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Abstract 
 

Currently Single Photon Avalanche Diodes (SPADs) based on InP multiplication layer 

dominate the market for single photon detection applications including autonomous 

driving and remote sensing applications. Major attractions of InP include its wide 

bandgap (1.46 eV at 296 K) and lattice matching with narrow bandgap absorber 

In0.47Ga0.53As (0.75 eV at 296 K) which facilitates photon detection at 1550 nm. However 

a problem with linear and Geiger mode avalanche photodiodes based on InP is their heavy 

dependence on temperature stabilisation mechanisms owing to higher temperature 

coefficient of avalanche breakdown of InP (6 mV/K for a nominally 100 nm thick 

avalanche layer). Moreover thin avalanching layers of InP can suffer from a significant 

band-to-band tunnelling current. A solution to this problem is an even wider bandgap 

material that is less susceptible to band to band tunnelling current (due to its wider 

bandgap) and more temperature robust (due to its temperature insensitive avalanche 

breakdown). A wider bandgap can reduce the band to band tunnelling currents at high 

operating fields (typical to Geiger mode detection) whereas a temperature insensitive 

avalanche breakdown can circumvent the operational complexity of temperature 

stabilisation circuitries (typical with linear and Geiger mode InP photodiodes).  

Al0.85Ga0.15As0.56Sb0.44 lattice matched to InP substrate is one such material system that 

provides a wider bandgap (1.59 eV at 296 K) and a reduce temperature dependence of 

avalanche breakdown (1.60 mV/K for a nominally 100 nm thick layer). 

This thesis reports fabrication and characterisation of avalanche photodiodes based on the 

thin avalanching layers of a novel material Al0.85Ga0.15As0.56Sb0.44 lattice matched to InP 

substrate. The primary objective is to understand the breakdown characteristics of 

Al0.85Ga0.15As0.56Sb0.44 and assess its potential as a replacement for InP Geiger mode APD. 

The temperature coefficient of avalanche breakdown of p-i-n mesa APD based on 

nominally 100 nm wide avalanche layer of Al0.85Ga0.15As0.56Sb0.44 (1.60 mV/K) is 1.56× 

and 3.75× times smaller than APDs based on InAlAs (2.5 mV/K) and InP (6 mV/K) 

avalanche layers respectively. As compared to wide bandgap InP and InAlAs, the indirect 

and wide bandgap of Al0.85Ga0.15As0.56Sb0.44 makes it less susceptible to band to band 

tunnelling currents.  
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APDs based on 100 nm thick Al0.85Ga0.15As0.56Sb0.44 avalanche layer have also 

demonstrated a promising temporal stability of avalanche gain with a maximum 

fluctuation of ±1.33% at 353 K. The avalanche gain was to reduce by 15% when the 

temperature was increased from 294 K to 353 K, compared to 45% and 52% for 

commercial Si avalanche photodiodes S-5345 and S-6045 respectively. Stable dark 

current have been observed for Al0.85Ga0.15As0.56Sb0.44 avalanche layers and APDs 

employing these layers show no significant thermal degradation due to gain 

measurements at elevated temperatures. These attributes are also beneficial for single 

photon detection applications  

Owing to the small device capacitance of the Geiger mode APDs, excellent transient 

cancellation was achieved which facilitated the detection of weak avalanche signals at 

low overbias values. The maximum overbias in Geiger mode was limited to 2.5 - 4% due 

to device design which caused electric field confinement in the avalanche layer. The dark 

count rate was found to be insensitive to variation in the DC bias levels during the gate-

OFF time. A stable dark count rate was observed for Al0.85Ga0.15As0.56Sb0.44 Geiger mode 

APDs without relying on temperature stabilisation. A slight increase in dark count rate of 

2.46% was recorded over 550 s which is attributed to variation of threshold level while 

under similar dark count rate conditions,  the dark count rate of a Silicon Geiger mode 

APD decreased by 30%. Studies on dark count rate as function of pulse repetition 

frequency showed that the detector dead time should be greater than 700 ns to avoid any 

increase in the dark count due to possible afterpulsing effects. Al0.85Ga0.15As0.56Sb0.44 

Geiger mode APD demonstrated a potential of room temperature photon detection for 

shorter overbias pulse durations with reduced dark count rate. An exponential time 

distribution was recorded in the dark count rate where majority of the breakdown events 

happen within a well-defined time duration and are registered close to the rising edge of 

the overbias pulse.  

The impact ionisation coefficients were extracted by fitting the experimental data for 

avalanche gain and excess noise using recurrence method by adjusting the threshold 

energies field dependence of impact ionisation coefficients. The ionisation coefficients 

have been extracted for an electric field in the range of 500-1250 kV/cm. using the set of 

extracted impact ionisation coefficients, breakdown probability was modelled as a 

function of overbias for Geiger mode APDs based on 100 nm thick Al0.85Ga0.15As0.56Sb0.44 

avalanche layer. Modelling suggests that the recorded DCR increased at a significantly 
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faster rate than predicted breakdown probability characteristics. This suggests either 

significant onset of tunnelling current, inaccuracies in ionisation parameters or influence 

of threshold level used in measurements.  
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Chapter 1    

Introduction 

Light detection plays a pivotal role in several cutting edge scientific and industrial 

research applications. Photon counting has had significant impact on advances in 

health diagnostics [1], medical analysis and imaging [2], astronomy [3] and 

biomedical research involving fluorescence detection [4]. The recent development in 

genomics has been possible by the virtue of microarray technology which detects the 

chemical reactions between DNA strands and reagents distributed across a microarray 

slide. Scientists employ the technique of fluorescence detection to achieve this feat 

and they use single photon detectors to detect the fluorescence. Single photon 

detectors have also played a crucial role in mapping the human genome [5]. State of 

the art technologies in single photon detection currently in the market include Photo 

Multiplier Tubes (PMT) [6], Superconducting Nanowire Single Photon Detectors 

(SNSPDs) and its variant Superconductive Quantum Interference Devices (SQUID) 

and Semiconductor Single Photon Avalanche Diodes (SPADs).  

 

1.1 Single Photon Detection Technologies 

1.1.1 Photo Multiplier Tubes 

Photomultiplier tubes (PMT) have been used conventionally to detect single photon 

in biomedical imaging, industrial applications and high energy physics experiments 

[7]. PMT uses the principle of photoelectric effect and secondary electron emission 

and uses photo-cathodes, focusing electrodes and secondary emission electrodes 

(Dynodes) for amplifying weak optical signals. Electrons that leave the photo-

cathode are accelerated under a high electric field to the first dynode. For each 

electron striking the dynode, multiple electrons are knocked out of the emissive 

surface plating the consecutive dynodes. The process is repeated through several 
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pairs of dynodes and this leads to a high gain. Fluctuation in time taken by electrons 

to leave the PMT results in a broadening of the electrical pulse at the anode. The 

shape of the output pulse has therefore some broadening with a FWHM in the range 

of few nanoseconds to few hundred nanoseconds. Another figure of merit for PMT 

is the FWHM in the variation of the transit time, known as Transit Time Spread 

(TTS). Transit time is the time difference between photon arrival and generation of 

the output pulse at anode. Typical values include several hundred picoseconds to 

several nanoseconds. Fig. 1 shows the schematic of the system construction of a 

PMT. 

 

 

Fig.1 Schematic illustration of photomultiplier tubes. Photo-cathode is used for focusing light 

onto a chain of dynodes. Figure adapted from ref. [8] 

 

Meticulous alignment and shaping of cathodes, dynode pairs and anode results in 

a fragile and expensive device. Voltage dropping resistors are used to achieve the 

potential division for each dynode and the total resistance of the system can be in 

the range of 10 – 20 MΩ. Typical power supplies required for PMT operation are 

500 – 3000 V [7]. The photo-cathode determines the quantum efficiency of a PMT. 

The quantum efficiency is a ratio of the generated photoelectrons to incident 

photons. The peak quantum efficiency of a PMT may be less than the quantum 

efficiency of a single photocathode as in actual PMT operation all photoelectrons 
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ejecting off photocathode may not be collected by the first dynode. Table 1 lists 

quantum efficiencies and corresponding spectral range for different types of 

photocathodes [7].  

 

Table 1: comparison of quantum efficiencies of various PMT photocathode materials.  

Photocathode 

material 

Quantum 

efficiency 

Wavelength T (K) 

Cs-Te 26% 125 nm 300 

Sb-Na-K 30% 260 nm 300 

Sb-Na-K-Cs 30% 260 nm 300 

GaAs (Cs) 23% 300nm 300 

InGaAs (Cs) 2% 1000-1300 nm 300 

InP/InGaAs (Cs) 2% 1000-1500 nm 300 

 

 Motivations of PMTs include wide active area to absorb light, high gain, lower 

gain fluctuations with typical gain values reaching several millions, lower dark 

currents and can cover wide spectral range from ultra violet to near infra-red. 

However their drawbacks include bulky size, high operating voltages and 

sensitivity to stray magnetic fields [8].  

 

1.1.2 Superconducting Nanowire Single Photon Detectors 

(SNSPDs) 

SNSPDs are a superconducting wires operated at currents slightly below their critical 

current density. When light is incident, a superconductive hot spot is formed. This 

leads to the superconducting current flow across the periphery of the hot spot which 

increases the current density. This leads to the spread of the critical current density 

quickly across the length of nanowire. Consequently a resistive blocking element is 

formed across the length of the nanowire which increases the temperature leading to 

sharp increase in the resistance of nanowire material. This sudden increase in the 

resistance is read by consequent detection electronics and an arrival of the single 

photon is sensed.  
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Fig. 2 Schematic illustration of SNSPD. The stepwise process is illustrated showing the increase in 

the hotspot size and resistance of the sheet as a result of the arrival of the single photon. Figure 

adapted from ref [8]. 

 

The step-wise operation of SNSPD is shown in schematic illustration in Fig. 2. Major 

advantages of SNSPDs include extremely low dark count rates and very high single 

photon detection efficiency however they suffer from a number of drawbacks 

including a bulky size, dependence of liquid helium to reach cryogenic temperatures 

which limits their use to ground based laboratory applications and are unrealistic for 

compact and portable applications [9] . 

 

1.1.3 Transition Edge Sensors (TES) 

Transition edge sensors are closely related to SNSPDs and are cryogenic particle 

detectors that us the temperature dependent transition between superconductivity and 

normal resistance to detect the arrival of single photons. The TES is biased through a 

current source using a load resistor where the power dissipation is kept at a constant 

level through the TES. When a photon is absorbed by the sensor, the resistance 

increases causing the TES current to drop significantly. Subsequent detection 

electronics can read the transition out and thus single photon detection is achieved. 
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TES have attractive aspects such as very high quantum efficiency, negligible dark 

count rates however they strongly depend on cryogenic temperatures and have high 

timing jitter (time delay between the absorption of incoming photon and generation 

of an output current pulse corresponding to photo-electron generation). Bolometers 

also make use of the change in resistance in response to heating of a small area. A 

carbon resistance bolometer was demonstrated in 1962 by Lalevic [10] compatible 

with very low RF power levels. TES is a superconducting counterpart of the 

bolometers. Micro-bolometers are used to detect single photons through a change in 

their resistance as a result of heat dissipation in a tiny area. Fig. 3 shows the schematic 

of the micro-bolometer. The construction involves an infra-red absorber material, a 

titanium reflective mirror and a read out circuit. The electrical resistance of the infra-

red absorber changes when IR radiation is incident. Some incident radiation may get 

past the absorber in which case the radiation is reflected back using a reflective layer 

to ensure complete absorption.  Micro-bolometers are light weight and can operate at 

room temperature and are less power hungry compared to cooled detectors. However 

disadvantages include longer response times and their inability to operate at 

multispectral and high-speed detection applications and low sensitivity compared to 

cooled photon detectors. 

 

Fig. 3 Schematic of a micro-bolometer. Figure adapted from ref. [11].  
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1.1.4 Superconducting Quantum Interference Devices (SQUID)  

Primarily used as super-sensitive magnetic flux meters, SQUID devices based on thin 

insulating Josephson junctions formed by sandwiching two superconducting 

materials have been used to sense single photons. The Josephson junctions in the 

SQUID are connected to a temperature sensor which measures the increase in the 

temperature resulting from suppression of Josephson critical current density. This 

suppression causes a voltage drop across the SQUID device and an AC Josephson 

effect is subsequently used to sense the voltage drop across the device and a photon 

arrival is sensed [12]. SQUID-readout based single photon detection systems offer 

enhanced signal to noise ratio in low temperature ranges (1-4 K) photon count rates 

up to 20 MHz and low dark counts of down to four in one hour [13]. Schematic of a 

SQUID Josephson junction is shown in Fig. 4. 

 

Fig. 4 Thin Josephson junction SQUID device used for sensing the arrival of single photon. Figure 

adapted from ref [14]. 

 

Graphene based Josephson junctions as the material demonstrates excellent single 

photon calorimetry [15]. Using the absorption properties of graphene, Walsh 

proposed a superconducting-normal-superconducting Josephson junction where 

graphene is sandwiched between two superconducting materials. Such a hybrid 

scheme has been demonstrated to work as a superconducting transistor [16]. The 

concept involves controlling the super-current through perturbation of the Fermi 

distribution in the junction through joule heating. In comparison to metals and 
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semiconductors graphene offers high carrier mobility and thermal response which 

makes it an attractive candidate for weak links the Josephson junctions. The 

temperature in the graphene lattice raises as soon as an electron is absorbed. This 

thermal effect can trigger the Josephson junction to increase its resistance. The 

heating can described by temperature Te of electrons in graphene as they thermalise 

in response to incident radiation. Fig. 5 shows the schematic of the concept used by 

Walsh.  

 

Fig. 5 Schematic of graphene based Josephson junction for single photon counting. Figure adapted 

from ref. [42] 

 

Practical challenges however include high susceptibility of the Josephson junction 

based readout system to background/environmental thermal noise, complex 

construction, a strong dependence on cryogenic liquid helium temperatures and a fast 

boiling off rate of liquid cryogens. For high sensitivity a large coil size may be needed 

which may become unrealistic with compact applications [17]. A comparison of 

various performance parameters of the Josephson junction is given in Table 2.  

 

1.1.5 Semiconductor Single Photon Avalanche Diodes (SPADs) 

Semiconductor single photon avalanche didoes are considered as solid state alternative to 

PMTs based on their ability to detect and amplify extremely weak light signals down to 

single photon levels. An incoming photon is absorbed the semiconductor material 

corresponding to a suitable bandgap energy. Under the action of a strong electric field 

provided by a reverse bias, the photo-generated electrons are excited to overcome the 

ionisation threshold energy and excite an electron from valence band to conduction band. 
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The seeded and parent electrons can undergo a further chain of such “impacting” 

collisions generating more energetic carriers. This process build up into a chain of impact 

ionisation events thus triggering an avalanche of carriers which subsequently builds up a 

macroscopic electrical signal in response to the incoming photons. This process is called 

Impact Ionisation.  

Avalanche Photodiodes (APDs) are the commonly used semiconductor single photon 

detection technology. These devices are made by forming a junction/multiplication layer 

between two oppositely doped semiconductors. State-of-the-art APDs mostly use planar 

technology for p-n junctions while some use mesa diodes processed using standard wet 

chemical etching and metallisation. The device layers are normally grown on a substrate 

material. Fig.6 shows the schematic of an avalanche photodiode. These devices can be 

illuminated from either top or bottom. Once electron hole pairs are created as a result of 

photon absorption in an absorber material (narrow bandgap In0.47Ga0.53As is used for 1550 

nm detection in linear and Geiger mode APDs), successive electrons and holes are created 

by impact ionisation process under high electric field (in typically wide bandgap 

multiplication layers i.e. InP, InAlAs or Al0.85Ga0.15As0.56Sb0.44 in this case), amplifying 

the weak optical signals to strong detectable electronic signals.   

 

Fig. 6 Schematic illustration of a p-i-n structure semiconductor device grown on a substrate 

Such devices provide a robust, cheap and compact alternative to conventional single 

photon detection technologies described previously. Semiconductor devices using impact 

ionisation process for light detection are referred to as Avalanche Photodiodes (APD). 
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State of the art in APD technology has been dominated by Silicon owing to its mature 

fabrication technology and a high wafer quality resulting in low dark currents and defect 

densities. However, the recent advances in fibre optic telecommunication applications has 

pushed the research efforts towards semiconductor photodetectors. In this regards, some 

of the III-V semiconductor material alloys are important as they provide detection 

wavelength at 1550 nm which is the preferred wavelength for long-haul fibre optic data 

communication systems. As shown in the following figure, III-V semiconductor alloy of 

In0.47Ga0.53As lattice matched to InP substrate can offer detection at 1550 nm.  

 

Fig. 7 Lattice constant and bandgap diagram for various ternary and binary alloys. Figure adapted from 

reference [18]. Red solid line along horizontal direction shows increasing bandgap (GaAs  AlAs) for 

nominally similar lattice constant whereas the skew direction on the red solid line shows variation in 

bandgap and lattice constant between GaAs and InAs. 

 

Referring to the dashed line along the lattice constant of 0.588 nm, photon detection at 

1550 nm is facilitated by In0.47Ga0.53As absorber material corresponding to the bandgap 

of 0.75 eV (using the relation 𝐸 =
ℎ𝑐

𝜆
 where wavelength is in microns). Currently Single 

Photon Avalanche Diodes (SPADs) based on InP (Negative Feedback Avalanche Diodes, 

NFADs) and InAlAs avalanche multiplication regions are used for photon sensing in 1550 

nm wavelength using In0.47Ga0.53As as absorber layer. A detailed review of semiconductor 

single photon detection technologies is presented in next section.  The possibility of 

bandgap engineering in these material systems has provided a greater flexibility in 

application specific detection wavelength. Typical applications that have benefitted 

greatly from this innovation are  
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 High bandwidth internet [19]  

 Undersea optical fibre networks [20] 

 Laser distance mapping [21] 

 Quantum Key Distribution (QKD) [22] 

 Biomedical imaging [23] 

 Autonomous driving technology [24] 

 Security applications including  

o Night vision cameras [25] 

o Thermal imaging technology for enhanced security surveillance [26] 

o Imaging applications for harsh and inclement weather and rugged operating 

conditions in military battlefield and modern warfare applications [27]. 

Depending on the nature of application, APDs can be operated sub-breakdown mode 

(linear mode) or above the breakdown voltage (Geiger mode). Typical applications for 

linear mode include, photodiode mode operation i.e. solar cells and low noise avalanche 

sensors for optical fibre telecommunication applications [28].  

The Geiger mode APD derives its name “Geiger” from the radiation counterpart of APDs 

i.e. Geiger Müller counter [29] which uses a gas tube filled with inert gases at low 

pressure and high voltages to generate electrical current in response to radiation flows 

causing the inert gases to ionise. In Geiger mode, APDs can generate an electrical current 

signal in response to the absorption of incoming radiation by the bandgap of the 

semiconductor. Geiger mode APDs are used in application involving detection of ultra-

weak light signals down to single photon level and representative applications include 

Quantum Key Distribution (QKD) [30], Near Infra-Red (NIR) [31] imaging and 

biomedical imaging technologies [32]. Linear and Geiger mode operation of APDs are 

dramatically different albeit for similar devices, and therefore it is useful to introduce 

some performance metrics and consideration for both these modes. In the following 

section we provide a brief introduction of the major performance metrics of linear and 

Geiger mode APDs.  A comparison of various single photon detection technologies in 

terms of key performance parameters such as the dark count rate, operating temperature 

and detection efficiency is shown in Table 2. 
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Table 2: Comparison of various performance parameters of single photon detection technologies. 

Detector type T (K) Detection 

efficiency (%) at 

wavelength (nm) 

Dark count 

rate (Hz) 

Ref. 

PMT (visible - near infra-red) 300 40 @ 500 100 [33] 

Si SPAD (thick) 250 65@650 25 [34] 

InGaAs SPAD 200 10@1550 91 [35] 

 

InP NFAD 

243 6@1550 28000 [36] 

223 10@1550 600 [37] 

163 11.6@1550 1.2 [38] 

SNSPD 3 70@1550 10 [39] 

SNSPD (closed cycle cryostat) 0.8 80@400-2500 100 [40] 

Transition Edge Sensors 0.1 50@1550 3 [41] 

Josephson junctions 0.025 60@1550 1000 [42] 

Si SPAD (shallow junction) 250 49@550 25 [43] 

PMT-Infrared 200 2@1550 200000 [44] 

 

In summary of Table 2, for InP NFADs, an increase in the operation temperature leads to 

a higher DCR through thermal generation in the narrow bandgap absorber layer which 

leads to consistently a lower PDE. More detailed reviews of single photon detection 

technologies can be found in ref. [39,45]. Overall, semiconductor single photon detectors 

provide a compact, cheap and robust alternative to other detection technologies and the 

following section is dedicated to the review of semiconductor single photon detectors.  

 

1.2 Review of semiconductor single photon detection technology 

Despite the best performance of Silicon in visible regions, Si GM-APDs are not suitable 

for III-V applications in the 1550 nm wavelength due to their poor absorption coefficient 

in this range. Since the modern optical fibre systems operate at 1550 nm, Si GM-APDs 

are not compatible in this range. Germanium can be an alternative in this regard as it can 

mailto:11.6@1550
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provide detection wavelength up-to 1600 nm at room temperature. Some research efforts 

have focussed on developing GM-APDs based on Si [46,47]. Ge based GM-APDs 

however require cryogenic cooling to minimise the DCR but the associated trade-off is 

the inevitable shift of the detection wavelength to 1450 nm which results in a small PDE 

at 1550 nm. Recently progress in research work on Ge has resulted in Ge/Si APDs with 

good performance however the detectors are capable to operate only in 1310 nm 

wavelength [48]. 

Currently InGaAs/InP technologies dominate the market in single photon detection in 

1550 nm wavelength region [49,50]. The most common structure of the device used in 

this technology has evolved over time and was originally conceived for high speed 

telecommunication [51]. InGaAs/InP based SPAD structures most commonly studied 

nowadays include a buried p-n junction created through diffusion of Zinc dopants where 

SiN passivation is used as diffusion mask to define active area. Concentric diffusion rings 

are created to avoid build of electric field at the outer periphery of the multiplication 

region. Fig. 8 shows the schematic illustration of the InGaAs/InP Geiger mode APDs. 

 

Fig. 8 Schematic of cross section of the device structure of planar InGaAs/InP Geiger mode APDs.  
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Several research efforts over the last decade have improved the overall performance of 

these SPADs, of course with some trade-offs. Major performance parameters reviewed in 

this work are dark count rate (DCR), photon detection efficiency (PDE) and afterpulsing 

probability. State of the art Geiger mode APDs based on InP multiplication layer use 

In0.47Ga0.53As absorber layer lattice matched to InP substrate. Major trade-offs in this 

research include a higher count rate and an increased afterpulsing probability due to a 

reduced detector dead time. Therefore, a review of the work given here summarises the 

efforts done in this regard.  A majority of recent work done on InGaAs/InP Geiger mode 

APDs use a specific configuration called the Negative Feedback Avalanche Diodes 

(NFAD) where the parasitic capacitances were reduced by a surface integrated monolithic 

resistor used for termination of avalanche (quenching)[52] using the planar structure 

similar to that of Fig. 6. 

Lunghi et al [53] demonstrated a PDE of 10% with a DCR of 600 Hz at 223 K. This work 

demonstrated a reduction in the afterpulsing probability and an increase in the detection 

efficiency by implementing an active hold-off time or the so-called dead time.  Further 

reducing the DCR from thermal generation currents, Yan et al [54] recorded a DCR of 

100 Hz at a PDE of 10% by lowering the operation temperature to 193 K with an 

afterpulsing probability of less than 0.1%. In this regard, Korzh et al [55] demonstrated 

an even smaller DCR of 1 Hz for a free running InP Geiger mode at a PDE of 10% at a 

temperature of 143 K. The afterpulsing probability in this work was recorded at 2.2% 

with dead times as long as 20 µs. The DCR in this work was dominated by thermal 

generation components and therefore a cooling system called as Free Piston Sterling 

Cooler was used their work to achieve low temperatures down to 143 K. the reduced 

afterpulsing in the works of Korzh and Lunghi has been achieved owing to a user defined 

active hold-off time which can be adjusted in the range of 1-20 µs. Tosi et al [56] reported 

a PDE of 28% at 225 K with a DCR of 5 kHz. A negligible afterpulsing was observed by 

Tosi et al however they used dead times of at least 10 µs. This was the highest ever PDE 

reported for InGaAs/InP SPADs until 2014.  

Later, a record high PDE of 55% had been demonstrated by Commandar et al [57] at           

293 K which remains the highest value reported so far for InGaAs/InP SPADs nonetheless 

the afterpulsing probability stands at 10.2% for a dead time on the order of 10 ns. 

Commandar et al observed that the afterpulsing probability increased from 9% to 30% at 

a PDE of 53% when temperature was reduced from 293 K to 273 K.  
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Currently in III-V single photon detection, a trending research is enhancing the capability 

of Geiger mode APDs in achieving high count rates. This has been enabled using high 

frequency gating techniques. At higher repetition frequencies however afterpulsing has 

been a bottleneck. Improving the material quality to reduce the defect levels in InP is a 

challenge that is unlikely to be accomplished in near future [58] and the solution to 

reducing afterpulsing is limiting the charge flow during the avalanche process. In this 

regard, the so-called high frequency gating has been used to restrict the avalanche charge 

flow through the Geiger mode APD. Scarcella et al [59] demonstrated a lower 

afterpulsing probability of 1.5% however at a PDE of 30%. Although Scarcella et al 

operated their detector with a higher gate frequency (1.3 GHz) compared to 1 GHz by 

Commandar as well as a reduced temperature of 240 K, the reduced afterpulsing could be 

achieved at lower PDE owing to the excess bias dependent nature of afterpulsing. 

Recently Yu et al [60] have demonstrated a DCR of 6.7 kHz with an afterpulsing 

probability of 13% at 243 K using longer dead times of 600 ns.  Yu et al further observed 

a drop in the DCR to 135 Hz by reducing the temperature to 135 K however this was 

associated with a penalty from an afterpulsing probability of 38%.  

 High-speed gating technique such as sine wave gating have been used by Lu et al to 

restrict the charge flow during avalanche using a gating frequency of 80 MHz for an InP 

Geiger mode APD [61]. For instance, at a detection efficiency of 17%, Lu et al have 

reduced the dark count rate by an order of magnitude by reducing the pulse duration from 

2.5 ns to 1.4 ns. The DCR at 10% PDE at 240 K was reported to be 8.9 kHz. The reduced 

dark count in this work had been attributed to a suppression of afterpulsing resulting from 

a reduced charge flow through avalanche layer which was a factor of 5 smaller than the 

conventional sine wave gating [62]. Using a 1.25 GHz sine wave gating for an InP Geiger 

mode APD, Jiang et al [63] obtained an afterpulsing probability of less than 3% at 10% 

PDE at 243 K where a maximum DCR of 3.2 kHz was recorded.  Recently Chen et al 

[64] have used a 1 GHz sine wave gating scheme for an InP Geiger mode APD and 

recorded an afterpulsing probability of 1.3% at 10% PDE at 293 K using a dead time of 

only 1 ns. This work shows a considerable reduction in the dead time in comparison to 

commercially available 100 MHz single photon detector [65] which demonstrates a 10% 

PDE for a dead time of 10 µs. Table 3 lists a comparison of some high frequency gated 

InP Geiger mode APDs in terms of important performance parameters such as 

afterpulsing probability Pa, dark count probability Pd, detection efficiency, dead time and 
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operating temperature. The scheme as referred to in the table represents the biasing 

method of SPAD i.e. in a sine wave biasing scheme the SPAD is biased for a limited time 

above the breakdown, defined by a sine-wave whereas in a free running scheme the SPAD 

is continuously biased above the breakdown and continues to be biased until an avalanche 

events is triggered by an incoming photon. Consequently load resistor quenches the 

avalanche and the SPAD is biased above the breakdown voltage following a recovery 

(defined by the RC time constant of the SPAD capacitance and series resistance). 

 

Table 3. Comparison of different operation schemes for InP GM-APDs in terms of various performance 

parameters. 

Scheme T (K) PDE 

(%) 

Pa (%) Gating 

frequency  

Dead 

time 

Reference  

Sine wave 223 10 11.7 1.25 GHz 0 [66] 

Sine wave 233 10.8 2.8 1.5 GHz 50 µs [67] 

Self-differencing 243 9.3 3.4 921 MHz 10 ns [68] 

Self-differencing 293 10 1.7 1 GHz 0 [57] 

Negative feedback 

avalanche diode 

163 10 2.2 -- 20 µs [55] 

ID-210  

free running 

SPAD (iDQ 

Geneva) 

-- 10 -- -- 50 µs [65] 

Sine-wave gating 294 10.6 1.3 1 GHz 1 ns [64] 

 

Recently, In0.48Al0.42As has emerged as an alternative to InP GM-APDs recently owing 

to the reduced temperature dependence of avalanche breakdown for InAlAs compared to 

similar thickness of InP. In this context, Meng et al [69] have reported InGaAs/InAlAs 

SPAD with a PDE of 26% at 1550 nm with a DCR of 100 MHz at 210 K. In comparison 

with previous work on InAlAs by Karve et al [70] who reported a similar DCR at lower 

detection efficiency of 19% at 130 K, Meng et al reduced the DCR at a similar detection 

efficiency with no afterpulsing as the operation temperature was higher compared to 

Karve et al who reported afterpulsing at lower temperatures (50 - 100 K). The reduced 

DCR for Meng et al however was due to a thicker avalanche layer which mitigated the 
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field assisted DCR component resulting from band to band tunnelling. In a previous work 

by Meng et al [71] excessive band to band tunnelling current was observed in their GM-

APD based on InAlAs multiplication layer. 

The benefits of using a wide band gap material in this regard are obvious as that could 

mitigate the tunnelling currents in Geiger mode operation. Wider bandgap is useful as it 

provides the multiplication layer a higher susceptibility to band-to-band tunnelling 

currents which are typical to high field operation of a SPAD [31]. In the next section we 

review recent progress in wide bandgap III-V semiconductor materials with band gap 

greater than InP and InAlAs.  

 

1.3 Review of wide band gap III-V semiconductor materials 

Recently, AlAs0.56Sb0.44 lattice matched to InP substrate has emerged as wide bandgap 

(Eg = 1.6 eV) alternative to InP and InAlAs [72].  AlAs0.56Sb0.44 demonstrated a reduced 

temperature coefficient of avalanche breakdown of 0.95 mV/K for an 80 nm thick 

avalanche layer. The reduced temperature coefficient of avalanche breakdown for this 

material was speculated to be (i) the dominance of alloy scattering effect which is 

temperature independent and (ii) reduced phonon scattering collisions prior to impact 

ionisation. This was the smallest temperature coefficient of avalanche breakdown 

compared to the previously reported values of 2.5 mV/K for InAlAs (100 nm thick) and 

6 mV/K for InP (130 nm) [73]. A reduced phonon scattering events prior to impact 

ionisation for thin avalanche layers at high electric field was attributed to the temperature 

insensitivity of avalanche breakdown for AlAs0.56Sb0.44 [74]. A major limitation of 

AlAs0.56Sb0.44 mesa diodes however was the presence of perimeter leakage currents which 

can induce electric field along the mesa sidewalls and is an undesirable effect for APDs.  
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Fig. 9 Schematic illustration of a mesa diode with bulk current (red arrow) through the inner bulk and 

perimeter leakage current through the sidewalls. The perimeter leakage here is only shown on the right 

sidewall of mesa for illustration purposes and can flow along the entire perimeter.  

 

Fig. 9 shows schematic illustration of the perimeter leakage currents (blue arrows) 

simultaneously flowing with bulk current (red arrow) which only flows through the bulk 

of diode. Perimeter leakage can arise from dangling bonds due to abrupt sidewall 

termination in mesas. The square shaped mesa in Fig.6 is only shown for the ease of 

sketch and demonstration and actual mesa devices characterised in this work are circular.  

Xie et al in their work confirmed the presence of a significant surface leakage currents in 

their devices. Bozkurt et al [75] have reported on the conduction and valence bands offsets 

between InP and AlAs0.56Sb0.44 with a conduction band and valence band offsets of 1.33 

eV and 0.3 eV respectively at 300 K.  Zhou and co-workers in their further work [76] on 

these thin layers incorporated Ga into the ternary alloy in various compositions and 

observed that addition of Ga significantly suppressed the surface leakage components. 

The bandgap reduced from 1.6 eV (AlxGa1-xAs0.56Sb0.44, x = 1.00) to 1.56 eV (AlxGa1-

xAs0.56Sb0.44, x = 0.85) which corresponded to reduction in breakdown voltage of 64.7 

mV per percent Ga. It is known that addition of Ga reduces bandgap of AlxGa1-

xAs0.56Sb0.44 lattice matched to InP. Reduction of bandgap implies that the carriers will 

cross the threshold ionisation energies and undergo Impact Ionisation with a relative ease 

in comparison to a wide bandgap material, and hence a smaller operating voltage would 
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be required to reach breakdown.  Another interesting aspect of Al0.85Ga0.15As0.56Sb0.44 is 

the wide and indirect bandgap which makes it less susceptible to band-to-band tunnelling 

currents which are typical in InP and InAlAs during Geiger mode operation. Zhou et al 

confirmed in their work on the breakdown characteristics of AlxGa1-xAs0.56Sb0.44 that for 

x = 0.15 the quaternary material did not show significant band-to-band tunnelling which 

is beneficial for Geiger mode operation of APDs. The lattice mismatch between 

Al0.85Ga0.15As0.56Sb0.44 and InP substrate in the work of Zhou [76] was less than 0.24%.  

Mesa diodes based on these layers (AlxGa1-xAs0.56Sb0.44, x = 0.85) were subsequently 

characterised by Zhou and co-workers [77] for temperature dependence of avalanche 

breakdown. The 100 nm thick quaternary Al0.85Ga0.15As0.56Sb0.44 demonstrated a Cbd of 

0.86 mV/K (in temperature range of 77 – 294 K) which was the lowest among other III-

V materials reported to date. The small temperature coefficient of avalanche breakdown 

in Al0.85Ga0.15As0.56Sb0.44 was attributed to a combination of reduced phonon scattering at 

high fields for thin layer and dominant alloy scattering.  

Studies on excess avalanche noise on Al0.85Ga0.15As0.56Sb0.44 confirmed lowest excess 

noise compared to other wide bandgap III-V materials such as InP, InAlAs and 

AlAs0.56Sb0.44 for comparable thickness of avalanche layer [78]. Similarly, studies on 

temperature coefficient of avalanche breakdown for a nominally 100 nm thick 

Al0.85Ga0.15As0.56Sb0.44 layer in the extended temperature range of 294 – 353 K confirmed 

a small temperature coefficient of avalanche breakdown of 1.60 mV/K [79]. An 

investigation of the edge breakdown effect also confirmed that there was no such issue in 

the mesa diodes based on thin Al0.85Ga0.15As0.56Sb0.44 avalanche layers. Recently Pinel et 

al [28] have reported excess noise studies on a nominally 100 nm thick 

Al0.85Ga0.15As0.56Sb0.44 avalanche layer lattice matched to InP substrate. Using pure carrier 

injection conditions n-i-p and p-i-n Al0.85Ga0.15As0.56Sb0.44 mesa diodes, a higher electron 

impact ionisation coefficient has been reported with effective ionisation coefficient ratio 

k was reported in the range 0.08-0.1. This was significantly smaller than those of other 

III-V avalanche materials such as InP, InAlAs and AlAs0.56Sb0.44.  

In summary, Al0.85Ga0.15As0.56Sb0.44 has the potential of replacing InP and InAlAs as 

avalanche layers due to its temperature insensitive avalanche breakdown, lower excess 

noise, a wider bandgap and a higher tolerance to band-to-band tunnelling currents. In the 
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following section we would like to provide a detailed review of works done on AlxGa1-

xAsySb1-y (x = 0.1-0.8, y=0.98-0.60) lattice matched to GaSb substrate. 

 

1.4 Review of AlGaAsSb lattice matched to GaSb substrate 

Pioneering work on AlxGa1-xAsySb1-y layers grown on GaSb substrates (x = 0.2 – 0.5) 

were carried out by Kagawa and Motosugi [80,81]. AlxGa1-xAsySb1-y layers were grown 

on n-doped GaSb (100) substrates where the stoichiometric composition of the quaternary 

layers ranged from x = 0.2 to 0.8 and y = 0.02 – 0.05. The active layers in most of these 

studies was several microns thick, typically 2 – 3 µm.  The work of Kagawa mostly 

addressed the dark current analysis and improvement in AlGaAsSb mesa APDs grown 

on GaSb substrates. In the first work of Kagawa, a maximum avalanche gain of 50 was 

recorded at 1.3 µm and holes were found to have a higher impact ionisation coefficient 

than electrons. The second work of Kagawa studied the dependence of diffusion depth 

inside AlxGa1-xAsySb1-y (x =0.2) was studied as a function of temperature and Al 

composition. A reduction of the dark by one order of magnitude was observed using Zn 

diffusion in the quaternary alloy.  

Law et al studied Al0.43Ga0.57As0.025Sb0.975 heterojunction diodes with a nominal thickness 

of 2-3 µm where an electric field of 160 kV/cm can be inferred from the breakdown 

voltages specified in the work [82].  In this work Law noted a number of improvements 

for AlxGa1-xAsySb1-y /GaAlSb (x =0.43, y=0.025) heterojunction diodes in comparison 

with GaAlSb/GaSb diodes. Notable improvements included better surface morphology 

and 3 times lower dark current density in comparison to the latter diodes. However, the 

AlxGa1-xAsySb1-y /GaAlSb diodes demonstrated an edge breakdown effect. The typical 

bandgap values for the mentioned quaternary alloys were in the range of 0.7 – 1.2 eV 

[83]. Subsequent studies by Law and Pilkhun [84 and reference 13 therein] explored the 

impact ionisation properties of these thick quaternary layers. In this work law studied 

quaternary AlxGa1-xAsySb1-y (x =0.43, y=0.025) alloys grown through liquid phase epitaxy 

for 1-1.3 µm APD applications. The homo-junction APD exhibited a high gain of 100, a 

quantum efficiency of 80% however a major problem was still the surface leakage current 

in the mesa APDs. A higher hole impact ionisation coefficient was reported in this work.  
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The higher hole impact ionisation coefficient was attributed to the resonance between 

bandgap and valence band spin orbit split-off band. The phenomenon has been referred 

to as band resonance by the research community working on these narrow gap Ga rich 

AlGa(As)Sb alloys. Subsequent works on closely related material such as Al1-xGaxSb by 

Hildebrandt et al [85] and Miura et al [86] for x = 0.065 and 0.947 respectively attributed 

the enhancement of hole impact ionisation to the spin orbit split off band resonance 

condition. Hildebrandt demonstrated that ratio of hole to electron impact ionisation 

increases as the difference between the spin orbit split-off band and bandgap energy 

decreases. The ratio β/α was found to exceed 20 at 300 K for Al1-xGaxSb (x = 0.065). 

Miura et al in their study demonstrated first ever excess noise measurement for Al1-

xGaxSb (x = 0.053) and demonstrated an excess noise factor F=3.8 which was 1.2 dB 

higher than the conventional GaInAs APD at the time. The ratio β/α was demonstrated to 

be as low as 5 which was the lowest for long wavelength APDs at the time.  

Sulima et al [87] reported on improving the dark currents of AlxGa1-xAsySb1-y 

/InGaAsSb/GaSb Separate Absorption and Multiplication APD (SAMAPD) (x = 0.28) by 

optimising their mesa diode device fabrication using diffused p-n junctions in the 

quaternary layers. Using Zn diffusion, a lower dark current by at least one order of 

magnitude and a higher breakdown (2 times) was reported for AlxGa1-xAsySb1-y (x = 0.28, 

y=0.014) SAMAPD. The reduction was attributed to the electrical isolation of the defects 

in the quaternary from the p-n junction. Such an isolation was not observed for epitaxial 

p-n junction. A maximum responsivity of 43 A/W was observed at 2100 nm wavelength 

for a reverse bias of 6.7 V.  

 Mikhailova and co-workers [88] later reported on low noise InGaAsSb/AlxGa1-xAsySb1-

y (x=0.33, y=0.014, Eg =1.2 eV) for 1.6-2.4 µm applications. The APD demonstrated a 

high β/α > 30 and a low excess noise F = 1.6 at M =10. Tuning the bandgap composition 

of the quaternary, Mikhailova demonstrated an abrupt increase in the hole ionisation 

coefficient using the band resonance condition described earlier. The resonant 

composition for this study was x =0.04 for AlxGa1-xAsySb1-y.   

All of the studies referenced hitherto investigated predominantly Ga rich quaternary 

alloys (composition ~ 70 -99%, Eg : 0.9 – 1.2 eV) for their compatibility with the 1 µm 

optical window. Recently the interest has shifted to higher wavelength up to 2 µm due to 

increased interest in extended IR wavelengths. In this regard it is useful to provide some 
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review of the works done in quaternary AlxGa1-xAsySb1-y (x = 0.4 – 0.65) lattice matched 

to GaSb substrate. 

Grzesik et al [89] have characterised the temperature dependence of avalanche breakdown 

and impact ionisation properties of electrons and holes for three different compositions 

of AlxGa1-xAsySb1-y (x =0.40, y = 0.035), (x = 0.55, y = 0.045), and (x=0. 65, y= 0.054). 

The ionisation coefficients were extracted form photo-multiplication measurements in 

temperature range of 77 – 300 K for the three alloys. Grzesik et al reported a higher impact 

ionisation coefficient for holes than electrons for any temperature. Both electrons and 

holes impact ionisation coefficients were found to decrease as the Al concentration in the 

quaternary layer was increased. The values for β/α was reported in the range of 1.2 and 

4.0 and was found to depend on temperature, alloy composition and the strength of 

electric field. The impact ionisation coefficients were reported for 55% alloy composition 

and the values for ionisation coefficients of electrons and holes at maximum electric field 

of 400 kV/cm were reported at 2×104 cm-1 and 2×104 cm-1 respectively at 300 K. The 

photo-multiplication measurements in the different temperature ranges were also used to 

deduce the temperature coefficient of avalanche breakdown. A Cbd of 30 mV/K was 

reported for a 700 nm thick avalanche layer with composition of x =0.55.  

Collins et al have recently reported on the field dependence of impact ionisation 

coefficients for AlxGa1-xAsySb1-y (x = 0.90) lattice matched to GaSb substrate [90] in the 

field range of 150 – 550 kV/cm. The impact ionisation coefficients were extracted using 

a non-local recurrence model with a variable electric field profile for p-i-n and n-i-p 

diodes of difference avalanche layer thicknesses. At maximum electric field, Collins 

reported a β=α= 1.22 ×107 cm-1. Electric field dependence at low field values showed 

that β>α for AlxGa1-xAsySb1-y (x = 0.90). The dominance of hole ionisation coefficient 

was attributed to the band resonance condition between spin orbit split off band and 

material bandgap (Eg = 2.01 eV at 294 K).  

In retrospect, a stark contrast between Al0.85Ga0.15As0.56Sb0.44 lattice matched to those 

lattice matched to GaSb substrate is that the former are thin (100 nm nominal), wide 

bandgap (1.59 eV at 294 K) and operate at a higher electric field (~1200 kV/cm) while 

the later are thick (1-4 µm), narrow bandgap (0.7-1.2 eV) and operate at much lower 

electric fields (55-400 kV/cm). The difference in the impact ionisation coefficients (β>α 

for AlGaAsSb lattice matched to GaSb, β<α for AlGaAsSb lattice matched to InP) may 
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possibly arise from the different alloy composition leading to different bandgaps of these 

materials.  

1.5 Motivation of this work 

From the review of the works provided so far, it is now obvious that earlier works on 

AlGaAsSb quaternary alloys lattice matched to GaSb substrate suffered from either 

surface leakage or premature edge breakdown effect. In addition to having a wide 

bandgap, Al0.85Ga0.15As0.56Sb0.44 quaternary alloy lattice matched to InP substrate has 

demonstrated suppressed surface leakage, higher susceptibility to band-to-band 

tunnelling currents, an absence of premature edge breakdown effect and a reduced 

temperature coefficient of avalanche breakdown. Such attributes are valuable for linear 

mode avalanche photodiodes for III-V telecommunication applications. These attributes 

of Al0.85Ga0.15As0.56Sb0.44 motivate me to assess the temporal and temperature stability of 

avalanche gain in higher temperature ranges previously not covered by any research work. 

The motivation of assessing the gain stability at higher temperatures (297 K– 353 K) 

stems from the fact that phonon scattering rates would be higher in comparison with sub-

297 K temperature and it would be useful to gain an insight into how the phonon 

scattering effect competes with alloy scattering in this material. Although this work does 

not study alloy scattering effect, the temperature coefficient of avalanche breakdown for 

these temperature ranges can shed light on whether alloy scattering would still be 

dominant at these high temperatures.   

The low temperature coefficient of avalanche breakdown and wide bandgap are also 

beneficial for Geiger mode applications where a stable DCR and higher tolerance to 

tunnelling currents is needed. Representative examples include fluorescence imaging, 

long distance mapping and ranging and secure quantum key distribution (QKD). The 

operational complexity of temperature stabilisation circuitry can be circumvented if a 

material with a temperature insensitive avalanche breakdown is used and from this 

perspective Al0.85Ga0.15As0.56Sb0.44 offers advantage over current InP and InAlAs APDs. 

In line with this argument, it would be very useful to assess the temporal stability of DCR 

in the Geiger mode without using any temperature stabilisation.  

My thesis is dedicated to the fabrication, characterisation and analyses of device 

performance of APDs based on thin avalanching layers of Al0.85Ga0.15As0.56Sb0.44. I will 
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also carry out characterisation of the APDs with an aim to achieve Geiger mode device 

based on thin avalanche layers of Al0.85Ga0.15As0.56Sb0.44.  

 

 

1.6 Organisation of thesis 

Chapter 1 introduces various technologies for single photon detection. Benefits and 

limitations of each technology are listed followed by a motivation for semiconductor 

single photon detection technology. Basic concepts and performance parameters related 

to linear and Geiger mode operation of APDs are introduced. A brief introduction to state 

of the art semiconductor APD technologies for linear an Geiger mode APDs is provided 

and motivation of Al0.85Ga0.15As0.56Sb0.44 is highlighted by comparison with current 

technology in terms of key performance parameters. A detailed background and review 

of the semiconductor materials used in state of the art III-V detection technology. A 

chronological account of research efforts starting with Ga rich narrow bandgap 

AlGaAsSb materials lattice matched to GaSb substrate leading up to wide bandgap 

Al0.85Ga0.15As0.56Sb0.44 lattice matched to InP substrate is given. A review of InP and 

InAlAs based semiconductor material systems is provided and a comparison is made with 

Al0.85Ga0.15As0.56Sb0.44 in terms of key parameters. A review of InGaAs/InP and 

InGaAs/InAlAs Geiger mode APDs is thoroughly conducted with a focus on major 

performance trade-offs prevalent in the detectors research community. 

 

Chapter 2 provides detailed background theory of the Impact Ionisation, the 

underlying principle of avalanche photodiodes and single photon detectors. Important 

concepts related to both the linear and Geiger mode operation of APDs are discussed such 

as breakdown voltage, avalanche gain, temperature coefficient of avalanche breakdown, 

Dark Count Rate (DCR) afterpulsing and Single Photon Detection Efficiency (SPDE).  

 

Chapter 3 details experimental methods used to characterise AlGaAsSb APDs. 

Important measurement techniques detailed are current-voltage (I-V), capacitance-
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voltage (C-V), photocurrent measurements using Phase Sensitive Detection (PSD), gain 

measurement at elevated temperatures, Dark Count Rate (DCR) characterisation as a 

function of overbias and timing distribution measurement of DCR using a Multi-Channel 

Analyser (MCA).   

 

Chapter 4 reports fabrication and characterisation of p-i-n Al0.85Ga0.15As0.56Sb0.44 

APDs. Detailed procedure for various process steps such as photolithography, contact 

alignment, metal evaporation, wire bonding and packaging and a process flow chart for 

microfabrication are provided.  

 

Chapter 5 details results on temperature dependence of avalanche breakdown and 

avalanche gain are provided. Analyses of temporal stability of avalanche gain is provided 

at different temperature ranging from 294 – 353 K. Temperature stability of gain is 

compared with commercial Si APDs in the visible and NIR range and analyses of the 

robustness of the dark currents is provided. A comparison of temporal stability of 

avalanche gain with Al0.7In0.3AsSb APDs is provided.  

 

Chapter 6 details the characterisation of Geiger mode p-i-n Al0.85Ga0.15As0.56Sb0.44 

APDs. DCR characterisation as a function of overbias is done. Influence of the capacitive 

transient responses on discrimination of weak avalanche signals is discussed. Dependence 

of DCR on pulse repetition frequency and dead time is discussed for investigation of 

afterpulsing phenomenon. Temporal stability of is reported and a comparison with 

commercial Si Geiger mode APD is provided. Studies on time distribution of dark and 

photon counts has been carried out.  

 

Chapter 7 details the modelling of impact ionisation coefficients of thin avalanche 

layers of Al0.85Ga0.15As0.56Sb0.44 using a dead space model and recurrence equations. 

Using the recurrence equations and the dead space model a parameterised set of field 

dependent impact ionisation coefficients (E), ß(E) is provided for pure injection 
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conditions. The robustness of parameters is checked by fitting the avalanche gain and 

excess noise data for pure injection conditions with the parameter set derived using 

recurrence model. Breakdown probability of as a function of overbias is modelled using 

the similar parameter set, some limitations of the modelling technique are discussed and 

a detailed discussion on the dark carrier generation rate is provided.  

 

Chapter 8 concludes the work done and suggests future work in light of recent results. 
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Chapter 2     

Background Theory  

 

2.1 Introduction 

Impact Ionisation is one of the elastic scattering processes where momentum and energy 

are conserved and is the underlying principle of semiconductor single photon detectors. 

State of the art semiconductor photon detectors consist of a photon absorption layer where 

carries are either generated using incoming photons or through thermal generation in the 

absorbing layer.  The carriers are subsequently transferred to a high field wide bandgap 

multiplication layer under the action of a steady electric field. Once the photo-

generated/thermal carriers reach the high field multiplication region, they undergo several 

collisions with lattice between their mean free paths under the presence of a high electric 

field which imparts enough kinetic energy to the carriers. Enroute their trajectory, the 

photo-generated carriers excite electrons from valence band to conduction band. A 

creation of electron in conduction band means a hole in the valence band. Such a collision 

is referred to as Impact Ionisation. Subsequent carriers generated through successive 

Impact Ionisation events can setup a chain of ionisation events.  

 

Fig. 1 Schematic illustration of Impact Ionisation process. Photo-generated carriers (electrons indicated 

as red and holes indicated green circles) created in absorption region (yellow) are accelerated to a high 

field multiplication region (blue) under the action of a steady electric field. Carriers can impact ionise 

under high electric field in the multiplication layer creating a strong electrical signal.  
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Fig. 1 shows a schematic of this process where photo-generated carriers are transferred 

to a high field region where they undergo successive ionisation. One implication of the 

ionisation process in high field region is that a strong electrical signal is generated in 

response to a weak electronic signal. This principle is used to enable the detection of 

photon radiation and is used in several interesting applications including light detection 

and ranging, laser distance mapping, fluorescence imaging, quantum key distribution and 

night vision cameras.   

 

2.2 Impact ionisation and breakdown voltage 

In this section, an explanation of the Impact Ionisation process is aided with a bandgap 

diagram where conduction and valence bands are shown. A pure electron induced impact 

ionisation is sketched in Fig. 2.  

 

Fig.2. Schematic illustration of pure electron induced impact ionisation. After an electron gains excess 

energy from the electric field, it travels an average distance before undergoing another collision and 

generating further electron hole pairs. Red circles show electrons whereas blue are holes. Thin blue arrows 

show electron impact ionisation events. 

 

The impact ionisation rates of electrons and holes are usually expressed as the Impact 

Ionisation coefficients α and β respectively. These coefficients define the number of 

electrons and holes created by a single carrier per unit distance travelled between two 

impact ionising collisions. Impact ionisation coefficient for electrons, α and holes β can 

be expressed as [1], 
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𝛼 =
1

𝑛𝑒𝑣𝑒
𝑔𝑒 ,                                               (1.a) 

𝛽 =
1

𝑛ℎ𝑣ℎ
𝑔ℎ ,                                              (1.b) 

Here ne, vn, ge, nh, vh, gh describe electron concentration, electron velocity, electron 

generation rate in /s, hole concentration hole velocity and hole generation rate in /s 

respectively. Since the carrier velocity and generation rate are a function of electric field, 

Impact Ionisation coefficients α and β depend on electric field as well.  Considering that 

excess electron-hole pairs have enough energy, the impact ionisation process can quickly 

build up to a chain of cascaded avalanche events leading to an avalanche multiplication. 

The minimum energy needed by the carrier to trigger an impact ionisation event is called 

as threshold energy denoted by Eth. To conserve the energy and momentum of the impact 

ionising carries, the threshold energies of the carries are larger than the bandgap energy. 

The impact ionisation coefficients are simply the average number of electron and hole 

pairs created by the primary carriers per unit distance travelled in the medium. Impact 

ionisation coefficients depend on material and increase with increasing electric field and 

reducing temperature.  

Impact ionisation coefficients for electrons and holes as a function of electric field are 

expressed as, 

𝛼(𝐸) = 𝐴𝑒exp ( −(
𝐵𝑒

𝐸
)𝐶𝑒)                                              (2) 

𝛽(𝐸) = 𝐴ℎexp ( −(
𝐵ℎ

𝐸
)𝐶ℎ)                                             (3) 

 

Where A, B and C are constants that depend on material and E is the electric field. 

Increasing the electric field increases the number of carrier generated per unit length as 

the carrier gain more energy from the electric field for impact ionisation. However there 

are scattering mechanisms in the semiconductor which tend to reduce the impact 

ionisation coefficients. A major scattering phenomenon is referred to as phonon 

scattering. Phonon scattering arises from lattice vibration and increases with increasing 

temperature. Phonon scattering is quantified by phonon occupation number, nph which is 

a function of the phonon energy Ep and temperature T and is expressed as [3], 
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𝑛𝑝ℎ =
1

exp (
𝐸𝑝

𝑘𝑏𝑇
−1)

                                                    (4) 

 

Where kb is the Boltzmann’s constant. As the temperature is increased the phonon 

scattering is increased which leads to a reduction of impact ionisation for both electrons 

and holes. This necessitates a higher electric field for the carriers to overcome the cooling 

effect induced by phonon scattering through loss of energy. Consequently the breakdown 

voltage increases. The increase in the breakdown voltage as a function of temperature is 

characterised by the temperature coefficient of breakdown voltage Cbd and is expressed 

as, 

𝐶𝑏𝑑 =
𝑑𝑉𝑏 

𝑑𝑇
                                               (5) 

Where Vb is the breakdown voltage. Semiconductor materials with a low temperature 

coefficient of avalanche breakdown are preferred as they offer immunity to temperature 

fluctuations.  

 

2.3 Avalanche gain 

The process of impact ionisation in avalanche photodiodes results in avalanche gain if the 

excess carries gain sufficient energy from electric field. The avalanche gain is denoted by 

M and depends on the ionisation coefficients (Eq. 2-3). If the electric field inside the 

avalanche layer is not uniform the avalanche gain depends on the position inside the 

medium and is expressed in terms of impact ionisation coefficients as [2], 

𝑀(𝑥) =
exp (− ∫ [𝛼(𝑥′)−𝛽(𝑥′)]𝑑𝑥′

𝑥
0 )

1−∫ 𝛼(𝑥′)exp (− ∫ [𝛼(𝑥′′)−𝛽(𝑥′′)]𝑑𝑥′′𝑥′

0 )dx′
𝑤

0

                   (6) 

Where W is the width of the depletion region and the primary current is generated at a 

position x inside the depletion region. Assuming an ideal p-i-n diode where the electric 

field in i-layer is uniform, the ionisation coefficients no longer depend on the position and 

in this case the avalanche gain is expressed as, 
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𝑀(𝑥) =
(𝛼−𝛽)exp [−(𝛼−𝛽)𝑥]

𝛼 exp[−(𝛼−𝛽)𝑤]−𝛽
                                        (7) 

M(x) decreases with x when >ß and increases with x when <ß. This results in two 

cases where a maximum avalanche gain is achieved i.e. x=0 which is gain due to electrons 

only and x=W which is gain due to holes only. These two cases are referred to as pure 

electron and hole injection conditions. Avalanche gain is a stochastic process and the 

randomness of impact ionisation process adds an extra source of noise to an otherwise 

single carrier avalanche process. The noise spectral density of mean square current rising 

from this randomness is expressed as, 

〈𝑖2〉 = 2𝑞𝐼𝑝𝑟𝑀2𝐹                                                         (8) 

Where q, Ipr, M and F are the electronic charge, primary current, avalanche gain and 

excess noise. McIntyre [2] expressed the excess avalanche noise as a function of 

avalanche gain and the ratio of impact ionisation coefficients k=ß/ assuming that 

ionisation coefficients only depend on the electric field and k is constant, as 

 

𝐹 = 𝑘𝑀 + (1 − 𝑘) (2 −
1

𝑀
)                                    (9) 

Eq. 9 shows that the excess noise is smaller for a smaller k value i.e. a pure electron 

injection for the case when >ß. Similarly for pure hole injection the k is defined as /ß 

and a low excess noise is expected if only holes impact ionise provided that ß>. For one 

dimensional depletion region with width, W, an electron current density at x=0 is assumed 

to trigger the avalanche, the current density increases throughout the repletion region as 

a result of electrons generated in impact ionisation process as illustrated in  Fig. 2. At the 

end of the depletion region, x=W, the electron current density reaches a maximum, 

amplified by the avalanche gain M. In the case where holes also undergo impact 

ionisation, a hole avalanche results in a bi-directional, random avalanche process as the 

holes drift in opposite direction under the action of electric field. A higher degree of 

randomness in the avalanche process leads to a noisier avalanche process in comparison 

with a single carrier, less noisy avalanche. Fig. 3 schematically illustrates a comparison 

of a single carrier avalanche initiated by electrons and a bi-directional avalanche due to 

both electrons and holes. In Fig. 3(a), the red arrow representing the electron avalanche 
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is thicker in comparison with Fig. 3(b) which represents avalanche due to both electrons 

and holes.   

  

 

 Fig.3 Conceptual schematic of avalanche excess noise. (Left) p-i-n diode showing a dominant impact 

ionisation of electrons. Red arrow shows the direction of electron avalanche. (Right) A noisy avalanche 

process where electrons and holes ionise simultaneously setting up electrons and holes avalanche. 

 

In practical applications where APDs are routinely used with amplifiers to boost the 

signal, the signal to noise ratio is enhanced by the APD provided that the excess noise 

arising from avalanche (APD noise) is smaller than amplifier noise.  

 

2.4 Geiger mode operation of avalanche photodiodes 

The detector sensitivity can be increased by increasing the applied reverse bias. 

Depending on the magnitude of reverse bias, the detector operates in either the linear 

mode or Geiger mode. In linear mode, a finite gain can be achieved typically less than 

1000 as a result of chain of impact ionisation events. However to enhance the sensitivity 

of the detector down to single photon level, the device is biased above the breakdown 

level. Fig. 4 shows the dark I-V characteristics for a typical APD with nominal breakdown 

voltage in the range of 12.3 V.  
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Fig.4 Dark I-V of a p-i-n APD. Linear and Geiger modes are shown. Typical breakdown voltage in this 

case is 12.3 V. 

 

As shown in Fig.4, the Geiger mode APDs (GM-APDs) are biased above the breakdown 

voltage which enhances their capability to detect single photons by generating a 

macroscopic avalanche current through impact ionisation process. The impact ionisation 

process can be triggered by photo carriers generated by absorption of incoming light or 

by dark carriers generated through thermal effects. Due to their enhanced sensitivity, GM-

APDs can achieve higher gain in the order of 106. The macroscopic avalanche current 

however continues to grow and can increase to an extent the device could suffer from a 

permanent heat damage. Therefore an avalanche “quenching” mechanism is needed to 

reduce the applied reverse bias quickly below the breakdown voltage. This is achieved 

by superimposing an AC pulse (overbias pulse) on a DC bias which is held slightly below 

the breakdown voltage. This way the GM-APD is only armed to detect photons or dark 

carriers only during the narrow overbias pulse duration. The total voltage above the 

breakdown is referred to as excess bias.  Fig. 5 shows a schematic illustration of the 

process.  
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Fig. 5 Schematic illustration of gated mode operation of a Geiger mode APD. The red line shows the 

breakdown voltage, vertical black double headed arrow shows the pulse amplitude above the breakdown 

voltage while the blue arrow shows the magnitude of the AC “Overbias” pulse.  

 

Following are the steps needed to operate a Geiger mode APD for a photon or a dark 

carrier detection.  

1. A DC bias (close to breakdown voltage) is applied to the cathode of the Geiger mode 

APD. 

2. A narrow AC pulse (several nanoseconds) is superimposed on the DC bias. The pulse 

repetition frequency is set such that the device is biased above the breakdown for a 

small period of time, typically nanoseconds. The duty cycle of the pulse trains 

determines the time for which the detector is armed to sense the onset of avalanche 

breakdown. 

3. Narrow pulses are used to prevent the diode from thermal damage and the avalanche 

process quickly needs to be “quenched” which is achieved by bringing the applied 

bias below the breakdown voltage.  

4. The device is armed to detect an avalanche event during the ON time of the pulse and 

is unable to sense the avalanche during the OFF time.  

 

In the Geiger mode however the major source of noise that limits the single photon 

detection efficiency (SPDE) is the so-called Dark Count Rate (DCR) and Afterpulsing.  

 

2.4.1 Dark count rate (DCR)  

Dark Count Rate (DCR) is a major source of noise in Geiger mode operation of avalanche 

photodiodes. It is defined as the number of times per seconds an avalanche is triggered 

inside the avalanche layer in absence of photo-generated carriers. Such “dark” carriers 

can be thermally generated inside the avalanche region and the number of these carriers 
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increase with operation temperature or through band-to-band tunnelling. Avalanche 

material with a wider bandgap is beneficial in mitigating the excessive band-to-band 

tunnelling. Eq. (10) shows band-to-band tunnelling current as a function of the material 

bandgap energy [3].  

𝐼𝑡𝑢𝑛𝑛 =
(2𝑚∗)0.5𝑞3𝐸𝑉𝐴

ℎ2𝐸𝑔
0.5 exp (

−2𝜋𝜎𝑡(𝑚∗)0.5𝐸𝑔
1.5

𝑞ℎ𝐸
)               (10) 

 Where m*, q, E, V, A, Eg, h are effective electron mass, electronic charge, electric field, 

applied reverse bias, device area, bandgap energy and Planck’s constant respectively and 

𝜎𝑡  is a material dependent constant. For indirect bandgap materials, the bandgap energy 

Eg in Eq. (10) is replaced with Eg + Ep where Ep is phonon energy. Considering N number 

of dark carriers present in the avalanche region during a certain time, the effective number 

of dark counts (CD) recorded when the Geiger mode APD is biased above the breakdown 

for time t using a pulse train of a repetition frequency, f can be expressed as, 

𝐶𝐷 = 𝑓(1 − 𝑒𝑥𝑝(−𝑁𝑡))                                       (11) 

If the product Nt is very small, the exponential term in the braces can be expanded 

according to Taylor’s series as simply 1- Nt and the dark count CD is fNt. The number N 

is referred to as dark count rate (DCR) and is simply the dark counts CD normalised to 

duty cycle ft of the pulse train. The DCR in this thesis is consistently expressed in terms 

of pulse width t (in nanoseconds) and pulse repetition rate f according to, 

𝑁 (𝐷𝐶𝑅) =
𝐶𝐷

𝑓𝑡
                                             (12) 

DCR can be lowered by cooling the temperature of Geiger mode APD and/or lowering 

the overbias. Most practical systems utilising the state-of-the-art single photon detectors 

[4] are equipped with Peltier cooler elements to keep the temperature low enough to 

minimise the thermal generation component of DCR. 

 

2.3.2 Afterpulsing 

Afterpulsing is a major bottleneck in high frequency operation of SPADs. Afterpulsing 

refers to the re-triggering of the avalanches resulting from charge carriers trapped in the 

material defect sites or charge trapping centres. These trapped carriers result from the 
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charge flow during avalanche process and they can initiate unwanted avalanches once 

they are released from the trapping centres. These trapping centres have a finite life time 

and the carries trapped within these defects are re-emitted at their characteristic life time. 

Afterpulsing results in increase of DCR and therefore it is preferred to keep afterpulsing 

to a minimum.  

In Geiger mode where the device is biased above the breakdown voltage, an avalanche 

could seed a significant charge flow through the material. To reduce the afterpulsing there 

are two major approaches: 

 Improve material quality and eliminate the defect centres. 

 Reduce the charge flow to minimise the trapped carriers.  

State of the art Geiger mode technology for 1550 nm detection suffers from high DCR 

and afterpulsing compared to Si owing to its poor material quality in terms of defects [5] 

which act as charge carriers trapping centres. It is therefore a common practice in the 

1550 nm Geiger mode technology to restrict the amount of charge in the first place to 

suppress DCR and afterpulsing.  

 Restricting the amount of charge flow through the avalanche layer however poses some 

challenges and trade-offs must be made. To illustrate this point, we express afterpulsing 

probability as [6] 

𝑃𝑎𝑝 (%) ∝ 𝑒−
𝑡𝑑
𝜏 (𝐶𝑑 + 𝐶𝑝) ∫ 𝑉𝑒(𝑡)𝑑𝑡

𝑡

0
                                      (13) 

Here 𝑡𝑑 , 𝜏, 𝐶𝑑 , 𝐶𝑝,, 𝑡, 𝑉𝑒 are the dead time, decay time of the trapping centres, device 

capacitance, parasitic capacitance of the circuit, avalanche duration and excess bias. Dead 

time usually refers to the time following an avalanche detection where the detector 

remains inactive (Toff in Fig. 4). This allows for charge carriers to release and evacuate 

the traps. Generally, the dead time should be longer than the trap life time to allow a 

proper release of the trapped carriers.  

From Eq. (13), there are several approaches to minimise the afterpulsing probability, 

namely: 

1. Increasing the dead time or the hold off time where the device remains inactive 

following a detection event. This time must be greater than the life time of the de-

trapping centres so that any residual charge is released, and the traps emptied. 
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2. Reducing the total capacitance of the device including any parasitic capacitance.  

3. Reducing the total charge through the active layer. 

4. Reducing the excess bias and 

5. Reducing the trap life time by increasing temperature. 

However, these approaches carry their own limitations. Using approach (1) can reduce 

the afterpulsing however this approach severely limits the speed of detector. In such a 

scenario a maximum repetition is limited by the inverse of 𝑇𝑜𝑓𝑓 . This approach can 

however severely limit the gating frequency and hence detection rates are limited.   

Approach (2) and (3) can reduce the avalanche charge however a major challenge with 

this scheme is the extraction of weak avalanche signals if the transient signals due to 

rising edge of bias pulses are stronger [6]. Approach (4) can reduce the afterpulsing 

however this leads to a reduced breakdown probability which lowers the PDE (defined in 

Eq. 14). Approach (5) can precipitate the release of trapped carries from the defect sites 

however this can exacerbate the DCR through thermal generation component. It is 

therefore clear that trade-offs must be made to achieve an optimal performance depending 

on the type of application. In this context the major trade-off in the current SPAD market 

is to find a sweet point between achieving a maximum SPDE and a reduced afterpulsing. 

To achieve a maximum count rate, a high gating frequency must be used to benefit from 

duty cycle however this exacerbates the afterpulsing due to a relatively smaller dead time. 

 

2.4.3 Single Photon Detection Efficiency (SPDE) 

When the electric field is increased, the probability that an avalanche breakdown is 

initiated by a photo-generated carrier in the avalanche layer increases. Consequently, the 

ability of a Geiger mode APD to generate an avalanche signal in response to single photon 

is enhanced. The capability of a Geiger mode APD to convert a single photon generated 

photo-carrier to an avalanche is quantified as a SPDE (expressed in percentage). SPDE is 

mathematically expressed as the ratio of avalanche events registered under light 

illumination to the number of events registered under zero illumination, normalised to the 

number of photons in the incident radiation.  Both the DCR and SPDE increase with 

applied overbias [7] and therefore commercial single photon detector are characterised 

by both the SPDE and DCR in commercial specification sheets provided by 



 

58 
 

manufacturers. As a standard approach, a sweet spot is always selected corresponding to 

an overbias which ensures a maximum SPDE while maintaining a minimal DCR. SPDE 

can be mathematically expressed as 

 𝑆𝑃𝐷𝐸 =
1

𝑛𝑝
ln (

1−𝑐𝑜𝑢𝑛𝑡𝑠𝐷/𝑓𝑔

1−𝑐𝑜𝑢𝑛𝑡𝑠𝐿/𝑓𝑔
)                                            (14) 

Where np , countsL and countsD are the mean number of photons per laser pulse, total 

number of counts registered under light illumination (sum of dark and photon counts) and 

total counts registered under no light. In quantifying Eq. 14 a Poisson distribution of 

arrival of photons is considered where fg is the pulse duty cycle. Qualitatively Eq. 14 

refers to the mean number of photons detected per second when a SPAD is illuminated 

with a laser pulse with a pre-defined mean photon number per pulse relative to the total 

DCR registered when the SPAD is not illuminated.  

For practical application systems utilising linear mode APDs, the temperature coefficient 

of avalanche breakdown, Cbd has to be considered. In rugged operating conditions and 

applications where a maintaining a stable gain for APDs is crucial, APDs with a reduced 

Cbd are preferred. Commercial APD detector packages are installed with temperature 

stabilisation/ compensation mechanisms [8] which adjust the bias voltage to compensate 

any variation in the breakdown voltage due to temperature effects. Similarly for 

commercial GM-APDs the datasheets often specify the performance in terms of DCR, 

PDE and afterpulsing [9,10]. 
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Chapter 3 

Experimental Methods 

This chapter provides information on experimental methods carried out to characterise 

linear and Geiger mode photodiodes. These techniques include current-voltage (I-V) 

measurement, capacitance-voltage (C-V) measurement, phase sensitive detection for 

photo-multiplication current measurement, dark count rate (DCR) measurements in 

gated mode, and photon counting characterisation using Multi-Channel Analyser 

(MCA). 

 

3.1 Current  Voltage Measurements 

The basic characterisation for a diode is the current-voltage (I-V) characterisation. 

I-V characterisation were carried out with an HP 4175 picoammeter. The device-

under-test (DUT) was probed with clean metal probe tips housed in an Everbeing 

probe holder. The picoammeter applies bias in both forward and reverse polarity and 

measures current from the DUT. The diode current in forward bias is described in 

Eq. (1) as [1] 

𝐼𝐹 = 𝐼°𝑒𝑥𝑝 (
𝑞(𝑉−𝐼𝐹𝑖𝑅𝑠)

𝑛𝑘𝐵𝑇
− 1)                                          (1) 

Where IF is forward current, I0 is saturation current, q is electronic charge, V is the applied 

bias, Rs is the series resistance, kb is Boltzmann’s constant and n is the ideality factor of 

the diode. Fig.1 shows the schematic of experimental setup for recording I-V 

characteristics of a diode. A bias source VB provides bias in both forward and reverse bias 

and corresponding current is measured across the resistor, R connected in series with 

DUT.  
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Fig.1 I-V measurement setup for diode, D. Bias source VB provides forward and reverse bias whereas 

current through the device is measured across the resistor R (typically 10 – 100 Ω).  

 

Ideality factor, n in Eq. (1) is a measure of the slope of the I-V data at lower forward bias 

and shows whether generation-recombination or diffusion is dominant in the p-n junction. 

If n =1 signifies the dominance of the diffusion current in the p-n junction whereas n = 2 

signifies the presence of generation-recombination currents in the junction.  Ifi is the 

forward current without series resistance effect. Series resistance can result in the 

deviation of the forward current IF from an ideally exponential increase as a function of 

forward bias as shown in Fig. 2. 

 

 

Fig2  Semi-log plot of forward current as a function of forward bias. Series resistance effect is shown where 

the forward current deviates from ideal exponential increase. 
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For linear mode diodes studies in this thesis, the dark currents can arise from currents 

flowing through the bulk of the device or along the perimeter of the mesas. Diffusion 

current, Idiff, generation-recombination currents, Ig-r or band to band tunnelling current, 

Itun constitute the bulk components. Surface leakage currents can arise from the dangling 

bonds caused by abrupt termination of the semiconductor surface at the mesa sidewalls. 

Therefore, the scaling of the dark currents with the bulk area suggests the dominance of 

the bulk currents. Similarly in case of dark currents scaling with diode perimeter, the 

dominant mechanism can be surface leakage. For Geiger mode mesa diodes studied in 

this thesis, dark counts arise from bulk currents through the device. Surface leakage 

components do not contribute to the dark counts as they do not flow through the diodes’ 

bulk area and hence are not multiplied when the device is operated in Geiger mode. From 

the reverse bias current, information on breakdown voltage, dark current levels, bulk and 

surface leakage current levels can be obtained.  

 

3.2 Capacitance  Voltage Measurements 

C-V measurements are performed to extract important device parameters including 

depletion width (calculation of depletion width is performed using Poisson’s equation 

and is detailed in Appendix. A) and doping in epitaxial layers. The capacitance of DUT 

is measured with an HP-4275 LCR meter. The schematic experimental setup is shown 

in Fig. 3. The LCR meter is equipped with a four probe capacitance measurement setup. 

Using this technique, the instrument measures the AC impedance of the DUT by 

applying an AC voltage superimposed on a DC signal to the device and measures the 

output current. The typical AC test signal level is 50 mV with an oscillation frequency 

of 1 MHz. 
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Fig.3 Schematic of experimental setup for C-V characterization. The conceptual illustration of four point 

probe method is shown in the right pan. Controls for displaying dissipation factor, D, quality factor, Q 

and capacitance values are provided to output desired parameter. HC, HP, LC, LP indicate high current, 

high potential, low current and low potential respectively.  

 

The instrument measures the vector impedance of the sample and calculates various 

parameters i.e. dissipation factor, quality factor and phase angle between the voltage 

and current vectors which can be displayed on the channel outputs using the control 

knobs. The reactance of the sample is subsequently calculated using the test signal and 

the current recorded from the sample. Subsequently the capacitance of the DUT is 

calculated with the measured reactance using the relation 

𝐶𝐷𝑈𝑇 =
𝐼𝐷𝑈𝑇

2𝜋𝑓𝑉𝐴𝐶
                                              (2) 

Using the AUTO mode on the LCR meter, the instrument selects appropriate mode for 

recording the capacitance of the device. For semiconductor devices as the DUT, a series 

mode of the device is used to model the capacitance. Using the series mode for the typical 

capacitance values of the diodes, the instrument measures the reactance of the sample to 

an accuracy of   ± 0.1% at a test signal frequency of 1 MHz. It is of utmost importance to 

set the appropriate test signal frequency as this directly affects the measurement accuracy 

of the reactance and hence the capacitance of the sample. As a guideline of estimation of 

reactance accuracy the reactance chart can in Fig.4 be consulted.  
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Fig. 4 Measurement accuracy indicated in the reactance chart. Different zones on the chart show ranges 

of the accuracy provided by the measurement instrument [2].  

 

The reactance can be estimated at 0.08 - 0.3% using a test signal frequency of 1 MHz for 

the expected capacitance of our diodes using the permittivity of AlGaAsSb layer (ε = 

10.95). Using the phasor diagram of the series RC circuit, the phase angle between the 

current and voltage vector is given as 

𝜃 = −tan−1 (
1

𝜔𝐶𝑅
)                                              (3) 

 A phase angle corresponding to -90° is used as a reference for registering accurate 

capacitance value within in the range specified by the reactance chart. The instrument 
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alternatively outputs values of dissipation factor and phase angle (channel A) and quality 

factor and impedance (channel B). The DUT capacitance decreases with increasing 

reverse bias due to increasing depletion width where the capacitance is calculated using 

Eq. (4).  

𝐶 =  
𝐴𝜀𝑜𝜀𝑟

𝑑
                                                    (4) 

Where A is the mesa device area and d is the depletion width.  

3.3 Photo current measurement 

Photo-multiplication current measurement is done to calculate the multiplication gain 

for linear mode p-i-n diodes. The increase in the depletion width as a result of applied 

reverse bias results in the enhancement of the collection efficiency of photo-generated 

carriers which contribute to the total current when they are swept across the high field 

region and collected on DUT electrode. The change in this primary current as a function 

of the photo-generation rate of the carriers can be estimated with Eq. (5) following the 

method used by Woods [3].  

𝐼𝑝𝑟(𝑉) =
𝑞𝑅

𝑐𝑜𝑠ℎ (
𝐷(𝑉)

𝐷𝑚
)
                                              (5)                                                                  

Where q, R, D (V) and Dm are charge per carrier, carrier photo-generation rate, bias 

dependent distance of depletion edge from the surface and minority carrier diffusion 

length. Under the approximation of Dm >> D (V), the primary current can be linearly 

approximated as  

𝐼(𝑝𝑟) = 𝑚𝑉 + 𝑐                                              (6) 

Where m represents the slope of the current vs bias at low voltages where it exhibits a 

linear dependence on reverse bias. The multiplication gain is then calculated by 

normalising the photocurrent to the primary current. Fig. 5 shows the primary and 

multiplied photocurrent in arbitrary units. 
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Fig. 5 Multiplied and primary current as a function of reverse bias. Multiplication gain is the ratio of 

multiplied and primary photocurrent.  

 

 For photo-multiplication measurements, the p-i-n diodes are illuminated with a laser 

spot which is focused onto the top of the mesa. The laser spot size is very important and 

it must be focused onto the center of the mesa to avoid stray light falling on the edges 

of mesa sidewalls. The reverse bias voltage was provided by a Keithely-236 Source 

Measurement Unit (SMU). The photocurrent generated from the DUT was sifted from 

the dark current using a phase sensitive detection technique (PSD) which calculates the 

photocurrent at a fixed reference frequency. A Stanford Research Systems (SRS-830) 

Lock-In Amplifier (LIA) is used for this measurement. Schematic of the experimental 

setup is shown in Fig. 6. Photocurrent is extracted through phase sensitive detection 

which is explained in the following section.  

 

Fig. 6: Schematic representation for the photo-multiplication measurement. LIA: lock in amplifier, SMU: 

source measurement unit, OC: optical chopper, DUT: Device under test. 
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3.3.1  Phase sensitive detection 

The LIA measures the signal at a reference frequency across a resistor connected in 

series with the DUT at an external reference frequency provided by an optical chopper, 

180 Hz in this case. The reference frequency is chosen to avoid line frequency (50 Hz 

in the U.K) and its integral multiples. The external chopping of the laser beam will 

generate a square wave photocurrent at the reference frequency, fref . Using the Fourier 

series expansion, an ideal square wave with a peak to peak voltage can be represented 

as a sum on infinite number of sine waves and is represented mathematically as 

 

𝑆(𝑡) =
4

𝜋
∑

sin(2𝜋(2𝑘−1)𝑓𝑡)

2𝑘−1

∞
𝑘=1                                               (7) 

=
4

𝜋
 (sin(2𝜋𝑓𝑡) +

1

3
sin(6𝜋𝑓𝑡) +

1

5
sin(10𝜋𝑓𝑡) + ⋯ )                          (8) 

The LIA only detects the RMS value of first harmonic component and the photocurrent 

is computed by normalising the LIA output to the test resistor, Rtest and is given by 

𝑉𝐿𝐼𝐴 =  
2√2

𝜋
sin(2𝜋𝑓𝑡)                                                    (9) 

𝐼𝑝ℎ =  
2√2

𝜋 𝑅𝑡𝑒𝑠𝑡
sin(2𝜋𝑓𝑡)                                               (10) 

 

3.3.2  Gain measurement at elevated temperatures 

For avalanche gain measurements and elevated temperatures, a setup similar to the photo-

multiplication setup in Fig.6 was used with an addition of heated copper plate where the 

DUT is placed. The temperature of the copper plate is monitored through a thermocouple 

sensor while a current supply to the copper plate was controlled to achieve the desired 

temperature. The temperature can be adjusted in the range of room temperature up to          

373 K.  A LABVIEW interface is used to acquire the LIA values directly using a GPIB 
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interface. Fig. 7 shows the schematic of the gain and photocurrent measurement at 

elevated temperatures.  

 

Fig. 7 Schematic setup of the gain measurement at elevated temperature. The DUT is placed on a heated 

copper plate as shown in the zoomed in portion  

 

3.4    Dark count rate measurement 

Dark counts are a major source of noise in Geiger mode operation of avalanche 

photodiodes as briefly discussed in the introduction. A DUT is biased above the 

breakdown voltage by an excess bias, Vex. In the Geiger mode, the diode is biased with 

a short gate pulse on the order of few tens of nanoseconds to several hundred 

nanoseconds. The magnitude of this AC pulse is set at a level that biases the devices 

above the breakdown voltage. Upon a detection of avalanche breakdown event, a 

sensitive discriminator circuitry senses the avalanche event and registers a count. A 

capacitive quenching circuitry [4] (developed by Dr. Simon Dimler, University of 

Sheffield) quickly lowers the bias below the breakdown and terminates the avalanche 

current. We remind the reader that the experimental setup described in this section 

yields the dark counts CD (described in Eq. 12, chapter 2) on a LabVIEW interface and 

the DCR (shown as N in Eq. 12 chapter 2) can then be calculated by normalising the 
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dark counts to the pulse duty cycle. The following section details the measurement of 

dark counts CD as function of excess bias.  

3.4.1    Dark count as function of excess bias 

Figure 8 shows the schematic diagram for dark count measurement of Geiger mode 

avalanche photodiodes. Device under test (DUT) is housed under the capacitive 

quenching circuitry (CQC).  Detailed operation procedure of the CQC system is given in 

ref. [4]. 

 

Fig.8 Schematic diagram of dark count measurements with the capacitive quenching scheme. The DUT is 

mounted inside a capacitive quenching board.  

 

An Agilent 81101-A pulse generator is used to provide AC-pulses at repetition rate up 

to 100 kHz. The typical pulse width used in experiment is adjustable from 9.09 ns to 1 

us with a rise time of 4.5 ns. A Keithley 2612 source meter provides DC bias to the 

device. A positive AC pulse with an amplitude Vac is superimposed on DC bias level. 

The DUT is biased such that 𝑉𝑎𝑐 + 𝑉𝑑𝑐 > 𝑉𝑏𝑑 i.e. above the breakdown voltage. During 

the overbias pulse active gate, the device remains armed for detection. The active gate 

along with avalanche signal is schematically shown in Fig. 9. 
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Fig.9 Schematic illustration of gated mode quenching scheme used in this thesis. T-on in the gate duration, 

f is the gate repetition frequency. Blue trace shows the avalanche event detected and subsequently quenched 

through discharging of biasing capacitance.   

 

The system can only detect one avalanche event per pulse which places an upper limit of 

repetition frequency on the maximum dark count, CD (Eq.12 in chapter 2). The pulse 

repetition frequency in turn is limited by the recharge time of the DUT through the series 

resistance of the DUT and is illustrated in the following section.  

 

3.4.2 Influence of biasing capacitance and device series resistance on 

pulse repetition frequency  

The core of the CQC circuit is shown in Fig. 10. The AC overbias pulse is applied at the 

input of the biasing capacitance which limits the charge flow through the device. The AC 

overbias pulses are superimposed on DC bias level at the device electrode at point A. 

Blocking diode, CD is used to supply a stable overbias pulse to the device, R2 (1 kΩ) is 

used to provide protection from accidental DC bias to the device and. Avalanche current 

can be measured across a resistor R1 (50 Ω) connected in series with the device  
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Fig.10 Core of the CQC shown along with the device, DUT. The pulse sequence is shown.Blue dashed line 

shows the recharge of the DUT voltage at point A to the applied DC bias. The illustration is schematic and 

is not to scale. 

The device remains armed to detect avalanche event during the gate on time when it is 

biased above the breakdown voltage. In the event of an avalanche event being triggered 

at the end of the applied overbias pulse, the avalanche signal flows through the device 

discharging its capacitance through device’s series resistance. The current lost from node 

A, I1 is quickly replaced by current I2 which recharges the voltage at point A to DC bias. 

The recharge time is dominated by the biasing capacitance, CB (15 pF), R2 and device 

capacitance. The device series resistance is extracted from the forward I-V data using the 

procedure described in sec. 3.1. The 5× recharge time constant determined by the series 

resistance of the DUT and the biasing capacitance limits the maximum pulse repetition 

frequency. In our characterisation, R2 is fixed at 1 kilo Ohms. Relatively fast recharge 

may be possible if the resistor R2 is removed however doing so will expose the DUT to 

any accidental DC bias. A major challenge in the avalanche signal processing is the 

extraction of weak avalanche signals particularly in the presence of strong capacitive 

transient signals due to rising edge of overbias pulses. This is explained in the following 

section. The use of biasing capacitance involves trade-offs in measurement and are 

explained below. 

 Using a higher biasing capacitance leads to a clean and stable overbias pulse [5] 

to the DUT however it results in a larger recharge time of the DUT to the stable 

DC bias level which ultimately limits the pulse repetition frequency. 
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 A smaller biasing capacitance leads to a reduced charge flow through the 

avalanche region of a Geiger mode APD however the extraction of weak 

avalanche signals can be challenging if they are smaller than the capacitive 

transient signals resulting from the device capacitance and the overbias pulse rise 

time. In the next section we discuss the extraction of weak avalanche signals. 

 

3.4.3 Avalanche signal discrimination and capacitive transient signals 

The avalanche is quenched through a discharging action of the biasing capacitance, CB 

which is nominally 15 - 33 pF in our measurements.  As mentioned earlier, the rising 

edge of such an avalanche signal is sensed by a fast discriminator which triggers out a 

Nuclear Instrument Module (NIM) signal for every detection. The resulting NIM output 

is fed to a Canberra 512 counter for counting avalanche events. A LABVIEW interface 

is used to record the dark counts over a user specified time window and the result is 

averaged to yield a mean dark count value per second. Fig.11 shows the schematic of 

the DCR measurement where the avalanche signal and NIM signal generation is shown. 

A sequence of waveforms at every node of the system is also shown in Fig.11.. 

 

 

Fig. 11 Schematic of DCR measurement setup. Schematic of signals at different system inputs are shown. 

Typical values for different components are: Cb: 15 pF, Cd: 27 pF, R=50Ω. Time dependent waveforms 

are shown on the right pan of the schematic. 1: Square waveform at the input of the biasing capacitance. 

2: Avalanche signal superimposed on capacitive transient signal at the output of the SPAD. 3: Capacitive 

transient signal from dummy capacitance at the input of op-amp. 4: Avalanche signal at the output of the 

op-amp. 5: NIM signal generated at the output of discriminator. All waveforms are shown as function of 

time.  
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The rising edge of the overbias pulse charges the total capacitance of the Geiger mode 

APD above the breakdown voltage The charging current can then be detected across a 

50 Ω resistor connected in series with the DUT. When detecting the avalanche signals 

(see output of node 2 in Fig. 11), the output from the DUT is fed to a discriminator 

circuitry which generates an output pulse once the input level exceeds a certain 

threshold. When the rise time of the overbias pulse is very short, the current transient 

through the DUT may be strong enough to prevent the detection of avalanche signal. In 

Fig. 10, a hypothetical avalanche signal is shown which is comparable to the voltage 

transient signal (node. 2 Fig. 11). A disadvantage in this case is that if the threshold level 

is lowered, the voltage transient signals are mistaken for avalanche signals and yields an 

erroneous DCR value. As a solution to this, the overbias pulse is simultaneously applied 

to the DUT and a dummy capacitance, CV with identical capacitance as the DUT (see 

node. 3 in Fig. 11). The voltage transient signal from the dummy capacitance is 

subtracted from the output of the DUT and an avalanche signal can be extracted (node. 

4 in Fig. 11).  The discriminator employs an Emitter Coupled Logic (ECL) to generate 

a NIM signal (node.5) in response to an avalanche signal and subsequently the Canberra 

counter 512 counts the number of times per second the NIM signal is generated. To avoid 

strong capacitive transients from the DUT, mesa devices of small size (25 µm) are used 

to minimise the device capacitance for a given pulse rise time. A 4.5 ns (fastest rise time 

with Agilent pulse generator 81101-A) pulse rise time is used in the DCR 

characterisation carried out in this thesis. Detailed construction of the ECL logic 

discriminator for NIM pulse generation is listed in ref. [4]. 

An important parameter for DCR measurement is the adjustment of threshold level for 

the discriminator circuitry. Setting a high threshold level can result in an apparently 

reduced DCR while too low a threshold level can result in the discriminator being 

triggered on noise floor. In the following section we detail the procedure for setting the 

threshold level.  

3.4.4   Procedure for setting discriminator threshold  

Following steps should be taken to ensure correct value for the adjustable threshold level 

of the discriminator circuitry. 
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 Apply the DC bias. 

 Apply a small AC overbias pulse. We typically use 2 – 6 V AC overbias pulse 

amplitude in our measurements. Set an overbias pulse duration of 500 ns. The pulse 

duration should be sufficiently larger than avalanche quenching time which is 

predominantly determined by the time required for the capacitances of DUT, biasing 

capacitance, CB, blocking diode, CD, and circuit parasitic capacitances to discharge 

via series resistance of the DUT.  

 Tune the variable dummy capacitor until a complete transient cancellation is 

achieved.  Fig. 12 shows the capacitive transients resulting from the rising and 

falling edges of the overbias pulse and the DUT capacitance. With an overbias pulse 

amplitude of V, rise time of t, and device capacitance of C, the current that charges 

the device capacitance can be calculated as CdV/dt.  In order to show the effect of 

DUT capacitance, the dummy capacitor is deliberately set to zero resulting in strong 

transient signals which can be cancelled out by tuning the dummy capacitance for 

complete transient cancellation as shown in Fig. 12 (b). 

 Slowly increase the DC bias until the avalanche signals start to appear. Increasing 

the DC bias will lead to stronger avalanche signals.  

 At the smallest DC bias where the avalanche signals start to appear, multiple NIM 

signals will appear indicating that the discriminator is triggered on spurious noise 

floor in addition to the avalanche signals.  

 Slowly increase the threshold level on the discriminator until a NIM pulse is 

triggered once per overbias pulse. Fig. 13 illustrates the avalanche signals and NIM 

output signals for example threshold levels of 1.5 mV and 2.4 mV. For 1.5 mV 

threshold level (Fig. 13 (a) below), multiple NIM outputs are triggered indicating a 

threshold level too low. Since the CQC system is designed to detect only one 

avalanche event per overbias pulse, a threshold level corresponding to only one NIM 

output per pulse is acceptable. This is achieved by increasing the threshold level 

until the multiple NIM peaks cease to exist.  Fig. 13 (b) shows the NIM output and 

the avalanche signal for a threshold level of 2.4 mV. 
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Fig. 12 (a) Overbias pulse applied to DUT using an AC overbias pulse amplitude of 2V. (b) Dummy 

capacitor is tuned to zero to see the capacitive transients from the DUT (Red line).  
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Fig. 13 Avalanche and NIM signals recorded for a DC bias level of 11.22 V, AC overbias amplitude of 2 

V and (Top) threshold level of 1.5 mV and (bottom) 2.4 mV. 

The detailed construction of ECL logic discriminator and NIM pulse generation is listed 

in ref. [4].  

3.4.5    Multichannel analyser measurements 

Figure 14 shows the schematic for recording the time histograms of dark counts for 

Geiger mode photodiodes. The Multi-Channel Analyser (MCA) is used in conjunction 

with a Time to Amplitude Converter (TAC) for this purpose. An ORTEC-567 Time to 
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Amplitude Converter (TAC) is triggered by the NIM output from a discriminator sensing 

the avalanche signals from the DUT.    

 

Fig.14. Schematic representation for recording the time histogram of avalanche breakdown events. 

The trigger output from the Agilent 81101-A pulse generator is delayed by an ORTEC 

416 A gate delay generator. The time delay can be adjusted by a three position toggle 

switch adjustable in the range of 1.1 - 110 µs. The TAC is used to record the breakdown 

events between a start and stop time specified to its inputs. The time range can be set from 

20 to 200 ns with a maximum multiplication factor of 10000. The start to stop time 

amplitude conversion is accomplished by the TAC once a start signal is supplied and the 

stop pulse has arrived within a specified time range here referred to as TAC range. This 

enables the TAC to convert the time between the avalanche event and the delayed trigger 

to a voltage pulse shown in Fig.15. The amplitude of the voltage signal is directly 

proportional to the time lapse between the avalanche signal and the delayed negative 

trigger. The typical TAC range has been set to 2 µs in our measurements. The timing 

diagram for this operation is shown in Fig. 15. The MCA then samples the TAC output 

into one of its 16384 bins and generates a histogram of events where the output is 

represented as number of avalanche events per bin (see Fig. 16). The time scale used by 

the MCA (TMCA) and time per bin (Tbin) can be calculated according to Eq. (11-12).

  

𝑇𝑀𝐶𝐴 =  
𝑛×𝑇𝑇𝐴𝐶

16384
                                                   (11) 

𝑇𝑏𝑖𝑛 =
𝑇𝑇𝐴𝐶

16384
                                                      (12) 
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Where n is the number of channels which ranges from 1 to 16384. The resolution of each 

time bin is typically 122 ps. The MCA histogram is simply the time sampling of the 

magnitude of TAC voltage pulses scaled between 0-10 V. The MCA time is scaled such 

that the first avalanche pulse is stored in the largest bin number hence the time axis is 

finally reversed to record the time distribution of avalanche breakdown events. Figure 16 

illustrates how the MCA samples the TAC outputs and stores the data as counts per bin. 

 

Fig.15 Timing diagram explaining the operation of registering the time distribution of dark counts. The 

TAC output is also shown as a voltage pulse with a magnitude of 10 X t/TTAC [6]. 

 In addition to dark count events, photon counting events are also registered using an 

MCA based setup in a similar manner described in this section. The only difference in this 

case is that the device is illuminated with a light source.  

 

Fig.16 Illustration of the sampling process of MCA. The time delay between individual avalanche events 

during an active gate and the delayed negative trigger is converted by the TAC to voltage pulses. The 

overall sampling of the voltage pulses leads to a sampled MCA output which is shown as thick red dashed 

line.  
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Chapter 4 

Device Fabrication  

 

This chapter details the fabrication of mesa diodes studied in this thesis. A detailed 

overview of cleanroom process fabrication is provided for linear and Geiger mode mesa 

diodes studied in this thesis. A detailed description of SU-8 passivation procedure, UV-

Photolithography using contact aligners, thermal vacuum evaporation of metal contacts 

and wire bonding is given. A detailed micro-process fabrication flowchart for mesa diodes 

is given which covers the stages from wafer cleaving up to wire bonding and packaging.  

 

4.1 Fabrication of Al0.85Ga0.15As0.56Sb0.44 linear mode 

avalanche photodiodes 

Al0.85Ga0.15As0.56Sb0.44 APDs used in this work were fabricated from epitaxial layers 

grown on InP substrate through molecular beam epitaxy (MBE) at the National III-V 

Epitaxy Facility at the University of Sheffield. The device layer structure is shown in Fig. 

1. A 100 nm thick unintentionally doped layer of AlGaAsSb was sandwiched between 

oppositely doped AlGaAsSb layers, where Be and Te were used as a p-type and n-type 

dopants respectively. The p and n doped AlGaAsSb layers are 300 nm and 100 nm thick 

respectively. The top 100 nm p- doped InGaAs and the lower 1000 nm n-doped InGaAs 

layers are heavily doped to facilitate the electrical probing of the device through the metal 

contacts. The subsequent 300 nm p-doped AlGaAsSb and n-doped 100 nm AlGaAsSb 

layers along with the intrinsically doped 100 nm i-AlgaAsSb layers are used to create the 

p-n junction. The thickness of each layer and corresponding doping is selected to provide 

a full depletion at zero reverse bias and to predict the breakdown voltage of the APD. A 

calculation of the electric field and depletion width based on Poisson’s equation is 

detailed in Appendix. A. 
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Fig.1 Device layer structure for AlGaAsSb mesa APDs used in this work. x=0.15 corresponds to the Ga 

composition used in this work.  

 

Device fabrication was carried out through standard UV-photolithography and wet 

chemical etching. Following are the detailed steps taken to fabricate the devices. 

1. Hand cleave the bare wafer by applying force gently along the crystal axis. 

Alternatively use a computer-controlled scriber for cleaving a small piece. 

2. Clean the piece using iso-clean acetone, n-butyl and Iso Propyl Alcohol (IPA).  

3. Post bake the sample on a hot plate at 373 K for 30 s. 

4. Spin resist (BPRS-200/SPR-350) at 4000 rpm for 30s followed by bake at hot plate 

for 60 s at 373 K. UV photolithography is done using UV-300 or UV-400 mask 

aligner. Lithography mask should be cleaned prior to the lithography process. IPA 

can be sprayed to clean the mask and if the stains/residual resist are stubborn, a rinse 

in Decon-90 solution and IPA is helpful. UV lithography is needed to transfer the 

resist patterns onto wafer which is important for device fabrication. Following are 

the steps needed to ensure successful wafer patterning using a UV-300 lithography 

mask aligner (Fig. 2) 

 Turn on the power supply to mask aligner and lamps. Wait for 20 minutes for the 

UV lamp to stabilise. Turn the nitrogen pressure toggle switch to ON position (1). 

 Tun on the mask aligner (2). 

 Clean the mask plate before mounting it on vacuum bracket and tighten the 

adjustment screws (3). 

 Put the sample on chuck, slide it back under the mask holder and lift it towards 

the mask using the chuck height adjustment lever. 

 Using the eye piece adjustment handle (4), focus on the sample and align it under 

the mask using the three-dimensional adjustment micro-dials (5). 
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 Once the sample is perfectly aligned, ensure a contact between the sample and 

mask and set the exposure time. For UV-300 aligner, an exposure time of 14 s for 

the top metal contact deposition should be fine using SPR-350 resist. 

 Set the exposure time using the adjustment dials (6) and commence exposure 

using the push button (7). 

 

Fig. 2 Suss- UV lithography mask aligner. 1: Nitrogen pressure toggle switch, 2: Power push 

button for aligner, 3: mask holder bracket and adjustment screws, 4: Handle for eye piece 

adjustment, 5: Three-dimensional mask plate adjustment, 6: Exposure time adjustment dial, 7: 

Exposure push button. 

 

 Align the sample under the correct mask layer and expose for a suitable time 

which can be determined through trial. Alignment features on mask aid in 

assessing the suitability of lithography time such that under-exposure and over-

exposure are best avoided. 

 Develop the sample in a suitable developer solution. MF26A and MF26A diluted 

with DI water are used for resists BPRS-200 and SPR-350 respectively.  

 Clean the sample with De-Ionised Water (DIW). Acetone is best avoided at this 

stage as it washes away the developed pattern. 

 Inspect the sample for possible over or under exposure. Under exposure can be 

assessed by coloured pattern on the sample while over exposure is obvious from 

the overlapping elongated features on mask. In case of under-exposure the pattern 
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should be washed away with acetone and the process should be started from step 

3. 

 In case the pattern is developed well, proceed to the metallisation stage. Pre-clean 

the sample with nitrogen plasma (ashing) to remove residual photoresist. Clean 

for typically 3’18”. 

5. Load samples to thermal evaporator (Edwards Model 360A). The chamber should be 

pumped down to atleast 6×10-6 mbar which requires around 120 minutes. Carefully 

load Au and Ti coils into the boats/coils in the chamber and close the chamber to 

ensure proper pumping. The roughing pump will not pump the chamber down if bell 

jar is not closed/placed properly. Start pumping down.  

 

Fig. 3  Snapshot of Edwards 306-A thermal vacuum evaporator. 1: Air admit and diffusion valve, 2: Chrome 

funnel for liquid nitrogen, 3: Bell jar, 4: Vacuum pump lever, 5: Penning gauge, 6: Vacuum gauge, 7: LT 

coil current source, 8: Variac LT coil current adjustment knob. 

 

The stepwise evaporation procedure is shown as follows 

 Turn the oil diffusion pump ON (1). 

 Pour in liquid nitrogen using the side chrome funnel to the left of bell jar (2). 

Two complete fills are normally enough for the diffusion pump to reach 

operating vacuum. This process takes around 20 mins.  
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 Open the air admit valve to allow the chamber to reach the atmospheric 

pressure. 

 Remove the implosion guard and bell jar carefully (3). 

 Fit the coils/boats in the chamber. The coils should be loaded with clean Ti 

and Au wires. Clean both the coils and wires in n-butyl solution and flush with 

nitrogen gun. 

 Load the samples and close the bell jar. Put the implosion guard back. Depress 

the air admit valve. 

 Turn the lever clockwise to backing position (4) and read the pressure from 

vacuum gauge (6). Now the roughing pump can be engaged. 

 Slowly turn the lever anti-clockwise to roughing position. A successful 

indicator of the roughing pump being engaged is that the crystal monitor unit 

moves closer to the sample when the level is turned to roughing position. 

 Pour in liquid nitrogen until the funnel overflows. Allow the chamber to pump 

down to 6×10-6 mbar which takes around 2 hours. 

 Select the position of LT selector switch to the appropriate coil position. Ti 

should be evaporated first followed by Au. 

 Push the LT button (7). 

 Start increasing the current through the respective coils by turning the variac 

control knob (8). Ti should start melting around 35 A while Au start melting 

at around 20 A. 

 Monitor the thickness of the deposition which should increase with increase 

in the current flow. The rate at which the deposition is carried for Ti 

corresponds to a 20 nm deposition in approximately 3 minutes.  

 After the desired thickness is deposited, turn the variac knob fully off and 

allow the coils to cool down for 5 minutes. 

 Repeat the process for Au. 

 Turn LT OFF. 

 Open air admit valve. 

 Move the lever (4) clockwise to backing position. 

 Remove the implosion guard and bell jar. Clean the bell jar with Aqua regia 

and sodium hydroxide and hydrochloric acid solution for removing Au and Ti 

respectively. 
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 Carefully refit the clean bell jar and close the air admit valve.  

 Turn the level clockwise to roughing position and then anticlockwise to 

backing position.  

 

6. Following a successful metal deposition, perform lift off using acetone solution. The 

bell jar should be cleaned with aqua regia solution. If the metal deposition is fine, the 

lift off should be very quick and clean. Otherwise use ultrasonic bath to remove 

stubborn gold patches.    

7. Cover the metal contact with resist and etch the wafers into circular mesa diodes. 

Aqueous citric acid solution diluted with iso-clean hydrogen peroxide and 

hydrochloric acid diluted with aqueous hydrogen peroxide are used to etch the 

InGaAs contact layers and quaternary AlGaAsSb layers respectively. The etch recipe 

is given as: 

 Hydrous citric acid + Hydrogen peroxide solution for etching InGaAs contact 

layers: Mix citric acid with DIW in ratio of 1:1. As a guideline, 10 ml of DIW and 

10 g of hydrous citric acid should give approximately 12 ml of aqueous citric acid 

solution. This solution should then be diluted with iso-clean hydrogen peroxide 

in volumetric ratio of 2:1. Etch rate on InGaAs is around 50 nm/min. 

 Dilute pure hydrogen peroxide with DIW in volumetric ratio of 1:9. Following 

the dilution, the hydrogen peroxide solution should be mixed with hydrochloric 

acid and DIW (in volumetric ratio of pure hydrochloric acid: hydrogen peroxide 

solution: DIW:: 1:2:10). This recipe should have an etch rate of ~ 100 nm/min 

however the best approach to ensure complete etching of the quaternary layer is 

to observe the colour change from light green (InGaAs) to a mix of brown + green 

(quaternary). The colour of the sample begins to fade away from centre of the 

first and turns back light green when the quaternary is etched away. Care must be 

taken to dip the sample immediately into hydrochloric acid etchant following 

InGaAs etch as exposure to atmospheric conditions leads to oxidation of 

AlGaAsSb due to highly oxidising nature of Al.  

In our work [1] we found that the etch recipe based on citric acid chemistry achieves a 

relative anisotropy of the wet etch process in comparison with another recipe based on 

sulphuric acid (H2SO4: diluted H2O2:DIW in volumetric ratio of 1:8:80). In an SEM 

image was taken for two pieces of the same wafer etched with the two respective 
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chemistries and it was observed that the citric acid based chemistry gives a less severe 

undercut in the etch profile. Figure 4 shows the SEM image of the coupons.  

 

 

Fig.4 (a) Wafer etched with sulphuric acid (1:8:80) chemistry. The colour bar on the figure shows the 

various device layers. (b) wafer etched with citric acid (2:1) chemistry. Figure printed with permission of 

Lucas Pinel from The University of Sheffield. SEM image taken by Jonathan Petticrew from The University 

of Sheffield. 

 

Following the etch process a negative resist SU-8 is used to preserve the mesa sidewalls. 

SU-8 is a negative permanent photoresist (contrary to non-permanent positive resists           

SP-350, PMGI and BPRS 220). SU-8 is used to passivate the mesa sidewalls of our 

diodes. Following steps should be adopted to ensure a smooth and even sidewall 

passivation with SU-8. 

 Perform a 3-stage sample clean process i.e. dip in n-butyl followed by acetone and 

rise with IPA. Flush with a nitrogen gun.  

 Bake the sample on a hot plate for 1 min at 100°C. 

 Spin SU-8 at 3000 rpm on the spin coater for 30 s. 

 Bake the sample for 1 min at 65°C followed by 95°C for 3 min. 

 Use mask aligner, UV_300 to expose the sample for 2 s using the appropriate 

mask layer. 

 Bake the sample for 1 min at 65°C followed by 95°C for 1 min. 

 Develop SU8 in developer for 1 min and then rinse in IPA for 1 min. Flush the 

sample dry with a nitrogen gun. 

 Expose to UV300 light from aligner (with no mask) for 240 seconds. 
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 SU-8/5 should result in a thickness of 5.5 µm when spun at 3000 rpm using the 

above procedure. SU-8/2 should result in a 1.7 µm thick profile when done using 

the above procedure.  

  

8. A second round of metallisation is required to facilitate the electrical probing of the 

device. We use the similar process of metallisation as detailed earlier in this section. 

A different mask set is used for grid contact metallisation. Titanium and gold Ti/Au 

(20/200) nm are used as metal contacts. Au is used because it is a low resistance 

contact layer in connecting to external circuits. Ti is the most commonly used thin 

film adhesive layer for Au onto semiconductor substrates [2] and it acts as a diffusion 

barrier between Au and the semiconductor layer preventing Au diffusion into the 

semiconductor layer [3]. 

9. Perform lift off and test devices using a standard I-V characterisation to ensure devices 

are working. This step is also used to assess the yield of the fabrication process and 

suitable measures should be taken to optimise the yield. Yield of the device 

fabrication process can be assessed by doing standard I-V measurement. The ratio of 

number of devices exhibiting a standard I-V with an acceptable dark current level (to 

be defined) the total number of devices on wafer is quantified as microfabrication 

process yield.  The photolithography mask facilitated fabrication of devices in unit 

cells, where each unit cell comprised of mesa diodes of four different diameters, 420, 

220, 120 ad 75 µm. Fig. 5 shows two (2) such unit cells. 

Fig.5 Snapshot of processed mesa diodes. Four unit cells can be seen. Diodes of different mesa sizes can 

be seen. The blackish appearance of the semiconductor surface is due to SU-8. n-type electrical contact is 

deposited in a grid pattern.  
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4.2 Fabrication of Geiger mode mesa diodes with     

remote bondpads 

 

Following are the detailed steps needed to fabricate mesa diodes used for Geiger mode 

characterisation. Hand cleave the bare wafer by applying force gently along the crystal 

axis. Alternatively use a computer-controlled scriber for cleaving a small piece. 

 

1. Clean the piece using iso-clean acetone, n-butyl and Iso Propyl Alcohol (IPA).  

2. Post bake the sample on a hot plate at 373 K for 30 s. 

3. Spin resist (BPRS-200/SPR-350) at 4000 rpm for 30s followed by bake at hot plate 

for 60 s at 373 K. 

4. UV photolithography using UV-300 or UV-400 mask aligner. Lithography mask 

should be cleaned prior to the lithography process. IPA can be sprayed to clean the 

mask and if the stains/residual resist are stubborn, a rinse in Decon-90 solution and 

IPA is helpful.  

5. Align the sample under the correct mask layer and expose for a suitable time which 

can be determined through trial. Alignment features on mask aid in assessing the 

suitability of lithography time such that under-exposure and over-exposure are best 

avoided. 

6. Develop the sample in a suitable developer solution. MF26A and MF26A diluted with 

de-ionised water are used for resists BPRS-200 and SPR-350 respectively.  

7. Clean the sample with De-Ionised Water (DIW). Acetone is best avoided at this stage 

as it washes away the developed pattern. 

8. Inspect the sample for possible over or under exposure. Under exposure can be 

assessed by coloured pattern on the sample while over exposure is obvious from the 

overlapping elongated features on mask. In case of under-exposure the pattern should 

be washed away with acetone and the process should be started from step 3. 

9. In case the pattern is developed well, proceed to the metallisation stage. Pre-clean the 

sample with nitrogen plasma (ashing) to remove residual photoresist. Clean for 

typically 3’18”. 

10. Load samples to thermal evaporator (Edwards Model 360A). The chamber should be 

pumped down to at least 6×10-6 mbar which requires around 120 minutes. Carefully 

load Au and Ti coils into the boats/coils in the chamber and close the chamber to 
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ensure proper pumping. The roughing pump will not pump the chamber down if bell 

jar is not closed/placed properly. Start pumping down. 

11. Following a successful metal deposition, perform lift off using acetone solution. The 

bell jar should be cleaned with aqua regia solution. If the metal deposition is fine, the 

lift off should be very quick and clean. Otherwise use ultrasonic bath to remove 

stubborn gold patches.    

12. Cover the metal contact with resist and etch the wafers into circular mesa diodes. 

Aqueous citric acid solution diluted with iso-clean hydrogen peroxide (70% pure) and 

hydrochloric acid diluted with aqueous hydrogen peroxide are used to etch the 

InGaAs contact layers and quaternary AlGaAsSb layers respectively. 

13. Following the etch process, a second round of metallisation is required to facilitate 

the electrical probing of the device. Use the similar process of metallisation from 

step.4 through step.11. 

14. Perform lift off and test devices using a standard I-V characterisation to ensure devices 

are working. This step is also used to assess the yield of the fabrication process and 

suitable measures should be taken to optimise the yield.  

15. Silicon Nitride (SiNx) to be deposited for aiding the adhesion of remote bondpads to 

the semiconductor contact layers. Plasma Enhanced Chemical Vapor Deposition 

(PECVD) process is used to deposit the dielectric at 423 K. 

16. Electrical contacts should be opened using Reactive Ion Etching (RIE) using a 

gaseous mixture of CHF3 + O2. To aid the etching of dielectric, HMDS adhesive is 

used promote adhesion of resist to dielectric surface. 

17. Deposition of remote bondpads to facilitate device packaging and bonding. For the 

ease of packaging and wire bonding, thick Ti/Au (40/400 nm) layers should be 

deposited. Using the suitable mask layers, follow the steps 4 through 11 for bondpads 

deposition.  

18. Following contacts deposition, perform lift off using a warm acetone solution 

followed by rinse in IPA and DIW.  

19. Perform standard I-V measurements to ensure the devices exhibit acceptable 

characteristics. For the ease of cleaving isolation trenches were facilitated by the 

lithography mask. There are regions where no dielectric is deposited to avoid cracks 

in the dielectric layers during the cleaving process. Fig. 6 shows a snapshot of two 

fabricated devices with remote bond pads and isolation trenches between them. 
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Following the device cleaving, wire bonding and packaging is performed to facilitate 

DCR characterisation.  

 

 

 Fig.6 A snapshot of the processed device showing remote bondpads, SiN deposition and isolation trenches. 

 

20. For packaging, cleave small piece from the processed wafer. Use gold epoxy to to 

mount the pieces onto a metal header in a furnace which maintains the temperature at 

203 K. 

21. Mount the sample on holder plate of the ball wire bonder (Kulicke & Soffa, Model 

4255 manual bonder). Complete the bonds from the sample piece to leadframe and 

test the header for faulty electrical connection. In case of broken wire bonds, repeat 

the bonding process. For DCR characterisation, mesa diodes are packaged on metal 

headers using wire bonding machine, Kulicke & Soffa Model 4522 wire bonder.  

Following are the steps to ensure successful wire bonding. 

 Clean the metal header using n-butyl and flush with a nitrogen gun.  

 Clean sample with n-butyl followed by DIW and flush with nitrogen. 

 Put gold epoxy on metal header and mount the sample piece carefully and place 

in furnace at typically 393 K. 

 Turn the wire bonder ON. Following steps should be completed 
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a. Turn light-ON. 

b. Turn Negative Electronic Flame-Off ON 

c. Set the hot plate temperature to 373 K. 

 Mount the sample on place holder in the wire bonding machine.  

 Adjust the Loop (L), Search (S), Tail (T), Power (P), Time (T) and Force (F) 

settings. Typical values of for the parameters are 

a. Bond 1: TPTF: 7424 

b. Bond 2: TPTF: 7121 

Fig. 7 shows the schematic of the packaged and bonded device. 

 

Fig. 7 Schematic drawing of a DUT mounted on a TO-5 4 pin header. The wire bonds connect the DUT to 

the header pins 

  

Based on the fabrication details of small size avalanche photodiodes in this section, I have 

created a process flow chart covering the entire cleanroom details starting from wafer 

cleaving and cleaning right up to wire bonding and packaging. Fig. 8 shows the micro-

fabrication process flow chart. 
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Fig. 8 Process flow for microfabrication of Geiger mode avalanche photodiodes. 
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Chapter 5 

Temperature and temporal stability of 

avalanche gain in Al0.85Ga0.15As0.56Sb0.44 

avalanche photodiodes 

 

Optical tomography, optical fibre communications, photon counting, autonomous driving 

and biomedical applications including fluorescence detection and laser distance mapping 

[1] are applications where APDs are used. In these applications, it is highly desirable for 

APDs to maintain constant gain. Commercial APDs for these applications [2] make use 

of temperature stabilisation or voltage compensation circuitry to maintain constant gain. 

From the operational perspective, it is beneficial for APDs to have a stable gain over time 

to minimise the dependence on external circuitry. Avalanche gain and breakdown 

voltages in most semiconductor materials change with temperature and the temperature 

stability of these parameters is one of the most crucial performance metrics of APDs. 

Moreover, in practical applications utilising APDs, a good temporal stability of avalanche 

gain is highly desirable to maintain a constant output signal for subsequent sensing and 

processing.  

This chapter details the evaluation of temperature and temporal stability of avalanche gain 

in Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes. Device fabrication was carried out 

using standard wet chemical etching and UV-Photolithography as detailed in Sec.4.1 in 

Chapter 4. The temperature and temporal stability of Al0.85Ga0.15As0.56Sb0.44 APDs is 

investigated at temperatures of 24 to 80 °C. Avalanche gain and breakdown voltage 

measurements were preformed and temporal variations in gain were monitored for the 

temperature range specified. A comparison was then made with the state-of-the-art 

technology in III-V and Si APDs.  
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 Device characterisation began with standard current-voltage (I-V) at room temperature 

under dark conditions.  

5.1 Current-voltage (I-V) characterisation 

I-V characterisation was used to assess the presence of surface leakage, uniformity of 

breakdown voltage and imperfections in device fabrication process. I-V characterisation 

was performed with the experimental setup described in chapter 3, section 3.1.  

Forward I-V data was used to extract series resistance arising from possible metal 

adhesion issue or lack of dopant activation in the top p-InGaAs contact layers. Fitting 

from forward I-V data from  220 µm diameter mesa device yielded a series resistance of 

15 Ω and an ideality factor, n = 1.68 indicating the presence of generation-recombination 

currents in the diode. Fig. 1 shows the result.   

 

Fig.1 Forward current data for 220 um mesa device (black dashed line) fitted with Eq (1) chapter 3. Red 

line shows the fitted ideal forward current and pink line shows the fitted forward current with series 

resistance effect. 

 

Reverse I-V data was used to assess device breakdown voltage, surface leakage and bulk 

current densities. Fig. 2 shows current densities from devices with diameters of 120, 220 

and 420 µm.  The current densities do not scale perfectly with device area indicating 
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presence of a perimeter leakage currents. The results are consistent with observations 

made on current densities of mesa diodes using thin avalanche layer of                           

AlxGa1-xAs0.56Sb0.44 (x = 0.05 – 0.15) [3].  The influence of series resistance Rs can be 

seen by comparing the calculated ideal IF (red solid line) and calculated IF with Rs. The 

forward current starts saturating at higher forward bias values and results in potential 

drop. Series resistance can impede the flow of current between metal-semiconductor or 

semiconductor-semiconductor interface. The deviation of the calculated IF from 

experimental data can be explained by the presence of possible surface and bulk leakage. 

Surface states e.g. dangling bonds where abrupt termination of the sidewalls can induce 

changes to the crystal structure, can act as defect sites. Similarly bulk leakage can arise 

from imperfections in semiconductor bulk: possibly being caused by non-optimum 

growth conditions.  

 

 

 

Fig.2 Dark currents normalised to bulk area for three different mesa radii shown in legend.   

Uniformity in the devices across wafer was assessed by recording dark currents for a 

number of devices of same size selected randomly from wafer. Fig. 3 shows the results 

for dark currents recorded for 27 different APD samples (D = 120 um) across the wafer. 

The results indicate a uniform breakdown but some spread in the dark currents at lower 

biases for the APDs. 
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Fig. 3 Dark currents recorded for D=220um mesas. 27 different APDs were probed. Black solid lines 

represent the devices selected for subsequent gain and responsivity measurements.  

 

The spread in the dark currents prior to the breakdown voltage is another indicator of 

surface leakage component in the devices, as discussed previously. Nonetheless the 

devices in Fig. 3 show uniformity in the abrupt increases in the dark currents after 12 V 

indicating uniform breakdown voltages. The breakdown voltage of 12.44 ± 0.01 V is 

deduced from Fig. 5. The standard deviation is extracted from the set of data points 

representing the breakdown voltages of 27 different APDs tested in Fig. 3.  In mesa 

devices, laser spot size illuminating the sidewalls can induce the edge breakdown effect 

and it was therefore mandatory to investigate the edge breakdown effect and laser spot 

size.  

5.2 Laser spot size check 

The APDs were illuminated with a 633 nm He-Ne laser. Light from the laser source was 

mechanically chopped at a fixed frequency of 180 Hz. Using a commercial Si photodiode 

(BPX-65) it was verified that the laser power (46 µW for our measurements) remained 

stable within ±0.5% for the typical duration of measurements. Phase sensitive detection 

(see chapter 3 section 3.3.1) was used to minimise the influence of device dark current. 

The laser spot size was focussed onto the optical window of mesa APD. The photocurrent 

values were recorded with the phase sensitive detection technique for APDs with different 

diameters to evaluate the laser spot size. 
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Fig.4 (a) I-V data showing dark (dashed lines) and total currents (solid lines) for 120 µm and 220 µm mesa 

devices. (b) Photoresponsivity data for the two mesa APDs at 633 nm.  

 

The photocurrent and responsivity values for devices with different sizes yielded similar 

values as shown in Fig. 4 and the devices breakdown at similar reverse bias values. These 

results suggest that the laser spot size is smaller than 120 µm. To confirm that the devices 

did not suffer from a premature edge breakdown effect, a laser was focussed on different 

positions on the mesa diodes. The result and procedure for this check are shown in the 

following section.  

5.3 Premature edge breakdown check 

Micro-plasmas arising from growth imperfection or subsequent semiconductor 

processing can result in formation of localised ionisation hot-spots in the avalanche. 

These hot spots are isolated regions where high current densities can flow and can appear 

at well-defined reverse bias [4]. Locally enhanced electric field at these centres can result 

in premature edge breakdown (PEB) that leads to inconsistent gain between devices and 

non-uniform breakdown voltages. Although analyses of the dark I-V from Fig. 3 

demonstrated uniform breakdown voltages for a number of devices (D=220 µm), a 

detailed investigation of the premature edge breakdown effect would be necessary to 

completely rule out the effect. To rule out the PEB effect, a mesa diode from the set of 

APDs shown in Fig. 3 (D=220 µm) was illuminated with a focussed laser beam at 

different positions on the optical window. Fig. 5 shows the schematic of the illumination 

of mesa diode with laser illumination spots in the centre and close to sidewalls. 
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Fig. 5 Schematic of a D = 220 um mesa diode illuminated with a focussed laser beam on different points. 

1: Centre of the optical window. 2, 3, 4: Close to mesa sidewalls. A laser power of 1.6 uW is used. 

 

Using the experimental procedure described in sec. 3.3, a DC laser power of 1.6 µW, and 

a series resistor of 1kΩ (see Fig. 5 chapter 3) was used for collecting the photocurrent 

data from the DUT.  

Breakdown voltage was extracted from the gain data by extrapolating reciprocal 

avalanche gain to zero when plotted as a function of reverse bias. The procedure was 

repeated for illumination points 1, 2, 3 and 4 as shown in Fig. 5. The data for 

multiplication gain as a function of reverse bias is shown in Fig. 6. Data in Fig. 6 show 

that the avalanche gain as a function of reverse bias increases rapidly when the reverse 

bias increases beyond 10 V. The data shows uniformity for the four different illumination 

points along the mesa optical window. No signs of an early breakdown is observed in any 

of the datasets. The reciprocal of the avalanche gain is shown in the bottom pane of the 

figure. 
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Fig. 6 (Top) Avalanche gain as function of reverse bias for 220 µm mesa diode. Legend shows the data for 

laser beam illuminating points 1, 2, 3 and 4 as shown in Fig. 7. Lines are shown as guide to eye (Bottom) 

Reciprocal of avalanche gain versus reverse bias for different datasets corresponding to laser illumination 

on different points along the mesa optical window and sidewalls, as demonstrated schematically in Fig. 7. 

Dashed lines show linear fitting. 

Uniform breakdown voltage of 12.45 ± 0.02 V is extracted from the data and is within 

the standard deviation of breakdown voltage of 12.44 ± 0.01 V deduced earlier from I-V 

characterisation in Fig. 5.  The error reported for the data sets here is extracted from the 

statistical standard deviation of the data sets for the breakdown voltages extracted for 

different DUTs. The data in Fig.6 supports the observation that uniform breakdown 

voltages observed for different device sizes of the DUT (as shown in Fig. 3 and 4) is free 

from PEB effect. Consequently 4 APDs of D = 220 µm (named APD-1 through 4) 
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including the one (APD-3) characterised for PEB effect in Fig. 5 were selected from the 

set of 27 APDs characterised in Fig. 3 for subsequent gain characterisation. 

5.4 Temperature dependence of avalanche gain 

Using the photocurrent values for APD-1 through 4, avalanche gain, M as a function of 

reverse bias was calculated from by the ratio of photocurrent to the primary photo-current. 

The procedure for gain calculation is detailed in chapter 3, section 3.3. Fig. 7 shows the 

M versus V for the four selected APDs.  

 

Fig. 7 M versus reverser bias for the four selected APDs at room temperatures. Lines are shown only as a 

guide to the eye. 

 

Again, the devices show good uniformity in the gain curves and show an abrupt increase 

in the gain after 12 V. High gain was measured on all devices. For example, a gain of 42 

was recorded for a reverse bias of 12.31 V for APD-3. At 11.9 V, room temperature, 

APD-1 through 4 show M values of 10.46, 10.28, 10.38 and 9.90 respectively. The 

breakdown voltage corresponds to the reverse bias value where the gain approaches 

infinity. As before, extrapolating 1/M as a function of reverse bias to 0 provides an 

accurate measure of the breakdown voltage and repeating the measurements at different 

temperatures can yield the temperature coefficient of avalanche breakdown Cbd.   
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5.5 Temperature dependence of breakdown voltage 

The setup described in section 3.3 was used for the measurements. The measurements 

were carried out at temperatures ranging from 24C to 80C. The breakdown voltages at 

respective temperatures were extracted by plotting 1/M and extrapolating 1/M to zero. 

Fig. 8 shows the results for the four selected APDs. At 24, 40, 60 and 80C the mean 

breakdown voltages for the APDs are 12.41, 12.43, 12.47 and 12.50 V (σ2: 0.02, σx: 0.04 

)  respectively. The increase in temperature increases the breakdown voltage and reduces 

the avalanche gain which can be explained by the reduction in the impact ionisation 

probability due to increased phonon scattering at higher temperatures.  At higher 

temperatures, the phonon scattering increases energy loss leading to a smaller population 

of hot carriers that can initiate impact ionisation events. Subsequently high electric fields 

(and hence higher voltage) are needed to offset the carrier cooling induced by inelastic 

scattering. The temperature coefficient of avalanche breakdown Cbd can be calculated for 

each device by plotting the breakdown voltage as a function of temperature using the data 

in Fig. 10. A standard linear equation of the form y = mx + c, was used to fit the breakdown 

versus temperature data for each device where the breakdown voltage is the dependent 

variable, y and the slope of the equation, m represents the temperature Cbd. Fig. 8 shows 

the result. 

 

Fig. 8 1/M values for the selected APDs as function of reverse bias values. Solid lines represent linear fit 

to the experimental data points.  
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Fig.9 Breakdown voltages as a function of temperature for APD-1 through 4. Dots represent the breakdown 

voltages extracted from data in Fig. 10. Solid line:  linear fit to the experimental data. 

 

Fig. 9 shows that the temperature coefficient of avalanche breakdown, Cbd for APD-1 

through 4 is 1.59, 1.71, 1.59 and 1.9 mV/K giving a mean Cbd of 1.69 ± 0.146 mV/K.  The 

error in the Cbd is calculated from the statistical standard deviation of the data set for the 

4 DUTs considered in Fig. 9. The reduced temperature dependence of avalanche 

breakdown and can be explained by the following: 

 Influence of alloy scattering effect. 

 Reduced phonon scattering for thin multiplication layers at high electric field. 

  Possibly a large phonon energy can also lead to a reduced temperature 

dependence of phonon scattering. 

Perturbation of crystal potential resulting from random positioning of substituting atomic 

species in relevant crystal sub-lattice is known as alloy scattering. This can only happen 

in compound ternary or quaternary alloys (such as Al0.85Ga0.15As0.56Sb0.44 of this work) as 

their structure is formed by replacing some atoms in one of the crystal sub-lattices. 

Analysis of alloy disorder potential by Ong et al [9] has indicated that a significant alloy 

scattering in ternary alloy of AlAs0.56Sb0.44 (because of the difference in covalent radii of 

Sb and As atoms) could have been responsible for the reduced Cbd of p-i-n APD based on 
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this alloy. The ratio between As and Sb is same in AlAs0.56Sb0.44 and 

Al0.85Ga0.15As0.56Sb0.44 [12] diodes of this work and therefore a reduced Cbd is not 

surprising for diodes in this work. Binary alloys such as InP do not have the alloy 

scattering potential and therefore they tend to have higher Cbd values compared to similar 

thicknesses of ternary or quaternary alloys with dominant alloy scattering (for an 

optimum molar composition).  

High electric fields are typical for thin avalanche layers and carriers can gain energy more 

rapidly from the high electric fields while undergoing less phonon scattering before 

impact ionising. As carriers cross the multiplication region, they continuously gain energy 

from electric field and lose energy by various phonon scattering mechanisms. At very 

high electric fields however, the number of phonon scattering events prior to impact 

ionisation reduce [5]. This phenomenon makes the breakdown voltage in thin avalanche 

layers less temperature sensitive. Phonon scattering can be quantified in terms of phonon 

occupation number, np which can be related to the phonon energy, Ep and temperature as 

𝑛𝑝 =
1

exp (
𝐸𝑝

𝑘𝐵 𝑇
−1)

                                                 (1) 

Where a larger phonon energy can possibly explain the reduced temperature dependence 

of phonon scattering rate. For instance, Al0.8Ga0.2As [6] with 300 K phonon energy of 46 

meV (cf. 36.25 + 1.83x+17.12x2-5.11x3 [7] where x is Al composition) demonstrates a 

reduced Cbd for a range of avalanche layer thicknesses (200 nm – 1 µm) in comparison 

with similar thickness of InP which shows a room temperature phonon energy of 43 meV 

[7]. 

In summary the combination of dominant alloy scattering and reduced phonon scattering 

at high electric fields for thin layers are likely the effects are believed to be responsible 

for the reduced temperature dependence of avalanche breakdown and multiplication gain. 

A larger phonon energy can also possibly explain the suppressed temperature dependence 

of avalanche breakdown in thin avalanche layers of Al0.85Ga0.15As0.56Sb0.44. 

5.6 Comparison with literature 

Temperature dependence of Vbd has been reported for ternary alloys AlxGa1-xAs [8], 

Al0.52In0.48P [9], AlAs0.56Sb0.44 [11] and quaternary AlInAsSb [13]. Al0.52In0.48P was found 

to have a Cbd value even smaller than AlGaAs and the variation in Cbd values for different 
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semiconductor systems reviewed by Ong et al [9] (and references therein) were attributed 

to the difference in the alloy scattering between the materials studied. For instance, InP 

(w = 130 nm) was reported to have a Cbd value higher than InAlAs (w = 110 nm) [10] by 

a factor of 2.4 due to the absence of alloy scattering in InP alloy.  Recently AlAs0.56Sb0.44 

[11] was found to have the lowest Cbd value (0.95 mV/K and 1.47 mV/K for 80 nm and 

230 nm thick layers respectively) compared to previously reported III-V semiconductors 

of similar thicknesses. The works mentioned here attribute the reduced Cbd value to the 

dominance of temperature independent alloy scattering effect. 

Zhou et al [12] reported a Cbd of 0.86 - 0.91 mV/K for 100 nm thick 

Al0.85Ga0.15As0.56Sb0.44 layer in the temperature ranges of 77 K – 297 K. Recently 

Al0.6In0.4AsxSb1-x p-i-n diodes grown on GaSb substrates [13] have been reported with 

low values of Cbd of 2.5 mV/K (890 nm thick multiplication layer). Grezsik et al [14] 

have reported a high Cbd of 30 mV/K for 700 nm thick avalanche layer of AlxGa1-xAsySb1-

y (x= 0.40) lattice matched to GaSb substrate. Table 4.1 lists the comparison of Cbd values 

reported for III-V materials recently.  

 

Table 1: Comparison of temperature coefficient of avalanche breakdown for different semiconductor 

material systems 

Device W  (nm) Substrate Cbd (mV/K) Reference 

Al0.6In0.4AsxSb1-x p-i-n 890 GaSb 2.5 [13] 

InP p-i-n 130 InP 6 [10] 

InAlAs p-i-n 100 InP 2.5 [10] 

AlAs0.56Sb0.44 p-i-n 80 – 230 InP 0.95 – 1.47 [11] 

Al0.85Ga0.15As0.56Sb0.44 p-i-n 110 InP 0.86 – 0.91 [12] 

Al0.85Ga0.15As0.56Sb0.44 p-i-n 110 InP 1.60 This work 

Al0.40Ga0.60AsxSb1-x p-i-n 700 GaSb 30 [14] 

 

Though the work of Zhou et al [12] reported on the lowest Cbd so far, it is relevant to 

mention here that the temperature range studied by Zhou et al (77 – 296 K) was lower 

than our studied range. At lower temperature, the phonon occupation number drops and 

hence the phonon energy. The dependence of phonon occupation energy on temperature 

and its influence on the temperature coefficient of avalanche breakdown is however not 
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the aim of this research. Nonetheless we confirm that low Cbd can be consistently obtained 

in Al0.85Ga0.15As0.56Sb0.44 APDs at higher temperature ranges (296 – 353 K). Reduced 

temperature sensitivity of avalanche breakdown is desirable in APDs as it ensures a steady 

avalanche signal and hence electrical output is maintained which is critical for APD 

applications such as laser range finding, distance mapping, autonomous vehicle and 

fluorescence imaging. This reduced temperature sensitivity of avalanche breakdown in 

Al0.85Ga0.15As0.56Sb0.44 is important for practical applications where a temperature 

stability of avalanche gain is highly desirable to operate the device in rugged conditions. 

For example, commercial APDs make use of a complex temperature stabilisation circuitry 

to maintain a constant gain [15]. The temperature insensitivity of Al0.85Ga0.15As0.56Sb0.44 

APDs highlight their potential applications in simplifying the operational complexity of 

APD circuitry.   

Using the gain data from the four Al0.85Ga0.15As0.56Sb0.44 APDs at 11.9 V, a comparison 

is made with two commercial Si APDs (S-5345, S-6045). The data for the Si APDs was 

extracted from their data sheets and is presented in Fig. 10. As temperature increases, 

gain reduces in all six APDs with a smaller reduction in M for the four 

Al0.85Ga0.15As0.56Sb0.44 APDs compared to S-5345 and S-6045. 

 

Fig. 10 Comparison of M vs T for AlGaAsSb APDs and commercial Si APDs. Solid lines are linear fitting 

to experimental data. The M values for the commercial devices are extracted from their data sheets.  
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A reduction in M for S5345, S6045 and Al0.85Ga0.15As0.56Sb0.44 APDs by 45, 52 and 15% 

respectively was observed when the temperature is increased from 24 to 80 °C. For most 

wide bandgap III-V semiconductors such as GaAs, InP, AlGaAs increasing the 

temperature leads to an increased inelastic scattering between carriers and lattice 

vibrations which reduces the energy gained by the carriers from external electric field for 

their impact ionisation. Subsequently the impact ionisation coefficients and hence the 

avalanche gain reduces with increasing temperature. With such a minimal reduction in 

gain, there is a potential in simplifying the APD operational circuitry if using the 

Al0.85Ga0.15As0.56Sb0.44 APDs. Since these devices are grown on InP substrates, they have 

the potential to replace InP and InAlAs as avalanche material for APDs operating at 1550 

nm telecom window (if InGaAs is used as absorber).  In practical applications, a 

temporally stable avalanche gain is necessary to yield constant avalanche gain signal. The 

temporal stability of avalanche gain is also therefore an important metric for assessing 

the robustness of our APDs. 

5.7 Temporal stability of avalanche gain  

For the temporal stability measurement of avalanche gain the four selected APDs were 

reverse biased at 11.9 V (M = 10 at room temperature) and the gain values were collected 

over 12.5 minutes at 24°C, 40°C, 60°C and 80°C. The data was recorded using 

experimental setup for recording LIA values over time described in chapter 3. The 

measured data as shown in Fig. 11 is presented as percentage fluctuations compared to 

mean M at corresponding temperatures at a reverse bias of 11.9 V. For each device, two 

sets of data were recorded at each temperature.  Over the studied temperature ranges, no 

clear drift in the avalanche gain was observed for any device. The maximum fluctuations 

in M at room temperature is ± 0.5%. This level of fluctuation was similar to that of a 

commercial Si photodiode indicating a fluctuation of ± 0.5% in the setup. As the 

temperature is raised, the fluctuations remain within ± 1.1% for all devices over the 

temperature range studied in this work. APD-1 remains an exception with maximum 

fluctuation of +1.33% at 80°C.  
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Fig. 11  Percentage fluctuations in M versus time for APD-1 through 4 with reference to mean gain at 11.9 

V at temperatures of 24°C, 40°C, 60°C and 80°C. Two data sets were recorded for each device.  

 

Ren [16] and Jones [13] have reported on room temperature temporal stability of 

multiplication gain for AlxIn1-xAsSb (x = 0.6, 0.7) avalanche photodiodes grown on n-

GaSb substrates. They have studied p-i-n and separate absorption and multiplication type 

structures based on AlInAsSb avalanche and absorption layers. As a comparison with our 

work Ren and Jones reported a maximum error in M of 1.7% for AlxIn1-xAsSb (x = 0.6) 

and 5.1% for AlxIn1-xAsSb (x = 0.7) p-i-n APDs over a time duration of 2 hours. In a 

similar test, Jones et al demonstrated a maximum gain error of 7.4% for the separate 

absorption and multiplication type APD when the device was biased at a reverse bias 

corresponding to M = 13 at 300 K.  No clear drift has been observed by Ren and Jones in 

their studies.  

5.8 Dark currents in Al0.85Ga0.15As0.56Sb0.44  

The studies on temporal stability reported in the previous section were conducted over a 

varied range of temperatures. The devices have gone through significant number of 
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measurements including the typically 12.5 minutes for each set of gain measurement. 

Hence each device was subjected to a measurement time of 100 minutes for temporal 

stability.  Fig. 12 shows the I-V data for the four selected APDs before and after the high 

temperature and gain measurements. No significant thermal degradation was observed in 

the dark currents of the devices. The data shows the robustness of the dark currents of 

Al0.85Ga0.15As0.56Sb0.44 mesa APDs. This observation suggests the potential of 

Al0.85Ga0.15As0.56Sb0.44 APDs for operation in rugged conditions with superior immunity 

to temperature variations which is crucial for optical receivers.  

 

Fig. 12 Dark currents for the four selected AlGaAsSb APDs before (lines) and after (symbols) temperature 

dependence measurements. 

 

 

5.9 Summary  

In summary we have fabricated avalanche photodiodes based on 100 nm thick avalanche 

layers of Al0.85Ga0.15As0.56Sb0.44. The I-V data of DUTs from different mesa radii did not 

scale perfectly with device area indicating a presence of surface leakage currents in the 

dark currents. Premature edge breakdown effect was not an issue for the device sizes 

characterised. The average temperature coefficient of avalanche breakdown is 1.6 mV/K 

which is the smaller than similar thickness of InP and InAlAs by a factor of 3.75 and 1.5 

respectively. A superior temperature stability of avalanche gain is demonstrated in 

comparison with commercial Si APDs. When the temperature is increased from 24 °C to 

80 °C, Al0.85Ga0.15As0.56Sb0.44 APDs show a reduction in gain of 15% compared to 45% 



 

110 
 

and 52% for Hamamatsu-S5345 and Hamamatsu-S6045 Si APDs respectively.  A good 

temporal stability of avalanche gain is reported for temperature ranges of 24 °C to 80 °C. 

A maximum fluctuation in room temperature mean gain (M = 10) of ± 0.5% has been 

reported at a reverse bias of 11.9V over a time duration of 12.5 minutes. As the 

temperature is increased the fluctuations remain within ± 1.1% and a maximum 

fluctuation of 1.33% in mean avalanche gain has been recorded at 80 °C. No temporal 

drift has been observed in M for any device characterised. No thermal degradation in dark 

currents has been observed in the devices after gain measurements at elevated 

temperatures.  
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Chapter 6 

Dark count rate characterisation of 

Al0.85Ga0.15As0.56Sb0.4 Geiger mode 

avalanche photodiodes 

 

InP and In0.52Al0.48As Geiger mode APDs are currently being used for both commercial 

and R&D applications however they suffer from band-to-band tunnelling currents [1, 2]. 

Tunnelling currents can be mitigated by using a wider bandgap material as avalanche 

layer. Al0.85Ga0.15As0.56Sb0.44 has a wider indirect-bandgap of 1.59 eV compared to 1.34 

eV and 1.43 eV for InP and InAlAs respectively. It is lattice matched to InP substrate 

ensuring its compatibility with telecom wavelength for fibre optic telecommunication 

applications and its wider bandgap makes it less susceptible to tunnelling currents 

resulting from high electric fields in Geiger mode. This chapter details investigation of 

DCR as a function of overbias, pulse repetition frequency and reports on the temporal 

stability of DCR. In the following section, fabrication of AlGaAsSb mesa p-i-n devices is 

provided.   

 

Terminology convention in this chapter 

Throughout this chapter the term DCR refers to N i.e. dark counts (CD) normalised to duty 

cycle ft unless specified otherwise. f is pulse repetition frequency and t is the pulse 

duration. N and CD had been defined earlier in Eq. 11 and 12 in chapter 2. 
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The small size (dia: 25 – 40 µm) devices fabricated and characterised in this chapter are 

different than mesa devices characterised in the previous chapter (dia: 75 – 420 µm) and 

the detailed fabrication procedure is given in Sec. 4.2 in Chapter 4. 

 

6.1 Dark count rate measurement as function of overbias 

Dark count rate (DCR) for a 100 nm thick avalanche layer (wafer number M4339) was 

carried out using the capacitive quenching scheme discussed in experimental setup shown 

in chapter 3. A 25 µm mesa p-i-n diode with remote bond pads was packaged onto a TO-

5 header with 4 pins. Standard I-V measurements were carried out to obtain the device 

breakdown voltages and contact resistance. The result is shown in Fig. 1. The forward I-

V data for a representative packaged device show an ideality factor of 2.0 and a series 

resistance value in the range of 1.6-1.8 kΩ using the fitting procedure discussed in chapter 

3. A higher series resistance can limit the high frequency operation of a SPAD by 

imposing a longer recovery time as explained in Fig. 9 chapter 3.  

The DUT capacitance is measured to be 1.1 pF at 0 V reverse bias and is expected to be 

even smaller at breakdown voltage due to increase in the depletion layer width. The 

blocking diode used in our experiments is 15 pF and based on the DUT capacitance, 

blocking diode capacitance, series resistance of the DUT and the protection resistance of 

1 kΩ, a recovery time of 210 ns is estimated based on 5 times RC constant. This places 

an upper limit of 4.7 MHz on pulse repetition frequency for DCR characterisation. The 

influence of protection resistance can be annulled by removing it from the circuitry to 

ensure a faster recovery however this will expose the DUT to damage from accidental DC 

bias. It is relevant to mention here that the purpose of work carried out in this chapter is 

to ensure that the overbias pulse shape is clean and stable [8] and we do not carry out high 

frequency characterisation (GHz range) of DCR. For higher frequency biasing schemes 

such as sine wave gating [5] the pulse shape is not perfectly square and this can lead to 

non-uniform breakdown probability along the overbias pulse. The ideality factor indicates 

dominance of recombination currents in the junction. Fig. 1 also compares the forward I-

V data for the 420 µm mesa device (on-wafer) with the device under study in this chapter.  
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Fig. 1 (Top) Forward I-V data for 25and 420 um diodes. The I-V data for the 25 um packaged diode is 

fitted with forward current equation (chapter 3). (Bottom) Reverse I-V for 25 um diode before and after 

packaging. 

 

Owing to the bigger contact size, a smaller contact resistance (80 Ω) is recorded for bigger 

mesa devices whereas the device under study in this chapter show a contact resistance in 

the range of 1.6 - 1.8 kΩ. The contact area for the Geiger mode APD bond-pad is 8.8×103 

µm2 whereas the contact area of the 420 µm mesa APD is estimated to be 3.4×104 µm2.  

No rapid thermal annealing was used. A room temperature breakdown voltage of 12.51 

V was observed for the packaged device. Analysis of the reverse I-V data for the packaged 

device shows no degradation in dark currents from the wire bonding and packaging 

process.  
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The packaged devices under test (DUT) were subsequently mounted onto the capacitive 

quenching circuitry (CQC) board (designed by Dr. Simon Dimler at The University of 

Sheffield) for DCR measurements in gated mode. The DCR characterisation was 

performed using experimental setup in chapter 3, sec. 3.4.1. An AC overbias pulse with 

amplitude of 2.00 V was applied to the cathode of the DUT. Typical pulse duration in our 

experiment is 200 ns. Overbias pulse rise times are fixed at 4.5 ns and a pulse repetition 

rate of 100 kHz is used. No temperature stabilisation or Peltier cooler was used. The 

percentage overbias is calculated as 
𝑉𝑑𝑐+𝑉𝑎𝑐

𝑉𝑏𝑑
, where the Vdc, Vac, and Vbd are DC bias, AC 

bias and breakdown voltage respectively.  The DCR characterisation relies on detecting 

an avalanche signal detected by the sensitive discriminator when the threshold level is set 

at a certain level. Using the experimental procedure described in sec. 3.4.4, a threshold 

level of 2.4 mV was set at the discriminator. Fig. 3 shows an avalanche current signal 

using an AC overbias of 2 V and a DC bias level of 11.45 V with an AC overbias pulse 

duration of 200 ns. The avalanche pulse is detected as soon as the detection threshold 

crosses 2.4 mV which corresponds to a latching current of 48 µA across the 50 Ω resistor 

connected in series with the SPAD.  

 

Fig.2 Avalanche current signal from the Geiger mode APD using an overbias pulse amplitude of 2 V and 

11.45 V DC at room temperature using an overbias pulse duration of 200 ns. 

 

The data in Fig.2 suggests that avalanche is quenched well within the overbias pulse 

duration of 200 ns. An added advantage of the capacitive quenching scheme is that the 

falling edge of the overbias pulse quenches the avalanche [8]. We did not observe any 
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instantaneous avalanche and subsequent self-quenching due to possible series resistance 

effect [3]. Moreover, as discussed earlier in Sec. 5.2, we are not operating the GM-APD 

in a high frequency regime (> 1 GHz) the overbias pulse shape did not show any 

degradation (for longer overbias pulses of 200 ns and down to 15 ns). We can therefore 

comment that the overall performance in terms of overbias pulse shape and avalanche 

quenching are not affected by the magnitude of series resistance reported.   

     Detection of avalanche signal facilitates DCR characterisation where a NIM pulse is 

triggered for detection of an avalanche signal (as the one shown in Fig. 3) in every 

overbias pulse. Fig. 3 shows the DCR as a function of applied overbias above the 

breakdown.   

 

Fig. 3 Dark count rate as a function of overbias for 100 nm thick AlGaAsSb p-i-n diode, D=25 µm, for a 

gate duration, Tgate = 200 ns and an AC pulse amplitude of 2.0 V. breakdown voltage is 12.51 V at room 

temperature.   

 

The DCR measures 1 kHz at 1.93% overbias and reaches 3.31 MHz at 2.5% overbias 

where the raw dark count value (CD in Eq. 12 chapter 2) approaches the pulse repetition 

rate, 100 kHz which sets the maximum limit on the DCR of 5 MHz. Recalling Eq. 12 

from chapter 2, 100 kHz of repetition rate for a 200 ns overbias pulse duration equates to 

a DCR of 5 MHz provided that a dark count is registered in every overbias pulse. The 

increase in DCR as a function of overbias is due to increase in the avalanche triggering 

probability by dark carriers [4] as a result of increase in the electric field. In comparison 
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with InGaAs/InP [5] and InGaAs/InAlAs III-V SPADs [6], maximum overbias values in 

the range of 10 % – 22% at room temperature can be applied. The device design involves 

separate absorption and multiplication layers using i-InAlGaAs grading and p-InAlAs 

charge sheet. In these devices the electric field develops across the multiplication layer 

relatively slowly compared to p-i-n structure where it is completely confined across the 

multiplication layer. Fig. 4 compares the calculated electric field profile for 

Al0.85Ga0.15As0.56Sb0.44 Geiger mode APD and the InGaAs/InAlAs Geiger mode APD 

from ref. [6] for breakdown voltages of Vbd and 2.5% above the breakdown. The 

breakdown voltages InAlAs and AlGaAsSb Geiger mode APD are 69 and 12.51 V at 

room temperature and 2.5% overbias correspond to 70.7 and 12.8 V respectively. The 

electric field profile has been simulated using Poisson solver the details of which are listed 

in Appendix. A. The electric field modelling is used to calculate the electric field in 

multiplication layer for the DUT and the InAlAs Geiger mode APDs in an attempt to 

provide possible explanation for the sharp rise in DCR for our DUT. 

Parameters used for the calculation of electric field profiles for Al0.85Ga0.15As0.56Sb0.44 

Geiger mode APD are based on the doping and thickness given in Fig. 1 chapter 4 with 

an doping level of 1×1015 cm-3 in the avalanche layer and a breakdown voltage of 12.51 

V at 294 K has been used. For the InGaAs/InAlAs Geiger mode APD from ref. [6], doping 

levels of 5.2×1014 cm-3, 1.5×1015 cm-3 and 3.78×1017 cm-3    have been used for InGaAs 

absorber, InAlAs avalanche layer and InAlAs charge sheet respectively. In the same 

order, thickness of the layers used in the simulation are 1850nm, 980nm and 69 nm 

respectively. For Al0.85Ga0.15As0.56Sb0.44 Geiger mode APD of this work thickness of p, i 

and n Al0.85Ga0.15As0.56Sb0.44 layers are 300 100 and 100 nm and doping levels of         

2×1018 cm-3 , 1.0×1015 cm-3 and 2×1018 cm-3 respectively.  
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Fig. 4 Calculated electric field profile as a function of depletion width for (a) InGaAs/InAlAs Geiger mode 

APD from ref. [6]. Breakdown voltage for the device is 69 V (b) AlGaAsSb p-i-n Geiger mode APD of this 

work. Breakdown voltage is 12.51 V. Both the profiles have been calculated at an overbias of 2.5%. Solid 

line: Electric field at breakdown, Dashed line: Electric field at 2.5% overbias for each device. 

 

Data in Fig. 4 show that for the Al0.85Ga0.15As0.56Sb0.44 Geiger mode APD of this work, 

the electric field is confined to the multiplication layer and increased from 1030 kV/cm 

at breakdown voltage to 1050 kV/cm at 2.5% overbias. For the InAlAs GM-APD of ref. 

[6] the electric field changes from 512 kV/cm at breakdown voltage to 518 kV/cm at 2.5% 

overbias. Since a higher electric field would impart a greater kinetic energy to Impact 

Ionising carriers in the multiplication region, a reduced mean free path between the 

Impact events and a higher Impact Ionisation coefficient is obvious and therefore possibly 
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a high electric field in the multiplication layer  the for p-i-n structure can possibly explain 

why the DCR of Al0.85Ga0.15As0.56Sb0.44 Geiger mode APD is limited to smaller overbias 

values in comparison with InGaAs/InAlAs device cited above where overbias values are 

in the order of 10 – 18%. In Al0.85Ga0.15As0.56Sb0.44 Geiger mode APDs in this thesis, there 

is no InGaAs absorber incorporated in the device structure and therefore a straight 

forward comparison in terms of the overbias dependent DCR with state-of-the-art devices 

is not be possible. The avalanche detection at low excess bias is possible thanks to 

excellent transient cancellation owing to small device capacitance (1.2 pF at 0 V reverse 

bias). The variable capacitor [7] in the CQC circuit can easily cancel out possible 

capacitive transients arising from the device. The capacitive transients due to device are 

diminished at high reverse bias (close to or above breakdown) as the capacitance 

decreases owing to increase the depletion width and therefore transient cancellation has 

not been an issue in our measurements.  

For InGaAs/InAlAs SPADs [6] overbias pulse amplitudes of up to 20 V have been applied 

resulting in strong voltage transients. A direct implication of strong voltage transient is 

that the threshold level has to be adjusted higher thus inadvertently discarding avalanche 

signals comparable to or smaller than transients. Study of Meng et al [6] reports no DCR 

below 10% overbias. 

6.2     Influence of varying AC and DC level on DCR 

For Geiger mode operation SPADs are biased at a DC level slightly below breakdown 

voltage and subsequently an AC overbias pulse is imposed on the DC level. While the 

maximum overbias is limited by the device design as discussed in previous section, 

varying AC and DC level combination while keeping total overbias constant can help in 

assessing the severity of capacitive transient signals.  
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Fig. 5 Schematic illustration of varying AC and DC bias levels while keeping a constant excess bias. Red 

dashed line represents the breakdown voltage. 

 

As illustrated in Fig. 5, the varying AC and DC bias levels can influence the DCR in the 

following manner: 

 High DC bias during the gate-off time can increase the DCR  

 High AC bias can result in strong voltage transient and avalanche signals smaller 

than voltage transients are inevitably discarded from counting.  

To ascertain the influence of bias levels, we recorded the DCR as a function of overbias 

for AC overbias pulse amplitudes of 2, 4 and 6 V and adjusted the DC bias such that the 

total overbias remains unaffected. For 2, 4 and 6 V AC overbias, 11.44 V, 10.40 V and 

9.39 V DC corresponded to 1.83% overbias. Similarly, 11.53 V, 10.49 V and 9.47 V DC 

corresponded to 2.5% overbias. The result in Fig. 7 shows that avalanche breakdown 

events are registered for overbias values of 1.83% irrespective of the AC overbias pulse 

amplitude which suggests that transient cancellation is not an issue. The highest DC bias 

level (2.0 V AC data) does not exacerbate the count rate suggesting the macroscopic 

avalanche current is properly quenched.  
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Fig.6 DCR as a function of applied overbias for different AC overbias pulse amplitudes. The total applied 

overbias is kept constant. Overbias pulse duration is fixed at 200 ns. Lines are shown as guide to the eye. 

 

For the measurements carried out in Fig.6, transient cancellation was not an issue. 

6.3 Investigation of dark count rate as a function of repetition 

frequency 

DCR as a function of pulse repetition frequency can be characterised to investigate the 

presence of afterpulsing effect. Afterpulsing is a secondary source of noise in Geiger 

mode APDs which increases the DCR through material defects in the multiplication 

region. Such defects act as charge trapping centres and can trap charge carriers during 

avalanche process. These defect centres have a finite life time following which the 

carriers can be released. Upon their release, the carriers initiate unwanted avalanche 

signals thus increasing the DCR. In gated mode the total charge and therefore the 

afterpulsing is limited by applying narrow overbias pulses (typically 15 ns for our 

devices). Fig. 7 shows the dark count rate as a function of overbias for a 15 ns overbias 

pulse duration. An AC overbias pulse of 2.0 V is used and a pulse repetition rate of 100 

kHz is used.  
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Fig. 7  Room temperature DCR as a function of overbias for a 15 ns pulse duration. AC overbias pulse of 

2 V is used. The DC bias values corresponding to the minimum and maximum DCR values are 11.32 V 

and 11.57 V. Line is shown as a guide to eye.  

 

A larger overbias up to 4.07% was applied and a lower dark count is recorded for 15 ns 

pulse in comparison with 200 ns pulse duration (Fig. 7). This behaviour can be possibly 

explained by the imperfect pulse shape for smaller overbias pulses where the rise and fall 

times become significant in comparison with the overall pulse duration. The mathematical 

expression for dark counts (CD) as a function of pulse duration (Eq. 12 chapter 2) predicts 

a linear dependence of dark counts on pulse duration, assuming a perfect rectangular 

pulse. However for shorter overbias pulses there can be a deviation from this behaviour. 

A 15 ns pulse with a rise and fall time of 4.5 ns each, approaches a triangular shape unlike 

a 200 ns pulse which is relatively close to a rectangular pulse shape. Using a similar 

capacitive quenching scheme for a Perkin-Elmer Si Geiger mode APD, Dimler et al [8] 

have observed a deviation of the dark counts from the ideal linear relationship as a 

function of pulse width for overbias pulse durations less than 50 ns. An imperfect overbias 

pulse shape was attributed to the reduction of dark counts for shorter overbias pulse by 

Dimler et al in their study.  

Increasing the pulse repetition frequency leads to a reduced pulse separation which can 

increase the total counts if the pulse separation approaches the trap life time. In the 

capacitive quenching scheme for DCR measurement in this thesis, the maximum pulse 
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repetition frequency is limited by series resistance and the biasing capacitance in the CQC 

core circuitry as explained earlier in sec. 3.4.2. Using the series resistance of the packaged 

DUT of 1.8 kΩ, a protection resistance of 1 kΩ and biasing capacitance CB = 15 pF the 

5× recharge time constant is 210 ns which corresponds to a pulse repetition frequency of 

4.7 MHz.  

Fig. 8 shows the DCR as a function of pulse repetition frequency at room temperature 

without using any temperature stabilisation/ Peltier cooler. DCR data is shown for 3.39% 

overbias in Fig.9. The analyses of the DCR is facilitated by considering 3 frequency 

ranges as i.e. 100 kHz – 800 kHz (red line), 800 kHz – 2 MHz (blue line) and 2 MHz – 

4.4 MHz.  The DCR increases by 0.3% from 42.15 MHz to 42.3 MHz when the pulse 

repetition frequency is increased from 100 kHz to 800 kHz. This shows that DCR does 

not undergo a significant increase. However, when the pulse repetition frequency is 

increased from 800 kHz to 2.0 MHz, the DCR increases 32.15% from 42.3 MHz to 55.9 

MHz. Increasing the pulse repetition frequency from 2.0 MHz to 4.4 MHz increases the 

DCR from 55.9 MHz to 63.9 MHz, an increase of 14.3%.  

 

Fig.8  DCR as a function of pulse repetition frequency at an overbias of 3.39%. Overbias pulse duration is 

15 ns with an overbias pulse height of 2.00 V. The vertical blue and red lines aid analysis of DCR in 3 

frequency ranges (100 – 800 kHz, 800 kHz – 2 MHz, 2 MHz – 4.4 MHz) 

 

The increase in the DCR reported here is relatively slow in comparison with InP GM-

APDs [9] where an increase the DCR increased by 5, 3 and 1 orders of magnitude for 100 

K, 150 K and 200 K respectively using an overbias pulse of 100 ns for pulse repetition 

rates higher than 50 kHz. In this work the afterpulsing becomes more severe due to 
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increase in the carrier trap release life time at reduced temperature. In comparison with 

InP the Cbd for Al0.85Ga0.15As0.56Sb0.44 is smaller by a factor of 3.75 for comparable 

thicknesses of avalanche layer. Due to the small Cbd the breakdown voltage is not 

expected to change much, heating in the avalanche region at high repetition rates can be 

a possible reason for the increase of DCR in Fig. 9 when the pulse repetition rates are 

increased beyond 800 kHz at room temperature. In this regard the temperature 

dependence of the DCR study a function of the pulse repetition frequency is needed to 

confirm the presence of afterpulsing and thermal generation effects.  

 Presently the temperature dependent study of the DCR is not feasible as the physical 

dimensions of the CQC circuitry and the low temperature chamber of the Janis probe-

pump station are not compatible. In regards to afterpulsing phenomenon, a straight 

forward comparison with current Geiger mode APDs cannot be drawn for two reasons: 

 The photon detection efficiency is not known for our devices. The standard analyses 

of afterpulsing is usually carried out at a certain photon detection efficiency. Higher 

overbias leads to a higher PDE but at the same time results in a higher afterpulsing 

probability which consequently degrades the total PDE.  

 Standard approach to quantify the afterpulsing effect uses the so-called “double 

pulse” method where a laser pulse is fired followed by a dark pulse. Consequently, 

the time between these pulses is varied and a time histogram of the dark events 

recorded in the second pulse is analysed as a function of the varying time between the 

pulses. This time is called as dead time. Such a characterisation is not possible at our 

facilities for the moment and we have no means to measure the breakdown events in 

the second pulse of the double pulse train only.  However we use a similar method 

with no light and we record the DCR as a function of the varying “dead time” for both 

the first and second pulses. 

 

6.4 DCR as function of double pulse delay/Dead-time 

A double pulse output mode from the function generator is used to create double gates 

with a certain fixed frequency and the double pulse delay can be adjusted. This method 

is useful since it avoids heating due to higher repetition rates and used the double pulse 
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delay as a dead time to investigate possible afterpulsing. Schematic illustration of the 

double pulse method is shown in Fig. 9.  

 

Fig. 9 Schematic illustration of double pulse method. The pulse repetition frequency determines the time 

lapse between the rising edge of the first pulse. The double pulse delay is adjustable.  

 

 The double pulse delay is varied, and the raw dark counts from the Geiger mode APD is 

recorded. Using the standard way of double pulse characterisation [10], we present the 

dark counts CD (defined in chapter 2) as a function of pulse separation or “dead-time” for 

an overbias pulse duration of 200 ns for 2.25% overbias. The minimum dead time is set 

at 210 ns due to the device recharge time constant from the biasing capacitance and series 

resistance, as explained earlier.  

 

Fig. 10 Dark counts as a function of dead time using the double pulse method for overbias of 2.35% using 

a 200 ns pulse. AC overbias pulse amplitude is 2 V.  
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The dark count is recorded at 41.99 kHz at dead time of 700 ns and stays relatively flat 

with no clear trend of a drift. The dark count is measured at 41.39 kHz at dead time of 10 

ns, the minimum possible with the function generator Agilent 81101. The overall 

fluctuation in the average dark count is ±0.95%. The minimal fluctuation can be the larger 

pulse duration  which is greater than 100 ns, the time duration over which the majority of 

avalanche events are recorded Therefore decreasing the dead time even down to 10 ns for 

two consecutive pulses 200 ns each, does not influence the total count. Another 

observation is that for the device approaches a breakdown in every overbias pulse for the 

entire range of dead time considered in Fig. 10 and this could also explain why the total 

counts does not change significantly between the maximum and the minimum dead time. 

Based on the observation in Fig. 10, we select narrow overbias pulses for the dark count 

rate characterisation as a function of dead time.  

Fig. 11 shows the dark count values as a function of dead time for overbias values of 2.95 

and 3.27% using a 2 V AC overbias pulse and a pulse duration of 15 ns.  Analyses of the 

data in Fig. 12 shows that dark count values show no significant change at given overbias 

values when the dead time is decreased from 980 ns to 700 ns. At 3.27% overbias, the 

dark count changes from 41.8 kHz to 40.76 kHz when the dead time is decreased from 

980 ns to 700 ns. A mean dark count of 41.24 kHz (red line in Fig. 11 (a)) is recorded for 

this range and overbias. Similarly, at 2.95% overbias, the dark count fluctuates between 

29.30 kHz and 29.58 kHz when the dead time is decreased from 980 ns to 700 ns. An 

average dark count of 29.5 kHz (blue line in figure) is recorded for this range and 

overbias. No clear trend of a drift is observed at any overbias value. In the bottom pane 

of the figure, the increase in the dark count is shown relative to the average dark count 

value for the range of dead times between 700 ns and 980 ns as the dark count shows no 

significant change in this range for all overbias values. The dark count shows an increase 

of 9.7% and 5.6% when the dead time is decreased from 700 ns to 200 ns for 3.27% and 

2.95% overbias respectively. From the data no trend of a dead time as a function of 

overbias can be observed. 
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Fig. 11 (a) Dark count (CD in Eq. 12, chapter 2) as a function of dead time for 3.27 and 2.95% overbias. 

Solid red and blue lines show the average of the dark count values for the range of dead times between 

700 and 980 ns. (Bottom) Percentage increase in the dark count at respective overbias values relative to 

average dark count values of 41.24 kHz and 29.5 kHz at 3.27 and 2.95% overbias respectively. 

 

The data in Fig. 11 is a possible indication of afterpulsing. An observation from the data 

is that the dead time should be greater than 700 ns to avoid any possible increase from 

afterpulsing phenomenon. 

6.4.1 Comparison with other works 

Korzh et al [11] have studied afterpulsing phenomenon in InGaAs/InP Geiger mode 

APDs and have reported on the presence of several trap families with trap activation 

energies in the range of 0.05-0.20 eV. Total afterpulsing probability was found to increase 

from 0.1% to 2.2% at dead time of 2000 ns when the temperature was decreased from 

223 K to 160 K. Such temperature dependent studies of the dark count as function of dead 

time are used as a standard approach to find the activation energies of the traps. Material 

defects and impurities in growth were attributed to the afterpulsing phenomenon in this 

study. Krainak et al proposed the use of sub-bandgap lasers which only depopulate the 

afterpulsing traps without exciting carriers from valence band to the conduction band, 

such that traps are emptied without triggering further dark counts [12]. The method 

involved coupling the trap-emptying light simultaneously onto a commercial InGaAs/InP 

APD (Adtech model AP1050B InGaAs/InP Geiger mode APD).  

Using the trap clearing laser, Krainak reduced afterpulsing by a factor of ×5 for a dead 

time of 300 ns using a 100 mW/cm2 laser intensity. Following the work of Krainak, 

several groups have attempted to reduce the afterpulsig using this technique however no 
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results in scientific literature have been reported so far to the best of our knowledge.  Ren 

et al [13] have carried out a standard double pulse characterisation of afterpulsing in a 

Geiger mode Al0.8Ga0.2As APD grown on GaSb substrate based on a 1000 nm thick 

Al0.8Ga0.2As avalanche layer. An afterpulsing probability of 33% was observed at 170 K 

for a 1000 ns dead time. The afterpulsing decreased to 24% when the temperature was 

increased to 290 K. Meng et al [6] have carried out an afterpulsing study of an 

InGaAs/InAlAs Geiger mode APD at 210 K for pulse repetition rates of 1 – 100 kHz for 

PDE values in the range of 45 – 55% and observed negligible afterpulsing which was 

attributed to a small duty cycle of the pulse train. 

 

6.5 Temporal stability of DCR without temperature stabilisation 

Due to reduced temperature coefficient of avalanche breakdown, thin avalanching layers 

of Al0.85Ga0.15As0.56Sb0.44 offer a higher immunity of breakdown voltage to temperature 

fluctuations which can be helpful in maintaining a uniform breakdown voltage. It is useful 

at this point to carry out the analyses of temporal stability of DCR for Geiger mode 

Al0.85Ga0.15As0.56Sb0.44 APDs without the use of temperature stabilisation.  

Once the measurement conditions are determined, temporal stability of DCR is monitored 

over typical duration of our measurements i.e. about 10 minutes. The device is biased at 

3.39% overbias corresponding to a room temperature DCR of 30.23 MHz for an overbias 

pulse duration of 15 ns and a pulse repetition rate of 100 kHz. No temperature stabilisation 

is used and a threshold level of 2.4 mV is set according to the procedure described in sec. 

3.4.4. 
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Fig. 12 Room temperature DCR as a function of time for a 100 kHz pulse repetition rate. Overbias of 3.39% 

is used corresponding to a DCR of 30.23 MHz at t = 0. Overbias pulse duration is 15 ns. 

 

Fig. 12 shows that the DCR increases from 30.23 MHz at t = 0 to 30.82 MHz at t = 550 

s, showing an increase of 1.95%. This increase can be attributed to the variation in the 

threshold level as shown in Fig. 13 which was recorded simultaneously with the DCR. 

The threshold level decreases from 2.47 mV to 2.29 mV over 550 s which results in the 

increase in the DCR level due to a lower discrimination threshold level for avalanche 

detection. For the state-of-the-art Geiger mode APDs there exists no such report on the 

temporal stability of the DCR since higher Cbd values for these devices would result in a 

variation of the breakdown voltage if no temperature stabilisation is used. The variation 

in breakdown voltage in Geiger mode could result in reduction of the DCR. To test this 

hypothesis, the temporal stability of a commercial Si Geiger mode APD (C-30902-SH) is 

recorded. C-30902SH is a Si reach-through structure APD with a room temperature 

breakdown voltage of 225 V. It is hermetically sealed behind a flat glass window on a 

TO-18 header with two pins. The device is mounted onto the CQC board for DCR 

characterisation. The next section details the method and results.  
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Fig. 13 Discriminator threshold level recorded over the typical measurement duration. The threshold level 

changes from 2.47 mV to 2.25 mV over 550 s.  

 

6.5.1 Comparison with commercial Si Geiger mode APD 

DCR as a function of time was monitored without using any temperature stabilisation for 

both the Al0.85Ga0.15As0.56Sb0.44 Geiger mode APD and a commercial Si SPAD (C30902-

SH). A 2V AC overbias pulse is applied to the SPAD and a DC bias of 226 V is used 

which corresponds to a DCR of 27.9 MHz for an overbias pulse duration of 15 ns at a 

pulse repetition frequency of 100 kHz. The temporal evolution of the DCR (data from 

Fig.13) is then expressed as percentage change relative to DCR at t = 0, for APD for two 

different pulse repetition frequencies, 100 kHz. The DCR is monitored over time with a 

value of  30.23 MHz and 28.9 MHz for Al0.85Ga0.15As0.56Sb0.44 and the Si Geiger mode 

respectively at t = 0. The data is recorded for two pulse repetition frequencies of 100 kHz 

and 1 MHz. Fig. 14 shows the result.  
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Fig. 14 Percentage change in DCR as function of time for AlGaAsSb Geiger mode APD and Si SPAD for 

pulse repetition frequency of 100 kHz and 1 MHz.  

 

The commercial Si SPAD shows a percentage decrease in DCR of 8% and 30% over 550 

s at pulse repetition frequencies of 100 kHz and 1 MHz respectively. The DCR of 

AlGaAsSb Geiger mode APD shows an increase of 1.94% and 2.23% for pulse repetition 

rates of 100 kHz and 1 MHz respectively over 550 s. As explained in Fig.13, the increase 

in the DCR of Al0.85Ga0.15As0.56Sb0.44 Geiger mode APD (Fig. 12 and Fig. 14) can be 

explained by the variation in the threshold level. The decrease in the DCR of Si SPAD 

becomes pronounced at higher pulse repetition frequency. This decrease can be explained 

by the increase in the breakdown voltage since the temperature coefficient of avalanche 

breakdown for Si SPAD is 0.7 V/K compared to 1.60 mV/K for AlGaAsSb Geiger mode 

APD. This observation points to possible self-heating in Si Geiger mode APD which is 

pronounced at higher pulse repetition frequency. It is worthwhile to emphasise that the 

results in Fig. 15 do not put AlGaAsSb at an advantage over Silicon SPADs since the Si 

SPAD has a thicker avalanche layer and hence a higher temperature coefficient of 

avalanche breakdown is expected. Nonetheless the results in Fig. 15 show that the 

Al0.85Ga0.15As0.56Sb0.44 avalanche layer is capable to maintain a stable DCR without 

temperature stabilisation mechanisms.  
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6.6 Temporal distribution of DCR 

Information on time distribution of the DCR can be helpful in optimising the pulse 

duration and pulse repetition frequencies for Geiger mode operation and understanding 

the timing characteristics of avalanche breakdown.   We are interested in investigating 

the possibility of any inherent time distribution in the DCR of Al0.85Ga0.15As0.56Sb0.44 

Geiger mode APDs. To accomplish this, we carry out the time distribution measurement 

of DCR using the multi-channel analyser measurement technique detailed in sec. 3.5 in 

chapter 3. We record the temporal distribution of DCR for overbias values of 1.93, 2.07, 

2.23 and 2.49% for overbias pulse duration of 200 ns using a pulse repetition rates of 100 

kHz, a threshold level of 2.4 mV at room temperature. The time distribution of DCR is 

acquired over 132.3 s, 142.5 s, 159.31 s and 109.15 s respectively in the order of 

increasing overbias values mentioned. The applied overbias pulse and the temporal 

distribution of the DCR for different overbias values are recorded simultaneously. Fig. 15 

shows the result. The breakdown events for all the overbias values are registered close to 

the rising edge of the overbias pulse. Majority of the breakdown events are recorded 

within a well-defined duration. In this case, majority of the breakdown events are 

registered within time duration of less than 100 nsec.  

 

Fig. 15 Time distribution of DCR for Geiger mode AlGaAsSb APD for an overbias pulse duration of 200 

ns, pulse repetition frequency of 100 kHz at room temperature. Overbias pulse (pink) is recorded from 

oscilloscope. Different lines (black, blue, red, green) indicate the time distribution of DCR for different 

overbias values. 
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The temporal distribution of the DCR shows an exponential decay for higher overbias 

values while distinct multiple peaks can be observed for smaller overbias values. The 

origin of multiple peaks in the time distribution of the DCR is not known. As a sanity 

check to rule out any systematic error in recording the time distribution, a MATLAB 

script was developed by Dr. Simon Dimler from the Impact Ionisation group at The 

University of Sheffield to acquire avalanche signals directly from the GM-APD. An 

oscilloscope was used to capture avalanche signals continuously from the GM-APD when 

the device was biased at 2.1% overbias using an overbias pulse of 200 ns. A MATLAB 

script was used to process the captured waveforms and the multiple peaks in the time 

distribution were confirmed indicating that there was no systematic error from the MCA 

system.   

At low overbias values the device breakdown at different time instants as soon as the 

overbias pulse is applied. At higher overbias however the device breakdown demonstrates 

a more deterministic behaviour where majority of the break down events are registered 

close to the rising edge of overbias pulse. Afterwards, the time distribution shows a 

pronounced exponential decay. The decay of time distribution at high overbias can be 

possibly explained by the probability distribution function of ionisation path length of 

impact ionising carriers. Studies on time distribution of the DCR for commercial Si 

Geiger mode APD [14, 15, 16] using overbias pulse durations in the range of 10 – 200 

ns, an overbias up-to 30% and pulse repetition frequency in the range of 100 kHz – 1 

MHz have been conducted. The studies have reported that the time distribution of the 

DCR follows the overbias pulse shape indicating that the devices breakdown along every 

point of the overbias pulse.  

The information on the time distribution of DCR can be instrumental in optimising the 

pulse duration. The pulse duration in Fig.15 can be reduced by 100% doubling the pulse 

repetition frequency thus supporting maximum count rate applications of the Geiger 

mode APD while preserving the timing characteristics of DCR.  

Using the procedure described in sec.5.5 the time distribution of the DCR was recorded 

for very short pulse durations. Short gates limit the amount of charge flow through the 

active regions and thus reduced the DCR. Using an overbias pulse amplitude of 2 V, pulse 

duration of 15 ns and a pulse repetition rate of 100 kHz. The temporal distribution of DCR 
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was recorded at an overbias of 2.08% corresponding to a room temperature DCR of 100 

Hz. The result is shown in Fig. 16.  

 

Fig.16. Dark counts (black circles) and total counts (dark +photon) for Geiger mode AlGaAsSb photodiode 

at room temperature for overbias pulse duration of 15 ns and pulse repetition rate of 100 kHz at an overbias 

of 2.05%.  

 

According to Fig. 16, as the pulse duration is restricted to 15 ns and a white light is shone 

over the device, a burst of photon counts is registered. When the device is kept in dark, 

very few counts are registered. The significance of results in Fig.16 is that 

Al0.85Ga0.15As0.56Sb0.44 GM-APDs hold the potential for room temperature photon 

detection with lower DCR. It is yet to be determined how efficiently the photons are 

detected i.e. through Single Photon Detection Efficiency (SPDE) measurement.  Since 

the white light source was not calibrated, we cannot calculate single photon detection 

efficiency of our devices at a particular wavelength at the moment. Nonetheless it is 

suggested as a future work to calibrate the PDE of these devices and assess their 

dependence on overbias percentage. A calibrated laser source with a known mean photons 

number per pulse and a temperature controlled operation would be needed to ensure the 

DCR does not increase due to possible thermal generation in the avalanche layer. 
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6.7 Summary 

Al0.85Ga0.15As0.56Sb0.44 Geiger mode p-i-n APDs were fabricated using standard 

photolithography and wet chemical etching. Remote bondpads were used for device 

packaging and subsequent dark count rate characterisation in Geiger mode. The devices 

showed a significant series resistance. The excess bias dependent DCR characterisation 

showed that the maximum overbias is limited to 2.5% which is due to the p-i-n device 

design which results in electric field confinement in the undoped quaternary layer. Thanks 

to the small device capacitance the transient cancellation was not a problem and weak 

avalanche signals were discriminated. DCR as a function of pulse repetition frequency 

and dead time was investigated. The DCR increases by 0.3% from 42.15 MHz to 42.3 

MHz when the pulse repetition frequency is increased from 100 kHz to 800 kHz. A 

maximum increase in the DCR of 32.15% was recorded when the pulse repetition 

frequency was increased from 800 kHz to 2.0 MHz.  

DCR was recorded as a function of dead time and an increase in the DCR was observed 

when the dead time was less than 700 ns. DCR was stable over time duration of 550 s 

without using any temperature stabilisation. In comparison with commercial Si Geiger 

mode APD which showed a decrease in DCR of -30% over 550 s, the DCR of 

Al0.85Ga0.15As0.56Sb0.44 Geiger mode APD showed a maximum increase of +2.23% due to 

variations in threshold level. The breakdown events of Al0.85Ga0.15As0.56Sb0.44 Geiger 

mode APD shows an exponential distribution in time where majority of breakdown events 

are registered close to the rising edge of the overbias pulse and happen within a well-

defined time duration.  Al0.85Ga0.15As0.56Sb0.44 Geiger mode APD demonstrated a 

potential for room temperature photon detection when illuminated with white light.  
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Chapter 7 

Modelling multiplication gain, excess 

noise and breakdown characteristics of 

Al0.85Ga0.15As0.56Sb0.44 

 

The objective of this chapter is to model the breakdown characteristics of Geiger mode 

APDs based on nominally 100 nm thick Al0.85Ga0.15As0.56Sb0.44 avalanche layer presented 

in chapter 6. To model the breakdown characteristics, field dependent impact ionisation 

coefficients are required to simulate the breakdown probability. Due to the lack of 

experimental reports on the impact ionisation coefficients of Al0.85Ga0.15As0.56Sb0.44 we 

extract the impact ionisation coefficients by modelling the measured gain and excess 

noise data using a recurrence model. The ionisation coefficients and ionisation threshold 

energies extracted are used to predict the breakdown probability as a function of overbias 

in an effort to understand the DCR data reported earlier in chapter 5  

7.1 Device layers and fabrication 

For extraction of ionisation parameters, gain data under pure electron and pure hole 

injection conditions is required. For this purpose, two mesa diodes i.e. a p-i-n and n-i-p 

were used to collect photocurrent data under pure injection. The wafer layers were grown 

through solid source Molecular Beam Epitaxy (MBE) on semi-insulating InP substrate. 

Mesa diodes were then processed on the layers using standard UV-photolithography and 

wet chemical etching process described in Appendix. A. Fig. 1 shows the device layers 

of the mesa APDs. Details of fabrication and characterisation have been reported by Pinel 

et al [7].  

 



 

140 
 

 

Fig. 1 (Left) Device layers of p-i-n and (Right) n-i-p mesa APD with 100 nm thick avalanche layer grown 

on semi-insulating InP substrate. 

 

The conditions of pure carrier injection are important to ensure that the avalanche process 

is initiated by one type of carrier. This is important not only in suppressing the noise in 

multiplication process arising from the stochastic nature of the process, but it also aids in 

understanding dynamics of the breakdown probability as a function of overbias, which is 

the objective of this chapter.  

7.2 Modelling impact ionisation coefficients, avalanche gain 

and excess noise 

In most semiconductor materials such as In0.47Ga0.53As [1], In0.52Al0.48As [2], InP [3] and 

Al0.90Ga0.10As0.02Sb0.98 [4] lattice matched to GaSb substrates, the field dependence of 

impact ionisation coefficients of electrons and holes 𝛼 and 𝛽  respectively take the form 

described by Eq. (1-2).  

𝛼(𝐸) = 𝐴𝑒exp ( −(
𝐵𝑒

𝐸
)𝐶𝑒)                                              (1) 

𝛽(𝐸) = 𝐴ℎexp ( −(
𝐵ℎ

𝐸
)𝐶ℎ)                                             (2) 

where A, B and C are constants. In most semiconductor materials lattice matched to InP 

substrates  

7.2.1 Influence of A, B C on  and ß values 

Referring to equations 1 and 2, the parameter A, B and C describe the field dependence 

of impact ionisation coefficients. Parameter A indicates the value of ionisation coefficient 
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at highest electric field value while parameters B and C define the electric field 

dependence of the ionisation coefficient as the electric field changes. As an instance, 

increasing the value of B increases the field dependence of the parameter i.e. a faster 

increase of the parameter when electric field increases. A similar effect can be observed 

by increasing C.  

 

Fig. 2 (a) Simulation of α and β as a function of inverse electric field for parameter set 1(α: A=1×106, 

B=8×105, C=1.95, β: A=6×105, B=1×106, C=1.95). (b) α and β as a function of inverse electric field for 

parameter set 2 (α: A=1×106, B=8×105 C=1.95, β: A=6×105, B=8×105, C=2.40). Legend shows the 

ionisation coefficients.  

 

Fig. 2 (a) and (b) compare two sets of α and β as a function of 1/E to illustrate the influence 

of the parameters A, B and C. Parameters for α (cm-1) are the same for both sets (A=1×106, 

B=8×105, C=1.95). Set1 in Fig. 2 (a) shows the effect of increasing B for β (A=6×105, 

B=1×106, C=1.95) which can be observed as faster increase of the coefficient β when 

electric field increases. Higher value of A for α results in a higher value of the coefficient 

α for all the electric field values considered in the figure. Set 2 in Fig. 2 (b) shows the 

effect of increasing C. Keeping similar values of B for both sets (α: A=1×106, B=8×105 

C=1.95, β: A=6×105, B=8×105, C=2.40), a higher value of C for β results in a faster 

increase of the coefficient as the electric field increases.  Parameters B and C therefore 

collectively define the rate at which the ionisation coefficient increases/decreases when 

electric field changes.    

7.2.2 Recurrence model for calculation of avalanche gain and excess noise 

Avalanche multiplication is a random process and excess noise arising from the random 

position of the impact ionisation of seeded carriers is characterised by the probability 
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distribution function (PDF) of impact ionisation path length. The impact ionisation path 

length PDF simplified under the assumption that the distance dx traversed by an impact 

ionising carrier seeded at x is so small such that x/dx approaches a very large number, is 

expressed as 

𝑃𝑒(𝑥) =  𝛼𝑒−𝛼𝑥                                                        (3) 

This approximation is only valid if the ionisation dead space is very small compared to 

the mean free path between impact ionising collisions and the length of avalanche region. 

The ionisation dead spaces for electrons and holes are defined as the minimum distance 

the carriers must travel before impact ionising and are defined as 

𝑑𝑒 =  
𝐸𝑡ℎ,𝑒

𝐸
                                                                (4) 

𝑑ℎ =  
𝐸𝑡ℎ,ℎ

𝐸
                                                       (5) 

Where Eth,e and Eth,h  are the ionisation threshold energy of electrons and holes 

respectively expressed in eV, E is the electric field. In case of thin avalanche regions dead 

space however occupies a significant portion of the avalanche region and must be 

included in the analyses of multiplication gain and excess noise [5] and the impact 

ionisation path length PDF for electrons and holes are then approximated by 

𝑃𝑒(𝑥) =  {
0                                                       𝑥 < 𝑑𝑒

𝛼∗ exp(−𝛼∗(𝑥 − 𝑑𝑒))            𝑥 ≥ 𝑑𝑒
                         (6) 

𝑃ℎ(𝑥) =  {
0                                                       𝑥 < 𝑑ℎ

𝛽∗ exp(−𝛽∗(𝑥 − 𝑑ℎ))            𝑥 ≥ 𝑑ℎ
                         (7) 

Where α* β* are non-local impact ionisation coefficients which incorporate dead space 

and are expressed as [6] 

𝛼∗ = (
1

𝛼
− 𝑑𝑒)

−1
                                            (8) 

𝛽∗ = (
1

𝛽
− 𝑑ℎ)

−1
                                            (9) 

The excess noise and avalanche multiplication gain are predicted with ionisation path 

length PDF using a numerical recursive technique which assumes that for a uniform 

electric field throughout an avalanche region of width, W, an electron seeded at point x 
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inside the medium creates additional elector hole pairs after traversing the ionisation dead 

space. The newly seeded carrier pair behaves in completely independent but statistically 

identical manner to their parent career and this process continues till all the carriers exit 

the avalanche region at x = W. A similar argument applies to hole which exits the 

multiplication region at x = 0. Due to the extra carrier created as a result of impact 

ionisation the avalanche gain is expressed in terms of random number of electrons 

(including the parent carrier) and holes (including the parent carrier) at a given point 

inside the medium, Z(x), Y(x) as 

𝑀 =
1

2
(𝑍(𝑥) + 𝑌(𝑥))                                                        (10) 

Assuming that an election injected at a position x, undergoes impact ionisation for the 

first time at point i such that x < i < w, two electrons and a hole are created which can 

undergo further impact ionisation creating a random number of electrons and holes, Z1 

(i),Z2 (i) and Y1(i) respectively.  Z1 (i), Z2 (i) and Y1(i) statistically independent and Z1 (i) 

and Z2 (i) are distributed in a similar manner in the multiplication region. Provided that 

the first impact ionisation event happens at i the mean Z(x) is expressed in terms of the 

impact ionisation probability of electrons Pe (i-x) as: 

〈𝑍(𝑥)〉 =  ∫ 〈𝑍1(𝑖) +  𝑍2(𝑖) + 𝑌1(𝑖)〉
𝑤

𝑥
𝑃𝑒(𝑖 − 𝑥)𝑑𝑖                            (11) 

In the event of electron leaving the avalanche region without any impact ionisation, the 

probability for this event to take place is 1- Pe(w-i) where  

𝑃𝑒(𝑥) =  ∫ 𝑃𝑒 (𝑖)𝑑𝑖
𝑥

−∞
                                                    (12) 

And similar argument holds for holes seeded at i building up a random number Y(i). Due 

to the complementary probabilities of carriers initiating or escaping the impact ionisation 

events, the carrier ensemble average of Z(x) and Y(x) is expressed according to Eq. (13-

14) as 

〈𝑍(𝑥)〉 = 1 − 𝑃𝑒(𝑊 − 𝑥) + ∫ (2𝑧(𝑖) + 𝑦(𝑖))𝑃𝑒(𝑖 − 𝑥)𝑑𝑖
𝑤

𝑥
                  (13) 

〈𝑌(𝑥)〉 = 1 − 𝑃ℎ(𝑥) + ∫ (2𝑦(𝑖) + 𝑧(𝑖))𝑃ℎ(𝑥 − 𝑖)𝑑𝑖
𝑥

0
                      (14) 

Where the squared mean average of the ensemble is 

〈𝑍2(𝑥)〉 = ∫ 〈(𝑍1(𝑖) + (𝑍2(𝑖) + (𝑌1(𝑖))2〉𝑃𝑒(𝑖 − 𝑥)𝑑𝑖
𝑤

𝑥
                     (15) 
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〈𝑌2(𝑥)〉 = ∫ 〈(𝑍1(𝑖) + (𝑍2(𝑖) + (𝑌1(𝑖))2〉𝑃ℎ(𝑥 − 𝑖)𝑑𝑖
𝑥

0
                    (16) 

The excess noise is simply a ratio of the Eq. 15 and 16 and is simplified as 

𝐹(𝑥) =
〈𝑀2(𝑥)〉

〈𝑀(𝑥)〉2 =
𝑧2(𝑥)+2𝑧(𝑥)𝑦(𝑥)+𝑦2(𝑥)

(𝑧(𝑥)+𝑦(𝑥))2                               (17) 

Where z(x)= <Z(x)>, y(x)=<Y(x)>.  

 

7.2.3 Algorithm for calculation of avalanche gain and excess noise using 

recurrence equations 

The step by step numerical algorithm for calculating the multiplication gain and excess 

noise using the recursive equations 13, 14, 15 and 16 are solved iteratively according to 

the following steps: 

1. Avalanche region width is discretised using a mesh size, typically 600 points. 

2. Ensemble averages z(x), y(x) are initialised to values 1-Pe(W-x) and 1-Ph(x) 

respectively. 

3. The first estimate of z(x) was substituted to Eq. (14) to provide an improved 

estimate for z(x). 

4. Step 3 is repeatedly processed until a convergence between z(x) and y(x) is 

achieved. 

An executable program based on the theoretical model of sec. 6.2.2 and algorithm of sec. 

6.2.3 was developed and provided by my supervisor Professor C.H. Tan from the Impact 

Ionisation group at The University of Sheffield to simulate the avalanche gain and excess 

noise data.  

 

7.3 Extraction of Impact ionisation coefficients of 

Al0.85Ga0.15As0.56Sb0.44 

The avalanche gain data for pure electron and hole injection conditions is obtained 

experimentally by illuminating the p-i-n and n-i-p diodes with 442 nm photon 
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wavelength. The gain and excess noise data was obtained by Lucas Pinel from the Impact 

Ionisation group at the University of Sheffield.  The gain and excess noise data for pure 

electron, Me and pure hole Mh obtained from the mesa diodes is subsequently fitted with 

a recurrence model and algorithm described previously. Avalanche layer thickness, W of 

87 nm and 98 nm has been used for simulation of avalanche gain and excess noise of p-

i-n and n-i-p diodes respectively. Ideal p-i-n and n-i-p diodes were assumed for the 

simulation. The model incorporates a carrier dead space into the calculations. *, ß*, Eth,e 

and Eth,h were used as adjustable parameters to fit the experimental data for avalanche 

gain and excess noise. Table 1 lists the parameter sets derived using the procedure listed 

in previous section.  

Table 1: Parameter sets 1-4 derived with adjusting A, B, C and threshold ionisation energies. The parameter 

values correspond to the field dependence of the impact ionisation coefficient described by Eq. 1 and 2.  

Set. 

No 

Ae   

(cm-1 ) 

Be 

(cm-1 ) 

Ce Ah 

(cm-1 ) 

Bh 

(cm-1 ) 

Ch Eth,e 

(eV) 

Eth,h 

(eV) 

1 1.0×106 8.0×105 1.66 8.0×105 1.65×106 2.73 2.80 3.20 

2 9.8×105 7.9×105 1.66 9.9×105 1.62×106 2.24 3.60 3.70 

3 5.3×105 6.4×105 1.48 4.6×105 1.25×106 1.62 2.98 3.08 

4 1×106 8.0×105 1.95 9.9×105 1.65×106 2.50 3.20 3.30 

 

Fig. 3 shows experimental gain for pure electron and hole conditions fitted with the 

parameter sets shown in Table 1 as set 1 through 4.  All parameter sets fit the experimental 

data reasonably.  A robustness check on the parameter sets was done by fitting the excess 

noise data subsequently using the similar parameter set. Fig. 4 shows the experimental 

data for excess noise fitted with the parameter sets 1 – 4.  
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Fig. 3 Avalanche gain versus reverse bias data (circles) for pure electron injection (Left column) and pure 

hole injection (Right column) fitted with recurrence model using parameter sets 1-4 (solid lines). W=87 nm 

and 98 nm for p-i-n and n-i-p diodes respectively. 
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Fig. 4 Excess noise versus reverse bias data (circles) for pure electron injection (Left column) and pure 

hole injection (Right column) fitted with recurrence model. Parameter sets 1-4 (solid lines) are shown. ). 

W=87 nm and 98 nm for p-i-n and n-i-p diodes respectively. 
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There are a number of interesting observations in Fig.4. The experimental data for excess 

noise for pure electron injection is consistently smaller than that of pure hole injection 

condition for Al0.85Ga0.15As0.56Sb0.44. Recent studies on excess noise characteristics of        

p-i-n and n-i-p mesa diodes based on different avalanche thicknesses of 

Al0.85Ga0.15As0.56Sb0.44 by Pinel et al [7] has confirmed that electrons readily impact ionise 

in comparison with holes. This makes the avalanche process initiated by electrons less 

noisy compared to a hole initiated avalanche process.  

The influence of adjusting the threshold energy can be seen with ease by comparing 

parameter sets 1 and 4 from Table 1. A higher hole threshold ionisation energy for set 4 

leads to a reduced hole excess noise and can be seen by comparing the better fit of Fh 

versus Mh for set 4 in comparison with set 1 from Fig.4. It should be noted that fitting 

excess noise and gain data over a much wider range of electric fields would be necessary 

to test the accuracy of the parameters derived in set 4. However set 4 provides a mean to 

analyse the ionisation behaviour in Al0.85Ga0.15As0.56Sb0.44. Our fitting suggests that the 

threshold energies are close to to InP (3.0 eV for both electrons and holes) [3] and 

In0.52Al0.48As [8] (3.20 and 3.50 eV for electrons and holes respectively) and similar to 

Al0.8Ga0.2As [9] (3.20 and 3.30 eV for electrons and holes respectively). 

Other III-V materials like GaAs [10], Al0.6Ga0.4As [10], Ga0.52In0.48P [11] and 

Al0.9Ga0.1As0.02Sb0.98 [4] have also been investigated and field dependence of local impact 

ionisation coefficients in these parameters has been reported. Ionisation threshold 

energies (in eV) of electrons (holes) of 3.0 (3.0), 3.20 (3.50), 3.0 (3.3), 3.4 (3.6), 4.1 (4.1) 

and 1.74 (3.38) respectively in the order of mentioned references in this paragraph earlier. 

The local field coefficients,  and ß are extracted from Eq. 8 and 9 based on the 

calculation of non-local impact ionisation coefficients * and ß* from parameter set 4.  

To select an electric field range for calculating the impact ionisation coefficients as a 

function of electric field, we show a semi-log plot of M-1 as a function of reverse bias for 

pure electron injection condition i.e. a p-i-n diode. Fig. 5 shows the result.  



 

149 
 

 

Fig. 5 M-1 versus reverse bias for (a) pure electron injection, p-i-n diode, W = 87 nm. (b) Pure hole 

injection using the n-i-p diode, W=98 nm Circles: Experimental data, Solid lines: Numerical fit. 

Rectangular grey shaded region shows the best fit to experimental data. 

 

The modelling in Fig. 5 suggests a better fit to the experimental data in an electric field 

range of 1080-1263 kV/cm and 1069-1245 kV/cm respectively for electron and hole 

injection condition (grey shaded regions in Fig. 5). The gain values corresponding to the 

maximum and minimum electric field are Me = 6 and 61for pure electron and Mh = 1.8 

and 11 for pure hole injection condition respectively. Based on the data in Fig. 5, we 

select electric field in the range of 1080-1263 kV/cm for calculation of impact ionisation 

coefficients as a function of electric field.  

Fig. 6 shows the local impact ionisation coefficients as function of inverse electric field 

along with impact ionisation coefficient ratio, k defined as ß/ . The ionisation 

coefficients are plotted as a function of inverse electric field in the range of 1080-1260 

kV/cm corresponding to gains of 6 and 61 for an ideal p-i-n diode.  Both the ionisation 

coefficients and k value are shown on a log scale. The impact ionisation coefficients for 

both electrons and holes increase as electric field increases. The values are relatively 

disparate in at low field (1080 kV/cm,  = 2.13×105 cm-1, ß = 4.94×104       cm-1) and tend 

to merge as the electric field increases (1263 kV/cm,  = 2.47×105 cm-1,    ß = 1.35×105 

cm-1). Such a trend has been observed for a host of semiconductor materials including 

InGaAs [1], InAlAs [8], AlGaAs [10] and AlAsSb [12]. The field dependence of impact 

ionisation coefficients is influenced by the conduction and valence band structures for 

impact ionising electrons and holes respectively.  
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Fig. 6 Impact ionisation coefficients of electrons and holes as a function of inverse electric field for 

parameter set 4. Impact ionisation coefficients ratio is shown as well. Red dashed lines specify the electric 

field ranges specified earlier.  

 

The higher electron ionisation coefficient for all electric field values in Fig.6 is indicative 

of the trend that electrons have a higher impact ionisation probability per unit distance in 

comparison to holes. This increase in the k value is due to the increase rapid increase of 

the holes ionisation coefficient as the electric field increases. The k value increases from 

0.23 at 1080 kV/cm (0.91×10-6 cm/V) to 0.42 at 1263 kV/cm (0.79×10-6 cm/V) 

 

7.3.1 Comparison with other works 

The extracted impact ionisation coefficients for Al0.85Ga0.15As0.56Sb0.44 have been 

compared to the work of Yi et al [12] on AlAs0.56Sb0.44 for p-i-n structure avalanche 

photodiodes. Comparison in terms of the ionisation coefficients and the k value is 

provided in Fig. 7 and 8 respectively. The calculated local  and ß values for this work 

are higher than those of the AlAs0.56Sb0.44 from Yi et al [12]. The ionisation coefficients 

from the work of Yi et al are shown for a maximum electric field of 1263 kV/cm.   
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Fig. 7 Comparison of field dependence of impact ionisation coefficients of this work (parameter set 4, solid 

lines) with AlAs0.56Sb0.44 [12]. Dashed blue lines indicate the electric field used for calculation of the impact 

ionisation coefficients.  

 

 

Fig. 8 Comparison of ionisation coefficient ratio, k of this work (parameter set 4) with AlAs0.56Sb0.44 [12]. 

Blue dashed lines show the range of electric field over which the impact ionisation coefficients are 

calculated.  

In Fig. 8, the calculated k value of an 87 nm p-i-n diode is lower than that of Yi et al. 

Recalling Eq. 5 from chapter 1, a lower k value for a pure electron injection results in a 

lower avalanche excess noise. This is in agreement with the lower excess noise reported 
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by Pinel et al [7] for Al0.85Ga0.15As0.56Sb0.44 p-i-n diode based on 87 nm thick avalanche 

layer in comparison with a p-i-n diode based on 80 nm thick AlAs0.56Sb0.44 avalanche 

layer [13]. The fastest increase in the k value for Al0.85Ga0.15As0.56Sb0.44 in comparison 

with AlAs0.56Sb0.44 in Fig. 7 can be explained by the rapidly increasing hole ionisation 

coefficient for Al0.85Ga0.15As0.56Sb0.44 as observed in Fig. 6 and 7 as well. The rate of 

increase of individual ionisation coefficient of electrons and holes influences the increase 

of k ratio. Now we turn our attention to model the breakdown probability and the DCR as 

a function of overbias using the parameter set 4. In the next section we would like to 

discuss the model limitations.   

 

7.3.2 Limitation of the model 

The model assumes a perfect p-i-n and n-i-p structures where an abrupt doping profile is 

expected. Real devices however are not perfect p-i-n or n-i-p structures and depending on 

the doping the p and n- Al0.85Ga0.15As0.56Sb0.44 layers affect the rate at which the electric 

field develops across the avalanche layer. Different reverse biases are required to produce 

a similar change in the electric field across the avalanche layer as in case of a real p-i-n/n-

i-p structure the electric field develops slowly across the avalanche region in comparison 

to an ideal p-i-n/n-i-p structure. Fig. 9 compares the electric field profile of an ideal and 

real p-i-n diodes. The electric field has been calculated for a real p-i-n diode with an 87 

nm thick avalanche layer and p,i and n doping of 2×1018cm-3, 1×1015cm-3 and -2×1018   

cm-3 respectively using the calculation procedure shown in Appendix. A. The field has 

been calculated for a reverse bias of 11.99 V for p-i-n diode based on an 87 nm thick 

avalanche layer. A radius of 210 µm has been used for the electric field calculation.  
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Fig. 9 Calculated electric field as a function of depletion width. Black line: real p-i-n diode, Red: Ideal   

p-i-n diode.  

 

The arrows in the figure show the depletion in the p and n layers. It can be observed from 

Fig. 9 that the depletion in the p and n- Al0.85Ga0.15As0.56Sb0.44 layers changes the rate at 

which the electric field changes in the avalanche layer. This leads to an effectively higher 

ionisation coefficients for a real diode structure in comparison with an ideal structure.  In 

order to illustrate this point, a schematic in Fig. 10 shows the electric field profiles for 

two different reverse bias values. For an ideal p-i-n diode in Fig. 10 (a), the entire electric 

field is confined within the avalanche layer whereas for a real p-i-n diode in Fig. 10 (b), 

there is an effective reverse bias Veff  which is lost in extending the depletion region into 

the adjacent p and n layers. Consequently a slow increase in the ionisation coefficient is 

expected for a real p-i-n structure leading to an effectively higher ionisation coefficient 

for each carrier as shown schematically in Fig. 10 (c).   
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Fig. 10 (a) Electric field profiles at reverse bias values V1, V2 where V2>V1 for (a) ideal p-i-n diode and 

(b) real p-i-n diode. The red dashed regions in (b) show the depletion into the p and n regions. Veff 

schematically shows the voltage lost in extending the depletion region into the adjacent layers. (c) 

Schematic of ionisation coefficient as a function of inverse electric field for an ideal and a real p-i-n diode.  

 

7.4 Modelling breakdown probability as a function of 

overbias for AlGaAsSb 

Impact ionisation coefficients from the parameter set 4 derived previously are used to 

simulate the breakdown probability as a function of overbias using the numerical 

modelling technique of Ng et al [14]. The model calculates the breakdown probabilities 

due to electron-hole pairs for pure injection conditions corresponding to x=0 and x=W 

for a p-i-n structure. x=0 represents the top edge of avalanche region close to the p layer 

whereas x=W represents the bottom edge of the avalanche region close to the n layer in 

Fig. 1 (a). The breakdown probabilities as a function of position inside the avalanche layer 

are calculated as a function of the impact ionisation coefficients using the following 

expressions,  
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𝑑𝑃𝑏𝑒

𝑑𝑥
= (1 − 𝑃𝑏𝑒) × 𝛼 (𝑃𝑏𝑒 + 𝑃𝑏ℎ − 𝑃𝑏𝑒𝑃𝑏ℎ)                (18) 

𝑑𝑃𝑏ℎ

𝑑𝑥
= −(1 − 𝑃𝑏ℎ) × 𝛽 (𝑃𝑏𝑒 + 𝑃𝑏ℎ − 𝑃𝑏𝑒𝑃𝑏ℎ)               (19) 

Where the breakdown probability for an electron-hole pair is calculated using the 

expression, 

𝑃𝑏𝑝(𝑥) = 𝑃𝑏ℎ(𝑥) + 𝑃𝑏𝑒(𝑥) − 𝑃𝑏ℎ(𝑥)𝑃𝑏𝑒(𝑥)             (20) 

 

The executable programme for simulating the breakdown probability was provided by 

my co-supervisor, Professor Jo Shien Ng.  For calculation of the breakdown probability, 

an avalanche layer thickness of W=110 nm is used based on fitting the capacitance data 

of Al0.85Ga0.15As0.56Sb0.44 mesa diode, D = 220 µm using the experimental method 

described in sec. 3.2 in chapter 3 and simulation procedure described in Appendix. A. 

The breakdown voltage is calculated from the simulation and corresponds to the reverse 

bias where the breakdown probability becomes non-zero. The calculated breakdown 

voltage for Al0.85Ga0.15As0.56Sb0.44 mesa diode based on 110 nm thick avalanche layer is 

11.99 V. The breakdown probability is simulated as a function of overbias for pure 

electrons and hole injection conditions corresponding to positions x = 0 and W 

respectively. Fig. 11 shows the calculated pair breakdown probability as a function of 

overbias for pure carrier injection conditions using the impact ionisation coefficients from 

parameter set 4.  

The pair breakdown probability as a function of overbias for pure electron injection is 

higher than that of holes. This is explained by the fact that electrons readily impact ionise 

in Al0.85Ga0.15As0.56Sb0.44 compared to holes and therefore a higher breakdown probability 

is expected for carrier injection conditions maximising the injection of electrons.  
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Fig. 11 Breakdown probability as function of overbias for pure electrons (x=0) and pure hole injection 

conditions (x = W) for an ideal p-i-n diode. W=110 nm for the simulation and the calculated breakdown 

voltage from the simulation is 11.99 V. 

 

Comparing the calculated breakdown probability for pure electron injection conditions 

with experimental DCR data can be useful in assessing the suitability of the parameter set 

4 in modelling the breakdown probability. To facilitate the comparison, the experimental 

data for DCR from chapter 5 is normalised to the maximum achievable DCR for the 

experimental conditions. The DCR data for a 15 ns pulse (Fig. 8 chapter 5) is normalised 

to the maximum DCR of 66 MHz and a comparison is made with the calculated 

breakdown probability as shown in Fig. 12. 
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Fig. 12 Comparison of calculated breakdown probability with normalised DCR. The normalised DCR is 

calculated from the experimental conditions of Fig. 7 chapter 6. Normalised DCR is  for 15 ns overbias 

pulse,  

 

The normalised DCR increases very fast in comparison with the predicted breakdown 

probability. The calculated breakdown probability for pure electron injection reaches 0.8 

at an overbias of 8.4% whereas the normalised DCR reaches saturation at 2.5% overbias. 

Unless a dark carrier generation rate inside the avalanche layer is known, breakdown 

probability is not sufficient to model the DCR. Modelling DCR as function of overbias 

[15 - 17] is possible only if both the breakdown probability due to pure carrier injection 

and dark carrier generation rates inside the avalanche layer are known. At the moment we 

do not know the dark carrier generation rate inside the avalanche layer mostly due to 

experimental constraints. Provided that the dark carrier generation rate is known, 

conservative impact ionisation coefficients may not be sufficient to model the breakdown 

probability. In the next section, I would like to address these points in an effort to provide 

possible explanation of why the predicted breakdown probability is not sufficient to 

model the DCR as a function of overbias. 
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7.4.1 Dark carrier generation rate 

Dark carrier generation rate which strongly depends on overbias and increases as the 

overbias is raised. Several researchers for example Huntington et al [15, 17] have used 

the following model to estimate DCR as function of overbias using the position dependent 

breakdown probability Pbe(x) and a position dependent dark carrier generation rate G(x) 

and is expressed as 

𝐷𝐶𝑅(𝑥) = 𝐴𝐺𝑀−𝐴𝑃𝐷 × ∫ 𝐺(𝑥) × (𝑃𝑏𝑒(𝑥) + (𝑃𝑏ℎ(𝑥)) 𝑑𝑥                            (22) 

The dark carrier generation rate G(x) in Eq (22) can be a contribution from various sources 

of dark carriers generated inside avalanche layer including thermal generation and 

recombination, afterpulsing, trap assisted tunnelling and band to band tunnelling effects. 

Eq. (23) elaborates further the position dependent DCR in terms of the various sources 

just mentioned. 

𝐷𝐶𝑅(𝑥) = 𝐴𝐺𝑀−𝐴𝑃𝐷 × ∫[𝐺𝐺−𝑅(𝑥) + 𝐺𝑎𝑓𝑡𝑒𝑟𝑝𝑢𝑙𝑠𝑒(𝑥) + 𝐺𝑡𝑟𝑎𝑝(𝑥) +

𝐺𝑏𝑎𝑛𝑑−𝑡𝑜−𝑏𝑎𝑛𝑑(𝑥)] × (𝑃𝑏𝑒(𝑥) + (𝑃𝑏ℎ(𝑥)) 𝑑𝑥                            (23) 

  

 Generation recombination rate 

 In expressing Eq. (23) instantaneous effects of afterpulsing have been ignored. The 

carrier generation and recombination rates in the avalanche layers are tied to the 

Shockley-Read-Hall (SRH) life time. In typical InP Gieger mode operation for example, 

the generation recombination rates are negligible in wide bandgap avalanche layer and 

are only considered for narrow bandgap InGaAs absorber [17]. In such consideration, the 

thermal generation from absorber layer is negligible as they are cooled. In our Geiger 

mode APD we do not have any absorber layer, nonetheless the thermal generation 

component cannot be ignored as our GM-APD is not cooled and the experiments carried 

out in this chapter are at room temperature with no temperature stabilisation. At the 

moment we do not know the SRH life time for the nominally 100 nm thick AlGaAsSb 

avalanche layer.  
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 Afterpulsing induced dark carrier generation rate 

As discussed in previous chapter, afterpulsing is due to the trap defects in the avalanche 

layer that can trap charge carries which can be released later on during the avalanche flow 

causing spurious and unwanted avalanches. Assuming a position dependent excess trap 

concentration of N(x) with a characteristic trap life time Ttrap, the dark carrier generation 

rate due to afterpulsing traps at time t after breakdown can be expressed in Eq. (24) as  

 

 

𝐺𝑎𝑓𝑡𝑒𝑟𝑝𝑢𝑙𝑠𝑒(𝑥) =
𝑁(𝑥)

𝑇𝑡𝑟𝑎𝑝
exp(−

𝑡

𝑇𝑡𝑟𝑎𝑝
)                          (24) 

 

DCR versus pulse repetition frequency data shown earlier in Fig. 12, Chapter 6 indicated 

a possible afterpulsing effect in the avalanche region. However to confirm on this 

hypothesis, data on temperature dependent DCR will be imperative to extract the 

afterpulsing trap life time [16]. Since the dimensions of our DCR measurement equipment 

is not compatible with the physical dimensions of a Janis probe pump station we were not 

able to perform low temperature DCR measurements and therefore we do not know the 

afterpulsing trap life time. In addition, the position dependent afterpulsing trap 

concentration inside the avalanche layer is not known.  

 

 Dark carrier generation due to trap assisted and band to band tunnelling 

currents 

Dark carrier generation through trap assisted tunnelling is a 2-step process. Firstly an 

electron is promoted out of the valence band into the mid-gap defect site resulting in a 

mobile hole in valence band and an occupied trap. In the second step, if the trapped 

electrons manages to tunnel to the conduction band from the trap site, an electron hole 

pair is created in the avalanche layer. Provided that the excess pair have enough energy, 

dark carriers can be generated during the avalanche flow. This generation rate depends 

on position dependent density of trap states, Nt(x) trap energy level Et, Fermi energy of 

the semiconductor material and the tunnelling trap life time, Ttunn and is expressed in Eq. 

(25) as  
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𝐺𝑡𝑟𝑎𝑝(𝑥) =
𝑁𝑡(𝑥)

𝑇𝑡𝑢𝑛𝑛
(1 + exp[

𝐸𝑡−𝐸𝐹

𝑘𝐵𝑇
])−1                          (25) 

Where kB is Boltzmann’s constant. Experimental study of DCR at different temperatures 

by Tosi et al [17] on a Princeton Lightwave, PLI InP Geiger mode APD  has shown that 

trap assisted tunnelling is dominant contributor to DCR due to deep traps in the InP 

multiplication layer. Such an analysis is not possible at our facilities due to the lack of 

low temperature characterisation of DCR. 

Band to band tunnelling currents are negligible due to wide bandgap of 

Al0.85Ga0.15As0.56Sb0.44 (1.59 eV at 294 K) avalanche layers as confirmed by Zhou et al 

[18] on their study on breakdown characteristics of AlxGa1-xAs0.56Sb0.44.  

In summary, parameters on SRH life time, tunnelling trap life times, position dependent 

tunnelling trap concentration, afterpulsing trap life time and position dependent 

afterpulsing trap concentration will be needed for estimation of dark carrier generation 

rate inside the Al0.85Ga0.15As0.56Sb0.44 avalanche layer and presently we cannot model the 

experimental data for DCR as a function of overbias. Now we turn our attention to the 

conservative Impact Ionisation coefficients extracted earlier in this chapter and comment 

on the need for a more comprehensive experimental data for avalanche gain and excess 

noise needed for modelling the Impact Ionisation coefficients. 

 

7.4.2 Conservative Impact Ionisation coefficients 

The calculation of the breakdown probability in this chapter is based on the Impact 

Ionisation coefficients extracted from fitting the gain and excess noise data for an 87 nm 

and 98 nm thick avalanche layers. At the moment, we have calculated the ionisation 

coefficients in the electric field ranges of 1080-1263 kV/cm. Based on the calculated 

breakdown voltage of 11.99 V for a 110 nm thick avalanche layer, an electric field 

calculation has been carried out at different overbias values (Breakdown probability in 

Fig. 12) in the range of 0.01 – 8.4% and the result is shown in Fig. 13 where the electric 

field profile is plotted as a function of depletion region.  
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Fig. 13 Electric field as a function of depletion width for a 110 nm thick avalanche layer. The Data sets 

correspond to overbias values in the range of 0.01% to maximum of 8.4 % overbias using a breakdown 

voltage of 11.99 V. 

 

As observed in Fig. 13, the maximum electric field for 8.4% overbias is 999 kV/cm which 

is outside the range of electric field covered in calculation of the impact ionisation 

coefficients for Al0.85Ga0.15As0.56Sb0.44. This can possibly be a reason (s) for the 

disagreement between the normalised DCR and breakdown probability in Fig. 12.   

A range of avalanche layer thicknesses is needed to test the accuracy of the ionisation 

coefficients which may model the normalised DCR more accurately provided that lack of 

impact ionisation coefficient values in low electric field range is the only reason for 

disagreement between normalised DCR and breakdown probability. In this regard, it is 

worthwhile to note that the authors of ref. [12] have extracted the local Impact Ionisation 

coefficients for AlAs0.56Sb0.44 experimentally by fitting excess noise data for seven (7) 

different avalanche layer thicknesses in the range of 100 nm to 1.5 µm covering an electric 

field range of 220 – 1250 kV/cm for α and 360 – 1250 kV/cm for β. Whereas the 

coefficients extracted in this work are based on an avalanche layer thickness of 87 nm and 

98 nm only covering an electric field range of 1080 – 1263 kV/cm and 1069 – 1245  

kV/cm for α and β respectively. Moreover, as described in sec. 6.3.2 the model is valid 

only for an ideal p-i-n structure and the actual impact ionisation coefficients 

corresponding to a real p-i-n structure are expected to be slightly different.  



 

162 
 

In summary, given the lack of parameters involved in estimation of dark carrier 

generation rates and the conservative Impact Ionisation coefficients used in this work to 

predict the breakdown characteristics, it is not possible to model the DCR as a function 

of overbias at the moment. Further experimental work on the following is needed: 

 Characterisation of DCR as a function of overbias at different temperatures. 

 Avalanche gain and excess noise data for several thicknesses of 

Al0.85Ga0.15As0.56Sb0.44 avalanche layer. 

 

7.5 Summary 

In summary, we have modelled the breakdown characteristics of Geiger mode APDs 

based on 110 nm thick avalanche layers of Al0.85Ga0.15As0.56Sb0.44 lattice matched to InP 

substrate. The impact ionisation coefficients were extracted by fitting the experimental 

data for avalanche gain and excess noise under pure carrier injection conditions for p-i-n 

and n-i-p diodes based on 87 nm and 98 nm thick avalanche layers respectively. A 

comparison of the field dependence of local ionisation coefficients was made with 

AlAs0.56Sb0.44 lattice matched to InP substrate. Based on the extracted impact ionisation 

coefficients, the breakdown probability was modelled as a function of overbias for pure 

injection conditions.  
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Chapter 8 

Conclusion and Future Work 

8.1  Conclusion  

We have fabricated and characterised linear and Geiger mode avalanche photodiodes 

based on thin avalanche layers of Al0.85Ga0.15As0.56Sb0.44. Device fabrication for linear 

and Geiger mode APDs was carried out. Uniform breakdown voltages were observed 

across the wafer. A series resistance problem was observed with devices of smaller sizes 

possibly due to poor metal adhesion and smaller contact area.  

For the linear mode characterisation, temperature and temporal dependence of avalanche 

gain was assessed. The results showed that mesa diodes based on thin AlGaAsSb 

avalanche layers showed a reduced temperature sensitivity of avalanche breakdown (1.6 

mV/K) which is attributed to the combination of reduced phonon scattering at high 

electric fields for thin avalanche layers and dominant alloy scattering. The temporal 

stability of avalanche gain shows promising results with a maximum fluctuation in mean 

percentage gain of ±1.33% at 353 K. No premature edge breakdown was observed in the 

devices. An analyses of the dark current after gain measurements at elevated temperature 

confirmed there was no significant thermal degradation. Thin avalanche layers of 

Al0.85Ga0.15As0.56Sb0.44 have the potential to replace state-of-the-art InP and InAlAs 

avalanche layers and can simplify the operational complexity of APD packages which 

rely on temperature stabilisation circuitry to maintain constant gain. 

 The promising temperature and temporal stability of avalanche gain is also beneficial for 

Geiger mode operation. Al0.85Ga0.15As0.56Sb0.44 mesa diodes were operated in Geiger 

mode and the maximum overbias was limited to 2.5 – 4 %. The electric field is confined 

entirely across the undoped layer in the p-i-n mesa diodes and this is a possible reason for 
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saturation of DCR at low overbias values. This is in stark contrast to InP or InAlAs Geiger 

mode APDs where the electric field is not entirely confined in the multiplication layer. 

The voltage transient signals were not a problem in DCR characterisation and the overbias 

pulse amplitudes and DC levels did not affect the DCR values which is a practical 

advantage over InP or InAlAs Geiger mode APDs. In addition, owing to the small device 

capacitance, weak avalanche signals were easily discriminated. Study on the DCR 

characterisation showed that the avalanche current was properly quenched. Studies on 

DCR as a function of dead time suggested that shorter overbias pulses should be used to 

see any influence from possible afterpulsing effects. DCR characterisation as function of 

pulse repetition frequency and dead time for narrow overbias pulse (15 ns) showed an 

increase in the dark count as dead time was reduced below 700 ns. A temperature 

dependent study of DCR is needed to confirm the afterpulsing effect. The DCR for 

Al0.85Ga0.15As0.56Sb0.44 Geiger mode APDs demonstrated a promising temporal stability 

without relying on conventional Peltier coolers and showed a maximum increase of 

2.23% which was attributed to variations in threshold level. Time distribution of DCR 

showed an exponential decay where majority of avalanche breakdown events were 

registered close to the rising edge of the overbias pulse. The breakdown events were 

recorded within a well-defined pulse duration of 100 ns.  

Impact ionisation coefficients for thin Al0.85Ga0.15As0.56Sb0.44 avalanche layers were 

derived by fitting experimental data for avalanche gain and excess noise under pure 

injection conditions with recurrence technique. Reasonable fits to the avalanche gain and 

excess noise data were obtained. Subsequent modelling of breakdown probability as 

function of overbias was carried out using the impact ionisation coefficients derived 

previously.  Modelling suggested that the recorded DCR increased at a significantly faster 

rate than predicted breakdown probability characteristics. This suggests either significant 

onset of tunnelling current, inaccuracies in ionisation parameters or influence of threshold 

level used in measurements.  

 

8.2  Future work 

Based on the DCR results obtained in this thesis, we recommend the following as our 

suggested future work.  
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8.2.1  Temperature dependent DCR characterisation 

 Temperature dependent study of DCR can shed light on two important aspects of the 

Geiger mode APDs under study in this thesis. Studies on the DCR as a function of pulse 

repetition frequency in chapter 5 have suggested that their might be thermal generation in 

the avalanche region at higher repetition frequencies which resulted in an increase of the 

DCR as the repetition frequency was increased from 800 kHz to 4.4 MHz. Since the 

temperature coefficient of avalanche breakdown is very small for Al0.85Ga0.15As0.56Sb0.44 

we believe thermal generation can possibly increase the DCR. If this study is carried out 

at a lower temperature, this hypothesis can be confirmed. Therefore as a future work 

based on this study, we suggest carrying out DCR characterisation at lower temperatures. 

Temperature dependent study of DCR as a function of overbias can be very useful to 

ascertain the origin of the dark counts registered in the Geiger mode. According to 

Arrhenius equation the temperature dependence of DCR can be expressed according to  

𝐷𝐶𝑅 = 𝐴 exp(−
𝐸𝐴

𝑇𝑘𝑏
)                                                 (1) 

Where EA, T and kB are process activation energy, temperature and Boltzmann’s 

constant respectively and A is a constant. Carrying out the DCR characterisation as a 

function of overbias at different temperatures can help in estimating the activation energy 

of the mechanism which can help in assessing if the DCR is from thermally generated 

carriers or tunnelling effects.  

8.2.2  Single Photon Detection Efficiency of p-i-n Geiger mode 

Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes 

 

In Geiger mode, Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes have demonstrated a 

potential for photon detection for short overbias pulse duration of 15 ns. The device was 

biased at 1.95% overbias for a pulse repetition rate of 100 kHz.  The result shows a 

potential of AlGaAsSb for photon detection for shorter overbias pulse durations which 

are useful for high count rate applications. Since the light source was not calibrated, a 

single photon detection efficiency cannot be estimated. Using a controlled light source 

with a certain frequency and wavelength, the number of photons per pulse at the test 
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wavelength can be estimated and single photon detection efficiency can consequently be 

calculated. In the next section we discuss the future prospects of turning the Geiger mode, 

Al0.85Ga0.15As0.56Sb0.44 p-i-n avalanche photodiodes into Single Photon Avalanche Diodes 

(SPADs). 

 

8.2.3  In0.47Ga0.53As/ Al0.85Ga0.15As0.56Sb0.44 Single Photon Detectors  

Al0.85Ga0.15As0.56Sb0.44 is lattice matched to InP and using a separate absorption 

multiplication structure (SAMAPD), In0.47Ga0.53As layer can be incorporated with 

Al0.85Ga0.15As0.56Sb0.44 to provide detection at 1550 nm. For conceiving an In0.47Ga0.53As/ 

Al0.85Ga0.15As0.56Sb0.44 SAMAPD type Geiger mode photodiode (also referred to as a 

SPAD), the following needs to be considered. 

Higher depletion thickness due to charge sheet, grading and absorption layers will result 

in a higher Cbd value in comparison with a simple p-i-n structure. Assuming, that all the 

breakdown events are confined only to the avalanche region, the Cbd of a SAMAPD 

structure is expected to be higher than a p-i-n structure with similar avalanche region 

thickness. However as far as the avalanche material is concerned, results in this thesis 

have demonstrated that thin Al0.85Ga0.15As0.56Sb0.44 layers are robust and have 

demonstrated stable avalanche gain under high temperatures in the linear mode. Keeping 

view the wide bandgap and reduced temperature coefficient of avalanche breakdown of 

Al0.85Ga0.15As0.56Sb0.44 in comparison with InP and InAlAs It will be interesting to 

compare the performance of Al0.85Ga0.15As0.56Sb0.44 GM-APD with InP and InAlAs single 

photon detectors.   

 As far as the low temperature operation of the SPAD will be concerned, it will be 

imperative to cool the device as the narrow bandgap In0.47Ga0.53As absorber will 

excessively contribute to the DCR through thermal generation mechanism. In order to 

provide a comparison to the in-class Si SPADs, it will be instructive to remove the 

bandgap disparity between Si and AlGaAsSb SPADs by comparing the performance at 

temperature that compensates for the bandgap disparity. To elaborate this, we note that 

the thermal generation due to Shockley-Read-Hall (SRH) processes is proportional to 

Eg/2kT where Eg is material bandgap, k and T the Boltzmann’s constant and device 

temperature respectively. The factor of 2 is due to the mid-gap states in the material close 
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to energy levels of Eg/2. At room temperature the tem Eg/2kT for Si (Eg = 1.6 eV) whereas 

for AlGaAsSb the similar value for Eg/2kT is reached at - 70⁰C. It will therefore be 

important to perform the DCR measurement of AlGaAsSb SPAD at low temperatures to 

compensate for the thermal generation from the narrow bandgap InGaAs absorber.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

170 
 

Appendix 

Electric field calculation  

Poisson solver is used to calculate the electric field profile of diodes used in this work. 

The model assumes a full depletion for all the layers except the 1st and nth layer for an n-

layer device structure. For a p+-i-n- layer structure which is the same structure as the linear 

and Geiger mode APDs of this thesis, let the doping in these layers be N1, N2 and -N3 and 

the thickness of these layers be X1, X2 and X3, the electric field gradient of position inside 

the layers is given according to Poisson equation in equation set 1 as, 

(
𝑑𝐸

𝑑𝑥
)

1
=

𝑞𝑁1

𝜀
, (

𝑑𝐸

𝑑𝑥
)

2
=

𝑞𝑁2

𝜀
, (

𝑑𝐸

𝑑𝑥
)

3
=

𝑞𝑁3

𝜀
                  (1) 

Where q and ɛ are electronic charge and permittivity of medium. Electric field at the 

junctions of the p+-i-n- layer can be written as, 

𝐸1 =
𝑞𝑁1𝑋1

𝜀
, 𝐸2 = 𝐸1 +

𝑞𝑁2𝑋2

𝜀
, and 𝐸2 = −

𝑞𝑁3𝑋3

𝜀
                     (2) 

Re-arranging and substitution of E1 gives an expression for X3 as, 

𝑋3 = −
(𝑁1𝑋1+𝑁2𝑋2)

𝑁3
                                                 (3) 

Total voltage Vt developed across the structure as a result of the electric field at the 

junctions can be expressed as, 

𝑉𝑡 =
(𝐸1𝑋1+𝐸2𝑋3+(𝐸1+𝐸2)𝑋2)

2
                                           (4)    

Substituting Eq. 2 and 3 into 4 gives, 

𝑁1 (1 −
𝑁1

𝑁3
) 𝑋1

2 + 2𝑁1 (𝑋2 −
𝑁2𝑋2

𝑁3
) 𝑋1 −

(𝑁2𝑋2)2

𝑁3
+ 𝑁2𝑋2

2 −
2𝜀𝑉𝑡

𝑞
= 0        (5)       

Eq. 5 is a quadratic equation in variable X1 and can be calculated as, 

                                                     𝑋1 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
                         (6)      

Where  
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𝑎 = 𝑁1 (1 −
𝑁1

𝑁3
) , 𝑏 = 2𝑁1 (𝑋2 −

𝑋2𝑁2

𝑁3
) , 𝑐 = −

(𝑁2𝑋2)2

𝑁3
+ 𝑁2𝑋2

2 −
2𝜀𝑉𝑡

𝑞
     (7) 

Similarly, for a 5-region structure such as the one discussed in Fig. 5 chapter 5, the 

analysis yields the values of a,b and c as, 

 𝑎 = 𝑁1 (1 −
𝑁1

𝑁5
) , 𝑏 = 2𝑁1 ((𝑋

2
+ 𝑋3 + 𝑋4) −

𝑋2𝑁2+𝑋3𝑁3+𝑋4𝑁4

𝑁5
) , 𝑐 =

−
(𝑁2𝑋2+𝑁3𝑋3+𝑁4𝑋4)2

𝑁5
+ 𝑁2𝑋2

2 + 𝑁3𝑋3
2 + 𝑁4𝑋4

2 + 2𝑁2𝑋2(𝑋3 + 𝑋4) +

2𝑁3𝑋3𝑋4 −
2𝜀𝑉𝑡

𝑞
                    (8) 

Where Ni and Xi are doping and thickness of ith layer. For n layer structure, the 2nd to       

(n-1)th  are completely depleted and the depletion in 1st and nth  layers can be calculated 

according to Eq. 3 and 7 (3-layers) and Eq. 3 (generalised for n-layers) and 8. The model 

requires user defined inputs of doping and thickness of the epitaxial layers and built-in 

voltage.   

 

 

 


