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Abstract 
 

Anthropogenic factors such as habitat loss, over-harvesting and the introduction of 

non-native species are causing declines in global biodiversity. In sub-Saharan Africa, 

illegal hunting for bushmeat or high-value products such as rhino horn and ivory is 

threatening many mammal populations. Monitoring these populations is vital to 

ensuring their survival, yet professional scientific monitoring programs are costly 

and logistically difficult. Ranger-based monitoring, where rangers record evidence of 

illegal activities or wildlife sightings when on patrol is becoming increasingly 

popular.   

Here, we use maps of occurrence probability of bushmeat poaching derived from 

ranger-collected data in Queen Elizabeth National Park (QENP), Uganda, to 

determine the direct impacts of illegal hunting on herbivore populations. We found 

that the main target species for bushmeat poaching, Uganda kob, showed declines in 

areas predicted to have high poaching risk, reporting population level impacts of 

illegal hunting in a savannah for the first time.  

We go on to document how ranger-collected elephant sightings data can be used to 

predict their spatial distribution within QENP, using Bayesian hierarchical 

occupancy modelling to address the non-systematic method of data collection. We 

also attempt to create a time series model of elephant abundance in order to predict 

rapid declines that can occur in elephant populations. 

We conclude by highlighting the potential for ranger-based monitoring and ranger-

collected data, suggesting ways it might be incorporated to continually monitor 

vulnerable populations in light of a rapidly expanding human population. 
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Chapter 1. Introduction 
 

1.1 Commercial and subsistence bushmeat hunting in protected areas 
 

Global biodiversity is in decline, due to anthropogenic factors such as habitat loss, 

over-harvesting and the redistribution of species around the planet. In tropical 

countries, the primary threats to vertebrates are over-harvesting and habitat loss, and 

strategies to combat this include the creation of protected areas and law enforcement. 

Wildlife crime has become a topic of international concern in recent years, due to the 

dramatic rise in elephant and rhino poaching to meet international demands for rhino 

horn and ivory. The term wildlife crime, however, covers a much wider range of 

activities, from bushmeat hunting and illegal fishing, to firewood and medicinal 

plant collection, all of which can affect both populations and biodiversity. Smaller-

scale wildlife crimes, such as subsistence bushmeat hunting, are often driven by 

poverty, in particular during times of economic hardship (Rogan et al. 2017). 

Commercial bushmeat hunting might occur when larger species, such as buffalo, are 

hunted and the meat sold to generate funds which are then used as currency.  

Illegal harvesting of animals for bushmeat, either for subsistence, or commercial for 

markets can have negative impact on populations in protected areas. Commercial 

bushmeat hunting typically involves larger mammals, such as buffalo or 

hippopotamus, due to their high value, with meat ending up in regional markets. 

Subsistence bushmeat hunting involves smaller, lower value animals, such as smaller 

antelope, and typically ends up in local markets (Harrison et al. 2015).  Cases of 

negative ecological impacts from illegal bushmeat poaching have been well 

documented in African rainforest regions (Noss 1998, Fa et al. 2002, Brashares et al. 
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2004, Jachmann 2008, Fa & Brown 2009, Laurance 2012, Watson et al. 2013), but 

are less common for savannah ecosystems.  

Bushmeat is a significant contributor to food security, often being the primary source 

of protein in rural communities, as well as providing funds for healthcare and 

education (Loibooki et al. 2002, Nielsen 2006, Lindsay et al. 2013). The human 

population is increasing rapidly in much of sub-Saharan Africa (Hall et al. 2017), 

and populations bordering protected areas are growing faster than those in other rural 

areas (Wittemeyer et al. 2008). This suggests that people perceive the benefits of 

protected areas, either from the share of income generated from protected areas to 

local communities, or the opportunity to carry out illegal activities (Hofer et al. 

1996). The authors suggest that levels of bushmeat poaching are likely to increase 

while its benefits are sufficient to encourage people to migrate close to protected 

areas.  

The impacts of bushmeat poaching in protected areas can be extreme. It is estimated 

that up to 10% of the Serengeti-Mara wildebeest population is poached for bushmeat 

each year (Rentsch and Packer 2015). Buffalo populations have declined in Serengeti 

National Park where illegal bushmeat hunting takes place, and levels of poaching are 

unsustainable with the accelerated population growth around the park’s borders 

(Hofer et al. 1996, Metzger et al. 2010, Hilborn et al. 2006)  

Along with a reduction in food quality, bushmeat hunting was found to be a 

contributing factor in the decline in the Serengeti Masai giraffe (Giraffa 

camelopardalis tippelskirchi) population (Sinclair 1995, Campbell & Borner 1995, 

Stauss et al. 2015). Serengeti giraffe density is estimated to have fallen by 80% since 

1970 (Stauss et al. 2015). Furthermore, giraffe poaching may be male-biased, as 
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males spend more time in dense woodland and browse higher in the canopy, where 

snares are often set (Young & Isbell 1991). Male-biased hunting has led to a 

reduction in female fecundity in several species (Ginsberg & Milner-Gulland 1994). 

Hunting of impala in Serengeti buffer zones not only significantly reduces their 

density, but also their demography (populations are more likely to be female-

skewed) and behaviour (Setsaas et al. 2007). Buffer zone populations have 

demonstrate higher alertness levels, as well as longer flight initiation distance to 

approaching humans. This suggests bushmeat hunting has impacts other than merely 

reducing population densities.  

Hunting for bushmeat also significantly reduces mammal species richness. A less 

strictly protected forest reserve in Tanzania was found to have 40% fewer mammal 

species than a national park (Hegerl et al. 2017). The main difference between these 

two protected areas is the level of protection, suggesting that ineffective or non-

existent law enforcement can lead to uncontrolled hunting, which in turn has a 

significant impact on local fauna. 

Bushmeat hunting may also have indirect effects on non-target species. Brodie et al. 

(2009) found significantly reduced mammal-dispersed tree recruitment in in areas 

with high levels of bushmeat poaching for primates and ungulates in Southeast Asia. 

In the highest poached protected areas, the extinction of a key canopy species 

Choerospondias axillaris is a real possibility, although it may take several decades.    

As well as threatening wild herbivore populations, illegal bushmeat hunting causes 

competition between humans and other apex predators for limited prey species and 

reduces the ecosystem’s carrying capacity for large carnivores (Rogan et al. 2017). 
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The above literature certainly suggests that bushmeat poaching has a significant 

impact on both abundances and distributions of animals within protected areas, as 

well as non-target organisms such as trees and predators. It is also evident that 

bushmeat poaching is more intense and has much greater effects in areas with 

insufficient law enforcement. In order to conserve biological diversity within 

protected areas, it is therefore important to improve law enforcement where possible, 

preferably without increasing strain on already small budgets.  

Although there is a growing body of evidence pointing to the  scale and negative 

impacts of illegal bushmeat hunting in savannah ecosystems, there have been no 

studies to date which have looked at the direct impacts of bushmeat hunting on 

herbivore populations. It remains unclear whether the scale of bushmeat poaching in 

protected areas is sustainable or not, and if offtake falls below or exceeds surplus 

productivity. In order to properly study this, it is important to understand both the 

spatial and temporal trends of illegal bushmeat hunting inside protected areas. 

Critchlow et al. (2015) used ranger-collected data on a variety of illegal activities 

from Queen Elizabeth National Park (QENP) in Uganda to model these trends. 

Using these models, the authors were able to predict where each illegal activity is 

most likely to occur, and suggest alternative ranger patrol routes (Critchlow et al. 

2017), which increased detections of illegal activities by up to 250%. In chapter 2 of 

this thesis, I modelled the spatial and temporal trends in abundance of three key 

herbivore species in QENP, using the probability of illegal bushmeat hunting from 

Critchlow et al (2015) as a covariate, in order to investigate the direct impacts of 

bushmeat hunting on herbivore species.  
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1.2 Illegal hunting of African elephant for ivory 
 

The iconic African elephant plays a number of important ecological, economic and 

cultural roles in sub-Saharan Africa. Elephants are a keystone species, meaning they 

have a disproportionately large effect on the community and ecosystem processes 

within savannahs. Elephant act as ecosystem engineers, shaping the landscape and 

vegetation structure around them (Laws 1970, Fritz 2017). In savannah ecosystems, 

elephant clear young trees, maintaining open savannah grassland whilst dispersing 

seeds of many plant species (Wilby et al. 2001). This has profound trophic effects, 

providing and improving habitat for invertebrates (Romero et al. 2015), reptiles and 

amphibians (Pringle 2008, Nasseri et al. 2011) and other herbivores (Rutina et al. 

2005).  

Elephants also have large economic value across much of Africa. Photographic 

tourism is a huge global market (Moorhouse et al. 2017), the revenue from which 

can be re-invested in conservation programs, such as the creation of protected areas 

and the implementation of range patrols (Ballantyne et al. 2009). Tourism revenue is 

also often re-invested in local communities as incentives for conserving wildlife 

(Ahebwa et al. 2009, Sandbrook, 2010), facilitating local employment and the 

construction of schools, clinics and infrastructure (Archibald & Naughton-Treves 

2001). The benefits of photographic tourism are not always perceived by, or well 

invested in, local communities. Naidoo et al. (2016) suggest that in many protected 

areas, local people see poaching as a more rational and consistent source of income.  

Prior to European colonisation of Africa, there may have been as many as 20 million 

elephant across the continent, and 1 million as recently as 1970 (Douglas-Hamilton 

1987, Milner-Gulland & Beddinton 1993). During the 1970’s and 1980’s, wide scale 
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poaching of elephant for ivory, as well as habitat loss and fragmentation caused 

severe declines in the majority of populations (Wittemyer et al. 2014, Craigie et al. 

2010). Between the late 1980’s, elephant populations had recovered considerably, 

until a sharp rise ivory prices in the last decade led to a spike in elephant poaching. 

(Wittemyer et al. 2014) in It is unclear quite how many elephants remain in the wild 

today, with current estimates around 350,000 (Chase et al. 2016). Despite some 

populations remaining stable or increasing (Morrison et al. 2018, Van Aarde & 

Jackson 2007), the continent wide population of elephants is shrinking by 8% per 

year (Chase et al. 2016).  

As well as illegal hunting of elephant for ivory, declines in populations have also 

been attributed to habitat loss and fragmentation, and conflict with humans (Ripple 

et al. 2015, Lobora et al. 2017). Since 1970, the amount of suitable elephant habitat 

has fallen by as much as 60% (Blanc et al. 2007, UNEP 2013). At the same time, the 

human population of Africa is increasing rapidly, with more elevated growth around 

protected areas (Wittemeyer et al. 2008). As elephants are migratory and often travel 

long distances (Thouless 1995), this inevitably leads to conflict between humans and 

elephants, leading to illegal killings to protect livelihoods.   

The increasing demand for ivory in Asian countries such as China, Japan and Hong 

Kong has caused the price of ivory on the black market to increase dramatically over 

the past 15 years (Stiles 2004, Gibson et al. 2018). This has resulted in many more 

elephants being poached, with an estimated population decrease of 144,000 between 

2007 and 2014 (Chase et al. 2016), a trend which has continued in recent years 

(Kyando et al. 2017, Beale et al. 2018, Schlossberg et al. 2018).  
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Conservation efforts to prevent the illegal hunting of elephants generally consist of 

the creation of protected areas, wildlife corridors to facilitate migrations and 

surveillance patrols by law enforcement agencies. Although 84% of elephants can be 

found in protected areas (Chase et al. 2016), poaching is still common. Effective law 

enforcement has been shown to reduce numbers of elephants poached in protected 

areas (Leader-Williams et al. 1990, Milner-Gulland & Leader Williams 1992, 

Jachmann & Billiouw 1997, Martin 2010, Moore et al. 2017), although it remains 

unclear whether ranger patrols act as a deterrent to poachers (Beale et al. 2018). In 

order to conserve the remaining African elephants, at both global and continental 

scales, close monitoring of existing populations is vital.  

1.3 Ranger-based monitoring and ranger-collected data 
 

The monitoring of biodiversity is crucial in assessing trends in vulnerable species 

and assigning conservation priorities (Balmford et al. 2005). Likewise, monitoring of 

populations is vital in order for conservation scientists and policy makers to assess 

the impacts of their interventions (Kremen et al. 1994). Although scientifically 

robust, professional monitoring programs carried out by trained scientists, such as 

large mammal aerial surveys, are often highly costly and logistically difficult, 

especially for conservation agencies in developing countries. This high cost can 

result in monitoring programs being discontinued or carried out so infrequently that 

rapid declines in key populations can be missed (Danielsen et al. 2005b).  

Recently, monitoring programs carried out by untrained members of the community 

have risen in popularity. This locally-based monitoring can be carried out by local 

resource users monitoring harvests, hunters monitoring catch rates or censuses by 

local rangers (Danielsen et al. 2005b). When carrying out surveillance patrols, 
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employed rangers often record the location of any signs of illegal activities and 

notable wildlife sightings. This ranger-collected data can serve a variety of functions. 

Gray & Kalpers (2005) outline a successful monitoring program carried out by 

rangers in the Virunga-Bwindi region of East-Central Africa. The data collected 

provided information on illegal activities in the area, as well as locations and 

behavioural patterns of habituated and unhabituated groups of mountain gorillas 

(Gorilla beringei beringei). This allowed park managers to make rapid decisions in 

response to threats to the ecosystem. Brashares & Sam (2005) analysed data from a 

33 year ranger-based monitoring program from savannah ecosystems in Ghana, West 

Africa to identify the minimum level of monitoring to be able to detect trends in 

abundance of wildlife over 5 year intervals. These methods of assessing ranger-

collected data to assess trends in animal populations can lead to highly biased results, 

as analyses assume random or uniform survey effort across the area. Conversely, 

rangers focus on where they feel they are most likely to encounter illegal activities 

when planning their patrol routes.  Recently, methods have been developed to 

address this bias by estimating the probability of detecting an event (in this case, a 

wildlife sighting) independently from the processes that drive the distribution of the 

events (Beale et al. 2014). 

Rangers in QENP have been recording details of illegal activities and wildlife 

sightings since 1999, using the SMART (spatial monitoring and reporting tool) 

software and its predecessor MIST (management information system).  

If implemented correctly, there are obvious benefits to ranger-based monitoring and 

ranger-collected data. Most importantly, the rangers’ primary objective is detect and 

deter illegal activities within protected areas, therefore collecting data passively adds 

minimal additional costs to already strained resources. 
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While ranger-based monitoring has the potential to generate useful, low-cost data, 

many scientists are sceptical about its ability to detect true trends in abundance of 

wildlife compared with professional monitoring (Penrose & Call 1995).  Rangers, 

such as those in QENP, are not actively looking for wildlife, and are not following 

set transects. Rangers set patrol routes based on where they feel they are most likely 

to encounter illegal activities, and therefore any wildlife sightings data collected will 

be heavily biased.  

To date, there have been no published studies which directly compare ranger-

collected data with professionally-collected data.  In chapter 3 of this thesis, I used a 

novel method, adapted from Critchlow et al. (2015) for removing the bias in the 

ranger-collected data from QENP. I then attempted to infer the spatial distribution 

and temporal trends in abundance of elephant within the area, and compared this to a 

long running professional monitoring program.  
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Chapter 2. Herbivore Population Declines Associated With 
Bushmeat Poaching in a Ugandan National Park: A Modelling 
Approach.  
 

2.1 Introduction 
 

In protected areas illegal activities such as commercial poaching for ivory and rhino 

horn, non-commercial poaching for bushmeat, cattle encroachment, illegal timber 

harvesting and illegal fishing account for the majority of biodiversity loss 

(Geldmann et al. 2013, Laurance et al. 2012). In African savannah ecosystems, the 

commercial poaching of elephant and rhino gets much media attention, yet the 

ecological effects of illegal bushmeat hunting should not be underestimated (Lindsey 

et al. 2013, van Velden et al. 2018). While the majority of scientific literature on the 

ecological impacts of bushmeat hunting focuses on forest ecosystems in West Africa, 

the rich vertebrate communities of savannah ecosystems are both ecologically and 

economically valuable and are also exploited for bushmeat (Nuno et al. 2013, 

Rentsch and Packer 2015). Photographic tourism within African protected areas 

provides valuable income to economies, meaning bushmeat hunting is often an 

inefficient use of wildlife resources (Lindsey et al., 2015). The human population of 

Africa is increasing rapidly, and with almost twice the rate of growth around 

protected areas (Wittemeyer et al. 2008), there is increased demand for bushmeat 

products.  
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Poaching is known to have negative effects on animal abundances in savannah 

ecosystems, for example, it is estimated that up to 10% of the Serengeti wildebeest 

population is poached for bushmeat each year (Rentsch and Packer 2015). 

Population declines in buffalo, giraffe and impala have also been attributed to illegal 

bushmeat hunting (Setsaas et al. 2007, Metzger et al. 2010, Strauss et al. 2015). As 

well as direct impacts of bushmeat hunting on herbivore populations, many non-

target species can be affected (Hofer et al. 1996, Brodie et al. 2009, Becker et al. 

2013). Human hunters act as direct competition with carnivores for prey, reducing 

their carrying capacity and further degrading wildlife tourism (Rogan et al. 2017). 

Interventions to reduce bushmeat poaching in protected areas include effective law 

enforcement (e.g. ranger patrols), enabling access to alternative sources of protein 

and community based natural resource management (CBNRM), yet their 

effectiveness is rarely assessed (Loibooki et al. 2002, Blaikie 2006).  Effective law 

enforcement has been found to reduce illegal activities such as bushmeat poaching in 

protected areas (Geldmann et al. 2013), and its efficiency can be improved if law 

enforcement agencies are aware of the true spatial and temporal patterns in bushmeat 

hunting (Critchlow et al. 2017).  

Much of the literature on the ecological effects of bushmeat poaching focuses on 

stakeholder interviews (van Velden et al. 2018) and, while these provide valuable 

insight into the drivers and temporal patterns of bushmeat hunting, they provide little 

evidence for the direct impact on populations of both target and non-target species. 

In order to evaluate the true impacts of bushmeat poaching on animal population 

growth, patterns of animal abundance changes need to be compared with patterns of 

bushmeat hunting.  
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The effects of illegal bushmeat hunting on herbivore population growth in protected 

areas have not adequately been studied. Here, we investigate the hypothesis that 

population growth rates of key herbivore species are lowest in areas predicted to 

have high levels of bushmeat poaching within Queen Elizabeth National Park, 

Uganda. Here, we use a novel method for assessing the impacts of bushmeat hunting 

on herbivore population by applying spatially explicit population change models 

using realistic spatial and temporal predictions of bushmeat poaching. QENP is 

ideally suited for this analysis, as data on large animal abundances have been 

gathered from a series of comprehensive aerial surveys over a 21 year period 

(Wanyama 2006; Wanyama 2012; Wanyama et al. 2014) and ranger-collected data 

on a variety of illegal activities has provided spatial and temporal patterns of 

bushmeat hunting (Critchlow et al. 2015). 

 

2.2 Methods  
 

In order to test whether bushmeat poaching has a negative impact on herbivore 

population growth in protected areas, we used data from systematic aerial surveys of 

Queen Elizabeth National Park (QENP) in Uganda (Figure 1) to calculate spatial and 

temporal trends in densities of the most abundant herbivore species, Uganda kob 

Kobus kob thomasi, Cape buffalo Syncerus caffer and waterbuck Kobus 

ellipsiprymnus.  

 

2.2.1 Study Area 
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QENP protects 1,978km2 of savannah grassland and acacia woodland in Southwest 

Uganda. Two dry seasons and two wet seasons per year generate an average of 

1475mm of rainfall, and the park is home to large populations of Uganda kob (c. 

N12987 +/- 6329) and buffalo (N15771 +/- 6303), with smaller populations of 

waterbuck, , bushbuck, Tragelaphus scriptus and topi, Damaliscus lunatus. 

Bushmeat poaching using wire snares is relatively common in QENP, and spatial 

and temporal data on instances of poaching have been collected by park rangers 

using SMART (Spatial Monitoring and Reporting Tool) and its predecessor MIST 

(Management Information System) since 1999. Critchlow et al (2015) used these 

data to model the underlying spatial and temporal patterns of bushmeat poaching in 

QENP, removing bias in effort with occupancy models.  

2.2.2 Herbivore Data 
 

We calculated abundance changes of Uganda kob, buffalo and waterbuck from large 

mammal aerial surveys carried out by professional surveyors in 1995, 1999, 2000, 

2004, 2006, 2010, 2014 and 2016. Surveys were carried out using systematic 

reconnaissance flights (SRF), as described in Norton-Griffiths (1978). Briefly, 

surveyors flew in a Cessna single engine aircraft, fitted with sampling rods under 

each wing to identify a strip approximately 150m wide on each side of the aircraft 

when flying at 350ft (109m) above ground level. We computed actual strip width 

knowing the calibration for each observer and the altitude of the aircraft. Using 

actual strip widths, we converted count data for each species into density per km2. 

We divided QENP into two counting blocks (North and South sectors), divided 

centrally by the Maramagambo forest reserve (not surveyed). In total there were 41 
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transects, 2.5 km apart, divided into a total of 399 survey subunits. The spatial 

location of these transects and subunits remained consistent with each survey.  

 

Figure 1. Cells surveyed during the large mammal aerial censuses of Queen Elizabeth 
National Park, 1995 – 2016. Shaded area indicates probability of bushmeat poaching from 
Critchlow et al. (2015).  Inset shows detailed area within Uganda. 

 

¯ 0 20 4010 Kilometers

Uganda

Tazania

Kenya

Democratic
Republic 
of Congo

Poaching Probabiliy

High : 0.92

 

Low : 0.00



 
 

23 
 

 

 

2.2.3 Covariates 
 

SRF data only sample a small portion of the landscape, and offer only a snapshot of 

the actual distribution of animals. In order to assess whether local population 

changes of key herbivore species in QENP are associated with hotspots of bushmeat 

poaching, we modelled the population in each survey year, using distance to the park 

boundary, net primary productivity and occurrence of bushmeat poaching from 

Critchlow et al. (2015) as covariates.  

Illegal activity data 
 

Critchlow et al. (2015) presented annual maps of the incidence of illegal activities in 

QENP, based on a Bayesian, spatially explicit occupancy model derived from 

ranger-collected data. We used the annual maps of ‘animal non-commercial’ 

poaching (consisting of records of snares, arrests for poaching and honey gathering) 

in each 5km cell of QENP, for the years 1999-2014. For aerial surveys prior to 1999, 

we assumed the same spatial pattern as in 1999, and for aerial surveys after 2014, the 

2014 model outputs were used: Critchlow et al. (2015) found relatively little year on 

year variation in the spatial pattern of poaching.  

Net primary productivity (NPP) data 
 



 
 

24 
 

NPP data for QENP was gathered from MODIS (ORNL 2018) for years 2000-2016. 

NPP data was at 1km2 resolution. For aerial surveys prior to 2000, we used NPP data 

from 2000. 

 

Distance to park boundary 
 

Spatial data on the park boundary was collected from Esri Online (2018), and for 

each 2.5km grid cell we computed the distance from the centre of the cell to the 

closest park boundary 

2.2.4 Data and Analysis 
 

To model spatial populations changes we fitted a log-linear population model with a 

spatial random effect using Integrated Nested Laplace Approximation (INLA) within 

R (R Core Team 2015). INLA provides a computationally efficient method to fit 

complex spatiotemporal models within a Bayesian framework (Rue et al. 2009). Our 

models accounted for spatial autocorrelation in an intrinsic conditional 

autoregressive model (iCAR) (Besag et al. 1991) and to account for the unequal time 

steps between aerial surveys, we incorporated a loglinear population change model 

from Freeman and Newson (2008), with “year” as a fixed effect. We chose this 

recursive model due to needing to model the change in populations from the 

previous survey, with spatially and temporally varying covariates. This model 

allowed us to model expected numbers of animals per cell, as density is much 

smoother than the observed counts: the location of a herd of 300 buffalo is expected 

to shift from cell to cell over time so mean abundance is always below this. 
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2.3 Results 
 

During model selection, we used the Watanabe-Akaike criterion (WAIC) scores to 

identify the most important model components. WAIC scores of more than 2 

indicate strongly supported parameters. In our model outputs we found strong 

support for the “year” effect on change in kob abundance and NPP for change in 

waterbuck abundance (Table 1). In these models, Δ WAIC was less than 2 for 

poaching probability in all species.   

Table 1. WAIC scores for candidate models of herbivore population change. Bold 
figure indicates effects where Δ WAIC > 2, indicating strongly supported 
parameters. 

 

Species Model WAIC  Δ WAIC Description 

Uganda kob 

Kobus kob 
thomasi 

Full 8861.92  Full model with all 
covariates and year 
effect 

 No.dist 8860.39 -1.53 Model with no 
distance to park 
boundary 

 No.NPP 8862.91 0.99 Model with no 
NPP 

 No.poach 8858.91 -4.01 Model with no 
bushmeat poaching 

 No.year 8899.78 37.86 Model with no 
year effect 

Buffalo 

Syncerus 
caffer 

Full 8314.30  Full model with all 
covariates and year 
effect 
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 No.dist 8313.74 -0.56 Model with no 
distance to park 
boundary 

 No.NPP 8311.60 -2.70 Model with no 
NPP 

 No.poach 8312.84 -1.46 Model with no 
bushmeat poaching 

 No.year 8310.11 -4.19 Model with no 
year effect 

Waterbuck 

Kobus 
ellipsiprymnus 

Full 6721.87  Full model with all 
covariates and year 
effect 

 No.dist 6723.35 1.48 Model with no 
distance to park 
boundary 

 No.NPP 6725.87 4.00 Model with no 
NPP 

 No.poach 6719.51 -2.36 Model with no 
bushmeat poaching 

 No.year 6721.21 -0.66 Model with no 
year effect 

 

Densities of Uganda kob, buffalo and waterbuck varied greatly across QENP, yet the 

spatial patterns of abundance remained largely consistent throughout the survey 

period (1995 – 2016). Highest densities of all three species were in the North-eastern 

and South-western areas of the park (Fig 2). 
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Figure 2. Model outputs of Uganda kob abundance change in Queen Elizabeth 
National Park. Point size indicates kob density, point colour indicates kob population 
growth. 

  

 

Population change of all three species across the study period also varied greatly 

throughout QENP. In our best supported model, we found a significant negative 

association between abundance change of Uganda kob and occurrence probability of 

bushmeat hunting (Effect size = -0.099, CI = -0.0189 — -0.0106) (Fig 3.) (Table 2). 

This indicates that in areas that have high occurrence probability of bushmeat 

poaching, Uganda kob tend to show negative population growth. Similar negative 
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associations were found for buffalo and waterbuck, although these results were not 

significant (Table 2).  

 

 

Figure 3. Relationships between herbivore population growth and cumulative 
bushmeat hunting. Polygons indicate 95% confidence intervals. 

 

 

We also found a significant negative relationship between waterbuck population 

growth and distance to park boundary (effect size = -0.046, CI = -0.087 — -0.0041), 

indicating that waterbuck population growth decreases in central areas of the park 

(Table 2).   
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Table 2. Full model outputs of abundance change for Uganda kob, buffalo and 
waterbuck. Bold figures indicate effect size where confidence intervals do not 
overlap zero, indicating a significant result. 

Species Covariate Effect size Confidence 
Intervals 

Standard 
deviation 

Uganda kob 

Kobus kob 
thomasi 

Bushmeat poaching 

 

-0.099 -0.189 

-0.0106 

0.045 

 NPP 0.071 -0.027 

0.16 

0.049 

 Distance to 
boundary 

-0.014 -0.027 

0.0168 

0.038 

Buffalo 

Syncerus caffer 

Bushmeat poaching 

 

-0.047 -0.117 

0.023 

0.036 

 NPP -0.072 -0.156 

0.009 

0.041 

 Distance to 
boundary 

-0.012 -0.062 

-0.009 

0.025 

Waterbuck 

Kobus 
ellipsiprymnus 

Bushmeat poaching 

 

-0.036 -0.092 

0.019 

0.028 

 NPP 0.039 -0.023 

0.019 

0.032 

 Distance to 
boundary 

-0.046 -0.087 

-0.0041 

0.021 

 

Model outputs showed variation in abundance change between survey years for all 

three species (Appendix 1, Table 3), with certain years showing positive population 
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growth in all species (2000, 2006, 2014), and some showing negative (2004, 2010). 

2004 and 2010 showed significant negative population growth of Uganda kob.    

2.4 Discussion 
 

We set out to test whether bushmeat poaching has a negative impact on herbivore 

population growth in protected areas by modelling the change in herbivore 

abundance with regards to the occurrence probability of bushmeat poaching in 

QENP. In support of our hypothesis, our models indicated that bushmeat hunting 

reduces population growth of Uganda kob, and to a lesser extent buffalo and 

waterbuck. This is to be expected, as when poachers set out small wire snares and 

nets for bushmeat in QENP, the target species is Uganda kob (Moreto & Lemieux 

2015), as they are small enough to transport, abundant and easily caught in snares 

and nets. In QENP, adult buffalo tend to be too large to be caught in small common 

wire snares (Marks 1973, Travers et al. 2017), and waterbuck are relatively 

unpalatable (Estes 1974).  

A significant negative association was found between buffalo and waterbuck 

population growth and the distance to the park boundary. A similar, although non – 

significant relationship was also found for Uganda kob. This suggests that negative 

population growth is more common in central areas of the park. This result is 

unexpected, as areas bordering the park will be closest to human settlements, and 

provide the easiest access for hunters. QENP, however, is unique in that the majority 

of the park boundary (58%, not including the Southwest border with Virunga NP in 

DRC) is either on water (Lake George and Lake Edward), or is bordered by smaller 

protected areas in the greater Queen Elizabeth Protected Area (QEPA), resulting in 

restricted access to wildlife resources. A considerable improvement to this analysis 
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would be to replace “distance to park boundary” with “distance to park boundary 

allowing for barriers caused by water and other protected areas”, although this goes 

beyond the scope of this study.  

The population change model adapted from Freeman and Newson (2008) uses year 

as a fixed effect. Certain years showed similar negative and positive population 

growth in all species. 2004 and 2010 in particular showed significant reduction in 

Uganda kob (Appendix 1, Table 3). This is in line with total numbers of species in 

QENP from official Uganda Wildlife Authority survey reports (Wanyama et al. 2014 

etc). This could be caused by actual reduction in animal abundances from abiotic 

factors such as drought, or a rapid increase in bushmeat poaching. Alternative 

explanations for these temporal trends in abundance could be changes in observer 

effort. Wanyama et al. (2014) state that although the majority of surveys had been 

carried in the driest month, July, several surveys had been carried out in the wet 

season. The resulting increase in greening and canopy cover could result in reduced 

visibility during survey flights, and may underestimate the total animal numbers in 

the park (Beale et al. 2018). However, this seems less likely in QENP than elsewhere 

as dry season precipitation in QENP is still relatively high (30mm rainfall in July) 

and it is unlikely that season changes visibility as much as in more arid savannah 

ecosystems. Masih et al. (2014) report drought events in Uganda in 2002, 2008 and 

2010, years preceding those with significant kob declines. Coupled with this, 

Critchlow et al. (2015) report a rapid rise in bushmeat poaching in QENP in the 

years preceding 2004 and 2010 (2001-2002 and 2009 respectively).  

In this instance, it is difficult to ascertain if the declines in kob were caused directly 

by the increase in bushmeat poaching, or by the drought itself, although it is likely 

that drought conditions greatly increase the likelihood that individuals might resort 
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to illegal hunting for bushmeat, as households fail to satisfy basic needs due to failed 

crops or loss of livestock (Harrison et al. 2015). In order to expand on this analysis 

and investigate the real impacts of drought on these animal populations, it would be 

useful to include a model that uses monthly precipitation values as a covariate. In the 

years following 2004 and 2010, populations of all three species seemed to recover, 

suggesting natural resilience to environmental stressors such as drought.   

In summary, our analysis suggests that population growth of key herbivore species, 

in particular Uganda kob, is sensitive to both spatial and temporal trends of 

bushmeat hunting in protected areas. Uganda kob are an important species in QENP, 

as they are key prey species for both leopards and lions (Balmford & Turyaho 1992; 

Mudumba et al. 2015), the removal of which may reduce valuable economic benefits 

in the form of wildlife tourism (Victurine 2000). Additionally, continual grazing by 

kob reduces the encroachment of woody cover, preserving savannah grassland which 

is a vital habitat to many species (Roques et al. 2001). These results provide support 

for Critchlow et al. (2015), which states that efficiency of law enforcement in 

protected areas can be greatly improved if they are aware of the true spatiotemporal 

patterns of illegal activities. Furthermore, this is the first time that population level 

impacts of bushmeat poaching have been reported in a savannah ecosystem. Previous 

studies have reported on the scale of bushmeat poaching. Rentsch & Packer (2005) 

state that 10% of the Serengeti-Mara wildebeest population is poached annually, and 

others postulate that declines are caused by high levels of poaching (Hofer et al. 

1996, Metzger et al. 2010, Hilborn et al. 2006). It is important to note, however, that 

knowing details of offtake from poaching does not imply population change, as 

surplus productivity may be sufficient to counteract any population level changes 

(Dias 1996). The results from this chapter are novel, as they compare spatiotemporal 
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changes in animal abundance directly with true spatiotemporal patterns of bushmeat 

poaching. Using ranger-collected data, it is now possible to model where bushmeat 

poaching is most likely to occur in both time and space, and these results suggest 

that the impacts of bushmeat hunting should not be underestimated in savannah 

ecosystems.  
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Chapter 3. Spatiotemporal changes in African elephant abundance 
from ranger-collected data. 
 

3.1 Introduction  
 

Wide scale poaching, human – wildlife conflict and habitat loss are driving 

catastrophic declines in iconic African species such as African elephant Loxodonta 

africana and black rhino Diceros bicornis (Hoffmann et al. 2011, Ripple et al. 

2015,Craigie et al. 2010), with a dramatic rise in poached elephant carcasses in 

recent years (Beale et al. 2018, Wasser et al. 2015). African elephants are of great 

ecological and economical importance, as both ecosystem engineers and drivers of 

global tourism respectively (Laws 1970, Fritz 2017, Moorhouse et al. 2017). Despite 

declines, African elephants are distributed across a vast range (2.3 – 3.4 million km2) 

(IUCN 2013), although many populations are severely fragmented (Schüßler et al. 

2017, Lobora et al. 2017). Understanding the spatial and temporal trends in 

abundance of these populations is vital to assign conservation priorities, such as 

assigning land as protected and allocating law enforcement resources, such as ranger 

patrols.  

 In order to understand these trends, continual monitoring of existing elephant 

populations is vital. Numbers of elephants poached in an area can increase rapidly 

due to changes in socio-economic status and market prices for ivory (Schlossberg et 

al. 2018). Numbers of elephants detected during aerial surveys of the Ruaha-Rungwa 

ecosystem in Southern Tanzania fell from 30,500 – 38,800 to 11,100 – 20,600 in just 

6 years (Beale 2018). It is important, therefore to carry out long-term monitoring of 



 
 

35 
 

elephant populations at regular intervals to be able to detect these declines before 

populations become critically low, as severely poached elephant populations can 

take decades to recover (Turkalo et al, 2017)  

 Systematic reconnaissance flights (SRF) are commonly used throughout 

Africa to monitor populations of large mammals in and around protected areas. 

Using methods set out by Norton-Griffiths (1978), observers usually follow set 

transects in small aircraft at a constant height, and animal counts are extrapolated 

over the entire survey area to give an estimate of density and total population. As the 

transects are in set locations, the spatial distributions of animals can also be 

monitored. Large mammal aerial surveys using SRF are seen as the “gold standard” 

of animal monitoring, due to their repeatable, scientific method. Although the survey 

methods are robust, the data must be analysed properly, ideally calculating 

confidence intervals.  

 Large mammal aerial censuses using SRF have been carried out in Queen 

Elizabeth National Park in South East Uganda since 1995, and have provided 

valuable data on the spatiotemporal trends population trends of large mammals such 

as elephant, Uganda kob and buffalo. These censuses are funded by Uganda Wildlife 

Authority (UWA), as well as NGOs such as the Wildlife Conservation Society 

(WCS). Due to the large cost ($15,000 - $120,000 USD, pers. comms. A. Plumptre 

& C. Beale, 2018) and logistical difficulty of organising a full aerial census of the 

area, surveys are carried out infrequently (every 2-5 years). As can be seen with the 

Ruaha-Rungwa ecosystem, rapid population declines of African elephant can occur 

in these short timescales, and may go unnoticed. It would be beneficial, therefore, to 

be able to continuously monitor populations of African elephants, in order to pre-

empt these rapid declines in numbers.  
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In recent years, community based monitoring (CBM) has risen in popularity 

(Danielsen et al. 2005a). CBM encompasses monitoring carried out on a local scale 

by local resource users, records from amateur naturalists and data from ranger 

patrols. Ranger-based monitoring (RBM) has taken place in Queen Elizabeth 

National Park, Uganda since 1995, with rangers using the smartphone software 

SMART (spatial monitoring and reporting tool) and its predecessor MIST 

(management information system). During their patrols, rangers use SMART to 

record the details, time and location of any illegal activities, as well as any wildlife 

sightings. It is problematic to use the wildlife sightings data collected using SMART 

for robust monitoring of animal populations within the park due to strong spatial 

bias. When planning patrol routes, rangers will generally go where they feel they are 

most likely to encounter illegal activities, and do not follow random or systematic 

transects required by professional monitoring methods (Critchlow et al. 2015; 

Dobson et al. 2018)  

If this spatial bias can be removed from the wildlife sightings data recorded in 

SMART, then it may be possible to use it as a continuous survey, monitoring the 

spatial and temporal patterns of animal abundance, hence “filling the gaps” between 

the more expensive and logistically difficult aerial surveys.  

There is a growing interesting in utilising ranger-collected data to monitor 

populations (Danielsen et al. 2005b; Gray & Kalpers 2005), yet to date, ranger-

collected wildlife sightings data has not be used in this way. In order to test whether 

ranger-collected data from MIST/SMART can be used to monitor spatial and 

temporal patterns in populations of African elephants we used a series of Bayesian 

hierarchical models adapted from Critchlow et al. (2015)’s study mapping the true 

spatiotemporal patterns of illegal activities within QENP. QENP is ideally suited for 
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this analysis, as rangers have recorded spatial locations of large mammals for 22 

years, and due to the long running aerial censuses of the area, the accuracy of these 

models can be tested.  

3.2 Methods 
 

In order to test whether ranger-collected wildlife sightings data can be used to 

estimate spatial and temporal trends in African elephant populations we used a 

dataset of 150,771 position records from 11,294 ranger patrols from QENP from 

1999 to 2017. During this time, rangers recorded 7,389 sightings of elephant. During 

patrols, rangers use the SMART smartphone application (Pimm et al. 2015) (and 

previously handheld GPS) to record the location of any wildlife sightings or illegal 

activities or at 30 minute intervals since the last record. These data were aggregated 

annually to a 500m grid of presence or pseudo-absence. 

3.2.1 Estimating Ranger Effort 
 

When rangers carry out surveillance patrols, they often follow a route where they 

feel they are most likely to encounter illegal activities, and only encounter wildlife 

passively. To account for this bias, we estimated patrol effort using methods detailed 

in Critchlow et al. (2015). Patrol effort was estimated between known points based 

on random bridges (Papworth et al. 2012). R packages adehabitatLT and 

adehabitatHR (Calenge 2006) were used to estimate probable routes between fixed 

points as a utilization distribution (UD) of each patrol on a 500m grid. Further 

information and code are available in Critchlow et al. (2015). Individual UD surfaces 

were summed by year to generate annual estimates of observer effort.  
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3.2.2 Covariates of elephant distribution 
 

We predicted that the spatial and temporal distribution of elephants in QENP would 

be influenced by the following covariates; net primary productivity (NPP), distance 

to the park boundary, distance to water (rivers and lakes) and distance to roads. NPP 

data for QENP was gathered from MODIS (ORNL 2018) for years 2000-2016. NPP 

data was at 1 km2 resolution. For patrol data prior to 2000, we used NPP data 

from 2000. Spatial data on the park boundary, rivers, lakes and roads was collected 

from Esri Online (2018), and for each grid cell we computed the distance from the 

centre of the cell to the closest park boundary, water or road. We used NPP as it is 

often used a proxy for the distribution of wildlife (Loarie et al. 2009; Duffy & 

Pettorelli 2012). We included rivers and lakes as areas in close proximity to water 

are more likely to have high animal densities (Redfern et al. 2003; Becker et al. 

2013), and proximity to roads, as elephants generally avoid areas of human activity 

(Barnes et al. 1991)  

3.2.3 Predicting spatial distribution of elephant from ranger-collected data 
 

We used a Bayesian hierarchical modelling approach adapted from Critchlow et al 

(2015) to analyse the spatial distribution of African elephant in QENP. This model 

allowed us to account for spatial autocorrelation, define the relationship between 

covariates and elephant sightings and explicitly account for temporal and spatial 

variation in the detection of elephant by ranger patrols (Critchlow et al. 2015, Beale 

et al. 2014). Statistical analysis was performed in R (R Core Team, 2016), using the 

R package inlabru (Bakka et al. 2018). The output from this model gave estimates of 
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the total number of elephant sightings per 500m grid cell in the entire time period of 

the study (1995 - 2017).  

In order to validate these results, we used data from a series of large mammal aerial 

surveys of QENP between 1999 and 2016. As elephant are relatively low in 

abundance in the park, the data is heavily zero inflated, therefore we chose to build a 

basic population model using methods outlined in chapter 2. Covariates in this model 

were, NPP, distance to park boundary and distance to roads, rivers and lakes. Spatial 

data from both models were then compared using linear regression.  

 

3.2.4 Time series model of elephant distribution from ranger-collected data 
 

In order to test the hypothesis that ranger-collected data can be used to detect 

declines in elephant populations, we created a time series model of elephant 

distribution using the same methods as above, but ranger patrol effort was calculated 

separately for each year. Where possible, NPP data for each specific year was also 

used. The predicted temporal trends from these models were then compared to the 

estimated trend in abundance of elephants from the QENP aerial surveys.  

 

3.3 Results 
 

3.3.1  Predicting spatial distribution of African elephant 
 

We used sightings data of elephant collected by rangers in QENP to predict their 

spatial distribution over an 18 year period, using a Bayesian hierarchical occupancy 
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model. Although elephant were widely distributed across the area (Fig. 4), they were 

particularly common in the Northwest Kyambura region of the park, the southwest 

Ishasha region and along the Kazinga channel, which links Lake Edward and Lake 

George. Elephant were largely absent from the Maramagambo forest reserve in the 

southeast and most northern areas of the park. 

 

 

Figure 4. Mean predicted numbers of elephant sightings per year in QENP per 500m grid 
cell. 

 

 

Comparison of the model output data with modelled data from large mammal aerial 

surveys showed a significant positive relationship between total number of sightings 

over the 18 year period and elephant density per cell over the same period (R2 = 
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0.02, p < 0.01), indicating that after accounting for ranger bias, the model is able to 

predict the spatial distribution of elephants.  

   

Figure 5. Relationship between predicted ranger elephant sightings per 500m cell per year 
and predicted elephant per km2, 1999 - 2016 

 

 3.3.2 Time series model of elephant distribution 
 

We successfully fitted models for 16 out of the 18 years for which we had data. 

Although there were sufficient elephant sighting and ranger patrol data, models for 

2010 and 2014 failed to converge. Spatial distribution of elephant varied greatly 

among the 16 years (Appendix 2, Fig. 7), although most models predicted highest 

elephant densities in similar areas to the above spatial model (Fig. 4). Predicted 

elephant sightings per grid cell per year tended to increase over the 18 year period, 
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which coincides with a general increase in the elephant population within QENP 

(Fig. 6).  

Figure 6. Annual trends in predicted elephant sightings in QENP. Red line indicates 
estimated total abundance of elephant from large mammal aerial surveys. Error bars 
indicate 95% confidence intervals. 

 

 

3.4 Discussion 
 

3.4.1 Predicting spatial distribution of African elephant 
 

We set out to test whether ranger-collected elephant sightings data could be used to 

predict the spatial distribution and abundance change of African elephant in QENP. 

We used a Bayesian hierarchical occupancy model to predict the spatial distribution 

of African elephant in QENP using ranger-collected data from 1999 to 2016. In 

support of our hypothesis, we found a significant positive relationship between the 

spatial patterns of elephant encounter rates by ranger patrols and elephant density 

estimated from aerial surveys. Linear regression provided a very low R2 value (0.02) 

for this relationship, suggesting that our model only predicts 2% of the variation in 
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the ranger collected data. We found that many cells that the basic population model 

from the aerial survey data had predicted to have very low elephant density were 

predicted have intermediate or high numbers of sightings by rangers. This could be 

due to the ranger model predicting elephants in cells where they are unlikely to be, or 

that modelled aerial survey data is unable to identify the true spatial distribution of 

elephant inside the park. Schlossberg et al. (2016) suggest that aerial survey 

observers often fail to detect all individuals present in the area, and that this could 

bias population estimates and confound trend estimation. This, coupled with the fact 

that all the aerial survey data comes from just seven surveys over 17 years makes it 

likely that many cells regularly containing elephant are missed. Furthermore, as the 

QENP aerial surveys are sample counts as opposed to total counts, only 6% of the 

area is actually surveyed. Over this same period, we have data from over 11,000 

ranger patrols, suggesting it is more likely that rangers are able to capture the true 

spatial distribution of elephant in QENP.  

3.4.2  Time series model of elephant distribution 
 

We also set out to test whether ranger-collected elephant sightings data could be 

used to monitor trends in abundance, and be used to rapidly detect declines in 

populations. We successfully fitted 16 out of the 18 Bayesian hierarchical occupancy 

models. Visual inspection of the outputs from these models shows a large amount of 

spatial variation between years, which suggests that either elephant regularly change 

their distribution with the park, or that these models have failed to capture their true 

distribution. Models from 2009, 2011 and 2015 show the majority of the elephant 

population clustered around the outskirts of the park, which is not seen in either the 

overall spatial distribution model or the basic population model from the aerial 

survey data. These artefacts have likely arisen from the generation of the mesh, 
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which is used when carrying out the patrol effort calculations (Lindgren & Rue 

2015; Bakka et al. 2018). The peripheral peak in these model outputs is obvious, 

therefore identifying and excluding such results should be straightforward. It is also 

worth noting that these methods are at the cutting edge of spatiotemporal modelling, 

and are in need of refining, perhaps by standardising the mesh across all years. All 

other models show a roughly similar distribution to the overall distribution model, 

with sightings more likely along the Kazinga channel and Ishasha region. All 

models, however, failed to pick up the high density of sightings in the Kyambura 

region seen in the overall model. A potential reason for this is that ranger patrol 

effort is calculated separately for each year, which may be adequate for analysing 

single years, but becomes problematic when comparing between years or calculating 

temporal trends. Furthermore, the degree to which elephant sightings are recorded 

varies between individual rangers (pers. obs.) Rangers will always record, sometimes 

record or never record elephant, but their patrol route will always be recorded.  

The mean numbers of sightings per cell appear to follow the same trend as the 

estimated total abundance of elephant in QENP over the study period (Fig. 6). An 

increase in both elephant sightings and estimated elephant abundance occurred from 

2006. This coincides with a period of civil unrest in eastern Democratic Republic of 

Congo (Autesserre 2007), which led to a significant migration of elephants from 

Virunga National Park to the adjoining QENP (Keigwin et al. 2018). This indicates 

that even though the predicted spatial distribution may not be accurate in any one 

year, these models may have potential in detecting increases and declines in elephant 

populations at short notice. As these declines are sometimes rapid (Beale et al. 

2018), it would be greatly beneficial to use these models to monitor elephant 
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populations in situ, and be able to prioritise conservation efforts when and where 

they are needed.  

Considering these factors, at the moment we reject the hypothesis that ranger-

collected data can be used to monitor trends in abundance using these models in their 

current format. Despite the low explanatory power of these models, however, this 

analysis does demonstrate the potential for using ranger-collected data in this way. If 

these models can be refined, and if park rangers can be persuaded to always record 

elephant when they are encountered,  then it may be possible to continually monitor 

populations with little or no additional resources.  
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Chapter 4. Key Findings and Conclusions 
 

4.1 Key Findings 
 

The preceding chapters closely examined two applications for ranger-collected data 

from Queen Elizabeth National Park, Uganda. For the first time, I reported 

population level impacts of illegal bushmeat hunting in a savannah ecosystem. In my 

introductory chapter, I highlighted that there are relatively few published studies 

investigating illegal bushmeat hunting in savannah ecosystems compared to forest 

ecosystems, and of those there are none studying the direct impacts on animal 

populations.   Previous studies have alluded to the scale of bushmeat poaching in 

savannahs  (e.g. Serengeti wildebeest (Rentsch and Packer 2015), yet understanding 

the extent of poaching offtake does not imply population change, as population 

surplus may be sufficient to counter losses from poaching (Dias 1996).  I also stated 

that in order to understand these direct impacts, knowledge of the true spatial and 

temporal patterns of bushmeat poaching in the area are required. I used 

spatiotemporal data on the occurrence probability of bushmeat poaching in QENP 

from Critchlow et al. (2015). This data was modelled from ranger-collected data 

from surveillance patrols between 1995 and 2016, and by successfully removing the 

inherent spatial bias, the authors were able to predict the true spatial and temporal 

trends in bushmeat poaching. This allowed me to directly compare spatial and 

temporal changes in herbivore abundance to poaching risk 

We modelled population change of three key herbivore species in QENP; buffalo, 

waterbuck and Uganda kob using spatiotemporal models of poaching probability 

derived from ranger-collected data as covariates. We found that that Uganda kob, the 

most common target for bushmeat poachers in QENP, was most affected by illegal 
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hunting. Furthermore, areas predicted to have high levels of poaching showed the 

steepest declines in kob abundance.  This is a particularly significant result, as kob 

have both ecological and economic importance in QENP and Uganda. I also 

highlighted a potential link between drought conditions, an increase in poaching risk 

and a decrease in Uganda kob abundance. This suggests periods of environmental 

stress and economic hardship are likely to exacerbate declines in vulnerable species, 

although herbivore populations within QENP currently seem both resilient and 

stable. As the human population is growing rapidly in Africa, especially around 

protected areas, the scale of illegal bushmeat hunting is likely to increase, therefore 

understanding the direct impacts of illegal bushmeat hunting in protected areas will 

likely prove important to conservationists and policy makers alike.  

In chapter 3 I used ranger-collected data on African elephant sightings in QENP to 

predict their spatial distribution and change in abundance over a 17 year period. 

Although technical advances such as smartphones are making it easier for rangers to 

record events such as illegal activities and wildlife sightings in the field, the analysis 

of this data remains problematic. As previously mentioned, the analysis of this data 

assumes either random or uniform effort, and depending on the particular 

assumptions, this may lead to systematic under- or over-estimates of animal 

abundance. Here, for the first time, I was able to compare ranger-collected wildlife 

sightings data with professionally collected survey data by removing the inherent 

ranger bias. I successfully predicted the spatial distribution of elephant within 

QENP, which I then compared to spatial data from large mammal aerial surveys 

across the same time period, resulting in a significant positive relationship. I then 

attempted to predict the spatiotemporal changes in the QENP elephant population by 

modelling their distribution for each year between 1999 and 2016. Although the 
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outputs from these models were inconclusive, the trend in sightings per year was 

similar to the estimated total number of elephants in the park. Potential issues with 

the time series model of elephant distribution in QENP could have arisen from 

variation in recording practices between individual rangers. These preliminary 

results could be used to inform conservation agencies such as UWA of the potential 

of ranger-collected wildlife sightings data, and how it might be used to reliably and 

continuously monitor animal populations within protected areas. Ultimately, it is at 

the discretion of agencies such as UWA to make wildlife recording mandatory, and 

to encourage its rangers of the numerous benefits. 

While there is no substitute for robust, scientifically collected data, this thesis does 

offer insight into the potential uses for this kind of unstructured data to the wider 

conservation community. Huge amounts of data are collected annually on a vast 

number of species and systems globally through citizen science projects such as 

iNaturalist and the Global Biodiversity Information Facility (GBIF). While these 

projects may be expensive to develop and implement, the number of individuals 

recording species and their locations would not be achievable using paid researchers 

undertaking fieldwork. Online communities such as iSpot invite users to submit 

photographs of animals, plants and fungi for identification. If analysed correctly, this 

data could provide valuable information to those studying trends in populations or 

changes in distribution.   

Citizen science projects have risen in popularity in recent years. In marine systems, 

citizen science projects such as outlined by Cerrano et al. (2017) suggest way in 

which volunteers have helped monitor the both the spread of an invasive algae and 

populations of several vulnerable protected species. This ad-hoc data would be have 

a similar structure to the ranger-collected data in QENP, and the results of this thesis 
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suggest that if the observer bias and observer error could be accounted for, then 

similar models could be created to continually monitor trends in abundance and 

distribution of many species across difference systems.  

In the introductory chapter, I highlighted the ecological and economic importance of 

elephants across Africa, and outlined the many threats they currently face. I went on 

to document how declines in elephant populations can be rapid, and how it is crucial 

to have monitoring programs in place to detect or even pre-empt these declines. 

Professional monitoring programs, such as aerial surveys provide valuable, robust 

data on elephant populations, but they are costly and logistically difficult, problems 

which are exacerbated in developing countries. These issues often result in 

professional monitoring being discontinued or infrequently carried out, meaning 

local declines can be overlooked. If properly utilised, ranger-collected data could be 

used to provide continuous monitoring of vulnerable populations without requiring 

extra resources.  

4.2 Conclusions 
 

In summary, this thesis addresses knowledge gaps in both the direct impacts of 

bushmeat hunting on herbivore populations and the potential applications of ranger-

collected data. Chapter 2 highlighted how ranger-collected data could be used to 

determine the true spatiotemporal patterns of various illegal activities in protected 

areas, how this in turn could be used to predict the impacts of illegal bushmeat 

hunting on animal populations. Chapter 3 of this thesis documented how ranger-

collected wildlife sighting data could be used to predict the spatial distribution of 

African elephants, and highlighted the potential for detecting trends in abundance 

and rapid declines. Many conservation scientists are beginning to view ranger-based 
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monitoring and ranger-collected data as a valuable resource, due to the relatively low 

levels of skill and training required, as well as the low financial cost when compared 

with professional monitoring programs. Currently, the analysis of ranger-collected 

data remains problematic, due to its non-systematic nature, and building models to 

predict spatial or temporal changes requires high levels of training. The difficulty in 

analysing this data means that the possibility of detecting rapid ecological changes 

and implementing swift interventions may be negated. Although we are not 

suggesting that implementing these methods will revolutionise conservation 

management, it may still be an important step to improving the efficiency of both 

protected area law enforcement and wildlife monitoring. Through technological 

advances in this emerging field, software could be developed that models trends in 

abundance of many species using data from applications such as SMART, as well as 

data collected by volunteers through citizen science projects. If this software is 

relatively straightforward to use and its outputs easy to understand, it could be used 

by protected area managers or even the rangers themselves, providing rapid 

responses to declines in vulnerable species.  
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Appendices 
 

Appendix 1. Model outputs from “year” fixed effect. 
 

Table 3. Model outputs from “year” fixed effect. Bold figures indicate effect size 
where confidence intervals do not overlap zero, indicating a significant result. 

Species Year Effect size Confidence 
Intervals 

Uganda kob 
Kobus kob 
thomasi 

1999 -0.0008 -0.2274 
0.2252 

 2000 0.1818 -0.027 
0.16 

 2004 
 

-0.4122 -0.63 
-0.19 

 2006 0.0426 -0.18 
0.26 

 2010 -0.29 -0.52 
-0.067 

 2014 
 

0.14 -0.071 
0.35 

 2016 -0.15 -0.35 
0.49 

Buffalo 
Syncerus caffer 

1999 0.045 -0.15 
0.24 

 2000 0.097 -0.18 
0.19 

 2004 
 

0.081 -0.11 
0.28 

 2006 0.20 0.0075 
0.40 

 2010 0.005 -0.19 
0.20 

 2014 
 

0.083 -0.11 
0.27 

 2016 0.012 -0.176 
0.19 

Waterbuck 
Kobus 
ellipsiprymnus 

1999 0.081 -0.065 
0.23 

 2000 0.15 0.006 
0.29 

 2004 
 

-0.05 -0.19 
0.094 



 
 

52 
 

 2006 0.11 -0.032 
0.29 

 2010 -0.44 -0.19 
0.10 

 2014 
 

-0.08 -0.22 
0.059 

 2016 0.069 -0.068 
0.20 
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Appendix 2. Predicted elephant sightings from time series model. 
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Figure 7. Predicted number of elephant sightings per year per 500m cell in QENP 
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