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Abstract

With the proliferation of immersive technologies in |Virtual reality (VR)L broad-

casting and home entertainment, estimating an individual’s |head—related transfeli

Ifunctions (HRTFS)| conveniently and with a satisfactory perceptual performance

is of great topical interest. To facilitate this, a deep understanding of how the

head and pinnae form the acoustic cues used to perceive spatial sound is required.

This thesis presents the refinement of a powerful research tool, lmorphoacoustid

Iperturbation analysis ( MPA)L for advancing knowledge in this field.

To simplify analysis a novel method is presented for smoothing based

on an lequivalent rectangular bandwidth (ERB)| criterion. The approach is first

evaluated using an auditory localisation model and these results are validated
by means of listening tests. It is shown that smoothing achieves percep-
tual transparency using fewer parameters than a similar constant-bandwidth ap-
proach. Furthermore, it simplifies the structure of the , since additional

perceptually irrelevant features are discarded.

It has been well established that the boundary element method can satisfacto-
rily generate based on a |three—dimensional ( 3D)| mesh of a listener’s head
and pinnae shape. A proof-of-principle for , upon which this thesis builds,

has successfully inverted this process, making it possible to identify the morpho-
logical regions of the head and pinnae responsible for creating an feature.
However, first-generation @ suffered from significant weaknesses including low
mesh resolution, restricted frequency range, and topological issues created by the
mesh slicing approach used. In this work these issues are addressed through the
use of optimised spherical mesh mapping and spherical harmonic deformations.
The theory, implementation and validation of the new method is described to the
point where the creation of a full database capable of probing in depth the
relationship between human morphology and is now possible.
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Chapter 1

Introduction

Without music, life would be a

mistake.

Twilight of the Idols
FRIEDRICH NIETZSCHE



1.1 Background

“Imagine that you are on the edge of a lake and a friend challenges
you to play a game. The game is this: Your friend digs two narrow
channels up from the side of the lake. Fach is a few feet long and a
few inches wide and they are spaced a few feet apart. Halfway up each
one, your friend stretches a handkerchief and fastens it to the sides
of the channel. As waves reach the side of the lake they travel up the
channels and cause the two handkerchiefs to go into motion. You are
allowed to look only at the handkerchiefs and from their motions to
answer a series of questions: How many boats are there on the lake
and where are they? Which is the most powerful one? Which one
is closer? Is the wind blowing? Has any large object been dropped

suddenly into the lake?”

The above analogy by Bregman (1994) illustrates rather well the complexity and
enormity of the task carried out by our ears in localising sounds. When presented
as above, the problem seems impossible to solve, but it is a close analogy with the
human hearing system: the lake is the air that surrounds us, the two channels are
our two ear canals and the handkerchiefs our eardrums. Based on the two signals
arriving at our eardrums, our brain does a remarkable job of estimating the
location of not only singular static sound sources but also multiple, simultaneous

moving sound sources.

The manner by which humans localise sounds in the horizontal plane are chiefly

through detecting the difference in the time of arrival of a sound at the two

ears (the hnteraural time difference (ITD)|) and the difference in the amplitude

of theses two versions of the sound (the hnteraural level difference (ILD)|). This

has been understood for well over a century (Rayleigh, 1907). However, these

cues are not unambiguous throughout the whole of fchree—dimensional (3D)| space.

There arise multiple positions in @ space that produce similar interaural cues,



specifically around the so-called “cones of confusion” (see section ) In these
situations, the spectral filtering imposed on sounds entering the ears via the
complex morphology of the outer ears, or pinnae, as well as by the head and

torso, becomes important. The spectral modifications are used as directional cues

(bhaw and Teranishil, |1968|; rTeranishi and Shawl, |1968|; tBlauerd, |197d; IHebrank and|

|Wright|, |1974l; tBlauertI, |1997|). They are captured in an individual’s

kransfer functions (HRTFS)I in the frequency-domain and in their corresponding

|head—related impulse responses (HRIRS)' in the time-domain.

Filtering a sound with an individual’s and playing the sound back over

headphones can create very realistic virtual spatial sound sources (|Wightman andl

%istleﬂ, 1989&). This has numerous potential applications in not only an artistic

setting (see section @), but also in practical situations such as |virtual auditorﬂ

|disp1ays (VADS)' for aeronautics (tBronkhorst et alJ, |199d) or the visually impaired

(tLoomis et alL |199§; IMarston et al.|, bOO?I).

However, the measurement of an individual’s HRTFY is a time consuming pro-
cess that requires specialist equipment. The use of generic or non-individualised

HRTFY is one option, but it often results in poor elevation perception, inter-

nalisation and an increase in front-back confusions (|Wenzel et alJ, |1993|). An

individual’s HRTFY can also be simulated acoustically using acoustic modelling

approaches such as the boundary element method (BEM)l (t[(ahana and Nelson|,
, ); although this requires a detailed surface mesh description of the indi-

vidual’s head which is likewise time consuming and requires specialist equipment.
Deepening our understanding of the acoustic roles played by the human head and
pinnae in spatial hearing is of great scientific interest and can be expected to sim-

plify the synthesis of perceptually valid, individualised through acoustic

simulations based on morphological measurements.



1.2 Statement of Hypotheses

The long term goals of this research are:

e to deepen scientific understanding about the role of human head and pinna

morphology in spatial hearing, for example to identify the most perceptually

salient acoustic features in HRTFY and reveal how they are created; and

o to simulate perceptually valid individualised HRTFS from a viable number
of simple morphological measurements, for example to promote the avail-

ability of high quality spatial audio in consumer products and services.

In advancing towards attaining these goals, the aims of this research are:

1. to simplify individualised HRTFS whilst preserving their ability to render

sound with a high degree of perceptual integrity ; and

2. to create an accurate and efficient tool for studying the morphological ori-

gins of acoustic features.

Relating to the above aims, the following hypotheses, are postulated:

1. By considering the frequency selectivity of the human hearing system, the
spectral detail of HRTFS can be significantly simplified, whilst maintaining

perceptual transparency.

2. By identifying and overcoming the deficiencies in first-generation
koustic perturbation analysis (MPA)| (Thorpe, 2009; Tew et alf, 2012) it is

possible to develop a second-generation tool with an improved per-

formance.

1.3 Thesis outline

To prepare the ground and provide context for the work carried out in this the-

sis, chapter B reviews the relevant literature. Underpinning every aspiration of



this research is the human hearing system, so the chapter begins by outlining
the structure of the human hearing system, including an overview of studies
investigating the auditory filters, of particular import when considering
simplification. Acoustic localisation cues, both interaural and spectral, and the
acuity of human sound localisation can all suffer if simplification is excessive,
or the accuracy of simulated compromised, and these are reviewed next.
A survey of the rapidly evolving world of spatial audio applications reveals the
plethora of potential applications of this research and places it in a wider context.
The long-standing challenges of acquisition and estimation are a strong
motivation for both research goals and are considered next. Previous work on the
relationship between auditory cues and human morphology has been influential
in the development of the first-generation tool. These are reviewed in light
of this, but also to inform the evaluation of and identify its strengths and

weaknesses compared with previous approaches.

Chapter a reports improvement to the smoothing algorithm presented by Kulka-
rni and Colburn (1998). The algorithm is adapted to smooth the magni-
tude spectrum based on the frequency selectivity of the human hearing system.
The algorithm is first validated using an auditory model and then by percep-
tual listening tests. The results of both the auditory model and the listening
tests suggest that a further increase in smoothing is possible by considering the
frequency selectivity of the human hearing system, whilst preserving perceptual
transparency. This ensures that only the most perceptually salient cues are re-
tained for , as well as providing insight into the level of spectral detail that

is audible.

Development and improvement of (Thorpd, 2009; Tew et al), 2012) is de-
scribed in chapter @ Several significant weaknesses of first generation @ are
tackled, including: low mesh resolution, restricted frequency range and topo-
logical issues arising from the mesh slicing approach used. A new method of
optimised spherical mapping is reported that allows the application of spherical

harmonic deformations to the head mesh with minimal distortion.



Whilst creation of the second-generation database has not been possible
within the scope of this research, chapter H reports steps that have been taken
towards creating the database. This includes formulation of the spherical har-

monic deformations to be used, their normalisation, verification of the accuracy

of the proposed solver, validation of both the limit of linearity and the

associated Lsignal—to—noise ratio (SNR)L and definition of the directions included

within the database.

Finally an overview of the contributions of this work is given in chapter B In
addition, the hypotheses stated in the preceding section are revisited in light of

the work completed and potential further work is discussed.



Chapter 2

Spatial hearing and spatial audio

Do not go where the path may
lead, go instead where there is

no path and leave a trail.

RALPH WALDO EMERSON
This chapter offers a review of spatial hearing and spatial audio to provide con-

text for this work. The physiology of the human hearing system is described
along with the various cues utilised by humans to localise sounds within

ldimensional (3D)| space. The range of spatial audio systems that manipulate these

auditory cues to create sonic illusions are also discussed to give examples of the

wider applications of this research. lHead—related transfer functions (HRTFs)l are

introduced along with current state of the art acquisition techniques for measur-
ing and estimating [HRTFS. Finally previous studies examining the relationship
between human morphology and features are discussed to present specific

background to the work presented in the following chapters.

2.1 The auditory system

Before discussing auditory cues it is important to understand the physiology of

the human hearing system. Therefore this section first discusses the peripheral



auditory system from the outer to inner ear. Then the frequency limits of human
hearing are presented as these limits have important ramifications in terms of
the acoustic simulations used in later chapters. Finally the characteristics of the

auditory filters are described to provide a foundation for the presented work on

simplification.

2.1.1 Structure of the human ear

The human peripheral auditory system is divided into three parts: the outer,
middle and inner ear (figure El]) Together they are responsible for converting
sound waves travelling through the air and into the outer ear to mechanical
vibration within the middle and inner ear and then to neural signals which are
sent to the brain for analysis. The neurology of human hearing is beyond the
scope of this work, but the anatomy and physiology of the peripheral auditory

system are of significant importance and so will be reviewed here.

Outer ear % Middle ear ! Inner ear
Y Ossicles | ..
YA - Semicircular

canals

Cochlea

Auditory
nerve

Oval window
Pinna

window Eustachian
\ tube

Figure 2.1: The peripheral auditory system: the outer, middle and inner ear. After
Fastl and Zwicker (2007, p. 24, Fig. 3.1).
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Figure 2.2: Naming conventions of the parts of the human pinnaﬁl.

2.1.1.1 The external ear

The external ear consists of the pinna (or auricle, plural pinnae or auricles) and
the ear canal (or meatus). It captures sound waves travelling through the air
and transmits them to the eardrum (or tympanic membrane) where they enter
the middle ear. The behaviour of the external ear is entirely passive (i.e. it does
not generate any sound energy, nor does it “react” to sound) and is consequently

governed by acoustic laws.

The pinnae are responsible for imparting the majority of the fine spectral detail
used in localisation on the sound entering the ear (this will be discussed in more
detail in section ) One of the aims of this research is to study how pinna
morphology is involved in contributing to these spectral cues. It is therefore
necessary to clarify the nomenclature that will be used in throughout this research
to refer to parts of the pinna. Figure @ shows the naming conventions that will

be used throughout this work.

The large cavity is referred to as the concha and is divided by the crus helias
into an upper (cymba) and lower (cavum) portion. The fold around the top edge

of the pinna is called the helix and the cavity under it is known as the scaphoid

Tmage of pinna edited from http://www.gras.dk/media/catalog/product/cache/1/
image/500x500/9df78eab33525d08d6e5fb8d27136e95/k/b/kb0066_web. jpg
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fossa. The raised section between the concha and helix is known as the antiheliz.
The antihelix has two crura that form a y-shape around the triangular fossa. The
crus above the triangular fossa is referred to as the superior crus and the one
below is the inferior crus. The fleshy section at the very bottom of the pinna is
called the lobule and the edge between the lobule and cavum concha is known as
the antitragus. The tragus is the prominence that protudes over the ear canal.

Above it is the anterior notch and below it the intertragal notch.

The ear canal is a slightly curved tube 20-30 mm long with a diameter of 7-8 mm
(Blauert,, 1997; Xie, 2013; Pulkki and Karjalainen, 2015). It is entirely lined with
skin but the walls of the outer third are cartilaginous whereas the walls of its
inner two-thirds (closest to the eardrum) are bony. As it is open to the air at one
end (low acoustic impedance) and closed by the eardrum at the other end (high
acoustic impedance), acoustically it acts as a cylindrical tube closed at one end.
It therefore exhibits a quarter-wavelength resonance that amplifies frequencies
in the region of 3-4 kHz (Wiener and Ross, 1946). This resonance is generally
omitted from the study of spectral auditory localisation cues (section ) as it
has been shown to be independent of direction and is therefore unlikely to play
any active part in sound localisation (Mehrgardt and Mellert], 1977; Middlebrooks
et all, 1989; Mgller et all, 19954; Algazi et al), [1999). At the end of the ear canal
lies the eardrum, an almost circular membrane that is about 0.1 mm thick and
has an area of about 66 mm? (Blauert,, 1997; Xie, 2013) which converts the sound

waves arriving at it to mechanical vibrations that are passed to the middle ear.

2.1.1.2 The middle ear

The middle ear is an air-filled cavity that acts as an impedance-matching device
between the air in the outer and middle ears and the fluid in the inner ear (Moore,
2013; Xie, 2013; Pulkki and Karjalainen, 2015). Connected to the eardrum are
a collection of the smallest bones in the human body: the ossicles. The malleus

(Latin for hammer) is connected at one end directly to the eardrum and at the
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other end to the incus (Latin for anwvil) which is in turn connected to the stapes
(Latin for stirrup). The stapes is then connected via the oval window to the inner
ear. Leading from the middle ear, to the nasopharynx, is the eustachian tube. 1t
is normally closed but is occasionally opened, predominantly during yawning or
swallowing, to equalise pressure between the middle ear and the exterior during

changes in altitude.

Due to the very different acoustic impedances of air and the fluid inside the
cochlea (about 1:3000 (Pulkki and Karjalainen, 2015)), if the sound waves were
to impact directly on the oval or round window of the cochlea, most of the sound
energy would be reflected (Moore, 2013; Xie, 2013; Pulkki and Karjalainen, 2015).
However, there are two functions of the middle ear that vastly improve energy
transmission. Firstly the ossicles act as a lever mechanism which offers a minor
improvement. Secondly, offering a far larger improvement, is the ratio of the sur-
face area of the eardrum to the surface area of the oval window (approximately
30:1 (Xie, 2013; Pulkki and Karjalainen, 2015)). The effect of both these mech-
anisms is to convert a small pressure with large velocity in the air to a large
pressure with low velocity in the fluid of the inner ear. The middle ear is most

efficient in the frequency range 500 Hz—5 kHz (Aibara et al), 2001) and effectively

ISVTF| (mm s'/Pa)

100 1000 10,000
Frequency (Hz)

Figure 2.3: Transfer function of the middle ear: the Ear canal sound pressure to stapeﬁ{
|footp1ate velocity transfer functionl (BVTFh After Aibara et al) (2001). The plotted
curve is the average of three repeated measurements for 11 different ears.
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acts as a bandpass filter: attenuating low and high frequencies, as shown in the

lear canal sound pressure to stapes footplate velocity transfer function (SVTF)|
(figure p.3).

The middle ear also has a further function, known as the acoustic reflex. This is

a reaction of the muscles attached to the ossicles to loud sounds (reported levels
vary from 50-90 dB (Blauert, 1997; Pulkki and Karjalainen, 2015)), whereby
the muscles contract, reducing the sensitivity of the ear. However, it is not a
particularly efficient protection system as it is too slow to react to impulsive
sounds (with a latency of tens to hundreds of milliseconds) and is also only
effective below approximately 2 kHz (Pulkki and Karjalainen, 2015). Despite
this, it has been suggested that the acoustic reflex is used subconsciously to
protect the hearing system from sounds that the brain can anticipate such as self-

generated speech /shouting or the sound when running on hard surfaces (Geisler,

1998; Mgllen, 2000, 2012; Pulkki and Karjalainen, 2015).

2.1.1.3 The inner ear

The inner ear consists of the cochlea and the semicircular canals and connects the
middle ear to the auditory nerve, converting mechanical vibrations to electrical
signals. The semicircular canals are used in the sense of balance but play no active

part in hearing and so will be discussed no further (Pulkki and Karjalainen, 2015).

The cochlea is a bony-walled, spiral-shaped, fluid-filled tube approximately 35 mm
long with about 2.75 turns. However, for simplicity it is often depicted “unwound”
as a linear tube as in figure . The wide end, nearest the middle ear, is known
as the base (or the basal end) and the narrow end is known as the apex (or the
apical end). Lengthways it is divided into three chambers: the scala vestibuli
(vestibular canal), the scala media (cochela duct) and the scala tympani (tym-
panic canal). At the basal end there are two vibroacoustic connections to the the
middle ear: the oval window connects the middle ear to the scala vestibuli and

the round window connects the middle ear to the scala tympani. At the apical
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(a) Structure of cochlea, represented as an unwound linear tube. After Kelly (2002).
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(b) Cross section of the cochlea.

Figure 2.4: The structure of the human cochlea. See text for description. After Ency-
clopaedia Britannica (2018).
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(a) The displacement of the basilar membrane for a travelling wave invoked by a 200 Hz
tone at four time instants 1-4. The dashed line shows the envelope created by the peaks
of the waveform. The wave grows slowly as it travels along the basilar membrane until
it reaches a maximum at a given distance from the stapes before it decays rapidly.
After Moorg (2013, p. 26, fig. 1.9).
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(b) The envelopes of basilar membrane displacement for various low frequency tones.
After Xie (2013, p. 6, fig. 1.6). Original data from von Békésy ([1960).

Figure 2.5: Envelopes of vibrations on the basilar membrane.
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end the scala vestibuli is connected to the scala tympani via the helicotrema to
allow the perilymph (the fluid that fills the scala vestibuli and scala tympani) to
pass between the two. The scala media is filled with endolymph and is separated

from the scala vestibuli by the Reissner’s membrane and from the scala tympani

by the basilar membrane (figure )

As vibrations pass from the middle ear to the inner ear and the stapes presses
inwards on the oval window, the round window presses outwards in opposite
phase, equalising pressure within the cochlea. This creates a pressure difference
across the basilar membrane that generates a travelling wave that passes from
base to apex (figure ) The point along the basilar membrane at which
this standing wave reaches its maximum amplitude is frequency dependent: high
frequencies reach their maximum nearer the base, whilst low frequencies travel
further towards the apex (figure ) This is because the base of the basilar
membrane is stiff and narrow, whereas the apex is soft and wide. It is interesting

to note that this is in opposition to the narrowing of the cochlea tube.

The organ of Corti runs along the basilar membrane and is responsible for con-
verting vibrations on the basilar membrane to neural signals. There are two
groups of hair cells in the organ of Corti: the inner hair cells and the outer hair
cells (figure @) There are approximately 12,000 outer hair cells arranged in
three to five rows and a single row of approximately 3500 inner hair cells. On
the tips of the hair cells are smaller hair-like structures known as stereocilia.
Above the stereocilia, in the scala media, lies a gelatinous structure: the tectorial

membrane.

The endolymph that fills the scala media is rich in potassium K ions whereas the
perilymph that fills the scala tympani is relatively low in potassium. This results
in a potential difference across the basilar membrane and the organ of Corti. As
the basilar membrane vibrates, the stereocilia bend against the tectorial mem-
brane which causes tiny channels in their ends to open and K* to flow down the

stereocilia. This causes the potential difference to modulate with the vibrations
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Tectorial membrane

Bony shelf

Figure 2.6: The surrounding structure of the organ of Corti. See text for description.
After bpen Universityl (l2018|)

of the basilar membrane which in turn triggers the release of neurotransmitters

and the firing of neural signals along the auditory nerve.

2.1.2 Frequency limits of human hearing

The frequency range of human hearing is often quoted as 20 Hz-20 kHz (

Lmd Zwickeﬂ, bOO?I; |Yosd, lZOOd). However, the upper limit of human hearing

varies greatly with age. Some children are able to hear tones as high as 20 kHz

(, ), but most adults show a steady roll-off in sensitivity above 15 kHz.
The degradation of hearing sensitivity with age (presbyacusis (, , p.

62)) affects higher frequencies more, but subject-to-subject variation is also more

pronounced at higher frequencies than low (btelmachowicz et alJ, |198d).

rfakeda et al.| (|199j) measured the upper frequency limits of 6105 ears from sub-

jects aged 589 years old. Pure tones were presented over headphones at a level of
75 + 10 dBSPL and the frequency of the tone reduced until the subject perceived
a tone. This was repeated three to five times, depending on the variation in the
results, and the limit was taken as the median value. The median results of their

study are presented in figure @ They found that the upper frequency limit of
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Figure 2.7: Upper frequency limits of hearing for different age groups as reported by
h‘akeda et alJ (h99ﬂ)

hearing decreased steadily with age up until approximately 45-50 years old, after
which it rapidly decreased. They also found that the variation between subjects
in upper limit increased with age but found little variation between sexes; except

above approximately 60 years old.

|Whittle et al.| (|197ﬂ) tested the audibility of low frequency sounds and found

that frequencies as low as 3.15 Hz could be heard but needed to be presented

continuously and at extremely high levels (>120 dBSPL). |Johnson and von Gierkei

() suggested that below 16 Hz the sound itself is not “heard” rather the

harmonic distortions in the middle ear are detected.

A number of studies (tFausti et alJ, |198]J; bchechter et al.|, |198d; |Green et alJ, |1987|;

btelmaehowicz et al.|, |198q; |Ashihara|, I‘ZOO?I; bingh et alL I‘ZOOd) have investigated

the variation in hearing thresholds with frequency and figure reports their

results. IFausti et al.| (|198]J) studied subjects with both normal hearing and those

who had been exposed to noise. The curves in figure @ represent the 15 subjects

17



120 — 1 T T T 1 T

—X— Fausti et al. (1981)

—+— Schechter et al. (1986) I\
Green et al. (1987)

—WV— Stelmachowicz et al. (1989)

—&— Ashihara (2007)

—4— Singh et al. (2009)

100

80

Threshold (dB SPL)

_20 1 n n n n n n PR | 1
1 10 20
Frequency (kHz)
(a)
100 T T T T T T T T
—X— Fausti et al. (1981) !
80 - —+— Schechter et al. (1986) |
Green et al. (1987)
—¥V— Stelmachowicz et al. (1989)
60 - —&B— Ashihara (2007)
—4£— Singh et al. (2009)

Threshold (dB)

1 10 20
Frequency (kHz)

(b)

Figure 2.8: Hearing thresholds reported by a number of studies: (a) raw data and (b)
normalised to 0 dB at 12 kHz.
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aged 18-27 years old with normal hearing from their study. bchechter et al.| (|198d)

used a similar procedure to tFausti et al.| (|198]J) to measure 157 subjects aged 6-30

years old. The curves in figure @ represent the average across all the age groups

they tested.

|Green et al.| (|1987|) and Btelmachowicz et al.| (|198d) used a high frequency au-

diometer designed by btevens et al.| (|1987|) to measure the hearing thresholds of

37 18-26 year olds (lGreen et alJ, |1987|) and 240 10-60 year olds (btelmachowiczl

, ) The curves in figure @ for btelmachowicz et al.| (|198d) are the

results for the 160 subjects aged 10-19 years old.

|Ashihara| (|2007|) tested 16 subjects aged 19-25 years old using loudspeakers rather

than headphones (used in all the other studies) and bingh et al.| (lZOOd) measured

50 subjects with normal hearing aged 10-70 years old and both these results are

also reported in figure @

The results from all these studies, as shown in figure , vary quite widely. This
is probably due to differences in the procedures employed, as suggested by
() However, figure shows the results normalised to 0 dB at 12 kHz
(a frequency common to all the studies) and it can be seen that, once aligned,

the results agree fairly well.

Figure @ shows the average variation in hearing threshold with frequency calcu-
lated from the aligned results of the above studies and then normalised to 0 dB
at 1 kHz (a common reference point, e.g. the phon). This represents the aver-
age of approximately 556 subjects aged 6-70 years old. A common approach to

defining the limits of human hearing is to give the range of frequencies audible

at 60 dBSPL (t[—Ieffner and Heffneli, l2007|). The 60 dBSPL upper frequency limit

calculated from the data in figure @ is 17.86 kHz, which agrees well with other

reported values (backson et al.|, |1999|; tHeffner and Heffneri, lZOO?I). The significant

reduction in sensitivity of the human hearing system at high frequencies likely

explains why little evidence of localisation cues above 16 kHz has been found

(section )
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Figure 2.9: Average variation of hearing threshold with frequency calculated from a
number of studies (lFausti et alJ, |198]J; bchechter et alJ, |198d; |Green et al], |1987|; Btel—l

Imachowicz et alL |198q; |Ashiharal, bOO?I; Eingh et al], l200£1) and normalised to 0 dB at
1 kHz.

2.1.3 Auditory filters

2.1.3.1 Auditory filter bandwidth

Each of the inner hair cells reacts most strongly to a different frequency, but also
reacts to other frequencies around it. This region of sensitivity is known as the

critical bandwidth of the auditory filter and it has been shown to increase with

frequency (IMoorel, b013|; tPatterson and Moorel, |198d).

There are a number of methods for determining the width of the critical band-
width and most are based on masking, i.e. the response of the hearing system

to one stimulus in the presence of another stimulus, and the idea of the power

spectrum model (, ) Consider the detection threshold of a sinusoidal

signal masked by a narrow band noise signal. The noise is centred on the signal
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Figure 2.10: Power spectrum model. (a) and (b): as the bandwidth of the narrow band
noise centred on f. increases, so does the noise (dashed section) passing through the
auditory filter. Hence, the masking level threshold of the tone at f. steadily increases.
(c): once the bandwidth of the noise reaches the critical band of the auditory filter no
more noise can pass through the auditory filter. (d): therefore as the bandwidth of the
noise continues to increase, the masking level threshold now remains stable.

frequency f., and the noise power density is held constant whilst the bandwidth
is increased and so the total noise power increases. The detection threshold of
the sinusoidal signal increases as the bandwidth of the noise is increased up to a
point after which the threshold remains the same. The assumption is that when
listening to a sinusoidal signal in noise one auditory filter is used: one that has
a centre frequency closest to the frequency of the signal. Most of the noise is
filtered out and only the components that fall within the auditory filter mask the
signal. Therefore, as the bandwidth of the noise increases, the amount of noise
passing through the auditory filter only increases whilst the bandwidth of the
noise is less than the filter bandwidth (figure )

Early methods of determining the critical bandwidth of the auditory filters con-
sisted of finding the “knee” point of various psychoacoustic tuning curves using a
variety of detection tasks (see Fastl and Zwicker (2007) for an in depth descrip-

tion of them). The most common was to use a reference signal of narrow band
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noise and to measure the perceived loudness of another narrow band noise signal
with varying bandwidth but constant sound pressure level and the same centre
frequency as the reference signal. The perceived loudness is measured as a func-

tion of bandwidth and is constant up to a point after which it increases steadily

(IFastl and ZWickeIL tZOO?I). The “knee” point of the loudness curve is taken as

the critical bandwidth for the given centre frequency. The critical bandwidths

measured using this approach were named Bark bandwidths by tFastl and Zwickexi

() and are estimated by the following equation (IFastl and ZwickeIL bOO?I):

Afpark = 25 + 75[1 + 1.4(f./1000)?)%% (2.1)

where A fgq, and f. are both in Hz. As can be seen in figure , critical
bandwidth is roughly constant (approximately 100 Hz) below 400 Hz after which
it increases logarithmically with frequency, with a width of several kHz at higher

frequencies.
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Figure 2.11: Comparison of the Bark and lsquivalent rectangular bandwidtﬂ (IERBI)
scales for auditory filter bandwidth.
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Figure 2.12: Notched noise method of auditory filter width measurement. See text for
explanation. After Moore (2013, p. 74, Fig. 3.3).

More recently the Bark scale has generally been rejected in favour of the

lalent rectangular bandwidth (ERB)l scale (Glasberg and Moore, 1990). Rather

than using a single masker the scale is measured using notched noise which
has the advantage that auditory filters above and below the frequency under test
cannot be used to detect the signal: a phenomenon called “off-frequency listen-
ing” (Moorg, 2013; Pulkki and Karjalainen, 2015). In the notched noise method
(Patterson, [1976) a sinusoidal signal is masked by narrow band noise maskers
either side of it (figure ) and the detection threshold of the signal is measured
as a function of the notch width (2Af). This is then used to approximate the
shape of the auditory filter. The equation for the , Aferp, is:

Afprp = 24.7+0.108f, (2.2)

where Afggrp and f. are both in Hz. Note this is a slight reformulation of the
standard equation for where f. is usually in kHz. As can be seen in figure
the bandwidth A fgrp varies approximately logarithmically with frequency

over a larger range than the Bark scale.
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2.1.3.2 Variation of auditory filter shape with level

The shape of the auditory filter varies with sound pressure level for a given
frequency (Glasberg and Moord, 2000) as shown in figure . As the sound
level increases the auditory filter broadens significantly, especially for the low-
frequency skirt. The reason for this variation is generally explained in terms of
the auditory filter consisting of an active portion (the cochlea) that results in the
tip of the filter and a passive portion (the basilar membrane) that results in the
tails of the filter (Moore, 2013). At low levels the active part dominates and this
results in a sharp peak in the auditory filter. As the sound level increases the
gain of the active part decreases and the passive portion dominates, widening the

skirts of the filter.
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Figure 2.13: Shape of auditory filter centred at 4 kHz with variation of sound level
from 30-80dB SPL. The left panel shows the filters normalised to an amplitude of 0dB
at the filter’s tip. The right panel shows their relative amplitude with a peak gain of
0 dB for a sound level of 80 dB. After Glasberg and Moore (2000).
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2.2 Acoustic sound localisation cues and locali-

sation acuity

There are a number of acoustic cues used to localise sounds and they are repre-

sented in an individual’s |head—related transfer function| (IHRTP1) or |head—related|

hmpulse response (HRIR)|. They are generally divided into two main categories:

interaural and spectral. Sometimes interaural cues are referred to as binaural
cues as they rely on the signals arriving at both ears and spectral cues as monau-
ral cues as they work under monaural listening. However, the use of
Ispectral difference (ISD)| has also been investigated (Jin et al), 1999, 2004) and

whilst their importance is unconfirmed, it is possible that spectral cues operate
under both binaural and monaural listening. Therefore in this work, to avoid am-
biguity, cues will be classified as either interaural or spectral rather than binaural
and monaural, and whilst this work focuses on spectral cues, both interaural and

spectral cues will be reviewed here.

2.2.1 Auditory space

Auditory space is defined as “The totality of all possible positions of auditory
events” where “auditory events” are any auditorily perceived phenomena, with or
without physical origin (Blauert], 1997). The origin in auditory space is generally
defined as the point equidistant between the two eardrums (Moore, 2013; Blauert,
1997; Pulkki and Karjalainen, 2015); unless a subspace of auditory space is being
studied e.g. just the region around the pinnae (Kahana and Nelson, 2007). In
terms of Cartesian coordinates the x axis passes through the head from left to
right, the y axis passes through the head from back to front and the z axis
passes through the head from bottom to top. Figure illustrates the three
anatomical planes that divide up the auditory space. Firstly the median (or
mid-sagittal) plane divides the auditory space into left and right portions and in

Cartesian space is the y—z plane. Secondly the frontal (or coronal) plane divides
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Figure 2.14: Anatomical planesﬂ.

the auditory space into back and front portions and is the z—z plane in Cartesian
space. Finally the horizontal (or transverse) plane divides the auditory space into
top and bottom portions and in Cartesian space is the z—y plane. Any one of the
infinite number of planes parallel to the median plane is referred to as a sagittal

plane.

2.2.2 Coordinate systems

Due to the head being roughly spherical it is perhaps more intuitive to use spher-
ical coordinate systems rather than Cartesian coordinates. The coordinates in
spherical coordinate systems are range/distance (r), azimuth (6) and elevation
(). Whilst there has been research into how head-related transfer functions vary

with range, e.g. (lDuda and Marteng, |1998|; IKan et alJ, lZOOd, I‘ZOOd; bpagno]L |‘2015|),

source distance perception will not be considered in this work and therefore the

location of a sound will only be defined in terms of azimuth and elevation.

There are two spherical coordinate systems used in spatial audio research and
each has its own benefits. Figure illustrates the interaural-polar coordinate

system which has been used by some authors, most notably in the creation of

’Image of head from http://www.secondpicture.com/tutorials/3d/modeling_human_
head_in_3ds_max.png
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Figure 2.15: The interaural-polar spherical coordinat
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Figure 2.16: The vertical-polar spherical coordinate system. The dotted lines indicate
the possible ranges of azimuth and elevation. After ()
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the benter for Image Processing and Integrated Computing (CIPIC)| database

(|Algazi et al.|, bOOldI). Azimuth (0) varies from —180° (directly behind) to 180°

(also directly behind) with 0° lying on the median plane and elevation (¢) varies
from —90° (directly below) to 90° (directly above). One of the advantages of the
interaural-polar coordinate system is that fixing azimuth and varying elevation
traces a section through a “cone-of-confusion” (see section ) along a sagittal

plane.

The most widely used coordinate system relating to binaural acoustic measure-
ment is the vertical-polar spherical coordinate system (figure ) Azimuth (0)
varies from —180° (directly behind) to 180° (also directly behind) with 0° being
directly in front and generally negative azimuths lying in the left hemisphere.
Elevation (p) varies from —90° (directly below) to 90° (directly above). In this
system fixing azimuth and varying elevation traces an arc along a plane that
passes through the z-axis. This research will use the vertical-polar coordinate
system due to the fact that it is simple to convert between Cartesian and spher-

ical coordinates.

2.2.3 Interaural cues — [LD and [TD

Interaural cues occur due to disparity in the audio signals reaching the two ears.

The hnteraural time difference (ITD)| — figure — arises due to differences

in the path length for sound to reach the ipsilateral (near-side) ear compared to

the contralateral (far-side) ear; this results in a delay in the signal reaching the

contralateral ear. The hnteraural level difference (ILD)| — figure — occurs

due to shadowing of the contralateral ear by the head; the sound level at the

contralateral ear is attenuated.

The and have been well understood for over a century, having been

first analysed by John Strutt — Lord Rayleigh — who proposed the “duplex

theory” of sound localisation (lRayleigh|, |1907|). The duplex theory is based on

the idea that the t[T D| and t[LD| work across different frequency ranges. The
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is also referred to as the |interaura1 phase difference (IPD)l as for pure tone

stimuli it is detected as phase differences in the signals arriving at the two ears

(lBlauertI, |1997|; tl\/[oorel7 lZOlﬂ). For frequencies below approximately 700-800 Hz

these phase differences are completely unambiguous, as the half-period of the

sound is less than the maximum IIT]j (tBlauertI, |1997|). For higher frequencies

the phase difference introduced by the is more than 180° which introduces

ambiguity and for frequencies greater than 1.5-1.6 kHz the phase differences

are completely ambiguous (lBlauerd, |1997|; IMooreJ, |2013|; tPulkki and KarjalainenL
). In contrast the is only dominant at frequencies above approximately

4 kHz where the wavelength is significantly smaller than the head and hence it
shadows the contralateral ear. At lower frequencies the sound waves diffract round

the head and so the difference in level of the sound arriving at the two ears is far
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smaller. Btevens and Newman| (|193d) used pure tone stimuli to test the duplex

theory and found that there was a dip in azimuthal localisation performance

between 2 and 4 kHz. This corresponds to the frequency range that is too high

for cues but too low for cues.

There are a number of approaches to estimating |1Td from IHRTF&J that IKatzl

Lmd Noisternié (|2014l) split into three “families” according to their basic premise.

The first family uses onset detection to calculate the main peak of the left and

right HRIRY and estimates the as the time difference between the main

peaks (, ) The second family estimates the as the time lag for

maximum cross correlation between left and right IHRIRSI (tKistler and Wightmanl,

). The final family uses excess phase components to estimate the overall

group delay and translates this into a time delay (lJot et alJ, |1995|; |Minnaar et al.|,

|20()d). lKatz and Noisternigi’s (|2014l) investigation suggests that the variation in

calculated using the different methods can exceed Ijust—noticeable—difference&i

I(J NDs)l for |IT ]j by several times. However, whilst the work begins to analyse the

differences between the methods, they conclude that further work is required to
analyse fully the importance of the differences and which method is optimal. The
estimation of is less problematic and is generally calculated as the logarithmic
ratio of energy in the left and right , either averaged across all frequencies

or in separate frequency bands (, )

Interaural cues are widely accepted as the predominant cues for azimuthal (left—
right) localisation. However, they are ambiguous within the surface of a series
“cones of confusion” (, ) where the paths to the two ears are the same
length (figure ) Because the path lengths are the same, the values for
and remain substantially constant and due to this ambiguity the the ear is
unable to accurately identify the location of the sound source. It has therefore
been suggested that the ear relies on spectral cues to disambiguate and accurately

locate sound sources in @ space.
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Figure 2.19: Cone of confusion where the interaural cues are the same. The two auditory
events indicated produce the same and .

2.2.4 Spectral cues

The morphology of the human body imparts direction-dependent filtering on the

signals reaching the ears. This is believed to be the main cue in resolving am-

biguity in interaural cues. tBatteau| (|1967|) initially proposed time-domain filters

for the pinnae cues based on two delayed reflections from the concha and helix
acting as cues for azimuth and “altitude” (i.e. elevation) respectively. However,
the features of the pinnae are relatively small compared to the wavelength of
audible sound and accordingly time-domain, reflection-based models cannot ef-
fectively model the complex effects of the pinnae which consists of diffraction

as well as reflection (tLopez—Poveda and Meddis{, |199d; IBlauertI, |1997|; , )

Therefore, spectral localisation cues are now generally studied in the frequency

domain, where they can be more effectively modelled (bhaw and Teranishil, |196d;
Teranishi and Shaw, 1968; Shaw, 1974b, 1997; Hebrank and Wright, 1974).

In the time-domain the direction-dependent filters of an individual’s morphology

are known as a |head—related impulse responsesl (IHRIRSI) and their correspond-

ing frequency-domain representation are known as |head—related transfer func—l

() Sometimes are split into the direction-dependent com-

ponents, the so called |directional transfer functions (DTFs)l, and the direction-

independent component, the kommon transfer function ( CTF)l h\/[iddlebrooks and|
|Green| (|199d); |Middlebrook4 (|199d) Commonly, the is calculated by com-
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bining the average of the magnitude spectra of the for all available direc-
tions with the corresponding minimum phase spectrum of that average, calculated
via the Hilbert transform IMiddlebrooks and Green| (|199d). The are then
calculated by dividing the complex for each direction by the complex .

It is believed that, in addition to the pinnae, the morphology of the human head
and torso also contribute to the HRTFS, especially for elevation discrimination

(|Avendan0 et al.|, |1999al; |A1gazi et a,l.|, }20013|; |Jin et al.|, lZOlj; tKirkeby et alL |2007|).

However, these cues operate in a different frequency range to the pinnae cues and

so generally head-and-torso cues and pinnae cues are studied independently and

as such will be reviewed separately here.

2.2.4.1 Pinna cues

The contribution of the pinna to the is commonly referred to as the

Irelated transfer function ( PRTF)l and can be split into pinna resonances and pinna

reflections (Batarzadeh et al.|, lZOO?I; bpagnol et al.|, lZOld).

The cavities of the pinnae, predominantly the concha, act as resonant chambers
which are excited to different degrees depending on the frequency and direction
of the sound source. () reports six modes of resonance in the human
concha, see table @, measured using a point source and probe microphone.
The frequencies and “angles of incidence” (equivalent to elevation in the vertical-

polar spherical coordinate system) reported in the table are those for which the

Mode Frequency Angle of Incidence Type
1 4.2 kHz — omnidirectional monopole
2 7.1 kHz 68° vertical dipole
3 9.6 kHz 73° vertical dipole
4 12.1 kHz -6° horizontal dipole
5 14.4 kHz 7° horizontal dipole
6 16.7 kHz 7° horizontal dipole

Table 2.1: Concha modes reported by () Angle of incidence is equivalent to
angle of elevation in the vertical-polar spherical coordinate system (section )
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resonances are maximal. These results have been corroborated by other studies

(|Geronazzo et al.|, lZOld; bpagnol et al.|, lZOld).

Destructive interference generated by reflections from surfaces of the pinnae cause

notches in the IPRTF1. tHebrank and Wrighd (|1974l) identified a notch between 4 and

8 kHz as a key cue for elevation discrimination which has been identified by other

studies (tButler and Belendiukl, |1977|; IMehrgardt and Mellertl, |197 7|; tKahana and|

INelsonI, bOO?I; IIidaL lZOOd). They suggested a “single-delay-and-add” mechanism

consisting of a reflection from the back wall of the concha was responsible for

generating the notch. bpagnol et al.| (b013|) studied spectral notches in the

of the CIPIC database. They found that all but two subjects out of twenty, who
only exhibited two, had three spectral notches in their .

IMorimoto| (lZOO]J) used pinna occlusion to investigate the contribution of the ip-

silateral and contralateral pinna spectral cues to localisation in sagittal planes.
They found that while both ears contribute to vertical localisation, the contribu-
tion of the contralateral ear decreases as the sound source moves away from the
median plane until, for sagittal planes more than 60° from the median plane, the

contralateral ear no longer contributes measurably.

Section @ will give a deeper insight to the morphological origin of the resonances

and notches of the .

2.2.4.2 Head and torso cues

IMusicant and Butled (|1984l) found that in their localisation tasks, even with the

pinnae occluded, their subjects retained the ability to localise 4 kHz low-pass
noise stimuli and suggested the cues might originate from the torso. A number of
other studies have demonstrated that, as well as the pinnae, diffraction of sound

around the head and reflections from the shoulders and torso also contribute to

the |HRTFS| (|Avendan0 et al.|, |1999a|; |Algazi et al.|, l2001a|; |Jin et al.|, b013|; IKirkebyI

et all, 2007).
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|Algazi et al.| (lZOOlaI) also found that subjects retained the ability to estimate the

elevation of low frequency sounds, where pinnae cues are generally thought to be
absent, surprisingly well; especially for sources located well outside the median
plane. They also found that simple spherical head and ellipsoidal torso geometric

models estimated the low-frequency head and torso cues very well which has been

corroborated in a follow up study (|Algazi et al.|, IQOOﬂ).

bin et al.| (l2013|) investigated the effect of the torso during the generation of the

bydney—York morphological and recording of ears database (SYMARE database)|
database. They compared simulated for head-only and head-and-torso

meshes and found an absence of known key features in the }spatial frequency|

|response surfaces (SFRS)| of the head-only meshes. They also calculated the

correlation between head-only and head-and-torso for frequencies up to
5.6 kHz (figure ) It can be seen that below approximately 800 Hz there is
little difference, then between 1-3 kHz there is a significant decrease in correlation
and then the correlation steadily increases again from 3-5 kHz. They suggest that
the significant differences between head-only and head-and-torso in the 1-
3 kHz range is due to the fact that the distance between the shoulders and ears

is in the order of the wavelength within this frequency range.
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Figure 2.20: Correlation between Ispatial frequency response surfaces{ (bFRQ) for head-
only and head-and-torso meshes. After Jin et al| (2013).
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Kirkeby et al, (2007) investigated the effect of the torso using the ultra weak vari-

ational formulation finite element method. They used a |head—and—torso simulatod

and simulated 21,872 directions over the frequency range 50 Hz-24 kHz.
They found that the shoulder reflections can be separated in time from the rest
of the for sources directly above the listener and that the impedance of the
torso has a significant effect for sources directly below. They also concluded that
the spectral cues generated by the torso for resolving front-back confusions were

relatively weak.

2.2.4.3 Operating frequency ranges

A number of studies have used selective pinna cavity occlusion, in which the
shape of the cavity is modified or even removed by filling with putty (or similar
material), to investigate the frequency ranges of spectral cues. Gardner and
Gardner (1973) found that increased occlusion led to a degradation in median
plane localisation acuity and that localisation was best for broadband or high
frequency stimuli in the frontal region. Musicant and Butler (1984) investigated
the effect of pinna occlusion on localisation of different stimuli: broadband, 1 kHz
low-pass, 4 kHz low-pass and 4 kHz high-pass noise. They found that occlusion
affected localisation most when high frequencies were included in stimuli but had
little effect for low frequency stimuli; leading to their conclusion that pinnae cues

are high frequency in origin.

Hebrank and Wright| (1974) examined the localisation of band-limited noise to in-
vestigate spectral cues and concluded that the cues required for accurate median-
plane localisation are contained in the frequency range 3.8-16 kHz. They also

studied specific localisation cues and suggested that:

 frontal directions are indicated by a one octave notch between 4 and 8 kHz

and a boost of frequencies above 13 kHz

« directions above are indicated by a 1/4 octave peak between 7 and 9 kHz
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« directions behind the listener are indicated by a small peak between 10 and

12 kHz with frequencies cut above and below it

e increases in elevation in the frontal direction are indicated by an increase

in the lower cut off frequency of the one octave "frontal” notch

These conclusions agree with earlier work by Blauert (1970) using 1/3-octave

band noise.

Asano et al) (1990) investigated the role of micro and macroscopic variation of
high and low frequencies in median plane localisation. They concluded that
microscopic details below 2 kHz and macroscopic high frequency details are key
cues for front-rear discrimination. They also concluded that macroscopic details

above 5 kHz are important elevation cues.

2.2.5 Localisation acuity

2.2.5.1 Localisation acuity - azimuth

Stevens and Newman (11936) carried out the first thorough investigation of hor-
izontal localisation acuity using pure tone stimuli and their mean results, across
frequency, are reported in table @ They found that localisation error did not
vary greatly, with frequency, from these means except for a dip in acuity be-
tween 2 and 4 kHz — as mentioned in section and shown in the mean,

across directions, plotted in figure .

Source Azimuth Horizontal Localisation Error

0° 4.6°
15° 13°
30° 15.6°
45° 16.3°
60° 16.2°
75° 15.6°
90° 16°

Table 2.2: Horizontal localisation error as reported by Stevens and Newman (1936).
The values reported are the means across frequency.
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Figure 2.21: Frequency dependency of horizontal localisation error as reported by
Stevens and Newman (11936). The plotted curve is the mean across all directions.
After Stevens and Newman (1936).

Mills (1958) coined the term lminimum audible angle (MAA)l as a measure of

the minimum detectable difference in horizontal location of two identical sound
sources. Mill§ found that the average for 500 Hz and 1 kHz stimuli varied
from approximately 1° for straight ahead to in excess of 10° at extreme source
directions (>75°) and there was also a dip in acuity in a similar frequency re-
gion to Stevens and Newman. Subsequent investigations (Perrott, 1984; Perrott
and Saberi, 1990) have come to conclusions similar to the earlier studies: the az-
imuthal can be as small as 1° directly in front and are maximum at extreme

source azimuth angles.

The lminimum audible movement angle (MAMA)l is defined as the minimum an-

gle a moving source must move to be discernible from a stationary source or a
source moving in the opposite direction. It has been investigated in a number of
studies (Perrott and Musicant], 1977; Grantham|, 1986; Perrott and Tucker|, 1988;
Chandler and Grantham, 1992). Investigations have found that the is
only slightly larger than the (approximately 5°) for slow-moving stimuli
(Grantham|, 1986) but they increase with increasing velocity of the stimulus, in-
creasing frequency of stimulus and decreasing stimulus duration. Perrott and
Tucker (1988) found that the is smaller for lower frequency stimuli (be-

low 1 kHz) and Chandler and Grantham (1992) found that they are also smaller
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Source Elevation Vertical Localisation Error

0° +9°
30° +10°
74° +13°
112° +22°
153° +15°

Table 2.3: Vertical localisation error of familiar speech in the median plane as reported
by Damaske and Wagener (1969)

for larger bandwidth stimuli. Recently Brimijoin and Akeroyd (2014) found that
the is approximately 1-2° smaller when the subject is moving compared

to when the source is moving.

2.2.5.2 Localisation acuity - elevation

Blauert (1997) reports the results of a number of studies into vertical elevation
localisation acuity in the forward direction: Blauert (1970) himself found that
vertical localisation error for unfamiliar speech was 17°; Damaske and Wagener
(1969) reported 9° for continuous familiar speech; Wettschurek (1971)) reported 4°
for white noise. The results that Damaske and Wagener (1969) found for different

angles in the median plane, as reported by Blauert (1997), are shown in table .

Perrott and Saberi (1990) investigated elevation localisation acuity using an array
of speakers that could be rotated through a number of oblique planes. They found
that for planes 10°-60° from the horizontal there was little variation in
from the 0.97° recorded for straight ahead in the horizontal plane. It was not

until the array was very close to the vertical (80° or greater) that there was any

great deviation — 1.8° for 80° and 3.65° for 90° as shown in figure .

2.3 Spatial audio

Initially sound reproduction equipment consisted only of one channel (mono-

phonic) and spatial attributes were significantly restricted. However as early as
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Figure 2.22: |Minimum audible angld (IMAAJ) as a function of loudspeaker array ori-
entation as reported by Perrott and Saberi (1990). Image from Perrott and Saberi
(11990).

1881 (Rumsey, 2001) people were experimenting with using more channels to cre-
ate a more realistic sound scape and two-channel stereo has been the standard
for audio since the 1960s. Some more recent spatial audio systmes are capa-
ble of recreating a @ soundfield that gives the perceptual impression of a real
soundfield experienced under normal listening conditions. Developments in spa-
tial audio research since then have largely been split into two factions: improving
the psychoacoustic accuracy of two channel audio and using an increased number
of channels to improve realism. Whilst this research is focussed on the former, it
may well have implications for the latter, and so advancements in both will be

summarised here.

2.3.1 Stereo loudspeaker reproduction

The earliest documented stereophonic sound transmission is generally accepted
to be Clement Ader’s demonstration at the Paris exhibition in 1881 (Rumsey],

2001). He used multiple telephone pickups mounted across the front of the stage
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Figure 2.23: Stereo loudspeaker listening configuration. 6y is normally 30° and @ is the
angle of the virtual source.

of the Paris Opera to transmit signals to pairs of telephone receivers that listeners
could listen through at the nearby exhibition. However, it was not until the 1930s

that modern stereophonic sound was patented by Blumlein (1933).

A virtual sound source can be placed anywhere between the loudspeakers using
amplitude panning, which consists of changing the relative gains of a signal fed
to the two loudspeakers. The standard arrangement places the loudspeakers and
listener at the vertices of an equilateral triangle, as shown in figure . Since
the sound from each loudspeaker arrives at both ears there is crosstalk between
the signals, i.e. sound from the left loudspeaker reaches the right ear and vice
versa. This manifests as phase differences below about 1 kHz that are consistent
with cues and level differences above 2 kHz that are consistent with
cues (Blauert,, 1997). For a virtual source located at angle 6 from the centre the
relative gains (where g is the gain of the ipsilateral loudspeaker and g, the gain

of the contralateral loudspeaker) are governed by the tangent law:

tand g1 —go
tan90 N g1 +92

(2.3)

Normalisation is then applied to make the perceived loudness of the virtual source
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independent of position:
N

Y g=1 (2.4)

n=1
Some restrictions of standard two-channel stereo are that the virtual sources
remain stable only for a relatively small “sweet-spot” approximately equidistant
from the two loudspeakers. Movement away from this position results in the
nearest loudspeaker “pulling” the virtual source towards it. Another downside is
that virtual sources panned to the centre of the loudspeaker pair suffer from a
certain amount of timbral colouration due to comb-filtering. Furthermore central

sources are perceived using the wrong [HRTFY which may also contribute to a

degradation in their realism.

Some of these problems can be overcome by including an extra centre loudspeaker.
The principle of stereo has a long history: beginning initially with the work of
Steinberg and Snow ([1934) at Bell laboratories in the 1930s, later becoming com-
monplace in cinematic surround sound systems before seeing a brief resurgence
in the early 1990s (Gerzon, 1992a,h). The additional channel in a stereo set-up
has a number of benefits: wider range of listening positions, more stable stereo
image and less timbral effect on centre sound sources due to the real centre
source. However, outside of home cinema set-ups, including a centre loudspeaker
in home loudspeaker set-ups is generally inconvenient and three channel stereo

systems have faced little commercial success.

2.3.2 Stereo headphone reproduction

When stereo signals meant for playback over loudspeakers are played back over
headphones there is no crosstalk between the channels: the left channel only goes
to the left ear and the right channel only to the right ear. This means that
there are none of the m cues present that are normally experienced with stereo
loudspeaker listening, only the cues. In practice this gives a relatively similar
spatial image; however, it results in in-head localisation of virtual sources panned

between the left and right channels and little sense of “space”.
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Figure 2.24: Bauer’s filter design for loudspeaker signal playback over headphones. The
upper panel shows the delay introduced to the crossfeed between channels. The lower
panel shows the relative responses of the near ear (upper lines) and far ear (lower lines).
Dashed lines show design objectives, solid lines the actual filter responses. After Bauer
(I1965).

Bauer ([1961a,b, 1965) suggested introducing crosstalk between the left and right
channels in headphone listening using analogue circuitry to mimic the delay and
level differences experienced under loudspeaker listening. His design objectives
were based on the measurements of Wiener (1947) which can be seen, along
with the circuitry’s actual performance in figure . He also suggested reverse

processing for playing binaural measurements over loudspeakers (section )

2.3.3 Surround sound loudspeaker systems

Introducing additional loudspeakers around the listener to increase the sense of
envelopment has a history stretching back to the 1970s when a number of four-
channel quadrophonic set-ups were proposed. However, these systems suffered
from poor spatial quality and experienced little commercial success due to a lack
of a standardised quadraphonic system and incompatibility between the different
systems. In the late 1970s Dolby used a four channel surround system with three

channels across the front plus a mono surround channel for the films “A Star Is
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Born” and “Star Wars” (Davis, 2003). This eventually developed into the 5.1

surround sound system which was standardised as an I'TU recommendation in

1992 (ITU, 1992).

The 5.1 loudspeaker system is specifically a 3-2-1 system as it consists of three
channels across the front (a standard two-channel left /right pair arranged +30°
plus a centre loudspeaker) two surround channels arranged +100°-120° plus a
dedicated |10w frequency effect (LFE)| channel (figure ) The dot in 5.1 in-
dicates that the channel is reduced bandwidth. The 5.1 system is limited

in that it does not support true 360° spatial imaging and provides accurate spa-
tial images only in the frontal region. To this end the surround channels are

normally used for ambient sounds rather than creating specific virtual sources.

\
’

Figure 2.25: Surround loudspeaker listening configuration as specified in ITU-R BS.775
(ITU, 1992).

43



Various suggestions of additional locations for surround loudspeakers to improve

spatial imaging have been made, e.g., 7.1 or 10.2 systems (Rumsey, 2001)).

The panning in horizontal multi-channel loudspeaker set-ups is generally carried

out by pair-wise amplitude panning. A common formulation for this is known as

|Vector base amplitude panning (VBAP)| (Pulkki, 1997). The distance from the

loudspeakers to the listening position are represented as unit-length vectors Iy
and Iy and the direction of the virtual source is represented by unit vector p, a

weighted sum of the loudspeaker vectors:

P = gili + gols (2.5)

The gains ¢g; and g are calculated as follows:
g = pTLl_Ql (2.6)

Where g = [g1 g2]T and Li5 = [l; I5] and some sort of normalisation is applied

to the gains, such as ||g|| = 1.

can also be extended from pair-wise horizontal panning to panning be-
tween triplets of loudspeakers for three dimensional loudspeaker set-ups (Pulkki,
1997). Thus each virtual source signal is applied to, at most, three loudspeakers.
Appropriate gains are applied to each channel to allow the image to be panned

anywhere within the triangle formed by the loudspeakers. Its formulation is sim-

ilar to |tw0—dimensional ( 2D)| |VBAP| but the virtual source is represented by a @

Cartesian unit vector p = [p; po ps]’ which is a combination of the loudspeaker

location vectors 1y, Iy, and l3:

P = g1l + gals + gsls (2.7)
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The gain vector g = [g1 g2 g3] can then be found:

lll 112 l13
g=p"Liys=[p1 p2 03] |lyy loy o (2.8)
l31 l32 l33

2.3.4 Binaural recordings and rendering

The prime aim of binaural audio is to create an accurate impression of spatial
sounds. The simplest binaural recording systems involve a pair of spaced micro-

phones placed at the location of the ears in a source environment. The recorded

- Source

Dummy head
and microphones/
spaced microphone

pair

Source environment

Recording
device

Playback
device

Listener wearing

headphones L R

Figure 2.26: Set-up for binaural recording and playback. After Rumsey (2001).
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Figure 2.27: The Knowles Electronics manikin for acoustic researcﬂ (IKEMARI) is an
example of a head—and—torso simulatoﬂ (IHATED for binaural recording and analysis.

signals are then played back to a subject over headphones (or loudspeakers —

section ) with each microphone signal only going to the corresponding head-

phone (figure ) More effective binaural recording systems use a (figure
) or place the microphones in the ears of an actual listener.

A common alternative to binaural recording is binaural rendering. In binau-
ral rendering a monophonic source signal x is convolved with the pair
[HRIR.(0,¢), HRIRR(0, )] for the desired direction:

yr =%k HRIR(0, p)

yr =2k HRIRR(0, @) (2.9)

where 6 and ¢ represent the desired direction and > is the convolution operator.
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There are a number of ways to acquire the HRIRY to be used and these are

outlined in section @

Binaural recording and rendering works best when the or ears of each in-
dividual listener are used. Pinnae vary in shape and hence individual also
exhibit variation. The use of non-individualised results in erroneous spec-
tral cues and has been shown to degrade localisation performance significantly,
leading to poor elevation accuracy and increases in front-back reversals, as well as
timbral colouration, image instability and reduced externalisation (Wenzel et al),
1993; Moller et al), 1996). Some work has suggested that listeners can, in some
senses, learn to use that are not their own (Hofman et alf, 1998). Alter-
natively, pattern matching can be used to find the best match for listeners’ ears
to a database of measured (Zotkin et al), 2002). Despite some promising
results using the database-matching approach, individualised produce the

most reliable performance.

An important consideration when making binaural recordings or measuring
are the microphone positions. When using a it is common practice for the
microphones to be placed at the position of the ear drum (Gardner and Martin,
1995). This is of course impossible when making recordings using real subjects
and an alternative is to use probe microphones (microphones with attached probe
tubes), which are placed as close as possible to the ear drum (Wightman and
Kistler, [1989a). Disadvantages include the risk of damage to the ear with in-
correct positioning of the microphones and probe microphones can suffer from
poor frequency responses and low sensitivity. Furthermore ear canal recordings
include not only the directional response of the outer ear but also the largely
directionally independent resonance of the ear canal (Algazi et al), 1999), which
may or may not be of importance. An alternative is the blocked-meatus ap-
proach (Mgllen, 1992; Mgller et al), 1995b), in which diaphragms of miniature
microphones are placed at the ear canal entrance and the canal is sealed with
either foam or putty. This approach has been validated (Algazi et al), 1999) and

has become the favoured method of binaural recordings due to its convenience.
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Another consideration when playing back binaural recordings or renderings over
headphones is how to remove the response of the headphones. Mgller has sated
that the aim of headphone equalisation for playback of blocked-meatus record-

ings and renderings is to produce a flat frequency response at the entrance to

the ear canal (Mgller, 1992). Mpyller et al| (1995a) suggest the use of

lsquivalent coupling (FEC)| headphones for playback of blocked-meatus record-

ings. The recording of the headphone responses is normally carried out at the
time of recording the , using the same microphones. The inverse of the
measured response can then be used as a filter to remove it from the playback
system. However, the changes in position which typically occur during replace-
ment of the headphones can have measurable, perceptually significant, effects
on the measured responses ([Toold, 1984; Paquier and Koehl, 2010). Therefore
headphone equalisation methods that use multiple measurements to provide a
“an upper variance limit” of multiple headphone transfer function measurements

have been proposed (Masiero and Felg, 2011)).

Under normal listening conditions listeners generally do not keep their head still,
instead using head movements to improve localisation and resolve ambiguities.

In standard binaural listening systems there is no compensation for this as the

HRTEFY used are static. However, some systems (both headphone and crosstalk

cancellation — section ) use head tracking to update the in real time

and this can reduce front-back confusions (Begault et al, 2001) as well as improve

elevation perception (Rao and Xie, 2005; Zhang and Xie, 2012).

2.3.5 Virtual loudspeaker systems

Virtual loudspeaker systems theoretically allow signals meant for playback over

a physical loudspeaker system to be played back over stereo headphones using

(Laitinen and Pulkki, 2009). Each of the loudspeaker signals is convolved
with the pair for its given direction. Figure shows this principle for

the standard +30° stereo loudspeaker configuration. The signals for the left (y.)
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Figure 2.28: Virtual loudspeaker reproduction over headphones.

and right (yg) headphones are calculated as follows:

yr =x k% HRIR., +vr* HRIRR

Yyr = 2r*k HRIRgrgr +x %k HRIR R (210)

where HRIR,;, and HRI Ry, are the ipsilateral and HRIR,p and HRIRpy,
are the contralateral and %k is the convolution operator. As well as the
limitations identified in the previous section the additional limitation of virtual
loudspeaker systems is that the are normally measured under anechoic
conditions and therefore the resulting signals lack the reflections present under
normal listening conditions. This can result in a reduction of externalisation with
sound images often perceived as coming from within the listener’s head. How-
ever, this can be corrected using binaural room impulse responses (Mgller, 1992)

or measured room impulse responses.

2.3.6 Crosstalk cancellation

Crosstalk cancellation (Kirkeby et al, 1998b), also known as transaural process-
ing, can be considered the inverse problem of stereo headphone reproduction

(section ) When playing binaural signals meant for headphone playback
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Figure 2.29: Crosstalk cancellation system for playback of binaural signals over loud-
speakers. After Kirkeby et al| (1999).

over a pair of loudspeakers there needs to be compensation for the “crosstalk”
that occurs, i.e., the fact that each channel’s signal reaches both ears. A crosstalk

cancellation scheme is shown in figure .

If the binaural signals are represented as a 2 by 1 vector x(n) and the signals
present in the ear canals of the listener are d(n) then in the z domain (Pulkki

et all, 2011):
d(z) =C(2)H (2)x(z) (2.11)

where:

C(z) = Crs(z) Oum(z) (2.12)

CRL(Z) ORR(Z)

contains the response of the loudspeakers measured in the listener’s ear canals
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and:

H(z)— ) Hiele) (2.13)

HRL<Z) HRR(Z)

contains responses for inverse filtering to minimise the crosstalk.

Under ideal listening conditions @(n) = d(n), which can only occur if H(z) =
C(z)7!. The problem with simply inverting the measured response of the loud-
speakers is that this can often produce filters with high gain, especially outside
the working frequency range of the measurement /playback system. Kirkeby et al,
(19984, 1999) suggested applying frequency-dependent regularisation to the in-

version problem to generate an optimal inverse filter matrix H ,,:
H,, = [HT (> H(z)+ B(z")B(z)I]  HT(z7")z""! (2.14)

where [ is a small positive gain factor and B(z) is a frequency-dependent shape
factor. B(z) should be large for frequencies that should not be boosted and small

for frequencies that require no regularisation.

Crosstalk cancellation systems can provide very good three-dimensional virtual
sources, even behind the listener (Schroeden, 1975; Gardner, 1997). However,
the listening area is impractically restrictive and even a movement of 1-2 cm can
destroy the binaural effect (Pulkki and Karjalainen, 2015). Crosstalk systems ide-
ally require non-reverberant surroundings and work best when individual
are used for the loudspeaker-to-ear canal responses. They therefore suffer from
the same restrictions as other —dependent systems mentioned in previous

sections.

2.3.7 BD) loudspeaker systems

An alternative approach, rather than @ , to @ loudspeaker reproduction

is Ambisonics (Gerzon, 1973; Gerzon and Barton|, 1992). First order Ambisonics is

based on four signals: three orthogonal figure-of-eight components X (front-back),
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Figure 2.30: Ambisonics B-format components: X (red dashed), Y (green dash-dot), Z
(blue dot) and W (solid black).

Y (left-right), Z (up-down) and an omni-directional component W. These are

shown in figure and are based on zeroth and first degree spherical harmonics
(section , particularly figure @)

A virtual source signal S at azimuth 6 and elevation ¢ can then be represented

by summing the following signal components (éumse;l, &OO I ):

X = Scosfcosp
Y = Ssinfcosp
Z = Ssinp

S

W = 7 (2.15)

The spatial accuracy of virtual sources created using first order Ambisonics is

fairly limited (up to 45° blur (tBertet et alJ, bOO?I)), as is the listening volume for

which the sound stage is stable. These limitations can be improved by increasing
the degree of the spherical harmonics used as components: this is known as
higher order Ambisonics (h\/[oreau et al.|, bOOd; h)aniel et al.|, b003|; h)aniel andl
|Moreau|, l2004|). IBertet et al.| (}2007|) found that on average fourth order Ambisonics
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halved the absolute localisation error of virtual sources over first order systems. A
limitation of higher order Ambisonics is that it is increasingly difficult to construct
microphones capable of recording the required signals. However, the signals can
be synthesised and microphones that derive the required signals from a series
of omni-directional capsules mounted on a sphere have been developed (Bertet

et ali, 2007; Jin et al|, 2014).

Recently there have been a number of developments in three dimensional loud-
speaker systems. NHK Science and Technical Research LauborautoriesB have de-
veloped a 22.2 system which is the ITU standard audio format for ultra-high
definition television and consists of three layers of loudspeakers as well as two

subwoofers (ITU, 2009).

Dolby Laboratoriesh developed a hybrid channel/object-based three dimensional
loudspeaker system called Dolby Atmos (Dolby Laboratories, 2014). In object-
based audio a channel can carry the audio for an “object” along with metadata
about that object such as the desired location of the object in @ space, or the
audio content of the object, e.g. speech, ambience, music etc. These objects are
then rendered at playback time using their associated metadata and knowledge
of the target speaker set-up. The default configuration for the 128 channels used
in Atmos is 10 channels carrying a 9.1 “bed” and a further 118 channels for audio
objects. Dolby Atmos systems have been installed in a number of cinemas and
the first film released in the Atmos format was Pixar’s Brave in 2012. Since
then it has been developed for use in the home with traditional 5.1 and 7.1
loudspeaker systems plus additional height loudspeakers and video games with
Atmos audio have also been released. The additional height loudspeakers can
either be dedicated, ceiling mounted, loudspeakers or upward-firing loudspeakers

integrated with the existing loudspeakers (Dolby Laboratories, 2016).

Auro-3D (Auro Technologies, 2015) is a loudspeaker system developed by Auro

3https://www.nhk.or.jp/strl/index-e.html
“https://www.dolby.com/us/en/index.html
Shttp://blog.dolby.com/2015/05/dolby-atmos-coming-to-star-wars-battlefront/
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Technologiesa. Initially a channel based 9.1 system (a 5.1 system with four added
height loudspeakers ([Theile and Wittek, 2011))), it evolved into an 11.1 system
consisting of a set of five head level loudspeakers along with an additional five
height level loudspeakers and a loudspeaker positioned centrally in the ceiling
(the so called “voice-of-god” loudspeaker). The first film to be released in Auro-
3D format was Lucasfilm’s Red Tails in 2012. Since then Auro-3D has been
developed into AuroMax, an object-based three-dimensional loudspeaker system

with a minimum 20.1 loudspeaker set-up.

2.3.8 [Wave field synthesis (WFS)

|Wave field synthesis (WFS)| (Berkhout et al), 1993) uses a large number of loud-

speakers, usually arranged in a horizontal array, to produce artificial wavefronts.
It is based on Huygens’ principal that any point on a wavefront can be considered
a secondary source and therefore any wavefront can be represented as a super-
position of elementary wave sources. Each loudspeaker in the array is treated as
one of these wave sources and a virtual source is placed behind the loudspeaker,
by synthesising convex or planar wavefronts or in front of the loudspeaker array

by producing concave wavefronts.

The strength of is that, because the actual wavefront of the virtual source
is being generated, the source’s location remains largely independent of listener
position within the soundfield generated by the loudspeaker array. Its downsides
are that it is sensitive to the acoustics of the room in which it is installed in
and it is relatively expensive due to the high number of loudspeakers required.
Furthermore the systems usually suffer from spatial aliasing due to the fact that to
reproduce the wave field across the whole area within the array the loudspeakers

need to be at most half a wavelength from each other (Pulkki and Karjalainen,

2015).

Shttp://www.auro-3d.com
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2.3.9 Measures of spatial audio quality

There are a number of attributes to be considered when assessing spatial audio

systems and recently there has been work to standardise this. Lindau et al) (2014)

developed the Ispatial audio quality inventory ( SAQI)|. Their aim was to generate a

“complete and relevant” lexicon for spatial audio assessment. The includes

48 verbal descriptors along with corresponding scales divided into nine groups:
o Difference — measure of similarity between sources

o Timbre — e.g. high/low/mid frequency emphasis/attenuation, comb filter

colouration
o Tonalness — e.g. perception of pitch within sound, Doppler effect

o Geometry — e.g. perceived horizontal /vertical location, front-back confu-

sions
e Room — e.g. level of reverberation, sense of envelopment

o Time behaviour — e.g. pre/post-echoes, change in sequence of auditory

events
e Dynamics — e.g. perceived loudness, dynamic compression
o Artefacts — e.g. pitched/impulsive/noise artefacts, distortion
o General — e.g. loss of clarity, naturalness

Zacharov et al| (2016a,H) have developed another, slightly more concise collection
of spatial audio quality attributes. They were generated through a mixture of
data mining, data analysis and discussion with an expert panel. Some of the
definitions are based on the m but with definitions and scales modified to
“improve clarity and create an absolute scale”. Furthermore some definitions
were changed, particularly envelopment which was altered to include the effect
of direct sound sources as well as reverberation. In addition internality is used

instead of externalisation since internal localisation is less natural. Their lexicon
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consists of twelve attributes, including four from subdivision of other attributes:

Group Quality Scale
Spatial extent Depth shallow—deep
Width narrow—wide
not enveloping—completely
Envelopment Horizontal
enveloping
not enveloping—completely
Vertical
enveloping
Localisation Distance near—far
distinctly internal—
Internality indistinct—distinctly
external
Localisability imprecise—precise
Spatial/
Clarity unclear—clear
Timbral
Environment Reverberance dry—-highly reverberant
Level of
low—high
reverberance
Duration of
short-long

reverberance

Table 2.4: Definition of spatial attributes in the lexicon of Zacharov et al) (2016a)

In addition to the list of attributes they also developed an updated sound wheel

based on earlier work (Pedersen and Zacharov, 2015). The sound wheel consists of

a large number of spatial and timbral sound descriptors arranged into categories

and groups. For example depth, width and envelopment are grouped under spatial
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extent which in turn is part of the spatial category along with environment and

spatial localisation.

2.4 HRTEF acquisition and estimation

As mentioned in the previous section the use of non-individualised can
produce undesirable effects, yet the acoustic measurement of individual is
a lengthy process that requires specialist equipment. Therefore the possibility of
estimating or simulating individualised more efficiently through indirect
means is highly attractive. This section firstly reviews the most common ap-
proaches to measurement, including the difficulties associated with
measurement. Then past work on estimating and simulating is presented

as an attractive alternative to measurement.

2.4.1 RTEF measurement

The acoustic measurement of HRTFY requires specialist equipment and can be
a time-consuming process when measuring a large number of directions. The
impulse responses from a sound source to an individual’s ears are measured un-

der anechoic conditions for a number of directions. The subject is either kept

static (tKAISTL IQOld; |Tohoku Universityl, bOlGI) or is seated on a rotatable chair

(t[RCAML fZOO?l; IHFd, lZOld; IRiedereIL }ZOlﬂ). As discussed in section the mi-

crophone is generally placed at the entrance to the ear canal and either a single

movable speaker (t[RCAMj, }ZOOERI; EADI]ﬂ, }201d) or a static (tHFd, }ZOld; lRiedereIL
) or movable (IKAISTL fZ016|; h‘ohoku Universityl, b016|; |Algazi et al.|, b001d|)

hoop of speakers is used to playback some sort of measurement signal.

There are a number of choices for the stimulus signal when measuring HRTFS.

|Maximum length sequences (MLS)l are pseudo-random signals that provide much

better lsignal—to—noise ratio ( SNR)l than using pure impulses (tRife and Vanderkooyl,

). Golay codes (bhou et al.|, |199j) produce the same as M but the
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length of the code is a power of two which makes |fast Fourier transform (FFT)|

analysis quicker. More than one measurement can also be used to further improve
. However, problems can arise if the measurement system is time variant, e.g.
if the subject moves slightly or convection currents exist, because then multiple
systems are effectively being measured simultaneously. Another disadvantage of
measurements is that they suffer distortion if there are minor nonlinearities
in the measured system, e.g. harmonic distortion in the loudspeakers. On the
other hand, logarithmic swept sine measurements (, ), are resilient to
nonlinearities. The results of harmonic distortion are separated in time and can
therefore be gated out. Logarithmic swept sine signals have the further advan-

tage that multiple measurements can be carried out using slightly offset sweeps

(|Majdak et al.|, hOO?I). Use of the multiple exponential sweep method has resulted

in reported measurement times of as little as five minutes (, )

2.4.2 HRTEF databases

There a number of / databases available when individualised

are either not needed or their measurement is not viable within time and financial

constraints.

The database (IAlgazi et al.|, lZOOldI) is probably the most widely known.
of 45 subjects were measured for 1250 directions using Golay codes and a

number of anthropometric measurements were also made for each subject. The
inclusion of anthropometric measurements has led to its use in a number of studies
correlating features and the physical dimensions of the pinna and other

morphological measurements (section @)

The l[nstitut de Recherche et Coordination Acoustique/Musique (IRCAM)| Listen

database (iRCAM, ﬁOOi) includes measurements for 51 subjects for 187

different directions using swept sine technique.

The Austrian Academy of Sciences |Acoustic Research Institute (ARI)| (|Acousticsi
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tResearch Institutel, b011|) IHRTF1 database is the largest database, consisting of

1550 directions for more than 110 subjects. It differs from the other databases in
that all the have had the removed, yielding . The is the
average magnitude spectrum of the across all directions for a particular
subject, combined with its minimum phase spectrum; hence, the contain
only the directionally dependent information. from the database are

used in the tBaumgartner et alJ (|2013|) sagittal plane localisation model — see
section @

The universities of Sydney and York worked together on the creation of the

ISydney—York morphological and recording of ears databasei (ISYMARE databasel)

database (lJin et al.|, |‘2013|). The database consists of acoustic m measure-

ments for 61 subjects, high resolution meshes of the head and torso obtained

from Imagnetic resonance imaging (MRI)' scans and calculated from the

meshes using the fast |fast multipole boundary element method (FM—BEM)l.

2.4.3 Structural models

Structural models treat each anatomical part of the auditory system, and its

corresponding auditory cues, as independent sections that can be combined into

an overall model. tBrown and Dudal (|199§) proposed a comprehensive structural

model for estimating combining head shadow, , shoulder reflections

and pinnae resonances. They found it performed reasonably well against indi-

vidual , although testing was limited. |Algazi et alj (|2001c|) investigated

structural decomposition of by taking measurements of isolated pinnae
and a pinna-less head and torso model and comparing recombined to
measurements of a torso and head with pinnae. Their results indicate
that the effects of the head, torso and pinnae could be successfully decomposed
and recombined. Despite these promising results, structural models fail to ac-
count for acoustic interactions between parts of the model and this is likely to be

extremely important when modelling the complex structures of the pinnae.

29



2.4.4 Mathematical models

There are several mathematical models that represent parts of the auditory pe-
riphery as simpler geometric shapes. The most common mathematical model in
simulation is the spherical-head model of (Woodworth and Schlos-
berg, [1962):

[T = % (6 + sin 0) (2.16)

where a is the radius of the spherical-head, ¢ is the speed of sound and 6 is
the angle of incidence of the sound (figure ) Algazi et al) (2001b) used the
anthropometric measurements of the database to propose an equation for
calculating the optimum radius, a, to use in equation in terms of weighted

head height, depth and width measurements:
a = w1X1 + w2X2 + ’LU3X3 +b (217)

where w; = 0.51, wy = 0.019, w3 = 0.18, b = 3.2cm and X, X, and X3 are the
head half width, head half height and head half length in cm, respectively.

A number of studies have explored or built on the spherical-head model. |Aven-

dano et al| (1999b) used the model to create a transformation for calculating

"http://interface.cipic.ucdavis.edu/images/research/pathgeo.gif

incident

lanar wave
S

Figure 2.31: Spherical head model for hnl;eraural time differencd (t[TD|) developed by
Woodworth and Schlosberg (1962). Afterd.
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Figure 2.32: Ellipsoidal head model investigated by Duda et al| (1999). Image from
Duda et al{ (1999).

the contralateral from the ipsilateral . Duda et al| (1999) improved

the spherical-head model by representing the head as an ellipsoid, rather than
a sphere, with the ears positioned slightly down and towards the rear of the el-
lipsoid (figure ) This allowed the elevation dependence of the to be
modelled, which is not possible with the spherical head model and resulted in a
small improvement in error — 15 us vs. 22 ps. However, there is no direct
analytical solution to calculating the path difference and so Duda et al) (1999)
had to calculate the via constrained minimisation of the problem which rep-
resents a significant increase in complexity and computation compared to the
spherical model. Interestingly, by the time Algazi et al| (2002) (which included
the authors of the previous study) combined simple models of the head and torso
they had returned to the spherical-head model. This suggests that the increased
accuracy of the modelled was outweighed by the increase in complexity. They
combined the spherical-head model with both a spherical and ellipsoidal torso
to attempt to model both interaural and torso cues — e.g. shoulder reflections.
They found that the inclusion of either torso model significantly improved the
accuracy of the modelled and that the ellipsoidal torso showed the closest
correspondence with the measured of a pinna-less tKnowles Electronicsl
|manikin for acoustic research (KEMAR)|.

Teranishi and Shaw ([1968) created simple geometric models of the outer ear

(figure ) They initially used a shallow cylinder to model the concha and
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Figure 2.33: Geometric models investigated by ITeranishi and Shawl (|1968|) a): simple
cylindrical concha. b): tilted cylindrical concha. ¢) and d): cylindrical concha with
segmented circular pinna and rectangular pinna respectively. Dimensions shown are in
millimetres. The lower half of each diagram shows a cross section of the model, whilst
the upper half shows the model face on. The dotted lines connect the same point in
each view. Images from tTeranishi and Shaw| (|1968|)

found that its first resonant mode behaved in a similar manner to measured
concha responses but lacked significant variation with direction. They added
directionality and extended the model’s agreement with acoustic measurements
up to approximately 7 kHz by tilting the cylinder and adding simple models of the
pinna: one rectangular and one segmented circular. Interestingly the rectangular
pinna model performed better than the segmented circular model, despite the
segmented circular model sharing more in appearance with a real pinna. The

authors suggested that the reason for this may have been that the segmented
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circular pinna was only asymmetric in one dimension whilst the rectangular model

exhibited asymmetry in both dimensions.

tLopez—Poveda and MeddisJ (|199d) created a physical model of the concha using a

spiral-shaped diffraction and reflection model which was compared to the “single-

delay-and-add” approximation by tHebrank and Wrighd (|1974b They found that

their model predicted the centre frequencies of the pinnae notches more accurately
than the single-delay-and-add approximation. However, there was no perceptual
testing and it is unlikely that these simplified empirical approaches can accurately

describe the complex acoustic function of the whole pinna.

2.4.5 Statistical models

A number of statistical analyses have been applied to IHRT FsI tRaykar et alJ

() used |linear prediction (LP)l analysis to decompose the database

HRTFY into specific features which they then mapped to specific anthropometric

measurements (tRaykar et al.|, |‘2005|). They suggested that the peaks and notches
of the could be reliably predicted from measurements of the pinnae.

A number of studies have used Iprincipal components analysis (PCA)l to analyse

, e.g. (IMartenA, |1987|; IKistler and WightmanL |199j; h\/[iddlebrooks and|

|G.reen|, |199ﬂ; tHwang and Parkl, |2007|; lBreebaard, |2013|). IPCAI applies statistical
analysis to a weighted sum of |HRTF&{ or |HRIREJ so that they can be represented

by a set of frequency or time domain basis functions.

Given an N x M matrix, X, consisting of M observations (directions and/or
subjects) of N variables (frequency or time samples), an N x 1 mean vector, u,

is first calculated:

M
1
ul[n] = i mz_:lX[n, m] (2.18)
This is then subtracted from X:
X=X-uh (2.19)
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where h is an M x 1 vector of ones. The covariance matrix, C, of X is then

calculated:
1

C:
M -1

X.X* (2.20)

*

where * represents the conjugate transpose of the matrix. The basis vectors,
pi (i = 1,2,...n) are then the first n eigenvectors of the covariance matrix, C,
corresponding to the n largest eigenvalues. The weights of the basis functions are

finally calculated as follows:

W =P*X (2.21)

where P = [p; pcy, ... pc,]. If n = N then full reconstruction of the original
data is possible. However, in investigations the aim is usually to evaluate
the number of basis functions required to account for a prescribed proportion of
the variation in the data. Kistler and Wightman (1992) found that the first five
basis functions accounted for 90% of the variation in their .

Middlebrooks and Green ([1992) compared the basis functions for two sets of
measured under different experimental set-ups and found that the basis
functions were very similar. However, they acknowledged that this is unsurprising
as removes the mean from the data and the variation in experimental set

up is likely to be eliminated in this step.

Hwang and Park (2007) investigated customisation through subjective
weighting of basis functions. They found that twelve basis functions were
required to account for 95% of the variation between individuals and elevations in
the median plane of the database. Their subjective testing allowed
subjects to tune the weights of three most dominant of the twelve basis func-
tions, whilst the weights of the other nine were set to their average value. They
found that this decreased front-back reversals and improved elevation perception
compared to using straight from the database, however their testing was

limited to two subjects.

One of the weaknesses of traditional when applied to is that the
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representation is not continuous, i.e. HRTFY for directions not originally

measured cannot be generated as no weights exist. To combat this,
() proposed Ispatial principal components analysis (SPCA)l where is

carried out in the spatial domain rather than the frequency or time domain and

a set of spatial basis functions are derived. allows with a high

directional resolution to be derived from a limited set of measured direction.

They reported that HRTFY from 493 source directions can be reconstructed from

73 measured directions.

tEvans et al.| (|1998|) used Isurface spherical harmonicss ( SSHs)l as the basis functions
for representing measured , which also allowed for directional interpola-

tion. Initially applied to time-domain IHRIR&{ using BSH&{ up to degree 17,
Imean square (RMS)' error between measured and recreated varied greatly

with direction and at its maximum was 20%. The authors highlighted that even
the 17" degree had relatively high amplitude, that this might be inherent
in the time-domain nature of the and hence higher degree might be
needed for representing . Therefore, they applied the same approach to the
magnitude and phase spectra of the . This was found to be more efficient,
with 90% of variance within the measured contained, on average across
all frequency bins, within the first seven degrees, and within the first four

degrees within the frequency range 5-7.5 kHz (tEvans et al.|, |1997|). The worst

case error with 17 degrees of was 1.2%, compared to 20% when applying the
approach to . Furthermore, considering the rather than the
allowed the study of features based on frequency bin and direction. For
instance, the authors found that the amplitude of the fundamental , which
is omnidirectional (section ), exhibited a peak around 4 kHz, indicating that
frequencies in this range enter the ear at the highest amplitude, regardless of

direction. It is possible that this is a manifestation of the ear canal resonance,

which typically appears around 4 kHz (|Wiener and ROSSJ, |1946|), and is largely
direction independent (lAlgazi et al.|, |1999|). An additional advantage of

’s () approach is that the are mathematically defined orthogonal
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basis functions, not calculated directly from the measured as with other

approaches, which makes comparisons across different data sets valid.

2.4.6 Acoustic simulations

Computational acoustic simulations, e.g. using the boundary element method

(IBEMI) (tKatzL }2001a|), the hnite element method (IFEMI) (tKahana et al.|, |199d) and
the |ﬁnite difference time domainl (IFDT]j) method (IXiao and Liu|, b003|) have been

used to generate HRTFS. All these approaches require accurate @ morphological

models of the head and torso and lengthy simulations so currently do offer a huge

advantage in terms of time and equipment over acoustically measuring HRTFs.

However, they are well suited to investigating pinna morphology (|Tew et al.|, I‘ZOlﬂ;

IMokhtari et al.|, bOld) due to the ease with which the pinnae morphology can be
altered and new HRTFY generated. Acoustic simulations have also been used to

investigate near-field |HRTFEI (tRui et al.|, bOlS‘l), which are difficult to measure

acoustically.

The m method consists of descretising the simulation space into a grid of
voxels (figure ), each of which has an associated density, speed of sound and
absorption (|Mokhtari et alL |2007|). The Ipartial differential equations (PDEs)l that

govern sound wave propagation are then solved, see IXiao and Liul (|200j) for a

deeper explanation. simulations have been shown to generate accurate
for both humans (|Mokhtari et al.|, l‘ZOO?I) and [KEMAR| (IMokhtari et al.|,

2009).

The |ﬁnite element method ( FEM)l requires the entire acoustic domain to be dis-

cretised into a polygonal mesh made up of smaller elements (tPetyt et al.|, |197d)

and the are solved for each element; thus simplifying the problem. The
solutions for each element are then combined to create an approximate solution
for the whole system. The has been used to generate IHRTFA (|Mura0kal
|et al.|, l2007|; IMa et alJ, |2015|) and investigate torso cues (tKirkeby et alJ, |2007|)

as well as the response of the ear canal and ear drum (|Volandri et al.|, |2014b.
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(a) Voxellated representation required for hnite difference time domain (FDTD)l simu-
lation. Image from lMokhtari et all (l‘ZOld)

(b) Vertex/planar representation required for boundary element method (BEM* simu-
lation. Image from t[(ahana and Nelsod (}2007]).

Figure 2.34: Comparison of discretised representations required for acoustic simula-

tions.
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However, like the method, the disadvantage of the is that the whole

acoustic system requires modelling and discretising.

In contrast to the method and , the only requires the surface

of the object under simulation to be discretised into a mesh consisting of vertices
and the planes that connect them (figure ) The of the wave equation
are reformulated as boundary integral equations that are then solved to generate
the acoustic field around the object. Simulations are run to calculate the pressure
on the mesh surface for individual frequencies and then the results are combined.
The strength of lies in the need to only solve the wave equation on the
boundary of the acoustic domain: reducing a @ problem to @ This makes

ideally suited to acoustic scattering problems such as generating [HRTFS

where it is assumed that the surface of the pinnae is important in determining

HRTFY, not the internal structure.

|Weinrich| (|1984|) was the first to attempt simulations of the human ear but

the computational power restrictions of the time meant he could only simulate up
to 1.7 kHz using a very simplified model of the concha. Continual improvements

in computing have led to more and more detailed meshes being simulated across

increasingly wide frequency ranges (tKatzL hOOlaL; |Kahana and Nelson|, |2006|,
2007).

More recently the |fast multipole method (F MM)l (|Gumerov and DuraiswamiL

bood; tKreuzer et al.|, boogl; |Gumerov et al.|7 lZOld) has been paired with the

to create the |fast multipole boundary element method (IFM—BEMI) The |@ M—BEW

allows simulations to be carried out across the whole audible frequency range at a

time cost of as little as 150-300 s per frequency point (tHuttunen et al.|, l2013|). The

MM expands the Green’s functions used in the using multipole expansion
to allow clustering of sources which can result in a reduction of complexity from

O(N?) to O(N) or O(N log N) yielding significant time reductions.

Further reductions in the time required for acoustic simulations have resulted

from the use of “cloud-computing” (tHuttunen et al.|, b013|; IKéirkkéiinen et al,,
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2013; Huttunen et al), 2014). This relies on off-loading the heavy computational

requirements of acoustic simulations to Iprocessing as a service (PaaS)| and Isoft-l

|ware as a service (SaaS)| servers such as Amazon’s EC2 cloud (Amazon Webh

Services, 2017). These servers offer high specifications (up to 244 GiB RAM, 36
cores and 48 TB Storagea) and allow multiple simulations to be run simultane-

ously, significantly reducing computation time.

Ziegelwanger et al) (2014, 2016) have investigated the possible reductions in

processing resulting from non-uniform discretisation of the head mesh. They

compared the lFM—BEMj IHRTFSJ generated by a reference high resolution mesh,

lower resolution uniformly discretised meshes, meshes with elements concentrated
around the source position using power functions and meshes with elements con-
centrated around the source position using raised-cosine functions (figure )
They found that the raised-cosine graded mesh yielded the best numerical ac-
curacy even compared to the high resolution reference mesh and that it yielded
equal perceptual performance compared to the high resolution mesh with 13,000

elements compared to 100,000: a reduction of almost 90% computation.

One continuing limitation of all acoustic simulation techniques is the requirement
for accurate head and torso models. The most reliable methods for generating
the required models to date have been laser scanning (Kahana et al), 1999; Katz,
2001a; Kahana and Nelson, 2006, 2007) or scanning (Jin et al}, 2013). How-
ever, not only are they time consuming and require specialist equipment, m
scanning especially, requires much post-processing to turn the scans into @ mod-
els. Recently there has been research into more practical acquisition methods for
acoustic models. Huttunen et al) (2014) compared three approaches for generat-

ing meshes:
(a) 52 simultaneous photographs taken from different directions
(b) a commercial @ facial scanner

(c) video recorded with a mobile phone combined with structure-from-motion

8Correct as of 25/11/2016 according to: https://aws.amazon.com/ec2/
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POW1 COS2

Figure 2.35: Different meshes compared by IZiegelwanger et all (IZOld). REF — high
resolution reference mesh (111,362 elements). UNI — uniform mesh (17,023 elements).
POW1 — linearly graded mesh (12,041 elements). COS2 — raised-cosine graded mesh
(13,633 elements). Images from tZiegelwanger et all (I‘M)




software

They did not carry out any thorough verification of their results but the mesh

generated from the photos appears to be of high quality. Bonacina et al| (2016)

investigated using low-cost nfrared (IR) stereo-vision equipment to estimate @

models. They found it resulted in a average error of 2 dB in the HRTFS generated
using FM-BEM| compared to a reference high accuracy laser-scanned mesh.

2.4.7 HRTEF smoothing

If are to be estimated it is important that the estimation is as efficient as
possible. Since the frequency selectivity of the human ear varies with frequency
due to the variation in bandwidth of the auditory filters, not all the spectral
detail in an may be perceptually salient (Carlile et al), 2005). This has
important ramifications in terms of the efficiency of estimation or when
studying the morphological origin of features (chapters @—B) A number
of studies have investigated spectral smoothing to try and discern what level of
spectral detail is required by the ear and all agree that can be smoothed

to some extent.

Kulkarni and Colburn (1998) took the Fourier transform of the log-magnitude
spectrum and systematically discarded higher frequency coefficients to steadily
increase smoothing. This approach is based on cepstral techniques (Bogert et al),
1963; Childers et all, 1977; Oppenheim and Schafer, 2004), specifically liftering
(Juang et al), 1987). They compared four real, free-field sources in the horizon-
tal plane (0°, 45°, 135° and 180°) to virtual sources presented by tube-phones.
The magnitude spectra of the used to generate the virtual sources were
constructed using 512 (full resolution), 256, 128, 64, 32, 16 and 8 coefficients and
the phase spectrum calculated as the minimum phase spectrum of the resulting
magnitude spectrum. A two interval, two-alternative, forced-choice discrimina-
tion task was used to find the percentage of the time that the listeners could

successfully discriminate between the real and virtual sources for different levels
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of smoothing. They found that when retaining 32 coefficients or more all the
subjects performed within the bounds of chance for all directions tested. For 16
coefficients they found that all subjects performed within chance for the two rear
directions (135° and 180°) but for 45° two of the subjects performed at above

chance and for 0° three of the subjects performed at better than chance.

Breebaart and Kohlrausch (2001) presented a smoothing approach based on the
gammatone filter bank (Patterson et al), 1987). The gammatone filter order was
decreased from 3 to 0.5 and subjects were asked to rate the difference between
stimuli filtered with unaltered and smoothed . Non-individualised
were used and the difference scale consisted of three possible responses: no
audible difference, a small audible difference and a large audible difference.
phase smoothing was also tested, both without magnitude smoothing and in
combination with magnitude smoothing. They found that there was no difference
for order 1 and above for just magnitude smoothing or just phase smoothing,
and no difference for order 2 and above when applying smoothing to both the

magnitude and phase spectrum.

Senova et al) (2002) used truncation in order to smooth tHRTFs{. tHRIRs{

were truncated from 20.48 ms (1024 filter taps at the sampling rate of 50 kHz
used in the study) to 0.32 ms (16 filter taps) and localization error between
real and virtual sources was measured. were measured for a total of
354 directions approximating 10° resolution over the sphere and directions were
chosen psuedorandomly during testing. Results varied quite significantly between
the three subjects tested. One subject only showed a significant decrease in
localisation performance when the were truncated to 0.32 ms, whilst the
other two subjects showed a significant decrease in localisation performance for
of length 2.56 ms and 5.12 ms. They suggested that the low spectral
detail required by the first subject was due to their poor baseline localisation

performance.
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tPec et al.| (bOlSI) investigated simplification using the Istationary Waveled

kransform (SWT)l (tFowleIL I‘ZOO5|) and |PCA| The were warped onto the

Bark scale using bilinear conformal mapping (bmith and Abel|, |1999|) and smooth-

ing was applied through three levels of decomposition or retention of the

first six principal components. The smoothed and warped [HRTFY were then im-

plemented as warped hnite impulse response (FIR)l or warped hnﬁnite impulsel

Iresponse (HR)l filters (tKarjalainen et al.|, |1997|) and compared to reference

HRIRS. Subjective comparisons of both timbre and location of virtual sources
were made and it was found that smoothing slightly outperformed
smoothing for noise sources, but performed similarly for speech and synthesised

organ. For both smoothing approaches it was found that warped and smoothed

filters of 24 coefficients outperformed the reference unsmoothed .

tRasumow et al.| (|2014l) combined complex fractional-octave smoothing

(tHatziantoniou and Mourjopoulosi, I‘Z()Od) with phase simplification (replacing the

phase response above 5 kHz with linear phase). They used a three-interval three-
alternative forced choice paradigm in combination with a one-up, one-down stair-
case method to find the threshold for smoothing for four directions in the hori-
zontal plane: 0°) 90°, 225° and 315°. They found that for the majority of their
subjects the threshold was between one octave and two thirds of an octave (two

to four ) but the lowest threshold was one fifth of an octave (approximately
one [ERE).

Recently, tHassager et al.| (|201417 |2016|) used a gammatone filter bank with vari-

able bandwidth, rather than order, to investigate the effect of loinaural roon{

|impulse response (BRIR)l smoothing on externalisation. The direct and reverber-

ant portions of the were smoothed independently using bandwidth factors
between 0.316 and 64 and subjects were asked to rate externalisation of
virtual sources on a scale of 1 (for sounds perceived inside the head) to 5 (for
sounds perceived as coming from the physical loudspeaker) for two directions

in the horizontal plane (0° and 50°). They found little effect on externalisation

for smoothing the reverberant portion of the , whilst smoothing the di-
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rect portion with bandwidths broader than one had a significant effect on

externalisation.

Xie and Zhang (2010) investigated whether the ipsilateral and contralateral
could be smoothed to lesser/greater degrees. They smoothed the above
5 kHz with a moving frequency window of varying widths. For directions in
the horizontal and lateral planes they smoothed either both the or just
the ipsilateral or contralateral . For both conditions the ipsilateral
could be smoothed with a bandwidth of 2 compared to the 3.5 for
the contralateral . In the median plane they only investigated smoothing
both the and found that they could be smoothed with a bandwidth of
2 which agreed with their results for the horizontal and lateral planes.

2.5 The relationship between auditory cues and

morphology

This section presents a review of prior work on the morphological origin of spec-
tral cues. The relationship between features and morphology is of
importance not only for deepening understanding of human sound localisation,
but to facilitate the synthesis of perceptually valid individualised from a
reduced set of morphological measurements: one of the long term goals of this
work. This section first presents work based on acoustic measurements of the
resonant behaviour of the cavities of the human pinnae before reviewing work on
relating spectral notches in the spectrum to reflecting surfaces within the

pinnae. Finally prior investigations utilising acoustic simulation techniques are

presented, including |morphoacoustic perturbation analysié (|MPA|), the improve-

ment of which is one of the key contributions of this work.
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2.5.1 Acoustic measurements

Pioneering acoustic measurements were carried out by Edgar Shaw and his col-

leagues over a number of years (Ehaw and Teranishil, |196a; 'Teranishi and Shawl,

|196é; bhawl, |1974b|,H, |197ﬂ, |1979L |1997|) in order to investigate the morphologi-

cal features responsible for a number of spectral details identified in measured

IHRTFSI. Bhaw and Teranishil (|1968|) made measurements of a rubber replica ear,

mounted in a metal, gelatin-filled container, fixed to a rigid mounting plane (fig-
ure ) A dynamic driver was fitted to a 30 cm long, 1 cm diameter tube that
could provide a constant source intensity, £1 dB, across the replica ear from

1-15 kHz and measurements were made in both the horizontal and frontal planes

TRANSDUCER —. )

SOURCE ORIF{CE\

0 PROBE MICROPHONE
EXTERNAL EAR REPLIC TN

MOUNTING P\LATE

OPENING FOR

ARTIFICIAL EAR |
DRUM - CONTAINER

=

Figure 2.36: Cross-section of experimental setup used by bhaw and Teranishi| (|196ﬂ).
Measurements were made in the replica external ear using a probe microphone with

an acoustic source at distance r and angle of incidence €, measured with respect to
the mounting plane and the centre of the ear-canal entrance. Image from

rI‘eranishﬂ (|1968|).
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using a probe microphone under both open-meatus and blocked-meatus condi-
tions (section ) The measurement of both conditions facilitated the division
of spectral features into those introduced by the pinna and those introduced by

the ear canal.

Comparison of the measured responses under open- and blocked-meatus condi-
tions, with the source aligned with the interaural axis, indicated that the open-
meatus measurements showed five resonant peaks, M1-M5, whilst the blocked-
meatus measurements only three, C'1-C'3. M1 and M4 were only observed in
the open-meatus measurements, M3 and C2 were observed at the same fre-
quency in both measurements, whilst M2 corresponded with C1 and likewise
M5 with C3, although shifted slightly higher in frequency under open-meatus
conditions. It was suggested that M1, which appeared around 3 kHz, was the
quarter-wavelength resonance of the ear canal, which agrees with other studies
(Wiener and Ross, 1946; Algazi et al|, 1999), given that Shaw and Teranishi
(1968) acknowledge that the replica ear canal had a larger cross-sectional area
than typically seen in real ears. M2/C1 was attributed to a quarter-wavelength
depth resonance in the concha whilst M3/C2 was suggested to be the result of
transverse mode resonance within the concha. M4 and M5/C3 were theorised to

arise from a single resonance in the concha around 12 kHz.

The authors also carried out measurements of the real ears of six subjects, again
under both open- and blocked-meatus conditions. In the real measurements they
identified seven features: F}1—F3, f1—f3 and f, as shown in figure . Shaw and
Teranishi (1968) suggested correspondence between the peaks Fy, Fy and F3 and
M1, C'1 and M3 respectively. The minima f; and f3 were found to be consistent
with quarter- and three-quarter-wavelength standing waves in the canal, whilst
fo was consistent with a half-wavelength standing wave. The authors highlighted
the notch f, appearing around 8 kHz due to the fact it appeared in both the open-
and blocked-meatus measurements. They found that it was largely independent
of azimuthal angle but highly dependent on elevation and hence it is probable that

it is the “pinna spectral notch” identified in other studies as a key cue for elevation
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Figure 2.37: Real-ear responses measured by Shaw ([1975) under open-meatus (I) and
blocked meatus (II) conditions. Fj, Fy and F3 are the response maxima, fi, f3, and f,
the minima, and fs a tangential intersection. The curves represent the average values
of the identifiable features from six subjects. After Shaw (1975).

discrimination (section ) Whilst it was suggested that the notch was an
interference pattern of some sort there was no suggestion of the morphological

origin.

In later work Shaw (1975) focused on highly acute measurements of the modal
response of the concha in which six modes were identified, as shown in figure
. The measurements were made using a probe microphone and either a point
source or a source that approximated plane waves. The results shown represent

the average of ten subjects.

The first mode is excited equally regardless of the angle of incidence of the in-
coming sound and is attributed to a quarter-wavelength depth resonance within
the concha ([Teranishi and Shaw, 1968; Shaw and Teranishi, 1968). Shaw (11997)
split the other modes into two groups based on how their nodal patterns divide
the concha: “vertical” (modes 2 and 3) and “horizontal” (modes 4, 5 and 6). This
grouping also corresponded with the angles of incidence for which the modes were

maximally excited.
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Mode 1 Mode 2 Mode 3
4,2kHz 7.1kHz 9.6kHz
Omn i 680 730
11.8dB 10.2d8 4 _8dB
—_ ——— ———
[ — —
Mode 4 Mode 5 Mode 6
12.1kHz 14.4kHz 16.7kHz
-69 70 70
7.3dB 7.5dB 7.0dB

Figure 2.38: Visual representation of pinna modes identified by Shaw and Teranishi
(1968) as reported in table R.1. Arrows indicate the angle of incidence that excites each
mode the most. Numbers are relative values of sound pressure whilst the signs (+)
indicate phase. Dashed and dotted lines divide the concha into different nodal surfaces.
Labels give the modal number, its frequency, the angle at which it is maximally excited
and its magnitude. Image from Kahana and Nelson (2006).

2.5.2 Reflection models

A number of investigations into the morphological origin of auditory cues focus on

the relationship between reflecting surfaces within the pinna and notches within

the Ipinna—related transfer functionl (tPRTFi) (Raykar et al), 2005; Satarzadeh et all,

2007; Spagnol et al), 2010, 2013; Spagnol and Avanzini, 2015). To facilitate this

the pinna is treated as a simple reflection model as suggested by Batteau (1967)

and shown in figure . The measured signal y(t), i.e. the , is modelled

as the sum of a direct incident wave z(t) and a delayed, reflected copy of the

incident wave:

y(t) = a(t) + ax(t — ta(p)) (2.22)
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eflected wave

Direct wave

Figure 2.39: Simple reflection model for pinna spectral notches. The direct wave (red
arrow) at an incident angle of ¢ is reflected by the wall of the concha. This reflected
wave (blue arrow) travels an extra distance of 2d, arriving %d later, where c is the speed
of sound. After lRaykar et alJ (|2005|)

where a is a reflection coefficient, ¢ the elevation angle of incidence and ¢4() the

time delay of the reflected wave, given by:

ta(yp) = (2.23)

where ¢ is the speed of sound and d(y) is the distance from the entrance of the ear
canal to the reflecting surface. This delay causes notches in the spectrum

with centre frequencies of:

_2n4+1  ce(2n+1)

= S = ade " 0,1,2... (2.24)

fale)

and hence the centre frequency of the first spectral notch is:

folp) = (2.25)

Conversely, given the centre frequency, f., of a notch, extracted from the ,

the distance of the reflecting surface from which it arises is:

d(p) = 4f%(s0) (2.26)

79



tRaykar et alj (I2005|) used this equation to calculate the distance of the reflect-

ing surface responsible for pinna spectral notches that they extracted from the

HRTEFY of a number of database subjects using the approach introduced

in their earlier paper (tRaykar et al.l, lZOOﬁ). The variation of the distance with

elevation was then plotted on the photographs of the subjects’ pinnae
available in the database. Examples for three subjects and a ear are
shown in figure . The plotted contours matched some features of the pinna
morphology, particularly the rear wall of the concha (figure ), however some
of the distance contours did not seem to match any obvious reflecting surfaces,

and all the distance contours were concentrated within the concha.

The reason for this was identified by batarzadeh et alj (fZOO?I) Equation

assumes that the reflecting surface is hard, and therefore the reflected wave does
not change phase upon reflection. In this case the notches appear when the
distance difference 2d is equal to half a wavelength, as per equation . How-
ever, if the phase of the reflected wave is reversed upon reflection, which might
happen as the wave passes over the rim of the pinna, due to the impedance dif-
ference between the pinna itself (high impedance) and the air space behind it

(low impedance), then notches will appear at full-wavelength delays. Therefore

equation becomes:

- n+1l  cn+1)

falp) n=0,12... (2.27)

tae)  2d(e)

Figure 2.40: Distances, calculated by [Raykar et alJ (l2005|), corresponding to pinna
spectral notches for different elevation angles in the median plane, marked on pinna
photos of (a) subject 10, (b) subject 27, (c) subject 134 and (d) subject 165 of the
database. Images from tRaykar et alJ (fZOO ).
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and correspondingly, equation M becomes:

d(p) = TC(@) (2.28)

batarzadeh et alJ (IZOO?I) used both equation and equation m to calculate
distances from the frequencies of the pinna spectral notches of a number of

database subjects. They found that the distances usually indicated a reflection
point on the back wall of the pinna or on the rim of the helix. They suggested
that the criterion for choosing between the two cases was the flare of the pinnae,
i.e. the angle between the head and the pinnae. They reasoned that a large
flare (figure ) resulted in the rear wall of the concha being the primary
reflecting surface (figure ), whilst a smaller flare (figure ) left the helix
as the reflecting surface (figure ) Interestingly, they only considered a single
delay-and-add model and did not suggest that both morphological features might

be the source of spectral notches for the same subject.

bpagnol et al.l (}201d, lZOlj) also considered both in and out of phase reflected waves

as the origin of pinna spectral notches, but extended their work to consider multi-

ple morphological features working in tandem to produce different pinna spectral

Figure 2.41: Reflecting surfaces in the pinna responsible for pinna spectral notches,
as identified by batarzadeh et alj (l20()7|) They suggested that large pinna flare, (a),
corresponded with the rear wall of the pinna as the reflecting surface, (b), whilst smaller
pinna flare, (c), corresponded with the helix as the primary reflecting surface, (d).
Photographs are: (a) frontal view of subject 27, (b) pinna view of same subject,
(c) frontal view of FEIPIH subject 18, (d) pinna view of same subject. Images from
batarzadeh et alj (bOO?I)
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notches. They extracted pinna spectral notches from the measured of the
20 database subjects for whom photographs and anthropometric data is
available. The extracted notches were grouped into three notch “tracks” T7-T53,
increasing in frequency. A track was defined as a series of notches whose centre
frequency varied with elevation, were deeper than 5 dB and remained within the
frequency range 4-16 kHz, where pinna cues are generally found (section )
They considered five contours, C;—C’5, of the pinna as the possible reflecting sur-

faces responsible for the notches: the helix border, the helix inner wall, the concha

border, the antihelix/concha wall and the crus helias (figure )

Each notch track was translated into two distance contours using equations
and and a scoring function was derived based on the Euclidean distance
between each distance contour and the contours C—C5, which were hand-drawn
onto the pinna photos. The assumption was made that each notch track orig-
inated from a single morphological contour within the pinna and so each track
was associated with a contour based on the best score. They found that for all

their subjects C; and C5 corresponded most closely with the centre frequencies

Triangular fossa Scaphoid fossa

Cymba - \ ‘ Antihelix

Tragus

Antitragus

Figure 2.42: Pinna contours considered for generation of spectral notches by
-215 al

() C1: helix border; Cs: helix inner wall; C3: concha border; Cy: antihe-
lix/concha wall; C5: crus helias. Image from bpagnol et all (bOlﬂ)

82



Fiiure 2.43: Optimal ray-traced reflection surface contours calculated by Spagnol et al
’ )

() The grey lines are hand-drawn pinna contours, whilst the black points represent

distance contours of the pinna spectral notches most closely matched with the surface

contours. ia) subject 027, (b) subject 050 and (c) subject 134. Images from
2

(2013).

Triangular fossa Scaphoid fossa

Figure 2.44: Pinna contours considered for generation of spectral notches by
hnd Avanzini (b015|). Note difference between contour C; in this study and contour Co
as used by Bpagnol et alJ (b013|) (figure M) Contour Cs is the same in both studies
and contour C5 in this study and contour C in bpagnol et alJ ([20131) are the same, the
index has just changed. Image from bpagnol and Avanzini (|2015)
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of notches Ty and T3 respectively. Whereas approximately 50% of their subjects
showed correspondence between the centre frequency of notch 77 and contour C',
whilst the other 50% showed correspondence with contour Cy. Figure shows
the optimally matched surface and distance contours for three of their subjects.
Subject 027 (figure ) exhibited a final optimal score close to the median,
subject 050 (figure ) had the second worst score and subject 134 (figure
) the third best. They suggested that one reason for errors might be the
assumption that each notch is the result of a single reflection path, since very
few, if any, surfaces in the pinna are completely flat. Their model does not con-
sider the multiple reflection paths that would, for instance, occur from a concave
surface. They also highlighted that it is impossible to accurately trace the pinna
contours on a @ photograph and that @ models might be needed.

Spagnol and Avanzini (2015) also extracted three notch tracks, N1—N3, from the
of the database. They then used a linear regression model to
relate thirteen anthropometric measurements from the CIPIC database to the
centre frequencies of the pinna notches. The thirteen measurements were the
ten anthropometric parameters of the pinna available as part of the database,
plus three extracted pinna contours, C1—C5, as shown in figure . They found
that eight of the thirteen available measurements were able to predict the centre
frequencies of the first pinna notch with a reasonable degree of accuracy. However,
they found that the thirteen measurements considered were insufficient to predict

the second or third notches.

2.5.3 Acoustic simulations

Acoustic simulation techniques (section ) such as the and

method are strong tools for investigating the relationships between morphology
and features due to the relative ease with which the meshes can be altered

and simulations re-run.
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Mokhtari et al] (2010) used |ﬁnite difference time domainl (tFDTDb simulations
of the DB60 pinna to explore the spectral effect of the morphological

features of the pinnae. A mesh of the pinna and an adjacent patch of the head
was generated using 2 mm voxels and initial baseline simulations were run for 45
locations at a radius of 1 metre. A peak-picking algorithm was used to extract
the centre frequencies and amplitudes of the peaks and notches in the baseline
and then single additional voxels were systematically added to each point
on the surface of the pinna to create “micro-perturbations” and the simulations
re-run. The frequency shifts in features introduced by each micro-perturbation
were then calculated and plotted on the surface of the pinna for a given feature
(figure ) Their results generally agreed with previous studies (Shaw, 1997;
Kahana et al), 1999; Kahana and Nelson, 2006) and indicated that the first pinna
resonance was the result of a depth resonance of the concha, the second and
third resonances were the result of vertical modes and the fourth a more complex
resonance involving both horizontal and vertical components. Their analysis of
the pinna notches also corroborated other studies, with the first pinna notch
attributed to elevation-dependent cancellation due to reflections from the rear

wall of the concha.

Mokhtari et al] (2011) used the same micro-perturbation technique to study the
mechanisms responsible for the first pinna notch in more detail. They carried
out analysis for 25 elevations in the frontal median plane in steps of 5.625° from
-45° to +90°, matching the database. Again their results agree that the
elevation dependent shift in the notch frequency is largely controlled by out-of
phase reflections cancelling out the direct sound entering the ear. However, as
shown in figure , their results also showed that the reflecting surface was
spread across localised areas of the pinna, rather than a single reflection point,
as Spagnol et al; (2013) also suggested. They also identified an additional area of
sensitivity around the tragus which they attributed to the fact that the tragus lies
in direct path from frontal directions and so will introduce diffraction and delay

the direct sound. To test their hypothesis they carried out additional analysis for
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Figure 2.45: Pinna sensitivity maps created by IMokhtari et alJ (}201d) for (a) peaks

and (b) notches in binna—related transfer function (PRTH). Cold/grey/warm colours
indicate negative/zero/positive changes in centre frequency and the maximum colour
saturation representing a change of 0.29% in centre frequency. The text indicates the
feature, its average centre frequency and the number of voxels that contributed to its
variation. Images from Mokhtari et al (M)
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Figure 2.46: Pinna sensitivity maps for various elevations in the frontal median plane,
as reported by lMokhtari et all (l201]]) Arrows indicate angle of incidence. Colour map
as per figure IZ.ﬂ, with maximum saturation representing a change of 0.36% in centre
frequency. Image from lMokhtari et alj (fZOl]J)

two directions away from the median plane (+30° and +65°) and found that the

area of sensitivity around the tragus disappeared.

In contrast to their earlier micro-perturbation technique, tTakemoto et al.l (}ZOIﬂ)

extracted the peaks and notches of the and used sinusoidal excitation
signals at the given frequency of each feature to record the steady-state pressure
distributions within the pinna. Their analysis of the resonant peaks agreed with
the earlier work of Sha ([19_97]) and tKaha,na and Nelsonl (lZOOd) in that the first
three peaks of the were the first, second and third normal modes of the

pinna respectively. Their analysis of the first pinna notch categorised the pressure
distribution patterns into three types dependent on elevation. The first type
appeared for sound sources below the horizontal and consisted of an anti-node
in the upper pinna cavities of the pinna, that varied with elevation, partnered
with a node within the concha. The second and third types both consisted of
anti-nodes in the triangular fossa and cymba as well as a node in the concha,
however type 2 appeared for elevated sound sources in the frontal hemisphere,

whilst type 3 appeared for elevated sound sources in the rear hemisphere.

In later work, lMokhtari et al] (l‘ZOlﬂ) suggested that their previous micro-perturbation
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method was both time consuming, due to the numerous simulations required, and
error-prone, due to the processing of the required to extract the
features. They therefore proposed a new approach based on acoustic radiation
pressure. Acoustic radiation pressure is defined as the time-average force exerted
by a sound field on a unit surface. By carrying out a single simulation of
the unperturbed pinna, and splitting the results into potential and kinetic energy
densities based on both the pressure and velocity results, the acoustic sensitivity
to a single voxel perturbation can be calculated. They validated their approach

using a simple cylindrical model of the concha and compared it to results obtained

using their earlier approach okhtari et all, 201 011). The two approaches
g pp ) ) pp

did not produce identical results (figure ), but did show similar trends and
the authors considered the approach to be accurate enough to analyse the peaks
in the of a human pinna, for which they found similar results to previ-

ous studies. However, there was no suggestion as to the suitability of their new

approach to analysing notches in the .

The acoustic radiation pressure approach was developed further by
() to include not only pressure distributions, but also velocity vectors
indicating the movement of air between the cavities of the pinna. The velocity
vectors were calculated by applying to the particle velocity results of the
simulations to isolate the direction and strength of oscillating vectors.

These vectors could then be plotted on the sensitivity maps to indicate exchange

L o I . 0 L O o o |

Figure 2.47: Comparison of sensitivity maps of a cylindrical concha model for (a) the
pertubation method and (b) the acoustic radiation pressure method as reported by
Mokhtari et alJ (2013). The left hand panel of each pair is the sensitivity map for the
first peak in the m and the right hand panel is for the second peak. The colour
map is as previous figures. Image from |Mokhtari et alj (bOlj)

88



1]
T 77

imwme 3N}

] I R Y G
s o o o o O

)L i P

1
W
q
"

Figure 2.48: The first five modes of the pinna, showing both pressure distributions
(colour map as before) and velocity vectors (white lines) as reported by Mokhtari et al
() Image from lMokhtari et alj (b014|)

of acoustic energy between adjacent anti-nodes as shown in figure . Again
analysis was limited to resonant peaks in the , specifically the first three
modes of the pinna. Whilst the second and third mode exhibited similar pressure
distributions and velocity vectors, applying thresholding to isolate pressure and
velocity quantities with the same phase, suggested that the second pinna mode
was the result of two independent resonances in the concha and scaphoid fossa
whereas the third mode was the result of a single acoustically coupled resonance

consisting of energy exchange between the two cavities.

By applying linear regression modelling to simulations and morphological

measurements from the mesh geometry, tMokhtari et alj (}2015]) attempted to

estimate the frequency and amplitude of the first pinna resonance: the so-called
concha-depth resonance. Two different measures of concha depth were considered
as well as an estimate of the diameter of the concha aperture. It was found that
the frequency of the first peak was best estimated (correlation coefficient
of r = 0.84) by the longest measurement of concha depth from the base of the
rear of the cavum concha to the surface of the antitragus and antihelix (figure
). The amplitude of the resonance was best estimated (r = 0.83) by the
shortest measure of concha depth, i.e. the lateral distance from the ear canal
entrance to the side of the cheek near the anterior notch (figure ), as well
as the equivalent diameter of the concha aperture (figure ) These results
suggest that the resonant frequency is therefore related to the quarter-wavelength

of the longest depth of the concha and that the amplitude of the resonance varies
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(b)
Fiiure 2.49: Practical anthropometric measurements suggested by |Mokhtari et alJ

( ) for estimation of the frequency and amplitude of the first pinna resonance. (a)
suggested depth measurement from base of the concha to the antitragus and antihelix
for estimation of resonant frequency. (b) suggested depth measurement from ear canal
entrance to the anterior notch for estimation of the amplitude of the resonance. (c)
suggested approximation of concha aperture area by a six-sided polygon, also used for
estimation of the amplitude of the resonance. Images from |Mokhtari et alJ (b015|)

based on energy lost to the surrounding air from the concha aperture.

As part of their verification of the IBEl\/Jj tKahana and Nelson| (b006|) recreated

the experiments of (1974b) using a mesh generated from a laser scanned
DB-65 pinna. Figure M shows their simulation results of the first six

modes of the pinna for comparison with the results of as shown in figure
. They found that their results showed similar modal patterns to those found
by , although, as reported in table @, there were some differences between
the frequencies of the modes and the directions at which they were maximally

excited.

ITao et al.| (b003b|) proposed the use of the in their Hifferential pressurei

Eynthesis (DPS)| method for determining the acoustic effect of changes in mor-

phology. The basis of is that simulations are run to create a database

of the acoustic changes caused by applying a series of orthogonal deformations to

a template mesh. Then the acoustic influence of any change in shape that can be

represented as a sum of the orthogonal deformations, can be simply calculated
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Figure 2.50: First six modes of the pinna found by tKahana and Nelsonl (IZOOd) using
l)oundary element method (IBEMI) simulations of the DB-65 |KEMABI pinna. The plots
correspond to the following frequencies: (a) 4.2 kHz, (b) 7.2 kHz, (c¢) 9.5 kHz, (d)
11.6 kHz, (e) 14.8 kHz and (f) 18 kHz. Colours indicate the magnitude of the surface
pressure and the phase is indicated by + signs. Images from lKahana and Nelsonl (|200d)

haw (1974hb) ahana and Nelsonl (IQOOd)

Frequency Direction Frequency Direction

4.2 kHz Omni
7.1 kHz 68°
9.6 kHz 73°
12.1 kHz -6°
14.4 kHz 7°
16.7 kHz 7°

4.2 kHz Omni
7.2 kHz 60°
9.5 kHz 94°
11.6 kHz 0°
14.8 kHz 4°
18 kHz -16°

Table 2.5: Comparison of the frequencies and directions of maximum excitation for

the first six modes of the pinna as reported by bhawl (|197 4b|) and lKahana and Nelsod
(2006).
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as the appropriately weighted sum of the acoustic changes of each deformation.
In two dimensions, m uses radial harmonic deformations based on the Fourier

series but with the polar angle ¢ replacing z, whilst in three dimensions

lspherical harmonicss{ (bSHsi) are used. In a partner paper (Tao et alf, 20034,

was used to investigate simplification of a pinna-less KEMAR| head. The

mesh was initially represented by up to degree 34 (figure ), the harmon-

ics gradually discarded and the pressure error introduced by the simplification

calculated. It was found that discarding all harmonics above degree eleven in-
troduced no more than 5% pressure error. However, the approach is not
directly applicable to the full head and pinnae because can only be used
to decompose shapes that can be represented by a unique function r(6,¢) and

within the complex morphology of the pinnae, this is not the case.

Therefore Hetherington and Tew (2003a) proposed the use of the lelliptic Fourieri

ltransform (EFT)l (Park and Leg, 1987) to decompose radially sliced contours of an

isolated pinna into Fourier components. However, the only works on closed
contours and so the slices had to be traversed start to end and then back again in
order to force them to be closed. Nevertheless this still resulted in discontinuities
which added unrequired energy to the spectra of the contours. In order to combat

this Hetherington and Tew| (2003h) applied the to a slice of the whole head

o ‘.'-.-'."'-_
-0.05 0.1

Figure 2.51: Pinna-less gEMA_ﬁ head, represented by lsurface spherical harmonicsl
(@) up to degree 34, used by Tao et al| (2003a). Image from [Tao et al, (2003a).

92



L L
50 100 150

(a) (b)

Figure 2.52: Plane, (a), used to take exemplar contour, (b), for application of the Elliptia
lFourier transforml (IEFTD by Hetherington and Tew| (2003h). Images from Hetherington
and Tew (2003H).

and pinnae (figure ), which resulted in a closed contour (figure ) They

suggested that the appropriate choice of radial slicing axis within the pinna would

allow the whole head to be decomposed into contours and the to be used
instead of in .

However, when the was employed in it was found that, due to the
rapidly changing slope of the head contours, especially within the pinnae areas,
the deformations introduced by the were not evenly distributed along the
surface of the head. This is due to the fact that the perturbations introduced
by the result in sinusoidal harmonics on either the z- or y-component of
each contour slice. Therefore, when the gradient of the contour slice is close
to horizontal, in the case of the z-component, or vertical, in the case of the y-

component, the spatial frequency of the deformations is significantly compressed

as shown in figure .

To overcome these shortcomings, Thorpe (2009) proposed the use of “elliptic sur-
face harmonic deformations” to generate perturbations that act perpendicularly
to the contour slice. For a deeper explanation see section @, but briefly, the
contour slices are mapped to a @ surface on the z-y plane in a @ Cartesian co-
ordinate system and @ Fourier harmonics are applied to alter the z coordinate.
This change in 2z coordinate is then mapped back to the original contour slices

to displace each point perpendicularly to the contour surface. The database of
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Figure 2.53: Example of perturbations on a contour slice of a sphere. (a) When
harmonics are applied to the x-component they are compressed when the contour gra-
dient is close to horizontal. (b) Conversely, when the harmonics are applied to the

-component they are compressed when the gradient is close to vertical. Images from
Hi-horp

(2009).

acoustic pressure changes for each harmonic deformation is then calculated as per

DPS.

() then describes using the database in reverse to map acoustic

changes in the back to the pinnae morphology responsible in an approach

christened hlorphoacoustic perturbation analysis (MPA)l. Prior to this, the term

morphoacoustics (or sometimes morpho-acoustics) had no formal definition, but

had occasionally been used when linking the shape of a physical object to its

acoustical properties (tKolla and Coumeé, |1983; tFrey et al.|, |2007|; IConti et al.,
). Morphoacoustics is formally defined in rTew et al.| (I‘ZOlﬂ) as “the study of

relationships and interactions between the morphology (shape) of an object and

its acoustic properties.”

h‘ew et al.| (lZOlﬂ) applied @I to a notch and peak in an (figure )

The notch was identified for a location behind the head (6 = —166°, ¢ = —2°)

and a morphing vector, m, was generated, corresponding to an increase in centre
frequency of the notch (indicated by green arrows in figure ) By taking
the dot product of the morphing vector and the matrix of pressure changes a set

of weights is generated corresponding to how closely the pressure changes match
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Figure 2.54: Notch (a) and peak

show the original , the blue dashed lines show the |HRTE| plus the weighted sum
of acoustic changes introduced by the harmonic deformations and the green arrows
indicate the morphing vector. Images from h‘ew et all (l201j)
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Figure 2.55: Pinna sensitivity ma
and peak (b) shown in figure .54
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(2012).
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the morphing vector. Since the harmonic deformations are small enough for a
linear relationship to hold between them and the acoustic changes they cause, the
principle of superposition applies. Hence, the same weights can be used to sum

the harmonic deformations and generate a sensitivity map of the pinna highlight-

ing areas that contribute to the change in the (figure ) The same
approach was applied to a peak in the (figures and ) for a
direction above the head (f = 82° ¢ = 76°) and both results were verified by
applying putty to the pinna of a and carrying out acoustic measure-
ments. However, as discussed further in chapter H, there are problems with the
first generation of due mainly to large variations in contour length, which
result in, amongst other things, the erroneous coloured streaks visible in figure
. Therefore a key contribution of this work will be the development of a new
method of applying harmonic deformations to a head mesh that does not suffer

from the shortcomings of the earlier approach.

2.6 Summary

This chapter has provided a review of the literature relevant to this work. Firstly,
the human auditory system was described in terms of the physiological structure
of the human ear, from the pinna to the auditory nerve, the limits of human
hearing and the nature of human auditory filters. The latter two are of particular
interest to this research in terms of the new smoothing algorithm discussed

in chapter B

Then the current understanding of human sound localisation cues and localisation

acuity was discussed. This included both the interaural localisation cues, the

hnteraural time differencei (hTﬂ) and hnteraural level differencd (IILD|), which have

been well understood for over a century, and the spectral cues, which are primarily
associated with the pinnae and still not fully understood. One of the long term

aims of this research is to further the understanding of spectral localisation cues.
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Next, the field of spatial audio was reviewed in order to provide wider context for
the scope of this research. Whether developing loudspeaker-based or headphone-
based spatial audio systems, a deeper understanding of the relationship between

morphology and localisation cues is key.

A review of the state of art approaches to measurement and estimation
served to highlight the problems associated with current approaches to both. This
highlights the relevance of the possibility of estimating individualised from
a reduced set of morphological measurements — one of the longer term goals of

this research.

Finally, prior work on relating human morphology to auditory cues was described

in order to provide context for the novel contributions of this work, described in

chapter @, to the improvement of lmorphoacoustic perturbation analysisl (|MPA|)

as an important tool within this field.

97



Chapter 3

Head-related transfer function

smoothing

The distance between insanity
and genius is measured only by

success.

BRUCE FEIRSTEIN

Acoustic measurement of lhead—related transfer functions (HRTFs)l reveals them

to be complicated signals containing many slopes, peaks and troughs. Previous
research has shown that not all these features play a role in spatial hearing (see
section ) An improved method for removing many of the superfluous fea-
tures is the subject of this chapter. To this end, a new smoothing algorithm for
simplifying features whilst retaining the perceptually salient ones is pre-
sented. In the longer term, outside the scope of this thesis, the features which

remain after smoothing will be studied to identify their morphological origins

using the novel lmorphoacoustic perturbation analysis (MPA)l approach presented

in later chapters.

Development of the smoothing algorithm is first described and it is then evaluated

using an auditory localisation model. For comparison purposes, an established

smoothing method is also passed through the model. The model results
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are validated by means of subjective listening tests.
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3.1 Concepts and motivation for HRTF smooth-

ing

As mentioned in section , it has been shown that HRTFY contain spectral
variation that is imperceptible and a number of studies have investigated this

(tKulkarni and ColburnL |199§; tBreebaart and KohlrauschL bOO]J; benova et al.|,
bOOj; IXie and Zhangj, tZOld; IPec et alJ, tZOli{; tRasumow et al.|, bOMl; IHassager et al.|,

, ) Since the morphological origin of features is to be investigated

with a view to improving the efficiency of individualised synthesis, it makes

sense to consider only those features that are perceptually relevant.

tKulkarni and Colburn|’s (|199§) approach of discarding higher frequency Fourier

coefficients of the Fourier transform of the magnitude spectrum is neat

in that it also offers a method of data reduction by storing just the coefficients

rather than the |head—related impulse response (HRIR)l. However, their

were expressed on a linear frequency scale, whereas the human auditory system
adheres to an approximately logarithmic one (section ) Furthermore, they

tested locations on the horizontal plane only, where interaural rather than spectral

cues generally dominate. benova et al.| (lZOOﬂ) tested a wide selection of directions

within the auditory sphere in a localization test, but their approach of truncating

HRIRs to smooth the HRTFs also smooths on a linear frequency scale.

tBreebaart and Kohlrauschl (}ZOO]J) and t[—Iassager et al.| (lZOld) used gammatone

filter banks with varying orders and bandwidths respectively to smooth [HRTFS,
which is more ecologically valid. However, the former also only tested in the

horizontal plane and used the same set of non-individualised throughout,

whilst the latter focused only on externalisation. tPec et al.| (lZOlﬁ) incorporated

perceptual considerations by warping their HRTFSY onto the Bark scale before

smoothing. However, the Lequivalent rectangular bandwidth (ERB)l scale seems

to be favoured nowadays (section ) and the bilinear conformal mapping

they used to warp their HRTFY cannot accurately map to the m scale (




and Abel, 1999). The work of Rasumow et al; (2014) smoothed based
on constant relative bandwidth (fractional octave) rather than constant absolute
bandwidth, which again approximates the frequency selectivity of the human ear

better, but they also limited testing to the horizontal plane.

This chapter covers the development and verification of a new, perceptually mo-
tivated smoothing algorithm which seeks to address the limitations identified in
previous studies. Based on the Fourier approach of Kulkarni and Colburn (1998),
the smoothing algorithm is evaluated using an auditory model and subjective lis-
tening tests, both of which include directions outside the horizontal plane. Sen-

sitivity of the listening tests is maximised by asking participants to identify any

discernible difference between the smoothed and unsmoothed .

3.2 Initial ideas

For the reasons outlined above, perceptual validity was a priority when designing
the new smoothing algorithm and this was promoted by basing it on the fre-
quency selectivity of the human ear. The initial algorithm that was considered
calculated the average energy in the within each of the 24 critical bands
of the Bark scale (Fastl and Zwicker, 2007) and then interpolated the
back to the original frequency points. However, this algorithm provided no easy
way of varying the amount of smoothing applied to the . Therefore the

gammatone filter bank (Patterson et all, 1987) was considered next.

The impulse response of a gammatone filter is:
g(t) = at" 'cos(2m fot + @)e 2 (3.1)

where n is the order of the filter, a is the gain, b its bandwidth, f. the centre
frequency and ¢ is the phase shift. [Patterson et al) (1992) showed that a 4%
order gammatone filter impulse response is a good fit to the shape of the human

auditory filter derived by Patterson and Moore (1986G). They recommend that b
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Figure 3.1: Gammatone filter impulse responses, generated using the Auditory Toolbox
(laney, 1903,
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is set to 1.019 times the as defined by Glasberg and Moor¢ ([1990):

B 437,
ERB(f,) = 24.7 ( &t 1) (3.2)

where f. is in Hz and ERB(f.) is in Hz. Figure @ shows a comparison between
the impulse responses of gammatone filters of centre frequencies 1 kHz and 2 kHz.
As the centre frequency increases, the impulse response grows shorter in length

and larger in amplitude.

Slaney] (1993) developed an efficient implementation of the gammatone filter bank
as part of his Auditory Toolboxll for MATLAB (Slaney, 1998). Slaney uses an

adaptable version of equation @:

ERB(f., EarQ,minBW,n) = (( e )” + mz’nBW”> ’ (3.3)

EarQ

where n, Far@) and minBW are the filter order, filter selectivity at high fre-
quencies and the required low frequency minimum bandwidth, respectively. The

values used are those suggested by Glasberg and Moorg (1990):
n=1
Ear@ = 9.26449
minBW = 24.7

The centre frequency of the nth gammatone filter in an N channel filter bank is

calculated as follows:

fo=—A+ (fu+ A)exp(p(—log (fu + A) +1og (fi + 4)) /N) (3.4)

where A = FarQ x minBW, fi is the lowest frequency and f;, the highest fre-
quency in the filter bank. Figure @ shows a bank of 15 gammatone filters
covering the 200 Hz — 22.05 kHz range, generated by the Auditory Toolbox.

lavailable from https://engineering.purdue.edu/~malcolm/interval/1998-010/
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By varying the number of channels, IV, in the gammatone filter bank, the degree
of smoothing can be altered (figure @) The number to the right of each

curve is the number of channels in the gammatone filter bank.

The gammatone filter bank smoothing algorithm consists of the following steps

and uses the Auditory Toolbox gammatone filter bank implementation:
1. Calculate the centre frequencies of N gammatone filters using equation @
2. Calculate the coefficients for the gammatone filter bank.

3. Pass the through the gammatone filter bank.

4. Calculate the Iroot mean square (RMS)| energy in the output of each gam-

matone filter.

5. Scale according to the maximum energy that can pass through each
filter, i.e. the area under each of the curves in figure @, to give the
magnitude at each of the N gammatone filter centre frequencies. This

eliminates level discrepancy due to the varying width of the gammatone

filters.

6. Interpolate the smoothed to calculate its magnitude spectrum at the
N frequency points used in the original .

7. Combine the modified magnitude spectrum with the original phase

spectrum.

Following this procedure revealed problems with the gammatone filter bank smooth-
ing approach. The fixed minimum bandwidths of the gammatone filters asymp-
totically limits the degree of spectral resolution achievable, such that increasing
the number of channels never increases spectral resolution as far as the spectral
resolution of the unsmoothed . Hence, passing through the smooth-
ing algorithm will always result in some smoothing. The algorithm also results in
attenuation of peaks and notches due to the fact that the gammatone filter bank

acts like a variable-window-size moving average filter. Both these effects can be
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Figure 3.4: Demonstration of the gammatone filter bank smoothing algorithm, showing
that its maximum spectral resolution falls short of the original resolution.

seen in figure @ There is very little difference between the HRTFY smoothed
with 128, 256 and 512 channel gammatone filter banks — the small deviations
are to do with the variation in centre frequencies rather than with variations in

spectral resolution.

It was found that even at the full spectral resolution of the gammatone filter
bank, a difference in timbre of filtered broadband white noise could be
heard compared to full resolution . To provide the required continuum in
smoothing, from full resolution HRTF reconstruction downwards, another algo-

rithm was developed and this is covered in the following section.

3.3 Smoothing algorithm

The novel smoothing algorithm finally adopted is a development of
Lemd Colburn|’s (|199d) cepstral-based approach in which the magnitude

spectrum is described using Fourier coefficients. However, before calculating the

Fourier coefficients, the is interpolated and the magnitude spectrum resam-

pled on a frequency scale based on the quuivalent rectangular bandwidth| (IERH)
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(Glasberg and Moore, 1990). This maximises the amount of perceptually relevant

spectral information retained for any given number of Fourier coefficients. The

steps in this algorithm are as follows (visualisation is given in figure @)

1.

10.

Perform an M-point lfast Fourier transform (FF T)| on the original

(figure ) to create an with Hermitian symmetry.

. To reduce computation, retain only the distinct first M/2 + 1 points, i.e.

up to fs/2, of the log-magnitude , sampled at linear frequency points
fin — figure .

Calculate M /2 + 1 auditory frequency points, fauq, on the scale up to
fs/2.

Resample the original spectrum at f,.q, using shape-preserving piecewise

cubic interpolation — figure .

Calculate the of the resampled log-magnitude spectrum — figure .

This represents the cepstrum.

. Apply the required degree of smoothing by retaining only the N lower cep-

stral coefficient values (for frequency points k = 1... N). Set any remaining
coefficients (k = N +1...M/2+ 1) to zero (figure ) This is liftering.
Reflect the N lower-order cepstral coefficients about f/2 to create a sym-

metrical cepstrum.

Compute the inverse to generate the smoothed spectrum, sam-
pled at the auditory frequency points — figure .

Resample the modified log-magnitude spectrum at the original linear fre-

quency points, fii,, using shape-preserving piecewise cubic interpolation —
figure .

Reflect the magnitude spectrum about f;/2 to produce a magnitude spec-

trum with even symmetry.

Perform real cepstrum minimum-phase reconstruction (Pei and Lin, 2006)

108



to compute the minimum-phase HRTF. Combine this with a pure delay

equal to the ITD (Kistler and Wightman|, 1992), calculated using the cross

correlation technique (section ) — figure .

The -based frequency points f,uq were calculated using equation @ with

the following values:

N = M/2
h=0
Jo = fs/2 (3.5)

and the values suggested by Glasberg and Moore for Far@ and minBW have

been used.

Figure @ shows the smoothing effect of Kulkarni and Colburn’s algorithm on

an exemplar compared to the algorithm used in this study; the number to

11
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Figure 3.6: Comparison of smoothing algorithms. Dashed line - Kulkarni and
Colburn’s approach. Solid line - proposed approach.
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the right of each pair of plots is the number, M, of coefficients retained. It can be
seen that, because the new algorithm smooths on an —based frequency scale,
high frequency features tend to be smoothed more and low frequency features
less than occurs using Kulkarni and Colburn’s smoothing with the same number

of coefficients.

3.4 Auditory model simulations

3.4.1 The localisation model

Eagittal planesl (BP&) are planes parallel to the median plane, where spectral cues

tend to dominate localisation. Therefore, the lsagittal plane (SP)| localisation

model developed by Baumgartner et alf (2013) is well suited to investigating the

effect of spectral smoothing. Figure @ outlines the model. Briefly,

|transfer functions (DTFS)| are applied to the audio inputs in a manner that em-

ulates incoming sounds to the peripheral hearing system. Now impressed with
acoustic directional cues, the audio signals are passed through a gammatone fil-
terbank (GT) and a simple inner-ear hair cell model (IHC) comprising half-wave
rectification and a low pass filter. The resulting data are compared with a simi-
larly processed internal “template” created using a reference set of during
an initial learning phase for the model. The spectral distance of the audio pro-

cessed using the left /right pair under test from the same audio processed

Peripheral Processing Comparison Stage
Input
L ) ) | ya
) GT STD Mapping Binaural -
R——-z DTF |HC  [e— Ofw oS Weighting Normalization )
L J E V4
4
Template
GT
DTF IHC

Figure 3.7: Eagittal plana (@) localisation model developed by Baumgartner et al.
(2013). After Baumgartner et al| (2013).
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by all the template in turn is computed to estimate the perceptual simi-
larity in each case. The final output from the model is a distance metric which
indicates the probability that a human listener would select this polar angle (i.e.
elevation angle within an @) for the direction of the sound. To assess the effect
of smoothing on localisation, the input can be altered, leaving the
template unchanged and the distance metric recomputed in each case. The

comparison stage consists of five steps:

1. For each frequency band output of the peripheral processing stage, the inter-
spectral differences (ISDs) between the input sound and every template

angle are calculated.

2. The spectral standard deviations (STDs) of the inter-spectral differences

are found.

3. The STDs of the ISDs form the argument to a Gaussian function with
a mean of zero and a standard deviation dependent on a listener-specific

localisation uncertainty, U, to produce similarity indices (SIs).

4. Left and right SIs are combined by weighting ipsilateral and contralateral
SIs according to the lateral angle of the @ being considered (e.g. 50/50

for the median plane), forming a binaural SI.
5. The binaural SI sum is normalised to unity.

The comparison stage results in a discrete probability density function or
|ability mass vector (PMV)| for each target polar angle. These can be

combined to form a matrix for each @, as shown in figure @ For each col-
umn (target polar angle) the estimated probability of a listener with these

selecting a particular response angle is proportional to the image’s darkness.

From the , the polar localisation error and quadrant error can be calculated
to facilitate analysis of changes in a listener’s performance. The quadrant error is
calculated as the sum of the entries for which the response-target difference

is greater than ninety degrees. The polar error is calculated as the discrete
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Figure 3.8: Exemplar output of @ localisation model. Subject NH33 (from the
pTF ) BP.

ltics Research Institutei (fZOl]J) database) using their own | in the 0° (median
Showing areas of quadrant error (1), low polar error (2) and high polar error (3).

expectancy within the local polar range (less than ninety degrees). In the matrix
representation in figure @, quadrant errors manifest as dark areas in the top
left and bottom right quadrants (1), low polar error manifests as concentrated
areas of darkness around the diagonal (2) and high polar error manifests as large
areas of similar brightness (3). It can be seen that, as expected, the darkness
along the leading diagonal spreads, indicating a reduction in localisation acuity,
as the target polar angle increases from the horizontal (0° polar angle) to above

the listener (90° polar angle).

Figure @ shows how the change when another listener’s are used as

the input . It can be seen that there is a far greater spread in the darkness
along the diagonal, signifying an increase in polar error. Furthermore there is a

larger spread of darkness in the top left and bottom right quadrants signifying
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Figure 3.9: Exemplar output of @ localization model using non-matching sets of [DTES
(subject NH33 (from the D&coustics Research Institutei (bOl]J) database) template DTFS
used in conjunction with the input [DTF{ for subject NH55 in the 0° (median) E’I)

an increase in quadrant error, which is to be expected using non-individualised

HRTF]

3.4.2 Simulations

The |Auditory Modelling Toolbox (AMT )l (b@ndergaard and Majdakl, }2013]) is a

collection of MATLAB scripts for auditory research. It includes the @ localisa-

tion model by tBaumgartner et all (f2013l), described in the previous section, and

it is this version which was used for the work described in this chapter. All 17

provided in the were used. These originated from the

IResearch Institute (ARI)l IHRTFI database (lAcoustics Research Institutel, bOl]J)
and further details about which subjects’ are in the can be found in
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tBaumgartner et al.| (bOlZﬂ)

The baumgartner2013 function in the takes as two of its inputs the “in-
put” and “template” . The input were progressively smoothed using
the algorithm outlined in section @ and the polar error compared to the val-
ues obtained when the unsmoothed were used. This comparison was also
conducted using lKulkarni and Colburn|’s algorithm to smooth the , so that

the extent of the anticipated improvement of our smoothing algorithm could be

assessed.

27

N
(e2]

N
[6)]

Polar Localisation Error (°)
N N
w )

N
N

21

Number of coefficients

Figure 3.10: Polar localisation error against number of coefficients retained for proposed
algorithm (triangles) compared to lKquarni and Colburn|’s algorithm (circles). The
@ errors have been averaged across [DTH sets for a target angle of 0° in the median
plane. The horizontal dashed line crosses the tKulkarni and Colburn| (|1998|) curve at the
threshold of perceptual difference (32 coefficients), indicated by the right-hand vertical
dotted line. The left-hand vertical dotted line shows that 16 coefficients are required
to achieve the same performance using the proposed algorithm. The lower horizontal
solid line shows the baseline performance with no smoothing.
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3.4.3 Results

Figure shows the mean polar error across all 17 sets for a target angle
of 0° (straight-ahead) in the median plane for both tKulkarni and Colburnl’s algo-

rithm and the new algorithm. tKulkarni and Colburn| (|1998|) reported that in their

localisation task, whilst performance was seldom affected with fewer than 32 coef-
ficients, three out of the four participants did exhibit a reduction in performance

for 16 coefficients in the frontal direction. Therefore, the localisation performance

results obtained from the model using tKulkarni and Colburnl’s algorithm with 32

coefficients was used as a threshold to assess the new algorithm.

Figure shows the number of coefficients needed, for each set, for the

new algorithm to equal the performance of tKulkarni and Colburnl’s algorithm

with 32 coeflicients. The means and one standard deviation limits across all @

are presented.

As can be seen, the mean number of coefficients, across all subjects and all ,

required for the new smoothing algorithm is 13, more than a twofold saving on the
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number of coefficients required by IKulkarni and Colburn|’s smoothing algorithm

for the same localisation performance.

Figure shows how the number of coefficients needed varies across . The

means and one standard deviation limits across all subjects are presented. Little

variation is evident across @ and an Ianalysis of variance (ANOVA)| showed no

significant effect of @ on performance (F' = 0.9, p = 0.60). The simulation results
indicate that on average across and sets fewer than half the number of

coefficients are required to meet the performance threshold set by
’s algorithm.

It is interesting to note that in figure there is a region below 6 coefficients

where tKulkarni and Colburn|’s algorithm outperforms the new algorithm. It is

likely that this behaviour is a result of the relatively sudden loss of sufficient spec-

tral accuracy across all frequencies in the new perceptually motivated algorithm

as the number of coefficients is reduced. In tKulkarni and Colburnl’s algorithm

the loss of spectral accuracy with fewer and fewer coefficients occurs more grad-

ually, with spectral resolution becoming insufficient at lower frequencies sooner
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than at higher frequencies. Also of note is the relatively large baseline (~21-22°)
polar error. Whilst this seems very large, it is an average across the whole audi-
tory space and Baumgartner et al, have shown their model on average tends to

actually underestimate polar error — see figure 7 in Baumgartner et al| (2013).

It should also be mentioned that the model estimates localisation error, whereas,
with the exception of Senova et al| (2002), previous studies (Kulkarni and Col-
burn, 1998; Breebaart and Kohlrausch, 2001; Hassager et al{, 2014) have assessed
discriminability. In terms of finding a perceptual limit for smoothing, discrimi-
nation would appear to be both a more sensitive test and more easily perceived
than asking a participant to isolate and assess sound localisation. The next sec-
tion (section @) details subjective discrimination listening tests carried out to

corroborate the model simulation findings.

3.5 Listening tests

3.5.1 HRTEF measurements

Individualised , rather than non-individualised drawn from a database,
were used for the listening test due to their more reliable performance (section
). Each participant’s were measured in the anechoic chamber at the
University of York using an RME Fireface UFX audio interface. Four concentric
driver KEF speakers (two E301s and two HT'S3001s) were mounted in an arc on
a custom made stand at elevations of +20°, 4+10°, 0° and -10°. The speakers were
driven from the interface by Behringer A-500 power amplifiers. The participant
was seated on a chair on a custom-made turntable at a distance of 1.5 m from the
centre of the speaker arc. The turntable allowed azimuthal increments of 5° from
-90° (left) to +90° (right). The chair had a headrest to reduce head movements
and a pair of lasers, one mounted on the headrest and the other on a cap they
wore. These were used to ensure the participant kept their head facing in the

correct direction as the turntable was rotated. Black fabric was hung around the
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walls of the anechoic chamber at head height to facilitate lining up of the lasers.

Sennheiser microphone capsules (KE 4-211-2 E) were mounted in drilled out foam
earplugs and logarithmically swept sine signals of duration 5 seconds, and sweep-
ing upwards in frequency from 20 Hz to 20 kHz, were used to record the partici-
pant’s at a sample rate of 44.1 kHz. Headphone transfer functions for each
participant were measured while they wore Beyerdynamic DT990 headphones to
facilitate later removal of the microphone and headphone responses. These head-

phones were chosen for the listening tests due to their performance in a study of

Ifree air equivalent couplingJ (lFEd) (see section ) headphones (Mgller et al.,

1995a). The measured HRIRs were processed and equalised as described below
using MATLAB to produce the 256-point HRIRs used in the listening test.

The measured included the actual , the response of the micro-

phones and the response of the loudspeakers:
HRTF, cosurea = HRT Fyepyar X M X L (3.6)

To obtain the participant’s alone, i.e. HRTF,.,q, the response of the
microphones and loudspeakers needed to be removed. The response of the loud-
speakers L was measured using a reference microphone with a nominally flat
frequency response (Earthworks M30) placed at the position of the centre of the

head, with the participant absent.

Due to the intention to synthesise sounds over headphones, the response of the

headphones had to be considered. The |headphone transfer functionsJ (thTFsJ)

were measured using the same microphones used for measuring the HRTFY, giving

the expression for the recorded transfer function, HpT F,,cosured:
HpTFmeasured = HpTFactual x M (37)

This was combined with the measured loudspeaker responses L and inverted

’http://datasheet.octopart.com/KE-4-211-2-Sennheiser-datasheet-13035495. pdf
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to produce an equalisation filter that removed the effects of the microphones,

loudspeakers and headphones:

1

EFO =
Q HpTFmeasured x L

(3.8)

Multiple headphone measurements were made to allow generation of the head-
phone equalisation filters in the manner outlined in Masiero and Fel§ (2011)).

Firstly the magnitude of the filter was calculated as:

|HpTF| = p + 20 (3.9)

where 1 is the mean of all the measured headphone transfer function magnitudes
and o is the standard deviation. This magnitude response was smoothed with
a 1/6-octave moving average filter and the phase response was calculated as the

minimum phase spectrum of the magnitude spectrum.

Frequency dependent regularisation (Kirkeby et al), 1999) was applied to limit
the gain of the equalisation filters outside the operating frequency range and also
in the region of inverted notches. This was achieved by introducing a frequency-

dependent regularisation term into the equalisation filter:

1
(HpT Fineasureal f] % Lf]) + BB[f]

EQ[f] = (3.10)

where (3 is a regularisation constant and B is a frequency-dependent shape func-
tion set to 1 inside the passband and 1/8 outside. Inside the passband the
regularisation term (SB[f]) is small and has little effect, whereas in the stopband
(where HpT Feasurea X L is very small) the regularisation term limits the gain of
the equalisation filter to 1. In this case, 8 was set to 0.0001 and B was set to 1/
below 100 Hz and above 20 kHz. B was shaped using segments of a raised cosine
curve up to 1 between 100 Hz and 150 Hz and from 20 kHz down to 18 kHz. The

maximum gain of of the regularised equalisation filters was set to 12 dB.
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3.5.2 Changes to the smoothing algorithm

When it came to smoothing the measured , a problem was found with
how the smoothing algorithm interacted with the steep high frequency roll-off of
the measurement system. Figure shows an example of this. The dashed line
shows the original, unsmoothed, and the solid line shows the with
16 coefficients retained during smoothing. It can be seen that just before the
roll off around 18 kHz the smoothed is quite distorted, whereas the roll
off itself is quite accurately reproduced. This is undesirable because, not only
is the roll-off unlikely to be a perceptual cue, it is also above the perceptually
significant upper limit of human hearing (see section ) The reason that this
distortion was not apparent during the auditory model simulations of section @
is that the lBaumgartner et al.| (l2013|) auditory model uses m from the
database. do not contain the system response because the average of all

Magnitude (dB)
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Figure 3.13: Distortion in smoothed due to the steep roll off in the measurement
system. The dashed line is the original , the solid line is the smoothed .
The peak around 16-17 kHz is quite distorted, whilst the steep roll off around 18 kHz
is quite accurately reproduced.
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the measurements, the |comm0n transfer function ( CTF)| (section ), has been

subtracted from them. The absence of the removes not only the common
response component in the HRTFY but also the response of the measurement

system. Figure shows the for all the measured . The roll-off of

the measurement system above approximately 18 kHz can be clearly seen.

Therefore, prior to smoothing, the measured ’ magnitude spectra were
windowed (figure ) to ensure that spectra coefficients are concentrated on
representing the relevant features and not the system response. The win-
dowing was carried out in the log-magnitude domain. A raised cosine window was
generated from 16 kHz up to 18 kHz and, since a roll-off discontinuity exists also
at low frequencies, another window was generated from 300 Hz down to 200 Hz.
Both windows were applied to the log-magnitude spectra to window them
up/down to 0 dB outside of the pass-band and therefore discard the system roll-
offs at low and high frequencies. This means that the magnitude spectra
coefficients are concentrated on representing the relevant features and not

the system response.
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Figure 3.14: Measurement system roll-off at high frequencies in log-magnitude of
measured ERT FY. Vertical lines are at: 16 kHz (solid), 18 kHz (dashed) and 20 kHz
(dotted).
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Figure 3.15: Example of windowing applied to for the listening tests. Window-
ing to 0 dB in the ranges 300 Hz down to 200 Hz and 16 kHz up to 18 kHz (continuous

line) reduces spectral magnitude artefacts due to low frequency and high frequency
roll-offs (dashed line).

Figure compares the mean squared error between smoothed and unsmoothed
, using the new algorithm, between 300 Hz and 16 kHz, i.e. the un-
windowed section, for all measured with and without the windowing de-
scribed above. When retaining 30 coefficients or more there is little difference
between windowing and not windowing the prior to smoothing. However,
between 10 and 20 coefficients, i.e. in the range of the perceptual limit for the
new algorithm suggested by the auditory model, there is a substantial increase

in accuracy afforded by windowing (over 10 dB at some frequencies).

The result confirm that the windowing described above is beneficial. Windowing
was applied prior to smoothing and was implemented for both the new algorithm
and Kulkarni and Colburn’s algorithm. Treating both algorithms similarly in the
final listening test ensured that the perceptual comparison was conducted purely
on the basis of whether the was smoothed on a linear or frequency

scale.

Another change that was made for the listening test was that, rather than using

minimum-phase , linear phase were used. This is because they have

been shown to perform as well as original phase HRTFY and have been shown to
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Figure 3.16: Mean squared error against number of retained coefficients for windowed
(solid line) and non-windowed (dashed line) smoothed HRTFS.

outperform minimum phase |HRTFSI (tKulkarni et al.|, |19991). To generate linear

phase |HRTFS| the IHRTP1 magnitude spectrum is combined with a zero-phase

spectrum and the inverse Fourier transform is taken. The resulting is then

circularly shifted by half the number of samples to create a causal filter that is

symmetric about the centre sample (figure ) and the contralateral in

a pair is then delayed by the frequency-independent hnteraural time differencel

calculated using the cross-correlation technique (see section ) In
the listening tests both the unsmoothed and smoothed HRTFY were converted

to linear phase so that the only difference between them was their magnitude

respoinse.

3.5.3 Test procedure

The aim of psychophysical procedures is to uncover the relationship between
physical stimuli and psychological perception. In psychoacoustics this is the re-

lationship between sound events, the acoustic stimuli that enter the listener’s
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Figure 3.17: Linear phase . Linear phase are causal filters that are sym-

metric about the centre filter tap.

auditory system, and auditory events that they perceive (élauera, i97i i) One

family of psychoacoustic procedures are those that measure the thresholds of
hearing and these procedures can be split broadly into two types of task. The
first are detection tasks that aim to find absolute thresholds of hearing; for exam-
ple, the required level of a sound event to elicit an auditory event. The second are
discrimination tasks that aim to find the difference thresholds of hearing; for ex-

ample, the smallest change in a sound event that elicits a change in the perceived

auditory event (tPulkki and Karjalainen|, bOld). This study is concerned with the

latter. In either case, psychoacoustic threshold tasks are designed to generate a
mapping from a continuous scale representing the probability of responding cor-
rectly at a given stimulus level, to a binary yes/no scale. In discrimination tasks
a “correct” response is generally the ability to pick which stimulus in a set is the
odd one out and commonly the aim is to find the stimulus level at which the
listener can reliably answer correctly. The mapping function in threshold tasks
is known as the psychometric function and approximates to a sigmoid function,
although in reality it is asymptotic to 0% and 100% due to human error (figure
3.18). The aim of these listening tests is to find the level of smoothing
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Figure 3.18: Example psychometric function relating stimulus level to percentage of
correct responses. The dots show individual data points to which the psychometric
function (line) has been fitted. Figure from Leek (2001)

at which a listener can discriminate between a sound filtered with unsmoothed

and a sound filtered with smoothed .

There are a number of aspects to psychophysical procedures, such as a listening
test, and in the following section the taxonomy of Marvit et al| (2003) is used.
A listening test procedure consists of a paradigm and a method. The paradigm
consists of two parts: firstly the mode of stimulus presentation which defines how
many intervals (stimuli) are presented at each step of the procedure (trial) and
what their content is, and secondly the task which defines what the listener must
do when the stimuli are presented. The method also has two parts: the mea-
surement strategy that defines the rules with which stimuli are chosen from trial
to trial and the datum definition which defines how the results are derived from
the stimuli and listener responses. Additionally, the measurement strategy can
be broken down into three rules: (1) the starting rule which defines the stimulus
used in the starting trial, (2) the progression rule which governs what stimulus

is presented next based on previous stimuli and the participant’s corresponding

125



responses and (3) the stopping rule which defines when to stop the procedure.
In this study a four-interval, two-alternative forced choice paradigm was used in

combination with an adaptive 3-down-1-up staircase method.

The method of stimulus presentation for each trial consisted of a series of four
500 ms white noise bursts (with a 20 ms raised cosine fade-in and fade-out)
separated by 500 ms of silence (figure ) The broadband white noise was
generated with a flat magnitude response between 120 Hz and 16 kHz using a
raised cosine roll-off down to 100 Hz and up to 18 kHz, as shown in figure .
The phase response was randomised and the inverse of the combined phase
and magnitude response taken to generate the noise burst. The same white
noise stimulus was used for each trial so that the randomised phase could not
contribute to perceived differences. One of the middle two stimuli was filtered
with the smoothed (from now on referred to as the smoothed stimulus),
the other three were filtered with the unsmoothed (from now on referred
to as the unsmoothed stimulus), giving two possible presentation orders: AABA
and ABAA where A is the unsmoothed stimulus and B is the smoothed stimulus.
This is a four-interval, two-alternative forced choice paradigm and has been used
in a number of prior studies (Bernstein and Trahiotis, 1982; Kulkarni et al}, 1999;
Kulkarni and Colburn, 2004; Shub et al,, 2008); although Bernstein and Trahiotis
referred to it as a “2-cue, 2-interval forced choice”. This paradigm ensures there is

always a reference anchor of an unsmoothed stimulus either side of the smoothed

20ms 20ms

Al A

500ms 500ms

Figure 3.19: Method of stimulus presentation used in the listening test. In each trial
the participant was presented with a series of four 500 ms white noise bursts with 20 ms
raised cosine fade-in and fade-out, separated by 500 ms of silence. One of the middle
two bursts was filtered with the smoothed m whilst the other three were filtered
with the unsmoothed reference | R|, giving two possible presentation orders: AABA
and ABAA.
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Figure 3.20: Defined frequency response of the white noise used in the listening tests.

one, which was found, informally, to aid reliable detection of the odd one out.
As the aim of this study was to identify any discernible difference between the
smoothed and unsmoothed stimulus, the listener’s task was simply to pick “Which
of the middle two samples is the odd one out?”. If they were unsure they were
instructed to guess. Using a broad question such as this should avoid bias towards

a particular difference such as timbre or perceived direction. The listening test

was created in MATLAB — see figure M for the Eraphical user interface ( GUI)|.

4| final_test = XS

Run

‘ PLAY ‘ 1/3

Which of the middle two samples is the odd one out?

A A

If you cannot tell, please guess; you must choose one.

Figure 3.21: MATLAB GUI created for the listening test. The participant was pre-
sented with four bursts of —ﬁltered white noise (three filtered with unsmoothed
HRTF; and one with a smoothed ) and asked to pick which of the middle two
bursts was the odd one out. If they were unsure they were instructed to guess.
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The four-interval, two-alternative forced choice paradigm was combined with an
adaptive staircase method (Levitt), 1971) in a similar manner to Shub et al| (2008).
However, the staircase method used in this study had a 3-down-1-up progression
rule, rather than the 2-down-1-up used by Shub et al| (2008), which means that
the listener had to correctly identify the odd one out three times in succession for
the smoothing level to be decreased (number of coefficients increased), whereas
the level of smoothing was increased (number of coefficients decreased) after only
one incorrect response. The 3-down-1-up method targets the 79% level of the
psychometric function, that is, the level at which the listener answers correctly
79% of the time. This is compared to the 70% level for 2-down-1-up and only
50% for 1-down-1-up (Levitt, 1971). In staircase methods a reversal is defined
as a change from correct to incorrect response, or vice versa, a run is a series
of successive correct or incorrect responses between reversals and the track is all
the responses from the starting trial to the finishing trial (Marvit et al), 2003).
Figure shows a simulated track of responses that follows a 3-down-1-up
progression rule. Red '+' signs indicate correct responses and yellow 'o' signs
indicate incorrect responses. For this simulation the response was randomised for
15 coeflicients or more and always correct for less than 15 coefficients, a significant
simplification of actual subjective responses, but adequate for demonstrating how

a track might look.

The number of coefficients for the starting trial was set to two; i.e. the maximum
level of smoothing, aside from retaining just the level offset of the . This
ensured that the odd one out was clearly audible and that the participant was
engaged from the beginning of the test. The coefficient step size between each
trial was not constant, rather it was decreased as the test progressed; a common
approach in adaptive methods (Kidd et al), [1989; Alves-Pinto and Lopez-Poveda,
2005; Shepherd and Hautus, 2007; Shub et al;, 2008). Initially the step size was
set at five coefficients, until the first incorrect response, when it was decreased
to three, then two on the next reversal and finally one. The test finished after

15 reversals at a step size of one, giving 16 runs at the smallest step size. The
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Figure 3.22: Simulated example of the adaptive 3-down-1-up procedure used in listening
test. Responses were randomised for 15 coefficients and above and always correct below.
Red '+' signs indicate correct responses, yellow 'o' signs indicate incorrect responses.
The dashed line indicates the final level calculated as the average of the midpoints of
the last eight runs, rounded up to the nearest integer.

datum definition was to calculate the final level of smoothing as the average of

the midpoints of the last eight runs, rounded up to the nearest integer value.

The same three directions were tested for both tKulkarni and Colburn|’s algorithm

and the proposed algorithm: (0°azimuth, 20°elevation), (90°azimuth, 0°elevation)
and (-30°azimuth, -10°elevation). These directions were chosen to test a range of
azimuths and elevations within the measured ranges whilst keeping the number
of listening test sessions from escalating. For the listening test the headphones
(Beyerdynamic DT990s) were driven by a MOTU Ultralite-mk3 audio interface
with its output level calibrated to 70 dBSPL A-weighted, using unfiltered white
noise. The calibration was carried out with the headphones placed on a dummy
head and the probe microphone of a sound pressure level meter placed in the ear
canal of the dummy head. After filtering with this resulted in an average
presentation level of 65 dBSPL A-weighted, which was found to be a comfortable
listening level and falls within the range of presentation levels for listening tests

as reported by () Informal pilot tests indicated that each track took
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approximately 15-20 minutes to finish and that after about 30 minutes of testing,
i.e. half way through the second track, ear fatigue set in and the test became
increasingly difficult. Therefore to ensure that this did not happen, the testing
was carried out in six separate test sessions; one for each direction-algorithm
combination. The order in which the direction-algorithm combination sessions

were carried out was randomised between subjects.

Eight unpaid participants from the Audio Lab at the University of York took part
in the listening tests. All reported normal hearing and all had previous experience
in listening tests. They each had their own measured and processed, as
outlined in section , and the listening tests took place in the listening space
of the Audio Lab (average background noise level of 42 dBA). The participants
were not disturbed for the duration of each session but they were allowed to take

breaks whenever they wished.

3.5.4 Results

During the listening tests, every time the participant responded, and after mul-
tiple checks for correct responses, the current number of coefficients was stored.
This resulted in a staircase vector of values as shown in figure . The fi-
nal number of coefficients (dashed black line) was taken as the average of the
midpoints of the last eight runs (blue 'x's), rounded up to the nearest integer.
This resulted in two sets of 24 values (three directions x eight participants), one
for each smoothing algorithm. These values represent the number of coefficients
that it is necessary to retain when smoothing using the corresponding
algorithms, in order that white noise filtered with the smoothed can be
discriminated 79% of the time from white noise filtered with unaltered .

Firstly a one-sample Kolmogorov-Smirnov test was carried out on each data set to
test for normal distributions. The two data sets were pre-processed by subtract-
ing their means and dividing by their standard deviations and the Kolmogorov-

Smirnov test was then carried out on this pre-processed data. The one-sample
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Figure 3.23: Exemplar listening test run. The portion of the track at the smallest step
size is highlighted red whilst all the reversals at the smallest step size are marked as
black '+' signs. Those in black circles represent the bounds of the last eight runs. The
final smoothing level (black dashed line) was calculated as the average of the midpoints
(blue 'x's) of the last eight runs, rounded up to the nearest integer.

Kolmogorov-Smirnov test tests the null-hypothesis that the data is from a nor-

mal distribution with a given mean and standard deviation. The p-value for

tKulkarni and Colburnl’s algorithm was 0.0477 whilst the p-value for the new al-

gorithm was 0.2330, indicating that the null hypothesis could not be rejected for

the new algorithm at the 5% significance level but was rejected for
’s algorithm. Figure shows comparisons of the empirical

|distribution functions ( CDFs)l and standard normal for the results of both

algorithms. It can be seen that the empirical results for the new algorithm match

the normal distribution fairly well, whilst the empirical results of

’s algorithm do not. Since the one-sample Kolmogorov-Smirnov test in-

dicated that the results of tKulkarni and Colburnl’s algorithm do not come from

a normal distribution, non-parametric statistical tests, which require no assump-
tions about the probability distribution of the data, will be carried out, rather

than traditional parametric statistical tests, which assume the data is from a
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(a) New algorithm (b) Kulkarni and Colburn’s algorithm

Figure 3.24: Comparison of empirical (solid blue line) and standard normal (dashed
red line) cumulative distribution functions{ (bDFsh for the listening test results of (a)
the new algorithm and (b) Kulkarni and Colburn’s algorithm.

normal distribution.

To determine whether the two data sets: namely, the results of Kulkarni and
Colburn’s algorithm and the results of the new algorithm, came from the same
distribution, a two-sample Kolmogorov-Smirnov test was carried out. A p-value
of 0.0029 indicates that the null hypothesis, that the two data sets come from the
same continuous distribution, can be rejected. Therefore a two-sided Wilcoxon
rank sum test was carried out on the results for Kulkarni and Colburn’s algorithm
and the new algorithm. A p-value of 0.0010 indicates that the null hypothesis that
the distributions for the two algorithms have equal medians can also be rejected
and therefore there is a difference in the median number of coefficients required
for each algorithm. Furthermore a left-tailed rank sum test gave a p-value of
5.2220e-04, indicating that the median number of coefficients required for the
new algorithm is lower than the median for Kulkarni and Colburn’s algorithm.
This can be seen in figure , which shows box plots of the results for both the
new smoothing algorithm and Kulkarni and Colburn’s algorithm. The median
number of coefficients for the new algorithm is 17, compared to 22 for Kulkarni

and Colburn’s algorithm.

It is noteworthy that the two extreme outliers in the results of Kulkarni and

Colburn’s algorithm (marked as red '+'s) are from different participants, but for
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Figure 3.25: Box plot of the listening test results for both smoothing algorithms
tested. The red lines represent the median result for each algorithm, the black 'o's
the mean and the top and bottom of the boxes the 75" and 25 respectively. Red
'+'s indicate outliers and the whiskers extend to the most extreme data points not
considered outliers.

the same direction: (0°azimuth, 20°elevation). Figure 3.2 shows the results track
for one of the two participants. The participant answered incorrectly a number of
times at smoothing levels greater, i.e. fewer coefficients, than the finishing level,
suggesting that the number of coefficients at the final level might be too high.
However, there is also a series of what would have been, after triple checking, 24
correct responses leading up to the final threshold which is unlikely to happen
by chance if the participant were guessing. Furthermore, figure shows the
squared error between the unsmoothed of the left ear for the direction

(0°azimuth, 20°elevation) and the corresponding smoothed using
and Colburn’s algorithm with 50 coefficients retained for all participants. This

is below the indicated final level for both the outlier participants, i.e. the error
should be imperceptible, and it can be seen that even so, the outliers (highlighted
red and blue) have much larger errors than the other participants; around 500

Hz for the blue curve and 1 kHz for the red. So it is possible that the outlier
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Fiiure 3.26: Listening test results track for one of the outliers in the results of

and Colburn’s algorithm.

results are correct and not anomalous. Therefore they have been retained in for

the following analyses.

As a measure of difference between the two data sets the |Vargha and Delaneyl

() A measure was calculated. In this case the A measure indicates, on aver-

age, how often tKulkarni and Colburnl’s algorithm required more coefficients than

the new algorithm. A value of 0.5 would indicate equal performance, a value

less than 0.5 would indicate that on average tKulkarni and Colburnl’s required

fewer coefficients and a value greater than 0.5 would indicate that on average

the new algorithm required fewer coefficients. The “size” of the effect increases

the further the value is from 0.5. I\/argha and Delaneyl (|200d) classify a “small”

effect as an A value of 0.56, a “medium” effect as a value of 0.64 and a “large”

effect as a value of 0.71. The A measure for the two data sets in this study was

0.7760, indicating a large improvement of the new algorithm over
’s algorithm.
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Figure 3.27: Squared error between the smoothed and unsmoothed ﬁRTFa retaining
50 coefficients for the direction (0°azimuth, 20°elevation) using lKulkarni and Colburn’s
algorithm. Each of the curves represents the error for an individual listener’s HRTES.
The curves for the two outliers in the listening test results are highlighted red and blue.
It can be seen that the red curve shows significantly higher error levels between 1 and
2 kHz, whilst the blue curve shows significantly higher error below 1 kHz.

Directions
. . (-30°,-20°) vs (-30°,-20°) vs (0°,20°) vs
Smoothing Algorithm (0°.20°) (90°,0°) (90°,0°)
Kulkarni and Colburn 0.0308 0.1963 0.0093
New algorithm 0.3899 0.1520 0.2681

Table 3.1: P-values for two-sided Wilcoxon rank sum tests carried out on the listening
test results for different directions.

To investigate the influence of direction on the results, two-sided Wilcoxon rank
sum tests were carried out on the three possible pairs of directions for each of
the algorithms and the p-values are reported in table @ The null hypothesis of
equal medians could not be rejected for any of the pairs of directions for the new

algorithm, indicating that direction has no effect on the required number of co-

efficients for the new algorithm. However, for IKulkarni and Colburnl’s algorithm

the null hypothesis of equal medians was rejected for two of the three pairs of

directions, indicating that direction does have an effect on the number of coeffi-
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Figure 3.28: Box plot of listening test results for lKulkarni and Colburnl’s algorithm
across the three directions tested.
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Figure 3.29: Box plot of listening test results for the new algorithm across the three
directions tested.
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cients required for their algorithm. Figure shows boxplots of the results of
Kulkarni and Colburn’s algorithm for the three directions tested. It can be seen
that the results for (0°azimuth, 20°elevation) differ dramatically from the other
two directions as indicated by the rank sum test p-values. This is due to the two
outliers previously identified. Conversely, as shown in figure , there is little

variation between the three directions in the results for the new algorithm.

3.6 Summary

This chapter has presented a new, perceptually-motivated smoothing algo-
rithm that allows perceptually transparent simplification of the complex spectral
features of . The algorithm smooths by discarding Fourier coefficients used
in the synthesis of the magnitude spectrum based on an m criterion,
rather than on a linear frequency scale. This increases the perceptually salient
information retained during progressive simplification of the magnitude
spectrum. The smoothing algorithm has been evaluated using both an auditory

localisation model and subjective listening tests.

The perceptual results reported by Kulkarni and Colburn (1998) formed the
basis of an objective evaluation of the smoothing algorithm using the
(@) auditory localisation model of Baumgartner et al] (2013). The results
indicate that the proposed smoothing algorithm strongly outperforms Kulkarni
and Colburn’s (1998) algorithm. The auditory model suggests that an equivalent
level of localisation performance can be achieved by the new algorithm using
approximately half the number of Fourier coefficients. Whilst the listening test
results also support the hypothesis that the new algorithm outperforms Kulkarni
and Colburn’s algorithm, using more sensitive perceptual discrimination listening
tests, the advantage is less marked. The results of the listening tests suggest that
more spectral coefficients are required than was predicted by the results of the

model.
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The dependence of Kulkarni and Colburn’s listening test results on direction
is of particular interest. For the direction (0°azimuth, 20°elevation) the new
algorithm requires a median value of only 18 coefficients to perform similarly to
Kulkarni and Colburn’s algorithm using 30 coefficients. This direction is at the
largest elevation, where spectral cues may be expected to increase in importance.
The better performance of the new algorithm may, therefore, be attributable
to its inherent ability to support perceptually salient spectral detail using fewer

coefficients.

Figures and indicate that the closer the source direction is to the hor-
izontal plane, the more similar the performance of the two algorithms. This
again supports the notion that spectral details reduce in importance close to the

horizontal plane.

One possible reason for the difference in results between the auditory model
simulations and the listening test results is that the model by Baumgartner et al.
(2013) compared the two algorithms at elevations across the whole of each @
and the results reported represent the average across all elevations and all . It
is therefore possible that the results from the model are dominated by elevations
greater than those tested in the listening tests, since -10° to +20° represents a
very small portion of a sagittal plane. The results of the listening test suggest
that the performance differs more at elevations further from the horizontal plane,
and so this may explain why the auditory model indicated a larger difference in

performance.

Further investigation is needed to establish the degree of direction independence
of the new smoothing algorithm, as suggested by these results. The level of
acceptable smoothing indicated by this study may be used as the starting point for
the adaptive staircase procedure used in the listening tests, which should reduce
the duration of each run, thus allowing the testing of more directions. However,
in future listening tests it might be advisable to use pink noise, rather than

white noise. This is because pink noise has equal power per constant percentage
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bandwidth, rather than equal power across all frequencies. Therefore, to the
human ear, which as highlighted in this chapter operates on an approximately
logarithmic frequency scale, pink noise sounds more evenly distributed across all
frequencies. The additional high frequency energy in white noise makes it more
audible than the high frequency content in pink noise, leading to it sounding
“hissy”. Therefore, it is possible that the white noise used in this study may have
caused the subjects to focus on differences at high frequencies, whereas using pink

noise may allow them to differentiate equally across all frequencies.

Despite the additional work identified above, being able to apply a fixed degree of
smoothing across an entire , as suggested by these results, is a potentially

valuable simplification which will assist with the wider aims of this research.
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Chapter 4

Morphoacoustic perturbation

analysis (MPA])

Any sufficiently advanced
technology is indistinguishable

from magic.

ARTHUR C. CLARKE

This chapter presents developments made in lmorphoacoustic perturbation analy—l

(Thorpe, 2009; Tew et all, 2012). @ is a powerful tool for studying

the morphological origin of thead—related transfer function ( HRTF)| features. How-

ever, first generation suffered from a number of weaknesses, mainly due to
how the harmonic deformations were applied to the head mesh. In this chapter
new methods for mapping head meshes to a sphere for the application of spheri-
cal surface harmonics are discussed, together with novel techniques for optimising
the spherical head mesh in order to minimise distortion of the surface harmonics

when mapped back to the head mesh.
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4.1 Principles of MPA

|Morphoacoustic perturbation analysisl (lMPAl) was developed by ()

and reported by ITeW et al.l (bOlj) as a tool for studying the morphological origin of
features. The principles of are to apply harmonic deformations to a

mesh description of the human head and use acoustic simulations to calculate the

for both the template head mesh and each of the harmonically deformed

head meshes.

This results in a database of the harmonic deformations and their correspond-
ing A (the acoustic pressure changes introduced by application of each
morphological shape deformation). From the database, the effect of an arbitrary
shape perturbation can be investigated by appropriate weighting and summation

of harmonic deformations and their corresponding AHRTFS.

The database can also be used in reverse to find the morphology that introduces

particular changes in the pressures. This can, for example, be used to

Figure 4.1: Radial slicing of the mesh head used in first generation Lnorphoacoustid
berturbation analysisl (MPA) to create slice contours for the application of harmonic
deformations. The dotted line shows an idealised cross-slice contour. After

(2012).
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investigate the morphology responsible for controlling the centre frequency of an

notch or peak (rfew et alL bOlj) as explained in section .

First generation uses “elliptic surface harmonic deformations” to perturb

the surface of the tKnowles Electronics manikin for acoustic research (KEMAR)|

mesh. The first step in applying these harmonic deformations is the same as the

earlier work of lHetherington and Tewl (|20()Sa|,) and consists of radially slicing

the head mesh (figure @) around an axis that passes through the concha of
each pinna. The axis must be placed carefully so that no disconnected “island”

contours, such as those shown in figure @, are generated.

After the head mesh is radially sliced, the S slice contours are uniformly sampled
at P points. Figure @ shows an example of the radial slicing axes for S = 6
slices and the resulting six slice contours, uniformly sampled at P = 8 points. It
should be noted that first generation assumed symmetry of the head and so
each slice contour only traversed one half of the head. Of particular note here is
that the resulting contours vary in length due to the differing morphology of the
pinnae, and therefore the locations of the sampling points, indicated by 'x's in

figure @, vary greatly from contour to contour. For example, the fourth sample

Figure 4.2: Example “island” contours from incorrect placement of radial slicing axis
in first generation .
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(e) (f) (e)

Figure 4.3: Example of radial slicing axes (a) and resulting S = 6 slice contours (b)—
(g), sampled at P = 8 uniformly spaced points (black 'x's). The fourth sample point
of each slice has been highlighted red to show the drift across a surface feature of the
head mesh from one slice to another.
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point from the top of each contour (highlighted red to aid visualisation) moves
from the edge of the helix in contour (b) to the rear of the pinna in contour (c),
then back to the edge of the helix in contour (d), before moving to the rear wall of
the concha in contour (e). This results in distortion of the harmonic deformations
across the surface of the head mesh, which is a significant limitation of the slicing

approach, and will be discussed further in section @

After radial slicing and sampling of the S slice contours at P points, each con-

tour is mapped to a fcwo—dimensional (2D)| surface on the z-y plane in a

Idimensional (3D)| cartesian coordinate system (figure @) where the p*™ point of

the s slice contour is mapped to the point:

(z,y,2) = (s,p,0) (4.1)

This results in a P x S surface, as shown in figure , to which small displace-
ments, q(s,p) (0<s<5—1,0<p< P—1),are applied to displace the sample
points along the z-axis of Cartesian space. The change in z coordinate is then
mapped back to the slice contour to perturb the surface perpendicularly to the

contour.

} @
(a) (b)

Figure 4.4: Exemplar mapping of a slice contour to the @ rectangular plane for ap-
plication of harmmonic deformations. The p'* point of the s slice contour is mapped
to the point (z,y,2) = (s,p,0) on the plane.
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bz

u
(b) (c)
Figure 4.5: Application of in-slice and cross-slice harmonics to an exemplar @ plane.
(a) The resulting plane from S = 6 slice contours each sampled at P = 8 points.

(b) Exemplar cross-slice harmonic deformation u. (¢) Exemplar in-slice harmonic de-
formation v.

The displacements, ¢(s,p), are synthesised and analysed via application of the

@ Fourier transform:

S—1P-1

als,p) =D Y Qu ) (E+F) (42)

u=0 v=0

where v (0 <u < S —1)and v (0 <v < P —1) are the cross-slice (figure )
and in-slice (figure ) harmonic numbers, respectively. The surface harmonic

coefficients Q(u,v) are given by:

o;
"U

! e
-5 Z Z ) (4.3)

where ¢(s, p) and Q(u,v) form a Fourier transform pair.

The exponential form of the Fourier transform in equation @ can be separated

into real (cosine) and imaginary (sine) parts:

353 1Q COS[W(%—’—%)] (4.4)
u=0 v=0

n 3 1jQ(u,v) sin [27? (% + %)] (4.5)
u=0 v=0
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and since the deformations, ¢(u,v), are real, by exploiting Hermitian symmetry

and making the following substitutions:

Au,v = Q(u7 U) + Q(U, U)* = 2’@(“7 ’U)| cos ZQ(U, U) (46)
Buw =  (@(1,0) — Qu,0)") = —20Q(u, )| sin £Q(u,v) (A7)

equation Q becomes:

S/2—1P/2—1

=> Y {chos [27r(5 +2js>] + B,,sin [27r(5 ﬂj)]}

u=0 v=0

Finally a new variable is introduced:

Ay forc =0

C(o,u,v) = (4.9)

B, foroc=1

as per the |differential pressure synthesis (DPS)| formulation of Tao et al{ (2003b).

This allows the change in pressure introduced by an arbitrary perturbation to be

expressed as:

0,0, f %Z > Z aai@‘sz (0, u,v) (4.10)

where 0 and ¢ are the azimuth and elevation, respectively, of a pressure source
relative to the head, and f is the acoustic frequency. This approximation is only
valid if the perturbations ¢(s,p) are small enough for the relationship between
the amplitude of the shape variation and the corresponding pressure variation
to be substantially linear. Tew et al| (2012) suggest a maximum contour dis-
placement, ¢nqz, of 0.1 mm. These pressure changes are grouped into a vector,

Ap(0, ¢,u,v,0), termed the A (“delta ”), representing the changes

over the frequency range of interest.

tBoundary element method ( BEM)| simulations are run for the unperturbed head
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mesh, as well as head meshes to which surface harmonic deformations c(s, p, u, v, 0):

C(s,p,u,v, O) = {max COS |:27T <% + %)} (411)
C(S7p7u7va 1) = 4max sin |:27T (% + %)] (412)

for all combinations of s, p, u, v and o, have been applied. The resulting AHRTFS
and the associated harmonic deformations, c¢(s,p,u,v,0), constitute the

database.

Once the database is complete, the acoustic change introduced by arbitrary small
perturbations of the head mesh can be calculated. This is done by first represent-
ing the arbitrary perturbation as a weighted sum of the harmonic deformations,

c(s,p,u,v,0), and then calculating the corresponding weighted sum of their rel-

ative A.

Alternatively the database can be used in reverse to investigate the morphological
origin of features. Figure @ shows an notch investigated using
by Tew et alf (2012). An increase in the centre frequency of the notch
would result in an increase in pressure on the low frequency slope of the notch

and a decrease in pressure on the high frequency slope, as indicated by the green

1.2

0.8r

0.67

0.4f

0.2f

Lin. abs. pressure (arb. units)

8.7 0.8 0.9 1 1.1 1.2 1.3

x 10*
Frequency (Hz)

Figure 4.6: Notch investigated by Tew et al! (2012) u. The black line shows

the original , the blue dashed line the template HRTEF| plus the weighted sum of
the acoustic changes introduced by the harmonic deformations and the green arrows
indicate the morphing vector m. Image from Tew et al) (2012).
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arrows. These pressure changes are defined in the so-called morphing vector, m,

and the dot product of m with the A is taken to create a set of weights:
w(97¢7uav70) =m:- Ap(97¢7u77}70-) (413)

The weights are used to sum the harmonic deformations to create a displacement
of the template mesh at each of the nodes:

1 S/2-1P/2-1
w(s,p) = Z w(8, ¢, u,v,0)c(s,p,u,v,0) (4.14)

The displacements represent how much a change in morphology at that node
contributes to the specified change in the spectrum. The surface of the
pinna can then be coloured according to the magnitude of u as shown in figure
E?l, with warm colours representing displacements outwards and cool colours

displacements inwards with respect to the surface of the template mesh.

W.IlllIIIIIIII|IIIIIIIII|IIIIII
N
(&)

)
O
O,

Figure 4.7: Pinna sensitivity map for the notch investigated by ITew et al.l (fZOlj) shown
in figure .. Warm colours represent outward movement of the pinna surface in the
generation of the notch, whilst cold colours indicate inward movement. Image from

ITeW et alJ (bOlﬂ)
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4.2 Limitations of previous work

A strength of the radial slicing approach used in first generation , and out-
lined in the previous section, is that slices are concentrated in the pinna, making
it inherently easy to achieve relatively high resolution in this region. This is
beneficial because the pinna is the principal means of creating spectral spatial
cues and therefore the area of greatest interest for studying the spectral origin
of cues using @ High resolution in the pinnae occurs naturally in the
cross-slice deformations when the axis of rotation is placed in the conchae, but
radial slicing provides no equivalent improvement in resolution in the radial (in-
slice) direction. Instead, greater radial resolution is achieved by use of nonlinear
sampling of the contours, with higher sampling rates concentrated in the pinna

regions.

The key limitation of the slicing approach, however, is the way in which contours
vary in length from one slice to another due to the complex morphology of the
pinnae, as briefly mentioned in section @ For example the horizontal contour
that passes through the tragus and the back of the pinna is much shorter than
the vertical contour that passes through the lobule and the top of the pinna.
Therefore, rather than the idealised cross-slice contour shown in figure @, real
cross-slice contours appear more like that shown in figure @ This may become
problematic when the lengths of neighbouring contours differ substantially. When
two such contours are uniformly sampled, two points close to each other on the
@ surface may not be close in @ space. Figure @ shows a visualisation of
this problem. The two solid lines show two potential radial slicing planes and
the coloured dots represent sampling points on the two corresponding contours
(the two planes have been placed further apart than neighbouring contours would
normally be in order to aid visualisation). The green highlighted pair of sample
points have identical p index values and so are adjacent on the @ S-P surface
(see figure @) They also lie close to each other on the head mesh surface. This

leads to a direct correspondence between the wavelength of spatial deformations
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Figure 4.8: Example of a real cross-slice contour.

applied in the S-P plane and the wavelength of these deformations on the head
mesh surface. The situation with the pair of red points is different, however.
These also have identical p index values but, due to differences in the contour
lengths of these two slices, they are not adjacent on the head mesh surface..
This leads to a “sheering” effect when the harmonic deformations are mapped
to the head and results in a wide variation in deformation wavelength on the
head surface for a given harmonic number. Therefore many more harmonics are
required to achieve satisfactory spatial and acoustic resolution over the entire
head surface. In addition, the harmonic deformations on the surface of the head

mesh suffer distortions as shown in figure .

Applying @ normal projections of a set of @ harmonic deformations to the
surface mesh would, in principle, avoid the problems of sheer, slicing and island
creation. In effect, independent perturbation of each vertex within a volume
containing the surface mesh may be controlled using three sets of @ perturbation
surfaces in the z-y, y-z and z-z planes, respectively. A vertex can be displaced
in any @ direction by means of a weighted sum of the @ perturbations. The

projection of the @ movement in the direction of the surface normal in this
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Figure 4.9: Visualisation of the main limitation of first generation @ The straight
lines represent two slicing axes. The blue dot lies at the origin of the slicing axes
and the black circles represent equally-spaced sample points along each slice contour.
The green highlighted points show an example of where sample points that are close
together in @ space are also close together in the S-P @ plane (figure @) The
red highlighted sample points show an example where sheering has occurred. Here,
adjacent points on the S-P surface (i.e. with the same p index value on neighbouring
slices) are not adjacent on the original head mesh surface.

151



Figure 4.10: Exemplar harmonic deformations on the surface of the head mesh as
generated by first generation . The sheering effect due to the variation in contour
length can be seen in the distortions of the harmonic deformations in (b): ideally the
harmonic deformations would form a perfect spiral. Images from Thorpe (2009).

region is used to apply a deformation to the vertex.

Although this approach is attractive for the reasons outlined above, it is fatally
computationally intensive. This increase in computation is firstly due to the ex-
tra dimensionality of the harmonics required, compared to @ surface harmonic
deformations. Secondly, the computational burden is exacerbated by the nature
of the pinna surface, which folds back on itself to produce a thin lamina (the
cartilage). For clarity, this phenomenon is visualised in one dimension in figure
. @ requires the ability to apply arbitrary displacements to the surface of
the head mesh (figure ) These are generated by means of weighted sums of
orthogonal functions. If the surface is wrapped back on itself (figure ), such
as occurs in the complex morphology of the pinna, then when the deformations
are @ and applied over the surface of the mesh, the displacements wrap with
the surface (figure ) This creates the desired structure of harmonic defor-
mations. However, when @ deformations are applied (figure ) then, due to
the close proximity of the two regions of the surface in @ space, extremely high

orders of @ harmonics would be required to produce arbitrarily different defor-
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(b)
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(c)
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(d)

Figure 4.11: Visualisation of the problem with applying deformations to the head
mesh in BD|. Consider a cross-section of a flat surface (a). The fundamental principle of

is to apply arbitrary deformations to the surface of the mesh (b) using weighted
sums of orthogonal functions. Now consider when the surface is wrapped back on
itself (c). If the harmonic deformations are across the surface then they also wrap
with the surface (d). However, applying harmonic deformations will, in general,
result in (e), where the deformations on each side of the laminar are similar due to
their proximity. It would therefore require extremely high order harmonics to produce
different deformations on each side of the surface.

mations on either side of the lamina. This would increase the size of the
database to a degree which would make it impossible to create in a reasonable

time.

A novel contribution of the work reported in this chapter is the development of
a method for mapping the vertices of a head mesh to the surface of a sphere
whereupon surface spherical harmonic deformations are applied. This inherently
eliminates sheering and, by also keeping the harmonic deformations in a @ do-
main, holds the computational load in check. Furthermore, the distribution of the
head mesh vertices on the surface of the sphere can be optimised to encourage a
close relationship between harmonic number and acoustic resolution. This estab-
lishes a simple trade-off between M database size and the acoustic resolution

achievable.

4.3 Mesh description of head and pinnae

Preliminary work on improvements to m was carried out on the head meshes

in the Bydney—York morphological and recording of ears database (SYMAREj




Hatabase)| (bin et al.|, b013|), which include meshes valid for maximum acoustic

frequencies of 4, 8 12, 16 and 20 kHz. However, the final database was generated
for a head-only mesh. This is because the is designed to rep-
resent, in some sense, the average human head and torso morphology (
|and Sachsl, |197d), compared to the individual meshes of the BYMARE databasej.
Furthermore is readily available for verification and extension of the
results of this study. The mesh was generated from komputer aidedl
data of the G.R.A.S. ﬂ and the mesh was processed
and optimised for simulations as outlined in |Y0ung et alJ (}2016|) The head
of the was separated from the torso and the neck was rounded in a simi-

lar manner to the head-only meshes of the BYMARE databasel. Surface rounding

reduces the acoustic artefacts which would be caused by diffraction at the sharp
edges of a truncated neck. Figure shows the head mesh used to generate the
database. A widely applied guideline for the boundary element method states

that the length of no mesh edge should exceed one sixth of the acoustic wave-

length at the highest frequency of analysis (tKatzl, lZOOlaL; tKahana and Nelson|,
, ) On this basis the mesh adopted in this work is valid for simulation

by the for frequencies up to 20 kHz.

The mesh M € R? is described topologically by a set of n vertices V, m triangular
faces F and 3m edges £. Topologically the vertices V are an abstract set of indices:
V=A{1,2,...,n} (4.15)

and geometrically each vertex is defined by a triplet of Cartesian coordinates in

@ space:

Z; Z;
V=w)r = |y , g | €R? (4.16)
zZi ) Zi

https://wuw.gras.dk/products/head-torso-simulators-kemar/
kemar-non-configured/product/749-45bc
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Figure 4.12: KEMAR]| head-only mesh used for @ database generation. The edges
of the truncated neck have been rounded to minimise acoustic diffraction effects.

The faces F are triplets of vertex indices:
F=()r, [ieVxVxV (4.17)
and the edges £ are pairs of vertex indices:
E=(e)m, e €V xV (4.18)

For a correctly oriented mesh, i.e. all the surface normals point in the same
direction with respect to the mesh surface, the set of edges is assumed to be
symmetric:

(i,7) € E <= (j,1) €& (4.19)

This means that each pair of vertex indices appears in the edge matrix twice:
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once with the vertex indices in one order and once in reverse. This creates an

additional condition that:

(i,5,k) € F < (i,§)(j,k)(k,i) € € (4.20)

and it is further assumed that there are no isolated edges:

V(i,5) €&, 3Tk, (i,5,k) € F (4.21)

4.4 [Path length relaxation (PLR!)) mapping method

The process of mapping the head and pinnae mesh onto a sphere is
non-trivial, primarily due to the complex folds and cavities present in the pinnae.
Not only must the topology of the mesh be preserved, but the original length
of each edge should be disturbed as little as possible during mapping, so as to
maintain a close relationship between harmonic deformation number and the

final acoustic resolution of . In this section we describe the development of

a novel technique termed “[path length relaxation (PLR)|” for addressing these

requirements.

In m mapping, each vertex in the head mesh is mapped to an azimuthal angle
¢ and an elevation angle # in the spherical coordinate system commonly used in
mathematics. The azimuthal angle ¢ is the angle in the x-y plane, measured in a
right-hand sense from the z-axis to the point of intersection of the perpendicular
from the point P. The elevation angle 6 is the positive angle between the z axis

and the line OP, as shown in figure .

Section describes the mapping of the azimuthal angle ¢ for each vertex. It
is the angle by which the z-y plane must be rotated about the y-axis to make it

intersect with the vertex in question. The mapping of the elevation angle 6 for
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Figure 4.13: Spherical polar coordinate system used for mapping the head mesh vertices
onto the unit sphere.

each vertex, as reported in section , is based on the distance travelled across
the surface of the head mesh from a specified origin in the pinna to the vertex in
question. This can be visualised by moving the pinna origin to the “north pole”
on the sphere; then the azimuthal angle on the sphere is simply the azimuthal
angle of the vertex in the head mesh, and the elevation angle is based on the

distance travelled downwards across the surface of the mesh to reach the vertex
(figure )

This is a natural adaptation of the slicing method of [Thorpe (2009) and Tew et al.
(2012) but avoids slicing and resampling the head mesh; each vertex is mapped
directly to the surface of the sphere. However, it is still prone to unequal path
lengths for neighbouring points due to sudden changes in morphology along adja-
cent paths. Therefore section covers development of a “force minimisation”

approach to reduce the distortion of the edge lengths in the spherical point set.

Finally, whilst works well for the low resolution (4 kHz) BYMARE databas

mesh used to expedite development of the technique, section details limita-

tions found when extending it to full resolution head meshes.
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Figure 4.14: Visualisation of azimuthal ¢ and elevation 6 angles used in path len

Irelaxatioﬂ (IPLRI) mapping.




4.4.1 Azimuthal angle ¢ mapping

The mapping of the azimuthal angle ¢ for is simply a standard cartesian to

polar coordinate conversion but with the y and z coordinates interchanged:

pi = tan”! (Z—) (4.22)

X

where i is the index of the vertex being mapped. The azimuthal angle is therefore

the effective rotation of the z-y plane about the y-axis to intersect the vertex in

question (figure )
Z

~/

Figure 4.15: Visualisation of mapping of azimuthal angle .

159



Algorithm 4.1 Pseudocode of algorithm for calculating the distance used to
calculate the elevation angle 6 for a given vertex.

1: calculate equation of vertex plane

2: set currentFace to origin face

3: for all edges of currentFace do

4 calculate intersection point of vertex plane and edge line

5 check whether intersection point lies within bounds of edge

6: end for

7: find intersection point in correct direction based on vertexr angle ¢
8: update currentPoint

9: add distance from origin to currentPoint to dist

10: while currentPoint # vertex do

11: find other face that shares edge that currentPoint lies on

12: update currentFace

13: for all edges of currentFace do

14: calculate intersection point of vertex plane and edge line

15: check whether intersection point lies within bounds of edge

16: end for

17: update currentPoint to intersection point that is not currentPoint
18: add distance moved to dist

19: end while

4.4.2 Elevation angle § mapping

For the elevation angle @ is calculated using the path length from an origin
point on the pinna, along the surface of the head mesh, to the vertex being
mapped. Note that, rather than using the shortest (geodesic) distance, this is
the length of the contour created by the intersection of the rotated z-y plane
(rotated by azimuth angle @, to intersect the vertex in question) with the surface

of the mesh.

The algorithm for calculating this distance for a given vertex is given in algorithm
@. In line H the process for finding the first intersection point in the correct
direction is to calculate the vector v, from the origin to each of the intersection
points and choose the correct intersection point based on the following criteria:
if ¢ == 0 then
choose intersection point for which the x component of v, is positive
else if o == 7 then

choose intersection point for which the x component of v, is negative

160



else if 0 < ¢ < 7 then
choose intersection point for which the z component of v, is positive
else

choose intersection point for which the z component of v, is negative

end if

Figure shows an exemplar path used for calculating this distance for a given
vertex (indicated by [J) on an arbitrary mesh. The origin point is marked with
(), the path is indicated by the dashed line, the vertex’s plane is outlined by a
dotted line and the intermediate intersection points with face edges are marked

using xs.

To calculate the intersection points of the vertex plane and a face’s edges, the
equation of the rotated x-y plane is required. The general form of the equation

of a plane in @-space is:
ar+by+cz+d=0 (4.23)

where the constants a, b and ¢ define the vector normal to the plane n and, once

Figure 4.16: Exemplar path used for mapping elevation angle 6 for a given vertex. ()
origin, --- path, x intermediate points, [J vertex and - -- the vertex’s plane.
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these have been found, the constant d can be calculated from any point on the
plane. The vector normal n can be calculated from three points on the plane (P,

() and R) as the cross product of the two vectors PQ and PR:
n=[a b ¢=PQxPR (4.24)
Then the constant d is calculated from a point on the plane Vj = (xq, yo, 20) as:
d = —(axo) — (byo) — (cz0) = —m - Vg (4.25)

and any of the three points P, () or R can be used for V}). For calculating the

vertex plane equation the three points used are:

P=[z y =

)

R= {0 Y — = 0} (4.26)

QZ[O Y +

~ N ~

\)

where [x; y; 2] are the coordinates of vertex i and [ is the distance from the
vertex to the y-axis perpendicular to the y-axis as shown in figure . The use
of these three points ensures that the triangle they define is not too acute and
thus the cross product is not too small. Figure shows a visualisations of the

rotated z-y plane for an exemplar vertex on an arbitrary deformed sphere.

Z

X

P=z; y; zil

R=[0 yi- 1/2 0]
Q=10 y+ 12 0]

y

[0 yi 0]

Figure 4.17: Visualisation of the points P, () and R used for calculating vertex plane
equations.
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Figure 4.18: Visualisation of a vertex plane for an exemplar vertex of an arbitrary
deformed sphere. The red cross indicates the corresponding vertex.

The equations of the face edges are also required. The equation of a line in @

space is defined by a point Py and a direction vector wv:
Py = (z0,y0,20) and v =[a,b,c]=P — F (4.27)

where Py and P, are two points on the line; in this case the edge vertices. In

standard form the equation is:

T—To Y—Y _ 22— %20
= = 4.28
a b c ( )
In parametric form the equation is:
T =T+ at
Yy =1yo+ bt
2=z +ct (4.29)
Or more concisely:
P(t) = Py + vt (4.30)
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Once the equation of the plane and the line have been calculated, the dot product
of the line direction vector and the plane normal (v - n) is calculated. If it is
nonzero then the line and plane are non-parallel and intersect at some point
P(t;). To calculate t; the parametric descriptions of the line are substituted into

the equation of the plane:

apT + bpy + cpz +d, =0 (4.31)

where:

xr = xg—i—alti
Y =yo+ bt

z =2+ qt; (4.32)

and (zg , Yo , 20) is a point Py on the line, (a; , b; , ¢;) are given by the line
direction vector v, (a, , b, , ¢,) are given by the plane normal n and d, is given

by —n - Vi where 1} is a point on the plane. This gives the equation:

Clp(dio -+ alti) —+ bp(yo + bﬂfl) + Cp(Zo + Cﬂfi) + dp =0 (433)

and multiplying out gives:

apTo + apalti + bpyo + bpblti + CpRo + CpClti + dp =0 (434)

Then grouping the ¢; terms gives:

ti(apa; + byby + cper) + apro + byyo + cpz0 + dp =0 (4.35)

and rearranging gives:

_(apl'() + bpy() + CpRo + dp)

ti =
apa; + byby + cpey

(4.36)
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or more concisely:

= —nfomn ) _n (Vo= B) (4.37)

n-v n-v

Then ¢; can be substituted back into equation to find the point of intersection:

P(tl) = P() + vi; (438)

Finally to check whether the intersection point lies on the line segment between

points Py and P; the point P(¢;) is put back into equation and solved for ¢:
(4.39)

If 0 <t <1 then the point P(t;) lies between points Py and P;. If t < 0 then
P(t;) lies beyond P, whilst if £ > 1 then P(¢;) lies beyond P;.

Once the distances to all vertices have been calculated they are normalised into

the range 0 < 6 < 7 to give the elevation angle for mapping to the sphere.

4.4.3 Mapping of low resolution SYMARE database mesh

For speed and simplicity the mapping approach was initially tested on the
lowest resolution (4 kHz) head and ears mesh of the first subject in the SYMARH

(Jin et al), 2013) (figure )

It was found that there was no suitable origin within the pinnae where there was a
direct path along the surface of the mesh to all the vertices: specifically problems
were found with finding paths to vertices in the other pinna. This is similar to
the problem of “islands” found in the slicing approach used in the original
scheme (section @) However, there were suitable origins within the pinnae to
map each half of the head independently. Therefore the decision was made to
validate the algorithm using this half-head topology. Figure shows one
half of the head mesh (the left half) with the origin face highlighted in red. Once
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Figure 4.21: 4 kHz half-head mesh for the first subject in the EYMARE databasei after
mapping to a hemisphere using the PLR| mapping approach. (a) shows the variable

vertex distances from the pinna origin at the top of the sphere. (b) is the same sphere
as (a) but rotated to show the distortions in the pinna area.
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Figure 4.22: Distribution of edge length distortions for the 4 kHz half-head mesh for
the first subject in the bYMARE database{ after mapping to a hemisphere using
mapping. The dashed vertical lines show the extents of the distribution.

the origin face had been selected, the mesh was shifted so that the centre of the
origin face lay on the y-axis and the vertices of the half head were mapped as
outlined in sections and , but with the elevation angle restricted to

0 < 0 < 7 in order to map to just the upper hemisphere. The results of this

mapping are shown in figure .

In figure the large variation in surface path lengths is demonstrated by the
irregular lower boundary of the mesh on the upper hemisphere and the problems
that this introduces can be seen visually in figure . Rather than the approx-
imately equilateral triangles of the original head mesh, the faces on the sphere
are heavily distorted; especially within the pinna, where the morphology changes

rapidly. This results in distortion of the mesh edge lengths on the sphere.

The distribution of edge length distortions for a EYMARE databasei 4 kHz mesh
after mapping to the sphere using is shown in figure . The ratio between

the largest length distortion factor and the smallest length distortion factor is 8,

i.e. for the radius of sphere used some of the edges are half their original length,
whilst others are more than four times their original length. If the spherical

harmonic deformations were to be applied to the spherical mesh in figure
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the harmonic deformations would likewise be heavily distorted and would require
many more harmonics to achieve an acceptable resolution of deformations in the
pinnae. Therefore a method of “force minimisation” was developed to reduce the

distortion of edges/faces on the sphere.

4.4.4 Force minimisation

The second step in is a “force minimisation” optimisation step in order to
minimise distortion of the spherical head mesh. Force minimisation treats each
distorted edge connected to a given vertex as a force acting on it. The magnitude
of the force for each connected edge depends on how much the edge is distorted
relative to its original length on the head mesh. The direction of the force acting
on the vertex is then simply the sum of the contributing forces from each edge
and the vertex is moved so as to reduce this force. This is repeated iteratively to
eventually minimise the edge length distortions. The order in which the vertices
are moved is randomised for each iteration to reduce the likelihood of reaching a

local minimum.

Algorithm 4.2 “Force minimisation” algorithm used to reduce the distortion of
edge lengths on the sphere.

1: for number of iterations do
2: generate random permutation of vertexr indices

3: for all entries in list of vertex indices do

4: find vertices connected to current vertex

5: calculate edge vectors connecting current vertex to those vertices
6: calculate weights for edge vectors

7 convert weights to decibel values

8: calculate force as sum of weighted edge vectors
9: convert force to surface tangential

10: scale force

11: move current vertex in direction of force

12: project back onto surface of sphere

13: check edge lengths

14: check for edge crossings

15: check angles

16: end for

17: end for
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The algorithm is given in more detail in algorithm @ The weights w; for each
edge vector (line a) are calculated as the ratio of the edge length on the sphere

to the edge length on the head:

o |ei(sphere) |

(4.40)

w; =
’ |ei(head) |

where €;(sphere) is the edge vector on the sphere and €j(peqq) is the vector of the
corresponding edge on the head. These weights are then converted to decibel

values:

This means that an edge that is 50% its original length and an edge that is 200%
its original length will have equal weights but with opposite signs, i.e. the first

edge will repel the vertex, whilst the second edge will attract the vertex.

Once the edge vectors’” weights have been calculated they are weighted and

summed to generate the “force” f acting on the vertex:
f=> we (4.42)
i

Whilst it is probably safe to assume that the resolution of the sphere is such
that the faces connected to a given vertex are approximately planar, and as such
the summed force f should be approximately tangential to the surface of the
sphere, the force is then explicitly converted to act tangentially to the surface of
the sphere (line g in algorithm @) This is done by first calculating the normal

component f | of the force:

fi=(fn)n (4.43)

where mn is the vertex normal, and then subtracting the normal component from
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the total force to calculate the tangential component f:

fi=f-1.
—f—(f-n)n (4.44)

Figure shows a visual example of how the forces acting on a particular vertex
are calculated. This vertex (bold 'x') is connected to five other vertices ('x's) via
five edges (dotted lines). The five other vertices are connected one-to-another by
five outer edges (dashed lines) to make up five faces (dotted and dashed lines).
The distortion of each edge is indicated next to each connected vertex. The
coloured arrows show the force exacted by each edge on the vertex in question.
The forces for both shortened and lengthened edges act along the direction of

the edge, but for edges that are over 100% their original length the force attract

%~
30%

Figure 4.23: Visual example of “forces” acting on a vertex. The coloured arrows show
the forces associated with each individual connected vertex and the bold black arrow
is their sum. The forces for edges more than 100% their original length act along the
edge so as to attract the vertex, whilst the forces for edges less than 100% their original
length act in the opposite direction.
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the vertex, whilst forces for those edges that are less than 100% their original
length act in the opposite direction, i.e. repel the vertex. The bold black arrow

indicates the sum f of the, in this case five, forces.

The tangential force f| gives the direction in which to move the vertex but it
needs to be suitably scaled (line m in algorithm @) before moving the vertex.

This is done by first converting the tangential force f| to a unit vector:

=1 (4.45)

which can then be multiplied by the desired scaling factor d to change the distance
the vertex should be moved:

d=df, (4.46)

The initial distance (step size) was set to 1/10" of the average length of all the

edges connected to the vertex:

1 n
d= 15~ (Z ]ei|> (4.47)

i=1

N
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o
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Figure 4.24: Percentiles of the edge length distortion distribution after 500 iterations
of at the initial step size. Solid green line: 50" percentile (median), dashed blue
lines: 25" /75" percentiles, red dash-dot lines: 10t /90" percentiles.
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and 500 iterations of were applied.

Figure reports the 10%, 25% 50t 75% and 90 percentiles of the edge
length distortions over the 500 iterations of at the initial step size. It can be
seen that all have levelled out by the 500" iteration. Therefore the step size was
decreased to 1/100" of the average length of the edges connected to the vertex

and another 500 iterations run. The percentiles across the 500 iteration for this

are shown in figure .

It can be seen that decreasing the step size has little effect on the median (50"
percentile) but initially leads to an improvement in all the others after which
they plateau. This improvement can be seen in the distributions of edge length
distortions. Figure compares the distributions of edge length distortions
before any (green dash-dot lines), after 500 iterations at the initial step size
(red dashed lines) and after a further 500 iterations at the decreased step size
(blue solid lines). Whilst the limits of the distributions do not change much after
the additional iterations at the smaller step size, a further improvement to the
overall shape of the distribution is suggested by the doubling in the number of

edges that are the correct length (100%).

Decreasing the step size further to 1/1000" of the average length of the edges
connected to the vertex and running another 500 iterations was also tested, how-
ever as figure shows it resulted in very little improvement in the edge length

distortions.

After moving each vertex it was necessary to carry out a series of checks (lines —
in algorithm @) If any of the checks were failed then the vertex was moved
back to its original position and the algorithm moved onto the next vertex. The
first of these checks was to ensure that no edge’s length was ever decreased from
more than 50% its original length to less than 50% or increased from less than
200% to more than 200% by the algorithm. This was to stop certain edges
being “sacrificed” to improve other edges, i.e. improving the variance at the

expense of the maximum/minimum. The limits of 50% and 200% were chosen
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Figure 4.25: Percentiles of the edge length distortion distribution after 500 iterations
at a reduced step size. Solid green line: 50" percentile (median), dashed blue
lines: 25" /75" percentiles, red dash-dot lines: 10" /90" percentiles.
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based on the fact that —ready meshes generally adhere to a A\/6 rule and
therefore can, at the absolute limit, support a minimum to maximum edge length

ratio of 1:3 without violating the \/2 requirement for avoiding aliasing.

The second check was to ensure that the vertex never crossed any of the edges
ringing it (dashed lines in figure ) To perform this check, after moving the
vertex, the normal of each face connected to the vertex was calculated as per
equation . Then the angle between the face normals and the vertex normal
was calculated by taking their dot product. If the vertex lies within the bounds of
the outer edges then the angles between the vertex normal and the face normals

must all be between 0° and 90°. An example using the same vertices as figure
is shown in figures and .

Figure shows the vertex normal (bold black arrow) and the face normals
(thin coloured arrows) before movement of the vertex (bold black 'x'): all the
normals face in the same direction. Figure shows the same set of vertices
but after the vertex in question has crossed one of the outer edges. As can be seen

one of the face normals now faces in the opposite direction to both the vertex
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Figure 4.28: Example of vertex normal (bold black arrow) and face normals (thin
coloured arrows) before movement of vertex: all normals point in the same direction.
Circles indicate the centre of each face.

Figure 4.29: Example of vertex normal (bold black arrow) and face normals (thin
coloured arrows) after vertex crosses one of the outer edges: one face normal points in
the opposite direction to the other normals. Circles indicate centre of each face.
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normal and the other face normals. Therefore its dot product with the vertex

normal will be outside the range 0° to 90° and a crossing will be detected.

The final check was to ensure that the faces on the hemisphere did not become
too distorted, as this could lead to an unwanted artifact similar to the sheer
effect described in section @ To ensure this, after moving the vertex, the angles
between all the edges around the vertex in question were calculated according to:

V1 - Vo

cosf = (4.48)

1] - | - 0o
where v, is the vector representing one edge and v, is the vector representing the
other. If any of the angles were less than 15° (and had not started at less than
15°) then the vertex in question was moved back to its original position. It may
seem that this check is superfluous given the check for edge crossing. However,
due to the fact that the vertex and surrounding faces are not perfectly planar, a
very small angle is possible without failing the edge crossing check and likewise

the edge crossing check can be violated, whilst the angle check is not.

4.4.5 Limitations of PLR method

After verification of on the low resolution (4 kHz) SYMARE databasd mesh
it was tested on the high resolution (20 kHz) mesh. Again the head

mesh was split into two halves and each half mapped separately. To find a
suitable origin face, every face within a certain region of the pinnae was tested to
verify whether all other vertices on the half head could be successfully mapped.
The search area is highlighted in red in figure . A number of suitable origin

faces were found and one was arbitrarily selected.

Figure shows the head mesh after initial mapping to the hemi-

sphere. It can be seen that the mesh has successfully mapped to the hemisphere,
however if the hemisphere mesh is examined closer it can be seen that some of

the mesh edges already overlap one another (red highlighted face in figure )
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Figure 4.30: Pinna area of KEMAR mesh used to search for suitable origin for |
highlighted in red).

Therefore additional processing would be required before force minimisation.

Furthermore the speed of the PLR| algorithm made processing the high resolution

mesh unviable; especially given the need for successive reduction of the step size.

One iteration of the |SYMARE databasd 4 kHz mesh took on average one second

whilst one iteration of the mesh took on average 42 seconds. Therefore
the |path length relaxationl (IPLRl method was rejected in favour of the pptimised

Erojectioa (ﬁ’l method detailed in the next section.
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Figure 4.32: head mesh after initial mapping to the hemisphere using

with overlapped face highlighted (red).
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4.5 |Optimised projection (OP)) mapping method

Due to the limitations of [path length relaxation| (IPLR]) identified in the previous

section, a series of novel methods of mapping and optimisation, jointly termed

bptimised projection ( OP)L were developed. This section reports the development

of these methods. The mapping of the head mesh onto the sphere is based on prior
methods of projection and iterative spatial averaging to ensure correct orientation
of the faces as reported by Peyrd (201la,b,d) and in Numerical Tours (20174
(section ) The method of spatial averaging is then adapted to reduce the
edge length distortions on the sphere (section ) Section reports the

application of a novel approach, lellipsoidal pinna emphasis (EPE)L to increase the

significance of the pinnae regions on the sphere and finally is refined into

Hynamic pinna emphasis (DPE)| (section ), another novel technique, where

emphasis is varied on an edge-by-edge basis to optimally approach a more uniform

acoustic wavelength for a given deformation wavelength.

4.5.1 Projection onto the sphere and initial spatial aver-

aging

The first step in @ is to project the head mesh onto a sphere. For each vertex v;
in the mesh, this is done by dividing its coordinates by its norm and multiplying
by the radius r of the sphere:

Vi

v; = (4.49)

il
where 7 is calculated as the average radius, in spherical coordinates, of all the

head mesh vertices.

However, since the head mesh is not genus 0 (i.e. there is not necessarily a direct
path from the origin to every vertex of the head mesh without passing through
the surface of the mesh) some of the faces are inverted during projection onto the

sphere. To check whether a face in inverted, the face normal is calculated and
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the dot product formed with the vector from the origin to the face centre. If the
dot product is negative then the face has become inverted (this assumes that the
mesh was correctly oriented to begin with (section @), which can be verified by
ensuring that the two times that each edge appears in the list of edges &£, the

vertex indices are in opposite orders (equation ))

If any of the dot products are negative then a smoothing procedure is employed
to gradually unfold the surface and flatten it onto the sphere. This is achieved by
iteratively recalculating the position of each vertex as the average position of its
connected neighbours. This process continues until none of the faces are inverted,
signalling that the unfolding process is complete. An algorithm for accomplishing

unfolding is described below. An n x n adjacency matrix A is defined as:

1 if (i,j) € &

0 otherwise

where n is the number of vertices, and 1 > ¢ <n and 1 > j < n. Therefore 4, ; is
only unity if vertices < and j are connected, otherwise it is zero. Since most entries
are zero A can be stored as a sparse matrix, which speeds up computation. A is
then normalised so that the sum of each row is one. To do this, the connectivity

weight vector d is calculated where:
d; = ZAM (4.51)
J

i.e. d; is the number of edges (and thus the number of other vertices) connected
to vertex 4. This is stored in another sparse, diagonal matrix D = diag;(d;) and

the normalised adjacency matrix A is then calculated as:

A 1

i = EA“ (4.52)
or in matrix formulation:

A=AD™! (4.53)



Therefore multiplying the vertex matrix V' by the normalised adjacency matrix:

V=VA (4.54)

is equivalent to calculating each vertex’s position as the average of the positions

of the other vertices connected to it.

To work towards having the same orientation for all the faces on the sphere (i.e.

unfolding) an iterative approach is used:

1: Project vertices onto unit sphere

2: Calculate normalised adjacency matrix

3: Calculate face normals

4: Calculate vector from origin to each face centre

5. Calculate dot products of face normals and their corresponding “face centre”

vector

6: while Any dot products less than zero do

7 Multiply vertex matriz V by normalised adjacency matriz A

8: Project vertices onto unit sphere

9: Calculate face normals

10: Calculate vector from origin to each face centre

11: Calculate dot products of face normals and their corresponding “face cen-
tre” vector

12: end while

It should be noted that there is no theoretical guarantee that the above will work
for all meshes (Numerical Tours, 2017h), but the algorithm was tested on all

head and pinnae, —compatible meshes (61 subjects at 5 resolutions, giving

305 in all) in the bYMARE databaseJ and resulted in no inverted faces. This

provides a high degree of confidence that it is suitable for head meshes in general,

presumably due to their relatively close similarity to the sphere.

Figure shows the initial steps of spherical parameterisation. The starting
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Figure 4.33: Initial spherical parameterisation. (a) initial head mesh. (b)

initial

EMAR| head mesh rotated to focus on pinna. (c) mesh after projection onto

the unit sphere. (d) mesh after iterative spatial averaging to unfold the inverted faces.
(e) same as (c), but zoomed in on pinna. (f) same as (d), but zoomed in on pinna.
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point is the head mesh, viewed from different angles in (a) and (b), which is first
projected directly onto a sphere, (¢). However, this results in inversion of some
of the faces and hence they overlap with other faces on the surface of the sphere,
especially in the pinnae (e). Applying the spatial averaging algorithm, described
above corrects the orientation of the inverted mesh faces, unfolding them on the

surface of the sphere, (d) and (f).

Whilst the initial spatial averaging ensures that no faces are inverted, the edges
on the sphere that it produces are, as with (section @), quite distorted;
some lengthen to as much as 300% of their original length and some shorten to
as little as 3% of their original length (figure ) If measures to reduce this
distortion of edge lengths were not taken, a uniform deformation wavelength
applied over the spherical mesh would map to a wide variation in deformation
wavelengths over the original head mesh. This is undesirable (for an explanation
see, for example, section @) Therefore an adaptation to the spatial averaging

approach, to reduce the distortions of the sphere edges, was developed.

6000

5000

N
o
o
o

3000

Number of edges

N
o
o
o

1000

— — — = — — = — — = — — = — — F — —

1 Il Il 1 N

50 100 150 200 250 300 350
Percentage original edge length

o

Figure 4.34: Distribution of edge length distortions after initial L)ptimised projectioﬂ
(@) mapping to the sphere. Some of the edges are as much as 300% their original
length, whilst others are less than 3% their original length (the extremes are indicated
by the vertical dashed lines).
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4.5.2 Metrics for optimisation techniques

The development of any optimisation technique requires a means of evaluating its
effectiveness and for comparing its performance with other approaches. In this

section a new metric for doing so is described.

In the preceding section, edge length distortion was presented as a measure of
performance of the process for mapping the head mesh onto a sphere. Closer
study reveals that this metric has certain weaknesses, which will become clearer
later in this section. Instead, a new approach was adopted of considering the
maximum spatial frequency that can be supported by the spherical mesh when

applying deformations to it.

The reader is reminded that an important reason for wishing to map the head
mesh onto the surface of a sphere is so that the harmonic deformations required
as part of the method can be applied using spherical surface harmonics
(section EI) The spatial frequency limit of the harmonic deformations that
can be supported by the spherical mesh is defined by its longest edge. Specifi-
cally, the spherical mesh can support harmonic deformations with a deformation
wavelength no shorter than twice the longest edge, otherwise spatial aliasing will
occur:

Amin = 2 max(|e(sphere)|) (4.55)

Furthermore, the most contracted edge on the sphere will suffer the largest re-
duction in spatial frequency deformation when mapped back to the head mesh.
Conversely, the most stretched edge on the spherical mesh will suffer the greatest
increase in spatial frequency deformation when mapped back to the head mesh.
Whilst the latter is not necessarily problematic, the former is, especially if the
reduction in the frequency of spatial deformations means they are unable to fully

resolve the features in the acoustic feature map produced by .

For it is necessary to be able to apply harmonic spatial deformations to the

head mesh with spatial frequencies equivalent to acoustic wavelengths across the
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whole audio frequency range of interest. This gives an upper audio, and hence

upper spatial, frequency limit of 16 kHz (section ) when studying

features. Therefore to assess the suitability of a spherical mesh for deformation
by spherical surface harmonics, firstly the minimum valid spatial deformation
wavelength on the sphere was calculated as per equation . Then the length of

each edge on the spherical mesh was calculated as a fraction of the longest edge:

e

- max(|e sphere)|) (4.56)

This was then used to calculate the effective wavelength of Amin on each edge of

the head mesh:

. 360°
Amin; = |ei(head)| <m) (457)

This is based on the fact that, as mentioned above, the longest edge in the
spherical mesh will have a 180° phase change along it at the minimum valid
wavelength. Therefore all the other sphere edges will have less than 180° phase
change along them. This, combined with the actual length of the edge on the
head mesh gives the shortest valid wavelength for each edge on the head. The
shortest valid wavelength can be easily converted to the maximum valid frequency

for each edge.

The distribution of maximum valid spatial deformation frequency for the pro-
jected and spatially averaged spherical mesh is shown in figure . It shows
that there are still a number of edges that have a maximum valid frequency less
than the required 16 kHz and, furthermore, figure shows that these edges
are concentrated in the pinnae, limiting the resolution achievable by in the
region of greatest interest. Hence there is a need for further optimisation of the

spherical mesh prior to applying the spherical surface harmonic deformations.

187



16000

14000

12000

10000

8000

6000

Number of edges

4000

2000

0 Il Il Il L
0 20 40 60 80 100 120

Maximum valid frequency (kHz)

Figure 4.35: Distribution of maximum valid spatial deformation frequency after initial
projection and spatial averaging. Solid vertical lines show limits of distribution. Dashed
vertical line shows required maximum frequency of 16 kHz. Therefore edges to the left
of the dashed line will not have required resolution.

(a) (b)

Figure 4.36: Spherical mesh after initial projection and spatial averaging showing areas
of reduced resolution for (a) the right pinna and (b) the left pinnae. Faces highlighted
in red have at least one edge that has a maximum valid spatial deformation frequency
resolution of less than 16 kHz. All other faces are coloured from 16 kHz (blue) to the
maximum valid frequency for the whole sphere (yellow). The bold black outlines show
the boundary where each pinna meets the even surface of the head.
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4.5.3 Spatial averaging optimisation

The first approach to optimising the spherical mesh was to refine the spatial
averaging approach used in the initial generation of the spherical mesh (section
). To improve the spatial averaging the adjacency matrix A was redefined

as:

|ei,j(sphe7‘e)‘ lf (Z .
Te o T ,j) €E
A — | 1,](head)‘ (458)

1,3
0 otherwise
i.e., rather than calculating the position of a vertex as the equally weighted av-

erage of the other vertices connected to it, the weight of each of the connected

vertices is proportional to the distortion of the edge connecting it to the vertex in
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Figure 4.37: Comparison of the distributions of edge length distortions before and after
application of spatial averaging with different adjacency matrices. The red dash-dot
lines show the distribution after application of the equal weight adjacency matrix until
all faces were correctly oriented. The blue dashed lines show the distribution after a
further 1000 iterations of the equal weight adjacency matrix. Finally the solid green
lines shows the distribution after 1000 iterations of the edge length distortion adjacency
matrix. Vertical lines are limits of distributions.
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question. Therefore, if the edge is longer than it should be, it is weighted more in
the calculation of the average, meaning the vertex in question will move in the di-
rection of that edge, thereby shortening it and reducing the distortion. Whereas,
if an edge is shorter than it should be, it is weighted less in the calculation of the
average which will lead to the vertex in question shifting away from it, thereby

increasing its length, again reducing the distortion.

Figure compares the edge length distortion distributions after the initial
projection and averaging until all the faces were correctly oriented as outlined
in the previous section (red dash-dot lines), after an additional 1000 iterations
using the equal weighting adjacency matrix (blue dashed lines) and after 1000
iterations using the edge length distortion adjacency matrix (green solid lines)
just described. It can be seen that, whilst the additional iterations of the equal
weighting adjacency improve (i.e. shift right) the lower limit of the distribution,
they actually worsen (i.e. also shift right) the upper limit. In contrast, the
application of the edge length distortion adjacency matrix improves both the
upper and lower limits of the distribution (i.e. shifts the lower limit right and the
upper limit left). This improvement can also be seen in the resulting spherical
meshes as shown in figure . The equal-weighting adjacency matrix results in
“bunching” in the pinna area, whilst using the edge length distortion adjacency

matrix results in a more even mesh.

A comparison of the distributions of maximum valid spatial deformation fre-
quency, as per section , before and after the application of the edge length
distortion adjacency matrix is given in figure . The application of the edge
length distortion adjacency matrix has significantly reduced the number of edges
with a maximum valid frequency of less than 16 kHz. However, there are still a

number of edges with a resolution of less than 16 kHz and, as shown in figure
, these are primarily in the pinnae.

The likely cause for this can be seen in figure , which compares the edge

length distortion distributions for the whole spherical mesh and just the pinnae
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(¢)

Figure 4.38: Comparison of spherical meshes after application of spatial averaging with
different adjacency matrices. (a) and (b) show the sphere after an additional 1000
iterations of the equal weight adjacency matrix. (c¢) and (d) show the sphere after 1000
iterations of the edge length distortion adjacency matrix. Right hand panels are the
same as left but zoomed in on the pinna region.
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Figure 4.39: Comparison of the distributions of maximum valid spatial deformation
frequency before (red dashed lines) and after (blue solid lines) spatial averaging with
the edge length distortion adjacency matrix. Solid and dashed vertical lines give limits
of the respective distributions. Dotted vertical line shows the required resolution of
16 kHz.

edges. The peak of the distribution for the whole head is around 100%, i.e. the
edges are the correct length. However, the peak of the distribution for the pinna
edges is around 60% and the whole distribution is skewed towards the lower end
for these edges, indicating that they are on average too compressed. To combat
this, a method of ellipsoidal optimisation was developed to stretch the edges and

faces of the pinnae.
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(b)

Figure 4.40: Spherical mesh after spatial averaging using the edge length distortion
adjacency matrix for (a) the right pinna and (b) the left pinna. Faces highlighted
red have at least one edge that has a maximum valid spatial deformation frequency
resolution of less than 16 kHz. All other faces are coloured from 16 kHz (green) to the
maximum valid frequency for the whole sphere (blue). The bold green outlines show
the boundary where each pinna meets the even surface of the head.
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Figure 4.41: Comparison of the distributions of edge length distortions for the spherical
mesh (solid blue, left y-axis) and just the pinnae edges (dashed orange, right y-axis),
after application of spatial averaging using the edge length distortion adjacency matrix.

N—"

4.5.4 IEllipsoidal pinna emphasis (IEPE

The principal aim of Iellipsoidal pinna emphasisl (IEPEj) is to enlarge certain regions

of the spherical mesh, in this case the pinnae, which are still very compressed,
at the expense of less critical regions of the head. To do this, firstly the spher-
ical mesh is rotated to align the area that needs emphasising along the y-axis.

Next, the cartesian coordinates are converted into spherical coordinate azimuth

v, elevation 0 and radius r via:

-

1Y
7 4.59
; (4.59)
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Then the points are projected onto an ellipsoid in cartesian space using different

radii; a for the x-axis, b for the y-axis and c¢ for the z-axis:

x =acosfcosp
y = bcosfsing

2z =csinf (4.60)

If the y-axis radius is smaller than the x and z axes radii then if the azimuth and
elevation angles are recalculated as per equation , and projected back onto
the sphere in Cartesian space using the original constant radius r, then both the
elevation and azimuth angles are stretched in the areas close to the y-axis. This
is shown in figure for a uniform sphere mesh. For this example, the radii
ratio was 1:0.5:1, i.e. the y-axis radius was set to half the z and z axes radii,

which were equal.

Figure shows a visualisation of the steps of applied to one of the spher-

ical head mesh pinna. Firstly the spherical mesh is rotated to align the focus

of emphasis along the y-axis (figure ) Then is applied via projection

=
=
=

——

s

T

e

—

A

:;?

o

T

Figure 4.42: Uniform spherical mesh before (a) and after (b) the application of ellip-
soidal optimisation. Note: Each compact dense region in the mesh is due to a reduction
in the valency of one face. These are caused by the way in which the spherical meshes
were originally generated and are shown later to be inconsequential.
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(c) (d)

Figure 4.43: Visualisation of Iellipsoidal pinna emphasisl (IEPEj) (a) shows the initial
spherical mesh before [EPH. (b) shows the initial mesh rotated to align the focus of
emphasis with the y-axis. (c) shows the mesh after . (d) shows the mesh after
rotating the focus back to its original position. The red 'x 'shows the focus of emphasis,
the blue dashed lines represent the x and z axes.
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to and from the ellipsoid as outlined above, which “stretches” the area around

the focus (figure ) Finally the focus is rotated back to its original position

(figure [1.43d).

To apply to both pinnae requires independent processing of the two pinnae
and recombination of the respective spherical meshes. This is due to the fact that
the two pinnae are not diametrically opposite each other on the sphere. Thus it
is not possible to align both pinnae along the y-axis at the same time. The focus

of emphasis for each pinna is chosen manually as the approximate centre of the

“bunched” area of the pinna (figure )

To combine the two spherical meshes, two sagittal planes equidistant from the
median plane are selected. Between the two sagittal planes a linear spatial cross-
fade is applied, i.e. the position of each vertex is calculated as the weighted
average of the corresponding vertex from the left and right pinna meshes. The
weighting of the left pinna mesh varies linearly from unity on the left sagittal
plane to zero on the right sagittal plane. Similarly, the weighting of the right
pinna mesh varies from zero on the left sagittal plane to unity on the right sagittal
plane. Therefore close to the contour in median plane the weightings of the left
and right pinna meshes are approximately equal. Outside the region contained

by the sagittal planes the resulting mesh is the pinna mesh corresponding to that

side of the head.

The distance between the two sagittal planes is set by the ratio of the y-axis
radius to the x and z radii. Figure compares the resulting spherical mesh
from combining the left and right pinna meshes after with ratios of 1:0.75:1

or 1:0.25:1, and with the crossfade applied between the +10° sagittal planes or

the +£30° sagittal planes. Using the 10° sagittal planes (figures |4.44al and |4.44(J)

for either radius ratio leaves clear, unwanted, joining lines, whilst using the 30°
sagittal planes works for the 1:0.75:1 ratio (figure ) but not for the 1:0.25:1
ratio (figure ) In general the larger the radii ratios, the further apart the

sagittal planes need to be. It was found experimentally that using the +50°
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Figure 4.45: Reconstructed @ mesh for the radii ratios 1:0.25:1 and with crossfade
applied between the 50° sagittal planes. Dashed blue lines show the sagittal planes.

sagittal planes produced smoothly transitioning spherical meshes for ratios down
to 1:0.25:1 (figure )

To find the appropriate radii ratios, the radius of the y-axis was progressively
reduced until there were no edges within the pinnae with a spatial deformation
frequency resolution of less than 16 kHz. The required ratio was 1:0.45:1 and
the resulting spherical mesh, after @, is shown in figure . Whilst there
are no edges within the pinnae that have a resolution of less than 16 kHz it
can be seen that the level of @ required for this to be so has significantly
compressed the edges around the median plane. Furthermore if the maximum
valid frequency distributions are examined (figure ) it can be seen that @

has actually increased the overall number of edges with a resolution of less than

16 kHz. Therefore a new method of local optimisation, |dynamic pinna emphasisl

(DPH) was developed, which is described in the next section.
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Figure 4.46: Spherical head mesh after applying until no edges in the pinnae have
a spatial deformation frequency resolution of less than 16 kHz. None of the pinna edges
are under resolution, however many edges around the median plane are.
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Figure 4.47: Distributions of the maximum valid spatial deformation frequencies for the
spherical head mesh before (red dashed lines) and after (green solid lines) application
of @ Vertical lines give absolute limits.

4.5.5 IDynamic pinna emphasis (IDPE

N—"

One of the limitations of the spatial averaging approach is that it works best

for meshes of equal valence , i.e. when all the vertices are connected to the
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same number of other vertices (Diestel, 2005). The algorithm tends to produce
“bunching” in areas of reduced valence. This is suboptimal as the pinna mesh

regions contain instances of reduced valence due to their complex connectivity.

The basis of Hynamic pinna emphasisi (tDPﬂ) is to apply the spatial averaging to

a template spherical mesh to which the distortions of the spherical head mesh
have been mapped. Once the template mesh has been optimised it is used to
apply localised optimisation to the spherical head mesh. The chief property of
the spherical template mesh is its almost uniform valence. Complete uniformity
is not achieved because spherical meshes made up of triangular faces are generally
created through subdivision of the faces of an icosahedron. Therefore there are
always 12 vertices in the spherical mesh that have a valence of five, whilst the
rest have a valence of six. The template spheres used in this work were generated

using the “GeoSphere” tool in Autodesk 3ds Max@H,

The steps of m are summarised in algorithm . The spatial averaging in line

B is carried out as per sections |45]J and |4.5.14, but now the adjacency matrix is

defined by the edge weights calculated in lines E—B Figures |4.48a| and |4.48H show

a template mesh with approximately 10,000 vertices, before and after spatial

averaging. The faces in both figures have been coloured based on the average

2https://www.autodesk.co.uk/products/3ds-max/overview

Algorithm 4.3 Dynamic pinna emphasiq (DPH) algorithm.

1: calculate distortions of spherical head mesh edges

2: for all wvertices in template mesh do

3: find closest vertex in spherical head mesh

4: set template vertex weight as average of the distortions of the edges con-
nected to spherical head mesh vertex

5: end for

6: for all edge in template mesh do

7 calculate the edge weight as average of the weights of its two vertices

8: end for

9: apply distortion weighted spatial averaging to template sphere

10: for all wertices in spherical head mesh do

11: calculate position of vertex relative to original template mesh

12: calculate vertex’s new position relative to the new, optimised template
mesh

13: end for
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weight of each face’s edges. Blue faces indicate that the edges of the face are,
on average, compressed, and yellow faces indicate that the edges of the face are,
on average, stretched. Green faces indicate that the edges are the correct length.
The weights have been converted to decibel values for visualisation to create a
symmetrical linear colour scale, i.e. a weight of 0.5 and a weight of 2 give shades
equally distant from the mid shade. As seen in figure the pinnae areas are
initially heavily compressed. After 100 iterations of spatial averaging, shown in
figure , the faces in the pinnae regions have increased in area. This emphasis

is then mapped to the spherical head mesh.

To calculate the position of each of the spherical head mesh vertices relative to
the template mesh (lines @—@ in algorithm @), barycentric coordinates are

used. Barycentric coordinates parameterise a space in terms of a weighted sum

of reference points (, )

To calculate the barycentric coordinates, a, 5 and +, of a point within a triangle,

consider a triangle consisting of vertices A, B and C. Any point P in the triangle

(a) (b)

Figure 4.48: 10,000-vertex template mesh before (a) and after (b) application of E—I

hamic pinna emphasisl (IDPEI) The faces are coloured based on the average weight of its
edges. Blue faces indicate weights signifying compression in the spherical head mesh,
yellow faces indicate weights signifying stretch in the spherical head mesh. Green faces
represent areas of correct edge length in the spherical head mesh. The bold green lines
show the limits of the pinnae in the spherical head mesh.
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can be uniquely expressed as:

P=aA+BB+~C (4.61)

where «, # and ~ are constants, and o + 8 + v = 1. The above equation can be

reformulated as:

P=A+B(B—A)+~7(C—A)=(1—-B-7)A+BB+~C (4.62)

Rearranging this gives:

P—A=pB(B—A)+~(C— A) (4.63)

which can be written in vector form as:

v3 = fv1 + U2 (4.64)
where:
V1 = B—-A
Vg = C—-A
v3=P— A (4.65)

Now, a pair of linear equations can be formed by taking the dot product of both

sides of equation with v; and v,:

(Bv1 + yv2) - v1 = v3 - vy, and

(Bv1+7v2) - V2 = v3 - vy (4.66)
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and, since the dot product is a linear operator, this is equivalent to:

B(v1-v1) +y(ve - v1) = w3 - vy, and

6(’01 : ’Ug) + ’}/(’02 . ’02) = V3 Vo (467)

This pair of equations can be solved using Cramer’s rule, which states that in a

linear system:

a1x + by = cl, and

as + by = 2 (4.68)
x and y can be found by:
C1 bl
C2 b2 Clbz — b102
r= = , and
a; by arby — bras
(05} b2
a; C
y— 12 2l _ae—ae (4.69)
a; by a1by — biay '
az by
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Therefore setting;:

a1 — V1 -V
a9 = V1 * V9
blz’UQ"Ul
b2:UQ'v2
C1 = V3V
Co = V3 - Vo

(4.70)

and solving equations allows 8 to be v calculated, after which a can be

calculated as 1 — 8 — 7.

In the reference points, A, B and C, for a spherical head mesh vertex
are the vertices of the template mesh face that this spherical head mesh vertex
lies within. To find the template mesh face which contains the spherical head
mesh vertex, the closest template mesh vertex to the current spherical head mesh
vertex is found. Then each of the template mesh faces connected to this vertex is
used to calculate the barycentric coordinates «, S and . If all three coordinates
lie between zero and one, then the spherical head mesh vertex lies within the
template mesh face. After optimisation, the new position of the spherical head
mesh vertex is calculated as the weighted sum of the optimised template mesh
vertex positions:

Popt = aAopt + ﬁBopt + ”)/Copt (471>

To avoid errors due to the vertex and face being non coplanar, before calculation
of the barycentric coordinates the spherical head mesh vertex is projected onto
the same plane as the template mesh face. This is achieved by defining an origin

for the plane, which is taken as the centre of the face:
1
O:§(A+B+C) (4.72)
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Next, a vector is defined from the origin O to the point of interest P:
v=P—-0 (4.73)

Then the distance from the point of interest to the plane, along the face plane’s
normal is calculated by taking the dot product of the vector v and the unit normal
n:

d=v-n (4.74)

where n is calculated as the normalised cross product of two edges of the face.
Finally the point’s position on the face plane is calculated by subtracting the

product of the distance d and the unit normal n from the point P:

Pplane =P —dn (475)

To establish the effectiveness of , after calculating the new positions of the
spherical head mesh vertices as outlined above, the ratios of the edge lengths
before applying m to the edge lengths after applying it were calculated. Then

each face on the spherical head mesh was coloured based on the mean ratio of

its three edges using the same colour scale as figures |4.483] and |4.48H. Therefore

the resulting mesh should resemble figure , as the edges in the areas of
compression (low weights) in figure should have increased in length after
application of , and thus the ratio of the length before to the length after

should be less than one. And vice versa with areas of stretch.

Figure compares the spherical head mesh with its faces coloured based on the
above criteria with the template mesh in figure . There is a lot of similarity in
and around the pinnae. For instance the dark blue area in the antihelix is clearly
visible on both meshes, as is the yellow area near the pinna lobule. However,
away from the pinna, edge length ratios become less similar; but, as the pinnae

are the areas of most interest for , this was deemed to be acceptable.
The maximum spatial deformation frequency resolution of the spherical head
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Figure 4.49: Comparison of the 10,000-vertex template sphere in figure (a) and
the spherical head mesh (b) with faces coloured based on ratio of edge lengths before
to edge lengths after. In (b) blue faces indicate edges that have increased in

(a)

length, whilst yellow faces indicate shortening of edges.

Figure 4.50: Distributions of maximum valid spatial deformation frequency before (red
dashed lines) and after (green solid lines) application of using a 10,000-vertex
template mesh. Black vertical dotted line shows required minimum resolution of 16
kHz.
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mesh before and after application of with the same 10,000-vertex template
mesh was also evaluated. The distributions of the maximum spatial frequency
resolution are given in figure and the corresponding visualisation is given in
figure . The application of has resulted is none of the edges having a
maximum resolution of less than 16 kHz: the lower limit of maximum resolution
is 17.5 kHz. Furthermore the upper limit of maximum resolution has decreased,

meaning that fewer harmonics will be required to attain the required resolution.

The results of m so far are based upon using 100 iterations of spatial averaging
on a 10,000-vertex template mesh. The effect of increasing and decreasing the
number of iterations, as well as increasing the number of vertices in the template

mesh was also explored.

Unlike the spatial averaging used in section |4.5.Eﬂ, for lDPEj it was not practical

to update the adjacency matrix on every iteration. This is because, after spatial
averaging of the template mesh, it is necessary to run through each vertex in the
spherical head mesh, calculate its position with respect to the original template
mesh and then calculate its new position. To update the adjacency matrix on
every iteration of the spatial averaging would require recalculation of the spherical
mesh vertices’ positions on each iteration, rather than just once at the end, as well
as recalculation of the template mesh weights. For the 10,000-vertex template
mesh 100 iterations using the same adjacency matrix took 63.36 seconds, updating
the adjacency matrix on each iteration would take over an hour and a half. For
this reason the same matrix, based on the initial edge distortions, was used for

each of the 100 iterations.

The initial choice of 100 iterations was arbitrarily chosen to test the principle
of . It was therefore necessary to validate whether this choice was optimal.
To do this, the adjacency matrix based on the initial distortion was used for
all iterations, but every ten iterations (to give a balance between speed and
data sampling) the positions of the spherical head mesh were updated and the

maximum spatial deformation frequency resolutions (as per section ) were
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(a) (b)

() (d)
Figure 4.51: Visualisation of maximum valid spatial deformation frequency before, (a)
and (b), and after, (c) and (d), application of DPH using a 10,000-vertex template
mesh. Faces coloured as per previous plots. (a) and (c) show the right pinna, (b) and
(d) the left. has resulted in an enlarged, more even distribution of pinna face

resolutions. The red (under-resolved) faces, present particularly in the left pinna, have
been corrected.
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recalculated. This gives an indication of how the spherical head mesh changes
over successive applications of the same adjacency matrix. Figure shows the
upper and lower limits of the maximum spatial deformation resolution over 500
iterations using a 10,000-vertex template sphere. It can be seen that the lower
limit of resolution increases with the application of and the upper limit
decreases, which is what is needed to reduce the number of harmonic deformations
required. It seems from figure that by 100 iterations both the upper and lower
limits have settled. However, if the change in these values is considered (figure
) it can be seen that, whilst the lower limit has stopped increasing by 100
iterations, the upper limit is still decreasing. In fact it is not until 220 iterations
that the rate of decrease in the upper limit of maximum spatial frequency becomes
smaller than the rate of decrease of the lower limit and hence the difference
between upper and lower limits begins to rise again. Therefore, for a 10,000-
vertex template mesh, 220 iterations are required for optimum results. It should
be noted that the change in the range only decreases by 300 Hz between 100 and
220 iterations, whereas the decrease up to 100 iterations is 9.5 kHz; so the returns

are diminishing.

Additionally the effect of the number of vertices in the template mesh was inves-
tigated. Increasing the number of vertices in the template mesh should increase
the resolution of m since it should be possible to apply more localised optimi-
sation. The downside of increasing the number of vertices in the template mesh

is the increase in processing time.

Firstly a comparison of the performance of increased resolution template meshes
was made using the calculated optimum number of iterations (220) for the 10,000~
vertex template mesh. The comparison of the maximum spatial deformation
frequency distributions for the original 10,000-vertex template mesh and 50,000-,
150,000- and 300,000-vertex meshes is shown in figure . It can be seen that
with 220 iterations, for the 150,000~ and 300,000-vertex template meshes, there is
no improvement over the 10,000-vertex mesh, and whilst there is an improvement

in the lower limit for the 50,000-vertex mesh, the upper limit has increased by a
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Figure 4.52: Upper (dashed green line) and lower (solid red line) limit of maximum
spatial deformation resolution over 500 iterations of m using a 10,000-vertex template
sphere. Data points are generated every ten iterations.
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Figure 4.53: Change in the upper limit (dashed green) and lower limit (solid red) of
maximum spatial deformation frequency resolution over 500 iterations of using a
10,000-vertex template sphere. Black dashed vertical line shows the point at which the
range between these limits is a minimum.
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Figure 4.54: Distributions of maximum valid spatial deformation frequency before and
after application of using different resolution template meshes with the same
number of iterations. The different resolution meshes are: 10,000 vertices (solid black
lines), 50,000 vertices (dotted red lines), 150,000 vertices (blue dash-dot lines) and
300,000 vertices (green dashed lines).

greater margin. The 50,000-vertex template mesh would therefore require more

harmonic deformations than the 10,000-vertex mesh.

Therefore the same analysis that was carried out on the 10,000-vertex mesh to
find its optimum number of iterations was carried out for each of the higher
resolution meshes. To keep computation times down to a reasonable level the
maximum number of iterations was restricted to 3000 and the edge lengths of the
spherical head mesh were calculated every 100 iterations. It was found that the
50,000-vertex mesh required 1100 iterations to minimise the range of maximum
spatial deformation frequencies. Neither the 150,000~ or 300,000-vertex meshes
reached their optimum point within the 3000 iteration limit. Therefore linear
extrapolation over the last, approximately linear portion of the curves was applied
to estimate how many iterations would be required. An example of this for the
150,000-vertex mesh is given in figure . This gave values of 3117 iterations

for the 150,000-vertex mesh and 4380 iterations for the 300,000-vertex mesh.
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Figure 4.55: Example of extrapolation used to estimate required iterations for the
150,000-vertex template mesh. The change in the upper limit (dashed line) and lower
limit (dash-dot line) resolution was recorded for 3000 iterations and linear extrapolation
applied based on the last 2000 iterations to estimate where the two curves would cross.
The solid red and blue lines show the extrapolated data, including its overlap with the
recorded data.

The limits and ranges of the maximum spatial deformation frequencies after ,
using their respective optimum number of iterations, are given in table @ for
10,000-vertex, 50,000-vertex, 150,000-vertex and 300,000-vertex template spheres.
It can be seen that application of the higher resolution template meshes with
enough iterations firstly increases the lower limit, but secondly decreases the
range of values. This is important for reducing the number of required harmonics
to reach the required spatial frequency resolution across the whole head mesh.
(Note that the lower/upper limits can be adjusted independently of the range

simply by altering the radius of the sphere.)

The possibility of applying m with a lower resolution mesh and then apply-
ing fewer iterations of a higher resolution mesh was also considered as a poten-
tial means for reducing the computation required. The results of applying the

300,000-vertex mesh for 4380 iterations were compared with applying 220 itera-
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Min value Max value

No. vertices (ki) (kHz) Range (kHz)
10,000 17.42 92.98 75.56
50,000 17.9 92.24 74.34
150,000 18.52 92.13 73.61
300,000 19.21 92.73 73.52

Table 4.1: Limits and ranges of maximum spatial deformation frequency distributions
after m with different resolution template meshes and the optimum number of iter-
ations for each mesh.

tions of the 10,000-vertex mesh, followed by just 100 iterations of the 300,000-
vertex mesh. The two approaches gave very similar results: just applying the
300,000-vertex mesh gave a range of 73.52 kHz, compared to 73.61 kHz for the
two meshes. Furthermore, both strategies took about the same time to compute,
as the most time-consuming parts of are the weighting of the template mesh
(lines E—B in algorithm @) and the updating of the spherical head mesh vertex
positions (lines ) In applying the two template meshes, both of these steps
had to be carried out twice and so the overall saving in spatial averaging iterations

was inconsequential.

A further, higher resolution, template mesh consisting of 400,000 vertices (the
maximum resolution of GeoSphere producible in 3ds Max®) was also tested;

however, it gave negligible improvement over the 300,000-vertex mesh.

Therefore the spherical head mesh finally adopted to generate the m database
was the result of applying to the 300,000-vertex template mesh until the
range of maximum spatial deformation frequencies over all edges was minimised
(4380 iterations). This mesh is shown in figure with its faces coloured ac-
cording to the maximum spatial deformation frequency of each edge. Figure
shows the improvement in the distribution of maximum spatial deformation
frequency over the resulting spherical head mesh from section , i.e. after
the application of the edge length distortion adjacency matrix. The lower limit
is above the required 16 kHz and the maximum limit has been reduced from

99.11 kHz to 92.73 kHz, meaning fewer harmonic deformations will be required
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(b)

Figure 4.56: Final spherical head mesh, after spatial averaging optimisation and ,
used for generation of the database.
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Figure 4.57: Comparison of distributions of maximum valid spatial deformation fre-

quency before (dashed red lines) and after (solid green lines) final .

when generating the MPA database (chapter E)

4.6 Summary

This chapter has presented work on developing and improving Imorphoacoustid

Iperturbation analysis] (IMPAl) (hhorpel, IZOOd; hew et al.|, lZOlﬂ). First-generation
suffered from a number significant weaknesses, chiefly created by the ap-

proach of slicing the head mesh and mapping the head to a @ surface for the
application of harmonic deformations. These issues have been addressed using
several novel approaches based on optimised spherical mapping for the applica-

tion of surface spherical harmonic deformations.

The first novel approach of mapping the head mesh to the sphere based on angular

rotation and the distance travelled along the surface of the mesh is a natural

adaptation of the slicing method used by () and 'Tew et al.| (IQOlj)

Whilst bath length relaxationl (IPLRl) mapping provides promising results for low
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resolution meshes, when applied to full resolution head meshes, computation time

became excessive and overlapping of faces occurred.

Therefore a combination of new approaches, collectively termed L)ptimised pro«l

(@), based on projection of the head mesh onto the surface of the sphere

and optimisation of the spherical head mesh were developed. Prior techniques of
projection and spatial averaging (Peyré, 2011a.,b,d; Numerical Tours, 20174) al-
lowed the mapping of high resolution head meshes to the sphere without creating
any overlapping faces. However, there was significant distortion of the edges on
the sphere including, crucially, in the pinnae. Based on the maximum valid spa-
tial deformation frequency supported by each edge in the spherical mesh, it was
found that many of the edges could not support the required spatial deformation

frequency resolution.

A novel adaptation of equal-weighted spatial averaging, with weights based on the
distortion of the edges in the spherical mesh, was shown to reduce the distortion
of edge lengths appreciably. However, there still existed edges within the pin-
nae with a maximum valid spatial deformation frequency resolution of less than
16 kHz, the required resolution for @ This was demonstrated to be largely
due to relative compression of edges within the pinnae compared to the rest of

the spherical mesh.

Hence, the novel method of Hlipsoidal pinna emphasis{ (IEPEj) was developed to

improve the resolution of the pinnae regions. Via rotation of the sphere and pro-
jection to and from an ellipsoid, allowed emphasis of the pinnae. However,
the effectiveness of m was limited by the large amount of emphasis required
to ensure adequate resolution within the pinnae, which detrimentally reduced

resolution on and close to the median plane.

Finally, another new optimisation approach, hynamic pinna emphasié (tDPEj),

was presented. By applying spatial averaging to a uniform template sphere, with
weightings based on the distortion of the spherical head mesh, highly localised

optimisation was possible; regardless of the connectivity of the head mesh. This
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resulted in a spherical head mesh in which every edge possesses a spatial de-
formation frequency resolution of over 16 kHz. Additionally, the range of edge
distortions was systematically minimised, reducing the number of harmonics re-
quired to achieve the desired resolution across the whole mesh. For these reasons,
DPFH is considered the most suitable technique for optimising a spherical mesh
derived from the template head mesh. The resulting mesh exhibits the properties
required for efficient application of surface spherical harmonic deformations, a

key step in the creation of an @ database.
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Chapter 5

Database creation

If we knew what it was we were
doing, it would not be called

research, would it?

ALBERT EINSTEIN

The previous chapter described methods for optimally mapping a

|ment method ( BEM)|—ready head mesh to a sphere for the application of spherical
surface harmonics. This is an essential first step in the production of a

|coustic perturbation analysis ( MPA)| database.

An database consists of two parts, which may be summarised as follows:

1. The set of harmonic deformations. Spherical harmonic deformations up
to a specified degree N and order M are applied to the sphere. These
deformations are then back-applied to the surface of the template head mesh

using the optimised mapping of the template head on a sphere (chapter @)

2. The set of A|head—related transfer functions (HRTFS)|. tHRTFsJ for a chosen

set of directions are computed for the template and for each harmonic
deformation using the . The spectral difference between the for
each harmonic deformation and the corresponding for the template
are stored as A.
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This chapter details the work that has begun on generation of the new
database. It starts by focusing on the production of the harmonic deformations
(part 1 above). Some background theory is provided on Legendre polynomials,
which are an important element in the calculation of spherical harmonics. This
is followed by a description of the normalisation technique required for generat-
ing deformations with the correct relative amplitudes. The chapter goes on to
consider preparations towards the production of A (part 2 above). These
include validation of the solver and definition of the absolute amplitudes of
the harmonic deformations required to maintain linearity and to ensure adequate

signal-to-noise ratio.
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5.1 Harmonic deformations

Provided that the principle of superposition holds, a weighted sum of a rich set of
orthogonal surface spherical harmonic components allows arbitrary deformations
of the template head mesh to be generated. Both linearity and richness are
essential if the technique is to operate correctly. This section explores the
process of producing a suitable harmonic series with which to deform the template

head.

5.1.1 Legendre polynomials

Legendre polynomials P, (x) are the solutions to Legendre’s differential equation:

X [(1 _;C?)%Pn@)] o+ 1)Py(z) = 0 (5.1)

which appears in many mathematical and physical situations. The polynomials
can be constructed to define a complete set of orthogonal functions over the
interval [-1,1] which is where their use in spherical harmonics lies. Arfken and

Weber (1995) show that the equation for the polynomials P,(x) is:

& (2n—2k)

Pul@) = 2V it — it — o (5:2)

k=0

and can be transformed as follows, for n an integer:

n/2

1 d ! 2n—2k
Pulw) = kZ:O(—lVM!(n_ B (%) v (5.3)
1 [(d\"<~ (=)l ,
~ g (@) 2 i (5:30)

The binomial theorem and the extension of the upper limit allow replacement of
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the summation by (z? — 1)™

1o
—onpl dgn

P.(z) (z* —1)" (5.4)

which is Rodrigues’ formula for the unassociated Legendre polynomials.

The associated Legendre polynomials P (x) generalise the Legendre polynomials
and are solutions to the associated Legendre differential equation. For positive

m they are defined as:

dm
P (z) = (=1)"™(1 = a®)™?—— P, (x) (5.5)
dxz™
where n is a positive integer and m = 0,...,[. Or more explicitly, by combining

equations @ and @:

n+m

dxn—i—m

(1 _ $2)m/2

(22 —1)" (5.6)

21|

The associated Legendre polynomials for negative m are then defined by:

Pma) = () ) 57)
and:
Pia) = Pala) 55)

There are two sign conventions in use, with some authors (Arfken and Weber,
1995) omitting the Condon-Shortley phase term (—1)™ in the definition of the
associated Legendre polynomials, instead including it in the definition of the

spherical harmonics.

Arfken and Weber (1995) show on pages 726-727 that the orthogonality integral
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Figure 5.1: Fully normalized associated Legendre polynomials up to degree 3.

for the associated Legendre polynomials is:

/1 P () P () dr = 2q2+ = EZ - Z;i% (5.9)

which is used later in the definition of spherical harmonics.

The first few associated Legendre Polynomials (shown both in terms of z and

with x = cos ) are:

P)(r) =1 =1

Pl(x) =x = cosf

Plz) = —(1 —2?)2 = —sind

P)(z) = %(3@2 —1) = %(3 cos’ — 1)
Py(z) = —3z(1 — 2?)2 = —3sinf cosd

P} (x) = 3(1 — 2?) = 3sin® 0

P)(z) = %x(5x2 —3) = %cos 0(5cos® 6 — 3)

ol

Pj (1) :—g(5x2—1)(1—x2) = —2(500820—1)81110

Pi(x) = 152(1 — 2%) = 15 cos f sin® §

N

P} (r) = —15(1 — 2%) = —15sin*
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5.1.2 Spherical harmonics

Spherical harmonics satisfy the spherical harmonic differential equation, which is
given by the angular part of Laplace’s equation in spherical coordinates. In three

dimensions, the spherical harmonic differential equation is given by:

1 0 /. 0 1 0?
[m% (SIDQ%) + m@ +TL(TL+ 1) F=0 (510)

Where 6 is the polar (colatitudinal) coordinate 6 € [0, 7] and ¢ is the azimuthal
(longitudinal) coordinate ¢ € [0, 27]. Writing F' = ®(¢)O(0) gives:

P(¢) d (Smed@(ﬁ)) n O(0) d*¢(¢) +n(n + 1)0(0)d(4) = 0 (5.11)

sin @ df do sin?@  d¢?

Multiplying through by sin?@/®(¢)O(f) allows the separation of the azimuthal

(¢) and polar () dependences:

sin d [ . dO(0) - 1 d*o(p)
[w@ (SIDQW) +n(n+1)sin } + w Q? 0 (5.12)

The separated azimuthal dependence becomes:

1 d°®(9) 2
— = —-m 5.13
3(0) d? (513)
which has solutions:
®(p) = Ae”"™? 4 Be'™? (5.14)

and satisfies the orthogonality integral:

21
/ e~y — 28, o (5.15)
0
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From this the following can be derived:

1 )
o, — Eem (5.16)

which is orthonormal with respect to integration over the azimuth angle (¢)

(Arfken and Weber, 1995).

Once the azimuthal dependence has been split off the remaining polar dependence

is satisfied by the associated Legendre functions. Therefore:

O(0) = P*(cosh) (5.17)

Normalising the associated Legendre function by equation @ leads to the follow-

ing orthonormal, with respect to polar angle €, function:

— |
p?(cose) _ \/2n;1§Z+Z§iP£H(COSe), —n<m2=>n (518)

The complex spherical harmonics Y, are defined as the product of equation

and equation :

Y™(0, ¢) = N™P™(cos )™ (5.19)

n

where N" is the normalization coefficient:

Nm:\/2n+1(n—m)! (5.20)

" 4t (n+m)!

and the complete orthogonality integral becomes:
/ / Y (0, 6)Y2(6, &) sin 00D = Sy sy (5.21)
¢=0J6=0

Using Euler’s formula the spherical harmonics can be rewritten in terms of real
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and imaginary parts as:

Y "(0,¢9) = NP (cos 6)(cos(me) + isin(me)) (5.22)
R(Y,") = NP (cos 0) cos(mo) (5.23)
S(Y,") = N;' P (cos 0) sin(me) (5.24)

In most applications of spherical harmonics the functions under consideration are
real-valued and therefore only the real-valued spherical harmonics Y,,,,(0, ¢) are
considered. These are defined for integers n € [0, 00] and m € [—n, n] as:
( |

V2S(Y") = | 2t el pit cos 0) sin(|ml¢)  for m < 0

Yo (0, ) = 22l PO(cos f) for m =0

k\/§§}‘E(Ynm) =,/ EZ;Z;:P,T(COS 6) cos(mo) for m >0
(5.25)
Figures @ and @ show two common ways of visualising spherical harmonics.
In figure @ the radius of the shape is the real spherical harmonic value for the
corresponding azimuth (¢) and elevation () pair. Grey indicates a positive value,
black a negative value. Only the positive orders are plotted for conciseness: the
negative orders have the same shape as the positive but are rotated about the
z-axis. This can be seen in figure @ where the polarity of the real spherical
harmonics are plotted on the surface of the unit sphere. Again grey indicates a

positive value, black a negative value.

Spherical harmonics can be split into three classes based on the relationship

between the degree n and order m:

e Zonal harmonics are spherical harmonics with m = 0 and the visual curves
that appear on the surface of the unit sphere divide it into latitudinal

sections. These are the first column in figure @ and the middle column in
figure @

o Sectorial harmonics are of the form |m| = n and divide the unit sphere into
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latitudinal sections. These are the diagonals in figures @ and @

o Tesseral harmonics are all other spherical harmonics where |m| # n and

divide the unit sphere into blocks of both latitude and longitude.

Any arbitrary spherical function f(6,¢) can be expanded as a sum of spherical

harmonics:

f(@, ¢) = Z Z Cannm(ea ¢) (5.26)

n=0 m=—n

where C,,,,, are the spherical harmonic coefficients and can be computed by pro-

jecting the function f(6, ¢) onto the basis functions Y, (6, ¢):

2w ™
Cnm:/O /0 f(0,0)Y,m (0, ¢)sin8dfdo (5.27)

As with other harmonic series, the expansion is only exact if it is infinite, and in
practice the series is truncated to some upper limit N and only an approximation

is found:

F0.0)=3"3" ConYun(0,0) (5.28)

n=0 m=—n

5.1.3 Spherical harmonic deformations

There are various normalisation techniques for spherical harmonics, depending on
their intended use. The normalisation coefficient given in equation normalises

the spherical harmonics so that:

/|Ynm|2d§2 =1 (5.29)

However, for the generation of the @I database the spherical harmonics are
required to be normalised so that the morphological deformations are in the

region where they are linearly related to the resulting acoustic pressure changes.
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This requires normalisation of the maximum value of each spherical harmonic:

max(|Y,"]) =1 (5.30)

A similar normalisation approach is used in some Ambisonics systems, where it is

known as Imax—normalisation (maxN)L or, with an additional 1//2 scaling of the

W signal, tFurse—Malham (FuMa)| normalisation (Daniel, 2001; Malham, 2003).

However, as Carpentier (2017) notes, there is no closed-form or recursive solu-
tion to calculating the normalisation factors for . The normalisation
coefficients, up to degree 3, given by Malham (2003) were merely calculated by
inspection. Carpentier (2017) reports conversion factors from fully normalised
spherical harmonics, for which there exist recursive approaches to generation
(Holmes and Featherstone, 2002), but only up to spherical harmonic degree 16.
The generation of the database requires much higher degree spherical har-

monics than this.

As shown in equation the general form for the real-valued spherical harmonics
is:

N™ P (cos ) sin(jm|¢)  for m < 0
Yom (0, ¢) = (5.31)
N™P™(cos 8) cos(mo) for m >0

where N is the chosen normalisation coefficient. Therefore to normalise the
maximum value of the spherical harmonic the maximum value of P is needed;
since sin(|m|¢) and cos(me@) are bounded to + one:

N = maz(|P)"(cos 8)]) (5.32)
For generation of the M database the maximum value of P[(cosf), up to
degree 100, was calculated by evaluating the associated Legendre polynomials for

1,000,000 linearly spaced points between minus one and plus one (the bounds of

cos®). It was found experimentally that increasing the number of points from
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10,000 to 100,000 resulted in changes of the maximum value of up to 3.5% whilst
increasing the number of points from 100,000 to 1,000,000 resulted in a maximum
change of 0.08%. Therefore it was deemed that 1,000,000 points was adequate for

calculating accurate maximum values, since the changes were all less than 0.1%.

This allows the maximum value of the spherical harmonics to be normalised to
any value. Section @ considers verification and selection of the maximum size

of deformations used in the database creation.

5.2 Experimental validation of BEM results

uses simulations (section ) to calculate the for the tem-

plate and perturbed heads and the decision was made to use Mesh2HRTF (Ziegel;
wanger et al), 20154) as the solver. Despite the existence of published re-
sults of simulations using Mesh2HRTF (Ziegelwanger et al), 2013, 2014, 2015h,
2016), the decision was made to carry out experimental validation of the soft-
ware to check that it was correctly configured. The acoustic scattering of a rigid
sphere was chosen for this validation as there is a long-standing analytical solu-
tion (Strutt, 1877; Rayleigh, 1904; Duda and Martens, 1998). When using the
analytical solution as the ground truth, the code in appendix B of Duda and

Martens (1998) was used.

For the simulations Autodesk 3ds Max® was used to generate a high resolution
spherical mesh. The mesh consisted of 294,546 vertices and 112,500 faces, with a
maximum edge length of 2.064 mm. Assuming a A/6 rule, this gives a maximum
valid simulation frequency of 27.6 kHz. The radius of the sphere was set to
10.9 cm which is the radius of the bowling ball Duda and Martens (1998) used to
experimentally validate their range-dependent analytical solution. The principle
of reciprocity was used, with the source created by applying a velocity boundary
condition to the face of the sphere through which the positive z-axis passed (i.e.

0° azimuth) and receivers placed at 5° steps around the horizontal plane at a
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Figure 5.4: Raw simulation results of acoustic scattering by a rigid sphere (red '+' signs)
compared to analytical solution (black 'x's) for a source at 145° azimuth and 1 m radial
distance showing a 20 dB per decade increase in simulation response. Responses have
been aligned to 0 dB at 150 Hz to aid visualisation.

radial distance of 1 m. BEM simulations were carried out in 150 Hz steps from

150 Hz to 22.05 kHz.

The simulation results obtained directly from the solver exhibited a 20 dB per
decade increase in their response compared to the analytical solution (figure @)
The authors of Mesh2HRTF were consulted and this scaling of the responses with
frequency was attributed to the relationship between the velocity potential, ¢,
produced by the equation system in the Mesh2ZHRTF solver and the sound

pressure, p, calculated in post-processing via the equation:

p=ipwo (5.33)

where p is the density of air, ¢ the imaginary unit and w the circular frequency.
Therefore the simulation results were multiplied by a -20 dB per decade scaling

factor to align them more closely with the analytical solution, as shown in figure

5.3
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Figure 5.5: Simulation results of acoustic scattering by a rigid sphere, multiplied by a
-20 dB per decade scaling (red '+' signs) compared to analytical solution (black 'x's)
for a source at 145° azimuth and 1 m radial distance. Responses have been aligned to
0 dB at 150 Hz to aid comparison.

However, after application of the frequency-dependent scaling, there remained an
overall level offset between the simulation responses and the analytical solutions
as shown in figure @ This overall level difference is likely due to the area of
the mesh face used as the source, as this affects the excitation energy in the
simulation (see section for further discussion of this effect). The numerical
difference between simulated and analytical pressures at 1 kHz in the direction
0° azimuth and 0° elevation was found to be 4.93 dB and a positive shift of this

magnitude was applied to all simulation results (figure @)

After application of the frequency dependent scaling and the overall level shift
the simulation results gave good correspondence with the theoretical results. The
overall mean squared error across all directions and frequencies was 0.0393 dB,
with a maximum error of 1.95 dB at 13.2 kHz for a source at 175° azimuth. Figure
@ displays the magnified region of figure @ in which the largest errors occur,
and figure @ shows the variation of the squared error across all frequencies and

directions. It can be seen that the larger errors are concentrated towards higher
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Figure 5.6: Comparison of simulation (red '+' signs) and theoretical results (black 'x's)
showing overall level offset.
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Figure 5.7: Comparison of simulation (red '+' signs) and theoretical results (black 'x's)
with +4.93 dB offset applied to all simulation results.
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Figure 5.9: Squared error between simulation and theoretical results across azimuth
angle and frequency.

frequencies and directions to the rear of the sphere where pressure levels are at

their lowest and diffraction effects strongest. It should be noted that for these
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directions and frequencies, the sound pressure levels are already very low and
therefore errors appear larger in a decibel sense. In an absolute pressure error
sense, the errors are comparable across all directions and frequencies. Therefore,
it was decided that the overall mean squared error of 0.0393 dB was acceptable
and the decision was made to adopt Mesh2HRTF as the main computation

tool in this research.

5.3 Amplitude of deformations

The M database stores the effects on an for the template head mesh
of independently applying N + M harmonic deformations to the mesh. Valid
use of the database depends on each acoustic change being linearly related to the
harmonic deformation which caused it. In these circumstances, the principle of
superposition holds and the overall acoustic change caused by a weighted sum
of harmonic deformations may be calculated by summing the acoustic changes
for each harmonic deformation using the same set of weights. Hence, for m a
critical trade-off exists between keeping the amplitude of the harmonic deforma-
tions small enough to ensure a satisfactory degree of linearity between a shape
change and the corresponding acoustic change, yet large enough that the acoustic
changes are above the noise floor of the solver ([Thorpd, 2009; Tew et al.,
2012). Therefore it was necessary to evaluate, firstly, the linearity of the relation-

ship between deformations and acoustic changes, and secondly, the noise floor of

the solver.

5.3.1 Linearity

To assess the degree of linearity between deformations and acoustic changes the
same spherical mesh was used as in section @ This mesh was chosen because,
as in section @, the results could easily be compared to the analytical solution.

Initially the harmonic deformations were kept simple by increasing the radius of
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Figure 5.10: Comparison between simulation results (blue 'x's) and analytical results
(solid orange line) for the change in pressure (A pressure) introduced by increasing the
radius of a sphere.

the sphere in 0.01 mm steps from 0 mm to 0.5 mm. This is equivalent to a zeroth
degree, zeroth order spherical harmonic. Figure shows the initial simulation
results ('x's) compared to the analytical solution (solid line). The results are
plotted as delta pressures, relative to the results of the original, undeformed,

spherical mesh.

It can be seen that the simulation results exhibit a succession of steps which
increasingly deviate from the analytical results. However, as shown in figure
, each step more closely approximates the analytical solution if it is shifted to
align with the first data point of each step. After scrutinising the Mesh2HRTF
code it was found that the original code did not read in the mesh coordinates
at full resolution, it only read in six decimal places, which, considering a 10.9

cm sphere with coordinates expressed in metres offers a maximum of only six

Isigniﬁcant figures (s.f.s)|. Figure shows the effect of increasing the precision

with which Mesh2HRTF' reads in the mesh. Increasing the precision from six
to eight (i.e. by 100 times) results in a marked reduction in step size. As

expected, improving it by a further 100 times, from eight to ten yields a
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Figure 5.11: Comparison between simulation results (blue 'x's) and analytical results
(solid orange line) for the change in pressure (A pressure) introduced by increasing
the radius of a sphere. The analytical results have been shifted to align with the first
point of the third “step” to demonstrate that each subsequent point in the step closely
follows the analytical solution.
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Figure 5.12: Simulation results with spherical mesh coordinates imported into
Mesh2HRTF to six (red 'x's), eight (green 'o's) and ten (blue '+'s) decimal places.
The black line shows the analytical solution for reference.
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Figure 5.13: Comparison between A pressures (blue '+'s, left axis) and area of the
source face (orange 'x's, right axis) with spherical mesh coordinates imported into
Mesh2HRTF to six decimal places demonstrating how the steps in the A pressures
correspond to changes in the area of the source face.

correspondingly smaller reduction in error from this cause. Whilst increasing the
resolution removes the steps from the simulation results, it still doesn’t remove the

linearly increasing deviation from the analytical solution with increasing radius.

It was then realised that one possible source of this deviation was the fact that a
source in Mesh2HRTF is generally implemented as a vibrating face in the mesh
using velocity boundary conditions. Therefore, as the radius of the spherical
mesh is increased the effective size of the source also increases, making the source
become gradually more energetic. This could explain the increasing deviation of
the simulation results from the analytical solution. To test this explanation, the
mesh coordinates were read in using a precision of only six decimal places and the
simulation results were compared to the area of the source face for each sphere of
increasing radius. In figure it can be seen that the radius values where steps
occur in the simulation results correspond to the step transitions in the area of

the source face.

Figure shows the results of the linearity test with the Mesh2HRTF code
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Figure 5.14: Simulation results (blue 'x's) with the spherical mesh coordinates imported
into Mesh2HRTF at full resolution, compared to the analytical results (orange solid
line) with no compensation for source face area.
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Figure 5.15: Simulation results (blue 'x's) with the spherical mesh coordinates imported
into Mesh2HRTF at full resolution, compared to the analytical results (orange solid
line) with compensation for source face area.
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updated to read in the mesh data at full double precision and figure shows
the same results but scaled by the ratio of the area of the source face of each
deformed sphere to the area of the source face of the undeformed sphere. It
can be seen that after scaling by the relative area of the source face there is
good correspondence between the simulation and analytical results. Figure ,
however, indicates that at least two further sources of error remain. Firstly, there
appear to be random variations about the mean slope in the computed delta
pressures. Secondly, there appears to be a systematic increase in error between

the computed and analytic delta pressures as the radius of the sphere is increased.

The random variations are of sufficient amplitude to cause concern and need
further investigation. Figure compares simulation results to the analytical
solution with the radius of the sphere scaled by factors ranging from 0.25 to
8, representing deformations between —0.0818 and 0.7630 mm (for the 10.9 cm
radius sphere). What appears as a systematic deviation in the results in figure
is revealed in figure to be a smoothly varying curve for this larger range
of deformation amplitudes. The curve is likely to be an alternative manifestation
of the errors in the level and phase of the ripples, just visible in figures @ and

@, rather than computation noise. Such errors were deemed to be acceptable in

section @

For this zero-order spherical harmonic deformation, the relationship between de-
formation amplitude and acoustic pressure change, as shown in figure 5.13 appears
to be linear across the whole range of 0.01 mm to 0.5 mm. An analysis of a selec-
tion of much higher-order harmonic deformations is needed to establish a limit
on deformation amplitude in general. Such an analysis was conducted by Thorpe
(2009), who concluded that a maximum deformation amplitude of 0.3 mm is ac-
ceptable. This figure was successfully applied in the m database described in
Tew et al) (2012). To provide a further safety margin, we adopt a deformation

limit of 0.1 mm in the work presented in this thesis.
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Figure 5.16: Simulation results (blue 'x's) and analytical results (orange '+'s) for much
larger deformations.

5.3.2 Signal-to-noise ratig (SNR))

After deciding on a proposed maximum deformation amplitude of 0.1 mm it was

necessary to check that the acoustic changes introduced by deformations of this

size are well above the noise floor of the solver.

For each spherical harmonic degree, n, from 0-100, a random order, m, where
m € [—n, n], was chosen. The amplitude of the spherical harmonic of this degree
and order, normalised to a peak value of 0.1 mm, was calculated for each vertex
in the spherical head mesh generated in section @ The normal for each vertex
in the original head mesh was determined by calculating the average of the nor-
mals of the faces connected to it. Finally the harmonic deformation was applied
by moving each vertex in the head mesh by the amplitude of the deformation

associated with the corresponding vertex in the spherical mesh.

Simulations were run for the 101 deformed meshes for the five frequencies 2, 4,
6, 8 and 10 kHz and four directions (0° azimuth, 0° elevation), (90° azimuth,
0° elevation), (0° azimuth, 90° elevation), (45° azimuth, 45° elevation). These

frequencies were chosen to span the frequency range of most interest for pinna
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cues (section ) and the directions were chosen to be very different. However,
it would be beneficial to verify the signal-to-noise ratio for additional directions,
as four directions is likely not enough. In addition 101 simulations of the template

head mesh were run to give an indication of the innate computation noise in the

solver.

Figure shows the results of these simulations. The green crosses represent
the delta pressures of the deformed meshes, whilst the box plots represent the
distributions of the 101 template mesh results with their mean removed, i.e. the
noise in the solver. Figure has the y-axis scaled to the delta pressures of
the deformed meshes whilst figure has the y-axis scaled to accommodate
the limits of the box plots of the noise in the system. The figures show that
the spread in delta pressures due to the deformations plus computation noise is
several orders of magnitude greater than the spread in delta pressures due to

computation noise alone.

The histogram in figure shows the distribution of the 101 delta pressure
values computed at 6 kHz in the direction (45° azimuth, 45° elevation). Its
approximately Gaussian shape is indicative of the distributions for the other 100
delta pressure sets in figure . The fact that a small proportion of the delta
pressures in each set lies in the noise floor (as seen in figure ) is therefore to

be expected.

As a further check, a pseudo Eignal—to—noise ratio ( SNR)| was calculated by com-

puting the ratio of the variance in the deformation delta pressures to the variance
in the template results. This was calculated both as a function of direction and
of frequency and the results are given in table l;_ll The exhibits a small
variation of approximately 5 dB with direction, but there is a variation of almost
65 dB with frequency. However, all deformations tested exhibited an of
over 60 dB, confirming that, for these harmonics, frequencies and directions, and
using a peak deformation amplitude of 0.1 mm, computation noise is a negligible

source of error.
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Figure 5.17: A pressures (green 'x's) between harmonically deformed head mesh results
and the template head mesh results alongside box-plots of 101 repeated simulations of
the template head mesh with the average template result removed. (b) same as (a) but
with y-axis expanded to show the box-plots.
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Figure 5.18: Histogram of A pressures at 6 kHz for 45° azimuth, 45° elevation, with
Gaussian distribution (green curve) plotted on top.

Direction SNR
(0,0) 77.8688 dB
(90,0) 82.6028 dB
(0,90) 78.3116 dB

(45,45) 82.2657 dB

Frequency SNR

2000 Hz 62.7558 dB

4000 Hz 94.1029 dB

6000 Hz 108.604 dB

8000 Hz 117.512 dB

10000 Hz 127.452 dB

Table 5.1: Bignal—to—noise ratid (bNRI) for A pressures as a function of direction and
frequency.

5.4 Generation of evaluation grid

A critical choice which had to be made before the @ database could be com-
puted concerned the directions in which the for the template head and its
spherical harmonic deformations would be calculated. This choice is influenced
by the nature of the analyses likely to be performed using the database; such as

whether studying variations in morphoacoustic properties will be concentrated in
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certain directions and at particular distances. Whilst the number of evaluation
grid points does not have as large an impact on m simulation time as the
number of head mesh points, increasing the number of evaluation grid points
nevertheless leads to an increase in post-processing required, as well as to an

increase in storage required for the results.

The first set of points considered was a 1.5 m radius sphere around the head mesh
for the study of far-field cues. However, rather than constant angular spac-

ing of azimuth and elevation on the surface of the sphere, which gives points whose

x XXX

xxX-¥

Figure 5.19: Spherical far-field evaluation grid points for the simulations
showing approximately constant linear distribution of the points on the sphere. The
points lying on each of the three principal planes are highlighted as coloured 'x's (median
(blue), horizontal (red) and frontal (green)) and they have been set slightly proud of
the surface of the sphere for increased clarity.
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linear separation reduces with increasing elevation, an approximately equal linear
distribution of points was generated. The elevation steps were set to a constant
2° whilst the number of azimuthal points for each elevation step was reduced
approximately linearly from 360 points at 0° elevation, giving 2° resolution in the
horizontal plane, to a single point at +/-90° elevation. This produces constant
2° angular steps in each of the three principal (great circle) planes: median, hor-
izontal and frontal. Figure shows the spherical point cloud with each of the

three principal planes’ points highlighted as coloured 'x's.

To facilitate future studies of the morphological origin of acoustical distance cues,
three additional sets of concentric rings of evaluation points were generated; one
set for each of the three principal planes. The angular step around each ring was
set at 2° and the radii in a set were incremented in steps of 5 cm. The radius of
the innermost ring for each plane was set at the first multiple of 5 cm which lay
fully outside the head mesh and the radius of the outermost ring was set at 3 m.
The rings of radius 1.5 m were removed as these points were already included
in the spherical evaluation grid. Figure shows the innermost rings of each
of the three planes and figure shows the complete set of rings for all three

planes.

Finally the evaluation points of the sphere and the three planes were combined

into a single set of evaluation points. Due to the absence of a torso from the

IKnowles Electronics manikin for acoustic research (KEMAR)| head mesh, the

accuracy of HRTFY for source directions at increasingly negative elevations will
deteriorate. A more thorough analysis is required to verify exactly what the
minimum valid elevation for the mesh is, but points below -45° are thought to be

almost certainly invalid and so were removed from the evaluation grid. The final

set of 32,739 evaluation grid points is shown in figure .
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Figure 5.20: Innermost simulation evaluation g