

Detection and Identification of Chemical

Warfare Agents and Explosives in

Complex Matrices

Alexandra Harvey

PhD

University of York and Defence Science Technology Laboratory
Chemistry

March 2019

2

Abstract

This research explores the use of comprehensive gas chromatography (GCxGC) with different

detectors for military applications. Two military applications are focused on in this thesis; firstly, the

use of GCxGC time of flight mass spectrometry (TOF-MS) for the analysis of samples returned from

operational environments and, secondly, for the analysis of operational samples in the field,

exploring the possibility of a portable instrument.

Operational samples are highly complex and can contain organic matter such as blood, dirt, oils,

diesel and other compounds that are found within that environment. Current methods require

operators to send the sample back to the laboratory for analysis where the sample is cleaned using

solid phase extraction (SPE) before analysis via analytical equipment. This research demonstrates

that a sample containing explosive or chemical warfare agent (CWA) material can be analysed using

GCxGC-TOF-MS without the need for SPE, allowing the sample to be untampered thus minimising

the loss of sample as well as the possibility of contamination from other sources.

Similarly, in the field where a suspected deposited CWA or explosive is found, a sample is taken and

analysed via ion mobility spectrometry or a spectroscopic technique. These techniques can detect

the species of interest but struggle when environmental contamination is present which can lead to

false alarms. This research demonstrates the use of a 6-port valve to perform GCxGC-FID analysis on

explosives and CWAs in simulated operational samples and explores the possibility of creating a fully

portable GCxGC system for use in the field.

3

List of Contents

Abstract 2

List of Contents 3

List of Tables 6

List of Figures 8

List of Equations 13

Acknowledgements 14

Declaration 15

1 Comprehensive Two Dimensional Gas Chromatography Introduction 17

1.1 Introduction 17

1.2 Chromatography 19

1.2.1 Gas Chromatography 20

1.2.2 Rate Theory of Chromatography 26

1.2.3 Van Deemter Curve 26

1.3 Two Dimensional Gas Chromatography 29

1.3.1 Heart-cut separation 29

1.3.2 Comprehensive two-dimensional gas chromatography (GCxGC) 30

1.3.3 Peak Capacity 31

1.3.4 Orthogonality 32

1.3.5 Data Analysis 32

1.3.6 Modulator 33

1.4 Detectors 38

1.4.1 Mass Spectrometry 38

1.4.2 FID 40

1.4.3 NCD 40

4

2 Comprehensive Gas Chromatography Time of Flight Mass Spectrometry for the Analysis of

Threat Materials 43

2.1 Explosives 44

2.1.1 Explosive History 44

2.1.2 Explosive Properties 45

2.2 Chemical Warfare Agents 47

2.2.1 CWA History 47

2.2.2 CWA Properties 48

2.2.3 Detection 49

2.3 Experimental 51

2.3.1 Explosives 51

2.3.2 Chemical Warfare Agents 56

2.4 Results and Discussion 59

2.4.1 Explosives 59

2.4.2 Complex Mixture Analysis 61

2.4.3 Chemical Warfare Agent Analysis 64

3 Valve Modulation Comprehensive Gas Chromatography Flame Ionisation Detection for the

Analysis of Threat Materials 73

3.1.1 Portable Detection Equipment 73

3.1.2 Valve Modulated GCxGC 75

3.2 Experimental 77

3.2.1 Valve Modulated GCxGC System 77

3.2.2 Test Mixtures, Calibration Standards and Matrices 78

3.2.3 Matrices 78

3.2.4 Method Development 80

3.2.5 GCxGC-FID Method for Analysis of CWA 81

3.2.6 GCxGC-FID Method for Analysis of Explosives 81

3.2.7 GCxGC-FID Method with Secondary Heater 81

3.3 Results and Discussion 82

3.3.1 Chemical Warfare Agents 82

3.3.2 Detection of CWA in Complex Matrices 91

5

3.3.3 Explosives 93

3.3.4 Secondary Oven 99

4 Portable Valve Modulation Comprehensive Gas Chromatography 107

4.1 Introduction 107

4.1.1 Portable Gas Chromatography 107

4.1.2 Portable Two Dimensional Gas Chromatography (GCxGC) 107

4.2 Experimental 109

4.2.1 Fast GCxGC 109

4.2.2 Portable GC 110

4.2.3 Portable GCxGC 111

4.3 Results and Discussion 113

4.3.1 Fast GCxGC 113

4.3.2 Portable GC 117

4.3.3 Portable GCxGC 122

4.3.4 Second Heater 127

4.3.5 Conclusions 129

5 Conclusions and Future Recommendations 131

5.1 Defence Intelligence Analysis 132

5.1.1 Conclusion 132

5.1.2 Future Recommendations 133

5.2 In-Field Analysis 134

5.2.1 Conclusions 134

5.2.2 Future Recommendations 137

Annex 1 139

Annex 2 156

Annex 3 190

References 226

6

List of Tables

Table 1 8330 standard components 51
Table 2 Limits of detection on column based on 0.05 µg/mL 8330 standard for explosives. n= 1, S/N
of 3:1 60
Table 3 Limit of Detection and Limit of Quantification in ug/mL using student T value (N=3 for G & V
and N=5 for mustard family) 64
Table 4 Table detailing matrices spiked with chemical agent. Green indicates that the agent could be
detected and red indicates that it could not be detected. If an extracted ion chromatogram was used
a (*) is next to the tick. 65
Table 5 Limit of Detection and Limit of Quantification in ug/mL using student T value (n=4 for G & V
and n=5 for mustard family) 68
Table 6 Agents detected in replicate matrices of operational environments. Green shows that the
material is detected and red shows that it was not detected. 69
Table 7 Method development table 80
Table 8 Chemical warfare agents used to determine stability of the valve system 82
Table 9 Averages of the volumes detected for each agent and the total average over the 3 weeks. 83
Table 10 Calibration of GB 84
Table 11 GD Calibration first isomer 84
Table 12 GD Calibration second isomer 84
Table 13 GA calibration, 0.5 µg/mL could not be detected 85
Table 14 Mustard calibration, in first repeat of 0.5 µg/mL mustard could not be detected 85
Table 15 GF calibration, in the first repeat of 0.5 µg/mL GF could not be detected 86
Table 16 VM calibration 86
Table 17 VX calibration 86
Table 18 Limit of Detection and Quantification for each agent. RT1 is the retention time in the first
dimension, RT2 is the retention time in the second dimension. R2 is the coefficient of determination.
 87
Table 19 Table detailing results of agents detected in complex matrices. Mo3 and Mo4 are aerosol
samples from Porton Down range. Green means detected and red means that it was not detected. 92
Table 20 – Calibration of explosives detailing the limit of detection (LoD) and quantification (LoQ)
based on n=3 96
Table 21 Table of matrices detailing which explosives could be detected using the method detailed in
section 3.2. Green means detected and red means not detected. 99
Table 22 Matrices Spiked with CWA. A tick means that the agent could be detected and a cross
means that it could not be detected 102
Table 23 List of Matrices with Explosives that could be detected in the matrix. A tick indicates that it
was detected, and a cross indicates that it was not detected. 104
Table 24 8330 standard components 109
Table 25 Results table of chemical agents in portable GC 121
Table 26 Comparison of the LOD for explosives in the valve and the cryogenic system 135
Table 27 Mustard (H) calibration data 139
Table 28 HN3 calibration data 139
Table 29 Mustard T (T) calibration data 140
Table 30 GB calibration data 140
Table 31 GD1 calibration data 140
Table 32 GD 2 Calibration data 141
Table 33 GA calibration data 141
Table 34 GF calibration data 142
Table 35 VM calibration data 142

7

Table 36 VX calibration data 143
Table 37 GB calibration 144
Table 38 GD peak 1 calibration 144
Table 39 GD peak 2 calibration 144
Table 40 GA calibration 145
Table 41 GF calibration 145
Table 42 VM calibration 145
Table 43 VX calibration 146
Table 44 Mustard Calibration 146
Table 45 HN3 calibration 146
Table 46 T Calibration 147
Table 47 2-NT Calibration data 159
Table 48 3-NT calibration 160
Table 49 4-NT Calibration 161
Table 50 1,3-DNB Calibration 162
Table 51 2,6-DNT Calibration 162
Table 52 2,4-DNT Calibration 163
Table 53 1,3,5-TNB 164
Table 54 2,4,6-TNT 165

8

List of Figures

Figure 1 Cross section of a GC column showing the outer polyamide coating, the middle part is fused
silica and the inner is the stationary phase. 20
Figure 2 Example chromatogram with a non-retained and a retained species defined by tm and tr

respectively. 21
Figure 3 Van Deemter plot illustrating the optimum linear velocity where the efficiency of the
column is at its greatest, defined by µ ̄ 27
Figure 4 Typical Golay curves. Golay curves determine the best choice of carrier gas depending on
the speed of the separation required. Image from Sigma aldrich6 28
Figure 5 On the left is a simplistic schematic of how heart-cut separation using two columns can be
undertaken, with the switching valve transferring the flow from the primary column to the
secondary at a set time period. On the right is an example where there is a co-elution of peaks
(highlighted by the red line) in the primary separation. This fraction (or time period) of the primary is
then switched onto the secondary column where it is separated out to show the four peaks that
have been deconvoluted. 29
Figure 6 Schematic for comprehensive separation. The compounds are introduced by the injector
and separated out in the primary column (red) before reaching the modulator at different points in
time. The modulator splits the sample into small fractions and passes this onto the shorter
secondary column (blue). The secondary column then completes its separation within 2 – 10 seconds
(method dependent) whereupon the sample reaches the detector and the next fraction is then
separated in the second dimension. 31
Figure 7 The number of boxes represented in the image is equivalent to the product of the peak
capacity of each column generated along two axes assuming adjacent Gaussian profiles. 14 This
demonstrates a large separation space when using two columns in a comprehensive arrangement.
Image from Giddings. 14 32
Figure 8 A: Co-eluting peak enters the modulator. B: The Modulator fractionates the flow. C: These
are injected onto the second column at regular time intervals; second dimension separation is
completed before the next fraction is injected. D: The 1D data is then displayed as 2D contour plot.
Figure from R.Lidster.15 33
Figure 9 Schematic of a GCxGC using a sweeper. The rotating slotted heater allows for the
modulation onto the secondary column which then reaches the detector. 34
Figure 10 Schematic of how the valve modulation takes place, switching between flow from column
one to pushing the fraction onto the secondary column. This takes place very rapidly, however, there
is some mass lost during this process (ca. 15 %) leading to it being a less sensitive technique than
cryogenic modulation. 37
Figure 11 Schematic of a quadrupole 39
Figure 12 Schematic of TOF 39
Figure 13 Schematic of a FID 40
Figure 14 8330 standard with 6 of the explosives labelled, TNT, 2- nitrotoluene, 3-nitrotoluene, 4-
nitrotolene, 4-amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene for visual reference of
separation. The x- axis shows the primary retention time in seconds and the y-axis shows the
secondary retention time in seconds. 59
Figure 15 Diesel spiked with 1 ppm of the 8330 explosive standard. The left image shows the total
ion chromatogram (TIC) and the image on the right shows the data with m/z of 46 extracted to
highlight the presence of nitro groups in the sample. The white circles indicate the presence of the
explosives defined in Figure 11. The x-axis shows the primary retention time and the y-axis shows
the secondary retention time. 61
Figure 16 Perfume spiked with 1ppm of the 8330 explosive standard. The left image shows the total
ion chromatogram (TIC) and the image on the right shows the data with m/z of 46 extracted to

9

highlight the presence of nitro groups in the sample. The circled compounds are explosives of
interest. The x- axis shows the primary retention time in seconds and the y-axis shows the
secondary retention time in seconds. 62
Figure 17 London aerosol sample spiked with 1 ppm of the 8330 explosive standard. The left image
shows the total ion chromatogram (TIC) and the image on the right shows the data with m/z of 46
extracted to highlight the presence of nitro groups in the sample. The x- axis shows the primary
retention time in seconds and the y-axis shows the secondary retention time in seconds. 62
Figure 18 CWAs detected using GCxGC-TOFMS at 1 µg/mL. The agents are labelled on the spectrum
and demonstrate that each agent occupies a different separation space in both the primary and
secondary dimension. The GD peaks are also separated. 66
Figure 19 Aviation Fuel spiked with CWA. The spectrum is highly complex and the aviation fuel has
aromatic peaks as well as hydrocarbons present. The agents can be detected either as they occupy a
different separation space or by zooming into specific regions and relying on the two retention times
for a location, like a map. The x- axis shows the primary retention time in seconds and the y-axis
shows the secondary retention time in seconds. 70
Figure 20 A swab from clothing spiked with CWA. The CWAs detected are highlighted on the
chromatogram in white circles and labelled. The x- axis shows the primary retention time in seconds
and the y-axis shows the secondary retention time in seconds. 71
Figure 21 Diesel with 1 ppm of 8330 standard on a cryogenic GCxGC-TOF. The explosives are circled
and clearly occupy a different separation space to that of the diesel background. 75
Figure 22 Diaphragm valve schematic to demonstrate port arrangement 77
Figure 23 Calibration standard of CWAs at 5 µg/mL – the circled regions relate to different agents.
The axis has been removed to allow for input into the software 88
Figure 24 User display of software for data analysis. A chromatogram has been preloaded by using
the “Load Image” button 89
Figure 25 User display once “detect” has been pressed. Under the alarm section it states “found G/V
agent” or “not found” 89
Figure 26 User display showing alarm list after “identify” has been pressed. Each agent is displayed
as either “found” or “not found” followed by the agent. 90
Figure 27 Gasoline spiked with CWA of interest. The x- axis shows the primary retention time in
seconds and the y-axis shows the secondary retention time in seconds. 91
Figure 28 1 ppm of TNT using the valve GCxGC system. The x- axis shows the primary retention time
in seconds and the y-axis shows the secondary retention time in seconds. The TNT peak is circled in
red. 93
Figure 29 50 ppm of an 8330 b standard, the explosives of interest are circled in white but it can be
seen that there are dark blue streaks before each eluted compound. The dark blue streaks are
speculated to be thermal breakdown products of the explosives due to the high inlet temperature.
The x- axis shows the primary retention time in seconds and the y-axis shows the secondary
retention time in seconds. 94
Figure 30 50 ppm of 8330b explosive standard analysed at 175 ᵒC. Explosives are detected (circled in
white) but there is no degradation product present before the compounds. The x- axis shows the
primary retention time in seconds and the y-axis shows the secondary retention time in seconds. 95
Figure 31 Detection function in GUI on a 50 ppm standard of the 8330 explosive mix 97
Figure 32 Identify function on a 50 ppm standard of explosives. It displays “not found” for each agent
and “found” followed by each explosive. 97
Figure 33 Perfume spiked with 1 ppm of 8330b explosive standard. The explosives detected are
circled in white. The x- axis shows the primary retention time in seconds and the y-axis shows the
secondary retention time in seconds. 98
Figure 34 Inside of secondary oven, the insulation has had pieces removed to help with airflow and 8
meters of column has been tightly coiled and placed inside. 100

10

Figure 35 Secondary oven placed inside the oven. The green and white wire is the thermocouple
placed in the centre of the oven. The large white wires continue to outside the GC and connect to
the AUX 2 port. 100
Figure 36 Diesel run using the same method, on the top without a secondary oven and on the
bottom with a secondary oven and a 40 °C offset. The x- axis shows the primary retention time in
seconds and the y-axis shows the secondary retention time in seconds. 101
Figure 37 Chromatogram of Gasoline spiked with CWA nerve and blister standard. The x- axis shows
the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.
 103
Figure 38 Light weight oil (LWO) spiked with 8330b explosives standard. The explosives detected are
highlighted in white circles. The x- axis shows the primary retention time in seconds and the y-axis
shows the secondary retention time in seconds. 104
Figure 39 Picture of the aluminium holder with the column wound inside. 110
Figure 40 “fast GCxGC” a fast increase in the oven temperature by setting a ramp of 20 °C/min. The
separation between these compounds has been reduced both in the 1st and 2nd dimension. The x-
axis shows the primary retention time in seconds and the y-axis shows the secondary retention time
in seconds. 113
Figure 41 “fast GCxGC” a fast increase in the oven temperature by setting a ramp of 40 °C/min. The
separation between these compounds has been reduced both in the 1st and 2nd dimension. The x-
axis shows the primary retention time in seconds and the y-axis shows the secondary retention time
in seconds. 114
Figure 42 1 ppm of the 8330 standard analysed using GCxGC-NCD. Only nitrogen containing species
are observed using NCD. The peaks are sharp and there is limited wrapping. The x- axis shows the
primary retention time in seconds and the y-axis shows the secondary retention time in seconds. 115
Figure 43 1 ppm of the 8330 standard analysed using method 2. The x- axis shows the primary
retention time in seconds and the y-axis shows the secondary retention time in seconds. 116
Figure 44 1 ppm of the 8330 standard separated out under isothermal conditions using the micro GC
 117
Figure 45 1 ppm of the 8330 standard separated out under isothermal conditions using the micro GC
and heated transfer lines. 118
Figure 46 Heat image of transfer lines and valve. The colour scale is presented on the right hand side
and ranges from 18.9 to 97.9 degrees 119
Figure 47 Heat image of transfer lines. The colour scale is presented on the right hand side and
ranges from 19.6 to 95.2 degrees. 119
Figure 48 Schematic of the micro GCxGC 122
Figure 49 From left to right- Final GCxGC unit WxDxH: 34x20x36 cm, the Arduino Nano set up using a
master at the bottom with a screen to allow for a friendly interface and the 5 “slaves” at the top and
finally the two GC columns and ovens. 123
Figure 50 Left represents the valve heating and the connectors into the valve. Right is the inner of
the small ovens. 124
Figure 51 Chromatogram of C7 to C30 alkane standard. Only three of the compounds can be
observed – these are broad and starting to wrap. The x- axis shows the primary retention time in
seconds and the y-axis shows the secondary retention time in seconds. 126
Figure 52 Separation of five of the alkanes in the C7-C30 standard. The x- axis shows the primary
retention time in seconds and the y-axis shows the secondary retention time in seconds. 126
Figure 53 Area inside the valve oven. The green metal piece is the secondary heater that has been
added to try to keep the area hot to allow compounds to pass through the system. 127
Figure 54 Chromatogram of C7 – C30 at 1 µg/mL analysed on the micro GCxGC unit with a secondary
heater held at 200 degrees 128
Figure 55 Chromatogram of C7 – C30 at 1 µg/mL spiked with aromatic species analysed on the micro
GCxGC unit with a secondary heater held at 200 degrees 129

11

Figure 56 Diesel spiked with a CWA nerve and blister agent standard at 2 µg/mL 148
Figure 57 AV fuel spiked with a CWA nerve and blister agent standard at 2 µg/mL 148
Figure 58 LWO spiked with a CWA nerve and blister agent standard at 2 µg/mL 149
Figure 59 Gasoline Spiked with a CWA nerve and blister agent standard at 2 µg/mL 149
Figure 60 Swab of a hotel room spiked with a CWA nerve and blister agent standard at 2 µg/mL 150
Figure 61 Swab of inside an oven spiked with CWA standard of nerve agents 150
Figure 62 Swab of Clothing spiked with a CWA nerve and blister agent standard at 2 µg/mL 151
Figure 63 Aerosol sample from Porton Down spiked with a CWA nerve and blister agent standard at
2 µg/mL 151
Figure 64 Aviation Fuel spiked with a CWA nerve and blister agent standard at 2 µg/mL 152
Figure 65 A swab of clothing spiked with a CWA nerve and blister agent standard at 2 µg/mL 152
Figure 66 Diesel spiked with a CWA nerve and blister agent standard at 2 µg/mL 153
Figure 67 Gasoline spiked with a CWA nerve and blister agent standard at 2 µg/mL 153
Figure 68 A swab of a hotel room spiked with a CWA nerve and blister agent standard at 2 µg/mL 154
Figure 69 A swab of the inside of an oven spiked with a CWA nerve and blister agent standard at 2
µg/mL 154
Figure 70 Light weight oil used for weapons spiked with a CWA nerve and blister agent standard at 2
µg/mL 155
Figure 71 Aerosol sample from PTN range spiked with a CWA nerve and blister agent standard at 2
µg/mL 155
Figure 72 GB calibration 156
Figure 73 GD peak 1 calibration 156
Figure 74 GD peak 2 calibration 157
Figure 75 GA calibration 157
Figure 76 H calibration 158
Figure 77 GF calibration 158
Figure 78 VM calibration 158
Figure 79 VX calibration 158
Figure 80 2-NT calibration 159
Figure 81 3-NT calibration 160
Figure 82 4-NT Calibration 161
Figure 83 1,3-DNB calibration 162
Figure 84 2,6-DNT Calibration 163
Figure 85 2,4 – DNT Calibration 164
Figure 86 1,3,5-TNB 165
Figure 87 2,4,6-TNT Calibration 166
Figure 88 Aviation fuel spiked with CWA 172
Figure 89 Swab of clothing spiked with CWA 172
Figure 90 Control swab spiked with CWA 173
Figure 91 Diesel spiked with CWA 173
Figure 92 Sahara dust sample spiked with explosives 173
Figure 93 Swab of a kitchen floor spiked with CWA 174
Figure 94 Hotel swab 1 spiked with CWA 174
Figure 95 Hotel swab 2 spiked with CWA 174
Figure 96 Light weight oil spiked with explosives 175
Figure 97 Porton Down aerosol sample spiked with CWA 175
Figure 98 Porton Down aerosol sample 2 spiked with CWA 175
Figure 99 OMD-90 spiked with CWA 176
Figure 100 Swab of the inside of an oven spiked with CWA 176
Figure 101 OX – 24 spiked with CWA 176
Figure 102 Aviation Fuel Spiked with 1 ppm of explosives 177

12

Figure 103 Diesel spiked with 1 ppm of explosives 177
Figure 104 Sahara dust sample spiked with 1 ppm of explosives 178
Figure 105 Gasoline spiked with 1 ppm of explosives 178
Figure 106 Swab sample from a Hotel with known interferents spiked with 1 ppm of explosives 179
Figure 107 Light weight oil – used on guns – spiked with 1 ppm of explosives 179
Figure 108 Porton range aerosol sample spike with 1 ppm of explosives 179
Figure 109 OX- 24 spiked with 1 ppm of explosives 180
Figure 110 Diesel spiked with CWA standard of nerve agents 181
Figure 111 AV fuel spiked with CWA standard of nerve agents 181
Figure 112 LWO spiked with CWA standard of nerve agents 182
Figure 113 Gasoline Spiked with CWA standard of nerve agents 182
Figure 114 Swab of a hotel room spiked with CWA standard of nerve agents 183
Figure 115 Swab of inside an oven spiked with CWA standard of nerve agents 183
Figure 116 Swab of Clothing spiked with CWA standard of nerve agents 184
Figure 117 Aerosol sample from Porton Down spiked with CWA standard of nerve agents 184
Figure 118 Sahara Dust aerosol sample spiked with CWA standard of nerve agents 185
Figure 119 Diesel spiked with 8330 standard of explosives 186
Figure 120 AV fuel spiked with 8330 standard of explosives 186
Figure 121 LWO spiked with 8330 standard of explosives 187
Figure 122 Gasoline Spiked with 8330 standard of explosives 187
Figure 123 Swab of a hotel room spiked with 8330 standard of explosives 188
Figure 124 Perfume spiked with 8330 standard of explosives 188
Figure 125 Aerosol sample from Porton Down spiked with 8330 standard of explosives 189
Figure 126 Sahara Dust aerosol sample spiked with 8330 standard of explosives 189
Figure 127 Separation of a C7 to C40 standard using method 3 222
Figure 128 Separation of a C7 to C40 standard using method 4. 222
Figure 129 OMEGA fast PID used to control secondary heater 223
Figure 130 Chromatogram of C7 – C30 at 1 ug/mL analysed on the micro GCxGC unit with a
secondary heater held at 200 degrees 224
Figure 131 Chromatogram of C7 – C30 at 1 ug/mL spiked with aromatic species analysed on the
micro GCxGC unit with a secondary heater held at 200 degrees 224
Figure 132 Chromatogram of C7 – C30 at 1 ug/mL spiked with aromatic species analysed on the
micro GCxGC unit with a secondary heater held at 200 degrees 224
Figure 133 Chromatogram of C7 – C30 at 1 ug/mL spiked with aromatic species analysed on the
micro GCxGC unit with a secondary heater held at 200 degrees 225

13

List of Equations

Equation 1 21
Equation 2 21
Equation 3 22
Equation 4 22
Equation 5 22
Equation 6 22
Equation 7 23
Equation 8 23
Equation 9 23
Equation 10 24
Equation 11 24
Equation 12 24
Equation 13 24
Equation 14 26
Equation 15 26
Equation 16 26
Equation 17 27
Equation 18 31
Equation 19 31

14

Acknowledgements

Firstly, I would like to thank Dstl for sponsoring my PhD while I was working for them. Also, for all of

those that helped me to learn how to write bids so that I could conduct the research. I would like to

specifically thank the Chemical Sensing team for letting me use the laboratory space and the training

they provided me with.

I am thankful to have had the support of my statistician guru Emily Matthews who helped me learn

to code and improve my design of experiments as well as teaching me about machine learning. Also,

for all the earl grey tea she supplied me with while I was analysing data.

Tim Ayers and others at the University of York were so welcoming and knowledgeable about

engineering. I am extremely grateful for all of the help Tim provided me and for letting me meet

Scotty!

I would like to thank my friends and family, specifically Jack, Phoebe, Sarah, Chris, Richard and

Siobhan who supported me throughout with advice, food, walks and proof reading!

Finally, I would like to thank Agilent Technologies who have allowed me to finish my thesis while

working for them. Without the education time provided to me it would have been much more

difficult to achieve.

15

Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This work has

not previously been presented for an award at this, or any other, University. All sources are

acknowledged as References. Where collaborative work has taken place, this is documented and

referenced in the relevant chapter.

16

Chapter 1

Literature Review on Gas Chromatography and

Comprehensive Gas Chromatography

17

1 Comprehensive Two Dimensional Gas Chromatography

Introduction

1.1 Introduction

In this thesis comprehensive two dimensional gas chromatography (GCxGC) is explored for defence

applications. Chapter 1 provides an overview of the history and theory of gas chromatography (GC)

and GCxGC. This will provide a basis for understanding the analysis detailed in following chapters.

Chapter 2 details the history and use of explosives and chemical warfare agents (CWA), why there is

an interest in detecting them before and after an event and the different ways of analytically

detecting the species of interest. The chapter then explores the research undertaken in this thesis on

the use of cryogenic GCxGC time of flight mass spectrometry (TOF-MS) to detect explosives and

CWAs. This is, to the author’s knowledge, the first comprehensive study on the detection of these

chemicals in defence-relevant matrices using GCxGC-TOF-MS.

Chapter 3 explores the use of portable detection equipment to detect explosives and CWAs in both a

military and civilian environment. The chapter then details the use of a “portable” GCxGC system

that builds upon those developed at the University of York, to detect explosives and CWAs in

defence relevant matrices. This provides the possibility of not only being able to analyse more

complex samples in the field without the need for sending samples back to an analytical laboratory

but also the possibility of creating a man portable system (a system that can be carried by one

person and meets criteria set by the military) that could be used without the need for scientific

personnel. This is, to the knowledge of the author, the first use of valve GCxGC to detect defence

relevant compounds in complex matrices.

Chapter 4 begins by reviewing the use of man portable GCxGC across the literature before detailing

the work undertaken to produce a prototype man portable GCxGC system. This research provides a

possible approach to produce a system that could allow for detection of defence-related compounds

18

in complex matrices in the field. This uses lessons learnt during chapter 2 and 3 to help produce a

system that is related to defence requirements.

Chapter 5 details the conclusions and future research that could follow from this body of work.

Chapters 6 and 7 are held by the ministry of defence for security purposes.

19

1.2 Chromatography

Chromatography, as recognised today, began in the early 1900s and has developed into one of the

most commonly used techniques in modern analytical chemistry.1, 2 The first documented research

related to modern chromatography was undertaken by Tswett where he focused on the separation

of liquids using homemade columns filled with different absorbents.2

In 1941, Martin and Synge reported the theory of partition chromatography which in turn led to the

development of the modern gas chromatography (GC) system in 1951 by Martin and James.3, 4

Following this fundamental breakthrough, in 1952 Martin and Synge won the Nobel Prize for their

work on the partition theory, as it is the basic theory behind all types of chromatography today from

Thin Layer to GC.

Since 1952, chromatography has rapidly improved to become user friendly, more efficient and more

effective. New column stationary phases are developed to improve separations and the

understanding of chromatography has improved allowing new developments. However, the

fundamental principles described by Martin and Synge have not changed and are discussed in detail

in the following section.

20

1.2.1 Gas Chromatography

GC is a method used to separate gas phase molecules, the sample is first injected into a heated inlet

and volatilises. A carrier gas (the mobile phase), typically nitrogen, helium or hydrogen, pushes the

material from the injector and injects the material in a sharp band, onto a column. Columns can be

packed or capillary: only capillary columns were used during this research. The column is a capillary

tube with an inner coating known as the stationary phase, Figure 1.

Figure 1 Cross section of a GC column showing the outer polyamide coating, the middle part is fused silica
and the inner is the stationary phase.

Separation of the injected components is determined by the partitioning of each component

between the mobile phase and the stationary phase (described by the partition ratio). In simple

terms, if a compound has a high affinity for the stationary phase it will be retained and elute later

than a compound with less affinity, thus they elute in time order of retention. The compounds then

enter a detector, for example, a Flame Ionisation Detector (FID) or a Mass Spectrometer (MS). The

detector allows for the detection and/or identification of the compounds.

1.2.1.1 Partition Ratio

The chromatographic separation can be defined as the baseline separation between two

compounds. This can be described using the partition ratio defined as ‘the degree to which solutes

are separated between the mobile and stationary phase’. To determine the partition ratio, we must

view an equilibrium; if the solute species is A, we can define the equilibrium between the stationary

and mobile phase by Equation 1.

21

Equation 1

K is defined as the equilibrium constant between the two. K is the partition ratio which can be

defined by Equation 2, where Cs and Cm are the molar analytical concentration of a solute in the

stationary phase and mobile phase respectively.5

Equation 2

In an ideal scenario the partition ratio is constant over a wide range of concentrations, thus making

Cs and Cm directly proportional. However, the partition ratio is linked to several other physical

factors; hence Cs and Cm are often not directly proportional. Figure 2 illustrates a simple

chromatogram to aid the explanation of the following terms: tr and tm.

Figure 2 Example chromatogram with a non-retained and a retained species defined by tm and tr

respectively.

In Figure 2, the peak on the left has not been retained by the stationary phase and thus elutes earlier

than the larger peak on the right which interacts with the stationary phase (i.e. has a higher affinity

for the stationary phase) and elutes later. The first peak is defined by tm which is a measure of the

22

average rate of migration of the mobile phase and can be described as dead time, i.e. time taken for

an un-retained peak to travel through the column. The time required for a retained peak to reach

the detector is known as tr, otherwise known as the retention time.

The average linear rate of solute migration (V) can be defined using the length of the column (L) and

the retention time (tr) as shown in Equation 3.

Equation 3

The average linear velocity of the molecules in the mobile phase is described by µ, using tm and the

length of the column, Equation 4.

 Equation 4

Combining the above, it is possible to relate the rate of migration of a solute to its partition ratio as a

fraction of the velocity of the mobile phase, Equation 5.

Equation 5

The fraction described in Equation 5 can be explained in terms of the number of moles of solute in

the mobile and stationary phase, Equation 6.

Equation 6

23

Therefore, if the total number of moles of the solute in the mobile phase is equal to the

concentration (Cm) of the solute in that phase multiplied by the volume of the phase (Vm) and if the

number of moles of solute in the stationary phase is described in a similar way (Cs x Vs) then

Equation 7 allows a connection between the terms.

 Equation 7

Consequently, the rate of solute migration (V) as a function of the partition ratio is given in Equation

8.

Equation 8

1.2.1.2 Capacity Factor

The capacity factor is a measure of the retention of a peak. It considers the interaction of a

compound with the stationary phase. The partition ratio can be combined with the capacity factor to

describe the migration rates of solutes on different columns. For a solute A, the capacity factor (KA
’)

is defined by Equation 9.

Equation 9

Equation 9 can be substituted into Equation 8 assuming that KA is equivalent to the partition ratio for

A, giving Equation 10.

24

Equation 10

The capacity factor can be derived from a chromatogram using retention time (tr) and the dead time

(tm), producing Equation 11.

 Equation 11

The capacity factor is dependent upon temperature and the column packing. Thus, if a different

capacity factor is required, it can be achieved by changing these variables.

1.2.1.3 Selectivity Factor

In order for separation to occur, two compounds must have different capacity factors. The selectivity

factor (α) is the ratio between two compounds’ capacity factors described in Equation 12.

 Equation 12

1.2.1.4 Resolution

The resolution, Equation 13 is a measure of the degree of separation between two adjacent peaks

taking into account the width of the peaks (Wh) and using the retention time (tr). The value 1.18 in

Equation 13 comes from the calculation of the peak widths. If we defined the peak width at the

baseline of a Gaussian peak as 4 standard deviations, at the half height it would be 2.354 standard

deviations. Therefore, the factor 1.18 is derived from (2 x 2.354/4).

Equation 13

25

Peak separation and resolution are linked, as in some cases two broad peaks can have equal or

better separation than two narrow peaks.

26

1.2.2 Rate Theory of Chromatography

The Rate Theory allows for a quantitative theoretical description of column efficiency. It considers

the possibility of random movement by a molecule as it travels through a column. This theory is

described in terms of plate height (H) and the number of theoretical plates (N). The terms are

related by Equation 14.

Equation 14

As the plate height decreases and the number of plates increase, the column efficiency therefore

increases.

The plate height can be found if we assume that each peak can be described as a Gaussian curve and

that the width is described by the standard deviation (σ), Equation 15.

Equation 15

Equation 15 allows for the efficiency of a column to be defined in terms of variance per unit length

of column.

1.2.3 Van Deemter Curve

The average linear velocity and the column efficiency can be related by the Van Deemter equation.

The Van Deemter, Equation 16, uses the following terms: height equivalent (hmin) to a theoretical

plate, average linear velocity (µ̄), multi-path flow term (A), longitudinal diffusion term (B) and

resistance to mass transfer term (C). Note that C in Equation 16 is defined as Cm + Cs.

Equation 16

27

If the efficiency is described by hmin and plotted against µ ̄for a given column and set of conditions

then a Van Deemter plot is obtained, Figure 3.

Figure 3 Van Deemter plot illustrating the optimum linear velocity where the efficiency of the column is at
its greatest, defined by µ̄

The optimum linear velocity often relates to long GC run times. There are circumstances in which a

loss of the column efficiency is outweighed by a large reduction in retention time.

The A term can be explained as eddy diffusion and arises due to movement of flow around particles

in a packed column. In this work, no packed columns are used (only capillary), so the term needs to

be modified. In a capillary column, there is no contribution from the A term to band broadening as

there are no particles for the flow to move around. The equation that results from this modification

is known as the Golay equation, Equation 17..

Equation 17

Therefore, the only factors that affect plate height in a capillary column are diffusion coefficient,

retention factor, the column dimensions and linear velocity.

28

The choice of carrier gas also affects the chromatography. If Equation 17 is plotted to produce a

curve for different carrier gases, the best theoretical choice of carrier gas can be determined. Plots

for helium, nitrogen and hydrogen are shown in Figure 4.

Figure 4 Typical Golay curves. Golay curves determine the best choice of carrier gas depending on the speed
of the separation required. Image from Sigma aldrich6

Figure 4 illustrates the range in H for different possible carrier gases. If a fast method is required,

theoretically hydrogen would be the best choice as it has the lowest H at high velocities. However,

there are safety considerations to take into account when using hydrogen, which may outweigh the

decrease in H.

29

1.3 Two Dimensional Gas Chromatography

1.3.1 Heart-cut separation

In 1958 Simmons et al. devised the first system that combined two or more capillary columns in a

manner to allow fractions from the first column to be passed onto a second column for further

chromatographic separation.7 This is known as heart-cut separation and at the time allowed for

separation that could not be achieved by one-dimensional chromatography.

Heart-cut separation involves taking small fractions from the first column and transferring this onto

a secondary column using a switching valve, as shown in Figure 5. The switching valve most

commonly used is a dean switch, which was invented in 1968, approximately 10 years after the first

demonstration of heart-cut GC. This allows for fractionation of the primary column’s separated

analytes and then injection onto the second column.8, 9 The secondary column will then separate out

the fraction based on an orthogonal physical property; for example, the primary may separate out

based on boiling point and the secondary based on polarity.

Figure 5 On the left is a simplistic schematic of how heart-cut separation using two columns can be
undertaken, with the switching valve transferring the flow from the primary column to the secondary at a
set time period. On the right is an example where there is a co-elution of peaks (highlighted by the red line)
in the primary separation. This fraction (or time period) of the primary is then switched onto the secondary
column where it is separated out to show the four peaks that have been deconvoluted.

30

A disadvantage with heart-cut separation is that it is time consuming, as only one fraction can be

processed at a time. If there is an instance where several peaks are co-eluting, then several fractions

would have to be switched onto the secondary column manually. This leads to partial analysis of the

sample in the second dimension and an increase in analysis time. However, despite the disadvantage

of slower analysis, the technique proved highly valuable in the analysis of petrochemical samples

and is still used today for specific applications.8, 10

Naturally, the benefits of heart-cut GC, specifically in the petrochemical industry, led to the

requirement for analysis to be continuous so that minimal information was lost. In 1991, Phillips et

al. developed the first fully comprehensive GCxGC system.11

1.3.2 Comprehensive two-dimensional gas chromatography (GCxGC)

Comprehensive GCxGC was developed in 1991 by Phillips et al.11 when the first fully comprehensive

separation of an oil sample was completed. As the name suggests, for comprehensive GCxGC to be

undertaken, the entire sample must be separated by the primary column and then the secondary

column. The key component of a GCxGC instrument is the modulator.12 The modulator fractionates

the eluent from the primary column and injects these fractions onto the second column at regular

time intervals (the modulation period).13

The secondary separation must be rapid, as the separation must be completed before the next

modulation is performed. This separation is generally of the order of 2 – 10 seconds. The separation

must be fast enough so that the modulation pulse has finished separating before the next pulse is

injected. This helps to minimise the phenomenon called wrap-around but also ensures that sufficient

modulations are performed across the first dimension to maintain the separation achieved on the

primary column. Typically, a minimum of 4 modulations is performed across a typical primary

column peak width to ensure minimal remixing within the modulator. Figure 6 demonstrates this as

a schematic for comprehensive separation.

31

Figure 6 Schematic for comprehensive separation. The compounds are introduced by the injector and
separated out in the primary column (red) before reaching the modulator at different points in time. The
modulator splits the sample into small fractions and passes this onto the shorter secondary column (blue).
The secondary column then completes its separation within 2 – 10 seconds (method dependent) whereupon
the sample reaches the detector and the next fraction is then separated in the second dimension.

1.3.3 Peak Capacity

The peak capacity in one-dimensional GC is represented by η. If two columns are joined together the

peak capacity is ηtot and is equivalent to the capacity of each column added together, Equation 18. J.

Giddings described how to calculate the increase in resolution using the peak capacity.14

Equation 18

When observing GCxGC separations, Giddings determined that the peak capacities are multiplied

thus allowing for a significant increase in the peak capacity, Equation 19.

Equation 19

Giddings describes this pictorially in his paper which allows for a better visualisation of the increase

in the peak capacity, Figure 7.14 In heart-cut separation the image would differ to that observed in

Figure 7 as it would not represent a square it would be one long line of cubes as the peak capacities

are added together thus the peak capacity is lower and less space is available for separation.

32

Figure 7 The number of boxes represented in the image is equivalent to the product of the peak capacity of
each column generated along two axes assuming adjacent Gaussian profiles. 14 This demonstrates a large
separation space when using two columns in a comprehensive arrangement. Image from Giddings. 14

1.3.4 Orthogonality

The use of GCxGC requires the two columns to be orthogonal to one another to achieve maximum

separation. For orthogonality to be achieved, the separation mechanism in the second dimension

must be independent of the primary, for example, the primary separation may be based on boiling

point and the secondary based on polarity.

1.3.5 Data Analysis

In a typical GCxGC separation, a peak will be modulated into at least four separate modulated peaks

to achieve good primary and secondary separation. Figure 8 provides a simple schematic of how the

modulator fractionates the flow from the primary column and into the secondary allowing further

separation and finally how this is then represented in a 2D contour plot in the software.

33

Figure 8 A: Co-eluting peak enters the modulator. B: The Modulator fractionates the flow. C: These are
injected onto the second column at regular time intervals; second dimension separation is completed before
the next fraction is injected. D: The 1D data is then displayed as 2D contour plot. Figure from R.Lidster.15

In Figure 8, the GCxGC software is able to build a 2D contour plot that can be made into a 3D plot

when the volume of the peak is included. There are some issues associated with this analysis.

Commercially available software works by creating a bounding box around the peak in two

dimensions thus representing the peak as a rectangle and not as a gaussian peak. The integral is then

worked out by using the height of the peak and the bounding box. This can lead to large errors in the

volumes recorded but it is a simple approximation that allows for the calculation of the volume

under the peak.

1.3.6 Modulator

The modulator can be described as the heart of the instrument. It allows for the trapping and

releasing of compounds from the primary column onto the secondary allowing for comprehensive

analysis to take place. Since the development of the first GCxGC, three strands of modulators have

been developed; thermal, cryogenic and valve. These are discussed in further detail below.

1.3.6.1 Thermal Modulation

The first modulators for comprehensive GCxGC used dual stage thermal desorption.9, 11 Phillips et al.

developed the first system that utilised a metal capillary to retain the analytes.12, 16 The metal was

held at a constant voltage to produce heat and the system worked in two stages to retain and then

desorb the analytes. More specifically, the modulation worked by having a temperature

programmable box at the head of the second column this box remained at a temperature lower than

A B C D

34

that of the oven. In essence, the modulation could be described as fast thermal desorption.12 The

oven temperature is then used to allow for release onto the second column which could be held at a

higher temperature.9 Although the results from preliminary testing of these modulators appeared

promising, the systems were not robust and often needed replacement. 17, 18 Geus at al. attempted

to use a similar design as Phillips et al. but instead of using a constant voltage to provide current to

heat the metal block, Geus et al. used copper wire coiled tightly round the outside of the

modulator.19 However, this had similar problems to Phillips et al.’s system, including the loss of

volatile analytes.13

In an attempt to overcome some of the issues with the first design, Ledford and Phillips designed a

moving modulator known as the sweeper.20 The sweeper was the first thermal modulator that was

commercially available; this used a separate heating element that was able to move across the

capillary heating it at specific sites. A schematic of a sweeper is shown in Figure 9. The advantage of

this system was that the heater block that controlled modulation was stable in temperature allowing

efficient trapping.13 However, the system allowed re-injection via desorbing at a large temperature

differences so the column limited the applications that the system could be used for thus the

application range of volatile compound analysis was limited.13

Figure 9 Schematic of a GCxGC using a sweeper. The rotating slotted heater allows for the modulation onto
the secondary column which then reaches the detector.

35

1.3.6.2 Cryogenic Modulator

Marriott et al. advanced the GCxGC field and developed a cryogenic modulator.21 This system still

makes use of a moving modulator but instead of using heat, they utilised expanding liquid carbon

dioxide (CO2) to allow for analytes to be trapped at very low temperatures. This technique focused

the analytes at the head of the second column and re-injection occurred by moving the modulator

away from that site and allowing the oven to re-heat the column.22 Although this system addressed

some of the pitfalls of the traditional thermal modulators, the application range was still limited as

there was breakthrough of the lower volatility analytes.13

Over the past few years, several systems have been designed to improve the cryogenic modulation

either using liquid CO2, expanding gaseous CO2 or liquid nitrogen to trap the analytes.23 Some of

these systems have become commercially available and have reduced the number of moving parts

by using hot and cold jets so that the systems are more robust. The liquid CO2 or nitrogen is used to

trap the analytes on the capillary and the cold jet is then switched off to allow injection onto the

second column either by using the oven air to heat or more traditionally, a hot jet of air is pulsed

onto the trapping region. These systems allow for highly sensitive detection and trapping of some

volatile analytes but have some obvious drawbacks such as high consumable costs, freezing of water

in samples, and not being portable.24

1.3.6.3 Valve Modulation

Using valve modulation means that the system can be made portable as it requires very few

consumables and it is very small. The other advantage is that there is minimal breakthrough of the

volatile species because using a valve allows the modulation to be independent of the trapping

mechanism therefore limiting the breakthrough. Several research groups have used valve

modulation for GCxGC, either using a rotary or diaphragm valve. Examples of each are explored

briefly below.

36

Seely et al. first introduced diaphragm valve modulation in 2000.25 Seely et al. used a 2-way 6-port

diaphragm valve to allow for eluent to be modulated from the primary to the secondary column.

Using this method allowed for removal of expensive consumables but had some limitations for

sensitivity. The loss of sensitivity is due to the valve being held in the sampling position for only 80 %

of the time thus 20 % of the eluent is flushed to waste. However, to maintain a refocusing capability

similar to that of cryogenic modulation, the secondary column flow was at least 20 times higher than

the primary thus making it unsuitable for use with a mass spectrometer unless the flow is split. 26

Seely et al. also describe a total transfer modulator which uses a microfluidic dean switch to allow

for modulation.27 This can be housed outside the GC and is not temperature dependent but the

switch limits the users modulation periods and flow ranges that can be used which can cause

inconsistent transfer from the primary to the secondary column.28 Agilent now sell a commercial

microfluidic switch that can be incorporated into several systems.29

Lidster et al.30 used a design based on Mohler et al.31 and inserted a stopper into the diaphragm and

rotary valves to prevent the primary column eluent from being vented to waste, allowing for 100 %

mass transfer. This research explored the use of both valves for the analysis of volatile organic

compounds (VOCs). The rotary valve did not perform as well as the diaphragm valve as it was less

reproducible and was not as robust as the diaphragm.30

Until more recently, the use of a diaphragm valve has limited the temperature ranges and therefore

the applications. However, Synovec et al. have described a high temperature diaphragm valve that

can allow for separations to occur up to 325°C.32 This valve uses Kalrez O-rings allowing for higher

temperatures and therefore analysis of a greater range of volatile and semi-volatile materials.

Synovec et al. demonstrated separation of vacuum pump oil and orange oil with high reproducibility

using this valve thus extending the application range.32

Figure 10 demonstrates how a valve modulates the flow. The flow from column one fills a fixed

sample loop. At a pre-defined time, determined by flows and the size of the sample loop, the flow

37

will switch and use the auxiliary flow to push the sample in the loop onto the secondary column. This

system does result in about 15 % of mass being lost and is a less sensitive technique than cryogenic

modulation but it allows for portability of the technique to be achieved.

Figure 10 Schematic of how the valve modulation takes place, switching between flow from column one to
pushing the fraction onto the secondary column. This takes place very rapidly, however, there is some mass
lost during this process (ca. 15 %) leading to it being a less sensitive technique than cryogenic modulation.

The vent position can be filled with a stopper to stop the flow and improve the sensitivity such as in

Lidster et al.’s and Mohler et al.’s research.

This chapter will conclude by reviewing the different detectors that GC and GCxGC can be combined

with.

38

1.4 Detectors

Detectors can either provide information that allows for identification or detection. A detector that

allows for identification is one that provides additional information about a sample, such as a mass

spectrometer (MS) which provides a fragmentation pattern and a m/z allowing for identification. A

detector that allows for detection is one that only provides a retention time based on elution from a

column, such as a flame ionisation detector (FID) which is a non-selective detector that will provide a

response when a material containing carbon is burnt and electrons are produce. Some detectors can

provide selective detection such as a nitrogen chemiluminescent detector (NCD) which will only

provide a response to a chemical containing nitrogen. The following sections 1.4.1, 1.4.2 and 1.4.3

detail the detectors used during this research.

1.4.1 Mass Spectrometry

Mass spectrometry (MS) is an analytical technique that allows for detection of chemicals based on

their mass to charge ratio. In general, a compound will be introduced to a mass spectrometer and

ionised. Different ionisation methods can be used depending on how much fragmentation of the

molecule is desired. The ions are then sorted depending on their charge by different electronic and

or magnetic plates and/or gates before hitting a detector plate. There are several different types of

mass spectrometry only two of which we will focus on here; time of flight (TOF) MS and single

quadrupole.

1.4.1.1 Quadrupole

A quadrupole, as the name suggests, is four parallel metal rods that are electrically charged in pairs

such that opposite pairs have the same polarity (positive or negative polarity). This is achieved by

the rods being connected to direct current (DC) and radio frequency (RF). When only the RF is

applied to the rods, any m/z value ions can travel down the length of the rods and reach the

detector plate. However, when a DC is applied as well, this allows for specification of the m/z ratio

that the user wants to identify. Quadrupoles can be described as low sensitivity scanning detectors

39

but do possess the ability to have some specification of mass to charge allowing for better signal to

noise thus increasing the sensitivity of the technique. A schematic of a quadrupole is presented in

Figure 11.

Figure 11 Schematic of a quadrupole

1.4.1.2 Time of Flight

A Time of Flight (TOF) MS has a limited dynamic range in comparison to other MS techniques but

allows for detection of analytes in the low picogram to femtogram range. In a TOF the species of

interest is ionised, and a pulse is applied that provides the ions with a specific kinetic energy. The

ions then travel through a drift region where the ions are allowed to move based on their kinetic

energy. This is followed by a reflectron which corrects the kinetic energy of ions of the same mass to

charge ratio, the correction is needed as although in theory all ions of the same charge should be

given the same kinetic energy by the pulse, they start at different potential energies and thus this

effect has to be corrected for to avoid broad peaks. The reflectron correction achieves sharper and

more gaussian peaks thus providing sensitive detection. A schematic of a TOF is provided in Figure

12.

Figure 12 Schematic of TOF

40

1.4.2 FID

A flame ionisation detector (FID) is a universal detector, it will detect any species that contains a

hydrocarbon element. Figure 13 shows a schematic of how a FID works. The compound (in gas

phase) are separated by the GC column and reach the detector at different points in time depending

on the separation method, the compound then meets the detector. The compound is burnt in a

hydrogen flame and if it contains hydrocarbon species, these are ionised in the flame (at the anode).

The ions then hit a conductive plate (the cathode) and that mechanism induces a current that can be

measured and related back to concentration of the analyte.

Figure 13 Schematic of a FID

1.4.3 NCD

Nitrogen chemiluminescent detector is a more selective detector than a FID that will only provide a

response to a chemical that contains nitrogen. This is useful when observing a specific species in a

complex matrix as the detection method allows for selectivity. An NCD works by burning the

material presented to it by the GC column at a very high temperature to produce nitrous oxide (NO),

this in turn is then reacted with ozone which produces a chemiluminescent signature (light

41

signature) which can be detected by a photomultiplier. The response of the photomultiplier has a

linear range which defines the dynamic range of the NCD.

42

Chapter 2

Comprehensive Gas Chromatography Time of

Flight Mass Spectrometry for the Analysis of

Threat Materials

43

2 Comprehensive Gas Chromatography Time of Flight Mass

Spectrometry for the Analysis of Threat Materials

In the media today, we are faced with news articles of terrorists using explosives or chemical

warfare agents (CWAs) to cause harm and disruption to society.33-36 It is unsurprising that the use of

explosives is commonplace in both military and civilian environments as they are becoming

increasingly more available. Since terrorists can easily produce homemade explosives (HME) to

cause disruption and, in areas of military conflict, it is not unusual to see them using HMEs with a

military grade explosive. However, the use of CWAs is much more limited. It could be speculated

that this is due to the agreement that use of CWAs cause widespread damage and potentially death

and that their use is prohibited under the Organisation for the Prohibition of Chemical Weapons

(OPCW) act.

Detection and identification of explosives and CWAs is highly important, not just in a military context

but also for civilians.

In this chapter, the historical use and properties of explosives (2.1) and CWAs (2.2) will be explored.

The chapter will then detail the method development and use of GCxGC-TOF-MS for detection of

defence related compounds (2.4).

44

2.1 Explosives

2.1.1 Explosive History

Explosive use started back in the 15th century and the most common documented use is the use of

black powder.37 The use of black powder increased rapidly during industrial mining in the 1800s and

since then, high explosives have started to be used for mining as they are easier to predict.37

Explosives have also been commonplace in areas of conflict and in terrorist acts.

Terrorists frequently use improvised explosives devices (IEDs) to cause harm to civilians and

military.38 These are often of a simple construction using items that are easily purchased and

accessed. However, more recently in areas of military conflict IEDs have begun to use components

that are of military origin. The main component of an IED is the explosive, which can be formed from

homemade explosives (HMEs) or from military explosive that has either been removed from its shell

or stolen.39 Components that form HMEs can be varied depending on what materials can be sourced

locally making it very difficult to attribute them back to the source materials. However, the explosive

used can be identified if it can be removed from the complex matrix it exists within.

In a civilian context IEDs are typically HMEs and ammonia nitrate fuel mixtures. Several events have

taken place across the globe over the last 20 years. This includes organic peroxide attacks in: Finland

in 2002, triacetone triperoxide (TATP) in London, Sweden and Denmark.39 It should be noted that

there have also been several occurrences of military explosives in IEDs, such as attacks by the IRA

and the Lockerbie use of Semtex.

In terms of detection, this means that the components could be anything from acetone or peroxide

to swimming pool cleaner and through to military explosives.38 Steps are undertaken to attempt to

stop the IED from causing harm in the first instance, which include gathering intelligence and

searching at airports and venues.40 Searches involves a number of stages, only one of which we will

explore in this report – “trace search”. Trace search involves the use of portable detection

equipment including fast GC, Ion Mobility Spectrometry (IMS), Differential Mobility Spectrometry

45

(DMS), Raman and IR spectroscopy along with detection dogs.41-44 During a search operation, either

the equipment is used to “sniff” areas and/or swabs are collected and taken back to the portable

instrument for analysis. If an explosive is detected, a complementary technique will be used to

confirm if it is present. However, if in the unfortunate case where there has been no prior

knowledge that an attack is going to take place, an IED may function and cause harm.

If an IED functions it is the task, in the UK, for the forensic explosive laboratory (Dstl) to analyse the

scene and identify the explosive that was used in the device.45 This is required in order to determine

how the device was constructed, i.e. what material was used, how it was made and to search for

forensic evidence to link the IED to a suspect for the criminal justice system. In order to search for

forensic evidence, the suspected trace explosive must be collected from the items in question. This

can be done using swabs, a small vacuum system, solvent extraction or thermal desorption. Once

the sample has been collected effective transfer of the explosive from sample medium has to take

place, i.e. the sample must be “cleaned up” so that it can be easily analysed using analytical

instrumentation. This process currently uses solid phase extraction to remove unwanted

particulate.46 However, this process is costly and can cause some mass loss of the analyte of interest.

46 This is explored further later in this report.

2.1.2 Explosive Properties

Understanding the properties of explosives helps to explain why they range in difficulty to detect.

Here we will only explore vapour pressure, as it is the main property that affects detection for GC.

The vapour pressures of explosives is over orders of magnitude, for example highly volatile materials

like peroxides to lower/nearly involatile materials such as inorganic salts.47 Different papers supply

different vapour pressures for certain explosives thus making it difficult to quote a pressure. The

vapour pressure of explosives can vary depending on several properties including composition and

temperature of the measurement. In the literature, there are reviews that demonstrate this

variability in measurements and results. 43, 47, 48

46

Direct vapour and particle detection has become the main focus for sampling and analysis, where

the use of particle detection is more favourable due to the variable vapour pressures of explosives.47

Additionally, if a terrorist does not want to be detected, they can contain the explosive within air

tight containers making it difficult to detect the vapour.39

To give some perspective, trinitrotoluene (TNT) and ammonium nitrate (AN) have relatively low

vapour pressures so the detection range for these needs to be around the ppb order of magnitude.41

In comparison ethylene glycol dinitrate (EDGN), nitroglycerin (NG) and dinitrotoluene (DNT) have a

high vapour pressure, so they are easier to detect in the vapour phase.41, 47, 48 DNT is a common

residue in TNT and as it has a higher vapour pressure it can be used as an indicator for further

search.48 Materials such as cyclotrimethylenetrinitramine (RDX) and octogen (HMX) are extremely

difficult to detect in the vapour phase due to low evaporation so detection of the particulate is

generally favoured.41

For vapour detection, pre-concentration of the sample can be used to help achieve better

sensitivity.43, 49 Pre-concentrators work, by drawing in large volumes from the surroundings onto a

filter to collect an increased volume of the organic and inorganic sampling material plus the

suspected explosive.49 The filter is then used as the sampling medium and the products are removed

via solvent extraction or direct desorption to allow for sampling of the material.

47

2.2 Chemical Warfare Agents

2.2.1 CWA History

CWAs as we define them today, have been used since WWI where the Germans released chlorine

gas in 1915 at Ypres.50 The use of CWAs during WWI and the more limited use in WWII caused an

estimated one million casualties from the release of approximately 124, 000 tonnes of CWA.51 The

research into the production and use of CWAs continued after WWII and it was only in 1997 that the

Chemical Weapons Convention was drafted.51-53 197 countries are signatories to the chemical

weapons convention that states that stockpile, manufacture or use of chemical weapons is

prohibited.54 The only permitted use of CWAs is for defence research. However, three countries are

not signatories to the convention: Egypt, North Korea, and South Sudan.55

This has not stopped the use of CWAs over the last few decades and there have been several

confirmed and unconfirmed uses of CWAs. For example, in 1991 during the Iran-Iraq war, Iraqi

forces released sarin killing hundreds of people and in 1995 a terrorist group called Aum Shinrikyo

released sarin in the underground system in Japan, killing seven people and injuring 500. 56-58 The

most recent examples include; sarin release in 2013 in Syria, where approximately 1,300 people

were killed and the use of the Novichok nerve agent in Salisbury in 2018.56-58 These are but a few

reported incidences of CWA use. There is still speculated use of CWA in Syria today making it a real

threat to UK (and other) forces and Syrian civilians.59

The use of CWA in countries where UK troops are sent means that there is a requirement for

portable detection equipment. This allows an early warning device in order to alert military forces to

take protective measures, such as donning a respirator. However, there is also a requirement for the

UK to act as an accredited laboratory under the OPCW and analyse samples from different countries

in order to determine the agent used and the possibility that the sample could be attributed to its

source, i.e. who manufactured or supplied the materials.

48

2.2.2 CWA Properties

CWAs can be classified in a number of different ways based on physical properties or, more

commonly, by their medical effect.60-62 The medical effects are listed below with examples of agents:

• Vesicant (blister agent) – Sulfur mustard and nitrogen mustard

• Choking agents –

• Blood agents – Hydrogen cyanide, phosgene

• Nerve agents – VX, VM and Sarin (GB)

• Irritants – 2-chlorobenzylidene malononitrile (CS) and dibenzoxazepine (CR) gas

• Incapacitants

However, it is the physical and chemical properties that will determine when and how an agent will

be used and this can help to inform how it can be detected. In general CWAs are liquid and, in order

for them to be effective, they must be disseminated effectively.60, 61 The classifications above can be

further broken down into persistent and non-persistent agents.

Non-persistent agents include sarin and some other G-series agents, which have a moderate to high

vapour pressure so will vaporise easily on dissemination.60 The agents can then form an airborne

hazard (aerosol and vapour) which can deposit onto surfaces or stay in the atmosphere. If the

environment is very cold, a different hazard state will be present.

Persistent agents have a low vapour pressure such as sulfur mustard and the V agents (VX and VM).

These materials can be aerosolised for dispersion, otherwise they will be present in droplet form.

These agents can be thickened with a polymer to help with dispersion and this can complicate

detection.63

Solid agents do exist and in general will be dispersed as a fine power causing an aerosol and fine

particulate hazard.63

49

In all cases the agents will cause disruption, harm to life and potentially death. Therefore, there is a

need to be able to detect them before, during and after a possible attack. A forensic investigation

would collect soil samples and swab surfaces such as clothing and skin. This presents a complicated

matrix that must be separated from the analyte of interest to allow for detection and identification.

For both explosives and CWAs, detection in real world environments can be challenging for portable

equipment and high-grade analytical equipment. The analytes of interest can be present in trace

amounts in a large complex environmental matrix or they can saturate an area. The issue is that real

world environments are a naturally complex matrix – for example, ambient air64-66, water67, and

soil68, 69 contain thousands of chemicals that can supress or interfere with the detection of an

explosive or CWA. There are methods to allow detection in these instances, but they can be time

consuming, costly and can have poor recovery rates. This research investigates the use of GCxGC to

detect explosives and CWAs in complex matrices for defence investigations.

2.2.3 Detection

The most popular method for detecting CWAs since the 1960s has been GC.70 However, there is no

universal method to detect all CWAs and different techniques and methods need to be used to allow

for detection and identification. Often, as described above, CWAs are found in a complex

environmental mixture and expensive, time-consuming techniques are used to separate them. The

University of Nebraska explored the use of GCxGC to separate a mixture of diesel and gasoline from

a highly concentrated standard of sarin and soman.70 The separation was successful but the

chromatography is relatively ill defined and the separation needs to be improved.

Separately to this Gravett et al. used GCxGC to separate VX from soil following an accelerant-based

fire and liquid decontamination. The authors claimed to be able to detect a break down product of

VX but this was not a defined peak and wrapped around the chromatogram in the second

dimension.71

50

There has been very limited research in the use of GCxGC for forensic defence applications. This

work details the use of GCxGC to detect defence related chemicals starting with a cryogenic system

and moving towards a portable valve system. The materials have been detected in matrices of

relevance to defence and this is the first study to observe explosives in matrices and the first full

study to represent the use of GCxGC in CWA detection.72

51

2.3 Experimental

2.3.1 Explosives

2.3.1.1 Sample Preparation

A 1000 ppm 8330 explosive standard (Restek) was diluted in ethyl acetate (Sigma Aldrich) to achieve

a 10 ppm standard and a 1 ppm standard. Explosives present in 8330 standard can be seen in Table

1.

Table 1 8330 standard components

Explosive Structure

4-amino-2,6-dinitrotoluene

2-amino-4,6-dinitrotoluene

1,3,5-trinitrobenzene

52

TNT

Tetryl

Nitrobenzene

RDX

53

HMX

2-nitrotoluene

3-nitrotoluene

4-nitrotoluene

1,3-dinitrobenzene

54

2,6-dinitrotoluene

2,4-dinitrotoluene

Diesel was provided by the University of York that had been purchased at a local garage and no

sample preparation was undertaken. The 10 ppm standard was spiked into the solution to give a

resulting 8330 standard concentration of 1 ppm.

Perfume – CK one - was purchased from a department store and was diluted by half with ethyl

acetate. The 10 ppm standard was spiked into the solution to give a resulting 8330 standard

concentration of 1 ppm.

An environmental organic aerosol sample in ethyl acetate, taken from North Kensington, London,

was provided by the University of York. The 10 ppm standard was spiked into the solution to give a

resulting 8330 standard concentration of 1 ppm.

2.3.1.2 GCxGC-TOF Parameters

GCxGC-TOF analysis was performed using a 6890B GC from Agilent Technologies fitted with a Leco

thermal modulator system interfaced to an Agilent TOF-MS. The primary GC column was a BX5 (30 m

x 0.25 mm x 0.25 µm). The secondary GC column was a BX50 (4 m x 0.2 mm x 0.2 µm). The primary

oven was programmed from 40 °C (2 min) at 7 °C/min to 270 °C (5 min). The secondary oven was

programmed from 70 °C (2 min) at 7 °C/min to 300 °C (5 min). A dual jet liquid nitrogen modulation

55

system was used with a 5 second modulation period. Helium carrier gas was used at a flow rate of 1

mL/min. 1 µL of sample was injected using a Gerstal auto-sampler in splitless mode.

56

2.3.2 Chemical Warfare Agents

2.3.2.1 Sample Preparation

Two stock standards were produced for another study at Dstl Porton Down, from weapons grade (98

+ %) CWAs and a small amount of the highly diluted material was used in this study. Standard 1 is a

mixture of GA, GB, GD, GF, VX, and VM in isopropyl alcohol (IPA) (Optima Fisher) diluted to 10 µg/mL

through to 0.2 µg/mL at even intervals. Standard 2 is a mixture of H, HN3 and T diluted in hexane

(high purity Sigma Aldrich) to 10 µg/mL through to 0.2 µg/mL at even intervals.

57

2.3.2.2 Matrices

Replicate matrices to those found in operational samples have been produced. In some cases, the

material has been acquired from military sources such as oil for vehicles or weapons, in other cases

surfaces have been swabbed to replicate the samples that may return from operational

environments. The swabbing procedure and list of matrices is detailed below.

Swabbing Procedure:

Use of lint free cotton swab soaked in IPA (Optima). The swab is used on no more than 10 surfaces

and it is then extracted in 10 mL of IPA using a 30 minute extraction with agitation. The solvent is

then vialed and the container and swab are disposed of after set a period of time.

Matrices:

• Hotel room

• Porton Down range aerosol sample

• Sahara Dust

• Diesel

• Aviation fuel (AV)

• Light weight oil (for weapon use) (LWO)

• Clothing that had been worn

58

2.3.2.3 GCxGC-TOFMS Method

GCxGC-TOFMS analysis was performed using a 7890A GC from Agilent Technologies fitted with a

Zoex – Z1 thermal modulator system interfaced to a Markes International Time of Flight Mass

Spectrometer. The primary GC column was a HP-5-MS (30 m x 0.25 mm x 0.25 µm). The secondary

GC column was a BX50 (2 m x 0.1 mm x 0.1 µm). The primary oven was programmed from 60 °C (2

min) at 4 °C/min to 260 °C (2 min). The secondary oven was programmed from 80 °C (2 min) at 4

°C/min to 280 °C (5 min). A dual jet liquid nitrogen modulation system was used with a 3 second

modulation period. Helium carrier gas was used at a flow rate of 1.4 mL/min. 1 µL of sample was

injected using an Agilent PAL auto-sampler in splitless mode held at 280 °C.

When the matrices were injected, the inlet was used in split mode at 100:1 otherwise all parameters

remained the same.

Different instrumentation has been used for the explosives and CWA analysis due to health and

safety. CWA analysis can only be conducted at Porton Down.

2.3.2.4 GCxGC-FID Method

GCxGC-FID analysis was performed using a 7890A GC from Agilent Technologies fitted with a Zoex –

Z1 thermal modulator system interfaced to a FID running at 200 Hz sampling collection. The primary

GC column was a HP-5-MS (30 m x 0.25 mm x 0.25 µm). The secondary GC column was a BX50 (2 m x

0.1 mm x 0.1 µm). The primary oven was programmed from 50 °C (2 min) at 4 °C/min to 260 °C (5

min). The secondary oven was programmed from 70 °C (2 min) at 7 °C/min to 280 °C (5 min). A dual

jet liquid nitrogen modulation system was used with a 5 second modulation period. Helium carrier

gas was used at a flow rate of 1.4 mL/min. 1 µL of sample was injected using an Agilent PAL auto-

sampler in splitless mode.

When the matrices were injected, the inlet was used in split mode at 100:1 otherwise all parameters

remained the same.

59

2.4 Results and Discussion

2.4.1 Explosives

The contour plot from the GCxGC-TOFMS analysis of the 10 ppm standard of the 8330 standard

explosive mix diluted in ethyl acetate is shown in Figure 14.

Figure 14 8330 standard with 6 of the explosives labelled, TNT, 2- nitrotoluene, 3-nitrotoluene, 4-
nitrotolene, 4-amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene for visual reference of separation.
The x- axis shows the primary retention time in seconds and the y-axis shows the secondary retention time
in seconds.

Figure 14 shows the separation of a standard explosive standard. The contour plot shows the GCxGC

separation from the two columns used, with the non-polar column on the horizontal axis shows the

elution order based on the boiling points. The retention on the vertical axis shows the elution based

on the polarity. By using these two properties, volatility and polarity, to separate the standard, the

isomers of DNT and nitrotoluene are separated out from one another.

RDX and HMX are relatively hard to detect using GC-MS due to their thermal instability and in this

instance, HMX cannot be found but RDX has been tentatively identified using the mass spectra.

Further method development would be required to enable us to detect these compounds; this could

include decreasing column lengths, colder transfer lines and a higher column flow.

60

Limits of detection were explored using a 0.05 µg/mL standard and are listed in Table 2.*

Table 2 Limits of detection on column based on 0.05 µg/mL 8330 standard for explosives. n= 1, S/N of 3:1

Explosive LoD based on S/N of 3:1 (µg/mL)

4-amino-2,6-dinitrotoluene 0.083

2-amino-4,6-dinitrotoluene 0.073

1,3,5-trinitrobenzene 0.012

TNT 0.021

Tetryl 0.47

Nitrobenzene 0.24

RDX n/a

HMX n/a

2-nitrotoluene 0.0059

3-nitrotoluene 0.0081

4-nitrotoluene 0.006

1,3-dinitrobenzene 0.015

2,6-dinitrotoluene n/a

2,4-dinitrotoluene 0.28

* LODs were calculated at 3:1 S/N linearly extrapolated from a 0.05 µg/mL standard.

61

2.4.2 Complex Mixture Analysis

When a person handles an explosive, material is transferred from them to the explosive (and vice

versa), such as DNA and fingerprints. If the person, then touches other surfaces there is transfer of

the explosive material to the surfaces. Transfer from the person to other objects can occur several

times before there are undetectable amounts being transferred. Therefore, if an individual has been

involved in the use or manufacturing of an explosive, they could have trace amounts of material

present on their belongings or on themselves. This trace material is detectable, but it could be

hidden in a complex matrix especially if they are trying to hide the material in the first place.

Similarly, if an explosion has taken place, trace levels of the explosive could be present amongst the

brick dust, body fluids, and debris. Essentially forensic samples from the field are highly

unpredictable.

A small series of experiments were devised to observe if GCxGC is capable of separating out the

explosives present in the 8330 standard from some common interferents, Figures 12-14.

Diesel spiked with 1ppm 8330 standard EIC m/z = 46

Figure 15 Diesel spiked with 1 ppm of the 8330 explosive standard. The left image shows the total ion
chromatogram (TIC) and the image on the right shows the data with m/z of 46 extracted to highlight the
presence of nitro groups in the sample. The white circles indicate the presence of the explosives defined in
Figure 11. The x-axis shows the primary retention time and the y-axis shows the secondary retention time.

Figure 15 shows a common chromatogram of diesel with the separation of the alkanes, mono-

aromatics up to the heavier tri-aromatics. The aim of this analysis was to separate the explosives

from the diesel and it is clear from Figure 15 that they occupy a different separation space therefore

62

they are easily detectable. The SIM ion of 46, a common ion for NO2 containing species, was chosen

to quickly view that explosives were being detected in a different separation space.

Perfume spiked with 1ppm 8330 standard EIC m/z = 46

Figure 16 Perfume spiked with 1ppm of the 8330 explosive standard. The left image shows the total ion
chromatogram (TIC) and the image on the right shows the data with m/z of 46 extracted to highlight the
presence of nitro groups in the sample. The circled compounds are explosives of interest. The x- axis shows
the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 16 is a good example of a cosmetic that may be present in an airport scenario or if a person is

swabbed cosmetic material may also be present on the swab. A perfume contains volatile organic

compounds (VOCs) of functionalised terpenoid compounds and muskes, which could cause false

alarms in portable detection. Other functionalised fragrance compounds add to the complexity of

the sample. In Figure 16 it is apparent that in most instances the explosives are occupying a different

separation space to that of the VOCs.

London aerosol sample spiked with 1ppm 8330 EIC m/z = 46

Figure 17 London aerosol sample spiked with 1 ppm of the 8330 explosive standard. The left image shows
the total ion chromatogram (TIC) and the image on the right shows the data with m/z of 46 extracted to
highlight the presence of nitro groups in the sample. The x- axis shows the primary retention time in seconds
and the y-axis shows the secondary retention time in seconds.

63

Secondary organic aerosols are formed though complex reactions of anthropogenic and biogenic

VOCs with light and atmospheric oxidants which include radicals of OH and Cl, and ozone.
73

 These

reactions can vary at different temperatures and humidity. These particulates are typically less than

2.5 µm in size and can have adverse effects on human health owing to their ability to penetrate deep

into the lung alveoli.74 It is possible due to the low volatility of some explosives that they could exist

in an aerosolised form post explosion; therefore it could become important to detect them in a

complex matrix such as an aerosol sample.75, 76 If released into the environment in an aerosolised

form they could form complex particulates and/or aerosol with atmospheric oxidants present

making them difficult to detect without some form of extraction. In Figure 17 it is clear that the

explosives occupy a different separation space to that of the aerosol sample and that they are easy

to detect at the low levels required for explosive exploitation.

It should be noted that there can be a “natural” background of explosives at some sites, therefore in

forensic analysis of a scene it might be, for example, that above 5 ng detected is significant. The

current UKAS accredited method for cleaning matrices that contains explosives is solid phase

extraction (SPE). With some explosive materials, the stationary phase used in SPE can chemically

interact with the explosive and decrease the amount of evidential material that is left in the sample.

This is known and documented so that it can be taken into account.77 The method described above

using GCxGC-TOFMS allows for detection directly from the matrix with limited sample preparation

thus it could improve evidence-based cases for detection of explosives if it is further validated and

UKAS approved.

64

2.4.3 Chemical Warfare Agent Analysis

2.4.3.1 Limit of detection and Limit of Quantification using TOFMS

Standards were made as detailed in section 2.3.2 and were analysed using the method detailed in

section 2.3.2.3. Table 3 details the limits of detection and quantification using the student T test. For

each agent a 6-point calibration was undertaken and the data for this can be found in Annex 1.

Table 3 Limit of Detection and Limit of Quantification in ug/mL using student T value (N=3 for G & V and N=5
for mustard family)

 RT1 (min), RT2(sec) LOD (ug/mL) LOQ (ug/mL) R2

C
o

m
p

o
u

n
d

s

GB 7.65, 2.5 0.026 0.085 0.9884

GD1 13.80, 0.5 0.012 0.040 0.9459

GD2 13.95, 1.0 0.039 0.131 0.9698

GA 16.75, 2.02 0.033 0.109 0.8412

GF 19.40, 2.5 0.005 0.016 0.9966

VM 31.45, 0.0 0.028 0.093 0.9786

VX 34.65, 0.0 0.010 0.034 0.9704

H 18.40, 0.5 0.076 0.254 0.9979

HN3 26.00, 0.5 0.045 0.150 0.9911

T 41.60, 0.5 0.146 0.488 0.9965

As can be observed in Table 3 the limits of detection and quantification are in the sub ug/mL range,

which is useful if low levels of agent detection are required, or if the main agent has started to

degrade and low levels are left in the sample.

One of the aims of this research was to determine if, with little clean up, can the instrument detect

CWAs in complex matrices. In order to test this, matrices of common interferents and replica

65

samples that might return from operation were made (section 2.3.2.2) and spiked with chemical

agents. The following details the results from the analysis.

2.4.3.2 CWA Detection in Complex Matrices

When a chemical agent attack has happened, depending on the agent and the method of attack, the

agent will still be present within that environment. It is therefore important that samples are

collected to determine what agent was used and if any evidence of whom co-ordinated the attack

can be gathered.

A series of experiments were undertaken to determine if GCxGC-TOFMS could analyse samples from

replicate environments with minimal to no sample cleaning. Table 4 details the results of what

agents could be detected in the matrices tested. The chromatograms for the matrices can be found

in Annex 1.

Table 4 Table detailing matrices spiked with chemical agent. Green indicates that the agent could be
detected and red indicates that it could not be detected. If an extracted ion chromatogram was used a (*) is
next to the tick.

 Agent

 GB GD1 GD2 GA GF VM VX

M
at

ri
x

Aerosol sample
3

      

Clothing       

Inside Oven       

Hotel       

Gasoline  * * * *  

LWO       

AV Fuel * * * * * * *

Diesel * * * * * * *

 * using EIC

 The results in Table 4 indicate that almost every agent tested could be detected in a number of

complex matrices without any sample preparation. Each of the matrices listed in the table

represents a possible operational environment. For example, the AV fuel (aviation fuel) is from

military samples at Porton Down. AV fuel contains a wide array of compounds from simple alkanes

66

through to heavier aromatic species. These hydrocarbon species occupy the same separation space

in one dimensional gas chromatography making it hard to deconvolute the resulting mass spectrums

to identify the CWA present. Often clean-up of the sample is undertaken but if an unknown CWA is

present it could easily be removed from the sample if the incorrect technique is used. This then

requires a costly process using different clean-up methods and different analytical techniques to

remove the matrix from the sample. In this research it has been demonstrated that the agent can

easily be identified from the matrix, thus allowing a quick screening tool and with further

development it should allow for an evidential tool.

Figure 18 provides an example chromatogram for reference. This research provides evidence that

GCxGC-TOFMS can be used not only to detect low quantities of agent but also that agents can be

detected in complex matrices with limited issues. The methods developed here can now be taken

further and used to test real operational samples for orthogonal identification or as a screening tool

for unknown samples.

Figure 18 CWAs detected using GCxGC-TOFMS at 1 µg/mL. The agents are labelled on the spectrum and
demonstrate that each agent occupies a different separation space in both the primary and secondary
dimension. The GD peaks are also separated.

In Figure 18 there is 1D separation of all CWAs and some 2D separation can be observed, such as the

two peaks for GD appearing at 2 seconds and the peak for GB at 1 second on the secondary axis.

There is a continuous column bleed across the chromatogram, which can make detection of any

67

compound whose retention time appears in the area difficult. However, as this technique is time of

flight mass spectrometry this can be easily corrected for using extracted ion chromatograms.

2.4.3.3 Conclusions of TOFMS Data

GCxGC-TOFMS has proven to be a highly effective tool for the analysis of both explosives and CWAs

in complex matrices. The methods developed here can be further validated with real operational

samples providing not only a screening tool but also orthogonal identification, which is often

required.

The main issue with the instrumentation is the size. If the instrument could be made portable

several more defence applications could be explored. In order to start exploring the possibility of a

smaller system, the same experiments from the sections above were undertaken using a FID instead

of a TOF to determine what differences in analysis would arise.

2.4.3.4 Limit of detection and Limit of Quantification using FID

As a cryogenic GCxGC-TOFMS performs excellently at detecting both explosives and CWAs in

matrices of interest, it is of military interest to determine if a portable system could be made and

used to detect these materials out in the field. This could provide evidential information in the field

or it could act as a warning system that materials are present at a site or on a person. Further to this,

the technique is classed as an orthogonal technique of high dimensionality, so it could provide

information that could be of importance to defence intelligence.

A further study has taken place replacing the TOF-MS with a FID as it is a more portable detector and

this provides the evidence required to move forwards to produce a fully portable system. Although it

has no ability to identify, each compound has been run individually to build a retention time library

for further analysis. Limit of detection (LOD) and limit of quantification (LOQ) have been studied for

CWAs and are listed in Table 5. The LOD has been calculated using n=4 (nerve agent family) and n=5

(mustard family) to provide a T value multiplied by the standard deviation at the 97.5 % confidence

68

interval. The LOQ has been calculated using 10 multiplied by the standard deviation. The values

listed are expressed in µg/mL and all calibration data can be observed in Annex 1.

Table 5 Limit of Detection and Limit of Quantification in ug/mL using student T value (n=4 for G & V and n=5
for mustard family)

 RT1 (min), RT2(sec) LOD (ug/mL) LOQ (ug/mL) R2

C
o

m
p

o
u

n
d

s

GB 9.91, 1.28 0.59 0.60 0.9957

GD1 17.08, 2.45 0.59 0.63 0.9952

GD2 17.17, 2.52 0.47 1.31 0.9987

GA 20.25, 3.75 0.41 0.56 0.9895

GF 23.00, 3.72 0.40 0.63 0.9783

VM 32.25, 4.08 0.40 0.71 0.9799

VX 38.50, 3.94 0.33 0.68 0.9540

H 21.90, 3.97 0.70 3.13 0.9904

HN3 29.75, 4.02 0.18 1.50 0.9929

T 45.50, 1.04 0.75 0.87 0.9816

The LOD and LOQ in Table 5 are higher than that of the TOF, which is to be expected as FID is a less

sensitive technique, but it has a larger dynamic range. This is beneficial as occasionally there is no

option to pre-screen an unknown sample and therefore a detector that can take a larger

concentration is of benefit and it is easier to clean from contamination. The other benefit of a FID, as

mentioned before is that is it moving towards a portable system. However, the obvious

disadvantage here is the loss of sensitivity.

69

2.4.3.5 CWA Matrix Analysis

The possible uses of GCxGC in defence include providing evidential value for samples of significant

interest for defence and that further information can be gathered that might provide intelligence.

In this study, the use of GCxGC in the field for defence applications is tested. The possibility of being

able to screen in the field not only with standard portable detectors but also GCxGC, will act to

separate the sample from the matrix, increases the defence analysis capability in the field

significantly.

Matrices were replicated to those that may be found during a military operation such as; a hotel

room, oil spills, clothing from a person or aerosol samples. These were then spiked with CWA and

the results for detection are detailed in Table 6.

Table 6 Agents detected in replicate matrices of operational environments. Green shows that the material is
detected and red shows that it was not detected.

 Agent

Matrix GB GD GD GA H GF VM VX T

Diesel ✓ ✓ ✓ ✓ ✓ ✓   ✓

Gasoline ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clothing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Oven ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Aviation fuel ✓ ✓ ✓ ✓ ✓ ✓   ✓

Aerosol sample ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hotel 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Light Weight Oil ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

As can be observed in Table 6 almost all agents can be detected in each matrix when using FID.

These peaks have been found using retention time and their visibility in the chromatogram. A few

example chromatograms are shown in Figure 19 and Figure 20, all other figures can be found in

Annex IV.

The possible reasons for why VX and VM cannot be easily detected in diesel or AV gas are that they

contain heavy hydrocarbon fractions that co-elute with the agents of interest. The agents nor the

70

hydrocarbons could be easily moved away from one another, as there is no separation space left in

the chromatogram. Another method or a non-universal detector would be required for detection of

these compounds in this instance.

Figure 19 Aviation Fuel spiked with CWA. The spectrum is highly complex and the aviation fuel has aromatic
peaks as well as hydrocarbons present. The agents can be detected either as they occupy a different
separation space or by zooming into specific regions and relying on the two retention times for a location,
like a map. The x- axis shows the primary retention time in seconds and the y-axis shows the secondary
retention time in seconds.

In Figure 19 it can be observed that the aviation fuel contains several different types of hydrocarbon

species. Starting with the alkanes towards the bottom of the chromatogram and as the time

increases in the second dimension, the size of the hydrocarbon species to aromatic compounds also

increases. This chromatogram can be considered as a fingerprint for this type of aviation fuel as it

will be different depending on how the fuel has been treated and its age. This can also be used as

evidential value for an investigation.

71

Figure 20 A swab from clothing spiked with CWA. The CWAs detected are highlighted on the chromatogram
in white circles and labelled. The x- axis shows the primary retention time in seconds and the y-axis shows
the secondary retention time in seconds.

Figure 20 depicts a chromatogram from a swab that has been used to remove material from

clothing. It is much less complicated than the chromatogram observed in Figure 19 but there is some

material present that could act to mask or suppress a material of interest. In this instance all of the

agents were easily detected.

Figure 19 and Figure 20 provide examples of the detection space in the matrices. It is apparent that

almost every agent of interest can be detected in the matrices. The clear disadvantage of moving to

FID from a TOF is the loss in sensitivity as detailed in Table 5. However, this disadvantage is a small

price to pay if portability is desired. The following chapters explore the development of a portable

system for defence applications.

72

Chapter 3

Valve Modulation Comprehensive Gas

Chromatography Flame Ionisation Detection for

the Analysis of Threat Materials

73

3 Valve Modulation Comprehensive Gas Chromatography Flame

Ionisation Detection for the Analysis of Threat Materials

3.1.1 Portable Detection Equipment

Portable detection equipment is used by military and civilians to detect the presence of explosives or

CWAs.40, 49, 78-80 The threats related to the use of explosives and CWAs have been increasing recently,

thus giving rise to further research and development within the field of portable equipment.80 The

current in service detection equipment meets the criteria set and uses a number of different

detectors to identify compounds of interest. The requirements are of a high standard and change

continuously due to changes in threat and the need to detect at lower concentrations, thus

warranting the need for further research. Requirements include; that the detector must analyse the

sample quickly, the equipment should be light weight, have low power requirements, have a user

friendly interface, have low limits of detection (LOD), utilise a simple method for sample collection

and analysis (for example a swab) and detecting the compounds of interest with minimal

interference from other compounds present in the environment.81

3.1.1.1 Common Detectors

Raman and infrared (IR) are common types of detectors that would be seen in both a military and

civilian detection suite. Both Raman and IR are a form of bulk functional group detection, meaning

that they search for a specific set of functional groups that would relate to the compound of

interest. They allow for fast detection and in some case can provide a form of standoff detection (at

a distance) or through barrier detection (through materials e.g. plastic bottles or envelopes) which

can be useful if minimal sample contact is desired.82, 83 Minimal sample contact is highly important

for CWA analysis due to their high toxicity. However, these techniques have their disadvantages, as

there are some compounds that they cannot analyse because the functional groups are not IR

and/or Raman active and in terms of standoff detection, interaction with the open air can cause

74

interference.84 There are other considerations when detecting explosives, as attenuated total

reflection IR would not be suitable for shock sensitive explosives due to the need for sample contact.

Ion mobility spectrometry (IMS) is the most popular portable detector as it is a small, cost effective,

robust and a low powered instrument.42, 80 It works by forming reactant ions in air, typically using

Ni63 or corona discharge, the ions then meet the vapour sample presented and form ion clusters.

These clusters pass through into the IMS drift cell and each cluster travels through the cell at

different speeds depending on their size and shape. Essentially, the smaller and more compact the

cluster, the faster it will travel down the drift cell and the larger the compound the longer it will

take. This has some obvious disadvantages: several other clusters could have a similar size and shape

to that of the compound of interest and, if very small drift cells are used, there is not enough space

for the sample to fully separate. When using a radioactive source, there are both environmental and

safety considerations, which has shifted focus onto using the corona discharge approach. 85, 86

However, corona discharge has its own disadvantages as its process of ionisation can cause

variability in the reactant ions produced as well as degradation of those ions. Yet due to its

popularity and advantages, there is further research in the area developing systems for portable use.

These range from using capillary columns or sorbent polymers for pre-separation to changing or

adding electronics and dopants to increase ion production or ion focusing.87-91

GC-MS and GC-IMS are also used for field measurements of explosives and CWAs. Normally the size

of a mass spectrometer would mean that it is not considered as a field portable piece of equipment

but there are some examples where development has been undertaken to vastly reduce the size of

the MS. A key example would be the Guardion, which uses a low thermal mass column connected to

a miniaturized toroidal ion trap.81 GC can also be coupled to IMS for detection such as the Themo

EGIS defender, which is utilised in military and civilian defence globally. This provides very fast GC

separation which acts as a pre-separation step before the IMS80 cell allowing for ng range detection

in a matter of seconds.92

75

Other techniques are also applicable but are not mentioned here for brevity. In detection it is

common that a combination of these techniques are used to provide orthogonal detection and give

increased certainty to the users. However, there is always a drive to improve detection capability by

making systems, smaller, lighter, faster and more sensitive.

3.1.2 Valve Modulated GCxGC

The cryogenically modulated GCxGC is a highly sensitive piece of equipment and the addition of a

TOF allows for EIC, which removes most of the peaks that do not contain an ion of interest. The

problem with this is that a cryogenic GCxGC-TOFMS cannot be taken out into the field and used in an

operational scenario. If samples are being sent back to the lab, the instrument would enhance

capability as the compound of interest could be removed from a large matrix with minimal

manipulation of the sample.

However, in the field a portable solution is required. The cryogenic modulation in Figure 21

demonstrates that, in most instances, the compounds of interest occupy a different separation

space to the matrix.

Figure 21 Diesel with 1 ppm of 8330 standard on a cryogenic GCxGC-TOF. The explosives are circled and
clearly occupy a different separation space to that of the diesel background.

76

If this could be translated over to the valve technology (discussed in 1.3.6.3), there is the possibility

of undertaking this analysis in the field. This could be integrated into current portable equipment to

decrease false alarm rates and allow more challenging areas to be sampled, thus increasing user

confidence in the equipment.

A valve modulated GCxGC system from the University of York was established and a FID was used for

the detector as it is a more “portable” detector than a mass spectrometer but can also handle the

high flow rates required in the second dimension. To the author’s knowledge this is the first time a

diaphragm valve has been used to analyse both explosives and chemical warfare agents.

77

3.2 Experimental

3.2.1 Valve Modulated GCxGC System

An Agilent 6890N GC with a split splitless inlet and a FID was modified to incorporate a 6 port

diaphragm valve (AFP valves, Canada) to allow for GCxGC. Actuation of the valve was controlled by

an Arduino board programmed to switch a solenoid valve connected to a compressed air line. The

valve was actuated at the start of the run and stopped at the end of the run. The valve port setup is

shown in Figure 22. Stainless steel tubing (Restek) was used to connect the valve ports to low dead

volume unions (Valco Silco Steel), which were then connected to the GC columns.

Visualisation of the 2D data was performed using GC image 2.7TM or R Studio.

Figure 22 Diaphragm valve schematic to demonstrate port arrangement

78

3.2.2 Test Mixtures, Calibration Standards and Matrices

3.2.2.1 Test Mixtures

A range of test mixtures were used to develop methods for operational samples.

An alkane and aromatic standard - both standards were purchased from Sigma Aldrich at 1 mg/mL

and used to obtain a standard of 50 µg/mL in dichloromethane (DCM).

Diesel – diesel purchased from military stocks (unknown origin).

3.2.2.2 Calibration Standards

All CWA work was carried out at Porton Down, Salisbury Dstl at highly dilute concentrations.

Chemical Warfare Agents (CWA) – CWA standards were made from stocks that had been distilled to

a purity of 90+ % (checked by NMR). The agents were then diluted in DCM to 1 mg/mL and further

diluted for use in the calibration standards. Standards of 50 µg/mL to 0.2 µg/mL were made up in

DCM.

Explosive standards – an 8330 B standard from Restek was purchased and diluted accordingly in

acetonitrile to produce standards of 50 µg/mL to 0.5 µg/mL.

Drug standard – a drug standard was purchased from Restek and injected directly into the GC.

3.2.3 Matrices

 Matrices of relevance to military operations and matrices of relevance to post-event sampling were

replicated. The samples can be split into three sections: dirt, fats and oils, and others.

3.2.3.1 Dirt

1. Swab of a kitchen floor

2. Aerosol sample taken in London from the University of York

3. Aerosol sample from Porton Down range x2

4. Swabs of hotels relevant to search operations x2

79

5. Sahara Desert aerosol sample

3.2.3.2 Fats and Oils

1. Diesel

2. Light weight weapons oil

3. Gasoline

4. Aviation fuel

5. OX-24

6. OM-33

7. OMD-90

8. Swab of the inside of an oven

9. Vacuum pump oil

3.2.3.3 Others

1. One swab was used to swab a pair of shoes (inside and outside), neck/underarm area of a T-

shirt, and the waistband of a pair of jeans

In each case the samples were analysed on their own and then spiked with a known amount of CWA

or explosive to determine if detection could be achieved.

80

3.2.4 Method Development

Several different columns, modulation periods and oven ramps were tested to develop the final

method. Each method was assessed based on the separation between two hydrocarbons. Table 7

details methods and columns that were tested.

Table 7 Method development table

Primary Secondary Modulation Pressure Oven Method

2
0

 m
 R

xi
-5

Si
l-

M
S

0
.1

5
 m

m
 2

.0
 µ

m

8 m VF-WAX
2500 ms 400
ms injection

1 = 80 psi
2= 40 psi

50 °C (2 min) 8°/min to
250 °C (8 min)

12

50 °C (2 min) 10°/min to
250 °C (13 min)

14

50 °C (2 min) 5°/min to
250 °C (5 min)

21

50 °C (2 min) 10°/min to
150 °C (5 min) 10°/min

to 250 °C (8 min)
20

50 °C (2 min) 10°/min to
220 °C (10 min) 7°/min

to 250 °C (3 min)
22/23

5 m VF-WAX
3000 ms 300
ms injection

1 = 80 psi
2= 40 psi

50 °C (2 min) 8°/min to
250 °C (8 min)

12

3 m VF-WAX

3000 ms 300
ms injection

1 = 80 psi
2= 40 psi

50 °C (2 min) 8°/min to
250 °C (8 min)

12

1800 ms 300
ms injection

50 °C (2 min) 8°/min to
250 °C (8 min)

12

50 °C (2 min) 5°/min to
250 °C (5 min)

21

2m Rtx-50
4700 ms 300
ms injection

1 = 75 psi
2= 25 psi

50 °C (2 min) 5°/min to
250 °C (5 min)

21

1 = 60 psi
2= 25 psi

50 °C (2 min) 6°/min to
280 °C (8 min)

7

81

3.2.5 GCxGC-FID Method for Analysis of CWA

GCxGC-FID analysis was performed using a 6890 GC from Agilent Technologies fitted with an AFP

modulator valve interfaced to a FID. The primary GC column was a RTX-5Sil-MS (20 m x 0.15 mm x

2.0 µm). The secondary GC column was a DB-Wax-MS (8 m x 0.25 mm x 0.25 µm). The primary oven

was programmed from 50 °C (2 min) at 8 °C/min to 250 °C (8 min). The modulation period was 1800

ms with a 300 ms injection period. Helium carrier gas was used at a pressure of 80 psi in the primary

and 40 psi in the secondary. 1 µL of sample was injected using an Agilent autosampler in splitless

mode with the inlet held at 280 °C.

3.2.6 GCxGC-FID Method for Analysis of Explosives

GCxGC-FID analysis was performed using a 6890 GC from Agilent Technologies fitted with an AFP

modulator valve interfaced to a FID. The primary GC column was a RTX-5Sil-MS (20 m x 0.15 mm x

2.0 µm). The secondary GC column was a DB-Wax-MS (8 m x 0.25 mm x 0.25 µm). The primary oven

was programmed from 50 °C (2 min) at 8 °C/min to 250 °C (8 min). The modulation period was 1800

ms with a 300 ms injection period. Helium carrier gas was used at a pressure of 80 psi in the primary

and 40 psi in the secondary. 1 µL of sample was injected using an Agilent autosampler in splitless

mode with the inlet held at 175 °C.

3.2.7 GCxGC-FID Method with Secondary Heater

GCxGC-FID analysis was performed using a 6890 GC from Agilent Technologies fitted with an AFP

modulator valve interfaced to a FID. The primary GC column was a RTX-5Sil-MS (20 m x 0.15 mm x

2.0 µm). The secondary GC column was a DB-Wax-MS (8 m x 0.25 mm x 0.25 µm). The primary oven

was programmed from 50 °C (2 min) at 10 °C/min to 200 °C (3 min). The secondary oven was

programmed from 80 °C (2 min) at 10 °C/min to 230 °C (3 min). The modulation period was 1800 ms

with a 300 ms injection period. Helium carrier gas was used at a pressure of 80 psi in the primary

and 40 psi in the secondary. 1 µL of sample was injected using an Agilent autosampler in splitless

mode with the inlet held at 175 °C. If split was required, the split flow was set at 80:1.

82

3.3 Results and Discussion

3.3.1 Chemical Warfare Agents

3.3.1.1 CWA Stability

In order to determine the performance and stability of the valve for modulation a study took place

using the same samples analysed over the course of a month. Samples of six different CWA at 100

ppm were injected five times and this was repeated every week for a month to establish the stability

of the system. The CWAs used can be seen in Table 8.

Table 8 Chemical warfare agents used to determine stability of the valve system

Number CWA Structure

1 GA

2 GB

3 GD

4 GF

83

5 VM

6 HD

7 HN3

Table 9 Averages of the volumes detected for each agent and the total average over the 3 weeks.

Table 9, shows that in general the modulation provided good results and only varied marginally over

the weeks which is of great benefit as if an unknown sample is being analysed. A library of known

retention times could be developed for comparison to the unknown. Where there are large RSDs this

may be due to the compound being analysed decreasing in concentration over the time period. This

is an important consideration, as often samples must be stored both before and after analysis for

traceability. Samples that contain GA, for example may need to be stored at lower temperatures to

avoid losses of the sample. (the samples were stored in a fridge maintained at 10 ᵒC)

3.3.1.2 CWA Calibration

The method used for this analysis was detailed in section 3.2.5. Three standards were analysed over

a calibration range of 10 to 0.5 µg/mL and three repeats of each standard were conducted:

- First standard contained GB, GD, GA, H, GF, VM, VX, and T

Compound Average Stdev % relative Average Stdev % relative Average Stdev % relative Average Stdev % relative

GA 2502638.62 624192.60 24.94 1051374.45 125002.32 11.89 1127967.28 142080.31 12.60 1560660.12 816675.72 52.33

GB 2103088.86 34845.41 1.66 1964851.45 92026.52 4.68 1912331.33 156220.32 8.17 1993423.88 98536.27 4.94

GD1 1545149.08 51859.82 3.36 1425855.72 45829.56 3.21 1402672.72 52064.07 3.71 1457892.51 76450.28 5.24

GD2 1799865.77 66431.21 3.69 1673074.84 124864.98 7.46 1593478.93 86445.46 5.42 1688806.51 104088.88 6.16

GF 4255768.14 119384.87 2.81 4210542.32 177919.87 4.23 3927949.32 75342.83 1.92 4131419.93 177655.74 4.30

HD 2636017.17 96325.60 3.65 3811411.67 153303.47 4.02 5979828.55 156023.84 2.61 4142419.13 1696302.77 40.95

HN3 2632108.10 59485.12 2.26

VM 847845.65 120356.88 14.20 1242568.91 161381.40 12.99 986200.15 200014.64 20.28 1025538.24 200280.37 19.53

1 2 3 Total

84

- Second standard contained VX and VM

- Third standard contained H, T and HN3

The calibration for each agent was calculated individually and are in Table 10 to Table 17. The

calibration graphs can be found in the Annex 1. It should be noted that, although T could be

detected, it struggled to pass through the system and was often at variable levels and wrapping,

therefore the results for T are not presented here.

Table 10 Calibration of GB

 Repeats (Intensity)

Concentration
µg/mL

1 2 3
Mean

Intensity
Standard
Deviation

Relative
StandDev

%

10.0 27997961 33555947 34252463 31935457 3427709 11

5.0 17338665 21419281 27015435 21924460 4858125 22

2.5 6711907 7527020 9423401 7887443 1391215 18

1.0 2065927 2790680 3535423 2797343 734771 26

0.5 730617 977470 1092954 933680 185095 20

Table 11 GD Calibration first isomer

 Repeats (Intensity)

Concentration
µg/mL

1 2 3
Mean

Intensity
Standard
Deviation

Relative
StandDev

%

10.0 17841513 20938874 21706475 20162287 2046167 10

5.0 11318438 13910646 17437131 14222072 3071212 22

2.5 4681879 5191845 6172857 5348860 757789 14

1.0 1560996 1887125 2509870 1985997 482102 24

0.5 634813 705592 866380 735595 118663 16

Table 12 GD Calibration second isomer

 Repeats (Intensity)

Concentration
µg/mL

1 2 3
Mean

Intensity
Standard
Deviation

Relative
StandDev

%

10.0 17953256 21193933 21208373 20118521 1875188 9

5.0 12196570 13368475 17079074 14214706 2548881 18

85

2.5 3789429 4123425 5194603 4369152 734108 17

1.0 1211311 1531241 1948855 1563802 369849 24

0.5 432562 3046405 551320 1343429 1476015 110

Table 11 and

Table 12 demonstrate the two isomers for GD. The isomers are not fully separated in one

dimensional GC and methods exist to separate them using super critical fluid chromatography and

LC-MS with chiral coloumn.93, 94 Only two of the isomers have been separated, a chiral column would

need to be used for all four isomers to be separated thus allowing for blood studies.

Table 13 GA calibration, 0.5 µg/mL could not be detected

 Repeats (Intensity)

Concentration
µg/mL

1 2 3
Mean

Intensity
Standard
Deviation

Relative
StandDev

%

10.0 19158663 23099542 22551262 21603156 2134669 10

5.0 14307871 16091174 20191749 16863598 3017032 18

2.5 7956862 8290743 10053441 8767015 1126516 13

1.0 4259903 5322918 7137850 5573557 1455252 26

0.5

It should be noted that in Table 13 that only 1 µg/mL can be detected and not 0.5 µg/mL. This is

likely due to the chemical properties of GA and it may be lost during the valve modulation process.

Table 14 Mustard calibration, in first repeat of 0.5 µg/mL mustard could not be detected

 Repeats (Intensity)

Concentration
µg/mL

1 2 3
Mean

Intensity
Standard
Deviation

Relative
StandDev

%

10.0 26346750 30193085 31637566 29392467 2734762 9

5.0 17331145 21310369 26453164 21698226 4573361 21

2.5 8804990 9995767 11703929 10168229 1457144 14

1.0 4476221 5352495 4332680 4720465 552039 12

0.5 3373036 4057755 3715396 484169 13

86

Table 15 GF calibration, in the first repeat of 0.5 µg/mL GF could not be detected

 Repeats (Intensity)

Concentration
µg/mL

1 2 3
Mean

Intensity
Standard
Deviation

Relative
StandDev

%

10.0 21890931 27721841 27208078 25606950 3228403 13

5.0 13534787 16064454 20380221 16659821 3461335 21

2.5 4943004 5284060 7028268 5751777 1118549 19

1.0 1503135 1759218 638340 1300231 587341 45

0.5 607986 355191 481589 178753 37

Table 16 VM calibration

 Repeats (Intensity)

Concentration
µg/mL

1 2 3
Mean

Intensity
Standard
Deviation

Relative
StandDev

%

10.0 23928001 26379243 25328780 25212008 1229786 5

5.0 10712498 11124763 12467896 11435052 917913 8

2.0 3668087 3491859 3740044 3633330 127691 4

1.0 1553160 1485335 1811181 1616559 171926 11

0.8 1023990 1085071 1092069 1067043 37449 4

Table 17 VX calibration

 Repeats (Intensity)

Concentration
µg/mL

1 2 3
Mean

Intensity
Standard
Deviation

Relative
StandDev

%

10.0 23042503 25874401 24468595 24461833 1415961 6

5.0 11279512 11607437 13024105 11970351 927190 8

2.0 4669233 4572897 4714308 4652146 72237 2

1.0 2545966 2443078 890434 1959826 927548 47

0.8 1324699 1887439 1243247 1485128 350783 24

87

3.3.1.3 Limit of Detection and Quantification

The limit of Detection (LoD) was calculated as three times the standard deviation divided by the

gradient of the slope, similarly the limit of quantification (LoQ) was calculated as 10 times the

standard deviation divided by the gradient of the slope, Table 18.

Table 18 Limit of Detection and Quantification for each agent. RT1 is the retention time in the first
dimension, RT2 is the retention time in the second dimension. R2 is the coefficient of determination.

Compounds RT1 (min), RT2(sec) LOD (µg/mL) LOQ (µg/mL) R2

GB 7.1, 1.9 0.15 0.46 0.9585

GD 12.5, 0.4 0.01 0.34 0.9525

GD2 12.6, 0.5 0.18 0.46 0.9473

GA 14.4, 1.0 1.06 3.92 0.9520

GF 16.3, 0.8 0.27 0.47 0.9682

H 15.9, 0.8 0.78 1.92 0.9972

HN3 20.3, 1.9 0.83 2.28 0.9997

VX 25.2, 1.7 0.44 1.24 1.000

VM 23.3, 0.4 0.06 0.14 0.9998

3.3.1.4 Development of Software to Alarm on Detection

The idea behind developing a portable GCxGC is to allow it to be used by non-expert users. With this

in mind, a piece of software was developed that allows for detection and identification of the system

with the simple input of the GCxGC data. Below is an example to demonstrate the use of this system.

A calibration standard of nerve and blister agents at 5 µg/mL was used as a test subject, Figure 23.

This was then converted into a greyscale image and then into a black and white image. Bounding

88

boxes around each area of interest were set in the software and this was tested to ensure different

concentrations of agent were still present within the bounding box.

Figure 23 Calibration standard of CWAs at 5 µg/mL – the circled regions relate to different agents. The axis
has been removed to allow for input into the software

The software allowed for an image to be loaded and for the user to either detect or identify, Figure

24. “Detect” will tell the user if nerve agent or blister agent is present otherwise it will display not

detected, Figure 25. Identify will tell the user what the nerve agent is e.g. GB or GD etc. and will then

alarm and the user can undertake appropriate action as per their standard operating procedures,

Figure 26. The code for this can be found in the Annex.

89

Figure 24 User display of software for data analysis. A chromatogram has been preloaded by using the “Load
Image” button

Figure 25 User display once “detect” has been pressed. Under the alarm section it states “found G/V agent”
or “not found”

90

Figure 26 User display showing alarm list after “identify” has been pressed. Each agent is displayed as either
“found” or “not found” followed by the agent.

The graphical user interface (GUI) shown in Figure 24 to Figure 26, could be used to allow for quick

identification and detection of compounds of interest in complex matrices for a non-expert user.

This is important in a military and civilian context, as generally the users are not scientists.

Therefore, there is a requirement for the software to be simple and easy to use. This GUI only works

for the GCxGC method described in 3.2.5, if the method is changed the positions of the agents must

be re-calibrated.

91

3.3.2 Detection of CWA in Complex Matrices

The matrices listed in section 3.2.3 were spiked with a known concentration of: GB, GD, GA, H, GF,

VX and VM. The samples were spiked to produce a final concentration of 6 ng on column to enhance

the possibility of detection for this investigation. The results are detailed below in Table 19 and an

example chromatogram can be observed in Figure 27. Other chromatograms can be found in Annex

2.

Figure 27 Gasoline spiked with CWA of interest. The x- axis shows the primary retention time in seconds and
the y-axis shows the secondary retention time in seconds.

92

Table 19 Table detailing results of agents detected in complex matrices. Mo3 and Mo4 are aerosol samples
from Porton Down range. Green means detected and red means that it was not detected.

GA was not detectable in any matrix, in some cases such as aviation fuel, this was due to the

overlapping of the peaks, but this could be circumvented with the use of a more selective detector.

VX and VM were not easily detectable in diesel due to the high number of heavy hydrocarbons

present in diesel making it harder to detect. However, in general GCxGC-FID was able to detect and

separate out CWAs of interest from complex matrices that could be found at a scene or in the field.

It is becoming increasingly important to be able to reduce the amount of sample manipulation

before analysing it both in the field and in the laboratory, thus this technique provides a possible

route to analyse the sample without manipulating it.

Matrix GB GD GD GA H GF VM VX

Diesel ✓ ✓ ✓  ✓ ✓  

Gasoline ✓ ✓ ✓  ✓ ✓ ✓ ✓

Clothing ✓ ✓ ✓  ✓ ✓ ✓ ✓

Oven ✓ ✓ ✓  ✓ ✓ ✓ ✓

Kitchen floor ✓ ✓ ✓  ✓ ✓ ✓ ✓

OMD 90 ✓ ✓ ✓  ✓ ✓ ✓ ✓

OM 33 ✓ ✓ ✓  ✓ ✓ ✓ ✓

OX 24 ✓ ✓ ✓  ✓ ✓ ✓ ✓

AV Gas ✓ ✓ ✓  ✓ ✓ ✓ ✓

Mo3 ✓ ✓ ✓  ✓ ✓ ✓ ✓

Mo4 ✓ ✓ ✓  ✓ ✓ ✓ ✓

Hotel 1 ✓ ✓ ✓  ✓ ✓ ✓ ✓

Hotel 2 ✓ ✓ ✓  ✓ ✓ ✓ ✓

LWO ✓ ✓ ✓  ✓ ✓ ✓ ✓

Dust ✓ ✓ ✓  ✓ ✓ ✓ ✓

Agent

93

3.3.3 Explosives

3.3.3.1 Method Development

The system was first tested with three explosives, TNT, EDGN and NG. EDGN and NG could not be

observed under these conditions, but TNT could be observed, Figure 28.

Figure 28 1 ppm of TNT using the valve GCxGC system. The x- axis shows the primary retention time in
seconds and the y-axis shows the secondary retention time in seconds. The TNT peak is circled in red.

 Although TNT produced an intense peak, it suffered from wrapping in the second dimension and

low sensitivity. This necessitated a redesign of the system and silcosteel sample loops were

purchased along with silcosteel zero dead volume unions. This was to try to reduce the number of

possible active surfaces that could be causing explosives to either not be detected or to wrap in the

second dimension.

3.3.3.1.1 Changing Inlet Temperature

The method used for detection of CWAs was tested with explosives to determine if a common

method could be used to detect all compounds. Commonly in the field several different detectors

are required for detection of both CWAs and explosives, so if one instrument and method could be

94

used this would prove beneficial. When the 8330b standard of explosives was analysed at 280 °C

streaks before the peaks were observed, Figure 29.

Figure 29 50 ppm of an 8330 b standard, the explosives of interest are circled in white but it can be seen that
there are dark blue streaks before each eluted compound. The dark blue streaks are speculated to be
thermal breakdown products of the explosives due to the high inlet temperature. The x- axis shows the
primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

In Figure 29 it is suspected that the dark blue streaks before each compound were break down

product of the explosive due to the higher temperature as this effect is greatly decreased with a

drop in the inlet temperature. This theory needs to be tested with a detector and a library that

would be able to identify the compounds not just detect. Due to the degradation effect, the method

for analysing explosives was changed to run the inlet at 175 °C, Figure 30, this provided a decrease in

the effect and a better signal to noise ratio (SNR).

95

Figure 30 50 ppm of 8330b explosive standard analysed at 175 ᵒC. Explosives are detected (circled in white)
but there is no degradation product present before the compounds. The x- axis shows the primary retention
time in seconds and the y-axis shows the secondary retention time in seconds.

Interestingly, comparing Figure 29 and Figure 30, towards the end of the chromatogram in Figure 29,

there are three bands between 30 – 32 minutes that are not present in Figure 30. These peaks relate

to 2-amino-4,6-dinitrotoluene, 3,5-dinitroaniline and 2-amino-4,6-dinitrotoluene respectively. They

are not modulated as they probably interact with the valve or with one of the phases too strongly so

appear to bleed through in the chromatography. At the lower temperature they are not observed,

which implies that to detect these compounds a re-design of the system would need to take place to

elute these compounds. However, they are not currently of military interest so no further work to

elute them took place.

3.3.3.2 Explosive Calibration

The final method used to determine the limits of detection is detailed in section 3.2.6. Standards of

explosives were made in acetonitrile between 50 – 0.5 µg/mL and repeated three times. The limit of

detection has been calculated using a 97.5 % confidence interval using the t-test value multiplied by

the standard deviation for the lowest recorded concentration. The limit of detection is ten times the

standard deviation of the lowest recorded concentration. The results are shown in Table 20. It

should be noted that RDX, HMX, NG and EDGN could not be detected in the system. This could be

due to their high activity with active surfaces or sensitivity to heat i.e. they may be breaking down in

96

the inlet before detection can take place. It is also notable for the higher boiling point explosives;

that it became difficult to detect them by eye in the chromatogram as the concentration decreased.

This is likely to be due to their higher boiling point, so they may be sticking to an active surface in the

valve thus not reaching the detector.

Table 20 – Calibration of explosives detailing the limit of detection (LoD) and quantification (LoQ) based on
n=3

Compound
RT1 (min), RT2(sec) LOD (µg/mL) LOQ (µg/mL) R2

2-NT 14.04, 0.38 0.28 1.10 0.9954

3-NT 15.60, 0.61 0.41 1.32 0.9956

4-NT 16.40, 0.72 0.29 0.99 0.9962

1,3-DNB 16.86, 1.10 0.26 0.84 0.997

2,6-DNT 21.33, 2.19 0.05 2.71 0.9993

2,4-DNT 21.39, 1.02 0.78 1.91 0.9986

1,3,5-TNB 22.77, 0.97 1.25 2.97 0.9997

2,4,6-TNT 25.32, 0.45 0.59 5.01 0.999

3.3.3.3 Detection of Explosives using Software

The GUI written above for the chemical warfare agents was modified to include explosives. The GUI

was tested with five samples of varying concentration. For each concentration the GUI could detect

the explosive and, more importantly, it could not find any CWAs meanings the explosives and CWAs

occupy different separation space, Figure 31 and Figure 32.

97

Figure 31 Detection function in GUI on a 50 ppm standard of the 8330 explosive mix

Figure 32 Identify function on a 50 ppm standard of explosives. It displays “not found” for each agent and
“found” followed by each explosive.

98

3.3.3.4 Detection of Explosives in Complex Matrices

Matrices of relevance to explosive detection were used to simulate environments that could cause

false alarms. In this instance as well as some of the matrices from previous sections, perfume was

also used as explosive detection often requires screening of a person. The hotel sample was also

collected during a military exercise at a hotel and contained interferents that could not be resolved

using one piece of equipment during the exercise. Explosives were spiked into each matrix and

injected using a 100:1 split producing a final concentration of 1 µg/mL, therefore 1 ng on column.

Table 21 details which explosives were detected in each matrix. An example chromatogram is shown

in Figure 33. All other chromatograms can be seen in Annex 3.

Figure 33 Perfume spiked with 1 ppm of 8330b explosive standard. The explosives detected are circled in
white. The x- axis shows the primary retention time in seconds and the y-axis shows the secondary retention
time in seconds.

Perfumes are a typical example of a possible interferant that could be found in aviation detection.

Most perfumes contain musks that can cause some difficulty for explosive detection. However, this

is compensated for in the chromatogram above and the explosives are identifiable in the complex

mixture.

99

Table 21 Table of matrices detailing which explosives could be detected using the method detailed in section
3.2. Green means detected and red means not detected.

As observed in Table 21, explosives are difficult to detect in these complex matrices thus false alarms

could be caused using this method. In the aim to produce a portable system that would not produce

false alarms, modifications to this system took place.

3.3.4 Secondary Oven

In the more commonly used, cryogenic two-dimensional gas chromatography; the secondary column

sits within a separate oven. This allows the compounds to be separated by polarity as the oven

emulates isothermal conditions thus helping to improve the chromatography in many cases. The

issues with a secondary column oven include; higher power requirements, slower run times and

slower turn around due to the second oven taking longer to cool. However, despite this a secondary

oven was built to test if it could improve separation and if it could then, whether it could decrease

false alarm rates and have fast methods.

3.3.4.1 Secondary Oven Design

The secondary oven design was based upon that used in the cryogenic work with a few exceptions.

High temperature insulation was fitted in to a rectangle of aluminium and pieces were drilled out to

help improve airflow and the column was coiled tightly and placed inside the oven, Figure 34. An

engineer at Porton Down, Jack Vincent, helped to build the system due to electrical hazard and

health and safety considerations.

2-NT 3-NT 4-NT 1,3-DNB 2,6-DNT 2,4-DNT 1,3,5-TNB 2,4,6-TNT

Perfume ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PTN aerosol ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hotel 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sahara ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Aviation fuel        

Diesel  ✓      

Gasoline     ✓ ✓ ✓ ✓

Light Weight Oil ✓ ✓ ✓ ✓    ✓

OX-24 ✓ ✓ ✓ ✓    

Compound

M
at

ri
x

100

Figure 34 Inside of secondary oven, the insulation has had pieces removed to help with airflow and 8 meters
of column has been tightly coiled and placed inside.

This system had a lid, again covered in insulation, that had similar pieces removed. Heater wire was

coiled and placed inside the holes where the insulation previously was. A thermocouple was placed

in the middle of the oven to ensure even heating and finally this was placed inside the GC, Figure 35.

The oven was connected to the GC using AUX 2 and controlled using the Chemstation software.

Figure 35 Secondary oven placed inside the oven. The green and white wire is the thermocouple placed in
the centre of the oven. The large white wires continue to outside the GC and connect to the AUX 2 port.

Diesel was analysed using the system using the same method but with the secondary oven placed at

a 40 °C offset and a difference in the chromatography can be seen quite clearly, Figure 36.

101

Diesel without
secondary oven

Diesel with secondary
oven

Figure 36 Diesel run using the same method, on the top without a secondary oven and on the bottom with a
secondary oven and a 40 °C offset. The x- axis shows the primary retention time in seconds and the y-axis
shows the secondary retention time in seconds.

In Figure 36 it can be observed that the secondary oven allows the alkane series to not wrap around,

this can be observed as they are almost in a vertical line across the chromatogram instead of three

diagonal lines, thus providing the possibility for separation of this type of matrix from explosives.

Further method development took place to improve the separation and speed of separation for

analysis of complex matrices.

3.3.4.2 CWA Analysis in Complex Matrices

The matrices listed in section 3.2.3 were spiked with a known concentration of: GB, GD, GA, H, GF,

VX and VM. The samples were spiked to produce a final concentration of 6 ng on column to enhance

the possibility of detection for this investigation. The results are detailed below in Table 22 and an

example chromatogram is shown in Figure 37. Other chromatograms can be found in Annex 2.

102

Table 22 Matrices Spiked with CWA. A tick means that the agent could be detected and a cross means that it
could not be detected

 Agent

 GB GD1 GD2 GA H GF VM VX

M
at

ri
x

Aerosol
sample 3

       

Clothing        

Inside Oven        

Hotel        

Gasoline        

LWO        

AV Fuel        

Diesel        

Sahara Dust        

In this instance the detection using the secondary oven is worse for the detection of CWAs in

complex matrices (Table 22 cf. Table 19). The GC method was modified to create a fast separation

method, in an attempt to counteract the increased total run time caused by the secondary oven

having to cool. This had a secondary and expected effect of creating less separation space in the

chromatogram and thus making it harder to detect some of the agents of interest. Again, a non-

universal detector or another separation technique followed by a detector would help to

deconvolute the signal. An example of this would be ion mobility (IMS) as it contains a drift region

which would allow for further separation followed by a universal detector plate.

103

Figure 37 Chromatogram of Gasoline spiked with CWA nerve and blister standard. The x- axis shows the
primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 37 shows a chromatogram of gasoline spiked with a CWA standard containing both nerve and

blister agents. Gasoline contains a much lighter fragment of hydrocarbon species in comparison to a

matrix such as diesel, which makes it easier to detect the higher boiling point agents but more

difficult to detect the species that sit in the middle of the chromatogram as they have similar

retention times to the hydrocarbon species.

104

3.3.4.3 Secondary Oven for Explosives Detection

The matrices listed in section 3.2.3 were spiked with a known concentration of 8330b explosive

standard. This was analysed using GCxGC-FID and the secondary oven to try to improve detection in

complex matrices. The results are detailed below in Table 23 and the chromatograms can be found

in Annex 2.

Table 23 List of Matrices with Explosives that could be detected in the matrix. A tick indicates that it was
detected, and a cross indicates that it was not detected.

Compound

4-NT 1,3-DNB 2,6-DNT 2,4-DNT 1,3,5-TNB 2,4,6-TNT

M
at

ri
x

Perfume ✓ ✓ ✓ ✓ ✓ ✓

PTN aerosol ✓ ✓ ✓ ✓ ✓ ✓

Hotel 2 ✓ ✓ ✓ ✓ ✓ ✓

Sahara ✓ ✓ ✓ ✓ ✓ ✓

Aviation fuel      

Diesel      

Gasoline ✓ ✓ ✓ ✓ ✓ ✓

Light Weight
Oil

✓ ✓ ✓ ✓ ✓ ✓

Figure 38 Light weight oil (LWO) spiked with 8330b explosives standard. The explosives detected are
highlighted in white circles. The x- axis shows the primary retention time in seconds and the y-axis shows
the secondary retention time in seconds.

105

As can be observed in Figure 38 the explosives are in a different chromatographic region and are

easily detected in light weight oil. However, none of the explosives could be detected in diesel or

aviation fuel, Table 23. In this instance, the loss of chromatographic separation in the first

dimension, due to the decrease in run time caused by using a fast oven ramp, caused significant

overlap between the explosives and hydrocarbon species. Having a secondary oven, which should

have in theory improved the secondary separation, did not compensate this for this effect. However,

in stating that it was not improved for those two matrices, the separation was complete for all other

matrices in a much shorter time frame than without the secondary oven.

106

Chapter 4

Portable Valve Modulation Comprehensive Gas

Chromatography Flame Ionisation Detection for

the Analysis of Threat Materials

107

4 Portable Valve Modulation Comprehensive Gas

Chromatography

4.1 Introduction

Portable detection equipment is used by military and civilians to detect the presence of explosives or

CWAs.40, 49, 78-80 This has been explored in Chapter 3, however we shall highlight the main points of

interest again for this chapter.

The threat of CWAs and explosives is increasing rapidly. Some of the raw materials are easily

accessible, and the internet allows a platform to not only share notes but detailed videos on how to

make materials that are life threatening. Therefore, as highlighted before, there is a need to be able

to detect and identify these materials in the field. The current in-service detection equipment must

meet regulations set up by users and subject matter experts in the area and is generally broken

down into a few techniques; IMS/DMS, Raman, IR, GC and MS. These were explored in Chapter 3.

4.1.1 Portable Gas Chromatography

GC-MS and GC-IMS are also used for field measurements of explosives and CWAs. Normally the size

of a mass spectrometer would mean that it is not considered as a field portable piece of equipment

but there are some examples where research has been undertaken to vastly reduce the size of the

MS. A key example in detection would be the Guardion, this uses a low thermal mass column

connected to a miniaturized toroidal ion trap.81

4.1.2 Portable Two Dimensional Gas Chromatography (GCxGC)

Comprehensive two dimensional gas chromatography (GCxGC) has already demonstrated that it has

high value in the analytical laboratory for forensic sample analysis, as it has highly increased peak

capacity in comparison to GC and the ability to resolve exceedingly complex matrices with minimal

sample preparation.

108

However, conventional GCxGC require cryogenics, typically liquid nitrogen, which makes then non-

portable. They also require long analysis times to provide the best results, typically 45 – 60 minutes.

This is an issue if a tight turnaround is required. There is a need to be able to analyse complex

samples in the field with minimal false alarm rates. If GCxGC is made portable and more accessible,

then there is the possibility of using it in a field environment. An example of this in the literature is

research undertaken by W.R. Collin et al, J. Lee et al. and S.Edwards et al. 95-98

In all of the literature it is clear that it is very difficult to achieve even heating, no cold spots, and the

correct balance of flows. Each group took a different engineering approach to the problem, but all

had very similar issues with heating and cold spots. A few papers demonstrated that the VOCs

measured could be separated despite the engineering problems. However, none of them offer a full

solution.

This chapter explores the possibility of producing a portable GCxGC for military operation and threat

materials. This research uses a 6-port afp valve similar to that of S.Edwards and uses very similar

pressures to try to achieve the correct flows required for using a valve i.e. higher pressure in the

primary and lower pressure in the secondary.

109

4.2 Experimental

4.2.1 Fast GCxGC

4.2.1.1 Sample Preparation

A 1000 ppm 8330 explosive standard (Restek) was diluted in ethyl acetate (Sigma Aldrich) to achieve

a 10 ppm standard and a 1 ppm standard. Explosives present in 8330 standard can be seen in Table

24.

Table 24 8330 standard components

Explosive

4-amino-2,6-dinitrotoluene

2-amino-4,6-dinitrotoluene

1,3,5-trinitrobenzene

TNT

Tetryl

Nitrobenzene

RDX

HMX

2-nitrotoluene

3-nitrotoluene

4-nitrotoluene

1,3-dinitrobenze

2,6-dinitrotoluene

2,4-dinitrotoluene

110

4.2.1.2 GCxGC-TOF Parameters

4.2.1.2.1 Starting Conditions

GCxGC-TOF analysis was performed using a 6890B GC from Agilent technologies fitted with a Leco

thermal modulator system interfaced to an Agilent TOF-MS. The primary GC column was a BX5 (30 m

x 0.25 mm x 0.25 µm). The secondary GC column was a BX50 (4 m x 0.2 mm x 0.2 µm). The primary

oven was programmed from 40 °C (2 min) at 7 °C/min to 270 °C (5 min). The secondary oven was

programmed from 70 °C (2 min) at 7 °C/min to 300 °C (5 min). A dual jet liquid nitrogen modulation

system was used with a 5 second modulation period. Helium carrier gas was used at a flow rate of 1

mL/min. 1 µL of sample was injected using a Gerstal auto-sampler in splitless mode.

4.2.2 Portable GC

A portable GC was designed using a block of aluminium hollowed out and surrounded by a heater

band, Figure 39. The heater band was controlled using an OMEGA PID which provides its own

software to allow for calibration of the heating.

Figure 39 Picture of the aluminium holder with the column wound inside.

4.2.2.1 Portable GC Method

GC analysis was performed using a 6890B GC from Agilent technologies fitted with a portable GC as

described above fitted to a FID. The GC column was a BX5 (15 m x 0.25 mm x 0.25 µm). The oven

was programmed to hold under isothermal conditions at 140 °C. The oven the system was placed in

111

was held at 100 °C. Helium carrier gas was used at a flow rate of 1.5 mL/min. 1 µL of sample was

injected using an Agilent auto-sampler in splitless mode.

4.2.3 Portable GCxGC

A portable GCxGC was designed based on the portable GC and is described in detail below. The

system was capable of controlling all heating zones but required an external injector and detector.

A series of experiments were designed to test the code and the chromatography. Note that the

code was written by Timothy Ayers and modified by the author as and when bugs in the software

were detected.

4.2.3.1 GCxGC Method Development

Method 1:

The primary GC column was a BX5 (17 m x 0.18 mm x 0.36 µm). The secondary GC column was a

BX50 (6 m x 0.18 mm x 0.2 µm). The primary oven was programmed from 40 °C at 10 °C/min to 250

°C (5 min). The secondary oven was programmed from 60 °C at 10 °C/min to 270 °C (5 min). A

diaphragm valve was used with a 5 second modulation period. Helium carrier gas was used at a flow

rate of 1.5 mL/min. 1 µL of sample was injected using an Agilent autosampler in splitless mode.

Method 2:

The primary GC column was a BX5 (17 m x 0.18 mm x 0.36 µm). The secondary GC column was a

BX50 (6 m x 0.18 mm x 0.2 µm). The primary oven was programmed from 55 °C at 14 °C/min to 240

°C (5 min). The secondary oven was programmed from 75 °C at 14 °C/min to 260 °C (5 min). A

diaphragm valve was used with a 5 second modulation period, 4700 ms modulation with 300 ms

injection. Helium carrier gas was used at a flow rate of 1.5 mL/min. 1 µL of sample was injected using

an Agilent autosampler in splitless mode.

Method 3:

Same as above but the front inlet was changed to 50 psi

112

Method 4:

Same as above but with a ramp rate of 6 °C/min.

Method 5:

Same as above but the primary flow was 60 psi and the secondary was 30 psi.

113

4.3 Results and Discussion

4.3.1 Fast GCxGC

GCxGC is excellent for an analytical laboratory environment where time constraints are not

necessarily a problem. Therefore, a fast GCxGC method with limited loss of resolution is desired. As

described above a series of methods were tested to increase the speed of analysis to determine if it

is possible with limited loss of information. The “gold” standard of GCxGC was used as a starting

point for development of the fast method.

Figure 40 shows the first attempt at trying to decrease the analysis time. The separation was

completed in 15 minutes for the 8330b standard and was carried out by increasing the oven ramp. It

was clear that the separation efficiency has decreased and that there was less clear definition

between each explosive especially the isomers, Figure 40.

Figure 40 “fast GCxGC” a fast increase in the oven temperature by setting a ramp of 20 °C/min. The
separation between these compounds has been reduced both in the 1st and 2nd dimension. The x- axis shows
the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

In Figure 41 the separation takes place in less than 6 minutes and it is an example of where

separation efficiency has decreased such that explosives are co-eluting with one another.

114

Figure 41 “fast GCxGC” a fast increase in the oven temperature by setting a ramp of 40 °C/min. The
separation between these compounds has been reduced both in the 1st and 2nd dimension. The x- axis shows
the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Further development on creating a short method was carried out using a GCxGC – NCD and a more

methodical approach to decreasing analysis times was undertaken with the NCD.

Method 1: The primary GC column was a BX5 (30 m x 0.32 mm x 0.25 µm). The secondary GC column

was a BX50 (3 m x 0.1 mm x 0.1 µm). The primary oven was programmed from 40 °C (2 min) at 7

°C/min to 270 °C (5 min). The secondary oven was programmed from 70 °C (2 min) at 7 °C/min to

300 °C (5 min). A dual jet liquid nitrogen modulation system was used with a 5 second modulation

period. Helium carrier gas was used at a flow rate of 1 mL/min. 1 µL of sample was injected using a

Gerstal auto-sampler in splitless mode.

Using method 1 all explosives were detected in less than 34 minutes with good separation between

the peaks and only a slight shift in position in the second dimension, this can be observed in Figure

42.

115

Figure 42 1 ppm of the 8330 standard analysed using GCxGC-NCD. Only nitrogen containing species are
observed using NCD. The peaks are sharp and there is limited wrapping. The x- axis shows the primary
retention time in seconds and the y-axis shows the secondary retention time in seconds.

Method 2: The primary GC column was a BX5 (30 m x 0.32 mm x 0.25 µm). The secondary GC column

was a BX50 (3 m x 0.1 mm x 0.1 µm). The primary oven was programmed from 40 °C (2 min) at 10

°C/min to 270 °C (5 min). The secondary oven was programmed from 70 °C (2 min) at 10 °C/min to

300 °C (min). A dual jet liquid nitrogen modulation system was used with a 5 second modulation

period. Helium carrier gas was used at a flow rate of 1.4 mL/min. 1 µL of sample was injected using a

Gerstal auto-sampler in splitless mode.

Using method 2 the same standard was analysed, and the analysis was completed in less than 25

minutes. This can be observed in Figure 43. It is clear that the peaks were not as sharp and started to

become wider in the second dimension.

116

Figure 43 1 ppm of the 8330 standard analysed using method 2. The x- axis shows the primary retention
time in seconds and the y-axis shows the secondary retention time in seconds.

The Figures above demonstrate that it is possible to get the analysis time below 6 minutes, but this is

at the expense of peak shape and clarity, as by just simply ramping the oven there is a significant

drop in separation efficiency. Taking a more targeted approach and changing column dimensions

allowed for a 25 minute method to be reach that still has excellent separation and good peak shape.

Further research needs to be carried out to continue decreasing the analysis time this will include,

amongst other things, decreasing the length of column or reducing column ID and increasing flow

rates along with a suitable oven ramp rate.

Although 25 minutes is a significant reduction in time, there is still a need for a fast and portable

system. Development has taken place to produce a prototype system to allow for portable

detection.

117

4.3.2 Portable GC

In order to produce a “portable” system several components of the GC need to be vastly reduced in

size. To try to achieve that, a miniature GC has been developed with the University of York that uses

a band heater to heat the column up to 300 ᵒC in less than 120 seconds. The system itself is

approximately the size of a roll of duct tape and contains 15 m of column, with the possibility of

containing 25 m of column if required.

The GC was only tested under isothermal conditions holding the system at 140 °C, with the outer

oven at 100 °C and using FID for detection. 1 ppm of the 8330 standard, described earlier, was

analysed using the system and some of the analytes that can be detected with FID were separated

out in around 5 minutes with relatively good peak shape, Figure 44. As the run reaches 10 minutes

the peak shape is poor, this could be due to the isothermal conditions and the flow rates.

Figure 44 1 ppm of the 8330 standard separated out under isothermal conditions using the micro GC

The system was using the external oven to heat the transfer lines between the inlet and the FID.

Heated transfer lines were developed using 1/16 inch copper wrapped in heater wire and Kapton

tape. This was then connected to a power supply and set to produce the required temperatures by

varying the voltage, the temperature was measured by using an external thermocouple.

118

Figure 45 details the results for the 1 ppm of the 8330 standard using the same GC method as before

but using the new heated transfer lines.

Figure 45 1 ppm of the 8330 standard separated out under isothermal conditions using the micro GC and
heated transfer lines.

Figure 45’s chromatography is not as good as that of Figure 44, however, this could be due to

uneven heating of the transfer lines, variability of the pressure in the GC oven between the two runs

or that 80 °C was not the correct temperature for the transfer line. The transfer lines are now

capable of reaching 200 degrees, which should reduce the possibility of a cold spot.

Heat imaging of the transfer lines was undertaken to determine if the heating is even or not, Figure

46.

119

Figure 46 Heat image of transfer lines and valve. The colour scale is presented on the right hand side and
ranges from 18.9 to 97.9 degrees

It is clear in Figure 46 that the top transfer line which runs to the detector has hot spots within the

system, represented by the white areas and that is has cold areas represented by the yellow. Re

wrapping of the heater wire around the transfer line was carried out to try to produce more even

heating, Figure 47.

Figure 47 Heat image of transfer lines. The colour scale is presented on the right hand side and ranges from
19.6 to 95.2 degrees.

There is a difference in the final temperature between Figure 46 and Figure 47 but the error on the

heat imager accounts for this difference. In Figure 47, there does appear to be more even heating

120

but there are still two hot spots demonstrated by the white colour. It is also notable that the

connection into the box is only warm and could act as a cold spot. To try to achieve even heating the

system is allowed to equilibrate for 30 minutes before testing commences.

4.3.2.1 Portable GC-FID CWA Data

Five chemical agents were tested on the system separately to determine if they could travel through

the transfer lines and the columns. The resulting chromatograms can be observed in Table 25. It is

clear that there is a shoulder appearing after each peak, which is indicative of poor chromatography

likely due to column positioning or column degradation. The agents were introduced at a relatively

high concentration of 50 µg/mL but this concentration is not normally expected to have a large

tailing effect. However, the system was held under isothermal conditions at 125 ᵒC with the transfer

lines at 60 ᵒC and 130 ᵒC respectively which could have caused an issue or there could have been a

problem with the inlet.

121

Table 25 Results table of chemical agents in portable GC

Mustard (HD)

GF

GD

GB

122

GA

4.3.3 Portable GCxGC

4.3.3.1 Design

Using the micro GC as the building block a GCxGC system was designed in order to fill the

requirement for a fully portable system. The entire system in its most basic design is 12 cm x 25 cm x

22 cm, a schematic of the system is shown in Figure 48.

Figure 48 Schematic of the micro GCxGC

123

Working closely with the University of York allowed for the development of a man-portable if not

transportable GCxGC system. The University provided the Engineering and Electronic know-how,

Timothy Ayers helped in the build and electronic coding. The “fully” portable system required the

design of a portable small GC unit, using a heater band to heat the column (as described above). The

GCxGC system used two of these ovens stacked one on top of the other. There were insulated ports

through to the valve to allow the columns to pass through with minimal temperature change. The

valve itself was heated to a constant temperature. In developing the prototype, there was not

enough time to place an inlet and detector into the system so heated transfer lines (as described

above) are used to allow the column to pass between areas. Control of the system used Arduino

Nano’s to keep the cost low. This was arranged in a master/slave system to control all of the

temperatures. The final product and set up can be seen in Figure 49.

Figure 49 From left to right- Final GCxGC unit WxDxH: 34x20x36 cm, the Arduino Nano set up using a master
at the bottom with a screen to allow for a friendly interface and the 5 “slaves” at the top and finally the two
GC columns and ovens.

The idea was not only to produce a fast and small system but to keep the costs low. There were

some compromises in order to keep the costs low e.g. using non-ideal materials, a small screen, and

bulky insulation. The system itself was slightly larger than the original design but this is mostly due to

using very bulky insulation. In a future design, more thought would be put into the structure itself

and insulation requirements.

124

In terms of heating the code was capable of controlling the two ovens with an offset with relatively

high precision. There was slight oscillation around the ramping temperature but this was to be

expected due to how power was supplied to the system. Otherwise it was able to ramp very quickly

in temperature and the main issue was attempting to cool the ovens quick enough.

4.3.3.2 Heating

Observing the ovens in more detail, thermal imaging was undertaken to observe the valve and the

small ovens. There were some issues with this imaging as the ovens were slightly reflective, but the

images were simply to provide an overview of the evenness of the heating, Figure 50.

Figure 50 Left represents the valve heating and the connectors into the valve. Right is the inner of the small
ovens.

Starting with the valve in Figure 50, it is clear that the base of the valve is heating up significantly and

the top of the valve is warm but the outer connections for the column are green suggesting that they

are cold and that heat is not being circulated around or creating an oven. If the system is left to

equilibrate for 30 minutes or more, the outer connections reach 100 + degrees. On the right in

Figure 50 it is clear that the insides of the oven are heating up very quickly and little heat is

dissipating to the edges, the oven was more difficult to image as it was metal and not covered so it

has not been imaged very well. Again, there does appear to be hot spots represented by the white

areas.

125

4.3.3.3 Complications

As with any prototype there have been a few modifications that have had to take place during

testing as the system was not working correctly. This has included;

• Modification of the controlling software – the system would attempt to cool and heat at the

same time after one run. This was simply a few lines of code that required changing – see

Annex 2 for further details of code and the modified lines.

• The secondary oven column had a hair line fracture from when it was potted into the holder.

This was replaced with a new line of column.

• The internal connectors were too large and causing dead volume, smaller zero volume

connectors were placed into the system, these are also deactivated.

• Zero dead-volume unions were replaced with silco treated unions so that activate species

can be tested in the system

• Cold spots present at the inlet and outlet connections – the connections were insulated

Even with these modifications cold spots/active surfaces were present in the system. This was

observed with the following samples.

The alkane standard of C7 to C40 was analysed and only four of the alkanes could be observed.

These are widely spread in the second dimension and wrapping. This commonly occurs when a cold

spot is present or when an active surface is present. This is demonstrated in Figure 51.

126

Figure 51 Chromatogram of C7 to C30 alkane standard. Only three of the compounds can be observed –
these are broad and starting to wrap. The x- axis shows the primary retention time in seconds and the y-axis
shows the secondary retention time in seconds.

From this data, the method was developed to allow further compounds to elute through the system

and using a series of methods listed in the experimental (all data included in the Annex). To produce

the final method, method 5, which allowed for separation of five alkanes, Figure 52, but the higher

boiling species were still not making it through the system as they were either getting trapped as

cold spots or there was a leak in the valve.

Figure 52 Separation of five of the alkanes in the C7-C30 standard. The x- axis shows the primary retention
time in seconds and the y-axis shows the secondary retention time in seconds.

127

The data presented above describes that there was an issue in the system likely related to cold spots

being present or hot spots or another issue. The system was redesigned in an attempt to counter act

this problem. The results below describe the design change and the results of the changes.

4.3.4 Second Heater

During the cycling of the instrument, the temperature inside the area where the valve sits was

measured. The temperature sits at 98 degrees and does not increase over time. This could explain

why the larger molecules are not being separated.

A secondary heater was added into this region, Figure 53, the heater is controlled by an external

OMEGA fast control PID (see Annex 3 for a picture of the system). The design of the green metal

observed in Figure 53 is to help with heat dispersion in the region. The valve heater remains

functional at 250 degrees and the secondary heater was set to 200 degrees for testing.

Figure 53 Area inside the valve oven. The green metal piece is the secondary heater that has been added to
try to keep the area hot to allow compounds to pass through the system.

128

The system was run using the same method conditions as previously stated. The only change to the

system was the sample loop, going from 25 µl to 10 µl due to availability of sample loops. This

required a change in the modulation time to 1 second.

A C7-C30 standard was analysed using the system, Figure 54, a few more species were detected

giving a total of 7 species detected. This result is also repeatable and the chromatograms are in

Annex 3.

Figure 54 Chromatogram of C7 – C30 at 1 µg/mL analysed on the micro GCxGC unit with a secondary heater
held at 200 degrees

As can be observed in Figure 54 there is some 2D separation and the peaks are wrapping. The

system could still have a cold spot somewhere or an active surface, which is causing the loss of the

rest of the compounds in the sample. To continue to test the system, a C7-C30 standard spiked with

aromatics species was analysed, Figure 55.

129

Figure 55 Chromatogram of C7 – C30 at 1 µg/mL spiked with aromatic species analysed on the micro GCxGC
unit with a secondary heater held at 200 degrees

Figure 55 and Figure 54 are almost identical suggesting that the larger less volatile aromatics are not

making it through the system. It is likely that they are getting stuck on a cold and or active surface or

that the flows are still not correctly balanced. However, this result was repeatable, and the other

chromatograms can be found in Annex 3.

4.3.5 Conclusions

This work has allowed the portable GCxGC system to be developed and tested. During this process

issues have been found in relation to the controlling code and simple issues such as hairline fractures

in the column. These have been corrected but the largest issue that still remains is the heating. An

engineering approach needs to be taken to the project to find and correct the cold spots.

130

Chapter 5

Conclusions

131

5 Conclusions and Future Recommendations

Comprehensive gas chromatography has demonstrated that it can be highly beneficial to the

defence sector throughout this research. A new capability for detection of threat materials has been

developed for analysis in complex mixtures and this thesis has demonstrated that it could become

field portable.

The research detailed in this thesis can be broken down into two distinct areas of defence

applications; defence intelligence analysis and in-field analysis. The following sections, 5.1 and 5.2

provide a summary to each area and the future recommendations of research.

132

5.1 Defence Intelligence Analysis

5.1.1 Conclusion

Within the defence intelligence networks, there is an ongoing requirement to be able to obtain

further information from a sample that has returned from areas of interest. Standard practice

dictates that the sample will be analysed to determine which, if any, explosive or CWA has been

used and what quantity can be found at the site in question. If we take a post-blast environment, the

samples collected are in highly complex matrices. These matrices can contain anything from oils,

fuels, blood and dust to deposited particulate from cars and weather events. The process for

analysing these samples requires the suspected material of interest to be removed from the matrix.

This is commonly performed using solid phase extraction (SPE). The problem with SPE is that

depending on the chemistry of the target analyte, mass can be lost during the process (10 % return)

or in some cases the target is removed completely. This is not a problem in the case of CWA

detection, as they are not naturally found in the environment. However, at some locations there is a

low concentration of explosives present which means that the significant detection level must be set

above this to determine that an explosive has been used and was not present in that environment in

the first instance.

This research has used cryogenic GCxGC-TOF-MS to analyse explosives and CWAs in representative

matrices for operations such as a post-blast event. The samples required no clean up but a small split

was used on the inlet to reduce contamination in the system. The technique proved highly useful in

analysing these samples without the need for cleaning the samples, and picogram detection levels

have been achieved.

The GCxGC-TOF-MS provides four dimensions of data and high separation, which means that not

only can the analyte of interest be determined but it is also possible to identify other compounds

within that matrix that could provide other evidential value. For example, if the sample is collected

133

from a road, it is possible to determine if diesel, petrol or other fuels are present; if an accelerant is

present this would also be identifiable thus providing further evidence for the investigation.

The methods presented here could provide simply a pre-screening device or evidential detection and

identification. There are obvious drawbacks using this technique: it is slow, requires cryogenics, and

the sample must be split to avoid high levels of contamination reaching the detector.

5.1.2 Future Recommendations

The research into using GCxGC-TOF-MS for defence purposes has not previously been explored.

Future work should look to not only run samples that have returned from operations and other

urgent requirements but to begin to research into using headspace analysis to obtain different

information from the sample.

Drug analysis should also be explored as it has already been demonstrated within the literature that

GCxGC-TOF-MS can provide further detail on drug composition compared to lower resolution

techniques such as GC-MS. Therefore, it should be possible to obtain information that would aid the

criminal justice system.

The technique should also be validated under UKAS conditions to allow for the analysis of

operational samples as it would provide orthogonal data to data often collected.

134

5.2 In-Field Analysis

5.2.1 Conclusions

When an attack has occurred using explosive or CWAs there are several different responses that

take place. Only two are reviewed during this work; firstly, that samples are returned to an analytical

laboratory for testing to provide evidence for the defence network and criminal justice system and

secondly is the response of service personnel in the field i.e. how to respond to the hazard.

An attack taking place is not the only time that service personnel may be required to undertake

chemical analysis in the field. If they are on an operation and discover an area of interest, for

example a clandestine laboratory, samples are taken and sent back for analysis. In the meantime,

the personnel must decide how to proceed and what chemical hazards are present. GCxGC-FID could

provide a portable system that could be used for analysis in the field alongside samples sent back for

analysis. It also provides the possibility of being able to analyse samples that may not make it back to

the support base.

In this thesis research, has been undertaken looking at a modified Agilent 6890 and a prototype man

portable system. The valve system demonstrated in chapter 3 is compared with the cryogenic

system for the detection of explosives in Table 26 (a similar trend to that seen in Table 26 also exists

for CWA detection). It is clear in the table that there is loss of sensitivity moving from the cryogenic

system to the valve system. However, the valve system is more likely to be utilised in an area where

a higher concentration of explosives may be present and so the loss of sensitivity may not be a

problem.

135

Table 26 Comparison of the LOD for explosives in the valve and the cryogenic system

Compound LOD
(µg/mL)

Valve

LOD
(µg/mL)

Cryogenic

2-nitrotoluene 0.28 0.0059

3-nitrotoluene 0.41 0.0081

4-nitrotoluene 0.29 0.006

1,3-dinitrobenzene 0.26 0.015

2,6-dinitrotoluene 0.05

2,4-dinitrotoluene 0.78 0.28

1,3,5-
trinitrobenzene

1.25 0.012

2,4,6,-
trinitrotoluene

0.59 0.021

Tetryl n/a 0.47

Nitrobenzene n/a 0.24

4-amino-2,6-
dinitrotoluene

n/a 0.083

2-amino-4,6-
dinitrotoluene

n/a 0.073

The modified 6890 GC to a GCxGC-FID has shown significant promise that it is capable of detecting

most compounds of interest to defence, with a few explosives as exceptions due to their chemical

activity in the valve, Table 26. Explosives such as TNT have a relatively high boiling point and they

will “stick” to active surfaces such as stainless steel and any cold spots. During this research, TNT

could only be detected in the valve above 0.59 µg/mL below this concentration no peak could be

seen for TNT. Other higher boiling point explosives wrapped in the secondary dimension and were

only detectable at high concentrations (above 5 µg/mL). This suggests that active surfaces are

present in the valve and when a high enough concentration is analysed on the system, the active

surfaces are filled, and some material is able to pass through and be detected. This research did

explore the changing the temperature of the inlet to reduce break down of the lower volatility

explosives successfully and the use of silcosteel coating to reduce the activity in the valve. The

136

silcosteel coating provided a minor improvement but it still requires further investigation into any

possible active sites on the diaphragm.

In comparison, all CWAs were detectable using the valve except agent T that was present but due to

its high boiling point it wrapped in the secondary dimension and was not detectable at lower

concentrations due to its affinity for active surfaces.

A GUI was developed using Matlab which enables non-scientific users to determine firstly if an

explosive or CWA is present and secondly what agent/explosive is present as each one occupies its

own separation space. If the method for analysis is modified or if the column lengths are reduced,

the GUI model will need to be modified as it is based on bounding boxes around the area where the

peak is detected for the analyte of interest (based on a minimum of 5 repeat spectra).

The next stage in building a field portable system was to take the lessons learnt during the

production of the 6890 GCxGC-FID system and apply them to build a man-portable system. A

prototype portable system was developed and tested in two stages.

The first stage was to make a small GC oven. This was completed using a small heater band wrapped

around a circular piece of stainless steel that had been designed to house a column. This design was

very successful and could analyse CWAs quickly with good peak shape.

Taking this design, a full GCxGC system was built. This was more problematic to build as there are

two independent ovens for the GC columns and a secondary oven to house the valve so that is it is

not cooled in between runs. When testing the system with a hydrocarbon standard of C7 to C30 only

the first seven hydrocarbon species were detected. They were also offset from one another which

would suggest that either the secondary oven was not providing an isothermal separation or that

the flows were slightly unbalanced for the valve. The flows were investigated by modifying the

primary and secondary flows but a better method could not be achieved, suggesting that there is a

secondary effect taking place. The testing also demonstrated that cold spots must be present in the

137

system as only the first seven hydrocarbons were detected. A secondary heater was added to the

valve region and this did slightly improve detection but for further improvements a redesign of the

system would be required.

5.2.2 Future Recommendations

Further research should be undertaken to improve the man portable system for field analysis.

Hydrogen fuel cells could be used to power the system and research should take place to determine

if, similar to the Thermo EGIS defender, the system could run off a scrubbed air pump instead of

helium. This would help to produce a fully man portable system that does not need mains power or

a cylinder of helium. Engineers should also re-view the design to determine where weight could be

removed to make the system much lighter. In order to address the cold spots, a thermal imaging

camera should be used to record each of the chambers while the system is running to firstly

determine where the cold spots are. Once they have been located, heating wire or cartridges should

be used to increase the heating in those areas. If the cold spots cannot be located, a redesign of the

system should take place where everything, columns and valve, are in one box. The system should

run isothermally with different isothermal methods for different compounds of interest.

138

139

Annex 1

I. CWA calibration data FID

It should be noted that if numbers are missing in the tables, the agent could not be detected at that

concentration for the repeat. This applies to all data in this section

Table 27 Mustard (H) calibration data

Concentration
(µg/mL)

1 2 3 4 5 Average Stdev Rsd
(%)

0.50 1989310 4970072 2195040 1570547 1398491 2424692 1458073 60

0.75 1756688 2237238 1515638 3550024 4619171 2735752 1313970 48

1.00 2664467 3446074 3413933 3240689 4508933 3454819 667722.3 19

2.50 10197362 9100383 10512311 10657700 10033828 10100317 611171.3 6

5.00 18337972 21637753 23988539 27155093 31792900 24582451 5163007 21

Table 28 HN3 calibration data

Conc
(µg/mL)

1 2 3 4 5 Average Stdev Rsd
(%)

0.50 1712205 1650289 2564898 3500483 3536582 2592891 919125 35

0.75 3211495 3433294 3887844 5132944 6433392 4419794 1349009 31

1.00 4074278 5658000 4055751 6550478 6685367 5404775 1285181 24

2.50 14200744 14326077 14800745 14880850 14119352 14465554 351517 2

5.00 25536327 31050658 34378609 38985550 46116640 35213557 7822736 22

140

Table 29 Mustard T (T) calibration data

Conc
(µg/mL)

1 2 3 4 5 Average Stdev Rsd
(%)

0.50

289991 302359 136114 242821 92618 38

0.75 180548 232101 1412996 941393 1515343 856476 632011 74

1.00 500849 778220 393808 1360628 1341184 874938 456635 52

2.50 792876 7697876 8501917 9796774 10379311 7433751 3859150 52

5.00 6642573 21173790 25166768 28596496 35087040 23333333 10635519 46

Table 30 GB calibration data

Conc
(µg/mL)

1 2 3 4 Average Stdev Rsd (%)

0.20

0 0 0

0.50 208569

220964 214767 8765 4

0.75 596009 604413 333336 322954 464178 157172 34

1.00 1470155 1758111 760886 1174862 1291004 426145 33

2.50 12316879 8564204 10365243 8628915 9968810 1773774 18

5.00 22180557 20023106 21433128 22055403 21423049 988877 5

Table 31 GD1 calibration data

Conc
(µg/mL)

1 2 3 4 Average Stdev Rsd (%)

0.20

0.50

158409 158409

0.75 323274 297661 324728 294927 310148 16047 5

1.00 700767 1115819 462104 841003 779923 273149 35

2.50 7527107 7328000 3736104 5561909 6038280 1770775 29

5.00 8048411 12461400 17872073 12841869 12805938 4017453 31

141

Table 32 GD 2 Calibration data

Conc
(µg/mL)

1 2 3 4 Average Stdev Rsd (%)

0.20

0.50

0.75

241985 241985

1.00 379755 1062295 283388 212536 484494 391250 81

2.50 8902764 3206255 5370280 4535674 5503743 2434938 44

5.00 13742518 9459751 20795124 10129501 13531724 5194789 38

Table 33 GA calibration data

Conc
(µg/mL)

1 2 3 4 Average Stdev Rsd (%)

0.20

0.50

161790 153427 259147 191455 58772 31

0.75 662398 970784 904884 1397374 983860 305908 31

1.00 975509 2327504 1160824 1936808 1600161 639157 40

2.50 7381814 7616220 5687949 6147707 6708423 936896 14

5.00 11544760 13131456 11017068 12809143 12125607 1007504 8

142

Table 34 GF calibration data

Conc
(µg/mL)

1 2 3 4 Average Stdev Rsd (%)

0.20

0.50 308498 499805 157217 501021 366635 166363 45

0.75 2449538 987946 1439034 1618749 1623817 611097 38

1.00 3458999 3651717 2908067 3589229 3402003 338936 10

2.50 15956108 13825468 12621506 10621227 13256077 2233046 17

5.00 21841778 22541993 21202542 23069444 22163939 814644 4

Table 35 VM calibration data

Conc
(µg/mL)

1 2 3 4 Average Stdev Rsd (%)

0.20

0.50

322588 159348 522320 334752 181791 54

0.75 1383057 1649801 2088581 1648669 1692527 292335 17

1.00 1548233 3600388 3314587 2829499 2823177 907572 32

2.50 12295952 12704615 10991747 7866248 10964641 2190941 20

5.00 17093944 19155730 17274924 20083471 18402017 1457940 8

143

Table 36 VX calibration data

Conc
(Vg/mL)

1 2 3 4 Average Stdev Rsd (%)

0.20

105839

105839

0.50 421471 1477120 1038892 982178 979915 270871 28

0.75 1081754 2931328 2334212 2345555 2173212 779240 36

1.00 2056507 5110474 4075658 4324246 3891721 1300549 33

2.50 20377073 17380672 15226068 12709923 16423434 3254300 20

5.00 23708446 24602699 23388587 25728724 24357114 1048879 4

144

II. GCxGC-TOF CWA Calibration Data

Table 37 GB calibration

 Repeats

Conc
(µg/mL)

1 2 3 Average
Standard
Deviation

Relative
sd (%)

1.00 2732486 3051328 4561112 3448309 976813 28

0.75 2200604 3666620 767895 2211706 1449394 66

0.50 2071692 2037094 1153151 1753979 520620 30

0.20 595986 934831 238906 589908 348002 59

0.10 349071 125434 237253 158135 67

0.05 60916 19349 40133 29392 73

Table 38 GD peak 1 calibration

 Repeats

Conc
(µg/mL)

1 2 3 Average
Standard
Deviation

Relative
sd (%)

1.00 2783385 4858943 4123077 3921802 1052316 27

0.75 1474198 2160731 2431353 2022094 493408 24

0.50 1289356 1587528 1732061 1536315 225752 15

0.20 728422 558330 665179 650644 85973 13

0.10 364482 246688 305585 83293 27

0.05 151038 171475 161257 14451 9

Table 39 GD peak 2 calibration

 Repeats

Conc
(µg/mL)

1 2 3 Average
Standard
Deviation

Relative
sd (%)

1.00 2162738 3798252 3515693 3158894 874188 28

0.75 1433870 1711596 2531343 1892270 570608 30

0.50 930023 1234279 1185439 1116580 163398 15

0.20 577066 455785 388340 473730 95634 20

0.10 281442 180426 230934 71429 31

0.05 80603 136592 108598 39590 36

145

Table 40 GA calibration

 Repeats

Conc
(µg/mL)

1 2 3 Average
Standard
Deviation

Relative
sd (%)

1.00 1379085 2878191 2274484 2177253 754268 35

0.75 726470 980109 668675 791751 165662 21

0.50 604960 706939 684958 665619 53670 8

0.20 283482 239966 409229 310892 87898 28

0.10 132602 174986 153794 29970 19

0.05 97963 126272 112118 20017 18

Table 41 GF calibration

 Repeats

Conc
(µg/mL)

1 2 3 Average
Standard
Deviation

Relative
sd (%)

1.00 5658733 6633578 6127021 6139777 487548 8

0.75 3382826 4836892 4736347 4318688 812038 19

0.50 2036708 3426543 2451937 2638396 713432 27

0.20 729461 1006511 1374803 1036925 323744 31

0.10 361072 238846 299959 86427 29

0.05 136950 150699 143825 9722 7

Table 42 VM calibration

 Repeats

Conc
(µg/mL)

1 2 3 Average
Standard
Deviation

Relative
sd (%)

1.00 636097 978820 903024 839314 180025 21

0.75 309151 507387 696048 504195 193468 38

0.50 233727 310733 382790 309083 74545 24

0.20 99759 55145 92138 82347 23864 29

0.10 55464 7500 31482 33916 108

0.05 14748 3616 9182 7872 86

146

Table 43 VX calibration

 Repeats

Conc
(µg/mL)

1 2 3 Average
Standard
Deviation

Relative
sd (%)

1.00 963574 1519889 1388170 1290544 290723 23

0.75 721694 864916 825008 803873 73913 9

0.50 556459 650913 979577 728983 222100 30

0.20 147256 180605 34974 120945 76297 63

0.10 41284 52192 46738 7713 17

0.05 16715 10233 13474 4583 34

Table 44 Mustard Calibration

Conc
(µg/mL)

1 2 3 4 5 Average
Standard
Deviation

Relative
sd (%)

1.00 4824294 4205734 3364057 2751485 2159964 3461107 1074558 31

0.75 3468863 2566022 2440129 1978491 1707818 2432265 675134 28

0.50 2161008 2036115 1665898 1376050 1057738 1659362 457125 28

0.20 922125 746116 689715 549593 282276 637965 239503 38

0.10 374371 226793 193378 204664 135370 226915 89084 39

Table 45 HN3 calibration

Repeats

Conc
(µg/mL)

1 2 3 4 5 Average
Standard
Deviation

Relative
sd (%)

1.00
365567

0
460195

1
336595

0
326951

4
254547

2
348771

1
744982 21

0.75
294258

9
225965

7
248329

0
208705

0
167404

3
228932

6
470304 21

0.50
182094

9
150870

3
172346

1
157741

2
129704

4
158551

4
202262 13

0.20 705021 804769 708142 606866 348901 634740 174441 27

0.10 313650 254346 227411 209483 174739 235926 52192 22

147

Table 46 T Calibration

 Repeats

Conc
(µg/mL)

1 2 3 4 5 Average
Standard
Deviation

Relative
sd (%)

1.00 734829 613892 628859 520475 514197 602450 90638 15

0.75 581356 443022 440566 397761 320318 436605 94923 22

0.50 330290 261357 301820 249964 224245 273535 42292 15

0.20 151250 97777 122366 136686 77352 117086 29710 25

148

III. GCxGC-TOF Matrix Chromatograms

Figure 56 Diesel spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 57 AV fuel spiked with a CWA nerve and blister agent standard at 2 µg/mL

149

Figure 58 LWO spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 59 Gasoline Spiked with a CWA nerve and blister agent standard at 2 µg/mL

150

Figure 60 Swab of a hotel room spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 61 Swab of inside an oven spiked with CWA standard of nerve agents

151

Figure 62 Swab of Clothing spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 63 Aerosol sample from Porton Down spiked with a CWA nerve and blister agent standard at 2 µg/mL

152

IV. CWA GCxGC-FID Matrix analysis

Figure 64 Aviation Fuel spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 65 A swab of clothing spiked with a CWA nerve and blister agent standard at 2 µg/mL

153

Figure 66 Diesel spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 67 Gasoline spiked with a CWA nerve and blister agent standard at 2 µg/mL

154

Figure 68 A swab of a hotel room spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 69 A swab of the inside of an oven spiked with a CWA nerve and blister agent standard at 2 µg/mL

155

Figure 70 Light weight oil used for weapons spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 71 Aerosol sample from PTN range spiked with a CWA nerve and blister agent standard at 2 µg/mL

156

Annex 2

Figure 72 GB calibration

Figure 73 GD peak 1 calibration

y = 3E+06x + 294037
R² = 0.9585

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

0.0 2.0 4.0 6.0 8.0 10.0 12.0

V
o

lu
m

e

Concentration µg/mL

y = 2E+06x + 479397
R² = 0.9525

0

5000000

10000000

15000000

20000000

25000000

0.0 2.0 4.0 6.0 8.0 10.0 12.0

V
o

lu
m

e

Concentration µg/mL

157

Figure 74 GD peak 2 calibration

Figure 75 GA calibration

y = 2E+06x - 68452
R² = 0.9473

0

5000000

10000000

15000000

20000000

25000000

0.0 2.0 4.0 6.0 8.0 10.0 12.0

V
o

lu
m

e

Concentration µg/mL

y = 246813x + 48517
R² = 0.952

0

500000

1000000

1500000

2000000

2500000

3000000

0.0 2.0 4.0 6.0 8.0 10.0 12.0

V
o

lu
m

e

Concentration µg/mL

y = 3E+06x + 3E+06
R² = 0.9486

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

0.0 2.0 4.0 6.0 8.0 10.0 12.0

V
o

lu
m

e

Concentration µg/mL

158

Figure 76 H calibration

Figure 77 GF calibration

Figure 78 VM calibration

Figure 79 VX calibration

y = 3E+06x - 503959
R² = 0.9682

0

5000000

10000000

15000000

20000000

25000000

30000000

0.0 2.0 4.0 6.0 8.0 10.0 12.0

V
o

lu
m

e

Concentration µg/mL

y = 3E+06x - 1E+06
R² = 0.9987

0

5000000

10000000

15000000

20000000

25000000

30000000

0 2 4 6 8 10 12

V
o

lu
m

e

Concentration µg/mL

y = 2E+06x - 421730
R² = 0.9999

0

5000000

10000000

15000000

20000000

25000000

30000000

0 2 4 6 8 10 12

V
o

lu
m

e

Concentration µg/mL

159

I. Explosive Calibration Data

Table 47 2-NT Calibration data

Concentration 1 2 3 mean SD RSD

50.00 1.03E+08 1.04E+08 1.57E+08 121181344 31346024 26

30.00 91266887 96576412 87298484 91713928 4655091 5

25.00 63076865 57921060 76590995 65862973 9641754 15

20.00 57072172 57715414 53343041 56043542 2360714 4

15.00 47751118 42864122 44053271 44889504 2548558 6

10.00 31479194 27027044 26487818 28331352 2739411 10

5.00 14059899 14805800 15668944 14844881 805234 5

2.50 6976879 5287640 6501059 6255193 871045 14

1.00 2866566 2445786 2891146 2734499 250335 9

0.75 3000760 2682479 2713664 2798968 175452 6

0.50 2789400 2830427 2135101 2584976 390143 15

Figure 80 2-NT calibration

y = 2,708,702.1149x + 925,210.4814
R² = 0.9954

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

0.00 5.00 10.00 15.00 20.00 25.00 30.00

In
te

n
si

ty

Concentration

160

Table 48 3-NT calibration

Concentration 1 2 3 mean SD RSD

50.00 1.28E+08 1.27E+08 1.9E+08 148447012 35822248 24

30.00 1.08E+08 1.13E+08 1.04E+08 108296174 4669772 4

25.00 76087842 71314698 90821711 79408084 10168525 13

20.00 70521840 68618463 63936972 67692425 3388699 5

15.00 56292216 52295980 53045781 53877992 2124125 4

10.00 36882208 32703206 32746540 34110651 2400336 7

5.00 16647637 18159100 18069869 17625535 848059 5

2.50 8140225 6417211 7739687 7432374 901679 12

1.00 3091903 2981573 3266141 3113206 143475 5

0.75 3246847 2953673 3177415 3125978 153206 5

0.50 3499209 3214444 2479604 3064419 526098 17

Figure 81 3-NT calibration

y = 3,273,846.2389x + 929,047.4946
R² = 0.9956

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

0.00 5.00 10.00 15.00 20.00 25.00 30.00

In
te

n
si

ty

Concentration

161

Table 49 4-NT Calibration

Concentration 1 2 3 mean SD RSD

50.00 1.35E+08 1.32E+08 1.91E+08 152539289 33072175 22

30.00 1.08E+08 1.13E+08 1.05E+08 108629982 4024364 4

25.00 77509017 72604788 91213840 80442548 9645124 12

20.00 68341044 70206076 64207840 67584987 3069760 5

15.00 56132970 52120158 54185229 54146119 2006692 4

10.00 36481827 32639487 32189388 33770234 2359068 7

5.00 16600795 17477895 17876465 17318385 652622 4

2.50 8121516 6478202 7341934 7313884 822016 11

1.00 3170637 2903737 3222103 3098826 170900 6

0.75 3163157 2982738 3255024 3133640 138522 4

0.50 3606659 3416528 2832038 3285075 403695 12

Figure 82 4-NT Calibration

y = 3,298,835.2836x + 779,064.8296
R² = 0.9962

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

0.00 5.00 10.00 15.00 20.00 25.00 30.00

In
te

n
si

ty

Concentration

162

Table 50 1,3-DNB Calibration

Concentration 1 2 3 mean SD RSD

50.00 1.4E+08 1.36E+08 1.96E+08 157348433 33112165 21

30.00 1.11E+08 1.17E+08 1.08E+08 112095917 4141725 4

25.00 80511245 75059051 93765436 83111911 9620541 12

20.00 70927152 71067364 66714310 69569609 2473755 4

15.00 56888795 53650213 54564412 55034473 1669677 3

10.00 37037384 33020586 33433707 34497226 2209518 6

5.00 16713184 17728060 18133086 17524777 731453 4

2.50 8053962 6712326 7521875 7429388 675583 9

1.00 3193346 2957330 3270163 3140280 163028 5

0.75 3324458 3020099 3215229 3186595 154187 5

0.50 3448904 3444075 2847321 3246767 345939 11

Figure 83 1,3-DNB calibration

Table 51 2,6-DNT Calibration

Concentration 1 2 3 mean SD RSD

50.00 1.13E+08 1.16E+08 1.34E+08 120872191 11106111 9

30.00 78386800 77359910 73673665 76473458 2478459 3

25.00 64421815 60328121 63124523 62624820 2092095 3

20.00 52281054 49042531 51889645 51071077 1767639 3

15.00 40998011 41898001 40690857 41195623 627365 2

10.00 30144257 27636221 26647789 28142756 1802430 6

5.00 15657777 16698665 15532955 15963132 640040 4

2.50 8274242 10075839 10258876 9536319 1096816 12

y = 3,401,589.4271x + 607,140.8359
R² = 0.9970

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

0.00 5.00 10.00 15.00 20.00 25.00 30.00

In
te

n
si

ty

Concentration

163

Figure 84 2,6-DNT Calibration

Table 52 2,4-DNT Calibration

Concentration 1 2 3 mean SD RSD

50.00 1.35E+08 1.33E+08 1.58E+08 141899763 13817363 10

30.00 89827458 91065846 87911451 89601585 1589282 2

25.00 70901954 67777844 74041145 70906981 3131654 4

20.00 57248717 57582425 56538895 57123346 532942 1

15.00 45186069 44707974 44529981 44808008 339290 1

10.00 29449420 27927448 26827145 28068004 1316776 5

5.00 13347633 14849982 14550411 14249342 795138 6

2.50 6652462 5883942 6995517 6510640 569197 9

y = 2,342,872.1822x + 4,609,625.9121
R² = 0.9993

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

0.00 10.00 20.00 30.00 40.00 50.00 60.00

In
te

n
si

ty

Concentration

164

Figure 85 2,4 – DNT Calibration

Table 53 1,3,5-TNB

Concentration 1 2 3 mean SD RSD

50.00 1.26E+08 1.28E+08 1.45E+08 133124149 10624844 8

30.00 82436376 83868780 78965301 81756819 2521384 3

25.00 67352196 66651796 66760065 66921352 377028 1

20.00 52663102 53044519 53697108 53134910 522896 1

15.00 40279103 40547457 41758773 40861778 788323 2

10.00 27968606 25676212 25460627 26368482 1389934 5

5.00 13534985 13481226 13731772 13582661 131902 1

2.50 7376013 5771784 6375132 6507643 810282 12

y = 3E+06x + 215273
R² = 0.9986

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

0.00 10.00 20.00 30.00 40.00 50.00 60.00

In
te

n
si

ty

Concentration

165

Figure 86 1,3,5-TNB

Table 54 2,4,6-TNT

Concentration 1 2 3 mean SD RSD

50 77839214 83548059 89116886 83501386 5638981 7

30 51237548 49817452 47924662 49659887 1662054 3

25 44086774 45032660 39501826 42873753 2958225 7

20 36045886 32661581 34328834 34345434 1692214 5

15 26734790 28139133 28209773 27694565 831940 3

10 20682781 20388762 20747875 20606473 191332 1

5 11695179 12183434 11939307 345248 3

y = 3E+06x + 153499
R² = 0.9997

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

0.00 10.00 20.00 30.00 40.00 50.00 60.00

In
te

n
si

ty

Concentration

166

Figure 87 2,4,6-TNT Calibration

y = 1,573,123.6677x + 3,826,662.3812
R² = 0.9985

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

0 10 20 30 40 50 60

In
te

n
si

ty

Concentration

167

II. Matlab Code R2015a

function varargout = duitest8(varargin)
% DUITEST8 MATLAB code for duitest8.fig
% DUITEST8, by itself, creates a new DUITEST8 or raises the existing
% singleton*.
%
% H = DUITEST8 returns the handle to a new DUITEST8 or the handle to
% the existing singleton*.
%
% DUITEST8('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in DUITEST8.M with the given input

arguments.
%
% DUITEST8('Property','Value',...) creates a new DUITEST8 or raises

the
% existing singleton*. Starting from the left, property value pairs

are
% applied to the GUI before duitest8_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to duitest8_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help duitest8

% Last Modified by GUIDE v2.5 20-Jul-2018 14:08:27

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @duitest8_OpeningFcn, ...
 'gui_OutputFcn', @duitest8_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

format compact
dbstop if error
% End initialization code - DO NOT EDIT

% --- Executes just before duitest8 is made visible.
function duitest8_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure

168

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to duitest8 (see VARARGIN)

% Choose default command line output for duitest8
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes duitest8 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = duitest8_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on selection change in listbox1.
function listbox1_Callback(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns listbox1

contents as cell array
% contents{get(hObject,'Value')} returns selected item from listbox1

% --- Executes during object creation, after setting all properties.
function listbox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function [p] = FindCentroidLimit(c,x1,x2,y1,y2)
% Find where the point is between two limits in x and y.
xi = intersect(find(c(:,1) < x2),find(c(:,1) > x1));
yi = intersect(find(c(:,2) < y2),find(c(:,2) > y1));
p = intersect(xi,yi);

% --- Executes on button press in pushbutton1.

169

function pushbutton1_Callback(hObject, eventdata, handles)
% Imports the image.

% Prompts user for image using file extensions.
[filename,filepath] = uigetfile({'*.*';'*.jpg';'*.png';'*.bmp'}, 'Search

Image To Be Displayed');
fullname=[filepath filename];

% Read the image.
ImageFile = imread(fullname);

%threshold = 0.5;

%graypic = rgb2gray(ImageFile);
%bwpic = im2bw(graypic,threshold);
%bwpic2 = imcomplement(bwpic);

ud = struct([]);
ud(1).ImageFile = ImageFile;
set(handles.figure1,'userdata',ud);

% Display the image.
axes(handles.axes2)
imagesc(ImageFile);

% clear axes scale
axis off

% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)

% This is the image 'detect' button on the GUI.

ud = get(handles.figure1,'userdata');
ImageFile = ud(1).ImageFile;
clear ud
threshold=0.5
picture = (ImageFile);
graypic = rgb2gray(picture);

bwpic = im2bw(graypic,threshold);
bwpic2 = imcomplement(bwpic);

props = regionprops(bwpic2, 'centroid');
centroids = cat(1,props.Centroid);

xf = [120 125; 120 125;310 315;295 310;360 365;422 427;660 663;720 725];
yf = [1 9; 400 450;35 45;340 350;200 244;207 270;340 350;1 40];
nf = char('G agent','G agent','G agent','G agent','Blister','G agent','V

agent','V agent');

170

for i=1:size(xf,1)
 [p] = FindCentroidLimit(centroids,xf(i,1),xf(i,2),yf(i,1),yf(i,2));
 if isempty(p)
 thistext= ['Not Found ' strtrim(nf(i,:))];
 else
 thistext =['Found ' strtrim(nf(i,:))];
 end
 if i==1;
 mtext = thistext;
 else
 mtext = char(mtext,thistext);
 end
end
set(findobj('tag','listbox1'),'string',mtext,'value',1)

% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% This is the image 'detect' button on the GUI.

ud = get(handles.figure1,'userdata');
ImageFile = ud(1).ImageFile;
clear ud
threshold=0.5
picture = (ImageFile);
graypic = rgb2gray(picture);

bwpic = im2bw(graypic,threshold);
bwpic2 = imcomplement(bwpic);

props = regionprops(bwpic2, 'centroid');
centroids = cat(1,props.Centroid);

xf = [120 125; 120 125;310 315;295 310;360 365;422 427;660 663;720 725];
yf = [1 9; 400 450;35 45;340 350;200 244;207 270;340 350;1 40];
nf = char('GB','GB','GA','GD','H','GF','VM','VX');

for i=1:size(xf,1)
 [p] = FindCentroidLimit(centroids,xf(i,1),xf(i,2),yf(i,1),yf(i,2));
 if isempty(p)
 thistext= ['Not Found ' strtrim(nf(i,:))];
 else
 thistext =['Found ' strtrim(nf(i,:))];
 end
 if i==1;
 mtext = thistext;
 else
 mtext = char(mtext,thistext);
 end
end
set(findobj('tag','listbox1'),'string',mtext,'value',1)

% hObject handle to pushbutton3 (see GCBO)

171

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

172

III. CWA Matrices Chromatograms

Figure 88 Aviation fuel spiked with CWA

Figure 89 Swab of clothing spiked with CWA

173

Figure 90 Control swab spiked with CWA

Figure 91 Diesel spiked with CWA

Figure 92 Sahara dust sample spiked with explosives

174

Figure 93 Swab of a kitchen floor spiked with CWA

Figure 94 Hotel swab 1 spiked with CWA

Figure 95 Hotel swab 2 spiked with CWA

175

Figure 96 Light weight oil spiked with explosives

Figure 97 Porton Down aerosol sample spiked with CWA

Figure 98 Porton Down aerosol sample 2 spiked with CWA

176

Figure 99 OMD-90 spiked with CWA

Figure 100 Swab of the inside of an oven spiked with CWA

Figure 101 OX – 24 spiked with CWA

177

IV. Explosive Matrices Chromatograms

Figure 102 Aviation Fuel Spiked with 1 ppm of explosives

Figure 103 Diesel spiked with 1 ppm of explosives

178

Figure 104 Sahara dust sample spiked with 1 ppm of explosives

Figure 105 Gasoline spiked with 1 ppm of explosives

179

Figure 106 Swab sample from a Hotel with known interferents spiked with 1 ppm of explosives

Figure 107 Light weight oil – used on guns – spiked with 1 ppm of explosives

Figure 108 Porton range aerosol sample spike with 1 ppm of explosives

180

Figure 109 OX- 24 spiked with 1 ppm of explosives

181

V. CWA Matrices with Secondary Heater

Figure 110 Diesel spiked with CWA standard of nerve agents

Figure 111 AV fuel spiked with CWA standard of nerve agents

182

Figure 112 LWO spiked with CWA standard of nerve agents

Figure 113 Gasoline Spiked with CWA standard of nerve agents

183

Figure 114 Swab of a hotel room spiked with CWA standard of nerve agents

Figure 115 Swab of inside an oven spiked with CWA standard of nerve agents

184

Figure 116 Swab of Clothing spiked with CWA standard of nerve agents

Figure 117 Aerosol sample from Porton Down spiked with CWA standard of nerve agents

185

Figure 118 Sahara Dust aerosol sample spiked with CWA standard of nerve agents

186

VI. Secondary Oven data with Explosives Spiked into Matrices

Figure 119 Diesel spiked with 8330 standard of explosives

Figure 120 AV fuel spiked with 8330 standard of explosives

187

Figure 121 LWO spiked with 8330 standard of explosives

Figure 122 Gasoline Spiked with 8330 standard of explosives

188

Figure 123 Swab of a hotel room spiked with 8330 standard of explosives

Figure 124 Perfume spiked with 8330 standard of explosives

189

Figure 125 Aerosol sample from Porton Down spiked with 8330 standard of explosives

Figure 126 Sahara Dust aerosol sample spiked with 8330 standard of explosives

190

Annex 3

I. GC Slave

GC Slave

/***

#include <Wire.h>

#include <Adafruit_MAX31856.h> // thermocouple library

#define rx 0 // receiving pin

#define tx 1 // transmission pin

#define LED 2 // LED pin

#define H2 3 // heater output pin

#define SSR 4 // heater output pin

#define H1 5 // heater output pin

#define H4 6 // heater output pin

//#define ?? 7 // unused pin

//#define ?? 8 // unused pin

#define H3 9 // heater output pin

#define CS 10 // pin 10, chip select

#define DI 11 // pin 12, data out of Arduino

#define DO 12 // pin 12, data in to Arduino

#define CLK 13 // pin 13, clock

#define ID0 5 // binary identifier analog pin

#define ID1 6 // binary identifier analog pin

#define ID2 7 // binary identifier analog pin

#define maxPower 250 // maximum allowed power output

#define heaterNum 1 // number of heaters

#define transInterval 150 // interval between data transmission

#define calcInterval 1000 // milliseconds between calculations

#define pulsePeriod 1024 // milliseconds between SSR ouput

pulses

#define packet 12 // number of bytes in the message

stream

#define tempOffset 16 // temperature offset for serial

transmission

#define inletPower 30 // PWM power (of 255)

#define outletPower 240 // PWM power (of 255)

byte myByte = 0; // the byte that this slave reads

byte valvePower = 0; // logging requested power going to the

valve

bool dataIsGood = LOW; // flag if checksum is good

byte dataByte[packet] = {0}; // define array of output bytes

byte checksum = 0; // for caulcuating checksum of

transmission

long lastSerial = 0; // time stamp of last good serial

communication

long lastRead = 0; // time stamp of last temperature read

long lastCalc = 0; // time stamp of last power calculation

long nextPulse = 0; // time stamp of next SSR pulse

long onTime = 0; // time that the SSR has been on

191

long offTime = 0; // time that the SSR will turn off

bool pulse = LOW; // SSR pulse state

int ID = 1; // calculated in setup() but always

starts from 1

int setPoint = 0; // setPoint for this device

int lastSP = 0; // storing the last setpoint

int error = 0; // for passing on errors

float temperature[heaterNum]; // array of sensor temperatures, in °C

float lastTemp[heaterNum]; // array of previous sensor

temperatures, in °C

float power[4]; // array of power outputs

float deltaTemp[heaterNum]; // rate of change of temperature

Adafruit_MAX31856 max = Adafruit_MAX31856(CS);

// ***

void setup() {

 Serial.begin(115200); // serial comm baud rate

 max.begin(); // start thermocouple board

 pinMode(rx, OUTPUT); // serial transmit pin

 pinMode(tx, INPUT); // serial transmit pin

 pinMode(LED, OUTPUT); // for LED blink

 pinMode(SSR, OUTPUT); // for SSR output

 pinMode(H1, OUTPUT); // for PWM output

 pinMode(H2, OUTPUT); // for PWM output

 pinMode(H3, OUTPUT); // for PWM output

 pinMode(H4, OUTPUT); // for PWM output

 max.setThermocoupleType(MAX31856_TCTYPE_K); // set thermocouple type

 // which slave am I? determined by binary input on analog inputs

 if (analogRead(ID0) > 512){ ID += 1; } // add 1

 if (analogRead(ID1) > 512){ ID += 2; } // add 2

 if (analogRead(ID2) > 512){ ID += 4; } // add 4

 blink_LED(ID, 50, 250); // blink the LED to confirm slave ID

 myByte = 2 * ID - 1; // calculate which byte to read based

on ID

 read_temperature(); // read the thermocouple

temperature/error

 while (millis() <= 2500) {} // wait until timer is at 2 seconds

 nextPulse = 5000; // update nextPulse (not needed?)

 lastSerial = millis();

}

// ***

void loop() {

 // check for incoming serial data

 receive_serial(); // always check for incoming

data

 // compute and resend data

192

 if (dataIsGood){ // if serial has been received

and is good

 compute_data(); // read setPoint and update the

data

 transmit_serial(); // send serial data

 dataIsGood = LOW; // clear flag

 blink_LED(1, 10, 0); // one blink, 10ms on, 0ms off

 }

 if (millis() - lastRead >= calcInterval/2){ // read temperature twice per

calculation

 read_temperature(); // read temperatures

 lastRead = millis(); // update last calculation time

 }

 // calculate power factor

 if (millis() - lastCalc >= calcInterval){ // only change power at set

times

 lastCalc = millis(); // update last calculation time

 read_temperature(); // read temperatures

 if (ID == 1) { valve_power();} // calculate valve power factor

 if (ID == 2) { heater_power();} // calculate valve heater power

factor

 if (ID == 3 || ID == 4){ column_power();} // calculate column power

factor

 if (ID == 5) { transfer_power();} // calculate valve power factor

 }

 // set outputs

 set_pulse(); // set SSR pulse length

 set_outputs(); // write the output power

 // check for errors

 if (millis() - lastSerial > 2500){

 setPoint = 0; // turn off heaters

 digitalWrite(LED, HIGH); // set LED high

 delay(10);

 }

}

// ***

void receive_serial() {

 if (Serial.available() >= packet){ // if there is enough data int

the buffer

 delay(1); // this delay seems to help!

 checksum = 0; // clear the checksum

 dataIsGood = LOW; // clear data good flag

 for (int i = 0; i < packet-1; i++){ // loop through each byte

 dataByte[i] = Serial.read(); // store to array of inputs

 checksum = checksum ^ dataByte[i]; // calculate checksum on the

fly

 }

 dataByte[packet-1] = Serial.read(); // read in the last byte

 // compare checksums && check first byte is a header

 if (dataByte[packet-1] == checksum && dataByte[0] == 1){

193

 lastSerial = millis(); // log the last time good data

was received

 dataIsGood = HIGH; // flag it as good data to

process

 }

 while (Serial.available() > 0){ // if there is still data in

the buffer

 byte trash = Serial.read(); // read it to trash

 }

 }

}

// ***

void compute_data() {

 byte statusByte = dataByte[myByte]; // read my status byte to

variable

 if (statusByte == 5){ // status 5: confirms that this

is incoming data

 if (!error){ // assuming there are no

internal errors

 setPoint = dataByte[myByte+1] + tempOffset; // update the local setPoint

from my data byte

 if (setPoint){ // if heating is on (i.e.

setPoint not zero)

 int p = map(power[0], 0, maxPower, 0, 100); // convert power to

percentage

 dataByte[myByte] = 128 + p; // send power percentage

 }

 else { dataByte[myByte] = 6; } // return an acknowledgement

but heater is off

 }

 else { dataByte[myByte] = error; } // return an error code

 }

 else { dataByte[myByte] = 21; } // return error that the

incoming data is not correct

 dataByte[myByte+1] = temperature[0] - tempOffset; // always return live

temperature data

 // read valve temperature for

 if (dataByte[1] >= 128){ // read the power requested

from the valve block slave

 valvePower = map(dataByte[1], 128, 228, 0, maxPower); // convert to one byte

power factor

 valvePower = constrain(valvePower, 0, maxPower);

 }

 error = 0; // clear errors in case they

are fixed

}

// ***

void transmit_serial() {

 checksum = 0; // clear the checksum

 for (int i = 0; i < packet -1; i++){ // for header and all data

bytes

 Serial.write(dataByte[i]); // send serial data

194

 checksum = checksum ^ dataByte[i]; // calculate checksum on the

fly

 }

 dataByte[packet-1] = checksum; // last byte is the checksum

 Serial.write(dataByte[packet-1]); // send the last byte

}

// ***

void read_temperature(){

 if (ID == 5) { // for the transfer lines

 if (setPoint == 0){

 temperature[0] = 32;

 }

 else {

 temperature[0] = constrain(setPoint, 22, 254); // just return the setpoint

 }

 delay(50);

 }

 else {

 for (byte h = 0; h < heaterNum; h++){ // for each of the heaters

 temperature[h] = max.readThermocoupleTemperature(); // read in live

temperature

 if (temperature[h] <= 5) { error = 38; }

 }

 int fault = max.readFault(); // check for thermocouple

errors

 if (fault) {

 if (fault & MAX31856_FAULT_CJRANGE) { error = 30; }

 if (fault & MAX31856_FAULT_TCRANGE) { error = 31; }

 if (fault & MAX31856_FAULT_CJHIGH) { error = 32; }

 if (fault & MAX31856_FAULT_CJLOW) { error = 33; }

 if (fault & MAX31856_FAULT_TCHIGH) { error = 34; }

 if (fault & MAX31856_FAULT_TCLOW) { error = 35; }

 if (fault & MAX31856_FAULT_OVUV) { error = 36; }

 if (fault & MAX31856_FAULT_OPEN) { error = 37; }

 }

 }

}

// ***

void column_power(){

 for (byte h = 0; h < heaterNum; h++){ // for each of the heaters

 if (setPoint){ // if heaters are turned on

 float tempToSet = setPoint - temperature[h]; // distance to setPoint

 float deltaTemp = temperature[h] - lastTemp[h]; // change in temperature

 float deltaSP = setPoint - lastSP; // change in setpoint

 double newPower = 0;

 // newPower = [oldPower] + [temp to setPoint} + [change in setpoint] -

[change in temp]

 // ** // more than 1° below setpoint

 if (tempToSet > 1){

 newPower = power[h] + 0.5 * tempToSet + 70 * (deltaSP - deltaTemp);

 }

 // ** // less than 0.5° above

setpoint

 else if (tempToSet > -0.5){

195

 newPower = power[h] + 0.5 * tempToSet + 50 * (deltaSP - deltaTemp);

 }

 // ** // more than 0.3° above

setpoint

 else {

 newPower = power[h] + 3.0 * tempToSet + 60 * (deltaSP - deltaTemp);

 }

 power[h] = constrain(newPower, 0, maxPower); // limit power output

 if (deltaTemp < 0.1 && power[h] == 100){ // check for slow temp change

 blink_LED(1, 100, 0);

 // error = 40; // set heater error

 }

 lastSP = setPoint; // backup last setpoint

 }

 else { // if heaters are turned off

 power[h] = 0; // set power to zero

 lastSP = 250; // set lastSP high to stop

initial spike

 }

 lastTemp[h] = temperature[h]; // backup last temperature

 }

}

// ***

void valve_power(){

 for (byte h = 0; h < heaterNum; h++){ // for each of the heaters

 if (setPoint){ // if heaters are turned on

 float tempToSet = setPoint - temperature[h]; // distance to setPoint

 float deltaTemp = temperature[h] - lastTemp[h]; // change in temperature

 double newPower = 0;

 // newPower = [oldPower] + [temp to setPoint] - [change in temp] + [change in

setpoint]

 // ** // more than 10° below setpoint

 if (tempToSet > 10){

 newPower = power[h] + 1.0 * tempToSet - 200 * deltaTemp;

 }

 // ** // less than 0.5° above

setpoint

 else if (tempToSet > -0.5){

 newPower = power[h] + 0.25 * tempToSet - 60 * deltaTemp;

 }

 // ** // more than 0.5° above

setpoint

 else {

 newPower = power[h] + 8.0 * tempToSet - 20 * deltaTemp;

 }

 power[h] = constrain(newPower, 0, maxPower); // limit power output

 }

 else { // if heaters are turned off

196

 power[h] = 0; // set power to zero

 lastSP = 250; // set lastSP high to stop

initial spike

 }

 lastTemp[h] = temperature[h]; // backup last temperature

 }

}

// ***

void heater_power(){

 for (byte h = 0; h < heaterNum; h++){ // for each of the heaters

 if (setPoint){ // if heaters are turned on

 float tempToSet = setPoint - temperature[h]; // distance to setPoint

 float deltaTemp = temperature[h] - lastTemp[h]; // change in temperature

 double newPower = 0;

 // newPower = [oldPower] + [temp to setPoint] - [change in temp] + [change in

setpoint]

 // ** // more than 10° below setpoint

 if (tempToSet > 10){

 newPower = power[h] + 2.0 * tempToSet - 120 * deltaTemp;

 }

 // ** // less than 0.5° above

setpoint

 else if (tempToSet > -0.5){

 newPower = power[h] + 1 * tempToSet - 60 * deltaTemp;

 }

 // ** // more than 0.5° above

setpoint

 else {

 newPower = power[h] + 8.0 * tempToSet - 20 * deltaTemp;

 }

 power[h] = constrain(newPower, 0, valvePower); // limit power to that of the

valve

 if (deltaTemp < 0.1 && power[h] == 100){ // check for slow temp change

 blink_LED(1, 100, 0);

 // error = 40; // set heater error

 }

 }

 else { // if heaters are turned off

 power[h] = 0; // set power to zero

 lastSP = 250; // set lastSP high to stop

initial spike

 }

 lastTemp[h] = temperature[h]; // backup last temperature

 }

}

// ***

void transfer_power(){

 if (setPoint){ // if heaters are turned on

 power[0] = map(setPoint, 32, 270, 0, 178); // line between col2 and

detector

197

 power[1] = inletPower; // line between injector and

col1

 power[2] = 0; // line between col1 and valve

 power[3] = 0; // line between valve and col2

 delay(1);

 }

 else { // if heaters are turned off

 for (byte h = 0; h < 4; h++){ // for each of the heaters

 power[h] = 0; // set power to zero

 }

 }

}

// ***

void set_pulse(){

 // set SSR output

 if (millis() >= nextPulse){ // when time for next pulse

 onTime = millis(); // note the time that SSR

turned on

 offTime = onTime + (4 * power[0]); // calculate the off time

 if (power[0] > 1){ // if the power is more than 1

(1 is too low!)

 pulse = HIGH; // set the SSR pin high

 }

 else{ // otherwise if power is zero

 pulse = LOW; // set the SSR pin low

 }

 nextPulse += pulsePeriod; // using += in case of delays

elsewhere in code

 }

 if (millis() >= offTime){ // if it is time to turn off

SSR

 pulse = LOW; // set the SSR pin LOW

 }

}

// ***

void set_outputs(){

 // set PWM power

 analogWrite(H1, power[0]); // set the power output

 analogWrite(H2, power[1]); // set the power output

 analogWrite(H3, power[2]); // set the power output

 analogWrite(H4, power[3]); // set the power output

 // set SSR output

 digitalWrite(SSR, pulse); // set the SSR pin LOW

 // set LEDs?

}

// ***

void blink_LED(int count, int on, int off) {

 while(count > 0){

 count--;

 digitalWrite(LED, HIGH);

 delay(on);

 digitalWrite(LED, LOW);

 delay(off);

 }

198

}

199

II. GC Master

/***

 0 1 2 3 4 5 6 7 8 9 10 11

 Hd S1 D1 S2 D2 S3 D3 S4 D4 S5 D5 Ck

Header byte:

01 Start of data packet

Status byte:

05 Enquiry - master sent data

06 Acknowledge - slave response, but heaters are off

07 Error - slave returning an error

21 Negative - acknowlegde receipt but data is incorrect

30 Cold Junction Range Fault

31 Thermocouple Range Fault

32 Cold Junction High Fault

33 Cold Junction Low Fault

34 Thermocouple High Fault

35 Thermocouple Low Fault

36 Over/Under Voltage Fault

37 Thermocouple Open Fault

99 heater too slow responding

128-228 Power - if heating, this is the % power being applied (-128)

***/

#include <Wire.h>

#include <Adafruit_GFX.h>

#include <Adafruit_ILI9340.h>

#include <Fonts/FreeSans9pt7b.h>

#if defined(__SAM3X8E__)

 #undef __FlashStringHelper::F(string_literal)

 #define F(string_literal) string_literal

#endif

#define rx 0 // receiving pin

#define tx 1 // transmission pin

#define encA 2 // encoder A pin

#define encB 3 // encoder B pin

#define button 4 // jog dial button pin

#define relay 5 // relay output

#define fan 6 // PWM fan output

#define shtdwn 7 // stop button input

#define _rst 8 // define screen pins

#define _dc 9 // define screen pins

#define _cs 10 // define screen pins

#define _mosi 11 // define screen pins

#define _miso 12 // define screen pins

#define _sclk 13 // define screen pins

#define packet 12 // number of bytes in the message

stream

#define slaves 5 // number of slave devices in the

system

#define tMax 265 // maximum temperature system can read

#define tMin 40 // minimum temperature system can read

200

#define screenInt 1000 // interval between screen prints

#define transInt 500 // interval between sending data

#define tempOffset 16 // temperature offset for serial

transmission

Adafruit_ILI9340 tft = Adafruit_ILI9340(_cs, _dc, _rst);

#define RED 0xF800

#define BLUE 0x041F

#define BLUE2 0x020C

#define WHITE 0xFFFF

#define GREY1 0x31A6

#define GREY2 0x9492

#define GREY3 0xD69A

#define BLACK 0x0000

#define gYmin 40 // top of the graph area

#define gYmax 170 // bottom of the graph area

#define gXmin 30 // left of the graph area

#define gXmax 225 // right of the graph area

// define array of graph line colours

const int line[2 * slaves] = {0x8400, 0x0400, 0x0410, 0xA014, 0x8180, // setpoints

are darker

 0xFFE0, 0x07E0, 0x07FF, 0xFA1F, 0xFB00}; //

temperatures are brighter

char* slaveName[slaves] = {"Valve Body", "Valve Heater", "Primary Column",

"Secondary Column", "Transfer Lines"};

int menu0[] = {170, 220, 250, 200}; // valve target, modulator heater,

modulator time, transfer lines

int menu1[] = {50, 240, 20}; // primary start, & end, secondary

offset

int menu2[] = {40, 1, 0}; // ramp rate, hold time, run time

bool dataIsGood = LOW; // flag if checksum is good

bool printOnce = LOW; // for printing backgrounds only one

bool lastButton = LOW; // flagging last button state

bool buttonPress = LOW; // flagging when button is pressed

bool jogTurn = LOW; // flagging movement in the jog

dial/button

bool heatersOn = LOW; // flag for relay controlling power

bool heatersReady = LOW; // flag for heaters at temperature

int dataByte[packet]; // define array of output bytes

int targetSetpoint[slaves]; // ramping target setpoint

int startSetpoint[slaves]; // ramping start setpoint

int slaveSetpoint[slaves]; // array of live slave setpoint

int slaveStatus[slaves]; // array of slave returned status

int slaveTemp[slaves]; // array of slave returned temperatures

int lastTemp[slaves]; // array of last slave temperatures

(for graph only)

int lastSet[slaves]; // array of last setpoints (for graph

only)

int slavePower[slaves]; // array of slave power percentages

byte checksum = 0; // for caulcuating checksum of

transmission

int errorCount = 0; // for counting errors

201

int column = 0; // graph column

int menu = 0; // program number

int jog = 0; // multi-use variable when the jog dial

is turned

int editVal = 0; // flag for editting a value

int lineNo = 0; // line number for printing menus

int overTemp = 0;

long startTime = 0; // start time of GC run

long runTime = 0; // calculated run time

long estRunTime = 0; // estimated run time from settings

long lastTransmit = 0; // time stamp for last transmition

long lastSerial = 0; // time since last good serial

communication

long lastScreen = 0; // time of last screen print

long lastGraphic = 0; // time of last graphic display

long buttonTime = 0; // counting long button presses

float rampRate = 0; // degs per minute to ramp

// ***

void setup() {

 Serial.begin(115200); // serial comm baud rate

 pinMode(rx, OUTPUT); // serial transmit pin

 pinMode(tx, INPUT); // serial transmit pin

 pinMode(encA, INPUT_PULLUP); // rotary signal A

 pinMode(encB, INPUT_PULLUP); // rotary signal B

 pinMode(button, INPUT_PULLUP); // button pin

 pinMode(shtdwn, INPUT_PULLUP); // stop button pin

 pinMode(relay, OUTPUT); // relay driving pin

 pinMode(fan, OUTPUT); // fan driving pin

 tft.begin();

 tft.setRotation(2); // rotate screen by 180°

 tft.fillScreen(BLACK); // print black background

 print_heading(String F("System Startup"), 0);

 delay(250);

 tft.setFont();

 tft.setTextSize(1);

 tft.setCursor(0, 36);

 // check all slaves are present

 int systemReady = 0; // system ready flag

 tft.print((char)16); tft.println(F(" Starting DSTL GC concept program"));

 tft.print((char)16); tft.print(F(" Testing serial"));

 while (!dataIsGood){ // keep transmitting until all slaves

are ready

 prepare_serial(); // prepare serial data to be sent

 transmit_serial(); // transmit serial

 tft.print(F(".")); // print a dot to indicate transmision

 delay(250); // short delay

 receive_serial();

 }

 compute_data(); // read what was returned and look for

errors

 dataIsGood = LOW; // clear flag

202

 tft.println(F(".")); // one last dot and new line

 for (int sl = 0; sl < slaves; sl++){ // for each slave (slaves are zero

indexed)

 tft.print(" ");

 tft.print(slaveName[sl]); // print the slave name

 if (slaveStatus[sl] == 5){ // serial not picked up

 tft.println(F(" is missing")); }

 else if (slaveStatus[sl] == 6){ // serial returned good data

 tft.println(F(" is ready")); systemReady++; }

 else { // anything else is an error

 tft.print(F(" returned error "));

 tft.println(slaveStatus[sl]);}

 }

 delay(250);

 tft.print((char)16); tft.print(F(" "));

 tft.print(systemReady); tft.print(F("/"));

 tft.print(slaves); tft.println(F(" ready"));

 tft.print((char)16); tft.println(F(" Testing fan"));

 digitalWrite(fan, HIGH); // turn on fan

 delay(1000);

 tft.print((char)16); tft.print(F(" Starting GUI"));

 digitalWrite(fan, LOW); // turn off fan

 delay(1000);

 tft.setTextWrap(false);

 menu = 0; // go to first menu

 printOnce = HIGH; // set print once flag

 tft.fillScreen(BLACK); // print black background

 temp_background(); // print the overlay

 print_temps(); // print the current temperatures

 attachInterrupt(digitalPinToInterrupt(encA), encoderA_change, FALLING); //

encoder interupt function

 lastSerial = millis();

}

// ***

void loop() {

 // ********* if heaters are off

 if (heatersOn) { // if heaters are on

 digitalWrite(relay, HIGH); // turn on the relay

 }

 else { // for heaters off

 clear_setpoints(); // clear all setpoints

 digitalWrite(relay, LOW); // turn off relay

 }

 // ********* set fan speed

 fan_control(); // should the fan be on

 // ********* read input buttons

 read_button(); // read digital buttons

 // ********* check for incoming serial data

203

 receive_serial(); // check and read

incomming serial

 if (dataIsGood){ // if serial has been

received and is good

 compute_data(); // read what was returned

and look for errors

 dataIsGood = LOW; // clear flag

 }

 // ********* send serial data at set interval

 if (millis() - lastTransmit >= transInt){ // at set transmission

intervals

 lastTransmit = millis(); // update last

transmission

 prepare_serial(); // prepare serial data to

be sent

 transmit_serial(); // transmit serial

 }

 // ********* print live temperatures

 if (millis() - lastScreen >= screenInt){ // at set screen

intervals

 lastScreen = millis(); // update screen interval

 print_temps(); // print bottom

temperatures

 }

 // ********* check for errors

 if (millis() - lastSerial > 5000 || errorCount > 10){ // if no serial for more

than 5 seconds

 if (menu != 99){

 menu = 99; // move to error program

 printOnce = HIGH; // for printing new

screen

 }

 }

 errorCount--; // reduce error count

 errorCount = constrain(errorCount, 0, 128); // constrain error count

 switch (menu) {

 // ********************** MENU 0 ***********************

 case 0:

 // ******************** PRINT ONCE (0)******************

 if (printOnce){ // print this once

 lineNo = 50; // set row starting

point

 print_heading(F("Preheat & Modulation"), 1); // clear background and

print heading line

 print_line(F("Valve Body"), menu0[0], 1, "C", WHITE);

 print_line(F("Valve Heater"), menu0[1], 1, "C", WHITE);

 print_line(F("Modulator Pulse"), menu0[2], 0, "ms", WHITE);

 print_line(F("Transfer Lines"), menu0[3], 1, "C", WHITE);

 print_button(170, lineNo, 70, F("NEXT"), 1);

 tft.fillTriangle(230, lineNo-2, 230, lineNo-10, 234, lineNo-6, WHITE);

204

 heatersOn = LOW; // make sure heaters

are off

 printOnce = LOW; // clear print once

 jog = 0; // set pointer to first

line

 editVal = -1; // not editing a line

 jogTurn = HIGH; // force jog turn high

 }

 // ************** SCROLLING THROUGH MENU (0)************

 if (editVal < 0){ // if NOT editing a

line

 if (jogTurn){ // if dial has been

turned

 jog = constrain(jog, 0, 4); // limit jog to number

of options on a menu

 lineNo = jog * 25 + 50; // calculate line

number

 tft.fillRect(5, 40, 5, 130, BLACK); // clear old triangles

 tft.fillTriangle(5, lineNo-2, 5, lineNo-10, 9, lineNo-6, WHITE); // draw

a pointer

 jogTurn = LOW; // clear the change

flag

 }

 if (buttonPress){ // if the button has

been pressed

 editVal = jog; // move to edit

setpoint

 tft.drawRoundRect(170, lineNo-16, 70, 21, 4, RED);// draw red box

 if (editVal >= 4){ // if moving on to next

menu

 menu++; // move to next menu

 printOnce = HIGH; // set printonce

 }

 else { jog = menu0[editVal]; } // move menu setting to

jog

 buttonPress = LOW; // clear button press

 jogTurn = HIGH; // force setpoint to be

re-written

 }

 }

 // **************** EDITING VALUES (0)*****************

 else { // so if edit val is

greater than 0

 lineNo = editVal * 25 + 50; // calculate line

number

 if (jogTurn){ // if dial has been

turned

 if (editVal == 2) { jog = constrain(jog, 50, 750); } // limit pulse width

 else { jog = constrain(jog, tMin, tMax - 15); } // limit jog to max/min

temps

 print_value(lineNo, jog, WHITE); // update the value

bine edited

 jogTurn = LOW; // clear the change

flag

 }

 if (buttonPress){ // if the button has

been pressed

205

 menu0[editVal] = jog; // update value from

jog

 tft.drawRoundRect(170, lineNo-16, 70, 21, 4, BLACK); // draw black box

 jog = editVal;

 editVal = -1; // clear editVal

 buttonPress = LOW; // clear button press

 }

 }

 break;

 // ********************** MENU 1 ***********************

 case 1:

 // ******************** PRINT ONCE (1)******************

 if (printOnce){ // print this once

 lineNo = 50; // set row starting

point

 print_heading(F("Column Temperatures"), 1); // clear background and

print heading line

 print_line(F("Primary Initial"), menu1[0], 1, "C", WHITE);

 print_line(F("Primary Final"), menu1[1], 1, "C", WHITE);

 print_line(F("Secondary Offset"), menu1[2], 1, "C", WHITE);

 print_button(170, lineNo, 70, F(" BACK"), 1);

 tft.fillTriangle(180, lineNo-2, 180, lineNo-10, 176, lineNo-6, WHITE);

 lineNo += 25;

 print_button(170, lineNo, 70, F("NEXT"), 1);

 tft.fillTriangle(229, lineNo-2, 229, lineNo-10, 233, lineNo-6, WHITE);

 heatersOn = LOW; // make sure heaters

are off

 printOnce = LOW; // clear print once

 jog = 0; // set pointer to first

line

 editVal = -1; // not editing a line

 jogTurn = HIGH; // force jog turn high

 }

 // ************** SCROLLING THROUGH MENU (1)************

 if (editVal < 0){ // if NOT editing a

line

 if (jogTurn){ // if dial has been

turned

 jog = constrain(jog, 0, 4); // limit jog to number

of options on a menu

 lineNo = jog * 25 + 50; // calculate line

number

 tft.fillRect(5, 40, 5, 130, BLACK); // clear old triangles

 tft.fillTriangle(5, lineNo-2, 5, lineNo-10, 9, lineNo-6, WHITE); // draw

a pointer

 jogTurn = LOW; // clear the change

flag

 }

 if (buttonPress){ // if the button has

been pressed

 editVal = jog; // move to edit

setpoint

 tft.drawRoundRect(170, lineNo-16, 70, 21, 4, RED);// draw red box

 if (editVal == 3){ // if moving on to next

menu

206

 menu--; // move back a menu

 printOnce = HIGH; // set printonce

 }

 else if (editVal >= 4){

 menu++; // move to next menu

 printOnce = HIGH; // set printonce

 }

 else { jog = menu1[editVal]; } // move menu setting to

jog

 buttonPress = LOW; // clear button press

 jogTurn = HIGH; // force setpoint to be

re-written

 }

 }

 // **************** EDITING VALUES (1)*****************

 else { // so if edit val is

greater than 0

 lineNo = editVal * 25 + 50; // calculate line

number

 if (jogTurn){ // if dial has been

turned

 if (editVal == 2){ jog = constrain(jog, 0, 50); } // limit jog to column

offset

 else { jog = constrain(jog, tMin, tMax-15); } // limit jog to max/min

temps

 print_value(lineNo, jog, WHITE); // update the value

being edited

 jogTurn = LOW; // clear the change

flag

 }

 if (buttonPress){ // if the button has

been pressed

 menu1[editVal] = jog; // update value from

jog

 tft.drawRoundRect(170, lineNo-16, 70, 21, 4, BLACK); // draw black box

 jog = editVal;

 editVal = -1; // clear editVal

 buttonPress = LOW; // clear button press

 }

 }

 break;

 // ********************** MENU 2 ***********************

 case 2:

 // ******************** PRINT ONCE (2)******************

 if (printOnce){ // print this once

 lineNo = 50; // set row starting

point

 menu2[2] = menu2[1] + (menu1[1] - menu1[0]) / menu2[0];

 print_heading(F("Ramp Settings"), 1); // clear background and

print heading line

 print_line(F("Ramp Rate"), menu2[0], 1, "/m", WHITE);

 print_line(F("Hold Time"), menu2[1], 0, "min", WHITE);

 print_line(F("Est. Runtime"), menu2[2], 0, "min", GREY2);

 print_button(170, lineNo, 70, F(" BACK"), 1);

 tft.fillTriangle(180, lineNo-2, 180, lineNo-10, 176, lineNo-6, WHITE);

207

 lineNo += 25;

 print_button(170, lineNo, 70, F("NEXT"), 1);

 tft.fillTriangle(229, lineNo-2, 229, lineNo-10, 233, lineNo-6, WHITE);

 heatersOn = LOW; // make sure heaters

are off

 printOnce = LOW; // clear print once

 jog = 0; // set pointer to first

line

 editVal = -1; // not editing a line

 jogTurn = HIGH; // force jog turn high

 }

 // ************** SCROLLING THROUGH MENU (2)************

 if (editVal < 0){ // if NOT editing a

line

 if (jogTurn){ // if dial has been

turned

 jog = constrain(jog, 0, 4); // limit jog to number

of options on a menu

 lineNo = jog * 25 + 50; // calculate line

number

 tft.fillRect(5, 40, 5, 130, BLACK); // clear old triangles

 tft.fillTriangle(5, lineNo-2, 5, lineNo-10, 9, lineNo-6, WHITE); // draw

a pointer

 jogTurn = LOW; // clear the change

flag

 }

 if (buttonPress && (jog != 2)){ // if the button has

been pressed (except option 2)

 editVal = jog; // move to edit

setpoint

 tft.drawRoundRect(170, lineNo-16, 70, 21, 4, RED);// draw red box

 if (editVal == 3){ // if moving on to next

menu

 menu--; // move back a menu

 printOnce = HIGH; // set printonce

 }

 else if (editVal >= 4){

 menu++; // move to next menu

 printOnce = HIGH; // set printonce

 }

 else { jog = menu2[editVal]; } // move menu setting to

jog

 buttonPress = LOW; // clear button press

 jogTurn = HIGH; // force setpoint to be

re-written

 }

 else if (buttonPress){ // so in when selecting

an uniditable item

 jogTurn = HIGH; // fake a jog turn

 jog--; // move arrow to

previous item

 buttonPress = LOW; // clear button press

 }

 }

 // **************** EDITING VALUES (2)*****************

 else { // so if edit val is

greater than 0

208

 lineNo = editVal * 25 + 50; // calculate line

number

 if (jogTurn){ // if dial has been

turned

 jog = constrain(jog, 1, 60); // limit jog to ramp

rate and hold time

 print_value(lineNo, jog, WHITE); // update the value

being edited

 jogTurn = LOW; // clear the change

flag

 }

 if (buttonPress){ // if the button has

been pressed

 menu2[editVal] = jog; // save the value from

jog

 menu2[2] = menu2[1] + (menu1[1] - menu1[0]) / menu2[0]; // calc new

runtime

 if (menu2[2] >= 60){ // for long or no

runtime

 print_value(100, menu2[2], RED); // print the runtime in

RED!

 }

 else {

 print_value(100, menu2[2], GREY2); // print the run time

 }

 tft.drawRoundRect(170, lineNo-16, 70, 21, 4, BLACK); // draw black box

over red edit box

 jog = editVal;

 editVal = -1; // clear editVal

 buttonPress = LOW; // clear button press

 }

 }

 break;

 // ********************** MENU 3 ***********************

 case 3:

 // ******************** PRINT ONCE (3)******************

 if (printOnce){ // print this once

 lineNo = 50; // set row starting

point

 print_heading(F("Preheating - NOT READY"), 1); // clear background and

print heading line

 print_button(20, lineNo, 70, F(" BACK"), 1);

 tft.fillTriangle(29, lineNo-2, 29, lineNo-10, 25, lineNo-6, WHITE);

 print_button(170, lineNo, 70, F("START"), 0);

 tft.fillTriangle(5, 48, 5, 40, 9, 44, WHITE); // draw a pointer

 // move menu setting to setpoints

 slaveSetpoint[0] = menu0[0]; // injector setpoint

 slaveSetpoint[1] = menu0[1]; // modulator setpoint

 slaveSetpoint[2] = menu1[0]; // primary column

 slaveSetpoint[3] = menu1[0] + menu1[2]; // secondary column

(calc from offet)

 slaveSetpoint[4] = menu0[3]; // transfer lines (not

sure how this will work yet)

209

 targetSetpoint[2] = menu1[1]; // primary column ramp

target

 targetSetpoint[3] = menu1[1] + menu1[2]; // secondary column

(calc from offet)

 startSetpoint[2] = slaveSetpoint[2]; // note the start

setpoint of primary

 startSetpoint[3] = slaveSetpoint[3]; // note the start

setpoint of secondary

 thermometer_background(); // print the

thermometer background

 // turn on power relay <<<<<<

 heatersOn = HIGH; // set heaters on flag

 printOnce = LOW; // clear print once

 jog = 0; // set pointer to first

line

 editVal = -1; // not editing a line

 jogTurn = HIGH; // force jog turn high

 heatersReady = HIGH; // <<<<<<<<< for testing only

 }

 if (millis() - lastGraphic >= screenInt){ // at set intervals

 lastGraphic = millis(); // update last graph

print

 print_thermometer(); // print the live

thermometer

 }

 // ************** SCROLLING THROUGH MENU (3)************

 if (buttonPress){ // if the button has

been pressed

 tft.drawRoundRect(20, 34, 70, 21, 4, RED); // draw red box

 menu--; // move back a menu

 printOnce = HIGH; // set printOnce flag

 buttonPress = LOW; // clear button press

 }

 // check setpoints are at temperature, if so set heatersReady flag

 if (heatersReady){

 menu++;

 printOnce = HIGH;

 }

 break;

 // ********************** MENU 4 ***********************

 case 4:

 // ******************** PRINT ONCE (4)******************

 if (printOnce){ // print this once

 print_heading(F("Heaters are READY"), 0); // clear background and

print heading line

 print_button(170, lineNo, 70, F("START"), 1);

 printOnce = LOW;

 }

 // ************** SCROLLING THROUGH MENU (4)************

210

 if (jogTurn){ // if dial has been

turned

 jog = constrain(jog, 0, 1); // limit jog to number

of options on a menu

 int col = 5 + (jog * 150); // arrow moves by

column

 tft.fillRect(5, 40, 5, 9, BLACK); // clear old triangles

 tft.fillRect(155, 40, 5, 9, BLACK); // clear old triangles

 tft.fillTriangle(col, 48, col, 40, col+4, 44, WHITE); // draw a pointer

 jogTurn = LOW; // clear the change

flag

 }

 if (buttonPress){ // if the button has

been pressed (except option 2)

 editVal = jog; // move to edit

setpoint

 if (editVal == 0){ // if moving on to next

menu

 tft.drawRoundRect(20, 34, 70, 21, 4, RED); // draw blue box

 menu-=2; // move back 2 menus

 printOnce = HIGH; // set printOnce flag

 }

 else if (editVal >= 1){

 tft.drawRoundRect(170, lineNo-16, 70, 21, 4, RED); // draw RED box

 menu++; // move to next menu

 printOnce = HIGH; // set printonce

 }

 buttonPress = LOW; // clear button press

 }

 if (millis() - lastGraphic >= screenInt){ // at set intervals

 lastGraphic = millis(); // update last graph

print

 print_thermometer(); // print the live

thermometer

 }

 break;

 // ********************** MENU 5 ***********************

 case 5:

 // ******************** PRINT ONCE (5)******************

 if (printOnce){ // print this once

 lineNo = 50; // set row starting

point

 print_heading(F("Temperature Ramp"), 1); // clear background and

print heading line

 rampRate = 60000 / menu2[0]; // calculate ramp rate

 estRunTime = (60000 * menu2[1]) + (rampRate * (menu1[1] - menu1[0])); //

calc run time

 graph_background(); // print the graph

background

 heatersOn = HIGH; // check that heaters

on is enabled

 printOnce = LOW; // clear print once

 column = gXmin + 1; // set first column

 startTime = millis(); // note the start time

 }

211

 // update setpoints

 runTime = millis() - startTime; // convert to time

since start

 for (int sl = 2; sl <=3 ; sl++){ // for each of the two

heaters

 if (slaveSetpoint[sl] >= targetSetpoint[sl]) { // at the top of the

ramp

 slaveSetpoint[sl] = targetSetpoint[sl]; // hold at temp....

 }

 else{ // else keep ramping

 slaveSetpoint[sl] = startSetpoint[sl] + (runTime / rampRate);

 }

 }

 if (runTime >= estRunTime){ // if run time has

reached the end

 print_graph(); // print the graph

 menu++; // move to next stage

 printOnce = HIGH; // print new screen

 }

 if (millis() - buttonTime >= 3000 && buttonPress){

 print_graph(); // print the graph

 menu++; // move to next stage

 printOnce = HIGH; // print new screen

 buttonPress = LOW; // clear button press

before next screen

 }

 if (millis() - lastGraphic >= screenInt){ // at set intervals

 lastGraphic = millis(); // update last graph

print time

 print_graph(); // print the graph

 print_serial();

 }

 break;

 // ********************** MENU 6 ***********************

 case 6:

 // ******************** PRINT ONCE (6)******************

 if (printOnce){ // print this once

 print_heading(F("Ramp Complete"), 0); // clear background and

print heading line

 print_button(75, 75, 90, F(" Repeat"), 1); // to repeat with same

settings

 print_button(75, 100, 90, F(" Change"), 1); // to change the

settings

 print_button(75, 125, 90, F("Shutdown"), 1); // to shut down the

system

 // move menu setting to setpoints

 slaveSetpoint[2] = menu1[0]; // primary column

 slaveSetpoint[3] = menu1[0] + menu1[2]; // secondary column

(calc from offet)

 heatersOn = HIGH; // heaters should still

be on

 digitalWrite(fan, HIGH); // turn on fan

 tft.fillTriangle(64, 73, 64, 65, 68, 69, WHITE); // draw a pointer

 jog = 0; // set jog to 0

 lineNo = 75; // preset line number

212

 printOnce = LOW; // clear print once

 }

 // ************** SCROLLING THROUGH MENU (6)************

 if (jogTurn){ // if dial has been

turned

 jog = constrain(jog, 0, 2); // limit jog to number

of options on a menu

 lineNo = jog * 25 + 75; // calculate line

number

 tft.fillRect(64, 65, 5, 60, BLACK); // clear old triangles

 tft.fillTriangle(64, lineNo-2, 64, lineNo-10, 68, lineNo-6, WHITE); // draw

a pointer

 jogTurn = LOW; // clear the change

flag

 }

 if (buttonPress){ // if the button has

been pressed

 tft.drawRoundRect(75, lineNo-16, 90, 21, 4, RED); // draw red box

 if (jog == 0){ menu = 3; } // menu 3 for same

settings

 else if (jog == 1){ menu = 0; } // menu 0 to change

settings

 else { menu++; } // move on to shutdown

 printOnce = HIGH; // set printonce

 buttonPress = LOW; // clear button press

 }

 break;

 // ******************* MENU "default" ******************

 default:

 // ******************** PRINT ONCE (d)******************

 if (printOnce){ // print this once

 print_heading(F("Shutdown"), 1); // clear background and

print heading line

 tft.setCursor(4, 50); // set position

 tft.print("System is cooling"); // print line

 clear_setpoints(); // set all setpoints

low

 thermometer_background(); // print the

thermometer background

 digitalWrite(fan, HIGH); // turn on fan

 printOnce = LOW; // clear print once

 }

 if (millis() - buttonTime >= 3000 && buttonPress){ // to escape from

shutdown

 menu = 0; // move to menu 0

 printOnce = HIGH; // print new screen

 buttonPress = LOW; // clear button press

before next screen

 }

 if (millis() - lastGraphic >= screenInt){ // at set intervals

 lastGraphic = millis(); // update last graph

print

 print_thermometer(); // print the live

thermometer

213

 }

 break;

 }

 // ******************** END OF MENU *********************

}

// ***

void receive_serial() {

 if (Serial.available() >= packet){ // if there is enough

data int the buffer

 delay(1); // wait in case of extra

bytes

 checksum = 0; // clear the checksum

 dataIsGood = LOW; // clear data good flag

 for (int i = 0; i < packet-1; i++){ // loop through each byte

 dataByte[i] = Serial.read(); // store to array of

inputs

 checksum = checksum ^ dataByte[i]; // calculate checksum on

the fly

 }

 dataByte[packet-1] = Serial.read(); // read in the last byte

 // compare checksums && check first byte is a header

 if (dataByte[packet-1] == checksum && dataByte[0] == 1){

 dataIsGood = HIGH; // flag it as good data

to process

 lastSerial = millis(); // log the last time good

data was received

 }

 while (Serial.available() > 0){ // if there is still data

in the buffer

 char trash = Serial.read(); // read it to trash

 }

 }

}

// ***

void compute_data() {

 for (int sl = 0; sl < slaves; sl++){ // for each slave (slaves

are zero indexed)

 slaveStatus[sl] = dataByte[2 * sl + 1]; // move slave status from

serial to local variable

 if (slaveStatus[sl] == 6){ // slave is present but

heating is off

 slaveTemp[sl] = dataByte[2 * sl + 2] + tempOffset; // then update the live

temperature (note temperature offset)

 slavePower[sl] = 0; // note that slave is off

 }

 else if (slaveStatus[sl] == 5){ // no slave[sl] found

 slaveTemp[sl] = 0; // slave was not found

and so set nul valve

 }

 else if (slaveStatus[sl] >= 128 && slaveStatus[sl] <= 228){ // slave returned a

power factor

 slaveTemp[sl] = dataByte[2 * sl + 2] + tempOffset; // update the live

temperature (note temperature offset)

214

 slavePower[sl] = slaveStatus[sl] - 128; // update the slaves

power percentage

 }

 else { // if slave status

returned a nul value

 slaveTemp[sl] = 0; // slave was not found

and so set nul valve

 errorCount++; // increment error count

 }

 }

}

// ***

void prepare_serial() {

 dataByte[0] = 1; // set byte zero to be a

header

 for (int sl = 0; sl < slaves; sl++){ // for each slave

 int b = 2 + (2 * sl); // calculate the serial

byte number

 dataByte[b - 1] = 5; // set status

 if (heatersOn){ dataByte[b] = slaveSetpoint[sl] - tempOffset; } // if the

heaters are on transmit the setpoint

 else { dataByte[b] = tempOffset; } // otherwise transmit

zero (note offset!)

 }

 //dataByte[11] is the checksum byte

}

// ***

void transmit_serial() {

 checksum = 0; // clear the checksum

 for (int i = 0; i < packet -1; i++){ // for header and all

data bytes

 Serial.write(dataByte[i]); // send serial data

 checksum = checksum ^ dataByte[i]; // calculate checksum on

the fly

 }

 dataByte[packet-1] = checksum; // last byte is the

checksum

 Serial.write(dataByte[packet-1]); // send the last byte

}

// ***

void print_serial() {

 Serial.println(); // start new line

 Serial.print(runTime); // print time

 for (int sl = 2; sl <= 3; sl++){ // for each slave

 Serial.print("\t"); Serial.print(slaveTemp[sl]); // print temperature

 }

 Serial.println(); // start new line

}

// ***

void temp_background() { // print the temperature

background

 tft.setFont();

 tft.setTextSize(1);

215

 for (int sl = 0; sl < slaves; sl++){ // for each slave

 int row = 27 * sl + 186; // calculate a TFT line

position

 // print slave name

 tft.setTextColor(WHITE, BLACK);

 tft.drawLine(0, row, 239, row, GREY1); // draw grey line

 tft.setCursor(4, row + 4); // set first line

 tft.print(slaveName[sl]); // print slave name

 //print "setpoint" and "temperature"

 tft.drawLine(115, row + 7, 147, row + 7, line[sl]); // draw setpoint line

 tft.drawLine(115, row + 19, 129, row + 19, line[sl+5]); // draw temperature

line

 tft.setCursor(152, row + 4); // top right

 tft.setTextColor(GREY3, BLACK); // change to grey on

black

 tft.print(F("Setpoint")); // print "setpoint"

 tft.setCursor(134, row + 16); // bottom right

 tft.print(F("Temperature")); // print "Temperature"

 }

}

// ***

void print_temps() {

 tft.setFont(); // set basic font

 tft.setTextSize(1); // make it small

 /*

 debug printing

 tft.setTextColor(WHITE, BLACK);

 tft.setCursor(4, 165);

 tft.print(errorCount);

 tft.print(" ");

 */

 for (int sl = 0; sl < slaves; sl++){ // for each slave

 int row = 27 * sl + 186; // calculate a row offset

 tft.setCursor(4, row + 16); // move position to below

slave name

 if (slaveStatus[sl] == 6){ // 6 acknowledges receipt

only

 tft.setTextColor(GREY2, BLACK); // grey on black for

heaters off

 tft.print(F("Power Off ")); } // print "heaters off"

 else if (slaveStatus[sl] >= 128 && slaveStatus[sl] <= 228){

 tft.setTextColor(BLUE, BLACK); // blue on black for

power %

 tft.print(F("Power ")); tft.print(slavePower[sl]); tft.print(F("% ")); }

 else if (slaveStatus[sl] == 5){ // when serial is

returned un-seen

 tft.setTextColor(RED, BLACK); // red on black for no

slave

 tft.print(F("Offline ")); }

 else {

 tft.setTextColor(RED, BLACK); // red on black for error

 tft.print(F("Error ")); tft.print(slaveStatus[sl]); tft.print(F(" ")); }

 //print slave setpoint and temperature

 tft.setTextColor(WHITE, BLACK); // white on black for

numbers

 tft.setCursor(206, row + 4); // move to top right

216

 if (!heatersOn){ // if the heaters are off

 tft.print(F("Off ")); } // print off

 else { // else print the temp

 tft.print(slaveSetpoint[sl]); tft.print((char)247); tft.print("C "); }

 tft.setCursor(206, row + 16); // move to bottom right

 tft.print(slaveTemp[sl]); tft.print((char)247); tft.print("C ");

 read_button(); // read button mid print

 if (buttonPress || jogTurn){ // and exit print is

something has changed

 break;

 }

 }

}

// ***

void thermometer_background() { // print the temperature

background

 tft.setFont(); // set basic font

 tft.setTextSize(1); // make it small

 for (int sl = 0; sl < slaves; sl++){ // for each slave

 int col = 16 + sl*47; // the column ID for each

thermometer

 int sp = 67 + map(slaveSetpoint[sl], 0, 255, 98, 0); // calculate setpoint

level

 tft.setTextColor(line[sl]); // setpoint colour

 if (slaveSetpoint[sl]){ // if the setpoint is

greater than 0

 tft.setCursor(col + 12, sp - 3); // set cursor setpoint

 tft.print(slaveSetpoint[sl]); // print the setpoint

 tft.drawLine(col-2, sp, col+8, sp, line[sl]); // draw a setpoint line

 }

 tft.drawRoundRect(col, 66, 7, 100, 3, WHITE); // draw thermometer

 tft.drawCircle(col+3, 170, 7, WHITE); // draw bulb

 tft.fillCircle(col+3, 170, 6, BLACK); // clear bottom of rod

 tft.fillRect(col+1, 162, 5, 3, BLACK); // clear top of bulb

 tft.fillCircle(col+3, 170, 5, line[sl+5]); // draw liquid in bulb

 tft.setRotation(1); // turn the screen

 tft.setCursor(158, col - 11); // cursor to side of

thermometer

 tft.print(slaveName[sl]); // print the name of the

heaters

 tft.setRotation(2); // return screen rotation

 }

}

// ***

void print_thermometer() { // print the temperature

background

 tft.setFont(); // set basic font

 tft.setTextSize(1); // make it small

 for (int sl = 0; sl < slaves; sl++){ // for each slave

 int col = 16 + sl*47; // the column ID for each

thermometer

 int top = 67 + map(slaveTemp[sl], 0, 255, 98, 0); // calculate top of level

 int bot = 67 + 98 - top; // bottom of thermometer

 int sp = 67 + map(slaveSetpoint[sl], 0, 255, 98, 0); // calculate setpoint

level

 tft.fillRect(col+2, 67, 3, top-67, BLACK); // clear thermometer

217

 if (slaveSetpoint[sl]){

 // if the setpoint is greater than 0

 tft.drawLine(col+1, sp, col+5, sp, line[sl]); // draw a setpoint line

 }

 tft.fillRect(col+2, top, 3, bot, line[sl+5]); // draw level

 tft.setTextColor(line[sl+5], BLACK); // print the live

temperature

 tft.setCursor(col + 14, 167); // move cursor

 tft.print(slaveTemp[sl]); // print live temperature

 if (slaveTemp[sl] < 100){ tft.print(" "); } // print blank spaces

 if (slaveTemp[sl] < 10){ tft.print(" "); } // print blank spaces

 }

}

// ***

void graph_background() {

 tft.drawLine(gXmin-1, gYmin-2, gXmin-1, gYmax+1, GREY2);// draw Y Axis

 tft.drawLine(gXmin-1, gYmax+1, gXmax+2, gYmax+1, GREY2);// draw X Axis

 tft.setFont(); // set basic font

 tft.setTextSize(1); // make it small

 int spMax = targetSetpoint[3] + 10; // note the max

temperature

 for (int sl = 2; sl <= 3; sl++){ // for each slave that we

want to draw

 tft.setTextColor(line[sl]); // print the setpoint

 int mark = map(slaveSetpoint[sl], tMin-10, spMax, gYmax, gYmin); // convert

setpoint to position

 tft.drawLine(gXmin-5, mark, gXmin-2, mark, line[sl]); // draw low setpoint mark

 tft.setCursor(4, mark + 17 - (8 * sl)); // set cursor abover or

below mark

 if (slaveSetpoint[sl] < 100){ tft.print(" "); } // print leading space

 tft.print(slaveSetpoint[sl]); // print start setpoint

 mark = map(targetSetpoint[sl], tMin-10, spMax, gYmax, gYmin); // convert target

setpoint to position

 tft.drawLine(gXmin-5, mark, gXmin-2, mark, line[sl]); // traw target setpoint

 tft.setCursor(4, mark + 17 - (8 * sl)); // set cursor abover or

below mark

 if (targetSetpoint[sl] < 100){ tft.print(" "); } // print leading space

 tft.print(targetSetpoint[sl]); // print end setpoint

 lastSet[sl] = slaveSetpoint[sl]; // pre-fill last setpoint

 lastTemp[sl] = slaveTemp[sl]; // pre-fill last temp

 }

 print_time(210, gYmax+4, estRunTime, GREY2, 0);

}

// ***

void print_graph() {

 column++;

 if (column > gXmax){ // at end of graph

 column = gXmin + 1; // reset column number

(+1)

 tft.drawLine(gXmax + 1, gYmin-2, gXmax+1, gYmax, BLACK); // clear end line

 tft.drawLine(gXmin, gYmin, gXmin, gYmax, BLACK); // clear first line

before printing graph

 }

 tft.drawLine(column, gYmin-2, column, gYmax, BLACK); // clear colum

218

 tft.drawLine(column + 1, gYmin, column + 1, gYmax, GREY1); // grey column before

lines

 int spMax = targetSetpoint[3] + 10; // note the max

temperature

 for (int sl = 2; sl <= 3; sl++){ // for each slave that we

want to draw

 int yNew = map(slaveSetpoint[sl], tMin-10, spMax, gYmax, gYmin); // scale

setpoint

 yNew = constrain(yNew, gYmin, gYmax);

 int yOld = map(lastSet[sl], tMin-10, spMax, gYmax, gYmin); // scale last

setpoint

 yOld = constrain(yOld, gYmin, gYmax);

 tft.drawLine(column-1, yOld, column, yNew, line[sl]); // draw setpoint point

 lastSet[sl] = slaveSetpoint[sl]; // copy setpoint to last

setpoint

 }

 for (int sl = 2; sl <= 3; sl++){ // for each slave

 int yNew = map(slaveTemp[sl], tMin-10, spMax, gYmax, gYmin); // scale temp

 yNew = constrain(yNew, gYmin, gYmax);

 int yOld = map(lastTemp[sl], tMin-10, spMax, gYmax, gYmin); // scale last temp

 yOld = constrain(yOld, gYmin, gYmax);

 tft.drawLine(column-1, yOld, column, yNew, line[sl+5]); // draw temp line

 lastTemp[sl] = slaveTemp[sl]; // copy current temp to

last temp

 }

 print_time(175, gYmax+4, runTime, GREY3, 0);

}

// ***

void print_time(int x, int y, long t, int c, bool b){ // for converting and

printing a time

 tft.setFont(); // set basic font

 tft.setTextSize(1); // make it small

 tft.setTextColor(c, BLACK); // colour on black

 tft.setCursor(x, y); // set cursor below time

axis

 if (b) { tft.print("("); } // print bracket

 int minutes = t / 60000 ; // calc minutes

 int seconds = (t % 60000)/ 1000; // calc seconds

 tft.print(minutes); // print minutes

 tft.print(":"); // print colon

 if (seconds < 10) {tft.print("0"); } // print leading zero

 tft.print(seconds); // print seconds

 if (b) { tft.print(")"); } // print bracket

}

// ***

void print_heading(String heading, bool blank){ // clear the top screen

 if (blank) { tft.fillRect(0, 0, 240, 185, BLACK); } // draw rectangle over

top screen

 tft.fillRect(0, 0, 240, 25, BLUE2); // dark blue heading

background

 tft.setFont(&FreeSans9pt7b); // set font

 tft.setTextColor(WHITE); // set text colour

 tft.setCursor(4, 17); // set position

219

 tft.print(heading); // print heading

 tft.drawLine(0, 25, 239, 25, WHITE); // draw grey line under

heading

}

// ***

void print_line(String text, int val, int degs, String unit, int colour){

 tft.setTextColor(colour); // change text colour

 tft.setCursor(15, lineNo); // set cursor for each

line

 tft.print(text); // print the name

 tft.setCursor(175, lineNo); // set cursor for

setpoint

 if (val < 10){ tft.print(F(" ")); } // add a spaces to shift

low numbers

 if (val < 100){ tft.print(F(" ")); } // add a spaces to shift

low numbers

 tft.print(val); // print the current

setpoint

 if (degs){ tft.setCursor(215, lineNo); // if degrees move next

unit

 tft.drawCircle(210, lineNo-10, 2, colour);} // draw ° symbol

 else { tft.setCursor(206, lineNo);} // not degrees, unit

straight after value

 tft.print(unit); // print the current

setpoint

 lineNo += 25;

}

// ***

void print_value(int y, int val, int c){ // setting large font for

menus

 tft.fillRect(175, y-12, 30, 13, BLACK); // clear old value

 tft.setFont(&FreeSans9pt7b); // set font

 tft.setTextColor(c); // set text colour

 tft.setCursor(175, y); // set cursor last (it

works better that way!)

 if (val < 10){ tft.print(F(" ")); } // add a spaces to shift

low numbers

 if (val < 100){ tft.print(F(" ")); } // add a spaces to shift

low numbers

 tft.print(val); // print the current

setpoint

}

// ***

void print_button(int x, int y, int w, String but, int c){ // drawing buttons

 tft.setTextColor(WHITE); // change text colour

 if (c) { // if C, blue buttons

 tft.fillRoundRect(x, y - 16, w, 21, 4, BLUE2); // fill blue box

 tft.drawRoundRect(x, y - 16, w, 21, 4, BLUE); // draw blue box

 }

 else { // if not C, grey

 tft.fillRoundRect(170, y - 16, w, 21, 4, GREY1); // fill grey box

 tft.drawRoundRect(170, y - 16, w, 21, 4, GREY2); // draw draw box

 }

 tft.setCursor(x + 6, y); tft.print(but); // print button option

220

}

// ***

void encoderA_change(){

 cli(); // stop interupts

 delayMicroseconds(10); // delay helps, don't

know why

 bool encoderA = digitalRead(encA); // read encoderA

 bool encoderB = digitalRead(encB); // read encoderA

 delayMicroseconds(500); // delay before moving on

 if (!encoderA && encoderB){ // A low, B high

 jog--; // CCW

 jogTurn = HIGH; // flag that there has

been a change

 }

 else if(!encoderA && !encoderB){ // A low, B low

 jog++; // CW

 jogTurn = HIGH; // flag that there has

been a change

 }

 sei(); // resume interupts

}

// ***

void fan_control(){

 overTemp = 0; // for cumulative

temperature measurement

 int fanSP = 0; // fan setpoint

 for (int sl = 2; sl <= 3; sl++) { // for each column

 if (heatersOn){ fanSP = slaveSetpoint[sl]; }

 else { fanSP = 40; }

 if (slaveTemp[sl] == 0) { overTemp += 100; } // if there is a heater

error

 else if (slaveTemp[sl] > fanSP){ // if temp above setpoint

 overTemp += slaveTemp[sl] - fanSP; // add the difference

 }

 }

 if (overTemp > 40){ digitalWrite(fan, HIGH); } // turn on fan

 if (overTemp < 5){ digitalWrite(fan, LOW); } // turn on fan

}

// ***

void clear_setpoints(){

 for (int sl = 0; sl < slaves; sl++){ // for each slave (slaves

are zero indexed)

 slaveSetpoint[sl] = 0; // make sure the

setpoints are zero

 }

 heatersOn = LOW; // clear heaters on flag

}

// ***

void read_button(){

 if (!digitalRead(shtdwn)){ // if shutdown button is

low

 heatersOn = LOW; // turn off heaters

 if (menu < 50){ // if in a normal menu

221

 printOnce = HIGH; // print new screen

 menu = 100; // move to shutdown menu

 }

 }

 if (digitalRead(button) && lastButton){ // on releasing button

 delay(15); // add a debounce delay

 lastButton = LOW; // clear button state

 } // if button is not

pressed, flag low

 if (!digitalRead(button) && !lastButton){ // on pressing the button

 delay(5); // add a delay

 buttonPress = HIGH; // flag if this is a +ve

edge for elsewhere in code

 buttonTime = millis(); // log time of button

press

 lastButton = HIGH; // update the last button

state

 }

}

// ***

void blink_LED(int count, int on, int off) {

 while(count > 0){

 count--;

 digitalWrite(13, HIGH);

 delay(on);

 digitalWrite(13, LOW);

 delay(off);

 }

}

222

III. Portable GCxGC – other data

Figure 127 Separation of a C7 to C40 standard using method 3

Figure 128 Separation of a C7 to C40 standard using method 4.

223

IV. Secondary Heater

Figure 129 OMEGA fast PID used to control secondary heater

224

V. C7-C30 Analysed Using Secondary Heater Unit

Figure 130 Chromatogram of C7 – C30 at 1 ug/mL analysed on the micro GCxGC unit with a secondary heater
held at 200 degrees

Figure 131 Chromatogram of C7 – C30 at 1 ug/mL spiked with aromatic species analysed on the micro GCxGC
unit with a secondary heater held at 200 degrees

Figure 132 Chromatogram of C7 – C30 at 1 ug/mL spiked with aromatic species analysed on the micro GCxGC
unit with a secondary heater held at 200 degrees

225

Figure 133 Chromatogram of C7 – C30 at 1 ug/mL spiked with aromatic species analysed on the micro GCxGC
unit with a secondary heater held at 200 degrees

226

References

1. Z. P. O. David Sparkman, Fulton Kitson, Gas Chromatography and Mass Spectrometry: A
Practical Guide, Academic Press, 2011.

2. L. S. Ettre and K. I. Sakodynskii, Chromatographia, 1993, 35, 223-231.
3. A. J. P. Martin and R. L. M. Synge, A theory of chromatography., 1941, 35, 1358-1368.
4. A. T. James and A. J. P. Martin, Biochemical Journal, 1952, 50, 679-690.
5. W. Skoog, Holler, Fundamentals of Analytical Chemistry, Saunders College Publishing, 1996.
6. Golay Curve, https://www.sigmaaldrich.com/content/dam/sigma-

aldrich/docs/Supelco/General_Information/1/t411126h.pdf, (accessed 11/09, 2018).
7. M. C. Simmons and L. R. Snyder, Analytical Chemistry, 1958, 30, 32-35.
8. M. R. Jacobs, R. Gras, P. N. Nesterenko, J. Luong and R. A. Shellie, Journal of Chromatography

A, 2015, 1421, 123-128.
9. C. J. Venkatramani and J. B. Phillips, Journal of Microcolumn Separations, 1993, 5, 511-516.
10. D. Deans, Journal of Chromatography A, 1981, 203, 19-28.
11. Z. Liu and J. B. Phillips, Journal of Chromatographic Science, 1991, 29, 227-231.
12. J. B. Phillips and J. Beens, Journal of Chromatography A, 1999, 856, 331-347.
13. J. B. Jens Dalluge, Udo A.Th. Brinkman, Journal of Chromatography A, 2003, 1000, 39.
14. J. C. Giddings, Journal of High Resolution Chromatography, 1987, 10, 319-323.
15. R. Lidster, PhD Thesis University of York, 2011.
16. C. J. Venkatramani and J. B. Phillips, Journal of Microcolumn Separations, 1993, 5, 511-516.
17. Z. Liu and J. B. Phillips, Journal of Microcolumn Separations, 1994, 6, 229-235.
18. J. B. Phillips and J. Xu, Journal of Chromatography A, 1995, 703, 327-334.
19. H.-J. de Geus, J. de Boer and A. T. Udo, Journal of Chromatography A, 1997, 767, 137-151.
20. J. B. Phillips, R. B. Gaines, J. Blomberg, F. W. van der Wielen, J. M. Dimandja, V. Green, J.

Granger, D. Patterson, L. Racovalis and H. J. de Geus, Journal of High Resolution
Chromatography, 1999, 22, 3-10.

21. R. M. Kinghorn and P. J. Marriott, Journal of Separation Science, 1999, 22, 235-238.
22. P. Marriott and R. Kinghorn, TrAC Trends in Analytical Chemistry, 1999, 18, 114-125.
23. J. Beens, M. Adahchour, R. J. J. Vreuls, K. van Altena and U. A. Th. Brinkman, Journal of

Chromatography A, 2001, 919, 127-132.
24. M. Pursch, K. Sun, B. Winniford, H. Cortes, A. Weber, T. McCabe and J. Luong, Analytical and

Bioanalytical Chemistry, 2002, 373, 356-367.
25. J. V. Seeley, F. Kramp and C. J. Hicks, Analytical Chemistry, 2000, 72, 4346-4352.
26. J. F. Hamilton, A. C. Lewis and K. D. Bartle, Journal of Separation Science, 2003, 26, 578-584.
27. J. V. Seeley, N. J. Micyus, J. D. McCurry and S. K. Seeley, American Laboratory, 2006, 38, 24-

26.
28. J. V. Seeley, N. J. Micyus, S. V. Bandurski, S. K. Seeley and J. D. McCurry, Analytical Chemistry,

2007, 79, 1840-1847.
29. Agilent, https://www.agilent.com/cs/library/brochures/5989-9384EN.pdf, (accessed

27/07/2017).
30. J. H. Richard Lidster, Alastair Lewis, J. Sep. Sci, 2011, 34, 812 - 821.
31. R. E. Mohler, B. J. Prazen and R. E. Synovec, Analytica Chimica Acta, 2006, 555, 68-74.
32. L. M. Chris E. Freye, Robert Synovec, J. Chromatogr. A, 2015, 1424, 127-133.
33. BBC, London Bridge attack, http://www.bbc.co.uk/news/uk-40013040, (accessed 11/07/17).
34. T. Guardian, Syria chemical weapons attack toll rises to 70 as russian narrative is dismissed,

https://www.theguardian.com/world/2017/apr/04/syria-chemical-attack-idlib-province,
(accessed 11/07/17).

35. Independent, Isis could unleash car bombs and chemical weapons on Europe as new terror
tactics employed, Europol warns, http://www.independent.co.uk/news/world/europe/isis-

227

terror-attacks-plots-europe-uk-britain-france-islamic-state-europol-report-car-bombs-
chemical-a7451591.html, (accessed 11/07/17).

36. Independent, Manchester arena terror attack,
http://www.independent.co.uk/news/uk/crime/manchester-arena-terror-attack-man-
arrested-liverpool-john-lennon-airport-suicide-bombing-a7829461.html, (accessed
11/07/17).

37. W. P. W. J. A. Zukas, Explosive Effects and Applications, Springer, New York, 1998.
38. C. Kopp, Defence Today, 2008, 4649, 46-49.
39. A. K. H. Schubert, Detection of Liquid Explosives and Flammable Agents in Connection with

Terrorism, Springer, Netherlands, 2008.
40. M. A.-H. Lama Mokalled, Karim Y.Kabalan, Ali El-Hajj, International Journal of Scientific &

Engineering Reseach 2017, 5, 14-15.
41. C. Bruschini, Subsurface Sensing Technologies and Applications, 2001, 2, 299-336.
42. R. G. Ewing, D. A. Atkinson, G. A. Eiceman and G. J. Ewing, Talanta, 2001, 54, 515-529.
43. D. S. Moore, Sensing and Imaging: An International Journal, 2007, 8, 9-38.
44. D. S. Moore and R. J. Scharff, Analytical and Bioanalytical Chemistry, 2009, 393, 1571-1578.
45. UKAS, Internal Report, Porton Down, 2016.
46. FEL, Internal Report, Porton Down, 2016.
47. M. W. Robert Ewing, David Atkinson, Jay Grate, Peter Hotchkiss, Trends in Analtical

Chemistry, 2013, 42, 14.
48. S. W. Henric Ostmark, How Ghee Ang Propellants Explos. Pyrotech, 2012, 37, 11.
49. J. Yinon, TrAC Trends in Analytical Chemistry, 2002, 21, 292-301.
50. B. J. L. J. A. Romano, H. Salem, Chemical warfare agents chemistry, pharmacology, toxicology

and therapeutics, CRC Press, 2nd edn., 2008.
51. OPCW, History of CW use, http://www.opcw.org/about-chemical-weapons/history-of-cw-

use/, (accessed 11/07/17).
52. D. E. D. H. P. Price, Regular Review: Chemical Weapons 2002.
53. M. B. A. Richard, Decontamination of Warfare Agents, Wiley, 2008.
54. OPCW, Chemical Weapons Convention, https://www.opcw.org/chemical-weapons-

convention/, (accessed 12/07/17).
55. A. C. Association, Chemical Weapons Convention Signatories and States

https://www.armscontrol.org/factsheets/cwcsig, (accessed 12/07/17).
56. B. News, http://www.bbc.co.uk/news/world-middle-east-23927399, (accessed 22/01/17).
57. CIA, Intelligence Update: Chemical Warfare Agent Issues,

https://www.cia.gov/library/reports/general-reports-1/gulfwar/cwagents/index.htm).
58. A. M. H. Mohtadi, University of Minnesota, 2006.
59. B. News, US Says Syria is Preparing Chemical Weapons Attack,

http://www.bbc.co.uk/programmes/p056dl8r, (accessed 12/07/17).
60. J. J. F. Worek, H. Thiermann, Chemical Warfare Toxicology, RSC, 2016.
61. A. M. Prentiss, Classification of Chemical Agents, McGraw Hill, New York, 1937.
62. J. Matoušek, Chemical Weapons Chemical Warfare Agents, Prague Czech National Institute

for NBC Protection, Prague, 2008.
63. R. L. Maynard, The Physicochemical Properties and General Toxicology of Chemical Warfare

Agents, Wiley, Chichester, 2007.
64. J. F. Hamilton and A. C. Lewis, Atmospheric Environment, 2003, 37, 589-602.
65. X. Xu, L. L. P. Stee, J. Williams, J. Beens, M. Adahchour, R. J. J. Vreuls, U. A. Brinkman and J.

Lelieveld, Atmos. Chem. Phys., 2003, 3, 665-682.
66. T. H. M. Shimmo, M. Kallio, P. Antifa, M.-L. Riekkola, LC.GC Eur, 2004, 17, 640.
67. R. B. L. Gaines, E. B.; Stuart, J. D., J. Microcolumn, 1998, 10, 597-604.
68. T. Hyötyläinen, M. Kallio, K. Hartonen, M. Jussila, S. Palonen and M.-L. Riekkola, Analytical

Chemistry, 2002, 74, 4441-4446.

https://www.armscontrol.org/factsheets/cwcsig
http://www.bbc.co.uk/news/world-middle-east-23927399
https://www.cia.gov/library/reports/general-reports-1/gulfwar/cwagents/index.htm
http://www.bbc.co.uk/programmes/p056dl8r

228

69. R. Ong, S. Lundstedt, P. Haglund and P. Marriott, Journal of Chromatography A, 2003, 1019,
221-232.

70. S. E. Reichenbach, M. Ni, V. Kottapalli, A. Visvanathan, E. B. Ledford, J. Oostdijk and H. C.
Trap, Jr. Journal of Chromatography A, 2003, 958, 45-46.

71. M. R. Gravett, F. B. Hopkins, A. J. Self, A. J. Webb, C. M. Timperley and J. R. Riches, Analytical
and Bioanalytical Chemistry, 2014, 406, 5121-5135.

72. B. Gruber, B. A. Weggler, R. Jaramillo, K. A. Murrell, P. K. Piotrowski and F. L. Dorman, TrAC
Trends in Analytical Chemistry, 2018, 105, 292-301.

73. M. Claeys, B. Graham, G. Vas, W. Wang, R. Vermeylen, V. Pashynska, J. Cafmeyer, P. Guyon,
M. O. Andreae, P. Artaxo and W. Maenhaut, Science, 2004, 303, 1173-1176.

74. D. J. Eatough, R. W. Long, W. K. Modey and N. L. Eatough, Atmospheric Environment, 2003,
37, 1277-1292.

75. H. Church, CLOUD RISE FROM HIGH-EXPLOSIVES DETONATIONS, Sandia Labs., Albuquerque,
N. Mex., 1969.

76. A. L. Kuhl, Dynamics of Detonations and Explosions, American Institute of Aeronautics and
Astronautics, Washington DC, 1989.

77. J. L. Thomas, C. C. Donnelly, E. W. Lloyd, R. F. Mothershead and M. L. Miller, Forensic Science
International, 2018, 284, 65-77.

78. Y. Seto, M. Kanamori-Kataoka, K. Tsuge, I. Ohsawa, K. Matsushita, H. Sekiguchi, T. Itoi, K.
Iura, Y. Sano and S. Yamashiro, Sensors and Actuators B: Chemical, 2005, 108, 193-197.

79. K. Kim, O. G. Tsay, D. A. Atwood and D. G. Churchill, Chemical Reviews, 2011, 111, 5345-
5403.

80. J. S. Caygill, F. Davis and S. P. J. Higson, Talanta, 2012, 88, 14-29.
81. P. E. Leary, G. S. Dobson and J. A. Reffner, Applied Spectroscopy, 2016, 70, 888-896.
82. R. J. Hopkins, S. H. Pelfrey and N. C. Shand, Analyst, 2012, 137, 4408-4410.
83. C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl

and W. Schade, Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62, 1519-1527.
84. P. Lucena, A. Doña, L. Tobaria and J. Laserna, Spectrochimica Acta Part B: Atomic

Spectroscopy, 2011, 66, 12-20.
85. R. G. Ewing and M. J. Waltman, International Journal for Ion Mobility Spectrometry, 2009, 12,

65-72.
86. T. Khayamian, M. Tabrizchi and M. Jafari, Talanta, 2003, 59, 327-333.
87. M. Tabrizchi and V. ILbeigi, Journal of Hazardous Materials, 2010, 176, 692-696.
88. J. Babis, R. Sperline, A. Knight, D. Jones, C. Gresham and M. Denton, Analytical and

Bioanalytical Chemistry, 2009, 395, 411-419.
89. S. Zimmermann, N. Abel, W. Baether and S. Barth, Sensors and Actuators B: Chemical, 2007,

125, 428-434.
90. A. B. Kanu and H. H. Hill, Journal of Chromatography A, 2008, 1177, 12-27.
91. M. Martin, M. Crain, K. Walsh, R. A. McGill, E. Houser, J. Stepnowski, S. Stepnowski, H.-D. Wu

and S. Ross, Sensors and Actuators B: Chemical, 2007, 126, 447-454.
92. G. A. Eiceman, H. Schmidt and A. A. Cagan, Counterterrorist Detection Techniques of

Explosives, 2007, 61-90.
93. S. A. Kasten, S. Zulli, J. L. Jones, T. Dephillipo and D. M. Cerasoli, Chirality, 2014, 26, 817-824.
94. J. E. Kolakowski, S. Harvey and L. P. Reiff, Gas Chromatographic Analysis of the Stereoisomers

of the Chemical Warfare Agent GF, US Army ECBC, USA, 2002.
95. W. R. Collin, A. Bondy, D. Paul, K. Kurabayashi and E. T. Zellers, Analytical Chemistry, 2015,

87, 1630-1637.
96. J. Lee, S. K. Sayler, M. Zhou, H. Zhu, R. J. Richardson, R. Neitzel, K. Kurabayashi and X. Fan,

Analytical Methods, 2018, 10, 237-244.
97. J. Lee, M. Zhou, H. Zhu, R. Nidetz, K. Kurabayashi and X. Fan, Analytical Chemistry, 2016, 88,

10266-10274.

229

98. S. J. Edwards, A. C. Lewis, S. J. Andrews, R. T. Lidster, J. F. Hamilton and C. N. Rhodes,
Analytical Methods, 2013, 5, 141-150.

