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Abstract

A complete general theory for non-equilibrium states is currently lacking.

Non-equilibrium states are hard to reproduce experimentally, but creating

computer simulations of relatively simple and non-equilibrium systems can

act as a ’numerical laboratory’, in which to study steady states far away from

equilibrium.

The Joule-Thomson throttling experiment, being a system driven away

from equilibrium during the throttling, was first performed by Lord Kelvin

and Joule in 1852. They successfully cooled a gas in an adiabatic process. This

study investigates the simulation of a Joule-Thomson throttling proposed by

Hoover, Hoover and Travis (2014), who used a purely repulsive potential and

successfully observed cooling. This was puzzling, as Van der Waals had noted

that the Joule-Thomson experiment proved the presence of intermolecular

attractive forces. It was found that the original simulation did not conserve

enthalpy, which is a requirement of a Joule-Thomson throttling.

This study proposes the use of two families of pair potentials: the mn-

family, first defined by Hoover and the LJ/s first defined by Holian and Evans.

These potentials offer an attractive component, while being well suited for

molecular dynamics simulations, by being continuous in its derivatives and

smooth without the need for further corrections.

The phase diagrams for these potentials are unknown, but are required to

perform a successful throttling. This study develops two methods of predicting

liquid-vapour coexistence and Joule-Thomson inversion curves without any a

priori knowledge of the phase diagram: (i) Virial coefficient theory and (ii) a

Barker-Henderson perturbation theory.

The theories successfully predicted liquid-vapour coexistence and Joule-

Thomson inversion curves for a range of members of each family in two and

three dimensions. One potential was then selected, and used to perform a

two dimensional Joule-Thomson throttling, which displayed cooling of the gas

while keeping the enthalpy constant.
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1 Introduction and Literature Survey

Thermodynamics is well established for systems at equilibrium, but in practice,

particularly in engineering, many systems are never truly in equilibrium, but can be

very far from it. However, some systems can attain a non-equilibrium steady state.

A complete generalised theory of systems far from equilibrium is currently lacking.

The main reason for this is a lack of well-defined experimental data for such systems.

Non-equilibrium steady states are extremely rare in nature and hard to reproduce

experimentally. Numerical simulation offers the best hope for making progress. To

make advances in theoretical knowledge, there is a need to find systems far away

from equilibrium which can be reproduced using computer simulations. Atomistic

simulation methods such as Molecular Dynamics (MD) are essentially exact once

a pair potential has been supplied. These methods can be regarded as numerical

laboratories, supplying pseudo-experimental data with which to test new theories

and advance knowledge.

1.1 Motivation: NEMD Simulations

The study of low dimensional systems is the study of systems where the movement of

particles are severely restricted in one or more dimensions. A few general examples

include: a two dimensional system like the 2D electron gas [1], graphene [2, 3],

carbon nano tubes [4] and Langmuir-Blodgett films [5], the one dimensional system

of a nano wire [6] and a zero dimensional system, the quantum dot [7]. Studies of

low dimensional systems such as these have led to many advances in electronics, for

example the understanding of light and molecules.

A single 1D Nosé-Hoover oscillator particle subjected to a coordinate dependent

temperature T (q) provides another example of a non-equilibrium steady state with

low dimensionality which can result in chaotic behaviour [8].

The Galton Board, described by Francis Galton in his work Natural Inheritance

[9, 10], is a simple experiment which illustrates how the chaotic movement of balls

through several rows of pegs results in a normal distribution, as illustrated in figure
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1.1. This system is of interest because it can be used to simulate a dilute electron

gas in a metal, the periodic Lorentz gas [11, 12].

Figure 1.1: Illustration of the Galton Board, showing the resulting normal distribu-
tion [9, 10].

Figure 1.2: Diagram showing the computational cell with two outgoing angles α
and β, when interacting with a single peg on the Galton board, while being in an
applied external field in the y-direction [13].

A simple two dimensional computational realisation of the Galton Board uses

hard disks in place of the pegs and a single point mass in place of the ball bearing.

Like the real model, the computational variant has an applied external field (not

necessarily gravitational). A deterministic thermostat completes the description of

the computer model, preventing infinite acceleration and necessary to generate a

NESS (Non Equilibrium Steady State).

Perhaps the simplest numerical Galton Board is the one conceived by Hoover [13].

Here, a triangular lattice of scatters is employed, with the field direction chosen as

per figure 1.2. The thermostatted equations of motion for the position, r, and

momentum, p, describing the motion of a point mass between collisions are:
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ṙ =
p

m
(1.1)

ṗ = Eŷi− ζp (1.2)

where Ey is the field strength and ζ is a Gaussian multiplier. This formulation

avoids the need to include impulsive forces which operate at collisions where the

hard disk scatters.

In two physical dimensions, there are four degrees of freedom but the thermostat

reduces this to three because p2x + p2y = const. By using a Poincaré section, the

phase space reduces to two dimensional. By following the trajectory of a randomly

placed diffusant in time, the phase space distribution function can be obtained.

Applying the field as discussed above, the simulation can be performed using only a

half-hexagonal unit cell with the standard edge periodic boundaries, and the surface

of an elastic semicircle (which represents one of the scattering particles). Changing

from Cartesian to polar coordinates leads to an analytical solution for the free flight

trajectories [11]. However, it is far simpler to work in Cartesian coordinates and

obtain the trajectories numerically.

Figure 1.3: Phase space at different magnitudes of applied external fields of the
Galton Board. α, β, pz and past collision angles defined in figure 1.2 [14].

Figure 1.3 shows the reduced phase space distribution obtained using this model.

The zero force field case shows a uniform coverage. With the field switched on, the

phase space becomes striped with a fractal dimensionality that depends on Ey. This

result implies that the Gibbs fine grained entropy, defined as
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S = −kB

󰁝
f(Γ) ln f(Γ)dΓ (1.3)

where f(Γ) is the the probability distribution of all points Γ in phase space. It di-

verges to −∞ because the phase space distribution function is multi fractal, meaning

it has more than one scaling exponent. This result suggests it is futile to seek to

develop a theory of NESS based on generalising linear irreversible thermodynam-

ics [14].

An example of a NESS generated for a many-body system is provided by the

simulation of planar Poiseuille flow, which is shown in figure 1.4. By using a constant

Figure 1.4: Simulation geometry for the planar Poiseuille flow [15].

applied field in the flow direction, Travis and Gubbins [16] were able to generate

Poiseuille flow with a homogenous longitudinal pressure and density. Using the

method of planes [17] they obtained local profiles with high spatial resolution. The

strain rate profile was found to contain several zeros, this is shown in figure 1.5.

This result indicates that even a local generalisation of Newton’s law of viscosity,

as given in equation (1.4) is incorrect.

η(z) =
−Πyx(z)

γ(z)
(1.4)

Where η is the viscosity, Π the stress and γ the strain. Instead they postulated a
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(a) (b)

Figure 1.5: Where the vertical axes are strain rate γ∗(z) at channel width H∗ = 5.1
and Π∗(z) is stress, both in the reduced z* direction. The diagrams are: (a) Strain
and (b) stress profiles for different systems: Weeks-Chandler-Anderson (filled cir-
cles), Lennard-Jones (open circles) and Weeks-Chandler-Anderson (fluid-fluid/solid-
solid) and Lennard-Jones (fluid-solid) (open triangles) [15]. (see section 2 for more
information on these potentials.)

non-local generalisation of Newton’s law in the form of equation (1.5).

Πxz(x) = −
󰁝 z

0

η(z; z − z′)γ(z′)dz′ (1.5)

where γ(z) = ∂ux/∂z. Later work by Daivis, Todd and Travis [18] and Daivis and

Todd [19] confirmed this generalised form of Newton’s law.

A shock wave is a strong pressure wave propagating through an elastic medium

such as air, water or solid. The wave front in a shock wave has a drastic change in

stress, density and temperature. In figure 1.6, the density profile of a typical one

dimensional shock wave from an MD simulation, propagating from left to right is

shown [20]. It is shown that a low density region is following a higher density as

the wave propagates. In reality, such a pressure wave can be caused by supersonic

aircrafts, explosions and lightning. Simulating a shock wave is of interest because it

generates a far from equilibrium state after only a few collision times. Transforming

a cold liquid or solid into a hot compressed state [20].

Studying shock waves, which are far away from equilibrium, Hoover and Hoover

[21] showed that Fourier’s law of heat conduction also needs generalising. They

studied two dimensional shock waves using molecular dynamics (MD), which showed

that temperature is not a scalar, and that there are time delays between heat flux
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Figure 1.6: Density profile and snap shot from a typical 1D shock wave simulation
[20]

and thermal gradient, as is shown in figure 1.7. A solution to temperature not being

a scalar, is a modification of Fourier’s law, where there are independent contributions

from ∇Txx and ∇Tyy.

Figure 1.7: The y axis to the left is, from the top down: Temperature in the x-
direction Txx, temperature in the y-direction Tyy and heat flux Q. On the figure
on the right the y-axis is, from the top down: density ρ, pressure in the x-direction
and pressure in the y-direction. Solution of the generalised Navier-Stokes-Fourier
equation, showing that temperature is not a scalar, as Txx > Tyy, and that the heat
flux Q only contributes to Txx [22].

Hoover, Hoover and Travis [20] argued that the Joule Thomson effect could

also be a simple system far away from equilibrium and could be used to study the

breakdown of hydrodynamics.

1.1.1 Review of the Joule-Thomson effect

In 1852 Joule and Thomson discovered that it is possible to change the temperature

in a gas by applying a sudden pressure change through a valve, later to be known
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as the Joule-Thomson effect [23]. The experiment can simply be thought of as a

cylinder which is thermally insulated and has an adiabatic piston at each end. In the

middle of the cylinder is a porous plug as depicted in figure 1.8. The purpose of the

porous plug is to enable the control of pressure while still allowing the flow of mass.

Considering the initial state as seen in figure 1.8 (a), there is a gas with pressure

Pi and volume Vi. The initial state can be considered to be in equilibrium, as the

right hand piston prevents any gas from passing through the porous plug. The final

state, as shown in figure 1.8 (b), is obtained by moving both pistons simultaneously

to the right, in such a way that Pi is kept larger than Pf but both being constant,

until all the gas has been passed through to the right hand side, when the system is

now in a new equilibrium state.

Figure 1.8: Experimental set-up for the Joule-Thomson throttling experiment, show-
ing the initial and final states.

Whilst the pistons are moving the system is in a non-equilibrium state, and it

cannot be described by thermodynamic coordinates. In contrast, since the initial and

final states are in equilibrium, they can be described by thermodynamic coordinates.

Consider the first law of thermodynamics, which states that the difference in final

(Uf ) and initial (Ui) internal energy is equal to the sum of the work done on the

system (W ) and the heat added to the system (Q)

∆U = Q+W (1.6)

The cylinder is thermally insulated so that no heat enters or leaves the system,

so that Q = 0. The work done on the pistons is given by the volume integral

W = −
󰁝 Vf

0

PfdV −
󰁝 0

Vi

PidV (1.7)
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Both pressures in the initial and final states are constant, so the result of the integral

is simply

W = −(PfVf − PiVi) (1.8)

Combining equations 1.6 and 1.8

(Uf − Ui) = −(PfVf − PiVi) (1.9)

and rearranging so that all initial states are to the left, and final states to the right

Ui + PiVi = Uf + PfVf (1.10)

In other words, the initial and final enthalpies are the same. It is worth noting

that this does not imply that enthalpy remains constant during the non-equilibrium

throttling process.

It is worth noting that for the most simple system, the ideal gas, constant en-

thalpy during throttling does not yield a drop in temperature. Recall that enthalpy

is given by H = U + PV and that for an ideal gas, the internal energy U is only

dependent on temperature. By applying the equipartition theorem and the kinetic

theory of particles, the internal energy of an ideal gas is written as

U =
1

2
NfkBT (1.11)

where N is the number of particles and f the number of active degrees of freedom.

The ideal gas law

PV = NkBT (1.12)

yields an expression for the enthalpy of an ideal gas

H =

󰀕
f + 2

2

󰀖
NkBT (1.13)
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making the initial and finial enthalpies

Hi = Hf (1.14a)

󰀕
f + 2

2

󰀖
NkBTi =

󰀕
f + 2

2

󰀖
NkBTf (1.14b)

Hence Ti = Tf , showing that for an ideal gas, if enthalpy is constant the temper-

ature must also be constant. Therefore there will be no observed heating or cooling

for a system where particles are not interacting, when being throttled.

(a)
(b)

Figure 1.9: (a) A single isenthalp, showing its maximum. (b) A Joule-Thomson
inversion curve superimposed on several isenthalps going through their maxima.
Taken from the work of R. H. Pittman and M. W. Zemansky [24].

Now considering the Joule-Thomson throttling as an isenthalpic process, results

for different rates of throttling from an initial state of pressure i and seven different

final states of pressure, labelled f(n), with n = 1 . . . 7, are shown in figure 1.9a. As

an illustrative example, full calculations of the JT inversion curve for the van der

Waals system is given in appendix D. What one should note is that a throttling

process can either result in an increase of the temperature (n = [1; 6]), or a decrease

(n = 7). This phenomenon is described by the Joule-Thomson coefficient µJT and is

the rate of change in temperature with changing pressure in an isenthalpic process.

µJT =

󰀕
∂T

∂P

󰀖

H

(1.15)
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If µJT < 0, heating will be observed while for µJT > 0, cooling will be observed.

For the purpose of performing a throttling with the desired result, knowing how to

obtain cooling or heating is very useful. We can obtain this knowledge by finding

the maxima of the isenthalps, i.e solving for when the Joule-Thomson coefficient

vanishes. Repeating this calculation for several isenthalps gives rise to the Joule-

Thomson inversion curve, as depicted for hydrogen in figure 1.9b. Hoover, Hoover

and Travis [20] conducted a molecular dynamics (MD) simulation of the Joule-

Thomson throttling, using a simple and purely repulsive pair potential φ(r < 1) =

[1− r2]4 which was slightly modified by capping the force at the point of inflexion.

Two regions of different density and pressure were separated by a potential barrier,

which only allows particles with enough energy to overcome the barrier to pass

through. Figure 1.10 shows the predicted density profile of the throttling process.

The particles are driven from the left to the right, having the potential barrier placed

directly in the middle of the system at x = 0. As expected, the density in the initial

state is constant and the density in the final region is also constant but lower than

the initial region.

Figure 1.10: A Joule-Thomson snapshot. The motion is from left-to-right with
cooled fluid exiting at the right boundary. Taken from Hoover, Hoover & Travis
(2014)

Similarly, results in figure 1.11 for the remaining thermodynamic profiles show

that pressure is constant in both regions, but pi > pf . Mass is kept constant

throughout the system and there is a cooling observed in the temperature.

A puzzling feature of this work is the presence of a cooling effect despite the lack

of attractive interactions in the pair potential for the fluid. The authors did not
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Figure 1.11: Time-averaged pressure tensor and velocity (left); time-averaged mass,
momentum, and energy fluxes (centre); tensor temperature (right). Taken from
Hoover, Hoover & Travis (2014).

explore this further.

Other simulation studies done in relation to the Joule-Thomson throttling are

mainly aimed at determining the Joule-Thomson inversion curve. Empirical deter-

mination of inversion curves has to happen under extreme conditions, therefore there

has not been much published experimental data for inversion curves. Simulations

are not hindered by high temperatures and pressure and can therefore be used to

obtain inversion curves. These curves are useful for testing equations of state and

even predicting phase behaviour for real fluids in the critical region. Colina and

Müller [25] performed an isothermal-isobaric Monte Carlo molecular simulation to

obtain a Joule-Thomson inversion curve for the Lennard-Jones system. Kristóf et al.

used a constant pressure and enthalpy Monte Carlo method (NPH-MC) to obtain

the Lennard-Jones inversion curve. They produced isenthalps which were analysed

to locate their maxima, which corresponds to µLJ = 0.

In the original Joule-Thomson throttling experiment, the gas diffuses through

a solid porous material, causing a decrease in the density of the gas. This effect

is called permeation and has been simulated several times. Hoover, Hoover and

Travis use ’conveyor belt’ type boundary conditions [20] but other boundary driven

simulations exist. Arya et al. [26] performed a molecular dynamic simulation of

a permeating liquid, to obtain transport coefficients. Their simulated system con-

sisted of a high and a low density region on either side of a porous material and

by replacing molecules as they permeate they created a steady state. Furukawa et
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al. [27] is another example of boundary driven non-equilibrium molecular dynamic

simulations for a gas being forced through a porous material. They consider a flexi-

ble and an inflexible material as the porous material, to investigate what effect this

has on the effusion flux. These simulations, like the Joule-Thomson simulation by

Hoover, Hoover and Travis, rely on a streaming velocity and the insertion of new

particles to maintain a flow. Furukawa et al. re-evaluated the streaming velocity

after every 1000 MD time step, while Arya et al. maintains a constant replace-

ment. The boundary conditions chosen by Furukawa et al. could seem like the

better choice due to constant re-evaluation. However, the constant replacement of

particles chosen by Arya et al. and Hoover, Hoover and Travis although simpler

gives good results, as was proven by the 1D shock wave work [20]. It is worth not-

ing that, despite the similarities, the Joule-Thomson simulation by Hoover, Hoover

and Travis is independent of the structure of the porous material, even Joule and

Thomson originally used several different materials and obtained the same results.

What is important to the Joule-Thomson throttling is not the permeation itself, all

this will do is increase the time it would take for a particle to reach the other side,

rather it is the potential barrier particles experience before they enter the porous

material.

Joule-Thompson throttling is a promising model for NEMD simulations to ad-

vance our understanding of far from equilibrium states. However, it requires a

rethink of what potential to use. A suitable potential would be mathematically

simple, have an attractive part and have a finite cut off to be useful for molecular

dynamics simulations, as simulations can not truly consider infinite interactions. To

ensure a successful throttling of a gas, it is important to know the chosen potential’s

phase diagram, in order to avoid throttling through the liquid-vapour coexistence

region.

1.2 Literature Survey

First an overview is presented of some mathematically simple pair potentials which

have been of interest for simulation purposes, from the simple purely repulsive hard
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sphere potential, to the much softer Lennard-Jones. This is followed by an introduc-

tion to the purpose and meaning of phase diagrams and how to obtain them. This

section concludes with a historical review of the development of analytical equations

of state.

1.2.1 Pair potentials

In general, the particles of a system interact through conservative intermolecular

forces. The total potential energy of a system can be written as a sum of one-

body, two-body, three-body plus higher order terms, each of which depend on their

coordinates [28–31]:

Φtotal =
N󰁛

i

Φ1(ri) +
N󰁛

i,j

Φ2(ri, rj) +
N󰁛

i,j,k

Φ3(ri, rj, rk) + ... (1.16)

The first term is zero in the absence of an external field (e.g gravity). The

three body term is usually small compared to the two body term, so the total

energy is often approximated by the two body term alone, the pair potential. The

most significant part of the pair potential is the repulsion which occurs at short

separation distances. The repulsion arises when there is an overlap of the outer

electron shells. The attractive force dominates at larger separation distances and

is significantly more slowly varying in comparison to the repulsion. The attraction

has little impact on the structure of a fluid, but it does provide the cohesive energy

which stabilises the liquid phase. Considering the importance of the repulsive part,

the simplest possible pair potential is that of the hard sphere (HS).

The HS potential describes the repulsion between hard spherical particles that

cannot overlap, imitating the behaviour of spherical molecules at very short distances

[32]. If the particles are in contact (separation = σ) the energy becomes infinite,

thus preventing any overlap. For separations greater than this, the energy is zero.

The HS potential is given by

φHS(r) =

󰀻
󰁁󰀿

󰁁󰀽

∞ r < σ

0 r ≥ σ
(1.17)

13



and illustrated in figure 1.12.

Figure 1.12: Hard sphere potential

Computational experiments using the HS potential have shown that there is no

significant difference in the structure of the liquid, compared to calculations done

using a more complicated, but still spherically symmetric potential [33–37]. The

absence of any attractive force means that a HS system only has a single fluid

phase [38], the HS potential therefore fails to describe a liquid phase.

By adding a small attraction to the HS potential, one obtains the square-well

(SW) potential. Instead of the potential vanishing when r = σ, it takes a constant

value of 󰂃 over the range σ < r < σ(R− 1) [39]. The SW potential is defined by

φSW (r) =

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∞ r < σ

−󰂃 σ ≤ r ≤ Rσ

0 r > Rσ

(1.18)

and depicted in figure 1.13.

In order to study and understand the effect of attractive forces, the hard-core

repulsion of particles must be replaced with a softer repulsion. This allows the

particles to overlap. The SW system has been well studied [40,41]. The SW potential

does give rise to a true liquid. The structure of the square well lends itself to easy

modifications in the attractive region, by changing the width of the well, the depth

and the number of wells in the potential.

It is possible to combine a number of wells, to construct a stair like potential, as
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Figure 1.13: Square well pair potential

given by

φStair(r) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

∞ r < σ

󰂃0 σ ≤ r < r0

󰂃1 r0 ≤ r < r1

󰂃2 r1 ≤ r < r2

0 r ≥ r2

(1.19)

as depicted in figure 1.14 [42, 43]. This form has been used to simplify virial coeffi-

cients calculations for super critical fluids [44].

Figure 1.14: Four well potential.

A ramp shaped soft pair potential was proposed by Hemmer and Stell [45], where

the steep repulsive core has been softened by a ramp. Such a potential is described
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by

φRamp(r)/󰂃 =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

∞ r < r0

(r0−r)
(r1−r0)

r0 ≤ r < r1

(r2−r)
(r1−r2)

r1 ≤ r < r2

0 r ≥ r2

(1.20)

and illustrated in figure 1.15.

Figure 1.15: Ramp potential.

The ramp potential has been of special interest as it has a liquid-liquid critical

point, like water [46, 47].

The Yukawa potential is an example of a hard core repulsion, but with a long

range, smooth attraction. It has been shown to be effective for simulating colloids

and plasmas [48]. The attractive Yukawa potential with a hard core is described by

φHS−Y ukawa/󰂃 =

󰀻
󰁁󰀿

󰁁󰀽

∞ r < σ

− e−kr

r/σ
r ≥ σ

(1.21)

for r ≥ σ, where k is a parameter that controls the range of the attraction and 󰂃 is

the attractive well depth. The HS-Yukawa potential is depicted in figure 1.16.

A potential which has been softened in the repulsive and attractive region can

be constructed using quantum-mechanical calculations [32]. For particles at large

separations, the contribution to the potential is largely dominated by multipole
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Figure 1.16: HS plus Yukawa potential.

dispersion interactions between the instantaneous electric moments of interacting

atoms. All multipole interactions contribute, however the energy is dominated by the

dipole-dipole interaction, which varies as r−6 [49]. Over short ranges the repulsive

interaction can be represented in exponential form exp(−r/r0), where r0 is the range

of the repulsion. Due to mathematical convenience, the convention has been to

represent the repulsive contribution as an inverse power of r. The power can be

chosen arbitrarily, as long as it is larger than the attractive contribution r−6. Usually

a value between 9 and 15 is chosen, but 12 has by far been the most used and well

studied. This is the 12-6 Lennard-Jones (LJ) potential [50], which is given by

φLJ = 4󰂃

󰀗󰀓σ
r

󰀔12

−
󰀓σ
r

󰀔6
󰀘

(1.22)

and depicted in figure 1.17.

The LJ potential vanishes at infinite separation distances but becomes very large,

rising to positive infinity, at the origin. For the purpose of simulations, potentials

have to be capped at a certain distance, as calculating all interactions at very long

range is computationally expensive. The LJ potential is sometimes shifted so it

becomes zero at the cut off distance. However, only modifying the potential energy

does not ensure that forces are continuous too [51].

A useful variant of the LJ potential is the Weeks-Chandler-Andersen (WCA). It
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Figure 1.17: The Lennard-Jones potential.

is the LJ potential truncated at the LJ minimum at 21/6σ and shifted by the energy

at the minimum, as given by

φWCA(r) =

󰀻
󰁁󰀿

󰁁󰀽

4󰂃
󰁫 󰀃

σ
r

󰀄12 −
󰀃
σ
r

󰀄6 󰁬
+ 󰂃 r ≤ 21/6σ

0 r > 21/6σ
(1.23)

and displayed in figure 1.18. It still consists of the attractive and repulsive compo-

nents, but, due to being shifted upwards and truncated, it is purely repulsive [52].

It’s original purpose was to act as a reference system to the LJ system in perturba-

tion theory [53].

Figure 1.18: WCA potential (solid line) in comparison with the unshifted LJ (broken
line).

Holian and Evans [54] introduced a variant of the LJ potential, the LJ spline
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(LJ/s), in which the LJ potential is truncated at the point of maximum attractive

force and then smoothly interpolated to zero via a cubic spline. This ensures the

force and its derivatives are continuous at the cut off. The phase diagram for this

system is currently unknown.

Hoover, in his textbook Smooth Particle Applied Mechanics [55], introduces an-

other family of pair potentials which in their design are short ranged, vanish at a

finite separation distance and are continuous in their derivatives. The phase dia-

grams for the members of this family are unknown known. Further details on this

family of potentials, along with the LJ/s are given in Section 2.

1.2.2 Phase diagrams

A phase diagram shows the different phases that a substance can exist in under

certain thermodynamic conditions such as temperature, pressure and density. An

example of a phase diagram is shown in figure 1.19. It displays the following key

features: (1) The liquid-vapour coexistence, the dome under which a gas and liquid

coexist and are distinguishable. (2) The critical temperature, the maximum of the

liquid-vapour coexistence dome. Above the critical temperature, a gas cannot be

liquified by applying pressure as the kinetic energy of the particles is too high. (3)

The triple point line, which appears as a horizontal line in the temperature-density

plane. It defines the single state where solid, liquid and vapour all coexist. (4) The

freezing line, where the liquid freezes. (5) The melting line where solids melt.

Along a phase boundary, two or more phases are able to co-exist. For two

phases to be able to coexist they must be in thermal, mechanical and chemical

equilibrium [56].

Tα = Tβ ; pα = pβ ; µα = µβ (1.24)

Under the dome, liquid and vapour coexist, the borders making up the dome are

referred to as saturation lines. This is where a phase transition happens, either from

a homogeneous gas to liquid-vapour, or from the liquid-vapour to a homogeneous
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Figure 1.19: Illustration of a typical single component substance temperature-
density phase diagram. Showing the liquid-vapour coexistence dome and the
freezing-melting line.

liquid. Homogeneous refers to a phase in which the substance has the same chemical

and physical constitution throughout.

Consider the two phase change process illustrated on the temperature vs. specific

volume plot in figure 1.20. State (1) is the state of a homogenous liquid. Heating

Figure 1.20: Two phase changes in the liquid vapour phase (1) Homogeneous liquid.
(2) Saturated vapour (3) Saturated liquid (4) Homogeneous vapour.

the system at constant pressure raises the temperature, and the specific volume.

Eventually it reaches the saturated liquid line, at state (2). The substance continues

20



to be heated, but within the liquid-vapour dome, heating results in no change in

temperature, but increases the specific volume. Between state (2) and (3) the system

exists as two phases. Continued heating will lead to vaporisation of all liquid in the

mixed state, arriving at state (3), the saturated vapour line. At state (3) further

heating will result in a change in temperature as well as specific volume.

There are well established simulation methods for obtaining phase diagrams, but

they each have limitations and can therefore not necessarily provide a full calculation

of a systems’ phase diagram on their own. The most theoretically simple method is

that of simulating explicit interfaces [57,58], but several simulations are required to

obtain a single coexistence point, it is therefore very computationally expensive. A

popular method is the Gibbs ensemble [59, 60], which requires only one simulation

for each pair of coexistence points. Since it simulates two homogenous phases, it

performs badly near the critical point when the two phases becomes less distinguish-

able. As it relies on particle insertions as well, it requires modifications to work in

the solid region where such events are rare [61, 62]. Kofke integration is based on

integrating the Clausius-Clapeyron equation along a saturation line [63], which in

a single simulation calculates the coexistence line. However, it is very dependent

on a well defined initial point on the saturation line, to start the calculations [64].

Histogram reweighting is a way of extracting more information from a single sim-

ulation, about a state very close to the one simulated [65–67]. This method still

requires a significant number of simulations, to yield a whole phase diagram.

Having discussed the homogeneous liquid’s place on the phase diagram, it is

worth mentioning that the conditions which make and define a liquid, are not fully

understood. While there is a qualitative distinction between a solid and a fluid phase,

the same is not true for a gas and liquid phase. Indeed, Van der Waals pointed out

the continuity between the liquid and the gas phase [68]. Whether a system allows

a stable liquid phase to be formed depends on the intermolecular potential, as was

briefly mentioned in section 2, when reviewing the need to introduce an attraction.

In a letter to Nature in 1993 [69], Hage et al. considered the system of C60. As

its relatively short ranged potential greatly differs from that of noble gases. The LJ
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potential has with success been used to model noble gases, but the potential for C60

differs greatly, the most significant difference being the width of the attractive well.

They questioned the effect a short ranged potential might have on the predicted

phase diagram and concluded that the shorter ranged potential results in a triple

point lying above the critical temperature, indicating that C60 cannot exist in a

homogenous liquid state.

At the same time, Cheng et. al. [70] obtained a contradictory result when study-

ing the phase diagram of C60. They concluded that a homogenous liquid region does

exist, but only in a very narrow temperature range compared to the LJ system.

In 2003 Chen et. al. confirmed the existence of the narrow liquid phase in

C60, by Gibbs ensemble Monte Carlo simulations. They extended their studies into

investigating two other types of carbon, C70 and C96, as the molecular weight of the

carbon molecules becomes larger, the width of the potential wells becomes narrower.

They found that C60 has a narrow liquid phase, as does C70, but the "triple line"

has disappeared for C96, indicating that this system will not have a homogenous

liquid phase. These studies show that solely introducing an attraction to a potential

is not sufficient for that system to show a detectable homogenous liquid phase. The

existence of such a phase is highly dependent on the location of the triple point in

relation to the critical point on the phase diagram. The location of the triple point

and critical point have a strong dependence on the width of the attractive well of

the potentials.

1.2.3 Analytical equations of state.

In the construction of phase diagrams it is desirable to have a simple, general and

accurate relationship between the thermodynamical properties of a given substance.

Any such equation is referred to as an equation of state (EoS) [71]. For a one-

component system a general EoS takes the form [72]

f(p, V, T ) = 0 (1.25)
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Equations of state have existed for centuries, starting from the very simple EoS,

like the the ideal gas law, stated by Clapeyron in 1834 [73]

PV = nRT (1.26)

where P is the pressure, V is the volume, T is the temperature, n the number of

moles of gas and R the universal gas constant. Although the ideal gas law describes

a hypothetical gas, it provides a good approximation to real gases at low pressures

and moderate temperatures. Importantly the ideal gas EoS fails at higher pressures

and lower temperatures and cannot predict a gas-liquid phase transition.

Later, in 1873 Van der Waals proposed a new equation of state (VdW EoS) in

his thesis. It was more accurate than the ideal gas EoS [74], because it accounted

for particle size and particle interactions

󰀓
P +

a

V 2

󰀔
(V − b) = RT (1.27)

where a and b are constants which depend on the nature of the gas. The term a/V 2

is known as the internal pressure and originates from the attractive forces between

gas molecules, whilst b is the VdW co-volume and accounts for the finite size of

molecules. The VdW equation may be written explicitly in terms of volume

V 3 − V 2

󰀗
RT

p
+ b

󰀘
+ aV − ab

p
= 0 (1.28)

which is a cubic polynomial equation. This equation has three solutions, all of which

can be real or one is real and two are complex. The case of three real solutions to a

VdW isotherm is displayed in figure 1.21. Above the critical temperature, the VdW

isotherms behaves like an ideal gas. When applying the VdW equation of state

to temperatures below the critical temperature, the isotherm displays unphysical

behaviour. Recalling the liquid-vapour dome in figure 1.20, in the liquid-vapour

coexistence region, during heating, there is no change to the pressure or volume.

Experimentally obtained isotherms are displayed in figure 1.22, taken from [75].
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Clearly the VdW model fails to predict the observed isotherms. The cubic nature

of the VdW EoS displays a loop, as it must have three solutions, indicating pressure

would change with volume.

Figure 1.21: VDW isotherm at a temperature above the critical point. Displaying
the three solutions to the cubic equation of state, and the shaded area for the
Maxwell construction.

Figure 1.22: Pressure-density isotherms of xenon, displaying the binodal (gas-liquid
coexistence) and the experimentally measured isotherms above, at and below the
critical temperature [75].

The unphysical feature of the VdW loop can be corrected by performing a

Maxwell Construction. As it is an isothermal process, the two phases have already
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satisfied the equal temperature condition for equilibrium and they exist at equal

pressure. The remaining condition to be satisfied is equal chemical potential. Using

the conditions of coexistence: equal temperature, equal pressure and equal chemical

potential, it is found that changes in pressure while keeping temperature constant

gives the following expression for the change in chemical potential

dµ =

󰀕
∂µ

∂P

󰀖

T

dp (1.29)

The chemical potential is simply the Gibbs free energy per particle, µi = (∂G/∂Ni)j,k...

which for a one-component system becomes µ = G/N and, from thermodynamics,

󰀕
∂G

∂p

󰀖

T

= V (1.30)

Integrating along the path of the isotherm, the chemical potential is given by the

integral

µ(p, T ) = µliquid +

󰁝 p

pliquid

V (p′, T )

N
dp′ (1.31)

Graphically, the Maxwell construction corresponds to constructing equal areas,

which are the shaded regions displayed in figure 1.21.

Figure 1.23: Van der Walls isotherms with Maxwell construction (black lines), show-
ing the binodal, coexistence points of gas and liquid (red broken lines) and within
the coexistence region, the spinodal (blue broken lines).

Producing multiple isotherms and performing the Maxwell construction to obtain
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the coexistence densities will result in a curve which defines the coexistence states

known as the binodal, this is the red broken line shown in figure 1.23. From the

Van der Waals loops we also observe that there are a set of stationary states within

the coexistence region dP/dV = 0. These points construct a curve, the spinodal,

shown in figure 1.23 (blue broken line). The states contained between the binodal

and spinodal curves are metastable. These states are very sensitive to changes, but

if a gas is slowly compressed, or a liquid slowly expanded, the substance can exist

in this metastable state as supercooled vapour or superheated liquid.

The conditions for the critical temperature are

󰀕
∂P

∂V

󰀖

T

= 0 ;

󰀕
∂2P

∂V 2

󰀖

T

= 0 (1.32)

Using the Van der Waals equation we can derive the critical volume, critical

pressure and critical temperature.

Vc = 3b ; Pc =
1

27

a

b2
; Tc =

8

27

a

bR
(1.33)

There is no denying the usefulness of the VDW EoS, which is satisfying given

its simplicity. However, it is limited to the lower density region. It is therefore

not a surprise that modifications and expansions to the VDW EoS have been made

to increase the region of applicability. In 1928 the Beattie-Bridgeman EoS was

proposed, it expresses the VdW EoS on a unit-mole basis by replacing the molar

volume V with ν̄ (specific volume = 1/ρ) and the ideal gas constant R with the

universal gas constant Ru, where the universal gas constant is R = Ru/Mgas, Mgas

being the mass of the gas. It is based on five experimentally determined constants

[71]

P =
RuT

ν̄2

󰀓
1− c

ν̄T 3

󰀔
(ν̄ +B)− A

ν̄2
(1.34)

where A = A0

󰀃
1− a

ν̄

󰀄
and B = B0

󰀃
1− b

ν̄

󰀄
. The Beattie-Bridgeman EoS is accurate

up to densities around 0.8ρc, where ρc is the critical density. In 1940 Benedict, Webb

and Rubin [71] increased the number of constants to eight and thereby raised the
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accuracy of the equation to around 2.5ρcr. Other cubic equations of states are

the Redlich-Kwong EoS formulated in 1949 [76], which because of its relatively

simple form is still used today, but it does not perform well in predicting the liquid

phase. It does well in the gas phase, and is superior to the VdW EoS in this region.

The disadvantage of the cubic EoS is that the predicted molar volume V of the

liquid phase is significantly less accurate than the molar volume predicted for the

gas phase. In 1976 Peng and Robinson [77] set out to develop an EoS to satisfy

four criteria. 1) Parameters should be expressed in terms of the critical property’s

acentric factor (measure of the non-sphericity of molecules). 2) It should provide

good accuracy at the critical point. 3) The mixing parameter should not be using

more than a single binary interaction parameter. 4) The EoS should work in the

fluid and gas region. The Peng-Robinson EoS provides a good description of the

liquid phase, but has an inaccuracy in the VdW repulsive term. In 1982 Peneloux

et al. [78] made a correction to V to address that problem. They introduced an

additional fluid component parameter that changes the molar volume. Statistical

associating fluid theory (SAFT) equations of state use statistical mechanics methods

like perturbation theory, to describe intermolecular interactions [79–81]. The SAFT

equations of state are found to be more accurate than cubic EoS in the liquid and

solid region [82,83].

H. Kamerlingh Onnes had, in the early 1900s, attempted to construct EoS, but

found that every one of them failed to have good agreement with experimental data,

and when there was a good agreement, the same knowledge could be obtained the-

oretically by the VdW EoS. He therefore changed strategy and sought to construct

an EoS that would be completely independent of theory, only taking experimental

values into account. This materialised into an equation of state expressed as a power

series in inverse volume: the virial EoS [84]

Z = pV/RT = A+B(T )/V + C(T )/V 2 +D(T )/V 3 + · · · (1.35)

where Z is a dimensionless compressibility factor, which denotes the deviation of
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a real fluid from the ideal gas. The coefficients, A,B,C and D, are the virial

coefficients. A is always 1, because any fluid at low densities behaves like an ideal

gas. The rest of the coefficients are dependent on temperature. A more detailed

discussion of Onnes initial work on the virial EoS is provided in section 3. The

result was an equation of state that included over twenty terms, so not as simple

as could be hoped for. However, it was an EoS successfully describing a theoretical

substance.

Onnes calculated virial coefficients by fitting the EoS to empirical isotherms.

Ursell introduced a more mathematical approach to determine virial coefficients.

From statistical mechanics it is known that the pressure is related to the partition

function ZN by [39]

P = kBT

󰀕
∂lnZN

∂V

󰀖
(1.36)

for a non ideal gas, the partition function ZN can be written as

ZN =
1

N !λ3N

󰁝
WN(r

N)drN . (1.37)

where λ is the thermal wavelength. Ursell showed that the Boltzmann factor

WN(r
N), could be expressed as a sum of what he termed U-functions. A few exam-

ples of U-functions written in terms of WN [85] are

U1(ri) = W1(ri) (1.38a)

U2(ri, rj) = W2(ri, rj)−W1(ri)W1(rj) (1.38b)

then WN can be expressed as a sum

WN(r
N) =

󰁛

(
󰁓

lml=N)

󰁜
Ul(r

λ) (1.39)

where ml denotes a group with l number of particles. The configurational integral

written in terms of WN (mathematical details of the following results can be found

28



in appendix A) can then be solved

QN =
1

N !

󰁝
WN(r

N)drN =
󰁛 N󰁜

l=1

(V bl)
ml /ml! (1.40)

where bl is the cluster integral

bl = (V l!)−1

󰁝
Ul(r1, r2, . . . , rl)dr1dr2 . . . drl (1.41)

which considers the connections between the particles in a ml group.

Mayer contributed with a further improvement to the mathematical approach of

determining virial coefficients, by introducing the f-function, which is the U-function

shifted by -1.

fij(rij) = [e−φij/kBT − 1] (1.42)

This has the advantage that the f-function is non zero only if the two molecules

under consideration are within the cut off distance of the potential.

The f-function are related to the U-functions by

U1(r1) = 1 (1.43a)

U2(r1, r2) = f12 (1.43b)

U3(r1, r2, r3) = f12f23f13 + f12f23 + f23f13 + f12f13 (1.43c)

The f-bonds configuration for the m3 group is given as an example of the graphical

representation of the terms relevant for the cluster integral relating to the third

virial coefficient, in figure 1.24.

Figure 1.24: Diagrams showing the Mayer f-bonds for clusters relating to the U-bond
U3((r1, r2, r3)).
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The Mayer cluster integral then becomes

bl = (V l!)−1

󰁝 󰁛
f1,2,...fl+1dr1r2 . . . drl+1 (1.44)

A more detailed derivation of Mayer-diagrams and cluster integrals, can be found

in section 3.

For the LJ potential, the highest order virial coefficients that have been calcu-

lated is the sixteenth, B16 [86]. For the parallel hard-cube potential the sixth viral

coefficient B6 has been calculated [87]. For the HD/HS system, the highest order

virial calculated is the twelfth B12 [88].

EoS are theoretically a powerful tool to gain knowledge about any substance’s

phase diagram, but in the pursuit of accuracy, especially cubic and SAFT EoS’s

become impractical to implement, because they require experimentally determined

data of the chosen substance, prior to using it. Therefore the virial EoS has its

obvious appeal, as the virial coefficients can be determined numerically.

A weakness of the virial equation of state, is the fact that knowledge of the virial

coefficients is required and they differ for each system. Its accuracy also depends on

the number of terms calculated, which become increasingly difficult to determine.

Perturbation theory of the free energy is a way to avoid rigorous calculations of virial

coefficients. From an expression of free energy, the pressure and chemical potential

can be found from

P = −
󰀕
∂F

∂V

󰀖 󰀏󰀏󰀏󰀏󰀏
T,N

µ =

󰀕
∂F

∂N

󰀖 󰀏󰀏󰀏󰀏󰀏
T,V

. (1.45)

The basic premise of all perturbation theories is the separation of the pair potential

into two terms

u(r) = u0(r) + u1(r) (1.46)

where u0 is the pair potential of a reference system and u1(r) is the perturbation.

The effect of the perturbation on the thermodynamic properties of the reference

system is calculated in either of two ways. The first involves an expansion of the
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free energy in powers of inverse temperature (the ’λ’ expansion), or a parameter

which measures the range of the perturbation (the ’γ’ expansion). In the former

case, a coupling parameter, λ, is introduced:

u(r) = u0(r) + u1(r;λ) (1.47)

λ connects the reference potential to the perturbation potential and can take a value

between 0 and 1. When λ = 0 the perturbation potential becomes equal to that

of the reference system. When λ = 1 it becomes equal to that of the system being

studied. Using the coupling constant, the Helmholtz free energy can be expressed

as a power series.

F (λ) = F0 +
∂F

∂λ

󰀏󰀏󰀏󰀏󰀏
λ=0

λ+
1

2

∂2F

∂λ2

󰀏󰀏󰀏󰀏󰀏
λ=0

λ2 + ..., (1.48)

The first order perturbation when λ = 0, is given by

F

NkBT
=

F0

NkBT
+

2π

kBT
ρ

󰁝 ∞

0

u1(r)g0(r)r
2dr (1.49)

g0(r) being the radial distribution function for hard spheres.

There are different ways of splitting the potential into the reference potential u0

and the perturbed potential u1. Two ways of doing it, by Barker-Henderson and

WCA, are illustrated in figure 1.25.

(a) (b)

Figure 1.25: (a) Barker-Henderson split. (b) Weeks-Chandler-Andersen split.
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Barker and Henderson split it in the following way

u0(r) =

󰀻
󰁁󰀿

󰁁󰀽

u(r) r ≤ σ

0 r > σ
(1.50)

u1(r) =

󰀻
󰁁󰀿

󰁁󰀽

0 r < σ

u(r) r > σ
(1.51)

where σ is the first point at which u(σ) = 0 and rm the cut-off distance. The problem

is that the radial distribution function and equation of state, is not known for the

reference system. This was accommodated by approximating the reference state by

that of the HS system, using a temperature dependent hard sphere diameter

d =

󰁝 σ

0

[1− e−βu(r)]dr (1.52)

The WCA potential split is given in the following way [89,90]

u0(r) =

󰀻
󰁁󰀿

󰁁󰀽

u(r)− u(rm) r ≤ σ

0 r > σ
(1.53)

u1(r) =

󰀻
󰁁󰀿

󰁁󰀽

u(rm) r ≤ rm

u(r) r > σ
(1.54)

Choosing to split at the minima, rather than when u0(r) = 0, has the advantage

that the reference state includes all of the repulsive forces. The Song-Mason ap-

proximation uses the same split as WCA, but expands from the truncated, N = 2,

virial EoS [91]. This is advantageous as it only requires knowledge of the potential

and the virial EoS truncated at B2.

Finally, it is worth noting that a popular and very practical method of obtaining

the relation between thermodynamic properties of a substance are property tables

[71]. They are empirically obtained values and are therefore very accurate. However,

each point on the phase diagram requires a separate measurement. Constructing
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property tables for infinitely many points to obtain absolute accuracy is highly

impractical, making property tables limited to the range of values in which it was

obtained. Despite its practicality of use, constructing an equation of state would be

preferable.

1.2.4 Conclusion

Developing a MD Joule-Thomson throttling algorithm would provide a useful tool

to further investigate non-equilibrium steady states. For the simulation to be suc-

cessful, it needs to display constant enthalpy. This could most certainly be achieved

using a well known potential such as the LJ, but potentials such as the LJ/s and

mn-family may prove themselves much better suited for MD simulations, as they

have been designed to have a finite cut off and maintain continuity in their forces,

without requiring further modifications. Unfortunately the phase diagrams for these

potentials are unknown, therefore it is necessary to investigate methods for obtaining

an equation of state.

This work aims to produce a working Joule-Thomson MD algorithm, by employ-

ing one of the potentials from the mn-family, after having first obtained theoretical

estimates of the phase diagram and Joule-Thomson inversion curves.
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2 Mathematical properties of the mn and LJ/s

potentials

This chapter reviews two families of pair potentials which have useful mathemat-

ical properties (short ranged and smoothness) for use in MD simulations of Joule

Thomson throttling.

2.1 mn-pair potentials

The mn-family of potentials was first introduced in 2006 by Hoover and Hoover [55].

It was chosen for the purpose of simulating a ball plate penetration problem using

MD. A generalised version of this family is defined by

φm−n(r) =

󰀻
󰁁󰀿

󰁁󰀽

m
n−m

(r2c − r2)n − n
n−m

(r2c − r2)m 0 < r < rc

0 r ≥ rc

(2.1)

The potential is in a dimensionless form, meaning φ is actually φ/󰂃 and r is

really r/σ, where 󰂃 and σ are suitable energy and length scales. m and n are

positive integers and n > m. It is also clear that when the separation distance

becomes equal to the cut-off distance the potential vanishes.

Hoover used a cut-off distance of rc =
√
2, giving the expression for a family of

potentials with a specific cut-off

φm−n(r) =

󰀻
󰁁󰀿

󰁁󰀽

m
n−m

(2− r2)n − n
n−m

(2− r2)m 0 < r <
√
2

0 r ≥
√
2

(2.2)

The minimum occurs at φ(r = 1) = −1 for all values of m and n.

In order to maintain accuracy of energy calculations in MD, the derivatives of

the potential must also be continuous [30]. Considering the first derivatives of the

potential

φ
(1)
m−n(r <

√
2) =

2mnr

m− n
(2− r2)(n−1) − 2mnr

m− n
(2− r2)(m−1) (2.3)
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it can be seen that the force,

F(r) = −∂φ(r)

∂r
(2.4)

is continuous, as desired. Similarly, we can see that the second derivative

φ
(2)
m−n(r <

√
2) =

2mn

m− n
(2− r2)(n−1) − 2mn

m− n
(2− r2)(m−1)

+
4mnr2

m− n
(2− r2)(m−2)(m− 1)

−4mnr2

m− n
(2− r2)(n−2)(n− 1)

(2.5)

is also continuous so that the configurational temperature which depends on both

the first and second derivative of the potential [92]

kBTconf =

󰁇󰁓N
i=1 (∂φ/∂ri)

2
󰁈

󰁇󰁓N
i=1 ∂

2φ/∂r2i

󰁈 (2.6)

will also be continuous. The desire to have continuity in the higher order differentials

poses another restriction on m and n. The next three differentials of φ are given by

φ
(3)
m−n(r <

√
2) =

12mnr

m− n
(2− r2)(m−2)(m− 1)

−12mnr

m− n
(2− r2)(n−2)(n− 1)

−8mnr3

m− n
(2− r2)(m−3)(m− 1)(m− 2)

+
8mnr3

m− n
(2− r2)(n−3)(n− 1)(n− 2)

(2.7)

φ
(4)
m−n(r <

√
2) =

12mn

m− n
(2− r2)(m−2)(m− 1)

− 12mn

m− n
(2− r2)(n−2)(n− 1)

−48mnr2

m− n
(2− r2)(m−3)(m− 1)(m− 2)

+
48mnr2

m− n
(2− r2)n−3(n− 2)(n− 2)

+
16mnr4

m− n
(2− r2)(m−4)(m− 1)(m− 2)(m− 3)

−16mnr4

m− n
(2− r2)(n−4)(n− 1)(n− 2)(n− 3)

(2.8)
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φ
(5)
m−n(r <

√
2) =

120mnr

m− n
(2− r2)(n−3)(n− 1)(n− 2)

−120mnr

m− n
(2− r2)(m−3)(m− 1)(m− 2)

+
160mnr3

m− n
(2− r2)(m−4)(m− 1)(m− 2)(m− 3)

−160mnr3

m− n
(2− r2)(n−4)(n− 1)(n− 2)(n− 3)

+
32mnr5

m− n
(2− r2)(n−5)(n− 1)(n− 2)(n− 3)(n− 4)

−32mnr5

m− n
(2− r2)(m− 5)(m− 1)(m− 2)(m− 3)(m− 4)

(2.9)

The pattern in the differentials shows that each member of the family is con-

tinuous up to the (m − 1)th derivative. Therefore the higher the value of m, the

higher the order of derivatives that are continuous at the cut off. Although most

current calculations will not require more than three continuous derivatives, it is

worth noting that if the value of n is not too large, causing the value at the origin

to become too high, a reasonable number of accurate derivatives are available at no

extra cost. The potentials are maximal at the origin (r = 0), therefore

φmax =
2mn

m− n
− 2nm

m− n
(2.10)

Due to the condition n > m, the magnitude of the potential at the origin is largely

dominated by the 2n term. For the first derivative, the magnitude at r = 0 is zero.

Three members of the mn family have been chosen for this study, each with

n = 2m, and m values: m = 4, 5, and 6. The member with m = 4 was chosen as it

has already been used by Hoover [55]. Mathematically, a much lower value of m will

cause lower order derivatives to no longer vanish when reaching the cut off length,

therefore, higher values of m were chosen. It was mathematically pleasing to select

them in ascending order.

φ4−8 = (2− r2)8 − 2(2− r2)4 (2.11)
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φ5−10 = (2− r2)10 − 2(2− r2)5 (2.12)

φ6−12 = (2− r2)12 − 2(2− r2)6 (2.13)

These potentials are illustrated in figure 2.1. Their corresponding forces are dis-

played in figure 2.2.

37



Figure 2.1: Selected members of the mn family of potentials showing the potentials
value at the origin (top) and their potential well (bottom)
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Figure 2.2: Force of the three selected members of the mn-family showing their
maxima (top) and minima (bottom).
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2.2 Lennard Jones spline family

The LJ/s potential as formulated by Holian and Evans is defined piecewise by [93]

ΦLJ/s(r) =

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

4󰂃[(σ/r)12 − (σ/r)6] 0 < r < rs

a(r − rc)
2 + b(r − rc)

3 rs ≤ r ≤ rc

0 r > rc

(2.14)

The potential is split at the inflexion point rs and smoothly extrapolated to zero at

r = rc by a cubic spline function. At the point of inflexion the second derivative of

the potential is zero, φ(rs)′′ = 0. The first derivative is

φ′ = 4󰂃

󰀥
− 12

r

󰀓σ
r

󰀔12

+
6

r

󰀓σ
r

󰀔6
󰀦

(2.15)

whilst the second derivative is

φ′′ = 4󰂃

󰀥
12× 13

r2

󰀓σ
r

󰀔12

− 6× 7

r2

󰀓σ
r

󰀔6
󰀦

=

󰀥
12× 13

r2s

󰀕
σ

rs

󰀖12

− 6× 7

r2s

󰀕
σ

rs

󰀖6
󰀦

= 0

(2.16)

Hence
12× 13

6× 7

󰀕
σ

rs

󰀖6

= 1 (2.17)

yielding an expression for the inflexion point rs

rs = σ ×
󰀕
26

7

󰀖1/6

(2.18)

At the joining point, the cubic spline and its derivative are

S(rs) = a(rs − rc)
2 + b(rs − rc)

3 (2.19)

S ′(rs) = 2a(rs − rc) + 3b(rs − rc)
2. (2.20)
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The LJ part at the point of inflexion is given as

φLJ(rs) = 4󰂃

󰀥󰀕
σ

rs

󰀖12

−
󰀕
σ

rs

󰀖6
󰀦
= −133

169
󰂃 (2.21)

and the first derivative of the LJ at the inflexion point is

φ′
LJ = 4󰂃

󰀥
− 12

rs

󰀕
7

26

󰀖2

+
6

rs

󰀕
7

26

󰀖󰀦
=

504

169rs
󰂃 (2.22)

Let the inflexion point rs be related to the cut off distance rc by the constant γ,

which will be determined later.

rc = γrs (2.23)

Rewriting the cubic spline in terms of rs and γ

S(rs) = ar2s(1− γ)2 + br3s(1− γ)3 (2.24)

and its first derivative

S ′(rs) = 2ars(1− γ) + 3br2s(1− γ)2. (2.25)

Equating equations (2.21) with (2.24) and (2.22) with (2.25) yields two equations

in two unknowns

−133󰂃

169
= ar2s(1− γ)2 + br3s(1− γ)3 (2.26)

504󰂃

169rs
= 2ars(1− γ) + 3br2s(1− γ)2 (2.27)

This enables the determination of the cubic spline coefficients a and b by multiplying

equation (2.27) by rs(1− γ)

504󰂃

169
(1− γ) = 2ar2s(1− γ)2 + 3br3s(1− γ)3. (2.28)
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followed by subtracting 2 × equation (2.26) from equation (2.28)

br3s(1− γ)3 =
504󰂃(1− γ)

169
+

266󰂃

169

=
󰂃

169

󰀅
504(1− γ) + 266

󰀆 (2.29)

yielding an expression for the cubic spline coefficient b

b =
󰂃

169r3s(1− γ)

󰀗
504(1− γ) + 266

󰀘
(2.30)

or
br3s
󰂃

=
(504(1− γ) + 266)

169(1− γ)3
. (2.31)

The cubic spline coefficient a, is then found from equation (2.26) - 3 × equation

(2.28)

−ar2s(1− γ)2 =
504󰂃(1− γ)

169
+

399󰂃

169
(2.32)

or
ar2s
󰂃

= −(504(1− γ) + 399)

(1− γ)2 × 169
(2.33)

For the spline defined by Hafskjöld and Ikeshoji [94], a cut off rc = 67/48 × rs =

67/48× (26/7)1/6 ≈ 1.7371 was chosen, equivalent to γ = 67/48. With this choice of

γ, it is the case that (1− γ)2 = 192/482. This yields a and b cubic spline coefficients

relating to the specified cut off

ar2s
󰂃

= −24192

3211
(2.34)

br3s
󰂃

= −387072

61009
(2.35)

In reduced units (󰂃 = 1) the coefficients become

a ≈ −4.8649 (2.36a)

b ≈ −3.2920 (2.36b)
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Using the same method, it is possible to obtain variants of the original LJ/s by using

different values for the cut off distance rc, thereby obtaining different values for the

cubic spline coefficients a and b.

By setting the condition that the LJ potential part φLJ(r) must equal the spline

part S(r) at the inflexion point and the same for their derivatives, it is possible to

calculate new values of a and b for different cut offs.

󰀻
󰁁󰀿

󰁁󰀽

φLJ(rs) = SLJ/s(rs)

φ′
LJ(rs) = S ′

LJ/s(rs)
(2.37)

where S = a(r − rc)
2 + b(r − rc)

3.

With the use of different cut off distances for the spline, a whole family of spline

potentials, with different ranges and well widths can be defined. As was discussed

in section 1.2, varying the width of the attractive well has an effect on the observed

homogeneous liquid phase. It is therefore of interest to see if by varying the well

widths of the LJ/s similar results to those found for fullerenes would be observed

for the LJ/s system. This study introduces two further different splines, besides the

one defined in [94], with rc = 1.4142 and rc = 2.2. The values for γ and the spline

constants a and b are given in table 1. The cut off at rc = 1.7371 was chosen as

there already exists an interest in investigating this potential from Hafskjöld. The

cut off at rc = 1.4142 was chosen at it is approximately equal to
√
2, the collective

cut off chosen for the mn-family members. Since a cut off for the spline at 1.4142 is

rather short, the last potential chosen was a longer one with rc = 2.2.

rc rc/rs = γ a b
1.4142 1.1364 -67.8215 -238.6428
1.7371 1.3958 -4.8649 -3.2920

2.2 1.7678 -0.0780 0.8206

Table 1: Values for three different splines. rc is the distance at which the potential
disappears. rs is the point at inflexion and a and b are the constants used for the
cubic spline.

The three splines are displayed in figure 2.3, compared with the LJ potential, all

having the same inflexion point (rs = 1.2445). The minimum, common to all the
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members, occurs at r = 21/6σ ≈ 1.12σ.

Figure 2.3: Three selected members of the LJ/s family of pair potentials, compared
to the LJ potential (black). The three members have different cut off distances at
rc = 1.41 (blue) 1.73 (red) and 2.2 (green).
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3 Calculation of thermodynamic properties from virial

coefficients

The idea of a virial equation of state was formulated by Onnes [95], with the aim of

creating a relatively simple equation of state that would be valid in as wide a range

of temperatures as possible. Prior to this, equations of state were limited to low

temperatures.

Onnes’ virial equation of state was based on three existing concepts, the virial

theorem, van der Waals equation of state and the law of corresponding states. The

virial theorem simply states that for a stable spherical distribution of equal masses,

the potential energy must be equal to the kinetic energy within a factor of two [96].

The law of corresponding states refers to the assumption that all gases at the same

state should display similar behaviour [97]. Onnes revisited the VdW equation of

state to write it as a series expansion [84].

Pν = T

󰀥
1 +

1

ν

󰀕
1

8
− 27

64T

󰀖
+

1

64ν2
+

1

512ν3
+ . . .

󰀦
(3.1)

It became clear to him, however, that the above equation was unable to describe

experimental data. Therefore he changed the series expansion to

Pν = A+
B

ν
+

C

ν2
+

D

ν4
+

E

ν6
+

F

ν8
(3.2)

where the coefficients A,B,C, . . . are virial coefficients dependent on temperature.

However Onnes was only able to obtain a limited number of terms for this series.

Instead, experimental data was used to determine the coefficients in equation

(3.2), now referred to as virial coefficients, as a function of inverse temperature [98].

B = b1 +
b2
T

+
b3
T 2

+
b4
T 3

+
b5
T 4

(3.3)

Onnes determined the value of the virial coefficients by using experimental data from

hydrogen, oxygen, nitrogen and ether [99]. The resulting equation of state contained
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25 parameters, but was an equation of state describing an arbitrary substance [95].

Later it was shown that statistical mechanics can be used to derive virial coef-

ficients in terms of deviations away from the ideal gas, when particles interact via

a pair potential. The interactions of particles can be represented by cluster inte-

grals, each virial coefficient representing the collision of two, three, four and so on

particles.

In this section, a Monte Carlo (MC) hit and miss algorithm is developed for the

calculation of virial coefficients up to the fifth virial coefficient B5, using Mayer and

Ree-Hoover diagrams. The algorithm is tested against well known systems, the HD,

HS and square well. It was found to accurately predict the first five virial coefficients

for HD and HS system using both Mayer and Ree-Hoover diagrams. It also correctly

predicted diagrams known analytically for the three dimensional square well.

Being satisfied that the algorithm is working correctly, virial coefficients were

calculated for all selected potentials in two and three dimensions and then fitted

by an inverse temperature fit. Using the coefficients for the inverse temperature

fit, liquid-vapour domes and JT inversion curves were calculated. It was observed

that, in general, the critical temperature would decrease with the decrease of the

length of the potential, but having the density region, especially the critical density,

remain much the same, as well as being significantly smaller in two dimensions

compared to three. The predicted JT inversion curves are significantly narrower in

their temperature range in two dimensions compared to three dimensions and seem

to have an overall tendency to narrow when decreasing the cut off range.

3.1 Virial equation of state from Mayer cluster expansion

A virial EoS can be developed from statistical mechanics, where the relation between

pressure P and the partition function Z is considered. This section will use the

statistical mechanics approach, starting from the partition function for a classical

gas of N identical particles.
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ZN =
1

N !λ3N

󰁝
WN(r

N)drN = WN/λ
3N (3.4)

where λ2 = h2/2πmkBT with h being Planck’s constant, WN = exp(−φ(rN)/kBT )

being the Boltzmann factor and ZN = 1
N

󰁕
WN(r

N)drN the configurational integral.

The main concern is to develop the configurational integral, which depends on the

number of particles and the Boltzmann factor. The configurational integral cannot

be analytically calculated for a general potential. A method of approximating the

configurational integral is by using Mayer-cluster expansions, which are corrections

to the ideal gas. Mayer f-functions, which are the connection between two interacting

particles, are defined by.

fij = e−βφ(rij) − 1 (3.5)

and shown schematically in figure 3.1 for an arbitary potential. The effect of fij

on the configurational integral will always be small, as either the potential is small,

or it is short ranged. The Boltzmann factor WN in the partition function depends

Figure 3.1: Mayer f-bond for an arbitrary potential.

on the potential. For a pairwise additive potential, it is possible to write the total

potential energy as a sum, 1
2

󰁓
i=1 φi, so that the Boltzmann factor can be written

in terms of the Mayer f-functions

e−βφ = e−β
󰁓

φi =
󰁜

i

e−βφi =
󰁜

i<j

(1 + fij) (3.6)
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In the micro-canonical ensemble (NVE ensemble), the configurational integral can

be expressed in terms of Mayer f-functions

ZN =

󰁝
· · ·

󰁝 󰁜

i<j

(1 + fij)d
3Nr (3.7)

Expanding the product in the integrand, this becomes

ZN =

󰁝
· · ·

󰁝 󰁫
1 +

󰁛

i<j

fij +
󰁛

i<j,k<l;i,j ∕=l,k

fijflk + . . .
󰁬
d3Nr. (3.8)

For example, for N = 3,

Z3 =

󰁝

V

󰀅
1 + f12 + f13 + f23 + f13f12 + f12f23 + f13f23 + f12f23f13

󰀆
d3r (3.9)

When integrating Z3 over all volume the first term simply becomes V 3. If the volume

available is greater than the range of the potential, integrating f12, f13 and f23 gives

a value proportional to V 2. If the volume is large, terms proportional to V 2 become

significantly smaller than the initial term proportional to V 3. The remaining terms

are only non zero if all three particles interact [100]. It is now possible to relate the

partition function to the pressure

PV

KBT
= lnZN = ln

󰁫 ∞󰁛

N=0

1

N !

󰀕
Z

λ3

󰀖N

WN

󰁬
. (3.10)

The natural logarithm of the micro-canonical partition function is then given by the

sum

lnZ =
󰁛

(counting factor)× (cluster integral). (3.11)

where the counting factors eliminate overcounting. This gives rise to the pressure

being expressed as a power series in density

P/kBT = ρ

󰀥
1−

∞󰁛

l=1

l

l + 1
βlρ

l

󰀦
(3.12)

where βl = (1/l!)(
󰁓

connected, irreducible cluster diagrams) with the position of

particle 1 fixed. An example of cluster diagrams with particle 1 fixed in position for
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three particles were shown in section 1.2 in figure 1.24. An irreducible diagram is

one where removing any one connection does not result in separating the diagram.

A virial coefficient BN is then related to the cluster βl by

BN =
l

l + 1
βl (3.13)

It is now possible to write the virial EoS as an infinite power expansion in density

P/kBT = ρ+
∞󰁛

N≥2

BN(T )ρ
N (3.14)

In this study, the virial equation of state has been truncated at the fifth virial

coefficient, giving the expression

P

ρkBT
= 1 +B2(T )ρ+B3(T )ρ

2 +B4(T )ρ
3 +B5(T )ρ

4 (3.15)

All that remains is the calculation of the individual virial coefficients, using the

cluster diagrams.

3.2 Calculating individual virial coefficients

Each virial coefficient can be represented by a diagram of N particles connected

by Mayer f-functions. Lower order coefficients for some simple pair potentials like

HS and SW, can be calculated analytically. For the pair potentials chosen for this

study, an analytical approach is not possible. Each individual diagram contributing

to a coefficient is calculated using a MC hit and miss algorithm. The basis of any

MC algorithm is a random number generator. The one used for these calculations

is given in appendix B. The calculations of the virial coefficients will be considered

separately using Mayer diagrams, only the fourth and fifth coefficient will employ

Ree-Hoover diagrams to reduce the number of diagrams required.
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3.2.1 The second virial coefficient

For the second virial coefficient, the interaction between two particles is considered.

There is only one way two points can be connected to each-other, therefore the only

contribution to B2 is the diagram shown in figure 3.2. The integral to which the

Figure 3.2: Mayer diagram contributing to B2

diagram corresponds is

B2 = −2π

󰁝 ∞

0

󰀃
e−φ(rij)/kBT

󰀄
r2dr (3.16)

This integral may be evaluated for any potential, by numerical integration. In this

work a 16 point Gauss Legendre curvature was used.

3.2.2 The third virial coefficient

Only one diagram contributes to B3 in the cluster integral

b2 =
1

2

󰁝󰁝
f12f13f23dr12dr13 (3.17)

It is shown in figure 3.3. B3 can still be calculated using numerical integration, but

here it was done using MC hit and miss. It is clear from the diagram that the bonds

Figure 3.3: Mayer diagram contributing to B3, having particle 1 fixed at the origin.
The solid lines represent a Mayer f-bond.

making up the diagram are f12, f13 and f23. Calculating the diagram via MC hit

and miss was done by placing particle 1 at the origin (0,0). Particle 2 and 3 were
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randomly placed within a circle of radius rcut, centred at particle 1, as illustrated in

figure 3.4.

Figure 3.4: Monte Carlo Hit and Miss placement of the third viral coefficient B3 in
two dimensions, which particle 1 fixed at the origin.

Since particle 2 and 3 are deliberately placed within the cut-off distance of parti-

cle 1, their Mayer f-bond with particle 1 will always be non zero. The Mayer f-bond

corresponding to the interaction of particles 2 and 3 could, however, be zero. The

random placement of particles making up the diagram is repeated in the region of

1010 times and averaged. The averages have the following relation to B3

〈f12f13f23〉
〈f12f13〉

=
−3B3

4B2
2

(3.18)

The left hand side is the result of the MC hit and miss algorithm, the value of B2

is known from numerical integration. B3 is therefore

B3

B2
2

= −4〈f12f13f23〉
3〈f12f13〉

(3.19)

This general approach is repeated for the following higher order virials.

3.2.3 The fourth virial coefficient

Considering the connection of four particles, when particle one is in a fixed position,

there are three different relevant diagrams D1, D2 and D3 contributing to B4, as

illustrated in figure 3.5.
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Figure 3.5: The three diagrams contributing contributing to the fourth virial coeffi-
cient B4. In each case the position of particle 1 is fixed during hit and miss Monte
Carlo calculations.

Similar to the calculation of B3, although with a fourth particle added, B4 is

determined by placing particle 1 at the origin, particle 2 within the cut-off distance

of particle 1, particle four within cut-off of particle 1 and lastly particle 3 placed

within cut-off of particle 2, as illustrated in figure 3.6. The MC hit and miss ratio

Figure 3.6: MC placements of four particles. Particle 1 placed at origin (0,0) and
particle 4 and 2 always within the cut-off of particle 1.

results have the following relation to the three diagrams: The first diagram D1 has

only four Mayer f-bonds

D1 = −3

8

󰁝󰁝󰁝󰁝

V

f12f23f34f14dr12dr23dr34dr14 (3.20)

relating the diagram to the hit and miss MC

〈f12f23f34f14〉
〈f12f23f14〉

=
D1

3B3
2

(3.21)
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The second diagram D2 has five Mayer f-bonds

D2 = −6

8

󰁝󰁝󰁝 󰁝󰁝

V

f12f13f14f23f34dr12dr13dr14dr23dr34 (3.22)

〈f12f13f14f23f34〉
〈f12f14f23〉

=
D2

6B3
2

(3.23)

Finally the third diagram D3 is a full star diagram, having six Mayer f-bonds

D3 = −1

8

󰁝󰁝󰁝 󰁝󰁝󰁝

V

f12f13f14f23f24f34dr12dr13dr14dr23dr24dr34 (3.24)

〈f12f13f14f23f24f34〉
〈f12f14f23〉

=
D3

B3
2

(3.25)

B4 only has three diagrams contributing, but as will be seen in the next section for

the fifth virial coefficient, the number of contributing diagrams steadily increases,

heavily impacting on computation time.

Ree and Hoover [101] introduced the Ree-Hoover bonds f̃ -bonds, in connection

with the Mayer bonds, to not only consider particles which are connected but also

those which are not. This method reduced the number of diagrams contributing to

higher order virials. The relation between and f -bonds and f̃ -bonds is

f̃ij = fij + 1 (3.26)

For each pair of particles not connected, the integrand is multiplied by (f̃ij−fij) = 1.

This trick reduced the diagrams contributing to B4 by one, which might not sound

significant but the effect for higher coefficients is much larger. The two Ree-Hoover

diagrams contributing are shown in figure 3.7. Note that the naming of the diagrams

have changed to Ree-Hoover notation, the number in brackets represents the number

of particles in the diagram and the subscript the number of Ree-Hoover bonds (shown

as broken lines).

The Ree-Hoover diagrams contributing to B4 contains of the following products

of f - and f̃ -bonds

〈4〉0 = f12f13f14f23f24f34 (3.27)
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Figure 3.7: The two Ree-Hoover diagrams contributing to the calculation of B4,
having the same particle numbering as the Mayer-Diagrams.

〈4〉2 = f12f̃13f14f23f̃24f34 (3.28)

The MC hit and miss calculation remains much the same when using Ree-Hoover

diagrams, particle 1 is still placed at the origin and the remaining particles placed

around it.

3.2.4 The fifth virial coefficient

There are ten relevant Mayer diagrams for B5, which are displayed in figure 3.8.

The placement of the five particles is shown in figure 3.9.

Figure 3.8: Mayer diagrams contributing to the fifth virial coefficient. In each case
the position of particle 1 is fixed.

The ten integrals and MC hit and miss ratios for the Mayer diagrams are given
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Figure 3.9: Placement of five particles calculating diagrams relating to the fifth virial
coefficient. Particle 1 placed at origin and the remaining four all placed within cut
off distance RCUT of particle 1.

by

E1 = −12

30

󰁝󰁝󰁝󰁝 󰁝

V

f12f15f23f34f45dr12dr15dr23dr34dr45 (3.29)

〈f12f15f23f34f45〉
〈f12f13f14f15〉

=
30E1

12B4
2

(3.30)

E2 = −2

󰁝󰁝󰁝 󰁝󰁝󰁝

V

f12f15f23f24f34f45dr12dr15dr23dr34dr24dr34dr45 (3.31)

〈f12f15f23f24f34f45〉
〈f12f13f14f15〉

=
E2

2B4
2

(3.32)

E3 = −1

3

󰁝󰁝󰁝 󰁝󰁝󰁝

V

f12f14f23f25f34f45dr12dr14dr23dr25dr34dr45 (3.33)

〈f12f14f23f25f34f45〉
〈f12f13f14f15〉

=
3E3

B4
2

(3.34)

E4 = −1

3

󰁝󰁝󰁝󰁝 󰁝󰁝󰁝

V

f12f14f23f24f25f34f45dr12dr14dr23dr34dr25dr34dr45 (3.35)

〈f12f14f23f24f25f34f45〉
〈f12f13f14f15〉

=
3E4

B4
2

(3.36)

E4 = −2

󰁝󰁝󰁝󰁝 󰁝󰁝󰁝

V

f12f13f15f23f34f35f45dr12dr13dr15dr23dr34dr35dr45 (3.37)

〈f12f13f15f23f34f35f45〉
〈f12f13f14f15〉

=
E4

2B4
2

(3.38)

E6 = −
󰁝󰁝󰁝󰁝 󰁝󰁝󰁝

V

f12f14f15f23f25f34f45dr12dr14dr15dr23dr25dr34dr45 (3.39)

〈f12f14f15f23f25f34f45〉
〈f12f13f14f15〉

=
E6

B4
2

(3.40)

55



E7 = −1

2

󰁝󰁝󰁝󰁝 󰁝󰁝󰁝󰁝 󰁝

V

f12f13f15f23f24f34f35f45dr12dr13dr15dr23dr24dr34dr35dr45

(3.41)
〈f12f13f15f23f24f34f35f45〉

〈f12f13f14f15〉
=

2E7

B4
2

(3.42)

E8 = −30

30

󰁝󰁝󰁝󰁝 󰁝󰁝󰁝󰁝

V

f12f14f15f23f24f25f34f45dr12dr14dr15dr23dr24dr25dr34dr45

(3.43)
〈f12f14f15f23f24f25f34f45〉

〈f12f13f14f15〉
=

E8

B4
2

(3.44)

E9 = −10

30

󰁝󰁝󰁝󰁝 󰁝󰁝󰁝󰁝 󰁝

V

f12f13f14f15f23f25f34f35f45dr12dr13dr14dr15dr23dr25

dr34dr35dr45

(3.45)

〈f12f13f14f15f23f25f34f35f45〉
〈f12f13f14f15〉

=
3E9

B4
2

(3.46)

E10 = − 1

30

󰁝󰁝󰁝󰁝 󰁝󰁝󰁝󰁝 󰁝󰁝 V

f12f13f14f15f23f24f25f34f35f45dr12dr13dr14dr15

dr23dr24dr25dr34dr35dr45

(3.47)

〈f12f13f14f15f23f24f25f34f35f45〉
〈f12f13f14f15〉

=
30E10

B4
2

(3.48)

The benefit of switching to Ree-Hoover diagrams when calculating B5 is much

more obvious, as the number of diagrams contributing reduces by a factor of two.

The Ree-Hoover diagrams contributing to B5 are shown in figure 3.10.

Figure 3.10: Ree-Hoover diagram contributing to B5, having the same particle num-
bering as the Mayer diagrams.

The diagram 〈5〉0 contains no Ree-Hoover bonds and is essentially equal to the

Mayer diagram E10. It cannot be modified into a Ree-Hoover bond as it is already
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fully connected.

〈5〉0 = E10 (3.49)

The remaining Ree-Hoover diagrams have the following integrals and MC calculated

ratios

〈5〉2 = − 1

24

󰁝󰁝󰁝󰁝 󰁝󰁝󰁝󰁝 󰁝󰁝 V

f̃12f13f14f15f23f24f25f34f35f̃45

dr12dr13dr14dr15dr23dr24dr25dr34dr35dr45

(3.50)

〈f̃12f13f14f15f23f24f25f34f35f̃45〉
〈f13f14f25f35〉

=
−24〈5〉2

B4
2

(3.51)

〈5〉3 =
1

32

󰁝󰁝󰁝󰁝 󰁝󰁝󰁝󰁝 󰁝󰁝 V

f12f13f14f̃15f̃23f24f25f̃34f35f45

dr12dr13dr14dr15dr23dr24dr25dr34dr35dr45

(3.52)

〈f12f13f14f̃15f̃23f24f25f̃34f35f45〉
〈f13f14f25f35〉

=
32〈5〉3
B4

2

(3.53)

〈5〉4 = − 3

16

󰁝󰁝󰁝󰁝 󰁝󰁝󰁝󰁝 󰁝󰁝 V

f12f13f14f̃15f̃23f̃24f25f̃34f35f45

dr12dr13dr14dr15dr23dr24dr25dr34dr35dr45

(3.54)

〈f12f13f14f̃15f̃23f̃24f25f̃34f35f45dr12〉
〈f13f14f25f35〉

= −16〈5〉4
3B4

2

(3.55)

〈5〉5 = − 5

32

󰁝󰁝󰁝󰁝 󰁝󰁝󰁝󰁝 󰁝󰁝 V

f̃12f13f14f̃15f̃23f24f25f̃34f35f̃45

dr12dr13dr14dr15dr23dr24dr25dr34dr35dr45

(3.56)

〈f̃12f13f14f̃15f̃23f24f25f̃34f35f̃45〉
〈f13f14f25f35〉

=
−32〈5〉5
5B4

2

(3.57)

Although the overall algorithm for calculating Ree-Hoover diagrams remains the

same, the common denominator used in the ratio for the MC calculations has to

change. If a f bond in the denominator also appears as a f̃ , divisions by zero will

happen as particles always connected by f bonds are never connected when being a

f̃ -bond, hence always zero. Figure 3.11 shows the MC placement of particles for the

Ree-Hoover non zero bonds. Extra care must be taken in programming to ensure
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that particles are allowed to be placed in the entire region of the integral. This

can either be achieved by extending the cut-off region to correspond to the furthest

particles placement, in the case of B5 that being three times the normal cut-off

distance. A more computationally economical way is to place each particle so that

it is within the cut off radius of the particle to which it must be connected according

to the diagram. In other words, for B5 only particles 3 and 4 are connected to

particle 1. Particle 5 is placed to be within the cut off distance from particle 3, and

similarly, particle 2 placed to be within the cut off distance from particle 5. This

increases the number of successfully placed particles. As illustrated in figure 3.11.

Figure 3.11: Random placement of Monte Carlo particles for non-zero connecting
particles, for Ree-Hoover diagrams.

3.3 Verification of virial coefficients

To test the validity of the MC hit and miss algorithm for calculating virial co-

efficients, a couple of tests were done. Firstly it was tested on the HS and HD

system, as these coefficients are known very accurately, most notably in the work

by Kratky [88,102] and Hoover [101].

3.3.1 The Hard Sphere test

Comparing the MC hit and miss algorithm’s performance to the HS and HD system

is convenient as this system has well known virial coefficients. Values were obtained

for B3, B4 and B5 using Mayer diagrams compared to values obtained by Kratky [88],

which are shown in table 2. B4 and B5 were also calculated using Ree-Hoover

diagrams, compared to values obtained by Ree and Hoover [101], shown in table 3.
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Individual values for the five Ree-Hoover diagrams contributing to B5 are included

in table 5.

Bn/B
n−1
2 HD Kratky This work HS Kratky This work

B3/B
2
2 0.7820044 0.7820008 ± 0.0014 0.625 0.625 ± 0.003

B4/B
3
2 0.5322318 0.5321862 ± 0.05 0.2869495 0.2869886±0.053

B5/B
4
2 0.3335561 0.3335183 ± 0.924 0.110252 0.110539 ± 0.770

Table 2: Mayer Diagram comparison with values obtained by Kratky [88].

Bn/B
n−1
2 HD Ree-Hoover This work HS Ree-Hoover This work

B4/B
3
2 0.5327 0.5322 ± 0.019 0.28695 0.28699 ± 0.040

B5/B
4
2 0.338 0.334 ± 0.026 0.1103 0.1103 ± 0.1057

Table 3: Ree-Hoover Diagram comparison with using values obtained by Ree and
Hoover [101].

Diagram HD Ree-Hoover This work
〈5〉0 (1.809± 0.002) (1.809± 0.034)
〈5〉2 (1.77± 0.01) ×10−2 (1.77± 0.05)× 10−2

〈5〉3 −(5.11± 0.05)× 10−3 (−5.09± 0.05)× 10−3

〈5〉4 0 0
〈5〉5 −(2.15± 0.03)× 10−2 (−2.11± 0.05)× 10−2

Table 4: Values of individual Ree-Hoover diagrams, contributing to B5 for HD [101].

Diagram HS Ree-Hoover This work
〈5〉0 (0.711± 0.01) 0.711 ± 0.058
〈5〉2 (2.092± 0.009)× 10−2 (2.108± 0.113)× 10−2

〈5〉3 −(8.25± 0.05)× 10−3 (−8.27± 0.193)× 10−3

〈5〉4 (7.1± 0.04)× 10−4 (7.3± 0.8)× 10−4

〈5〉5 −(4.05± 0.03)× 10−2 (−4.11± 0.19)× 10−2

Table 5: Values of individual Ree-Hoover diagrams, contributing to B5 for HS [101].

It is seen that the MC hit and miss algorithm calculates the virial coefficients

from B2 to B5 which agree well with the literature, both using Mayer and Ree-Hoover

diagrams. It’s to be expected that the values obtained in this study should compare

well with literature, but not be identical, as they have obtained even more accurate

values by using the symmetry of the HS/HD potential, to reduce the number of

diagrams contributing even further. This symmetry is not present for the potentials

studied in this work, therefore the reduction in diagrams was not made. Only a very
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small increase is observed in accuracy switching to Ree-Hoover diagrams. However,

it improves computational time, since only half the number of Mayer diagrams need

to be calculated. A typical calculation time for one temperature for B5 using Mayer

diagrams is about an hour in CPU cost.

3.3.2 The Square Well test.

The MC hit and miss algorithm performed well for the HS and HD system, but

this did not test its performance on a temperature dependent system. The three

dimensional square well is ideal as a test system, as it has a temperature dependence

and analytical expressions are known for the second and third virial coefficients for

the square well. Analytical expressions are known only for D1 and D2 from the work

of Barker and Monaghan [103]. The second virial coefficient is easily derived and

given as

B2(T ) =
2πσ3

3
[1 + h(λ3 − 1)] (3.58)

where h = 1− eβ󰂃. The third virial coefficients is given by

B3(T ) = −B2(T )
2

8
(−5 + 17h+ h2[−32λ3 + 18λ2 + 48]

+h3[5λ6 − 32λ3 + 18λ2 + 26])

(3.59)

Analytical expressions for D1 and D2 for λ = 2 are

D1 = −(B3
2/560)(544− 4075h+ 35007h2 − 99687h3 + 139215h4); (3.60)

D2 = −(B3
2/4480)(−6347 + 27369h− 184156h2 + 594272h3

−1518980h4 + 918540h5);

(3.61)

The analytical virials compared to results obtained by MC hit and miss algorithm

are shown in figure 3.12. Recall that B2 is not calculated using the hit and miss

algorithm, but the chosen integration scheme yields excellent agreement with the

analytical result. Good agreement is also observed for B3, D1 and D2.
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Figure 3.12: 3D square well results, analytical solution (solid line) and MC hit and
miss calculations (dots), showing results for the second, third virial coefficient and
two out of three Mayer diagrams D1 and D2 which contribute to the fourth virial
coefficient. The unit temperatures are in LJ reduced units.
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3.4 Virial coefficient results for inverse fit of temperature.

The hit and miss MC algorithm calculates a single virial coefficient for a set temper-

ature, typically requiring 1010 MC iterations for a temperature range in LJ reduced

units 0.1 ≤ T ≤ 0.9 with between 150− 300 intermediate temperatures, dependent

on whether or not features like a steep peak appear, which required more points.

To then obtain the coefficient for a given potential for a range of temperatures, each

virial coefficient can be expressed as an inverse temperature fit, which can be then

be inserted into a virial equation of state. The inverse temperature fit is given by

the polynomial

BN(T ) =
11󰁛

i=1

ai × T−i. (3.62)

The curve fitting was done using the MATLAB (R2018b) curve fitting tool, the

goodness of fit [104] being determined by the sum of squares due to error (SSE),

with a value closer to zero indicating that the fit predicts the data better. The

alternative measure, R2, takes a value between 0 and 1, where a value closer to 1

indicates that a greater percentage of the data is explained by the fit. It is worth

noting that if a high number of coefficients are used for the fit, R2 will tend to 1

without the fit actually improving. Therefore it is a good idea to use the adjusted

R2, which accounts for the large number of coefficients. The Root Mean Squared

Error (RMSE) can also be used, where a value closer to 0 indicates a good fit.

The individual coefficients for each of the members of the mn and LJ/s families

in two and three dimensions will be plotted against temperature. Associated with

each Bn vs. T plot is a table to show the goodness of fit and a table of ai coefficient

values.

The three members of the mn-potential family are identified by their m value.

The LJ/s potentials are identified by their cut-off range (rc). Section 3.5.3 provides a

comparison of how the liquid-vapour coexistence dome and Joule-Thomson inversion

curves varies with changing well width, cut off range and dimension.
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3.4.1 Virial coefficients for the mn-family

The virial results for 2D and 3D for the five virial coefficients for the mn-potential

with m = 4, are displayed against temperature in figure 3.13 and their respective

inverse temperature fits in table 6.

Figure 3.13: Virial coefficients for 2 and 3 dimension m=4 potential.

2D 3D
B2 B3 B4 B2 B3 B4

a0 0.8823 0.2465 -1.04 0.8938 0.1773 -1.262
a1 0.2756 5.653 26.77 0.02662 5.075 27.07
a2 -1.272 -24.73 -184.5 -1.921 -21.94 -178.5
a3 0.4344 52.63 668.2 0.4457 47.76 610.2
a4 -0.1101 -62.9 -1391 -0.09201 -58.85 -1170
a5 43.98 1755 -0.01463 41.12 1294
a6 -17.63 -1387 -11.9 -820.7
a7 3.789 691.6 -3.107 278
a8 -0.3443 -211.7 3.491 -39.12
a9 36.44 -1.017
a10 -2.7 0.1015
SSE 0.02422 0.07886 1.379 0.07716 0.003575 0.9083
R2 1 1 1 1 1 1
adjusted R2 1 1 1 1 1 1
RMSE 0.009236 0.01681 0.07413 0.0164 0.003612 0.05757

Table 6: Inverse temperature fit coefficients for m=4 potential.

In both 2 and 3 dimensions B2 yields a good inverse temperature fit, the same can

be observed for B3, despite it encountering the Boyle Temperature, which potentially
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causes a disturbance, as the hit and miss MC algorithm calculates the ratio BN/B2.

The Boyle temperature is the temperature at which the second virial coefficient

becomes zero. However, this can be ignored (note that for 2D, points disturbed by

the Boyle temperature have been removed) when performing the inverse temperature

fit. B4 in 2D has a very steep peak (≈ 200) making a good fit difficult, which is

reflected in its SSE value. In 3D B4 is only disturbed by the Boyle temperature, but

it is sufficiently far away from the peak to still yield a good fit. In both dimensions,

B5 is encountering the Boyle temperature in the critical area of the peak, making a

fit impossible.

The virial results for 2D and 3D for the five virial coefficients for the mn-potential

with m = 5, are displayed against temperature in figure 3.14 and their respective

inverse temperature fits in table 7.

Figure 3.14: Virial dependence on temperature for m=5 potential.

For both dimensions B2 yields a good inverse temperature fit. The effect of the

Boyle temperature in B3 is sufficiently far away from the peak not to disturb the

fit and good fits in both dimensions are obtained. In the same way as was seen for

m = 4, in 2D the peak in B4 is very steep and difficult to fit. B4 in 3D in has a

narrow peak which negatively affects the fitting, although it isn’t as steep as in 2D.

B5 is unable to be fitted in both dimensions as was seen for m = 4, although this

seems not just to be due to an unfortunate position of the Boyle temperature but
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2D 3D
B2 B3 B4 B2 B3 B4

a0 1.01 2.144 -210.4 1.149 1.894 1.847
a1 0.3301 -10.35 2421 0.03068 -10.1 -12.41
a2 -1.231 33.17 -1.128e+04 -1.778 40.21 34.44
a3 0.4579 -54.18 2.815e+04 0.6163 -84.15 51.48
a4 -0.1056 47.28 -4.196e+04 -0.1718 95.84 -497.5
a5 -22.4 3.937e+04 -60.99 1219
a6 5.519 -2.376e+04 21.56 -1568
a7 -0.557 9185 -3.819 1182
a8 -2194 0.2304 -524.4
a9 294.7 127
a10 -17 -13
SSE 0.05002 0.1758 358.6 0.006004 0.07908 0.302
R2 1 1 1 1 1 0.9999
adjusted R2 1 1 1 1 1 0.9999
RMSE 0.01911 0.03664 1.642 0.01196 0.04623 0.04877

Table 7: Inverse temperature fit coefficients for m=5 potential.

also due to noise.

The virial results for 2D and 3D for the five virial coefficients for the mn-potential

with m = 6, are displayed against temperature in figure 3.15 and their respective

inverse temperature fits in table 8.

Figure 3.15: Virial temperature dependence for the potential m = 6.

For both dimensions B2 yields a good inverse temperature fit as well as B3 despite

the presence of the Boyle temperature. B4 in 2D has a very steep peak making fitting
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2D 3D
B2 B3 B4 B2 B3 B4

a0 1.076 0.3743 -2.612 1.281 0.8146 0.7755
a1 0.4202 6.832 47.54 0.1592 3.62 -7.441
a2 -1.227 -25.73 -263 -1.683 -16.12 27.55
a3 0.4687 46.59 783.2 0.6008 31.72 -51.32
a4 -0.09999 -48.27 -1399 -0.1551 -37.19 52.6
a5 29.61 1572 27.04 -30.31
a6 -10.55 -1132 -11.68 -30.31
a7 2.036 519.6 2.777 9.184
a8 -0.166 -146.3 -0.2899 -1.201
a9 22.95
a10 -1.531
SSE 0.05261 0.01115 25.02 0.04992 0.01289 0.02786
R2 0.9999 1 0.9999 1 1 1
adjusted R2 0.9999 1 0.9999 1 1 1
RMSE 0.02418 0.01152 0.4387 0.01317 0.006785 0.01255

Table 8: Inverse temperature fit coefficients for m=6 potential.

difficult, which is clearly seen by the high SSE value of 25.02. B4 in 3D managed a

reasonable fit despite the presence of the Boyle temperature and a narrow peak. B5

in both dimensions also seem affected by the Boyle temperate and noise.
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3.4.2 Virial coefficients for the LJ/s-family

The virial results for 2D and 3D for the five virial coefficients for the LJ/s poten-

tial with rc = 1.4142, are displayed against temperature in figure 3.16 and their

respective inverse temperature fits in table 9.

Figure 3.16: Virial dependence on temperature for the LJ/s potential with rc =
1.4142.

2D 3D
B2 B3 B4 B2 B3 B4

a0 -0.04697 0.1904 -0.6658 0.5485 10.54 -64.64
a1 -0.03921 -1.426 6.278 2.091 -62.85 1057
a2 -0.3227 3.841 -22.83 -5.739 176.8 -7252
a3 0.09733 -4.896 42.03 2.044 -274.6 2.803e+04
a4 -0.01929 3.27 -43.33 -0.48 256 -6.761e+04
a5 -1.179 26 -140.5 1.065e+05
a6 0.2176 -9.017 42.89 -1.112e+05
a7 -0.01648 1.679 -5.977 7.621e+04
a8 -0.1315 8149
a9 -878.8
a10
SSE 0.02018 0.01522 0.0341 0.4106 0.137 0.9951
R2 0.9999 1 1 1 1 0.9998
adjusted R2 0.9999 1 1 1 1 0.9998
RMSE 0.01205 0.01062 0.01446 0.05686 0.03629 0.09782

Table 9: Inverse temperature fit coefficients for rc = 1.4142 potential.

For both dimensions, B2 again yields a good inverse temperature fit and the
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same is true for B3. B4 in 2D has lost its peak, which is unusual when compared

to the B4 results for the mn-family. Nothing in this study indicated that there was

anything wrong with the calculation of the 2D B4 for the rc = 1.4142, but there

is no obvious reason for the missing peak. B4, in 3D, displays a peak and it not

being too narrow, resulted in a good fit. In 2D, B5 seems affected by the Boyle

temperature and in 3D it appears very noisy as well, making a good fit impossible.

The virial results for 2D and 3D for the five virial coefficients for the LJ/s

potential with rc = 1.73, are displayed against temperature in figure 3.17 and their

respective inverse temperature fits in table 10.

Figure 3.17: Virial temperature dependence for the LJ/s potential with rc = 1.73

For both dimensions B2 yields a good inverse temperature fit as does B3 in both

dimensions (note that the data points affected by the Boyle temperature have been

omitted). B4 in 2D, similarly to the case of the rc = 1.4142, does not display a

peak. In 3D B4 has a very narrow peak which does affect its SSE value. B5 is again

affected by Boyle temperature and noise, making a fit impossible.

The virial results for 2D and 3D for the five virial coefficients for the LJ/s

potential with rc = 1.73, are displayed against temperature in figure 3.18 and their

respective inverse temperature fits in table 11.

For both dimensions, B2 yields a good inverse temperature fit and the same is

the case for B3 (note that, again, data points affected by the Boyle temperature
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2D 3D
B2 B3 B4 B2 B3 B4

a0 1.257 0.8601 0.7754 1.429 1.299 0.9201
a1 -0.8873 4.191 -7.44 -1.874 -0.771 -8.079
a2 -0.5374 -19.05 27.54 -2.906 5.834 196.1
a3 -0.4036 35.12 -51.32 0.7282 -15.04 -1510
a4 0.1466 -30.42 52.6 -0.3097 22.54 6106
a5 -0.03649 13.74 -30.3 -10.5 -1.494e+04
a6 -2.513 9.184 2.306e+04
a7 -1.201 -2.255e+04
a8 1.354e+04
a9 -4550
a10 651.6
SSE 0.07354 0.1462 0.02786 0.006659 0.03478 2.579
R2 1 0.9999 1 1 1 0.9971
adjusted R2 1 0.9999 1 1 1 0.9967
RMSE 0.01598 0.02293 0.01255 0.009361 0.02168 0.1962

Table 10: Inverse temperature fit coefficients for rc = 1.73 potential.

Figure 3.18: Virial temperature dependence for the LJ/s potential with rc = 2.2.

has been omitted). B4 in 3D results in a reasonable fit (data points affected by the

Boyle temperature have been omitted), but B4 in 2D is apparently affected by the

Boyle temperature and a fit has not been attempted. As is the case with most of

the virials, B5 is too affected by Boyle temperature and noise to yield a fit.

As this study aims to make a comparison of the liquid-vapour coexistence and

inversion curve, only B3 is used, as it is the only coefficient that is consistent across

69



2D 3D
B2 B3 B2 B3 B4

a0 1.191 0.8296 1.401 1.26 64.39
a1 0.9831 5.644 2.112 0.946 -1493
a2 -1.788 -25.22 -3.68 5.201 1.444× 104

a3 0.6663 55.21 1.708 -33.06 −7.615× 104

a4 -0.1771 -71.07 -0.6673 55.23 2.446× 105

a5 53.68 0.05721 -43.34 −5.046× 105

a6 -23.27 17.25 6.821× 105

a7 5.447 -2.786 −6.003× 105

a8 -0.5396 3.309× 105

a9 −1.037× 105

a10 1.408× 104

SSE 0.0807 0.04181 0.01386 0.09791 6.034
R2 1 1 1 1 0.999
adjusted R2 1 1 1 1 0.9988
RMSE 0.01677 0.01222 0.006998 0.01873 0.3254

Table 11: Inverse temperature fit coefficients for rc = 2.2 potential.

different families of potentials, members and dimensions. The choice of truncation

of the virial EoS matters for the predicted thermodynamics, as is illustrated in figure

3.19 (the method of calculation is given in section 3.5). As can be seen, including

the fourth virial coefficients lowers the entire liquid-vapour dome.
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Figure 3.19: Liquid-vapour coexistence dome, predicted by virial coefficient theory
for the m=4 pair potential, in 3D. Density and temperature is are in LJ reduced
units.

3.5 Calculation of selected thermodynamic properties

Having obtained an equation of state, it is possible to derive thermodynamic proper-

ties, like the liquid-vapour coexistence dome and the Joule-Thomson inversion curve.

This section provides the general derivation of these two thermodynamic quantities.

3.5.1 Liquid-vapour coexistence

The starting points for calculating liquid-vapour coexistence domes are the coexis-

tence conditions and the truncated virial equation of state as a series expansion in

density

βP = ρ+B2ρ
2 +B3ρ

3 +B4ρ
4 +B5ρ

5. (3.63)

An expression for the chemical potential in terms of the truncated virial series is

also required. The relation between chemical potential and pressure is given by

βµ = βF + βP/ρ (3.64)
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where F is the full Helmholtz free energy F = Fideal + Fexcess, where the excess free

energy is related to the virial EoS via the thermodynamic relation (∂F/∂T )V,N =

−P . The ideal and excess contribution to the free energy are given by

βFideal = ln(ρΛ2)− 1 (3.65)

where Λ is the thermal de Broglige wavelength.

βFexcess = B2 +
1

2
B3ρ

2 +
1

3
B4ρ

3 +
1

4
B5ρ

4 (3.66)

Expressing the chemical potential µ in terms of virial coefficients, using the total

free Helmholtz energy and the truncated virial EoS, results in

βµ = 2B2ρ+
3

2
B3ρ

2 +
3

2
B4ρ

3 +
5

4
B5ρ

4 + ln(ρ) + 2ln(Λ) (3.67)

There exists several approaches to solve for coexistence. A graphical method involves

plotting an isotherm on a chemical potential and pressure diagram, as displayed

in figure 3.20. The point at which the isotherm crosses itself is the point where

pressure and chemical potential for a single temperature are equal. Knowing the

value of pressure and chemical potential, values for the high coexistence densities

can be found, looking at the separate P, ρ and µ, ρ isotherms. Although the method

is simple, it is tedious to implement.

Figure 3.20: Isotherm on a µ,P diagram showing coexistence point where the line
crosses itself. Where pressure P and chemical potential µ are both functions of
density ρ.
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It is also possible to solve the coexistence numerically, by solving the set of

simultaneous equations.

Pgas = Pliquid (3.68a)

µgas = µliquid (3.68b)

Although equations (3.68a) and (3.68b) can be solved by existing software, such

as MatLab, they are non linear, which makes the success of solving dependent on

an initial good guess of the solution. Another method is the Maxwell equal area

construction of equal area, which is described in section 1.2.3, which is the method

used in this study.

3.5.2 The Joule-Thomson Inversion curve

The Joule-Thomson inversion curve is the value at which the Joule-Thomson coef-

ficient vanishes. The process is performed under constant enthalpy, which can be

described as a function of pressure P and temperature T .

H = f(P, T ) (3.69)

A change in enthalpy is given by

∂H =

󰀕
∂H

∂P

󰀖

T

∂P +

󰀕
∂H

∂T

󰀖

P

∂T (3.70)

using the second law of thermodynamics ∂H = T∂S+V ∂P , equation (3.70) can be

written as 󰀕
∂H

∂P

󰀖

T

= T

󰀕
∂S

∂P

󰀖

T

+ V (3.71)

Utilising the Maxwell relationship

󰀕
∂S

∂P

󰀖

T

= −
󰀕
∂V

∂T

󰀖

P

(3.72)
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equation (3.71) then becomes

󰀕
∂H

∂P

󰀖

T

= −T

󰀕
∂V

∂T

󰀖

P

+ V (3.73)

In an isenthalpic process the enthalpy is constant ∂H = 0, therefore the Joule-

Thomson coefficient can be written as

µJT =

󰀕
∂T

∂P

󰀖

H

=
−
󰀃
∂H
∂P

󰀄
T󰀃

∂H
∂T

󰀄
P

=
1

cp

󰀗
T

󰀕
∂V

∂T

󰀖

P

− V

󰀘

=
V

cp
(αT − 1)

(3.74)

using the expression for µJT as given in [105], where the coefficient of thermal

expansion is α = 1
V
(∂V/∂T )P and cP is the heat capacity of constant pressure.

It is the case that 󰀕
∂V

∂T

󰀖

P

= −
󰀕
∂P

∂T

󰀖

V

×
󰀕
∂P

∂V

󰀖−1

T

(3.75)

employing the condition that µJT must be zero, the condition for a Joule-Thomson

inversion curve must satisfy (let V = 1/ρ)

T

󰀕
∂P

∂T

󰀖

ρ

− ρ

󰀕
∂P

∂ρ

󰀖

T

= 0 (3.76)

where the partial differentials of pressure are given by

T

󰀕
∂P

∂T

󰀖

ρ

= kBT (ρ+ρ2B2+ρ3B3+ρ4B4+ρ5B5)+kBT
2(ρ2B′

2+ρ3B′
3+ρ4B′

4+ρ5B′
5)

(3.77)

and

ρ

󰀕
∂P

∂ρ

󰀖

T

= kBT
󰀃
ρ+ 2ρ2B2 + 3ρ3B3 + 4ρ4B4 + 5ρ5B5

󰀄
(3.78)

where B′
n = ∂Bn/∂T . This gives the Joule-Thomson inversion curve condition in

terms of virial coefficients expressed as a polynomial in ρ.

(TB′
2 − B2) + ρ(TB′

3 − 2B3) + ρ2(TB′
4 − 3B4) + ρ3(TB′

5 − 4B5) = 0 (3.79)
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Conventionally an inversion curve will be expressed as a (T ,P ) curve, the above

yields a (T ,ρ) curve. This is simple to change by using the virial equation of state,

to obtain pressures corresponding to the calculated densities.
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3.5.3 Comparison of liquid-vapour domes and inversion curves

In this section, results for the liquid-vapour coexistence and JT inverson curves are

presented for the different potentials and dimensions.

For the 3D mn-family of potentials, the liquid-vapour coexistence dome and

JT inversion curve are presented in figure 3.21. The binodals show a clear trend

of decreasing the estimated critical temperature Tc, as the potential well in the

members of the family narrows. The widest well, m = 4 and n = 8, shows the largest

estimated Tc ≈ 0.67. Decreasing the well width for the potential with m = 5 and

n = 10, the critical density decreases to an estimation of Tc ≈ 0.58. The narrowest

well, when m = 6 and n = 12, shows the lowest estimated critical temperature at

Tc ≈ 0.54. Despite the significant decrease in critical temperature, the estimated

critical density remains approximately the same, varying across the range of only

ρ = [0.4; 0.48]

Unlike the binodals, the inversion curves do not show a clear trend with varying

width of the potential well. There is a little indication that the width of the inversion

curves becomes narrower as the width of the well decreases. The width being the

range the range of temperature an inversion curve covers. This is obvious for m = 4

and n = 8, but the two other potentials seem very similar. It is difficult to quantify

this as they exist for such different values of pressure. The estimated maxima in

temperature Tmax does not vary much in temperature between the potentials. It

only varies within a range of Tmax = [0.95; 1.25]. The two narrower potentials are

more alike than the widest, m = 4 and n = 8. The maxima vary in their associated

value for the pressure, Pmax = [2.1; 3.4]. Again the narrowest potentials are more

alike.
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Figure 3.21: Binodals (top) and inversion curves (bottom) for the 3D m,n selected
members. Pressure and Temperature are given in LJ reduced units.
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For the 3D LJ/s family of potentials, the liquid-vapour coexistence dome and

JT inversion curve are presented in figure 3.22. The binodal shows the same trend

of decreasing the predicted critical temperature, when decreasing the range of the

potential. For the longest range potential rc = 2.2, the critical temperature is

estimated to be Tc ≈ 1.1, for rc = 1.7 predicts Tc ≈ 0.98 and for rc ≈ 1.4 the

prediction is Tc ≈ 0.8. As was seen for the 3D mn-family, the critical density

remains the same at an estimated value of ρc = 0.3.

The inversion curves for the 3D LJ/s members show a similar trend to those of

the 3D mn-family members. There is an indication that they narrow as the range of

the potential shortens, however it is likewise difficult to quantify. The two narrowest

potentials have an estimated maxima more alike, both with a Tmax ≈ 1.9, while the

rc = 2.2 has an estimated maximum temperature at Tmax = 3.5.
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Figure 3.22: 3D LJ/s binodal and inversion curves. Pressure and Temperature are
given in LJ reduced units.
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For the 2D mn-family of potentials, the liquid-vapour coexistence dome and

JT inversion curve are presented in figure 3.23. The same trend in decreasing Tc is

observed, going from the highest at Tc ≈ 0.42, decreasing to Tc ≈ 0.38 and the lowest

value Tc ≈ 0.335. The critical density only varies in a small region ρc = [0.25; 0.3].

For the inversion curves the estimated maxima are in the range of Tmax = [0.75; 1.0]

and there is less variation in pressure than was observed for the other potentials

Pmax = [1; 1.2].
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Figure 3.23: 2D mn binodal and inversion curves. Pressure and Temperature are
given in LJ reduced units.
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It was not possible to obtain physically meaningful results for the 2D LJ/s sys-

tem. A discussion of this is given in section 3.6

3.6 Conclusions

The calculation of individual virials had great success for B2 for all of the potentials

in both dimensions, as would be expected. The same can be said for B3, despite

the presence of the Boyle temperature. Varying success was found in calculating

B4. For some, like the 3D mn-family a well defined peak was present and a good

fit possible. In contrast, in the 2D mn-family, B4 had a very steep peak, making

the fit more difficult. B4 for all of the LJ/s had a good fit, although in 2D the

peak was not present. It is unlikely that there is a mistake in the MC hit and

miss algorithm itself, considering the other results and the test that was performed

in section 3.3. However there is currently no explanation of why it should deviate

from the behaviour of other B4. As these are the first results for these potentials’

associated virials, it is clear that further investigation into the behaviour of these

potentials, showing deviating behaviour, is needed.

No appropriate results were obtained for B5, despite the use of Ree-Hoover di-

agrams, simulation time steps in the order of 1010 and closely spaced temperature

values. Improvements to B5 will require the use of better method than MC hit

and miss, as it is too affected by noise and the Boyle temperature. In general, the

understanding of the mathematical behaviour of virial coefficients is poor, especially

for potentials differing from the more simple ones, like the HS and SW.

Despite the difficulties of calculating virial coefficients, a wide range of binodals

and JT inversion curves was obtained. Generally the liquid-vapour domes showed an

interesting trend in decreasing the predicted critical temperature, when shortening

the range of the potential. The predicted 2D binodals were significantly smaller

than 3D binodals, whilst keeping approximately the same predicted critical density.

The maxima predicted for the inversion curves also showed a significant decrease

from 3D to 2D.

The phase diagram for the 3D LJ/s with rc = 1.7, shown in figure 3.24 (unpub-
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lished, in private communication with Halfsjöld), which has been calculated by MD,

shows that the virial results overestimate the critical temperature, but there is a

good agreement for the critical density.

Figure 3.24: (unpublished in private communication with Halfsjöld) 3D LJ/s with
rc = 1.71. The axis are in LJ reduced units, where T ∗ is reduced temperature and
n∗ is reduced density.

It must also be said that, in general, the curvature of the virial predicted liquid

branch in any family for any dimension, seems too shallow for what is expected and

this does not change by adding on an extra virial term as was seen in figure 3.19.

The liquid branch is generally observed to have the dome shape shown in figure 3.24.

In figure 3.25, the results of extensive constant enthalpy MD simulations, done

in this study and described in detail in section 5, are shown, which compare the

predicted inversion curve for the 2D m = 4 and n = 8 potential, using up to

the third virial coefficient B3. It is expected that the predicted inversion curve

goes through the maxima of the isenthalps and there is good agreement at higher

temperatures, but it starts to deviate after having reached its maxima. A puzzling

feature is that it seems to agree well on the maxima pressure.

It is possible that different fits from the inverse temperature fit could be used

to improve the obtained results. There has also been considerable success in us-

ing Padé approximations to better predict higher order virials [106]. Having said

that, only the use of B3 has yielded an estimated critical density which agrees well
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Figure 3.25: Constant enthalpy MD simulations done in this study (solid grey lines),
comparing their maxima (grey circles) with the estimated JT inversion curve (solid
black line) for the 2D n = 8 m = 4 potential, using up to the third virial coefficient,
B3.

with simulations. The usefulness of the lower order virials has been noted before,

Lekkerkerker and Vliegenthart used only B2 to estimate the critical point [107].

Virial coefficient theory has yielded some useful results, but the individual calcu-

lation of virials is laborious and the virial series in itself does not seem to converge

well for the investigated systems. This study will now turn to perturbation theory,

for which pre calculations of unpredictable virials are not necessary.
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4 Calculation of thermodynamic properties using

Perturbation Theory

Johannes van der Waals introduced the idea that the repulsive and attractive inter-

molecular forces make essentially independent contributions to the thermodynamics

and can thus be treated separately. The strong, short ranged repulsive force is

responsible for the structural arrangement of the molecules whereas the energy as-

sociated with long range attraction can be treated as a perturbation. This leads to

the Barker-Henderson (BH) perturbation theory, followed by other versions of soft

core perturbations, which have been outlined in section 1.2. Barker and Henderson

studied the LJ system, splitting the potential at the distance r where it becomes zero

φLJ(r) = 0. The strong but short ranged potential was represented by the HS system

while the longer attractive part was represented by the Zwanzig high-temperature

perturbation [108,109].

The BH perturbation theory has been shown to agree well with experimental

results. However, because the long range perturbation also includes some of the

repulsive part, it makes the second order perturbation term tricky to deal with. One

solution is to split the potential at the minima, as was done by Weeks-Chandler-

Andersen (WCA), so that no repulsive contribution appears in the long range energy

perturbation. It includes a shift in the potential which means less variation of

the radial distribution function, resulting in a faster converging series. Although

they use an optimised cluster expansion instead of the Zwanzig high-temperature

perturbation, the first correction is identical to that of BH. The WCA theory is

however limited at critical temperatures, because the HS system is likely to be lying

in the liquid-solid metastable region at high densities [32]. It therefore does not

perform well in the critical region.

In this section a Barker-Henderson second order perturbation theory, using the

reference system of the HS, is applied to each of the selected potentials, to obtain

liquid-vapour coexistence and JT inversion curves.

Few authors have employed BH perturbation theory in 2D, mainly due to a lack
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of interest in 2D systems, but also due to a lack of an analytical EoS for hard disks

and lack of an analytical radial distribution function for disks. In this section we use

a recently proposed analytical expression for the 2D structure factor, inverting it to

obtain the radial distribution function and hence obtain a workable 2D perturbation

theory which we can apply to our potentials of interest obtaining JT inversion curves

and liquid-vapour binodals.

4.1 3D Perturbation Theory

This section will follow the version of BH perturbation theory, outlined by Levesque

and Verlet [110]. Levesque and Verlet introduced a strength parameter λ, which

multiplies the attractive part of the potential. The Helmholtz free energy is then

written as

F/NkBT = F0/NkBT +

󰁝 1

0

〈W 〉λ/NkBTdλ (4.1)

F0 is the free energy of the reference system and 〈W 〉λ the average of the long range

interaction at a specific value of λ. When the long range interaction w(r), is given

by
󰁛

i<j

w(|ri − rj|) (4.2)

the average of the long range interaction can be expressed in terms of the radial

distribution function g0(r,λ)

〈W 〉λ/NkBT =
1

2
ρβ

󰁝
g0(r,λ)w(r)dr (4.3)

where β = 1/kBT

4.1.1 Reference system

A reference system must be chosen in such a way that the Helmholtz free energy is

known exactly. Barker and Henderson chose the HS system, as they found this was

a reasonable approximation to the reference state u(r), shown in figure 4.1, when

perturbing the LJ system. In general the free energy calculation of the reference
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Figure 4.1: The short range strong repulsive contribution to the potential, u(r).
According to the Barker-Henderson split.

system is given by

F0/NkBT =

󰁝 ρ

0

(Þ/ρkBT − 1)dρ/ρ (4.4)

where Þ is the compressibility factor of the HS system (Levesque and Verlet used

a virial equation of state to calculate this). For HS, the Carnahan-Starling EoS is

widely accepted as being the most accurate [111]. Using the hard sphere packing

fraction η = 1/2× πρd, it is given as

Z =
1 + η + η2 − η3

(−η)3
(4.5)

where Z is the compressibility (= PV/kBT ) and d is an effective or temperature

dependent hard sphere diameter

d =

󰁝 σ

0

dz
󰀃
1− e−βu(z)

󰀄
(4.6)

Using the Carnahan-Starling EoS the excess free energy per particle becomes [112]

βF ex

N
=

η(4− 3η)

(1− η)3
. (4.7)
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4.1.2 First order correction

The first order correction uses the perturbed potential w(r), which is shown for a

LJ system in figure 4.2. In general the first order correction to the free energy is

Figure 4.2: Long range interaction of the Barker-Henderson split.

given by the integral of the product g0(r)w(r).

〈W 〉0/NkBT =
1

2
ρβ

󰁝
g0(r)w(r)dr (4.8)

Originally Barker-Henderson used the Percus-Yevick solution to the HS radial dis-

tribution function g0(r), but it was shown by Levesque and Verlet that this led to a

small error in the first order correction and an even larger error in the second order

correction [110]. Instead, this study makes use of the radial distribution function

published by Trokhymchuk and Henderson [113]. The radial distribution function

is divided into a short and long range interaction

g0(r)
short =

󰀻
󰁁󰀿

󰁁󰀽

0 r < σ

A
r
eµ[r−σ] + B

r
cos(β[r − σ] + γ)eα[r−σ] σ ≤ r ≤ r∗

(4.9)

and

g0(r)
long = 1 +

C

r
cos(wr + δ)e−κr. (4.10)
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The coefficients ωσ and κσ were calculated by Roth et al. [113] to be

ωσ = −0.682exp(−24.697η) + 4.720 + 4.450η (4.11a)

κσ = 4.674exp(−3.935η) + 3.536exp(−56.270η) (4.11b)

The coefficients ασ, βσ, r∗/σ and gm were obtained by Trokhymchuk & Henderson.

ασ = 44.554 + 79.868η + 116.432η2 − 44.652exp(2η) (4.12a)

βσ = −5.022 + 5.857η + 5.089exp(−4η) (4.12b)

r∗/σ = 2.0116− 1.0647η + 0.0538η2 (4.12c)

gm = 1.0286− 0.6095η + 3.5781η2 − 21.3651η3 + 42.6344η4 − 33.8485η5 (4.12d)

The parameters B,A, δ, C and gexptσ are defined as

B =
gm − (σgexptσ /r∗)exp(µ[r∗ − σ])

cos(β[r∗ − σ] + γ)expα[r∗ − σ]− cosγexpµ[r∗ − σ]
(4.13a)

A = σgexptσ − Bcos(γ) (4.13b)

δ = −ωr∗ − arctan
󰀕
κr∗ + 1

ωr∗

󰀖
(4.13c)

C =
r∗[gm − 1]exp(κr∗)

cos(ωr∗ + δ)
(4.13d)

gexptσ =
1

4η

󰀕
1 + η + η2 − (2/3)η3 − (2/3)η4

(1− η)3

󰀖
(4.13e)

The analytical expression by Trokhymchuk and Henderson, at three different

densities, is compared to MC calculations in figure 4.3. They show a good agreement,

despite a slight deviation at the first peak for ρ = 0.9. However, the same deviation

is found in the work by Trokhymchuk and Henderson themselves.

4.1.3 Second order correction

The second order correction can be obtained by following either the macroscopic

or the microscopic compressibility approximation. Following the work of Levesque

and Verlet, this study uses the macroscopic compressibility approximation, which is
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Figure 4.3: HS radial distribution functions at various densities ρ = [0.3, 0.6, 0.9],
calculated using the analytical g0(r) by Trokhymchuk and Henderson (solid line)
compared to MC calculations (circles) which were performed in this study.
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given by

ρ

󰁝
drω2(r)g0(r)/(∂Þ/∂ρ)0 (4.14)

where (∂Þ/∂ρ)0 is the isothermal HS compressibility. From the Carnahan-Starling

EoS, this is given by 󰀕
∂Þ
∂ρ

󰀖

0

=
1 + 4η2 − 4η3 + η4

1− η4
. (4.15)

Apart from the additional factor of the isothermal HS compressibility and an extra

factor of the perturbed potential contribution, the second order correction is solved

exactly like the first order correction.

4.1.4 Verification

A comparison was made with the values for the free energy of the LJ 12-6 potential,

obtained by Levesque and Verlet. These are shown in table 12, along with values

calculated in this study. A small difference is expected, as the Carnahan-Starling

EoS offers greater accuracy in describing the behaviour of HS [114] than the virial

EoS used by Levesque and Verlet.

ρ Þ/ρkT L&V difference(%) F0/NkT L&V difference(%)
0.2 1.49 1.48 0.7 0.429 0.430 0.2
0.5 2.88 2.89 0.3 1.335 1.343 0.6
0.8 6.12 6.07 0.8 2.806 2.814 0.3

Table 12: Comparison of free energy calculations of the HS system to those obtained
by Levesque & Verlet (L&V) (1969) [110].

The full Helmholtz free energy to the first and second order correction is com-

pared to results obtained by Cuadros et al. (1996) [115] who performed an extensive

MD study on the LJ system. These are displayed in figure 4.4. It shows a signifi-

cant improvement to the free energy when adding the second order correction and

a reasonable agreement between the second order correction and MD results, until

an increasing deviation after the minima.

Having verified the free energy calculations, it is useful to further check how well

it predicts isotherms. An isotherm for the LJ system was chosen at a temperature
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Figure 4.4: 1st order perturbation of the Helmholtz free energy is compared to the
2nd order pertubation and the extensive MD results obtained by Cuadros et al.
(1996) [115], for the LJ system at temperature T = 1.5.

T = 1.5 above the critical temperature to avoid the liquid vapour phase transition.

The results are shown in figure 4.5, where good agreement is observed, up until a

small deviation at higher densities. A discussion of how pressure was obtained can

be found in the next section.

Figure 4.5: Isotherm at T = 1.5 for the LJ system (line), compared to individual
NVT MD simulations, performed in this study.
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4.1.5 Obtaining liquid-vapour coexistence and Joule-Thomson inversion

curves.

BH perturbation theory gives a prescription for calculating the free energy of a

system described by a pair potential. In this section we show how to make use of

the free energy to obtain a binodal and JT inversion curve. The compression factor

Z for the system follows directly from the derivative of the free energy

Z = Z0 + ρ
∂

∂ρ

󰀅
βF − βF0

󰀆
(4.16)

where Z0 is the HS compression factor. The pressure can be obtained using

βP = ρZ. (4.17)

Barker-Henderson perturbation theory does not yield good results in the low

density region. To extend the density region, a virial equation of state truncated at

the third virial coefficient was used. At the point at which the two regions meet,

there is a slight discontinuity in the pressure. This was accommodated by smoothing

the entire density-pressure region using an empirical virial series up to the fifth order

in density, computing 103 densities.

P smooth = a1ρ+ a2ρ
2 + a3ρ

3 + a4ρ
4 + a5ρ

5 (4.18)

The fitted equation was then used to generate a smooth chemical potential.

βµsmooth = ln(ρ) + b1ρ+ b2ρ
2 + b3ρ

3 + b4ρ
4 + b5ρ

5 (4.19)

The differentiation in equation (4.16) was performed using MatLab’s numerical dif-

ferentiator, the diff-function. Along an isotherm, the corresponding points on the

liquid-vapour binodal are obtained by solving the following simultaneous equations
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Pgas = Pliquid

µgas = µliquid

(4.20)

These conditions were met using the Maxwell equal area construction.

Obtaining the JT inversion curve follows the same method used in virial co-

efficient theory in section 3.5.2, identifying the point at which the JT coefficient

vanishes, given in equation (3.76). Isotherms were then generated and fitted using

least squares to a virial type equation truncated at the mth order in density (m = 6

is appropriate for this work). Taking derivatives along an isotherm and an isochore,

then substituting the resulting expression into equation (4.21)

βP = ρ+
m󰁛

k=2

nak−1ρ
k = 0 (4.21)

yields a polynomial
m󰁛

k=1

ρk−1[Ta′k − kak] = 0. (4.22)

The roots correspond to points on the ρ, T inversion curve. The derivatives a′k were

obtained by first fitting the empirical coefficients in equation (4.22) against inverse

temperature using least squares.

ak =

p󰁛

n=1

bnβ
n−1 = 0 (4.23)

where β = 1/kBT . For this work, p = 5 was shown to be sufficient. The derivatives

follow from differentiation of equation (4.21) with respect to temperature, and have

m − 1 roots. Discarding unsuitable roots (those being imaginary, unphysical roots

showing negative densities and roots that clearly lie outside the fluid range) leaves

only a single root for density at any given temperature in the coexistence region. As

for the inversion curves obtained for virial coefficient theory, the density is converted

to pressure by using the empirical equation of state, given in equation (4.17).
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4.1.6 3D perturbation results.

In this section, binodals and inversion curves obtained by a 3D BH perturbation

theory are presented for the selected members of the mn-family and LJ/s.

The binodals for both families are shown in figure 4.6. The predicted critical

temperatures decreases as the range of the potential decrease. A summation of the

estimates for the critical temperature Tc is given in table 13.

mn-family LJ/s-family
m,n Tc(≈) rc Tc(≈)

4,8 0.68 2.2 1.10
5,10 0.58 1.7 0.82
6,12 0.53 1.4 0.80

Table 13: Summary of the estimated (≈) critical temperatures Tc for the mn-family
(m,n) and the LJ/s (rc).

The prediction of the critical density stays the same when varying the potential

range. For the mn-family ρc ≈ 0.6 and for the LJ/s ρc ≈ 0.3.

For the inversion curves predicted by perturbation theory, displayed in figure 4.7,

the maximum temperature decreases when the range of the potentials decreases.

For the longest range of the mn-family m = 4 and n = 8, the predicted maximum

temperature is Tmax = 1.4, for m = 5 and n = 10 Tmax = 1.1 and for the shortest

m = 6 and n = 12 the maximum temperature is estimated to be Tmax = 0.75. The

range of pressure for each of the inversion curves is very similar, as well as their

shape. Therefore it is possible to see clear indications that the inversion curves for

both families becomes narrower as the range decreases. There is observed an odd

’bump’ for the inversion curve for rc = 2.2. It is not clear whether this is a physical

feature, or an effect of perturbing at a long range.
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Figure 4.6: Binodals predicted by the 3D BH second order perturbation theory.
Showing results for the mn- and LJ/s family-members. Using LJ reduced units.
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Figure 4.7: Inversion curve predicted by the 3D Barker-Henderson second order
perturbation theory. Showing results for the mn- and LJ/s-family. Using LJ reduced
units.
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4.2 2D Perturbation Theory

Henderson extended the BH perturbation theory to two dimensions, in a study of

the two dimensional LJ fluid [116]. He used HD distribution functions produced

by MC simulation as currently there exists no analytical expression for the radial

distribution function for the HD system. However, there exists an analytical expres-

sion for the HD correlation function c(k), which is related to the static structure

factor, which is further related to the radial distribution function. From this, a 2D

BH perturbation of the Helmholtz free energy follows that of three dimensions.

4.2.1 Hard disk radial distribution function.

The relation between the correlation function c(κ) and the structure factor S(k) is

given by Bosch and Collots [117]

S(k) =
1

1− c(k)
(4.24)

For a wavevector of magnitude k and the packing fraction η, the direct correlation

function is

c(k; η) = ηc0

󰀥
4(1− a2η)f(k) + a2η

󰀕󰁱
af

󰀕
ak

2

󰀖󰁲2

+H(k; a)

󰀖󰀦
(4.25)

where f is an auxiliary function.

f(k) =
2J1(k)

k
(4.26)

with J1(x) being a Bessel function of the first kind, of order 1, and H(k; a) is given

by

H(k; a) =
16

π

󰁝 1

1/a

dx
󰁳

(1− x2)(f(k)− a2x2f(akx)) (4.27)

where a is a scaling parameter parameter defined by

a(η) =
(2 + ηα(η))

1 + ηα(η)
(4.28)
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and α(η) is given as

α(η) = −0.2836 + 0.2733η (4.29)

In equation 4.25, c0 is a scaling function, related to the prescribed equation of state

z(η) =
1 + c2η

2

(1− η)2
(4.30)

by the inverse compressibility

c0 = −∂ηz(η)

∂η
(4.31)

This results in

c0 =
−(1 + η + 3c2η

2 − c2η
3)

(1− η)3
(4.32)

where c2 = 7/3− 4
√
3/π.

Since the structure factor is the Fourier transform of the pair correlation function,

h(r) = g(r)− 1, the structure factor S(k) can be written as [118]

S(k) = 1 + ρ

󰁝
dr(g(r)− 1)eik·r (4.33)

Equation (4.33) can be inverted to yield an expression for the radial distribution

function g(r).

g(r) = 1 +
1

ρ2π

󰁝 ∞

0

dk(S(k)− 1)kJ0(kr) (4.34)

Lado provides a discrete version of this particular Hankel transform [119]

g(ri) = 1 +
1

ρπR2

N−1󰁛

j=1

(S(k)− 1)
J0(kjrj)

[J ′
0(kjR)]2

(4.35)

where ri and kj are defined as

ri = µiR/µN (4.36a)

kj = µj/R (4.36b)

R is the range of the original function being transformed, which in this case is

g(r) − 1. Outside the range of R, the function is assumed to vanish. µi is the ith
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positive root of J0(x).

4.2.2 2D vapour-liquid coexistence and Joule-Thomson inversion curve

The calculation of the predicted liquid-vapour dome and JT inversion curves is

performed in the same way as for the 3D case. The use of the analytical radial

distribution function derived in the previous section does yield satisfying results,

despite the calculations being very slow. In figure 4.8 the liquid-vapour dome and

inversion curve for the 2D LJ/s potential with rc = 1.7 is shown (orange line).

The liquid vapour dome is not closed sufficiently at higher temperatures to make

any sensible statement about the predicted critical temperature, but it does predict

a critical density at ρc ≈ 0.4. The inversion curve predicts a maximum point at

Tmax ≈ 1.25 and Pmax ≈ 0.65.

Figure 4.8: 2D perturbation results for the LJ/s potential with rc = 1.7: binodal
(left) and JT inversion curve (right). Using LJ reduced units.

Figure 4.8 also displays the JT inversion curves (left) of the longer spline rc = 2.2

and the shorter spline rc = 1.4. rc = 2.2 has an estimated maximum temperature at

Tmax ≈ 1.4 and rc = 1.4 an estimated maximum temperature at Tmax ≈ 1.1. They

both have the same associated pressure at the maximum Pmax ≈ 0.65.

It is worth noting that the long spline rc = 2.2 does not display a bump in the

inversion curve in 2D.
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4.3 Concluding on perturbation theory.

In 3D, the same drop in critical temperature when the range of the potential is

decreasing is consistent with what was seen for virial coefficient theory. 3D per-

turbation theory also predicted approximately the same critical density, which also

did not change when changing the range of the potentials. The inversion curves

predicted by perturbation theory seemed much more consistent. There was a clear

pattern for the maximum temperature, which decreased with the range of the po-

tentials. It could also be seen that the width of the inversion curves decreased with

decrease in range, which was not clear from the virial coefficient results.

Compared to the MD results, obtained by Halfskjöld et al., shown in figure

3.24, the perturbation result overestimates the critical temperature, but this is to

be expected for a second order approximation. It is also deviating on the liquid

branch, which should also be expected, as it is the density region where a deviation

in the free energy is observed in figure 4.4.

Compared to the virials, the perturbation theory is able to predict liquid-vapour

coexistence and inversions curves over a larger range. Also, the predicted liquid

branch has a shape more representative of what is observed in the literature. As

it was possible to obtain physically sensible results for the 2D LJ/s system, it can

be concluded that the virial theory failed. It is not the case that liquid-vapour

coxeistence does not exist. In figure 4.9, the 2D perturbation inversion curve is

compared to constant enthalpy MD results. Overall the 2D perturbation results for

the inversion curve showed a trend of the maximum temperature decreasing with

the decreasing range of the potential, without changing the associated pressure. The

maximum temperatures predicted for 2D were generally lower than in 3D.

It is worth noting that using the HS as a reference system for the mn-family of

potentials seems valid, although it does not tend to infinity at the origin. This is

contrary to the statement by Barker and Henderson that HS was only valid because

the LJ potential goes to infinity at the origin. This could be because, locally, it

appears very steep. It is possible to test this by using other reference systems

that are more like the perturbed system, such as the Gaussian. People interested

101



Figure 4.9: 2D inversion curve second order BH style perturbation theory (solid
line) and constant enthalpy MD results (dots). Details on constant enthalpy MD
simulation are given in chapter 5.

in SAFT, being a perturbation theory as well, have made extensive use of softer

reference systems

When the second order BH perturbation theory was compared to MD results, a

disagreement was found on the liquid-branch. To address this, it might be worth

considering a different split of the pair potential, like the WCA split.
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5 Direct constant enthalpy Molecular Dynamics sim-

ulations

Direct simulation in the NPT and NVT ensemble using MD is well used for the pur-

pose of obtaining thermodynamic properties [30], to produce isochores and isotherms.

However, in the case of determining the Joule-Thomson inversion curve using MD,

the production of isenthalps is required. For this study, accurate isenthalps will

confirm the accuracy of the theoretically predicted Joule-Thomson inversion curves

in section 3 and 4.

Good results for Joule-Thomson inversion curve using MC have been obtained

[25, 120], but attempts to use MD failed [121]. MC has many advantages over MD

when producing thermodynamic properties (e.g easier to reached a desired state

point in the simulation and/or move between different state points). However, it is

easier to simulate complex molecules using MD, so there is a motivation for enabling

MD to perform similar simulations to those done in MC.

The failure of the MD attempt to produce Joule-Thomson inversion curves, was

due to the difficulties arising when attempting to control pressure and enthalpy

using established equations of motion. Kioupis and Maginn [122, 123] proposed a

solution to this, by introducing couplings between the pressure and enthalpy to an

extended system. This resulted in modified equations of motion that allows isobaric-

isothermal MD simulations.

This chapter presents an NPH-MD algorithm, which uses the equations of motion

proposed by Kioupis and Maginn. The system used is a simple orthogonal cell, using

coordinate restricted periodic boundary conditions. A system size of N = 529, 2D

4,8 potential particles was used and a total of 16 isenthalps in the pressure range

P = [0.01; 0.99] were produced.

5.1 Equations of motion

This section summarises the development of new equations of motion, by Kioupis

and Maginn [122, 123], that will allow for direct simulation of isenthalp-isobaric
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MD simulations. The equations of motion are given by the isobaric-isenthalpic

equilibrium MD method [124–127]

ṙi = vi + χri (5.1)

v̇i =
Fi(ri)

mi

− χvi (5.2)

V̇ = 3V χ (5.3)

where ri is the position of particle i, vi the velocity of particle i, Fi is the force acting

on particle i, mi is the mass of the particle, χ is the strain rate of the system and

V is the volume of the system. In order to keep the pressure constant, the volume

is permitted to change.

The total energy of the system, E, is the sum of the kinetic and potential energy,

E =
1

2

󰁛

i

miv
2
i +

󰁛

i

󰁛

i>j

φij (5.4)

Over time, the change in energy can be expressed as

Ė =
󰁛

i

mivi · v̇i −
󰁛

i

Fi · ṙi (5.5)

substituting the equations of motion given in equations (5.1), (5.2) and (5.3) into

the time derivative of the total energy in equation (5.5) as well as using the virial

EoS yields a relationship between pressure and the time evolution of the total energy

of the system.

3PV =
󰁛

i

miv
2
i +

󰁛

i

ri · Fi (5.6a)

Ė = −PV̇ (5.6b)

From equation (5.6b) the time derivative of the enthalpy of the system can be written

as

Ḣ = Ṗ V (5.7)
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Equations (5.6b) and (5.7) are both expressions for the first law of thermodynamics

(conservation of energy), for an adiabatic (no transfer of heat nor mass) compression.

It is obvious from equation (5.7) that for constant pressure (Ṗ = 0) enthalpy must

also be constant (Ḣ = 0). The strain rate χ is allowed to vary, to maintain the

pressure at a constant value.

The purpose is not just to keep some variables at a constant value, but also to

drive variables to a pre-determined value, while keeping other variables constant. To

do this in MD, temperature, T , must be kept constant as pressure, P , changes under

the conditions for constant enthalpy, namely Ṗ ∕= 0 but Ḣ = 0. This has, before

the work of Kioupis and Maginn, [122] been difficult to obtain in MD simulations.

They introduced a pressure coupling to an extended system, where the pressure

in the extended system, Pext, is coupled to the pressure of the considered system

via a piston controller. By changing Pext, a system consisting of N particles under

pressure P will move towards the value of Pext. Wang and Fichthorn [128] also allow

for the change of pressure in an isobaric process by relating the time evolution of

the pressure Ṗ to the desired pressure Pset and the instantaneous pressure of the

system P .

Ṗ = kp(Pset − P ) (5.8)

where kp is the proportionality constant. By integrating (5.8) using the initial pres-

sure P0 as the initial condition, the time dependent pressure becomes

P (t) = Pset + (P0 − Pset) exp(−kpT ) (5.9)

Having introduced a way of changing pressure during an isenthalpic process,

Kioupis and Maginn proceed to present modified equations of motion to allow for

direct enthalpy changes during an isobaric process. They introduce a force constraint

αvi, where α is a friction coefficient keeping enthalpy constant during pressure

changes which, they show, has the form

α =
Ṗ V − Ḣ󰁓

i miv2
i

(5.10)
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This leads to the following form for the equations of motion

ṙi = vi + χri (5.11a)

v̇i =
Fi(ri)

mi

− χvi − αvi (5.11b)

V̇ = 3V χ (5.11c)

The strain rate χ must also be changed to account for the introduction of the friction

coefficient. Just as for pressure, the time derivative of the enthalpy is described in

terms of desired value, Hset, and the instantaneous value H, which fixes the enthalpy

of the system while allowing it to drift over time.

Ḣ = kH(Hset −H) (5.12)

5.2 The NPH MD algorithm

The MD algorithm for directly producing isenthalps uses the modified equations

of motion described in the previous section. This section provides information on

the initial configurations used to start the simulation, which boundary conditions

are being used and how thermodynamic properties are measured, in particular in

relation to the production of isenthalps.

5.2.1 Initial configuration and boundary conditions

The two dimensional system is set up as a square, initially placing particles on an

even grid as shown in figure 5.1.

The boundary conditions used are periodic, given for an orthogonal cell centred

at the origin as shown in figure 5.2. X is defined as the length of the box in the x

direction while Y is defined as the length of the box in the y direction. A particle

that goes beyond the length of the cell at position x will re-enter on the opposite side,

maintaining the same velocity. The boundary conditions use restricted coordinates
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Figure 5.1: Initial configuration for 2D NPH MD simulation. Particles are placed
on a regular square grid, in an orthogonal cell, which is centered on the origin.

as follows

If x >
1

2
X then x = x−X (5.13a)

If x < −1

2
X then x = x+X (5.13b)

If y >
1

2
Y then y = y − Y (5.13c)

If y < −1

2
Y then y = y + Y (5.13d)

How an exiting particle reappears at the opposite boundary is illustrated in figure

5.2.

5.2.2 Calculation of thermodynamic properties

Thermodynamic properties relevant for the production of isenthalps are pressure P ,

temperature T and enthalpy H. For each variable, the intermediate value is stored

in an array and averaged over the number of time steps to yield an average value.

The local measurement of pressure corresponds to

Pxy =
v2x + v2y +

󰁓N
j,j ∕=i x

2
ijFij

2XY
(5.14)

where vx is the velocity in the x-direction, vy the velocity in the y-direction, xij the

distance between particle i and j, Fij the force exerted on particle i from particle j
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Figure 5.2: Diagram showing restricted coordinates periodic boundary conditions.
A particle (black) exits the top of the box in the y direction, then reappears at the
bottom maintaining the same position in x.

and XY is the area of the simulation system. The direct measurement of the local

kinetic temperature corresponds to

Tkin =
v2x + v2y
2(N − 1)

(5.15)

where 2(N − 1) are the degrees of freedom. The local measurement of enthalpy Hxy

is given by

Hxy = v2x + v2y + φij +
x2
ijFij + y2ijFij

2N
(5.16)

In practice, it is important to appreciate that the system is driven towards the

desired enthalpy, and will not always correspond to the directly measured enthalpy.

Long production runs should be performed, to ensure that the measured enthalpy

corresponds with the desired enthalpy.

For a given enthalpy, several simulations are performed with varying pressure.

This is all repeated for several values of enthalpy. In the next section, results from

repeated constant enthalpy simulations are shown for the 2D 4,8 potential.
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5.3 Constant enthalpy MD results

In order to obtain results for the Joule-Thomson inversion curve, several constant

enthalpy simulations must be performed and their maxima determined as this cor-

responds to the point at which the Joule-Thomson coefficient µJT vanishes. An

example of extracting maxima from isenthalps to yield an inversion curve is given

in appendix D for the case of the analytical VDW system.

In practice several constant enthalpy simulation were performed using N = 529

particles with an equilibration run using 50000 time steps to melt the crystal, fol-

lowed by a production run using 106 timesteps. 16 different values of enthalpy

were used H = [0.1; 0.5; 0.9; 1.0; 1.4; 1.8; 2.0; 2.2; 2.3; 2.4; 2.5; 2.6; 2.7; 2.8; 2.9; 3.0], in

the pressure range P = [0.01; 0.99]. using 50 values. These simulations make up

isenthalps which are displayed in figure 5.3.

Figure 5.3: Isenthalps produced by repeated NPH MD simulations. Constant pres-
sure and enthalpy MD simulations (black circle) and their maximum (blue circle).
Using LJ reduced units.

Overall the isenthalps are smooth due to the long production runs and it is clear
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that a sufficient number of pressures have been used to determine the maxima. At

the low pressure and density region, due to low particle interaction under these

conditions, the data is noisy. This is sufficiently far away from the point at which

µJT = 0 to have no effect on the determination of the Joule- Thomson inversion

curve.
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5.4 Conclusion

Extensive NPH MD simulations were performed at 16 different enthalpies using

50 different values of pressure in the region of P = [0.01; 0.99], to yield smooth

isenthalps. The method described in appendix D can be used to extract the value

for each of the isenthalps at the point where the Joule-Thomson coefficient µJT

vanished.

Although this method successfully yields a Joule-Thomson inversion curve, it is

worth noting, that for the sole purpose of obtaining an inversion curve, only the

simulations performed around the maxima, are required. The methods described

in section 3 and 4 can give a reasonably fast theoretical estimate of where MD

simulations should be performed to obtain accurate values for when µJT = 0, without

wasting computational resources and time.
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6 Joule-Thomson Throttling of Gases

Early work on the freely expanding ideal gas in a vacuum, showed that the change

in internal energy is independent of the change in volume [129,130]. By 1845 Joule

continued this work in his attempts to find the mechanical equivalence of heat. In

1852, together with Lord Kelvin, this resulted in what is today known as Joule-

Thomson throttling [23]. The Joule-Thomson Throttling experiment was originally

a thermally insulated lead pipe, where gas was pumped through at a steady rate,

passing a porous plug situated in the centre of the construction. The temperature

was carefully monitored and a drop in the temperature of the gas was observed.

This phenomenon is the basis of various modern technologies such as refrigeration,

air conditioning, heat pumps and liquefiers [131,132].

The non-equilibrium molecular dynamics realisation of Joule-Thomson throt-

tling developed by Hoover et. al., provides an interesting new way to study non-

equilibrium steady states with simple boundary conditions. The work of these au-

thors showed a small temperature drop when the gas was based on a purely repulsive

pair potential. This presents a puzzle since the Joule-Thomson effect was used to

prove the existence of attractive forces.

In this section the Joule-Thomson simulation is revisited but using a potential

with an attractive component to investigate whether a temperature drop may occur

and understand why it did in the original work.

6.1 Joule-Thomson throttling of a purely repulsive potential.

In 2014 Hoover, Hoover and Travis [20] successfully demonstrated that molecular

dynamics can be used to model shock waves. A two dimensional shock wave is

travelling in one dimension, using a purely repulsive pair potential. Cold fluid enters

the left side of a simulation box, meeting a hot fluid which exits to the right.

Shock waves and Joule-Thomson throttling differ in 2 key ways. (1) for Joule-

Thomson throttling, kinetic energy is negligible, which is not the case for shock

waves. (2) In shock waves the conductive heat flux is at its maximum at the wave
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front, whereas it is invisible in Joule-Thomson throttling due to the porous plug.

However, they also have similarities. (1) The flow of particles happens in one di-

rection. (2) They have the same thermodynamics. (3) Both have constant fluxes.

Therefore it should be possible to construct a successful MD simulation of a Joule-

Thomson throttling.

6.1.1 Boundary conditions and plug.

The boundary conditions are easily revised to suit the Joule-Thomson simulation.

Instead of simulating a porous plug, a potential barrier is placed in the middle of

the system perpendicular to the flow. The sole purpose of the obstruction is to strip

momentum from the incoming gas, so a potential barrier will suffice. A gaussian-

like potential was chosen as it is short ranged and sufficiently smooth. The barrier

potential and its force are given in equations (6.1) and (6.2) and illustrated in figure

6.1.

φbarrier(x) =
1

4

󰀃
1− x2

󰀄4 (6.1)

Fbarrier(x) = 2x(1− x2)3 (6.2)

A purely repulsive potential was chosen for the pair interaction of the particles

φ(r < 1) = [1− r2]4 (6.3)

and the force

F (r < 1) = 8r(1− r2)3 (6.4)

which are illustrated in figure 6.2. The potential was slightly modified to alleviate

the possible problem of compressibility at high densities. The force is capped at the

point of inflexion.

The one dimensional steady flow of gas is created via the boundary conditions.

At a steady state, columns of particles are fed into the simulation from the left side
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Figure 6.1: Barrier potential and barrier force from equation (6.1) (solid line) and
(6.2) (broken line).

of the system. Particles are ejected from the system when they reach the boundary

at the right side of the system. The particles are allowed to exist in a small region,

beyond the border, before they are discarded.

6.1.2 Equations of motion and calculation of fluxes

The trajectories in the 2D JT throttling use Newton’s second law of motion derived

from the Hamiltonian H =
󰁓

k q̇kpk − L [55]

r̈ = v̇ =
F

m
(6.5)

The advantage of using the Hamiltonian derived equation of motion, rather than

the Lagrangian, is simpler equations of motion. Newtonian equations of motion are

integrated using a fourth order Runge-Kutta algorithm [55]. It is self starting and

has an associated error of order ∆t4/5!. It calculates the trajectories doing four

intermediate calculations within the time step.

ri(1) = ri(t) + ṙ(t)∆t (6.6a)

vi(1) = vi(t) + ṙi(t)∆t (6.6b)
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Figure 6.2: Pair potential and force of the gas particles in the Joule-Thomson throt-
tling.

ri(2) = ri(t) + ṙi(1)
∆t

2
(6.7a)

vi(2) = vi(t) + v̇i(1)
∆t

2
(6.7b)

ri(3) = ri(t) + ṙi(2)
∆t

2
(6.8a)

vi(3) = vi(t) + v̇i(2)
∆t

2
(6.8b)

ri(4) = ri(t) + ṙi(3)∆t (6.9a)

vi(4) = vi(t) + v̇i(3)∆t (6.9b)

Then each intermediate time step is averaged, yielding the final trajectories at time

t+∆t.

ri(t+∆t) = ri(t) +

󰀥
ṙi(1)

6
+

ṙi(2)

3
+

ṙi(3)

3
+

ṙi(4)

6

󰀦
∆t (6.10a)

vi(t+∆t) = vi(t) +

󰀥
v̇i(1)

6
+

v̇i(2)

3
+

v̇i(3)

3
+

v̇i(4)

6

󰀦
∆t (6.10b)
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mass flow = ρu

momentum flow = Pxx + ρu2

energy flow = (ρu)[e+ (Pxx/ρ) + (u2/2)]

(6.11)

where u is the flow velocity, determining the feed time of new particles into the

system (= 1
2
(uL∆t)−1). Pxx the xx component of the pressure tensor, and e the

specific internal energy. The fluxes are calculated using SPAM averaging [55]. SPAM

averaging defines local averages where contributions from many nearby particles are

considered. At position r for the variable f , the added nearby particle contributions

f(ri) leads to an interpolated average value f(r)

f(r) =
󰁛

i

mifiw(r − ri)/
󰁛

i

miw(r − ri) =
󰁛

mifiwri/ρ(r) (6.12)

which leads to

f(r)ρ(r) ≡ frρr ≡ (fρr) ≡
󰁛

i

fimiw(r − ri) ≡
󰁛

i

fimiwri (6.13)

where ρ(r) is the smooth particle density = ρr =
󰁓

j mjw(r−rj) and w a Lucy weight

function. The Lucy weight function is given in terms of the maximum distance to

the included neighbouring particles [55]

w(r) =

󰀕
5

πh2

󰀖󰀥
1 + 3

r

h

󰀦󰀥
1− r

h

󰀦3

(6.14)

using the appropriate two dimensional normalisation factor
󰁕 h

0
2πrw(r)dr = 1. The

simulation makes no use of a thermostat.

The momentum flow described in equation (6.11) was calculated by

momentum flux = w(r)×
󰀕

1

2R
x2
ij × Fij + ux

󰀖
(6.15)

where ux is the intermediate velocity at position x, R is the separation between the

two particles, xij is the position of particles i and j, Fij the force between the two
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particles which is dependent on the pair potential and uL is the velocity to the left

of the potential barrier. The momentum flux is then divided by the length of the

simulation box and averaged over all the produced time steps to give a final profile.

The pressure tensor Pxx was calculated by

Pxx = w(r)×
󰀕

1

2R
x2
ijFij + (ux − uL)

󰀖2

(6.16)

which is also averaged over all time steps to give a final profile.

6.1.3 Simulation details

The simulation was performed with dimensions: 200 columns in the x direction

and in the y-direction 40 rows of particles are added with unit spacing, placing

the potential barrier at x/2, starting the particles on a square lattice. Although

the simulation aims to throttle a gas, it is favourable to use a square lattice (or

a triangular), to ensure that the particles experience an even strength of the force

from pair potential. The initial particle configuration is shown in figure 6.3.

Figure 6.3: The initial position of particles, used for the JT MD throttling. Particles
are placed on a square lattice with a two fold compression on the left hand side of
the plug.

The particles require initial conditions. The conditions were set to reproduce

the results by Hoover, Hoover and Travis [20] which were: initial velocity to the

left of the plug uL = 0.5, initial velocity to the right of the plug uR = 1.0, where
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a velocity at 1.0 is equal to the speed of sound. The left and right velocities are

related to the rate at which particles are inserted to the left, and removed from the

right. These need to be chosen appropriately to ensure a suitable flow. Thermal

momenta are specified consistent with an initial temperature T0 = 0.05 and the

Gaussian potential barrier height is set at 0.25. This needs to be high enough to act

as a porous plug, but not so high as to stop any particles coming through.

6.1.4 Results for purely repulsive potential

Using the initial conditions above, the results by Hoover, Hoover and Travis were

reproduced. The simulation was run for 1500000 timesteps. The particles have lost

their initial lattice structure as is shown in figure 6.4.

Figure 6.4: Final configuration for purely repulsive potential.

The resultant density profile is shown in figure 6.5, which shows a density to

the left hand side of the plug of ρ = 1.6 which decreases to a density of ρ = 0.8

on the right hand side of the plug. The flux of mass, momentum and energy is

shown in figure 6.6. A drop in momentum is observed from 1.7 on the left hand

side to 1.5 on the right hand side. Energy and mass are kept constant at 1 and 1.3

respectively. A small drop in energy is seen at the plug. The profiles of velocity ux

and of tensor pressure components pxx and pyy are shown in figure 6.7. The velocity

to the left hand side is 0.6 increasing to 1.25 on the right hand side. The pressure

tensor components, pxx and pyy, are equal to each other, being one on the left hand
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Figure 6.5: Density profile for JT throttling using a purely repulsive potential.

Figure 6.6: Momentum, mass and energy fluxes from 2D Joule-Thomson throttling,
using a purely repulsive potential.

side decreasing on the right hand side to 0.2. The profiles of the components of the

temperature tensor, Txx and Tyy, are shown in figure 6.8. This shows a decrease in

temperature for both from 0.25 to 0.16.

All of these profiles are consistent with those obtained obtained by Hoover,

Hoover and Travis. It is puzzling that a drop in temperature is observed when us-

ing a purely repulsive potential, because the original experiment by Joule and Lord

Kelvin was constructed to prove the existence of attractive forces. As discussed in

chapter 1, for an ideal gas being throttled at constant enthalpy, the temperature
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Figure 6.7: Velocity and pressure profiles of 2D Joule-Thomson throttling.

Figure 6.8: Temperature profiles of 2D Joule-Thomson throttling.
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will likewise be constant. At low temperatures, the attractive part of the potential

dominates the repulsive part. Further investigation showed that the observed drop

in temperature was due to the simulation not being isenthalpic. The enthalpy profile

in the throttling direction is measured as

H(x) = w(r)×
󰀕
0.5×

󰀕
1

2R
x2
ijFij +

1

2R
y2ijFijρ

−1 + 0.5Eij + 0.5× (ux − uL)
2 + u2

y

󰀖󰀖

(6.17)

where uy is the intermediate velocity in the y-direction and shown in figure 6.9, which

is not constant. There is a clear drop in enthalpy from 1.65 to 0.8 after the throttling.

In an attempt to move the system towards constant enthalpy, the initial velocities

Figure 6.9: Enthalpy profile of 2D Joule-Thomson throttling, for the repulsive disk
system.

were decreased to very low values of uL = 0.001 and uR = 0.005, still keeping a

velocity difference to enable flow through the system. The initial temperature was

also decreased from the original simulation to T0 = 0.001. The result for the enthalpy

after 150000 time steps are shown in figure 6.10. It is observed that the drop in

enthalpy has decreased significantly. However, the system is losing its temperature

profile, it now appears more like a gradient than a defined temperature drop, as

is seen in figure 6.10. It does not seem to be possible, for this system, to achieve

constant enthalpy and a temperature drop as expected for a JT throttling. It could
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be discussed whether or not the choice of boundary conditions were appropriate

and if they are the cause of the enthalpy problem. However, this would imply that

Hoover, Hoover and Travis’ work on the 1D shock wave is wrong, for which there

was no indication.

Figure 6.10: JT throttling results for the purely repulsive potential for (left) En-
thalpy and (right) Temperature.

Since the original experiment was designed to prove the existence of attractive

forces, using a potential with an attractive component could results in a constant

enthalpy profile while keeping the drop in temperature.

6.1.5 Results for potential with an attractive component

In this section the JT throttling simulation is repeated using a potential with an

attractive component. The 2D m = 4 and n = 8 was chosen, as a longer range

potential seemed to have a wider inversion curve, and for convenience, as constant

enthalpy MD simulations are available. A few changes to the original simulation had

to be undertaken to accommodate the presence of attractive forces. Firstly the initial

condition has to be altered, as using the square lattice with unit spacing, caused

the system to condense fairly quickly, if the initial density does not corresponds to

an appropriate phase point in the gas region. The initial grid was changed to a

triangular lattice, keeping the two fold compressions, but increasing the distance
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between particles to be greater than the potential cut off distance. The initial

configuration is displayed in figure 6.11.

Figure 6.11: Initial particles configuration for the 2D 4, 8-potential.

Initial values for the simulation must be chosen in such a way that the throttling

exists within the JT inversion curve. In figure 6.12 the inversion curve predicted

by virial coefficient theory and constant enthalpy MD simulations is shown. From

this it is possible to see at what values of pressure and temperature a cooling from

a throttling will occur.

The simulation was started with an initial reduced temperature of T0 = 1.0,

since aiming to throttle in the middle of the temperature range of the inversion

curve gives the widest range of suitable pressures. The inlet and outlet velocities

had to be set rather high, at LJ reduced velocities uL = 2.5 and uR = 5.0 (in

comparison speed of sound = 1), otherwise the flow of the simulation reversed. The

barrier height was also increased to a value of 3.5, to raise the pressure into the area

of the inversion curve. It is worth noting that no values in the input file allow for

the direct control of temperature and pressure, remembering that there is neither

a thermostat or barostat present. Therefore setting initial conditions to achieve

appropriate pressure and temperature still involves a trial and error approach.

The final configuration after 50000 time steps is given in figure 6.13. It is no-

ticeable that particles seem to cluster at the potential barrier. This should not have
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Figure 6.12: JT inversion curve for the 2D 4, 8 potential. Showing predicted in-
version curve by virial coefficient theory (solid black), isenthalps (solid grey) and
maxima for the isenthalps (grey dots).

an effect on the profiles as such, but would indicate that the barrier is too high

compared to the flow. Lowering the barrier height will make the configuration more

uniform. The density profile for the simulation is given in figure 6.14, showing the

Figure 6.13: Final configuration for the throttling using the 2D 4, 8-potential.

expected density decrease as well as the condensation close to the left hand side of

the barrier, echoing the configuration seen in figure 6.13.
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Figure 6.14: Density profile of the JT throttling using the 2D 4,8 potential.

In figure 6.15, the profiles for pressure and temperature are given. Approximate

values can be made out, despite the data still being noisy. The pressures PL ≈ 0.5

and PR ≈ 0.15. The temperatures are TL ≈ 1.2 and TR ≈ 1.1. Note that these

temperatures are not identical to the initial temperature, as there is no temperature

control. The initial temperature is merely there to provide starting energies to the

MD particles. The initial pressure is within the predicted inversion curve, but it falls

just outside the inversion curve calculated via MD. The final pressure is however

well within the inversion curve. Looking at the temperature profile, the drop in

temperature is small, but considering the shape of the isenthalps in figure 6.12, only

a small drop in temperature is to be expected. The effect from the clustering at

the potential barrier observed in the configuration in figure 6.13 is seen as a sharp

increase in pressure and temperatures in figure 6.15, but as expected it does not

have much effect on the overall profiles.

The enthalpy profile is given in figure 6.16, which although noisy, does not display

the significant drop in enthalpy that were observed in figure 6.9, in the reproduction

of the original simulation for a purely repulsive potential. Note that the large spikes

in figure 6.15 and figure 6.16, occurs due to the potential barrier that causes particle

to condense just before it.
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Figure 6.15: Pressure profile (left) and temperature profile (right) for the 2D throt-
tling of the 4, 8 potential.

Figure 6.16: Enthalpy profile for the 2D 4, 8 potential JT throttling.

6.2 Conclusion

The original simulation done by Hoover, Hoover and Travis, using a purely repul-

sive potential was reproduced successfully. A further investigation into the original

results, showed that although a temperature drop was observed, the process was

not isenthalpic. In an attempt to rectify this, the flow rate and initial temperature

of the system was lowered significantly. It was found that the significant drop in

enthalpy did diminish but, in the process the temperature profile was lost.
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Another solution to address the enthalpy problem was to use a potential with

an attractive component. This is because, as van der Waals realised at the time,

the original experiment proved the existence of attractive intermolecular forces. Ad-

justments need to be made to the initial conditions to account for the presence of

attractive forces. The m = 4 and n = 8 potential from the mn family was selected

and the predicted inversion curve was used to determine the initial values for the

throttling.

It was found that there was a drop in temperature while keeping the enthalpy

constant. The values observed matched well with the MD data obtained for constant

enthalpies.

127



7 Conclusion

This study sought to present an algorithm that represented a true JT throttling of a

gas, which required a potential with an attractive component rather than the purely

repulsive potential originally used. It was decided to look into two different families

of pair potentials: the mn-family and the LJ/s family, due to their suitable mathe-

matical properties for MD simulations. The phase diagram and JT inversion curves

for these potentials were unknown, but are required for the purpose of JT throttling.

Two theoretical methods were employed to predict the phase diagrams and inversion

curves: Virial coefficient theory and a Barker Henderson style perturbation theory.

The virial coefficient theory only yielded a general usefulness of the second and

third coefficient, from which binodals and inversion curves for the potentials were

produced in two and three dimensions. The perturbation theory yielded results

for all of the potentials in three dimensions. A 2D perturbation theory was also

performed, but due to being significantly slower, a limited number of results were

presented. Generally it was observed that as the range of the potential decreased,

so did the critical temperature.

Using the predicted JT inversion curve for the 2D m = 4 and n = 8 potential, a

JT throttling showing a drop in temperature with constant enthalpy was performed.

The choice of potential used was mainly due to convenience as MD simulations

for constant enthalpy were available from section 5. Considering the trend of the

liquid-vapour coexistence, there may be more viable choices. As was seen for the

study in fullerenes, the liquid-vapour dome moved down as the range of the potential

decreased, making a stable liquid phase disappear. Choosing such a potential could

be advantageous, as condensation of the gas is undesirable in JT throttling.

There could be a question of whether or not the puzzling feature of the Hoover,

Hoover and Travis publication was due to inappropriate choice of boundary condi-

tions, however, this would imply that their results from their work on the 1D shock

wave is wrong as it uses identical boundary conditions. The 1D shock wave work

had no error, so it can be assumed that the boundary conditions used were indeed
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appropriate.

To address the question, of whether or not the potentials studied have a stable

liquid phase, it is necessary to investigate the sublimation line in order to establish

the triple point. Doing this will show whether the critical temperature, as it de-

creases, will find itself under the triple point, as was seen for the study in carbon

discussed in section 1.2.2. An approach to determine the sublimation line could be:

(1) Determine the high pressure (solid phase) part of an isotherm, at a temperature

lower than the best guess at the triple point temperature, then fit a polynomial to

the pressure versus density. (2) Obtain the low pressure (vapour phase) region of the

same isotherm. Fit a polynomial to the pressure versus density curve, aided by the

first two viral coefficients calculated according to section 3.4. (3) Integrate vapour

pressure to obtain the free energy of the vapour at this temperature. (4) Estimate

the stress free density of the triangular lattice with this pair potential - several NVT

simulations are performed at different densities but at zero temperature (only a sin-

gle MD step is needed). A plot of pressure (which is just the virial since this is at

zero temperature) vs density is produced and one interpolates to find the density

giving rise to zero mechanical pressure. (5) Run a Frenkel-Ladd simulation at the

stress free density and temperature of interest to determine the absolute free energy

of the reference state. (6) Convert the free energies to chemical potentials using

standard thermodynamic expressions. (7) Integrate the solid branch of the isotherm

and combine with the free energy of the reference state to yield an equation for the

free energy of the solid at any density. (8) Solve the pair of simultaneous equations

for equality of chemical potential and pressure to obtain the coexisting solid and

vapour densities at this temperature.
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Appendices

A The Virial Equation of state from the Partition

Function. Following the method by Ursell

The Boltzmann factor WN(r
N) can be expressed as a sum of products of the U-

functions Ul(r
λ). The U-functions are defined as:

U1(ri) = W1(ri)

U2(ri, rj) = W2(ri, rj)−W1(ri)W2(rj)

U3(ri, rj, rk) = W3(ri, rj, rk)−W2(ri, rj)W1(rk)

−W2(rj, rk)W1(ri)−W2(rk, ri)W1(rj)

+ 2W1(ri)W1(rj)W1(rk)

(A.1)

The idea is that the sum of products of W -functions corresponds to the number

of way N particles can be arranged. In front of all the terms is the coefficient

(−1)n−1(n − 1)!, where n is the number of groups in the term. The Boltzmann

factor for N = 1, 2 and 3 are

W1(ri) = U1(ri) = 1

W2(ri, rj) = U2(ri, rj) + U1(ri)U1(rj)

W3(ri, rj, rk) = U3(ri, rj, rk) + U2(ri, rj)U1(rk)

+ U2(rj, rk)U1(ri) + U2(rk, ri)U1(rj)

U1(ri)U1(rj)U1(rk)

(A.2)

which is identical to the relation in equation (A.1), except that in this case the

constant is equal to 1. In general equation (A.2) may be written as:
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WN(r
N) =

󰁛󰁜
Ul(r

λ) (A.3)

Note that the sum of products must be carried over all possibilities of arranging

N number of particles in ml groups of l particles. Considering a set of groups ml

and the relation in equation (A.3) the sum of all the terms is:

N󰁜

l=1

(V l!bl)
ml (A.4)

The number of terms are

N !
N󰁜

l=1

1

(l!)mlml!
(A.5)

Multiplying equations (A.4) and (A.5) and summing over all sets of ml results in

the configurational integral:

QN =
1

N !

󰁝
WN(r

N)drN =
󰁛 N󰁜

l=1

(V bl)
ml/ml! (A.6)

The cluster integral, bl, is

bl = (V l!)−1

󰁝

V

Ul(r1, r2, · · · , rl)dr1dr2 · · · drl (A.7)
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B Random number generator basis of MC hit and

miss algorithm

The basis of any Monte Carlo algorithm is a random number generator. This algo-

rithm uses the random number generator is written by Hoover in FORTRAN [55].

FUNCTION XRAN(IDUM)

IMPLICIT NONE

INTEGER, PARAMETER : : K4B = SELECTED_INT_KIND(9 )

INTEGER(K4B) , INTENT(INOUT) : : IDUM

REAL : : XRAN

INTEGER(K4B) , PARAMETER : : IA = 16807 , IM = 2147483647

INTEGER(K4B) , PARAMETER : : IQ = 127773 , IR = 2836

REAL, SAVE : : AM

INTEGER(K4B) , SAVE : : IX = −1, IY = −1, K

IF (IDUM <= 0 . .OR. IY < 0) THEN ! i n i t i a l i s e

AM = NEAREST( 1 . 0 , −1.0)/IM

IY = IOR(IEOR(888889999 ,ABS(IDUM) ) , 1 )

IX = IEOR(777755555 , ABS(IDUM))

IDUM = ABS(IDUM) + 1

END IF

IX = IEOR( IX , ISHFT( IX , 1 3 ) )

IX = IEOR( IX , ISHFT( IX ,−17))

IX = IEOR( IX , ISHFT( IX , 5 ) )

K = IY/IQ

IY = IA∗( IY − K∗IQ) − IR∗K

IF ( IY < 0) IY = IY + IM

XRAN = AM∗IOR(IAND(IM,IEOR( IX , IY ) ) , 1 )

END FUNCTION XRAN
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C Relation between S(k) and g0(r) in 3D

This derivation is repeated from "Theory of Simple liquids" (2nd edition p. 98).

The radial distribution function is given by

ρg0(r) =
1

(2π)3

󰁝
exp(ik · r[S(k)− 1]) (C.1)

If the system is isotropic, S(k) is a function only dependent on the magnitude of

the wavenumber k = |k|.

S(k) = 1 + 2πρ

󰁝
r2g0(r)

󰁝 1

−1

exp(−ikrcos(Θ))d(cos(θ))

= 1 + 4πρ

󰁝
r2g0(r)

sin(kr)

kr
dr

(C.2)

This relationship is in cartesian coordinates. For this work, the relationship is

required in spherical polars. Therefore, let k · r = kr cosΘ and eik·r = eikr cos θ.

Translating equation (C.1) into

ρg0(r) =
1

(2π)3

󰁝 ∞

0

󰁝 +1

−1

󰁝 2π

0

exp(ik · r)[S(k)− 1]k2d(cosΦ)dkdφ

=
1

(2π)3

󰁝 ∞

0

[S(k)− 1]k2

󰁝 +1

−1

exp(ikr cosΘ)dk

(C.3)

The second integral can be written as

󰁝 −1

+1

exp(ikr cosΘ)d(cosΘ) =

󰀗
1

ikr
exp(ikr cosΘ)

󰀘−1

+1

=
eikr − e−ikr

ikr
(C.4)

resulting in the radial distribution function expressed in spherical coordinates

ρg0(r) =
2

(2π)2

󰁝 ∞

0

[S(k)− 1] k2 sin(kr)

kr
dk (C.5)
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D The VdW equation and its inversion curve

In this appendix we derive an analytical expression for the Joule-Thomson inversion

curve from the VdW equation of state. In molecular units, the VdW EoS is given

by

P =
NkBT

V −Nb
− N2a

V
(D.1)

By integrating equation (D.1) the energy of a VdW gas is obtained

E =
3NkBT

2
− N2a

V
(D.2)

The critical temperature follows from solving the pair of equations

󰀕
∂p

∂V

󰀖

T

=

󰀕
∂2p

∂V 2

󰀖

T

= 0 (D.3)

The solutions are

kBTc =
8a

27b

Vc = 3Nb

pc2 =
a

27b2
.

(D.4)

By introducing dimensionless variables, Tr = T/Tc, Pr = P/Pc and Vr = V/Vc. the

dependence of the VdW equation on a and b can be removed, yielding a universal

VdW equation.

kBT =
Tr8a

27b
; p =

pra

27b2
; V = Vr3bN (D.5)

Pr =
8Tr

3Vr − 1
− 3

V 2
r

(D.6)
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A similar non-dimensionalisation of the energy yields

Er = 4Tr −
3

Vr

(D.7)

Since the enthalpy is H = E + PV it can be written in reduced units as

Hr =
4Tr(5Vr − 1)

(3Vr − 1)
− 6

Vr

(D.8)

T

󰀕
∂p

∂T

󰀖

V

+ V

󰀕
∂ρ

∂V

󰀖

T

= 0 (D.9)

󰀕
∂p

∂T

󰀖

V

=
8

3V − 1
(D.10)

󰀕
∂p

∂V

󰀖

T

= − −24T

(3V − 1)2
+

6

V 3
(D.11)

Solving for the reduced temperature Tr gives a parabolic dependence on volume.

T =
3

4

󰀕
(3V − 1)

V

󰀖2

(D.12)

However, in order to produce an inversion curve, temperature as a function of

pressure is required. By combining equations (D.6) and (D.12)

T =
3

4

󰀥
1± (9− Pr)

1/2

6

󰀦
(D.13)

In figure D.1, a VdW inversion curve is shown, using equation (D.13). It is displayed

along with associated isenthalps, so it can be seen that the inversion curve passes

through their maxima.
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Figure D.1: The VdW inversion curve (broken line), shown with a handful of isen-
thalps H = [5.0; 10.0; 20.0; 30.0; 40.0] and their maxima (star). It is clear that the
inversion curve goes through the maxima of the isenthalps.
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