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Abstract

This thesis consists of two parts. First, I investigate the effect of using three

partial differential equation (PDE) techniques on analysing some simple animal

movement models. Results of examining a biased random walk show that an

old approach from Patlak’s work in 1953 can give a very poor approximation

even in this very simple case, while more recent methods correctly describe the

movement process. By analysing central-place foraging models and movement in

heterogeneous landscapes, I show that more recent PDE techniques can provide

more accurate approximations of space use patterns when the kernel describing

the movement is sufficiently smooth. However, for non-smooth movement kernels,

all methods can result in quantitatively misleading approximations. This analysis

provides an insight into the conditions under which the PDE methods might

perform better.

Second, I present two continuous-time modelling frameworks for analysing animal

movement depending on selection of resources over the whole landscape or in the

surrounding area. The models are parameterised by a Markov chain Monte Carlo

(MCMC) algorithm, allowing for movement decisions made at any time. Based

on these frameworks, I generate simulations in various situations, including mi-

gration and foraging in patchy or rasterised landscapes. Analysis of simulated

trajectories reveals that the inference algorithm can successfully capture the pa-

rameter values used in simulations in most cases. I also fit the migration model

to spring migration data of some mule deer (Odocoileus hemionus). The re-

sults imply that migration might be explained by the trade-off between resources

and travel distance. This work addresses some limitations of methods relying

on discrete-time movement models and therefore provides an advanced tool for

understanding movement driven by environmental factors.
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Chapter 1

Introduction

Animal movement plays a central role in understanding relationships and patterns

in ecosystems. For instance, population distribution or space use patterns can be

regarded as the consequence of movements (Börger et al., 2008). Movements can

also stem from conspecific and interspecific interactions as well as interactions

between animals and the environments (Lewis and Murray, 1993; Chetkiewicz

and Boyce, 2009; Vanak et al., 2013).

By analysing animal movements, researchers have attempted to derive spatial pat-

terns, including the formation of home ranges and territories (Moorcroft et al.,

1999; Börger et al., 2008; Bateman et al., 2015; Potts and Lewis, 2016b; Merkle

et al., 2017), utilisation distributions (Benhamou, 2011; Signer et al., 2017; Wil-

son et al., 2018), the space use patterns resulting from competition (Potts and

Petrovskii, 2017) and the influence of spatial attributes (Forester et al., 2009).

Furthermore, studies of movement are also key to our insight into other aspects

of the living world because movement governs not only the life of individuals

but also patterns at scales from population, community to ecosystem (Nathan

et al., 2008). In addition, the advance in tracking technology has enabled the

collection of high-resolution data, which considerably improves our knowledge of

the underlying mechanisms, causes and consequences of movement (Kays et al.,

2015).

Behind the great importance of the analysis of movement in understanding the
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living world, some challenges make it difficult to analyse movement data. Some

major problems arise from behavioural changes, autocorrelation between obser-

vations and observation errors in data (Gurarie et al., 2009). The change of

movement behaviour can stem from the heterogeneity of the environment and

different activities in life and may have a greater impact on scaling up individual

movement to space patterns than environmental factors do (Morales and Ellner,

2002). Much research has been devoted to the identification of behavioural modes

in order to capture the scenario of animals’ life such as migration more precisely

(Gurarie et al., 2009; Bunnefeld et al., 2011; Pedersen et al., 2011; Fleming et al.,

2014a; Bastille-Rousseau et al., 2016). The autocorrelation in position and ve-

locity comes from the fine scale of data collection and can be incorporated in

movement models such as a discrete-time correlated random walk (CRW) and a

continuous-time stochastic movement model (e.g. the Ornstein-Uhlenbeck pro-

cess). Beyond the consideration of autocorrelation in a movement model, Fleming

et al. (2014b) and Fleming et al. (2017) developed methods to facilitate the use of

continuous-time models to efficiently deal with autocorrelated data. For tackling

the complexity caused by observation errors, a promising tool is a state-space

model (Patterson et al., 2008; Albertsen et al., 2015), which uses a model to

explicitly incorporates observation errors in addition to a model for movement

process. Although this thesis will not focus on resolving these issues, they could

be taken into account in future research based on the work of this thesis.

This thesis is composed of two topics related to the derivation of spatial patterns

from animal movements. The first is to compare the accuracy of approximation

methods for predicting population space use patterns from individual movement

rules. The second introduces two modelling frameworks and an algorithm for

inference to infer the preferences of animals for resources from movement data in

two separate situations. In one case, an animal is assumed to assess the resources

across the landscape when making movement decisions, similar to Ford (1983)

and Mitchell and Powell (2004), whereas the other modelling method considers

only the resources in the immediate vicinity of the animal’s location, similar to

Preisler et al. (2013). Real situations may reside in between these two extremes.
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§ 1.1 A comparison of approximation techniques

The first topic discussed in this thesis focuses on methods for analysing individual

movement mechanisms, represented by a function termed a movement kernel. In

this part of the thesis, I will only consider models in a 1-dimensional space and

not involving direction. A movement kernel kτ (z|x) describes the probability of

an animal moving to a place z in a (typically small) period of time τ , given its

current location x . This probability can be affected by factors such as distance

to the destination from the animal’s position, environmental conditions and in-

teractions between animals and these factors can be integrated into an extended

movement kernel (Potts, Mokross and Lewis, 2014). Thus it is convenient to

use a movement kernel to describe individual movement rules, as the studies in

Rhodes et al. (2005), where movements depend on the location of the animal’s

home range.

However, a movement kernel only represents the probability of selecting a position

in a relatively short period of time compared to an animal’s lifetime. On the

other hand, understanding an ecosystem often involves long-term patterns at

population level, described by some key information such as the distribution

and abundance of a species. Therefore, techniques are necessary to scale up

the decision-making process at individual level, described by a movement kernel,

to space use patterns at population level. To scale up individual movement to

long-term patterns, it is conceptually straightforward to use the Master Equation

(ME), which propagates the movement kernel forward in time and is commonly

used (Moorcroft and Barnett, 2008; Potts, Bastille-Rousseau, Murray, Schaefer

and Lewis, 2014; Merkle et al., 2018):

u(x, t+ τ) =

∫ ∞
−∞

kτ (x|y)u(y, t)dy, (1.1)

where the function u(x, t) is the probability density of the animal’s position x at

time t . In practice, it requires the iteration of Equation (1.1) until the difference

between distributions u(x, t) and u(x, t+τ) is sufficiently small to obtain the long-

term distribution at steady state. However, calculating this integral repeatedly

can be computationally demanding, so more efficient approximation methods are
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favoured.

Some techniques have been developed to approximate the long-term distribution

by converting the ME to a partial differential equation (PDE) (e.g. Codling et al.

(2008), Section 2.2). Using the solution to a PDE at steady state to estimate the

long-term distribution is much more efficient than iterating the ME. Nevertheless,

these approximation techniques usually require particular assumptions such as

omitting higher order moments in the system to make it tractable. The extent to

which these approximations are reliable is unknown. For instance, a second-order

moment closure assumes that moments at orders higher than two can be expressed

by only the first and second moments. However, such a closure can make a poor

approximation of spatially structured populations if the spatial features involve

much information at higher orders (Murrell et al., 2004). Therefore, my first

object was to investigate the accuracy of the approximations using three such

techniques, all of which are formulated in PDEs, and draw a comparison between

them. This investigation was performed by examining either long-term or steady-

state distributions in various example cases, described in detail below.

The oldest method was developed in the mid-20th century by Patlak (1953) and

popularised in the context of animal movement by Turchin (1991). Hillen and

Painter (2013) reviewed two more recently developed methods, namely the Hyper-

bolic Scaling and Moment Closure methods. Potts et al. (2016) used these three

methods to examine animal distributions near a habitat edge in a one-dimensional

interval composed of two segments featuring different spatial attributes. In this

thesis, I consider the application of these PDE methods on the whole 1D real line

as well as a finite interval in several situations.

First, I compared the three approximate methods by using them to examine a

biased random walk, biased towards a fixed direction and simple enough that

the PDEs involved can be solved analytically. This shows Patlak’s method gives

a poor approximation, while the other methods provide an exactly correct pre-

diction. Since Patlak’s approach can fail even a very simple example, it may

also produce misleading results when analysing a more complicated movement.

Therefore, it needs further consideration to understand the effect of the three

methods on the steady-state distribution when examining more general cases.
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(a) (b) (c)

Figure 1.1: Mean velocity functions of central-place foraging models with different levels of con-
tinuity. (a) A discontinuous mean velocity function. (b) A continuous mean velocity function,
having non-differentiable points (c) A differentiable mean velocity function.

Subsequently, I investigated cases where the PDEs derived could be solved an-

alytically at steady state to obtain the long-term distributions. Such examples

considered include three types of central-place foraging movement models. With

the central place being located at the origin, the mean velocity functions of these

models have different levels of continuity: the first type has a discontinuous point

at the central place (e.g. Figure 1.1a), the second is continuous over the real line

but has two non-differentiable points near the central place (e.g. Figure 1.1b) and

the last is differentiable everywhere (e.g. Figure 1.1c). These three central-place

foraging models were examined to reveal how changes in velocity affect the results

of using the approximate methods.

(a) (b)

Figure 1.2: Examples of heterogeneous resources. (a) Resource quality with discontinuous
jumps. (b) Resource quality which changes smoothly.

Finally, I used the PDE methods to analyse movement kernels combined with
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heterogeneous resources of two types, one of which has discontinuous jumps (e.g.

Figure 1.2a) and the other changes smoothly (e.g. Figure 1.2b). These two types

of resources were considered to understand the impact of changes in resources

on the approximation of long-term distribution. This is similar to the strategy

which examines central-place foraging models with different level of smoothness.

In general, the results of examining these cases indicate that the PDE methods

can provide poor approximations if the movement kernel is non-smooth and better

estimates if the movement kernel is sufficiently smooth.

§ 1.2 A continuous-time resource selection method

The second part of the thesis introduces tools for analysing animals’ movement

responses to resources changing over time. As animals use resources in space

selectively, understanding how they make selection decisions is central to gaining

insight into underlying movement mechanisms (Cagnacci et al., 2010). A widely

used tool for representing the selection of resources is the resource selection anal-

ysis (RSA), often relying on a resource selection function (RSF) (Manly et al.,

2002), which takes values proportional to the probability of using a resource unit.

When applying an RSF, a used resource unit is often compared to some other

resource units which are available but not used. However, it may not be straight-

forward to define the availability of a resource unit and may not be realistic to

assume that every unit across the land is equally available.

This problem of defining the availability of a resource unit has been resolved by

step selection analysis (SSA) (Fortin et al., 2005; Forester et al., 2009; Thurfjell

et al., 2014). Instead of considering the selection of locations in space, SSA

examines the selection of ‘steps’, defined by linking two consecutive observed

points. Each used step is compared to some random steps starting from the same

beginning position of the used step. In this way, the availability of a step is

naturally constrained by the animal’s mobility, which can be described by the

probability of moving from the starting to end points of the step. Furthermore,

SSA has been extended to allow simultaneous estimation of the parameters of

resource selection and movement, since movement traits such as velocity may be
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influenced by resource selection. This extension of SSA is termed integrated step

selection analysis (iSSA) (Avgar et al., 2016).

Although SSA and iSSA have successfully enhanced the analysis of resource selec-

tion by considering mobility, there are some drawbacks of SSA and iSSA because

they rely on a discrete-time movement modelling framework. Since a discrete-

time movement model requires data to be collected with fixed time intervals, this

makes it difficult to manage data irregular in time (McClintock et al., 2014).

Moreover, SSA and iSSA are based on the assumption that the animal decides

to move exactly at points observed and never changes its mind between two ob-

servations. As a result, when applying SSA or iSSA, the time scale needs to

correspond to decisions to move to reach a correct conclusion (Thurfjell et al.,

2014). Only a few types of discrete-time movement models are robust enough to

be adjusted to match the temporal scale to movement processes (Schlägel and

Lewis, 2016).

Figure 1.3: A landscape with five food patches to choose from. The blue star is the animal’s
location and circles A1 to A5 are food patches. The animal is assumed to choose its target
patch by comparing the attractiveness of patches and selecting the most attractive patch.

To take advantage of incorporating movements into RSA yet circumvent the prob-

lems of using a discrete-time model, I embed a resource weighting function, which

reflects the preferences of the animal, into a continuous-time movement model.

For example, in Figure 1.3, there are five food patches in the landscape and I as-

sume the animal decides which patch to move towards by comparing the patches’

attractiveness, which is evaluated by a resource weighting function. After deter-

mining the destination, a continuous-time movement model is fitted to describe
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(a) (b)

Figure 1.4: A simulated trajectory in a patchy landscape. (a) A simulation of migration gener-
ated on the assumption that the animal moves in response to the change of resource qualities in
food patches. The animal was attracted to patch A1 in the beginning and subsequently moved
to patches A2 , A3 and A4 . At last, it travelled back to patch A1 (b) Resource qualities in the
patches in Figure 1.4a.

how the animal approaches its target place. A simulated trajectory generated on

these assumptions is shown in Figure 1.4a along with the resource qualities in food

patches, given in Figure 1.4b. This scenario forms the basis of my first modelling

framework, where the animal moves relying on complete knowledge of its envi-

ronment. This strategy is the first to be able to consider movements triggered by

factors in remote areas rather than being limited to decision-making at the scale

of observation, although the idea of taking places far away into consideration has

been mentioned in Bastille-Rousseau et al. (2018).

The second modelling framework assumes that animals move in response to lo-

cal clues instead of considering resources across the land. This represents the

situation where the dependence on perception predominates over the reliance on

memory (cf. Bracis and Mueller (2017)). In this case, an animal is assumed to

move in the direction up local resource gradient, which is calculated by evaluating

the resource quality of nearby areas using a resource weighting function. Figure

1.5 gives an example. This is similar to movements with a drift term described by

a potential function (Brillinger, 2010) and my modelling framework also allows

for redirection by reassessing local resource qualities at any time.

To parameterise the models, I use a Bayesian inference procedure, which takes
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Figure 1.5: A simulation of movement following a local resource gradient. The patch colours,
yellow, light green and dark green, represent low, medium and high resource qualities, assumed
to be fixed in this example. The star is one of the simulated locations and the arrow points the
direction up the resource gradient, determined by the resource qualities in patches AN , AS ,
AE and AW , where N,S,E,W stand for north, south, east and west. The animal is assumed
to move in the direction up the resource gradient with some uncertainty.

into account the reality that movement decisions can be made at any time by aug-

menting the data with points where decision-making might occur, similar to the

imputation of paths in Hanks et al. (2015). Moreover, my method is an advance

in RSA as it is able to consider resource selection beyond the observation scale.

The inference algorithm has been applied on both simulated and real data and

the results show that the inference method is reliable at simultaneously param-

eterising a resource selection function and a movement process from movement

data in a wide range of scenarios.

The simulated data examined consists of examples generated from the two mod-

elling frameworks, one of which compares resource units across the landscape

and the other only assesses local resources. For the former framework, three dif-

ferent situations were considered. In the first situation, I simulated movement

in a landscape with several food patches. The resource qualities in the patches

were assumed to change seasonally and be independent of the foraging activities

of animals. This was used to simulate the scenario of migration and Figure 1.4

shows such an example. The second situation also used patchy landscapes but

assumed the opposite for resource qualities. In this case, the resource qualities

were depleted or renewed dependent on the time the animal spends in a resource

patch. This can resemble movements of an animal in its home range. The third
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situation was a raster-landscape version of the second. That is, simulated tra-

jectories were generated in a rasterised landscape on the assumption that the

resource in a cell was consumed as a result of the animal’s presence in that cell

and grew otherwise. Here, every food patch in a patchy landscape and every cell

in a raster landscape is a resource unit, whose quality is assessed when deciding

the target place of movement.

Simulated trajectories generated from the other modelling framework were in

raster landscapes and the decision on movement direction only involved the four

neighbouring cells in the north, south, east and west of the animal’s current

position (Figure 1.5). These simulated trajectories model movement relying on

the perception of local clues, in contrast to the first modelling framework, which

assumes a movement decision is made by assessing every resource unit, both far

and near, in the landscape.

I applied the first modelling framework to analyse the spring migration data of

28 mule deer (Odocoileus hemionus) in the Greater Yellowstone Ecosystem to

demonstrate the methodology and give a possible explanation for factors driving

migration. The time and location data of individuals were collected every 2

hours from March to August 2016. The data points in the winter and summer

ranges formed distinguishable clusters as the distance travelled from winter to

summer ranges was about 75 kilometres on average. For some individuals, there

were also small clusters of data points along the migration path. To represent

resource qualities, I used the normalised difference vegetation index (NDVI) and

instantaneous rate of green-up (IRG) over the area where the mule deer were

observed. In addition, I also considered resource qualities defined by the integral

of NDVI from a time of observation to the end of summer. Figure 1.6 shows the

migration data of a mule deer along with resource qualities in recognised foraging

patches.

1.2.1 Previous approaches

The goal of the second part of the thesis is to develop a tool for RSA by integrat-

ing a RSF into a continuous-time movement model rather than a discrete-time
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(a)

(b)

(c) (d)

Figure 1.6: Migration data of a mule deer and relevant resource data. (a) The location data
collected from March to August 2016 in the Greater Yellowstone Ecosystem. The circles A1 ,
A2 and A3 are identified patches with centres µ1 , µ2 and µ3 respectively. The deer migrated
from patch A1 to patch A3 via patch A2 . Resource data were daily values from Julian day 1
to day 250 in 2016: (b) NDVI values at patch centres; (c) integrated NDVI at patch centres;
(d) IRG values at patch centres.

movement model. In this review, I will focus on the modelling framework for

considering resource selection across the whole space since this framework is the

major achievement of the thesis. Here, I give a short review of a commonly used

continuous-time movement model, the Ornstein-Uhlenbeck (OU) process, to ex-

plain why this is an ideal choice for my modelling framework. In addition, I

briefly introduce some previous work on continuous-time movement models and

how they relate to RSA to show gaps my work intends to close.

An OU process describes a biased random walk towards a centre of attraction

and has been used for studying animal movement for a while. For instance, Dunn

and Gipson (1977) studied the estimation of home range by using an OU pro-

cess to represent movements attracted to a central place. Building on the idea
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of Dunn and Gipson (1977), where individual movement is described by only a

single OU process, Blackwell (1997) generalised the OU model by using differ-

ent OU process for different situations. These different situations may stand for

different locations of interest or different behavioural states such as resting and

feeding. With a mixture of movement processes and assuming animals switch

between these processes while moving, Blackwell (1997) has used such a model,

termed a switching OU model, to describe more general space use patterns such

as (i) movement with two centres of attraction, (ii) movement with large-scale

excursions and (iii) movement with different behavioural states. These exam-

ples provide an initial step to model movement decisions made according to the

selection of resources, which can be nearby or far away.

Parameterisation of the models is achieved by Bayesian inference strategies (Black-

well, 2003) and subsequent studies have extended the OU modelling framework to

include heterogeneous spatial conditions (Harris and Blackwell, 2013; Blackwell

et al., 2016). Since the OU models are ready to incorporate both heterogeneous

landscapes and different behavioural states, it has great potential to strengthen

the analysis of resource selection by inserting a RSF into an OU model. This was

a direction for further research suggested by Schick et al. (2008) that the incor-

poration of a RSF in a movement model would provide a better understanding of

the link between the environment, behavioural states and movement decisions. In

particular, when using a switching OU model, a RSF can be used to identify the

place where the animal intends to approach and thus can determine which OU

process to follow at a specific moment. The incorporation of RSA into the OU

framework in this way is the primary purpose of the second part of this thesis.

The use of an OU process in RSA has been proposed by Johnson et al. (2008).

In Johnson et al. (2008), an OU process describes the probability of moving from

one fix to the next to represent the density of available resources. However, they

did not include possible decision changes between observations.

Apart from the switching OU model, there are several studies devoted to incor-

porating resource selection into a continuous-time movement model. An example

is Horne et al. (2007), which introduced the Brownian bridge movement model

(BBMM), which links pairs of two successive observations to estimate movement
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paths. Estimation of movement paths can bring about the identification of places

which are frequently used and then these areas can be related to environmental

conditions to understand the selection of resources (Horne et al., 2007). However,

as a Brownian bridge connecting two observations assumes a higher frequency of

use in the extending area over the straight line between the two locations, that

is, a step in SSA, it may also lead to misinterpretation of resource selection as

SSA may do. For example, for cases other than crossing a road as in Horne et al.

(2007), this approach may miss the situation where the animal aims at an area in

the distance and have to pass a certain place which is in fact not of great interest.

In addition, Horne et al. (2007) did not consider changes of movement decision

along the path.

Hanks et al. (2015) proposed a model where the movement path is discretised

and a resource selection function is embedded in the transition rate between

neighbouring cells. However, it only focuses on transitions within a local area

and implicitly assumes that the decision-making process is coincident with the

scale of observation. It does not consider the situation where movement might

be motivated by a long-term goal such as the migration between seasonal ranges.

Therefore, there is a lack of a model for simultaneously representing movement

depending on resource selection at large scales in continuous time and considering

decisions made between observations. On the other hand, the combination of a

switching OU model and a RSF in this thesis provides a useful tool in this regard.

§ 1.3 Thesis outline

In Chapter 2, I investigate the accuracy of three partial differential equation

(PDE) methods for estimating location redistributions by comparing approxima-

tions with actual distributions arising from movement kernels. I demonstrate the

performance of the PDE methods on different assumptions for movement strate-

gies and in different spatial conditions. Most of the contents in this chapter has

been published in Wang and Potts (2017).

To understand how animals move in response to environmental conditions, Chap-

ter 3 introduces a modelling framework for resource selection analysis using
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continuous-time movement models. I use a resource selection function to identify

the attraction centre of movement in space and a switching Ornstein-Uhlenbeck

(OU) process to describe movements drifting to the most attractive place in the

landscape.

Chapter 4 uses similar strategies as Chapter 3 but describes movements in a dif-

ferent situation, where only local information is considered. I describe movements

using a random walk in the direction up the local resource gradient, which is de-

termined by comparing the value of the resource selection function in the vicinity

of the animal’s position.

The movement modelling framework in Chapter 3 is applied to mule deer (Odocoileus

hemionus) data in Chapter 5. I fit a migration model built on the framework in

Chapter 3 to the migration data, using Bayesian inference techniques.

Some discussions and conclusions are given in Chapter 6.



Chapter 2

Partial differential equation

techniques for analysing animal

movement

Most contents of this chapter has been published in Wang and Potts (2017).

Animal movement contributes to population distributions and the formation of

space use patterns. By assuming all individuals move according to the same

rule, the probability of an individual being at a certain position at a given time

can represent the population density (Turchin, 1991). A movement rule can be

represented by a movement kernel, which describes how an animal moves, for

example, by explicitly giving the probability of the animal moving to a location

in a fixed period of time given its current position. The strategy to convert

individual movement kernels to patterns at population level dates back to Patlak

(1953), which considers movement rules incorporating persistence in direction and

bias caused by external factors. Patlak’s work was later explained and popularised

by Turchin (1991) and Turchin (1998). Recent examples include Rhodes et al.

(2005), where animals’ preference for a habitat is contained in a movement kernel

to model habitat selection. It is also straightforward to incorporate other factors

influencing movements such as interactions with the environment into a movement

kernel (Potts, Mokross and Lewis, 2014).

15
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To predict the population-level space use pattern from a movement kernel, par-

tial differential equation (PDE) techniques provide an efficient tool to accomplish

this task. This chapter gives a comparison between three such techniques to

show under which conditions these techniques would provide more accurate ap-

proximations. The three techniques are the Hyperbolic Scaling method (Hillen

and Painter, 2013), the Moment Closure method (Hillen and Painter, 2013) and

Patlak’s approach (Patlak, 1953).

§ 2.1 Movement kernel analysis

In this chapter, a movement kernel is denoted by kτ (z|x), representing the prob-

ability of an animal arriving at position z in time τ given its current location

x . A movement kernel can be related to a random walk by giving the location

density after one time step. For example, the classical simple random walk model

in 1-D assumes that in time τ , the walker can move a distance ∆ either right

or left with equal probability (Othmer et al., 1988; Codling et al., 2008). This

simple random walk can be expressed by a movement kernel defined by

kτ (z|x) =


1

2
if z = x±∆,

0 otherwise.

(2.1)

By considering the position distribution after time t = nτ for a large n ∈ N and

taking the limit ∆, τ → 0 such that δ2/τ = constant, the simple ransom walk

model brings about the density function, which is the solution to the diffusion

equation
∂

∂t
u(x, t) =

∆2

2τ

∂2

∂x2
u(x, t),

u(x, 0) = δ(x),

(2.2)

where u(x, t) is the population density at position x and time t and δ(x) is

the Dirac distribution (Othmer et al., 1988; Codling et al., 2008). The diffusion

equation (Equation 2.2) associated to the simple random walk can be derived

by analysing the movement kernel in Equation 2.1 using the methods introduced

below in Sections 2.1.1-2.1.3.
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In this section, I will briefly introduce three methods, used in Potts et al. (2016)

to transform a movement kernel into long-term space use distribution. These

methods rely on different assumptions. The first technique, the Hyperbolic Scal-

ing method, assumes that the major component of movement is the drift rather

than diffusion term (Othmer et al., 1988; Hillen and Painter, 2013). The second

method, the Moment Closure method, assumes that it is sufficient to describe

movements using only the first and second moment while higher moments are

at equilibrium and sufficiently small to be neglected (Hillen and Painter, 2013).

In general, it is also possible to include the third, fourth or higher moments in

a moment closure method, but this is beyond the scope of this chapter and will

not be discussed here. The last method is Patlak’s approach, which is based on

similar assumptions about higher moments, but also assumes a slow change of

movement kernel across space (Patlak, 1953).

2.1.1 Hyperbolic Scaling method

Here, I assume an animal is moving in a one-dimensional space according to

a movement kernel, kτ (z|x), and denote the probability density function of an

animal’s location distribution at time t by uH(x, t) with the subscript “H ” stand-

ing for “Hyperbolic Scaling”. Then the PDE arising from the Hyperbolic Scaling

method is (Hillen and Painter, 2013; Potts et al., 2016)

∂

∂t
uH(x, t) =

τ

2

∂2

∂x2
[D(x)uH(x, t)]− ∂

∂x
[c(x)uH(x, t)]+

τ

2

∂

∂x

[
c(x)

dc(x)

dx
uH(x, t)

]
,

(2.3)

where

c(x) =
1

τ

∫ ∞
−∞

(z − x)kτ (z|x)dz, (2.4)

and

D(x) =
1

τ 2

∫ ∞
−∞

(z − x)2kτ (z|x)dz − c(x)2. (2.5)

Here, c(x) is the advection coefficients, representing the mean distance moved

over time τ , that is, the mean drift velocity of the animal, and D(x) is the

diffusion coefficient, describing the variance of this velocity.
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The long-term population distribution can be represented by the solution to the

PDE in Equation (2.3) at steady state (Smouse et al., 2010). Setting the left-

hand side of Equation (2.3) to 0, Equation (2.3) becomes an ordinary differential

equation (ODE) as follows:

τ

2

d2

dx2
[D(x)u∗H(x)]− d

dx
[c(x)u∗H(x)] +

τ

2

d

dx

[
c(x)

dc(x)

dx
u∗H(x)

]
= 0 (2.6)

where u∗H(x) is the steady-state distribution. Imposing a zero-flux assumption

at the steady state that

τ

2

d

dx
[D(x)u∗H(x)]− [c(x)u∗H(x)] +

τ

2

[
c(x)

dc(x)

dx
u∗H(x)

]
= 0, (2.7)

Equation (2.6) can be solved to give

u∗H(x) =
CH
D(x)

exp

(
1

τ

∫ x

0

2c(s)− τ dc
ds
c(s)

D(s)
ds

)
, (2.8)

where

CH =

[∫
Ω

1

D(x)
exp

(
1

τ

∫ x

0

2c(s)− τ dc
ds
c(s)

D(s)
ds

)
dx

]−1

is a normalising constant and Ω is the domain where u∗H(x) is defined. Note that

this expression relies on the assumption that Ω is connected in R and contains

0. This normalising constant is essential, since u∗H(x) is a probability density

function, so must integrate to 1 across Ω.

2.1.2 Moment Closure method

Similar to the Hyperbolic Scaling method, I begin with a PDE in 1D when apply-

ing the Moment Closure method to estimate the steady-state distribution from a

movement kernel. The PDE derived using the Moment Closure method is (Hillen

and Painter, 2013; Potts et al., 2016)

∂

∂t
uM(x, t) =

τ

2

∂2

∂x2
[D(x)uM(x, t)]− ∂

∂x
[c(x)uM(x, t)], (2.9)
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where uM(x, t) is the probability of location distribution with the subscript “M ”

referring to “Moment Closure”. Here, c(x) and D(x) are defined by Equations

(2.4) and (2.5) in the same way as using the Hyperbolic Scaling method. To solve

the PDE in Equation (2.9) at steady state, I denote the steady-state distribution

by u∗M(x) and assume the zero-flux condition

τ

2

d

dx
[D(x)u∗M(x)]− [c(x)u∗M(x)] = 0. (2.10)

Based on this assumption, the steady-state distribution u∗M(x) is obtained by

solving the following ODE,

τ

2

d2

dx2
[D(x)u∗M(x)]− d

dx
[c(x)u∗M(x)] = 0. (2.11)

The solution to the ODE in Equation (2.11) is

u∗M(x) =
CM
D(x)

exp

(
2

τ

∫ x

0

c(s)

D(s)
ds

)
, (2.12)

where

CM =

[∫
Ω

1

D(x)
exp

(
2

τ

∫ x

0

c(s)

D(s)
ds

)
dx

]−1

is a normalising constant and Ω is the domain of definition of the distribution,

u∗M(x).

2.1.3 Patlaks approach

The PDE considered when using Patlak’s approach in a 1D space is given by

(Patlak, 1953; Potts et al., 2016)

∂

∂t
uP (x, t) =

∂2

∂x2

[
M2(x)

2τ
uP (x, t)

]
− ∂

∂x

[
M1(x)

τ
uP (x, t)

]
(2.13)

with

M1(x) =

∫ ∞
−∞

(z − x)kτ (z|x)dz, (2.14)
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and

M2(x) =

∫ ∞
−∞

(z − x)2kτ (z|x)dz, (2.15)

where the subscript “P ” refers to Patlak’s approach, M1(x) and M2(x) are the

first and second moments of the distance moved in time τ respectively. Unlike the

Hyperbolic Scaling and Moment Closure methods, where the diffusion coefficient,

defined by Equation (2.5), is in proportion to the variance of the distance moved

in time τ , the diffusion coefficient, M2(x), in Equation (2.15) here is proportional

to the second moment of the mean displacement in time τ .

To solve the PDE in Equation (2.13) at steady state, the term ∂
∂t
uP (x, t) is set

to 0 to obtain the following ODE

d2

dx2

[
M2(x)

2τ
u∗P (x)

]
− d

dx

[
M1(x)

τ
u∗P (x)

]
= 0, (2.16)

where u∗P (x) is the steady-state distribution. Assuming the ODE in Equation

(2.16) satisfies the condition

d

dx

[
M2(x)

2τ
u∗P (x)

]
−
[
M1(x)

τ
u∗P (x)

]
= 0 (2.17)

and solving Equation (2.16) give the solution to the original PDE in Equation

(2.13) at steady state as follows:

u∗P (x) =
CP

M2(x)
exp

(∫ x

0

2M1(s)

M2(s)
ds

)
(2.18)

with

CP =

[∫
Ω

1

M2(x)
exp

(∫ x

0

2M1(s)

M2(s)
ds

)
dx

]−1

a normalising constant and Ω the domain of definition.

§ 2.2 Comparison between the PDE techniques

Section 2.1 introduces the formulae for the PDEs and their steady-state solutions

for scaling up individual movement processes to population distributions. This
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section gives two approaches for assessing the capacity of the PDE methods of

giving accurate approximation to real distributions arising from the underlying

movement kernel. One approach is to inspect short-term distributions arising

from the movement kernel, while the other considers long-term distributions.

2.2.1 Evaluation of short-term estimation

For some particular movement kernels, it is possible to solve the PDEs in Equa-

tions (2.3),(2.9),(2.13) at a transient state. In this case, the transient distributions

derived from the PDEs can be used to approximate the location distribution and

be compared to the movement kernel directly. As a movement kernel describes

the underlying process by which an animal moves, a good approximation should

feature little discrepancy when comparing to the kernel.

Here I suppose a movement kernel, kτ (z|x), is considered and the PDE used in the

approximation procedure (Equations 2.3,2.9,2.13) can be solved to give u(x, t),

a distribution approximating the animal’s location distribution at time t . I also

assume no long-term correlation in the model, that is, the probability of moving

to a location in time τ solely depends on the present condition. The notation

kτ (z|x) indicates the probability of an animal moving from its current position,

x , to position z in a small period of time τ . Meanwhile, u(x, t) represents

the probability of the animal being at some location, x , at time t . Therefore,

assuming the animal is currently at position x0 , meaning the initial condition is

given by u(x, 0) = δ(x0), where δ(·) is the Dirac delta function, the probability

of observing the animal at position x in time τ , u(x, τ), should equal kτ (x|x0).

That is, a precise approximation of kτ (x|x0) given by u(x, τ) should have

u(x, τ) = kτ (x|x0). (2.19)

On the other hand, if an approximation cannot accurately capture the move-

ment kernel, which controls the short-term movements, then the approximation

method is more likely to provide misleading long-term estimations. That is, the

cumulation of differences in each short step may result in large errors over a long

period of time.
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2.2.2 Evaluation of long-term estimation

Evaluation of the long-term approximation is less straightforward. The first step

is to construct the “actual” space use distribution arising from a given movement

kernel, kτ (z|x). A technique that can be used to achieve this is the Master

Equation. In general, the Master Equation describes the time evolution of the

population density u(x, t), given that T (x, y) represents the probability of a jump

from location y to x and a transition rate λ , as follows:

∂

∂t
u(x, t) = −λu+ λ

∫
Ω

T (x, y)u(y, t)dy, (2.20)

where the first term on the right hand side of Equation 2.20 describe the rate

of leaving position x and the second term gives the rate of arriving at x from

all other locations in the domain Ω (Othmer et al., 1988). Equation 2.20 also

applies to models of velocity jump processes, where transition between velocities

is considered (Othmer et al., 1988).

Here, I will employ an alternative form for the Master Equation, which is also

commonly used (Moorcroft and Barnett, 2008; Potts, Bastille-Rousseau, Murray,

Schaefer and Lewis, 2014; Merkle et al., 2018):

uI(x, t+ τ) =

∫ ∞
−∞

kτ (x|y)uI(y, t)dy, (2.21)

where uI(x, t) is the probability density of the animal’s position at time t and

the subscript “I ” stands for “Integral”. As time t increases to infinity, Equation

(2.21) becomes

u∗I(x) =

∫ ∞
−∞

kτ (x|y)u∗I(y)dy, (2.22)

where u∗I(x) = lim
t→∞

uI(x, t). This distribution, u∗I(x), is the long-term pop-

ulation distribution propagated from the movement kernel. Nonetheless, it is

often impossible to solve Equation (2.22) analytically, so it is necessary to it-

erate Equation (2.21) numerically to obtain the long-term distribution. (For

an exception, see Barnett and Moorcroft (2008).) Therefore, in this chapter, I

will numerically integrate Equation (2.21) to derive the desired real long-term

distribution. To decide when to stop the iteration, I measure the difference be-
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tween distributions by Kullback-Leibler divergence (KL-divergence; Kullback and

Leibler (1951)), which is commonly used to evaluate information loss when ap-

proximating a model (Horne and Garton, 2006). Applying the KL-divergence,

however, requires caution for situations where the probability density is 0. Once

the KL-divergence from uI(x, t + nτ) to uI(x, t + (n − 1)τ) is less than 10−6 , I

set u∗I(x) = uI(x, t+ nτ).

Having derived the real long-term distribution, u∗I(x), the next step is to eval-

uate the distance between u∗I(x) and the estimated distributions given by the

three PDE methods introduced in Section 2.1 (Equations 2.8, 2.12, 2.18). The

approximate distribution with the smallest KL-divergence to u∗I(x) is regarded

as the best approximation of the long-term distribution emerging from the move-

ment kernel (Horne and Garton, 2006). For an alternative measurement, I use

Euclidean distance, which leads to very similar conclusions of the performance of

the PDE methods (see Appendix A). This suggests that the comparison between

methods is not sensitive to the metric used.

§ 2.3 An analytic example: a biased random walk

After introducing three PDE techniques for estimating population distribution

and approaches to comparing them (Sections 2.1 and 2.2), here I start with a

simple example to illustrate the comparison of the three PDE methods. This

example is a movement kernel for which the PDEs in Equations (2.3),(2.9),(2.13)

have analytical solutions at transient states, so the solutions can be compared

to the movement kernel as explained in Section 2.2.1. The results reveal that

Patlak’s approach fails to provide a distribution corresponding to the movement

kernel even for this simple case, whereas the Hyperbolic Scaling and Moment

Closure methods are proven to be successful.

Assuming an animal is moving on an infinite 1D line, I consider a movement

kernel that describes a biased random walk using the normal distribution with

mean µ and variance σ2 , given by
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kτ (z|x) =
1√
2πσ

exp

(
−(z − x− µ)2

2σ2

)
. (2.23)

When using the Hyperbolic Scaling and Moment Closure methods, I calculate

the mean velocity in Equation (2.4) and variance in Equation (2.5) with the

movement kernel in Equation (2.23) to give

c(x) =
µ

τ
, (2.24)

D(x) =
σ2

τ 2
. (2.25)

Since the mean velocity function, c(x), in Equation (2.24) is a constant, the

derivative of c(x) is 0 and the last term of the PDE in Equation (2.3) vanishes.

Hence the Hyperbolic Scaling and Moment Closure methods give rise to the same

PDE as follows:

∂

∂t
uM(x, t) =

σ2

2τ

∂2

∂x2
uM(x, t)− µ

τ

∂

∂x
uM(x, t), (2.26)

which is an advection-diffusion equation with constant coefficients. Given the

initial condition u(x, 0) = δ(x0), where δ(·) is the Dirac delta function, the

solution to this PDE at time t = τ is (Codling et al., 2008)

uM(x, τ) =
1√

2πσ2
exp

(
−(x− x0 − µ)2

2σ2

)
. (2.27)

Note that in this case, uH(x, τ) = uM(x, τ).

Meanwhile, the first and second moments of the distance moved in time τ in

Equations (2.14) and (2.15) are calculated for Patlak’s approach:

M1(x) = µ, (2.28)

M2(x) = σ2 + µ2. (2.29)

Then inserting Equations (2.28) and (2.29) into Equation (2.13) leads to
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∂

∂t
uP (x, t) =

∂2

∂x2

[
σ2 + µ2

2τ
uP (x, t)

]
− ∂

∂x

[µ
τ
uP (x, t)

]
. (2.30)

With the initial condition u(x, 0) = δ(x0), solving this PDE and calculating the

probability density at time τ result in

uP (x, τ) =
1√

2π(σ2 + µ2)
exp

(
−(x− x0 − µ)2

2(σ2 + µ2)

)
. (2.31)

Comparing Equations (2.27) and (2.31) to the movement kernel kτ (x|x0) shows

that uH(x, τ) = uM(x, τ) = kτ (x|x0) but uP (x, τ) 6= kτ (x|x0). Thus the Hyper-

bolic Scaling and Moment Closure methods successfully represent the movement

kernel, whereas Patlak’s approach fails even in this simple example.

The contrast between Patlak’s approach and the other two methods stems from

the different diffusion terms in Equations (2.26) and (2.30). Patlak’s approach

brings about a diffusion coefficient proportional to the second moment of velocity,

while the diffusion coefficient derived by the other methods is proportional to the

variance. Consequently, Patlak’s approach would overestimate the variance in a

transient probability distribution and the error becomes greater when the drift

term rises (see Figure 2.1).

Note that for cases such as the example given in Equation 2.23 that the reloca-

tion is determined by a normal distribution, all PDE methods lead to solutions

(Equations 2.27 and 2.31) allowing for infinite propagation, which is not realistic

in a biological context.

In general, the Hyperbolic Scaling and Moment Closure methods would provide

better predictions of population distribution than Patlak’s approach does. This

is because in an advection-diffusion equation with constant coefficients, the diffu-

sion term represents the variance over time rather than the second moment. As

revealed in this example, Patlak’s formulation could be highly inaccurate except

when the drift term is very small compared to the diffusion term.
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(a) (b)

Figure 2.1: Errors arising from Patlak’s approximation are corrected by the (more recent)
Moment Closure approach. Here, we show the movement kernel from Equation (2.23) with
values of mean, µ , and standard deviation, σ , as given in the panels, together with solutions
of the PDEs for Patlak’s approximation (uP (x, τ); Equation 2.31) and the Moment Closure
method (uM (x, τ); Equation 2.27), given at time τ . Progressing from the left panel to the
right, we see that a higher µ leads to a greater difference between the two methods, but the
Moment Closure method always gives the correct result.

§ 2.4 A central-place foraging model with discontinuous mean

velocity

Section 2.3 shows that Patlak’s approach can give an inaccurate illustration of

transient dynamics; hereafter, I investigate the performance of the three PDE

techniques for estimating long-term population distributions. The steady-state

solutions to the PDEs derived in the following examples do not require numerical

integration, so they are helpful for the studies of steady state. The examples

examined here are three central-place foraging models, differing by the smooth-

ness of their mean velocity functions, and four models describing movements in

a heterogeneous landscape.

The first central-place foraging model originates from the classical Holgate-Okubo

model (Holgate, 1971; Okubo, 1980), which is the simplest model for home-

ranging behaviour (Börger et al., 2008). Here, an animal is assumed to be moving

on the real line with constant average velocity towards a central place, positioned

at the origin x = 0 for convenience. This central place, for example, may be a

place abundant in food or a den with young animals. The movement procedure
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Figure 2.2: An example of a discontinuous mean velocity function, defined by Equation (2.33),
derived from a central-place foraging model with the central place being located at 0 (Equation
2.32).

is defined by a movement kernel built on normal distributions as given below:

k1
τ (z|x) =



1√
2πσ

exp

(
−(z − x− µ)2

2σ2

)
if x < 0,

1√
2πσ

exp

(
−(z − x+ µ)2

2σ2

)
if x > 0,

1√
2πσ

exp

(
−(z − x)2

2σ2

)
if x = 0,

(2.32)

where the superscript “1” is used to refer to this model, µ > 0 and σ2 are the

mean and variance of the distance the animal moves over a time τ .

2.4.1 Analysis of movement kernel k1
τ (z|x) by the PDE techniques

To apply the Hyperbolic Scaling and Moment Closure methods, the drift and

diffusion terms in Equations (2.4) and (2.5) are calculated by inserting the move-

ment kernel in Equation (2.32) to give

c1(x) =



µ

τ
if x < 0,

−µ
τ

if x > 0,

0 if x = 0,

(2.33)

and

D1(x) =
σ2

τ 2
. (2.34)

Since c1(x) is piecewise constant (Figure 2.2), the derivative of c1(x) is 0 for
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x 6= 0. By comparing Equations (2.8) and (2.12), it is obvious that in this

situation the steady state distribution obtained using the Hyperbolic Scaling

method, denoted by u1
H(x), reduces to that using the Moment Closure method,

denoted by u1
M(x). That is, u1

H(x) = u1
M(x), so only the latter is calculated. Note

that because the mean velocity function, c1(x), is piecewise defined, the PDEs

involved and the ODEs at steady state are thus piecewise defined. Therefore, I

solve the ODE in Equation (2.11) for x > 0 and x < 0 separately and assume

that the solution is continuous. Now placing expressions (2.33) and (2.34) into

Equation (2.12) gives

u1
M(x) =


C1
M1

τ 2

σ2
exp

(
2µ

σ2
x

)
if x < 0,

C1
M2

τ 2

σ2
exp

(
−2µ

σ2
x

)
if x > 0,

(2.35)

where C1
M1 and C1

M2 are arbitrary constants. The continuity assumption implies

that C1
M1 = C1

M2 must hold, because limx→0+ u
1
M(x) = limx→0− u

1
M(x). To ensure

u1
M(x) integrates to 1, C1

M1 is given by

C1
M1 =

[∫ 0

−∞

τ 2

σ2
exp

(
2µ

σ2
x

)
dx+

∫ ∞
0

τ 2

σ2
exp

(
−2µ

σ2
x

)
dx

]−1

=
µ

τ 2
. (2.36)

Placing Equation (2.36) into Equation (2.35) and setting u1
M(0) = limx→0 u

1
M(x) =

µ/σ2 result in

u1
M(x) =


µ

σ2
exp

(
2µ

σ2
x

)
if x < 0,

µ

σ2
exp

(
−2µ

σ2
x

)
if x ≥ 0.

(2.37)

This is the probability density function of a Laplace distribution with mean 0

and variance σ4/2µ2 .

When using Patlak’s approach to derive the steady state distribution, the first

step involves the computation of the first and second moments of distance moved

over time τ . Inserting the movement kernel in Equation (2.32) into Equations

(2.14) and (2.15) gives
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M1
1 (x) =


µ if x < 0,

−µ if x > 0,

0 if x = 0,

(2.38)

and

M1
2 (x) = σ2 + µ2. (2.39)

Equation (2.38) is also piecewise defined, so the steady state distribution, u1
P (x),

is calculated for x > 0 and x < 0 with the continuity assumption u1
P (0) =

limx→0+ u
1
P (x) = limx→0− u

1
P (x). Substituting Equations (2.38) and (2.39) into

Equation (2.18) with the condition that u1
P (x) integrates to 1 yields

u1
P (x) =


µ

σ2 + µ2
exp

(
2µ

σ2 + µ2
x

)
if x < 0,

µ

σ2 + µ2
exp

(
− 2µ

σ2 + µ2
x

)
if x ≥ 0,

(2.40)

which is a Laplace distribution with mean 0 and variance (σ2 + µ2)2/2µ2 . The

variances of Equations 2.40 is (σ2 + µ2)2/σ4 times larger than the variance of

Equation 2.37 when µ > 0.

2.4.2 Numerical analysis of movement kernel k1
τ (z|x)

Having obtained steady-state distributions by the three PDE techniques (Equa-

tions 2.37 and 2.40), I now compare these distributions to the actual long-term

population distribution, given by Equation (2.22), to decide which PDE method

performs better. As described in Section 2.2.2, the actual long-term population

distribution, u1
I(x), is represented by the integral of the ME in Equation (2.21),

numerically computed given the moment kernel in Equation (2.32).

The movement kernel in Equation (2.32) contains two parameters, µ and σ , hence

I explore the parameter space to understand the impact of these parameters on

the accuracy of approximations. The plots of contour lines of the KL-divergence

on the µ − σ plane reveal that both the KL-divergence of u1
I(x) from u1

M(x)

and the KL-divergence of u1
I(x) from u1

P (x) grow with increasing µ/σ (Figures
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(a) Moment Closure (b) Patlak’s method

(c) 0.05 ≤ µ ≤ 0.2, σ = 0.05 (d) µ = 0.05, 0.05 ≤ σ ≤ 0.2

(e) µ = 0.01, σ = 0.05 (f) µ = 0.1, σ = 0.05

Figure 2.3: Discontinuous mean velocity movement kernel k1τ (z|x) with µ the mean move length
in one step and σ the standard deviation of move length: The contours of the KL-divergence of
the numerical solution, u1I(x), (a) from the analytic solution, u1M (x) (Equation 2.37), derived
using a moment closure technique, µ, σ ∈ [0.05, 0.2]. (b) from the analytic solution, u1P (x)
(Equation 2.40), derived using Patlak’s method, µ, σ ∈ [0.05, 0.2]. (c) KL-divergence between
u1M (x) and u1I(x) (N), and u1P (x) and u1I(x) (?) with 0.05 ≤ µ ≤ 0.2 and σ = 0.05. (d)
KL-divergence between u1M (x) and u1I(x) (N), and u1P (x) and u1I(x) (?) with 0.05 ≤ σ ≤ 0.2
and µ = 0.05. (e) steady-state distributions with µ = 0.01 and σ = 0.05. (f) steady-state
distributions with µ = 0.1 and σ = 0.05.
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2.3a,b). Note that steady-state distribution u1
H(x) equals to u1

M(x) in this case

(see Section 2.4.1).

Figures 2.3c,d show that the KL-divergence of u1
I(x) from u1

M(x) is greater than

the KL-divergence of u1
I(x) from u1

P (x), meaning u1
P (x) is a better approximation

of u1
I(x). This implication is in opposition to the analytic analysis in Section 2.3,

which induces the conjecture that u1
M(x) might be closer to u1

I(x) than u1
P (x).

Nevertheless, neither of the two PDE methods captures the dynamics of the

movement kernel properly. Both u1
M(x) and u1

P (x) have sharp peaks at x = 0,

contrasting with the relatively smooth shape of u1
I(x), as shown in Figures 2.3e,f.

In addition, since µ/(σ2 +µ2) < µ/σ2 for µ > 0, comparing Equations (2.37) and

(2.40) reveals that u1
P (0) < u1

M(0) and the variance of u1
P (x) is always greater

than that of u1
M(x) for µ > 0. This contributes to the smaller KL-divergence

from u1
I(x) to u1

P (x). That is, while all PDE techniques, including Patlak’s

approach, overestimate the probability density near the central place, Patlak’s

approach also overestimate the variance, resulting in a flatter distribution closer

to the real long-term distribution. However, note that the apparently greater

variance of u1
P (x) observed in Figure 2.3f agrees with the analytic observations

of Section 2.3.

§ 2.5 A central-place foraging model with continuous mean velocity

The movement kernel in Equation (2.32) in Section 2.4 describes movement to-

wards an attraction centre with a fixed mean velocity, which is discontinuous

at the central place, x = 0, as the direction changes. Results of analysing this

movement kernel by the PDE methods show that there is a sharp spike in the

steady-state distribution at the point where the mean velocity function is dis-

continuous (Figures 2.3e,f). This sharp spike contrasts with the smooth shape of

the actual long-term distribution derived from the ME in Equation (2.21). This

means the distributions given by the PDE methods are very poor approximations

to the actual long-term distribution. To understand how continuity of the mean

velocity function affects the approximations, I consider another central-place for-

aging model, where the mean velocity function is continuous over the real line.
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Setting the central place at x = 0, the movement kernel studied here is

k2
τ (z|x) =



1√
2πσ

exp

(
−(z − x− µ)2

2σ2

)
if x < −µ,

1√
2πσ

exp

(
−z2

2σ2

)
if −µ ≤ x ≤ µ,

1√
2πσ

exp

(
−(z − x+ µ)2

2σ2

)
if x > µ.

(2.41)

Here, the mean displacement over time τ is constant when the distance between

the animal and the central place is greater than µ (i.e. |x−0| > µ), but equal to

|x| when the animal is located in the interval [−µ, µ] , the vicinity of the central

place.

2.5.1 Analysis of movement kernel k2
τ (z|x) by the PDE techniques

When using the Hyperbolic Scaling and Moment Closure methods, the drift and

diffusion coefficients are calculated by inserting the movement kernel in Equation

(2.41) into Equations (2.4) and (2.5) to give

c2(x) =



µ

τ
if x < −µ,

−x
τ

if −µ ≤ x ≤ µ,

−µ
τ

if x > µ,

(2.42)

and

D2(x) =
σ2

τ 2
. (2.43)

Here, the mean velocity function, c2(x), is continuous and the speed decreases

as the animal approaches the central place when the distance to it is less than µ

(Figure 2.4).

Although c2(x) is continuous, the derivative of c2(x) can only be defined piece-

wise because c2(x) is not differentiable at points x = ±µ . Therefore, I derive the

steady-state distribution by substituting Equations (2.42) and (2.43) into Equa-

tion (2.8) in three cases for x < −µ , −µ < x < µ and x > µ . Then assuming
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Figure 2.4: An example of a continuous mean velocity function, defined by Equation (2.42),
derived from a central-place foraging model with the central place being located at 0 (Equation
2.41).

continuity of the solution gives

u2
H(x) =



C2
H exp

(
2µ

σ2
x+

µ2

2σ2

)
if x < −µ,

C2
H exp

(
− 3

2σ2
x2

)
if −µ ≤ x ≤ µ,

C2
H exp

(
−2µ

σ2
x+

µ2

2σ2

)
if x > µ,

(2.44)

where

C2
H =

[
σ2

µ
exp

(
−3µ2

2σ2

)
+

√
2πσ√

3
erf

(√
3µ√
2σ

)]−1

(2.45)

is a normalising constant ensuring that the distribution integrates to 1.

Applying the Moment Closure method to analyse the movement kernel in Equa-

tion (2.41) is carried out in the same way. Placing Equations (2.42) and (2.43)

into Equation (2.12) for x < −µ , −µ < x < µ and x > µ and assuming conti-

nuity lead to the following steady-state distribution

u2
M(x) =



C2
M exp

(
2µ

σ2
x+

µ2

σ2

)
if x < −µ,

C2
M exp

(
−x

2

σ2

)
if −µ ≤ x ≤ µ,

C2
M exp

(
−2µ

σ2
x+

µ2

σ2

)
if x > µ,

(2.46)
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where

C2
M =

[
σ2

µ
exp

(
−µ

2

σ2

)
+
√
πσerf

(µ
σ

)]−1

(2.47)

is a normalising constant. Here, since c2(x) (Equation 2.42) is non-constant for

−µ ≤ x ≤ µ and hence the derivative of c2(x) is non-zero on this interval, the

integral in the steady-state solutions in Equations 2.8 and 2.12 are different on

this interval. Consequently, the expressions for the solutions for −µ ≤ x ≤ µ in

Equations 2.44 and 2.46 are not the same and lead to different normalising terms

(Equations 2.45 and 2.47).

To use Patlak’s approach, I calculate the first and second moments of displace-

ment by placing the movement kernel in Equation (2.41) into Equations (2.14)

and (2.15) to obtain

M2
1 (x) =


µ if x < −µ,
−x if −µ ≤ x ≤ µ,

−µ if x > µ,

(2.48)

and

M2
2 (x) =

{
σ2 + µ2 if x < −µ or x > µ,

σ2 + x2 if −µ ≤ x ≤ µ.
(2.49)

Substitute Equations (2.48) and (2.49) into Equation (2.18) and assuming the

distribution is continuous give the steady-state distribution derived by Patlak’s

approach as follows:

u2
P (x) =



C2
P

(σ2 + µ2)2
exp

(
2µ

σ2 + µ2
x+

2µ2

σ2 + µ2

)
if x < −µ,

C2
P

(σ2 + x2)2
if −µ ≤ x ≤ µ,

C2
P

(σ2 + µ2)2
exp

(
−2µ

σ2 + µ2
x+

2µ2

σ2 + µ2

)
if x > µ,

(2.50)

where

C2
P =

[
1

µ(σ2 + µ2)
+

arctan(µ/σ)

σ3
+

µ

σ2(σ2 + µ2)

]−1

(2.51)

is a normalising constant.
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2.5.2 Numerical analysis of movement kernel k2
τ (z|x)

The plots of contour lines of KL-divergence show similar patterns to those ob-

served in the analysis of the first central-place foraging model (Figures 2.5a-c).

However, unlike the case with movement kernel k1
τ (z|x), the µ − σ plane here

consists of two regions, one where the KL-divergence of u2
I(x) from u2

P (x) is

smaller and another where u2
M(x) is closer to u2

I(x) (Figure 2.5d). The steady-

state distribution arising from the Moment Closure method, u2
M(x), outperforms

others when µ/σ is larger.

In the region where the KL-divergence of u2
I(x) from u2

P (x) is the smallest, the

KL-divergence of u2
I(x) from u2

M(x) is in fact only slightly higher (Figures 2.6a,b).

That is, the approximations using Patlak’s approach and the Moment Closure

method reach similar accuracy (e.g. Figure 2.6c). Although the Moment Closure

method appears to give relatively accurate approximations for larger µ , u2
M(x)

still tends to overestimate the probability near the central place considerably as

the other two methods do (Figure 2.6d). Note that u2
P (x) has a higher variance,

corresponding to the implication made by the analytic example in Section 2.3.

Overall, the steady-state distributions are more smooth near the central place,

compared to those derived when analysing the movement kernel in Equation

(2.32) but still overestimate the probabilities around the central place remarkably.

§ 2.6 A central-place foraging model with differentiable mean

velocity

The results in Section 2.5 show that the PDE methods provide slightly better

approximations to the actual long-term distribution than in Section 2.4 since the

movement kernel in Equation (2.41) has a continuous mean velocity function.

However, the overestimation of probabilities near the central place remains no-

tably large. Therefore, to investigate whether a more smooth kernel can improve

the approximations further, I consider an example of central-place foraging model

where the mean velocity function is continuously differentiable. Here, the example

of central-place foraging in a 1D space is described by a movement kernel where

the average distance moved over time τ decreases as the animal approaches the
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(a) Hyperbolic Scaling (b) Moment Closure

(c) Patlak’s method (d)

Figure 2.5: Continuous mean velocity movement kernel k2τ (z|x) with µ (resp. |x|) the mean
move length in one step for |x| > µ (resp. |x| ≤ µ) and σ the standard deviation of move
length: The contours of the KL-divergence of the numerical solution, u2I(x), (a) from the
analytic solution, u2H(x) (Equation 2.44), derived from a Hyperbolic Scaling method; (b) from
u2M (x) (Equation 2.46), derived from a moment closure technique; (c) from u2P (x) (Equation
2.50), derived from Patlak’s method. (d) Turquoise region: the KL-divergence of u2I(x) from
u2P (x) is smaller than from u2M (x) or u2H(x). Blue region: the KL-divergence of u2I(x) from
u2M (x) is the smallest.
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(a) 0.05 ≤ µ ≤ 0.3, σ = 0.2. (b) µ = 0.2, 0.05 ≤ σ ≤ 0.3.

(c) µ = 0.05, σ = 0.2 (d) µ = 0.2, σ = 0.2

Figure 2.6: Continuous mean velocity movement kernel k2τ (z|x) with µ (resp. |x|) the mean
move length in one step for |x| > µ (resp. |x| ≤ µ) and σ the standard deviation of move
length: (a) KL-divergence between u2H(x) and u2I(x) (•), u2M (x) and u2I(x) (N), and u2P (x)
and u2I(x) (?) with 0.05 ≤ µ ≤ 0.3 and σ = 0.2. (b) KL-divergence between u2H(x) and
u2I(x) (•), u2M (x) and u2I(x) (N), and u2P (x) and u2I(x) (?) for µ = 0.2, 0.05 ≤ σ ≤ 0.3.
(c) steady-state distributions with µ = 0.05 and σ = 0.2. (d) steady-state distributions with
µ = 0.2 and σ = 0.2.
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Figure 2.7: An example of a differentiable mean velocity function, defined by Equation (2.53),
derived from a central-place foraging model with the central place being located at 0 (Equation
2.52).

central place. In particular, the mean velocity function of this model is continu-

ously differentiable. The movement kernel is given by

k3
τ (z|x) =


1√
2πσ

exp

(
−(z − x− µx2)2

2σ2

)
if x < 0,

1√
2πσ

exp

(
−(z − x+ µx2)2

2σ2

)
if x ≥ 0,

(2.52)

where µ is the drift coefficient and σ is the diffusion coefficient. Note that

this movement kernel (Equation 2.52) implies that the mean velocity could be

arbitrarily large for large x , which is unrealistic for animal movement.

2.6.1 Analysis of movement kernel k3
τ (z|x) by the PDE techniques

The drift and diffusion terms for the PDEs using the Hyperbolic Scaling and Mo-

ment Closure methods are computed by placing the movement kernel in Equation

(2.52) into Equations (2.4) and (2.5), so that

c3(x) =


µx2

τ
if x < 0,

−µx
2

τ
if x ≥ 0,

(2.53)

and

D3(x) =
σ2

τ 2
. (2.54)

Here, the mean velocity function (Equation 2.53) is differentiable everywhere

(Figure 2.7). When using the Hyperbolic Scaling method, I insert these expres-
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sions in Equations (2.53) and (2.54) into Equation (2.8) to give the steady-state

distribution as follows:

u3
H(x) =


C3
H exp

(
2µ

3σ2
x3 − µ2

2σ2
x4

)
if x < 0,

C3
H exp

(
− 2µ

3σ2
x3 − µ2

2σ2
x4

)
if x ≥ 0,

(2.55)

where

C3
H =

[∫ 0

−∞
exp

(
2µ

3σ2
x3 − µ2

2σ2
x4

)
dx+

∫ ∞
0

exp

(
− 2µ

3σ2
x3 − µ2

2σ2
x4

)
dx

]−1

(2.56)

is a normalising constant. As in Sections 2.4 and 2.5, here I also calculate the

solution for x > 0 and x < 0 separately and assume continuity because c3(x) is

piecewise defined.

Likewise, substituting Equations (2.53) and (2.54) into Equation (2.12) for x > 0

and x < 0 and assuming continuity result in

u3
M(x) =


C3
M exp

(
2µ

3σ2
x3

)
if x < 0,

C3
M exp

(
− 2µ

3σ2
x3

)
if x ≥ 0,

(2.57)

where u3
M(x) is the steady-state distribution derived by the Moment Closure

method and

C3
M =

[∫ 0

−∞
exp

(
2µ

3σ2
x3

)
dx+

∫ ∞
0

exp

(
− 2µ

3σ2
x3

)
dx

]−1

(2.58)

is a normalising constant.

Applying Patlak’s approach involves the first and second moments of displace-

ment, which are given by placing the movement kernel in Equation (2.52) into

Equations (2.14) and (2.15) to give

M3
1 (x) =

{
µx2 if x < 0,

−µx2 if x ≥ 0,
(2.59)
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and

M3
2 (x) = σ2 + µ2x4. (2.60)

Since M3
1 (x) is piecewise defined, the steady-state solution to the PDE is cal-

culated for x > 0 and x < 0 with the assumption of continuity. Under these

conditions, inserting Equations (2.59) and (2.60) into Equation (2.18) gives the

steady-state distribution obtained by Patlak’s approach as follows:

u3
P (x) =



C3
P

σ2 + µ2x4
exp

−√ 1

µσ

2−
3
2 ln

 |µσx2 +
√

2µ
σ
x+ 1|

|µ
σ
x2 −

√
2µ
σ
x+ 1|


+

1√
2

arctan

(
−
√

2µ

σ
x+ 1

)
+

1√
2

arctan

(
−
√

2µ

σ
x− 1

)])
if x < 0,

C3
P

σ2 + µ2x4
exp

−√ 1

µσ

2−
3
2 ln

 |µσx2 −
√

2µ
σ
x+ 1|

|µ
σ
x2 +

√
2µ
σ
x+ 1|


+

1√
2

arctan

(√
2µ

σ
x+ 1

)
+

1√
2

arctan

(√
2µ

σ
x− 1

)])
if x ≥ 0,

(2.61)

where C3
P is the usual normalising constant.

2.6.2 Numerical analysis of movement kernel k3
τ (z|x)

The plots of contour lines of KL-divergence show substantially different patterns

to the observations of Sections 2.4 and 2.5 (Figures 2.8a-c). The KL-divergence

of the real long-term pattern, u3
I(x) from the distributions given by the PDE

methods increases as parameters µ or σ become larger (Figure 2.8d). When

both µ and σ are very small, all three PDE methods provide estimates quite

close to the real long-term distribution (2.9a). The inaccuracy of the approximate

distributions increases as µ and σ rise (e.g. 2.9b), but the Moment Closure

method performs best among the three PDE techniques.
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(a) Hyperbolic Scaling (b) Moment Closure

(c) Patlak’s method (d) 0.05 ≤ µ ≤ 0.5, σ = 0.1

Figure 2.8: Differentiable mean velocity movement kernel k3τ (z|x) with µx2 the mean move
length in one step and σ the standard deviation of the move length: The contours of the
KL-divergence of the numerical solution, u3I(x), (a) from the analytic approximation, u3H(x)
(Equation 2.55), obtained using a Hyperbolic Scaling method, µ, σ ∈ [0.05, 0.5]. (b) from the
analytic approximation, u3M (x) (Equation 2.57), obtained using a moment closure technique,
µ, σ ∈ [0.05, 0.5]. (c) from the analytic approximation, u3P (x) (Equation 2.61), obtained using
Patlak’s method, µ, σ ∈ [0.05, 0.5]. (d) KL-divergence between u3H(x) and u3I(x) (•), u3M (x)
and u3I(x) (N), and u3P (x) and u3I(x) (?) with 0.05 ≤ µ ≤ 0.5 and σ = 0.1.
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(a) µ = 0.05, σ = 0.05 (b) µ = 0.8, σ = 0.5

Figure 2.9: Differentiable mean velocity movement kernel k3τ (z|x) with µx2 the mean move
length in one step and σ the standard deviation of the move length: (a) steady-state distribution
with µ = 0.05 and σ = 0.05. (b) steady-state distribution with µ = 0.8 and σ = 0.5.

The smooth mean velocity function in Equation (2.53) leads to very small changes

in velocity near the central place, so the resulting approximations are much more

smooth and flatter than the approximations derived in Sections 2.4.2 and 2.5.2.

However, since the mean velocity function (Equations 2.53) are only twice differ-

entiable, the PDE techniques might perform poorly when involving higher order

moments and large µ .

§ 2.7 Movements on heterogeneous landscapes

The central-place foraging models in Sections 2.4-2.6 demonstrate analysis of

movement in a 1D space with a bias towards an attraction centre. They are

simple examples where the steady-state solutions to PDEs (Equations 2.8, 2.12,

2.18) can be calculated without numerical integration. Therefore, they are a

good start to investigate to which extent these steady-state solutions can ac-

curately approximate actual distributions emerging from the movement kernels.

The central-place foraging models are also simple examples of movement in het-

erogeneous environments since the central place is the only one point affecting

movement. In general, a heterogeneous space may contain more than one centres

of attraction or repulsion and different types of habitats. In this section, I exam-

ine movement in heterogeneous environments in slightly more complex situations
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than central-place foraging. Based on the framework of the step-selection func-

tion in Rhodes et al. (2005), the general form of the movement kernel considered

here is

kτ (z|x) =
ϕτ (z|x)w(z)∫

Ω
ϕτ (y|x)w(y)dy

, (2.62)

which describes the probability of an animal being at position z in time τ , given

its current position, x . The function ϕτ (z|x) itself is also a movement kernel,

representing the probability of moving to z from x in time τ in a homogeneous

environment. The function w(z) is a weighting function, evaluating the influence

of the environmental conditions such as resources at position z on the movement.

To represent the movement process without considering environmental factors,

that is, the resource-independent movement kernel, here I use a Laplace distribu-

tion as an example in addition to a normal distribution. The purpose of consid-

ering an alternative distribution for the resource-independent movement kernel is

to show a possible way to construct a movement kernel using distributions other

than a normal distribution and how this kernel affects the performance of the

PDE methods. Choosing a Laplace distribution is because it is also symmetric

and simple. The resource-independent movement kernels are given by

ϕNτ (z|x) =
1√
2πσ

exp

(
−(z − x)2

2σ2

)
, (2.63)

ϕLτ (z|x) =


1

2b
exp

(
z − x
b

)
if z < x,

1

2b
exp

(
x− z
b

)
if z ≥ x,

(2.64)

where σ2 and 2b2 are the variance of distance moved over time τ , while the su-

perscripts “N ” and “L” stand for normal and Laplace distributions respectively.

Here I assume the main environmental factor affecting movements is the resource

quality, which is uneven across the landscape and described by a weighting func-

tion. Two types of weighting functions are considered. One weighting function

consists of three distinct regions, while the other represent some resource quality
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changing smoothly. The former is given by

wT (z) =

{
1 if z ∈ [0, 1/3] ∪ (2/3, 1],

2 if z ∈ (1/3, 2/3],
(2.65)

which features the shape of a top hat (Figure 2.10a). Therefore it is called a

“top hat” function and the subscript “T ” refers to it. This type of weighting

function illustrates the environments where resources cluster in certain regions,

forming disconnected food patches (e.g. Sawyer and Kauffman (2011); Merkle

et al. (2014)).

The second weighting function describes the resource quality by a sine function,

referred to by a subscript “S” as follows (Figure 2.10b):

wS(z) = sin(3πz) + 2. (2.66)

This type of weighting function describes resources changing continuously over

the space. Considering both discontinuous and smooth weighting functions is

the same strategy as that in Sections 2.4-2.6 to understand how smoothness of

movement kernels affects the approximations derived from the PDE techniques.

There are four possible ways to construct a movement kernel by inserting one

of Equations (2.63) and (2.64) into the ϕτ (z|x) part in Equation (2.62) and

one of Equations (2.65) and (2.66) into the w(z) part in Equation (2.62). The

first movement kernel uses a normal distribution for movement and the top-hat

function for landscape resource, leading to

k4
τ (z|x) =

ϕNτ (z|x)wT (z)∫ 1

0
ϕNτ (y|x)wT (y)dy

=


1

g4(x)
√

2πσ
exp

(
−(z − x)2

2σ2

)
if z ∈ [0, 1/3] ∪ (2/3, 1],

2

g4(x)
√

2πσ
exp

(
−(z − x)2

2σ2

)
if z ∈ (1/3, 2/3],

(2.67)
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where

g4(x) =

∫ 1

0

ϕNτ (y|x)wT (y)dy

=
1

2

[
erf

(
x√
2σ

)
+ erf

(
x− 1/3√

2σ

)
− erf

(
x− 2/3√

2σ

)
− erf

(
x− 1√

2σ

)]
(2.68)

is a normalising function ensuring the distribution integrates to 1 over the domain.

The next model describes movements depending on a normal distribution in a

landscape where the resource quality changes smoothly, given by

k5
τ (z|x) =

ϕNτ (z|x)wS(z)∫ 1

0
ϕNτ (y|x)wS(y)dy

=
1

g5(x)
√

2πσ
exp

(
−(z − x)2

2σ2

)
(sin(3πz) + 2),

(2.69)

where

g5(x) =

∫ 1

0

ϕNτ (y|x)wS(y)dy

=

∫ 1

0

1√
2πσ

exp

(
−(y − x)2

2σ2

)
(sin(3πy) + 2)dy.

(2.70)

The remaining two movement kernels use a Laplace distribution for the resource-

independent movement kernel. With the resource quality in space being described

by the top hat function in Equation (2.65), the movement kernel is
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k6
τ (z|x) =

ϕLτ (z|x)wT (z)∫ 1

0
ϕLτ (y|x)wT (y)dy

=



1

2bg61(x)
exp

(
z − x
b

)
if x ∈ [0, 1/3] and z ∈ [0, x],

1

2bg61(x)
exp

(
x− z
b

)
if x ∈ [0, 1/3] and z ∈ [x, 1/3] ∪ (2/3, 1],

1

bg61(x)
exp

(
x− z
b

)
if x ∈ [0, 1/3] and z ∈ (1/3, 2/3],

1

2bg62(x)
exp

(
z − x
b

)
if x ∈ (1/3, 2/3] and z ∈ [0, 1/3],

1

bg62(x)
exp

(
z − x
b

)
if x ∈ (1/3, 2/3] and z ∈ (1/3, x],

1

bg62(x)
exp

(
x− z
b

)
if x ∈ (1/3, 2/3] and z ∈ (x, 2/3],

1

2bg62(x)
exp

(
x− z
b

)
if x ∈ (1/3, 2/3] and z ∈ (2/3, 1],

1

2bg63(x)
exp

(
z − x
b

)
if x ∈ (2/3, 1] and z ∈ [0, 1/3] ∪ (2/3, x],

1

bg63(x)
exp

(
z − x
b

)
if x ∈ (2/3, 1] and z ∈ (1/3, 2/3],

1

2bg63(x)
exp

(
x− z
b

)
if x ∈ (2/3, 1] and z ∈ (x, 1],

(2.71)

where

g61(x) = 1−1

2

[
exp

(
−x
b

)
− exp

(
x− 1/3

b

)
+ exp

(
x− 2/3

b

)
+ exp

(
x− 1

b

)]
,

(2.72)

g62(x) = 2−1

2

[
exp

(
−x
b

)
+ exp

(
1/3− x

b

)
+ exp

(
x− 2/3

b

)
+ exp

(
x− 1

b

)]
,

(2.73)
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g63(x) = 1−1

2

[
exp

(
−x
b

)
+ exp

(
1/3− x

b

)
− exp

(
2/3− x

b

)
+ exp

(
x− 1

b

)]
.

(2.74)

are normalising functions for x ∈ [0, 1/3], x ∈ (1/3, 2/3] and x ∈ (2/3, 1] respec-

tively.

The last movement kernel combines the Laplace distribution in Equation (2.64)

with the sine function in Equation (2.66) to give

k7
τ (z|x) =

ϕLτ (z|x)wS(z)∫ 1

0
ϕLτ (y|x)wS(y)dy

=


1

2bg7(x)
exp

(
z − x
b

)
(sin 3πz + 2) if z < x,

1

2bg7(x)
exp

(
x− z
b

)
(sin 3πz + 2) if z ≥ x,

(2.75)

where

g7(x) =
∫ 1

0
ϕLτ (y|x)wS(y)dy

= 2− 4

(18π2b2)2 − 4
sin(3πx)− 108π3b3

(18π2b2)2 − 4
cos(3πx)

+

(
3πb

18π2b2 + 2
− 1

)
exp

(
−x
b

)
−
(

3πb

18π2b2 − 2
+ 1

)
exp

(
x− 1

b

)
(2.76)

is a normalising function. The expressions in Equations 2.68, 2.72, 2.73, 2.74 and

2.76 are obtained by using Integral Calculator Integral Calculator (2019).

Having constructed movement kernels for situations where an animal is moving

in a 1D interval with heterogeneous resource quality, now I employ the PDE

techniques introduced in Section 2.1 to estimate the long-term population dis-

tributions. The approximate distributions are represented by the steady-state

solutions to relevant PDEs used in the Hyperbolic Scaling method (Equation

2.8), the Moment Closure method (Equation 2.12) and Patlak’s approach (Equa-

tion 2.18), denoted by subscripts “H ”, “M ” and “P ” respectively. The real

long-term distributions arising from the movement kernels are described by the
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(a)
wt(x) = 1 if x ∈ [0, 1/3] ∪ (2/3, 1]

2 if x ∈ (1/3, 2/3]
(b) ws(x) = sin(3πx) + 2

(c) (d)

(e) (f)

Figure 2.10: Steady-state distributions emerging from movement on heterogeneous landscapes.
(a) The weighting function wt(x) (Equation 2.65). (b) The weighting function ws(x) (Equation
2.66). (c) Movement according to kernel k4τ (z|x) (Equation 2.67) based on a Normal distribution
with wt(x) as the weighting function. (d) Movement according to kernel k5τ (z|x) (Equation
2.69) based on a Normal distribution with ws(x) as the weighting function. (e) Movement
according to kernel k6τ (z|x) (Equation 2.71) based on a Laplace distribution with wt(x) as
the weighting function. (f) Movement according to kernel k7τ (z|x) (Equation 2.75) based on a
Laplace distribution with ws(x) as the weighting function.
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(a) (b)

Figure 2.11: Movements in a landscape with smooth resource change, defined by movement
kernels k5τ (z|x) (Equation 2.69) and k7τ (z|x) (Equation 2.75) with variance σ2 and 2b2 . (a)
KL-divergence between u5H(x) and u5I(x) (•), u5M (x) and u5I(x) (N), and u5P (x) and u5I(x)
(?) with 0.01 ≤ σ ≤ 0.1. (b) KL-divergence between u7H(x) and u7I(x) (•), u7M (x) and u7I(x)
(N), and u7P (x) and u7I(x) (?) with 0.01 ≤ b ≤ 0.07.

integration of the Master Equation (2.21) and referred to using a subscript “I ”.

Unlike the cases examined in Sections 2.4-2.6, here, the integrals in the steady-

state distributions (Equations 2.8,2.12,2.18) can only be calculated numerically.

Figures 2.10c-f illustrate an example for models k4
τ (z|x), k5

τ (z|x), k6
τ (z|x) and

k7
τ (z|x) when fixing the variance of the functions ϕNτ (z|x) and ϕLτ (z|x) in Equa-

tions (2.63) and (2.64) at σ2 = 2b2 = 10−4 . In all four cases of moving in a

heterogeneous landscape, the steady-state distributions obtained by the three

PDE techniques are quite similar to each other. All approximation methods give

poor estimations of the real long-term patterns at discontinuous points (Figures

2.10c,e).

For models built on movement kernels in Equations (2.69) and (2.75), the resource

qualities are smoothly distributed and the Moment Closure method always gives

the best approximation of the real long-term distributions (Figure 2.11). This

coincides with the observations in Section 2.6, where the mean velocity function

of movement in a central-place foraging model is smooth. In both cases, the

distance between steady-state distributions derived by PDE methods and the

real long-term distributions rises as the standard deviation (σ , in Equation 2.63

or diversity, b , in Equation 2.64) increases (Figure 2.11).
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§ 2.8 Summary

I have briefly introduced three PDE techniques for scaling up individual move-

ment kernels to population distributions. These three methods are Patlak’s ap-

proach (Patlak, 1953) and two recently reviewed methods, the Hyperbolic Scal-

ing and Moment Closure methods (Hillen and Painter, 2013). There are two

approaches to evaluate the accuracy of using the PDE methods to approximate

patterns arising from the movement kernel. One is to compare the transient distri-

butions derived from the PDEs in Equations (2.3), (2.9), (2.13) to the movement

kernel, while the other is to compare the steady-state distributions in Equations

(2.8), (2.12) and (2.18) to the long-term distribution obtained by the Master

Equation (Equation 2.21).

By analysing a simple example of a biased random walk, I have demonstrated a

comparison between the movement kernel and transient distributions derived by

the PDE methods. Applying Patlak’s approach to analyse this example results in

a very poor approximation with an overestimated variance, while the Hyperbolic

Scaling and Moment Closure methods correctly describe the movement kernel

(Figure 2.1).

To understand how PDE techniques performs when estimating the long-term dis-

tribution, I have examined three central-place foraging models, characterised by

mean velocity functions with different levels of smoothness. When analysing a

non-smooth movement kernel, all PDE methods give poor approximations to the

long-term distribution (Figures 2.3, 2.6). On the other hand, when considering

the model with a differentiable mean velocity function, the accuracy of approx-

imations improves and the Moment Closure methods performs better than the

others in the range studied (Figures 2.8d, 2.9).

In addition, I have investigated some simple examples of movement in heteroge-

neous environments and shown similar results to those observed in central-place

foraging models. That is, the PDE methods provide poor approximations if the

movement kernel is non-smooth and perform well for smooth models (Figure

2.10). For smooth movement kernels, the Moment Closure method outperforms

others (Figure 2.11).



Chapter 3

Resource selection analysis by

continuous-time movement

models

Resource selection analysis (RSA) is a fundamental tool for understanding mecha-

nisms behind abundance and distributions. It has been strengthened by methods

such as step selection analysis (SSA) and integrated step selection analysis (iSSA)

because the incorporation of movements makes it straightforward to define the

availability of a resource unit by mobility. However, both SSA and iSSA rely on

a discrete-time movement model, subject to fixed observation intervals. There-

fore, RSA can be improved even further by integrating resource selection into

a continuous-time movement modelling framework rather than a discrete-time

framework. Moreover, SSA and iSSA compare a used ‘step’, defined by two suc-

cessive observations, to some available steps starting with the same source point

as the used step. This means SSA and iSSA consider selection at the scale of

steps and hence depend on the assumption of a correspondence between decision

making and observation scales. By considering movements in continuous time,

it is straightforward to deal with irregularly collected data and allow changes in

movement decisions. This chapter introduces such a modelling framework on the

assumption that animals would be attracted to the place with the best resource

quality.

51
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§ 3.1 Modelling framework

Using the OU process as a building block as in Blackwell et al. (2016), I construct

a switching OU process, composed of a set of OU processes, each of which repre-

sents a random walk towards a target place, or an attraction centre, different to

others. That is, as the destination of movement switches because of the change of

resources, the OU process used is switched to another OU process which models

movement attracted to the new target place. In this way, I model movements in

response to the change of resources over time.

Assuming an animal is moving in a 2-dimensional space and its location at time

t is x(t), the OU process gives the probability of the animal’s location in time τ

as follows:

x(t+ τ)|x(t) ∼MVN(µ(t) + eBτ (x(t)− µ(t)),Λ− eBτΛeB′τ ), (3.1)

where MVN refers to “multi-variate normal” distribution and here the 2-dimensional

version is considered. The attraction centre at time t is µ(t). The tendency to-

wards the attraction centre and uncertainty of the movement are controlled by a

2× 2 matrix B and the 2× 2 covariance matrix Λ respectively. Here, I assume

B = −bI and Λ = vI with b, v > 0 and I the 2 × 2 identity matrix. The 0s

off the diagonal of Λ indicates no correlation between the two coordinates. The

parameter b governs the strength of the drift towards the central point, while

the parameter v determines the range of strolling around the centre (Blackwell,

1997). Equation (3.1) is a continuous-time analogue of a movement kernel such

as those in Chapter 2 but time τ here can be any value rather than being fixed.

Here, I assume that the attraction centre µ(t) in Equation (3.1) is decided by

using a weighting function to assess the attractiveness of locations in space. A

resource selection function (RSF) is commonly used for this purpose as it reflects

the probability of an animal using a resource unit in space. It is usually formulated

by an exponential function such as (Boyce et al., 2002)

w(z(x)) = exp(β1z1(x) + β2z2(x) + · · ·+ βkzk(x)), (3.2)
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where x is a resource unit, which can be an area in space. The factors influencing

movement decisions are incorporated in the vector of predictor covariates, z(x) =

(z1(x), · · · , zk(x)), with coefficients β1, · · · , βk representing the extent to which

these factors affect movements. Possible drivers of movement can be categorical

such as vegetation types, or continuous such as distance to human constructions,

etc. (Manly et al., 2002).

I also assume that the animal has complete knowledge of the environment and

determines its movement centre µ(t) at time t by selecting the most attractive

place in space. That is, the target place is decided by comparing the RSF in

Equation (3.2) at all potential destinations and given by (cf. Avgar et al. (2017),

Bastille-Rousseau et al. (2017))

µ(t) = µi where w(z(µi)) = max
j∈Ω

w(z(µj)). (3.3)

Here, the attraction centre, µi , is the centre of a resource unit, which may be

a food patch of any shape. The notation Ω stands for the finite collection of

all resource units considered. If the attraction centre determined by Equation

(3.3) is not unique because of the equal attractiveness of more than one resource

units, then further steps are required to make a decision. For example, randomly

select one of the most attractive places. Alternatively, it may be feasible to

exclude some minor factors from the RSF rather than considering all possible

factors. However, in real life, µi will almost always be unique if the RSF involves

continuous covariates.

Note that in this modelling framework, reassessment of the movement centre can

occur at any given time. Therefore, to include points where the reassessment

might happen in the inference procedure, a Poisson process is used to simulate

such points between observations (Blackwell et al., 2016). This is similar to

a velocity jump process, which is also a continuous-time movement model and

assumes the change of velocity has a Poisson distribution in time (Othmer et al.,

1988). While the change of velocity in a velocity jump process relies on a turning

kernel, the change of attraction centre in a switching OU process is determined by

a RSF. Although it is possible to develop a velocity jump process which describe

movement biased towards an attraction centre, it is straightforward to use OU
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processes as they intrinsically describe this bias.

§ 3.2 Inference by Markov chain Monte Carlo

To parameterise the model given in Section 3.1 from movement data, I develop a

Markov chain Monte Carlo (MCMC) algorithm based on Blackwell et al. (2016).

A key feature of the inference procedure introduced in Blackwell et al. (2016) is

that it takes into account the fact that an animal can make a movement decision

at any given time. This has successfully resolved one of the major problems of

discrete-time movement models, which assume that behavioural changes would

not occur between observations.

The major difference between Blackwell et al. (2016) and this work is the deter-

mination of the attraction centre in the OU process in Equation (3.1). Rather

than determining the attraction centre by transition rates defined by habitat and

time as in Blackwell et al. (2016), here, the attraction centre is decided by the

comparison of the values of the RSF at potential destinations.

The inference procedure generates a chain of samples for each parameter by iter-

ation and is composed of two major stages, that is, the augmentation of observed

data and the update on parameters. Both of these two stages follow a typical

technique for applying Bayesian inference, the Metropolis-Hastings algorithm,

which accepts a proposed sample state according to a Hastings ratio determined

by the likelihoods of the samples (Chib and Greenberg, 1995). Being based on

likelihoods makes the Metropolis-Hastings algorithm flexible enough to adjust

for many situations, including updating trajectories here. However, it can take

hours or days to generate a sufficient large amount of samples to derive a better

estimation of parameters.

In the first stage of the inference procedure here, a subset of the observed data

is augmented with potential points where the switch of the attraction centre

might occur. That is, given the observed data, x(t0), · · · ,x(tn), where x(ti) is

the animal’s location at time ti , for each iteration of the inference procedure, I

start with the selection of a subset of data points, x(tk),x(tk+1), · · · ,x(tl), where

t0 ≤ tk < tl ≤ tn . Once a time interval tk, tl has been selected, I generate a series



CHAPTER 3. RESOURCE SELECTION ANALYSIS BY
CONTINUOUS-TIME MOVEMENT MODELS 55

of time points denoted by {t′pq, p = k, · · · , l − 1, q = 1, · · · ,M ′
p} with M ′

p the

number of switching points between tp and tp+1 on this interval, assuming the

switch of destination is a Poisson process with mean κ(tl − tk), as in Blackwell

et al. (2016) (e.g. Figure 3.1a).

After generating time points between times tk and tl , at each time point, the

location and attraction centre are determined. If a time point is an observed data

point, then the animal’s location at that time is fixed and the attraction centre

can be determined by Equation (3.3). When considering a proposed time point at

which the location is unknown, a simulated position is given by the OU process

in Equation (3.1) depending on the location and attraction centre at the previous

time. Once a simulated location is selected, the attraction centre at that point is

then decided using Equation (3.3) and then the next location can be generated

if necessary (e.g. Figure 3.1b).

Having decided the locations and attraction centres along the proposed path,

I calculate the likelihood of this path and the likelihood of the existing data

between times tk and tl to give the Hastings ratio as follows (Blackwell et al.,

2016):
l−1∏
i=k

f(x(ti+1)|x(t′i,M ′i
),µ(t′i,M ′i

))

f(x(ti+1)|x(ti,Mi
),µ(ti,Mi

))
. (3.4)

Here, the denominator is the likelihood of moving to observed points x(ti+1), i ∈
{k, k+1, · · · , l−1} from their existing predecessors x(ti,Mi

), i ∈ {k, k+1, · · · , l−
1} , where the centres of attraction are µ(ti,Mi

), i ∈ {k, k + 1, · · · , l − 1} . In the

numerator, x(t′i,M ′i
), i ∈ {k, k + 1, · · · , l − 1} are candidate predecessors of the

observed points from the proposed path and µ(t′i,M ′i
), i ∈ {k, k + 1, · · · , l − 1}

are the attraction centres associated to these candidates. The proposed path is

accepted with a probability of

acceptance rate = min{1,Hastings ratio}. (3.5)

In practice, a random number u is generated from the uniform distribution on

the interval [0, 1] and compared to the acceptance rate. If u ≤ acceptance rate,

then the proposed path is accepted and the existing switching points between
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(a)

(b)

Figure 3.1: Augmentation of a subset of observed data. (a) A selected time interval containing
observation points from t774 to t779 , marked by black crosses. Time points when a switch
of destination might occur on this interval are generated and marked by red stars. (b) After
proposed time points are generated, locations at these times are decided by following an OU
process according to the states at predecessors. Blue dots show the original observed locations.
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observations on the selected interval are replaced by the newly generated points.

If u is greater than the acceptance rate, then the proposed path is rejected and

the existing points where decisions might change on this interval are kept.

The augmentation of observed data enables the detection of decision changes

occurring between observations. This is especially crucial for analysing data with

coarse time resolution if the observation scale is much larger than the decision-

making scale. However, the incorporation of additional points will reduce the

efficiency of the algorithm in terms of computer time as more points need to

be processed. Therefore, it may require some prior knowledge of the behaviours

of the animal or pilot studies to determine an appropriate value for κ , which

partially decides the average number of points added in a unit time interval.

In the second stage, the parameters for the model consisting of Equations (3.1)

and (3.2) are updated according to the accepted trajectory determined in the

first stage. The parameters to be updated are the drift and diffusion coefficients

b and v in Equation (3.1) and the resource coefficients β1, · · · , βk in Equation

(3.2). Here I will use β = (β1, · · · , βk) to ease the notation. For each parameter,

a candidate is generated from a chosen probability distribution, termed a proposal

distribution. Here, I use a normal distribution for a proposal distribution. For

example, if the current value of parameter b in this MCMC sampling chain is

b(0) , then a candidate b′ for parameter b is selected from a normal distribution

with a probability density function

gb(b
′|b(0)) =

1√
2πσb

exp

(
−(b′ − b(0))2

2σ2
b

)
, (3.6)

where σ2
b is the variance of this distribution.

Next, the candidate parameter, β′ , for the RSF in Equation (3.2) is used to

update the attraction centre at each point of the accepted trajectory. With the

updated attraction centres, I calculate the likelihood of the trajectory using the

candidate parameters, b′ and v′ , for the OU process in Equation (3.1). Then this

likelihood is compared with the likelihood of the trajectory computed using the

existing parameter values, b(0) , v(0) and β(0) , to calculate the Hastings ratio in

the following:
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n∏
i=0

 f(x(ti,1)|x(ti), b
′, v′,β′)

f(x(ti,1)|x(ti), b(0), v(0),β(0))

Mi−1∏
j=1

f(x(ti,j+1)|x(ti,j), b′, v′,β′)

f(x(ti,j+1)|x(ti,j), b(0), v(0),β(0))

 f(x(ti+1)|x(ti,Mi
), b′, v′,β′)

f(x(ti+1)|x(ti,Mi
), b(0), v(0),β(0))

 .

(3.7)

Subsequently, the parameter samples b(0) , v(0) and β(0) are replaced by the

candidates with the probability of the Hastings ratio or 1, whichever is smaller.

For details of the inference method, see Blackwell et al. (2016). The inference

algorithm is carried out using R (R Core Team, 2017).

In general, in terms of computer time, since the approach introduced here is

based on the Metropolis-Hastings algorithm, allowing simultaneous update on

multiple variables, it should be more efficient than using another commonly used

MCMC technique, the Gibbs sampling method, which updates one parameter at

a time Albert (2007). In practice, some initial sample points of the MCMC chains

are discarded so the remaining samples are in the high probability region of the

posterior distribution. That is, the chains converges after the discarded portion

of iterations. The number of iterations before converging can depend on initial

values and the variance of proposal distributions. However, the chains should

converge faster when starting with values closer to the real parameter values.

Before applying this inference method on real movement data, I test it on simu-

lated trajectories to examine its capacity to estimate the parameters used in the

simulations. The simulation models investigated in this chapter include migra-

tion models and models for movements depending on the depletion and renewal

of resources.

§ 3.3 Migration models

The first example of the modelling framework introduced in Section 3.1 is a model

of migration. As a simple example, here I assume migration decisions are made

solely dependent on the trade-off between the resource quality of a potential target

patch and the travel distance to the patch. Note that migration is triggered by

resource qualities changing seasonally and the distance between the animal and

a patch is also dependent on time. Thus the RSF in Equation (3.2) is modified
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to incorporate time into the function as a variable to give

w(z(µ, t)) = exp(β1R(µ, t) + β2|µ− x(t)|), (3.8)

where z(µ, t) = (R(µ, t), |µ − x(t)|) is the vector of predictor covariates, con-

taining R(µ, t), the resource quality in a food patch with centre µ at time t ,

and |µ − x(t)| , the distance between µ and x(t), the animal’s position at time

t . Here I assume the animal favours resources of higher quality and is averse to

long-distance travel, so that β1 > 0 and β2 < 0.

In the inference process described in Section 3.2, the values of the RSF at all

potential destinations are compared to decide the attraction centre at a given

time. In other words, the aim is to order the places by the RSF values rather

than considering the actual values of the RSF. Therefore, in practice, the results

of the comparison will not change when the exponent of the RSF is multiplied

by a constant. Consequently, one of the coefficients in Equation (3.8) can be

factored out and it is sufficient to consider an alternative RSF given by

w(z(µ, t)) = exp(βR(µ, t)− |µ− x(t)|), (3.9)

where β = −β1/β2 . The parameters to be inferred are then β in Equation (3.9)

and the drift and diffusion coefficients, b and v , in the OU process in Equation

(3.1).

3.3.1 Simulations

Here, I assume an animal moves in a two-dimensional landscape comprising N

food patches, which do not overlap each other. These patches are denoted by Ai ,

i ∈ {1, · · · , N} and ordered by latitude. The centre of patch Ai is denoted by

µi = (xi, yi), where y1 ≤ y2 · · · ≤ yN are latitudinal coordinates. The resource

quality in patch Ai changes with period one year. The resource quality in a patch

is defined by a cosine function with a 365-day period as follows:

R(Ai, t) = a cos

(
2π

365
t− yi − y1

yN − y1

π

)
+m, (3.10)
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where a is the amplitude and m is the mean of the resource quality. Equation

3.10 is an example of resource qualities vary periodically such as the bulk of the

growth of plants. For simulations, a and m are chosen arbitrarily as long as

m ≥ a so that the resource quality R(Ai, t) in Equation 3.10 is always non-

negative.

Assuming that the resource quality in a patch is given by Equation (3.10) with

a = 50 and m = 150, I generated migration trajectories with 0.1 ≤ b ≤ 0.8,

2 ≤ v ≤ 30 for the OU process (Equation 3.1) and 1.5 ≤ β ≤ 8.5 for the

RSF (Equation 3.9) in a 90× 160 unit2 landscape with 10 non-overlapping food

patches. These parameters were chosen in these ranges so that migration from

patches in the south to those in the north and back to the south late in the year

would occur in the landscape.

Figure 3.2: A simulation of migration corresponding to the model described in Section 3.3.1.
The blue dots and line segments show the whole set of data points, and the red triangles are
those used in the MCMC algorithm. The animal moves towards the north from patches in the
south and comes back to the south.

Three sets of simulations were generated by varying one of the parameters, b , v

and β , with the other two being fixed. For the first set of simulations, I used

different values for b and fixed v and β at 10 and 5 respectively. The second set of

simulations was produced using various v with b = 0.5 and β = 5. With b = 0.5
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and v = 15, I created the last set of simulations by changing β . The values for

the fixed parameters were selected arbitrarily from the parameter ranges stated

in the last paragraph. The parameter ranges were determined in such a way that

the change of attraction centres may occur. Figure 3.2 shows a simulation of

migration from the winter range in the south to the summer range in the north

via five stopovers and back to the south over a year. The red triangles in Figure

3.2 are the points selected to test the effectiveness of the inference method in

dealing with missing data.

3.3.2 Inference from simulations

Figure 3.3: Trace plots of MCMC chains when inferring parameters from the simulation in
Figure 3.2. The sampling chains of the drift and diffusion coefficients b and v in Equation (3.1),
resource coefficient β in Equation (3.9). After around 50,000 iterations, all chains converge.

Having generated the simulated trajectories, the inference procedure in Section

3.2 was applied to infer the model parameters, namely b and v in the OU process

(Equation 3.1) and the coefficient β in the RSF (Equation 3.9). Figure 3.3 gives
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Figure 3.4: Posterior distributions derived when analysing a simulation of migration. The
simulated trajectory analysed is given in Figure 3.2. Parameters inferred using the MCMC
algorithm include the movement coefficients b and v in the OU process in Equation (3.1) and
the resource coefficient β in the RSF in Equation (3.9). Red dotted lines indicate real values
used in the simulation and black dot-dashed lines shows 95% quantile intervals.

the trace plots of MCMC chains and the convergence of the chains was decided

by applying the burnin function in R package LaplacesDemon (Statisticat and

LLC., 2018). This burnin function is easy to use and some other tools available

for MCMC convergence diagnostics include R packages coda and boa (Plummer

et al., 2006; Smith, 2007).

Figure 3.4 illustrates the posterior distributions of parameters b , v and β ob-

tained by analysing the simulation in Figure 3.2 using the MCMC inference

method. The posterior distributions successfully captured the real values of the

parameters, indicated by red dotted lines, with 95% central posterior intervals,

shown by black dashed lines in Figure 3.4.

I tested the inference method on the three sets of simulations using different

parameters, mentioned in Section 3.3.1, to investigate the effect of parameter

values on the efficiency of the inference method. Here I fixed the initial values

at real values used in simulation and will examine the impact of initial values

on the efficiency of the inference procedure later in this section. When applying

this model approach to real data, where real parameter values are unknown, a

common practice is to carry out the MCMC algorithm for several times with

different initial values. Figure 3.5 shows the number of iterations needed for the

MCMC sampling chains to converge when applying the inference algorithm on

the three sets of simulations. For example, Figure 3.5a gives the iterations before
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(a) (b)

(c)

Figure 3.5: The relationship between iterations before converging and parameters in simulations
of migration. Coefficients b and v are the drift and diffusion terms in the OU process (Equation
3.1) and β is the resource coefficient in the resource selection function (Equation 3.9). The
initial values of the chains for b , v and β are fixed at the real values used in the simulations.
The corresponding approximate execution time in minutes is shown in right y -axis. Applying
MCMC inference on simulations generated (a) using different b but the same v and β . (b)
using different v but the same b and β . (c) using different β but the same b and v .
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converging when analysing the first set of simulations, generated using different

values for b and fixed v and β . In general, the parameters used had little impact

on the number of iterations needed for the chains to converge (Figure 3.5).

With regard to the accuracy of the estimation by the inference, the 95% central

intervals of posterior distributions were calculated to show if they contained the

real values of parameters inferred. In Figure 3.6, the dots represent the log ratios

between sample means (the means of posterior distributions) and real values

and the vertical intervals illustrate the corresponding 95% central intervals. The

grey dashed lines mark the log ratios equal to 0, standing for the positions of

real values in the plots. The blue intervals contain 0, meaning that the original

95% central posterior intervals contain the real values, whereas the red intervals

represent cases where 95% central posterior intervals fail to cover the real values.

Figures 3.6a,c reveal that the posterior distributions tend to underestimate the

drift coefficient b and overestimate the resource coefficient β for larger values of

b used in simulations. On the other hand, the real values of v and β had no

significant effect on the accuracy of estimation (Figures 3.6d-i).

Overall, 95% central posterior intervals of posterior distributions captured the

real values of b for about 2/3 of the simulations but underestimated them for

the remaining cases (Figures 3.6a,d,g, Table 3.1). The real values of v were well

estimated by 95% central posterior intervals for more than 2/3 of the simulations

and were overestimated for all but one other cases (Figures 3.6b,e,h, Table 3.1).

The estimation of the resource coefficient β was less accurate, with real values

lying in 95% central posterior intervals for only above 2/5 of the cases and others

being overestimated (Figures 3.6c,f,i, Table 3.1). Note that in Equations (3.1)

and (3.9), b represents the strength of tendency towards the attraction centre,

while β describes the extent to which resource qualities influence an animal’s

selection decisions. As a consequence, both parameters b and β would bring

about more direct movement towards the attraction centre. That is, b and β

are related to each other. Therefore, the inference algorithm may fail to separate

their impacts on movement, resulting in the underestimate of b and overestimate

of β at the same time (Figure 3.6).

When applying the MCMC algorithm, a parameter κ is employed to determine
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.6: The log ratios between sample means b̄ , v̄ and β̄ and real values of b , v and β with
95% central posterior intervals when applying MCMC inference on simulations of migration.
Red intervals do not contain 0. Applying MCMC on simulations generated (a)(b)(c) using
different b but the same v and β . (d)(e)(f) using different v but the same b and β . (g)(h)(i)
using different β but the same b and v .
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(a) (b)

Figure 3.7: The relationship between the efficiency of the MCMC algorithm and κ , the mean
of number of proposed switching points during a unit time interval. (a) Approximate execution
time for 100, 000 iterations when applying the MCMC algorithm with different κ . (b) Iterations
before converging when applying the MCMC algorithm on the same simulation of migration
using different κ . The corresponding execution time increases as κ rises (see Figure 3.7a).

the average number of possible switching points inserting between two observa-

tions, as described in Section 3.2. Analysing the simulation in Figure 3.2 showed

that larger κ led to a larger amount of data considered in the algorithm and there-

fore longer execution time (Figure 3.7a). Furthermore, as κ grew, the number

of iterations needed for the MCMC chains to converge increased (Figure 3.7b).

These imply that a limited number of augmented points is allowed to ensure the

efficiency of the inference procedure. Nevertheless, Figure 3.8 shows that when

analysing the trajectory in Figure 3.2 using different κ , the real values of param-

eters were contained in the 95% central posterior intervals for each κ . That is,

the accuracy of estimation was not affected by the value of κ .

In practice, choosing a value for κ depends on the frequency of data collection

and the decision-making process underlying movement. One can select a κ ac-

cording to some background knowledge about the species studied. If the change

of attraction centre does not happen very often, as in the migration model here,

and the rate of observation is relatively high, it is unnecessary to use a large κ .

It is convenient to start with κ = 1/(time between observations), that is, to add

a point to a unit time interval on average.

The simulation in Figure 3.2 was parameterised using different initial values for
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(a) (b)

(c)

Figure 3.8: The relationship between the accuracy of the MCMC algorithm and κ , the mean
of number of proposed switching points during a unit time interval. When using different κ ,
the log ratio between (a) sample means b̄ and the real values of b . (b) sample means v̄ and
the real values of v . (c) sample means β̄ and the real values of β .

each parameter to examine the relationship between the initial values and itera-

tions needed before converging. The red stars in Figure 3.9 indicate the situation

where the MCMC algorithm was carried out with initial values of every param-

eter being set at the real values. The sample chains of the drift and diffusion

coefficients b and v converged faster when the initial values were small but the

speed of convergence was not affected by larger initial b or v (Figures 3.9a-d).

Little difference of time for convergence was observed for various initial values of

β (Figures 3.9e,f).

When running the inference algorithm on different simulations of the migration
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: The number of iterations before converging when using different initial values in
MCMC inference on a simulation of migration. The red stars indicate the case when applying
MCMC algorithm with initial values of all parameters being fixed at real values. The corre-
sponding approximate execution time in minutes is shown in right y -axis. (a)(b) Applying
MCMC with various initial values of b . The initial values of v and β are fixed at real values.
(c)(d) Applying MCMC with various initial values of v . The initial values of b and β are fixed
at real values. (e)(f) applying MCMC with various initial values of β . The initial values of b
and v are fixed at real values.
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model or with different initial values as mentioned earlier in this section, the algo-

rithm did not converge for nearly 10% of the cases. The algorithm may converge

eventually when increasing the number of iterations. However, if the data is too

sparse, the algorithm may fail to converge due to insufficient information. The

structure of the model may also hinder the convergence of the algorithm and it

may be helpful to consider an alternative model, for example, a simpler version.

§ 3.4 Resource depletion-renewal models in a patchy landscape

In the migration models described in Section 3.3, the change of resource quality

is merely dependent on the time of the year but not animals’ foraging behaviours.

In this section, I simulate the situation where the fluctuation in resource quality

relies on the residential time of an animal in a food patch. To put it in another

way, the resource in a patch is consumed when an animal is foraging in the patch

and renews when no animal is present there.

3.4.1 Simulations

Based on the modelling framework described in Section 3.1, here I also use a

switching OU process (Equation 3.1) to model an animal’s movements and the

RSF in Equation (3.9) to decide the attraction centre at a given time. In addition,

the animal is assumed to be moving in a landscape with N circular food patches,

Ai , i ∈ {1, · · · , N} . As with the migration models in Section 3.3, the movement

decisions are assumed to be determined by the resource qualities and the distance

to the resource units. Unlike the migration model, here I assume that the resource

quality in a food patch declines exponentially when the animal is foraging in it

and grows logistically otherwise. That is, if the animal is foraging in food patch

Ai at time t , then the resource quality in each food patch in time τ is given by

(Van Moorter et al., 2009; Ford, 1983)

R(Aj, t+ τ) =


R(Aj, t)e

−djτ if j = i,

KjR(Aj, t)e
rjτ

Kj +R(Aj, t)(erjτ − 1)
for j 6= i,

(3.11)
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Figure 3.10: A simulated trajectory in a patchy landscape with the resource depletion-renewal
model. The resource quality changes according to Equation (3.11) and the movement process
is decided by the OU process in Equation (3.1) and RSF in Equation (3.9). The blue dots and
line segments show the whole set of data points, and the red triangles are those used in the
MCMC algorithm.

where dj , rj and Kj are the depletion rate, growth rate and carrying capacity

in patch Aj respectively. Hereafter, I assume all patches are equal in depletion

and growth rates and carrying capacity, which are then denoted by d , r and K

respectively.

I generated simulated trajectories in a 2000 × 2000 unit2 landscape with ten

non-overlapping circular food patches of radius 100, similar to the spatial scale in

Van Moorter et al. (2009). Figure 3.10 shows an example of simulations of move-

ments in such a landscape in response to resource changes defined by Equation

(3.11). This landscape layout was chosen only for demonstrating the methodol-

ogy. Nevertheless, a patchy landscape is widely used for theoretical models (Ford,

1983; Van Moorter et al., 2009; Harris and Blackwell, 2013; Riotte-Lambert et al.,

2015) as well as for real situations where it is possible to clearly delineate resource

patches (Zweifel-Schielly et al., 2009; Sawyer and Kauffman, 2011; Merkle et al.,

2014; Shariatinajafabadi et al., 2014). If the resources are distributed in the en-

vironment continuously, then it may be better to partition the landscape using a

grid other than non-overlapping patches as Section 3.5 will explain later.
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Figure 3.11: Posterior distributions derived when analysing a simulation of movement in a
patchy landscape with the resource depletion-renewal model. The simulated trajectory analysed
is given in Figure 3.10. Parameters inferred include the movement coefficients b and v in the
OU process in Equation (3.1) and the resource coefficient β in the RSF in Equation (3.9). Red
dotted lines indicate real values used in simulations and black dashed lines shows 95% central
posterior intervals.

3.4.2 Inference from simulations

Applying the inference method in Section 3.2 on the example shown in Figure

3.10 resulted in posterior distributions capturing the real values with 95% central

posterior intervals (Figure 3.11). This shows the ability of the inference procedure

to estimate the parameters to a good degree of accuracy in such cases.

The real values of the drift coefficient b in Equation (3.1) and the resource coeffi-

cient β in Equation (3.9) had little impact on convergence time (Figures 3.12a,c).

Meanwhile, it took longer for the sampling chains to converge when the real value

of the diffusion coefficient v in Equation (3.1) used in simulations was larger (Fig-

ure 3.12b).

The relationship between the accuracy of inference and the parameters used in

simulations is illustrated in Figure 3.13. The inference procedure tended to over-

estimate b when the real value of b was smaller and overestimate v for larger b

(Figures 3.13a,b). The resource coefficient β (Equation 3.9) was often overesti-

mated except when using smaller b to generate simulated trajectories (Figures

3.13c,f,i). Otherwise, the accuracy was generally good.

When inferring from the example given in Figure 3.10 with different initial values

for parameters, no apparent trends were observed for various initial values of b
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and v or smaller initial values of β (Figures 3.14a-e). On the other hand, the

sampling chains converged faster for larger initial values of β (Figures 3.14f).

(a)

(b) (c)

Figure 3.12: The relationship between iterations before converging and parameters in simula-
tions of movements depending on resource depletion or renewal in a patchy landscape. Coeffi-
cients b and v are the drift and diffusion terms in the OU process (Equation 3.1) and β is the
resource coefficient in the resource selection function (Equation 3.9). The initial values of the
chains for b , v and β are fixed at the real values used in the simulations. The corresponding
approximate execution time in minutes is shown in right y -axis. (a) Applying MCMC inference
on simulations generated using different b but the same v and β . (b) Applying MCMC infer-
ence on simulations generated using different v but the same b and β . (c) Applying MCMC
inference on simulations generated using different β but the same b and v .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.13: The log ratios between sample means b̄ , v̄ and β̄ and real values of b , v and β with
95% central posterior intervals when applying MCMC inference on simulations of movements
depending on resource depletion or renewal in a patchy landscape. Red intervals do not contain
0. (a)(b)(c) Applying MCMC on simulations generated using different b but the same v and
β . (d)(e)(f) Applying MCMC on simulations generated using different v but the same b and
β . (g)(h)(i) Applying MCMC on simulations generated using different β but the same b and
v .
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: The number of iterations before converging when using different initial values in
MCMC inference on a simulation of movements dependent on resource depletion or renewal in a
patchy landscape. The red stars indicate the case when applying MCMC algorithm with initial
values of all parameters being fixed at real values. The corresponding approximate execution
time in minutes is shown in right y -axis. (a)(b) Applying MCMC with various initial values of
b . The initial values of v and β are fixed at real values. (c)(d) Applying MCMC with various
initial values of v . The initial values of b and β are fixed at real values. (e)(f) applying MCMC
with various initial values of β . The initial values of b and v are fixed at real values.
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Figure 3.15: A simulated trajectory in a raster landscape with the resource depletion-renewal
model. The resource quality changes according to Equation (3.11) and the movement process
is decided by the OU process in Equation (3.1) and RSF in Equation (3.9). The blue dots and
line segments show the whole set of data points, and the red triangles are those used in the
MCMC algorithm.

§ 3.5 Resource depletion-renewal models in a raster landscape

Landscapes in Sections 3.3 and 3.4 contain non-overlapping resource patches and

these might represent some real situations well (Sawyer and Kauffman, 2011;

Merkle et al., 2014). However, for some other situations, resource patches are not

clearly disjoint as resource qualities change continuously over the landscape and

it is better to use a rasterised grid for this case, e.g. Potts, Bastille-Rousseau,

Murray, Schaefer and Lewis (2014).

3.5.1 Simulations

For simplicity, I assumed a landscape of a 3 × 3 grid consisting of unit squares

where the depletion rate, growth rate and carrying capacity of resources are

equal across the land. At a given time, the animal was assumed to move towards

a central point, which is the centre of a cell. That is, every cell is regarded as a

foraging patch and the centre of a cell is a potential attraction centre of movement.

I generated simulated trajectories following Equation (3.1) with resource qualities
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controlled by Equation (3.11) in a raster landscape with 0.05 ≤ b ≤ 0.14, 0.05 ≤
v ≤ 0.5 and 0.2 ≤ β ≤ 2. These ranges for parameter values were chosen to

ensure that the distance moved between two consecutive simulated locations was

small relative to the spatial scale of the landscape. Therefore, the animal would

stay in a cell for a while before moving to another cell. If a simulated location

falls outside the landscape, then the point is discarded and replaced by a new

position. This is to ensure the animal always stays inside the given landscape.

Figure 3.15 gives such a simulation, where every 3rd data point, marked by red

triangles in the plot, were used to parameterise the model.

3.5.2 Inference from simulations

The inference from the example shown in Figure 3.15 was successful as the 95%

central posterior intervals of posterior distributions contain the real parameter

values (Figure 3.16).

Figure 3.16: Posterior distributions derived when analysing a simulation of movement in a
raster landscape with the resource depletion-renewal model. The simulated trajectory analysed
is given in Figure 3.15. Parameters inferred include the movement coefficients b and v in the
OU process in Equation (3.1) and the resource coefficient β in the RSF in Equation (3.9). Red
dotted lines indicate real values used in simulations and black dashed lines shows 95% central
posterior intervals.

Applying the inference procedure on simulations generated using different param-

eter values showed that the number of iterations needed for the chains to converge

was not affected by the parameter values used (Figure 3.17).

As the identification of attraction centres in a raster landscape is less obvious,

the accuracy of the inference results might be more sensitive to the density of
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(a)

(b) (c)

Figure 3.17: The relationship between iterations before converging and parameters in simula-
tions of movements depending on resource depletion or renewal in a raster landscape. Coeffi-
cients b and v are the drift and diffusion terms in the OU process (Equation 3.1) and β is the
resource coefficient in the resource selection function (Equation 3.9). The initial values of the
chains for b , v and β are fixed at the real values used in the simulations. The corresponding
approximate execution time in minutes is shown in right y -axis. Applying MCMC inference on
simulations generated (a) using different b but the same v and β . (b) using different v but
the same b and β . (c) using different β but the same b and v .
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data points. To investigate how the frequency of data collection influences the

accuracy of inference, I tested the inference procedure on the same simulations

using different subsets of data points. The log ratios between the real values of b ,

v and β and posterior means, b̄ , v̄ and β̄ , are illustrated in Figures 3.18-3.20. The

results of inference using every 3rd and every 5th points were similarly good when

estimating the parameters using 95% central posterior intervals. However, the

difference between the posterior means of β and the real values was reduced for

most simulations when more data points were included in the inference procedure

(Figures 3.18e,f, 3.19e,f, 3.20e,f).

I tested the inference method on the simulated trajectory shown in Figure 3.15

by varying the initial value of one of the parameters b , v and β and fixing the

initial values of the other two at real values. Figure 3.21 shows that in general,

carrying out the MCMC algorithm with initial values nearer to real values would

require fewer iterations before the sampling chains converged.

Model parameter
real values lie

within 95% CPI (%)
real values lie

within 99% CPI (%)
b 65.38 73.07

Migration v 69.23 88.46
β 42.30 50
b 90 90

Resource depletion/renewal
- patch

v 90 90

β 50 60
b 100 100

Resource depletion/renewal
- raster

v 83.33 100

β 78.57 90.48
(Overall average) 76.52 85.23

Table 3.1: The overall performance of the inference method when analysing simulations in
Chapter 3. The figures represent the percentage of cases where central posterior intervals
(CPIs) of posterior distributions contain the real values of parameters used in simulations.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: The log ratios between sample means b̄ , v̄ and β̄ and real values of b , v and
β when applying MCMC inference on simulations of resource depletion-renewal models in a
raster landscape. The simulations are generated using different b but the same v and β .
(a)(c)(e) Applying the MCMC algorithm on the subsets of the simulated trajectories which
contain every 5th data points. (b)(d)(f) Applying the MCMC algorithm on the subsets of the
simulated trajectories which contain every 3rd data points.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.19: The log ratios between sample means b̄ , v̄ and β̄ and real values of b , v and
β when applying MCMC inference on simulations of resource depletion-renewal models in a
raster landscape. The simulations are generated using different v but the same b and β .
(a)(c)(e) Applying the MCMC algorithm on the subsets of the simulated trajectories which
contain every 5th data points. (b)(d)(f) Applying the MCMC algorithm on the subsets of the
simulated trajectories which contain every 3rd data points.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.20: The log ratios between sample means b̄ , v̄ and β̄ and real values of b , v and
β when applying MCMC inference on simulations of resource depletion-renewal models in a
raster landscape. The simulations are generated using different β but the same b and v .
(a)(c)(e) Applying the MCMC algorithm on the subsets of the simulated trajectories which
contain every 5th data points. (b)(d)(f) Applying the MCMC algorithm on the subsets of the
simulated trajectories which contain every 3rd data points.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.21: The number of iterations before converging when using different initial values in
MCMC inference on a simulation of movements dependent on resource depletion or renewal in
a raster landscape. The red stars indicate the case when applying MCMC algorithm with initial
values of all parameters being fixed at real values. The corresponding approximate execution
time in minutes is shown in right y -axis. (a)(b) Applying MCMC with various initial values of
b . The initial values of v and β are fixed at real values. (c)(d) Applying MCMC with various
initial values of v . The initial values of b and β are fixed at real values. (e)(f) applying MCMC
with various initial values of β . The initial values of b and v are fixed at real values.
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§ 3.6 Discussion

In this chapter, I have incorporated a resource weighting function in a continuous-

time movement model to infer the selection of resources by animals from move-

ment data. The modelling framework relies on the assumption that animals have

complete knowledge of the whole landscape, so they would select the most at-

tractive place and move towards it, Based on this modelling framework, I have

considered three types of models, namely a migration model, a resource depletion-

renewal model in patchy landscapes and a resource depletion-renewal model in

raster landscapes. The migration model differs from the resource depletion-

renewal models by the way in which resource qualities change. In the migration

model, the change of resource qualities is independent of the foraging activities

of animals, while in the other two models, the foraging time in a patch explains

the decrease of resources.

In general, the parameter values used in simulations or initial values for the

MCMC algorithm did not have much impact on the efficiency of the inference

procedure. Meanwhile, the efficiency of the algorithm might be mainly affected

by the parameter, κ , used to determine the average number of points added to

a unit time interval in the augmentation of data. If κ is larger, there are more

simulated points between observations to be included and therefore, it may take

longer for the procedure of updating the trajectory to converge.

The accuracy of estimating the drift and diffusion coefficients b and v (Equation

3.1) was generally good. However, the resource coefficient β (Equation 3.9) was

more likely to be overestimated. For the resource depletion-renewal model in a

raster landscape, the accuracy of parameterising the model depends more heavily

on the time resolution of the data.

In the models considered in Sections 3.3-3.5, I assume that the selection of re-

sources is determined by the trade-off between resource qualities and the distance

to a target place. These two factors are the two covariates in the resource weight-

ing function in Equation 3.9. In Equation 3.9, the coefficient of resource quality,

β , is assumed to be positive, while the coefficient of the distance to an attraction

centre is fixed at −1. For a general situation, it may be more appropriate to
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relax the assumption that a coefficient is positive or negative because the effect

of a covariate on movement may be unclear. For example, some animals may

avoid roads while some others may tend to use them. Nevertheless, it is still

necessary to fix one of the coefficients such as the distance in the models here to

enable the inference of other coefficients as mentioned in Section 3.3. Otherwise,

the algorithm will not converge because multiplying all coefficients by a same

number will lead to the same selection results.

Employing a similar strategy as SSA and iSSA, the modelling framework intro-

duced in this chapter also uses movement as a constraint on the availability of

resources. However, unlike SSA or iSSA, where resource selection is restricted to

the selection from resources available in one step, my method attempt to identify

the place of actual interest beyond the scale of steps. In Merkle et al. (2014), SSA

has developed into a modelling framework for patch selection by comparing a used

patch to other potential target patches instead of comparing an observed step to

available steps. That is, the approach proposed by Merkle et al. (2014) focuses on

animals’ interest in foraging patches and omits detailed steps between patches.

Therefore, the method in Merkle et al. (2014) might provide a better tool for

understanding the preference of animals for important habitats. Although both

modelling frameworks in Merkle et al. (2014) and in this chapter consider the

selection of patches, these two approaches are based on different assumptions.

Merkle et al. (2014) implicitly assumes that the arrival of animals in a patch

means the patch is preferable. However, this assumption may not necessarily be

the case since an animal may visit a patch simply in order to reach another patch,

which is its actual destination. On the other hand, rather than interpreting pres-

ence as preference, my approach assumes animals are attracted to the best patch

even before reaching it and hence may be more capable of uncovering the actual

preferences of animals for resources.

In addition, the modelling framework introduced here considers conditions in both

the patch an animal is leaving and potential target places as some other methods

do (e.g. Avgar et al. (2017)). Comparing resources in the source and target

patches should better reveal how animals select a patch according to resources.

Therefore, the modelling framework in this chapter would have an advantage over
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Breed et al. (2017), which also applies the concept of a switching OU model but

only takes resources in the source patch into account.



Chapter 4

Analysis of movements following

a resource gradient

The switching OU process model introduced in Chapter 3 assumes animals have

complete knowledge of the environment when making movement decisions. Rather

than making this assumption, in this chapter, I consider the other extreme, where

animals only take account of environmental conditions in their immediate vicin-

ity. Animals are assumed to follow the resource gradient in the neighbouring area

predominantly by perception instead of memory (cf. Bracis and Mueller (2017)).

That is, movement decisions are made solely according to the information per-

ceived in the surrounding area and not depending on previous experiences.

§ 4.1 Modelling framework

Similar to Chapter 3, movements following local resource gradient can be de-

scribed by a biased random walk. However, unlike in Chapter 3, where the

direction points to a fixed centre in space, in this chapter, the direction is de-

termined by local conditions. A continuous-time model of this type is a process

X(t) given by the solution to a stochastic differential equation where the drift

term is constant as follows (Preisler et al., 2004):

dX(t) = αdt+ σdW (t). (4.1)

86
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Here, α is the drift term, an n-dimensional constant vector representing the

direction of drift, σ is the diffusion term, an n×n matrix, and W (t) is Brownian

motion in an n-dimensional space. In a two-dimensional space, the conditional

distribution of this process is given by (Platen and Bruti-Liberati, 2010)

x(t+ τ)|x(t) ∼MVN(x(t) + αρ(t)τ,Στ), (4.2)

where x(t) is the animal’s location at time t and τ is a short period of time.

MVN stands for “multi-variate normal” and a two-dimensional normal distribu-

tion is considered here. The drift term here is split into two elements, namely the

average speed, α , which is a constant, and direction, ρ , which is usually a 2D

vector of length 1. The vector ρ becomes a zero vector If the resource quality is

even in the surrounding area of the animal’s position, meaning there is no drift

in the movement. The covariance matrix is given by Σ = σ2I , where σ is a con-

stant and I is the 2× 2 identity matrix. This is similar to the movement kernels

describing central-place foraging behaviours in Chapter 2, but here the time τ is

a continuous variable rather than a fixed constant. Therefore, it is straightfor-

ward to fit this model to data irregular in time. In theory, animals in this model

can move to any position, but in practice, I will only accept trajectories entirely

restricted inside the landscape in simulations, described in more detail below in

Section 4.3.

Now I assume an animal moves following the process given in Equation (4.2) in a

rasterised landscape. It can be subdivided into a square or rectangular lattice, but

only square grids will be used for simulations in this chapter. I assume the animal

decides its direction, ρ(t) in Equation (4.2), by assessing the values of a resource

weighting function in the four adjoining squares (east, west, north, and south)

next to the one where it is present. Considering these four cells is sufficient when

the animal is not close to the corners of a cell. Therefore, I will not take account

of the four cells diagonally adjacent to the animal for simplicity, meaning that the

influence of diagonally adjacent cells on movement is neglected even if the animal

is located near a corner. For a more realistic model, one may incorporate the

diagonally adjacent cells or use a landscape composed of hexagonal cells. Here,

the direction is assumed to be up the resource gradient, which is given by the
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Figure 4.1: Neighbouring patches used to determine resource gradient in a rasterised landscape.
The animal is located at x(t) at time t . Patches AN , AW , AE and AS are the adjacent squares
to the patch where the animal is located. N , W , E , S stand for the north, west, east and
south respectively. When calculating the resource gradient in the nearby area of x(t), the
resource qualities in the four adjacent patches are considered, which means the animal only
assesses resource qualities in neighbouring areas to determine its moving direction.

ratio of the difference between the values of the resource weighting function in

these neighbouring squares as follows (cf. Preisler et al. (2013)):

∇w(x, t) :=

(
w(AE, t)− w(AW , t)

∆x
,
w(AN , t)− w(AS, t)

∆y

)
, (4.3)

where x is the animal’s location at time t ; w(AE, t), w(AW , t), w(AN , t) and

w(AS, t) are the resource selection weightings for the adjoining squares AE , AW ,

AN and AS in the east, west, north, and south respectively at time t (Figure

4.1). The notations ∆x and ∆y represent the distance between the centres of

squares AE and AW and the distance between the centres of patches AN and

AS respectively. Subsequently, the resource gradient defined by Equation (4.3)

is normalised to give the unit vector ρ(t) in Equation (4.2):

ρ(t) =
∇w(x, t)

|∇w(x, t)|
. (4.4)
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§ 4.2 Inference by Markov chain Monte Carlo

As in Chapter 3, I use a Markov chain Monte Carlo (MCMC) algorithm, based

on Blackwell et al. (2016), to parameterise the model introduced in Section 4.1.

The algorithm contains two fundamental parts, namely the update of trajectory

and the update of parameters. For details, see Section 3.2 and Blackwell et al.

(2016).

The first part of the algorithm, the update of trajectory, is accomplished by

adding points where the animal might have changed its direction. The change

of direction may happen at any instance, though I assume the animal does not

reassess its direction continuously. The reassessment of direction is given by

Equations (4.3) and (4.4) and assumed to be a Poisson process in time, as in

Blackwell et al. (2016).

In every iteration, a proposed trajectory is generated by selecting a subset of

observed data and adding proposed switching points to this subset. At each point,

Equations (4.3) and (4.4) are computed to determine the direction of movement,

ρ(t), in Equation (4.2). Given the model in Equation (4.2), I calculate the

Hastings ratio by comparing the likelihood of this proposal trajectory to the

likelihood of the existing trajectory within the selected time frame. The proposed

switching points are accepted with a probability of

acceptance rate = min{1,Hastings ratio}, (4.5)

where the Hastings ratio is given by

l−1∏
i=k

f(x(ti+1)|x(t′i,M ′i
),µ(t′i,M ′i

))

f(x(ti+1)|x(ti,Mi
),µ(ti,Mi

))
(4.6)

with x(t′i,M ′i
) and x(ti,Mi

) the proposed and existing predecessor of the observed

point x(ti+1) respectively and i = {k, k + 1, · · · , l} the indexes of the selected

interval.

Secondly, to update the parameters α and σ in Equation (4.2), a set of candidate

parameters is generated. After generating the candidate parameters, I use them
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Figure 4.2: A simulation of movement following a resource gradient, according to Equations
(4.2-4.4). The different colours in the landscape represent different resource qualities. Dark
green, light green and yellow stand for high, medium and low resource quality respectively.
The blue dots and line segments show the whole set of data points, and the red triangles are
those used in the MCMC algorithm.

and the existing parameters to calculate the likelihood of the accepted trajectory

to give the Hastings ratio for updating parameters. Once the Hastings ratio is

obtained and if the candidate parameters are accepted, the existing parameters

are replaced with the candidate parameters.

§ 4.3 Simulations

To start with a simple situation, I assumed that the weighting function in Equa-

tion (4.3) was the resource quality, that is, w(A, t) = R(A, t), the resource quality

of a cell A in a rasterised landscape at time t . To simplify this even further, I

assumed the resource quality was static, so that R(A, t) = R(A). I constructed

simulated landscapes, each of which consists of a 10 × 10 grid, composed of 3

different types of cells, featuring different resource qualities. Every such simu-

lated landscape was simplified from a Gaussian random field generated using R

(R Core Team, 2017) by classifying the origin values for cells into three levels.

The grid in Figure 4.2 shows an example of such a landscape, where yellow, light
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green and dark green cells possess low, medium and high resource qualities, fixed

at 5, 10, and 15 respectively. These three different positive values were chosen

arbitrarily just to show different levels of resource qualities. The resource quality

outside the landscape was assumed to be 0, also selected arbitrarily as long as it is

smaller than the resource qualities inside the landscape. Therefore, the direction

of the resource gradient along the boundaries always pointed inside the landscape

and animals located near the boundaries would tend to move inwards.

In each simulated landscape, I generated a simulated trajectory by Equation

4.2. I assumed that animals never cross the boundaries of the landscape. As

in Section 3.5.1, I rejected a simulated position if it was outside the boundaries

and generated another position until a point inside the boundaries was obtained.

This assumption about movement near the boundaries should only have minor

impact on the model results. This is because the probability of remaining inside

the landscape is always larger than crossing the boundaries according to the given

resource qualities, described in the last paragraph. In this way, two series of paths

in different landscapes were generated. For the first series, the drift coefficient, α ,

in Equation (4.2) were varied between 0.1 and 1, while the diffusion coefficient,

σ , was fixed at 0.5. The second series of simulations used a fixed α = 0.2 and

different values between 0.1 and 1 for σ . Figure 4.2 gives a simulated trajectory

of movement following a resource gradient in a raster landscape.

§ 4.4 Inference from simulated data

Figure 4.3 illustrates the posterior distributions derived from applying the infer-

ence algorithm on the simulation shown in Figure 4.2. The real values of the

drift coefficient, α , and diffusion coefficient, σ , in Equation (4.2) are indicated

by the red dotted lines in the figure. The real values were well estimated by

the posterior distributions, as they lie within the 95% central posterior intervals,

which are shown by black dashed lines.

Figures 4.4 and 4.5 show the results of applying the inference procedure on the

data shown in Figure 4.2 with different κ , which controls the average number of

proposed switching points over a unit time interval. Larger κ tended to increase
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Figure 4.3: Posterior distributions derived when analysing a simulation of movement following
a resource gradient in Figure 4.2. Parameters inferred using the MCMC algorithm include the
drift and diffusion coefficients α and σ in Equation (4.2). Red dotted lines indicate real values
used in the simulation and black dashed lines shows 95% quantile intervals.

(a) (b)

Figure 4.4: The relationship between the efficiency of the MCMC algorithm and κ , the mean
of number of proposed switching points during a unit time interval. (a) Iterations before
converging when applying the MCMC algorithm on the same simulation of movements following
resource gradient using different κ . The corresponding execution time increases as κ rises (see
Figure 4.4b). (b) Approximate execution time for 100, 000 iterations when applying the MCMC
algorithm with different κ .
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(a) (b)

Figure 4.5: The relationship between the accuracy of the MCMC algorithm and κ , the mean
of number of proposed switching points during a unit time interval. The log ratio between (a)
sample means of ᾱ and the real value of α (b) sample means of σ̄ and the real value of σ when
using different κ along with 95% confidence intervals.

the number of iterations needed before the algorithm converged (Figure 4.4a).

In addition, the execution time was in proportion to the value of κ as larger

κ brought about more proposed points to be processed. (Figure 4.4b). As for

accuracy, it was not affected by the value of κ , as Figure 4.5 illustrates that

the 95% central posterior intervals contain the real values of α and σ for all κ

used. However, the posterior mean of α increased when κ became larger (Figures

4.5a). When analysing the case in Figure 4.2 with different initial values for the

parameters inferred, initial values had little influence on the convergence time

(Figure 4.6). Initial values far away from the real values did not necessarily lead

to slower convergence.

Applying the inference procedure on simulations generated using different values

for the drift coefficient, α (Equation 4.2), reveals that the algorithm usually

converged fast but slower for some larger α (Figure 4.7a). On the other hand,

the relationship between the value of σ and convergence time was insignificant

(Figure 4.7b).

To test the accuracy of the algorithm, I parameterised the model introduced

in Section 4.1 from simulations generated using various values for the drift and

diffusion coefficients (Section 4.3). In addition, for each simulated trajectory, I

compared the difference between the inference from every 3rd data point and
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(a) (b)

(c) (d)

Figure 4.6: The number of iterations before converging when using different initial values in
MCMC inference on a simulation of movements following local resource gradient. The red stars
indicate the case when applying MCMC algorithm with initial values of all parameters being
fixed at real values. The real values are α = 0.2, σ = 0.5 The corresponding approximate
execution time in minutes is shown in right y -axis. (a)(b) Applying MCMC with various initial
values of α . The initial values of σ are fixed at real values.(c)(d) Applying MCMC with various
initial values of σ . The initial values of α are fixed at real values.
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(a) (b)

Figure 4.7: The relationship between iterations before converging and parameters in simulations
of movements following local resource gradient. Coefficients α and σ are the drift and diffusion
terms in the gradient following model respectively (Equation 4.2). The initial values of the
chains for α and σ are fixed at the real values used in the simulations. The corresponding
approximate execution time in minutes is shown in right y -axis. (a) Applying MCMC inference
on simulations generated using different α but the same σ . (b) Applying MCMC inference on
simulations generated using different σ but the same α .

from every data point to examine the impact of the density of data on the accu-

racy of the inference (Figures 4.8,4.9). When applying the MCMC algorithm on

simulations generated by various values of α and using a third of data points, the

95% central posterior intervals contained the real values of α and σ only for cases

generated by smaller α (Figures 4.8a,c). As for analysing trajectories generated

by different values of σ , α was well-estimated for cases where medium values for

σ were used, while the real values of σ were underestimated when larger σ was

used (Figures 4.9a,c).

Comparing Figures 4.8a,4.9a to Figures 4.8b,4.9b reveals that the accuracy of

the estimation of the drift coefficient, α , did not change notably when all data

points were used in the inference algorithm. Meanwhile, the estimation of the

diffusion coefficient, σ , was significantly improved as Figures 4.8c,d 4.9c,d show.

When carrying out the algorithm with all data points, 95% central posterior

intervals captured the real values of α and σ for about 67% and 87% simulations

respectively.
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(a) (b)

(c) (d)

Figure 4.8: The log ratios between sample means ᾱ and σ̄ and real values of α and σ with 95%
central posterior intervals when applying MCMC inference on simulations of gradient-following
movements. The simulations were generated using different α but the same σ . Red intervals do
not contain 0. (a)(c) Applying the MCMC algorithm on the subsets of the simulated trajectories
which contain every 3rd data point. (b)(d) Applying the MCMC algorithm on the subsets of
the simulated trajectories which contain every data point.
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(a) (b)

(c) (d)

Figure 4.9: The log ratios between sample means ᾱ and σ̄ and real values of α and σ with 95%
central posterior intervals when applying MCMC inference on simulations of gradient-following
movements. The simulations were generated using different σ but the same α . Red intervals do
not contain 0. (a)(c) Applying the MCMC algorithm on the subsets of the simulated trajectories
which contain every 3rd data point. (b)(d) Applying the MCMC algorithm on the subsets of
the simulated trajectories which contain every data point.
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§ 4.5 Discussion

I have introduced a modelling framework, describing movement drifting in the

direction up the local resource gradient. That is, animals are assumed to de-

termine the direction of movement according to the perception of cues in the

surrounding area rather than conditions over the whole landscape, in contrast to

Chapter 3. The scenario described in this chapter can be applied to movement

in oriented environments. For example, bacteria or cells move along the gradient

of a chemical substance Alt (1980), and butterflies fly up slopes as a strategy for

optimising mating success (Painter, 2014). I have applied an MCMC algorithm

to infer the drift and diffusion terms of the model (Equation 4.2), where the drift

term represents the strength of resource selection and the diffusion term accounts

for the uncertainty.

When analysing a simulated trajectory, the parameter determining the average

number of points inserted into a unit time interval, κ , did not have a remarkable

effect on the accuracy of estimating the drift and diffusion terms α and σ in

Equation 4.2. Nonetheless, the efficiency of the algorithm declined as κ increased

(Figure 4.5). The benefit of inserting points between observations should be more

clear when the data is much coarser than the scale of decision making.

Initial values for the MCMC algorithm had unimportant impact on the number

of iterations to discard before converging (Figure 4.6). It appeared that κ domi-

nated the efficiency of the algorithm. This might be because for a larger κ , more

points were proposed to augment a selected subset of the observed data, and such

proposed trajectory is more likely to be rejected. As a consequence, it would take

longer for the algorithm for the update of trajectory to converge and this decel-

erates the overall inference procedure. Blackwell et al. (2016) has proposed an

additional strategy to accelerate the update of trajectory by updating a selected

point in each iteration. However, this did not improve the inference of models in

this thesis so I did not include it here.

In general, the real values of α and σ (Equation 4.2) had little impact on the

efficiency of the inference algorithm (Figure 4.7). However, larger α or σ were

often poorly estimated (Figures 4.8,4.9). The estimation of parameters would be
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more accurate if the time resolution of the data is higher.

The model described here considers movement in a rasterised landscape, similar

to Hanks et al. (2015), where continuous-time movement models are also incor-

porated in the inference of resource selection. However, Hanks et al. (2015) only

infers the selection of resources, while the inference based on the model in this

chapter also infers the stochastic component of the movement process, namely

the diffusion term. See Appendix B for more details.



Chapter 5

A case study of mule deer data in

the Greater Yellowstone

Ecosystem

Having constructed modelling frameworks for inferring movement responses to

resource changes in the environment, I apply the inference algorithm on some mule

deer (Odocoileus hemionus) data to demonstrate the methodology. Mule deer is

one of the only two deer species living in the United States (Heffelfinger, 2018).

They migrate from winter ranges to high-elevation summer ranges during spring

and travel back to low-elevation ranges during autumn. The migration distance

can range from around 20 km to more than 150 km (e.g. Sawyer et al. (2005);

Sawyer and Kauffman (2011)). Understanding their migration behaviour is urgent

because anthropogenic disturbances including housing and energy development

have affected their ranges and migration routes (Sawyer et al., 2005, 2006, 2009;

Lendrum et al., 2013).

The mule deer I study in this chapter belong to the Greater Yellowstone Ecosys-

tem, famous for being one of the largest intact ecosystems in the world. This

area is rich in not only wildlife but also natural resources such as mineral and

petroleum. As a consequence, the management of the Greater Yellowstone Ecosys-

tem remains challenging because of the trade-off between the preservation of nat-
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ural processes and the exploitation of resources (Brussard, 1992).

§ 5.1 The data and models

5.1.1 The movement and resource data

GPS collar data were collected from 28 adult female mule deer, each more than

1.5 years old. They were captured using a netgun fired from a helicopter near

Cody, Wyoming (USA), guided by protocols in agreement with the University

of Wyoming standards. Data used in this thesis was collected every two hours

from March to August in 2016 using collars (ATS, Iridium, Isanti, Minnesota,

USA). These data was part of Eastern Greater Yellowstone Mule Deer Project

and collected by Matt Kauffman and colleagues (Eastern Greater Yellowstone

Mule Deer Project, n.d.).

Resource data used in this chapter consisted of the normalised difference vegeta-

tion index (NDVI) and instantaneous rate of green-up (IRG), which were com-

piled from the MODIS satellite based on the methods of Bischof et al. (2012) and

Merkle et al. (2016).

5.1.2 Three models for resource selection

As in Chapter 3, I assumed the deer moved following a switching OU process,

given by Equation (3.1). The attraction centre in the OU process was decided

by comparing the value of the RSF in Equation (3.9) for every patch centre. The

RSF in Equation (3.9) involves the resource quality in a target patch and the

distance between the animal and the patch. Here, I used three definitions for the

resource quality in Equation (3.9) to build three different migration models. The

first model, Model 1, used the NDVI values to stand for the resource qualities.

Model 2 used the integral of the NDVI values from current time t to the end of

the available resource data (Julian day 250, tmax ), given by

R(µ, t) =

∫ tmax

t

NDVI(µ , t)dt, (5.1)
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(a)
(b)

(c) (d)

Figure 5.1: A case study of mule deer data. (a) The migration trajectory of mule deer No.4.
The blue dots are observed locations collected between March and August 2016. The circles
A1 and A2 are foraging patches. (b)(c)(d) The NDVI values, integrated NDVI and IRG at µ1

and µ2 , the centres of patches A1 and A2 illustrated in Figure 5.1a.

where NDVI(µ, t) is the NDVI value at a potential attraction centre µ at time t .

I considered Model 2 to examine the influence of the expected resource in the rest

of the season on the migration decisions. The last model, Model 3, employed the

IRG values for resource qualities on the assumption that migration was triggered

by the instant change of resources. I applied the Deviance Information Criterion

(DIC) (Spiegelhalter et al., 2002) to decide the best-fit model.

§ 5.2 Inference from data

Before applying the inference procedure introduced in Chapter 3, I identified

foraging patches by grouping data points containing data of more than three days

and forming a cluster within a circle of radius 3 km (c.f. Zweifel-Schielly et al.
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(a)

(b)

Figure 5.2: Inference from mule deer data using NDVI and integrated NDVI. The posterior
distributions of movement coefficients b and v in Equation (3.1) and resource coefficient β in
Equation (3.9) when applying the MCMC algorithm on the data of mule deer No.4 using (a)
NDVI values (b) integrated NDVI values.

(2009)). In some cases, mule deer moved back and forth between neighbouring

areas frequently, so larger patches were identified. For example, Figure 5.1a shows

the trajectory of mule deer No.4 along with the identified circular patches.

After delineating foraging patches, the centre of a patch was defined by the aver-

age longitude and average latitude of points belonging to the patch. Subsequently,

for each patch centre, I extracted the NDVI (Figure 5.1b) and IRG (Figure 5.1d)

for Julian days 1 to 250 in 2016 from the correspondent pixels in the NDVI and

IRG images. Besides, the integrated NDVI was calculated for Model 2 (Figure

5.1c).

The posterior distributions of fitting Models 1, 2 and 3 to the data of mule

deer No.4 are shown in Figures 5.2a, 5.2b, and 5.3 respectively. In this case,

Model 3, which uses the values of IRG for resource qualities, was best fitted to
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Figure 5.3: Inference from mule deer data using IRG. The posterior distributions of movement
coefficients b and v in Equation (3.1) and resource coefficient β in Equation (3.9) when applying
the MCMC algorithm on the data of mule deer No.4 using IRG values.

Figure 5.4: A simulated trajectory of mule deer migration. This simulated trajectory is gener-
ated using posterior means derived from analysing the data of deer No.4 with Model 3.

the data. Figure 5.4 illustrates a simulated trajectory generated by using the

posterior means when fitting Model 3. It shows a similar migration pattern as

observations.

The inference algorithm converged for all three models introduced in Section 5.1.2

when fitting them to the movement data of 17 out of 28 mule deer (Tables 5.1, 5.2).

Among these seventeen individuals, Model 1 was best fitted to mule deer No.19

(5.2). Model 2 was best fitted to seven of them (Nos.6,7,8,9,10,20,24, Tables 5.1,

5.2), and Model 3 was the best for the other nine deer (Nos.1,4,11,12,13,16,18,23,25,

Tables 5.1, 5.2).

For ten individuals, fitting Model 3 and one of Models 1 and 2 was successful, that

is, the algorithm converged when using two of the three models. In these cases,

only mule deer No.26 was best fitted by Model 1. For five of these individuals,
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Model 2 was the best-fit model and the remaining four were best fitted by Model

3 (Table 5.3). For mule deer No.28, only Model 3 was fitted successfully (Table

5.3).

No. Model
simulated

departure date
observed

departure date
∆DIC

1 143,154 31.431
1 2 143,153 132,150 29.326

3 100,151 0
1 128 157.575

4 2 128 125 154.359
3 126 0
1 138 117.228

6 2 134 133 0
3 134 24.511
1 152 521.89

7 2 149 148 0
3 151 349.455
1 160 247.377

8 2 155 154 0
3 157 23.411
1 149 235.231

9 2 145 144 0
3 147 161.151
1 124,132 97.914

10 2 124,131 123,128 0
3 124,132 256.25

Table 5.1: The comparison of models for the mule deer data, where all 3 models can be fitted.
For cases where the switch of movement centre occurred on two days or more, the numbers
for the Julian dates are separated with a comma. Figures in bold indicate the model with the
smallest DIC value on that individual.

In Models 1 to 3, I tested a simple situation where the selection of foraging patches

was totally decided by the trade-off between resource qualities and travel distance.

This implies if the resource quality in a target patch is never higher than that

in the source patch, then the target patch will never become more attractive to

animals being located in the source patch. Consequently, the inference algorithm

may fail if an animal moves to a place which is regarded as less attractive by the
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No. Model
simulated

departure date
observed

departure date
∆DIC

1 127,152 188.879
11 2 135 125,149 194.51

3 126,151 0
1 148 254.247

12 2 141 140 170.427
3 146 0
1 148 67.66

13 2 148 140 30.176
3 142 0
1 114,137,149 29.094

16 2 119,147 112,136,147 52.185
3 101,138,148 0
1 130,158 85.453

18 2 124 123,157 2.164
3 124,158 0
1 153 0

19 2 153 124 74.003
3 153 88.652
1 135,146 128.348

20 2 134 133,145 0
3 134,146 81.778
1 137,137,137 109.592

23 2 134 133 64.982
3 134 0
1 151 38.284

24 2 140 139 0
3 140 76.941
1 142 471.274

25 2 142 140 468.167
3 141 0

Table 5.2: The comparison of models for the mule deer data, where all 3 models can be fitted.
For cases where the switch of movement centre occurred on two days or more, the numbers
for the Julian dates are separated with a comma. Figures in bold indicate the model with the
smallest DIC value on that individual.
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No.
simulated

departure date
(Model 1)

simulated
departure date

(Model 2)

simulated
departure date

(Model 3)

observed
departure date

∆DIC

2 – 148 153 147 127.393
3 – 100,156 126,158 125,154 197.631
5 – 143 143 142 14.982
14 – ? 140 139 228.78
15 169 – 149 139 317.64
17 – 143 142,143,143 139 13.078
21 – 148 149,150,150 144 19.155
22 – 147 149 146 340.787
26 126,142 – 125,141 124,137 61.185
27 – 147 148 128 76.445
28 – – 134 131 –

Table 5.3: The comparison of models for the mule deer data, where 1 or 2 models can be fitted.
For cases where the switch of movement centre occurred on two days or more, the numbers
for the Julian dates are separated with a comma. Figures in bold indicate the model with
the smaller DIC value on that individual. The ‘?’ in No.14 Model 2 indicates the algorithm
converged but failed to estimate departure dates, meaning the model may not be a good fit.

model.

For each individual, the posterior mean of β (Equation 3.9) of the best-fit model

was used to estimate departure dates of migration. Simulated departure dates

were those dates when the centre of attraction switched according to the RSF

in Equation (3.9). I compared these simulated departure dates to observed de-

parture dates on which successive points leading away from a winter range were

observed for the first time (Tables 5.1, 5.2 and 5.3). The correspondence between

simulated and observed departure dates was generally good. This means the tim-

ing of migration can be explained by the trade-off between resources and travel

distance. In addition, both integrated NDVI and IRG are proper measurements

for resource qualities.

§ 5.3 Discussion

I have demonstrated the application of the modelling framework introduced in

Chapter 3 to the migration data of 28 mule deer. The deer data were fitted by
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three separate migration models, namely Models 1, 2 and 3, using NDVI, inte-

grated NDVI and IRG values for resource qualities respectively. The results show

a significant difference between zero and the resource coefficient β (Equation 3.9)

with p < 10−5 , meaning resource qualities have an impact on the movement of

mule deer. That is, mule deer prefer better resource qualities and would select

patches with resource qualities high enough and worth travelling to. These find-

ings also correspond to the green wave hypothesis (Drent et al., 1978; Bischof

et al., 2012), which assumes migratory species follow better resources as spring

progresses from places at low latitudes or altitudes. In addition, representing

resource qualities by IRG, Models 3 supports the forage maturation hypothesis

(Fryxell, 1991; Hebblewhite et al., 2008), which assumes the intermediate stage of

maturation, corresponding to a high IRG, is more preferable since the nutrition

value declines as plants become mature.

I have tested the inference procedure with models containing only two covari-

ates, resource quality and distance, as a simple example. However, more factors

influencing mule deer migration have been considered in previous work. Some

factors studied include energy development, weather, canopy cover, distance to

road, distance to hiding cover, slope, nutritional condition, reproductive status,

age, and are shown to influence the movement of mule deer (Ager et al., 2003;

Monteith et al., 2011; Lendrum et al., 2013). Therefore, it would be worth inte-

grating these factors into the RSF in Equation 3.2 as covariates to examine how

they impact resource selection and compare the results to previous findings.

In this chapter, I have only considered every individual deer separately. However,

the interaction between individuals may also be included to understand their

migration behaviours better as deer are social animals. For example, Figure 5.5

shows the relationship between the distance from a winter range centre to another

and the difference between the dates on which the two individuals left their winter

ranges. Figure 5.5 indicates that two deer staying close to each other in winter

does not necessarily mean they leave their winter ranges about the same time.

Therefore, they might begin to migrate by following other cues.

In summary, the inference approach performs well with the mule deer data as

two or all of Models 1 to 3 can successfully fit the data of every individual except
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Figure 5.5: Distance between winter range centres and days between departure dates. Every
dot indicates the distance between the winter range centres of two mule deer in km and the
difference between the dates on which the two deer left their winter ranges.

for a deer, whose data was only fitted by Model 3. The results have shown

that resource qualities have an impact on the decision of migration. However, to

understand migration behaviours more thoroughly, more investigation is needed

since the main purpose of the analysis here is to demonstrate the application of

the models and inference method.



Chapter 6

Discussion and Conclusions

Through the study of animal movement, this thesis has aimed at gaining insight

into the prediction of long-term space use patterns and selection of resources. To

investigate the accuracy of estimating space use patterns from individual move-

ment process by PDE methods, I have examined three such methods, namely the

Hyperbolic Scaling method, the Moment Closure method and Patlak’s approach.

I applied these three methods to analyse various movement kernels and compared

the resulting approximated distributions to the real long-term distributions given

by the Master Equation. The results showed that when the process of relocation

only involves smooth changes in mean velocity or environmental conditions, these

methods would give closer approximations to the real distributions. In particu-

lar, the Moment Closure method usually outperforms others when considering a

smooth kernel.

As for understanding the selection of resources by animals, the modelling frame-

work introduced in Chapters 3 has been used to recognise the trade-off between

resources and travelling cost, represented by distance, on movement decisions in

a wide range of situations. This modelling framework is especially useful for in-

ferring movement decisions made at large scales such as seasonal migration. In

Chapter 4, I have presented another framework, which enables the inference of

movement depending on local resources. In general, animals are assumed to de-

cide their direction by assessing the resources either across the whole landscape or

in the surrounding areas and then move following a process incorporating both re-
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source selection and uncertainty. I have developed a Bayesian algorithm, allowing

for decision changes at any time, to infer the parameters of these two modelling

frameworks from data. This algorithm has successfully captured parameter val-

ues, including the one representing the relative importance of resources, with 95%

central posterior distributions in most simulations.

§ 6.1 Comparison of three PDE approximation methods

PDE approximation methods are tools to scale up individual movement rules to

population-level space use patterns. They are much more efficient in terms of

computer time than applying the Master Equation. Nonetheless, the accuracy of

estimation depends on the movement kernel and the approximation method used

(Chapter 2). If the movement kernel has non-smooth changes in mean velocity

or resource weighting functions, the PDE methods can lead to a large discrep-

ancy between the approximations and the real distribution emerging from the

kernel. A popular and older method, Patlak’s approach, was proved to be un-

reliable for predictions even for very simple movement kernels (Figure 2.1). I

also have applied the PDE methods to three 1-D central-place foraging models,

defined by movement kernels bringing about discontinuous, continuous and dif-

ferentiable mean velocity functions respectively. By analysing these models, I

have shown that the PDE methods provided more accurate approximations when

the mean velocity function was more smooth (Figures 2.3, 2.6, 2.9). Likewise,

the PDE methods led to approximations closer to the real long-term distribution

when a more smooth landscape was assumed (Figure 2.10). In particular, when

the movement kernel is sufficiently smooth, the Moment Closure method usually

outperformed the others. Possible reasons for the better performance of the Mo-

ment Closure method include that the drift might not be strong in these cases or

the third and higher moments might be sufficiently small.

For non-smooth movement kernels, the results in Chapter 2 indicate that popu-

lation density is often overestimated near points where abrupt changes in mean

velocity happen. In other words, the range of frequent use might be underes-

timated. Therefore, one should be careful when applying PDE approximations
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to predict space use patterns such as home ranges and be aware of a poten-

tial discrepancy between prediction and reality. This awareness would benefit

decision-making on critical issues such as planning conservation areas as the size

of home ranges often plays a central role in the determination of the scale of

management (Allen and Singh, 2016).

Furthermore, by observing the diffusion terms for the three PDE methods in

Equations (2.5) (the Hyperbolic Scaling and Moment Closure methods) and (2.15)

(Patlak’s approach), it is clear that Patlak’s approach always leads to distribu-

tions with larger variance if the first moment of velocity is nonzero. This is

because the second moment instead of variance is used for the diffusion term

(Equation 2.15). The overestimation of variance found in Patlak’s approach,

however, often offsets the tendency of PDE methods to overestimate the density

at points where the movement kernel has abrupt changes (e.g. Figure 2.3f). In

consequence, approximations obtained by Patlak’s approach seem to be reason-

ably close to real distributions. This makes Patlak’s approach appear to perform

relatively better than other approaches in cases of non-smooth movement ker-

nels. Nonetheless, in general, when using any of these PDE methods to analyse

non-smooth movement kernels, one may obtain a prediction which is a rough

qualitative representation of the real distribution but quite different to the real

distribution in terms of quantity. In addition, Patlak’s approach relies on the

assumptions that the whole system changes slowly and the environment alters

gradually (Patlak, 1953; Turchin, 1991). My work reveals that these assumptions

might also be required when using the Hyperbolic Scaling and Moment Closure

methods.

PDE approximate methods have been widely used and the Hyperbolic Scaling

and Moment Closure methods and Patlak’s approach in this thesis, in fact, be-

long to wider classes of hyperbolic scaling methods, moment closure methods

and correlated random walk models respectively. Despite the popularity of PDE

methods, very few works investigated the accuracy of approximations derived

from these methods. An advantage of a hyperbolic scaling method is that this

method avoids movement in infinite speed, which could be brought about by an-

other scaling limit technique, the parabolic scaling (Holmes, 1993; Hadeler, 2000;
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Hillen and Stevens, 2000; Eftimie, 2012). Although Holmes (1993) and Hillen

and Stevens (2000) compared hyperbolic models with parabolic models, neither

of them examined the accuracy of approximations. Moment closure methods are

often used to estimate the formation of spatial patterns arising from the interac-

tions between individuals such as competition and predator-prey interactions (e.g.

Bolker and Pacala (1997); Law et al. (2003); Murrell and Law (2003); Murrell

et al. (2005)). Among these works, Bolker and Pacala (1997) did compare their

results of using a moment closure approach to realisations of stochastic models

to investigate the effect of neglecting higher order moments on approximations.

In addition, Lloyd (2004) compared two moment closure approaches for recur-

rent epidemics and examined the performance of approximations by comparing

the results to either analytic models or numerical simulations. Both Bolker and

Pacala (1997) and Lloyd (2004) observed that moment closure approaches could

fail when the population or the number of neighbours is small. However, they

also indicated that it remains unclear under which conditions moment closure

methods would be valid. Moreover, there is much difficulty in assessing the error

of approximations (North and Ovaskainen, 2007). Meanwhile, my work suggests

that examining the smoothness of the underlying movement kernel would be a

simple preliminary assessment of the accuracy of approximations.

In summary, even though only some simple cases have been examined in this

thesis, these examples provide a starting point of understanding the performance

of PDE approximate methods.

However, the movement models examined in Chapter 2 are in only 1-D and it

is much harder to analyse 2-D cases in general. What is unknown includes how

the directional component of a 2-D movement kernel would affect the accuracy

of approximations. Nevertheless, PDE methods might also give poor estimations

for 2-D models where the mean velocity changes radically, since these changes

will cause the estimate steady-state pattern to change abruptly.
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§ 6.2 The modelling framework for analysing movement responses to

resources

In Chapters 3-5, I turned my attention to understanding how to infer resource

selection in continuous time. In Chapter 3, I developed a modelling framework

based on an OU process, which describes a biased random walk towards an attrac-

tion centre in continuous time. A set of OU processes with different attraction

centres were combined to form a switching OU model to allow for changes of

destination at any time (Chapter 3). That is, the attraction centre was decided

according to environmental conditions, which may vary over time, and the OU

process used switches to another with a different attraction centre correspond-

ingly. With this modelling framework, three types of simulations were constructed

to consider situations where the resource qualities changed depending on seasons

or the foraging paths of the animal (Sections 3.3-3.5). The inference from these

simulations by an algorithm developed on the basis of Blackwell et al. (2016)

has shown the ability of the algorithm to estimate the parameter values used in

simulations. In general, the algorithm performed well by capturing real values of

parameters with 95% central posterior intervals of the posterior distributions for

a majority of cases.

Also, using a switching continuous-time movement model, Chapter 4 modelled

a drift along the direction up local resource gradient. The movement direction,

rather than an attraction centre, was determined at each point in the process

of inference. The inference from simulated data was successful in approximating

the drift and diffusion terms when the density of data point was sufficiently high.

This enabled the uncovering of movement decisions directed by neighbouring

environmental clues by considering movements in continuous time.

The model developed in Chapter 3 was fitted to movement data of mule deer

(Odocoileus hemionus) to demonstrate the methodologies for understanding the

mechanisms behind the migration scenarios. Results of using the migration model

described in Section 3.3 showed that migration might stem from the trade-off

between the cost of travel and the expected gain of better resources. This provides

an explanation of migration and agrees well with two important hypotheses of
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migration, namely the forage maturation hypothesis (Fryxell, 1991; Hebblewhite

et al., 2008) and the green wave hypothesis (Drent et al., 1978; Bischof et al.,

2012), which are briefly introduced in the following.

The forage maturation hypothesis states that the forage quality is defined by

considering both quantity and quality of food because the nutrition value and

digestibility decline as plants grow and mature. Therefore, animals should prefer

plants at an intermediate stage of growth (Merkle et al., 2016). The green wave

hypothesis assumes that the migration of herbivores is triggered in pursuit of

high-quality food, which becomes available as the onset of spring progresses from

places of lower latitude or altitude. Here, the onset of spring can be defined to

be the time when plants reach the intermediate stage of growth according to the

forage maturation hypothesis. These two hypotheses have been tested to provide

explanations for the migration of birds and ungulate (van der Graaf et al., 2006;

Bischof et al., 2012; van Wijk et al., 2012; Kölzsch et al., 2015; Merkle et al.,

2016; Aikens et al., 2017).

In Chapter 5, the inference from the mule deer data implies that the expected

resources in the rest of the season and IRG might better explain the migration of

mule deer. In particular, the peak of IRG might be interpreted as the intermediate

stage of maturation since it usually corresponds to the inflection points of the

NDVI. These results agree with the green wave hypothesis and also the forage

maturation hypothesis when using IRG.

6.2.1 Comparisons with previous work

Most movement models, including both discrete- and continuous-time models,

have neglected the fact that animals may make a decision at points other than

those being observed (e.g. Johnson et al. (2008)). By adopting the method

of Blackwell et al. (2016), the inference algorithm in Chapters 3 and 4 enables

the analysis of resource selection from movement data to consider points where

changes of movement states might occur. Therefore, using this algorithm would

avoid problems such as failing to identify key features such as a road (Thurfjell

et al., 2014) and obtain a more appropriate interpretation of movement data.
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RSA and SSA have been commonly used with applications ranging from studies

of space use (Chetkiewicz and Boyce, 2009; Panzacchi et al., 2016; Viana et al.,

2018), the use of dynamic resources (Lone et al., 2018), to the influence of hu-

man activities and constructions (Hebblewhite and Merrill, 2008; Gillies et al.,

2011; Lendrum et al., 2012; Scrafford et al., 2018). However, choosing an appro-

priate spatio-temporal scale has always been a challenge (Boyce, 2006; Thurfjell

et al., 2014). This is not only because selection of resources or steps can take

place at multiple scales but also because analysis methods are confined to the as-

sumption that the scale of decision making matches the fixed rate of observations

(Zweifel-Schielly et al., 2009; Benhamou, 2014; Fleming et al., 2014a; Bastille-

Rousseau et al., 2018). Attempting better understanding of movement motivated

by resources both at small and large scales, the method built on a SSF in Bastille-

Rousseau et al. (2018) considers the probability of moving towards habitats at

a distance R away from the animal’s current location and determines how large

this distance R should be by a model selection procedure. The modelling frame-

work introduced in Chapter 3, meanwhile, directly compares potential targets

regardless of distance and thus is not restricted to a specific spatial scale.

Breed et al. (2017) used a similar switching OU process to the modelling frame-

work in Chapter 3 to model movements between patches. They only use condi-

tions in the source patch to determine the probability of leaving the patch. On

the other hand, by considering conditions in the target patch as well as those

in the source patch, my model would better represent movements depending on

factors not only in the local area but also in the distance. This model is especially

important in identifying places of interest and key factors driving movement at a

large scale.

6.2.2 Possible future directions

Extensions to the model

Since the modelling frameworks in Chapters 3 and 4 for resource selection are

based on a resource weighting function, they are ready to incorporate drivers

of movement other than resource quality and travel distance, both of which are



CHAPTER 6. DISCUSSION AND CONCLUSIONS 117

external factors. As the movement ecology paradigm proposed by Nathan et al.

(2008) describes, internal factors such as searching for food, safety or mate mo-

tivate movement and are essential to uncover the mechanism leading to the ob-

served trajectories. Therefore, my model could also incorporate internal factors

driving movement to achieve better understanding of the underlying mechanisms

of movement. For example, since an individual seeks safety, predator pressure may

result in a decrease in the probability of selecting a favourable resource (Forester

et al., 2009). Memory also plays a fundamental role in movement decision making

and the consequent space use patterns (Fagan et al., 2013; Merkle et al., 2014;

Riotte-Lambert et al., 2015; Potts and Lewis, 2016a; Bracis and Mueller, 2017;

Merkle et al., 2017). Other drivers include topography (Potts, Mokross, Stouffer

and Lewis, 2014), interactions between animals (Vanak et al., 2013), barriers and

corridors (Panzacchi et al., 2016). All of these factors can be included in the

weighting function in my models. For example, one might use

w(z(x)) = exp(β1z1(x) + β2z2(x) + · · ·+ βkzk(x)) (6.1)

to include k factors z1 to zk .

Different behavioural states could be taken into account in my model as movement

traits such as speed may change according to the habitat encountered or activities

undertaken (Morales and Ellner, 2002). As well as modelling animal movement

with the same drift and diffusion coefficients along the whole path, the switching

OU model in Chapter 3 is ready for different values for these coefficients according

to habitats and movement modes (Harris and Blackwell, 2013). For example, in

addition to using an OU process to represent movement towards a specific centre,

more OU process attracted to the same centre can be defined using different drift

and diffusion coefficients to describe different movement modes such as encamped

and exploratory states (Morales et al., 2004). By modelling different movement

modes with different processes, my method would be able to detect behavioural

changes and provide a more precise explanation for movement in a heterogeneous

environment.
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Improvements in the efficiency of inference

The datasets analysed in this thesis only contain hundreds or thousands of data

points, which were sufficient in my study. However, the amount of data available

nowadays can be large because of the advanced technology (Kays et al., 2015).

As a consequence, to deal with datasets of large size efficiently, it is necessary

to develop novel methods such as Kálmán filters to speed up the inference of

OU models (Fleming et al., 2017), or alternatively, to rarefy data by strategies

such as identifying areas of interest from location data (Potts et al., 2018). Using

Kálmán filters may significantly reduce the execution time of the algorithm, as

the examples given in Fleming et al. (2017). Nevertheless, further examination

is required to understand if Kálmán filters can be applied to the inference of my

model. There are other Bayes filters such as grid-based approaches and particle

filters but it would be straightforward to use Kálmán filters here because the

distributions considered are Gaussian (Fox et al., 2003; Fleming et al., 2017).

Rarefying paths as an initial step of analysis would decrease the size of data and

therefore speed up the main inference procedure. However, discarding some data

may result in less accurate inference outcomes. Such techniques might enable

my modelling framework to deal with data at a high temporal resolution such as

seconds or smaller but further research is needed to investigate their applicability.

§ 6.3 Summary

This thesis contains a comparison between PDE approximation methods by exam-

ining different types of movement kernels. It reveals that one should be cautious

when applying these PDE methods to analyse non-smooth movement kernels and

the Moment Closure method would be a better choice than Patlak’s approach in

general. Starting with simple examples, this part of the thesis sheds light on how

well these PDE methods perform.

I have also developed two flexible modelling frameworks for inferring resource

selection by moving animals in continuous time for decision making depending

on the resources across the whole landscape or in the local area. These have

extended the usage of the Bayesian inference procedure in Blackwell et al. (2016)
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and an application to real movement data has been demonstrated (Chapter 5).

This chapter has discussed possible ways to extend the models, including the

incorporation of drivers such as memory and the representation of different be-

haviours. The modelling frameworks bring together the strengths of continuous-

time movement models and resource selection analysis to provide an advanced

tool for understanding resource selection decisions.
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Appendix A

Measuring distance between

distributions by Euclidean

distance

Here, the difference between distributions is measured by Euclidean distance in-

stead of Kullback-Leibler divergence (KL-divergence) as in Chapter 2. I cal-

culated the Euclidean distance between steady-state distributions derived by the

partial differential equation (PDE) methods and the numerical solutions obtained

from the Master Equation (Equation 2.21).

When considering the movement kernel k1
τ (z|x) in Equation (2.32), the contours

in Figures A.1a,b show that the distance between analytic solutions derived from

the PDE methods (Equations 2.37, 2.40) and numerical solutions grows as µ/σ

becoming larger. For this movement kernel, the steady-state distribution derived

from Patlak’s approach is closer to the numerical solution than those using the

Hyperbolic Scaling and Moment Closure methods (Figure A.1). For the move-

ment kernel k2
τ (z|x) in Equation (2.41), either the Moment Closure method or

Patlak’s approach provide approximations with the smallest Euclidean distance

to the numerical solution. The former performs better in the region where µ/σ

is larger, while the latter outperforms others for smaller µ/σ (Figure A.2d). The

Moment Closure method gives the best approximations to the numerical solution
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when analysing movement kernel k3
τ (z|x) in Equation (2.52) (Figure A.4).

Figures A.1-4 show qualitatively similar patterns to those observed in figures in

Chapter 2. This is revealed by comparing Figures A.1, A.2, A.3 and A.4 to

Figures 2.3a-d, 2.5, 2.6a,b and 2.8d in the main text respectively. Therefore, the

general implications given by the result are not an artefact of the metric adopted.

(a) Moment Closure (b) Patlak’s method

(c) 0.05 ≤ µ ≤ 0.2, σ = 0.05 (d) µ = 0.05, 0.05 ≤ σ ≤ 0.2

Figure A.1: Discontinuous mean velocity movement kernel k1τ (z|x) (Equation 2.32 in the main
text) with µ the mean move length in one step and σ the standard deviation of move length:
(a) The contours of the Euclidean distance between the numerical solution, u1I(x), and the
analytic solution, u1M (x) (equals to u1H(x) in Equation 2.37 in the main text), derived using
a Moment Closure technique, µ, σ ∈ [0.05, 0.2]. (b) The contours of the Euclidean distance
between u1I(x) and the analytic solution, u1P (x) (Equation 2.40 in the main text), derived
using Patlak’s method, µ, σ ∈ [0.05, 0.2]. (c) Euclidean distance between u1M (x) and u1I(x)
(N), and u1P (x) and u1I(x) (?) with 0.05 ≤ µ ≤ 0.2 and σ = 0.05. (d) Euclidean distance
between u1M (x) and u1I(x) (N) and, u1P (x) and u1I(x) (?) with 0.05 ≤ σ ≤ 0.2 and µ = 0.05.
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(a) Hyperbolic Scaling (b) Moment Closure

(c) Patlak’s method (d)

Figure A.2: Continuous mean velocity movement kernel k2τ (z|x) (Equation 2.41 in the main
text) with µ (resp. |x|) the mean move length in one step for |x| > µ (resp. |x| ≤ µ) and
σ the standard deviation of move length: The contours of the Euclidean distance between the
numerical solution, u2I(x), and (a) the analytic solution, u2H(x) (Equation 2.44 in the main
text), derived from a Hyperbolic Scaling method; (b) u2M (x) (Equation 2.46 in the main text),
derived from a Moment Closure technique; (c) u2P (x) (Equation 2.50 in the main text), derived
from Patlak’s method. (d) Turquoise region: the Euclidean distance between u2I(x) and u2P (x)
is smaller than from u2M (x) or u2H(x). Blue region: the distance between u2I(x) and u2M (x) is
the smallest.
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(a) 0.05 ≤ µ ≤ 0.3, σ = 0.2. (b) µ = 0.2, 0.05 ≤ σ ≤ 0.3.

Figure A.3: Continuous mean velocity movement kernel k2τ (z|x) (Equation 2.41 in the main
text) with µ (resp. |x|) the mean move length in one step for |x| > µ (resp. |x| ≤ µ) and σ
the standard deviation of move length: (a) Euclidean distance between the numerical solution,
u2I(x), and the the analytic solution, u2H(x) (Equation 2.44 in the main text), derived from a
Hyperbolic Scaling method (•); u2I(x) and u2M (x) (Equation 2.46 in the main text), derived
from a Moment Closure technique (N); u2I(x) (?) and u2P (x) (Equation 2.50 in the main text),
derived from Patlak’s method, with 0.05 ≤ µ ≤ 0.3 and σ = 0.2. (b) Euclidean distance
between u2H(x) and u2I(x) (•), u2M (x) and u2I(x) (N), and u2P (x) and u2I(x) (?) for µ = 0.2,
0.05 ≤ σ ≤ 0.3.

(a) 0.05 ≤ µ ≤ 0.5, σ = 0.1

Figure A.4: Differentiable mean velocity movement kernel k3τ (z|x) (Equation 2.52 in the main
text) with µx2 the mean move length in one step and σ the standard deviation of move
length: Euclidean distance between the numerical solution, u3I(x), and the the analytic solution,
u3H(x) (Equation 2.55 in the main text), derived from a Hyperbolic Scaling method (•); u3I(x)
and u3M (x) (Equation 2.57 in the main text), derived from a Moment Closure technique (N);
u3I(x) (?) and u3P (x) (Equation 2.61 in the main text), derived from Patlak’s method, with
0.05 ≤ µ ≤ 0.5 and σ = 0.1.
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A comparison between

continuous-time discrete-space

models and gradient-following

models

Both the continuous-time discrete-space (CTDS) model introduced in Hanks et al.

(2015) and the gradient-following model from Chapter 4 consider continuous-time

movement processes when given resource data in the form of a grid. Here, I draw a

comparison between CTDS models (Hanks et al., 2015) and the gradient-following

model introduced in Chapter 4 by applying the inference method described in

Hanks et al. (2015) to analyse simulations of gradient-following movements. This

comparison reveals that the inference method of Hanks et al. (2015) is able to infer

the parameter related to resource selection in the gradient-following model (α in

Equation 4.2 in Chapter 4) but not the other parameter describing the uncertainty

of movement (σ in Equation 4.2). Although our method is much slower than

Hanks et al. (2015), my algorithm simultaneously infer resource selection and

the movement process. Furthermore, my inference method turns out to be much

more accurate.
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Hanks et al. (2015) uses a CTDS model to analyse animal movement and fo-

cuses on the transition from a cell in a space grid to one of its neighbouring cell.

The transition rates between cells are determined by the selection of resources,

depending on covariates affecting movement from a cell to another and the co-

efficients of these covariates. The likelihood of observing the animal staying in

cell Git for time τt and then moving to cell Git+1 given β , the coefficients of

covariates, is (Hanks et al., 2015)

[Git → Git+1 , τt|β] = λitit+1(β) exp{−τtλit(β)}, (B.1)

where λitit+1(β) is the transition rate from Git to Git+1 and λit(β) =
∑

it∼jt λitjt(β)

is the total transition rate from cell Git with it ∼ jt meaning Git and Gjt are

directly connected. To apply the method of Hanks et al. (2015), I use R package

ctmcmove (Hanks, 2018) to estimate β and calculate the likelihood of transition

from a cell to another cell in Equation (B.1) given residence time in the source

cell.

Meanwhile, the drift term α in our gradient-following model represents the strength

of selection and can be related to β in the model of Hanks et al. (2015). How-

ever, Hanks et al. (2015) only estimates β but not the variance of movement

processes, there is no direct link between the inference of the diffusion term σ in

the gradient-following model and the method of Hanks et al. (2015). Therefore,

when using the inference method of Hanks et al. (2015) to analyse simulations of

the gradient-following model, I will only infer the drift term α and assume the

diffusion term σ is known. Based on the gradient-following model and using the

centre of a cell to represent the cell, the likelihood of moving from the centre of

Git to the centre of Git+1 in time τt is

[µt → µt+1, τt|α, σ] =

1

2πσ2τt
exp

(
−(xt+1 − xt − αρ1(t)τt)

2 + (yt+1 − yt − αρ2(t)τt)
2

2σ2τt

)
, (B.2)

where µt = (xt, yt) and µt+1 = (xt+1, yt+1) are centres of Git and Git+1 , α

and σ are the drift and diffusion coefficients of the movement process, and

ρ(t) = (ρ1(t), ρ2(t)) is the drift direction determined by a resource gradient.
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Thus Equation (B.1) and Equation (B.2) are equivalent.

Defining

f(β) := λitit+1(β) exp{−τtλit(β)}, (B.3)

then

f(β) =
1

2πσ2τt
exp

(
−(xt+1 − xt − αρ1(t)τt)

2 + (yt+1 − yt − αρ2(t)τt)
2

2σ2τt

)
(B.4)

and f(β) is obtained by inference from trajectory and resource data using R

package ctmcmove (Hanks, 2018). Rearranging Equation (B.4) leads to

−2σ2τt log
[
2πσ2τt · f(β)

]
= (xt+1−xt−αρ1(t)τt)

2+(yt+1−yt−αρ2(t)τt)
2 (B.5)

Note that Equation (B.5) is a quadratic equation of α . To ease notation, I define

A = xt+1 − xt (B.6)

B = ρ1(t)τt (B.7)

C = yt+1 − yt (B.8)

D = ρ2(t)τt (B.9)

E = 2σ2τt log
[
2πσ2τt · f(β)

]
. (B.10)

Then for f(β) 6= 0, ρ(t) 6= (0, 0) and 4(AB+CD)2−4(B2+D2)(A2+C2+E) ≥ 0,

solving Equation (B.5) gives

α =
2(AB + CD)±

√
4(AB + CD)2 − 4(B2 +D2)(A2 + C2 + E)

2(B2 +D2)
(B.11)

Note that the transition likelihood f(β) (Equation B.3) depends on locations

rather than being fixed. Therefore, I calculate α by Equation (B.11) for every

non-zero f(β) between neighbouring cells with τt = 1 if I also have ρ(t) 6= (0, 0)

and 4(AB +CD)2 − 4(B2 +D2)(A2 +C2 +E) ≥ 0 to show how accurately α is

estimated.

For example, I apply the method of Hanks et al. (2015) to analyse the simulated

trajectory of movement following a local resource gradient (Figure B.1). Figure
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Figure B.1: Simulated trajectories of movement following a local resource gradient. The differ-
ent colours in the landscape represent different resource qualities: yellow: low resource quality;
green: medium resource quality; dark green: high resource quality.

B.2 shows the density of estimated α along with the real value indicated by a

red line. The black dashed lines shows the 95% central interval. Although the

real value lies within the interval, the variance is very large (Var = 1.26). The

execution time was under 1 minute.

On the other hand, using the inference algorithm described in Chapter 4 to

analyse the simulated trajectory in Figure B.1 captures real values of α and

σ successfully with 95% central posterior intervals (Figure B.3). The variances of

the posterior distributions of α and σ are 0.0013 and 0.0002 respectively, much

smaller compared to the results using the method of Hanks et al. (2015). It took

around 35 minutes to complete 200,000 iterations of MCMC sampling.
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Figure B.2: The density of estimated α obtained using R package ctmcmove (Hanks, 2018)
and Equation (B.11) to make inference from the simulated trajectory in Figure B.1. The red
line indicates the real value of α used in simulation. Black dashed lines shows the 95% central
interval.

Figure B.3: The posterior distributions derived from analysing the simulated trajectory in
Figure B.1 using the MCMC algorithm in Chapter 4. The red line indicates the real value of
α used in simulation. Black dashed lines shows the 95% central interval.
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