA replication is an essential process in all living organisms. The faithful 

transmission of genetic material requires precise coordination and regulation. 

DNA replication is a biological process that occurs in all living organisms. 

In this process DNA molecules must duplicate accurately and be segregated 

to daughter cells (Albers et al., 2002). This process is initiated at particular 

points in the DNA, known as origins, which are targeted by proteins that 

separate the two strands and initiate DNA synthesis (Berg et al., 2002). 

Origins contain DNA sequences recognized by replication initiator proteins 

for examples DnaA in E. coli and the origin recognition complex in yeast 

(Weigel et al., 1997). These initiator proteins recruit other proteins to 

separate the two strands and initiate replication forks. To dissect this 

multistep process of DNA replication, it is important to find out all the 

proteins involved in this process and the role of each protein in each of these 

steps. There are a number of proteins already known that are involved in this 

process but still there are gaps in our knowledge of all proteins and their 

functions. These proteins are different in the three different domain of life. 

The work of Carl Woese in late 1970s (Woese and Fox, 1977) led to the 

biological classification of life into three domains that divide cellular life 

forms into bacteria, archaea and eukarya (Figure 1.1). The realization that 

living organisms can be divided into three main lineages, led to a quest to 

discover the molecular fundamentals that distinguish them. 

 

1.1.1 Bacterial replication  

 

The replicon hypothesis postulates two basic elements for the initiation of 

replication: the initiator, a trans-acting substance, DnaA protein, and the cis-

acting replicator, which we now call the replication origin, oriC (Jacob and 

Brenner, 1963). The initiator protein DnaA is found in all bacteria analyzed 

so far. The bacterial chromosome typically contains a single origin of 

replication oriC. Binding of DnaA to such an array, origin recognition, is the 
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Figure 1.1 Tree of lif: This illustration of the three domains of life is like a 

family tree. The branches that are very far apart are not very similar. 

Branches that are near each other indicate closely related groups. This figure 

is taken from http://www.greennature.ca. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 15 

first step in the assembly of a specialized nucleoprotein complex (Echols, 

1990), the initiation complex. Most of our understanding on bacterial 

replication comes from the extensive research on E.coli. DnaA protein binds 

to its five binding sites in oriC as a monomer, introducing a 40o bend at each 

site (Schaper and Messer, 1995). Only DnaA complexed with ATP is active 

in initiation (Sekimizu et al., 1987). ATP-DnaA binds to additional sites, 6-

mer ATP-DnaA boxes with the sequence 5’P-AGATCT or a close match 

(Speck et al., 1999; Speck and Messer, 2001). These sites are predominant in 

the AT-rich region, which is unwound, and subsequently stabilized due to 

specific binding of ATP-DnaA to single-stranded ATP-DnaA boxes. The 

unwound region spans 28 bp without and 44-46 bp with SSB (Single-strand 

binding protein) present (Krause and Messer, 1999). Since single-stranded 

DNA covered with SSB is a poor substrate for DnaB helicase, it has to be 

loaded with the help of DnaA. Two double hexamers of DnaB and the 

helicase loader DnaC, one double hexamer for each replication direction, are 

positioned by DnaA into the loop (Fang et al., 1999; Carr and Kaguni, 2001). 

DnaC leaves the complex immediately after or during loading, accompanied 

by ATP hydrolysis. This activates the helicase activity of DnaB (Wahle et 

al., 1989A, Wahle et al., 1989B). The two DnaB hexamers slide past each 

other in 5’-3’ direction, and expand the bubble to about 65 nucleotides (Fang 

et al., 1999). Now primase can enter the complex and synthesize two leading 

strand primers.  

 

The unwinding of double-stranded origin DNA and the loading of helicase 

into this region are one of the basic reactions in the cell cycle.  

 

1.1.2 Archaeal replication  

 

The status of the archaea as one of the three primary domains emphasizes the 

importance of understanding their molecular fundamentals. Basic DNA 

replication in the archaea is much similar to eukaryal replication. Archaea 

replicate their circular genome from a single DNA replication origin mostly 

as do bacteria, even though they may use eukaryotic-like proteins to do so  

(Myllykallio and Forterre, 2000). 
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All archaeal genomes sequenced to date contain at least one gene with 

homology to both ORC1 (Origin recognition complex subunit 1) and Cdc6 

(Cell Division Cycle 6) (Barry and Bell, 2006). Origin Recognition Complex 

is a multi-subunit DNA binding complex (6 subunits) that binds in all 

eukaryotes in an ATP-dependent manner to origins of replication. The 

subunits of this complex are encoded by the ORC1, ORC2, ORC3, ORC4, 

ORC5 and ORC6 genes. Cdc6 is part of the pre-replicative complex (pre-

RC) and is required for loading Minichromosome Maintenance (Mcm) 

proteins onto the DNA, an essential step in the initiation of DNA synthesis. 

The ORC1/Cdc6 proteins were identified to act as the origin recognition and 

binding proteins in archaea (Lundgren et al., 2004; Robinson et al., 2004). 

Structures show that the C-terminal region of ORC1/Cdc6 contains a 

winged-helix (WH) domain, and sequence alignments show that this is 

conserved throughout archaeal and eukaryotic Cdc6 proteins (Liu et al., 

2000; Singleton et al., 2004). All archaeal genomes sequenced to date have 

at least one Mcm homologue  (Majernik et al., 2004). Archaeal Mcm has 

shown efficient DNA binding and helicase activity in vitro (Kelman et al., 

1999; Chong et al., 2000). For archaea, little is known about Mcm loading. 

There is apparently no homologue of DnaC or Cdt1 (Cyclin dependent 

transcript 1) in archaea, suggesting that the ORC1/Cdc6 proteins may 

perform the functions carried out by ORC, Cdc6, and Cdt1 in eukaryotes. 

Binding of archaeal ORC1/Cdc6 proteins to origins is apparently ATP 

independent (Robinson et al., 2004), despite the fact that they have a 

functional AAA+ domain (Grabowski and Kelman, 2001; Singleton et al., 

2004). ATP hydrolysis by Cdc6 may be important for Mcm loading. The 

GINS (Go, Ichi, Nii, San) complex is essential in yeast and interacts with 

Mcm and CDC45 (Cell Division Cycle 45), which is an essential protein 

required to the initiation of DNA replication (Kubota et al., 2003; Gambus et 

al., 2006). More recently, it was shown that GINS is necessary for the 

inclusion of Mcm in replisome progression complexes, which include 

several replication and checkpoint proteins, (Gambus et al., 2006). An 

archaeal homologue of GINS was also identified, suggesting a role in pairing 

Mcm activity on the leading strand with primase activity on lagging strand 

(Marinsek et  al.,  2006).  Despite our   emerging    understanding of archaeal  



 17 

replication, little is known about its mechanisms of regulation. 

 

1.1.3 Eukaryotic replication 

 

DNA replication in eukaryotes is much more complicated than in bacteria or 

archaea, although there are many similar aspects. Eukaryotic cells can only 

initiate DNA replication at a specific point in the cell cycle. The cell-division 

cycle is the series of events that takes place in a cell leading to its division 

and duplication (replication). In eukaryotes, the budding yeast 

Saccharomyces cerevisiae DNA replication origins have been extensively 

studied and the best characterised eukaryotic origins (Bell and Dutta, 2002).  

 

1.1.3.1 Stepwise assembly of replisome  

 

In budding yeast, replication origins are bound throughout the cell cycle by a 

conserved six-subunit protein complex known as ORC like archeae. ORC 

protein complex is bound at replication origins characterised by the presence 

of ARS (autonomously replicating sequences) throughout the cell cycle, 

allowing replicative proteins access to the ARS (Huberman et al., 1987; 

Fangman and Brewer, 1991). During the G1 -phase of the cell cycle, ORC is 

bound by the Cdc6 protein, which then recruits two additional factors, Cdt1 

and the Mcm helicase, to form the pre-RC (pre-replicative complex) (Diffley 

et al., 1994; Speck et al., 2005; Chen et al., 2007). Assembly of pre-RC takes 

place in late M and early G1 phase when the cyclin dependent kinase (CDK) 

activity is low. The high CDK activity prevents pre-RC assembly by 

phosphorylating components of pre-RC and inhibiting their activities 

(Diffley, 2004). Subsequent to pre-RC assembly, replication initiation is 

promoted by the action of S-CDK (S-phase CDK) and a second protein 

kinase, DDK (Cdc7-Dbf4) (Dutta, and Bell, 1997; Bell and Dutta, 2002). S-

CDK main substrates in yeast are two essential proteins, Sld2 and Sld3, 

(Tanaka et al, 2007; Zegerman, and Diffley, 2007). Phosphorylation of Sld3 

by S-CDK blocks entry into S-phase. The effect of the phosphorylation of 

Sld3 is to generate a binding site for another essential replication factor, 

Dpb11 (Tanaka et al., 2007; Zegerman and Diffley, 2007) that is equivalent 
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to TOPBP1 in human cells. The N-terminal Dpb11 BRCT domain is 

responsible for binding to phosphorylated Sld3. The importance of 

phosphorylation in mediating Dpb11 binding is shown by the fact that fusion 

of non-phosphorylatable Sld3 to Dpb11 produces a protein that is able to 

rescue loss-of-function mutations in both genes and partially bypass the 

requirement for S-CDK activity to initiate S-phase (Zegerman and Diffley, 

2010). Sld3 also associates with another essential replication factor, Cdc45, 

which is likely to be recruited to the pre-RC via its interactions with Mcm 

(Figure 1.2).  

 

The second essential S-CDK substrate in yeast is Sld2 (equivalent to 

RecQL4 in human cells) (Tanaka et al., 2007; Zegerman and Diffley, 2007). 

This protein is phosphorylated on multiple sites by S-CDK, but Thr84 

phosphorylation is crucial for Sld2 function (Masumoto et al., 2002). The 

effect of Thr84 phosphorylation is also to create a binding site for Dpb11, 

via the C-terminal Dpb11 BRCT domains. Sld2 is reportedly (Tanaka et al., 

2007) part of a complex (termed the pre-loading complex or pre-LC) that 

includes Dpb11, the leading strand polymerase Polε and GINS, suggesting 

that the function of Dpb11 in bridging Cdc45–Sld3 with Sld2 is to recruit the 

pre-LC components to the origin to activate the Mcm helicase (Figure 1.2).  

 

Once the replisome is activated, the replication forks move off 

bidirectionally from the origin DNA into the surrounding sequences. ORC 

remains bound at the origin, apparently intact, at least in yeast cells, whereas 

Mcm, Cdc45, GINS and Polε move with the fork (Aparicio et al., 1997; 

Aparicio, et al., 1999; Kanemaki et al., 2003; Takayama, et al., 2003; 

Kanemaki, and Labib, 2006). The remainder of the factors described above 

dissociate from the replisome and in some cases are degraded or excluded 

from the nucleus.  

 

Unlike yeast or bacterial origins, metazoan origins appear to have very low 

ARS activity in general even though some origins show ARS activity 

(Ariizumi et al., 1993; Taira et al., 1994; Berberich et al., 1995). Replication 

initiation   sites    appear to occur   within particular regions of chromosomes 
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Figure 1.2 Model for stepwise replisome assembly in budding yeast: In G1, 

Cdc6 binds to ORC and recruits the Mcm helicase and Cdt1 to form the pre-

RC. Cdc45–Sld3 appears to associate with pre-RC-bound origins in G1. Sld3 

is phosphorylated by S-CDK, allowing it to bind to Dpb11 and recruit the 

pre-LC. The pre-LC contains Dpb11, Sld2, polymerase Pol ε and the GINS. 

Cdc45, Mcm and GINS form a tight complex (CMG) that moves with the 

replication fork. Assembled around a single CMG complex is the multi-

protein replisome progression complex (RPC). The replisome is shown 

moving to the left (indicated by block arrow): Pol ε is shown synthesizing 

the leading strand (MacNeill, 2010). 
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called “initiation zones” in higher eukaryotes (Hamlin et al., 2008). 

 

A cartoon representation comparing the important factors involved in 

replication initiation in the three domain of life is summarized in table 1.1 

 

1.2. Helicases as essential replication factors 

 

Helicases are motor proteins that move directionally along a nucleic acid 

phosphodiester backbone, separating two annealed nucleic acid strands (i.e., 

DNA, RNA, or RNA-DNA hybrid) using energy derived from ATP 

hydrolysis (Gorbalenya et al., 1988). Helicases are present in all domains of 

life and play important roles in DNA replication by unwinding the duplex.  

A crucial step in the initiation of DNA replication involves the loading of 

helicase proteins onto the duplex. In E.coli, DnaC is the protein responsible 

for loading the hexameric DnaB helicase onto the origin bound by DnaA 

(Davey el al., 2002). The final step is the activation of DnaB helicase so that 

the unwinding of the duplex allows entry of the DNA polymerase machinery 

(Leatherwood, 1998; Mariorano and Mechali, 2002). In eukaryotes, Cdc6 

and Cdt1 are responsible for loading of hexameric Mcm proteins onto the 

origin while very little is known about the archaeal loading machinery but 

the replicative helicase, the Mcm complex is conserved within archaea. All 

Mcms share a great deal of homology, particularly in the central domain of 

the protein, which spans nearly 200 amino acids and includes the NTP 

binding and hydrolysis domain (Hall and Matson, 1999). 

  

1.3 The Mcm2-7 complex as a DNA helicase    

 

The Mcm2-7 complex is the main candidate to be the DNA helicase 

associated with replication in archaea and eukarya, although there are still 

certain gaps in our knowledge about the method by which they function. 

Experimental work on Saccharomyces cerevisiae, Schizosaccharomyces 

pombe and Xenopus laevis showed that the Mcms are nuclear proteins 

required for DNA replication (Gibson et al., 1990;  Chen at al., 1992; Maiti 

and Sinha 1992; Kubota et al., 1995). Soon   after the   their   discovery   as a 
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Table 1.1 A cartoon representation of factors involved in DNA replication: 

Summary of important factor that involved in the process of initiation of 

DNA in the three domains of life.  
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nuclear protein in yeast, their homologues were identified in mammalian 

cells (Thommes at al., 1992). It was then hypothesized that Mcms could be a 

component of the replication licensing factor (RLF) activity defined when 

G1 chromatin is licensed to replicate and G2 is barred from this licensing 

process to prevent unscheduled DNA synthesis, which limits DNA 

replication to once per cycle (Blow and Laskey, 1988). This hypothesis was 

confirmed when the Mcm complex was purified from the RLF isolated from 

Xenopus egg extracts (Chong et al., 1995). Later six Mcm proteins were 

identified, given the names of Mcm2-Mcm7 and showed that they were 

conserved in all eukaryotes (Chong et al., 1996; Kearsey et al., 1996). Like 

all other helicases, the Mcm subunits contain a conserved central AAA+ 

motif (discussed in section 1.5.1) and the general structure of the Mcm 

complex resembles other DNA helicases. 

 

It has also been found in Xenopus eggs that if the Mcm complex is 

inactivated then chromosome unwinding during S phase is inhibited (Madine 

at al., 2000). Early data suggested that the Mcms play an important role in 

DNA initiation but more recent studies show that Mcms also play a role in 

replication elongation, transcription, DNA repair and chromatin remodelling 

(Prokhorova and Blow, 2000; Labib et al., 2000; Labib et al., 2001; 

Forsburg, 2004). DNA helicase activity was first identified in the human 

Mcm4/6/7 complex of around 600 KDa containing approximately equal 

amounts of each Mcm suggesting a dimer of trimers. Cross-linking studies 

suggests that this hexamer consisting of two molecules each of Mcm4, 

Mcm6 and Mcm7 (Ishimi, 1997).  

 

It is clear from a variety of experiments in different systems that Mcms 

associate with one another, perhaps forming a variety of complexes with 

differing stoichiometries. A large Mcm protein complex of around 450 – 600 

kDa has been detected in extracts from budding yeast (Lei et al., 1996), 

fission yeast (Adachi et al., 1997), Drosophila (Su et al., 1997), Xenopus 

(Hendrickson et al., 1996; Kubota et al., 1997; Thommes et al., 1997) and 

mammalian  (Kimura et al., 1996; Richter and Knippers, 1997) cell extracts. 

Some studies support the idea that the Mcm2-7 complex represents a hetero-
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hexamer of Mcm proteins, where each Mcm type is present in equal 

stoichiometry. Immunoprecipitation with antibodies to a specific Mcm 

protein in Xenopus extracts precipitates all six Mcm proteins in 

approximately equal amounts (Kubota et al., 1997). 

 

Other reports suggest that Mcm proteins may interact to form more 

heterogeneous complexes, consisting of tetramers or hexamers with different 

compositions (Lei et al., 1996; Su et al., 1997; Thommes et al., 1997). The 

Mcm proteins can be isolated as several stable subassemblies including Mcm 

2/3/4/5/6/7 (hexamer), Mcm 2/4/6/7 (tetramer), Mcm 4/6/7 (trimer) and 

Mcm3/5 (dimer) complexes (Lei et al., 1996; Thommes et al., 1997; Ishimi, 

1997; Holthoff et al., 1998; Sherman and Forsburg, 1998) but no helicase 

activity was detected in these complexes (Davey et al., 2003).  

 

The Mcm2-7 hexamer (Mcm 2/3/4/5/6/7) has been shown recently to 

possess anionic dependent helicase activity in vitro (Bochman and 

Schwacha, 2008). In vitro studies using recombinant Mcm proteins from S. 

pombe indicated that Mcm2 could inhibit the helicase activity of the 

Mcm4/6/7 complex (Ishimi, 1997; Lee and Hurwitz, 2000).  The binding of 

the Mcm3/5 complex to Mcm4/6/7 also inhibits the DNA helicase activity of 

Mcm4/6/7 complex by converting its double trimer structure into a hetero-

tetramer or hetero-pentamer (Sato et al., 2000). So far two different 

complexes are known to play a role in unwinding dsDNA (Kanter et al., 

2008), Mcm4/6/7 (Ishimi et al., 1997; You et al., 1999) and Mcm2-7 

(Bochman et al., 2008). Mcm6 from pea has shown to function as a DNA 

helicase as a single subunit (Tran et al., 2010).  

 

1.4 Phylogenetic analysis of Mcm 

 

The Mcm complex was first discovered in budding yeast as mutants that 

were unable to maintain small chromosome-like structures (Maine et al., 

1984). The complete genome sequence of S. cerevisiae indicates that there 

are six Mcm helicase encoding genes (Kearsey and Labib, 1998) and the 

phylogentic analysis suggested that there are six distinct classes of Mcm 
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proteins ranging from yeast to man (Chong et al., 1996). Identification of 

Mcm proteins in higher eukaryotes initially came from the detection of a 

murine protein related to S. cerevisiae Cdc 46/ Mcm5 (Hennessy, 1991) and 

the isolation of human P1 protein (homologous to Mcm 3) that co-purified 

with DNA polymerase α (Thommes et al., 1992) indicated the presence of 

Mcm in humans whilst the considerable sequence conservation of the family 

has made it easy to identify other higher eukaryotic homologues (Coxon et 

al., 1992; Hu et al., 1993; Sabelli et al., 1996). Higher eukaryotic Mcms have 

also emerged by the characterization of mRNAs or antigens that are 

specifically associated with proliferating cells (Todorov et al., 1994; Feger et 

al., 1995; Starborg et al., 1995; Sykes and Weiser, 1995) or by screening for 

mutants affecting cell proliferation during development in Drosophila 

(Treisman et al., 1995) or Arabidopsis (Springer et al., 1995). Phylogenetic 

comparison of eukaryotic Mcms sequences shows that the six classes of 

Mcm proteins are approximately equally related (Figure 1.3). The tendency 

of Mcm proteins to interact with each other has made it possible in some 

cases to co-purify and characterize proteins in the family (Kubota et al., 

1997; Kimura et al., 1996). Higher eukaryotic Mcms are also present in 

archaea. Although archaea are prokaryotes, their replication machinery and 

the proteins participating in the initiation of DNA replication are more 

similar to those found in eukarya than bacteria (Grabowski and Kelman, 

2003).  

 

1.4.1 Archael Mcm 

 

In all eukaryotes six Mcm proteins are found but this is not true for archaea. 

All archaeal species sequenced to date contain at least one homologue of the 

eukaryotic Mcm2–7 family (reviewed in Kelman and Kelman, 2003; 

Enemark and Joshua-Tor, 2008) and evidence is accumulating that Mcm is 

also the archaeal replicative helicase. Most of the archaea have usually one 

Mcm homologue but the Methanocaldococcus jannaschii and 

Methanococcus maripaludis S2 genomes contains four Mcms (Bult et al., 

1996; Hendrickson et al., 2004), while Methanothermobacter 

thermautotrophicus   has    just    a  single Mcm that forms a double hexamer 



 25 

 
 

 

Figure 1.3 Phylogenetic tree of eukaryotic Mcms assembled using ClustalX: 

This figure was generated using PHYLODENDRON and taken from the 

Forsburg, 2004. Colours correspond to the seven Mcm subfamilies. 

Schizosaccharomyces pombe Mcm: SpMcm; Saccharomyces cerevisiae 

Mcm: ScMcm; Homo sapiens (Human) Mcm: HsMcm; Xenopus laevis 

Mcm: Xmcm; Arabidopsis thaliana Mcm: AtMcm; Drosophila 

melanogaster Mcm: DmMcm. 
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complex and has an ATP-independent DNA-binding activity which can 

distinguish between single- and double- stranded DNA and has 3’-5’ 

helicase activity with the requirement of ATP hydrolysis (Chong et al., 

2000). The first structural information on the archaeal Mcm came from 

electron microscope (EM) reconstructions studies of the Mcm protein from 

the archaeon Methanothermobacter thermautotrophicus (Chong et al., 2000; 

Yu et al., 2002). Furthermore it was suggested that the helicase formed 

heptameric rings and helical filaments (Yu et al., 2002; Chen et al., 2005) 

compared to the initial study where it was shown to form a double hexamer 

structure in solution (Chong et al., 2000) and supported by electron 

microscopy (Gomez-Llorente et al., 2005) and structural studies (Fletcher et 

al., 2003). Subsequent EM studies with the same Mcm protein revealed 

structural polymorphism. It was found that in addition to helical filaments 

and heptameric rings the protein also formed double heptamers, hexamers 

and double hexamers, octamers and open rings (Pape et al., 2003; Gomez-

Llorente et al., 2005; Costa et al., 2006 a,b; Jenkinson et al., 2009). The 

single Mcm from M. thermautotrophicus was the first archaeal Mcm that 

was shown to have DNA binding, ATPase and 3’-5’ helicase activities 

(Kelman et al., 1999; Chong et al., 2000; Shechter et al., 2000). Helicase 

activities were then demonstrated for Mcms from S. solfataricus (Carpentieri 

et al., 2002), Archaeoglobus fulgidus (Grainge et al., 2003) and Aeropyrum 

pemix (Atanassova and Grainge, 2008). A near-full-length Sulfolobus 

solfataricus Mcm hexamer has generated based on the 6-fold symmetry of 

the N-terminal Methanothermobacter thermautotrophicus (Mth) hexamer 

(Brewster et al., 2008). 

 

1.4.2 Eukaryotic Mcms 

 

All eukaryotic Mcm sequences obtained thus far appear to be homologous to 

one or other of the six S. cerevisiae Mcm proteins, suggesting that there were 

six distinct Mcm genes in a primordial eukaryote. Recently, two more 

additional distantly related proteins Mcm8 and Mcm9 (Maiorano et al., 

2005; Maiorano et al., 2006) have been identified, however, these are not 

present in all eukaryotes (Gozuacik et al 2003, Lutzmann et al., 2005). 
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Mcm9 only exists in vertebrates (Maiorano et al., 2006). Mcm8 functions in 

the elongation step of DNA replication as a helicase and stimulates the 

processivity of DNA polymerases at replication sites. Mcm8 does not 

associate with the soluble Mcm2-7 complex and binds chromatin upon 

initiation of DNA synthesis (Maiorano et al., 2005). It has been 

demonstrated that Mcm9 binds to chromatin in an ORC-dependent manner 

and is required for the recruitment of the Mcm2-7 helicase onto chromatin 

(Lutzmann and Mechali, 2008). There has been no direct interaction detected 

between these newly discovered Mcms and the Mcm2-7 helicase family 

(Maiorano et al., 2005; Lutzmann and Mechali, 2008).  

 

Mcm1 and Mcm10 do not belong to this family but are conserved in higher 

eukaryotes. Mcm1 is a transcription factor that may play a role in DNA 

synthesis while Mcm10 appears to be directly required to initiate DNA 

synthesis (Maiorano et al., 2006). 

 

1.5 Biochemical properties of the Mcm proteins 

 

The Mcms belong to a distinct subgroup of the large AAA+ ATPase family 

of proteins, which has many cellular functions (Davey et al., 2002). AAA+ 

ATPases generally form large ATP-dependent complexes. Mcms can be 

divided into three different domains (Figure. 1.4) which are highly 

conserved; an N-terminal domain which contains a Zn-finger motif, a central 

AAA+ (ATPases Associated with various cellular Activities) domain 

containing Walker A and Walker B motifs and a C-terminal domain 

containing a winged helix-turn-helix motif (Jenkinson and Chong, 2006).  

 

1.5.1 The AAA+ domain 

 

The central AAA+ domain can be divided into an α/β subdomain (the 

functional core of the enzyme) and an α subdomain mediating inter-subunit 

contacts. The α/β subdomain contains the Walker A, Walker B and arginine 

finger signature sequence motifs typical of AAA+ ATPases  (Koonin, 1993). 
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Figure 1.4 A schematic representation of the domain structure of Mcms: The 

Mcm cartoon is showing N-terminal domain containing zinc-finger and β-

hairpin, central AAA+ ATPase domain containing Walker A and B motif, β-

α-β insert, PS1BH (pre-sensor 1 beta-hairpin), and a C-terminal domain with 

wHTH (winged-helix-turn-helix) (Jenkinson and Chong, 2006). 
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Crystal structure of nearly full-length Mcm from Sulfolobus solfactaricus 

has been solved (Breswster et al., 2008).  A systematic classification of 

AAA+ proteins has been carried out and identified a superclade which 

includes the Mcm proteins and is characterised by an insertion in the α/β 

subdomain occurring before the `sensor 1' motif and forming a β-hairpin 

(Iyer et al., 2004). This insertion has been called the pre-sensor 1 β-hairpin 

(PS1BH) and defines the superclade. Point mutation analysis of the 

Sulfolobus solfataricus Mcm (SsoMcm) orthologue demonstrated that this 

insertion has a role in DNA binding and helicase activity (McGeoch et al., 

2005). Within the PS1BH superclade, a number of AAA+ proteins contain 

an additional insertion in the α/β subdomain, disrupting the continuity of 

helix 2 (Iyer et al., 2004). In Mcm proteins, the h2i (helix-2 insert) has been 

proposed to act as a ploughshare separating the two strands during the 

helicase reaction (Chong 2005; Jenkinson and Chong, 2006).  

 

1.5.2 N-terminal domain and the zinc finger 

 

The N-terminal domain of the archeael Mcm has been shown to be important 

in binding to single stranded DNA, protein multimerisation and the 

regulation of helicase activity (Jenkinson and Chong, 2006; Kasiviswanathan 

et al., 2004). The conserved zinc finger motif found in the N-terminal 

domain of the Mcm has shown to be essential for helicase activity 

(Poplawski et al., 2001). The N-terminal domain has also been shown to be 

the site of interaction with the origin binding protein, cdc6, which modulates 

the activity of Mcm (Kasiviswanathan et al., 2005; Haugland et al., 2006). 

Mutation in the conserved loop of the N-terminal domain has no effect on 

DNA binding but caused decreases in ATPase and helicase activities 

(Sakakibara et al., 2008). 

 

The crystal structures of the poorly conserved N-terminal portion of 

Methanothermobacter thermautotrophicus Mcm (N-MthMcm) and 

Sulfolobus solfataricus Mcm (N-SsoMcm) reveal that this region influencesn 

the formation of dodecamers (Figure 1.5 A) and hexamers (Fletcher et al., 

2003; Liu et al., 2008). The monomeric fold and the assembled hexamer 
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structures of the N-SsoMcm and N-MthMcm are highly conserved (Fletcher 

et al., 2003; Liu et al., 2008). A β-hairpin structure present in the N domain 

of the both Mcm proteins protrudes into the central hexameric channel to 

form the narrowest point within the channel, possibly for interacting with 

DNA at a certain stage of Mcm function (Fletcher et al., 2003; McGeoch et 

al., 2005). 

 

1.5.3 C-terminal domain  

 

The last 100 amino acids of the MthMcm protein include a predicted helix–

turn–helix motif (HTH), a fold typical of DNA interacting domains (Aravind 

and Koonin, 1999). The HTH motif appears to be present in other archaeal 

Mcm sequences but not in eukaryotic proteins. A deletion mutant of the 

MthMcm protein lacking the C-terminal domain (Δ597) showed increased 

dsDNA-stimulated ATP hydrolysis and increased the affinity of the mutant 

complex for ssDNA and dsDNA but lower helicase activity, observed by 

steady state fluorescence (Jenkinson and Chong, 2006). FRET (fluorescence 

resonance energy transfer) experiments on the SsoMcm also suggested a 

DNA-induced conformational change involving the C-terminal domain 

(McGeoch et al., 2005). These observations indicate a possible role for the 

C-terminal domain in coupling the ATP hydrolysis and DNA spooling 

motion necessary for the helicase activity. 

 

1.5.4 Hairpins  

 

There are three beta (β) hairpin structures located in the C terminal half of 

Mcm (Figure 1.5 B). The presensor 1 beta hairpin (PS1BH), which is 

predicted to protrude into the central channel of the complex at the 

intersection with the side channel (Brewster et al., 2008) has been shown to 

be essential for  helicase activity (McGeoch et al., 2005). An insert in helix 2 

that forms another β-hairpin structure between the Walker A and B motifs is 

unique to the Mcms and was predicted to play a role in DNA unwinding 

(Iyer et  al., 2004;   Chong,  2005). Deletion    of    this    β-hairpin   structure 

uncoupled ATP hydrolysis from helicase  activity; with   the deletion mutant 
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Figure 1.5 Features of the monomeric and double-hexameric Mcm structural 

models: (A) Dodecameric structure of the N-terminal domain of M. 

thermautotrophicus Mcm (Fletcher et al., 2003) (B) Near full length 

structure of a single Mcm protein from S. solfataricus Mcm showing hairpin 

structures (Brewster et al., 2008) (C) Cartoon of M. thermautotrophicus 

Mcm single subunit indicating the relative positions of N-terminal, C-

terminal and AAA+ domains (Pape et al., 2003). 
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possessing increased ATP hydrolysis but no helicase activity (Jenkinson and 

Chong, 2006).  The S. solfataricus Mcm crystal structure confirms that this 

β-hairpin protrudes into the central channel of hexamer, supporting the 

predicted mechanical role of this β-hairpin (Brewster et al., 2008). A third β-

hairpin, EXT, in the C-terminal half of the protein is located close to the exit 

of the side channel. Mutations at the tip and the base of this β-hairpin have 

shown that it is required for helicase activity but not DNA binding (Moreau 

et al., 2007; Brewster et al., 2008). The fact that β-hairpins positioned in 

both the central and side channels of the complex are required for helicase 

activity supports the hypothesis that single stranded DNA is extruded 

through the side channel, as it is unwound. Three-dimentional reconstruction 

using electron microscopy indicates the relative positions of N-terminal, C-

terminal and AAA+ domain in M. thermautotrophicus Mcm (Figure 1.5 C). 

However, despite the large amount of biochemical data generated through 

structural and mutational analysis, the way in which DNA is passed through 

the Mcm complex and exact mechanism of unwinding remain unclear. 

 

1.6 Structure of the Mcm complex 

 

From studies using M. thermautotrophicus a three dimensional 

reconstruction of the Mcm complex has been achieved using negatively 

stained particles coupled with electron microscopy. Several reports shows 

that the Mcm protein has a hexameric ring structure with six individual 

monomers arranged around a six-fold axis. The large central cavity lined by 

the N-terminal domains and AAA+ domains of the monomers is wide 

enough to accommodate dsDNA (Figure 1.6 A, B) (Sato et al., 2000; Kalpan 

et al., 2003; Brewster et al., 2008). A three dimensional reconstruction of M. 

thermautotrophicus Mcm shows the top and bottom halves of the molecule 

are asymmetrical, the top half is dome shaped whereas the bottom half has a 

ridged shape; the ridge corresponds to the zinc motifs on each subunit 

(Figure 1.6 C). 
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Figure 1.6 Structure of the Mcm complex: (A) Crystal structure (ribbon 

diagram) showing the top and side views of a hexamer model of S. 

solfataricus Mcm (Brewster et al., 2008), (B) The channel of the double 

hexamer with modelled dsDNA (yellow) at the narrowest point (Fletcher et 

al., 2003) (C) Cryo-EM structure of top and bottom half of the molecule 

shows asymmetry, the top half is dome shaped (Pape et al., 2003). 
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1.6.1 Interactions between Mcm 2-7  

 

Purification of Mcm2-7 proteins as individual subunits of S. cerevisiae Mcm 

proteins as recombinant proteins in E. coli can be achieved and it was found 

that the Mcm heterohexamer could be reconstituted from these individual 

subunits (Davey et al., 2003). The Mcm subunits were studied individually 

and in many combinations to see if any ATPase activity was present. The 

study showed that individual Mcm subunits on their own could not 

hydrolyse ATP effectively (even though they have an ATP binding site); to 

achieve ATP hydrolysis two or more Mcm subunits are needed. Analysis of 

the Mcm2-7 active sites, both as isolated dimers and within the context of 

the Mcm2-7 heterohexamer indicated that they contribute unequally to ATP 

hydrolysis and viability (Bochman et al., 2008). ATPase activity requires 

residues from both subunits; a catalytic arginine on one subunit and an ATP 

binding site on the other subunit (Davey et al., 2003). There are fifteen 

possible combinations to pair up the six subunits and it was found that in the 

absence of DNA that only three of these combinations showed any ATPase 

activity. The three pairs that showed ATPase activity are; Mcm3/7 proteins 

(which showed the most ATPase activity), Mcm4/7 proteins (showed weaker 

ATPase activity) and Mcm2/6 proteins. These three pairs all showed 

significantly more ATPase activity than the heterohexamer of all six Mcm 

proteins (Davey et al., 2003). The suggestion that ATPase activity requires 

residues from two subunits was tested by analysing the activity of paired 

subunits with mutations. The arginine residues in catalytic SRF motif in the 

Mcm3 and Mcm7 were changed to alanine and then these mutated proteins 

were mixed with wild type proteins. It was shown that pairs containing 

mutant Mcm3 and wild type Mcm7 did not show any ATPase activity. 

Whereas mutated Mcm7 and wild type Mcm3 showed as much ATPase 

activity as the wild type Mcm3/7 pairing. This suggests that only one subunit 

provides the catalytic arginine (in this case it is Mcm3) whilst the other 

provides the ATP binding site (here it is Mcm7).  

 

Stable interactions between Mcm proteins were tested by mixing pairs of 

Mcm subunits and analysing their gel elution volume (the oligomeric state of 
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each Mcm protein can be determined by elution volume by comparing 

elution volumes to already known elution volumes of each Mcm subunit). 

Interactions have been shown between Mcm3/5 and Mcm4/6 and ambiguous 

results were found for Mcm pairs; Mcm2/3, Mcm2/4, Mcm3/4, Mcm3/6, 

Mcm6/7 so it was concluded that in the absence of any convincing data that 

these pairs of proteins do not interact with each other. From these observed 

interactions along with ATPase activities a proposed structure of a Mcm2-7 

heterohexamer is the ring shown in Figure 1.7 (Davey et al., 2003). The 

same organisation of subunits within the Mcm2-7 complex has been 

predicted in several independent studies (Crevel et al., 2001; Davey et al., 

2003; Yu et al., 2004; Bochman et al., 2008;).  It has been suggested that a 

discontinuity between the Mcm2 and Mcm5 subunits forms a “gate” that 

allows loading of the ring-shaped complex onto DNA (Bochman et al., 2008; 

Bochman and Schwacha, 2008). Although there are only three Mcm proteins 

that show ATPase activity  (Mcm3, 4 and 7) this does not mean that the 

other subunits are not catalytic, they may need extra factors to activate them 

in vivo that were not available in tests done in vitro. This may be a 

mechanism to make sure that the ATPase activity of the Mcm proteins is not 

on unless the Mcm hexamer is under the control of some other factors.  

 

1.6.2 Interaction of Mcm2-7 with other proteins 

 

Interactions have been described between Mcms and components of the 

origin recognition complex ORC, which was identified by its ability to bind 

to the conserved ARS consensus sequence of replication origins in S. 

cerevisiae (Bell and Stillman, 1992). ORC binds replication origins in vivo 

(Diffley and Cocker, 1992) and six components of the complex encoded by 

the ORC1 – 6 genes have been identified (Bell et al., 1993; Foss et al., 1993; 

Li and Herskowitz, 1993; Micklem et al., 1993; Bell et al., 1995; Loo et al., 

1995). Mutations in ORC genes cause defects in DNA replication, and 

reduce the efficiency of initiation at origins (Bell et al., 1993; Foss et al., 

1993; Micklem et al., 1993; Loo et al., 1995). The S. pombe homologue of 

Orc1 has been shown to interact with Mcm4 both genetically and 

biochemically (Grallert and Nurse, 1996)  and  genetic interactions have also  
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Figure 1.7 Proposed structure of the Mcm2-7 heterohexamer: This structure 

is based on the interactions observed in the gel filtration analysis and 

ATPase activity. This ring is viewed from the C-terminal face. SRF 

represents the catalytic SRF motif (arginine finger) and P-loop (Walker A 

motif) represents the ATP binding site (Image and legend, Davey et al., 

2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 37 

been shown between the Mcm5 and ORC6 genes (Li and Herskowitz, 1993).  

 

In addition to this ORC interaction, both Mcm5 and Mcm7 were originally 

identified as extragenic suppressors of a mutation in the CDC45 gene (Moir 

et al., 1982), which encodes another essential replication factor (Hennessy et 

al., 1991) and this interaction was both dominant and allele specific. This 

interaction is most easily explained if Cdc45 physically associates with Mcm 

proteins and indeed the proteins have subsequently been shown to co- 

immunoprecipitate (Hopwood and Dalton, 1996). The role of Cdc45 in DNA 

replication is not known, but it also appears to interact at least genetically 

with ORC (Hardy, 1997; Zou et al., 1997). CDC45 is the eukaryotic 

orthologue of the bacterial and archaeal RecJ family nucleases (Makarova et 

al., 2012). In vitro and in vivo experiments have demonstrated that the 

Mcm2-7 helicase complex requires the association with GINS and the 

CDC45 protein and thought to be the active replicative helicase unit in vivo 

(Moyer et al., 2006; Pacek et al., 2006; Labib and Gambus, 2007). 

 

In addition to interacting with ORC and other initiation factors, which would 

potentially allow origin-specific association with chromatin, Mcms may also 

associate less specifically with nucleosomes via an interaction with histones. 

The tetrameric Mcm complex Mcm2, Mcm4, Mcm6, Mcm7 interacts with 

histone H3, which could be important for stabilizing the interaction between 

Mcm proteins and chromatin, or changing the stability of nucleosomes in the 

vicinity of replication origins (Ishimi et al., 1996). The Mcm2, Mcm4, 

Mcm6, Mcm7 tetramer does not interact with histone H2A or H2B and the 

dimeric Mcm subcomplex Mcm3, 5 appears to show no interaction with 

histones. The stability of the interaction between Mcm3 and Mcm7 and 

chromatin in extracted cells has been shown to be increased in the presence 

of ATP or non-hydrolysable analogues of ATP (Fujita et al., 1997) 

suggesting that ATP binding by Mcms or other chromatin proteins e.g., 

components of ORC, may in some way enhance the interaction with 

histones. Human Mcm3 was first described as a protein associated with 

DNA polymerase α primase (Thommes et al., 1992), although subsequent 

analysis failed to demonstrate a direct interaction between the two proteins 
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(Burkhart et al., 1995). However, genetic interactions have been found 

between subunits of DNA polymerase δ and Mcm2 in fission yeast 

(Forsburg et al., 1997). Archaeal GINS complex was identified and showed 

that it directly physically interacts with the archaeal Mcm (Marinsek et al., 

2006). Very recently interaction of McmA from M. maripaludis has been 

found with other hypothetical proteins namely MMP1213, MMP0004 and 

MMP0457 (Chong lab unpublished data). 

 

1.7 Regulation of Mcm helicase activity 
  
 
Two key classes of regulatory molecules, cyclins and cyclin dependent 

kinases (CDKs), determine a cell's progress through the cell cycle (Nigg et 

al., 1995). Cyclins form the regulatory subunits and CDKs the catalytic 

subunits of an activated heterodimer cyclins have no catalytic activity and 

CDKs are inactive in the absence of a partner cyclin. When activated by a 

bound cyclin, CDKs perform a common biochemical reaction called 

phosphorylation that activates or inactivates target proteins to orchestrate 

coordinated entry into the next phase of the cell cycle. Different cyclin-CDK 

combinations determine the downstream proteins targeted. CDKs are 

constitutively expressed in cells whereas cyclins are synthesised at specific 

stages of the cell cycle, in response to various molecular signals. 

 

CDK/cyclin (CDK) and Cdc7/Dbf4 (DDK) activity are required for the 

initiation of DNA replication in all eukaryotic cells (Stillman, 1996; Dutta 

and Bell, 1997) Phosphorylation plays a key role in regulating Mcm activity 

(Coue et al., 1996). 

 

In Xenopus, levels of Cdk2-cyclin E appear to be important for regulating 

Mcm chromatin binding. Although overall levels of Cdk2-cyclin E levels are 

similar throughout the embryonic cell cycle, compartmentalization of the 

kinase in newly formed nuclei gives rise to local concentrations around 

chromatin that are much higher than those in the cytosol (Hua et al., 1997).  
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Low levels of Cdk2-cyclin E or cyclin A are essential to allow formation of 

replication-competent chromatin, apparently because Mcm3 can only 

associate with chromatin under these conditions (Li et al., 2011). S. 

cerevisiae Cdks also seem to have a role in controlling the association of 

Mcms with chromatin. The ability of Mcm7 to associate with origins 

(Tanaka et al., 1997), or the ability of origins to form pre-RCs as defined by 

genomic foot-printing requires expression of Cdc6 during a period of low 

Cdk Cdc28-Clb activity. Cdk activity could in principle cause this effect by 

destabilizing Cdc6 and thus preventing both its association with chromatin 

and the subsequent binding of Mcms in S. cerevisiae (Piatti et al., 1997). 

 

In a related study in Xenopus egg extracts, Cdc2-cyclin B has also been 

shown to be an inhibitor of a component of replication licensing (Mahbubani 

et al., 1997), and in Drosophila, mitotic degradation of cyclin A but not 

cyclin B is required for rebinding of Mcms to chromatin (Su and O’Farrell, 

1997). Mcm4 may be phosphorylated by Cdk2/cylin A, since it contains 

consensus phosphorylation sites in the N-terminal region of the protein that 

are conserved amongst eukaryotes, and there is direct experimental evidence 

that it is a substrate in vitro (Kudoh et al., 2006). Examination of Mcm4 

during the Xenopus cell cycle provides evidence for Cdk phosphorylation. 

Mcm4 is hypo- or de-phosphorylated in G1 phase but chromatin-bound 

Mcm4 is phosphorylated in S phase before it is displaced by a replication 

fork (Coue et al., 1996). Recently it has been proved that the Dbf4–Cdc7 

kinase promotes S phase by alleviating an inhibitory activity in Mcm4 in S. 

cerevisiae (Sheu and Stillman, 2010). 

 

At least some Mcm proteins are phosphorylated in a cell cycle specific 

manner. Mcm2 from S. cerevisiae (Todorov et al., 1995; Young and Tye, 

1997) Mcm3 from S. cerevisiae (Young and Tye, 1997) Mcm4 from 

Xenopus (Hendrickson et al., 1996) and Mcm7 from human sources 

(Tsuruga et al., 1997) have been shown to be phosphoproteins. Mcm2, 

Mcm3 and Mcm4 proteins show a similar cell cycle pattern of 

phosphorylation, becoming dephosphorylated or hypophosphorylated on exit 

from mitosis, and being phosphorylated as cells enter S phase (Hendrickson 
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et al., 1994; Todorov et al., 1996; Young and Tye, 1997). Mcm proteins 

bound to chromatin are hypophosphorylated compared to the displaced 

proteins suggesting that phosphorylation triggers or shortly precedes the 

displacement of Mcms, or alternatively that phosphorylation can only occur 

on displaced Mcm proteins (Kimura et al., 1994; Musahl et al., 1995; 

Todorov et al., 1995; Hendrickson et al., 1996). For at least two Mcms, 

human Mcm2 and Xenopus Mcm4, the proteins are phosphorylated first in S 

phase, but become hyperphosphorylated during mitosis (Todorov et al., 

1995; Coue et al., 1996). 

 

Not much is known about the regulation of the archaeal Mcm helicase in 

vivo. In vitro studies on the regulation of the helicase yield conflicting 

results. To date, two proteins affect helicase activity in vitro. The 

M. thermautotrophicus and S. solfataricus Cdc6 protein (a homologue of the 

eukaryotic initiation protein Cdc6; also referred to as Orc or Orc/Cdc6) 

inhibits helicase activity in vitro (De Felice et al., 2003; Shin et al., 2003b; 

Kasiviswanathan et al., 2005). Cdc6 protein dissociates the hexameric 

helicase (Shin et al., 2008), which could be the mechanism by which 

helicase activity is eliminated. This dissociation of Mcm may also suggest a 

mechanism for helicase loading at the origin. The Mcm protein forms stable 

hexameric rings and these rings have to open at one interface, or to 

dissociate into monomers, prior to assembly at the replication bubble. This 

function may be mediated by Cdc6-mediated Mcm dissociation (Shin et al., 

2008). 

 

However, not all archaeal Cdc6 proteins inhibit their respective Mcm 

helicases. The Mcm protein from T. acidophilum exhibits very poor helicase 

activity on its own (Haugland et al., 2006; Haugland et al., 2009) but its 

activity is enhanced by the T. acidophilum Cdc6 protein (Haugland et al., 

2006). Binding of Cdc6 to Mcm protein stimulates the helicase ATPase 

activity and enhances helicase activity (Haugland et al., 2006; Haugland et 

al., 2008). Binding of Cdc6 to Mcm protein might induce conformational 

changes in the helicase that stimulate ATP hydrolysis. 
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Another archaeal protein that regulates helicase activity is the GINS 

complex from Pyrococcus furiosus (Yoshimochi et al., 2008). Like the Mcm 

helicase from T. acidophilum (Haugland et al., 2006), the in vitro helicase 

activity of the P. furiosus Mcm is very weak. However, it is stimulated upon 

interaction with the GINS complex (Yoshimochi et al., 2008) and, like the 

T. acidophilum Cdc6 protein (Haugland et al., 2008), GINS stimulates 

P. furiosus Mcm helicase activity by stimulating its ATPase activity 

(Yoshimochi et al., 2008). However, the effect of GINS on Mcm activity 

might not be a generalized phenomenon, because although Mcm and GINS 

proteins from S. solfataricus interact, no effect on Mcm helicase activity in 

vitro was observed (Marinsek et al., 2006). 

 

To date, in archaea, only the A. pernix Mcm protein was shown to be 

phosphorylated by a Cdc6 homologue (Atanassova and Grainge, 2008). 

Thus, phosphorylation or other modification might be involved in the 

regulation of the archaeal Mcm protein in vivo. 

 

1.8 Cancer and Mcm 

 

Association of the Mcm2-7 complex to ORC is a crucial moment in 

initiating the replication fork. Mcm proteins play a role in maintaining 

genome integrity and prevent re-replication once per cell cycle. Proliferating 

cells have high levels of Mcm, whereas they are not detected in quiescent, 

differentiated or senescent cells (Hiraiwa et al., 1997; Freeman et al., 1999; 

Meng et al., 2001; Ramnath et al., 2001; Going et al., 2002; Rodins et al., 

2002; Ishimi et al., 2003). They are also potentially useful markers of cell 

proliferation. Recent studies suggested that Mcms are good markers of 

proliferation activity, because they are highly expressed in a variety of 

tumours. Since molecular studies showed that increased levels of Mcms 

mark proliferative malignant cells (Ishimi et al., 2003) and may prove to be 

effective diagnostic markers for tumourigenesis (Todorov et al., 1998; 

Freeman et al., 1999; Stoeber et al., 1999; Lei, 2005). Studies on human 

Mcms are therefore potentially useful in providing targets for medicine or 

therapies.  
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Recently, several groups have reported that Mcm proteins are more 

frequently detected in cells from malignant tissues than those from normal 

tissues (Hiraiwa et al., 1997; Hiraiwa et al., 1998; Todorov et al., 1998; 

Williams et al., 1998; Freeman et al., 1999; Stoeber et al., 1999; Coleman et 

al., 2001; Endl et al., 2001; Stoeber et al., 2001; Tan et al., 2001; Wharton et 

al., 2001). This phenomenon was also observed in dysplastic cells (Freeman 

et al., 1999). Thus the presence of Mcms in precancerous cells and the 

potential reoccurrences (Alison et al., 2001; Hunt et al., 2002) make them 

effective markers. 

 

The fact that Mcms are over expressed in a cell cycle specific manner in a 

wide range of cancers means that they are not only potentially useful 

markers for cancers but that they also have the potential to be anti-cancer 

drug targets. There are several reports showing that Mcm helicase activity 

can be inhibited in vivo due to modifying Mcms (Ishimi et al., 2000; Takei et 

al, 2002). Cyclin A/Cdk2 phosphorylates human Mcm4 and inactivates the 

human Mcm4/6/7 complex helicase activity (Ishimi et al., 2000). Human 

Mcm2, 3 and 7 are phosphorylated by the ATM/ATR checkpoint kinases in 

response to DNA damage (Cortez et al., 2004; Shi et al., 2007). Over 

expression of human Mcm3 acetylating protein (Mcm3AP) inhibits the 

initiation of DNA replication (Takei et al, 2002). 

  

In vitro studies showed that Mcm2 could be efficiently silenced in human 

cells by RNAi or antisense oligodeoxynucleotides (ODNs) and this led to the 

inhibition of DNA replication. This study analyzes the transforming activity 

and signalling of Mcm7, the oncogenic function of the miRNA cluster that is 

embedded in the Mcm7 genome, and the potential of gene therapy that 

targets Mcm7 (Luo, 2011). Furthermore RNAi mediated knockdown of 

Mcm2-7 in human cells also increases in sensitivity to DNA damage (Ibarra 

et al., 2008). However, the tests have so far only been conducted in vitro and 

although several RNAi based therapies targeting other proteins are currently 

in clinical trials, delivering the antisense ODN/RNAi molecules to cancerous 

cells in vivo remains a significant problem (deFougerolles, 2008). 
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1.9 Model organisms to study Mcm complex 

 
Eukaryotes need cell cycle regulation control by DDK and CDK activity, the 

homologues of which are not present in archaea. It is thought that fewer 

proteins are needed in archaeal replication (Edgell and Doolittle, 1997). 

Methanogens were the first organisms to be identified as archaea and 

classified as a separate domain (Woese and Fox, 1977). Methanogens are 

divided into five orders: Methanobacteriales, Methanococcales, 

Methanomicrobiales, Methanosarcinales and Methanopyrales (Thauer, 

1998). Complete genome sequences for representatives of all of these orders 

are available. The observation that archaeal information processing systems 

are similar to but simpler than those in eukaryotes, along with the 

thermostable nature of proteins from many of these organisms, has led to a 

number of archaeal species being used as models for a variety of eukaryotic 

processes (Tye, 2000). DNA replication is a good example of how a 

eukaryotic process is simplified in archaea. In archaea that have been 

characterized to date, a single Mcm protein forms a homohexameric 

complex that possesses ATP-dependent DNA helicase activity (Chong et al., 

2000). Mcm complexes from a number of species have been characterized 

and have provided insight into the mechanisms that govern helicase activity 

in these proteins. Motifs essential for Mcm function have been identified 

using ATP hydrolysis, DNA binding and DNA helicase activity assays 

(Kelman et al., 1999; Chong et al., 2000; Shechter et al., 2000; Poplawski et 

al., 2001; Carpentieri et al., 2002; Kasiviswanathan et al., 2004; Jenkinson 

and Chong, 2006; Barry et al., 2007; Bochman and Schawacha, 2008). The 

genome sequence of Methanocaldococcus jannaschii (Mj) has revealed that 

in contrast to the single Mcm found in other archaea, this organism has 

multiple, apparently functional Mcm homologues (Bult et al., 1996).  

 

Methanococcus maripaludis is a mesophilic methanogen (Bult et al., 1996) 

that has one of the best-developed genetic systems of any organism in the 

archaea domain (Hendrickson et al., 2004). Because the genome of M. 

maripaludis S2 has been completely sequenced, this strain is the strain of 

choice for genetic manipulation (Jones, 1983; Hendrickson et al., 2004). 
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Analysis of the genome sequence of M. maripaludis S2 has revealed that it 

also contains multiple Mcms (Hendrickson et al., 2004; Walters and Chong, 

2009). A well-defined system for genetic manipulution of M. maripaludis, 

greatly increases its usefulness as a model system (Tumbula and Whitman, 

1999; Allers and Mevarech, 2005). The four M. maripaludis S2 Mcm 

homologues are distributed across the genome (Hendrickson et al, 2004) and 

are assigned ORF numbers that have further supplemented with gene names 

(indicated in parentheses) as MMP0030 (McmA), MMP0470 (McmB), 

MMP0748 (McmC) and MMP1024 (McmD) (Walters and Chong, 2010).  

 

It has been shown that Methanococcales have multiple functional Mcms 

(Walters and Chong, 2010) and may therefore be a good model for 

understanding eukaryotic Mcm interactions.  

 

1.10 Issues with eukaryotic Mcm studies 

 

In eukaryotes, in vivo observations implicate the Mcm2-7 complex as the 

replicative helicase (Bell and Dutta review, 2002). Despite this in vivo 

observation, Mcm2-7 has been reported to lack in vitro helicase activity 

(Schwacha and Bell, 2001; Davey et al., 2003; Bochman and Schwacha, 

2007). Interestingly, both an archaeal Mcm complex (Kelman and White, 

2005) and an alternative hexameric Mcm complex containing only three of 

the six eukaryotic Mcm subunits (the Mcm4/6/7 complex) have DNA 

unwinding activity (Ishimi, 1997; Lee and Hurwitz, 2001; Kaplan et al., 

2003). The helicase activity was only recently identified in S. cerevisiae 

Mcm2-7 complex expressed in baculovirus infected insect cells (Bochman 

and Schwacha, 2008).  

 

Although a lot of progress has been made in understanding eukaryotic Mcm 

there are still gaps that needed to be filled like how Mcms are loaded on to 

DNA? How and where exactly are Mcms modified to be regulated? 

Compared to archaeal systems, lots of replication origins and a requirement 

for other additional proteins partners makes it very difficult to dissect the 

exact process in eukaryotes. Also the post translation modifications that can 
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inhibit hexameric Mcm2-7 complex activity in eukaryotes make eukaryotic 

Mcm a difficult choice to work with. For this reason most of the research 

concerning Mcms are either on archaeal system or on simple eukaryotic 

system of yeast, Xenopus or Drosophila. 

 

1.11 Project Aims and Objectives  
 
  
An increased understanding of molecular Mcm function may aid in filling 

the gaps in DNA replication and regulation of DNA replication mechanisms 

and in identifying possible new targets for inhibition of cancer. Further 

understanding may also help in identifying new proteins involved in the 

replication process. 

 

Although S. cerevisiae Mcm2 - 7 have already been shown to possess 

helicase activity (Bochman and Schwacha, 2008), to date no one has 

performed a study on human Mcm and M. maripaludis for helicase activity.  

 

1.11.1 Aims  

 

The aim of this study is to investigate the human and M. maripaludis Mcm 

helicase activity by expressing the recombinant Human and M. maripaludis 

Mcm proteins in E.coli so that the inhibitory post translational modifications 

can be omitted. A further aim is to test the purified complexes for helicase 

activity and effect of phosphorylation on active Mcm2-7 helicase so that 

some insight into the regulation by inhibiting helicase activity by some 

kinases can be obtained. 

 
1.11.2 Objectives  

 

The objectives of this project were:  

 

•  To express and purify recombinant individual human Mcms and co-

express and co-purify human Mcms complex. 
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• To test human Mcm2-7 complex for helicase activity.  

 

• To test human Mcm2-7 complex as a target for kinase activity and 

whether phosphorylation modulates helicase activity? 

 

• To express and purify recombinant M. maripaludis Mcms  

 

• To test the M. maripaludis Mcm individual and in complex for 

helicase activity. 

 

• To determine the optimum conditions for M. maripaludis Mcms 

helicase activity.  

 

•  To find out the role of hypothetical proteins as a possible kinase that 

targets for M. maripaludis Mcm activity. 
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Chapter 2: Materials and Methods 

 

2.1 Chemicals, reagents and other materials   

 

All chemicals and reagents were supplied by Sigma-Aldrich (UK) unless 

stated otherwise. 

 

2.1.1 Primer design 

 

Primers used during PCR for amplification of DNA fragments were 

designed using Seqbuilder (Lasergene) software programme and ordered in 

lyophilized form from MWG Biotech. Primers were diluted to a final 

concentration of 100 μM in sterile dH2O (See Appendix 2 for detail). 

 

2.1.2 Growth media 

 

E.coli cells were cultured in Luria-Bertani or lysogeny broth (LB) liquid 

media containing 10 g tryptone, 10 g NaCl and 5 g yeast extract per litre. LB 

solid medium contained the same components as liquid LB, with 15 g/litre of 

agar added. LB media was sent to autoclave at 121 °C.  

 

2.1.3 Antibiotics 

 

All antibiotic stock solutions were filter sterilized before being added to 

growth media. Antibiotics were added to liquid and solid growth media to 

give the following final concentrations; 100 μg/ml ampicillin, 30 μg/ml 

kanamycin and 20 μg/ml chloramphenicol and 25 μg/ml spectinomycin 

unless stated otherwise, were used in this study. 

 

2.2 Sub-cloning and expression of hMcm2-7 

 

2.2.1 Plasmid construction 

 

Human Mcm2-7 cDNAs cloned into pBluescript SK+ vector were provided   

by the Mendez lab (CNIO Spain).  
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2.2.2 Transformation 

 

pBluescript SK+ vectors containing hMcm genes were transformed into the 

appropriate cells (E.coli Novablue). 1 μl of DNA (pBluescript SK+ vector) 

was added to 50 μl of cells on ice for 20 minutes and then heat shocked at 42 
oC for 45 seconds. Cells were placed back on ice for 2 minutes followed by 

the addition of 250 μl of SOC (0.5 g yeast extract, 2 g tryptone, 50 mg NaCl, 

2.5 mM KCl, 100 ml of sterile milliQ H2O, pH adjusted to 7.0 and solution 

autoclaved, then added 0.2 μm filter sterilized sterilized 10 mM MgCl2, 20 

mM glycerol). Transformed cells were incubated at 37 oC for 1 hour with 

moderate agitation (approximately 150 rpm). After 1 hour incubation, 100 μl 

of this culture was spread on to the appropriate antibiotic plate and incubated 

overnight at 37 oC. To extract DNA from colonies, over night colonies were 

grown in 5 ml of LB with appropriate antibiotics. 

 

2.2.3 Restriction digestion 

 

Reactions were carried out in a volume of 30 μl. 5 μg of extracted DNA was 

digested over the period of 1 hour at 37 oC by using 10 units of each of NEB 

restriction enzyme and 1x reaction buffer adjusted with water. 

 

2.2.4 Agarose gel electrophoresis 

 

Digested products were resolved on 1% Seaplaque agarose gel (Scientific 

solutions) at 100 v for 1 hour. The samples were loaded on the gel in the 

respective wells after mixing with 5 µl of 6x loading dye (30% glycerol, 

0.1% bromophenol blue). Gels were visualized on UV transilluminator and 

photographed with gel photo documentation system (Fuji). Q-Step IV DNA 

ladder  (York Biosciences) was used to estimate the size of DNA bands 

unless otherwise stated. 

 

 

2.2.5 Purification of restriction digest  
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 After running on gel, individual DNA bands were excised from the gel and  

purified using Wizard SV PCR clean-up kit (Promega) using the standard 

Manufacturer’s protocol. DNA concentration was measured on a nanodrop 

ND-1000 spectrophotometer (Thermo Scientific) using A260. For more 

concentrated DNA, ethanol precipitation was carried out.  

 

2.2.6 Ethanol precipitation 

 

 1/10th volume of 3 M sodium acetate (pH 5.2) was added to the purified 

DNA followed by 3x volume of 100% chilled ethanol and incubated on ice 

for 30 minutes. DNA was pelleted by centrifugation at 13,000 x g 

(Eppendorf, rotor F34-6-38) for 15 minutes at room temperature. 

Supernatant was removed and DNA was rinsed with 70% ethanol and 

centrifuged again at 13,000 x g (Eppendorf, rotor F34-6-38)  for 15 minutes 

at room temperature. Supernatant was removed and pellet was either dried at 

room temperature for 20 minutes or vacuum dried for 10 minute. Pellet was 

resuspended in 100 μl of TE pH 8.0. DNA concentration was measured 

using a on nanodrop ND-1000 spectrophotometer (Thermo Scientific).  

 

2.2.7 DNA ligation 

 

Total reaction volume for ligation was 10 μl that contained 50 ng of vector 

with either 1 or 3-fold molar excess of insert. T4 ligase and 1x reaction 

ligation buffer adjusted with water were added and centrifuged briefly and 

incubated either at room temperature (22 °C) for 1 hour or at 4 °C overnight.  

 

2.2.8 Sequencing 

 

After ligation the new vector containing hMcm gene was transformed into 

the appropriate cells (E.coli Novablue) as described in section 2.2.2.  

 

Over night colony growth showed the hMcm gene had been ligated into the 

vector. To confirm this, extracted DNA was digested with the same 

restriction enzyme used previously and compared to the expected band size. 
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Extracted DNA was sent for sequencing to the sequencing laboratory of 

York University (Technology Facility) or to MWG Biotech. Sequencing 

results were confirmed using SeqMan Pro DNA analysis software 

(Lasergene) for the presence of individual hMcm genes in respective vectors. 

Sequencing results showed that all of the genes were ligated correctly in 

vector pET47b but were out of frame, so site directed mutagenesis for all 

Mcms was performed to get them in the correct reading frame for 

expression. As the pET47b was used on direction of the Mendez lab (CNIO 

Spain) who provided the original clones but actually it should be pET47c 

vector that would have given the right frame.  

 

2.2.9 Site directed mutagenesis of hMcm2-7 genes 
 

To correct the reading frame of the constructs described above, hMcm2-7 

genes were subjected to site directed  mutagenesis (Stratagene, Quickchange 

SDM kit) following the manufacturers protocols and using the mutagenic 

primers of hMcm2-7 listed  in Appendix 2. Amplification conditions 

included 90 oC for 30 seconds followed by the 12 cycles of PCR (95 oC for 

30 sec, 55 oC for 1 minute, with a final 1 minute extension at 68 oC) 

 

PCR products were kept on ice for 1 minute and then 1 μl of DpnI added. 

These samples were incubated at 37 oC for 1 hour. The resultant constructs 

were use to transform 50 μl of DH5α cells with 1 μl of SDM-hMcm2-7. 

Obtained colonies were grown overnight at 37 oC in 5 ml of LB + antibiotics 

with 150 rpm shaking.  

 

2.2.10 Plasmid Preparation 

 

DNA was isolated from overnight cultures either by using Wizard Plus SV 

Miniprep DNA Purification Kit from Promega or the Miniprep DNA 

Purification System from Qiagen throughout this study. After mini 

preparation to recover DNA, all the genes were sequenced to ensure that 

they were in frame and there were no mutations introduced by PCR.  

 

2.2.11 Protein expression 
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2.2.11.1 Autoinduction 

 

Autoinduction medium was made in a volume of 1 Litre. For 1 L volume, 

added 1 ml of 1 M MgSO4 (24.65g MgSO4.7H2O, water to make up 100 ml, 

autoclaved separately), 1 ml of 1 M 10000X Metals (0.1 M FeCl3. 6H2O (in 

0.1 M HCl), 1 M CaCl2, 1 M MnCl2. 4H2O, 1 M ZnSO4. 7H2O, 0.2 M 

CoCl2. 6H2O, 0.1 M CuCl2. 2H2O, 0.2 M NiCl2. 6H2O, 0.1 M Na2MoO4. 

5H2O, 0.1 M Na2SeO3. 5H2O, 0.1 M H3BO3. 4H2O, autoclaved), 20 ml of 

50x 5052 (25 g glycerol, 73 ml water, 2.5 g glucose, 10 g α-lactose, 

autoclaved), 50 ml of 20x NPS (90 ml water, 6.6 g (NH4)2SO4, 13.6 g 

KH2PO4, 14.2 g Na2HPO4 pH, 6.75, autoclaved), appropriate antibiotic in 

ZY (10 g tryptone, 5 g yeast extract, 925 g water, autoclaved separately 

before addition of antibiotic). Autoinduction medium was inoculated with 1 

ml of a 5 ml of culture grown at 37 oC in LB medium for 8 hours with 180 

rpm shaking. After that culture was incubated at 30 oC for about 18 hours 

with 180 rpm shaking. 1 ml of culture was pelleted and resuspended in 100 

μl of water. 20 μl benzonase (Novagen), 6x loading buffer (30% 2-

mercaptoethanol, 12% SDS, 10% glycerol, 440 mM Tris pH 6.8, 0.1% 

bromophenol blue) was added and samples were boiled for 5 minutes at 100 
oC before loading on a 10% SDS-polyacrylamide gel. 

 

2.2.12 Cell culture  

 

5 ml of culture was grown overnight by the addition of a single colony to LB 

medium containing appropriate antibiotics. This was sub-cultured into 750 

ml of LB containing appropriate antibiotics and grown to optical density 

OD595nm 0.5-0.7. At this point 0.5 mM IPTG was added to the culture. 

Cultures were then incubated overnight with 180 rpm shaking at 37 oC.  
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2.2.13 Protein purification 

 

2.2.13.1 Sample preparation 

 

Cells were harvested from overnight culture by centrifugation at 4000 rpm 

(Eppendorf, model 5810 using swing out rotors A- 4-81) for 15 minutes at 4 
oC. The cells (4-7 g) were resuspended in 5 ml/g of lysis buffer (50 mM Tris 

pH 8.0, 300 mM NaCl, 5% Glycerol, 0.1 mM PMSF, 1 μM Pepstatin, 5 mM 

Imidazole, MilliQ water) followed by the addition of 0.75 mg/ml of 

lyzozyme and incubating at room temperature for 30 minutes to facilitate 

lysis. Samples were then sonicated for 3x 30 seconds at 100% power on ice. 

Insoluble material was removed by centrifugation at 30,000 x g (High Speed 

Sorvall Evolution, rotor F34) for 20 minutes at 4 oC.  

 

2.2.13.2 Binding protein to the column 

 

After preparing the Talon metal affinity resin bound with cobalt (Clontech) 

for purification by washing three times with wash buffer (50 mM Tris pH 

8.0, 300 mM NaCl, 5% Glycerol, 0.1 mM PMSF, 1 μM Pepstatin, 10 mM 

Imidazole, MilliQ water), soluble protein was added. The beads were 

incubated for 30 minutes at room temperature with agitation followed by a 

spin at 4,600 x g (Eppendorf, model 5810 using swing out rotors A- 4-81) 

for 5 minutes. After washing with wash buffer the protein was eluted from 

the beads with elution buffer (50 mM Tris pH 8.0, 300 mM NaCl, 5% 

Glycerol, 0.1 mM PMSF, 1 μM Pepstatin, 150 mM Imidazole, MilliQ water) 

and samples were run on 10% SDS-PAGE gels and eluant fractions were 

stored at -80 oC. Purified proteins were sent for mass spectrometry to 

confirm protein ID using trypsin digestion in proteomics laboratory, York 

University (Technology Facility). 

 

2.2.14 SDS-PAGE 

 

Mini gel system (CBS Scientific) was used for all SDS PAGE. 8% to 15% 

gels  were   used  throughout  this  study. For  hMcm  protein expression and  
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purification 12.5% gel was used. For resolving gel the correct percentage of 

Protogel pre mix (30% solution of 37.5:1 acrylamide:bis acrylamide, 

(National Diagnostics)  was mixed with 375 mM Tris pH 8.7 and 0.1 % 

SDS. Mixed gently 5 μl TEMED and 16 μl 10% APS to 5 ml of gel mixture 

and poured between plates. After the gel polymerized (40 min), poured off 

the overlay and added stacking gel. 5% final concentration of  acrylamide 

was mixed with 50 mM Tris pH 6.9 and 0.1% SDS for stacking gel. 5 μl 

TEMED and 16 μl of 10% APS were added to 2 ml of stacking gel mixture. 

After 5 minutes when stacking gel polymerized, samples were prepared by 

mixing 6x Laemmli buffer (30% 2-mercaptoethanol, 12% SDS, 10% 

glycerol, 440 mM Tris pH 6.8, 0.1% bromophenol blue) to the final 

concentration of 1x followed by 5 minutes boiling on hot block at 100 oC. 

Gels were run at 20 mA constant current per gel in 1x running buffer (25 

mM Tris base, 192 mM glycine and 0.1% SDS). 

 

Gels were stained with Coomassie blue R250 (40% MeOH, 10% Acetic 

acid, 0.1% coomassie blue (Fisher) and destained in 40% methanol and 10% 

acetic acid. Gels were then stored in gel preservative (18% ethanol, 5% 

glycerol).  Gels were either photographed using gel documentation system 

(Fuji) or scanned after drying overnight at 37 oC between dH2O wet acetate 

sheets. 

 

2.2.15 Silver staining of protein gels 

 

Gels were first fixed in 50% methanol for 2 x 15 minutes and then rinsed 

with dH2O. Gels were then washed for 20 minutes in 32.5 μM DTT followed 

by 20 minutes stained in 0.1% silver nitrate. After washing with dH2O, the 

gels were quickly rinsed with developer (3% sodium carbonate, 0.02% 

formaldehyde) till the bands became visible. To stop developing further, 5 

ml of 2.3 M citric acid was added for every 100 ml of developer and 

incubated for 10 minutes at room temperature. The gels were washed in 

dH2O for 30 minutes and then stored in gel preservative (18% ethanol, 5% 

glycerol) for photography or scanning.  

 

2.2.16 Protein quantification 
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Protein concentrations were determined by the Bradford reagent (Bio-Rad) 

using the Bradford method (Bradford, 1976) and plotting the values against a 

BSA standard curve and/or on the nanodrop ND-1000 spectrophotometer at 

A260. Concentrated proteins were flash frozen in liquid nitrogen and stored at 

-80 oC in small aliquots. 

 

2.2.17 hMcm 4/6/7 complex assembly  

 

As high imidazole concentrations were present in each of the protein 

fractions (hMcm4, 6 and 7) prior to assembling a complex, it was necessary 

to remove all salt. A HiTrap desalting column was used for this purpose. The 

column was connected to an AKTA system and washed with MilliQ water.  

The bound protein was then eluted in elution buffer (20mM Tris HCl, 1mM 

EDTA, 1mM EGTA, 1M KCl, 5% Glycerol, freshly added 0.1% β-

mercaptoethanol and 1 μg/ml Pepstatin). Equimolar amounts of each protein 

(Mcm 4, 6, 7) were pooled and applied to a Q-sepharose column. The 

sample was applied using a 2.5 ml syringe and eluted with a linear gradient 

of 0-100% of KCl from 50 to 1000 mM in 0.5 ml fractions. The fractions 

containing protein were pooled, samples of which were run on a 10% SDS-

PAGE gel. 

 

 2.3 hMcm complex co-purification by co-expression 

 

This work has been carried out in collaboration with Dr Richard Parker, a 

post-doctoral researcher in the Chong group. Using pET Duet LIC vectors 

Mcm 4, 6 was ligated into pCDF, Mcm 3, 5 in pRSF, Mcm 2, 7 in pET 

(Figure 2.1). All three vectors were co-transformed into BL21 Rosetta cells. 

A single colony was picked to express all six hMcm2-7 in 4.5 L of LB 

medium using kanamycin (15 μg/ml), ampicillin (25 μg/ml) and 

spectinomycin (25 μg/ml).  The cultures were incubated at 37 ºC with 

shaking until an OD600 of 0.887 was reached.  At that point, the cultures 

were incubated in   an iced water bath for 30 min.  IPTG was then added to a  

A 
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Figure 2.1 Constructs used for co-expression of human Mcms: (A) pET-32 

was generated by ligating Mcm2 and Mcm7. (B) pRSF-2 was generated by 

ligating Mcm3 and Mcm5 (C) pCDF-2 was generated by ligating Mcm4 and 

Mcm6. Each of the Mcms has a different N-terminal affinity tag for protein.  

final concentration of 0.1 mM. The cultures were then incubated for 24 

hours at 12 ºC with 180 rpm shaking. The cells were centrifuged for 10 min 
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at 4,600 x g (Eppendorf, model 5810 using swing out rotors A- 4-81)  at 4 

ºC, yielding a single pellet of 18 g, which was stored at -80 ºC until further 

use. A process flow diagram (PFD) is shown for protein purification steps of 

hMcm complex (Figure 2.2) 

 

2.3.1 Sample Preparation 

 

The pellet was immersed in a beaker of water at room temperature to thaw 

and once thawed kept on ice. The pellet of cells was re-suspended in 90 ml 

nickel binding buffer (25 mM Tris pH 7.6, 150 mM NaCl, 3 mM KCl, 40 

mM imidazole 10% glycerol, and freshly added 1 μg/ml Pepstatin A, 1 

μg/ml Aprotinin, 1 μg/ml Leupeptin, 0.5 μg/ml PMSF, 1 mM 2-

mercaptoethanol). The cell suspension was then passed through an 

automated cell disruptor (20 Kpsi) once and pooled.  Next, the following 

reagents were added:  6 mM MgCl2, 0.75 mg/ml lysozyme, 10 μg/ml DNase 

I and 5 μg/ml RNase A and the lysate was incubated for 10 min at room 

temperature with inversion.  Next, the lysate was clarified by centrifugation 

for 30 min at 50,000 x g (High Speed Sorvall Evolution, rotor F34) and 4 ºC.   

 

2.3.2 Ammonium sulphate precipitation 

 

Saturated ammonium sulphate was prepared by adding 110 g of ammonium 

sulphate to 200 ml of nickel binding buffer (minus protease inhibitors and 2-

ME), heating the solution to ~80 ºC and then cooling it to 4 ºC overnight 

while stirring. An equal volume of saturated ammonium sulphate solution 

was added to the clarified lysate and then incubated on ice for 30 min (with 

gentle mixing by inversion every 10 min) to precipitate the Mcm complex.  

The protein precipitate was centrifuged for 20 min for 10,000 x g 

(Eppendorf, rotor F34-6-38) at 4 ºC. The supernatant was discarded and the 

pellets were stored at -80 ºC until required for further purification. 
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Figure 2.2 A schematic representation of protein purification steps: The 

hMcm2-7 complex was purified over the range of chromatographic 

purification after ammonium sulphate precipitation as a first step of 

purification. 

 

 

 

 

 

 

 

 

2.3.3 Nickel column 
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The precipitated protein pellet was re-dissolved in nickel binding buffer to a 

volume 0.5x that of the original clarified lysate and then passed through a 

0.45 μm filter.  The first chromatographic step of the purification was a 1 ml 

nickel sepharose HP column with an imidazole step elution.  A flow rate of 

0.5 ml/min was maintained throughout the nickel column step.  First, the 

column was equilibrated with 5 column volumes (CV) of nickel binding 

buffer.  Next, the sample was loaded onto the column, which was then 

washed with 10 column volumes of nickel binding buffer.  Finally, the 

bound proteins were eluted using 100% nickel elution buffer (25 mM Tris 

pH 7.6, 150 mM NaCl, 3 mM KCl, 500 mM imidazole 10% glycerol, and 

freshly added 1 μg/ml Pepstatin A, 1 μg/ml Aprotinin, 1 μg/ml Leupeptin, 

0.5 μg/ml PMSF, 1 mM 2-mercaptoethanol). All 0.5 ml fractions were 

pooled together and further purified by size exclusion chromatography. 

 

2.3.4 Size exclusion chromatography 

 

A HiLoad 200 Superdex 16/60 column (GE Healthcare) was connected to an 

Äkta FPLC system at 4 ºC.  The column was first equilibrated with > 1.5 

column volumes of GF buffer (25 mM tris pH 7.6, 150 mM NaCl, 3 mM 

KCl, 10% glycerol, 1 mM EDTA, 1 mM EGTA and freshly added 1 μg/ml 

Pepstatin A, 1 μg/ml Aprotinin, 1 μg/ml Leupeptin, 0.5 μg/ml PMSF, 1 mM 

DTT).  The nickel elution pool sample was loaded into a 2 ml loop and 

injected onto the column.  Proteins were eluted isocratically with GF buffer 

at 1 ml/min and collected in a series of 2 ml fractions.  The fractions 

containing high molecular mass proteins as indicated by the first peak on the 

A280 chromatogram (i.e. A3-A6 8 ml) were pooled ready for the next 

chromatography step. 

 

2.3.5 Anion exchange 

 

The final chromatographic step utilised a 1 ml Source 15Q anion exchange 

column.  1ml/min flow rate was maintained through out this purification 

step.  2 volumes (16 ml) of sample dilution buffer were added to 1 volume of 

size exclusion pool (8 ml) in order to reduce the NaCl concentration to 50 

mM.  This sample was then loaded into a 50 ml super-loop.  The column was 
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rinsed with water, charged with Cl- ions with 5 column volumes of AIEX 

elution buffer (25 mM tris pH 7.6, 1000 mM NaCl, 3 mM KCl, 10% 

glycerol, 1 mM EDTA, 1 mM EGTA and freshly added 1 μg/ml Pepstatin A, 

1 μg/ml Aprotinin, 1 μg/ml Leupeptin, 0.5 μg/ml PMSF, 1 mM DTT) and 

equilibrated with 5 CV of AIEX start buffer (25 mM tris pH 7.6, 50 mM 

NaCl, 3 mM KCl, 10% glycerol, 1 mM EDTA, 1 mM EGTA and freshly 

added 1 μg/ml Pepstatin A, 1 μg/ml Aprotinin, 1 μg/ml Leupeptin, 0.5 μg/ml 

PMSF, 1 mM DTT).  The sample was then injected onto the column.  

Unbound material was then washed out of the column with 5 column 

volumes of AIEX start buffer.  The proteins were then eluted with a linear 

gradient of NaCl from 50 to 1000 mM over 20 CV and collected in 1 ml 

fractions. 

 

2.4 Purification of M. maripaludis Mcms 

 

Dr Alison Walters in the Chong group provided two constructs used in this 

section. One construct pAW 31 contained His-tagged MMP McmA and T7 

tagged MMP McmC in pCDF-2 while the other construct pAW 32 contained 

Trx-tagged MMP McmB and GST tagged MMP McmD in pET32 EK/LIC 

(Figure 2.3). 

 

2.5 Cell culture  

 

5 ml of culture was grown overnight by the addition of a single colony to LB 

medium containing appropriate antibiotics. This was used to inoculate 750 

ml of LB containing appropriate antibiotics and grown to optical density of 

OD595nm = 0.5-0.7. At this point 0.5 mM IPTG was added to the culture.          

Cultures were incubated for a further 24 hours with shaking at 180 rpm at 12 
oC. 

 

 

 

A 
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Figure 2.3 Constructs used for purification of M. maripaludis Mcms: (A) 

pAW 31 containing His-tagged MMP McmA and T7 tagged MMP McmC in 

pCDF-2 (B) pAW 32 containing Trx-tagged MMP McmB and GST-tagged 

MMP McmD in pET32 EK/LIC.  

2.5.1 Protein purification 

 

2.5.1.1 His-tagged protein purification 
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A 4 g pellet was resuspended in 5 ml/g of lysis buffer (50 mM KPi pH 7.8, 

200 mM NaCl, 20% Glycerol, 10 mM Imidazole, 1x mini Roche protease 

inhibitor tablet, MilliQ water). 0.75mg/ml of lyzozyme was added to the 

mixture and was incubated at room temperature for 30 minutes to facilitate 

lysis. Samples were then sonicated for 3x 30 seconds at 100% power on ice. 

Insoluble material was removed by centrifugation at 30,000 x g (High Speed 

Sorvall Evolution, rotor F34) for 20 minutes at 4 oC.  

 

Ni-NTA resins were used to purify his-tagged MMP Mcms. Nickel beads 

were prepared for purification by washing with 5 resin volumes of wash 

buffer (50 mM KPi pH 7.8, 200 mM NaCl, 20% Glycerol, 50 mM 

Imidazole, 1x mini Roche protease inhibitor tablet, MilliQ water). These 

resin was transferred into  6 x 2 ml disposable gravity columns (Pierce) 

along with an equal volume of clarified cell lysate in each column and left 

for 2 hour on the rotor at 4 oC. After washing with 20 CV of wash buffer, the 

protein was eluted with 0.5 CV of elution buffer (50 mM KPi pH 7.8, 200 

mM NaCl, 20% Glycerol, 500 mM Imidazole, 1x mini Roche protease 

inhibitor tablet, MilliQ water) at first and then 2 CV afterwards. Samples 

were analysed on 10% SDS-PAGE gels and by western blot. Protein 

concentrations were determined as described in section 2.2.16. Eluant 

fractions were pooled, snap frozen in liquid nitrogen and stored immediately 

at -80 oC 

 

2.5.1.2 GST-tagged protein purification 

 

A 3 g pellet was resuspended in 5 ml/g of lysis buffer (50 mM Tris-Cl pH 

8.5, 250 mM NaCl, 1 mM EDTA, fresh 1 mM DTT). 0.75 mg/ml lyzozyme 

and 1mM PMSF were added and the mixture was incubated on ice for 30 

minutes to facilitate lysis. Samples were then sonicated for 5 pulses (50 W, 

20 kHz) on ice after adding 1% sarcosyl. Insoluble material was removed by 

centrifugation at 30,000 x g (High Speed Sorvall Evolution, rotor F34) for 

20 minutes at 4 oC. 12 ml of clarified cell lysate was transfered into 6 

disposable gravity columns (Pierce) containing 200 μl of glutathione-

sepharose to purify GST-tagged MMP Mcms proteins. Cell lysate was 
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incubated with slurry for 1 hour at 4 oC on a shaker. After washing with 0.5 

% Triton X-100, the protein was eluted with 0.5 CV of elution buffer (50 

mM glutathione, 50 mM Tris-Cl pH 8.5, 250 mM NaCl, 1 mM EDTA,) at 

first and then 2 CV afterwards. Samples were analysed on 10% SDS-PAGE 

gels and by western blot using antibiotics as detailed below. Protein 

concentrations were determined as described in section 2.9.7 Eluant fractions 

were pooled to subject to anion exchange (section 2.3.5)  

 

2.6 Western blotting 

 

Western blot were carried out using the transblot-SD semi dry transfer cell 

(BioRad). Proteins were separated using SDS polyacrylamide gel 

electrophoresis (SDS-PAGE) providing information about molecular weight 

using pre-stained protein molecular markers (BioRad) so that efficient 

transfer could be easily confirmed. One sponge and 2 pieces of 3 mm filter 

paper (Whatman) soaked in anode buffer 1 (0.3 M Tris pH 10.4, 10% 

methanol) were placed on the anode plate. Another piece of filter paper 

soaked in anode buffer 2 (25 mM Tris pH 10.4, 10% mathanol) was placed 

and above that pre-soaked PVDF membrane (GE, Heathcare) in methanol 

was added. After placing the SDS polyacrylamide gel on top of PVDF 

membrane, 3 whatman filter paper and sponge soaked in cathode buffer (25 

mM Tris pH 9.4, 40 mM glycine, 10% methanol) were added. This stack 

was placed in the transfer apparatus and the transfer was carried out at 70 

mA for an hour. The membrane was separated from the rest of the stack after 

transfer and stained in 1x Ponceau S (BioRad). At this stage lane positions 

were marked. The membrane was then washed 2x for 20 minutes in wash 

buffer TBS (10 mM Tris pH 8.0, 150 mM NaCl) in case of Anti-TetraHis 

(Qiagen) and Anti-GST (Novagen) or TBS-T wash buffer (TBS, 0.1% 

Tween 20) for Anti-S (Novagen) and Anti-T7 (Novagen). The membrane 

was blocked for an hour in 20-30 ml of blocking buffer.  For Anti-TetraHis 

and Anti-GST 3% and fat-free dried 10% milk powder in TBS was used 

respectively and for Anti-S and Anti-T7 5% fat-free dried milk powder in 

TBS-T was used. Membranes were then washed 3x for 10 minutes and 

incubated in primary antibody overnight at room temperature. For Anti-

TetraHis and Anti-GST 1:5000 and 1:3000 with 5% fat-free dried milk 
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powder in TBS was used and for Anti-S and Anti-T7 1:5000 and 1:2000 

TBS-T was used. Membranes were then washed 6x 5 minutes with wash 

buffer (Table 2.1) and then incubated in secondary antibody for 1 hour. Anti-

rabbit-HRP 1:5000 in 10% fat-free dried milk powder TBS-T for Anti-

TetraHis and anti-mouse HRP (Zymed) 1:10000 TBS-T for Anti-S and Anti-

T7 and Anti-GST was used. Membranes were washed 3x 10 minutes in 50 

ml of wash buffer accordingly (Table 2.1). Protein was then detected using 

ECL Kit (Pierce) and wrapped in plastic cling film before exposing to 

photographic film (GE Healthcare). 

 

 

Antibody Wash 
buffer 

Blocking 
buffer 

Primary 
antibody 
dilution 

Secondary 
antibody 

Anti-TetraHis 
(Qiagen) 

TBS 3% BSA in 
TBS 

1:5000, 3% 
BSA in TBS 

Anti-rabbit-
HRP, 1:5000 in 
10%milk TBS-
T 

Anti-S 
(Novagen) 

TBS-T 5% milk in 
TBS-T 

1:5000 TBS-T Anti-mouse-
HRP (Zymed), 
1:10000 TBS-T 

Anti-T7 
(Novagen) 

TBS-T 3% BSA in 
TBS-T 

1:20000 TBS-
T 

Anti-mouse-
HRP (Zymed), 
1:10000 TBS-T 

Anti-GST 
(Novagen) 

TBS 10% milk in 
TBS 

1:4000 5% 
milk in TBS 

Anti-mouse-
HRP (Zymed), 
1:20000 TBS-T 

  

 

Table 2.1 Antibody and buffer solutions used for western blots: 

 TBS: 10 mM Tris pH 8.0, 150 mM NaCl; TBS-T: TBS plus 0.1% Tween 

20. 

 

 

2.7 Substrate preparation for helicase assays 

 

A forked substrate was generated by annealing a 32P-labelled 57 base 

oligonucleotide (HS2) and a non-labelled 74 base oligonuleotide (HS1) to 

produce a forked DNA substrate with a 25 bp double-stranded region. 

(Figure 2.4). 50 pmol of 57 base substrate was radiolabelled using 3 μl of 
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Chapter 3: Biochemical studies on human Mcms 

 

3.1 Introduction  
 

Initiation of eukaryotic DNA replication requires the assembly of 

multiprotein complexes at the replication origin (Stillman, 1996). The 

minichromosome maintenance proteins form a hexameric complex required 

at the time of DNA replication initiation and provide the replicative DNA 

helicase activity that includes DNA dependent ATPase activity (Chong et 

al., 2000). Mcm helicase complexes are conserved in all eukaryotic 

organisms and are composed of six different but highly related proteins. 

Mcm complexes can be isolated from eukaryotic cells as several stable 

subassemblies (Thommes et al 1997). Weak DNA helicase activity was 

identified in a human complex of a dimer of trimers containing Mcm4/6/7 

that was only sufficient to displace some 30bp of short oligonucleotides from 

complementary DNA templates (Ishimi, 1997). Recently it has been 

demonstrated that S. cerevisiae Mcm2-7 complex expressed in baculovirus-

infected insect cells has helicase activity in vitro (Bochman and Schwacha, 

2008). However to date no studies from human Mcms expressed in E. coli 

have shown helicase activity. In order to achieve robust activity of hMcm, 

we expressed and purified hMcms from E. coli so that proteins would not 

contain any post-translational modifications that are present in protein 

purified from eukaryotic sources. We tested this complex for helicase 

activity. Furthermore we investigated the affect of phosphorylation on 

helicase activity of hMcm2-7 complex. 

 
 
3.2 Cloning, expression and purification of individual human Mcms 
 
 
3.2.1 Plasmid construction 
 

Human Mcms 2-7 cDNAs cloned into pBluescript SK+ vector were provided 

by the Mendez lab (CNIO Spain). The hMcm genes (2-7) were subcloned 

into the expression vector pET 47b (Novagen) using following restriction 

sites. hMcm2 was digested with BamH1 and Xho1 and inserted into BamH1 
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and Xho1 sites of pET 47b to yield a pET 47b-Mcm2 construct. Mcms 3, 4, 

5, and 7 were digested with EcoR1 and Xho1 and were inserted into EcoR1 

and Xho1 of pET 47b to yield pET 47b-Mcm3, pET 47b-Mcm4, pET 47b-

Mcm5 and pET 47b-Mcm7 constructs. Mcm6 was digested with Xho1and 

Sal1 and inserted into Xho1and Sal1 sites of pET 47b to yield pET 47b-

Mcm6 construct. Sequencing results showed that all of the genes were 

ligated correctly in vector pET 47b but were out of frame, so site directed 

mutagenesis for all Mcms was performed (See section 2.2.9 in materials and 

methods) to place them in the correct reading frame for expression. A 

summary of human Mcms proteins properties is provided in table 3.1. 

 

3.2.2 Expression  
 

3.2.2.1 Small-scale expression 

 

Initial expression and solubility studies were carried out by growing 50 ml 

cultures of individual proteins. Mcms were found to over express well in 

small-scale cultures but the majority of proteins were packaged into 

inclusion bodies (IBs). For increasing solubility, different temperature trials 

were carried out after induction. Amongst 12 oC, 16 oC, 25 oC and 37 oC, it 

was found out that for Mcm4, 12 oC  was best and for rest of the Mcms 37 oC 

was working.  

 

To increase the solubility of recombinant proteins different strains were used 

in trials. These were Rosetta BL21, Rosetta BL21 (DE3), Arctic Express 

(DE3) RIL and Arctic Express (DE3) pLysS. Rosetta host strains are 

designed to enhance the expression of eukaryotic proteins that contain 

codons rarely used in E. coli (Brinkmann et al., 1989; Seidel et al., 1992; 

Kane, 1995; Kurland and Gallant, 1996). While DE3 indicates that the host 

is a lysogen of λDE3, and therefore carries a chromosomal copy of the T7 

RNA polymerase gene under control of the lacUV5 promoter (Studier et al., 

1990; Dubendorff and Studier, 1991a; Dubendorff and Studier, 1991a). 

Arctic Express (DE3) RIL cells are optimised for expression of recombinant 

proteins at low temperature  because they   contain a   plasmid expressing the  
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Table 3.1 Summary of human Mcm2-7 proteins properties: Properties 

described are for untagged proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hMcm Gene length 

(bp) 

Residues 

(aa) 

Mol. weight 

(Da) 

pI 

hMcm2 2715 904 101891 5.34 

hMcm3 2427 808 90977 5.53 

hMcm4 2592 863 96552 6.28 

hMcm5 2209 734 82283 8.64 

hMcm6 2466 821 92883 5.29 

hMcm7 2160 719 81303 6.08 
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chaperons Cpn10  and Cpn60 from the psychrophillic bacterium Oleispira 

antactica. These chaperones are homologues of the E.coli chaperones GroEL 

and GroES, and are adapted to function optimally at 4-12 oC and therefore 

allow protein folding at low temperature (Lund, 1994). pLysS strains express 

T7 lysozyme, which further suppresses basal expression of T7 RNA 

polymerase prior to induction (Moffatt and Studier, 1987; Studier, 1991).  

There was not any significant difference in solubility of Mcms between these 

strains therefore Rosetta BL21 (DE3) was widely used in these studies. 

 

 Different buffers were used throughout this study for protein purification. A 

buffer system that worked for one Mcm did not necessarily worked for other 

Mcms, so each of the buffer systems is discussed with reference of 

individual purified Mcm in the respective sections. 

 

Furthermore expression vectors were also considered to change. For this 

purpose Mcm5 and Mcm6 were individually ligated into pQE-31 vector but 

only Mcm6 was purified this way (discussed later in section 3.2.5). 

 

For SDS-polyacrylamide gel, samples were prepared by addition of 20 µl 

benzonase nuclease (Novagen) 6x loading buffer into 100 µl total protein. 

Samples were boiled for 5 minutes at 100 oC before loading on a 10% SDS-

polyacrylamide gel (Figure 3.1).  

 
3.2.2.2 Large-scale expression 
 

For large-scale expression, 750 ml of media with appropriate antibiotics was 

used to grow cultures in a 2 litre flask.   

 

3.2.3 Protein purification   
 

Proteins were purified either manually by using disposable gravity columns 

(Pierce) or a Tricorn 5/50 column (GE Healthcare) using an AKTA prime 

automated purification system. Mcm6 and Mcm7 were purified from  750 ml 

of culture using the same set of buffers while Mcm4 was purified from 4.5 L 
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Figure 3.1 Expression of hMcm2-7: Expression trials of individually (His)6-

tagged hMcms 2-7 in autoinduction medium from total protein fractions 

showed that all individual proteins were expressed in E. coli. Individual 

proteins were expressed in Rosetta E.coli BL21 (DE3) cells at 37 oC. Small 

arrowheads near each protein indicate the individual protein band 

corresponding to their sizes (See table 3.1). 
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of culture with different set of buffers (Section 3.2.4). 

 

Differences in each of the hMcm purifications are discussed under each 

section of the respective protein purifications. 

 

3.2.4 Expression and purification of hMcm4 

 

Initial expression and purification trials indicated that hMcm4 had low 

solubility reducing the amount of protein that could be purified from cell 

extract. Therefore this protein was expressed in 4.5 litre of culture rather 

than 750 ml as for the other Mcms.  Recombinant Mcm4 was expressed at 

12 ºC in Rosetta DE3 cells and purified from a 4.5 litre culture that yielded a 

cell pellet weighing 21 grams. 

 

As nickel gives different binding characteristics from cobalt.  i.e. Ni2+ is the 

metal ion considered to have the strongest affinity to histidine-tagged 

proteins and may therefore allow binding and washing under more stringent 

conditions (higher imidazole) and therefore removal of more contaminants 

that could have purified due to expressing protein at 12 ºC in Rosetta DE3 

cells.  It was hope that an imidazole gradient will elute non-specifically 

bound proteins before the hMcm4 was eluted. 

 

The buffers used for the hMcm4 purification were different to those used for 

the other Mcm purifications.  The pellet was resuspended in 40 ml of nickel 

binding buffer (50 mM sodium phosphate pH 7.4, 0.5 M NaCl, 10% 

glycerol, 30 mM Imidazole, 1 mM 2-mercaptoethanol and 1x Roche 

complete EDTA free protease inhibitor mixture).   The cells were lysed by 

one pass through a manual French press rather then sonication. 

 

A Tricorn 5/50 column (GE Healthcare) column was used for washing and 

elution. The bound protein was eluted with a linear gradient of 0-100% 

elution buffer H (50 mM sodium phosphate pH 7.4, 0.5 M NaCl, 10% 

glycerol and 500 mM imidazole) over a period of 40 min at 5 ml/min. The 

eluate was collected in a series of 2 ml fractions, samples of which were run 
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on 10% SDS-PAGE gels. The ~ 57 KDa E.coli chaperone GroEL protein 

was present in large amounts  (Fraction containing GroEL protein not shown 

in the gel) although it appeared to be washed from the column before 

hMcm4 had finished eluting. The SDS-PAGE gel showed a very clean band 

at the expected size of hMcm4 (96 KDa) just near the 100 KDa protein 

marker (Figure 3.2). Samples containing only hMcm4 were pooled together 

and concentration of which was measured. The final volume of protein was 

10 ml and the concentration was calculated to be 15. 1 µg/ml by Bradford 

assay (See section 2.2.16 in Materials and Methods). 

 

3.2.5 Expression and purification of hMcm 6 

 

The gene for hMcm6 (which was initially ligated into pET47b) was digested 

with BamH1 and Sal1 and inserted into BamH1 and Sal1 sites of pQE-31 to 

yield pQE-31- hMcm6 construct.  

 

It was noted that no induction was required for pQE-31- hMcm6. The pQE-

31 vector uses a T5 promoter as opposed to a T7 promoter used commonly 

in other expression systems. The T5 promoter is recognized by the E. coli 

RNA polymerase and the lac operator sequence, which binds lac repressor 

and ensures efficient repression of the powerful T5 promoter in E. coli. pQE-

31-hMcm6 construct was sequenced before expressing protein and was 

confirmed that Mcm6 gene was full length. 

 

hMcm6 was expressed from 750 ml of culture, yielding 1.5 gram of pellet 

and  purified under the conditions described in section 2.2.13 using the same 

set of buffers. Elution fraction samples 1 and 2 were run on 10% SDS-PAGE 

gels (Figure 3.3) and remaining fractions were flash frozen in liquid nitrogen 

and stored at -80 oC. Protein bands were visible in elution fraction 1 and 

elution fraction 2, just below the expected size for hMcm6 (93 KDa). 

Purified hMcm6 protein ID was confirmed by mass spectrometry (MS). The 

possible explanation of hMcm6 mobility being smaller then expected size in 

SDS-PAGE gel is its degradation during expression and purification steps.  
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Figure 3.2 Purification of hMcm4: SDS-PAGE analysis of fractions from 

purification trials visualised by Coomassie blue staining. Protein was 

expressed in E.coli BL21 (DE3) Rosetta cells at 12 oC overnight. Pellets 

from 4.5 L of culture was resuspended, and the soluble protein fraction was 

bound, washed and eluted from nickel beads using 500 mM imidazole. 

hMcm4 protein band of 96 KDa in the elution fraction is visible. Protein ID 

was confirmed by mass spectrometry (MS). 

TP, total protein; SF, soluble fraction; UB, unbound fraction; EF, elution 

fraction 
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Figure 3.3 Purification of hMcm6: SDS-PAGE analysis of fractions from 

expression trials after Coomassie blue staining. Protein was expressed in 

E.coli BL21 (DE3) Rosetta cells at 37 oC overnight. 750 ml culture pellet 

was resuspended and the soluble fraction bound, washed and eluted from 

Talon beads using 150mM imidazole. hMcm6 protein band is visible  around 

75 KDa in the elution fraction below its expected size of 93 KDa . The 

protein ID was confirmed by mass spectrometry. This protein might have 

degraded during purification steps thus the mobility is smaller then expected 

size.  

TP, total protein; SF, soluble fraction; UB, unbound fraction; EF, elution 

fraction 
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The final volume of protein was 5 ml and the protein concentration was 

calculated to be the 15.8 µg/ml by Bradford assay (See section 2.2.16).  

 

3.2.6 Expression and purification of hMcm7 

 

hMcm7 was expressed in 500 ml culture which yielded 2 gram of pellet. 

hMcm7 protein was purified under the conditions described in section 2.2.13  

using the same set of buffers. Samples of the protein eluted with elution 

buffer were run on 10% SDS-PAGE gels and eluant fractions were stored at 

-80 oC. The SDS-PAGE gel showed a clean band at the expected size for 

hMcm7 (81 KDa) near the 75 KDa protein marker (Figure 3.4). The final 

volume of protein was 6 ml and the concentration was calculated to be 15.5 

µg/ml by Bradford assay (See section 2.2.16). 

 

3.2.7 Expression and purification of hMcm2, 3, 5 

 

Despite trying several trials that included changes in buffers for purification, 

expression conditions, different temperatures for purification of hMcm2, 3 

and 5, all attempts were largely unsuccessful. hMcm2 showed a very small 

amount of solubility in E.coli Arctic Express (DE3) RIL cells but this was 

not enough to carry out further assays. Also for further assays all 6 proteins 

needed to be purified. 

 
3.3 hMcm 4/6/7 complex 

 

An attempt to assemble a first complex of hMcm4/6/7 was not successful. 

The apparent reason seemed to be proteolysis, but the addition of protease 

inhibitors did not make any difference.  

 

The concentration of the proteins purified was too low (hMcm4 was 15.1 

µg/ml, hMcm6 was 15.8 µg/ml and hMcm7 was 15.5 µg/ml) to perform 

further assays on them. As all six Mcm proteins were needed for helicase 

and further assays, there was no point to concentrate these proteins.  
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Figure 3.4 Purification of hMcm7: SDS-PAGE analysis of fractions from 

expression trials after Coomassie blue staining. Protein was expressed in 

E.coli BL21 (DE3) Rosetta cells at 37 oC overnight. The pellet from a 500 

ml culture was resuspended and eluted from Talon beads using 150 mM 

imidazole. A protein band of 81 KDa in the elution fraction was visible at 

the expected size for hMcm7. This band was later confirmed by mass 

spectrometry. 

TP, total protein; SF, soluble fraction; UB, unbound fraction; EF, elution 

fraction 
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Results of expression and purification trials showed that hMcm7 expressed 

at 37 oC. However under these conditions other hMcms were not present in 

the soluble fraction of cell extracts. hMcm6 could be purified only after 

expressing in pQE-31- hMcm6 construct under the same buffers as described 

for hMcm7 but the same approach for hMcm5 did not yield purified protein. 

Purification of hMcm4 was possible by expressing it at low temperature in 

E.coli BL21 (DE3) Rosetta cells in 4.5 L of culture.  

 

Even after all these attempts the level of purified protein was very low. 

Eventually Mcm2 was also purified using low temperature after induction. 

As we hypothesized that all six were necessary for robust helicase activity 

therefore without the purification of hMcm3 and 5, further assays could not 

be performed.  It was then decided that the individual protein purification 

approach should be discontinued. 

 

3.4 Cloning, co-expression and co-purification of human Mcms 

 

The expression and purification of individual hMcms showed that hMcm 2, 

3 and 5 were insoluble and difficult to purify. As all of the effort to get them 

in soluble form remained largely unsuccessful. Also the concentration 

obtained from hMcm 4, 6 and 7 proteins was small in amount and varying in 

purity making it very difficult to proceed towards reconstituting a complex. 

Furthermore the attempts to make a hMcm4/6/7 complex failed so it was 

decided to conduct a trial to co-express and co-purify all these proteins for 

further assays. 

 

Co-expression of interacting proteins can increase the solubility of 

recombinant proteins. As Mcm2-7 interacts with each other (Davey et al., 

2003), therefore co-expression and co-purification could provide an increase 

in solubility of insoluble Mcms. Often the separate components of a complex 

are not soluble mostly due to hydrophobic patches that are exposed to the 

solvent (Damodaran, 1986). These patches are usually involved in and 

protected by the binding to the other component of the complex (Kurochkina 

and Mesyanzhinov, 1999). Therefore, co-expression of the different 
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components could result in a higher expression level of soluble protein 

complex. 

 

3.4.1 Plasmids construction for co-expression of hMcms 

 

This work has been carried out in collaboration with Dr Richard Parker, a 

post-doctoral researcher in the Chong group. For hMcm2-7 subunit cloning, 

LIC vectors (Novagen) were used. cDNAs encoding the six hMcm subunits 

(hMcm2-7) were cloned in pairs into three pET Duet vectors (Novagen) to 

allow co-expression of all six subunits in E. coli. First, each cDNA was PCR 

amplified from the constructs provided by Mendez lab (CNIO Spain) using 

primers with 5’ sequences designed to be compatible with the ligation 

independent cloning (LIC) system employed by the Duet vectors. The 

amplicons were gel purified and treated with T4 DNA polymerase in the 

presence of dATP in order to recess the 3’ ends. Each pair of hMcm cDNAs 

was annealed with a Duet vector backbone and an adaptor DNA segment 

according to the Novagen LIC kit directions. hMcm2 and hMcm7 cDNAs 

were annealed with the pET32 Ek/LIC vector and the T7 Ek/LIC adaptor to 

give: pET32-hMcm2 and hMcm7. hMcm6 and hMcm4 cDNAs were 

annealed with the pCDF-2 Ek/LIC vector and the GST Ek/LIC adaptor to 

give: pCDF-2-hMcm4 and hMcm6. hMcm5 and  hMcm3 cDNAs were 

annealed with the pRSF Ek/LIC vector and the minimal Ek/LIC adaptor to 

give: pRSF- hMcm3 and hMcm5 (See Appendix 2 for primers sequences). A 

detailed modified diagram of the predicted interactions of the six 

recombinant Mcm proteins in a heterohexameric complex from Davey et al., 

(2003) with different N-terminal tags that were used in affinity purification 

was created (Figure 3.5). Overall three vectors encoding six different 

proteins were generated. One vector contained hMcm2 and hMcm7 with an 

N-terminal T7-tag on hMcm2 and an N-terminal S/his/trx-tag on hMcm7. A 

second vector contained hMcm4 and hMcm6 with an N-terminal GST-tag on 

hMcm4 and an N-terminal his-tag on hMcm6. The third vector contained 

hMcm5 and hMcm3 with an-N terminal his-tag on hMcm5.  
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Figure 3.5 Diagram of the predicted interaction of the six recombinant Mcm 

proteins, in a heterohexameric complex with different affinity tags used for 

multistep protein purification (adapted from Davey et al., 2003). 
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Extra molecular weight was added due to tags and linkers on the proteins. A 

linker was placed between the proteins (hMcm2-7) and the tag. Linkers (or 

adaptors) were created from synthetic oligonucleotides, providing sequence 

overlaps with each of two sequences that were to be joined.  

 

The number of residues and molecular weight of each hMcm2-7 was 

calculated with different tags on them and are given in table 3.2. 

 

3.4.2 Co-expression 

 

Three plasmids containing six Mcm proteins in pairs were used to co-

transform E.coli BL21 (DE3) Rosetta cells (See section 2.3). As from the 

knowledge of individual protein purification trials, it was most difficult to 

purify Mcm4 compared to Mcm6 and Mcm7, therefore it was decided to 

follow the steps that were used to express Mcm4.  Like Mcm4 was 

expressed in E.coli BL21 (DE3) Rosetta cells with low temperature, it was 

decided to follow the same approach. Rosetta cells containing all three 

vectors were used to inoculate 6 x 750 ml of LB containing appropriate 

antibiotics. These cultures were incubated at 37 ºC with 200 rpm shaking 

until an OD600 of 0.887 was reached and then chilled for 30 min.  IPTG was  

then added to a final concentration of 0.1 mM.  The cultures were then 

incubated at 12 ºC with 180 rpm shaking for a further 24 hours. The cells 

were harvested by centrifugation, and were stored at -80 ºC prior to protein 

purification. 

 

3.4.3 Multi-step purification 

 

A number of chromatographic steps were carried out to co-purify the co-

expressed hMcms. The steps included in the purification scheme were 

ammonium sulphate precipitation, affinity chromatography, size exclusion 

chromatography and anion exchange chromatography (Figure 2.2).  

 

The 18 grams of pellet (which was from 4.5 litre of culture) was purified 

first through ammonium sulphate  purification. Ammonium  sulphate is used 
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to purify proteins by altering their solubility, as its solubility is so high that 

salt solutions with high ionic strength are allowed (Chick and Martin, 1913). 

At low salt concentrations, the solubility of the protein increases with 

increasing salt concentration (salting in). As the salt concentration (ionic 

strength) is increased further, the solubility of the protein begins to decrease. 

At sufficiently high ionic strength, the proteins almost completely precipitate 

from the solution (salting out). After salting out, from 50% saturated 

ammonium sulphate solution, the pellet was stored at -80 ºC until further  

purification. 

 

The first chromatographic step of the purification after ammonium sulphate 

purification was a nickel sepharose HP column with 500 mM imidazole step 

elution (See section 2.3.3). Elution was carried out using an AKTA 100 at 4 
oC. The SDS-PAGE analysis showed that the complex eluted across four 0.5 

ml fractions (2 ml total), which were pooled together and stored at 4 oC for 

the next purification step by size exclusion chromatography. 

 

Size exclusion chromatography was carried out by using Superdex-200 

16/60 column (120 ml bed volume). Affinity purified protein (2 ml) was 

loaded onto the column that was then connected to an ÄKTA FPLC system 

(4ºC).  Proteins were eluted with gel filtration buffer and collected in a series 

of 2 ml fractions (Materials and methods section 2.3.4).  The fractions 

containing high molecular mass proteins as indicated by the first peak on the 

A280 chromatogram (i.e. A3-A6) were pooled (4x 2 ml) and subjected to a 

final purification step. 

 

For anion exchange step an automated ÄKTA 100 system was used. The 

sample was injected onto the Tricorn 5/50 column that was packed with 

Source 15Q resin (GE Healthcare) after diluting in anion exchange start 

buffer (Materials and methods section 2.3.5) in order to reduce the NaCl 

concentration to 50 mM so that the protein could be bound to the column 

and eluted from 50 to 500 mM NaCl gradient by changing the ionic strength.  

The proteins were eluted with a linear gradient of NaCl from 50 to 500 mM 

and collected in 1 ml fractions. The fractions from clarified lysate, 
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ammonium sulphate supernatant, resuspended ammonium sulphate pellet, 

nickel column pool, nickel column flow through, and size exclusion elution 

were analysed by the SDS-PAGE (Figure 3.6). The Coomassie blue stained 

gel showed several bands were present below the expected molecular weight 

(See table 3.2 for sizes of hMcm2-7) suggesting protein degradation during 

different steps or it may be contamination with other non-specific proteins. 

A few bands were present above the expected molecular weights in the 

ammonium sulphate precipitation and nickel column chromatography steps 

but were not present in size exclusion. There is a dark band in the nickel 

column fraction that could be degradation of proteins through nickel 

purification. A lot of protein is going in to nickel column flow through. The 

numbers of non-specific higher and lower bands other than expected 

molecular weight bands were significantly reduced after size exclusion 

chromatography (Figure 3.7). However, the hMcm2-7 as visualised on a 

Coomassie blue stained SDS-PAGE, individual subunits as well as the 

presence of some putative degradation products but it is clear that if all the 

hMcms were present in final chromatographic step, all six proteins were not 

in equal amount. 

 
The presence of all six hMcm subunits needed to be confirmed at the end of 

the purification by western blotting using specific antibodies. Western 

blotting was carried out on fraction A13 of anion exchange chromatography 

elution to confirm the presence of each hMcm in final step of purification. 

Using antibodies specific to each of the hMcm western blot was performed. 

hMcms 5, 6 and 7 were detected at around the 100 KDa marker in anti-His-

tag western blot using anti-tetra-His antibody (Qiagen). The western blot for 

anti-T7-tag was performed in presence of anti-T7-tag monoclonal antibody 

(Novagen) and detected the presence of hMcm2, which migrated just above 

the 100 KDa markers. Anti-S-tag western blot of anion exchange fraction 

A13 against anti-S-tag monoclonal antibody (Novagen) resulted in the 

detection of hMcm7 that migrated just above the 100 KDa markers. In anti-

hMcm3 western blot of anion exchange fraction A13, membrane was probed 

with anti-hMcm3 monoclonal antibody (MBL) confirmed the presence of 

hMcm3 that migrated to just above  the 75 KDa markers. This  antibody also  
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Figure 3.6 Co-purification of hMcm2-7: 10% SDS-PAGE analyses of 

fractions from multi-step purification of co-expressed proteins. A Coomassie 

blue stained gel showed several bands were present above and below the 

expected molecular weight, along with expected sizes of hMcm2-7 proteins 

that could due to contamination or protein degradation. The 20 µl of samples 

from various stages of purification were loaded as follows: A) clarified 

lysate, B) ammonium sulphate supernatant, C) resuspended ammonium 

sulphate pellet, D) Nickel column fractions pool, E) Nickel column flow 

through, F) Size exclusion column fractions pool.  A thick band near 50 KDa 

marker in nickel column fraction seems to indicate the presence of some 

putative degradation products. 
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Figure 3.7 Anion exchange chromatography for purification of hMcm2-7: 

SDS-PAGE analysis of fractions from the anion exchange column stage. A 

Coomassie blue stained gel showed six individual bands were present at the 

expected sizes for hMcm2-7 in several fractions from anion exchange 

chromatography. A few low molecular weight bands were also visible which 

could be the degradation of hMcm2-7 proteins due to multi-step purification. 

Arrowheads indicate expected bands of individual hMcm2-7. 
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cross reacted with some lower molecular mass bands that might be the result 

of proteolysis products. Anti-hMcm4 western blot was carried out in the 

presence of anti-hMcm4 (Santa Cruz Biotechnology) and gel showed the 

expected band just above the 100 KDa markers with some other non-specific 

bands which could be protein degradation or some contamination or even 

non specific binding to antibody. The presence of hMcm6 protein in elution 

fraction was detected by using anti-hMcm6 (BD Biosciences) in anti-hMcm6 

western blot and showed that the hMcm6 migrated between the 100 and 150 

KDa markers (Figure 3.8). 

 

SDS PAGE analysis and western blots indicated the presence of all six 

hMcms, after various co-purification steps. The intensity of different bands 

of each hMcm varied in the elution fractions of anion exchange 

chromatography suggesting that all six hMcms were not present in equal 

amounts. Several bands were present below the expected molecular weight, 

suggesting protein degradation during different steps. An alternative 

explanation for the bands could be contamination from other proteins.  

 

To date the exact stoichiometry of hMcm complex has not been accurately 

measured. If the approach of purifying individual Mcms would have been 

successful for all of the Mcms, it might have been possible to form 

homogeneous complexes. By using analytical ultra centrifugation, the 

molecular weight of individual complexes could have been measured and 

stoichiometry of hMcm complex would have been measured by quantitative 

mass spectrometry. Quantification of the hMcm complex was possible by 

using MALDI-MS fingerprinting by running six analyses of each 

homohexamer complex. The abundance of the six proteins in a co-purified 

fraction varied significantly and in the presence of low molecular weight 

contaminating proteins or protein degradation in the final purification step 

made it difficult to use this complex to estimate stochiometry. 

 

Similarly the use of different tags on different Mcms had given the choice to 

co-purify these Mcms with different tags using pull down assays and it could 

have    suggested  that  Mcms could  make  heterohexamer   complex. As the  
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Figure 3.8 Western blot of co-purified hMcm2-7: Western blot analysis of 

elution fraction A 13 from anion exchange chromatography of co-expressed 

hMcms. Using antibodies against each of the hMcm2-7 showed that all six 

hMcms were present in elution fraction of anion exchange chromatography. 

Anti-T7 for hMcm2, anti-hMcm3 monoclonal antibody for hMcm3, anti-

hMcm4 for hMcm4, anti-His-tag for hMcm5, anti-hMcm6 for hMcm6 and 

anti-S-tag monoclonal antibody for hMcm7 were used. Arrowheads indicate 

positions of individual hMcm2-7. This blot was provided by Dr. Richard 

Parker. 
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Mcms have similar biochemical properties, it is also possible that because of 

similar properties of these six proteins, homohexamers of each protein are 

co-purifying or making a combination of homohexamers and 

heterohexamers. 

 

The final concentration of this complex was measured by Bradford assays 

and the concentration of this complex was found to be 0.28 mg/ml. As the 

amount of purified protein was very low and a further protein concentration 

step might result in loss of protein, therefore it was decided that this protein 

would not be concentrated. These purified proteins were further 

characterised using helicase assays and kinase assays. 

 

3.5 Helicase assays for human Mcms 

 
The main purpose of purifying hMcms was to carry out helicase assays to 

determine whether hMcm 2-7 has the ability to separate two annealed 

oligonucleotides efficiently in vitro.  A strand displacement or helicase assay 

was carried out using a forked substrate that was generated by annealing a 

radiolabelled 57 bases γ[32P]ATP oligonucleotide and non-radiolabelled 74 

bases oligonucleotide (See appendix 2 for sequences) resulting in a 25 bp 

double stranded complementary region. The helicase assay was performed in 

the presence of helicase buffer (See section 2.7.2). Increasing protein 

concentrations (50 nM to 500 nM) were used while the substrate 

concentration remained 1 nM for each reaction. Reactions were carried out 

for 1 hour at 37 oC and then stopped by the addition of helicase stop buffer 

that contained EDTA to inhibit ATP-dependent enzyme activity. Four 

negative controls were generated by incubating reaction on ice, adding 

EDTA at the start of reaction, omitting protein from the reaction and just 

running substrate without buffer, along with one positive control that was 

prepared by boiling the substrate at 100 oC for 5 minutes in the helicase 

buffer with subsequent addition of helicase stop buffer. Reactions were 

electrophoresed on a pre-run 12% (polyacrylamide) TBE gel to visualize the 

separated labelled oligonucleotide. After drying, the gel was exposed to a 

phosphorimager screen.  
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Protein dependent helicase activity was shown by the hMcm complex. 

Unwinding started significantly at protein concentration of 5 nM and peaked 

at 200 nM (Figure 3.9A and B). After 200 nM, there were very faint signals 

just below the expected bands, suggesting nuclease activity due to 

contamination. 

The helicase activity was measured using densitometry on Quantity One 

software (BioRad) and a graph was plotted between DNA unwound and 

protein concentrations (Figure 3.9B) where the boiled substrate was taken as 

to displace DNA 100% in graphic values. 

 

3.6 Assays for the activity of kinases on human Mcms 

 

Kinase activity assays were carried out to test the phosphorylation of 

purified hMcm2-7. Cyclin dependent kinases (CDK) phosphorylate Mcms 

on serine and threonine amino acids with the help of cyclin (Masai et al., 

2000). Without cyclin, CDK has a little or no kinase activity, so the active 

form is a CDK/cyclin. Two complexes, CDK 2/cyclin A and CDK 2/cyclin 

E (provided by Dr Cyril Sanders, The University of Sheffield) were used 

separately to test their activity on human Mcms in vitro. Assays were carried 

out in 20 µl of kinase buffer (See section 2.8) with subsequent addition of 

γ[32P]ATP and kinase complexes. Kinase activity was measured by the 

γ[32P]ATP incorporated into hMcm complex over the period of 30 minutes at 

37 oC. Reactions were stopped by the addition of stop buffer and the samples 

were analysed on 4-12% polyacrylamide gradient gel. Gels were then 

exposed to film or phosphorimager screen overnight to detect 

phosphorylation. 

 

WT human Mcm2-7 complex was strongly phosphorylated by both 

complexes, CDK 2/cyclin A and CDK 2/cyclin E. Mutant hMcm2-7 

complex (each hMcm was truncated from C terminal) was provided by Dr 

Richard Parker, a post-doctoral researcher in the Chong group to test if the 

mutant hMcm2-7 complex could   also act  as a substrate for phophorylation. 
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Figure 3.9 (A) Helicase activity of human Mcm2-7: PAGE analysis of strand 

displacement assays of hMcm complex with various protein concentrations. 

This activity was measured by the amount of displaced single stranded DNA 

from with double stranded substrate over the period of 1 hour at 37o C. Each 

helicase assay was performed at least three times. The possible explanation 

of faint signals just below the expected bands could be contamination due to 

nuclease activity. 

 

 

Figure 3.9 (B) Quantification of 

helicase activity of human 

Mcm2-7: Densitometry was used 

for quantification of strand 

displacement activity compared 

with boiled substrate and 

indicated as a percentage and 

plotted on a graph. Helicase 

activity increased with increase 

in protein concentration to 200 

nM and then gradually 

decreased. 
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Deletion of a C-terminal domain from the M. thermautotrophicus Mcm 

protein resulted in more processive helicase activity (Jenkinson and Chong, 

2006), therefore each human Mcm subunit was truncated from C-terminal 

and purified over range of chromatographic steps as explained for full length 

wild type human Mcm complex. CDK 2/cyclin E showed more robust 

activity compared to CDK 2/cyclin A. Wild type human Mcm2-7 complex 

showed stronger signals of phosphorylation  (Figure 3.10 A and B). There 

was another strong band below the expected band size, above 36 KDa 

marker in CDK 2/cyclin E gel (Figure 3.10 B), consistent with the 

autophosphorylation activity of cyclin E (47 KDa) as reported previously 

(Won and Reed, 1996). 

 

Mass spectrometry is a useful technique to identify the phosphorylated 

residues. Phosphorylation sites of human Mcm complex could be quantified 

by using mass spectrometry but due to PhD time frame as a limiting factor, 

samples were not sent for mass spectrometry. This could be done in future to 

identify known and novel phosphorylated sites on Mcms. 

 

3.7 Helicase activity of phosphorylated human Mcm2-7 complex 

 

hMcm4,6,7 complex helicase activity was shown to be inhibited when 

Mcm4 was phosphorylated by CDK 2/cyclin A (Ishimi et al., 2000). To test 

if phosphorylated human Mcm2-7 complex still had helicase activity, strand 

displacement assays were carried out on phosphorylated human Mcm2-7 

complex as explained in section 2.7.2. Reactions were analysed on a 

12%TBE gel that was exposed to a phosphorimaging screen overnight.  

 

As the phosphorylation activity was better with CDK 2/cyclin E, thus this 

complex was used for further assays of kinase activity to see the effect of 

phosphorylation of the hMcm complex on its helicase activity. As the 

protein concentration of 50 nM to 200 nM showed robust helicase activity so 

the increasing amount of phosphorylated hMcm2-7 protein concentration (50 

nM to 200 nM) was used to perform the helicase assays on phosphorylated 

hMcm2-7   complex. Boiled   substrate and  two different  concentrations   of 
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A 

       

 
B 

 

 
 

 

Figure 3.10 Phosphorylation of human Mcm2-7 WT and mutant complex:  

(A) with CDK 2/cyclin A (B) with CDK 2/cyclin E. Protein samples (human 

Mcm complex wild type and human Mcm complex mutant) were incubated 

at RT for 30 minutes in a kinase buffer in presence of CDK 2/cyclin A or 

CDK 2/cyclin E before running on a 4 to 12% SDS gradient polyacrylamide 

gel. The gels were exposed overnight to X-ray film to detect 

phosphorylation.  Control reactions were performed without adding any 

human Mcm protein complex. Arrowhead near 150 KDa protein markers 

showing the phosphorylation on hMcm complexes, while another arrowhead 

near 36 KDa protein markers on figure B showed the autophophorylation of 

cyclin E. Another arrow indicates the presence of p70, which is common 

contamination of Cdk protein purification. 
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dephophorylated hMcm2-7 complex generated three positive controls. In the 

control reaction 1 and 2, dephophorylated hMcm2-7 protein showed good 

helicase activity while the phosphorylated hMcm2-7 did not show any 

helicase activity (Figure 3.11). These results showed that when the complex 

was phosphorylated by CDK 2/cyclin E, its helicase activity was 

significantly reduced. A super-shift was observed in all phosphorylated 

hMcm2-7, which is consistent with published (Jenkinson and Chong, 2006), 

and unpublished data where a super-shift was found in negative controls or 

reactions where no helicase activity was observed. This result confirms that 

CDK 2/cyclin E negatively regulates the helicase activity of human Mcm 

complex. 

 

3.7 Discussion  

 

Despite trying various protocols, buffers and vectors, different conditions, 

individual human Mcms remained largely insoluble. hMcm4, 6 and 7 were 

purified eventually with low solubility. hMcm6 was purified using the pQE 

vector under T5 promotor to increase the expression levels.  hMcm4 

solubility increased when induced at the lower temperature of 12 oC after 

addition of IPTG. To get more protein, hMcm4 was purified from 4.5 L of 

culture. Even after all these efforts, not enough proteins were purified to 

carry out further assays on them. It was then decided to try to co-purify these 

proteins, which could help the solubility of these proteins by interacting with 

each other during the expression and purification steps. All six proteins were 

co-purified successfully over multiple purification steps, although there were 

various low molecular weight bands visible in the gel, suggesting protein 

degradation in these steps. Protein co-purification over several 

chromatographic steps suggests protein/protein interactions of hMcm in 

vitro. Helicase activity was tested on co-purified hMcms successfully. hMcm 

showed robust protein-dependent helicase activity. This confirms that hMcm 

possesses a reproducible DNA helicase activity. Furthermore the hMcm 

complexes were tested as a target for kinase activity in the presence of CDK 

2/Cyclin A and CDK 2/Cyclin E complex.  CDK 2/Cyclin A and 

CDK2/Cyclin E phosphorylated the hMcm complex. As the phosphorylation 
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Figure 3.11 Helicase activity of phophorylated human Mcm2-7: PAGE 

analysis of strand displacement assays of phosphorylated hMcm complex 

with various protein concentrations. Control 1 and control 2 were generated 

by performing the helicase assays on two different concentrations of 

dephosphorylated hMcm2-7 complex (50 nM and 70 nM). Phosphorylated 

hMcm2-7 complex did not show any helicase activity and a supershift of the 

substrate was observed with all concentrations of phosphorylated hMcm2-7 

complex. 
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by CDK 2/cyclin E complex was better then CDK 2/Cyclin A therefore 

phosphorylated hMcm complex with CDK 2/cyclin E was further tested for 

helicase activity. Phosphorylated hMcm2-7 complex did not show any 

helicase activity and a super-shift was observed in helicase assays of 

phosphorylated hMcm2-7 complex. These results suggest that 

phosphorylation of hMcm2-4 complex by CDK 2/cyclin E down-regulates 

hMcm helicase activity. 
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Chapter 4: Biochemical studies of M. maripaludis Mcms 

 
 
4.1 Introduction  
 

Replication in archaea appears to be a simplified version of the eukaryotic 

process as fewer polypeptides participate in each phase of replication (Edgell 

and Doolittle, 1997). Thus, archaea represent the simplest model to study the 

molecular mechanisms of eukaryotic DNA replication (Tye, 2000). 

Extensive research has been carried out on archaeal Mcms. In all eukaryotes 

six Mcm helicase proteins are found but this is not true for archaea. The 

genome of Methanococcus maripaludis S2 has been sequenced and revealed 

that this archaeon contains four Mcm homologues (Hendrickson et al., 2004) 

while Methanothermobacter thermautotrophicus has just a single Mcm that 

forms a double hexamer complex and has an ATP-independent DNA-

binding activity which can distinguish between single stranded and double 

stranded DNA and 3’-5’ helicase activity that requires of ATP hydrolysis 

(Kelman et al., 1999; Chong et al., 2000; Shechter et al., 2000). Archaeal 

Mcms provide the best examples of biochemical activity in Mcms todate. 

 

Purified recombinant MMP (Methanococcus maripaludis) Mcms both 

individually and in combination were provided by Dr Alison Walters in the 

Chong group (Walters and Chong, 2010). As the concentration of MMP 

McmD and MMP Mcm complex were very low and poor quality, trials were 

conducted to co-purify proteins from the two constructs pAW 30 and pAW 

31 provided by Dr Alison Walters (Walters and Chong, 2010). Furthermore 

M. maripaludis individual MMP Mcms designated (MMP McmA, MMP 

McmB, MMP McmC and MMP McmD) and complex were tested for 

helicase activity. A number of different experiments were performed to 

determine the optimum conditions for helicase activity of these proteins.  

 

4.2 Co-purification of M. maripaludis Mcms 
 
 
M. maripaludis Mcms were co-purified from two constructs. One construct 

contained MMP McmA and T7 tag adaptor upstream of MMP McmC into 
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pCDF-2 designated as pAW 31 while the other construct contained MMP 

McmB and GST tag adaptor on MMP McmD in pET32 EK/LIC designated 

as pAW 32 (Figure 2.3).  

 

As the hMcm4 seemed to be the most difficult protein to purify amongst the 

human purified proteins, therefore it was decided to use the similar approach 

of hMCM4 to purify these MMP Mcms, that is to use Rosetta E. coli BL21 

(DE3) cells at low temperature after induction but with different sets of 

buffers (Materials and methods section 2.5). Two pellets from two different 

expression constructs were harvested by centrifugation at 4000 rpm for 15 

minutes at 4 oC. 

 

4.2.1 Purification of his-tagged protein 

  

pAW 31 contained a his tag on MMP McmA and T7 tag on MMP McmC. It 

was decided to purify this protein using the his-tag. 

 

 Harvested pellets were resuspended in resuspension buffer (See section 

2.5.1.1 in Materials and Methods) before storing at -80 oC until further use. 

Proteins were purified from 750 ml of culture using Talon beads. Elution 

fractions were separated by 10% SDS-PAGE (Figure 4.1). Coomassie 

stained gels showed a band of protein just above the 75 KDa marker. As the 

molecular weights of MMP McmB and MMP McmC were 77 KDa and 78 

KDa respectively, this band could be the result of one or two proteins being 

purified over Talon beads. To confirm whether this thick band was actually 

from two different proteins, western blots were carried out on three elution 

fractions.  Western blot using anti-his for MMP McmA and anti-T7 for 

MMP McmC antibodies indicated the presence of both proteins in all three 

elution fractions (Figure 4.3 A and C). The large number of bands in the 

anti-his western blot of elution fraction 1 could be contamination or protein 

degradation.  
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Figure 4.1 Purification of co-expressed MMP McmA and MMP McmC: 

SDS-PAGE analyses of fractions from purification trials. Proteins were 

expressed in E.coli BL21 (DE3) Rosetta cells at 12 oC overnight. 750 ml 

culture pellet was resuspended and eluted from nickel beads using 500 mM 

imidazole. A band of protein is visible at the expected sizes of the proteins, 

this could be due to a single protein as the sizes of the two proteins are very 

close to each other 77 KDa (MMP McmA) and 78 KDa (MMP McmC). 

Western blots were carried out to confirm the presence of two proteins in 

elution fractions (See figure 4.3). 

 

TP, total protein; SF, soluble fraction; UB, unbound fraction; EF, elution 

fraction 
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4.2.2 Purification of GST-tagged protein 

 

pAW 32 expression construct contained S-tag on MMP McmB and GST tag 

on MMP McmD. It was decided to purify this protein using GST-tag. 

 

Harvested pellets were resuspended in resuspension buffer (See section 

2.5.1.2) before storing at -80 oC until further use. Proteins were purified from 

750 ml of culture using glutathione sepharose beads. Elution fractions were 

separated by 10% SDS-PAGE (Figure 4.2). Coomassie stained gel showed a 

protein band just below 100 KDa protein marker which was expected for 

MMP McmB band of 93 KDa and a faint band just over 100 KDa protein 

marker which could be MMP McmD (108 KDa). There were non-specific 

bands below the expected bands; therefore, one further step of anion 

exchange was carried out as explained in section 2.3.5. After anion exchange 

chromatography step, MMP McmD, which was largely insoluble, was not 

present (Figure 4.2).   

 

Western blot (See section 2.6) using anti-S for MMP McmB and anti-GST 

for MMP McmD antibodies indicated that two proteins were being purified 

in elution fractions 1, 2 and 3 (Figure 4.3 B and D). 

 

4.2.3 Quantification of purified proteins 

 

Purified proteins were quantified using Bradford assays. The concentration 

of proteins from the pAW31 construct was 5 mg/ml in a volume of 18 ml. 

The concentration of proteins from pAW32 construct was 2 mg/ml and the 

volume was 10 ml. 

 

Although the concentrations of MMP Mcm proteins were greatly enhanced 

by this method of purification, the MMP McmD was mainly in the insoluble 

fraction. It was then decided to use the MMP Mcm complex (MMP McmA, 

MMP McmB, MMP McmC and MMP McmD) provided by Dr Alison 

Walters for further helicase assays although the concentration of provided 

MMP Mcm complex was 0.256 mg/ml. 
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Figure 4.2 Purification of co-expressed MMP McmB and MMP McmD: 

SDS-PAGE analyses of fractions from muti-step purification trials. Proteins 

were expressed in E.coli BL21 (DE3) Rosetta cells at 37 oC overnight. Cells 

from 500 ml culture were lysed and protein from soluble fraction was 

purified using 50 mM glutathione and further purified using anion exchange 

chromatography. A protein band of 93 KDa for MMP McmB was visible in 

EF1 (Nickel chromatography) and EF2 (anion exchange chromatography). A 

faint band of 108 KDa (MMP McmD) was present in EF1 but not in further 

purification steps. 

 

TP, total protein; SF, soluble fraction; UB, unbound fraction; EF1, Nickel 

chromatography; AX, elution fraction from anion exchange chromatography 
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Figure 4.3 Western blot analysis of elution fractions of co-purified protein: 

Western blot analysis of differently tagged MMP Mcms showed that all the 

proteins were co-purified using (A) Anti-his tag for MMP McmA, (B) Anti-

S for MMP McmB, (C) Anti-T7 for MMP McmC, (D) Anti-GST for MMP 

McmD. Although the signals from western blot confirmed the presence of 

each of Mcm but the use of positive and negative control would have 

provided further evidence to impact on results. 
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4.3 Helicase assays for M. maripaludis Mcms 

 
 
Protein sequence analysis showed that all four Mcms in M. maripaludis 

might be functional, as they all possess highly conserved motifs in their 

sequences (Walters and Chong 2010), which are helix-2 insert, pre-sensor 1 

β-hairpin and arginine finger. On that basis helicase activity assays were  

performed for all four Mcms individually.  Strand displacement assays were 

carried out using a forked substrate that was generated by 57 bp 32P-labelled 

oligonucleotide and non-labelled 74 bp oligonucleotide that annealed to 

produce a 25 bp double-stranded complementary region.  The helicase assay 

was performed in the presence of helicase buffer (Section 2.7.2). Increasing 

protein concentrations (5 nM to 50 nM) were tested while the substrate 

concentration remained 1 nM for each reaction. Reactions were carried out 

for 1 hour at 37 oC and then stopped by the addition of helicase stop buffer 

(Section 2.7.2) that contained EDTA to inhibit unwinding. A negative 

control was generated by performing the reaction without adding any protein 

along with one positive control that was prepared by boiling the substrate at 

100 oC for 5 minutes in helicase buffer with subsequent addition of helicase 

stop buffer. Reactions were electrophoresed on a pre-run 12% TBE gel to 

visualize the separated labelled oligonucleotide. After drying, the gel was 

exposed to a phosphoimager screen overnight and imaged using a 

phosphoimager (BioRad). Each experiment was performed at least three 

times with representative gels being shown. 

 

MMP McmA and B showed protein dependent helicase activity (Figure 4.4 

and 4.5) while MMP McmC did not display any activity or if there was any, 

it was  a very low level of activity (Figure 4.6). MMP McmD was also tested 

for helicase activity and it did not show any helicase activity. MMP Mcm 

complex also showed robust helicase activity (Figure 4.7). However, the 

stoichiometry of the MMP Mcm complex was not determined, and it was 

possible that several heteromeric complexes composed of different Mcm 

subunits could be formed (Walters and Chong, 2010). On that basis it might 

be possible that in MMP Mcm complex, only MMP McmA and B were 

playing  a  major role in  helicase  activity.  The results from McmD helicase 
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Figure 4.4 Helicase activity of MMP McmA: Increasing amounts of purified 

MMP McmA protein was added to 32P-labelled DNA substrate with a 25 bp 

double-stranded region and incubated at 37oC for 1 hour. Reactions were 

analysed by separating the dsDNA substrate and unwound single stranded 

32P-labelled oligonucleotide using PAGE and exposing the gel to a 

phosphorimaging screen overnight. MMP McmA (A) showed robust protein 

dependent helicase activity. (B) The helicase activity was quantified using 

densitometry. Boiled substrate was considered to displace DNA 100% in 

graphic values.  

 

 No protein was used as a negative control while boiled substrate was a 

positive control.   
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MMP McmB 
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Figure 4.5 Helicase activity of MMP McmB: Increasing amounts of purified 

MMP McmB protein was added to 32P-labelled DNA substrate with a 25 bp 

double-stranded region and incubated at 37oC for 1 hour. Reactions were 

analysed by separating the dsDNA substrate and unwound single stranded 

32P-labelled oligonucleotide using PAGE and exposing the gel to a 

phosphorimaging screen overnight. MMP McmB (A) showed robust protein 

dependent helicase activity. (B) The helicase activity was quantified using 

densitometry. Boiled substrate was considered to displace DNA 100% in 

graphic values. 

 

No protein was used as a negative control while boiled substrate was a 

positive control.   
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MMP McmC 
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Figure 4.6 Helicase activity of MMP McmC: Increasing amount of MMP 

McmC purified protein was added to a 32P-labelled DNA substrate with a 25 

bp double-stranded region and incubated at 37oC for 1 hour. Reactions were 

analysed by separating the dsDNA substrate and unwound single stranded a 

32P-labelled oligonucleotides using PAGE and exposing the gel to the 

phosphorimaging screen overnight. MMP McmC (A) did not show any 

helicase activity or there may be very level of activity. (B) The helicase 

activity was quantified using densitometry. Boiled substrate was considered 

to displace DNA 100% in graphic values. 

 

The negative control was a reaction that did not contain protein while boiled 

substrate was a positive control.   
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MMP Mcm complex 
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Figure 4.7 Helicase activity of MMP Mcm complex: Increasing amount of 

purified Mcm proteins were added to a 32P-labelled DNA substrate with a 25 

bp double-stranded region and incubated at 37oC for 1 hour. Reactions were 

analysed by separating the dsDNA substrate and unwound single stranded a 

32P-labelled oligonucleotides using PAGE and exposing the gel to the 

phosphorimaging screen overnight. MMP Mcm complex (A) showed protein 

dependent helicase activity. (B) The helicase activity was quantified using 

densitometry. Boiled substrate was considered to displace DNA 100% in 

graphic values. 

 

The negative control was a reaction that did not contain protein while boiled 

substrate was a positive control.   
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could not be interpreted very well, as the concentration of MMP McmD was 

very low and it was also contaminated with a protein, which was probably 

the Cpn60 chaperone. As MMP McmD was expressed and purified from 

Arctic Express (DE3) RIL cells and these cells co-express the cold-adapted 

chaperonin Cpn60 at low temperature (Lund, 1994). These chaperonins 

confer improved protein processing at lower temperatures, potentially 

increasing the yield of active, soluble recombinant protein. 

 
4.4 Reaction conditions of helicase assays for M. maripaludis Mcms 
 
 
Co-purified MMP Mcm complex indicates that it forms a complex in vitro 

but it may be possible that a combination of homohexamers and 

heterohexamers were present within the purified MMP Mcm complex 

(Walters and Chong, 2010). As helicase activity of MMP McmA was quite 

strong (as discussed in section 4.3), it might be possible that it plays a major 

role in the helicase activity of MMP Mcm complex. Also the concentration 

of purified MMP McmA was 20 mg/ml and relatively purer then other MMP 

Mcms. For this reason, in further helicase assays MMP McmA was used. A 

number of different experiments were carried out to determine the optimum 

conditions for measuring helicase activity of this protein. 

 

4.4.1 Magnesium chloride and helicase assays 

 

Magnesium is an important component of helicase assays and without 

magnesium, unwinding is not possible (Costa et al., 1999). Helicase assays 

were performed in the presence of different magnesium chloride 

concentrations while the rest of the reaction conditions were the same as 

described in section 2.7.2. Unwinding was then quantified using 

densitometry on Quantity One software (Bio Rad). After quantification, the 

percentage values of DNA displaced were shown graphically (Figure 4.8) 

taking boiled substrate as 100% DNA displaced. 7 mM magnesium chloride 

gave the best results for helicase assays. This result is consistent with Costa 

et al., 1999 where they have shown in HDH VIII (human DNA helicase) 10 

mM is an optimal concentration for helicase assays. 
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Figure 4.8 Effect of magnesium chloride concentrations on helicase activity 

of MMP McmA: Representative gel (A) under increasing magnesium 

chloride concentrations shown protein dependent helicase activity. (B) The 

helicase activity was quantified using densitometry. Boiled substrate was 

considered to displace DNA 100% in graphic values. Error bars indicate 

standard error of the mean. The helicase activity of MMP McmA was 

measured under increasing magnesium chloride concentrations. The x-axis 

shows magnesium chloride concentrations while the y-axis shows the 

percentage of DNA unwound.  7 mM magnesium chloride was found to 

produce optimal unwinding activity over two protein concentrations. 
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4.4.2 Incubation period of helicase assays 

 

Helicase assays were carried out at the optimum temperature of 37 oC over 

20 minutes to 180 minutes for 15 nM and 60 nM protein concentrations. 

Maximum helicase activity was measured by densitometry of displaced band 

to occur in the reaction of 60 minutes. After quantification, the percentage 

values of DNA displaced were shown graphically. Error bars indicate 

standard error of the mean (Figure 4.9). 

 

4.4.3 pH range for helicase assays 

 

Helicase assays were performed at the temperature of 37 oC at different pHs. 

Three different concentrations of protein were used in these assays, which 

were 15 nM, 60 nM and 120 nM. The pH of helicase assay was maintained 

in the helicase buffer (Section 2.7.2). At pH 6 and pH 6.5, MMP McmA 

showed minimal unwinding. At pH 7.6 and pH 8, there was good 

improvement in unwinding efficiency.  There was a maximum of 12 fold 

increase in helicase activity due to increasing pH of reaction mixture. 

Maximum helicase activity was measured by densitometry for the reaction at 

pH 8. Error bars indicate standard error of the mean in the graph (Figure 

4.10). 

 

4.4.4 ATP concentration for helicase assays 

 

Helicase activity depends on the concentration of ATP. Without ATP, no 

unwinding can be detected (Costa et al., 1999).  These assays were 

performed at two protein concentrations, which were 15 nM and 60 nM. The 

rest of the reaction conditions were the same as described in Materials and 

Methods section 2.7.2. ATP concentrations used in these assays were 2 mM, 

4 mM, 6 mM, and 8 mM. Maximum unwinding activity was measured with 

the 6 mM ATP (Figure 4.11). Above 6 mM ATP, there was a decrease in the 

efficiency of unwinding. There is precedence for the increased ATP 

concentrations having an inhibitory effect on unwinding (Costa et al., 1999). 

Although from 2 mM to 6 mM maximum  increase in  helicase  activity  was  
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Figure 4.9 Effect of incubation duration on helicase activity of MMP 

McmA: The helicase activity of MMP McmA was measured over increasing 

time periods from 20 minutes to 180 minutes (A). The x-axis showed the 

increasing time period while the y-axis shows the percentage of DNA 

unwound (B).  60 minutes incubation shows maximum helicase activity for 

MMP McmA. There is a possibility that over a time after 60 minutes, DNA 

could be re-annealed in a reaction mixture. 
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Figure 4.10 Effect of pH on helicase activity of MMP McmA: The helicase 

activity of MMP McmA was measured over pH range from 6 to 8. 

Representative gel (A) under increasing pH range showed increasing 

helicase activity from 6 to 8. (B) The helicase activity was quantified using 

densitometry. The x-axis shows the increasing pH range while the y-axis 

shows the percentage of DNA unwound. Mcm McmA at pH 8 displays the 

highest level of DNA helicase activity for MMP McmA. 

 

 

 



 118 

 

A 

 
 

 

B 

 
 

 

Figure 4.11 Effect of ATP concentrations on helicase activity of MMP 

McmA: Representative gel (A) under increasing ATP concentrations shown 

protein dependent helicase activity. (B) The helicase activity was quantified 

using densitometry. The x-axis shows an increasing concentration of ATP 

while the y-axis shows the percentage of DNA unwound.  Maximum 

helicase activity was detected at 6 mM ATP concentration for both 

concentrations. 
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found to be between 2 fold to 3 fold. 

 

4.4.5 Effect of different salts and their concentration on helicase assays 

 

Recent reports describe a significant effect of anions on Mcm helicase 

activity. More specifically this study suggested that chloride inhibits DNA 

unwinding by Mcms whereas glutamate supports Mcm helicase activity 

(Bochman and Schwacha, 2008). Therefore further investigation included 

the effect of other salts and their concentrations on unwinding ability of 

MMP McmA.   The helicase activity of MMP McmA was detected in the 

presence of different salts and then quantified using densitometry. 15 nM 

and 60 protein concentrations were used to test the effect of different salts on 

unwinding. Sodium glutamate, potassium glutamate and sodium chloride 

were the salts to test on unwinding efficiency. Three different concentrations 

of each salt  (150 mM, 400 mM, 600 mM) were tested. The rest of the assay 

was the same as described in Material and Method section 2.7.2. From the 

results, it was obvious that sodium chloride inhibited helicase activity and, 

sodium and potassium glutamate enhanced the activity (Figure 4.12) which 

further indicates that glutamate positively effects helicase activity while 

chloride inhibits helicase activity; this result is consistent with the recently 

published work discussed above. 

 

4.5 Discussion 

 

Although the purified MMP Mcm complex was available in the Chong lab, 

the concentration of complex was very low (0.258 mg/ml). Trials were 

conducted to purify co-expressed pairs of M. maripaludis Mcms protein. 

MMP McmA and MMP McmC were purified efficiently in a single step. 

MMP McmB and MMP McmD were purified in first step of GST affinity 

purification but the purified protein was not pure and additional lower 

molecular weight proteins were present. Also the concentration of MMP 

McmD was very low in affinity chromatography. To get rid of low 

molecular weight proteins, an additional step of anion exchange 

chromatography was carried out. In anion  exchange  chromatography, MMP  
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Figure 4.12 Effect of different salts and their concentrations on helicase 

activity of MMP McmA: The helicase activity of MMP McmA was 

measured in the presence of different salts and then quantified using 

densitometry. Three different salts (A) potassium glutamate, (B) sodium 

glutamate (C) sodium chloride were tested for their possible role in DNA 

unwinding. (D) The x-axis shows the increasing concentration of salts (150 

mM, 400 mM, 600 mM) while the y-axis shows the percentage of DNA 

unwound (D). Shades of one colour represent the effect of one salt on 

different concentrations of protein.  Consistent with published data sodium 

chloride inhibits helicase activity while sodium and potassium glutamate 

enhanced helicase activity. 
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Figure 4.12 Continued 
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McmB was eluted without any other contaminating proteins but MMP 

McmD was lost. But overall, concentrations of MMP Mcms (A, B and C) 

proteins were greatly enhanced by this method of purification. It was then 

decided to perform helicase assays on the available MMP Mcms. 

 

Individual purified M. maripaludis Mcms proteins and complex were used to 

carry out helicase activity assays. Individually MMP McmA and MMP 

McmB showed robust protein dependent unwinding activity. MMP McmC 

did not display any helicase activity, while MMP Mcm complex (includes 

Mcms, A, B, C and D) also showed good helicase activity. MMP McmD was 

mainly contaminated and low in concentration, therefore helicase activity 

results from MMP McmD were largely non-informative. It is very 

interesting that although McmA is very similar to McmB and McmC in 

sequence but still showed more robust activity compared to McmB while 

McmC did not show any activity under same conditions. As MMP McmA 

efficiently unwound DNA substrate, therefore this protein was further used 

to find out optimum reaction conditions for unwinding. Magnesium chloride 

concentration is crucial for DNA unwinding, without magnesium chloride 

unwinding is not possible but at the same time high concentrations of 

chloride can inhibit unwinding. The optimum concentration found was 7 

mM. Experiments to determine the best incubation period for unwinding 

suggested that 60 minutes of incubation gives best results. Furthermore the 

pH of helicase buffer used in unwinding also gives important insight. At 

lower pH, a low amount of DNA unwinding was measured. At pH 7.6 and 

pH 8.0, unwinding efficiency was very good. Helicase activity also depends 

on ATP in the reaction mixture. Without ATP, no helicase activity is 

possible. 6 mM ATP produced maximum unwinding and above this 

concentration, ATP inhibited helicase activity. The effect of different salts 

and their concentration on unwinding was also measured. Sodium chloride 

inhibited helicase activity and, sodium and potassium glutamate enhanced 

the activity which further indicates that the glutamate positively affects 

helicase activity while chloride inhibits helicase activity. 
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Chapter 5: The role of potential kinases in replication in archaea 
 
 
5.1 Introduction  
 

Although archaeal metabolism and operonic gene organization is certainly 

more similar to prokaryotic eubacteria, the archaeal factors for transcription, 

translation and DNA replication are more similar to those found in 

eukaryotes (Vas and Leatherwood, 2000). Most archaea replicate their 

circular genome from a single DNA replication origin as do bacteria, even 

though they may use eukaryotic-like proteins to do so (Myllykallio at al., 

2000). For timely replication of big genomes in eukaryotes, it is important 

for replication to be started at multiple replication origins simultaneously. To 

coordinate replication initiation at various sites, there is a need for regulation 

that is in part carried out by cyclin-dependent kinases (Cdks) and cyclins 

(see reviews by Morgan, 1995; Roberts, 1999; Sherr and Roberts, 1999). 

Eukaryotic replication is also dependent on the replication specific kinase 

Cdc7-Dbf4 (Sclafani, 2000). Archaeal genomes are smaller and do not need 

as much coordination but archaea still need to couple replication with growth 

and division. Most archaea allocate less then 0.5% of their genome to signal 

transduction molecules (Galperin, 2005) compared to 4% in eukaryotes for 

kinases and phosphatases (Manning at al., 2002a and Manning at al., 2002b). 

Archaea lack recognizable homologues of cyclin dependent kinases, cyclins, 

or the kinase Cdc7.  

 

Another reason to focus on kinases is that recently Dr Alison Walters in the 

Chong group co-precipitated MMP0004 together with MMP McmA 

(unpublished data, Chong lab). Bioinformatics studies give powerful 

information of particular proteins and their function. Based on sequence 

analysis studies, we tried to find the role of this hypothetical archaeal protein 

from Methanococcus maripaludis strain S2 (MMP0004). Another protein 

from Methanocaldococcus jannaschii strain DSM 2661 (Mj1073) that has 

91% sequence homology with MMP0004 was also cloned and purified in 

order to examine the potential role of these proteins in replication of archaea. 
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5.2 Bioinformatics of M. maripaludis (MMP) 0004 and M. jannaschii 
(Mj) 1073 
 
5.2.1 MMP0004 

 

MMP0004 is a hypothetical protein that contains 298 amino acids and 

belongs to the RIO kinase family. RIO kinases are atypical protein serine 

kinases containing a kinase catalytic signature, but otherwise show very little 

sequence similarity to typical PKs (Angermayr et al., 2000). Serine kinases 

catalyze the transfer of the gamma-phosphoryl group from ATP to serine 

residues in protein substrates (Edelman et al., 1987). RIO2 is present in 

archaea and eukaryotes (Manning et al., 2002). The N-terminal domain 

found in RIO2 kinases is structurally homologous to a wHTH domain. It 

adopts a structure consisting of four alpha helices followed by two beta 

strands and a fifth alpha helix (LaRonde-LeBlanc and Wlodawer, 2004). The 

wHTH domain is primarily seen in DNA-binding proteins, although some 

wHTH domains may be involved in RNA recognition. RIO2 is essential for 

survival and is necessary for rRNA cleavage during 40S ribosomal subunit 

maturation (Vanrobays et al., 2001). The biological substrates of RIO2 are 

still unknown (Campbell and Karbstein, 2010). 

 

5.2.2 Mj1073 
 
 
Mj1073 belongs to the RIO-type serine/threonine-protein kinase family. The 

BLAST searches showed that the similarity between MMP0004 and Mj1073 

is 91%. From the protein database, it is shown to have metal binding, ATP 

binding and serine/threonine-protein kinase motifs. This protein belongs to a 

heterogenous group of serine/threonine protein kinases that are either non-

specific or their specificity has not been determined to date but there is 

automated prediction of optimal substrate prediction available that use 

crystal structures, molecular modelling, and sequence analyses of kinases 

(Brinkworth et al., 2002). The functions associated with different regions of 

the protein and their corresponding amino acid positions according to 

bioinformatics studies are summarised in table 5.1 along with a cartoon 

representation (figure 5.1) of different features on sequence. 
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Table 5.1 Function of different regions of Mj1073 gene. 
 
 
 
 
 
 

 

 
 
 
 
Figure 5.1 Cartoon representations of important regions and sites on Mj1073 

gene sequence. 

 

Feature Key Position (s) 
Amino 
acids 

Length 
Amino 
acids 

Description 

Molecular Processing 
Chain 1-270 270 RIO-type 

serine/threonine-protein 
kinase Rio2 

Regions 
Domain 65-270 206 Protein kinase 
Nucleotide binding 72-77 6 ATP 
Nucleotide binding 158-164 7 ATP 
Nucleotide binding 206-207 2 ATP 
Sites 
Active site 202 1 Proton accepter 
Metal binding 76 1 Magnesium 1 
Metal binding 207 1 Magnesium 2 
Metal binding 220 1 Magnesium 1 
Metal binding 220 1 Magnesium 2 
Binding site 93 1 ATP 
Binding site 20 1 ATP 
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5.3 Phylogenetic analysis  

 

Phylogenetic analysis was carried out on MMP0004 in order to find the 

closest homologues.  The closest homologues of MMP0004 were found in 

Methanocaldococcus jannaschii and Methanothermococcus okinawensis 

(Figure 5.2). There are homologues of this protein present in lower 

eukaryotes and in yeast as well. Outside the Methanococcales, there is less 

homology.  Although it is a hypothetical protein, the BLAST searches match 

this protein to other serine/threonine protein kinases that predict its role as a 

kinase. 

 

5.4 Protein structure prediction 

 

The prediction of the three-dimensional structure of a protein from its amino 

acid sequence was carried out using protein structure prediction software 

that include RaptorX (Peng and Xu, 2011), SWISS-MODEL (Guex and 

Peitsch, 1997; Schwede et al., 2003; Arnold et al., 2006) and M4T 

(Fernandez-Fuentes et al, 2007). These models are based on trying to fit the 

protein sequence to the most related structure available in the database.  In 

MMP0004 and Mj 1073 case, this is the protein database (pdb) structure of 

1zao, which is A. fulgidus RIO2 Kinase.  It should be noted that this protein 

is quite distant compared to other available sequences as illustrated in figure 

5.2. The generated model of MMMP0004 was evaluated by using QMEAN4 

score in SwissModel Workspace. The global QMEAN4 scoring function 

(Benkert et al. 2008) is a linear combination of structural descriptors using 

statistical potentials. QMEAN4 is a reliability score for the whole model that 

can be used in order to compare and rank alternative models of the same 

target. This score is a composite score consisting of a linear combination of 

four statistical potential terms. The quality estimate ranges between 0 and 1 

with higher values for better models. The QMEAN4 value for MMP0004 

structure is 0.5 (Figure 5.3 A). Residue error plot showed two big error 

peaks (Figure 5.3 B) and rest of the plot seems fine and does have conserved 

residues (discussed later). 
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Figure 5.2 MMP0004 phylogenetic tree: A multiple sequence alignment  

shows that there is homology of MMP0004 with other proteins present in 

other archaea and lower eukaryotes. The closest homology is in 

Methanocaldococcus jannashii and Methanothermococcus okinawensis. 
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Figure 5.3 QMEAN4 score and residue error plot of MMP0004: QMEAN4 

score (A) of MMMP0004 was evaluated by using SwissModel Workspace 

and 0.5 value of QMEAN score is obtained that lies exactly in the middle. 

Residue error plot (B) showed two big error peaks indicating regions of 

dissimilarity when compared to A. fulgidus RIO2 Kinase. 
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A number of structures of protein-serine/threonine and protein-tyrosine 

kinases have been determined, and the conserved subdomain residues have 

been shown to be involved in recognition and binding of ATP or substrate 

peptides, as well as in actual catalysis (Bossemeyer, 1995; Engh and 

Bossemeyer, 2002; Knighton et al., 1991a, 1991b). The predicted ribbon 

structures also have a specific ATP binding pocket that is conserved in all 

serine/threonine kinases. Predicted structures of both proteins (MMP0004 

and Mj1073) are shown in figure 5.4 with the highlighted yellow residues on 

MMP0004 that may have role in DNA binding. Analysis of the structure of 

A. fulgidus (Af) RIO2 kinase revealed the presence of two domains, the N-

terminal domain and the C-terminal domain (LaRonde-LeBlanc and 

Wlodawer, 2004).  The two model structure of MMMP0004  (5.4 A) and 

Mj1073 (5.4 B) and the crystal structure A. fulgidus (Af) RIO2 Kinase (5.4 

C) seems essentially the same. The N-terminal domain (wHTH domain) 

contains a combination of α helices and β strand in all three structures. 

Middle part of the ribbon structure is the same in all three proteins, that is 

five β strands with one long α helix. The C-terminal domain (RIO kinase 

domain) is the most different part in all three proteins as the number of β 

strands are different in all three proteins 

 

5.4.1 Comparison of the wHTH domain with its structural equivalance  

 

A multiple sequence alignment of the MMP0004 homologues from archaea  

showed that all these proteins possess the motifs believed to be important in 

kinase function (Figure 5.5 and 5.6). 

 

The N-terminal domain is conserved in members of the Rio2 family. A 

strand that connects the second and third α helices combines with the other 

two β strands to form a β sheet, and the loop between the second and third β 

strands is called a “wing,” which gives the wHTH its name. The fifth α helix 

replaces the second wing seen in some proteins with the wHTH fold 

(LaRonde-LeBlanc and Wlodawer 2004). The most commonly reported 

function of such domains is DNA binding (Gajiwala et al., 2000; Gajiwala 

and  Burley,  2000).   From  the  predicted   structural  data  (Figure 5.4)  and 
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Figure 5.4 Overall structures: Predicted ribbon structures of  MMP0004 (A) 

and Mj1073 (B) and  crystal structure of  A. fulgidus Rio2 (C). α Helices are 

shown in green colour while β Sheets are pink in colour in A and B. 

MMMP0004 model was generated in SwissModel while Mj1073 is 

regenerated from RaptorX while the crystal structure of A. fulgidus Rio2 was 

taken from LaRonde-LeBlanc and Wlodawer, 2004. 
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sequence alignment of the N- terminal domain  (Figure 5.5), it is clear that 

the MMP0004 protein is missing one α helix named as α0 while Mj1073 is 

missing two α helices namely α0 and α1. Similarly there are three β strands 

present in Af. Rio2, this is not the case with MMP0004 and Mj1073, they 

both are missing one β strand and most probably that is one called β3 (Figure 

5.5). One possible reason might be that a few residues are missing from this 

segment in the alignment and also this sequence does not contain any 

homology with any residue with A. fulgidus Rio2. 

 
5.4.2 The RIO kinase domain  

 

The C-terminal RIO2 domain, the sequence of which is conserved in both 

Rio1 and Rio2 proteins, is indeed structurally homologous to known protein  

kinase domains (LaRonde-LeBlanc and Wlodawer, 2005a, b). It is bilobal 

with a twisted five-stranded β sheet and a single long α helix (αC) in the N-

terminal lobe whereas the C-terminal lobe consists of a combination of four 

β strands and three α helices (Figures 5.4 C and 5.6) in the case of A. 

fulgidus Rio2. The N-terminal lobe of RIO kinase domain in MMMP0004 

and Mj1073 is exactly the same as Af. Rio2 in predicted structures but the C-

terminal lobe consists of two β strands and four α􏰁helices incase of 

MMP0004 (Figures 5.4 A and 5.6). and three α helices but no β strands in 

Mj1073 predicted ribbon structures (Figures 5.4 B and 5.6).  

 

A loop of amino acids between β strand 3 (β3) and α helix 􏰁C  (αC) contains 

a highly conserved threonine in all three of these proteins, possible targets 

for phosphorylation (Figure 5.6). 

 

5.4.3 Conserved residues of the RIO proteins 

 

The structure of Rio2 from A.fulgidus was analyzed to locate the residues 

that were conserved in the RIO protein family and when mapped on the 

surface, the conserved residues appeared to cluster around the active site on 

one face of the protein (LaRonde-LeBlanc and Wlodawer, 2004) and 

included the   following   residues. Tyr222 was conserved as either a Tyr or a  
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Figure 5.6 The RIO kinase domain: Sequence alignment of the kinase 

domains of Rio2 from A. fulgidus (AfRio2), M. maripaludis (MMMP0004) 

and M. jannaschii (Mj1073). Schematics of the secondary structure are 

shown in blue (Rio2). Residues highlighted in red are identical in AfRio2, 

MMP0004 and Mj1073. Residues highlighted in green are identical in 

MMP0004 and Mj1073 but not in AfRio2. Phe and Tyr are colored as 

identical in all cases. Kinase subdomains based on LaRonde-LeBlanc and 

Wlodawer, 2004 are indicated with black Roman numerals.  

 
 



 134 

Phe (β3).  Glu103 was located in the glycine-rich loop (β1) and is conserved 

in all RIO proteins. Lys102 (β1) was also conserved in all RIO domains but 

did not interact with the nucleotide and was disordered in the structure. The 

disordered loop (residues 125–141, between β3 and αC) was located near the 

conserved surface and contained Gly125, Thr127 and Tyr148, all of them are 

highly conserved among Rio2 family members including MMP0004 and 

Mj1073 (Figure 5.6). 

 

5.5 Possible protein/protein interactions 

 

Furthermore MMP0004 protein sequence was analysed in other 

bioinformatics studies for its possible interactions with other proteins within 

M. maripaludis S2 strain.  For this purpose online the string database was 

used. STRING is a database of known and predicted protein interactions 

(www.string-db.org.). The interactions include direct (physical) and indirect 

(functional) associations. With a medium confidence level (score 0.400), 

MMP0004 shows predicted interactions with a number of different proteins 

that are either hypothetical or uncharacterised proteins. With a high level of 

confidence (score 0.700), MMP0004 interacts with 30s ribosomal proteins 

(Figure 5.7). The activity of Rio2 is necessary for rRNA cleavage in 40S 

ribosomal subunit maturation. The interaction of MMP0004 with ribosomal 

proteins, justifies its role as a serine/threonine kinase of the RIO2 family 

because the RIO2 family is necessary for rRNA cleavage. The network of 

interacting proteins generated is with medium confidence level (Figure 5.7). 

It is interesting that no interaction has been shown with any of the Mcms as 

Dr Alison Walters in the Chong group recently showed that the MMP 

McmA interacts with MMP0004 in vivo (unpublished data, Chong lab). 

 

5.6 Cloning of MMP0004 
 
 
The MMP0004 gene was cloned from genomic DNA of M. maripaludis S2 

available in the Chong lab. The MMP0004 gene was amplified via touch 

master mixture instead of Taq polymerase. The PCR product was first 

cleaned using QIAquick  PCR clean-up  kit (QIAGEN) and blunt ligated into 
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Figure 5.7 Possible interaction of MMP0004: In vivo interaction of 

MMP0004 with other proteins within M. maripaludis S2. Most of the 

interactions are with ribosomal proteins. No interaction has been shown with 

any of the Mcm. Thicker lines represent stronger associations. 

http://string-db.org/ 
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down PCR using primers containing appropriate restriction sites (see 

appendix  2  for primer   details). FideliTaq   DNA  polymerase  was  used in 

cloning vector pJET 1.2 following manufacturer’s protocol. After various 

failed trials of subcloning MMP0004 into an expression vector from pJET 

1.2, MMP0004 was subcloned into another holding vector pGEM®-T using 

manufacturer’s protocol. The resulting vector and pET 19b were digested 

with BamH1 and Xhol and ligated overnight at 4 oC. To confirm the ligation 

had worked, pET 19b containing MMP0004 was digested (Figure 5.8). pET 

19b construct containing MMP0004 was sent for sequencing to the 

sequencing laboratory of York University (Technology Facility). 

Transformation was carried out using E.coli BL21 (DE3) Rosetta competent 

cell. In transformation protocol LB was used instead of SOC media.  

 
5.7 Expression of MMP0004 
 

MMP0004 was expressed in 750 ml culture which yielded 4 gram of pellet. 

Cells, which were harvested by centrifugation, resuspended immediately in 

resuspension buffer (Section 2.5.1) before storing at -80 oC prior to protein 

purification. 

 

5.8 Purification of MMP0004 
 
 
Resuspended cells stored at  -80 oC were thawed on ice and protein was 

purified in the same way as explained in section 2.5. Elution fraction 

samples were run on 15% SDS-PAGE as the size of this protein was small. 

Eluant fractions were pooled together and flash frozen in liquid nitrogen and 

stored at -80 oC. SDS-PAGE analysis showed clean and intense band at 

expected size (29.9 KDa) just above 25 KDa protein marker (Figure 5.9). 

Purified proteins were quantified using Bradford assays. The concentration 

was 3.3 mg/ml in a volume of 15 ml. The purified protein was concentrated 

as explained in section 2.9.7 in Materials and Methods. 
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Figure 5.8 Restriction digestion of pET 19b containing MMP0004: 5 µg of 

DNA was digested over the period of 1 hour at 37 oC and loaded in three 

lanes of 2% agarose gel in TAE along with uncut vector of pET 19b. The 

agarose gel showed that MMP0004 (897 bp) was ligated into pET 19 b 

(5717 bp). 
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Figure 5.9 Purification of MMP0004: SDS-PAGE analyses of fractions from 

purification trials of MMP0004. Protein was expressed in E.coli BL21 (DE3) 

cells Rosetta at 37 oC overnight. Pellets from 750 ml of culture were 

resuspended, and the soluble protein fraction was bound, washed and eluted 

from nickel beads using 500 mM imidazole. A band of ~30 KDa was present 

in elution fraction visible after Coomassie blue staining. Protein ID was 

confirmed by mass spectrometry (MS). 

TP, total protein; UB, unbound fraction; EF, elution fraction 

 
 
 
 
 
 
 
 
 
 



 139 

5.9 Kinase assays for MMP0004 

 

The protein database available on the NCBI website showed that MMP0004 

is a putative protein serine/threonine kinase. Kinase assays were used to test 

whether MMP0004 acts as Mcm kinase. As the substrates for MMP0004 

were unknown and MMP0004 has been pulled down together with MMP 

McmA from M. maripaludis extracts (unpublished data, Chong lab), it was 

hypothesized that the substrate for MMP0004 was Mcms. Kinase activity 

assays were carried out to test the phosphorylation on purified MMP McmA 

by MMP0004. MMP McmA was used instead of MMP Mcm complex as the 

purity and concentration of MMP McmA was much higher then MMP Mcm 

complex. Also MMP McmA showed robust helicase activity as discussed in 

previous chapter. The results from the kinase assays showed that there was 

not any phosphorylation by MMP0004 on MMP McmA. It may be due to 

substrate choice or requirement for other proteins or cofactors in these 

assays. The gel picture was not good quality (not shown), as the γ[32P]ATP 

required 4-12 % gradient gel that was not available. Instead the samples 

were run on 12% TBE gel that made the whole gel picture black. 

 

Further to confirm results of kinase activity of MMP0004 on McmA, 

helicase assays were carried out on kinase treated McmA. The helicase assay 

carried out on McmA is described in section 2.7.2. Interestingly McmA did 

not show any helicase activity after being included in kinase assay with 

MMP0004. The positive control was the boiled substrate while the negative 

control was substrate without any protein added (Figure 5.10). There may be 

the possibility that McmA proteolysis took place in kinase assays and then 

further in helicase assays, and that may be the reason it did not show any 

helicase activity afterwards. 

 
5.10 Cloning of Mj1073 
 
 
The Mj1073 gene from DSM 2661 strain was cloned from the whole 

genomic DNA of Methanocaldococcus jannaschii present in the Chong lab. 

The Mj1073  gene  was  amplified  using  touch  down   PCR   with   primers  
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Figure 5.10 Helicase activity of kinase treated MMP McmA: PAGE analysis 

of strand displacement assays of kinase treated MMP McmA with various 

protein concentrations. Controls were generated by performing the helicase 

assays with intact substrate (negative control) and by boiling substrate 

(positive control). Kinase-treated MMP McmA did not show any helicase 

activity. 
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containing appropriate restriction sites (see appendix 2 for primer details). 

The method of cloning of Mj1073 was essentially the same as MMP0004 

explained in section 5.2.2 except the initial annealing temperature of primers 

for Mj1073 was quite low (46 oC). PCR product was first cleaned using 

QIAquick PCR clean-up kit (QIAGEN) and blunt ligated into cloning vector 

pGEM®-T. The resulting vector and pET 19b were prepared in a similar 

manner with BamH1 and Xhol restriction sites and ligated overnight at 4 oC. 

2 µl of ligation mix was transformed into Rosetta DE3 E.coli competent 

cells. To confirm the ligation has worked, digested the pET 19b containing 

Mj1073 (Figure 5.11). Sequencing laboratory of York University 

(Technology Facility) confirmed the sequence of Mj1073 in pET 19b 

without any mutation. Transformation was carried out using E.coli BL21 

(DE3) Rosetta competent cells. 

 

Making glycerol stocks was not possible as storing these cells at -80 oC did 

not yielded much protein and resulted in the loss of plasmid, so direct 

purification step was taken for this protein from fresh transformation every 

time. 

 

5.11 Expression of Mj1073  
 

Mj1073 was expressed in 750 ml culture which yielded 3 grams of pellet. 

Cells, which were harvested by centrifugation, resuspended immediately in 

resuspension buffer (Section 2.5.1) before storing at -80 oC prior to protein 

purification. 

 

5.12 Purification of Mj1073 

 
The protocol for the purification of Mj1073 protocol was essentially the 

same  as  for  MMP0004  (Section 5.8).  Eluted fraction samples were run on 

15% SDS-PAGE and protein was visualised using Coomassie blue staining. 

Elution fraction 1 and 2 displayed a pure band of Mj1073 at the expected 

size of 27 KDa (Figure 5.12). Purified proteins were quantified using 

Bradford  assays.  The  concentration  was 5.1 mg/ml   in a volume of 12 ml.  
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Figure 5.11 Restriction digestion of pET 19b containing Mj1073: 5 µg of 

DNA was digested over the period of 1 hour at 37 oC and loaded in three 

lanes of 2% agarose gel in TAE along with uncut vector of pET 19b. The 

agarose gel showed that Mj1073 (810 bp) was ligated into pET 19 b (5717 

bp). 
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Eluant fractions were pooled together and flash frozen immediately in liquid 

nitrogen then stored at -80 oC. 

 

5.13 Discussion 

 
MMP0004 protein has been identified in Methanococcus maripaludis S2 as 

possibly interacting with Mcms. The role of MMP0004 has been suggested 

to be a kinase by bioinformatics studies based on its sequence homology 

with other serine/threonine kinases. The study of this protein in relation to 

Mcm leads to the hypothesis that this protein may act as a kinase using Mcm 

as a substrate. As this protein is hypothetical, and the only role that was 

assigned to it was as a putative kinase by BLAST searches, the substrates for 

this kinase are not known. The closest homology of this protein was present 

in Methanocaldococcus jannaschii (Mj1073). Predicted ribbon structures 

were obtained from different online data servers and all produced similar 

structures that were based on the most homologus known protein crystal 

structure of A. fulgidus RIO2 kinase. Both of these proteins are fairly small, 

comprising of 29 KDa and 27 KDa for MMP0004 and Mj1073 respectively. 

Mj1073 is likely to be more thermostable as M. jannaschii is an 

hyperthermophilic organism (Bult et. al., 1996). Both proteins were cloned 

and purified. Purified MMP0004 was further subjected to kinase assays but 

did not phosphorylate MMP McmA. Either MMP0004 does not use McmA 

as a substrate or it requires other proteins or cofactors to be present to 

produce kinase activity. It is also possibe that it does not have any kinase 

activity but the helicase assays of kinase-treated MMP McmA did not show 

any DNA unwinding activity. MMP McmA did show helicase activity under 

normal circumstances as described in the previous chapter. As the substrate 

for Mj1073 was unknown, so the kinase assays for Mj1073 were not 

performed. But both proteins were successfully purified and can be used in 

future for the identification of their role and further insight to the kinase 

activity related to these proteins. 
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Figure 5.12 Purification of Mj1073: SDS-PAGE analyses of fraction from 

purification trials of Mj1073. Protein was expressed in E.coli BL21 (DE3) 

Rosetta cells at 37 oC overnight. 500 ml culture pellet was resuspended 

bound, washed and eluted from nickel bead using 500 mM imidazole. A 

band just above 25 KDa marker is visible at the expected size for Mj1073 

(27KDa). 

 

UI, uninduced; TP, total protein; SF, soluble fraction; UB, unbound fraction; 

EF, elution fraction 
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Chapter 6: Discussion 

 

6.1 Reconstitution of hMcm2-7 complex 

 

The minichromosome maintenance proteins are components of the 

prereplicative complex (preRC) that assembles on replication origins prior to 

S phase (Donovan et al., 1997; Tanaka et al., 1997). The six proteins Mcm2-

7 form a heterohexameric ring that is the replicative helicase in eukaryotic 

cells (Schwacha and Bochman, 2008). Mcm proteins are required for 

replication initiation and elongation (Labib et al., 2000; Lei and Tye, 2001). 

In addition, they appear to travel with the replication fork in vivo (Aparicio 

et al., 1997). All six of the Mcm proteins are required for ongoing replication 

in S. cerevisiae (Labib et al., 2000). The purification of yeast Mcm2-7 as 

individual subunits by expressing individually in bacteria was reported 

(Davey et al., 2003). Recombinant individual human Mcm2-7 were 

expressed in E.coli in this study. It was not possible to obtained individual 

hMcm2-7 in purified form to conduct further assays.  Only hMcm4, 6 and 7 

were obtained in low concentrations after a number of different purification 

trials. Mcm4, 6 and 7 were used further to assemble a complex without 

success. hMcm2 was purified in very small amounts by expressing it at low 

temperature in Arctic Express (DE3) RIL cells. Despite various efforts to 

purify hMcm3 and 5, they remained largely insoluble.  

 

At that point it was decided to try to co-express and co-purify all hMcms 

from E.coli. All six hMcms were co-purified through four purification steps 

successfully when co-expressed in E.coli, suggesting that they form a 

heterohexameric complex (Lee and Hurwitz, 2000; Davey et al., 2003). 

However the complex concentration was low and only sufficient to perform 

further activity assays but for stoichiometric analysis, the complex needed to 

be pure and more concentrated. Therefore stoichiometry of the 

heterohexameric complex was not ascertained. Quantification of the hMcm 

complex would be possible by using MALDI-MS fingerprinting if there 

would be equal abundance of all hMcm in final purification step with no 

degradation or contamination. For these reasons it was decided not to use 
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this complex for stoichiometric studies that remains an area of speculation as 

the stoichiometry of hMcm complex has not been measured accurately to 

date because it has been dependent on indirect method of antibody detection. 

All six proteins were present in the last chromatographic step as shown by 

western blot, but the amount of each protein was not equal as the intensity of 

different bands of each hMcm varied in SDS PAGE Although SDS PAGE 

and western blots indicated the presence of all six hMcms, after various co-

purification steps, but there may be some protein degradation products 

visible in SDS PAGE. It is quite possible that the purified complex is a 

mixture of homohexamers and heterohexamers with various combinations as 

Mcms are isolated in various stable assemblies (Davey et al., 2003).  

 

Another possibility is that they may not be forming heterohexamers and the 

complex is just a number of different homohexamers. As the protein 

complex is pull down with his-tag that was present on three of the proteins, 

that confirms Mcm2-7 protein complex do consists three dimers but does not 

confirm if the hMcm complex actually makes a heterohexamer containing all 

six of the hMcms. If the approach of co-purifying the hMcm with S-tag or 

GST-tag or Txr tag would have followed instead of his-tag, it would have 

confirmed whether they all make heterohexamers as these tags were present 

only on one of the hMcms.  

 

In future this complex can be readily characterised further by electron 

microscopy to provide a three-dimensional reconstruction. 

 

6.2 hMcm helicase 

 

In eukaryotes, in vivo observations implicate the Mcm2-7 complex as the 

replicative helicase (reviewed in Bell and Dutta, 2002) but, yeast Mcm2-7 

has been reported to lack in vitro helicase activity (Bochman and Schwacha, 

2007). Interestingly, both an archaeal Mcm complex (reviewed in Kelman 

and White, 2005) and hexameric Mcm complex containing only three of the 

six eukaryotic Mcm subunits (Mcm4/6/7 complex) had DNA-unwinding 

activity (Ishimi, 1997; Kelman et al., 1999; Chong et al., 2000; Lee and 
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Hurwitz, 2001; Kaplan et al., 2003). The purified Cdc45/Mcm2-7/GINS 

complex was shown to associate with an active ATP-dependent DNA 

helicase function (Moyer et al., 2006). This discrepancy that Mcm2-7 lacks 

helicase activity was rationalized and Mcm2-7 complex from yeast was 

shown to have anion dependent helicase activity (Bochman and Schwacha, 

2008). Very recently a single subunit of Mcm6 was isolated from pea and 

reported to form a homohexamer and function as a DNA helicase (Tran et 

al., 2010). To date no study of human Mcm2-7 complex has shown helicase 

activity. Purified hMcm2-7 complex was subjected to helicase activity 

assays in this study. Robust in vitro helicase activity of hMcm2-7 complex 

was confirmed by strand displacement assays. This result of hMcm2-7 

complex having helicase activity is consistent with recently published papers 

(Bochman and Schwacha, 2008). More specifically Bochman and Schwacha 

demonstrated that chloride ions inhibit DNA unwinding by Mcms whereas 

glutamate ions support Mcm helicase activity (Bochman and Schwacha, 

2008). Although in this study we have shown that the presence of chloride 

does decrease Mcm helicase activity but does not abolish it completely (See 

later). The anions present in previously published helicase assays would 

have blocked Mcm2-7-unwinding activity. This study further confirms that 

there is no need for any other proteins or cofactors for helicase activity of 

hMcm2-7 although it has been previously shown that purified Cdc45 and 

GINS are necessary for Mcm2-7 helicase activity in a complex purified from 

Drosophila (Moyer et al., 2006). Although this study does not preclude the 

possibility that their presence may increase the helicase activity or even 

processivity of helicase activity. 

 

To further confirm that hMcm2-7 has in vitro helicase activity, it would have 

been clear if there were any doubt, if the elution fraction that does not 

contain any hMcm2-7 protein in it (after the hMcm2-7 comes off), would 

have been assayed for helicase activity in parallel with the elution fraction 

that does actually contain hMcm2-7. This would have confirmed that 

nothing in the reaction mixture or elution fraction is driving the helicase 

activity except hMcm2-7 complex. 
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Along with the hMcm2-7 complex, hMcm4, hMcm6, hMcm7 could have 

been individually tested for helicase assays as a single subunit of Mcm6 has 

been reported to form a homohexamer and function as a DNA helicase (Tran 

et al., 2010). 

 

6.3 Phosphorylation of hMcm2-7 

 

The hMcm complex was further tested as a target for kinase activity in the 

presence of CDK2/Cyclin A and CDK2/Cyclin E. Human Mcm2-7 complex 

showed phosphorylation with both complexes, CDK2/cyclin A and 

CDK2/cyclin E. CDK2/cyclin E showed more robust activity compared to 

CDK2/cyclin A. Various previous studies confirmed the phosphorylation of 

individual Mcms and Mcm2-7 complex by CDK (Ishimi and Komamura-

Kohno, 2001; Wheeler et al., 2008). The site(s) of phosphorylation by 

CDK2/Cyclin A and CDK2/Cyclin E are not fully known. It has been 

demonstrated recently that Mcm3 is a substrate of cyclin E/Cdk2 and can be 

phosphorylated by cyclin E/Cdk2 at Thr722 (Li et al., 2011). Cdk2/cyclin A 

and Cdc2/cyclin E might be phosphorylating at the same or different sites, 

however it suggests that both Cdk2/cyclin A and Cdk2/cyclin E have similar 

specificity of substrate recognition, as both of them are phosphorylating the 

hMcm complex at various sites. Although it seems likely Cdk2/cyclin E has 

more sites for phosphorylation compared to Cdk2/cyclin A due to the signal 

strength observed in kinase assays.  

 

Using mass spectrometry, phosphorylation sites of the human Mcm complex 

could have identified but due to PhD time frame as a limiting factor, samples 

were not sent for mass spectrometry. This could be done in future to identify 

known and novel phosphorylated sites on each of the hMcm.  

 

6.4 Helicase activity of phosphorylated hMcm2-7 

 

Phosphorylated hMcm2-7 via CDK2/cyclin E was subjected to helicase 

activity. The phosphorylated hMcm2-7 did not show any helicase activity, 

an observation supported by studies of Mcm4/6/7 complex (Ishimi et al., 
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2000a; Ishimi et al., 2000b; kudoh et al., 2006). Recently it has been proved 

that Mcm2-7 helicase loading was inhibited by CDK (Chen and Bell, 2011). 

 

These results suggest that one of the roles of phosphorylation by the cyclin-

dependent kinase is to inactivate the DNA helicase activity of the hMcm2-7 

complex that is probably involved in DNA replication in vivo. Based on 

these findings, it is considered that phosphorylated regions play a role in the 

interaction with DNA during DNA helicase action, and the phosphorylation 

of hMcm2-7 at specific sites by the cyclin-dependent kinase perturbs the 

interaction to inactivate the DNA helicase activity of the hMcm2-7 complex. 

This finding proves that Mcm proteins are substrate of the cyclin-dependent 

kinases. 

 

A few positive controls were missing in the helicase assays of 

phosphorylated hMcm2-7. It would have been very informative to the results 

as a whole with more positive controls on it. 

 

A number of sites of phosphorylation are already known on Mcm2, Mcm3 

and Mcm4 subunits (Ishimi et al., 2000; Montagnoli et al., 2006; Li et al., 

2011) that seem to regulate the function of Mcm complex. Further to this 

finding it is important to find out all the phosphorylation sites on hMcm2-7 

complex and determine which sites are playing a role in the inhibition of 

hMcm2-7 complex helicase activity. It could further indicate whethet any 

sites are lethal for hMcm2-7 helicase activity. 

 

Helicase related activity assays could have been performed with the hMcm2-

7 complex including ATP hydrolysis, DNA binding assays and processivity 

assays. ATP hydrolysis is assessed in the presence and absence of closed 

circular DNA templates using α[32P]ATP and then separating the hydrolysis 

product by thin layer chromatography. DNA binding assays can be carried 

out using electrophoretic shift assay with an oligonuleotide substrate labelled 

with γ[32P]ATP in the presence  and  absence  of ATP.  A  processivity  

assay  can  be  performed  by  using  a substrate that covers a range of sizes 

of duplex  DNA.  All   these  above   mentioned    assays   are   quantified by  
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phosphorimaging (Jenkinson and Chong, 2006). 

 

6.5 M. maripaludis S2 Mcms 

 

M. maripaludis S2 is unique among other archaea as it contains four Mcm 

homologues. It has been suggested that multiple Mcms are functional in M. 

maripaludis (Walters and Chong 2010) compared to rest of the archaea 

where one Mcm is sufficient for replication (McGeoch and Bell, 2008; Bae 

et al., 2009). All four MMP Mcms were co-purified successfully. MMP 

McmA and MMP McmC were purified efficiently in a single affinity 

purification step with his-tag. MMP McmB and MMP McmD were purified 

by GST affinity purification where a number of lower molecular weight 

proteins were present. To get rid of low molecular weight proteins, an 

additional step of anion exchange chromatography was carried out. The 

western blot was carried out on the elution fractions of each of the Mcms 

that confirmed the presence of each of the Mcms although the western blots 

were performed without any controls, which would have more reliably 

confirmed the results. In this study further investigation of the role of each 

Mcm in helicase assays was carried out. Helicase assays performed on MMP 

McmA showed that this protein has robust in vitro helicase activity 

suggesting this Mcm is functional. Helicase assays performed on MMP 

McmB also demonstrated this Mcm is functional too as this Mcm has also 

showed protein dependent robust helicase activity in vitro. Helicase assays 

were carried out on MMP McmC and MMP McmD under the same 

conditions that were used to demonstrate the helicase activities of MMP 

McmA and MMP McmB, but neither of these Mcms showed any in vitro 

helicase activity. As the concentration of MMP McmD was very low and 

also it was not as pure as were the other Mcms, a firm conclusion cannot be 

drawn on that basis and MMP McmD purification needs to be optimized 

before performing these assays. Although it was very surprising that MMP 

McmC did not show any helicase activity as it contain all the necessary 

motif require for helicase activity and it is quite similar to MMP McmA and 

MMP McmB in sequence. One explanation might be a requirement for other 

proteins or cofactors for MMP McmC to show helicase activity as shown 
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previously that Cdc45 and GINS are necessary for Drosophila Mcm2-7 

DNA helicase function (Moyer et al., 2006). 

Furthermore MMP McmA was subjected to helicase activity assays under 

various conditions to optimize the measured activity. The most interesting 

finding identified was presence of glutamate increase the helicase activity 

while the chloride decreases the helicase activity. This result is somewhat 

consistent with the previous work (Bochman and Schwacha, 2008) where 

they have shown the presence of anions completely abolishes helicase 

activity. The data presented in this study clearly show that even in the 

presence of high salt hMcm2-7 complex still showed some helicase activity. 

In previously published results post translationally modified Mcm2-7 would 

have acted differently in the presence of anionic salts as the complex was 

expressed from yeast (Bochman and Schwacha, 2008) while hMcm2-7 

complex used in this study was purified from E.coli. 

 

6.6 Potential DNA kinases in archaea 

 
Very little is known about the mechanisms that control DNA replication in 

archaea. Archaea lack recognizable homologues of cyclin dependent kinases, 

cyclins, or the kinase Cdc7. MMP0004 and Mj1073 are hypothetical proteins 

and bioinformatics has assigned them as RIO-type kinases. RIO-type kinases 

are family of conserved proteins present from archaea to eukarya and their 

biological substrate is still not known. Structural predictions of MMP0004 

and Mj1073 were obtained from different online data servers and the model 

is based on trying to fit the protein sequence to the most related structure in 

the database. They all came up with similar structure that was based on the 

most homologous known protein of A. fulgidus RIO2 Kinase in protein 

database (LaRonde-LeBlanc and Wlodawer 2004). The crystal structure of 

A. fulgidus RIO2 Kinase has been solved and the predicted ribbon structure 

of MMP0004 and Mj1073 is very similar to A. fulgidus RIO2 Kinase 

structure. Clustal alignment has shown that there are a few conserved 

residues specific to RIO kinase along with a specific ATP binding pocket 

and kinase domains in predicted structures. MMP0004 and Mj1073 were 
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successfully cloned and purified from E.coli. The mass spectrometry 

confirmed the identity of the MMMP0004 protein. Purified MMP0004 was 

tested as possible kinase acting on MMP McmA as it was identified as a 

interacting partner of MMP McmA (Chong lab unpublished data). Results 

from kinase assays showed that there was not any phosphorylation by 

MMP0004 on MMP McmA. The possible explanation for MMP0004 not 

acting as a kinase may be due to requirement of other proteins or cofactors in 

assay. MMP McmA might not be a substrate for MMP0004 or MMP0004 

might not be an active kinase though its sequence contains RIO type kinase 

motifs. As the purification of MMP0004 and Mj1073 has been successful 

and the purification concentrations of both proteins are very good, both of 

these proteins can be use in future in studies to ascertain their roles. 
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Appendix 1 

 
 
Abbreviations: 
 

A260, A280  Absorbance measured a 260 nm or 280 nm 
AAA+   ATPases Associated with various cellular Activities 
Amp   Ampicillin 
APS   Ammonium persulfate 
ARS   Autonomously replicating sequences 
ATM    Ataxia Telangiectasia Mutated 
ATP   Adenosine triphosphate 
ATPase  ATP hydrolysis (activity or domain) 
ATR   ATM and Rad3 related 
AX   Anion exchange 
BLAST   Basic Local Alignment Search Tool 
BSA   Bovine Serum Albumin 
CDC   Cell Division Cycle 
Cdt   Cyclin dependent transcript 
CDKs   Cyclin Dependent Kinases 
CV   Column Volumn 
DDKs   Dbf4 Dependent kinases 
DIG   Digoxigenin 
dNTPs   Deoxynucleoside triphosphates 
DTT   Dithiothreitol 
DUE   DNA Unwinding Element 
e   Expect score 
ECL   Enhance Chemiluminescence 
EDTA   Ethylenediaminetetraacetic Acid 
EF   Elution Fraction 
EGTA   Ethylene Glycol Tetraacetic Acid 
EM   Electron Microscopy 
FPLC   Fast Protein Liquid Chromatography 
FRET   Fluorescene resonance energy transfer 
GF   Gel Filteration 
GINS   Go, Ichi, Nii, San 
GST    Glutathione S-Transferase 
HEPES  (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 
HPLC   High Performance Liquid Chromatography 
H2i   Helix-2 insert 
his-tag   Histidine tag 
Hsp   Heat shock protein 
HTH   Helix Turn Helix 
IAA    Isoamyl Alcohol 
IBs   Inclusion Bodies 
IPTG   Isopropyl β-D-1-thiogalactopyranoside 
iTRAQ  Isobaric Tag for Relative and Absolute Quantitation 
Kd   Dissociation constant 
KDa   Killo Dalton 
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LB   Luria-Bertani medium 
LC-MS  Liquid Chromatography Mass Spectrometry 
LIC   Ligation Independent Cloning 
MALDI  Matrix-Assisted Laser Desorption/Ionization 
MASCOT  Multiple Alignment System developed by iCOT 
MCM   Minichromosme maintenance 
MCM3AP   Minichromocome Maintenance Acetylating Protein 
MES   2-(N-morpholino)ethanesulfonic acid 
Mj   Methanocaldococcus jannaschii 
MMP   Methanococcus maripaludi proteins 
M-OBP  Methanococcales Origin Binding Protein 
MS   Mass Spectrometry 
MS/MS  Tandem Mass Spectrometry 
MthMcm Methanothermobacter thermautotrophicus Mcm 

protein 
NCBI North Carolina Banking Institute 
Ni-NTA  Nickel-Nitrilotriacetic Acid 
OBP   Origin Binding Protein 
OD600   Optical Density measured at 600 nm 
ODNs   Oligodeoxynucleotides 
ORB   Origin Recognition Box 
ORC   Origin Recognition Complex 
ORF   Open Reading Frame 
Ori   Origin of DNA replication 
OriC   Bacterial origin of replication 
PDB   Protein database/Data Bank 
PFD   Process Flow Diagram 
PEG   Polyethylene Glycol 
PCR   Polymerase Chain Reaction 
PMSF   Phenylmethylsulphonyl Fluoride 
PNK   Polynucleotide Kinase 
PS1BH  Pre-sensor 1 beta-hairpin 
PVDF   Polyvinylidene Fluoride 
R-finger  Arginine finger 
RIO   Right Open Reading frame (yeast kinase gene) 
RPC   Replisome progression complex 
RNAi   RNA interference 
RT-PCR  Real-Time Polymerase Chain Reaction 
SDM   Site-Directed Mutagenesis 
SDS   Sodium Dodecyl Sulfate 
SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel 

Electrophoresis 
SEC   Size Exclusion Chromatography 
S-layer   Surface layer 
SOC   Super Optimal Broth “catabolite repression” 
Spec   Spectinomycin 
SSB   Single-strand binding protein 
SSC   Saline Sodium Citrate buffer 
Sso Mcm  Sulfolobus solfataricus Mcm 
SV40   Simian Virus 40 
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TAE   Tris-Acetate EDTA 
Tag   SV40 large tumour antigen 
TBE   Tris Boric acid EDTA 
TE   Tris EDTA 
TEAB   Triethylammonium Bicarbonate 
TEMED  Tetramethylethylenediamine 
TOF   Time Of Flight 
TP   Total Protein 
Trx   Thioredoxin 
UB   Unbound 
UV   Ultra Violet 
wHTH   winged Helix Turn Helix 
WT    Wild Type 
w/v   weight/volume 
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Appendix 2 

 

List of chapter 3 primers 

 

Table A1: Primer sequences for SDM of hMcm 2-7 genes 

Primer 

Name 

Direction 

of 

Primer 

Sequence 5’ →3’ of Primer 

SDM 

hMcm2 

Forward GATTCCGCCATGGTATCCTGGTACCCGGG 

SDM 

hMcm2 

Reverse  CCCGGGTACCAGGATACCATGGCGGAATC 

SDM 

hMcm3 

Forward CGGTACCCGCCATGAATTTCGGATCCTGGTACC 

SDM 

hMcm3 

Reverse  GGTACCAGGATCCGAAATTCATGGCGGGTACCG 

SDM 

hMcm4 

Forward GCCGGGGACGACATGAAATTCGGATCCTGG 

SDM 

hMcm4 

Reverse  CCAGGATCCGAATTTCATGTCGTCCCCGGC 

SDM 

hMcm5 

Forward CGAATCCCGACATGAATTTCGGATCCTGGTACC 

SDM 

hMcm5 

Reverse  GGTACCAGGATCCGAAATTCATGTCGGGATTCG 

SDM 

hMcm6 

Forward CCGCGAGGTCCATGAATTTCGGATCCTGGTACC 

SDM 

hMcm6 

Reverse  GGTACCAGGATCCGAAATTCATGGACCTCGCGG 

SDM 

hMcm7 

Forward CCTTCAGTGCCATGAATTTCGGATCCTGGTACC 

SDM 

hMcm7 

Reverse  GGTACCAGGATCCGAAATTCATGGCACTGAAGG 

Bold letters indicate start and stop codons. 
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Table A2: Primer sequences for LIC of hMcm 2-7 genes 

 

Primer 

Name 

Direction 

of Primer 

Sequence 5’ →3’ of Primer 

LIC 

hMcm2 

Forward GCGGGCCCGGCCTCCATGGCGGAATCAT

CGGAATCCTTCACC 

LIC 

hMcm2 

Reverse  GAGGAGAAGCCCGGTCAGAACTGCTGCA

GGATCATTTTCC 

LIC 

hMcm3 

Forward GCGGGCCCGGCCTTCATGGCGGGTACCG

TGGTGCTGGAC 

LIC 

hMcm3 

Reverse  GAGGAGAAGCCCGGTCAGATGAGGAAGA

TGATGCCCTCAG 

LIC 

hMcm4 

Forward GCGGGCCCGGCCTTCATGTCGTCCCCGGC

GTCGACCCC 

LIC 

hMcm4 

Reverse  GAGGAGAAGCCCGGTCAGAGCAAGCGCA

CGGTCTTCCC 

LIC 

hMcm5 

Forward GACGACGACAAGATGTCGGGATTCGACG

ATCCTGGC 

LIC 

hMcm5 

Reverse  CGCGGGCGGCCGTCACTTGAGGCGGTAG

AGAACCTTGC 

LIC 

hMcm6 

Forward GACGACGACAAGATGGACCTCGCGGCGG

CAGCGG  

LIC 

hMcm6 

Reverse  CGCGGGCGGCCGTCAATCTTCGAGCAAG

TAGTTAGGG 

LIC 

hMcm7 

Forward GACGACGACAAGATGGCACTGAAGGACT

ACGCGCTAG 

LIC 

hMcm7 

Reverse  CGCGGGCGGCCGTCAGACAAAAGTGATC

CGTGTCCGGG 

 

Bold letters indicate start and stop codons. 
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Table A3: Primer sequence of helicase substrate 

 

Primer 

Name 

Sequence 5’ →3’ of Primer 

HS2 (TTTG)8CCGACGTGCCAGGCCGACGCGTCCC 

HS1 GGGACGCGTCGGCCTGGCACGTCGGCCGCTGCGGCCA

GGCACCCGATGGC(GTTT)6 
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List of chapter 5 Primers 

 

Table A4: Primer sequences for cloning of MMP0004 and Mj1073 

 

Primer 

Name 

Direction of 

Primer 

Sequence 5’ →3’ of Primer 

MMP0004 Forward TTCAATGGATCCAATGGAAGATAACG

ACTGGAAATTG 

MMP0004 Reverse  AAACTCGAGTTAAATTTCGCTAGTTA

TATCTCCAATAAC 

Mj1073 Forward AGAGGATCCAATGAGACATCATGAG

TG 

Mj1073 Reverse  CCACTCGAGTTATTTAGTTATATACTC

AAAGATTTT 

 

 

Bold letters indicate start and stop codons, while underline letters indicate 

restrictions sites. 
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