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ABSTRACT 

Electric vehicles such as hybrid, plug-in hybrid and battery electric vehicles are a low-pollution 

low-carbon alternative to conventional petrol and diesel vehicles. They currently only 

represent a fraction of the vehicle fleet, but demand and supply is rapidly accelerating.  It is 

important to understand the changes in relative costs of electric vehicles, to inform scenarios 

of the future vehicle fleet mix and subsequent impacts on expected trends in emissions of 

carbon dioxide and air quality pollutants. This is of interest to policymakers worldwide who are 

under pressure to cut carbon emissions and improve urban air quality. 

Barriers to adoption of hybrid and electric vehicles still exist including the high initial cost. Total 

Cost of Ownership considers all vehicle costs to ascertain whether the cheaper running costs of 

electric vehicles can offset the higher initial cost. By modelling hybrid vehicle ownership costs 

from 2000 to 2015 in different geographic vehicle markets a link between cost and adoption is 

proven. This research found that ownership costs of hybrid and electric vehicles are falling 

compared to conventional vehicles, with costs already cheaper in the UK, USA and Japan with 

the current subsidies available, and findings that by 2030, subsidies could be phased out. 

This study uses three future fleet scenarios resulting from an extended generalized bass 

model. This model includes a fleet turnover unit with an age based scrappage curve to create 

scenarios of hybrid and electric vehicle uptake, which also includes the on-road fleet share of 

petrol and diesel vehicles by Euro standard. These scenarios characterize three different 

futures: Business as Usual, Battery Bonanza (where the current 2040 target of 100% hybrid 

and electric vehicle market share is met) and Diesel Persists, where battery price, fuel price 

and subsidy level vary depending upon market conditions.  

Hybrid and electric vehicles have lower operational CO2 and NOx emissions; however, most 

modelling studies to date are based on either single vehicle models or high-level estimates. 

This thesis assesses the impact the evolving fleet has on trends in tail-pipe emissions of CO2 

and NOX from 2015 to 2040 over a typical UK urban road network. A coupled microscopic 

traffic and instantaneous emission-modelling framework that can properly account for the 

impact of traffic congestion was used to assess vehicle emissions over 24-hours of a typical day 

for the three future vehicle fleet scenarios. This thesis concludes that the adoption of hybrid 

and electric vehicles could reduce network level emissions of CO2 and NOx by up to 31.6% and 

95% respectively by 2040, with greater effects during congested conditions.  
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CHAPTER 1: INTRODUCTION 
 

1.1 MOTIVATION 

Anthropogenic climate change poses a threat to the future of human civilisation. Already the 

consequences of global warming are evident with greater numbers of extreme weather 

events, rising sea levels and food security concerns (Intergovernmental Panel on Climate 

Change, 2016). Limiting average global surface temperature rise to only 2 degrees (on pre-

industrial levels) by the end of the 21st century, is regarded as an ambitious target. Even if 

warming is limited to this threshold, flora and fauna will be affected by the serious 

consequences of ocean acidification, permafrost melting, and increased periods of draught 

(Climate Analytics, 2018). Reducing greenhouse gas emissions is therefore imperative to 

stabilising the climate and minimising these dire consequences. 

Transport as a whole accounts for approximately 22% of global carbon dioxide emissions (IEA, 

2017), but represents a higher percentage in developed countries such as the UK (34%) and 

USA (28%) (Department for Business, Energy and Industrial Strategy, 2018; United States 

Environmental Protection Agency, 2018b). Transport sector carbon dioxide emissions are still 

growing; mainly due to the increasing ownership of vehicles in emerging economies such as 

China and India as well as the lack of improvement in the efficiency of both light and heavy 

duty vehicles in real driving conditions (International Council on Clean Transportation, 2016; 

International Council on Clean Transportation, 2017; United States Environmental Protection 

Agency, 2018a). Even though the size of the car fleet has stabilised in most developed 

countries, the transport sector is facing the challenge of decarbonisation. 

Many cities across the world are breaking air quality standards; ambient air pollution is 

estimated to cost more than 4.2 million lives a year (World Health Organisation, 2018). In 

much of the developed world, tailpipe emissions from road transport are the main source of 

this pollution; partly due to the dieselisation of the car fleet, and due to city topography 

(European Environment Agency, 2012). The effect of urban air pollution on human health is 

only starting to be understood, with links to asthma, neurological problems and cancer under 

investigation (Guarnier and Balmes, 2014; Hamra et al., 2014; Clifford et al., 2016). The EU has 

annual legally binding limits of Nitrogen dioxide (NO2) and Particulate Matter (PM10 and PM2.5); 

however, many major European cities such as London exceed these restrictions within a 

number of weeks (Carrington, 2018). To cut pollution levels, many cities are implementing 
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policies such as Ultra Low Emissions Zones, diesel vehicle bans and congestion charges (Rotaris 

et al., 2010; Moody and Tate, 2017; Möhner, 2018). 

Hybrid and electric vehicles present a low-carbon low-pollution alternative to conventional 

petrol and diesel vehicles (Hutchinson et al., 2014). Despite their advantages, these vehicle 

types face several challenges to large scale adoption: historically high upfront costs have 

presented the greatest barrier, but range anxiety for full Electric Vehicles linked to lack of 

publically available charging infrastructure, distrust of new technology, lack of model choice 

and supply constraints all contribute to their relatively low adoption rates in most vehicle 

markets (Coffman et al., 2017).  

With cost often quoted as the key barrier to hybrid and electric vehicle adoption, analysing 

ownership costs across multiple geographic regions enables an assessment of the link between 

ownership costs and adoption. Conclusions can therefore be drawn about future adoption 

scenarios, which can inform how the urban traffic mix may develop. Estimating vehicle 

emissions at a network level using a traffic microsimulation model coupled with a vehicle 

emissions model enables a high resolution estimation of how the changing vehicle fleet 

composition affects congested urban areas such as the Headingley network in Leeds.  

1.2 AIM 

The overall aim of this research is to assess the impact of different vehicle fleet scenarios 

stemming from changing ownership costs of hybrid and electric vehicles, on vehicle emissions 

for a representative urban traffic network. The background to this topic is discussed in depth 

(Chapter 2) followed by an examination of the economic case for hybrid and electric vehicles in 

the past (Chapter 3) and the future (Chapter 4), across different geographic regions, years, and 

ownership types. These cost estimates then feed through to inform a range of vehicle fleet 

turnover and evolution scenarios (Chapter 5). The impact of these different scenarios on the 

vehicle emissions over an urban network is estimated (Chapter 6). The thesis concludes with 

policy suggestions in the wider transport framework (Chapter 7). 

1.3 OBJECTIVES 

To address the overall aim, the research will focus on the following objectives: 

OB1. To assess how vehicle ownership costs for hybrid and electric vehicles have changed over 

time in different geographic regions. 

OB2. To project future vehicle ownership costs by size segment. 
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OB3. To develop future vehicle fleet scenarios to account for different adoption pathways. 

OB4. To assess the impact of different adoption scenarios on vehicle emissions and energy 

consumed over an illustrative area of the Leeds urban traffic network. 

1.4 METHODOLOGICAL APPROACH 

The first objective, OB1, will be achieved by building a Total Cost of Ownership model for UK, 

California and Japan, for the time period spanning 1997 to 2015. This model will consider 

hybrid, plug-in hybrid, battery electric, petrol, and diesel cars. Using a panel regression model, 

the link between cost and market share will be analysed. 

The second objective, OB2, will be achieved by projecting the Total Cost of Ownership model 

for the UK from 2015 to 2040. This projection will be split by vehicle size segment with 

additional analysis of historic ownership costs by ownership type. Three different scenarios will 

be considered to account for different external market conditions and changes in policy. 

Objective OB3 will be accomplished by developing a market diffusion model examining fleet 

composition under different future scenarios including vehicle Total Cost of Ownership. 

Objective OB4 will be addressed by coupling a microsimulation traffic model with an 

instantaneous vehicle emissions model to replicate variations in real driving behaviour of the 

current and future vehicle fleet scenarios. This coupled microsimulation traffic and emissions 

model will be used to estimate real-driving vehicle emissions over an urban road network.  

1.5 RESEARCH QUESTIONS 

The research questions given here illustrate the main questions this thesis will endeavour to 

answer using the methods outlined in section 1.4. 

R1. Are hybrid and electric vehicles cheaper now than when they were first introduced to the 

mass market? 

R2. How do vehicle ownership costs change over different size segments and how does this link 

to market share? 

R3. How might the evolution of vehicle costs influence the future road vehicle fleet? 

R4. How would a future vehicle fleet containing more hybrid and electric vehicles affect vehicle 

emissions at a road network scale? 
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1.6 THESIS CHAPTER OUTLINE 

Chapter 2 of the thesis  aims to describe the transport policy environment and technological 

space in which this thesis is situated. Providing background information regarding trends in 

vehicle purchasing such as electrification, dieselisation, and average kerbside weight increases, 

puts the aims and objectives of this research in context. In this chapter the current state of the 

EV market, factors affecting adoption of EVs, and EV policy incentives are discussed.   

Chapter 3 is an investigation of historic Total Cost of Ownership of hybrid and electric vehicles. 

The vehicle Total Cost of Ownership accounts for all consumer related vehicle costs and 

therefore this calculation can determine whether subsidies and lower running costs can offset 

the associated price premium. This section compares the Total Cost of Ownership of hybrid 

and electric vehicles across different vehicle markets and for an extensive timespan to 

ascertain whether ownership cost and market share are strongly linked.  

Chapter 4 is an investigation of historic and future Total Cost of Ownership of hybrid and 

electric vehicles for the UK vehicle market. The Total Cost of Ownership calculations in this 

chapter consider different vehicle size segments for different ownership types (private and 

company). The content of this chapter builds on work from the previous chapter where 

historic vehicle costs were compared across different regions but focused on the mid-sized 

vehicle segment and the private vehicle owner.  

Chapter 5 uses electrification of the private vehicle sector from 2015 to 2040 as a case study 

for investigating the limitations and potential of the market diffusion modelling approach. In 

Chapter 3 hybrid vehicle Total Cost of Ownership was found to be strongly correlated with 

market share, therefore the modelling in this chapter takes vehicle Total Cost of Ownership 

scenarios (from Chapter 4) into account when modelling scenarios of the composition of future 

vehicle registrations.  

Chapter 6 uses the Leeds road network as a case study to examine the effect of a changing 

future road fleet mix on network-level vehicle emissions. To do this, the vehicle adoption 

scenarios are used from chapter 5, along with a traffic survey of the Leeds network from 2015, 

to estimate the road traffic composition from 2015 to 2040. A microsimulation traffic model of 

Leeds is employed (Version 1 built by Wyatt (2017) in AIMSUN and improved upon for this 

work (Version 2) by extending this to a 24-hour model and using primary data collection to 

improve the vehicle dynamics in the model), to estimate realistic vehicle trajectories for all 

vehicle types. This input is collated into a second-by-second vehicle emissions model: the 
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‘Simulink H/EV Energy and Emissions Model’ (adapted from Richard Riley’s doctoral thesis 

(2016) to model Hybrid, Plug-in hybrid and Battery Electric Vehicle fuel consumption) and the 

PHEM model (developed by TU Graz (Hausberger, 2017)) is used for all other vehicles. This 

multi-stage methodology allows for analysis temporally over the 24-hour modelling period and 

spatially over the network with a breakdown of the contribution to emissions split by vehicle 

type and emissions Euro standard. It is important to understand the emissions contribution of 

vehicles over 24-hours as the annual average air quality standard of 40 µg.m-3 is currently 

exceeded in Leeds and many streets in urban centres across the UK. Finally, this analysis is 

benchmarked against the widely used Emissions Factors Toolkit model (EFT v8.0.1) (DEFRA, 

2018). 

Chapter 7 brings all the strands of the thesis together to describe some general conclusions in 

the wider context of the decarbonisation of the transport sector. In this chapter, the research 

questions outlined here will be answered, and the degree to which the aims and objectives are 

met will be discussed. The limitations of the research are discussed and extensions to the 

thesis are identified. The electrification of the fleet has the potential to provide several 

benefits; however, there is technological push and policy pull, which is needed for significant 

electrification of the vehicle fleet.  
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CHAPTER 2: THE PAST EXPERIENCES AND FUTURE 

OPPORTUNITIES FOR THE ROAD FLEET 

2.1 INTRODUCTION 

Since the 1990s, there have been several distinct trends in car registrations across Europe: 

these include electrification, dieselisation and average kerbside weight increases. Policy 

changes have pushed trends, but development of technology has provided encouragement. 

Overall, across Europe the number of new vehicle registrations has risen slowly from 163.6 

million in 1990 to 254.2 million in 2015 (Statista, 2018). There is still diversity in vehicle age, 

type and average vehicle size across different countries, with the composition of the vehicle 

fleet changing depending on country level policy (ICCT, 2017b). The number of hybrid and 

electric vehicles has risen slowly across Europe and the rest of the world, with some countries 

such as Norway and Japan leading the way in adoption of these vehicle types. There are still 

challenges in scaling up electric vehicle adoption to meet the future targets of 100% of new car 

and LCV registrations that several European countries such as the UK, France and Slovenia 

have announced (IEA, 2018a). 

This chapter aims to describe the transport policy environment and technological space in 

which this thesis is situated. Providing background information regarding trends in vehicle 

purchasing, policy changes on a national and international level puts the aims and objectives of 

this research (as detailed in Chapter 1) in context. There are several options to decarbonise the 

road fleet, but electrification is argued as an appealing avenue because of the opportunity to 

utilise the increasing share of renewable energy, the lower emissions of pollutants such as 

NOx, and the recent advances in battery technology. There are several key barriers to achieving 

100% market share of hybrid and electric vehicles including high initial capital cost, lack of 

accessibility to charging infrastructure, and range anxiety of fully electric vehicles, which are 

discussed in this chapter. Effectively addressing these barriers across different markets 

segments offers the opportunity to catalyse uptake of hybrid and electric vehicles across 

different vehicle markets. Finally, it is recognised that there are other future mobility sector 

revolutions on the horizon, such as autonomous vehicles and Mobility as a Service, which 

could change vehicle ownership models and transport demand. 

2.2 ELECTRIFICATION OF THE ROAD TRANSPORT 

 An Overview of Hybrid and Electric Vehicle Markets 2.2.1
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Hybrid and electric vehicle numbers are rising across the world (see Figure 2-1 for global sales 

of hybrid and electric vehicles in key vehicle markets), with over 12 million hybrid vehicles and 

3 million electric vehicles sold to date (Daily News, 2018; IEA, 2018a). The vehicle markets with 

the highest hybrid market share are Japan and California with over 20% and 4.6% respectively 

(Yang and Bandivadekar, 2017; Pyper, 2018) – these regions are investigated further in Chapter 

3. For electric vehicles, Norway and Sweden are global leaders as defined by high electric 

vehicle market share. China is the global leader in absolute numbers of battery electric vehicle 

sales, accounting for over half of all electric vehicles sold globally each year, however, market 

share is just over 2% (IEA, 2018a). 

Hybrid1 Electric Vehicles (HEVs) refers to non plug-in vehicles that have hybrid vehicle features. 

These include regenerative braking, engine stop-start and all electric drive, thereby increasing 

the efficiency of the vehicle especially at low speeds (Hutchinson et al., 2014). Although 

collectively referred to as hybrids, these vehicles are not all built using the same architecture. 

HEVs fall within two categories: series or parallel. In a series configuration, either the battery 

or the petrol/diesel engine provides power to the electric motor, whereas in a parallel 

configuration either source can provide mechanical power simultaneously. There is also a 

series/parallel fusion such as either the engine or electric motor can provide power 

independently or together (Hutchinson et al., 2014). The Toyota Prius – the hybrid vehicle 

which holds highest market share in the world - utilises Toyota’s Hybrid Synergy Drive (HSD) 

system which is categorised as a parallel hybrid (Yang and Bandivadekar, 2017; Pyper, 2018). 

Note that over 88% of new hybrid vehicles sold on the US market in 2017 use the HSD system 

(WardsAuto, 2018). As Toyota cars dominate the market this thesis uses the Prius as the 

representative HEV for the market in the coming chapters. 

The Toyota Prius was the first hybrid to be developed, it was released in 1997 exclusively to 

the Japanese market with a Manufacturer Suggested Retail Price (MSRP) significantly lower 

than production cost (Pinkse et al., 2014). Toyota used this first limited release as an 

opportunity for further Prius on-road testing. Despite initial problems with the battery, the 

vehicle was released in other markets in the year 2000 (Sallee, 2011). The Toyota Prius was 

initially only manufactured in Japan, with production opening in China in 2005 and Thailand in 

2010. To counteract consumer doubts over reliability of battery technology, Toyota offered a 

five year mechanical warranty with options to lease rather than purchase the vehicle outright 

(Toyota GB, 2018). By 2008 cumulative global Prius sales passed the one million mark, and by  

                                                           
1 Note that the same definition of hybrids e.g. non plug-in vehicles using regenerative braking and a 
larger battery for increased efficiency, will be used throughout this thesis.   
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Figure 2-1: Market share of battery electric vehicles (top), plug-in hybrid electric vehicles 

(middle) and hybrid electric vehicles (bottom) 2013-2017 for several key countries (note data 

was unavailable for the complete HEV time series, specifically China (2013-2017), France 

(2017), Germany (2017), Japan (2016 and 2017), The Netherlands (2017), Norway (2017) and 

Sweden (2017) ) (IHS Markit, 2017; ICCT, 2017b; Society of Motor Manufacturers and Traders, 

2017; IEA, 2018a).  
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2017 Toyota hybrid vehicles had exceeded 10 million cumulative sales (Toyota GB, 2018). In 

the last few years, Toyota has expanded the HSD system into other vehicles, such as the Auris, 

Yaris and Aqua. With a wide choice of Toyota hybrids, this could account for declining Prius 

market share in Japan. Since the first Toyota Prius model was released, Toyota have 

continuously advanced the Prius such that real world vehicle fuel efficiency has increased by 

25% (Spritmoniter, 2018).  

Hybrid vehicle market share has taken around 15 years to become established (see Fig 2-1 for 

market share of hybrid and electric vehicles in different vehicle markets). This is partly because 

of certain distinct barriers to adoption of this new technology that include lack of consumer 

confidence in this novel vehicle technology and the increased capital cost (Sallee, 2011). The 

early EV market has learnt some lessons from the initial deployment of hybrids: for example 

extended warranties are commonplace in the EV market (Kia, Hyundai and Tesla all offer 

powertrain and battery coverage for more than 8 years (Gorzelany, 2019)), and the profit 

margins on new EVs are considerably lower than ICEVs (Wu et al., 2015). However, it is difficult 

to ascertain whether the EV market will grow quicker than the hybrid vehicle market because 

there are additional challenges of lower vehicle range and requirements in changes in driver 

behaviour for vehicle charging. These additional barriers make it challenging to predict 

whether the EV market will grow more quickly than the HEV market has done. 

Electric Vehicles (EVs) refer collectively to both Plug-in Hybrid Electric Vehicles (PHEV) and 

Battery Electric Vehicles (BEV)2. In this thesis Range Extended Electric Vehicles (REEV) will be 

categorised under PHEV for simplicity, these vehicles (such as the Chevrolet Volt) are officially 

series PHEVs as the petrol/diesel engine can only charge the battery rather than power the 

wheels directly, REEVs only represent a small percentage of the EV market. EVs were released 

onto the mass market circa 2010, much later than HEVs, but the number of models available 

has expanded as market share has grown. In 2011 there were 6 BEV models and 2 PHEV 

models available in the USA, in 2017 this had expanded to 25 BEV models and 26 PHEV models 

as other manufacturers diversified into electric mobility (Richter, 2018). Tesla was founded in 

2003, and contrary to other BEV manufacturers (such as BMW, Mitsubishi and Nissan), 

specialises in only manufacturing and retailing BEVs (Tesla, 2018a). Tesla revolutionised the EV 

market, making EVs a desirable commodity as opposed to the small unfashionable vehicles 

(such as the Renault Twizzy) available previously. Additionally, their intellectual property is 

open source, thereby recognising that by sharing knowledge the industry could advance 

                                                           
2 This is the definition adopted throughout this thesis, although it is not uniformly agreed upon 
throughout the literature. The term PEVs e.g. Plug-in Electric Vehicles, will not be used in this thesis, as it 
is deemed the same definition as that adopted for EVs. 
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forward as a whole. In many markets, such as the USA, Tesla is the bestselling BEV marque 

(Shahan, 2018). In the UK, as in Norway, the Nissan Leaf is the most popular BEV with over 

23 000 registrations between 2010 and 2018 (this is the key reason the Nissan Leaf is deemed 

representative of the BEV market in the latter chapters of this thesis), whereas the Mitsubishi 

Outlander is the most popular PHEV with 34 800 total UK registrations (Kane, 2018). Globally, 

BEVs account for two thirds of EV sales, mainly due to the high numbers deployed in China 

(IEA, 2018a). 

 Policy Push: Incentives for Hybrid and Electric Vehicle Purchase 2.2.2

Historically, there has been policy push and technological pull that has enabled hybrid and 

electric vehicle numbers to grow in vehicle markets across the world. Incentives to persuade 

consumers to adopt a more sustainable option fall into two distinct categories, financial and 

non-financial, and can be executed at either an international, national, or a city-level basis (see 

Table 2-1 for examples of incentives introduced to stimulate EV adoption, the financial 

incentives in major vehicle markets will be discussed in detail in Chapter 3.) By examining 

incentives that have been introduced in different vehicle markets and assessing their effect on 

EV adoption, we can inform how fiscal incentives can be optimally designed. 

Financial incentives for HEVs are limited, and mainly include reduced vehicle taxes due to 

widespread use of taxation systems graduated by rated CO2 of the vehicle (e.g. the 

manufacturer tested CO2 figure published in g CO2/km). In some regions such as California, 

HEVs had access to Higher Occupancy Vehicle (HOV) lanes when market share was low 

(Shewmake and Jarvis, 2014) - as discussed further in Chapter 3. Financial incentives for EVs 

exist across the world and research has shown that fiscal incentives increase adoption (Jenn et 

al., 2013; Bjerkan, K.Y., Nørbech, T.E., Nordtømme, 2016; Jenn et al., 2018) - in Chapter 3 the 

link between ownership costs and adoption will be explored further to build upon this body of 

literature. The initial capital cost of a hybrid or electric vehicle is typically greater than a 

conventional vehicle. By offering a fiscal incentive such as reduced registration tax or a direct 

subsidy on purchase cost of new vehicles, this barrier can be reduced (as explored in Chapter 3 

and 4). For example, electric cars in Norway are exempt from acquisition tax (approximately 

£9000), and the 25% VAT usually payable on car purchases (Figenbaum et al., 2015). Norway is 

the most generous country in the world for EV subsidies, but with high vehicle taxes it is viable 

to reduce taxes for EV adopters rather than increase them for petrol/diesel ICEV owners. In 

other countries, it is not deemed politically viable to increase taxes for petrol/diesel ICEVs to 

incentivise adoption of low emission vehicles.  
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Table 2-1: Types of EV incentives. This table is not exhaustive, but illustrates the types of 

policies available and the wide geographic spread, indicating that countries across the globe 

are committing to electrification of the transport fleet. (Zhang et al., 2014; Van Der Steen et al., 

2015; Zhou, 2017; Van den Steen, 2018; Perkowski, 2018; Cokayne, 2018). 

Category Type of Incentive Level Examples of introduction 

Financial Purchase rebate National UK, USA, China, India, 
Canada 

 Registration tax 
exemption/reduced rates 

National Belgium, Denmark, Finland, 
Ireland 

 Annual tax exemption National UK, Germany, The 
Netherlands 

 Purchases tax exemption National Norway, Colombia, 
Uruguay, and Ecuador 

 Parking charge exemption City Dundee, London, Oslo 

 Free charging City Dundee 

 Exemption/Reduction 
from import taxes 

National Ecuador, Uruguay, Costa 
Rica and Colombia, South 
Africa 

 Reduced electricity tariffs 
for charging EVs 

National/ City Mexico and Santiago (Chili) 

Non-financial High Occupancy Vehicle 
lane access, Bus lane 
access  

State/ City California, Norway 

 Low Emission Zone access City London 

 Mandating minimum 
percentage of parking 
spaces for EVs in public 
parking lots 

National/ City Mexico, and recently in 
Guayaquil (Ecuador) 

 Obliging new 
construction sites, public 
buildings and workplaces 
to implement charging 
points 

National/ City London 

 Manufacturer  fleet ave. 
CO2 emission limit 

International EU 
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Hybrid and electric vehicles are more expensive because of the high capacity battery and the 

novel powertrain, but annual running costs are much lower (as discussed in Chapter 3 and 4). 

A number of studies have found this to factor into purchase decisions (Egbue and Long, 2012; 

Burgess et al., 2013; Carley et al., 2013; Hoen and Koetse, 2014; Barth et al., 2015; Bjerkan et 

al., 2016). However, it is understood that consumers are not entirely economically rational in 

their decision behaviours (Turrentine and Kurani, 2007; Hardman and Tal, 2016). In fact, fiscal 

incentives have been found to increase purchases of EVs despite consumers not undertaking 

TCO calculations themselves to ascertain their savings (Vetter, 2016). Therefore, the size of 

these fiscal incentives has been found not to be directly proportional to the effect on rates of 

adoption. A review of the studies investigating the effectiveness of fiscal incentives on the 

adoption of electric vehicles by Hardman et al. (2017) showed that 32 of the 35 studies 

published on this topic have positive results. The fiscal incentives considered in the studies 

range from tax exemptions, purchase price reductions, and tax credits across different 

countries such as the USA, Norway, Canada and Sweden. Despite the link found between fiscal 

incentives and adoption of EVs, there is still criticism in the literature that some of these 

incentives, specifically tax rebates, are structured inefficiently or not communicated 

sufficiently. Evidence shows that rebates are more effective than tax credits (Hardman et al., 

2017). This is likely to result from the phenomenon of ‘hyperbolic discounting’ where 

consumers value smaller financial incentives sooner than larger rewards later. The literature 

indicates that point of sale grants and VAT exemptions for BEVs are the most effective fiscal 

incentives (Yang et al., 2016). 

Incentives have been found to incentivise EV purchases in both the private and company car 

market (Nilsson and Nykvist, 2016). The literature indicates that in the business car market 

adoption of EVs tends to be more economically rational (Skippon and Chappell, 2019). Vehicle 

selection decisions have been found to be based upon operational suitability and costs of 

ownership (Mau and Woisetschläger, 2018). Other factors which have been found to influence 

fleet purchasing decisions include organisational innovativeness, expectation of environmental 

benefits and positive effect on employee motivation (Sierzchula, 2014; Globisch et al., 2018). 

Discount rates are used to account for the present value on costs and benefits that will occur 

later. There are two key types of discount rates: private and social. Private discount rates are 

used to account for preferences such as time, risk and pro-environmental preferences;  

predictable (ir)rational behaviour, (e.g. bounded rationality and behavioural biases); and 

external barriers to energy efficiency such as lack of information or capital (Schleich et al., 

2016). Private discount rates for vehicle purchases reported in the literature range from 1.9% 
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to 11.6% for new car purchases (Meghan et al., 2016). With a large number of factors affecting 

private discount rates, Schleich et al (2016) has identified that this is an area that needs more 

research. Social discount rates on the other hand consider the importance of the welfare of 

future generations compared to the present (Nordhaus, 2006). Social discount rates are 

usually lower than private discount rates  (Schleich et al., 2016). Essentially both individual and 

social discount rates are built up from individual time preference based on factors such as 

growth in living standards, catastrophic risk and pure time preference that vary between 

individuals. A factor in all discount rate setting is opportunity cost – the comparison with 

rates of return available elsewhere.  

The lower operational cost of EVs is likely to produce a behavioural rebound effect (Whitehead 

et al., 2015). The direct rebound effect translates to additional annual mileage of the EV driver, 

whereas the indirect rebound effect takes the form of additional expenditures due to the 

annual financial saving and is more difficult to estimate. Whitehead et al (2015) found that the 

rebound effect on annual mileage for EV adopters is up to 12.2%. Holtsmark and Skonhoft 

(2014) found that EV drivers drive more miles at the expense of public transport and cycling. 

Similarly, Hultkratz and Liu (2012) found that free ‘green car’ access to the Swedish toll road 

increased traffic volumes. The rebound effect would mitigate some of the cost benefits of 

switching to an EV. 

A large body of literature examines the key motivations and factors affecting adoption of EVs 

(see Li et al. (2017) for a systematic review of the literature concerning the motivations and 

factors behind EV adoption). The results from these numerous studies are largely based on 

stated preference or revealed preference surveys. Several themes emerge from these studies, 

indicating that in the purchase of a hybrid or electric vehicle many other factors come into 

play, these can largely be categorised into three categories. Demographic factors such as age, 

gender and education have been found to affect EV adoption (Hidrue et al., 2011; Egbue and 

Long, 2012; Bjerkan, K.Y., Nørbech, T.E., Nordtømme, 2016). Situational factors such as driving 

range, cost, and charging infrastructure concerns also have been found to play a role in 

whether individuals choose an EV (Hackbarth and Madlener, 2016; Barth, M., Jugert, P., 

Fritsche, 2016; Adepetu and Keshav, 2017). Psychological factors such as pro-

environmentalism, technology oriented lifestyle and subjective social norms also affect this 

decision (Madlener, 2012; Axsen et al., 2012; Axsen et al., 2013). Many potential consumers 

are not aware of the benefits of switching to HEVs or EVs, therefore information programs 

have been found to be important for stimulating adoption (Krause et al., 2013; Van Der Steen 
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et al., 2015; Kester et al., 2018). Although this thesis focuses on vehicle ownership costs, it is 

important to acknowledge these other factors that have been identified in the literature. 

The factors that affect the decision to purchase an EV are unique to distinct groups of people, 

therefore when investigating adoption of EVs, it is also important to consider market 

segmentation. For example, it has been found that incentives are not needed for high end 

BEVs but are more effective for low end BEVs (Hardman et al., 2017). Research has found that 

different segments of the market might be attracted or repelled from EVs for different 

reasons. For example, Anable et al. (2016) found that there are eight segments which are 

distinguished by characteristics such as the degree to which EVs are viewed as being consistent 

with personal identity, the level of anxiety concerning the operation of EVs, the perceived 

difficulty in EV recharging, the willingness to pay to reduce the environmental damage of car 

use and the symbolic motivations they assign to EV ownership. Other studies such as Axsen et 

al. (2015) provide perspectives of consumer based on preference and lifestyle heterogeneity, 

indicating that the segment most enthusiastic about EV adoption tends to display strong 

environmental awareness coupled with a high enthusiasm for the technology. Nayum et al. 

(2016) indicates that EV adopters are particularly distinct from the mainstream market and 

tend to represent individuals who are highly educated with very high household incomes. 

Market segmentation is also important when considering the effect of vehicle leasing on 

adoption of EVs. Liao et al. (2018) found by using a stated preference survey that at an 

aggregate level vehicle leasing does not affect EV adoption. However, by considering the 

vehicle market in five classes based on preference profiles, 13% of respondents changed their 

preference towards EVs, with approximately half indicating a positive shift and half with a 

negative shift.  

 Technology Pull: Battery Technology Development 2.2.3

Battery technology underpins how EVs perform; the cost, performance, and availability of 

batteries is important for the future electrification of the transport sector. Most conventional 

car batteries are currently lead-acid. Lead acid batteries are a cheaper battery technology 

mainly due to market maturity, but their characteristics are not sufficient for use in EVs. In 

many 2-wheelers, due to a short range and light body, lead acid batteries are still used to 

minimise cost. 

At present, Lithium Ion Batteries are the desirable technology for EVs because of high energy 

density, long lifespan, rechargability and low rates of self-discharge. These attributes have led 

to nearly all high-performance EVs utilising Lithium Ion Batteries (Wang and Wu, 2017). For 
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EVs, Lithium Ion Battery chemistry is anticipated to be dominant in the medium term, with 

potential development of Lithium Air, Lithium Sulphur and solid-state Lithium batteries in the 

long term. Such battery technologies could offer higher density, greater capacities, and lower 

combustion risks with  greater charge cycle life but they are still in the development stages 

(Vandervell, 2017; IEA, 2018a; Lambert, 2018a).  

Current battery capacities for cars range from 40 kWh for the Nissan Leaf (note this recently 

increased in September 2018 from 24 kWh), to 100 kWh for the Tesla Model X (Tesla, 2018a; 

Nissan, 2018)3. The cost of Lithium batteries has fallen from an average battery pack price of 

$1,000/kWh in 2010 to $209/kWh in 2017. Average energy density of EV batteries is also 

improving at around 5-7% per year (BNEF, 2018).  

The cost reduction of Lithium Ion EV batteries has been found to follow a learning curve 

(Goldie-Scott, 2019). That is to say, that with each doubling of cumulative manufacture the 

cost of the battery pack reduces by a certain percentage. This results in large price reductions 

in the early stages of deployment, which diminishes as the market matures. This learning can 

be attributed to improvements in three key areas: first, gains in the production process from 

worker productivity and overall manager experience; the second to changes in the product 

itself such as re-design, standardisation and innovation of the technology; the third to changes 

in input prices for materials and labour (Rubin et al., 2015; Samadi, 2018). 

Learning rates have been used across different technologies and industries (Yeh and Rubin, 

2012). Most learning rates in the literature employ a one-factor approach, in this case only one 

independent variable (usually the installed capacity or cumulative manufactured capacity) is 

used to explain cost changes over time (Samadi, 2018). A very small number use a two-factor 

approach factoring in other parameters such as R&D spending, economies of scale and other 

public policies (Samadi, 2018). Although the multi-factor approach is more appealing in 

calculating the ‘true’ learning rate, these learning rates are difficult to calculate due to data 

limitations (Rubin et al., 2015; Samadi, 2018). The estimates of learning rates for Lithium-Ion 

EV battery packs vary from 6% to 18% (Nykvist and Nilsson, 2015; Schmidt et al., 2017). 

Comparing this to other industries, estimates for solar PV range from 8% to 17%, onshore wind 

from -3% to 12% and offshore wind from -5% to 10% (Rubin et al., 2015; Samadi, 2018). From 

this, the learning rates for Lithium-Ion EV battery packs are currently most comparable to solar 

PV. 

                                                           
3 Rivian have announced they are manufacturing a 180 kWh Electric SUV that will shortly be available 
(see https://products.rivian.com/suv/). 
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An extensive literature examines the future of EV battery costs. Many of these studies consider 

the benchmark of $100/kWh. Tesla estimates that this could be reached for their battery packs 

in 2020 (Holland, 2018). McKinsey (2018) uses market expertise to estimate this to be reached 

between 2020 and 2030. Beckermans et al. (2017) uses combine process-based cost modelling 

with learning curves finding that the 100$/kWh sales barrier will be reached between 2020 

and 2025. Nykvist et al. (2019) analyse historic costs to find that by combining the ‘best’ cost 

estimates and the average learning rate the benchmark will be reached in 2025. The battery 

cost projections from BNEF (Bloomberg New Energy Finance), the industry authority that 

produces the annual battery price survey, estimate that using a learning rate of 18% the 

100$/kWh will be reached before 2024 (Goldie-Scott, 2019). 

As the demand for EVs grows, the manufacturing capacity of batteries must grow with it. In the 

last few years, customers wishing to make the transition to electric have had issues with wait 

times due to demand outpacing supply (Manthey, 2018). To remedy this, EV manufacturers 

such as Tesla have built their own “Gigafactories” to ensure supply issues of batteries and 

electric motors do not disrupt vehicle sales (Tesla, 2014).  

At present, there are relatively few batteries for second life applications because there is a 

delay of over a decade between vehicle deployment and scrappage. There is discussion over 

whether EV batteries could have a second life as electricity grid storage especially in the future 

when there is a plethora of cheap spent batteries. However, it is unlikely that large numbers of 

non-uniform batteries consisting of out-dated battery technology would present an 

opportunity rather than a risk for this application. Some manufacturers are using spent 

batteries to balance power demand on charging hubs (ZapMap, 2018). In these situations, the 

power draw for rapid chargers (≈120 kW) could present a challenge for the grid in certain areas 

(e.g. rural motorway service stations). Therefore, employing a second life battery to stabilise 

this load when more than one vehicle plugs in to charge can be a cheap and beneficial option 

compared to grid expansion. 

Once the battery is spent, ideally all the battery materials would be recycled such that the 

constituent parts would be recoverable at a low energy and environmental cost. Recycling of 

Lithium Ion Batteries is in its infancy as EV sales are ramping up and very few EVs have reached 

the end of their useful life. The problem of EV battery recycling is often cited as one of the key 

sustainability issues surrounding the electrification of the transport sector (Gaines, 2018).  

This thesis focuses on the car market, however, there are opportunities for larger vehicles such 

as buses and trucks to electrify. The weight of the higher capacity batteries in these larger 
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vehicles is much greater than a traditional drivetrain, to counter this, materials such as 

aluminium and carbon fibre are often used in the body. In Europe the ZeEUS project (Zero 

Emission Urban Bus System) has deployed electric bus demonstration projects across ten cities 

but at present over 80% of electric buses deployed worldwide are in China (IEA, 2018a). The 

bestselling urban bus has a battery capacity of around 330 kWh for a range of approximately 

250 km; this vehicle is manufactured by the Chinese company BYD (IEA, 2018a). Tesla and DAF 

are amongst the latest companies to announce plans to start selling electric Heavy Goods 

Vehicles (HGVs) (Tesla, 2018b; DAF, 2018). HGVs face the additional challenge of needing to 

transport heavy loads over long distances. There are substantial air quality benefits within an 

urban setting of deploying electric buses and delivery trucks. As batteries fall in price and 

increase in energy density, the applications in larger vehicles will become more prevalent. 

 Charging Infrastructure: Catalyst or Magnet? 2.2.4

Range anxiety is closely linked to lack of accessibility to public charging infrastructure 

(Sierzchula et al., 2014). EV charging infrastructure has three main characteristics: level – e.g. 

power output, type – e.g. socket and connector type, and mode – e.g. communication protocol 

(see Table 2-2 for details of charging characteristics by type). At present EV charging is not 

standardised across the world. There are three different types of DC fast charger: Tesla 

supercharger, CHAdeMo (CHArge de Move) dominant in Japan and the USA – note that the 

Tesla standard is compatible with CHAdeMO, and CCS (Combined Charging System) in Europe. 

It is anticipated that DC fast charging standards will not be standardised in the coming years 

potentially impeding electric vehicle market growth (fleetcarma, 2018). 

Different levels of charging infrastructure have a rated power that correlates to the time taken 

to recharge the EV battery: this broadly falls into three categories: slow, fast, and rapid (see 

Table 2.2). It is anticipated that despite advances in charging speed, EVs will primarily be 

charged overnight from slow chargers with additional top-up charging either at work or during 

a long journey (IEA, 2018a). This could create the opportunity for a smart grid, where EVs are 

charged according to times when there is surplus energy on the grid. Vehicle to Grid (V2G) is a 

possible extension of this smart grid opportunity, where EVs could be used as demand side 

management for additional grid storage when there is excess renewable energy supply or 

drained when there is a demand surge (Liu et al., 2013). This also raises questions surrounding 

the accessibility of charging for households that do not have their own private land. 

Coverage of public charging infrastructure is growing across the world. It is estimated that in 

2017 public charge points grew from 2.3 to 3.5 million. In the UK this number expanded from  
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Table 2-2: Charging speed table (IEA, 2018a; Lily, 2018). 

Category Level Power Approximate 
Time (to 
charge to 80%) 

Connectors 

Slow 

 

Level 1 ≤ 3.7 kW (AC) 6-12 hrs 3-Pin: 3 kW (AC) 

Type 1: 3 kW (AC) 

Type 2: 3 kW (AC) 

Commando: 3 kW (AC) 

Fast Level 2 > 3.7 kW 

and ≤ 22 

kW (AC) 

3-5 hrs Type 2: 7-22 kW (AC) 

Type 1: 7 kW (AC) 

Commando: 7-22 kW (AC) 

Rapid Level 3 > 22 kW and ≤ 
43.5 kW (AC) 

< 200 kW (DC) 

 

20-40 mins CHAdeMO: 50 kW (DC) 

CCS: 50 kW (DC) 

Type 2: 43 kW (AC) 

Tesla Type 2: 120 kW (DC) 

 

10 152 to 14 800 (Zap-Map, 2018); where nearly two thirds of these public charge points are 

slow chargers. In Norway – the country with the highest percentage of EVs in the road fleet, 

there are comparatively few public EV chargers available (0.05 public chargers per EV in 

Norway compared to 0.1 for the UK) (IEA, 2018a). This means we can draw the conclusion that 

a large network of public EV charging points is not strictly a precursor for high EV market 

share.  

The introduction of greater capacity batteries could stem issues of range anxiety and reduce 

pressure on public charge points. Higher capacity batteries would give vehicles a greater range 

but would increase the initial cost. As battery density increases and costs fall, EV range will 

increase such that opportunity charging may become less needed. The introduction of battery 

swapping could negate the need for public charging infrastructure. If EV owners were able to 

switch their depleted battery for a fully charged one, this could solve issues of long charging 

times and the need for public charging infrastructure. At present there are several barriers to 

this solution, namely that this would require standardisation across battery types and a high 

penetration of EVs in the fleet. EV batteries are not designed to be easily removed; this would 

need to be a priority for EV manufacturers who would need to tailor their vehicles accordingly. 
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Battery factories are already facing challenges scaling up to meet demand, this option would 

require surplus batteries. Realistically, this is not an option in the short term and by the time 

this is viable it is highly likely that charging infrastructure would have evolved to meet EV 

needs.  

2.3 ELECTRIFICATION IN THE CONTEXT OF EUROPEAN VEHICLE POLICY 

AND THE MARKET CONDITIONS 

 Vehicle Testing: Rated CO2, Policy and Legislation 2.3.1

Across Europe, every country has its own laws regarding vehicle taxation (ACEA, 2018). The EU 

has overarching legislation encompassing vehicle testing and urban air pollution that 

underpins both national decisions on vehicle taxation and city level policies on transport. In 

many countries across Europe, vehicle taxes are graduated by the rated CO2 of the vehicle (e.g. 

the manufacturer tested CO2 figure published in g CO2/km) (ACEA, 2018), therefore there has 

been increasing pressure on manufacturers to reduce rated CO2 or risk losing market share 

(Transport&Environment, 2014). As a result, rated CO2 emissions of new registrations have 

fallen by over 25% since 2000 (Mock et al., 2017). However, the difference between on-road 

testing and rated CO2 has increased from around 5% to 40% (Mock et al., 2017). This 

discrepancy has been a result of manufacturers exploiting loopholes in vehicle testing 

procedure such as reducing rolling resistance, minimising vehicle weight, and increasing the 

aerodynamics of the vehicle (Transport&Environment, 2014). Until recently, manufacturers in 

the EU have assessed cars for their CO2 emissions on the New European Drive Cycle (NEDC). 

The NEDC test cycle was widely criticised for not adequately representing real driving 

behaviour, and therefore when vehicle manufacturers optimise their engine map for this drive 

cycle they are not optimising their engines for real world driving (Stewart et al., 2015). Because 

of this increasing discrepancy, especially with diesel vehicles (Cames and Helmers, 2013), new 

European vehicle testing legislation was passed in 2015. The key changes include the 

introduction of a new vehicle test cycle – the World Light Duty Testing Procedure (WLTP) drive 

cycle from September 2018 – designed to be representative of real driving behaviour, and a 

Real Driving Emissions test from September 2019 (European Commission, 2018b).  

The introduction of the WLTP test cycle has already affected manufacturers who rely on the 

company car market. Low emissions vehicles such as the Mitsubishi Outlander have been 

reassessed with higher CO2 emissions on the WLTP drive cycle than the NEDC drive cycle. For 

this reason manufacturers are redesigning these vehicles with slightly larger batteries (13.8 
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kWh instead of 12 kWh in the case of the Mitsubishi Outlander) so that the rated CO2 falls 

below 50 g/km – the cut off point for lower company car tax rates (Autovista Group, 2018) (see 

Appendix 4-B for company car tax rates in the UK). 

From 2000 to 2015, average kerbside weight of new car registrations increased by 10%, this in 

turn affects vehicle fuel economy (ICCT, 2017b). The key reasons for this result from the body 

requirements for crash testing approval as well as the increasing electrification of accessories 

in the vehicle that would have historically been manually adjusted (e.g. windows and seats). 

New materials could be used to reduce body weight such as carbon fibre and magnesium, but 

this change would increase vehicle costs (Lewis et al., 2014). Additionally, if policy were ever 

introduced to account for cradle to grave vehicle emissions (as opposed to purely tailpipe 

emissions), such a shift would be untenable as these materials have higher embodied 

emissions (Schmidt et al., 2004). 

Manufacturer fleet average emissions were legislated for in 2014 (European Commission, 

2018d). This law mandates that the average rated CO2 of all cars sold by a manufacturer (of a 

size greater than annual production of more than 300 000 vehicles per year) must be below 

95 g CO2/km by 2020 (European Commission, 2018d). There are certain caveats to this law, 

such as every BEV sold counts as five BEVs sold, referred to as super credits. This legislation 

reduces the incentive to sell low carbon vehicles, sanctioning OEMs to continue to sell their 

less fuel efficient luxury vehicles. 

Vehicle emission Euro standards were introduced in 1995 to curb tailpipe pollutant emissions. 

For each of the progressing Euro standards (see Table 2-3 for details of vehicle Euro 

standards), a smaller ceiling was placed on the maximum amount of each specific tailpipe 

pollutants (e.g. NOx, PM etc) that could be emitted over the standard NEDC test cycle. 

Different Euro standard limits apply to cars, LCVs, buses and HGVs split further by weight class 

(Dephi, 2017). The increasingly stringent limits have been designed to solve the problems of 

urban air pollution across European cities, especially from diesel vehicles - the highest polluter 

of harmful emissions such as NOx (Moody and Tate, 2017) – note that network level vehicle 

emissions are investigated in Chapter 6 of this thesis.  

In diesel vehicles, NOx is produced when the air-fuel mixture is combusted in the engine. The 

amount of NOx varies with peak combustion temperature: the higher the temperature the 

greater the rate of NOx formation. Higher temperatures occur with higher engine loads, 

therefore by lowering the combustion temperature and using after-treatment devices, NOx can 

be minimised. Most modern diesel vehicles utilise exhaust-gas recirculation (EGR) systems into  
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Table 2-3: Limits for different pollutants over all Euro standards (Note petrol standard/diesel standard when two values given) (Dephi, 2017). 

 EU1 EU2 EU3 EU4 EU5a EU5b EU6b EU6c/dT/d  

Type Approval July 92 Jan 96 Jan 00 Jan 05 - Sep 11 Sep 14 -/Sep17/Jan 20 

New vehicles Jan 93 Jan 97 Jan 01 Jan 06 - Jan 13 Sep 15 Sep 18/Sep 19/Jan21 

THC (mg/km) - - 210/- 100/- 100 100 100 100 

NMHC (mg/km) - - - - 68/- 68/- 68/- 68/- 

NOx (mg/km) - - 150/500 80/250 60/180 60/180 60/80 60/80 

CO (mg/km)     1000 1000 1000 1000 

HC+ NOx 

(mg/km) 

970 500/700 -/560 -/300 -/230 -/230 -/170 -/170 

PM (mg/km) -/140 -/80 -/50 -/25 5.0 4.5 4.5 4.5 

PN# (e11 

Nb/km) 

- - - - - - 6.0 6.0 
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their vehicle design. EGR systems recycle a portion of the exhaust gas back into the 

combustion chamber; this reduces the oxygen content and increases the water vapour content 

of the combustion mixture reducing peak combustion temperature. Two methods are used in 

diesel vehicles to control NOx after the exhaust has exited the engine. A lean NOx trap (LNT) 

uses a catalyst to store NOx from the exhaust temporarily. By increasing the proportion of the 

fuel in the air-fuel mixture, the exhaust gas has less oxygen and more unburned hydrocarbons. 

The stored NOx at the catalyst then reacts with hydrocarbons in the exhaust to produce 

nitrogen and water and/or CO2. Selective catalytic reduction (SCR) systems reduce NOx over a 

catalyst using ammonia as the reductant (ICCT, 2019). LNT systems are generally cheaper and 

less effective than EGR or SCR systems (ICCT, 2017a). 

Studies such as Hagman (2015) have found that when testing diesel cars in real driving 

conditions, they emit 20 to 40 times more NOx than petrol cars with similar sized engine. Even 

diesel cars which have passed the Euro 6 limit have been found to be producing more than ten 

times the limit when tested in real world environments (Baldino et al., 2017).  There are 

several reasons for this including: decline of emission-control system components over the 

vehicle’s lifetime; using the vehicle’s ECU for deliberate cheating on vehicle certification tests; 

removing or tampering with components of the emission-control system; or utilising a 

certification test that is unreflective of operating conditions encountered in real on-road 

driving (ICCT, 2019). This is one of the reasons that despite increasingly stringent policy, NOx 

levels on key urban arterials have remained static over the last decade. City level policies such 

as Low Emission Zones, Clean Air Zones, and congestion charging have been introduced to 

attempt to curb pollutant emissions from diesel vehicles  (Holman et al., 2015). Because of the 

issues of transport related air pollution and carbon dioxide emission outlined in this section, 

this thesis explores how more hybrid and electric vehicles in the vehicle fleet, along with an 

increasing number of Euro 6 petrol and diesel vehicles, can lead to reductions in CO2 and NOx 

emissions at a network level. 

The research in this thesis focuses primarily on vehicle exhaust CO2 and NOx emissions. 

Particulate emissions originate from both the exhaust and the brakes. As technology improves 

to deal with PM emissions from the exhaust, non-exhaust emissions from the tyre wear, brake 

wear, road surface wear and resuspension of road dust will most likely become the primary 

cause of these vehicle emissions (Thorpe and Harrison, 2008). With the electrification of the 

road fleet, there is evidence that EVs have higher PM emissions from regenerative braking 

than ICEVs (Timmers and Achten, 2016). Non-tailpipe emissions (e.g. emissions from tyres and 

brakes) are challenging to model accurately and therefore have not been considered within  



Micro-Scale Carbon Dioxide () Emission on UK Road Networks using coupled Traffic Simulation 
and Vehicle Emission Models 

 

23 
  

 

Figure 2-2: Dieselisation (percentage of total registrations) comparing European countries 

(European Environment Agency, 2018). 

the scope of this thesis. 

 The Rise of Diesel Cars 2.3.1

The initial development and adoption of diesel cars in the 1990s originated from their higher 

fuel efficiency; diesel cars produce approximately 15% less CO2 than a like-for-like petrol car 

(Hagman, Rolf; Gjerstad and Amundsen, 2015). However, research has shown that if OEMs had 

invested in reducing petrol vehicle fuel efficiency as they had in diesel vehicle fuel efficiency 

then the average CO2 emissions of petrol vehicles would have improved by similar percentage  
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Table 2-4: Country level commitments to move from ICEVs to EVs (IEA, 2018a). PLDV denotes 

Passenger Light Duty Vehicle. 

Country ICEV car ban EV target 

China  5 million EVs by 2020, including 4.6 million 
PLDVs, 0.2 million buses and 0.2 million trucks.  

New energy vehicle (NEV) mandate: 12% NEV 
credit sales of passenger cars by 2020.  

NEV sales share: 7-10% by 2020, 15-20% by 
2025 and 40-50% by 2030. 

Finland  250 000 EVs by 2030. 

France 2040  

India  30% electric car sales by 2030. 

100% BEV sales for urban buses by 2030. 

Ireland 2030  

Japan  20-30% electric car sales by 2030. 

The Netherlands 2030 10% electric car market share by 2020.  

100% electric public bus sales by 2025 and 100% 
electric public bus stock by 2030. 

New Zealand  64 000 EVs by 2021 

Norway 2025 (PLDVs, LCVs 
and urban buses) 

75% EV sales in long-distance buses and 50% in 
trucks by 2030. 

Korea  200 000 EVs in PLDVs by 2020. 

Slovenia 2030  

UK 2040 (Scotland 
2032) 

396 000 to 431 000 electric cars by 2020. 

United States 
(selected states) 

 3 300 000 EVs in eight states combined by 2025. 

ZEV mandate in ten states: 22% ZEV credit sales 
in passenger cars and light-duty trucks by 2025. 

California: 1.5 million ZEVs and 15% of effective 
sales by 2025, and 5 million ZEVs by 2030. 
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as that seen by diesel vehicles (Cames and Helmers, 2013). The greater cost of the diesel 

engine – approximately £1500 – is offset by increased fuel efficiency within approximately 

10 000 miles (Wu et al., 2015), this is backed up by the analysis in Chapter 3 and 4 of this  

thesis. Hence, diesel vehicles are usually purchased as high mileage vehicles and represent a 

greater percentage of road traffic (Society of Motor Manufacturers and Traders, 2017). Diesel 

cars also tend to be higher power and weight than conventional petrol cars: between 2001 and 

2011, the average petrol engine power increased by 7.5% but the figure for diesel is much 

higher at 22% (ICCT, 2017b).  

Dieselisation of the car fleet is a problem across most of Europe with the market share of 

diesel cars ranging between 30-80% at its peak in 2016 (see Figure 2-2 for diesel car market 

share across European countries). Conversely, in the USA and Japan, market share of diesel 

cars is below 0.1% (Cames and Helmers, 2013). Stemming from a push to reduce CO2 emissions 

from the transport sector, in the EU diesel vehicle purchases were incentivised with lower fuel 

and vehicle taxes. Four key reasons have been identified for the different levels of dieselisation 

across Europe; the impact of national car/supplier industry, the degree of ecological  

modernization, fuel tourism, and states with preferential relations with industry (Cames and 

Helmers, 2013). All these factors play a part in how persistent diesel car sales have been in a 

particular region. Without a strong car industry, but with poor ecological modernisation 

momentum, in the UK diesel vehicle market share has persisted even in recent years.  

The dieselisation of the car fleet in the UK is more prevalent in the size segments that are 

dominated by company or business car purchases. For example, market share of diesel cars in 

the executive size segment  (where the split of private to business registrations is 29% to 71%) 

rose to 81% in 2018, whereas in the mini size segment diesel cars only represent 15% of new 

registrations (this is discussed further in Section 2.3.3 where the UK vehicle market is analysed 

in depth). The rise of diesels in the small vehicle size segments is more concerning as the types 

of catalysts used in smaller vehicles, such as Lean NOx Trap (LNT) as opposed to Exhaust Gas 

Recirculation (EGR) or Selective Catalytic Reduction (SCR), tend to be cheaper and less 

effective at removing NOx from tailpipe emissions (ICCT, 2017a).  

In 2017, the diesel market share of new car sales dropped from 47% to 42% as a result of 

changing public opinion. New European legislation has been introduced to ensure that Diesel 

Particulate Filters (DPFs) are properly tested during a vehicle’s MOT (Evans, 2018). The high 

cost for DPF replacement means that it often is not cost effective for older vehicles to replace 

their broken DPFs, therefore these high polluting vehicles are more likely to be scrapped, and 
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consumers are less likely to risk purchasing older diesel vehicles. The VW scandal also affected 

consumers trust in the auto industry (Markowitz et al., 2017). In 2015 VW was fined $4.3 

billion by the US government for fitting emissions test cheating software in their vehicles, it is 

estimated that the cost of fixing cars, buying back cars, clean air fines, penalties and 

compensation cost the company over $20 billion. There is still ongoing cases in Europe where 

consumers have brought civil lawsuits against the company (BBC, 2018).  

Consumers have lost trust in diesel vehicles and government advice (as evidenced by market 

share peaking). Many environmentally conscious consumers chose a diesel vehicle in the early 

2000s to reduce their emissions and within a decade the official advice had reversed, 

condemning diesel vehicles and increasing prices accordingly (Cames and Helmers, 2013). As a 

result, some countries have stated they will stop new registrations of conventional diesel (and 

in some cases petrol) cars by a certain year (see Table 2-4 for summary of announcements of 

national EV deployment goals), this comes hand in hand with targets for EV sales. Additionally, 

OEMs have started to move away from diesel cars: Fiat Chrysler have announced they will 

phase out diesel models by 2022, Toyota have committed to stop selling diesel cars in Europe 

by 2018 and Subaru will withdraw diesel car production and sales by 2020 (IEA, 2018a). 

 The UK Vehicle Market in Detail 2.3.1

This thesis focuses on the UK vehicle market, but many of the conclusions drawn will be similar 

for other countries in Europe. The spread of market share across different vehicle size 

segments is similar for the UK and the rest of the EU, with the majority of the same models of 

HEV, PHEV and BEV available (Thiel et al., 2015) (see Appendix 2-A for details of size segments 

for USA, UK and EU). By analysing historic hybrid and electric vehicle sales conclusions can be 

drawn about future adoption of these vehicle types across the fleet (see Figure 2-3 for UK car 

market share split by purchase and fuel type). The mid-sized (C/D) car segments account for 

the majority of historic HEV sales (64%). The Toyota Prius was originally a medium car (C) 

segment (2000-2004), moving into the large car (D) segment after its redesign in 2004. In the 

last decade Toyota have diversified their hybrid range to include a wide range of models all 

utilising the HSD system originally developed for the Toyota Prius. This is one of the reasons for 

plateauing sales of the Toyota Prius, despite total Toyota hybrid market share increasing every 

month. Since the Toyota Yaris Hybrid came onto the market in 2011, the supermini (B) 

segment shows significant HEV sales (2.4% market share).  
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Figure 2-3: UK market share of HEVs, PHEVs, and BEVs Jan 2000 - Dec 2017. (Data sourced 

from SMMT (Society of Motor Manufacturers and Traders, 2017)) Note that A/B (small), C/D 

(medium), E/F (large) and H/I (Multi/Dual Purpose Vehicle) vehicle segment size.  
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The Multipurpose vehicle (H) segment accounted for 51% of PHEV sales in 2016 (mainly 

attributable to the Mitsubishi Outlander), but despite a late introduction in 2015 PHEV market 

share in the executive (E) segment car sales are rising fast resulting in 24% of total PHEV 

market share. At present PHEV models do not exist in the mini (A) or supermini (B) segments. 

This is mainly because the combination of the two drive trains with a large battery leads to 

increased vehicle weight and cost making it uneconomical to produce a ‘small’ PHEV. 

Supermini (B) and medium (C) car segments are most popular for BEVs with these size 

segments representing 56% of BEV market share. BEV models have not been introduced in the 

executive (E) or luxury (F) car segments because of the expense due to the large battery size 

required. The Tesla models have been classed at sports vehicles, this segment (G) accounts for 

around 20% of BEV sales, but only accounts for 1.8% of total market share. It is worth noting 

that supermini (B), medium (C) and large (D) vehicle size segments together account for over 

70% of total car market share.  

Fleet and business car purchases account for approximately half of new vehicle sales in the UK 

(see Figure 2-3 for UK car market share split by purchase type and fuel type, see Appendix 2-B 

for definitions of business, fleet and private purchases). This figure is similar for other 

European countries such as Germany and France (PWC, 2015). Historically, ‘fleet’ purchases 

have accounted for a slightly higher proportion of HEV sales (around 57% in 2008) than the 

private market but private HEV purchases are now growing at a faster rate as a result of low 

taxes compared to petrol cars. Private purchases account for a small percentage of PHEV 

market share (14.9%). 

PHEVs are very expensive due to their large battery but tend to have very low emissions for 

their size. Company car tax is graduated by vehicle CO2 emissions therefore PHEVs are a 

favourable choice for fleet purchases – this cost comparison is explored in Chapter 4 of this 

thesis. Conversely, there is a higher proportion of BEVs in the private market (53.8% of BEV 

market share) than for PHEVs or HEVs. This is to be expected because smaller size segment 

vehicles are more popular with private purchasers than business purchasers. In other 

countries, such as The Netherlands and Germany business purchases account for between 90 

to 95% of BEV and PHEV purchases (Rijksdienst voor Ondernemend Nederland, 2015).  

In the UK, PHEV sales have grown much faster than HEV sales when they were first introduced; 

HEV sales took around a decade to reach 1% market share whereas PHEVs reached this within 

four years. This is partly as a result of availability of technology models across marques 
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(Department for Transport, 2015d). BEV sales have increased at a similar rate to HEVs, with 

BEV market share reaching 0.5% within 6 years.  

2.4 DECARBONISATION OF THE TRANSPORT SECTOR: OTHER OPTIONS 

AND PERTINENT FUTURE FACTORS 

 Other Options for Transport Decarbonisation  2.4.1

With the growing problem of climate change, the continuing urban pollution issues and 

changing vehicle testing policies, there has been a shift towards electrification of the transport 

sector (IEA, 2018a). Cynics of electrification always quote that EVs are only as clean as the 

electricity they use. This is true, but EVs offer the opportunity to reduce pollution in cities – 

where 55% of the global population lives (United Nations, 2018), and utilise the increasing 

share of renewables on the grid. Many governments have chosen technology neutral policies – 

they do not ‘pick winners’, therefore other low carbon fuels including Liquid Petroleum Gas 

(LPG), Compressed Natural Gas (CNG), and Hydrogen Fuel Cells (HFCs) have been deployed to 

decarbonise the transport sector. In the future when there is excess renewable energy, these 

fuels could be manufactured synthetically as electrofuels.  

LPG technology suits road vehicles of all sizes. LPG cars are usually retrofits and only constitute 

1-2% of new registrations across Europe (ICCT, 2017b). It costs up to £2000 to retrofit a 

conventional petrol car to run on LPG, with an approximate fuel saving of £600 per year (based 

on annual mileage of 10 000 miles) due to the lower fuel price of LPG despite a decrease in fuel 

efficiency of around 15-20% due to lower energy density (RAC, 2018b). CNG is a technology for 

larger vehicles, such as buses and trucks, which can reduce CO2 emissions but incurs a 

significant cost to install the technology (Alternative Fuel Systems Inc., 2015). However, 

Natural Gas is still a fossil fuel that contributes to climate change – even as an electrofuel, 

therefore these are only temporary measures in the future decarbonisation of road transport.  

The development of HFC vehicles to power vehicles is still in an earlier stage of technological 

advancement than EVs (Xu et al., 2017). Most hydrogen is currently sourced from reforming 

natural gas (Nikolaidis and Poullikkas, 2017), however, there is the opportunity that hydrogen 

could be formed using excess electricity from the grid. Hydrogen powered vehicles face a 

similar chicken and egg problem with refuelling infrastructure. The electricity network is 

widespread, enabling a simple transition without the necessity of public charging 

infrastructure, whereas hydrogen fuel cell vehicles will have to have newly purpose-built 



Micro-Scale Carbon Dioxide () Emission on UK Road Networks using coupled Traffic Simulation 
and Vehicle Emission Models 

 

30 
  

refuelling stations. HFC vehicles have the advantage of only producing water vapour from the 

tailpipe. HFCs could be well suited to large vehicles that face electrification challenges. 

Biofuels are often considered a low carbon alternative that could cut the carbon footprint of 

road transport without needing to change user behaviour. Biofuels encompass several 

different feedstocks, but advanced biofuels are being developed that will have a lower impact 

on agriculture, deforestation and climate change. Many countries are blending biofuels such as 

FAME (Fatty Acid Methyl Ester – biodiesel) and bio-ethanol with conventional petrol or diesel 

in small percentages. Brazil has  the highest market share of bioethanol vehicles, with around 

23 % of the energy for road transportation coming from biofuels (Cruz et al., 2014). The EU 

mandates that all petrol and diesel transport fuel is blended with a small percentage of biofuel 

by 2020 (10% bio-ethanol for petrol and 7% FAME for diesel fuel) (European Commission, 

2018a). Historically, there have been problems with sourcing sustainable biofuels with early 

policy leading to deforestation, land grabbing and the destruction of peoples’ and animals’ 

livelihoods, therefore despite an initial push in this direction, EU policy has not favoured 

biofuels as it once did (Todts, 2017). In the near term, electric mobility is in the strongest 

position of any of the low carbon fuels to decarbonisation the road fleet.  

 Revolutions Affecting the Future of Transport 2.4.2

In the future, there are generally regarded to be three ‘revolutions’ that will change road 

transport: electrification, automation and Mobility as a Service (MaaS) (Sperling, 2017). 

Electrification of the road fleet is already happening with increasing adoption, falling battery 

prices and installation of public charging infrastructure, but automation and MaaS are 

considered long-term trends. Automation and MaaS will no doubt be introduced in large cities 

first, eventually reaching rural areas.  

Autonomous vehicles are currently being built and tested on road by OEMs and start-ups such 

as Uber, FiveAI and BMW (UBER, 2018; BMW, 2018; Smale, 2018). These vehicles use a range 

of technologies such as GPS, radar, LiDAR, and optical sensors to continually assess vehicle 

position in relation to pedestrians, bikes and other vehicles; evaluate external information 

such as signage and traffic signals; and drive the vehicle amongst other vehicles in normal 

traffic conditions. To date, over ten million autonomous vehicle miles have been logged by 

companies such as Waymo, FiveAI and Uber, but the timescale for significant numbers of 

Autonomous Vehicles on road in cities is unclear (Hawkins, 2018). It is anticipated there will be 

a mix of vehicle types on the road in big cities by 2050 and the potential impact of these 

autonomous vehicles is uncertain (Bansal and Kockelman, 2017). Several different scenarios 



Micro-Scale Carbon Dioxide () Emission on UK Road Networks using coupled Traffic Simulation 
and Vehicle Emission Models 

 

31 
  

are considered where if Autonomous Vehicles were shared and electric, the transport system 

would be cheaper, more accessible, and with a lower environmental impact. However, if 

Autonomous Vehicle ownership follows historic private vehicle ownership trends then the 

problem of ‘ghost’ miles could create congestion, pollution and entrench societal issues 

(Sperling, 2017). There are many other anticipated consequences to vehicle automation, such 

as increased road safety, vehicle efficiency and accessibility (Milakis et al., 2017). 

MaaS is the concept that transport will move away from conventional car ownership models to 

predominantly ride-sharing (Jittrapirom et al., 2017). Most vehicles spend on average 96% of 

the time unoccupied (Kempton and Tomić, 2005), therefore MaaS would reduce the vehicle 

fleet to smaller number of high mileage vehicles with a faster turnover. MaaS could provide 

benefits for both the supply and demand side; with lower cost, time reduction, and improved 

user experience (Kamargianni et al., 2015). Already, using a ride-hailing service such as Uber or 

Lyft, can in fact be cheaper than owning a car if the annual mileage is less than 9000 miles 

(Davidson, 2015). Trends of private vehicle ownership are already reversing, with young 

people less likely to have a driving licence and own a car than at any other point in the last 

twenty years (Morley, 2017a). Ride-sharing is gradually introduced in ride-hailing companies 

such as Uber and Lyft, but this is currently only in selected cities. Although many people are 

sceptical that there could be a shift to a mobility subscription service rather than an individual 

opting to have the freedom of their own car, even a decade ago it would have been 

unthinkable that people would switch from owning music to streaming services such as 

Spotify. 

Modal split has stayed fairly constant over the past twenty years, but the introduction of 

electric bikes could increase the share of bike trips. Electric bikes have only been introduced 

into the mass market in the last couple of years, typically with a range of 50 miles, but research 

has already found that acceptance has been greater than conventional bikes (Guo, 2017). 

Subsidies are available in several countries, similar to electric cars, as battery price falls, the 

Manufacturer Suggested Retail Price of these bikes will fall and sales will grow. 

2.5 SUMMARY AND CONCLUSIONS 

This chapter finds that the adoption of hybrid and electric vehicles is still in the early stages, 

however, numbers are growing across vehicle markets indicating that electrification of the 

transport sector is happening, for this reason future scenarios of the vehicle fleet will be 

explored later in this thesis. Even if the share of these vehicle types is still low at present, 

governments across all habited continents have incentives in place to encourage adoption of 
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low carbon vehicles, this is investigated in the next chapter of the thesis in the context of 

vehicle ownership costs. These measures range from financial subsidies (e.g. purchase rebates, 

free parking or reduced taxes) to non-financial incentives (information services, access to HOV 

lanes or bus lanes); all aimed at addressing the main barriers to adoption. In vehicle markets 

such as Norway and Japan there has been a significant rise in the number of hybrid and electric 

vehicles in the last five years and evidently there are lessons to be learnt from this trend. The 

increasing proportion of hybrid and electric vehicles will contribute to decarbonisation of the 

road fleet and reductions in urban air pollution, the extent of which will be modelled on a 

network level in Chapter 6 of this thesis. 

The key barriers to adoption of hybrid and electric vehicles are upfront cost, range anxiety (for 

BEVs only) and uncertainty in new technology. Purchase choice is not purely rational or 

entirely based on cost; often purchase decision is motivated by image or intrinsic 

environmentalism. The links between cost and adoption are however explored further in the 

next chapter of the thesis. The rise of companies such as Tesla showcasing desirable EVs has 

changed the public’s perception of this vehicle type. Accessibility of charging infrastructure is 

growing, with the charging network expanding each year. Coverage is varied, and there will be 

challenges in deployment of EVs for longer journeys as well as in rural areas.  

Since hybrid and electric vehicles were introduced onto the mass market, technology has 

advanced: battery prices are dropping as is the cost of the electric powertrain. New 

opportunities for battery second life and recycling are starting to emerge. Although these 

processes are still very much in immaturity, this is the time in which regulation and 

standardisation can encourage battery designs that are simple and cost effective to 

disassemble. The rise of Autonomous Vehicles and Mobility as a Service could change personal 

mobility within the next thirty years. At present, the impacts and timeframe are uncertain, 

although it is agreed that by 2050 there will be a mix of vehicle types on the road in major 

cities. 

In the next chapter, the incentives for hybrid and electric vehicles across several key markets 

and different continents will be examined in the context of vehicle ownership costs. Although 

vehicle ownership cost is only one factor in purchase decision, upfront cost is the greatest 

barrier to the switch from a conventional petrol/diesel to a hybrid or electric vehicle. The 

chapter will examine what lessons we can learn from HEV adoption and can apply to EV 

adoption to stimulate sales in countries without a strong EV sales record. 
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CHAPTER 3: HISTORIC TOTAL COST OF OWNERSHIP FOR 

HYBRID AND ELECTRIC VEHICLES 

3.1 INTRODUCTION 

With a larger battery and features such as regenerative braking, engine stop-start and a novel 

transmission system (Hutchinson et al., 2014), hybrid and electric vehicles have a higher 

manufacturing cost than conventional vehicles (Wu et al., 2015). Conversely, running costs are 

often lower stemming from cheaper annual fuel costs, taxes and maintenance. Many countries 

have offered subsidies or reduced taxes for low emission vehicles to reduce this price premium 

and stimulate adoption: for example the plug-in vehicle grant in the UK (GOV.UK, 2018), the 

clean vehicle rebate project in California (California Air Resources Board, 2016), and the green 

vehicle purchasing promotion measures in Japan (Japan Automobile Manufacturers 

Association, 2016a).  

The focus of this chapter is an investigation of the Total Cost of Ownership (TCO) of hybrid and 

electric vehicles. The vehicle TCO accounts for all consumer related vehicle costs and therefore 

this calculation can determine whether subsidies and lower running costs can offset the 

associated price premium. This section compares the TCO of hybrid and electric vehicles across 

different vehicle markets and for an extensive timespan. It builds on work from the first year of 

the PhD where the cost of the Toyota Prius was compared across different vehicle markets for 

each year that a new generation of Prius was released (e.g. 1997/2000, 2003/4, 2009/10). 

Initially the motivation for this work stemmed from an assessment of technological readiness 

of different low carbon vehicles. Without properly defined definitions of technological 

readiness when technology was beyond the traditional ‘Technology Readiness Levels’ used (for 

example see Sauser et al. (2006)), it soon transpired that this was an impossible task to 

undertake analytically and thus the comparison of vehicle TCO emerged. 

The key aim of this chapter is to assess if higher hybrid and electric vehicle market share in 

vehicle markets such as Japan and California is primarily due to cheaper costs and therefore 

whether adoption of hybrid and electric vehicles in less developed markets such as the UK 

market can be stimulated on this basis. To address this aim, this chapter provides a more 

extensive TCO assessment of conventional petrol/diesel cars, HEVs, PHEVs and BEVs in three 

industrialized countries – the UK, USA (using California and Texas as case studies) and Japan - 

for the time period 1997 to 2015. Finally, the link between HEV TCO and market share is 
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analysed with a panel regression model – the time frame for running this analysis for BEVs or 

PHEVs was deemed insufficient.  

This section contributes to the literature in three key areas: investigating how TCO has 

changed historically, examining how TCO varies across different geographic regions and 

analytically assessing the relationship between hybrid vehicle TCO and adoption. To assess the 

robustness of the cost model a sensitivity analysis is conducted for variation in mileage, fuel 

price, depreciation rate, ownership period and discount rate.  

The contents of this chapter has been published as a peer reviewed journal article in Applied 

Energy (Palmer et al., 2018), featuring as one of the most downloaded papers of the journal in 

2018. This article has received significant media attention with coverage in the Guardian 

(Carrington, 2017), The Daily Telegraph (Davis, 2018), MIT Tech news (MIT Technology Review, 

2017) and a number of other news outlets (Sputnik News, 2017; Cooke, 2017; Futura Tech, 

2017; Arab Forum for Environment and Development, 2017; Boada, 2017; Livedoor News, 

2017; The Marker, 2017; Joseph, 2017; Sanchez, 2017; Guess, 2017; European Commission, 

2018c; Hull, 2018) , and as a result was the basis for winning the Piers Sellers Prize for 

exceptional PhD research (2018 PhD category4). 

3.2 TOTAL COST OF OWNERSHIP LITERATURE  

Many TCO calculations have been published to assess the cost effectiveness of new vehicle 

technologies such as electric commercial vehicles (e.g. Falcão et al. (2017)), electric buses (e.g. 

Li et al. (2017)), and plug-in hybrid trucks (e.g. Vora et al. (2017))). As early as 2001, Lipman & 

Delucchi (2001) compared the cost of different degrees of hybridisation across multiple vehicle 

size segments. Since then, many other publications (see Table 3-1 for review of key studies in 

TCO literature) have compared the ownership costs of battery and hybrid electric vehicles. 

Many of the studies focus on a full spectrum of PHEVs with different battery sizes; to assess 

whether the cheaper costs of running a PHEV with a higher battery storage capacity offsets the 

larger initial battery price (for example Al-Alawi and Bradley (2013b) and Hutchinson et al. 

(2014)). The studies in the literature largely conclude that without government support hybrid 

and electric vehicles are still more expensive than conventional petrol or diesel cars.  

Previous published TCO calculations usually only consider vehicle ownership costs in one 

country or geographic region (e.g. Gilmore et al. (2016) considers passenger vehicle TCO in 

India, and Diao et al. (2016) consider private car TCO in China, Hagman et al. (2016) consider 

                                                           
4 Details available at http://climate.leeds.ac.uk/opportunities/piers-sellers-prize/ 
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passenger car BEV TCO in Sweden, and Fontainhas et al. (2016) consider a similar TCO for the 

Portuguese private car market). Hutchinson et al. (2014) is the only study which compares HEV 

TCO across more than one country, concluding that the relatively high fuel price in the UK 

leads to a shorter pay back of less than 2.6 years for HEVs compared to 6.7 years in California. 

HEV TCO can vary substantially over different countries and American states as a result of 

varying fuel price, availability of low-emission vehicle incentives and region dependent average 

mileage. Levay et al. (2017) compare BEV and PHEV TCO across several European markets 

concluding that at present subsidies allow vehicles in certain size segments to be cheaper. Fuel 

price, average annual mileage, annual taxes and insurance prices along with driving style and 

congestion levels are state/country dependent (e.g. Saxena et al. (2014)), therefore 

conclusions of studies from different geographic regions are not necessarily transferable.  

As vehicle technology matures manufacturing costs decrease, therefore TCO calculations 

become outdated. For this reason, it is difficult to directly contrast and compare the findings of 

multiple publications with different base years. With over 15 years of HEV cost data, this raises 

questions over how vehicle ownership costs have changed as the market has developed. 

TCO methodology has not been standardised in the literature (see Table 3-1 for details of 

components included in key published studies). Two different approaches exist: either top 

down or bottom up (usually utilising an incremental cost model). It is apparent that factors 

such as maintenance, tax costs and vehicle resale are often excluded despite there being 

variation between vehicle types. Over a long time period such as that of this study, policies and 

cost incentives that play a crucial role in adoption of new technologies, particularly during the 

initial stages of deployment can also change. In this chapter, we build a comprehensive model 

taking all significant vehicle ownership costs including financial incentives into account. 

Regression analysis is a common approach to assessing the strength of the relationships 

between different variables. Relatively few studies have used regression analysis to explore 

the factors contributing to adoption of new powertrain technologies. Studies such as Diamond 

(2009) use panel regression, examining both fixed and random effects, to assess the impact of 

incentives on vehicle adoption across different American states concluding that fuel price 

affects vehicle adoption more than incentives. Gallagher and Muehlegger (2011) use a fixed 

effects model to consider the effect of incentives across different US states concluding that the 

type of incentive offered is as important as the size of it. Shewmake and Jarvis (2014) analysed 

the link between HEV adoption and High Occupancy Vehicle (HOV) lane access using a 

parametric regression model estimating Willingness-To-Pay figures for HOV lane access. 

However, studies from the TCO literature (see Table 3-1) have not used this approach to assess 
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Table 3-1: Total Cost of Ownership literature summary. 

 Lipman & 

Delucchi (2006) 

Al-Alawi & Bradley 

(2013b)  

Hutchinson et al. 

(2014) 

Wu et al. (2015) Levay et al.  

(2017) 

This study 

Vehicle class Compact or 

mid-sized large 

car, pickup, 

minivan, SUV 

Compact car, Mid-

sized car, Mid-sized 

SUV, Large SUV 

Mid-sized car Small, Medium and 

Large cars 

Small, 

Medium and 

Large cars 

Mid –sized car 

Powertrain 

type 

Five degrees of 

hybridization 

HEV, PHEV 5-60 Mild, HSD, Two-

Mode, Inline Full, 

Plug-in HSD, Plug-in 

Series 

BEV, PHEV, HEV BEV, PHEV, 

ICE 

BEV, PHEV, HEV 

Purchase 

year 

2000 2010 2013 2015 2014 1997/2000-2015 

Economic yr 2000$ 2010$ 2013$ 2015€ 2014€ 2015£ 

Economic 

country 

USA USA USA and UK Germany NO, NL, FR, 

HU, IT, DE, PL 

UK, USA 

(California, Texas), 

Japan 

Annual 

vehicle miles 

travelled  

Not specified -

decreasing 

with age 

12 000 miles/yr for 

cars decreasing with 

age  

130 000 miles over 

lifetime 

Three cases: 7484 

km, 15 184 km and 

28 434 km 

12 000 km 10 400, 11 071, 

15 641, 6213 for 

UK, CA, TX and JP. 
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Table 3-1 continued…      

 Lipman & 

Delucchi (2006) 

Al-Alawi & Bradley 

(2013b)  

Hutchinson et al. 

(2014) 

Wu et al. (2015) Levay et al.  

(2017) 

This study 

Vehicle life 15 years 5 and 13 years 130 000 miles 6 years 4 yrs 3 years (ownership 

period) 

Fuel 

economy  

EPA adjusted EPA adjusted Fuel saving tests for 

urban and highway 

Literature. Manufacturer 

reported 

figures 

Spritmoniter  

Gasoline 

price model 

1.46  

($/gallon) 

Forecasted over 

vehicle life 

3.20, 7.70 for USA, 

UK ($/gallon) 

Own forecast 2014 country 

prices 

Forecast over 

vehicle lifetime 

Incremental 

cost model 

MSRP used EPRI (2001); 

Kalhammer et al., 

(2007) 

Brooker et al. 

(2010); Clearly et al. 

(2010) 

Yes, derived. MSRP used MSRP used 

Salvage  None Vehicle resale Vehicle resale Yes Vehicle resale Vehicle resale 

Maintenance  Yes Yes None No None Yes 

Insurance  Yes Yes None Yes None Yes 

Tax model Yes Yes None Yes Tax Yes 

Discount rate None 6% None 4.1% 1% 3.5 % (UK, Japan) 

4% (US states) 
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the effect of changing vehicle costs on sales, instead they have generally only focussed on 

costs at a single point in time.  

3.3 COST CALCULATION METHODS AND DATA SOURCES 

 TCO Model Overview 3.3.1

A cost comparison of a representative HEV, PHEV, and BEV has been performed across four 

different geographic regions. The Toyota Prius was first introduced in Japan in 1997 with HEVs 

now accounting for over 30% of new vehicle purchases (Japan Automobile Manufacturers 

Association, 2016c), for this reason Japan is included in this comparison. Like Japan, California 

has a history of adopting low carbon policies years ahead of other states in the USA (Greene et 

al., 2014). Consequently, hybrid and electric vehicles have been more popular in California 

than anywhere else in America (Muller, 2013). The state of Texas has also been included to 

provide a contrast to the Californian state because hybrid and electric vehicle sales are lower 

but average income is similar (United States Census Bureau, 2016). In most other markets, EV 

market share has been lower. The UK has been included as a country where EVs still have low 

market share (below 2%) despite high fuel prices.  

This study considers the Toyota Prius (HEV), the Toyota Prius plug-in model (PHEV), and the 

Nissan Leaf Electric model (BEV), and contrasts these with the Toyota Corolla (petrol only) for 

Japan, California and Texas, and the Ford Focus (petrol and diesel) for the UK. The 

conventional vehicles for comparison were chosen based on a combination of high market 

share, size and a vehicle power similar to the Toyota Prius (comparative vehicle specifications 

can be found in Appendix 3-A). 

The TCO analysis in this Chapter will only consider private ownership. In Japan non-private car 

purchases account for less than 5% (International Fleet World, 2016). In the USA and UK this 

figure is approximately half of new vehicle registrations (Bureau of Transportation Statistics, 

2016; Society of Motor Manufacturers and Traders, 2017). In the following chapter UK 

company car costs will be calculated across different vehicle size segments, but this analysis 

was deemed too difficult in light of data requirements for the US and Japanese market. 

The three year vehicle ownership length was chosen in line with average new vehicle 

ownership length in the UK (Leibling, 2008). This assumption is explored in a sensitivity 

analysis.  A Consumer Price Index based GDP deflator for each country is used to bring all costs 

in line with 2015 prices (United States Department of Agriculture Economic Research Service, 

2015; Department for Transport, 2016c).  
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A discount rate is applied based on the social discount rates (see Section 2.2.2 for discussion of 

discount rates). The discount rates applied are taken as 3.5%, 4% and 3.5% for Japan, 

California/Texas and UK respectively (Zhuang et al., 2007; HM Treasury, 2015). The social 

discount was chosen for a number of reasons. The individuals’ rates are not consistent 

between studies (see Table 3-1), this is an area, which needs improvement, and therefore we 

use social discounts as a proxy. The three countries considered all have post-industrial 

economies with growth rates in the range of 1-3%. In the climate of low interest rates with 

subdued economic growth, it is reasonable to assume a slightly lower discount rate than the 

4-6% range used in previous TCO studies (see Table 3-1). The effect of the selected discount 

rate on TCO is also explored further in the sensitivity analysis; with the short TCO ownership 

period of three years assumed here it was found that changing the discount rate does not have 

a significant impact on the resultant TCO (the difference in TCO calculated is less than 1%). 

Note all calculations are kept in the original currency to mitigate changes in exchange rate 

causing false correlations in results. The payback period is defined as the time it takes for the 

lower operating costs of the EV to offset the higher initial costs, therefore when calculating 

this payback period the costs used are not discounted. 

The Total Cost of Ownership was calculated using the following formula, 

𝑇𝐶𝑂௖ = ෍
(𝐼௖ − 𝑠௖) ∗ 𝑑௧

௖ + 𝑓௖௧ × 𝑚௖ × 𝑒 + 𝑎௖௧ + 𝑛௖௧ + 𝑥௖௧

(1 + 𝑟௖)௧

ଷ

௧ୀଵ

 

where 𝐼 = Initial Price, 𝑑 = depreciation rate, 𝑡 = time (yr of ownership), 𝑓= annual fuel price, 𝑚 

= annual mileage (miles), 𝑒 = vehicle fuel efficiency (litre/mile), 𝑎 = annual maintenance 

inclusive of vehicle testing, 𝑛 = annual insurance, 𝑥 = annual tax, s = annual subsidy, 𝑟 = 

discount rate for geographic region c. This formula was chosen in line with other key studies in 

the TCO literature such as Al-Alawi & Bradley (2013b), Wu et al. (2015) and Levay et al.  (2017), 

such that the results of these calculations would be comparable. 

Many other economically rational and irrational factors play a role in vehicle purchase 

decisions, such as brand loyalty, spatial effects and availability of refuelling infrastructure. Such 

factors are difficult to accurately quantify and track over time, therefore the modelling in this 

chapter does not include these factors but focuses on vehicle TCO. 

 Initial Vehicle Costs, Depreciation and Subsidies 3.3.2

With a larger battery and features such as regenerative braking, engine stop-start and a novel 

transmission system,  hybrid and electric vehicles have historically been associated with a 
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manufacturing price premium over conventional petrol and diesel cars (Lave and MacLean, 

2002). As HEV powertrain technology has matured, the price premium of development and 

manufacture has reduced with a proportion of this cost reduction passed on to the consumer. 

For BEVs and PHEVs the battery is still associated with a significant proportion of this 

incremental cost, therefore future vehicle prices will be closely linked to falling battery prices. 

A country specific Manufacturer Suggested Retail Price is taken as the initial vehicle cost 

(Edmunds, 2015; RAC, 2015; RAC and Yourfleet, 2015; Goo-net-exchange, 2015) with 

depreciation rates from Storchmann (2004). Storchmann compares depreciation rates of cars 

across different vehicle markets indicating that vehicles in the USA, UK and Japan depreciate at 

approximately the same rate (16.9% annually). Depreciation is defined as the percentage that 

the vehicle decreases in value each year. Therefore, the value of depreciation is greatest in the 

first year of ownership and decreases over time. The same depreciation rate is assumed across 

all vehicle types. As the HEV and EV markets mature, there is more data available to calculate 

how HEVs and EVs depreciate. Gilmore and Lave (2013) found that HEVs have comparable 

vehicle value retention rates in California when calculating Willingness To Pay for HOV lane 

access. Tal et al (2017) investigated the second hand EV market in California, taking state, 

federal, and local authorities’ subsidies into consideration. This study found that different EV 

models held value differently in 2015, ranging from 43% (the short-range 2011 Nissan Leaf) to 

99% (2014 Toyota Prius plug-in). Schoettle and Sivak (2018) investigated the resale value of 

PHEVs and BEVs in comparison with ICEVs using manufacturer's suggested retail price and 

resale values estimated by Kelly Blue Book for model years 2011-2015. They found that PHEVs 

retained resale value as well as their ICEV counterparts. Guo and Zhou (2019) investigated the 

residual value of EVs taking into account federal incentives and using true market value data 

from Edmunds.com. They found that long-range, high-performance Tesla BEV models hold 

value better than other classes of vehicle. In addition, PHEVs and HEVs have similar declines in 

residual value to each other, which are slightly greater than for ICEVs. Finally, they also found 

that short-range (< 125 miles) BEVs hold significantly less value compared with ICEVs, HEVs, 

and PHEVs but this gap is narrowing for newer models. Because of the uncertainty of the 

depreciation rate, the assumption that all vehicle types depreciate at the same rate is explored 

by a sensitivity analysis. 

The number of consumers purchasing vehicles with finance in the UK over the past decade has 

grown from 45% of new registrations in 2006 to 86% in 2016 (Finance and Lease Association, 

2017), however, the amount paid by the consumer over the three years is comparable to the 

vehicle depreciation assumed in this study. For example, for the Toyota Prius over the three 
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year period £13 980 would be paid on finance whereas the vehicle depreciates by 

approximately £13 196. Liao et al. (2018) found that at an aggregate level vehicle leasing does 

not affect EV adoption. 

Initial vehicle subsidies were applied before depreciation was calculated, as it is reasonable to 

assume that a proportion of the cost savings will be passed on when the vehicle is sold. Several 

countries have levied subsidies to increase market share of low emission vehicles (see Figure 

3-1 for timeline and size of incentives over the regions considered). Japan brought in the Clean 

Energy Vehicle Subsidy in 1998; this consisted of a subsidy along with tax cuts for low emission 

vehicles. This was superseded by the Eco-Car subsidy available between April 2009 to 

September 2010 and December 2012 to September 2013, varying between   ¥100 000 to 

¥250 000 (approximately £700 to £1700) depending on whether the new vehicle replaces an 

existing vehicle or not (Alhulail and Takeuchi, 2014). For this analysis, it was assumed the new 

vehicle was a replacement. In 2013, a plug-in vehicle subsidy was introduced where two thirds 

of the incremental cost of the plug-in vehicle compared to a similar conventional petrol vehicle 

was funded (Nelson and Tanabe, 2013). In the USA, the Clean Fuel Vehicle deduction was 

introduced in 2001 providing a $2000 initial cost reduction for the first 60 000 vehicles sold by 

each manufacturer. This was replaced with a hybrid tax credit (part of the Energy Policy Act) in 

2006, which  was phased out by the end of 2007 (Sallee, 2011). The Car Allowance Rebate 

System (often referred to as Cash for Clunkers) ran in 2009 and provided a subsidy of between 

$3500 and $4500 towards fuel efficient vehicles such as HEVs (U.S. Department of 

Transportations Federal Highway Administration, 2015). In Texas the AirCheckTexas Drive a 

Clean Machine Program introduced in 2013 provides up to $3500 subsidy towards hybrid or 

electric vehicles providing certain replacement and income criteria are met (Texas Commission 

on Environmental Quality, 2016). For plug-in vehicles, a federal income tax credit was 

introduced based on battery capacity in 2010, but an additional smaller state incentive (Clean 

Vehicle Rebate Project) is available in California (California Air Resources Board, 2016). In 

addition to financial incentives, in California HOV lane access stickers were sold to HEV owners 

from 2005-2011, and PHEV and BEV owners 2005 to present  (Shewmake and Jarvis, 2014). 

With consumers able to apply for stickers for retrospective HEV purchases e.g. pre-2005, the 

ability of this incentive to stimulate new HEV purchases was limited. However, Shewmake and 

Jarvis (2014) found by utilising historic vehicle resale value and market share data that this 

incentive corresponded with a Willingness-To-Pay (WTP) for HOV lane access at nearly $1000. 

In the UK, the plug-in places grant applies to BEVs and PHEVs with different subsidy amounts 

available depending on CO2 tailpipe emissions, this does not extend to HEVs (GOV.UK, 2018). 

For more information on subsidies in different countries see studies by Jenn et al. (2013), 
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Alhulail and Takehuchi (2014) and Zhang et al. (2014). In developed countries such as those 

considered in this study the new vehicle market is primarily a replacement market, therefore 

electric vehicle adoption will predominantly displace purchase of petrol or diesel vehicles 

(Millard-Ball and Schipper, 2011). From Figure 3-1, PHEV and BEV incentives have a higher 

financial value than HEV incentives in all countries. Japan, California and Texas all offer 

significant HEV subsidies and tax breaks of a similar magnitude, however, in the UK the 

financial incentives are much smaller. 

 Fuel Costs 3.3.3

Annual fuel cost is usually the largest operating cost, therefore it is important to use 

representative real driving fuel consumption figures (Mock et al., 2017). Real-world fuel 

consumption figures have been sourced from Spritmoniter (2018) with electric-only range 

efficiency figures from The Idaho National Laboratory (2014). Vehicle fuel efficiency is assumed 

to be the same across all regions. There is difficulty in obtaining real world fuel efficiency 

statistics for a large sample size across the different regions to evidence how driving styles 

change in different regions. Different driving styles can lead to variation in fuel efficiency of up 

to 25% (Mierlo et al., 2004), therefore the error margin for different drivers will most likely be 

greater than the variation in average fuel efficiency across different regions.  

Electricity is taxed at a lower rate than motor fuel and combined with the increased efficiency 

of the electric drive powertrain during urban driving, annual fuel costs are usually cheaper for 

BEVs and PHEVs (depending on the percentage of driving in fully electric mode) than a 

conventional internal combustion engine (ICE) vehicle. The all-electric range of the Toyota 

Prius PHEV is 12.3 miles (Idaho National Laboratory, 2014). Despite 70% of trips in the USA 

being under 10 miles (U.S. Department of Transportations Federal Highway Administration, 

2009), Tal et al. (2014) found that the average percentage of battery-only driving for PHEV 

vehicles was 26% of vehicle miles travelled. The average PHEV driver clearly does not fully 

utilise the electric-only drive capability for every trip. In the UK the number of trips under 10 

miles is considerably lower than the USA at approximately 30% (Department for Transport, 

2015c), but without evidence of the average percentage of electric mode driving for these 

other regions the same ratio of battery to internal combustion engine driving has been 

assumed for all the regions in this study.  

A region specific average annual mileage is assumed in the TCO calculations. This varies from a 

minimum of 6213 miles/yr in Japan, 10 400 in the UK, 11 071 in California, to a maximum of 

15 641 miles/yr for Texas 
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Figure 3-1: Timeline of financial incentives available for HEVs and EVs. (Compiled from (Sallee, 2011; DMV.ORG, 2015; Texas Commission on Environmental Quality, 

2016; Japan Automobile Manufacturers Association, 2016a; DMV.ORG, 2016; GOV.UK, 2017b; GOV.UK, 2018)). 
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(Millard-Ball and Schipper, 2011; Department for Transport, 2013;  

U.S. Department of Transportations Federal Highway Administration, 2017) (see Table 3-1 for all 

regional mileage). The annual mileage used here is the average mileage over the first three years 

of ownership. Average annual vehicle mileage decreases with age therefore it is important to use 

figures that are representative of new vehicle purchases (Department for Transport, 2016a). With 

BEV range exceeding 100 miles, the restricted vehicle range does not necessarily pose an issue for 

the average car trip distance of 16 miles as found in the UK national travel survey (Department for 

Transport, 2016a) , therefore it is appropriate to assume the same annual mileage for all vehicle 

types.  

Historic fuel prices were sourced from the International Energy Association (IEA, 2015) for Japan, 

the U.S. Energy Institute Administration (U.S. Energy Information Administration, 2017) for 

California and Texas, and the Department of Energy and Climate Change for the UK (Department 

for Business Energy and Industrial Strategy, 2017).  

 Maintenance and Insurance Costs 3.3.4

An average annual maintenance cost for each vehicle type is included. Costs are lower for electric 

vehicles due to less wear on the brakes and fewer moving parts. Vehicle model specific costs were 

sourced from CAPP automotive consulting (The Money Advice Service, 2015).  

The Prius is classed as an average vehicle for insurance purposes (Carbuyer.co.uk, 2015). 

Therefore, the average comprehensive cover is considered to adequately represent insurance 

costs for all vehicle types. Estimates are used for Japan (Akita-ken, 2015) assuming that real costs 

have remained constant over the study timeframe. For the Californian model, the comprehensive 

average premium for California is used for years 2003-2012 (Consumer Watch Dog, 2007; 

Insurance Information Institute, 2009; Insurance Information Institute, 2013; National Association 

of Insurance Commissioners, 2014; Insurance Information Institute and The Public Policy Institute 

of New York State, 2015). Insurance costs for the Texas model are estimated as a proportion of 

Californian prices (Insure.com, 2017). For the UK model, the British Insurance Premium Index is 

used (The AA, 2015).  

 Vehicle Tax 3.3.5
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Vehicle tax systems have changed over the time period of the TCO model in this study. In Japan, 

three different taxes are payable: an acquisition fee is dependent on the Manufacturer Suggested 

Retail Price of the vehicle, every two years a weight tax is owed, and an annual tax must also be 

paid (Alhulail and Takeuchi, 2014). In the USA, a state dependent registration and title fee is 

payable (GOV.UK, 2018). In the UK the only vehicle tax is the annual Vehicle Excise Duty (VED) 

payment. A new CO2 emissions-based VED system was introduced in 2001 (GOV.UK, 2017c) and 

this has changed in April 2017 – as discussed in the next Chapter (GOV.UK, 2017b). 

 Regression Methods 3.3.6

To analytically assess the link between historic TCO and market share across the different 

geographical regions a fixed effects panel regression model was developed. The fixed effects 

specification was chosen instead of random effects to control for cross-sectional model variance 

and unobserved effects between the different geographic regions. The panel regression took a 

multivariate linear form with  parameters fitted using the Ordinary Least Squares method. The 

regression was run primarily for HEVs because market share and TCO input data was available for 

16-19 years whereas for BEVs and PHEVs there is insufficient data (<6 years of annual data) for 

reliable regression analysis.  

Three forms of the general regression model were chosen for comparison to determine the 

relationship of best fit between the independent cost variables and the dependent market share 

variable. The initial model (Model 1) takes a linear specification between the TCO ratio defined as 

the total three-year TCO of the HEV to the total three year TCO of the conventional vehicle, such 

that: 

𝑆௖௧ =∝௖+ 𝛽ଵ𝑇௖௧ + 𝜀௖௧ ,                                                                             (𝑀𝑜𝑑𝑒𝑙 1) 

where S is vehicle market share, T is defined as the ratio of the TCO of the HEV to the TCO of the 

conventional petrol vehicle, 𝛽 is the variable dependent coefficient, 𝛼 is given as the geographic 

region-specific intercept, 𝜀 represents the residuals, c is a proxy for the geographic region and t 

represents the year.  



Micro-Scale Carbon Dioxide () Emission on UK Road Networks using coupled Traffic Simulation and 
Vehicle Emission Models 

 

46 
  

The second model form (Model 2) compared the same variables but took a log-log specification in 

line with other studies (see Diamond (2009), Bajic (1988), and Gallagher and Muehlegger (2011)), 

such that: 

log 𝑆௖௧ =∝௖+ 𝛽ଵ log 𝑇௖௧ + 𝜀௖௧ .                                                               (𝑀𝑜𝑑𝑒𝑙 2) 

The final model specification (Model 3) split the TCO into initial cost and running cost components. 

This took the form: 

log 𝑆௖௧ =∝௖+ 𝛽ଵ log 𝐼௖௧  + 𝛽ଶ log 𝑅௖௧ + 𝜀௖௧,                                      (𝑀𝑜𝑑𝑒𝑙 3) 

where I is defined as the ratio of the initial cost of the HEV taking subsidies into account to the 

initial cost of the conventional vehicle and R is defined as the ratio of the running cost of the HEV 

vehicle over the three year ownership period to the conventional vehicle. This model specification 

is tested with and without inclusion of the Willingness to Pay for HOV lane access in California (in 

line with results from Shewmake and Jarvis (2014)) and for different TCO ownership periods. The 

HOV lane WTP is included in the regression model by including it in the TCO calculation for the 

appropriate years (see Section 3.3.2 for details of how the HOV lane permit scheme operated and 

the WTP figures). 

The Engle ARCH and Durbin Watson tests were conducted on each model to check for 

heteroscedascity and autocorrelation respectively. Although evidence has shown that household 

income is a factor in low emission vehicle purchase decisions (Ozaki and Sevastyanova, 2011), it 

was not included in the model because it is difference stationary and therefore can cause spurious 

regression. The market share data was sourced from Japan Automobile Manufacturers Association 

for Japan  (2016b), IHS Markit for the two US states (2017), and the Society of Motor 

Manufacturers for the UK (2017). This data was split annually for each region broken down by 

powertrain type. 

3.4 RESULTS OF THE TCO MODEL 

 TCO Components 3.4.1

Cost components were found to vary over country, vehicle type and purchase year; however, the 

greatest cost to the consumer has always been vehicle depreciation (see Figure 3-2 for TCO  
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Figure 3-2: TCO component breakdown for 2015 across all regions. 

breakdown, costs table can be found in Appendix 3-B). This is most pronounced for BEVs and 

PHEVs due to the greater initial purchase cost coupled with low running costs. In Japan, insurance 

featured as the second greatest percentage cost, but for the UK, California and Texas annual fuel 

cost contributed a greater percentage of the vehicle TCO for petrol, diesel and hybrids.  

 Geographic TCO comparison 3.4.1

The HEV cost ratio (defined as HEV TCO divided by Petrol TCO) has reduced in all regions from 

introduction to 2015. This is most pronounced in Texas where the cost ratio has dropped by 0.23 

in 15 years. Even in the UK where subsidies were absent, the cost ratio has fallen by 0.09. Between 

the years 2000 and 2015, the lowest average cost ratio for HEVs is in the UK at 1.03. The cost ratio 

for PHEVs is greater than for HEVs in all regions considered except Japan. Conversely, in California, 

Texas and the UK subsidies have enabled BEVs to reach cost parity. The lowest average cost ratio 

for BEVs across the regions considered is the UK (0.89). For PHEVs, the lowest average cost ratio is 

in Japan (0.97). 

 Region Specific TCO Trends Over Time  3.4.2

For Japan, the HEV cost ratio varied between 0.85 to 1.17 (see Figure 3-3 for Cost ratio and market 

share over time). Vehicle cost initially decreased from 1997 to 1999 leading to a lower cost ratio 

and increased market share. In 2009 greater tax cuts and an initial vehicle subsidy was introduced  
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Figure 3-3: TCO ratio and market share for the UK, California, Texas and Japan 1997-2015. 
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such that HEVs were cheaper than conventional vehicles for the first time; this was met with a 

peak in HEV market share. With the Japanese tsunami in 2011, Toyota experienced 

manufacturing disruptions which propagated down the supply chain and caused shortages 

(Toyota, 2011). Despite this, market share in Japan still rose. In 2013, the cost ratio dropped 

due to a second wave of subsidies, which again corresponded to a peak in market share. With 

fuel price falling in 2014 and 2015, the cost ratio increased and HEV market share levelled out. 

The PHEV cost ratio varies between 0.82 and 1.28 whereas the BEV cost ratio varies between 

0.84 and 1.32. This indicates that the large subsidies have brought PHEV and BEV TCO in line 

with conventional vehicles in Japan. 

For California, the HEV cost ratio varied between 0.9 to 1.25. The cost ratio decreased from 

2001 to 2005 as a result of rising petrol price despite the value of incentives falling. The Car 

Allowance Rebate System subsidy in 2009 (see Figure 3-1) results in a clear dip in HEV cost 

ratio and spike in market share. The supply disruption from the Japanese tsunami led to a dip 

in market share in 2011 and a return to 2009 market share levels by 2013. Larger subsidies for 

BEVs than PHEVs (e.g. approx. $10 000 for BEV versus $2500 for PHEV) led to a lower TCO ratio 

for BEVs of 0.94 compared to 1.14 for PHEVs. As a consequence, BEV market share is almost 

double that of PHEV market share.  

For Texas, the HEV cost ratio varied between 1.02 to 1.14. The market share time series is 

similar in shape but roughly half the size of California.  The cost ratio curve is also very similar 

to that of California, exhibiting the same dips and peaks for the same reasons (primarily fuel 

price and subsidy changes). Higher mileage (15 641 versus 11 071 miles per year) offsets the 

lower price of petrol in Texas compared to California leading to a similar annual fuel cost 

(approximately $1353 and $1191 respectively). The drop in cost ratio in 2014, attributed to the 

introduction of an initial vehicle subsidy incentive, has not stimulated HEV sales in 2014/15. In 

Texas a subsidy is available in equal value for all low emission vehicles (AirCheckTexas Drive a 

Clean Machine) therefore HEVs are cheaper than PHEVs and BEVs. The state financial subsidies 

available for BEVs in Texas are smaller than California ($3500 versus $10 000) leading to a 

lower cost ratio.  

The HEV cost ratio varied between 0.91 to 1.14 in the UK. The initial fall in the cost ratio, 

comes as a result of the change in the vehicle excise duty tax in 2001. This new Vehicle Excise 

Duty system differentiated annual charges based on NEDC CO2 emissions figures in contrast to 

the flat rate system it replaced (this was a two tier system based on engine power). The cost 

ratio remained fairly constant from 2002 to 2007 in line with stable fuel prices. With the fuel 

price increase in 2010, the cost ratio dropped, with a corresponding increase in market share.  
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Table 3-2: Regression results. 

 Model 1 
 

Model 2 Model 3 Model 3 + HOV 
lane WTP 

Model 3 

Ownership Period 3 yr 3 yr 3 yr 3 yr 1 yr 
Indep. variable Coeff. (Std. 

error) 
Coeff. (Std. 
error) 

Coeff. (Std. 
error) 

Coeff. (Std. 
error) 

Coeff. (Std. 
error) 

(HEV TCO/ICE TCO) -33.9 
(10.0)*** 

- - - - 

Log (HEV TCO/ICE TCO) - -13.0 
(2.22)*** 

- - - 

Log (HEV IC Cost/ICE IC) - - -10.0 
(1.93)*** 

-3.56 (1.42)*** -8.01 
(2.15)** 

Log(HEV RC/IC RC) - - -5.52 
(2.13)** 

-7.73 (2.37)*** -5.90 
(1.90)*** 

𝑁 67 67 67 67 67 
 𝑅ଶ (overall) 
 

0.360 0.512 0.583 0.455 0.600 

Adjusted 𝑅ଶ 0.319 0.481 0.549 0.411 0.567 
Durbin Watson 
statistic5 

0.359 1.07 1.30 1.30 1.31 

Note: **, and *** denote significance at 5% and 1% respectively. RC = Running Cost, IC = Initial 

Cost. 

Conversely, the fuel price slump in 2015 led to an increased cost ratio coupled with a 

surprising increase in market share. This surge in sales is most likely a result of the pending 

Vehicle Excise Duty changes in 2016. The new Vehicle Excise Duty system will involve a CO2 

emissions based initial charge of up to £2000 followed by a flat annual cost of £140 per year 

for all vehicles except those with zero emissions (GOV.UK, 2017b) – the effect of this new tax 

system on vehicle TCO will be analysed in Chapter 4. Diesel vehicles were found to have a 

lower TCO than petrol vehicles, to the point that the TCO model calculated that HEVs have 

never been cheaper than diesel vehicles over the time period considered. In the UK, the TCO 

ratio is lower for BEVs at 0.88 than PHEVs at 1.24. This is mainly a result of the plug-in vehicle 

grant that allocates a larger subsidy to BEVs (£4500) than PHEVs (£2500). 

 Panel Regression Analysis  3.4.3

The regression analysis evidences a historical link between HEV TCO and market share for the 

four geographic regions (see Table 3-2 for regression results for the three models specified in 

Section 3.3.6). The linear model form, which treats the independent variable as TCO and the 

dependent variable as market share, has a low value of 𝑅ଶ (0.319) with large standard errors. 

                                                           
5 The Durbin Watson statistic produces a value between 0 and 4, where 0 indicates very high negative 
autocorrelation, 4 indicates very high positive autocorrelation, and 2 indicates no autocorrelation.    
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The value of the Durbin Watson statistic shows that with this model specification there is very 

high negative autocorrelation. This indicates that the model is mis-specified because it does 

not sufficiently explain the variation of market share over the given time period. 

Comparing the linear form (model 1) with the log-log specification (model 2) (see Section 3.3.6 

for details of regression equations), the 𝑅ଶ value increases in value from 0.319 to 0.481 

indicating that model 2 is a better fit than model 1. The standard error reduces from 10.0 for 

the TCO component for model 1, to 2.22 for the TCO component for model 2. The coefficient 

also increases from -33.9 for the TCO component in model 1, to -13.0 for the TCO component 

for model 2. The value of the Durbin Watson statistic indicates that autocorrelation in model 2 

is lower than in model 1, therefore this is a better model specification. Overall this model 

specification is significantly better (𝑝 < 0.01) than the initial model evidencing the link 

between vehicle cost and market share. A similar result stating that a link between TCO and 

market share exists was found by Levay et al. (2017). 

By splitting the TCO into its constituent components: initial cost (including subsidy) and 

running cost, the 𝑅ଶ value increases again from 0.481 to 0.549. The standard error reduces 

from 2.22 for the TCO component for model 2, to 1.93 for the initial cost component and 2.13 

for the running cost component in model 3. The coefficient also increases from -13.0 for the 

TCO component in model 2, to -10.0 for the initial cost component and -5.52 for the running 

cost component in model 3. By accounting for the different cost components separately, the 

model is anticipated to improve. Toyota initially subsidised the Prius model to ensure it was 

cost-competitive on the market, and as initial prices increased government subsidies were 

introduced to encourage uptake. In this model the initial cost coefficient is more significant 

(𝑝 < 0.01) than running cost (𝑝 < 0.05). The initial cost coefficient indicates that a one 

percent reduction in the cost ratio leads to a 10% increase in market share, whereas a one 

percent reduction in running cost ratio leads to a 5.5% increase in market share. This directs us 

to the conclusion that at an aggregate level HEV purchases are more sensitive to changes in 

subsidies and vehicle price (e.g. the initial cost components) than fuel price change (e.g. the 

running cost component with most variation over time). 

Changing the ownership period from three years to one year improves the fit of the model 

slightly (increasing 𝑅ଶ from 0.549 to 0.567). The initial cost component coefficient increases 

from -10.0 to -8.0 with an increase in standard error from 1.93 to 2.15. The running cost 

component coefficient decreases slightly from -5.52 to -5.90 with a decrease in standard error 

from 2.13 to 1.90. The most marked effect of this model comparison is the increasing 

significance of the running cost component (from 𝑝 < 0.5 to 𝑝 < 0.01) with lower standard 
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Figure 3-4: TCO sensitivity analysis for base year 2015, cross (X) indicates baseline value. 
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error; whereas the initial cost coefficient decreases in significance with larger standard error. 

The inclusion of Willingness-To-Pay for HOV lane access for California did not improve the 

model fit but increased the standard error for the running cost coefficient. Considering cost on 

an annual basis, model 4 does not have an adequate resolution (e.g. annual rather than 

monthly) to account for purchasers who adopt HEVs for HOV lane access. 

 Sensitivity Analysis of Cost Parameters 3.4.1

Several input variables were investigated to assess the model sensitivity to their variation. 

These variables include; fuel price, discount rate, annual mileage, vehicle depreciation rate, 

and TCO ownership length (see Figure 3-4 for Sensitivity Analysis Results).  

The discount rate assesses a person’s revealed time preferences, with a higher rate indicating 

that a person’s opportunity costs are greater. Studies in the literature (see Table 3-1) use 

significantly different rates and because of this inconsistency, this variable has been 

investigated using a sensitivity analysis. Generally, the greater the discount rate the greater 

the variation in cost ratio over the time period considered. The effect of varying the discount 

rate was negligible over the three-year ownership period. For example, increasing the discount 

rate from 2 to 11% caused the cost ratio to only increase by approximately 0.2%. For a longer 

ownership period, it is anticipated that varying the discount would have a greater effect on the 

TCO ratio. 

Fuel price is arguably the most important variable input to the model. Clearly historical 

changes in fuel price have had a significant impact on HEV cost ratio and vehicle market share 

(as discussed in Section 3.4.3). A higher fuel price creates more favourable conditions for 

HEV/PHEV/BEV adoption. The fuel price sensitivity in this study examines the 2015 fuel price 

for each region ±£0.50, whilst maintaining a fixed electricity price. From Figure 3-4 it is clear 

that the regions with higher average mileage such as Texas are more sensitive to changes in 

fuel price. BEVs and PHEVs are more sensitive to changing prices than HEVs. For example, a 

10p increase in fuel leads to a 0.2 drop in cost ratio for HEVs, but 0.4 for BEVs. 

In the standard TCO calculation, annual mileage has been assumed to be constant for the 

geographic region. However, this is highly variable among different drivers and therefore this 

sensitivity analysis demonstrates different use cases. For example, higher mileage cars such as 

taxis or business travellers may find hybrid and electric vehicles (note range limitations) more 

cost effective because of fuel cost savings. For HEVs, the UK has the lowest break-even mileage 

at approximately 15 000 miles. This figure exceeds 20 000 miles in the other regions 
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considered. The break-even mileage of PHEVS is greater than HEVs in all regions except Japan 

where annual mileage of around 4000 miles equates to cost parity. BEV subsidies mean that 

BEVs break-even at a lower average mileage of around 7000 miles for the UK, California and 

Texas, but are always the lower cost option in Japan. 

Depreciation is the greatest component of TCO across all geographic regions. Varying the 

annual depreciation rate from 15% to 20% leads to an increase of cost ratio of approximately 

0.17 across all regions (see Figure 3-4). This figure is greater for PHEVs at 0.2 because the initial 

purchase cost constitutes a greater percentage of TCO than HEVs. However, this figure is 

slightly lower for BEVs at 0.15 due to subsidies bringing the initial cost in line with HEVs (see 

Figure 3-3). 

As previously discussed, low emission vehicles are associated with a price premium that can be 

offset by lower running costs over a certain time period. In this study, the baseline TCO was 

taken as three years in line with average length of UK and Japan new vehicle ownership. 

Generally, this ownership period is longer in the USA therefore the impact of a longer 

ownership period has also been investigated. The longer the ownership period the lower the 

TCO ratio (see Figure 3-4). Because this study took vehicle salvage value into account when 

calculating TCO for different ownership lengths, the TCO ratio was not found to be particularly 

sensitive to changing ownership period with a drop in TCO ratio of approximately 0.01-0.02 

with each additional year of ownership. 

3.5 DISCUSSION OF OTHER FACTORS AND COMPARISON TO THE TCO 

LITERATURE 

 Factors Affecting Adoption Rates 3.5.1

This chapter aims to compare historical TCO of BEVs, PHEVs and HEVs across countries with 

different levels of hybrid and electric vehicle uptake. As previously discussed in Section 3.4.4, 

regression analysis reveals that there is a clear link between changing HEV TCO and market 

share. First, these results are significant because they can inform the setting of policies to 

stimulate HEV adoption in regions where market share is lacking. Second, the approach and 

results may be applicable to future BEV and PHEV vehicle adoption. These vehicle types have 

been available on the market for a shorter amount of time and currently represent very low 

fleet share in most vehicle markets. 
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This analysis has focused on assessing the link between HEV TCO and market share. This 

enquiry has isolated ownership costs as the most pertinent time-dependent variable affecting 

adoption rates for HEVs. There is considered to be no underlying drivers that have caused a 

false correlation. However, several variables which could affect HEV adoption, such as HEV 

depreciation rates, income and HOV lane access, have changed in the time period considered 

and will be discussed in more detail in this section. 

With depreciation as the largest cost to the consumer, sensitivity analysis found that vehicle 

TCO was highly sensitive to changing depreciation rates (see Section 3.4.5). Depreciation rates 

of low-emission vehicles are uncertain even for HEVs, which have been available on the 

second-hand vehicle market for over a decade. HEVs in California historically have had an 

inflated vehicle retention value due to supply issues and HOV lane access (Gilmore and Lave, 

2013; Shewmake and Jarvis, 2014). However, results from Lebeau et al. (2013) found that 

BEVs, PHEVs and HEVs depreciated quicker than conventional vehicles in the Belgian vehicle 

market. The newest Tesla EV battery degrades by less than 10% over 160 000 miles (Lambert, 

2018c). Along with uncertainty over diesel ICEV depreciation rates with the introduction of 

Clean air zones and Ultra-low emission zones, this evidence indicates that in future HEVs, 

PHEVs and BEVs will not depreciate at a faster rate than ICEVs. 

A key factor in the high adoption rates of low emission vehicles in California compared to other 

states is the comparative wealth. The median income in California is $64 500 (the 10th richest 

state) whereas in Texas this figure is $55 653 (23rd richest state) compared to the US average 

of $55 775 (United States Census Bureau, 2016). As a result of this wealth, many more 

residents can afford the additional incremental cost of a low emission vehicle. Average income 

has increased over time, but this variable has not been included in the regression analysis as it 

is a non-stationary variable that results in spurious regression. 

In California, low-emission vehicles have access to HOV lanes (Shewmake and Jarvis, 2014). 

Such incentives are difficult to financially quantify (although Willingness-to-Pay figures were 

estimated by Shewmake et al  (2014)). Vehicle owners who had already purchased HEVs could 

apply for HOV lane access stickers, although these were only available for a limited number of 

vehicles.  

With the highest count of Green Party registered voters (both as total number and as a 

percent of total registered voters) (Green Party US, 2017), Californians are evidently more 

environmentally aware than voters from other states. Kahn et al. (2007) found a link in 

California between green party voting and HEV adoption, therefore it reasonable to assume 
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that high HEV market share in California can partly be attributed to environmentally-friendly 

attitudes.  

Other factors have also contributed to high HEV market share in Japan. Japan has a history of 

innovation in this field, and represents the domestic Prius market where the vehicle model was 

first developed and tested (Toyota, 2012). The majority of vehicles purchased in Japan are 

domestic brands, with only a small percentage imported from the USA and Europe (Lee, 2011). 

With small roads and low annual mileage, the Japanese tend to favour smaller cars. Evidence 

for this can be found in the high market share of the Prius compact which is now one of the 

best selling cars in Japan (Lee, 2011). 

The availability and accessibility of charging infrastructure is a barrier to BEV adoption. 

Although most BEV and PHEV owners have access to a home charging point (evidenced in the 

Nordic countries (IEA, 2018b)), public charging points are important for visibility as well as 

practical use for both short and longer trips (Bakker and Jacob Trip, 2013). In California the 

number of public charging stations has increased to 3820 whereas in Texas this number is 

lagging behind at 885 (US Department of Energy, 2016). Japan has chosen to invest heavily in 

charging infrastructure, aiming to stimulate uptake (Smith, 2013). In the UK, EV charging 

infrastructure has been installed strategically in dozens of cities (see Section 2.2.4 for more 

details).  

Since Toyota introduced the Prius to the global market in 2000, many vehicle manufacturers 

have developed hybrid models. Toyota still maintains market dominance with over 50% of HEV 

market share, having diversified their hybrid range to include vehicles across most size 

segments. As the number of hybrid models across different size segments and brands 

diversifies and capacity to supply vehicles grows, it is anticipated that HEV market share will 

continue expand. The PHEV market is dominated by vehicles from larger size segments (such 

as SUVs) (Society of Motor Manufacturers and Traders, 2017), such that the Toyota Prius is one 

of the smallest PHEV available. It is anticipated that as the number of PHEV models expands its 

market share will also grow. It is also worth noting that in the UK additional competition exists 

from diesel vehicles which are more cost efficient than petrol vehicles at high mileages. 

Many of these additional factors discussed in this section are difficult to quantify for all 

geographic regions and across the time period considered. The variables discussed are not 

deemed to be variable or significant enough to have caused a false correlation in the HEV 

TCO/market share regression analysis. 
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 Payback Periods Compared to Other TCO Studies  3.5.2

The studies in the literature largely reached the same conclusions as this chapter; that the TCO 

of HEVs, PHEVs and BEVs without subsidies is still greater than that of conventional vehicles. 

The historical analysis in this chapter shows that incremental vehicle cost varies depending on 

the vehicle purchase year (see Figure 3-3), this is echoed by the conclusions of other papers in 

the TCO literature. The payback period of a new technology compared to its conventional 

counterpart is a common metric in the cost analysis literature. When comparing electric 

vehicle payback periods, unless a vehicle depreciation or loan model is used to represent initial 

vehicle costs, the calculated payback periods will be unrepresentative of the true payback 

period.  

Al-Alawi and Bradley (2013b) estimated a HEV payback period of approximately 8 years when 

considering the vehicle salvage value in the TCO model. For a base year 2010, the payback time 

in this study is shorter at approx. 3 years for Texas and 4 years for California. Al-Alawi and 

Bradley (2013b) find a PHEV with a 10 mile electric range (similar to the Toyota Prius which has 

an all-electric range of 12.3 miles) has a shorter payback period of approx. 7 years. The 

discrepancy in these results stems from differences in the sourcing of initial vehicle cost data: 

Al-Alawi and Bradley have used an incremental cost model rather than the Manufacturer 

Suggested Retail Price.  

Thiel et al (2010) estimated that in 2010 the payback period for HEVs, PHEVs and BEVs was 20, 

22 and 23 years respectively, much greater than the 10,14 and 1 years calculated in this study. 

As Thiel et al (2010) used an initial cost model that did not consider the important subsidies or 

vehicle salvage it is perhaps unsurprising that the conclusions do not align with the findings for 

the UK in this chapter.  

Hutchinson et al. (2014) found that the incremental cost of a HEV or PHEV depends largely on 

the style of driving. Hutchinson et al (2014) conclude that in 2013 HEVs and PHEVs have a 

payback period of 6.7 and 10.1 years respectively for city driving, but do not reach cost parity 

for highway driving. The greater fuel efficiency of HEVs and PHEVs in urban driving explains the 

shorter payback time calculated in Hutchinson et al (2014) compared to this chapter which 

estimates this to be greater than the vehicle lifetime in California. The conclusions from 

Hutchinson et al (2014) are echoed in this chapter such that in the UK HEV and PHEV TCO is 

closer to cost parity with conventional vehicles than in the USA. 
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Wu et al. (2015) find that in 2015 TCO depends on annual mileage driven which is mirrored in 

our sensitivity analysis. Wu et al. (2015) use Germany as their geographical focus, which has 

different relative fuel prices compared to the UK, limiting the comparisons between the 

conclusions from Wu et al. (2015) and this study. Levay et al (2017) conclude that in Norway, 

the TCO for BEVs was lowest due to incentives. In the Netherlands, France and the UK, the TCO 

of EVs and ICEVs is similar. In other countries, such as Hungary, Poland, Germany and Italy, the 

TCO of EVs is significantly greater than their ICE comparison vehicles. Although neither Wu et 

al. (2015) or Levay et al (2017) explicitly mention payback periods, the key conclusions from 

their studies are pertinent to this section.   

3.6 SUMMARY AND CONCLUSIONS 

This chapter concludes that in all regions the incremental TCO of hybrids and electric vehicles 

compared to conventional vehicles has reduced between the year of introduction and 2015 

subject to the assumptions made in this analysis, confirming the original research hypothesis. 

Year on year hybrid electric vehicle TCO was found to vary least in the UK due to the absence 

of subsidies. Financial subsidies have enabled BEVs to reach cost parity in the UK, California 

and Texas, but this is not the case for PHEVs, which have not received as much financial 

backing. The value of this regional analysis highlights the variation of monetary incentives 

available across different regions and the effect on the comparative vehicle TCO. The cost ratio 

of EVs to ICEVs varies across the different regions more than anticipated.  

The sensitivity of TCO to changes in the discount rate was found to be insignificant, whereas 

variation of fuel price and depreciation had a much greater effect. Insurance was found to be a 

surprisingly large percentage of TCO especially in Japan, whereas tax is a comparatively small 

proportion of TCO.  This chapter establishes a clear connection between historic HEV TCO and 

market share; with evidence from regions such as Japan and California that long-term 

government support plays a role in higher adoption rates.  

The results of this chapter are subject to the large number of assumptions made regarding the 

inclusion of the constituent parts in the TCO calculation and the values assumed for these 

components. The sensitivity analysis aimed to investigate how the variation in these 

components affects the results, but coupling this with the evidence in the literature that the 

TCO framework and the values of the constituent parts are not standard, leads us to conclude 

that it is necessary to recognise that these findings are clearly dependent on the assumptions 

made.  The focus of this chapter was historic HEV and EV TCO; after discussing this subject in 

depth, several further questions arise on this subject that will be considered in the later 
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chapters.  HEV and EV TCO was calculated here using historic input data, but there is great 

uncertainty about the effect of changing prices on vehicle costs moving into the future. For 

example, how will oil prices vary over the coming decades, what will happen to financial 

incentives as EV numbers grow and how will battery prices change? Clearly, values for these 

variables cannot be accurately predicted and future scenarios cannot be tested exhaustively, 

but the effect of plausible changes of key variables on HEV and EV TCO needs to be assessed. 

For these reasons, the following chapter will analyse these questions, illustrating cost 

projections under three contrasting scenarios with different underlying assumptions for both 

the private and company car owner.  

Because of geographical data limitations, the analysis in this chapter focused on the mid-sized 

car segment. This size segment accounts for approximately 40% of market share in the UK and 

is therefore the most popular vehicle size segment. However, a key question is how similar the 

cost ratios are between the different vehicle size segments. The following chapter (4) 

investigates this for the UK market, assessing vehicle TCO between small, medium, large and 

large+ size segments for several different future scenarios. 

Finally, with a clear connexion established between HEV TCO and adoption in this chapter, as 

costs change (as investigated in Chapter 4), how will this affect the vehicle fleet composition 

and therefore network traffic emissions in the future? In Chapter 5 cost will be accounted for 

in scenarios in a vehicle adoption model and in Chapter 6 the effects of a changing fleet on 

network emissions will be assessed. 
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CHAPTER 4: A UK CASE STUDY OF HISTORICAL AND 

FUTURE UK VEHICLE TCO ACROSS DIFFERENT SIZE 

SEGMENTS AND OWNERSHIP TYPES 

4.1 INTRODUCTION 

Historically, hybrid and electric vehicles have had a greater Total Cost of Ownership (TCO) 

compared to conventional petrol and diesel ICEVs. The previous chapter considered how costs 

have changed since introduction of hybrid and electric vehicles to the present for the ‘average’ 

car, indicating that fuel price, depreciation rates and annual mileage are all significant inputs in 

vehicle TCO calculations.  

In the previous chapter, the link between ownership costs and adoption was established. This 

adds further empirical evidence to the results of numerous surveys that have reported cost to 

be an important factor in hybrid and electric vehicle adoption (see Brownstone et al. (2000), 

Hidrue et al. (2011), and Sierzchula et al. (2014)). By projecting future vehicle TCO, conclusions 

can be drawn about how the electric vehicle market may evolve under different 

circumstances; enabling policy makers to adequately plan for electric vehicle charging 

infrastructure, air pollution limits, supply of raw materials, and budgets for financial subsidies. 

For these reasons, there is value in producing up to date future vehicle TCO projections and 

updating these when new data becomes available. 

The inputs into the TCO model are inherently uncertain moving into the future. Consequently, 

the best approach to calculating future vehicle TCO is to account for several different possible 

futures in the form of contrasting scenarios. Financial policies are a big driver for future 

changes in cost: initial subsidies and tax exemptions contribute to a cheaper TCO and can 

abruptly change depending on a government’s commitment to incentivising electric vehicle 

deployment. Cost projections of hybrid and electric vehicles have been extensively published: 

however, as this technology is still relatively new to the mainstream market (less than 2% 

market share in the UK and most other vehicle markets) and vehicle TCO changes rapidly (see 

Chapter 3) such cost projections quickly date. BEVs were introduced to the mainstream market 

around 2011, and the purchase price of these vehicle types has changed significantly since 

then (evidenced by chapter 3). In the future, there are external factors that could significantly 

change vehicle TCO, such as step changes in battery technology, the rise of Mobility as a 

Service (e.g. ridesharing) and automation (as discussed in Chapter 2). At present there is little 
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agreement about the timescale of the impact of these developments, but many experts in the 

field agree that changing battery prices will play a pivotal role in changing EV TCO and the rise 

of electrification. 

The focus of this chapter is an investigation of UK historic and future TCO of hybrid and electric 

vehicles. The TCO calculations in this chapter consider different size segments for different 

ownership types. The content of this chapter builds on work from the previous chapter where 

historic vehicle costs were compared across different regions but focused on the mid-sized 

vehicle segment and the private vehicle owner. Many aspects of vehicle costs such as fuel 

prices and taxes vary over geographic region. In the previous chapter, costs were estimated as 

accurately as possible for historic TCO, however, with the difficulty of obtaining data for 

foreign markets, and the uncertainties of future costs, the UK is the primary focus of the 

analysis in this chapter.  

The key aim of this chapter is to assess when  hybrid and electric vehicles will be cheaper than 

conventional petrol and diesel vehicles in the UK. To address this aim, this chapter considers 

the TCO of conventional, hybrid, plug-in hybrid and battery electric vehicles in the UK for the 

time period 2000 to 2040 across the four main vehicle size segments (small, medium, large and 

large+) for private car ownership. Private vehicle TCO is projected under three scenarios: 

Business-As-Usual, Battery Bonanza and Diesel Persists. These scenarios anticipate three 

different potential futures, illustrating how vehicle prices could change under a number of 

external factors such as financial policy, battery price, and fuel price. The conclusions drawn 

from this analysis are not forecasts but realistic possible futures depending on economic 

externalities.  

Additionally, historic company car costs are analysed in this chapter. Company car costs 

primarily stem from governmental taxes: these change over time depending on the average 

rated CO2 of company cars. Company car costs are more sensitive to changes in these tax rates 

than changes in the initial vehicle price. Furthermore, rated CO2 will experience a step change 

with the introduction of the new test cycle legislation in 2020 (see Chapter 2). For these 

reasons, with the CO2 rated emissions tax bands as the key cost determinant, the uncertainty 

of future company car cost is so great that there is little value in trying to create scenarios of 

tax bands to 2040. 

This chapter contributes to the literature in three key areas: investigating how vehicle TCO has 

changed historically across different size segments, analysing vehicle TCO for both the private 

and company car owner, and analysing how vehicle TCO varies under several scenarios. The 
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results of this chapter will feed into the next chapter where several adoption paths are 

constructed from these cost scenarios. 

4.2 VEHICLE COST PROJECTION LITERATURE 

With uncertainty about future costs of hybrid and electric vehicles, TCO projections have been 

published that forecast when these new vehicle types may reach cost parity with conventional 

petrol or diesel vehicles (see Table 4-1 for TCO projection literature). In this section, mainly the 

newest and most relevant cost projection literature is discussed. With changing oil prices, 

battery prices, and tax systems, vehicle cost projections quickly date; therefore, it is imperative 

that studies are continually updated to reflect the latest price changes. Despite this, there are 

TCO projections which are well researched and have use even if they are not up to date (e.g. 

Douglas and Stewart (2011)). 

The literature falls into two categories: either top down or bottom up (usually utilising an 

incremental cost model). Douglas and Stewart (2011) published a key piece of literature when 

BEVs and PHEVs had only just been released onto the mainstream market. Douglas and 

Stewart (2011)  concluded that petrol and diesel ICEV TCO will only increase slightly to 2030, 

and EVs will remain at a cost premium. Since then, many other publications (see Table 4-1 for 

review of key studies in TCO literature) have compared the ownership costs of hybrid and 

electric vehicles for different time frames.  

It is difficult to directly contrast and compare the findings of multiple publications with 

different base years, study scope and geographic area. Many of the studies focus on a full 

spectrum of vehicle types with different cost scenarios; to assess whether the cheaper costs of 

running a BEV/PHEV/HEV offsets the larger initial battery price (for example Thiel et al. (2010), 

Douglas and Stewart (2011) and Wu et al. (2015)). Many studies consider different size 

segments (e.g. Contestabile et al.  (2011), Douglas and Stewart (2011), and McKinsey (2012)). 

The studies in the literature largely conclude that hybrid and electric vehicles will reach cost 

parity without incentives between 2030 and 2040. Wu et al. (2015) is arguably the most 

detailed of the future projections, considering vehicle costs in 2015, 2020 and 2025 with a 

substantial Monte Carlo (probability) analysis of model sensitivities. From the literature, the 

key driver of future EV cost reduction is the battery technology, and therefore this will be a key 

focus of the projections in this chapter.  

TCO methodology has not been standardised in the literature (see Table 4-1 for details of  key 

published studies). It is apparent that factors such as maintenance, tax costs and vehicle resale  
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Table 4-1: Total Cost of Ownership future projections literature summary. 

 Thiel et al. 

(2010) 

 

Contestabile 

et al.  (2011) 

Douglas and 

Stewart 

(2011) 

McKinsey 

(2012) 

 

Hill et al. 

(2012) 

 

Wu et al. 

(2015) 

 

Lee et al. 

(2016) 

Schmidt et 

al. (2017) 

 

This study 

Model type Mainly 

economic 

(Bottom up) 

Techno-

economic 

(Bottom up) 

Techno-

economic 

(Bottom up)  

Mainly 

economic 

(Top down) 

Techno-

economic 

(Bottom up) 

Mainly 

economic 

(Bottom up) 

Input to 

future 

adoption 

model 

(Top down) 

Economic 

(Bottom up) 

Economic 

(Top down) 

Powertrain 

focus 

ICEV-SI, 

ICEV-CI, HEV, 

PHEV, BEV 

ICEV-CI, HEV, 

PHEV, BEV, 

FCEV 

ICEV-SI, HEV, 

REEV, BEV 

ICEV-SI, 

ICEV-CI, 

PHEV, BEV, 

FCEV 

ICEV-SI, 

ICEV-CI, HEV, 

REEV, BEV 

ICEV-SI, 

ICEV-CI, HEV, 

PHEV, BEV 

HEV BEV ICEV-SI, 

ICEV-CI, HEV, 

PHEV, BEV 

Vehicle 

classes 

covered 

Mid-size 

vehicle 

Supermini, 

Lower-

medium, 

multipurpose 

luxury 

A/B, C/D, 

E/H 

A/B, C/D, 

SUV 

C/D, van A/B, C/D, J Mid-sized car Only 

considers 

fuel tank 

gasoline/ 

battery plus 

elt only not 

TCO  

A/B, C/D, 

E/F, H/I 
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Table 4-1 continued…      

 Thiel et al. 

(2010) 

 

Contestabile 

et al.  (2011) 

Douglas and 

Stewart 

(2011) 

McKinsey 

(2012) 

 

Hill et al. 

(2012) 

 

Wu et al. 

(2015) 

 

Lee et al. 

(2016) 

Schmidt et 

al. (2017) 

 

This study 

Sensitivity/ 

uncertainty 

analysis 

Yes Yes Yes Yes No Yes 4 scenarios, 

retirement 

subsidies 

Battery 

Learning 

rates 

Yes 

Reference 

country 

EU-27 UK UK EU27 + CH + 

NO 

UK DE Korea USA (UK?) UK 

Projection 

period 

2010-2030 2010-2030 2030 2010-2050 2010-2050 2014, 2020, 

2025 

2020 2015-2040 2000-2040 

Battery cost 

modelling 

10% Projections 

from DfT 

2008 

 

Projected 

costs 

Own 

projections 

of battery 

costs 

Not used, 

interpolated 

DfT 

projections 

8.4% (2014 

to 2020), 

4.9% (2020 

to 2025) 

N/A 16 % +- 4% 11%  

Note that DfT stands for Department for Transport.
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are often excluded despite there being variation between vehicle types and sizes. Over a long 

time period such as that of this study, policies and cost incentives that play a crucial role in 

adoption of new technologies, particularly during the initial stages of deployment, can also 

change. In this chapter we build a comprehensive model taking all significant vehicle 

ownership costs including financial incentives into account. An important aspect of our 

analysis is that we used real-life car prices, utilising a top-down approach. Many of the studies 

do not consider resale value – a similar problem to the previous chapter.  

Although fleet adoption motivations have been studied in the literature (as discussed in 

Section 2.2.2), to the author’s knowledge, historic company car TCO have not been calculated, 

compared and analysed. In the UK, business and fleet purchases (see Appendix 2-B for 

definition of purchase types) account for around half of new car purchases with costs 

depending on the rated CO2 of the vehicle.  

Although this analysis uses the UK as a case study, the conclusions are likely to be similar for 

other European countries, but it is unlikely that this extends to the US vehicle market (see 

Appendix 2-A for comparison of vehicle size segment definitions for the UK, US and EU). The 

spread of market share across different vehicle size segments is similar for the UK and the rest 

of the EU (Thiel et al., 2015), with the majority of the same models of HEV, PHEV and BEV 

available. For the US, larger vehicle size segments such as SUV and Minivan dominate vehicle 

sales (The Wall Street Journal, 2017). This vehicle mix presents challenges for widespread 

adoption of EVs in the USA, because of the large incremental vehicle cost associated with the 

higher capacity battery required. 

4.3 COST METHODS AND DATA SOURCES 

 Study Scope 4.3.1

The cost model calculates the TCO for each vehicle type and size segment on an annual basis 

following the same calculation framework as the previous chapter (the details of the inputs 

and their sources are given in Table 4-2 with details of the different scenarios modelled in 

Section 4.3.3). Representative vehicles have been chosen and grouped into four main size 

segments: small (mini/A and supermini/B), medium (medium/C and large/D), large 

(executive/E and luxury/F) and large+ (dual-purpose/H and multi-purpose/I), which together 

account for over 98% market share (Society of Motor Manufacturers and Traders, 2017). The 

main vehicle types BEVs, PHEVs, HEVs, Petrol ICEVs and Diesel ICEVs are represented, these 

account for 99.99% of car market share (Society of Motor Manufacturers and Traders, 2017). 
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Table 4-2: Vehicle ownership cost summary (the components detailed here are assumed to be the same across each scenario detailed in 4.3.3, any assumptions 

that differ between scenarios are detailed in Table 4-5). 

Component Details Source 

Past Initial 

Vehicle price 

Minimum vehicle model Manufacturer Suggested Retail Price Parkers (2017) 

Projected Initial 

vehicle Price 

Petrol and Diesel ICEV price assumed to increase to account for 

more stringent emissions legislation 

BEV/PHEV/HEV vehicle learning rate of 6% 

Battery learning rate of 11% (base case) 

Hill et al. (2012) 

             

Safari (2018) 

Nykvist and Nilsson (2015); Schmidt et al. (2017) 

Past Fuel Price: Annual historic BEIS* (2017) 

Projected Fuel 

Price 

Annual projected  BEIS* (2017) 

Annual Mileage Assumed as 10 400 miles (private car), 19 400 for company car, 

7600 (pool car) (tested with Sensitivity Analysis) 

Department for Transport (2012); Fleet News (2013) 

Past Vehicle fuel 

efficiency 

Real world fuel efficiency Spritmoniter (2018) 

Projected Vehicle 

fuel efficiency 

Projected fuel efficiency for conventional petrol and diesel 

vehicles from 2016-2035 

HEV fuel efficiency trends extrapolated 

Fuel efficiency increases from battery weight reductions 

calculated from first principles 

Department for Transport (2016b) 
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 Table 4-2 continued… 

Component Details Source 

Past Maintenance Lower for hybrid and electric vehicles due to less wear on the 

brakes and fewer moving parts 

CAPP automotive consulting (The Money Advice Service, 2015) 

Projected 

Maintenance 

Assumed 2015 maintenance costs rise with inflation   

Past Tax Vehicle Excise Duty: 

o Jan 2000 to Mar 2001: Annual rate based on Engine 

power 

o Apr 2001- Mar 2017: Annual rate based on NEDC 

rated CO2 emissions 

Department for Transport (GOV.UK, 2017c; GOV.UK, 2017b) 

 o Apr 2017- : Annual flat rate for all vehicles (BEVs 

exempt) with an initial CO2 dependent charge 

 

 

 Benefit in Kind rates, Fuel Benefit charge, VAT fuel scale charge Department for Transport (GOV.UK, 2017c; GOV.UK, 2017b) 

 

Projected Tax Assumed 2017 taxes rise with inflation  

Past Insurance UK national insurance index The AA (2015) 

Projected 

Insurance 

Assumed 2015 insurance costs rise with inflation  

*BEIS (Department for Business, Energy and Industrial Strategy) formerly DECC (Department for Energy and Climate Change) until 2016
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Table 4-3: Representative vehicles for different vehicle types and classes (Data sourced from 

Parkers (2017) and Spritmoniter (2018)). 

 Small Medium Large Large+ 

Petrol/Diesel 

ICEV 

Ford Fiesta Ford Focus BMW 5 series Kia Sportage 

HEV Toyota Yaris Toyota Prius Lexus GS 

450h/300h 

Lexus RX 

400h/450h 

PHEV - Toyota Prius 

Plug-in 

Mercedes 

C350e 

Mitsubishi 

Outlander PHEV 

BEV Renault Zoe Nissan Leaf - Mercedes B 

class (electric) 

 

Table 4-3 details the vehicles chosen for this TCO analysis. These vehicle models were chosen 

based on market share and model release date to ensure model continuity for the sales 

timeframe (see Appendix 4-A for details of vehicles attributes, time of model availability and 

details of market share in size segment).  

For the case of the company car, the employee pays a Benefit-In-Kind (BIK) for the vehicle and 

fuel (only if the employer pays for fuel for private use). BIK is calculated by taking the product 

of the vehicle list price, the tax band of the employee (assumed to be 40% in this case) and the 

BIK percentage (dependent on vehicle rated CO2). The Fuel benefit charge (e.g. the BIK paid on 

fuel) is calculated in the same way, except for simplicity a nominal amount determined by the 

government (approximately £20 000) is used instead of the vehicle list price (see Appendix 4-B 

i-ii for historic BIK percentages for petrol and diesel ICEV cars). For the employer, a lease fee is 

usually payable along with all the other components of the private car ownership (such as 

insurance, VED and maintenance). The employer can claim back the VAT on maintenance, the 

initial vehicle purchase and annual fuel cost. In addition, the fuel scale charge is only payable if 

the proportion of private mileage is unknown. Class 1A national insurance is payable by the 

employer, calculated as 13.8% of the annual BIK paid by the employee (for a summary of the 

costs to employee and employer for business cars see Table 4-4). If the company decides to 

purchase a car but does not allow any private mileage (including commuting), it is referred to 

as a pool car. In this case, BIK charges are not applicable to employer or employee. 

 Projected Cost Components 4.3.2
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Table 4-4: Tax summary for different vehicle ownership types. 

Vehicle 

Ownership  

Tax type 

 Vehicle 

Excise 

Duty 

BIK: 

Car 

BIK: 

Fuel 

National 

Insurance:  

Car BIK 

National 

Insurance:  

Fuel BIK 

Fuel 

surcharge 

Private       

Pool car 1      

Company 

car 
1 2 2* 1 1* 1** 

Notes: 1 represents cost payable by employer; 2 represents cost payable by employee. 

Electricity is not counted as a fuel therefore fuel benefit charge is not payable even if 

employees charge at the workplace for private trips. * BIK Fuel is described as optional, as the 

employer can either pay for fuel and therefore pay National Insurance on the BIK payment or 

the employee can reimburse the employee for all fuel used for private mileage. ** Fuel 

surcharge is only payable if the company pays for all fuel (Private and business mileage) 

without keeping a record of the split, the employee can then reclaim all VAT from fuel but must 

pay this fuel surcharge. 

The key cost components for the vehicle TCO future scenarios are tax changes, battery prices, 

future petrol and diesel ICEV costs, and subsidies. The main developments in these areas are 

discussed in this section. 

4.3.2.a Vehicle Excise Duty (VED) Tax 

From the 1st April 2017, a new vehicle taxation system (referred to as VED) is applicable to all 

new vehicles registered in the UK. This was introduced to remedy the falling revenue from the 

previous VED legislation. In the previous system (applicable for new registrations April 2001 to 

March 2017), the tax bands were graduated based on test cycle CO2 emissions (see Appendix 

4-C for tax rates for the comparison vehicles considered in this study). Over this time frame, 

average vehicle test cycle emissions have gradually reduced as a result of better emissions 

technology coupled with optimisation of emissions for the NEDC test cycle, both of which have 

contributed equally (Transport&Environment, 2014). The difference between NEDC test cycle 

emissions and on road driving is now up to 40% (Mock et al., 2017). The new taxation system 

comprises of an initial payment (usually included in the ‘on the road’ price from the dealer), 

which is dependent on test cycle CO2 emissions, thereafter there is a flat annual fee. BEVs are 
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completely exempt from all vehicle taxation costs under both taxation schemes but under the 

new VED system all vehicles (including BEVs) with a list price above £40 000 must pay an 

additional annual charge of £310 in ownership years 2 to 5. In theory, this should discourage 

the purchase of large ‘gas guzzlers’, but this cost is only a small fraction of the MSRP of the 

vehicle. 

4.3.2.b Battery Prices 

For Battery price projections, a learning rate approach is used (see Section 2.2.3 for an 

explanation of learning rates and a comparison of battery cost projections). This approach is 

very common in the literature (see Table 4-1) and assumes a certain percentage reduction in 

price with every doubling in cumulative EV registrations. For the projected battery cost, a 

learning rate of 11% is applied in the baseline scenario in line with the lower bound learning 

rate found  from historic Lithium Ion battery pack prices in Schmidt et al. (2017). For the Diesel 

Persists scenario a value of 6% is used in line with the learning rate found in  Nyvist and Nilsson 

(2015). For the Battery Bonanza scenario a learning of 18% is used in line with the upper 

bound learning rate found from historic Lithium Ion battery pack prices in Schmidt et al. 

(2017). In this study it is assumed that future global EV deployment increases in line with IEA 

projections (IEA, 2018a). The IEA projections assume that there will be 130 million EVs by 2030 

under their New Policy Scenario, on average this is a 34% growth of EVs in the vehicle stock 

year on year (IEA, 2018a). Several other EV projections exist in the literature, Bloomberg New 

Energy Finance (BNEF) estimates that by 2040 there will be 559 million EVs in the vehicle stock 

on average this is a 25% growth of EVs in the vehicle stock year on year (BNEF, 2018). 

Estimates by OPEC are lower at 235 million by 2040 on average this is a 20% growth of EVs in 

the vehicle stock year on year (OPEC, 2017), and BP estimate EV stock to be 350 million by 

2040 on average this is a 23% growth of EVs in the vehicle stock year on year (BP, 2019). 

Unfortunately, none of these models are open source, therefore it is impossible to ascertain 

the assumptions behind these projections and the reasons why they are different. 

At present, several different battery types are used in EVs such Lead Acid, Lithium-ion and 

Lithium Iron Phosphate. Lithium-ion batteries have the advantages of high volumetric and 

gravimetric energy density compared to other battery chemistries. Although new battery 

technologies are currently under development, expert opinion concludes that Lithium Ion 

batteries will be dominant in the medium term (Diouf and Pode, 2015). In fact, Toyota made 

the decision to change the battery technology in the 2016 Toyota Prius model from Lead-Acid 
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to Lithium-Ion in line with the Prius plug-in model; all the BEV and PHEV models considered in 

this section utilise Li-ion battery packs.  

Battery technology is improving every year; with batteries gradually becoming cheaper and 

lighter. This leads to BEVs with greater range and longer life spans, there are for example 

several cases of Nissan Leaf vehicles exceeding 100 000 miles without needing battery 

replacement (Kane, 2014). Over the lifetime of the battery, repeated charging and discharging 

leads to a fall in capacity; however, data from over 200 Tesla Model S drivers shows that this is 

less than 10% after 200 000 miles (Lambert, 2018b). Decreasing vehicle mileage with age most 

likely offsets any capacity drop. A recent study suggested that EVs are suitable to replace 87% 

of driving days in the US based on daily driving requirements (Needell et al., 2016); the UK 

National Travel Survey shows similar results (Department for Transport, 2013). However, as 

there is a range of trip distances for many drivers, this leads to the conclusion that several 

different battery sizes may be available for each vehicle model in the future.  

In addition to cost reduction, as battery technology matures the weight-capacity ratio will also 

drop. This leads to lighter vehicle kerb side weight resulting in greater fuel efficiency. The 

effect of the lighter battery was calculated from first principles assuming 80% of the nominal 

battery capacity is utilised and the powertrain has an efficiency of 80% (Besselink et al., 2010). 

Regenerative braking was found to significantly reduce the efficiency gains from weight 

reduction of the battery. With lower battery prices in future, battery sizes are likely to be 

larger; however, comprehensive infrastructure deployment could contribute to solving range 

anxiety. 

Similar to the battery learning rate characterising reductions in battery price due to ‘learning’ 

through increased manufacturing volumes (see section 2.2.3), the vehicle learning rate 

accounts for the lower prices of alternative powertrain components. The 6% value chosen here 

accounts for reductions in the cost of the electric motor system, on-board battery charger, and 

transmission system amongst other electrification costs (Safari, 2018). Profit margins are 

assumed to increase linearly from 0% on BEVs and PHEVs in 2020 to 24.3% in 2040; HEV profit 

margins assumed to stay constant at 24.3% (in-line with Wu et al. (2015)). 

4.3.2.c Future ICEV Costs 

New vehicles need to comply with more stringent CO2, NOx, and PM emission limits 

implemented by the EU (see Chapter 2 for an in-depth discussion of this point). For new 

vehicles to meet these new emission limits, more advanced emissions control technology must 
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be fitted to the vehicle, which will likely lead to increased capital costs.  Initial vehicle prices for 

petrol and diesel ICEVs are assumed to increase over the projected time period in line with 

figures from Hill et al. (2012).  Hill et al. (2012) assumes that the capital cost of petrol and 

diesel ICEVs increases by approximately 15% between 2010 and 2050 with half of this cost 

realised by 2020. The report produced by Hill et al. (2012) is the outcome of an extensive 

literature review of all projections of vehicle capital costs and efficiency gains available at the 

time. The increase in capital cost in these projections stems from increasing powertrain costs 

as a result of higher powertrain efficiency. Other aspects of capital costs are assumed to 

remain static, such as the cost attributed to the glider. However, it is acknowledged that some 

aspects of the capital cost will reduce due to falling prices of new technology with learning 

(e.g. direct injection and variable valve actuation and lift). In addition, step changes in 

technology development cannot be predicted, but could result in step changes in cost. 

4.3.2.d Subsidy 

In the UK, the plug-in vehicle grant applies to BEVs and PHEVs with different subsidy amounts 

between £2500 and £4500 available depending on CO2 tailpipe emissions (see Appendix 4-D 

for details of eligibility and details of how the grant has changed over time), but does not 

extend to HEVs (GOV.UK, 2018). The eligibility of EVs for the plug-in vehicle grant will be 

reassessed in 2020 (Morton, 2018). If the grant is reduced or phased out, this will affect the 

price and attractiveness of EVs.6 

4.3.3 Scenarios  

The TCO model will be used to model three policy scenarios: Business as Usual, Battery 

Bonanza and Diesel persists (summary of the  differences between the assumptions in these 

scenarios are detailed in Table 4-5, the cost assumptions that remain the same across the 

different scenarios are given in Table 4-2). These scenarios are designed to illustrate 

contrasting futures with the types of policies that are pertinent to the current political climate. 

Scenario A – Business as Usual, follows a scenario such that hybrid and electric vehicle growth 

has minimal support. Scenario B – Battery Bonanza, considers longer governmental financial 

support for low-carbon vehicle purchase, extending vehicles and therefore the insecurity of 

stable resale values. The higher depreciation rate of 3% over the three year ownership period  

                                                           
6 In September 2018 it was announced that contrary to previous government announcements earlier in 
the year that the grant would be unchanged until at least 2020, from November 2018 the maximum 
amount available for a BEV would be £3500 and PHEVs are no longer eligible. Unfortunately the results 
of this announcement could not be factored into this thesis as the results had been finalised and most of 
the thesis had already been written. 
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Table 4-5: Underlying assumptions in policy TCO scenarios. This table details the differences 

between the scenarios, all other costs are the same across the scenarios as detailed in Table 

4-2. Note that fuel prices follow the DECC scenarios (see Table 4-2). 

Scenario Financial Policy Battery 

Learning 

Rate 

Fuel 

Price 

A. 

Business 

as Usual 

Plug-in vehicle grant (applied to BEV and PHEV):  

 100% from 2017 to 2019 

 50% from 2020 to 2022 

 0% from 2023 

Diesel ICEV depreciation rate equal to petrol ICEV 

depreciation rate.7 

Diesel ICEV efficiency assumed to rise at a lower rate 

than petrol ICEV (22% vs 33% by 2040). 

11% Low 

B. Battery 

Bonanza 

Plug-in vehicle grant (applied to BEV, PHEV and HEV - 

HEV grant available at 50% of PHEV rate): 

 100% from 2017 to 2029 

 50% from 2030 to 2034 

 25% from 2035 to 2039 

 0% from 2040 

Higher diesel depreciation rate (additional 3% over 3 

year period). 

Diesel ICEV efficiency assumed to rise at a lower rate 

than petrol ICEV (22% vs 33% by 2040). 

16% High 

C. Diesel 

Persists 

Plug-in vehicle grant same as Scenario A.  

Diesel ICEV depreciation rate equal to petrol ICEV 

depreciation rate.  

Diesel vehicle efficiency assumed to rise at the same 

rate as petrol (33% by 2040). 

 

6% High 

Note: 100% represents £4500 for BEVs, £2500 for PHEVs and £1500 for HEVs (when applicable). 

 

                                                           
7 Note that vehicle depreciation rates used in the scenarios are in line with the other chapters in this 
thesis (16.9% annually). 
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was chosen from recent quantitative evidence collated by HPI (2017) that depreciation rates of 

diesel vehicles have risen. To compound this, stricter MOT tests have been introduced for 

DPFs, which are prohibitively expensive to repair. The higher battery learning rate illustrates 

that as EVs receive greater market share initial price falls (the reasons and references for the 

choices of battery learning rates are described in Section 4.3.2). Scenario C – Diesel Persists, 

sets out a scenario where diesel vehicles remain cost competitive as the UK government 

makes a U-turn on its previous assurances.  

This analysis is based on vehicle TCO at a UK national level. Additional factors that maybe 

contribute to the decision to purchase an EV such as availability of public charging points, use 

additional support to hybrid vehicles. The greater depreciation rate for diesel ICEVs reflects 

consumer uncertainty surrounding the future of government policy towards high polluting of 

bus lanes and parking in city centre, are not considered. At present, adequate data is not 

available to evaluate and assess their impact independently. Additionally, these measures are 

not available in all regions. This may be solved in future TCO projections with more research 

into these areas as factors become more widespread across the UK and EV market share 

grows. 

4.4 RESULTS OF UK HISTORIC AND FUTURE VEHICLE TCO 

 Historic TCO Comparison for Different Market Size Segments 4.4.1

Over the past decade, the TCO of different vehicle types over different market size segments 

has varied primarily with changes in initial vehicle price, fuel price and taxes (see Figure 4-1 for 

vehicle TCO for different size segments and ownership types). As expected, the larger vehicle 

size segments generally have greater TCOs with BEVs tending to become the cheaper option 

across all size segments moving towards 2017 (see Figure 4-2 for cost breakdown over 

different size segments). As in the previous chapter, depreciation is the largest cost across all 

size segments with fuel and insurance also featuring heavily (see Figure 4-2). In this section we 

compare changes in TCO with corresponding variation in market share. The correlation 

between these two variables is not necessarily a causation from changing cost, and the market 

may not be very responsive leading to lagged adoption. 

In the private small-sized vehicle segment, the TCO for a hybrid powertrain is greater than that 

for other vehicle types in the small-sized vehicle segment as a result of the vehicle price 

premium. As a consequence, by the end of 2016 small hybrids only accounted for around 15% 

of hybrid market share (Society of Motor Manufacturers and Traders, 2017). The slow rise in  
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Figure 4-1 a-d: Vehicle TCO (full line) and market share of segment (dashed line) for private and non-private (company) car across different vehicle segments. 
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Figure 4-1 e-h: Vehicle TCO (full line) and market share of segment (dashed line) for private and non-private (company) car across different vehicle segments. 
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Figure 4-2: TCO breakdown by segment and ownership type (£2015). 

0

20

40

60

80

100

120

140

160

0

5

10

15

20

25

30

Ra
te

d 
CO

2 
g/

km

3 
ye

ar
 T

CO
 (t

ho
us

na
d 

G
BP

)

BIK Fuel Benefit Charge Depreciation Tax (VED) Maintenance Insurance Fuel Rated CO2 g/km

Private Car Company Car



Micro-Scale Carbon Dioxide () Emission on UK Road Networks using coupled Traffic Simulation 
and Vehicle Emission Models 

 

78 
  

HEV market share from introduction in 2011 to 1.28% corresponds to a gradual fall of HEV TCO 

by 15% from 2011-2015, this mainly stems from falling fuel price along with a small reduction 

in initial vehicle price. For BEVs the gradual fall in TCO 2011-2016 is approximately 7%, 

primarily because of falling vehicle price, corresponds to a gradual rise in market share from 

2011 to 2016 to 0.19% market share. This is followed by an increase in BEV TCO in 2017 

(around 1% from rising electricity prices), which corresponds to a fall in market share to 0.05%. 

Dieselisation in the small sized vehicle segment remains low at below 20%. From 2013, diesel 

ICEV TCO has been greater than petrol ICEV. It is expensive to equip small vehicles with 

emissions reduction technology; therefore, we anticipate a larger price increase for diesel 

ICEVs in the small sized vehicle  segment than the larger sized segments.  

In the private medium sized vehicle segment, the gradual fall in HEV TCO by 12% from 2010 to 

2016, because of falling fuel prices, corresponds to a gradual rise in market share from 0.80% 

to 0.94%. There is a large increase in HEV market share in 2017 to 1.74% despite a 4% increase 

in TCO - as a result of changing tax rates. PHEV TCO decreases by 15% from 2012 to 2016 

because of falling initial vehicle price that corresponds to a market share increase to 0.06%. 

There is a jump in market share in 2017 to 0.18% despite a 1% increase in TCO as a result of 

increasing VED rates for all vehicles. BEV TCO falls by 24% between 2011 and 2015, more than 

any other powertrain types because of falling initial vehicle price. Market share increases 

slowly over this period to 0.36%. The slight rise in BEV TCO in 2016 by 1% corresponds to a 

small fall in market share to 0.30%. The rise of dieselisation in the medium size segment is 

notable from 20% to 70% between 2000-2011 followed by a gradual fall to 45% market share 

by 2017. Diesel ICEV TCO has historically been cheaper than petrol ICEV, this was the case until 

2017. 

The ‘typical’ vehicles chosen in the large car segment have different attributes (see Appendix 

4-A) therefore we cannot necessarily expect vehicle TCO to be entirely comparable. To 

illustrate this, the HEV model chosen is the bestselling of its powertrain type in this size 

segment but the vehicle price is significantly more expensive than the other vehicle types 

(£45 000 for the HEV in 2010 compared to £34 000 for the petrol ICEV). For the HEV choice of 

model for the private owner, the large drop in price in year 2013 is due to the introduction of a 

cheaper model (the Lexus GS 350h); this corresponds to a rise in market share by 0.24%. The 

PHEV TCO is closer to the diesel ICEV TCO than the petrol ICEV TCO. There has been a 

significant rise to 0.42% market share from 2014 to 2016, despite rising costs.  

In the private large+ segment, the fall in HEV market share in 2010/2011 from 0.5% to 0.37% 

corresponds to a rise in TCO due to a spike in fuel price. Similarly, the rise in market share in 
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2015 corresponds to a 10% fall in TCO because of a dip in fuel prices. PHEV TCO falls by 6% 

from 2013 to 2015 due to reduced initial vehicle price with a corresponding market share rise 

of 1.03% to 2.53%, and a TCO rise of 4% from 2015-2016 due to an increase in initial vehicle 

price corresponding to a fall in market share to 1.67%. Rise of dieselisation in the large+ 

vehicle size segment is similar to the large car segment, from 35 to 85% market share between 

2000 to 2011, then a decrease to 75% by 2017. The difference in TCO between diesel ICEVs 

and petrol ICEVs has historically only been between £500 and 1000, indicating that high 

mileage diesel vehicles may be the cheapest option. The rise of dieselisation in the large+ size 

segment is greater than any other size segment, from 20% to 85% from 2000 to 2013, then a 

small decrease to 75% by 2017. Historically diesel ICEVs are more than 5% cheaper than petrol 

ICEVs. 

Company car costs have increased between 2010 and 2015 for all vehicle types and size 

segments as a result of the BIK rates increasing (see Appendix 4-B for details of BIK 

percentages over time). Despite rising costs, the market share of HEVs, PHEVs and BEVs has 

increased in all size segments. PHEVs have the highest market share of  the three vehicle types, 

with nearly 4.5% market share in the large size segment and nearly 2% in the large+ size 

segment. Diesel vehicles have had an additional 3% BIK surcharge since 2010 to reflect their 

detrimental contribution to air quality. Despite this, diesel company cars are still 

approximately the same price as petrol ICEVs due to their lower rated CO2. The larger car size 

segments have seen higher market share of company car PHEVs whereas the medium size 

segment has been the segment with highest market share for HEVs. The step change in costs in 

2001 are due to a change in the way the BIK rates were calculated, whereas other step 

changes are due to introduction of an updated model with a different rated CO2 (e.g. medium 

size HEV in 2010 from new Toyota Prius model release). 

Evidence from the literature indicates that business purchases are more economically rational 

than in the private market (as discussed in section 2.2.2). The results of the analysis in this 

chapter find that it is clearer to attribute changes in cost to market share for the private 

market rather than the business market. The private market appears to be more responsive to 

changing external costs than the business market. This reduced sensitivity goes against the 

literature suggesting that fleet buyers are more sensitive to cost. 

One of the key financial policies that has affected vehicle TCO is the change in VED. The new 

VED system was introduced to address the falling tax revenue as a result of the historic shift 

towards low carbon vehicles and artificially low CO2 test ratings. If we assume all ownership 

costs remain the same apart from the VED change, Figure 4-3 shows that vehicle ownership  
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Figure 4-3: Plot of each ‘representative’ vehicle’s rated CO2 (g/km) by the percentage increase 

in private vehicle TCO as calculated before and after the new VED tax system was introduced in 

April 2017. This calculation assumes all costs are the same for the vehicle TCO except for the 

change in VED. This figure shows that TCO has increased for all vehicles except BEVs. Vehicles 

in the small and medium size segments have seen a larger percentage ownership cost rise than 

those in the large and large+ size segments. 

costs have increased for all vehicles except BEVs. If we focus on HEVs, calculations show that 

across the HEVs of different sizes, HEVs in the small sized car segment are hit with the greatest 

percentage cost increase. Surprisingly, HEVs in the large sized vehicle segment have not 

experienced a tax increase because large HEVs have high test cycle CO2 emissions, for example 

the Lexus GS 450h (141 g CO2/km).  Moderate cost increases are seen for HEVs in the medium 

and large+ sized vehicle segments. PHEV owners will see the highest rise in VED across all 

vehicle types (see Figure 4-3), with more than a 4% cost increase in ownership costs. Nearly 

80% of PHEV market share is in the large/large+ vehicle size segments. These large vehicles are 

expensive with a list price of over £40 000 and are therefore liable for the additional £310 tax 

from year 2 to 5 of vehicle ownership. PHEVs already have a price premium resulting from 

their large battery and hybrid powertrain therefore an additional cost of around £1000 could 

affect whether consumers choose a PHEV or not. Over 80% of all PHEVs are bought as 

company cars, these vehicles are often sold on the general second-hand vehicle market at the 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120 140 160

In
cr

ea
se

 in
 V

eh
ic

le
 T

CO
 (

%
)

Rated CO2 (g/km)

BEV

Medium: PHEV

Large: PHEV

Large+: PHEV

Small: HEV

Medium: HEV

Large: HEV

Large+: HEV

Small: Petrol ICEV

Medium: Petrol ICEV

Large: Petrol ICEV

Large+: Petrol ICEV

Small: Diesel ICEV

Medium: Diesel ICEV

Large: Diesel ICEV



Micro-Scale Carbon Dioxide () Emission on UK Road Networks using coupled Traffic Simulation 
and Vehicle Emission Models 

 

81 
  

three-year mark and therefore as the additional £310 is payable for ownership years 2 to 5 this 

will affect the next vehicle owner. 

For BEV buyers there is no change in VED tax. In fact, with tax increasing for nearly every other 

vehicle, this makes zero emission vehicles even more attractive. In the small and medium 

vehicle size segments, BEVs have the cheapest ownership costs compared to other vehicles in 

the size segment. 

As the new taxation system was designed to boost revenue, under this new scheme VED is 

either the same cost or is more expensive for all vehicles. For petrol and diesel vehicles, the 

small size segment vehicles experienced the biggest relative rise in cost. Small vehicles on 

average have lower CO2 emissions than larger vehicles; therefore, historically they have been 

exempted from paying vehicle tax. Less fuel-efficient vehicles in the larger sized segments 

experience a much smaller relative tax increase. 

Diesels in all size segments experience a VED tax increase. Historically, diesel cars have been 

favoured in the UK and across Europe because of higher fuel efficiency over conventional 

petrol vehicles (see Section 2.3.2 for more details). However, this vehicle type has been under 

high scrutiny recently as studies have found them to be the key cause of urban air pollution. 

Despite more stringent emissions legislation diesel cars still have poor air quality performance. 

Therefore, with air pollution exceeding legal limits in many cities across the UK, the 

government is trying to reverse fleet dieselisation. This new taxation system does not appear 

to discourage diesel purchases in the smaller size vehicle segments, however, in the larger size 

segments diesels vehicle tax rises much more than for petrol vehicles. Small diesels are the 

worst NOx emitters, as larger vehicles often have better NOx controls due to fewer budget 

constraints, for example the VW Passat 0.09 g/km NOx versus the VW polo 1.2 g/km NOx 

(Moody and Tate, 2017). 

Large petrol and diesel cars have experienced the smallest tax increase across all size 

segments. These vehicles account for only around 5% of vehicle market share but are often 

high mileage business cars with low occupancy rates. With only a small tax increase it is 

unlikely that purchasing behaviour would change in the large size segment. 

 Historic TCO Comparison Between Different Ownership Types 4.4.2

Private car TCO and market share are more closely linked than company car cost and market 

share. This is evident from Figure 4-1, where private car market share is more reactive to 

changing cost than for the company car. The cost variation between different vehicle types is  
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Figure 4-4a: TCO scenarios – small size car segment. 
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Figure 4-4b: TCO scenarios – medium size car segment. 
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Figure 4-4c: TCO scenarios – large size car segment. 
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Figure 4-4d: TCO scenarios – large+ size car segment. 
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greater for company cars than for private cars. Low-emission vehicles such as BEVs and PHEVs 

have very low BIK rates and this offsets their high initial price. Generally, BEVs have higher 

market share in the private car market, whereas the majority of PHEVs were registered on the 

non-private vehicle market.  

Across the different vehicle size segments, generally the larger the vehicle the greater the TCO 

(see Figure 4.1 a-h for details of historic vehicle TCO); this is true for both the private and 

company car costs. Company car purchases dominate large and large+ vehicle size segments 

(over 75% of new vehicle registrations). Company car taxes are graduated based on CO2 with a 

surcharge for diesel (4% on the standard BIK rates - see Appendix 4 for full details), therefore 

company car purchases strongly favour vehicles with low rated CO2. The differentiation is 

greater than for VED, for example the company car tax payable for 2018/2019 is £1824 for the 

BMW 5 series (petrol), £2100 for the diesel version and £903 for the Mitsubishi Outlander 

PHEV.  Such a difference in costs can explain the high sales of Mitsubishi Outlander PHEVs in 

the non-private car market. Non-private vehicle purchases account for approximately 50% of 

new car registrations, therefore company car tax is a key policy tool for influencing EV 

purchases and deterring investment in diesel ICEVs. 

 Future TCO Comparison Between Different Market Size Segments  4.4.3

Based on this analysis, with falling costs, BEV uptake could be strong in the medium and large+ 

size segments (see Figure 4-1 a-h for HEV, PHEV and BEV market share across the different 

vehicle size segments) but financial subsidies and tax policy would have to support this. Cost 

components vary over market size segment, vehicle type and purchase year (see Figure 4-4 a-d 

for details of past and future vehicle TCO). Across the three scenarios, Battery Bonanza leads 

to the greatest divergence in vehicle TCO across powertrain types towards 2040. Towards 

2030, EV TCO falls as a result of falling battery prices and lower manufacturing costs as global 

deployment grows. EV TCO increases towards 2040 as a result of increasing profit margins. The 

step changes in costs for BEVs and PHEVs (for example in 2020 and 2025 the baseline scenario) 

are a result of the assumed reduction in the Plug-in vehicle grant. 

The small and medium size car segments account for over 70% of market share. Therefore, 

vehicle TCO in these markets are of key importance. In the small vehicle size segment, diesel 

ICEVs increase in cost faster than all other vehicle types in all three scenarios considered. This 

is most evident in the Battery Bonanza scenario as a result of the increased depreciation rate 

(see Table 4-5 for scenario details). In all the scenarios, HEVs are cheaper than ICEVs by 2025 

at the national average annual mileage of 10 400. Long-term support of the Plug-in vehicle 
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grant enables hybrid and EV TCO to fall further. It is likely in this scenario that OEMs would 

increase their profit margin to make up for losses as consumers switch away from petrol and 

diesel ICEVs (Wu et al., 2015). At present, there is no PHEV TCO for the small car size segment. 

With battery prices falling, it is anticipated that by 2040 battery and electrification costs would 

be low enough that PHEV models will be cheap enough to be introduced in the small size car 

segment. 

 In the medium size segment, BEVs are the cheapest vehicle type across all scenarios by 2040.8 

This is not the case in the small size segment because the battery in the Renault Zoe (the small 

BEV) is only 2 kWh smaller than that in the Nissan Leaf (the medium BEV) (22 kWh vs 24 kWh). 

By 2023, HEVs are cheaper than petrol and diesel ICEVs, this comes even sooner in the Battery 

Bonanza scenario with the Plug-in vehicle grant extended to support HEVs. PHEV vehicles in 

the medium size segment are very expensive because of their dual powertrain.  

The large car size segment only accounts for 7% of the market share. Most vehicles (64%) in 

the large car size segment are bought as business or fleet purchases. In the large car size 

segment the purchase price of diesel ICEVs is less than petrol ICEVs, leading to a lower TCO for 

diesel vehicles (see Figure 4-2). For example, in 2015 petrol ICEV is £33 000, whereas diesel 

ICEV is £32 000. The large car size is the key segment where diesel vehicles could persist unless 

company car tax is sufficient to deter purchase of diesel vehicles. At present, PHEV TCO is 

greater than petrol and diesel vehicles. Battery prices need to fall dramatically for PHEVs to 

become cheaper than other vehicle types even in the Battery Bonanza scenario. PHEVs have 

only recently been introduced into the large size segment, in other size segments PHEVs have 

fallen in cost after introduction.  

The large+ size segment accounts for 22% total car market share, approximately 65% of these 

are non-private registration and diesel ICEVs feature prominently in the large+ size segment. In 

this segment BEV TCO are projected to be significantly lower than other vehicle types by 2018 

in all scenarios. The BEV chosen as the representative vehicle in this segment is not an SUV 

(unlike the other comparison vehicles) and therefore this may not be a truly comparable 

vehicle for consumers in this segment. PHEV TCO is greater than petrol and diesel ICEV TCO 

until around 2025. Note that the PHEV in the large+ size segment (Mitsubishi Outlander PHEV) 

is very popular in this company car market accounting for 75% of all PHEV purchases.  

                                                           
8 In these cost scenarios the Nissan Leaf has a battery size of 24 kWh as was the case from release in 
2010 to September 2018 when the new model of the Nissan Leaf was released with a slightly higher 
MSRP but a battery size of 40 kWh. At the time of this announcement the analysis in the thesis could not 
incorporate this information but the author is aware of this battery capacity step change. 
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4.5 DISCUSSION OF OTHER FACTORS AND COMPARISON TO THE TCO 

LITERATURE 

 Other Factors and Uncertainties Affecting TCO Projections 4.5.1

Historically there has existed variation in market share of different types of hybrid and electric 

vehicles across size and ownership segments (see Figure 4-1 for HEV, PHEV and BEV UK market 

share split by size segment and ownership type). The results and analysis in this chapter are 

dependent on the assumptions made regarding the cost components used in the TCO 

calculations. It is acknowledged that the assumptions made regarding the values chosen for 

the different parameters could have a significant effect on the conclusions drawn. Future 

vehicle costs are inherently uncertain but the scenarios in this chapter try to capture a 

proportion of this uncertainty.  

Across the future scenarios considered in this chapter, hybrid and electric vehicles in the 

private market are likely to reach cost parity with petrol and diesel ICEVs at different points in 

time depending on the size segment – by segmenting the market there is greater insight into 

the cost projections. In this study it was found that BEVs could remain cost competitive across 

all size segments if there are favourable market conditions (as described in Scenario B in 4.3.3).  

Even under less favourable market conditions (as described in Scenario C in 4.3.3) BEVs could 

be cost competitive across all size segments without subsidies by 2030. PHEVs were found to 

take between 5 and 15 years longer to reach cost parity with ICEVs than BEVs. In most 

scenarios and size segments HEVs were found to have a higher TCO than BEVs in the long 

term. 

At present the Manufacturer Suggested Retail Price of EVs may be artificially lower as OEMs 

are selling these vehicles with very small profit margin (Wu et al., 2015). OEMs need to meet 

EU mandated fleet average g CO2/km targets by 2020, with each individual BEV counting for 

multiple vehicle sales (referred to as super-credits – see Section 2.3.1), therefore it has been 

found that these vehicles are being sold with a lower profit margin to stimulate sales (Wu et 

al., 2015). As the number of  EVs manufactured rises over time, the cost of producing these 

vehicle types will most likely fall due to economies of scale, and the profit margin applied to 

these vehicles by OEMs will most likely increase to compensate for lost revenue from 

decreasing sales of petrol and diesel ICEVs (Wu et al., 2015).  

The accessibility and price of charging infrastructure could affect adoption of EVs (Coffman et 

al., 2017). Experts consider fast charging infrastructure will most likely compliment the use of 
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domestic charging points (IEA, 2018a). Access to fast charging infrastructure could enable EV 

drivers to travel further but primarily EV charging is anticipated to happen overnight. In the 

UK, publicly accessible charging points are often subsidised, but moving forward charging 

tariffs are likely to increase so that this can become a revenue stream for Local Authorities 

(Transport&Environment, 2018). Electricity prices may increase as the number of EVs grows, 

there are other policy options for potential falling revenue from petrol and diesel fuel sales 

such as road user charging. Although this option has been adopted in parts of cities such as 

Stockholm and Singapore, the political viability of implementing this option is challenging 

(Olszewski and Xie, 2005; Hensher and Puckett, 2005; Eliasson et al., 2009). 

Market share of diesel ICEVs has fallen from 47% to 42% from 2016 to 2017 (Society of Motor 

Manufacturers and Traders, 2017). This is a result of a number of factors such as the public 

knowledge that diesel cars have contributed to urban air pollution (Schmitz et al., 2018); issues 

with compatibility of diesel ICEVs with LEZs (RAC, 2018a); the stricter MOT checks to detect 

failed DPFs (Evans, 2018); and the announcements of OEMs that diesel ICEV manufacturing will 

ramp down in the near future (IEA, 2018a). All these factors can contribute to uncertainty for 

consumers when considering vehicle purchase options. Such uncertainty is likely to lead to 

higher depreciation rates for diesel ICEVs towards 2040 (Morley, 2017b). In this thesis, all 

hybrids in this section are considered to be petrol rather than diesel. There are currently a 

small number of diesel HEV models available, but these only account for 1.2% of HEV market 

share. As market share of diesel cars has most probably peaked it is unlikely that diesels will 

expand significantly into the hybrid market.  

As the VED tax system changed in 2017, it begs the question whether these increases are large 

enough to change vehicle purchase behaviour. As discussed in section 2.2.2, the actual value of 

financial incentives is not usually the same as the perceived value to the consumer. Therefore 

changing the tax system could be under or overvalued by consumers. PHEVs are seeing the 

biggest cost increase because of their large list price. On the other hand, the relative increase 

in tax on smaller vehicles is greater than other size segments because small vehicles tend to 

have lower CO2 emissions and therefore historically have paid relatively little vehicle tax. The 

new VED tax system could lead to a shift away from smaller or low-carbon vehicles. 

Other factors such as Mobility as a Service (MaaS) could affect vehicle ownership if adopted on 

a city scale (see Chapter 2 for more details). Similar to the current business market, ride-

sharing companies would probably undertake a TCO assessment to ascertain which vehicle 

type could be cheapest. Such a TCO assessment would include the key TCO parameters from 
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this chapter, certain component costs such as fuel and maintenance would most likely be 

greater than this study stemming from the high mileage of ride sharing vehicles.  

 Comparison to Other Studies 4.5.2

Other studies (described in Table 4-1) have projected future EV costs. Wu et al. (2015) 

forecasts that BEV TCO decreases to 2020 (these results agree with that of the analysis of this 

chapter) then increases after as a result of increasing profit margins. Petrol and diesel ICEV, 

and HEVs are projected to have stronger increase in TCO than PHEV or BEVs. For the short 

distance use case, the average TCO for PHEV and BEV is likely to remain higher than TCO of 

ICEV and HEV. Similar to the results of this chapter, PHEVs are predicted to have a greater TCO 

than BEVs. Wu et al. (2015) do not consider subsidies in their bottom up TCO model.  

Hill et al. (2012) predict that the overall reduction in energy consumption between 2010 and 

2050 ranges from 27%-50% depending on powertrain, this is a much greater energy efficiency 

gain than projected in this chapter. The difference in capital cost between powertrains are 

expected to narrow substantially by 2030 (similar to the results of this analysis), with many 

alternatives becoming cost-competitive if fuel savings are included.  Similar to the results of 

this study, the battery cost reductions are important. Under low cost assumptions, BEV cars 

become comparable in price to ICEVs by 2050, a longer time scale than in the analysis in this 

chapter. 

Contestabile et al (2011) identifies that market segmentation is key to future TCO studies, and 

the analysis of this chapter also find that powertrain TCO varies substantially across different 

vehicle classes. Douglas and Stewart (2011) produced a detailed TCO study that is quite dated 

now. They found that the TCO of the HEV, PHEV and BEV remains significantly greater than 

petrol and diesel ICEVs by 2025, contrary to the results of the analysis in this chapter especially 

for the small and medium vehicle classes. Thiel et al (2010) find that the high cost penalty that 

is linked to BEVs and PHEVs will remain a problem until 2030.   

McKinsey (2012) find that PHEVs are more economic than BEVs in the short term but by 2030 

PHEVs may be cost competitive with BEVs for small and medium cars, a similar result to that in 

this study. Fuel economy of ICEVs is expected to improve by an average of 30% by 2020, a 

more optimistic figure than used in this analysis.  McKinsey (2012) finds that BEVs and PHEVs 

are viable alternatives to ICEVs by 2025, the analysis in this chapter agrees with this for most 

vehicle classes depending on the scenario. With tax incentives, BEVs could be cost-competitive 

with ICEVs as early as 2020. 
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4.6 SUMMARY AND CONCLUSIONS 

This chapter examines how vehicle TCO changes across different vehicle size segments in the 

UK market. Investigating TCO by vehicle size segment and ownership type led to greater insight 

into how and why ownership costs have changed over time. It concludes that the difference 

between vehicle TCO amongst EVs and petrol/diesel cars varies over these size segments. 

Future vehicle costs will be affected by changes in several variables: primarily fuel price, 

battery price, and taxes. In fact, VED tax changes in 2017 affect PHEV purchasers greater than 

those who purchase other vehicle types. Based on this analysis, with falling battery costs, BEV 

uptake could be strong in the medium and large+ size segments but financial subsidies and tax 

policy would have to support this. Private car TCO and market share were found to be more 

closely linked than company car cost and market share; such that private car market share is 

more reactive to changing cost. The historic variation in company car cost was found to be 

more dependent on changing BIK tax rates than vehicle prices.  

This chapter has built upon the TCO methodology from Chapter 3, extending the cost model to 

assess future vehicle cost scenarios. The cost scenarios in this chapter illustrate the uncertainty 

in future vehicle costs. Utilising the results of Chapter 3, that showed that vehicle TCO and 

market share were linked, along with the vehicle cost scenarios in this chapter, in the next 

chapter a vehicle adoption framework is introduced. The medium size segment is the most 

popular vehicle segment; therefore, this size segment is used as a case study. Although there is 

a difference in cost between different size segments, the general trends of falling 

hybrid/electric vehicle costs and rising petrol/diesel costs are similar across all vehicle size 

segments and using segmentation in this framework would give a false sense of accuracy. In 

addition, because the variation in company car cost was found to be more dependent on 

changing BIK tax rates than vehicle prices, and private car market share is more reactive to 

changing cost than company car market share, the market is not segmented by private and 

company car. In fact, the BIK rates for low emission vehicles have increased in recent years 

compared to petrol/diesel ICEV BIK rates, therefore market segmentation by purchase type is 

considered to add little value. Finally, in Chapter 6, the vehicle adoption scenarios from 

Chapter 5 are utilised to estimate the future on-road fleet mix under the three different 

scenarios outlined in this chapter leading to an assessment of network level vehicle emissions.  
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CHAPTER 5: MARKET DIFFUSION MODELLING OF THE 

FUTURE FLEET: LIMITATIONS AND EXTENSIONS 

5.1 INTRODUCTION 

In the coming decades, the vehicle sector is anticipated to transform as a result of changes in 

policy and public opinion. Diesel vehicles are largely held responsible for dangerous levels of 

urban air pollution , therefore the road transport sector is struggling to adapt with pressures to 

cut local air pollutants whilst reducing greenhouse gas emissions. With increasing news 

coverage publicising the high NOx and particulate emissions from diesel vehicles, along with 

the VW dieselgate scandal, attitudes towards diesel vehicles are changing. Already in 2017 

there is evidence that diesel vehicles are falling out of favour; market share has dropped by 

10%, reversing recent trends. 

Policymakers are considering policies to address the problems of urban air pollution such as 

the introduction of Clean Air Zones and Ultra Low Emission Zones. Hybrid and electric vehicles 

offer a low-pollutant alternative to conventional vehicles therefore sales could surge as 

consumers move away from traditional diesel cars. Hybrid and electric vehicle technology is 

advancing, with research and development in batteries leading to lighter, cheaper and more 

reliable models. As a result, hybrid and electric vehicle capital costs are falling, all-electric 

range is increasing, and consumer confidence is growing. Consequently, consumers are 

recognising the benefits of owning low-emission vehicles with record sales in 2017 (see Section 

2.3.3). Taking the current challenges and opportunities facing the vehicle sector, up to date 

scenarios of vehicle adoption are interesting for policymakers who are trying to plan for the 

future. 

This chapter considers  future scenarios of electrification of the private vehicle sector in the UK 

from 2015 to 2040. Note that business cars are not modelled separately as it was found in the 

previous chapter that the link between cost and market share was primarily dependent on 

changing BIK tax rates. Therefore, the large uncertainties associated with estimating future tax 

costs based on the rated CO2 emissions from the newly introduced WLTP test cycle combined 

with the changing BIK rates, leads to the conclusions that scenarios of company car costs 

would create a false sense of accuracy without providing any real insight. In Chapter 3 HEV 

TCO was found to be linked with market share, therefore the modelling in this chapter takes 

vehicle TCO projections (from Chapter 4) into account when modelling scenarios of the 

composition of future vehicle registrations.  
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The aim of this chapter is to assess the limitations of the standard market diffusion 

methodologies, evaluate how sensitive the standard market diffusion models are to different 

inputs, and assess when the standard market diffusion modelling method should and should 

not be applied to vehicle adoption. This chapter also considers a modelling framework that has 

a generalised form (e.g. generalised to include vehicle TCO) of the Bass model that is used to 

model different vehicle adoption scenarios. Without budget and time constraints, other 

approaches such as agent or choice models may be  more insightful. 

This chapter investigates the limitations of the three main standard market diffusion models – 

the Bass, Logistics and Gompertz models - also considering a simple generalised model. The 

generalised model estimates vehicle market share from 2015-2040. Other market diffusion 

scenarios have been published, but many only consider the standard market diffusion model 

without including a cost element. Often these use short data series or apply growth rates that 

have not been recalculated to adjust for the new market saturation level. The results of this 

chapter will feed into the next chapter (6) where the vehicle market share scenarios are used 

to estimate on-road fleet share then input into a coupled microsimulation traffic and 

instantaneous vehicle emissions model. For the purpose of this thesis, another set of pre-

existing scenarios could have been used for input to Chapter 6. However, the author wished to 

fully explore the limitations of this modelling method, as well as using the vehicle TCO 

scenarios constructed in Chapter 4. 

5.2 MARKET DIFFUSION MODELLING LITERATURE  

Many studies have projected adoption of electric vehicles using a range of methods, such as 

agent-based models (e.g. Eppstein et al. (2011)) , consumer choice models (e.g. Brand et al. 

(2017) and Hackbarth and Madlener (2013)), systems dynamics (e.g. Struben and Sterman 

(2008)), and diffusion rate/time series models (e.g. Mcmanus and Senter (2009)). Agent-based 

models use computer simulated agents with individually assigned characteristics. These agents 

interact with each other, which in turn influences their purchase decisions. Consumer choice 

models are less complex than agent-based models as they use an aggregate level approach. 

Agent-based models and consumer choice models take into account complex interactions that 

are difficult to model accurately. Agent-based models and consumer choice models are usually 

reliant on large survey datasets, which can be challenging to deliver and expensive to attain 

(for a comprehensive review of papers using these methods see Al-Alawi & Bradley (2013a), 

Jochem et al. (2017) and Gnann et al. (2018)). Despite widespread acceptance of choice 

models, there are limitations stemming from the use of survey data that can rapidly become 
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outdated. Opinions change with advancing technology and social exposure to new products. 

Additionally, surveys are often localised to a particular city and demographic, therefore they 

can be biased. 

Market diffusion modelling has been applied to technology adoption in many different sectors 

including mobile phones (Michalakelis et al., 2008), electronics (Ford et al., 2006), renewable 

energy technologies (Rao and Kishore, 2010) and transportation (Mcmanus and Senter, 2009). 

It has the advantage over other modelling approaches, such as consumer choice or agent-

based decision models, that it uses a simple design which accounts for social interactions and 

visibility of new technologies to model sales of consumer durable goods at an aggregate level 

(Bass, 1999). There is no need for expensive and time-consuming surveys, instead models are 

calibrated either using past data or assuming adoption will follow the same pathway as 

established technologies. However, there are systemic limitations to the market diffusion 

modelling methodology. Inaccuracies arise mainly from the need to specify the technology 

market potential, therefore if this method is used for future projections it can only be 

considered accurate if sales have reached the inflection point (the point at which the rate of 

new adoption has been reached) (Lindqvist and Puumalainen, 2001). This raises the question 

of how market diffusion models can be applied to gain a useful insight into future 

technological adoption pathways when the status of the technology adoption is pre-inflection 

point. 

Several diffusion models are used in the literature but the Bass model features most 

prominently (Jochem et al., 2017). The Bass model accounts for two adoption factors: 

imitation – where adopters copy those that have already purchased the new technology, and 

innovation – where adopters chose to purchase the new technology despite lack of social 

exposure. This method builds mathematically on the notion of Roger’s classical diffusion 

theory where cumulative adoption follows an S-shaped curve (see Figure 5-1). The first portion 

of adopters are labelled innovators, the later the individual adopts the greater they are said to 

imitate others following external factors rather than innovating according to internal attributes 

(Rogers, 2004). The Gompertz and Logistic models are a variant on the S-shaped growth curve, 

but are less common in the literature. Other similar market diffusion models exist (see Meade 

and Islam (2006) for full details of such models), but as these offer no advantage over the 

models discussed here therefore they are not included in this study.   

The market diffusion literature is fairly limited compared to the wider vehicle adoption 

literature (Jochem et al., 2017).  The studies that are available mainly examine the adoption 

pathways of hybrid or electric vehicles; investigating the potential for hybrids and electric  
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Figure 5-1: Typical market diffusion adoption curve. 

vehicles in the road fleet (see Table 5-1 for review of vehicle adoption diffusion literature). The 

diffusion literature can be divided into two distinct groups: studies which project vehicle 

adoption by estimating diffusion parameters from historic data (e.g. Lamberson (2011), Cordill 

(2012) and Shoemaker (2012)) and those that use authoritative estimates (e.g. Won et al 

(2009), Davidson et al. (2013) and Park et al. (2011)).  The Bass model is most commonly 

applied although several studies extend the basic model to include other pertinent factors 

such as vehicle cost or expanding the availability of charging infrastructure (e.g. Park et al. 

(2011)). Most studies specify the saturation point whereas others estimate this based on 

fitting the model to the historic data. Few of these papers have touched on the uncertainties 

associated with market diffusion modelling, such as Massiani et al. (2015) who explore the 

relationship between saturation level and parameters in the Bass model. Instead, most apply 

this method without taking model limitations or sensitivities into account. This is considered 

the first study to fully assess these sensitivities and to provide a framework for which to apply 

this relatively simple method within the context of fleet level vehicle adoption. 

Many researchers have applied market diffusion modelling techniques (see Table 5-1 for 

market diffusion literature) but these studies have not illustrated how the method should be 

applied to minimise forecast error or do not have sufficient time-series data to make adequate 

projections. In light of the limitations of market diffusion modelling, this chapter explores how 

the diffusion methodology can be suitably adapted and applied to investigate the effect of 

different policy scenarios on vehicle adoption. Using hybrid vehicle adoption as a case study,  
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Table 5-1: Market diffusion literature. 

Study Time Window Powertrain Type  Model Type Location Saturation Point Model parameters 

Davidson et al. 

(2013) 

2013-2027 BEV  Bass California’s Santa 

Delano Valley 

0.03, 0.25, 0.7 

households 

Authoritative 

Sources (Becker 

2009)  

Park et al. (2011) 2011-2050 Fuel cell  Generalised Bass Korea, Japan and 

US 

Total vehicle fleet Japan HEV annual 

sales 1997-2006 

Won et al (2009) 2009-2052 PHEV Bass Korea Total vehicle fleet HEV annual US 

sales 1999-2008  

Lamberson (2011) 2011-2025 HEV Bass and Gompertz US 1.6 mln vehicles Monthly US sales 

Feb 2001 – Oct 

2007 

Cordill (2012) 2012-2022 Prius, Civic, Ford 

Escape HEV 

Bass US 2.87, 3.68, 0.36 mln 

respectively 

US sales 1999-10 

Schoemaker (2012) - AFVs Bass US 435 000 vehicles Monthly AFVs sales 

Dec 1995-Dec 2011 

Massiani et al. 

(2015) 

- LPG, CNG, HEV, EV Bass Germany Endogenous 

estimates based on 

different p values.  

Exogenous: 10 mln 

Annual, AFV, 2005-

2013, Monthly AFV 

Jan. 2009 to Sept. 

2014 
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Table 5-1 continued…      

Study Time Window Powertrain Type  Model Type Location Saturation Point Model parameters 

Jensen (2014) 2014-2020 BEV  Bass Norway, The 

Netherlands and 

Denmark 

Exo: discrete choice 

model 

Jan 03-Jun 13 

 

 

Cao (2004) 2003-2025 E85, CNG, HEV Bass US 245 971, 100 000, 

EIA scenario 19 mln 

vehicles 

1993 – 2002 annual 

McManus and 

Senter (2009) 

2010-2050 PHEV Bass, Generalised 

Bass, Logistic and 

Gompertz 

US 1.9 mln vehicles Annual data 1999-

2008 

Benvenutti and 

Reibero (2017) 

1980-2030 AFVs and 

conventional 

vehicles 

Generalised Bass Brazil Increasing based on 

cost 

Annual data 1980-

2016 

This study 2000-2040 BEVs, PHEVs, HEVs, 

Diesel and petrol 

cars. 

Generalised Bass 

(includes Bass, 

Gompertz and 

Logistic) 

UK Increasing based on 

cost 

Monthly and 

Annual data 2000-

2016 

Note that AFV stands for Alternatively Fuelled Vehicles.
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this chapter assesses the potential of the standard market diffusion models, as well as the 

market share adoption scenarios that can be achieved within a limited budget and under rigid 

time constraints. By applying this modelling framework, this study produces new up-to-date 

scenarios for the future vehicle registrations under different vehicle cost scenarios. These 

scenarios are not directly forecasts of the vehicle fleet, but are realistic futures that illustrate 

the difference cost plays in vehicle adoption. Disaggregate modelling approaches such as 

choice modelling are widely accepted as the optimum method of modelling vehicle adoption 

pathways. Many projects do not have the time or financial resources to utilise disaggregate 

modelling approaches, therefore in these situations the market diffusion methodology may be 

the best approach to gain the necessary level of understanding. Aggregate models such as 

diffusion models are easily updated as the market changes. 

5.3 INVESTIGATION INTO STANDARD MARKET DIFFUSION MODELS 

 Standard Market Diffusion Model Methodology 5.3.1

The diffusion equations model adoption such that the number of hybrid/electric vehicles in the 

fleet follows an S-shaped growth curve (see Figure 5-1). The standard Bass and Logistic curves 

are symmetric around the inflection point (the point at which the rate of new adoption has 

peaked) whereas the Gompertz curve is asymmetric with the inflection point reached below 

half of the saturation level. In the standard model, the saturation level is specified by a 

constant in each model (exogenous) or can be estimated within the model (endogenous).  

However, this cannot be accurately approximated within the model unless the inflection point 

has been reached, which is not the case for hybrid or electric vehicles in any vehicle market 

across the world.  

The Bass model builds on the notion of Roger’s classical diffusion theory where consumers 

adopt depending on whether they innovate or imitate (Rogers, 2004). The equation governing 

the Bass model is given by: 

𝐴 = 𝑀
1 − eି(௣ା௤)௧

1 − 𝑒
ି

௤
௣

(௣ା௤)௧
 

where A denotes cumulative adoption, t for time, p is the innovation diffusion constant, q is 

the imitation diffusion constant and M is the saturation level (the differential equation is given 

in Appendix 5-A).  
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The logistic model is another ‘S-shaped’ diffusion curve, originally used to study population 

growth in the 19th century. The equation governing the Logistic model is given by: 

𝐴 =
𝐿ଵ

1 + 𝑒ି௅మ(௧ି௅య)
 

where 𝐿ଵ is the maximum saturation level, 𝐿ଷ is the number of years to peak sales, finally 𝐿ଶ is 

the slope parameter. 𝐿ଵ is determined exogenously and the constants 𝐿ଶ and 𝐿ଷ is fitted using 

historic data (the differential equation is given in Appendix 5-A). 

The equation governing the Gompertz model is given by: 

𝐴 = 𝐺ଵexp(− exp (−𝐺ଶ(𝑡 − 𝐺ଷ))) 

where 𝐺ଵ is the maximum saturation level, 𝐺ଷ is the number of years to peak sales, finally 𝐺ଶ is 

the slope parameter. 𝐺ଵ is determined exogenously and the constants 𝐺ଶand 𝐺ଷare fitted 

using historic data (the differential equation is given in Appendix 5-A). The diffusion 

parameters in the models are fitted using non-linear least squares regression. 

 Sensitivity Analysis of Standard Bass, Logistic and Gompertz Models 5.3.2

5.3.2.a Bass, Logistic and Gompertz Projections 

The Bass, Logistic and Gompertz models are the most common in the transportation literature 

(see Table 5-1). Analysing the model fit on UK hybrid historic data establishes that the error 

between the data and the model is similar for the three market diffusion models (on average 

less than 1%) the low error results from cumulative adoption of hybrid vehicles following the 

start of an S-shaped curve. Nevertheless, the prediction error is lowest for the Gompertz 

model compared to the other two models. The one-step-ahead error is significantly smaller for 

the Gompertz than Bass or Logistic (see Figure 5-2 for results of one-step-ahead error with 

explanation of how this metric is calculated), showing that UK HEV adoption is most suited to 

market diffusion modelling using the Gompertz model. With the same saturation point, the 

Bass and Logistic model projects steeper uptake than the Gompertz model towards 2040 (see 

Figure 5-4). In projecting future adoption to 2040, the variation in using the Gompertz method 

compared to the Logistic or Bass models using the same saturation level is greater than 

hypothesised. The Root Mean Squared Error (RMSE) was calculated as 7420 for the Bass 

model, 10 300 for the Logistic model, and 6010 for the Gompertz model.  The much greater 

value of the RMSE for the Logistic model indicates that the Logistic model is less accurate in 

projecting HEV fleet share than the Bass or Gompertz models for this historic data set.   
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5.3.2.b Market Saturation Level 

The market saturation level is the user input with the largest sensitivity. The greater the value 

of the saturation level, the greater the variability between projections using different methods. 

As the saturation level increases the value of the diffusion parameters falls (see Figure 5-3). 

 

Figure 5-2: One-step-ahead error for the standard market diffusion model calculated for HEV 

fleet share using data input years from the year 2000. The one-step-ahead error is defined as 

the percentage error between the predicted value compared to the actual value for the next 

value in the series (Montgomery et al., 2008). For example, 5 data input years indicates that 

the data used to build the model is HEV fleet share for the years 2000 to 2004, with the 

one-step-ahead error calculating the error between the predicted value for HEV fleet share for 

the year 2005 and the actual value of HEV fleet share in 2005. This figure shows that the error 

is significantly smaller for the Gompertz than Bass or Logistic, showing that UK HEV adoption is 

most suited to market diffusion modelling using the Gompertz model based on the historic 

data. 
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Figure 5-3: Effect of different saturation level on diffusion parameters. The p and q parameters 

correspond to the Bass model, L2 relates to the Logistic model and G2 corresponds to the 

Gompertz model (see Section 5.3.1 for details of equations and their parameters). 

Analysis reveals that there is a non-linear relationship between parameters and the value of 

the saturation point (see Figure 5-3). Therefore, parameter estimates for the standard model 

are most sensitive to variation in the saturation level when it is small - in this case when 

saturation level is between 5%-20% of the total vehicle fleet (see Figure 5-3), which is the case 

in most EV markets. Massiani et al (2015) documented the relationship between the saturation 

level and the Bass parameters finding that “a doubling of [the saturation level] results in a 

bisection of the Bass p value”. Analysis in this chapter corresponds to these findings. Because 

of the relationship between growth parameters and the chosen saturation level, unless the 

saturation level is similar to another study, the growth rate cannot be used from the study (see 

Table 5-1). Therefore, if a researcher chooses to use a growth rate from a pre-existing study 

the growth parameters must be adjusted to account for a different saturation level. 

With this in mind, we ask the question: how should the saturation level be selected? If the 

modeller is unsure of the saturation point, there are two choices: a constant or a variable 

parameter. If a constant value is chosen, then the researcher needs to test several different 

scenarios and if a constant growth rate is taken from another study then this must be 

adjusted. Many studies use authoritative sources, and some models even include a choice 

model to determine saturation point (such as Jensen et al. (2014)), but this is often outside the 
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 Figure 5-4: Bass, Logistic and Gompertz projections using different numbers of time series 

input points for different saturation levels. For example, ‘8’ represents the projection to 2040 

when calibrating the projection based on time series data from 2000 to 2007. (High represents 

75% of the fleet, Medium represents 25% of the fleet and Low represents 3% of the fleet).  

budget and time constraints of a project. If a variable saturation level is chosen then the main 

options include using a ‘disadvantage curve’ (see Pfahl et al. (2014)) or a price elasticity (see 

Benvenutti et al. (2017)). Both latter options lead to the saturation level increasing as 

hybrid/electric vehicle price falls compared to the conventional vehicle. 

5.3.2.c Time period of calibration data 

Many studies have fitted projections on limited time series data. The very nature of diffusion 

projections means they are needed while the available time series data is still very limited, and 

before the inflection point on the adoption curve has been reached. The issues with projection 

uncertainty with limited data series is illustrated in Figure 5-4. The more data points available 

in the data series the lower the fitted growth rate for the Bass, Logistic and Gompertz models. 

Predictions using different market diffusion models show that there is significantly less 
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variation in the Gompertz predictions than the other models showing that the Gompertz 

model is more robust to the time period of calibration data when projecting HEV adoption. 

With the Logistic and Bass model, using only 6 years of data (2000-2005) to calibrate the 

model, HEV sales are projected to reach their saturation point by 2017. When the observed 

fleet percentage of HEVs is still less than 2%, we can conclude that this projection is optimistic. 

Mass market PHEVs and BEVs have been available for approximately 7 years, therefore even if 

the saturation point is accurately estimated the growth parameters will most likely be too 

great, projecting the saturation level to be reached within a short time span. The average car 

scrappage age is 14 years (SMMT, 2015), therefore approximately 8% of the fleet is replaced 

annually. The timespan of the curve reaching saturation point would be deemed unrealistic if 

the adoption curves indicated more than an 8% increase in fleet share of HEVs in one year. 

Considering Figure 5-4, the ‘high’ saturation level with either 6 or 7 data points for the Bass 

and Logistic models produce forecasts that could not be realised with current fleet scrappage 

levels. 

Market share of different types of hybrid and electric Vehicles has varied across different size 

segments due in part to tax, model availability and battery range limitations as discussed in 

Chapter 4. Due to the limited data available across different size segments, dividing projections 

by size segment gives a false sense of accuracy. 

5.3.2.d Annual vs Monthly Calibration Data 

Most studies in the literature use annual data, but some use quarterly sales data (such as 

Massiani et al. (2015), Shoemaker (2012) and Lamberson (2011)). In modelling, generally the 

greater the number of the data points, the lower the level of model bias (Van den Bulte and 

Lilien, 1997). Model bias is defined as the error between the expected (or average) prediction 

of the model and the correct value. Monthly sales data can be difficult and costly to obtain and 

therefore annual data is preferable. In the case of market diffusion modelling, the projection is 

fitted on cumulative adoption data therefore monthly data does not provide any additional 

information. This analysis finds that calibrating projections using monthly sales data, as 

opposed to annual data, does not reduce forecast error.  

Parameter estimates are different for annual and monthly data. A multiplication factor of 12 is 

used to convert between annual and monthly data (as is convention in the literature), but due 

to the nonlinear nature of the model this factor may not be accurate. Nevertheless, when  
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Figure 5-5: Extended Bass modelling framework. (Note that the model was built within the 

MATLAB modelling environment, but a graphical interpretation was produced within Vensim). 

Table 5-2: Description of model components accompanying Figure 5-5. 

Model component Description 

Installed base Number of HEVs/PHEVs/BEVs in the fleet 

Discard rate Determined by scrappage curve (adapted from Leibling 

(2008) to reflect current average vehicle age). 

Price coefficient Coefficient to determine how much changing vehicle 

TCO affects future adoption. 

Vehicle Cost Vehicle TCO. 

Battery Learning rate Percentage reduction in battery cost for every doubling 

in manufacturing capacity. 

Subsidy Initial cost subsidy from the government. 

Adoption by Innovation Number of new adopters as a result of new adopters 

innovating determined by p value. 

Adoption by Imitation Number of new adopters as a result of new adopters 

imitating other adopters determined by q value. 

Market saturation level Function of vehicle cost. 

Battery weight reduction Annual weight reduction as energy density increases. 
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using this multiplication factor parameter estimates calibrating using monthly and annual data 

are within 1.5 % of one another. This uncertainty is negligible compared to other model 

uncertainties (such as saturation point) therefore annual data is adequate. 

5.4 EXTENDED MODELLING FRAMEWORK 

 Extended Bass Model Methodology 5.4.1

The standard models can be generalised using a transformation to include other pertinent 

factors and policy drivers such as subsidies or increasing the availability of charging 

infrastructure. Costs of hybrid and electric vehicles are anticipated to change significantly in 

the next two decades (see results in Chapter 4). Panel regression analysis on historic adoption 

found that across different vehicle markets HEV ownership costs are correlated with market 

share (for more details see Chapter 3), therefore this is considered an appropriate basis for the 

model.  

In the case of the Generalised modelling framework used in this analysis (see Figure 5-5 for 

model outline and Table 5-2 for an explanation of details of model parameters) the initial 

purchase cost and running cost per mile for the hybrid, plug-in hybrid, battery electric and 

diesel vehicle compared to its conventional petrol counterpart is included to account for 

changing costs over time.  

The differential equation governing the generalised Bass model is given by, 

𝑑𝐴

𝑑𝑡
= ቆ𝑝 + 𝑞

𝐴(𝑡)

𝑀
ቇ ൫𝑀 − 𝐴(𝑡)൯𝑥(𝑡) 

with a cost transformation such that, 

𝑥(𝑡) = 1 + 𝛽ଵ ቆ
𝑃(𝑡) − 𝑃(𝑡 − 1)

𝑃(𝑡)
ቇ + 𝛽ଶ ቆ

𝐺(𝑡) − 𝐺(𝑡 − 1)

𝐺(𝑡)
ቇ 

where 𝑃(𝑡) =
ூಶೇ

ூ಺಴ಶ
 and 𝐺(𝑡) =

ோ಺಴ಶ

ோಶೇ
 and I and R indicate the initial vehicle cost and running cost 

per mile respectively, 𝛽ଵ and 𝛽ଶ are coefficients of initial and running cost respectively, (a 

summary table detailing the equations governing the generalised Bass, Logistic and Gompertz 

models is given in Appendix 5-A).  The form of the model extension is supported by the 

regression analysis in Chapter 3 that found that the link between cost and adoption was 

strongest when initial cost and running costs were split. The values of the Bass model 

parameters (p and q) which are used in the generalised model are not directly comparable to 
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the standard case because of the modelling extension. The p and q values for HEVs was fitted 

to the historic data, the same values were applied to BEVs (as evidenced by the similar 

adoption pathway from Section 2.3.3), and a factor of two was used for PHEVs (as evidenced 

by their quicker historic adoption pathway from Section 2.3.3). 

Usually a market diffusion model is fitted on cumulative adoption of technology, whereas this 

form of the generalised model is fitted using market share data, therefore this model needs to 

be able to mimic behaviour where market share falls as well as rises. Market saturation level is 

variable with a price elasticity of 0.8 (following Benvenutti et al. (2017)) such that for each 

vehicle type as costs fall, the market saturation level rises (a similar approach is taken by 

Benvenutti et al. (2017)).  

The generalised cost model will be used to model three policy scenarios: Business as Usual 

(where current support of electric vehicles phases out as expected), Battery Bonanza (where 

the 2040 target of 100% market share of hybrid and electric vehicles is met) and Diesel Persists 

(where support for diesel ICEVs continues) - as detailed in Chapter 4.3.3. The results of the cost 

model from chapter 4 are used as the input to the generalised market diffusion model. In the 

cost model the mid-sized vehicle segment (C/D) is used to represent the vehicle fleet with the 

Ford Focus, Toyota Prius, Toyota Prius Plug-in and Nissan Leaf assuming the role of the 

conventional petrol/diesel ICEV, HEV, PHEV and BEV vehicles respectively. Due to the limited 

data available across different size segments, dividing scenarios by size segment gives a false 

sense of accuracy in this modelling method, therefore this chapter gives vehicle adoption 

scenarios aggregated across vehicle powertrain type – note these scenarios are not necessarily 

forecasts but more an illustration of the difference between scenarios depending on external 

costs. Note that in the extended modelling framework consumers are assumed to switch from 

diesel ICEVs after 2017 when they replace their vehicle; whereas  BEV, PHEV and HEV adopters 

are assumed to replace their vehicle with one of the same type (as evidenced in Hardman et al. 

(2016)).9 

 Results and Discussion 5.4.2

The uncertainties in the standard model illustrate that the standard market diffusion models 

should be used with great caution to directly project future technology adoption. Therefore, in 

this section using an extended Bass modelling framework, the effect of evolving vehicle costs  

                                                           
9 Note that the extended modelling framework, can output either fleet share or market share. Because 
the author wished to be able to model vehicle emission Euro standards within the fleet for all petrol and 
diesel vehicles, it was simpler to output market share at this stage, then later model fleet and traffic 
composition by Euro standard in the following chapter using the 2015 Leeds ANPR survey as a baseline.  



Micro-Scale Carbon Dioxide () Emission on UK Road Networks using coupled Traffic Simulation 
and Vehicle Emission Models 

 

107 
  

Table 5-3: Parameter estimates for the Extended Bass Model (Note that there are not separate 

parameter estimates for petrol ICEVs as once market share of HEV, PHEV, BEV and diesel ICEVs 

has been projected, petrol ICEVs are assumed to be the remainder.) 

Vehicle Type p 

Innovation 

coeff. 

q 

Imitation coeff. 

𝛽ଵ 

Initial cost coeff. 

𝛽ଶ 

Running cost coeff. 

HEV 0.0022  0.21 1.98 2.13 

PHEV 0.0044 0.42 8.13 1.98 

BEV 0.0022 0.21 8.38 2.00 

Diesel ICEVs 0.0015 0.16 7.33 2.93 

 

on adoption is investigated through different scenarios rather than forecasted projections. The 

model fit on historic data resulted in a model error on average less than 15% between 

modelled and historic values. In the standard model, only one ‘projection’ can be produced 

based on parameter assumptions and historic data, but with the generalised model the effect 

of financial externalities on vehicle adoption across the fleet can be quickly assessed, this adds 

a layer of value to the modelling and allows for more relevant insights.  

The difference between the cost scenarios in Chapter 4 (see Figure 4-4 for vehicle cost 

scenarios) illustrates the effect of financial incentives on the TCO of hybrid and electric 

vehicles. These cost scenarios lead to different adoption pathways (see Figure 5-6 for market 

share adoption scenarios 2015-2040 for HEV, PHEV, BEV, petrol and diesel ICEV). Such an 

evaluation is useful and often necessary in the first stage of policy assessment and to plan for 

the infrastructure requirements for an increasingly electrified fleet. 

Some of the limitations of the standard model do not apply to the extended Bass model, and 

therefore it is a better option for analysing vehicle adoption using different policy and cost 

scenarios rather than attempting to produce one single forecast. Although a longer time series 

is more desirable, meaningful results can still be gained using the extended method with only a 

short time series of 7 years. The cost basis of this model removes the unrealistic adoption 

curves that resulted from a short data series fed into the standard market diffusion model (see 

section 5.3.2). For the extended Bass model the parameter values of p and q for HEVs was 

found to be 0.0022 and 0.21, slightly lower than the values for the standard model. However, 

these parameter values are not directly comparable due to the model extension used. The 

parameter estimates for the extended Bass model (see Table 5-3) indicate that EV market 
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share is more sensitive to changing initial cost than running cost because 𝛽ଵ (coefficient for 

initial cost) is much greater 𝛽ଶ  (coefficient of running cost), this echoes the regression results 

in Chapter 3. EV market share is more sensitive to changing initial cost than for HEV market 

share as evidenced by the higher value of 𝛽ଵ  (coefficient for initial cost). The RMSE was 

calculated as 0.2 for HEVs, 0.52 for PHEVs and 0.1 for BEVs. This indicates that the results for 

BEVs and HEVs are a better fit on historic data than for PHEVs. Because the TCO underpinning 

the extended Bass model is based on the private purchaser and PHEVs are predominantly 

business purchases, this could partly explain the higher RMSE for PHEVs. 

Utilising this modelling framework, market share of diesel vehicles is anticipated to fall 

between 2018 and 2040 (see Figure 5-6). Diesel car sales have already peaked and are starting 

to decrease as a result of changing public opinion regarding high vehicle pollutant emissions, 

increased tax rates, expected restrictions and uncertain depreciation rates. In light of this, 

hybrid and electric vehicle sales are expected to rise to fill the void. In addition, the UK 

government have legislated for a ban of conventional vehicles in 204010, therefore Scenario B 

(Battery Bonanza) illustrates adoption pathways that could achieve this target without a step 

change. Under Scenario A – Business as Usual, diesel vehicle market share declines to 14% in 

2040 with a peak at 2020 (when the plug-in vehicle grant is removed). Scenario C (Diesel 

Persists) illustrates a worst-case scenario such that diesel vehicles remain a cost-effective 

option for high mileage cars and therefore market share only falls to 22% by 2040. 

In Scenario A (Business as Usual) falling diesel market share leads to more consumers choosing 

to adopt HEVs – rising to 33% in 2040. HEVs require no change in behaviour as they do not 

have a plug-in capability, therefore this is an easy switch for consumers. Whereas, in Scenario 

B (Battery Bonanza) consumers move way from conventional vehicles choosing to purchase 

PHEVs and BEVs instead. In this scenario there is continual governmental support as the 

plug-in vehicle grant is gradually phased out to 2040. This keeps the price of PHEVs and BEVs 

low enabling market share to reach 37% and 32% respectively. In Scenario C (Diesel Persists), 

the higher market share of diesels impedes HEV adoption leading to a mere 13% market share 

by 2040. 

The lack of smoothness in the adoption scenarios indicates the sensitivity of these scenarios to 

changes in cost. The changes in the plug-in vehicle grant are clear across all vehicle types, as 

the interconnected nature of the model illustrates that large changes in cost of one type of  

                                                           
10 There is large uncertainty surrounding whether this ban will include HEVs or not, as there has been 
several contradictory announcements. The interpretation used in this research is that the ban will only 
include conventional petrol and diesel cars. 
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Figure 5-6: HEV, PHEV, BEV, petrol and diesel market share scenarios using extended Bass model (see Appendix 5-B for results table). 
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vehicle affect market share of them all. This modelling framework illustrates how the market 

diffusion methodology can be used as a basis to assess the effect of different cost scenarios on 

the adoption of hybrid, electric and diesel vehicles. Falling diesel market share could be the 

catalyst to rapidly increase hybrid and electric vehicle market share. If diesel costs increase 

significantly and incentives are used to persuade consumers to choose hybrid or electric 

vehicles over conventional vehicles, the 2040 ban on conventional vehicles could be achieved 

without a step change.  

 Comparison to Other Models 5.4.1

To put this work in context, the adoption scenarios are compared to other modelling studies. 

The projections from other studies (summarised in Figure 5-7) are generally complex models 

with dozens of sub-models and numerous hidden assumptions. Many of these models take 

years to build and are difficult to update. With market share of BEVs, PHEVs and HEVs 

increasing, many of these models cannot be updated or re-run to accommodate for changing 

conditions. The methodology detailed in this chapter has the advantage that it is relatively 

simple, inputting up-to-date market share data with clear model assumptions.  

Unsurprisingly, different methods yield different forecasts (see Figure 5-7 for comparison to 

UK projections). Similar to the scenarios in this chapter, other projections forecast HEV market 

share will peak before BEV and PHEV market share. PHEVs are often considered as an 

intermediate technology as batteries improve and BEV range increases. Note that the 

projections included here are mainly those that forecast market share rather than fleet share. 

It is difficult to estimate market share from fleet share unless annual data is given therefore it 

was not deemed appropriate to try to include these other vehicle stock forecasts in this 

section. The forecasts compared in this section are primarily UK vehicle market forecasts. 

In the UK, the projections from the National Emissions Inventory (NAEI) are the leading 

authoritative source on the future UK vehicle fleet (National Atmospherics Emissions 

Inventory, 2017), the most recent NAEI projections use 2016 as a base year and market share 

has been estimated from NAEI car stock projection figures. For HEVs, the NAEI projections are 

significantly lower than for the scenarios in this study reaching around 7% market share by 

2035. However, for PHEVs the NAEI projections are slightly higher than even the most 

optimistic scenario in this study estimating around 27% market share by 2030. Finally, the NAEI 

BEV projections are well aligned with scenario C (Diesel Persists), the scenario with the lowest 

adoption of BEVs (see Figure 5-7) estimating around 4% market share by 2035. The 

methodology behind these projections is not publically available, therefore it is not possible to  
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Figure 5-7 a-c: Comparison of projections from other UK studies to the scenarios from the extended Bass model. (Compiled
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analyse the assumptions behind these results. 

Hill et al. (2014) uses the SULTAN (SUstainabLe TrANsport) model for its illustrative scenarios. 

The SULTAN model is a high-level model used to estimate the possible impact of policy on 

transport on a national scale. The SULTAN scenario model is based on the TREMOVE baseline 

model (version 2.7) updated to account for the recent recession. Many variables are sourced 

from TREMOVE including vehicle lifetimes, load factors, urban/rural/motorway split, NOX and 

PM emission factors. In SULTAN, AFV market share is determined by a nested logic model. 

This is based on using cost and time matrices which are calculated on influencing factors such 

as infrastructure capacity and travel speeds both coming from the infrastructure module, 

structure of vehicle fleets, transport charges, fuel price or fuel tax changes. Hill et al. (2014) 

adopts three different scenarios to estimate CO2 reduction from Low Emission Vehicle (LEV) 

adoption to 2025. The low scenario assumes a moderate rate of LEV uptake. The medium 

scenario has been developed as a more challenging evolution of the low scenario, presenting 

above average rates of introduction of electrified vehicles and more rapid uptake of a range of 

LEV technologies for heavy duty vehicles. The high scenario has been developed with 

extremely rapid deployment of the lowest emission LEVs necessary to achieve the 2025 GHG 

reduction target. The results of the scenarios show that HEV adoption could be almost double 

PHEV uptake by 2025 reaching 22% and 12% respectively, with BEV adoption much lower at 

around 7%.  

Batley et al. (2015) designed a model (‘EcoDriver’) to illustrate future scenarios of uptake of 

ecodriving systems. The EcoDriver model is a comparatively simple excel based model with key 

inputs such as oil price and GDP to project the size of the vehicle fleet. AFV market share is 

determined as a result of focus groups consisting of experts from academia and industry. The 

market share represents the target penetration of the number of AFVs. The ‘Green Future’ 

scenario indicates that BEV adoption could be higher than PHEV adoption reaching 10% by 

2035. 

5.5 SUMMARY AND CONCLUSION 

Estimating the effect of changing ownership cost on the potential number of Electric Vehicles 

can inform and direct low-carbon transport policy. Without budget and time constraints other 

more complex approaches such as agent or choice models are the optimal methodology to 

projecting future hybrid and electric vehicle adoption, but these methods still have limitations 

stemming from the use of survey data.  
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Market diffusion models can be used as a tool to test out policy when there are financial/time 

constraints in place such that we cannot use a more extensive model, in such situations often a 

model with a fine resolution is not necessarily needed. This chapter highlights the fact that the 

uncertainties associated with the standard model mean that the basic market diffusion model 

should not be used to project the fleet without sufficient data (i.e. technology adoption has 

reached its inflection point). However, adoption can be investigated if the saturation level is 

either variable or different scenarios are investigated e.g. low, medium and high, and if using a 

growth rate “off the shelf” it is adjusted for the saturation point used compared to the study it 

was taken from. The main value in this analysis is assessing how the parameter values change 

with different assumptions, and acknowledging the strengths and weaknesses in the standard 

market diffusion models. This extensive sensitivity analysis adds to the market diffusion 

literature showing the results of the three main market diffusion models and how they differ. 

The results of the extended Bass model show how a generalised modelling framework can be 

applied to produce future adoption scenarios. The main value of this chapter is producing new 

up to date adoption scenarios with an easy updatable method. Going forward this means that 

with new data these models can be tracked and rerun to enable greater insight into the 

changing vehicle market. Scenario analysis illustrates how different ownership costs resulting 

from economic externalities affect adoption patterns for hybrid and electric vehicles. It is clear 

that by supporting the plug-in vehicle grant and ensuring diesel vehicle ownership costs are 

greater than conventional petrol cars, the dieselisation of the fleet can be slowly reversed.  

In the next chapter the vehicle market share scenarios detailed here are translated into the on-

road fleet composition of the Leeds road network. By utilising a coupled microsimulation 

traffic model with an instantaneous vehicle emissions model, the effect of the evolving fleet on 

network level vehicle emissions is assessed. Despite the uncertainties in the vehicle adoption 

scenarios in this chapter, the next chapter uses vehicle emissions models that are considered 

to be reliable, accurate and the state-of-art. The errors in the multistage modelling process 

compound with each stage, therefore there is little use in using aggregate level emissions 

estimates. Additionally, in this thesis we are interested in assessing how emissions vary in 

different levels of congestion, as there is a non-linear relationship between vehicle emissions 

and speed; for this assessment an accurate emissions model is required.  
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CHAPTER 6: THE EFFECT OF CHANGING VEHICLE FLEET 

COMPOSITION ON VEHICLE EMISSIONS: A LEEDS 

NETWORK CASE STUDY 

6.1 INTRODUCTION 

City level policy is incentivising and legislating for the purchase of hybrid and electric vehicles 

to improve air quality and meet greenhouse gas emissions targets. For example, the 

installation of EV charging points in city centres is a common method to encourage consumers 

to switch to electric. Incentivising and legislating for cleaner vehicle purchases is less politically 

sensitive than pedestrianizing city centres, creating Low Emission Zones/Clean Air Zones or 

installing bus lanes, with lower upfront costs than large public transport investment. In the 

coming decades, it is anticipated that more consumers and fleet managers will choose to 

purchase a low-emission vehicle (as investigated in Chapter 5), but the actual resultant change 

in vehicle emissions on a city scale has previously only been very roughly assessed. 

This chapter uses a Leeds road corridor (A660) as a case study to examine the effect of the 

evolving traffic mix on network-level vehicle emissions. Leeds is a typical UK city with similar 

levels of congestion to other cities of the same size such as Birmingham and Manchester 

(GOV.UK, 2017a). It is therefore a representative case study area for the UK. London has 

important differences in not only the level of traffic demand but also fleet share due to policies 

such as the congestion charge, LEZ, and now ULEZ that have led to a lower average vehicle age 

than other UK cities. 

The aim of this chapter is to assess how vehicle emissions change at a network level with a 

changing fleet mix. To do this, the vehicle market share scenarios are used from chapter 5 is 

combined with an Automated Number Plate Recognition (ANPR) traffic survey of the Leeds 

network from 2015, to estimate the expected trends in the road fleet composition (estimated 

in vkm) from 2015 to 2040. A microsimulation traffic model of Leeds is employed (built 

originally by Wyatt (2017) in the AIMSUN simulation environment and improved in this work to 

stimulate a 24-hour period amongst other advancements), to estimate realistic vehicle 

trajectories for all vehicle types. This input is collated into a second-by-second (instantaneous) 

vehicle emissions model. The ‘Simulink H/EV Energy and Emissions Model’ adapted from 

Richard Riley’s doctoral thesis (2016) is used for hybrid and electric cars, and the PHEM model 

(developed by TU Graz) is used for all other vehicles. This multi-stage methodology allows for 
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analysis temporally and spatially over the 24-hour modelling period with a breakdown of the 

contribution to emissions split by vehicle type and emissions Euro standard. 

Several different methodologies could be used to estimate vehicle emissions from the future 

fleet scenarios. The microsimulation methodology in this chapter has been chosen because 

aggregate modelling methods do not have the resolution to estimate the effect of the 

changing fleet on a network level spatially and temporally. Research by Wyatt (2017) found 

that at a vehicle scale second-by-second vehicle emission models were significantly more 

accurate than aggregate models. Therefore, as model errors will multiply at a vehicle network 

level, this was concluded to be the most appropriate method to use. The advantages of using 

the microsimulation methodology are extensive, enabling in-depth analysis into spatial 

emission hotspots, the effect of the stochastic nature of traffic, and the variation of vehicle 

emissions throughout the day. 

This chapter contributes to the literature in three key areas: incrementally improving the 

microsimulation traffic model to span a 24-hour period; studying bus vehicle dynamics from 

primary data collection; and assessing the effect on energy and emissions of different numbers 

of hybrid and electric vehicles in the on-road fleet mix using microscale models. Although 

there is great uncertainty surrounding the future fleet composition (as discussed in Chapter 5), 

it is important to attempt to accurately assess the effect on emissions of the changing fleet to 

understand the effect of evolving Euro standards and higher penetrations of hybrid and 

electric vehicles: small percentages of EVs may have significant non-linear effects on network 

level emissions, especially in congested windows. Errors in the multistage modelling process 

can potentially amplify; therefore, this is considered the most rigorous method to draw 

meaningful conclusions despite the inherent uncertainty in future fleet scenarios.  

6.2 COUPLED TRAFFIC SIMULATION AND VEHICLE EMISSION MODELS 

LITERATURE 

 Traffic Models 6.2.1

Traffic simulation models have been used for several decades to model urban and highway 

networks. The applications of this analysis vary widely from analysing road layout designs, 

traffic signal timings, driver behaviour and the effect of new technologies such as intelligent 

transport systems. Traffic simulation models vary on scale and therefore detail. Macro-scale 

models encapsulate larger networks at a lower resolution, whereas micro-scale models deal 

with behaviour of individual vehicles on a 1 or 2 Hz frequency. In these situations, there is a 
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trade-off between computing power/the time needed to run the model and the detail 

necessary for the modelling purpose. 

Several different microsimulation traffic models have been designed to model vehicle flows 

such as VISSIM, PARAMICS, and MITSIM. AIMSUN is arguably one of the best microsimulation 

models for running network models for several key reasons, including fewer modelling 

parameters, better vehicle dynamics behaviour and ease of user interface (Olstam and Tapani, 

2004; TSS, 2011). The AIMSUN software supports static and dynamic equilibrium traffic 

assignment, and dynamic simulations, amongst other important features. To model vehicle 

movements at a microscopic level, AIMSUN introduces sub-modules for the drivers’ car-

following and lane-changing behaviour (TSS, 2011). These sub models include car following, 

lane changing, gap acceptance for lane changing, gap acceptance for yielding, overtaking, on-

ramp, off-ramp, and look-ahead distance. AIMSUN has several modelling parameters that can 

be manually altered which influence the internal behaviour models, these parameters fall 

under the categories of global, local and vehicle attributes11. FHWA (Federal Highway 

Administration) recommends selecting the least possible number of parameters for 

calibration; running calibrated simulations repeatedly for robust results. AIMSUN has fewer 

modelling parameters than popular microsimulation tools like VISSIM, PARAMICS, and MITSIM 

(Olstam and Tapani, 2004). This lower number of parameters leads to lower modelling error 

(Brockfeld et al., 2003), this is one of key reasons why AIMSUN is a better choice for this study. 

Vehicle dynamics in the traffic simulation model are critical to the accuracy of modelling 

vehicle behaviour and are mainly determined by the car-following and lane-changing sub-

models (Panwai and Dia, 2005). The Gipps model governing car-following behaviour in 

AIMSUN, has been shown to be superior to the psychophysical spacing models used by 

PARAMICS and VISSIM (Panwai and Dia, 2005).     

Finally, AIMSUN has a graphical user interface, this is easier to use than other microsimulation 

traffic modelling interfaces such as VISSIM or PARAMICS. The simulation in AIMSUN can be run 

either graphically or as a ‘batch’ simulation, such that the modelled vehicle can be seen 

moving around the network in real time or the ‘batch’ simulation can be run quicker without 

this feature. These characteristics make the vehicle flow calibration process simpler for the 

user. 

                                                           
11 A full explanation of the AIMSUN methodology is available in the AIMSUN User Guide (TSS, 
2013b) and the Dynamic Simulators Users’ Manual (TSS, 2013a). 



Micro-Scale Carbon Dioxide () Emission on UK Road Networks using coupled Traffic Simulation 
and Vehicle Emission Models 

 

117 
  

Previous microsimulation traffic studies have focused mainly on a smaller geographic area for 

example a single junction or a small number of vehicles. By contrast, the work by Wyatt (2017) 

is a larger and more detailed network than modelled in the literature. The work in this thesis 

builds on the work from Wyatt (2017) incrementally enhancing the underlying network 

modelling before applying to the future vehicle fleet scenarios developed in this thesis and 

applying a microscale vehicle emissions model. Despite the time intensity of using the 

microsimulation traffic modelling approach, the use of this higher resolution methodology 

enables greater insight into the effect on network level emissions of different penetrations of 

hybrid and electric vehicles in the fleet temporally and spatially. 

 Vehicle Emission Models 6.2.2

Several key factors have been found to affect vehicle emissions. These include the vehicle 

specifications (e.g. vehicle and engine type), vehicle loading, traffic conditions and road 

gradient (Colberg et al., 2005; Xue et al., 2013; Wyatt et al., 2014; Elkafoury et al., 2015). A 

vehicle emissions model should take most of these into account to reduce error in the 

modelling process. A properly calibrated coupled traffic and vehicle emissions model (as 

defined in Appendix 6-E) can produce estimates of network level emissions of which the cost 

of undertaking primary data collection of vehicle emissions at that scale would be prohibitively 

expensive (Jackson and Aultman-Hall, 2010). There are several existing vehicle emissions 

models which are used for this purpose including DEFRA’s (Department for Food, Rural and 

Agriculture affairs) Emissions Factors Toolkit (EFT v8.0.1) (DEFRA, 2018), The HandBook on 

Emission FActors for road transport (HBEFA v3.3), The United States (US) Environmental 

Protection Agency’s MOtor Vehicle Emission Simulator (MOVES v2014b) (EPA, 2015) and The 

Technical University of Graz’s (TU-Graz) Passenger car and Heavy duty Emission Model (PHEM 

v11.7.10) (Hausberger, 2017). Each of these models estimates vehicle emissions with a 

different methodology. 

DEFRA’s Emissions Factors Toolkit (EFT v8.0.1) (DEFRA, 2018) is an average speed model based 

on the COPERT (Computer Programme to calculate Emissions from Road Transport) emissions 

calculation tool. In this model, the vehicle emissions are calculated as a function of average 

speed over a link. The total vehicle emissions for that link can be estimated by entering in the 

average link speed, the vehicle fleet composition, the length of the link, and the total vehicle 

flow through the ink. This methodology is suboptimal as trips through the link with the same 

average speed may have different acceleration profiles therefore leading to different 

emissions (Barlow and Boulter, 2009; Vallamsunder and Lin, 2011). These types of models can 
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be inaccurate at a microscale. In Wyatt (2017), the EFT model was found to significantly 

underestimate vehicle emissions because it does not account for congestion or road grade. 

The HandBook on Emission FActors for road transport (HBEFA v3.3), is a ‘traffic situation’ 

model where several factors are used to estimate vehicle emissions including road type, traffic 

conditions and average link speed. Traffic situations include area (rural or urban), road types, 

speed limit and level of service (e.g. level of saturation). Each of the 276 traffic situations are 

represented by a real-world speed-time driving pattern for the vehicle type. The PHEM 

instantaneous emissions model is then used to estimate the emissions factors from these 

speed-time driving patterns. HBEFA was designed primarily to inform emission factors for city, 

regional and national scales (Schmied, 2014), however, this methodology has been applied to 

estimating emissions at a link level with generally poor results (Wyatt, 2017).  

The United States Environmental Protection Agency’s MOtor Vehicle Emission Simulator 

(MOVES v2014b) is a model which ‘bins’ a vehicle’s Vehicle Specific Power (VSP) (see Appendix 

6-A for definition and derivation of VSP) and speed. MOVES was designed to estimate 

emissions at a regional/national level but has the capacity for a microsimulation application. 

The key assumption in this model is that the vehicle emissions within the ‘bin’ are broadly 

similar for a particular vehicle type and age. Using VSP as a proxy for CO2 emissions is 

becoming  increasingly popular in vehicle emission models (Song and Yu, 2009; Coelho et al., 

2009; Xu et al., 2010). 

The Technical University of Graz’s (TU-Graz) Passenger car and Heavy duty Emission Model 

(PHEM v11.7.10) (Hausberger, 2017) is a second by second instantaneous emission model. 

PHEM uses engine power output and simulated engine speed to interpolate from a high 

resolution engine emission map to estimate pollutant emissions (Luz and Hausberger, 2015). 

These engine maps details fuel consumption and exhaust emissions of Nitrogen Oxides (NOx), 

Carbon Monoxide (CO), Hydrocarbons (HC), Particulate Mass (PM), and Nitrogen Monoxide 

(NO). TU Graz have used a large number of vehicles to build this model, and it is being 

constantly updated and improved to include new vehicle types. The narrow operating regions 

in PHEM over the engine power output and engine speed lead to a larger number of bins than 

is possible in the traditional binning methodology. For example, the most detailed engine maps 

in PHEM have more than 350 bins, as opposed to the 23 offered in MOVES. This approach 

should therefore reduce the error in estimating vehicle emissions. Wyatt (2017) found that 

when comparing measured and modelled vehicle emissions, PHEM was found to be the most 

accurate vehicle emissions model discussed in this chapter, for this reason PHEM is used for 

the vehicle emissions modelling in this thesis. 
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AIMSUN also has an inbuilt vehicle emissions module. This model assumes that vehicle operate 

within four modes: idling, cruising, acceleration or deceleration (Swidan, 2011). However, Anya 

et al. (2014) found that these estimates differ by more than 16% on arterial roads. Hence, the 

default AIMSUN emissions model was not considered accurate enough for this study and 

instead, fuel consumption and other pollutant emissions were calculated using the PHEM 

platform. 

Research by Wyatt (2017) found that second by second vehicle emission modelling tools were 

significantly more accurate than using aggregate models. Wyatt (2017) found that the HBEFA 

and EFT models significantly underestimate the majority of micro-scale section real-world CO2 

emissions when compared to real world PEMs data, whereas, MOVES and PHEM only slightly 

underestimate the CO2 emission factors. Through statistical analysis of the vehicle emission 

tools and the real world PEMs data, Wyatt (2017) found that MOVEs and PHEM provide a good 

approximation of the on-road emission of the test vehicle. Wyatt (2017) concluded that the 

“EFT ‘average-speed’ emission model and the HBEFA ‘traffic situation’ model were unable to 

replicate the CO2 emission of a real world test lap with sufficient accuracy to make either of 

them a useful tool in estimating the real-world emission of the specific test vehicle.”  This leads 

us to the conclusion that on a network scale these modelling errors could multiply therefore 

necessitating the need for a second-by-second vehicle emission model such as PHEM in this 

research. 

At present, the PHEM emissions model does not include a module for Hybrid or Electric 

Vehicles, emissions from these vehicle types are estimated using the ‘Simulink H/EV Energy 

and Emissions Model’ described in Section 6.3.7. 

6.3 METHODOLOGY OF THE COUPLED TRAFFIC SIMULATION AND 

VEHICLE EMISSION MODELS 

In this section, the steps in the modelling process linking the vehicle market share scenarios 

(see Chapter 5) through to calculating network level vehicle emissions are detailed. The focus 

of this modelling is the Leeds city road network. In terms of traffic and pollution problems, 

Leeds is a typical UK city similar to other UK non-capital cities such as Birmingham and 

Manchester. Vehicle emissions will be aggregated on an hourly basis over a 24-hour period for 

four different snapshots in time (2015, 2020, 2030 and 2040) under three different future 

scenarios (Business as Usual, Battery Bonanza and Diesel Persists) to reflect the effect of the 

evolving fleet on network level emissions. 
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The flow diagram in Figure 6-1 shows how the vehicle market share scenarios from Chapter 5 

feed through to calculate network level vehicle emissions. The fleet for the base year (2015) 

was sourced from an Automated Number Plate Recognition (ANPR) traffic survey of the city 

(with duplicates removed) – this is discussed further in section 6.3.1. For subsequent years, the 

vehicle stock is aged, vehicles are scrapped according to scrappage curves and new vehicles 

are introduced based on the market share scenarios (Chapter 5) with their corresponding Euro 

standard attached. From the 2015 Leeds traffic survey, the age distribution and split of vehicle 

types is calculated for the fleet both in terms of number of total number of registrations and 

on-road vkm split. Conversion factors between total number of registrations and on-road vkm 

split were calculated based on this survey and used to estimate fleet split in terms of vkm for 

the future scenarios. The trajectories from the Leeds network traffic model, along with the 

fleet mix are fed into the TU-Graz PHEM emissions model for all vehicles except hybrid and 

electric vehicles that are fed through the Simulink H/EV Energy and Emissions Model.  Finally, 

the results of these two models are aggregated for our analysis to calculate total network 

emissions of CO2 and NOx. Each step of the flow diagram will be discussed in detail in this 

section. 

 Leeds ANPR Survey 6.3.1

The 2015 base fleet is taken from the 2015 Leeds Automated Number Plate Registration 

(ANPR) survey. The Leeds ANPR survey was undertaken on Monday 9th February 2015 on the 

A660, by Nationwide Data Collection on behalf of Leeds City Council and the University of 

Leeds Institute for Transport Studies. The ANPR cameras were positioned on the A660 

(Headingley Lane) at 53.816552N, 1.567555W (see Figure 6-2), capturing data from both 

northbound and southbound traffic flows. The survey lasted for a complete 24-hour period, 

starting and finishing at 00:00. On the date the survey was undertaken, the weather was dry 

and overcast. With no unusual events or roadworks in the vicinity, the traffic was considered 

representative of ‘typical’ traffic in the location. 

The ANPR survey captured 16 930 number plates in total with a success rate of 94.86%. For 

cars 31% of the vehicles in the ANPR were found to be duplicates, by removing these 

duplicates we can also estimate the vehicle fleet composition. The average age of the cars in 

the ANPR survey was found to be 7.9 years; this is insignificantly greater than the national 

average of 7.8 years (Society of Motor Manufacturers and Traders, 2018). From Figure 6-3, it is  
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Figure 6-1: Vehicle turnover model to convert Leeds base fleet (2015) to output Leeds vehicle 

fleet mix (vkm) 2016 to 2040. 

 

  

Figure 6-2: Map of Headingley Leeds network displaying ANPR camera position (Wyatt, 2017) 

(©Copyright GoogleTM 2015). 
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Figure 6-3: ANPR vehicle count by hour and vehicle type. 

evident that cars dominate the traffic mix, with 79% of the number plates captured.12 

 Vehicle Scrappage and Replacement Model 6.3.1

For the years 2016 to 2040, the vehicle turnover model determines annually which vehicles to 

scrap and the number of new vehicles in the fleet. Vehicles are scrapped according to 

scrappage curves. This assigns a probability of scrappage depending on vehicle age (see Figure 

6-4 for vehicle scrappage curves). All cars are scrapped by the time they reach 20 years of age, 

however, the average age is 13.5 years in line with current averages (Society of Motor 

Manufacturers and Traders, 2018). The focus of this analysis is the car fleet; however, the 

vehicle turnover model extends to buses, LCVs and HGVs, this is to ensure the split of Euro 

standards for different years is conceivable for these vehicle types. The scrappage curves are 

designed to be vehicle type specific designed to keep the age distribution of the fleet constant 

in line with the base year.  

For the vehicle replacement model, assuming an increase of car fleet size of 1%, together with 

the number of scrapped cars calculated, the number of new cars to be added to the fleet is 

computed. These new vehicles are split by powertrain type according to the results of the 

scenarios from Chapter 5. New vehicles are assigned the appropriate emissions Euro standard  

 

                                                           
12 For a highly detailed analysis of the Leeds ANPR survey see Wyatt (2017). 
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Figure 6-4: Cumulative scrappage age for cars (Adapted from Leibling (2008)). 

 

according to current legislation for the introduction of new Euro standards (see Table 2-3 for 

details of Euro standard introductions for different vehicle types). 

 Converting the Total Number of Vehicle Registrations to the On-6.3.1

Road Fleet (vkm) 

The composition of the traffic on the network is different to the composition of the vehicle 

fleet. Usually the age distribution of vehicles differs because newer vehicles are driven more 

(Department for Transport, 2013), and there are disparities between the split of powertrain 

types because diesel vehicles tend to have a higher annual mileage then conventional petrol 

(10 700 miles vs 6500 miles) (Department for Transport, 2016a). Therefore, in the model there 

is a conversion from the annual fleet output (in terms of total vehicle registrations) to the on-

road fleet composition (vkm). To calculate this, a comparison was made for the base year from 

the ANPR survey data. Factors were calculated to convert between age distributions of fleet 

registrations and on-road fleet, and to account for higher mileage diesel vehicles (see Figure 6-

5 and 6-6 for difference in scenarios for fleet percentage split of vehicle registrations versus 

vkm). 

 Development of the AIMSUN Leeds Traffic Model 6.3.2

The traffic model used in this analysis was developed in several stages through incremental 

improvement. The traffic model was developed in AIMSUN (Advanced Interactive Microscopic 

Simulator for Urban and non-urban Networks) with the most up to date version of the model  
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Figure 6-5: HEV, PHEV, BEV, petrol and diesel fleet scenarios (vehicle stock - % of registrations) (see Appendix 6-B for results table). 
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Figure 6-6: HEV, PHEV, BEV, petrol and diesel fleet scenarios (vkm) (see Appendix 6-C for results table). 
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run in AIMSUN 8.0.4.  

The car-following model is the major internal behaviour model. The car-following model 

implemented in the AIMSUN simulation package is based on the safety distance model. This 

utilises the Gipps car-following model (as outlined in Gipps (1981))) and sets limits on the 

performance of the vehicle to calculate a safe speed with respect to the preceding vehicle. The 

vehicle dynamics parameters are imperative in determining second-by-second speed and 

spatial position of the vehicle in the simulation, this falls within the car-following sub-model. 

Maximum desired speed, maximum acceleration, and normal deceleration were the three 

parameters chosen for calibration process in this research study (as defined in more detail 

later in this section, see Table 6-4). This is principally because harshness of 

acceleration/deceleration can significantly affect vehicle tailpipe emissions. 

Random seeds are a model input in traffic microsimulation modelling taking the form of a 

discrete number between 1 and 9999. Random seeds are used within the model to determine 

lane selection, traffic management actions, vehicle path selection and vehicle generation in the 

traffic model (TSS, 2013b). The model used in this analysis is run with 10 different random 

seeds. These random seeds are generated with the random number function in MATLAB.  

The AIMSUN model simulates the Headingley network (see Figure 6-7) in North Leeds. The 

original ‘Version 0’ model was developed for a smaller area, including only the A660 through 

Headingley and its major junctions (Tate, 2011). This model only simulated two time periods 

“weekday morning” (8:00 – 9:00 hrs) and an “off-peak period” (11:00 – 12:00 hrs). Detailed 

fleet composition data was not available for Leeds therefore the Version 0 model utilised a 

recent Automatic Number Plate Recognition (ANPR) survey conducted in York (Tate, 2011).  

The next stage of model development, ‘Version 1’ was undertaken by David Wyatt for his PhD 

thesis (Wyatt, 2017). This extended the original Version 0 model to include all roads in the 

Headingley network (see Figure 6-6 for details of network coverage), incorporating road 

gradient to each road section and updating traffic flow by way of Automatic Traffic Count 

(ATC) and Manual Classified Count (MCC) data (see Appendix 6-D for details of all sites of ATC 

and MCC data collection). To ensure the AIMSUN simulated traffic flows were characteristic of 

observed flows in the real-world, 26 calibration points were included in the Version 1 model, 

increased from only 4 calibration points in the Version 0 model.  In the Version 1 model the 

two time periods were extended to five AIMSUN simulations. These represented five time 

periods with different traffic flow conditions observed during temporal analysis of the ANPR 

vehicle fleet data. These time periods included: the morning peak traffic (07:30 – 09:30); an 
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Figure 6-7: Leeds network traffic model scope with validation points (Wyatt, 2017). 

calibration). An initial state is used (instead of a warmup period), so the model started running 

with the network populated by vehicles at 00:00.  

inter-peak period (13:00 – 15:00); the afternoon peak traffic (16:00 – 18:00); the evening 

period and the night period (01:00 – 03:00).  The ANPR survey discussed in Section 6.3.1 was 

used to provide an accurate description of the composition of the local vehicle fleet. The 

Version 1 model also incorporated traffic signal control timing data from four junctions in the 

Version 0 model.   

For this analysis, the model was again incrementally improved to ‘Version 2’. The model was 

extended to run for the full 24-hour period instead of the original 5 time periods in Version 1.  
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Table 6-1: Input data sources. 

Input Data Details 

Vehicle flows Manual Classified Count (MCC) and Automatic Traffic Count 

(ATC) data supplied by the Highways and Transportation 

Department of Leeds City Council (LCC). The Urban Traffic 

Management and Control team made available traffic 

control signal timing data for junctions.   

Bus timetables Timetables from the two main operators First bus and Tiger 

bus available from the West Yorkshire Metro website, 

timetables were sourced for with September 2015 to align 

with the model (West Yorkshire Metro, 2015) 

Types of buses Type of bus (e.g. single/double decker or articulated) 

checked by number plate from ANPR survey, then cross 

referenced with from the Sheffield Omnibus Enthusiast 

Society (SOES) fleet list (Sheffield Omnibus Enthusiasts 

Society, 2015). 

Dwell times Studied for the New Generation Transport proposal in 

Leeds, dwell times were investigated for the A660 within 

the Leeds ring road (Steer Davis Gleave, 2014) 

Turn movements Sourced from the Version 1 model with minor alternations 

during the calibration process. 

Traffic fleet For 2015 from the Automated Number Plate Recognition 

Survey taken on the A660 Otley Road, scenarios used for 

2020, 2030 and 2040. 

Vehicle dynamics data Collected from PEMS (Portable Emission Measurement 

System) data carried out by Wyatt (2017) for cars and LCVs, 

own primary data collection and analysis undertaken for 

buses. 

 

The same input sources were used (see Table 6-1) as the previous model Version 1 but this 

required significant time to rebuild and recalibrate the model (see Appendix 6-E for details of 

To extract the simulated vehicle data from the AIMSUN network model whilst the traffic 

simulation is running, an Advanced Programming Interface (API), written by the ITS, records 

vehicle ID, road section/junction number, vehicle type ID, vehicle speed, position and road 

gradient, for each vehicle in the network, at every 0.5 second simulation step. The data was 

then sampled at a 1 Hz frequency to produce the trajectories fed into the vehicle emissions 

model. The Version 2 model trajectories were used for all time periods of the model (e.g. 2015, 
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2020, 2030 and 2040). The Leeds city cordon vehicle count has shown that the number of 

vehicles entering and exiting the inner ring road has varied by around 5% in the past twenty 

years (Department for Transport, 2015a). This evidences the assumption that with the current 

road layout and policies in place, the vehicle flows are not expected to change significantly 

between now and 2040. This contradicts the DfT Road Traffic Forecasts 2018 (Department for 

Transport, 2018), which project urban traffic growth. However, with the high levels of 

congestion across most of the day, it is unlikely with the current policies in place this could 

materialise. 

 Bus Dynamics  6.3.3

The reliability of estimating vehicle tailpipe emissions is dependent on the quality of trajectory 

estimates from the microsimulation traffic model. To produce realistic vehicle trajectories, the 

parameters governing vehicle dynamics must be representative. Studies such as Wilmink et al. 

(2009) and Anya et al. (2014) have found that the default parameters values in micro-

simulation programs such as VISSIM and AIMSUN do not produce realistic trajectories. The 

default values provided for these parameters are only applicable to rather specific 

circumstances, which are not detailed in the user manual. A plethora of research has examined 

how driving behaviour can change vehicle fuel efficiency by up to 40% (for example see De 

Vlieger et al. (2000), Ericsson (2001) and Rakha and Ding (2003)), therefore the calibration of 

these parameters is necessary for validity of the model outputs.  

Studies have been published examining bus vehicle dynamics such as Carrese et al. (2013) and 

Ma et al. (2015), which conclude that driving behaviour, road gradient and vehicle load all 

affect fuel consumption significantly. For these reasons, primary data collection was carried 

out to calculate realistic vehicle dynamics parameters for buses. Data collection and analysis 

had already been completed for cars by Wyatt (2017) for the Version 1 of the traffic model, 

however, this analysis did not extend to buses. This vehicle type is heavier than cars, with lots 

of stop-start behaviour, therefore the vehicles dynamics are anticipated to be different. In 

Leeds it was found that buses account for 4.7% of traffic composition (according to the ANPR 

survey), although they are anticipated to have a higher contribution to network emissions.  

The data for this study was collected on a single day (Wednesday 18th October 2017) using a 

VBOX kit. The information logged included latitude, longitude, altitude and velocity at a 

frequency of 20 Hz data, then sampled at a 1 Hz rate. Data was collected for a total of ten 

journeys were in different congested states, with an average journey length of 4.34 km and an 

average journey time of 15.22 minutes (see Table 6-3 for details). These trips were within the  
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Table 6-2: Details of bus trips. 

TRIP # Distance (km) Time start Trip time  

(minutes) 

1 5.79 08:32 17.8 

2 3.95 08:56 13.7 

3 3.74 09:31 11.1 

4 5.58 09:52 18.7 

5 3.20 10:21  8.3 

6 4.25 10:43 14.7 

7 6.09 11:07 19.3 

8 4.71 11:48 18.6 

9 3.67 12:21 16.1 

10 2.42 12:43 13.9 

 

Table 6-3: Definitions of vehicle dynamics parameters in AIMSUN. (Note that definitions are 

quoted from the AIMSUN User Manual (TSS, 2011)). 

Parameter Definition Interpretation 

Maximum 

acceleration 

 

“This is the maximum acceleration, in m/s2, 

that the vehicle can achieve under any 

circumstances. This acceleration is as used 

in the Gipps car-following model” 

Calculated as 97.5th 

percentile of 

acceleration from each 

trip (then averaged over 

all trips) 

Normal 

deceleration 

 

“This is the maximum deceleration, in m/s2, 

that the vehicle can use under normal 

conditions. This deceleration is as used in 

the Gipps car-following model.” 

Calculated as the 90th 

percentile of 

deceleration from each 

trip (then averaged over 

all trips) 

Maximum 

deceleration 

 

“This is the most severe braking, in m/s2, 

that a vehicle can apply under special 

circumstances, such as emergency braking 

for e.g. in front of a traffic light.” 

Calculated as the 

maximum deceleration 

of each trip (then 

averaged over all trips) 
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Table 6-4a: Maximum acceleration rates for each vehicle type in the Headingley AIMSUN 

network (values for cars and LCVs taken from Wyatt (2017), HGV/bus from this analysis). 

Vehicle Type 

Maximum Acceleration Rates (m/s2) 

Mean 
Standard 

Deviation 
Minimum Maximum 

Car / Taxi - AM 1.63 0.10 1.51 1.88 

Car / Taxi - IP 1.69 0.10 1.54 1.85 

Car / Taxi - PM 1.53 0.10 1.27 1.62 

Car / Taxi - EV 1.72 0.15 1.54 1.99 

Car / Taxi - NI *No PEMS data so set to the same values as Car - EV 

LCV – ALL  1.45 0.05 1.4 1.5 

HGV, BUS – ALL  1.31 0.13 1.07 1.54 

 

 

Table 6-4b: Normal deceleration rates for each vehicle type in the Headingley AIMSUN network 

(values for cars and LCVs taken from Wyatt (2017), HGV/bus from this analysis). 

Vehicle Type 

Normal Deceleration Rates (m/s2) 

Mean 
Standard 

Deviation 
Minimum Maximum 

Car / Taxi - AM 1.30 0.18 1.03 1.67 

Car / Taxi - IP 1.36 0.15 1.16 1.64 

Car / Taxi - PM 1.18 0.11 1.06 1.36 

Car / Taxi - EV 1.49 0.12 1.35 1.67 

Car / Taxi - NI *No PEMS data so set to the same values as Car – EV 

LCV – ALL  1.05 0.13 0.90 1.15 

HGV, BUS – ALL  0.99 0.14 0.75 1.20 
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Table 6-4c: Maximum deceleration rates for each vehicle type in the Headingley AIMSUN 

network (values for cars and LCVs taken from Wyatt (2017), HGV/bus from this analysis). 

Vehicle Type 

Maximum Deceleration Rates (m/s2)  

Mean 
Standard 

Deviation 
Minimum Maximum 

Car / Taxi - AM 2.66 0.46 2.23 4.17 

Car / Taxi - IP 2.97 0.49 2.17 3.93 

Car / Taxi - PM 2.44 0.22 2.20 2.83 

Car / Taxi - EV 2.43 0.05 2.36 2.50 

Car / Taxi - NI *No PEMS data so set to the same values as Car – EV 

LCV – ALL  2.38 0.08 2.29 2.44 

HGV, BUS – ALL  2.09 0.36 1.48 2.60 

 

Table 6-5: Comparison to bus dynamics figures from Zhang et al (2012). 

Parameter Mean 
Standard 

Deviation 

Maximum Acceleration 1.70 0.21 

Normal Deceleration 2.42 0.35 

 

Leeds ring road between 8am and 2pm. The weather on the data collection day was overcast 

with no rain. 

As already discussed, the AIMSUN traffic model has fewer vehicle dynamics parameters than 

other microsimulation traffic models. The three key parameters governing vehicle dynamics in 

this model are maximum acceleration, normal deceleration and maximum deceleration (see 

table 6-3 for definitions). These parameters affect car-following, lane changing, travel time and 

queue discharge. 

From analysing the collected bus dynamics data, we conclude that overall acceleration and 

deceleration behaviours are more uniform in buses than cars, as anticipated. This is evidenced 

by the mean, minimum and maximum of the three key parameters calculated with a lower 

value for buses than cars or LCVs (see Tables 6-4a-c). The values of the standard deviation 

indicate that the spread of accelerating and decelerating behaviour is similar to that of cars. 

This indicates that there is not uniformity across bus drivers or trips. With a much heavier 
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vehicle and the same drivers employed to drive at all times of day, it was assumed that 

acceleration rates would not vary significantly at different times of day. 

Comparing our values to those of Zhang et al. (2012) (see Table 6-5), it is clear that the values 

for the parameters in question are significantly higher than our estimates. The key reason for 

this will be difference in interpretation of the definition (see Table 6-3), which is not clearly 

defined in calculation terms in the user manual. Aside from this, there are several factors that 

could cause discrepancies between the results, however, the likelihood of drivers in London 

driving significantly more aggressively is unlikely given the traffic conditions and weight of the 

vehicles in question. 

 Simulink H/EV Energy and Emissions Model  6.3.4

The trajectories from the Leeds network traffic model, along with the fleet mix are run through 

the TU-Graz PHEM emissions model for all vehicles except hybrid and electric vehicles that are 

run through the Simulink H/EV Energy and Emissions Model. The details of the process of 

calculating the vehicle emissions from the PHEM model are given in Appendix 6-F. 

The Simulink H/EV Energy and Emissions Model was originally designed by Riley (2017). This 

microscale CO2 emission model (model architecture outlined in Figure 6-8) was built using real 

world PAMS (Portable Activity Measurement System) data and designed to model the Toyota 

Prius Hybrid vehicle at a 1 Hz frequency. The model needs input of a vehicle drive cycle with 

corresponding data on road grade to output fuel consumption at the same frequency. 

This model has several key advantages over other microscale emission models13. Primarily, the 

mix of first principle and empirical methods used to build the model, with the option to 

incorporate complex vehicle architectures and adapt the model to test changes in vehicle 

design, results in high quality output with a fast run time, ideal for running vehicle trajectories 

through from microsimulation traffic models such as AIMSUN. To put this in context, for the 

model to compile and run over 24 hours of data at 1 Hz takes under twenty five seconds. To 

this end, the original model was adapted to model the Toyota Prius PHEV and Nissan Leaf BEV. 

The trajectories fed into this model are between 10 and 450 seconds, the TfL drive cycle is run 

through the model ahead of each vehicle trajectory to condition the battery and vehicle 

system.  

The model was built from on road test measurements taken from the vehicle CAN. This is  

                                                           
13 Note that the PHEM emissions model does not have a hybrid vehicle module available at the time of 
publication. 
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Figure 6-8: Toyota Prius powertrain overview. (Models underlined and parameters calculated 

within each model in pink) (Riley, 2017). 

costly and time consuming, and therefore many models use chassis dynamometer data instead 

(Kim et al., 2012a; Kim et al., 2012b). Chassis dynamometer data cannot take many external 

variables into account and is often collected within carefully controlled laboratory conditions; 

therefore, it is easier to fit the model but there is a larger error when modelling on road 

vehicle trajectories. Therefore, the real-world data approach is particularly advantageous 

when utilising the model to estimate CO2 emissions from traffic microsimulation vehicle 

trajectories as in this study. Note that because NOx emissions from hybrid and electric vehicles 

is negligibly low but the complexity to estimate these emissions on a second by second basis is 

very complex, it was not deemed necessary to build the model with the capability to model 

NOx emissions. 

The hybrid model has been independently tested against other data sets, demonstrating an 

error margin well below 5% (Riley, 2017), see Figure 6-9 for comparison of the model to real 

world data and other vehicle types. Many models in the literature have not been thoroughly 

independently validated (Rakha et al., 2004; Smit et al., 2006), and without this step the 

microscale model can be over fitted to the data from the building stage.  The Toyota Prius 

plug-in model is based on the 2012 vehicle design with a 4.4 kWh battery. The Nissan Leaf 

Electric Vehicle model is a variation on the Toyota Prius hybrid model. This model uses the 

same fuzzy logic framework but is simpler due to the battery electric powertrain. The Nissan 

Leaf model is based on the 2010 vehicle release with a 24 kWh battery. 
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6.4 RESULTS AND DISCUSSION OF THE LEEDS NETWORK EMISSIONS 

MODELLING 

The results of the coupled microsimulation traffic and emissions model show that network 

level CO2 emissions could fall by 2.3% by 2020, 16.8% by 2030 and 31.6% by 2040 (based on 

2015 baseline) with hybrid and electric vehicles paving the way for decarbonisation of the fleet  

(see Figure 6-10a for total CO2 emissions over the 24-hour period). Similarly, network level NOx 

emissions could fall by 35.3% by 2020, 88.6% by 2030 and 95.0% by 2040 (based on 2015 

baseline) due to the increased adoption of low carbon vehicles coupled with more stringent 

 

Figure 6-9: Comparison of Toyota Prius model with TfL drive cycle data (data sourced from TfL). 

U FF - Urban Free flow, U AM – Urban AM (e.g. peak congestion), U IT – Urban Inter Peak, SU 

FF – Suburban Free flow, SU AM – Suburban AM, SU IT – Suburban Inter Peak. The speed 

represents the average speed of the part of the test cycle. EESM results indicate ‘Simulink H/EV 

Energy and Emission model’ estimates. 
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Figure 6-10a: Total network CO2 emissions over the 24-hour period (Note that scenario A 

represents Business as Usual, scenario B corresponds to Battery Bonanza and scenario C 

represents Diesel Persists). 

 

Figure 6-10b: Total network NOx emissions over the 24-hour period (Note that scenario A 

represents Business as Usual, scenario B corresponds to Battery Bonanza and scenario C 

represents Diesel Persists). 
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Euro standards for different types of diesel vehicles (see Figure 6-10b for total NOx emissions 

over the 24-hour period). However, this section illustrates how deeper conclusions can be 

drawn concerning the effect of congestion on emission factors of different classes of Euro 

standard vehicle, the effect of greater numbers of P/H/EVs in traffic at different times of day 

and the ability to analyse vehicle emissions by road segment. This level of analysis would not 

be possible by using a simpler model as the higher resolution is required for these insights. 

 The Effect of Congestion on CO2 and NOx Emission Factors 6.4.1

Road congestion occurs when vehicle traffic volumes approaches road capacity, at this point 

average vehicle speeds fall. Road improvements that increase capacity lead to reduced time 

delays from increased traffic speeds but these effects are only experienced in the short term. 

Higher vehicle speed leads to reduced travel time costs, increasing the attractiveness of travel. 

This increases travel from other routes and modes, encouraging longer and more frequent 

vehicle trips. This increased traffic volume is referred to as generated traffic (Litman, 2015). 

Induced travel represents a proportion of generated traffic; induced travel accounts for the 

increase in total vehicle trips and distance travelled, not including the traffic diverted from 

other routes. Congestion usually becomes self-limiting as drivers are deterred from using the 

road network. This is evidenced in Leeds by the city cordon where vehicle flow has increased 

by less than 5% in 10 years (Department for Transport, 2015a). This evidences the assumption 

that with the current road layout and policies in place, the vehicle flows are not expected to 

change significantly between now and 2040.  

Over the course of a day, there are different levels of congestion on the traffic network. This is 

clearly illustrated in the traffic microsimulation model by slower vehicle speeds at times when 

there are high numbers of vehicles moving around the road network (see Figure 6-11). In the 

Leeds network traffic microsimulation network model, there is a clear ‘rush hour’ where there 

are more vehicles on the network leading to stop-start congested traffic. One of the key 

advantages of the modelling approach used in this thesis is the ability to capture the difference 

in emissions from different states of congestion and the weighting due to the different vehicle 

flows at these times. A simpler method, such as vehicle drive cycles, could have been used in 

this chapter to estimate emissions, but using a simpler could not capture the spatial and 

temporal aspects of the network level emissions. Using the microsimulation method, further 

analysis could reveal emission hotspots and the difference between junctions and links across 

the road network.   
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Figure 6-11: Average vehicle speed and number of vehicles passing a point on the A660 

throughout the 24-hour period on a specific point on the A660 (on Otley Road Southbound near 

junction with Shaw Lane). 

 

The CO2 emission factor of vehicles of different fuel type varies throughout the 24-hour period 

of the model (see Figure 6-12a). As expected, petrol cars were found generally to have higher 

emission factors than diesel cars, this was approximately 4% greater over all traffic flow 

conditions. The average emission factors of petrol cars increase by 34% between times of peak 

congestion (e.g. 18:00) and free flow (e.g. 01:00), this figure is slightly lower for diesel cars at 

30%. The average emission factor of petrol and diesel cars is nearly double that of HEVs. For 

HEVs there is only a 10% increase between free flow and congested conditions, and the 

emission factor is between 17% and 44% lower than the emission factor of the lowest emitting 

petrol or diesel Euro standard vehicle. The average emission factor of PHEVs was found to be 

28% lower than the average HEV emission factors. This illustrates the greater inefficiency of 

petrol and diesel vehicles in stop start traffic. 

NOx emissions predominantly stem from diesel vehicles. The introduction of higher Euro 

standard vehicles (as discussed in Chapter 2), and the retirement of old diesel vehicles leads to 

significant reductions in NOx emissions in the short to medium term. By 2030 all Euro 1-4 

diesel vehicles are scrapped, with most diesel cars registered as either Euro 6d or 6dT, this is 

turn leads to a drop in 87% on total network level NOx emissions (from 2015 baseline values)  
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Figure 6-12a: Variation of CO2 emission factors of different Euro standard vehicles through the 

course of the 24-hour period. 

 

Figure 6-12b: Variation of NOx emission factors of different Euro standard vehicles through the 

course of the 24-hour period. 

0

50

100

150

200

250

0 4 8 12 16 20 24

Em
is

sio
n 

Fa
ct

or
 (C

O
2

g/
km

)

Time Period (hr)

Petrol EU 3 Petrol EU 4 Petrol EU 5 Petrol EU 6

Petrol EU 6C/dT/d Diesel EU 3 Diesel EU 4 Diesel EU 5

Diesel EU 6 Diesel EU 6C Diesel EU 6dT Diesel EU 6d

HEV PHEV

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 4 8 12 16 20 24

Em
is

sio
n 

Fa
ct

or
 (N

O
x

g/
km

)

Time Period (hr)

Petrol EU 3 Petrol EU 4 Petrol EU 5 Petrol EU 6

Petrol EU 6C/dT/d Diesel EU 3 Diesel EU 4 Diesel EU 5

Diesel EU 6 Diesel EU 6C Diesel EU 6dT Diesel EU 6d



Micro-Scale Carbon Dioxide () Emission on UK Road Networks using coupled Traffic Simulation 
and Vehicle Emission Models 

 

140 
  

compared to the 35% reduction seen in 2020 (see Figure 6-10b). The effect of the increasing 

adoption of HEVs/PHEVs/BEVs in the car fleet was found to make a smaller difference to total 

NOx emissions than the mass adoption of Euro 6 vehicles. 

The CO2 emission factors of the different Euro standard cars vary through the day with 

different traffic conditions (see Figure 6-12a for details of the variation of CO2 emission factors 

of different Euro standard vehicles through the course of the 24-hour period). Vehicle weight 

plays a part in this, with Euro 6 vehicles generally heavier than Euro 5, this accounts for the 

increase in emission factor for Euro 6 compared to Euro 5. In the PHEM emission model, the 

average kerbside weight and power of a Euro 5 diesel car was chosen as 1565 kg with a 105 

kW engine whereas for a Euro 6 diesel vehicle this figure is 1615 kg with a 128 kW engine, 

these values were chosen to reflect the 2015 Leeds car fleet (calculated from the ANPR survey 

data). Average kerbside weight across the car fleet is anticipated to remain constant in future, 

as this historically has been a result of increased safety design and automation of vehicle 

features. For Diesel cars, Euro 6d vehicles were found to have a lower emission factors in free 

flow conditions than Euro 6dT, but this is approximately equal in congested conditions. 

Similarly, the NOx emission factors of the different Euro standard cars vary through the day 

(see Figure 6-12b for details of variation of NOx emission factors of different Euro standard cars 

through the course of the 24-hour period). NOx emissions for petrol cars are around 20% that 

of diesel cars. The emission factor of Euro 5 diesel cars is 3.0 times greater than Euro 6 diesel 

cars. The average emission factor of Euro 6C diesel cars is half that of Euro 6 diesel cars. The 

emissions factor of 6dT diesel cars falls by 20% compared to Euro 6C, again halving from the 

transition from 6dT to 6d. The average emission factors of Euro 6d diesel cars is less than 10% 

that of Euro 5 diesel cars. 

The emission factor of BEVs and PHEVs varies less during the day but is dependent upon the 

assumed carbon intensity of the electricity grid. The carbon intensity of the electricity grid is 

forecast to drop from 2015 to 2040, therefore the emission factors for PHEVs and BEVs will 

decrease over time. The emission factor of BEVs range from 0.337 to 0.352 kWh per km, this 

translates to 1.82 g CO2/km to 10.24 g CO2/km depending on the level of decarbonisation in 

the future. This compares to a range of emission factors of between 70.5 g CO2/km to 95.9 g 

CO2/km in 2020 over the period of a day for PHEVs, to 59.4 g CO2/km to 77.9 g CO2/km in 2040 

when carbon intensity of the electricity grid has fallen. Note that EVs are assumed in this thesis 

to be charged using the base load generation rather than dedicated generation, therefore the 

figures reflect the decarbonisation of the electricity sector. If dedicated generation figures are 

used, e.g. infrastructure is built/operated specifically to support the increasing charging 
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demands of greater numbers of EVs, the emission factors of these vehicles would increase 

significantly (see Marmiroli et al. (2018) for further discussion of this point).  

 The Effect of Higher Numbers of P/H/EVs in Traffic 6.4.2

Because of the greater efficiency of hybrid and electric vehicles during congested periods, the 

role out of these vehicles has a more pronounced effect during congested periods than at 

times of free flow (see Figure 6-12a). For example, at 03:00 – a time of traffic free flow, the 

change in total hourly network CO2 emissions from 2015 to 2040 reduces by 24% whereas at 

09:00 - during a congested period - it reduces by 26%. Over the 24 hour period, in the scenario 

with the highest fleet share of P/H/EVs (Battery Bonanza - representing 32.4% HEV, 16.3% 

PHEV and 12.8% BEV car vkm share), the total CO2 emissions falls by 31.6%; in this scenario in 

peak traffic periods such as 09:00 and 17:00 there is a greater reduction of network CO2 

emission (36.1% and 36.6% respectively compared to the 2015 baseline) due to this increased 

efficiency of hybrid and electric vehicles in congested traffic. It is worth noting that total 

network level CO2 emissions are ten times greater at peak times than during night-time hours. 

Due to the different makeup of the fleet in the different future scenarios modelled, at each 

time period (e.g. 2020, 2030 etc) there is a variation in the network level emissions forecast. By 

2020 the difference between the reduction in CO2 across the three scenarios is negligible 

(<1%), because HEV car vkm share varies between 1.79% to 2.35%, PHEV between 0.25% and 

0.32% and BEV between 0.17% and 0.23%. By 2030 this increases to approximately 2%, 

because HEV car vkm share varies between 8.43% to 16.25%, PHEV between 1.02% and 3.32% 

and BEV between 0.94% and 5.81%. Finally, by 2040 this figure is at 7%. because HEV car vkm 

share varies between 15.51% to 34.06%, PHEV between 3.61% and 16.30% and BEV between 

3.26% and 12.85% (see Figure 6-6 and Appendix 6-C for figures/tables of fleet scenarios). Over 

the course of the day, there is greater variation between these scenarios, for example at 

16:00, the difference in scenarios at 2040 is closer to 10% because the effect of higher levels of 

P/H/EVs in traffic on emissions is non-linear. 

Similarly, network level NOx emissions fall by different amounts depending on the scenario in 

this study, but the variation between scenarios is smaller than discussed for CO2 reductions, 

this is because higher Euro standard diesel vehicles are modelled with significant NOx 

reductions (see Figure 6-12b for NOx emission factors throughout the day). By 2020, the NOx 

emissions reductions across the three scenarios differ by less than 0.5%, by 2030 this increases 

to 1%, and this is still higher by 2040 at 3%. This shows that NOx levels are mainly dependent 

on scrapping older vehicles/purchasing new vehicles (across the whole road fleet) with a  
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Figure 6-13a: Contribution of CO2 emissions by vehicle type. ‘0’ represents 2015 baseline case, ‘A’, ‘B’ and ‘C’ represent the scenarios Business as Usual, Battery 

Bonanza and Diesel Persists respectively in 2040. 

 

Figure 6-13b: Contribution of NOx emissions by vehicle type. ‘0’ represents 2015 baseline case, ‘A’, ‘B’ and ‘C’ represent the scenarios Business as Usual, Battery 

Bonanza and Diesel Persists respectively in 2040. 
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higher Euro standard rather than opting for P/H/EVs. However, the absolute reduction of 

network level NOx emissions is greater by 2040 than that of CO2 (95% reduction of NOx versus 

31.6% reduction of CO2 in 2040 in Battery Bonanza scenario compared to 2015 baseline levels). 

 The Contribution of Different Vehicle Types to Network Level CO2 6.4.1

and NOx Emissions 

The microsimulation model accounts for different vehicle types such as cars, buses, LCVs and 

HGVs. Vehicles other than cars account for approximately 59% of CO2 and 30% of NOx 

emissions at peak times such as 09:00 rising to 76% and 48% at night time (e.g. 02:00) (see 

Figure 6-13a for emissions contribution of different vehicle types in 2015 and 2040). The 

scrappage model accounts for the renewal of vehicles of all sizes, replacing them with vehicles 

of a higher Euro standard depending on their age according to scrappage curves. For example, 

buses represent around 15% of total network CO2 over the period of a day in the baseline 

scenario rising to 22% in 2040 with the expected lower contribution of carbon emissions from 

cars. 

The percentage contribution of cars over different scenarios, across all times of day varies. 

Compared to the 2015 baseline scenario, by 2040 in the Battery Bonanza scenario cars 

contribute 18% less to total CO2 emissions. Only approximately half the reduction is achieved 

in the Diesel Persists scenario illustrating the need to switch to P/H/EVs. 

Cars contribute 14.6% to 70.5% of NOx emissions depending on time of day and scenario (see 

Figure 6-13b). Unsurprisingly, in the Diesel Persists scenario NOx contribution from cars is 

greater (40%), whereas in Battery Bonanza scenario it is much less (25%), illustrating the effect 

of P/H/EVs on NOx emissions. During night-time hours cars represent most of the traffic 

therefore most NOx is emitted by cars, however, at peak time periods with greater numbers of 

buses in the traffic fleet this drops. Between 06:00 and 23:00 buses contribute around 40% of 

emissions in 2015, this shows the potential to dramatically cut NOx levels if electric buses were 

adopted on the Headingley route. 

6.4.4 Road Segment Level Analysis 

So far in this section, it has been shown that the microsimulation coupled traffic and emissions 

model can be used to estimate vehicle emissions over the network at different times of day 

with different traffic mixes. Because this model is so detailed, analysis can be taken one step 

further to illustrate how emission factors change at traffic bottlenecks within a time period for 

different parts of the network. To demonstrate this, a route is chosen (see Figure 6-14) that  
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Figure 6-14: Illustration of selected road segments on the traffic model network (Note that 26 

road segments are aggregated into 7 for simplicity, these are south/east direction of travel 

only) (©Copyright GoogleTM 2015) . 

 

Figure 6-15: CO2 and NOx emission factors averaged across all vehicles on each road segment 

for 07:00. 
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Figure 6-16a: Box and whisker diagram illustrating the spread of total CO2 emissions on the 

road segments specified in Figure 6-14 across different random seeds. 

 

Figure 6-16b: Box and whisker diagram illustrating the spread of total NOx emissions on the 

road segments specified in Figure 6-14 across different seeds. 
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Figure 6-17: Total NOx and CO2 summed over the seven road segments in Figure 6-14 for EFT 

and PHEM models. 

incorporates different traffic conditions within an hour period (07:00). The average CO2 

emission factor was found to change throughout the specified route (see Figure 6-15 for 

average emission factors of all vehicles for each road segment). The average CO2 emission 

factor increases as vehicles approach the junction (located at the intersection of section 5 and 

6) which often has long queues on the approach, then the average emission factor drops off 

rapidly as the vehicles return to free flow along road segments 6 and 7. The average emission 

factor on road segment 5 was found to be 2.9 times that of road segment 1. The same trends 

are mimicked by the average NOx emission factor. Future analysis could exploit this aspect of 

this modelling methodology more fully, allowing for identification of key junctions that have a 

significant contribution to network level emissions and assessing how these emissions could be 

reduced. 

6.4.5 The Stochastic Nature of Traffic 

The traffic model in this analysis illustrates vehicles flows on an average September day 

calibrated with vehicle flow data from a single week. However, this modelling methodology 

has the advantage over simpler models that it can capture the stochastic nature of traffic 

across the network using the AIMSUN feature of random seeds. Random seeds are used to 

determine lane selection, traffic management actions, vehicle path selection and vehicle  
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Figure 6-18a: Total CO2 on each of the seven road segments in Figure 6-14 at 03:00 and 17:00. 

 

 

Figure 6-18b: Total NOx on each of the seven road segments in Figure 6-14 at 03:00 and 17:00. 
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generation in the traffic model (as specified in the AIMSUN user manual (TSS, 2013b)). The 

model used in this analysis is run with 10 different random seeds, illustrating how traffic varies 

over ten different days. 

By examining the same road segments that were specified in Section 6.4.4 (see Figure 6-14) 

across the different random seeds, the difference between the days modelled can be 

illustrated (see Figure 6-16a and 6-16b). As already discussed in this section, in congested 

periods vehicle emissions are greater. The variation in traffic congestion is illustrated by the 

greater spread of CO2 and NOx emissions across different seeds during the am and pm rush 

hour.  

6.4.6 Comparison to the Emissions Factors Toolkit Model 

As discussed in Section 6.2.2, the Emissions Factors Toolkit (EFT) model is an average speed 

model that is one of the most widely used emission models in the UK and therefore it is 

pertinent to compare the vehicle emissions output from this study to EFT. In the EFT, the 

vehicle emissions are calculated as a function of average speed over a link, it is a simpler model 

than the microsimulation methodology used in this research. The road segments in Figure 6-14 

are used as the comparison area for the EFT model for the base year (2015) fleet mix. This was 

run over the period of 24 hours with the same Euro standard fleet mix as that specified in the 

PHEM model (although this was constant across the 24-hour period for EFT due to the model 

limitations). Overall, the EFT model was found to estimate higher CO2 and NOx emissions than 

the PHEM model(see Figure 6-17). This is mainly as a result of the topography of the road 

network. The EFT model does not incorporate gradient into the emissions estimate and the 

road segments chosen have a continual downhill road grade. The discrepancies between the 

models are greater at peak times than non-peak periods, especially in the evening. If we 

consider the seven road segments individually for 03:00 and 17:00 e.g. peak and off peak (see 

Figure 6-18a), it is clear that the EFT model is estimating higher CO2 emissions than the PHEM 

model on free flow links (e.g. road segments 1-3) by as much as 70% and underestimating 

emissions on congested links (e.g. road segments 4 and 5) by as much as 20%. Note that due to 

the gradient, this lower emissions estimation from EFT would be significantly greater if the 

congestion was on a flat or increasing road grade. The difference between the model 

estimates are even greater for NOx (see Figure 6-18b), with an estimate of up to 97% greater 

than the PHEM model on free flow links and lower estimate of up to 47% than the PHEM 

model on congested links.  
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In addition, the EFT cannot estimate energy consumption from BEVs or PHEVs. Therefore, for 

future fleet scenarios, it is not capable of estimating the impact on emissions of increasing 

numbers of hybrid and electric vehicles in the road fleet. Because of the inclusion of road 

grade, the ability to capture congested behaviour on the traffic network, and capability to 

incorporate hybrid and electric vehicle energy and emissions, this section illustrates why the 

modelling approach described in this chapter of the thesis is a better approach to estimating 

network level vehicle emissions across different times of day for both the base year and in 

future fleet scenarios. 

The other vehicle emission models discussed in Section 6.2.2 such as MOVES, AIMSUN and 

HBEFA would produce different results to the modelling undertaken with PHEM. As discussed 

in Section 6.2.2 the MOVES model is a microsimulation model and has been found to produce 

similar results to the PHEM model (see Wyatt (2017), therefore it is likely that MOVES would 

reproduce the same trends as the PHEM model. The AIMSUN and HBEFA models are more 

aggregate models and therefore it is speculated that the results would be more likely to mimic 

those of the EFT rather than the higher resolution PHEM modelling results. With the different 

approaches used by the different models, without running the data through these models it is 

difficult to quantify how results would vary between them. 

6.5 SUMMARY AND CONCLUSIONS 

Estimating the effect of a diverse set of future road fleet scenarios on traffic emissions allows 

us to draw tangible conclusions about the effect of different levels of hybrid and electric 

vehicles on emissions of CO2 and NOx . By utilising a method that fully captures the changing 

emission levels, conclusions can be drawn both at an aggregate level but also at a greater 

temporal and spatial resolution. Using a coupled microsimulation traffic and emissions model 

on a network level over a 24-hour period is still a novel approach to estimating vehicle 

emissions, but with growth of data availability and computing power, this is likely to change in 

coming years. The approach used in this chapter is unique, in that it couples two different 

microsimulation emission models together to approximate fuel efficiency and pollutant 

emissions from both conventional and hybrid/electric vehicles. This is important because 

hybrid and electric vehicles are more efficient than conventional vehicles in stop-start traffic, 

and therefore this needs to be incorporated for representative emissions estimates. 

On an individual vehicle and highly aggregate level, the benefits of hybrid and electric vehicles 

compared to petrol and diesel ICEV have been well documented (for example see Chen et al. 

(2018), Liu et al. (2018), and Guensler et al.  (2017)). These benefits include lower NOx, and 
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higher fuel efficiency especially under stop start conditions. Because of the small number of 

hybrid and electric vehicles in most vehicle markets, most traffic emission models do not have 

dedicated modules for estimating emissions of low carbon vehicles or models are aggregated 

such that they cannot appreciate how emission factors of all vehicle types vary with changing 

traffic conditions. The microsimulation coupled traffic and an emission modelling is an 

emerging simulation toolkit, which relies on extensive data collection to build the model, and 

computing power to run it. Therefore, this is the best representation of the benefits of future 

fleet scenarios from an emissions perspective.  

Although the future scenarios of the fleet are inherently uncertain, if an aggregate emissions 

model is used the errors will propagate and we cannot draw meaningful conclusions from the 

results. This approach allows us to have appreciation for the different financial scenarios and 

their potential effect on adoption, whilst giving an analytical application in assessing network 

level emissions at a microsimulation level. 

From this analysis, levels of CO2 and NOx spike in congested traffic with emission factors of 

petrol and diesel cars increasing by over 30%. Therefore, policy should aim to curb use of 

diesel vehicles and incentivise hybrid and electric vehicles during these times. Although this 

analysis primarily focuses on cars (which account for approximately 66% of CO2 and 36% of 

NOx), limiting emissions from larger vehicles such as buses and HGVs will bring significant 

benefits to urban air quality.  The main value in this chapter is the quantitative assessment of 

the effect of more EVs and fewer diesels in the fleet. Clearly it was already known that these 

trends would produce a positive result for CO2 and NOx emissions, but the work in this chapter 

shows the extent of this across a city road network. By using this modelling method, it was 

revealed that by scrapping vehicles of older Euro standards, and curbing increases in kerbside 

vehicle weight, there could be significant benefits for air quality. Additionally, the 

methodology adopted allows for more in-depth analysis temporally and spatially as well as 

accounting for the stochastic nature of traffic. This enables an assessment of the effect of 

changes in the vehicle fleet at different times of day and different locations across the 

network. Such an insight is highly valuable to policymakers who are assessing measures such 

as clean air zones, low emission zones and electrification of bus fleet and the extent to which 

they could contribute to cleaner air at different times of day across different locations in the 

city.  

In the next chapter the conclusions from each part of this thesis will be brought together to 

answer the research questions set out in the first section of this work. This chapter completes 
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the story of the thesis, such that the TCO analysis was utilised as the basis for future road fleet 

scenarios, and the effect on network level emissions was assessed using these scenarios.  
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CHAPTER 7: SUMMARY AND CONCLUSIONS 

7.1 THESIS SUMMARY  

Electrification of the transport sector offers the opportunity to utilise the increasing share of 

renewable energy generation whilst reducing national oil dependency. Battery Electric 

Vehicles (BEVs), Plug-in Hybrid Electric Vehicles (PHEVs) and Hybrid Electric Vehicles (HEVs) 

offer a low-carbon low-pollution alternative to conventional petrol and diesel technology. 

Battery technology has improved over the past decade, with economies of scale and 

streamlining of manufacturing processes leading to falling electric vehicle costs. Market share 

of hybrid and electric vehicles is now growing, with many countries incentivising vehicles 

through both fiscal and non-fiscal incentives. Establishing the cost effectiveness of these 

vehicle types, understanding how costs may change in the future and estimating the effect of 

greater numbers of hybrid and electric vehicles on pollutant emissions at a city scale can 

inform and direct low-carbon transport policy.  

Historic vehicle ownership cost analysis in this thesis ascertains the cost effectiveness of hybrid 

and electric vehicles in light of the current fiscal incentives on offer across several different 

geographic regions. This thesis concludes that in all regions the incremental TCO of hybrids and 

electric vehicles compared to conventional vehicles has reduced between the year of 

introduction and 2015 subject to the assumptions made in this analysis, confirming the original 

research hypothesis. Year on year hybrid electric vehicle TCO was found to vary least in the UK 

due to the absence of subsidies. Financial subsidies have enabled BEVs to reach cost parity in 

the UK, California and Texas, but this is not the case for PHEVs, which have not received as 

much financial backing. The value of this regional analysis highlights the variation of monetary 

incentives available across different regions and the effect on the comparative vehicle TCO. 

However, the cost ratio of EVs to ICEVs varies across the different regions more than 

anticipated.  

Electrification of the fleet is already growing with hybrid and electric vehicle ownership costs 

falling. This thesis finds that depending on the vehicle size segment, hybrid and electric private 

vehicle ownership costs could reach cost parity with conventional petrol vehicles by 2025. 

Future vehicle costs will be affected by changes in several variables: primarily fuel price, 

battery price, and taxes. In fact, VED tax changes in 2017 affect PHEV purchasers greater than 

those who purchase other vehicle types. Based on this analysis, with falling battery costs, BEV 

uptake could be strong in the medium and large+ size segments but financial subsidies and tax 

policy would have to support this. Private car TCO and market share were found to be more 
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closely linked than company car cost and market share; such that private car market share is 

more reactive to changing cost. The historic variation in company car cost was found to be 

more dependent on changing BIK tax rates than vehicle prices. With other additional factors 

such as greater range of new BEVs and the expansion of the supporting charging 

infrastructure, it is highly likely that the electrification of the fleet will continue. 

Policymakers are looking to plan for the future, therefore this thesis investigates how market 

diffusion modelling can be used to model future road fleet scenarios . This thesis illustrates the 

shortcomings of the widely employed standard market diffusion modelling approach such as 

the Bass, Gompertz and Logistic models, demonstrating how fitted modelling parameters are 

sensitive to the number of years of calibration data and the saturation level chosen. An 

extended generalised Bass modelling framework based on vehicle ownership costs can be 

utilised to ascertain how different external market conditions could affect the composition of 

the future car fleet. This approach outputs vehicle market share of hybrid and electric vehicles 

and can be used to test the effect of different fiscal incentives on future market share. This 

approach illustrates one adoption pathway to the 2040 target of 100% hybrid and electric 

vehicle market share, indicating that market share could accelerate in the near future. It is 

clear that one option available to policymakers is to support the plug-in vehicle grant, which 

could ensure continuing adoption of EVs. By ensuring diesel vehicle ownership costs are 

greater than conventional petrol cars, the dieselisation of the fleet could slowly be reversed.  

Estimating the effect of future fleet scenarios on network level vehicle emissions is important 

for urban transport policy. This thesis demonstrates how hybrid and electric vehicles can 

contribute to cleaner urban air quality and lower carbon dioxide emissions especially at times 

of high congestion. This analysis found that CO2 emission factors of hybrid and electric vehicles 

are less than half that of diesel and petrol ICEVs in times of peak congestion. Therefore, the 

increased adoption of hybrid and electric vehicles by 2040 along with the scrappage of older 

vehicles leads to the reduction in network level CO2 and NOx emissions of up to 31.6% and 95% 

respectively. The advantages of using the microsimulation methodology are extensive, 

enabling in-depth analysis into spatial emission hotspots, the effect of the stochastic nature of 

traffic, and the variation of vehicle emissions throughout the day. Therefore, a coupled 

microsimulation traffic and vehicle emissions model is the most appropriate method to 

capture the temporal and spatial effects of this future vehicle fleet. With more aggregate 

methods such as the Emission Factor Toolkit, the temporal and spatial effects cannot be 

assessed. By incentivising the scrappage and use of older diesel vehicles of all sizes, the 
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majority of the air quality benefits can be realised within the next five years. After that, EVs 

can contribute significantly to decarbonising and improving urban air quality. 

7.2 HOW THE RESEARCH IN THIS THESIS ADDRESSES THE RESEARCH 

QUESTIONS 

R1. Are hybrid and electric vehicles cheaper now than when they were first introduced to the 

mass market? 

Hybrid and electric vehicle technology has been falling in price since introduction of these 

vehicle types to the mass market. In fact, new EV models have recently been announced with 

similar MSRP to conventional petrol/diesel ICEVs. Each year, the cost of manufacturing the 

novel drivetrain, battery and vehicle components has fallen from more efficient production 

processes. Some of this cost reduction has been passed onto the consumer, although profit 

margins of hybrid and electric vehicles are also increasing. Historically, manufacturers such as 

Toyota have made a loss during the early years of production, but as sales grow this is 

changing. Simultaneously, hybrid and electric vehicle technology is developing, the EVs 

available now are more advanced than the first models available on the market. Changes in 

battery capacity, installation of advanced driver assistance systems and modifications to meet 

increasingly stringent safety standards, all offset part of the falling capital cost of hybrid and 

electric vehicles. 

In some geographic regions, these vehicles can be more expensive due to import taxes. 

Changes in manufacturing locations, for example the opening of the Toyota factory in the USA, 

can cause step changes in price but lead to supply stability in the region. Some countries, such 

as Brazil, have taken advantage of this tax to produce a financial incentive for EVs. As 

electrification of the transport sector grows, more countries will start to manufacture EV 

models and the falling vehicle prices experienced in countries such as the USA could 

materialise in other markets. 

In the UK, vehicle TCO has changed depending on the type of owner. For the private consumer, 

the costs of hybrid and electric vehicles have fallen since introduction for all vehicle types (as is 

the case in Japan and the USA). However, this is different for company car drivers, which have 

seen tax increases for low CO2 emission vehicles to counter the reducing government tax base. 

Therefore, over the past decade company car driver costs have increased for EV drivers. Tax 

increases for vehicles with low rated CO2 will likely rise as the average vehicle CO2 of company 

cars continues to fall. However, the taxes payable are still significantly lower than for 
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conventional petrol and diesel ICEVs, therefore there is still a financial incentive to choose low 

CO2 emission vehicles. 

These conclusions are largely supported by the literature, with learning rates of hybrid and 

electric vehicles being well documented (see Safari (2018) and Nykvist and Nilsson (2015)). 

Because this thesis analyses vehicle TCO using MSRP rather than the cost of manufacture, a 

learning rate analysis is not directly comparable, rather this approach is from a consumer point 

of view, emphasising the price fluctuations consumers experience. Most TCO analysis in the 

literature considers manufacturing costs rather than MSRP (e.g. Al-Alawi and Bradley (2013b), 

Hutchinson et al. (2014) and Wu et al. (2015)), and by comparing these studies over their 

different base years we can confirm that cost is falling and will continue to do so. The studies 

in literature do not consider TCO over multiple historic years, and are therefore not directly 

comparable; the temporal conclusions in this thesis are therefore much stronger than 

attempting to compare these studies in the literature. 

R2. How do vehicle ownership costs change over different size segments and how does this 

link to market share? 

Generally, larger sized vehicles have greater ownership costs, but there is greater variation 

across vehicle types for larger size segments. In the small and medium vehicle segments, the 

comparison vehicles chosen (based on market share) are more similar in terms of engine 

power/size than in the large and large+ segments.  The small and medium vehicle size 

segments together account for 70% of market share (in the UK; this figure is similar for many 

European markets) and are more popular in the private car market. The large and large+ 

vehicle size segments represent a minority of market share and are dominated by the business 

market. The large vehicle size segment represents vehicle types of luxury, therefore there will 

be an element of cost in purchase decisions, but other factors such as business practices, 

brand loyalty and aesthetic value will play a role in vehicle purchase decision. The large+ size 

segment represents a small proportion of market share and diversity of vehicle types that are 

not directly comparable, therefore it is difficult to draw conclusions for this size segment. This 

thesis finds that generally there is a link between TCO and market share over different size 

segments for the private consumer. 

Hybrid and electric vehicles are now generally cheaper over a three-year TCO than 

conventional petrol/diesel cars. This is true for both private and company car owners across 

different vehicle size segments. In the larger segments, diesel ICEV TCO has increased 

compared to petrol ICEVs in the last couple of years. However, in the larger size segments 
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diesel cars are still cost competitive for high mileages. The larger car segments have a higher 

proportion of company car owners, and with taxes graduated by CO2 this is a strong policy 

instrument to decarbonise and de-dieselise a large proportion of the road fleet. Transport 

policy has made steps in the right direction, for example the increase of the company car 

diesel surcharge in the autumn budget (Barton, 2017), but this price increase may still not be 

great enough to deter diesel car adoption. Fleet purchasers are more rational in their decision 

making processes than private car purchasers. Hybrid and electric vehicles are still significantly 

cheaper than petrol/diesel ICEVs for the company car owner, and therefore market share 

continues to rise despite rising costs for low CO2 emission vehicles.   

Most studies in the literature consider vehicles across different size segments (e.g. Alawi and 

Bradley (2013b), Wu et al (2015) and Levay et al (2017)) with similar findings that larger 

vehicles have a greater TCO. However, these studies consider only a private car ownership 

model that is not reflective of the composition of vehicle ownership types across the fleet. 

These studies have also not considered how market share has changed historically compared 

to TCO necessitating a model that accounts for multiple purchase years. This thesis builds on 

the literature base to consider the UK car market in detail – which is similar to many vehicle 

markets across Europe in terms of vehicle size segment composition, company car popularity 

and dieselisation of the fleet. By comparing market share of size segments and vehicle types to 

TCO for both the private and company car owner, this thesis finds that the private market is 

more reactive to changing ownership costs than the company car market. 

R3. How might the evolution of vehicle costs influence the future road vehicle fleet? 

It is largely agreed in TCO studies which examine future vehicle costs, such as Hill et al (2012), 

Wu et al. (2015) and Lee et al. (2016), that vehicle costs for hybrid and electric vehicles will 

continue to fall, continuing historic trends. The findings in this thesis largely support the 

existing literature, finding that by 2030 hybrid and electric vehicles could be cost competitive 

without financial subsidies. Financial motivation is largely responsible for vehicle purchases in 

vehicle markets across the world- as discussed in Chapter 3 and backed up by the literature 

(Coffman et al., 2017). Therefore, it is reasonable to assume that changing vehicle costs in the 

future will influence the composition of new registrations. If hybrid and electric vehicle costs 

continue to fall, then it is probable that these vehicle types will be more important in the 

future, especially in the medium term. This thesis uses cost as a proxy for increases in hybrid 

and electric vehicle fleet share, but there are other factors, that could affect adoption, such as 

access to charging infrastructure, range anxiety and distrust in new technology, all of which if 

fully addressed could stimulate sales even if prices are stagnant. 
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Depending on how companies choose to set their profit margins and governments choose to 

differentiate company car tax, there is an opportunity to promote clean low carbon vehicles, 

and decarbonise (and de-dieselise) the fleet. Trends have shown that costs are rising for diesel 

cars; with uncertainty of depreciation, increasingly stringent DPF testing and regulation 

limiting diesel vehicle access to urban areas, resulting in a significant fall in diesel ICEV market 

share. This means that dieselisation is likely to be reversed, but the switch to hybrid and 

electric vehicles rather than petrol ICEVs should be encouraged by using policy levers. As long 

as low carbon vehicle TCO is cheaper than for conventional vehicles especially for private 

owners in the smaller size segments and company car owners in the larger size segments, 

market share is likely to grow. 

R4. How would a future road vehicle fleet containing more hybrid and electric vehicles affect 

urban network vehicle emissions? 

From the modelling work in this thesis, it was found that hybrid and electric vehicles have 

similar emission factors in congested and non-congested conditions due to their increased 

efficiency in stop-start conditions, whereas petrol and diesel CO2 emissions vary by over 30% 

over the same distance depending on congestion. This means that at times of high traffic flow, 

with stop-start conditions, on a network level hybrid and electric vehicles deliver an even 

greater CO2 and NOx savings. This non-linear effect illustrates how even small numbers of 

hybrid and electric vehicles deployed in the fleet can lead to much more significant reductions 

in CO2 and NOx over the course of a day. The impact of increasingly stringent Euro standards 

will also reduce CO2 and NOx emissions significantly in the short term, but electrification of the 

fleet would make a bigger difference in the long term illustrating how network level CO2 and 

NOx emissions could fall by as much as 31.6% and 95% respectively by 2040. 

The network level emission models currently in use (notably the Emissions Factors Toolkit) do 

not have the capability to adequately capture these non-linear effects of traffic emissions and 

congestion. In addition, most do not have the means to model hybrid or electric vehicles – a 

must when examining the effect of the changing vehicle fleet on emissions. However, even if 

these models disagree quantitatively regarding the percentage of emissions reductions, these 

models do agree that the deployment of hybrid and electric vehicles will lead to declines in 

network level CO2 and NOx throughout the day.  

Contrary to the inherent uncertainties of the cost model and fleet scenarios used, the 

microsimulation traffic and emissions model is considered more precise in its estimate of 

second by second vehicle emissions. Errors propagate through a model, therefore if an 
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aggregate emissions model is used, the errors from early stages will compound. The 

inaccuracies of using aggregate emission factors have been extensively documented (see 

Chapter 6 for comparison of this modelling approach to the Emission Factors Toolkit) and there 

would be little use in estimating the effects of these fairly low penetrations of HEV/PHEV/BEVs 

in the fleet if using these methods. 

7.3 LIMITATIONS 

Every effort was made in this thesis to explore each avenue fully, however, it is the nature of 

all research that there are limitations to the methods used, the data collected and the 

conclusions that can be drawn, especially within the timeframe allocated for the PhD. Time 

permitting, some of these limitations could be addressed, whereas others are fundamental to 

the methodology chosen or the data available.  

 Methodological Limitations 7.3.1

The TCO methodology underpins the key conclusions from this thesis. TCO is a useful measure, 

but even a sensitivity analysis cannot fully demonstrate the range of ownership costs across 

vehicle models, user behaviour and purchase method. The results of this thesis are subject to 

the large number of assumptions made regarding the inclusion of the constituent parts in the 

TCO calculation and the values assumed for these components. The sensitivity and scenario 

analysis in Chapters 3 and 4 aimed to investigate how the variation in these components 

affects the results. Because the TCO framework and the values of the constituent parts are not 

standard across the literature, we conclude that it is necessary to recognise that these findings 

are clearly dependent on the assumptions made.   

There are significant uncertainties in future cost and adoption of hybrid and electric vehicles 

but the scenarios outlined in this thesis attempt to provide an overview of these. There are 

limitations in scenario modelling, in that all future scenarios and projections will likely be 

wrong. One of the aims in the thesis is to understand how the different cost scenarios could 

affect fleet mix and the effect on network level vehicle emissions rather than attempt to 

explicitly project future vehicle market share. 

When applying the coupled traffic and emissions model, there are numerous small errors that 

could contribute to the overall modelling error and limit the model applicability than described 

here, but this section aims to give the reader an appreciation of the main limitations rather 



Micro-Scale Carbon Dioxide () Emission on UK Road Networks using coupled Traffic Simulation 
and Vehicle Emission Models 

 

159 
  

than an exhaustive discussion.14 The commonly quoted phrase ‘all models are wrong but some 

are useful’ seems particularly pertinent at this point. Models are designed to be simplifications 

of the real world, such that it is cheaper and quicker to build and simulate these models rather 

than carry out real world experiments on this scale - if these experiments are even possible to 

execute. As a result, there is always a trade-off between computing time and model 

complexity when designing a representation of the real world.  

The traffic model is designed to simulate a representative weekday in September. Traffic varies 

with the day of the week, the month, and the weather (amongst other factors), with events 

such as sports fixtures, vehicle accidents or road works all causing abnormal traffic flows. 

Limitations such as these are typical of all traffic models. Averaging over different random 

seeds aims to address the stochastic nature of traffic to model a ‘typical’ day.  

The vehicle flow data available was not all collected within the same 24-hour period. The data 

used in the model has been collected over a number of different months and years, in some 

cases with minor flow inconsistency between data sets. If more than one data set was 

available for a particular entry/exit point, the data selected was chosen based on a similar 

month rather than year of the modelled day. In addition, there is not data available for some 

entry/exit points (these were mainly minor roads). The Leeds city cordon vehicle count has 

shown that the number of vehicles entering and exiting the inner ring road has varied by 

around 5% in the past twenty years (Department for Transport, 2015a). This evidences the 

assumption that with the current road layout and policies in place, the vehicle flows are not 

expected to change significantly between now and 2040. This contradicts the DfT Road Traffic 

Forecasts 2018 (Department for Transport, 2018), which project urban traffic growth. 

However, with the high levels of congestion across most of the day, it is unlikely with the 

current policies in place that this could materialise. 

Updating the Leeds Network model from Version 1 to Version 2, the traffic model has been 

incrementally improved. Although every effort has been made to fully calibrate the model, the 

lack of data to validate using journey time analysis is a key area for improvement. The amount 

of data needed to calibrate journey times across different times of day requires a large data 

set with journeys over many days throughout the 24-hour period.  

Driving behaviour is non-uniform across the vehicle fleet and significantly affects vehicle 

tailpipe emissions. AIMSUN uses random seeds along with vehicle dynamics parameters to 

account for this stochastic behaviour, such that vehicles do not drive uniformly within the 

                                                           
14 For an in-depth discussion of the limitations of this modelling approach please see Wyatt et al (2017). 
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traffic model. However, there is little guidance on how to calculate vehicle dynamics 

parameters from the AIMSUN user manual and the literature. An inaccurate interpretation 

could affect the outputs and therefore the conclusions drawn from the model. Detailed 

information from the software developers would give clarity and ensure that these parameters 

were accurately calculated for the model.  

The vehicle emissions estimates made by PHEM have been independently validated (as 

discussed in section 6) and the Simulink H/EV Energy and Emissions Model has also been 

independently validated (see Section 6.3.6), therefore the estimates of second-by-second tail 

pipe emissions are as accurate as possible. These models calculate emissions for a specific 

vehicle specified, but clearly by estimating all the vehicles within the category (e.g. passenger 

car, taxi etc) with the same attributes there will be errors. PHEM specialises in modelling 

vehicles by Euro standard, with the capacity to vary vehicle characteristics such as weight. 

Although these parameters could be changed to take different vehicle size segments into 

account, because the original testing used a particular vehicle model it is ill advised to change 

the vehicle weights significantly within the PHEM vehicle attributes. Analysis of the ANPR 

Leeds fleet shows a concentration of vehicle sizes around the medium vehicle segment, 

therefore it is anticipated that the over representation of emissions from small cars will be 

compensated by the under representation from large cars. 

In the past twenty years the average vehicle weight of cars has increased across all size 

segments (as discussed in Chapter 2). This is mainly as a result of increased safety features as 

well as additional electrification of previously manual vehicle attributes (e.g. windows). In the 

future there are several options to reduce vehicle weight by using different materials (e.g. 

carbon fibre or high strength steel) (Lewis et al., 2014), or by redesigning the body to use less 

materials (e.g. Tesla model 3) (Bower, 2018). These options increase vehicle design and/or 

manufacture costs. To date, most of these options have only been utilised on EVs where 

weight reduction is important, but it is unlikely that these changes will be applied across the 

board unless the material costs reduce significantly. Other vehicle attributes can also change 

tailpipe emissions, such as occupancy and vehicle age, the values used to represent the 

‘average’ vehicle in the fleet have the potential to change in the future. 

The Simulink H/EV Energy and Emissions Model is based on a particular vehicle type (the 

Toyota Prius HEV/PHEV, and the Nissan Leaf). At present the Toyota Prius and the Nissan Leaf 

are the most popular HEV and BEV models respectively in the UK (Next Green Car, 2018). The 

most popular PHEV in the UK is the Mitsubishi outlander, which is much larger than the 

modelled Toyota Prius PHEV (Next Green Car, 2018). There are fewer HEV/PHEV/BEV models 
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available than conventional petrol/diesel ICEVs, therefore the HEV/PHEV/BEV fleet is more 

homogeneous at present. As a result, the error in calculating vehicle emissions from these 

vehicle types will be smaller than for the other vehicles’ emissions calculated in PHEM. In the 

future fuel economy and efficiency will probably increase, however, the model does not have 

the capacity to anticipate this. 

In summary, this modelling approach has limitations - as does every modelling approach. 

However, this approach is arguably more robust for assessing urban, congested network than 

using aggregated tailpipe emissions estimates. More aggregate methods are less reliable at 

assessing stop-start congested conditions, when emissions of CO2 and NOx are greatest. On the 

whole, from understanding the limitations of the model, and having an appreciation of where 

the key uncertainties lie, the modelling conclusions can be drawn with greater certainty. 

 Policy Limitations 7.3.2

One of the main limitations of this thesis is the focus on cost as a key driver to low carbon 

vehicle adoption. It is discussed in Section 2.2.2 that there are a number of other factors that 

contribute to vehicle purchase decisions such as demographic, situational and psychological 

factors. In recognising that adoption is not purely motivated by economic rationality, this can 

inform how policy can be optimally designed to stimulate adoption of EVs.  

The analysis in this thesis indicates that vehicle ownership costs and market share are linked. 

Therefore, this shows that fiscal incentives could play a role in incentivising hybrid and electric 

vehicle adoption. This aligns with the findings from other studies such as Yan et al. (2016) that 

reductions in the initial capital cost are effective in increasing adoption. However, providing 

capital cost reduction is expensive for policymakers, with ethical issues over subsidising middle 

class household vehicle purchases. Therefore, it is imperative that these grants are regularly 

reassessed and then phased out as EVs break out of the niche market.  

With nearly half of new car registrations attributed to the business market, changing company 

car tax is a key policy mechanism to push for the decarbonisation of the fleet. By creating a 

larger differentiation between CO2 emission tax bands, this could accelerate the 

decarbonisation of the road fleet. At present, the majority of PHEV market share consists of 

Mitsubishi Outlanders in the business car segment. Policy can be designed to mitigate this and 

shift business purchasers towards either fully electric vehicles or smaller size segment PHEVs. 

The trends in increasing vehicle weight and size over the past decade have not positively 

contributed to the decarbonisation of the road fleet. If these trends continue, this adds 
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another challenge in reducing transport CO2 emissions. Transport policy can play a significant 

role in nudging vehicle purchasers away from the larger vehicle segments, policy levers should 

be designed to try to stabilise or reverse this trend. 

In many countries, lack of reliable information regarding vehicle cost is an additional purchase 

barrier. This could be addressed by creating an impartial resource such that potential 

purchasers can at least assess their fuel saving (and air pollution contribution) against 

depreciation costs given their annual mileage and share of urban/motorway driving.  

In light of recent evidence illustrating the effects of urban air pollution on public health; 

introducing incentives for replacing diesel vehicles with hybrid/electric vehicles should be 

prioritised, especially in the business market that accounts for disproportionate diesel market 

share in the UK. Replacing high urban-mileage diesel vehicles with petrol-HEVs such as the 

Toyota Prius should be one of the first steps taken to cut urban air pollution. 

Vehicle purchase incentives need to account for market segmentation. Attributes of adopters 

are different at distinct stages of technology adoption (as discussed in Section 2.2.2). The first 

EV purchasers (which form the ‘niche market’) have different attributes to those who adopt 

the technology when it is more mature.  This begs the question of whether past car market 

adoption behaviour is a good indicator of future adoption patterns; this is a clear limitation of 

the conclusions drawn from this thesis. To investigate this, further analysis into more mature 

markets such as Norway should be undertaken. To continue to stimulate EV adoption, the 

policies in place need to account for this market segmentation, adapting to incentivise 

consumers with different attributes. 

In light of the findings in this thesis, and the literature in vehicle purchasing behaviour, to 

optimally design transport policy that will steer vehicle purchasers towards low carbon 

vehicles, a range of policy instruments need to be employed. Fiscal incentives such as 

reductions in VED can play a key role in persuading purchasers towards low carbon vehicles, 

but non-fiscal policy levers are important in complimenting these incentives to influence car-

purchasing decisions. Policymakers need to be aware on a local and national level of non-fiscal 

incentives such as access to HOV lanes, priority parking, and information programs. 

Importantly, incentives need to be phased in and out as appropriate for the different market 

segments to support adoption of hybrid and electric vehicles from the niche to the mass 

market. 

7.4 FUTURE WORK 
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In the process of writing this thesis, many more questions emerged in each topic; each chapter 

in itself could have been extended to fill the entire thesis. This thesis fits into a large body of 

literature that has been rapidly expanding over the last decade with the advent of mass 

market EV deployment. 

The TCO analysis in Chapter 3 focuses on countries with different attributes and market share 

of HEVs. Japan was included for its high market share of HEVs, but this analysis would be 

stronger if Norway was included as well because of the high EV market share. The depreciation 

rate used across countries/regions was static for each individual country. There is uncertainty 

around resale of EVs, and if data was available, tracking depreciation rates across countries 

and vehicle types would be valuable. This would also be important for diesel vehicles that have 

depreciated quicker in the last couple of years. EV charging costs are not uniform across public 

chargers. In some cities, such as Dundee, EV chargers are currently free, but in most cities 

charging using electricity from public charging infrastructure is charged at a higher cost than 

home charging. Future work would investigate this aspect of recharging the EV and look at its 

effect on TCO. Social discount rates were used in this analysis because private discount rates 

are variable amongst individual consumers. A further investigation into private discount rates 

for hybrid and electric vehicles would be an interesting extension, charting how this has 

changed over time. Parking charges vary across cities: a sensitivity analysis looking at the 

impacts of parking subsidies for low emission vehicles would be useful for city level policy 

makers. At present the share of LPG vehicles in the fleet is very small (<2%) but for 

completeness including LPG cars in the TCO analysis would be an interesting extension. 

The regression analysis in Chapter 3 established the link between TCO and market share for 

the private owner. Future work should include investigating a lagged model and additional 

factors in the regression analysis. For example, an interesting extension of the current work 

would be investigating the neighbourhood effect in adoption of HEVs. Additionally, a separate 

panel regression should be run for the UK across the different size segments. The regression 

analysis currently considers the constituent components on an aggregate basis, by splitting 

these components, the effect of the different incentives on adoption could be investigated 

further adding to the extensive literature on this topic. 

In Chapter 4, the TCO of different cars is investigated for the UK market across different 

vehicle segments. Due to lack of available data, the focus of this chapter was the UK, if reliable 

cost data was available across different vehicle size segments, and for future cost scenarios, 

further work would extend this analysis to cover the same geographic regions as in Chapter 3. 

Tesla’s are highly competitive with other bestselling EVs in several of the world’s vehicle 
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markets; further work should compare Tesla TCO across these markets against an appropriate 

conventional petrol car. Further work could include regression analysis on TCO for business 

purchases; this would add quantitative evidence to the conclusions drawn regarding 

purchasing behaviour in this segment. 

The future cost scenarios examined do not include step changes in battery size and chemistry 

e.g. development of solid state battery technology etc. In future, consumers may be able to 

choose the battery size of their vehicle, the impact of step changes in battery size will no doubt 

affect adoption, where potentially reduced range anxiety could offset this increased cost. Road 

pricing is a policy that is deemed politically unfeasible at present, but there is mounting 

discussion over not ‘whether’ but ‘when’ this policy will be introduced. An extension to this 

scenario analysis would be to include exploration of road pricing and its effect of TCO and the 

future fleet.  

Time constraints resulted in a lack of robust sensitivity analysis for the extended model in 

Chapter 5. A natural extension to the work presented in Chapter 5 would include Monte Carlo 

simulation of the different cost attributes effect on fleet share. A Monte Carlo simulation 

places a probability on each parameter and therefore is a more insightful sensitivity analysis. 

An extensive exploration of the different model parameters for the extended model would 

also strengthen the analysis in this chapter. The clear extension to the first three results 

chapters of the thesis is to include the adoption of other electric vehicle types such as vans, 

trucks and buses in the modelling framework.  The model could also be applied to evaluate 

other policies such as scrappage rates for diesels. A comprehensive comparison to other future 

vehicle fleet scenarios would be an interesting conclusion to this chapter. However, the 

assumptions governing these models are not often publically available and are therefore 

challenging to analyse. 

The analysis in this thesis predominantly focuses on CO2 and NOx emissions. Particulate Matter 

(PM) emissions from vehicles are still a concern because of the negative effects on human 

health. As discussed in Chapter 2, with better vehicle emissions control technology, tailpipe 

PM emissions could become insignificant compared to non-tailpipe PM emissions (e.g. from 

tyres and brakes). A limitation to this thesis is the lack of inclusion of PM emissions in the 

vehicle emissions modelling. Further work should address this limitation to understand the 

contribution from hybrid and electric vehicles as these vehicle types become a higher 

proportion of the fleet. 



Micro-Scale Carbon Dioxide () Emission on UK Road Networks using coupled Traffic Simulation 
and Vehicle Emission Models 

 

165 
  

The AIMSUN traffic model was calibrated for vehicle flows along the guidance specified by DfT. 

The next step is for the model to be validated with journey times recorded from the real world. 

The stochastic nature of the model, means there would need to be hundreds of journeys 

logged to compare it with simulated journeys over key road segments for each hour of the day. 

With such data, statistical significance could be ascertained for simulated journey times, but 

clearly such data would be difficult and costly to attain. In this study, the vehicle dynamics of 

HGVs was assumed to be the same as buses. An extension to this work would include vehicle 

dynamics data collection and analysis from HGVs operating within the Leeds ring road. Finally, 

with large scale telematics data now available, the modelling could be extended to include 

real, observed trajectories for calibration of journey times and vehicle dynamics. A useful 

extension to the analysis presented in Chapter 6 would be a full comparison to the other 

vehicle emission models to ascertain the different results from these models and why these 

discrepancies exist. The methodology used in this chapter can be utilised further to analyse 

emission hotspots and the effect of changing the vehicle fleet at this greater resolution. 

Further work should include a more in depth analysis of the model results both temporally and 

spatially to evidence the full value of using this modelling approach. 

7.5 FINAL REMARKS 

Hybrid and electric vehicles are a strong contender to decarbonise the transport fleet and cut 

urban air pollution. Electrification of the fleet is set to rise; and with falling battery costs, 

investment in public charging infrastructure, and public opinion demonising diesel cars, 

conditions are primed for consumers to make the switch to hybrid or electric. The non-linear 

effects of hybrid and electric vehicles on CO2 and NOx emissions in traffic is a key motivating 

factor for policymakers to incentivise adoption of these vehicle types in congested urban 

areas. Such evidence paves the way for the introduction of Clean Air Zones, Ultra Low Emission 

Zones and congestion charging, to significantly improve the lives of everyone who lives in 

congested urban areas. 
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APPENDICES 
 
Appendix 2-A:  Definitions of vehicle size segments for the UK, EU and USA (Van Miert, 1999; 

U.S. Government Publishing Office, 2016). 

UK EU US 

A: Mini A: Mini Minicompact 

B: Supermini B: Supermini Subcompact 

C: Medium Car C: Medium Car Compact 

D: Large Car D: Large Car Mid-size 

E: Executive E: Executive 
Large 

F: Luxury F: Luxury 

G: Sports S: Sports Two-Seater 

H: Multipurpose M: Multipurpose 

Minivan 

Cargo Van 

Passenger Van 

I: Dual Purpose J: Dual Purpose 
Small Sport Utility Vehicle 

Standard Sport Utility Vehicle 

 

 

Appendix 2-B: Definitions of vehicle purchase class (Society of Motor Manufacturers and 

Traders, 2017). 

  

Purchase class Definition 

Business If the vehicle is being sold to/registered for a company that operates up to 

24 vehicles, it should be designated a business sale unless it is a 

"demonstrator" in which case it should always be "Fleet". 

Fleet If the vehicle is being sold to/registered for a company that operates a 

fleet of 25 or more vehicles, or is a demonstrator, it should be designated 

a fleet sale.  This includes dealer demonstrators and Motability-leased 

vehicles. 

Private If the vehicle is being sold primarily for the personal use of a private 

individual, it should be designated a private sale. 
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Appendix 3-A: Vehicle specification for comparison vehicles (2015 model year). 

 Powertrain 

type 

Battery 

capacity 

(kWh) 

Power 

(bhp) 

Engine 

size (l) 

Fuel 

Economy 

(MPG) 

Vehicle 

length 

(mm) 

Weight 

(kg) 

Toyota 

Corolla 

(Petrol) 

Conventional 

petrol ICE 

– 130 1.8 42.2 (A) 4638 1295 

Ford 

Focus 

(Petrol) 

Conventional 

petrol ICE 

– 103 1.6 38 (M) 4358 1270 

Ford 

Focus 

(Diesel) 

Conventional 

diesel ICE 

– 93 1.6 51 (M) 4358 1338 

Toyota 

Prius 

Full parallel 

Hybrid HSD 

1.3 120 1.8 56.7 4540 1395 

Toyota 

Prius 

plug-in 

Plug-in 

Hybrid HSD 

6.4 122 1.8 90.8⁎ 4481 1449 

Nissan 

Leaf 

electric 

Full Electric 24.0 107 – 141.7⁎ 4445 1471 

Note: A indicates Automatic transmission, M Manual transmission system. HSD stands for 

Hybrid Synergy Drive. ⁎ MPG equivalent 

Sources: (Idaho National Laboratory, 2014; Edmunds, 2015; Parkers, 2017)  
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Appendix 3-B: TCO component breakdown for the year 2015 (accompany output to Figure 3-

2 all costs converted to £2015 for easy comparison). 

Geographic 

region 

Cost 

component 

Petrol Diesel HEV PHEV BEV 

Japan Depreciation 3410 – 5648 6848 6368 

 Tax 1078 – 315 315 315 

 Maintenance 358 – 323 323 276 

 Insurance 2652 – 2652 2652 2652 

 Petrol cost 1556 – 1158 535 – 

 Electric cost – – – 79 796 

California Depreciation 4323 – 5921 6629 4849 

 Tax 196 – 196 196 196 

 Maintenance 384 – 314 314 268 

 Insurance 792 – 713 792 792 

 Petrol cost 1821 – 1353 625 – 

 Electric cost – – – 98 982 

Texas Depreciation 4323 – 5029 6119 7119 

 Tax 147 – 147 147 147 

 Maintenance 352 – 318 318 268 

 Insurance 691 – 691 691 691 

 Petrol cost 1602 – 1191 550 – 

 Electric cost – – – 90 897 

UK Depreciation 6717 7223 9080 12755 9078 

 Tax 369 57 0 0 0 

 Maintenance 354 742 319 319 273 

 Insurance 783 783 783 783 783 

 Petrol cost 4062 3146 2733 1263 – 

 Electric cost – – – 65 653 
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Appendix 4-A: Vehicle specification for comparison vehicles (2015 model year) (Compiled from Parkers (2017) and Autoevolution (2017)). 
Powertrain type Size 

segment 
 Release 

year 
Battery 
capacity 
(kWh) 

Power 
(bhp) 

Engine size 
(l) 

Fuel 
Economy 
(MPG) 

Vehicle 
length 
(mm) 

Weight (kg) 

Petrol/Diesel 
ICEV 

Small Ford Fiesta 1976 - 80/67 1.25/1.4 49/67 3950 1041/1011 

HEV Small Toyota Yaris 2010 0.8 99 1.5 80 3905 1085 
BEV Small Renault Zoe 2012 22 86 - 111* 4084 1468 
Petrol/Diesel 
ICEV 

Medium Ford Focus 1997 - 83/93 1.5/1.5 47/74 4358 1264/1338 

HEV Medium Toyota Prius 2000 1.3 120 1.8 83 4460 1375 
PHEV Medium Toyota Prius Plug-in 2011 4.4 97 1.8 133* 4645 1450 
BEV Medium Nissan Leaf 2010 24 107 - 114* 4445 1567 
Petrol/Diesel 
ICEV 

Large BMW 5 series 1972 - 181/181 2.0/2.0 41/58 4899 1595/1620 

HEV Large Lexus GS 300h 2005 1.3 223 2.5 60 4850 1730 
PHEV Large Mercedes C350e 2014 6.4 288 2.0 71* 4686 1785 
Petrol/Diesel 
ICEV 

Large+ Kia Sportage 1993 - 133/134 1.5/2.0 44/49 4440 1380/1600 

HEV Large+ Lexus RX 450h 2004 2.4 308 3.5 54 4890 2100 
PHEV Large+ Mitsubishi Outlander 

PHEV 
2013 12 200 2.0 74 4695 1845 

BEV Large+ Mercedes B class 
(electric) 

2013 28 177 - 84 4358 1725 

Note: There have been no BEV models introduced to date in the large car category, and no PHEV models in the small car category. * denotes MPGe (equivalent of 
MPGe for EVs).  
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Appendix 4-B i: Benefit in Kind (BIK) rates for Petrol cars 2002-2020.CO2 given in g/km for Lower Bound (LB) and Upper Bound (UB). 

CO2 
LB 

CO2  
UB 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

0 0 15 15 15 15 15 15 15 15 0 0 0 0 0 5 7 9 13 16  * 
1 50 15 15 15 15 15 15 15 15 5 5 5 5 5 5 7 9 18 16 15 
51 54 15 15 15 15 15 15 15 15 5 5 5 5 5 5 7 9 18 16 16 
55 59 15 15 15 15 15 15 15 15 5 5 5 5 5 5 7 9 18 16 17 
60 64 15 15 15 15 15 15 15 15 5 5 5 5 5 5 7 9 18 16 18 
65 69 15 15 15 15 15 15 15 15 5 5 5 5 5 5 7 9 18 16 19 
70 74 15 15 15 15 15 15 15 15 5 5 5 5 5 9 11 13 18 19 20 
75 95 15 15 15 15 15 15 15 15 10 10 10 10 11 13 15 17 19 22 21 
80 84 15 15 15 15 15 15 15 15 10 10 10 10 11 13 15 17 20 23 22 
85 89 15 15 15 15 15 15 15 15 10 10 10 10 11 13 15 17 21 24 23 
90 94 15 15 15 15 15 15 15 15 10 10 10 10 11 13 15 17 22 25 24 
95 99 15 15 15 15 15 15 15 15 10 10 10 11 12 14 16 18 20 23 25 
100 104 15 15 15 15 15 15 15 15 10 10 11 12 13 15 17 19 21 24 26 
105 109 15 15 15 15 15 15 15 15 10 10 12 13 14 16 18 20 22 25 27 
110 114 15 15 15 15 15 15 15 15 10 10 13 14 15 17 19 21 23 26 28 
115 119 15 15 15 15 15 15 15 15 10 10 14 15 16 18 20 22 24 27 29 
120 124 15 15 15 15 15 15 15 15 10 10 15 16 17 19 21 23 25 28 30 
125 129 15 15 15 15 15 15 15 15 15 15 16 17 18 20 22 24 

 
29 31 

130 134 15 15 15 15 15 15 15 15 15 16 17 18 19 21 23 25 26 30 32 
135 139 15 15 15 15 15 15 15 15 16 17 18 19 20 22 24 26 27 31 33 
140 144 15 15 15 15 15 15 16 16 17 18 19 20 21 23 25 27 28 32 34 
145 149 15 15 15 16 16 16 17 17 18 19 20 21 22 24 26 28 29 33 35 
150 154 15 15 16 17 17 17 18 18 19 20 21 22 23 25 27 29 30 34 36 
155 159 15 15 17 18 18 18 19 19 20 21 22 23 24 26 28 30 31 35 37 
160 164 15 16 18 19 19 19 20 20 21 22 23 24 25 27 29 31 32 36 37 
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Appendix 4-B i continued… 
CO2 
LB 

CO2 
UB 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

165 169 15 17 19 20 20 20 21 21 22 23 24 25 26 28 30 32 33 37 37 
170 174 16 18 20 21 21 21 22 22 23 24 25 26 27 29 31 33 34 37 37 
175 179 17 19 21 22 22 22 23 23 24 25 26 27 28 30 32 34 35 37 37 
180 184 18 20 22 23 23 23 24 24 25 26 27 28 29 31 33 35 36 37 37 
185 189 19 21 23 24 24 24 25 25 26 27 28 29 30 32 34 36 37 37 37 
190 194 20 22 24 25 25 25 26 26 27 28 29 30 31 33 35 37 37 37 37 
195 199 21 23 25 26 26 26 27 27 28 29 30 31 32 34 36 37 37 37 37 
200 204 22 24 26 27 27 27 28 28 29 30 31 32 33 35 37 37 37 37 37 
205 209 23 25 27 28 28 28 29 29 30 31 32 33 34 35 37 37 37 37 37 
210 214 24 26 28 29 29 29 30 30 31 32 33 34 35 35 37 37 37 37 37 
215 219 25 27 29 30 30 30 31 31 32 33 34 35 35 35 37 37 37 37 37 
220 224 26 28 30 31 31 31 32 32 33 34 35 35 35 35 37 37 37 37 37 
225 229 27 29 31 32 32 32 33 33 34 35 35 35 35 35 37 37 37 37 37 
230 234 28 30 32 33 33 33 34 34 35 35 35 35 35 35 37 37 37 37 37 
235 239 29 31 33 34 34 34 35 35 35 35 35 35 35 35 37 37 37 37 37 
240 244 30 32 34 35 35 35 35 35 35 35 35 35 35 35 37 37 37 37 37 
245 249 31 33 35 35 35 35 35 35 35 35 35 35 35 35 37 37 37 37 37 
250 254 32 34 35 35 35 35 35 35 35 35 35 35 35 35 37 37 37 37 37 
255 259 33 35 35 35 35 35 35 35 35 35 35 35 35 35 37 37 37 37 37 
260 264 34 35 35 35 35 35 35 35 35 35 35 35 35 35 37 37 37 37 37 
265 + 35 35 35 35 35 35 35 35 35 35 35 35 35 35 37 37 37 37 37 

Notes: For 2000/2001, the BIK percentage was set at a flat rate of 25% for all vehicles. *For zero emission vehicles, if the battery electric range is under 30 miles the 

BIK is 14%, 30-39 miles BIK 12%, 40-69 miles 8%, 70-129 miles 5%, greater than 130 miles 2%. 
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Appendix 4-B ii: Benefit in Kind (BIK) rates for Diesel cars 2002-2020. CO2 given in g/km for Lower Bound (LB) and Upper Bound (UB). 

CO2 
LB 

CO2 

UB 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 
0 0 15 15 15 15 18 18 18 18 3 3 3 3 3 8 10 12 16 19 * 
1 50 15 15 15 15 18 18 18 18 8 8 8 8 8 8 10 12 21 19 18 
51 54 15 15 15 15 18 18 18 18 8 8 8 8 8 8 10 12 21 19 19 
55 59 15 15 15 15 18 18 18 18 8 8 8 8 8 8 10 12 21 19 20 
60 64 15 15 15 15 18 18 18 18 8 8 8 8 8 8 10 12 21 19 21 
65 69 15 15 15 15 18 18 18 18 8 8 8 8 8 8 10 12 21 19 22 
70 74 15 15 15 15 18 18 18 18 8 8 8 8 8 12 14 16 21 22 23 
75 95 15 15 15 15 18 18 18 18 13 13 13 13 14 16 18 20 22 25 24 
80 84 15 15 15 15 18 18 18 18 13 13 13 13 14 16 18 20 23 26 25 
85 89 15 15 15 15 18 18 18 18 13 13 13 13 14 16 18 20 24 27 26 
90 94 15 15 15 15 18 18 18 18 13 13 13 13 14 16 18 20 25 28 27 
95 99 15 15 15 15 18 18 18 18 13 13 13 14 15 17 19 21 23 26 28 
100 104 15 15 15 15 18 18 18 18 13 13 14 15 16 18 20 22 24 27 29 
105 109 15 15 15 15 18 18 18 18 13 13 15 16 17 19 21 23 25 28 30 
110 114 15 15 15 15 18 18 18 18 13 13 16 17 18 20 22 24 26 29 31 
115 119 15 15 15 15 18 18 18 18 13 13 17 18 19 21 23 25 27 30 32 
120 124 15 15 15 15 18 18 18 18 13 13 18 19 20 22 24 26 28 31 33 
125 129 15 15 15 15 18 18 18 18 18 18 19 20 21 23 25 27 3 32 34 
130 134 15 15 15 15 18 18 18 18 18 19 20 21 22 24 26 28 29 33 35 
135 139 15 15 15 15 18 18 18 18 19 20 21 22 23 25 27 29 30 34 36 
140 144 15 15 15 15 18 18 19 19 20 21 22 23 24 26 28 30 31 35 37 
145 149 15 15 15 16 19 19 20 20 21 22 23 24 25 27 29 31 32 36 37 
150 154 15 15 16 17 20 20 21 21 22 23 24 25 26 28 30 32 33 37 37 
155 159 15 15 17 18 21 21 22 22 23 24 25 26 27 29 31 33 34 37 37 
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Appendix 4-B ii continued…                
CO2 
LB 

CO2 
UB 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

160 164 15 16 18 19 22 22 23 23 24 25 26 27 28 30 32 34 35 37 37 
165 169 15 17 19 20 23 23 24 24 25 26 27 28 29 31 33 35 36 37 37 
170 174 16 18 20 21 24 24 25 25 26 27 28 29 30 32 34 36 37 37 37 
175 179 17 19 21 22 25 25 26 26 27 28 29 30 31 33 35 37 37 37 37 
180 184 18 20 22 23 26 26 27 27 28 29 30 31 32 34 36 37 37 37 37 
185 189 19 21 23 24 27 27 28 28 29 30 31 32 33 35 37 37 37 37 37 
190 194 20 22 24 25 28 28 29 29 30 31 32 33 34 36 37 37 37 37 37 
195 199 21 23 25 26 29 29 30 30 31 32 33 34 35 37 37 37 37 37 37 
200 204 22 24 26 27 30 30 31 31 32 33 34 35 35 37 37 37 37 37 37 
205 209 23 25 27 28 31 31 32 32 33 34 35 35 35 37 37 37 37 37 37 
210 214 24 26 28 29 32 32 33 33 34 35 35 35 35 37 37 37 37 37 37 
215 219 25 27 29 30 33 33 34 34 35 35 35 35 35 37 37 37 37 37 37 
220 224 26 28 30 31 34 34 35 35 35 35 35 35 35 37 37 37 37 37 37 
225 229 27 29 31 32 35 35 36 35 35 35 35 35 35 37 37 37 37 37 37 
230 234 28 30 32 33 35 35 36 35 35 35 35 35 35 37 37 37 37 37 37 
235 239 29 31 33 34 35 35 36 35 35 35 35 35 35 37 37 37 37 37 37 
240 244 30 32 34 35 35 35 36 35 35 35 35 35 35 37 37 37 37 37 37 
245 249 31 33 35 35 35 35 36 35 35 35 35 35 35 37 37 37 37 37 37 
250 254 32 34 35 35 35 35 36 35 35 35 35 35 35 37 37 37 37 37 37 
255 259 33 35 35 35 35 35 36 35 35 35 35 35 35 37 37 37 37 37 37 
260 264 34 35 35 35 35 35 36 35 35 35 35 35 35 37 37 37 37 37 37 
265 + 35 35 35 35 35 35 36 35 35 35 35 35 35 37 37 37 37 37 37 

Notes: For 2000/2001, the BIK percentage was set at a flat rate of 25% for all vehicles. *For zero emission vehicles, if the battery electric range is under 30 miles the 

BIK is 14%, 30-39 miles BIK 12%, 40-69 miles 8%, 70-129 miles 5%, greater than 130 miles 2%. 
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Appendix 4-C: VED rates for vehicles considered in this study (VED prices given in £2017) 

(Compiled from GOV.UK (2017c), Department for Transport (2015b), Parkers (2017) and 

Spritmoniter (2018)). 

Size 
Segment 

Vehicle 
Type 

Representative 
vehicle 

Tax 
before 
1st April 
2017 

Tax 
after 
1st 
April 
2017 
(first 
year) 

Tax 
after 
1st 
April 
2017 
(flat 
rate) 

Type 
Approval 
CO2 
(g/km 
2016 
model) 

Reported 
CO2 
(g/km 
2016 
model) 

Small BEV Renault Zoe 0 0 0 0 0 
HEV Toyota Yaris 0 15 130 75 109 
Petrol 
ICE 

Ford Fiesta 
0 120 140 

99 164 

Diesel 
ICE 

Ford Fiesta 
0 120 140 

82 114 

Medium BEV Nissan Leaf 0 0 0 0 0 
PHEV Toyota Prius 0 10 130 49 72 
HEV Toyota Prius 0 15 130 89 116 
Petrol 
ICE 

Ford Focus 
0 120 140 

136 172 

Diesel 
ICE 

Ford Focus  
0 100 140 

109 129 

Large PHEV Mercedes C 
350e 0 10 440 

54 138 

HEV Lexus GH 450h 150 190 130 138 196 
Petrol 
ICE 

BMW 5 series 
150 200 140 

139 214 

Diesel 
ICE 

BMW 5 series 
30 160 140 

109 146 

Large+ BEV Mercedes B class 0 0 0 0 0 
PHEV Mitsubishi 

Outlander 0 10 440 
42 90 

HEV Toyota RAV4 30 150 130 145 217 
Petrol 
ICE 

Kia Sportage 
150 200 140 

149 209 

Diesel 
ICE 

Kia Sportage 
30 160 140 

135 163 
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Appendix 4-D: Eligibility for the plug-in vehicle grant (Compiled from GOV.UK  (2017c) and 

Morris (2016)) . 

Vehicle type Eligibility April 2011 to March 

2016  

Eligibility April 2016 to March 

2020 

Category 1 cars 

CO2 emissions <50g/km and 

can travel at least 112km (70 

miles) with zero CO2 

emissions. 

 

The grant will pay for 25% of 

the purchase price for these 

vehicles, up to a maximum of 

£5000. 

 

The grant will pay for 35% of 

the purchase price for these 

vehicles, up to a maximum of 

£4500. 

 

Category 2 cars 

CO2 emissions <50g/km and 

can travel at least 16km (10 

miles) with zero CO2 

emissions. 

 

 

The grant will pay for 25% of 

the purchase price for these 

vehicles, up to a maximum of 

£5000. 

 

The grant will pay for 35% of 

the purchase price for these 

vehicles, up to a maximum of 

£2500. 

Category 3 cars 

CO2 emissions >50 and 

<75g/km and can travel at 

least 32km (20 miles) with 

zero CO2 emissions. 

 

The grant will pay for 25% of 

the purchase price for these 

vehicles, up to a maximum of 

£5000. 

 

The grant will pay for 35% of 

the purchase price for these 

vehicles, up to a maximum of 

£2500. 

Note: From 2016 Category 2 or 3 cars with a recommended retail price over £60,000 are not 

eligible for a grant. This table was correct until November, after an announcement by the 

government in September 2018 that the vehicle grant would change, the maximum allowed 

subsidy falling to £3500 for BEVs with Category 2 and 3 vehicles no longer eligible. 
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Appendix 5-A: Details of equation methods (basic equations sourced from (Mcmanus and Senter, 2009), generalisations derived). 

Diffusion 

Method 

Differential Equation Standard equation Definitions 

Bass 𝑑𝐴

𝑑𝑡
= ቆ𝑝 + 𝑞

𝐴(𝑡)

𝑀
ቇ ൫𝑀 − 𝐴(𝑡)൯ 

𝐴(𝑡) = 𝑀 ቌ
1 − 𝑒ି௧(௣ା௤)

1 +
𝑝
𝑞

𝑒ି௧(௣ା௤)
ቍ 

A: cumulative sales 

t: time (months) 

p: innovation constant 

q: imitation constant  

M: saturation point 

I: Initial vehicle cost 

R: Running cost per mile 

𝛽ଵ: Initial cost coefficient 

𝛽ଶ: Running cost coefficient 

Generalised 

Bass 

𝑑𝐴

𝑑𝑡
= ቆ𝑝 + 𝑞

𝐴(𝑡)

𝑀
ቇ ൫𝑀 − 𝐴(𝑡)൯𝑥(𝑡) 

where 

𝑥(𝑡) = 1 + 𝛽ଵ ቆ
𝑃(𝑡) − 𝑃(𝑡 − 1)

𝑃(𝑡)
ቇ

+ 𝛽ଶ ቆ
𝐺(𝑡) − 𝐺(𝑡 − 1)

𝐺(𝑡)
ቇ 

𝐴(𝑡) = 𝑀 ቌ
1 − 𝑒ି(௣ା௤)(௧ାఉభ ୪୬(௉)ାఉమ ୪୬(ீ))

1 +
𝑝
𝑞

𝑒ି(௣ା௤)(௧ାఉభ ୪୬(௉)ାఉమ ୪୬(ீ))
ቍ 

where 

𝑃(𝑡) =
ூಶೇ

ூ಺಴ಶ
 and 𝐺(𝑡) =

ோ಺಴ಶ

ோಶೇ
 

 

Logistic 𝑑𝐴

𝑑𝑡
=

𝐿ଶ

𝐿ଵ
𝐴(𝑡)ଶ 𝐴(𝑡) =

𝐿ଵ

1 + 𝑒ି௅మ(௧ି௅య)
. 

A: cumulative sales 

t: time (months) 

L1: Saturation point 

L2: slope parameter 

L3: time to peak sales 

I: Initial vehicle cost 

R: Running cost per mile 

𝛽ଵ: Initial cost coefficient 

𝛽ଶ: Running cost coefficient 

Generalised 

Logistic 

𝑑𝐴

𝑑𝑡
=

𝐿ଶ

𝐿ଵ
𝐴(𝑡)ଶ𝑥(𝑡) 

where 

𝑥(𝑡) = 1 + 𝛽ଵ ቆ
𝑃(𝑡) − 𝑃(𝑡 − 1)

𝑃(𝑡)
ቇ

+ 𝛽ଶ ቆ
𝐺(𝑡) − 𝐺(𝑡 − 1)

𝐺(𝑡)
ቇ 

𝐴(𝑡) =
𝐿ଵ

1 + 𝑒ି௅మ(௧ାఉభ ୪୬(௉(௧))ାఉమ ୪୬(ீ(௧))ି௅య)
 

where 

𝑃(𝑡) =
ூಶೇ

ூ಺಴ಶ
 and 𝐺(𝑡) =

ோ಺಴ಶ

ோಶೇ
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Appendix 5-A continued…   

Gompertz 𝑑𝐴

𝑑𝑡
= 𝐺ଶ𝐴(𝑡)𝑒ିீమ(௧ିீయ) 𝐴(𝑡) = 𝐺ଵ𝑒ି௘షಸమ(೟షಸయ)

 A: cumulative sales 

t: time (months) 

G1: saturation point 

G2: slope parameter 

G3: time to peak sales 

I: Initial vehicle cost 

R: Running cost per mile 

𝛽ଵ: Initial cost coefficient 

𝛽ଶ: Running cost coefficient 

Generalised 
Gompertz 

𝑑𝐴

𝑑𝑡
= 𝐺ଶ𝐴(𝑡)𝑒ିீమ(௧ିீయ)𝑥(𝑡) 

where 

𝑥(𝑡) = 1 + 𝛽ଵ ቆ
𝑃(𝑡) − 𝑃(𝑡 − 1)

𝑃(𝑡)
ቇ

+ 𝛽ଶ ቆ
𝐺(𝑡) − 𝐺(𝑡 − 1)

𝐺(𝑡)
ቇ 

𝐴(𝑡) = 𝐺ଵ𝑒ି௘షಸమ(೟శഁభ ౢ౤(ು(೟))శഁమ ౢ౤(ಸ(೟))షಸయ)
 

where 
𝑃(𝑡) =

ூಶೇ

ூ಺಴ಶ
 and 𝐺(𝑡) =

ோ಺಴ಶ

ோಶೇ
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Appendix 5-B i: Historic UK car market share (Society of Motor 

Manufacturers and Traders, 2017). 

Year HEV Petrol Diesel  PHEV BEV 
2000 0.01182 85.89375 14.0902  0 0 
2001 0.029303 82.17505 17.75618  0 0 
2002 0.013216 76.38462 23.5044  0 0 
2003 0.04181 72.51268 27.32194  0 0 
2004 0.0959 67.2979 32.53781  0 0 
2005 0.236339 62.9407 36.80251  0 0 
2006 0.381984 61.27878 38.31868  0 0 
2007 0.664391 59.06609 40.24169  0 0 
2008 0.721692 55.69072 43.56671  0 0 
2009 0.734086 57.52118 41.72714  0 0 
2010 1.089546 52.76496 46.10916  0.001034 0.008223 
2011 1.205149 48.12366 50.56502  0.000155 0.056561 
2012 1.243367 47.83741 50.80091  0.022987 0.061723 
2013 1.303639 48.77352 49.78123  0.029981 0.110918 
2014 1.570887 47.82718 50.07896  0.252298 0.270429 
2015 1.770721 48.75092 48.48565  0.615074 0.377216 
2016 2.070606 48.9558 47.74208  0.849975 0.381167 
2017 2.992777 53.33023 41.95355  1.226238 0.535185 
 
 
 
 
 
 
 
 
 

Appendix 5-B ii: UK car market share: Business as Usual scenario. 

Year HEV Petrol Diesel PHEV BEV 
2017 2.23 48.51 47.57 1.23 0.46 
2018 2.20 61.15 34.59 1.20 0.86 
2019 3.69 64.58 28.66 1.36 1.71 
2020 5.77 54.69 36.74 1.50 1.29 
2021 8.66 57.06 32.06 1.52 0.69 
2022 11.29 58.28 27.83 1.70 0.90 
2023 13.18 58.42 25.23 1.98 1.20 
2024 16.80 51.14 28.65 2.16 1.24 
2025 18.06 52.62 26.29 2.04 0.99 
2026 17.82 54.00 24.66 2.36 1.17 
2027 18.41 54.77 22.44 2.82 1.55 
2028 19.12 54.71 21.10 3.33 1.74 
2029 19.74 54.88 19.18 4.05 2.15 
2030 20.54 53.68 18.12 4.76 2.90 
2031 22.68 50.14 17.51 6.03 3.65 
2032 22.36 49.43 16.66 7.12 4.43 
2033 23.96 45.63 15.82 8.81 5.78 
2034 26.16 41.95 15.53 10.55 5.81 
2035 28.66 38.45 14.87 12.38 5.64 
2036 31.42 32.08 14.50 15.49 6.51 
2037 33.28 26.83 14.17 18.36 7.36 
2038 36.86 19.86 13.88 21.43 7.97 
2039 38.05 15.53 13.62 24.50 8.30 
2040 37.72 11.53 13.38 28.31 9.07 
 
  



Micro-Scale Carbon Dioxide () Emission on UK Road Networks using coupled Traffic Simulation and Vehicle Emission Models 
 

214 
  

Appendix 5-B iii: UK car market share: Battery Bonanza scenario. 

Year HEV Petrol Diesel PHEV BEV 
2017 3.38 50.98 43.96 1.15 0.52 
2018 3.87 67.64 26.74 1.12 0.62 
2019 5.60 72.18 19.84 1.22 1.17 
2020 7.02 75.48 14.56 1.32 1.63 
2021 9.51 74.88 11.57 1.55 2.48 
2022 11.71 73.92 9.27 1.80 3.30 
2023 13.31 72.11 7.86 2.23 4.49 
2024 15.15 69.72 6.64 2.80 5.69 
2025 15.98 67.32 5.77 3.66 7.26 
2026 16.15 65.13 5.16 4.67 8.89 
2027 16.86 60.70 4.51 6.15 11.78 
2028 17.74 55.83 4.09 7.65 14.69 
2029 18.81 48.57 3.62 9.87 19.12 
2030 17.56 45.57 5.28 13.43 18.16 
2031 18.36 56.17 4.80 10.57 10.10 
2032 19.09 52.44 4.32 12.75 11.40 
2033 21.21 45.74 3.89 15.69 13.47 
2034 23.03 39.61 3.63 18.53 15.20 
2035 24.44 31.69 4.38 23.20 16.30 
2036 26.47 34.24 3.64 22.06 13.59 
2037 28.40 26.16 3.08 26.32 16.05 
2038 30.55 17.11 2.61 31.12 18.60 
2039 31.67 8.97 1.12 36.62 21.62 
2040 30.94 1.53 0.00 43.98 23.55 
 
 
 
 
 

Appendix 5-B iv: UK car market share: Diesel Persists scenario. 

Year HEV Petrol Diesel PHEV BEV 
2017 2.75 66.26 29.07 1.44 0.48 
2018 2.28 65.22 30.51 1.37 0.62 
2019 3.56 62.80 31.20 1.53 0.90 
2020 4.51 59.87 32.79 1.72 1.11 
2021 6.28 53.43 37.97 1.68 0.63 
2022 7.49 52.14 37.83 1.80 0.73 
2023 8.11 50.15 38.87 1.98 0.88 
2024 9.03 47.17 40.53 2.23 1.05 
2025 9.20 46.25 41.64 2.05 0.86 
2026 8.85 45.51 42.48 2.22 0.94 
2027 8.81 44.31 43.41 2.42 1.05 
2028 9.05 42.92 44.20 2.62 1.21 
2029 9.19 41.05 45.18 2.89 1.69 
2030 9.54 39.42 46.03 3.10 1.91 
2031 10.86 36.56 46.97 3.44 2.17 
2032 10.53 35.46 47.89 3.71 2.42 
2033 11.98 31.84 48.89 4.16 3.13 
2034 13.03 28.89 49.80 4.57 3.71 
2035 14.91 24.52 50.70 5.17 4.71 
2036 16.09 20.60 51.69 5.93 5.70 
2037 16.80 16.75 52.65 6.76 7.04 
2038 17.79 12.46 53.61 7.76 8.38 
2039 18.02 8.24 54.58 9.06 10.10 
2040 17.73 4.34 55.54 10.52 11.87 
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Appendix 6-A: Definition of Vehicle Specific Power (VSP). 

VSP is defined as the instantaneous power per unit mass of the vehicle (kW/t) (Jimenez-

Palacios, 1999).  In other words, for a vehicle to move, the power from the engine must 

overcome certain key forces including aerodynamic drag, rolling resistance and the road 

gradient (Heisler, 2002). These factors are accounted for in the VSP equation derived by 

Jimenez-Palacios (Jimenez-Palacios, 1999). 

Vehicle Specific Power =  

d
dt

(KE + PE) +  F୰୭୪୪୧୬୥ ∙ v +  Fୟୣ୰୭ୢ୷୬ୟ୫୧ୡ ∙ v

m
 

 

Where, m is the vehicle mass (t), v is the vehicle speed (m/s), a is the vehicle acceleration 

(m/s2), KE is the Kinetic Energy (J), PE is the Potential Energy (J). 

This can be simplified to15, 

VSP =  =  v ∙ (1.1 ∙ a + 9.81 ∙ grade(%) + 0.132) +  0.000302 ∙ (v + v୵)ଶ ∙ v 

 

Jimenez-Palacios showed that VSP is proportional to engine power therefore there is a strong 

relationship between VSP and vehicle emission (Jimenez-Palacios, 1999).          

                                                           
15 See Wyatt (2017) for full derivation of this. 
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Appendix 6-B i: Leeds fleet share: Business as Usual scenario. 

Year HEV Petrol Diesel PHEV BEV 

2015 0.607079 55.70724 43.65668 0.021003 0.008001 

2016 0.658416 54.82277 44.46733 0.027723 0.023762 

2017 0.766599 53.7678 45.31855 0.09705 0.049996 

2018 0.873524 53.61687 45.24561 0.164999 0.098999 

2019 1.095522 53.65366 44.7809 0.255622 0.214299 

2020 1.435762 53.23736 44.68178 0.350139 0.294954 

2021 2.11862 52.76674 44.29037 0.47384 0.350434 

2022 2.883019 52.7683 43.34602 0.591341 0.411327 

2023 3.84626 52.66375 42.25346 0.736007 0.500522 

2024 5.041648 52.33659 41.1442 0.888734 0.588832 

2025 6.233818 52.39539 39.70144 1.019355 0.649997 

2026 7.576613 52.60695 37.88844 1.194798 0.733192 

2027 8.720038 52.79057 36.29829 1.366666 0.824437 

2028 9.876988 53.05773 34.57429 1.567525 0.923469 

2029 10.94156 53.25411 32.97781 1.79126 1.03526 

2030 12.04327 53.49274 31.20209 2.063774 1.198126 

2031 13.4525 53.52431 29.11212 2.470641 1.440426 

2032 14.58511 53.56374 27.26106 2.889495 1.700597 

2033 15.91928 53.07317 25.44726 3.471944 2.088349 

2034 17.20953 52.46045 23.7677 4.125452 2.436864 

2035 18.22406 51.64317 22.69874 4.735289 2.698738 

2036 19.55306 50.19921 21.5784 5.62322 3.046114 

2037 20.96794 48.42333 20.45778 6.700356 3.450603 

2038 22.55878 46.00687 19.58541 7.967164 3.881765 

2039 24.2398 43.15248 18.8103 9.47288 4.324541 

2040 25.75579 40.31097 17.9464 11.18034 4.8065 
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Appendix 6-B ii: Leeds fleet share: Battery Bonanza scenario. 

Year HEV Petrol Diesel PHEV BEV 

2015 0.607079 55.70724 43.65668 0.021003 0.008001 

2016 0.710898 54.79064 44.44598 0.023763 0.028713 

2017 0.884227 53.87609 45.09264 0.089207 0.057837 

2018 1.085121 54.09686 44.57245 0.152383 0.093177 

2019 1.433802 54.64304 43.51858 0.233521 0.171057 

2020 1.847764 55.55281 42.00951 0.31589 0.274025 

2021 2.595335 56.53968 39.94367 0.442761 0.478559 

2022 3.382954 57.62214 37.71522 0.568023 0.711661 

2023 4.348629 58.52226 35.34312 0.733237 1.052758 

2024 5.406419 59.54741 32.63143 0.936271 1.478468 

2025 6.437508 60.55205 29.84827 1.182307 1.979866 

2026 7.629565 61.5528 26.57709 1.549755 2.690784 

2027 8.65074 61.96621 23.94661 1.955912 3.48053 

2028 9.691676 62.08911 21.30587 2.456748 4.45659 

2029 10.67709 61.59969 19.04008 3.050971 5.632161 

2030 11.54896 60.95248 16.823 3.905355 6.770201 

2031 12.59871 61.0662 14.27962 4.640195 7.415272 

2032 13.48729 60.86211 12.1861 5.423457 8.041037 

2033 14.60603 59.85453 10.18518 6.490825 8.863437 

2034 15.67808 58.4975 8.461908 7.661491 9.701023 

2035 16.4596 56.68825 7.640551 8.842813 10.36879 

2036 17.48134 54.83366 6.703181 10.07384 10.90798 

2037 18.60097 52.44714 5.794878 11.57449 11.58252 

2038 19.80496 49.26262 5.191861 13.36107 12.37949 

2039 21.08243 45.41438 4.585227 15.55606 13.3619 

2040 22.20784 41.19679 4.046225 18.15382 14.39533 
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Appendix 6-B iii: Leeds fleet share: Diesel Persists scenario. 

Year HEV Petrol Diesel PHEV BEV 

2015 0.607079 55.70724 43.65668 0.021003 0.008001 

2016 0.687136 54.74906 44.4945 0.037624 0.031683 

2017 0.825401 54.70488 44.29228 0.118615 0.058817 

2018 0.934679 54.77628 43.99884 0.196059 0.094147 

2019 1.147415 54.67711 43.72285 0.297905 0.154718 

2020 1.404377 54.5804 43.38535 0.405328 0.224548 

2021 1.888801 53.78702 43.50837 0.540734 0.275077 

2022 2.383084 53.32513 43.30311 0.66316 0.325517 

2023 2.955137 52.56081 43.2863 0.807122 0.390632 

2024 3.558628 51.90275 43.10767 0.964633 0.466316 

2025 4.131738 51.49644 42.7586 1.094494 0.51873 

2026 4.751405 50.97834 42.42832 1.255748 0.586195 

2027 5.254517 50.38959 42.31213 1.397714 0.646054 

2028 5.750914 49.81021 42.18245 1.545586 0.710846 

2029 6.189863 49.08479 42.23635 1.688619 0.800376 

2030 6.620326 48.3432 42.28705 1.845009 0.904416 

2031 7.223388 47.33835 42.3502 2.045916 1.042146 

2032 7.671978 46.4777 42.44919 2.227457 1.173679 

2033 8.277459 45.06496 42.83027 2.45707 1.370241 

2034 8.858465 43.7096 43.15998 2.687669 1.584293 

2035 9.337813 42.32913 43.63793 2.883953 1.811178 

2036 9.970058 40.46933 44.27738 3.158091 2.125139 

2037 10.63122 38.09983 45.26202 3.473846 2.533079 

2038 11.34382 35.54838 46.23357 3.850743 3.023481 

2039 12.06792 32.68805 47.27383 4.326904 3.643294 

2040 12.71648 29.76927 48.2732 4.881358 4.359692 
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Appendix 6-C i: Leeds traffic share: Business as Usual scenario. 

Year HEV Petrol Diesel PHEV BEV 

2015 0.778634 43.49966 55.69998 0.015499 0.006231 

2016 0.839375 42.50452 56.61748 0.021347 0.017282 

2017 0.976023 41.39623 57.5214 0.06937 0.036975 

2018 1.125238 41.04946 57.62661 0.124794 0.073896 

2019 1.385267 41.81078 56.44801 0.195853 0.160098 

2020 1.810513 41.862 55.8234 0.274923 0.229168 

2021 2.63371 42.29428 54.4282 0.367073 0.276734 

2022 3.563049 42.66251 52.99537 0.456274 0.322796 

2023 4.784974 43.21179 51.05082 0.565777 0.386642 

2024 6.326273 43.66166 48.87207 0.686565 0.453439 

2025 7.855649 43.53925 47.31237 0.787918 0.504817 

2026 9.562641 44.26033 44.69782 0.916455 0.562749 

2027 11.07155 44.34107 42.91264 1.044214 0.630527 

2028 12.57147 44.59764 40.91708 1.205626 0.708178 

2029 14.12411 45.28976 38.38292 1.400875 0.802339 

2030 15.62997 45.67559 36.13214 1.620904 0.941404 

2031 17.45682 45.82669 33.64568 1.938502 1.132296 

2032 19.04605 45.67047 31.66335 2.28146 1.338671 

2033 20.57747 44.7072 30.37302 2.715828 1.626489 

2034 22.20764 43.8068 28.8446 3.231618 1.909339 

2035 23.84422 42.69792 27.54103 3.760176 2.156655 

2036 25.65934 41.04134 26.3927 4.469158 2.437455 

2037 27.54147 39.0241 25.36751 5.330721 2.736203 

2038 29.78508 36.47398 24.23923 6.398501 3.103206 

2039 32.04624 33.74171 23.04388 7.66704 3.501117 

2040 34.05486 30.80726 22.14306 9.086574 3.908252 
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Appendix 6-C ii: Leeds traffic share: Battery Bonanza scenario. 

Year HEV Petrol Diesel PHEV BEV 

2015 0.778634 43.49966 55.69998 0.015499 0.006231 

2016 0.898538 42.46605 56.59611 0.018637 0.020671 

2017 1.116544 41.52474 57.25229 0.063609 0.042813 

2018 1.387267 41.634 56.79285 0.115111 0.070767 

2019 1.813773 42.99678 54.88058 0.178909 0.129954 

2020 2.347779 44.66761 52.52598 0.248582 0.210045 

2021 3.265014 46.90152 49.12906 0.342597 0.361808 

2022 4.249445 48.51744 46.25071 0.440089 0.542312 

2023 5.508841 50.36432 42.75164 0.568484 0.806714 

2024 6.941432 52.50339 38.67747 0.731817 1.145883 

2025 8.350431 53.54583 35.62195 0.928008 1.553782 

2026 9.990646 55.18443 31.48855 1.219437 2.11694 

2027 11.48024 55.72304 28.46239 1.554971 2.779357 

2028 13.03819 55.93815 25.40589 1.993854 3.623921 

2029 14.74321 56.21555 21.77022 2.554731 4.716291 

2030 16.25017 55.68476 18.94229 3.316303 5.806477 

2031 17.80389 56.10911 15.61002 4.001233 6.475754 

2032 19.30706 55.77884 13.06799 4.741916 7.104192 

2033 20.76834 54.11271 11.72914 5.642371 7.747438 

2034 22.28833 52.50067 10.12336 6.651036 8.436611 

2035 23.7901 50.3828 8.865928 7.799182 9.161983 

2036 25.27418 48.19897 7.929935 8.923997 9.672916 

2037 26.90128 45.38613 7.187721 10.26374 10.26113 

2038 28.74494 41.74186 6.613311 11.9118 10.98808 

2039 30.61431 37.67694 5.934728 13.91221 11.86181 

2040 32.35332 33.22184 5.27322 16.303 12.84862 
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Appendix 6-C iii: Leeds traffic share: Diesel Persists scenario. 

Year HEV Petrol Diesel PHEV BEV 

2015 0.778634 43.49966 55.69998 0.015499 0.006231 

2016 0.871878 42.4194 56.65789 0.028127 0.022707 

2017 1.045564 42.51844 56.30729 0.084973 0.043737 

2018 1.206702 42.49925 56.07353 0.148815 0.071699 

2019 1.464488 42.98316 55.20293 0.230078 0.119351 

2020 1.789555 43.56656 54.15061 0.319035 0.174244 

2021 2.375395 43.51393 53.4738 0.420658 0.21622 

2022 2.975684 43.20044 53.05446 0.514741 0.254677 

2023 3.706461 42.9141 52.45034 0.625011 0.304087 

2024 4.498734 42.94935 51.44539 0.747467 0.359059 

2025 5.226951 42.18981 51.33131 0.848424 0.403499 

2026 6.021639 42.03003 50.53315 0.965695 0.449483 

2027 6.645722 41.23846 50.55341 1.067349 0.495065 

2028 7.270542 40.57991 50.41596 1.188134 0.545458 

2029 7.884144 40.19265 49.98932 1.315609 0.618275 

2030 8.432986 39.35494 50.07732 1.434246 0.700504 

2031 9.156981 38.4322 50.02117 1.582688 0.806958 

2032 9.736572 37.18618 50.44996 1.721096 0.906186 

2033 10.32834 35.40569 51.35822 1.869719 1.038038 

2034 10.95125 33.73165 52.10194 2.025664 1.189496 

2035 11.56125 31.93945 52.96964 2.168105 1.361562 

2036 12.30272 29.92189 53.82589 2.355544 1.593956 

2037 13.06435 27.69365 54.78175 2.577289 1.882956 

2038 13.89198 25.21641 55.791 2.854091 2.246522 

2039 14.69655 22.70311 56.6816 3.203488 2.715257 

2040 15.41245 20.07377 57.63707 3.614355 3.262357 
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Appendix 6-D: Locations of all Manual Classified Count (MCC) and Automatic Traffic Count 

(ATC) locations on the Leeds network. 
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Appendix 6-E i: Details of traffic microsimulation calibration 

 

Turning movements and vehicle flows are calibrated hourly. For calibration, the GEH statistic is 

calculated for each of the 26 calibration points for each hourly vehicle flow. The GEH statistic is 

a goodness of fit test used to compare two sets of traffic data (e.g. ‘modelled’ traffic flow 

versus ‘observed’ real-world count).  The GEH statistic formula is: 

GEH =  ඨ
2(M −  C)ଶ

M +  C
 

where M is the hourly ‘modelled’ traffic flow and C is the ‘observed’ real-world count. The 

model was validated according to the guidelines provided by DfT (see Appendix 6-E ii) with 

97% of cases with GEH<3. Note this was a very time-intensive step of the modelling, with the 

model run over a thousand times to tweak the vehicle flows and turning movements to ensure 

the criteria were met.  

 

Appendix 6-E ii: Link flow validation criteria and acceptability guidelines (DfT, 2014). 

Description of Criteria 
Acceptability 

Guidelines 

Individual flows within 100 veh/h counts for flows less than 700 veh/h 

>85% of 

cases 

Individual flows within 15% of counts for flows from 700 to 2 700 veh/h 

Individual flows within 400 veh/h of counts for flows more than 2 700 

veh/h 

Individual flows with a GEH statistic < 5 

 

 

  



Micro-Scale Carbon Dioxide () Emission on UK Road Networks using coupled Traffic Simulation 
and Vehicle Emission Models 

 

224 
  

Appendix 6-F i: Calculating Vehicle Emissions with PHEM 

PHEM has an Advanced User Interface that facilitates the estimation of vehicle emissions at a 

network level. Utilising trajectories and road gradient from the microsimulation traffic model, 

fleet emissions can be estimated across all vehicle types (car, bus, LCV, HGV) within the 

Headingley network. The details of the inputs and outputs of the model are given in Appendix 

6-F ii. 

To calculate these network level estimates in PHEM, an ‘.ADV’ job file must be prepared that 

consists of a ‘.FZP’ drive cycle file, a ‘.FLT’ fleet data file and a ‘.STR’ route section file. The 

‘.FZP’ file consists of the simulated vehicle activity data generated by the AIMSUN Headingley 

network, the ‘.STR’ file describes the road links and junctions on the simulated Headingley 

network and the ‘.FLT file’ details the Headingley network vehicle fleet composition for each 

hourly time period for every simulation year. For the Headingley network model, a separate 

‘.ADV’ file was needed for each hour of the simulation for each simulation year and every 

random seed (a total of 2400 files). 

The ‘.FZP’ drive cycle file describes the second-by-second activity of each vehicle simulated in 

the network. This includes attributes such as time, latitude, longitude, velocity, vehicle ID, road 

gradient, vehicle Type ID and section. This is generated from the AIMSUN API and processed in 

MATLAB to align the data with the input file structure. In PHEM Advance each recorded drive 

cycle (‘.FZP’ file) is labelled with a vehicle type ID that matches with the vehicle category. This 

ID number is defined in the drive cycle file (‘.FZP’) file, but the vehicle Euro standard, size and 

fuel type are assigned by a random number generator in PHEM. This ensures that the overall 

composition of the modelled fleet is the same as the composition specified in the ‘.FLT’ file for 

each vehicle type ID (Luz and Hausberger, 2015).  

The ‘.FLT’ fleet data file details the fleet composition hourly for each vehicle type by fuel type 

(petrol/diesel), Euro emission standard category (Euro 0 – 6d) and also by vehicle weight class 

(LCV and HGV categories only). For the base year (2015), the ‘.FLT’ files are created from 

analysis of the ANPR survey and for the other years, this was calculated by the fleet scenarios.  

The ‘.STR’ files enable calculation of total vehicle emissions on each road section and junction. 

The ‘.STR’ file assigns an identification number to each road section, which corresponds to the 

Section ID in the ‘.FZP’ files. A total of 519 ‘.STR’ files were created for the Headingley 

simulation model. 

For each individual vehicle sub-category a ‘.GEN’ file compiles the relevant engine and catalyst 

map (‘.MEP’ and ‘.MAP’), full load curve (‘.FLD’) and vehicle specification (‘.VEH’) files.  The 
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‘.VEH’ files contain average parameters for that vehicle category, including vehicle mass, cross 

sectional area, rated engine power, rated engine speed, and engine idling speed. For this 

study, the ‘.VEH’ files contain the Headingley network average vehicle parameters. 

When the ‘.ADV’ job file is run, PHEM calculates output files that contain detailed emission and 

power information for each vehicle (‘.mod’), average values per vehicle (‘.vehicle.sum’), and 

average values per road segment (‘.segment.sum’). The .mod file details second-by-second 

emission estimates for each vehicle in g/h for Fuel Consumption, NOx, CO, HC, PM, and NO. 

The ‘.vehicle.sum’ file aggregates the .mod files, to present total emissions estimates (g/h), 

along with time in the simulation (s), distance travelled (km) and average speed (km/h). Finally, 

the ‘.segment.sum’ files present emission estimates for each road section in the network, 

along with the number of vehicles passing through the section, the total distance covered in 

the section (km) and the total time spent by vehicles on the section (h).   

Appendix 6-F i: Outline of PHEM model files. 

 

 


